WorldWideScience

Sample records for infrared ftir spectrometer

  1. Mid infrared MEMS FTIR spectrometer

    Science.gov (United States)

    Erfan, Mazen; Sabry, Yasser M.; Mortada, Bassem; Sharaf, Khaled; Khalil, Diaa

    2016-03-01

    In this work we report, for the first time to the best of our knowledge, a bulk-micromachined wideband MEMS-based spectrometer covering both the NIR and the MIR ranges and working from 1200 nm to 4800 nm. The core engine of the spectrometer is a scanning Michelson interferometer micro-fabricated using deep reactive ion etching (DRIE) technology. The spectrum is obtained using the Fourier Transform techniques that allows covering a very wide spectral range limited by the detector responsivity. The moving mirror of the interferometer is driven by a relatively large stroke electrostatic comb-drive actuator. Zirconium fluoride (ZrF4) multimode optical fibers are used to connect light between the white light source and the interferometer input, as well as the interferometer output to a PbSe photoconductive detector. The recorded signal-to-noise ratio is 25 dB at the wavelength of 3350 nm. The spectrometer is successfully used in measuring the absorption spectra of methylene chloride, quartz glass and polystyrene film. The presented solution provides a low cost method for producing miniaturized spectrometers in the near-/mid-infrared.

  2. Effect of jitter on an imaging FTIR spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C. L., LLNL

    1997-04-01

    Line of sight (LOS) jitter produces temporal modulations of the signals which are detected in the focal plane of a temporally modulated imaging Fourier Transform Spectrometer. A theoretical treatment of LOS jitter effects is given, and is compared with the results of measurements with LIFTIRS1 (the Livermore Imaging Fourier Transform InfraRed Spectrometer). The identification, isolation, quantification and removal of jitter artifacts in hyperspectral imaging data by means of principal components analysis is discussed. The theoretical distribution of eigenvalues expected from principal components analysis is used to determine the level of significance of spatially coherent instrumental artifacts in general, including jitter as a representative example. It is concluded that an imaging FTIR spectrometer is much less seriously impacted by a given LOS jitter level than a non imaging FTIR spectrometer.

  3. Step-scan Fourier transform infrared (FTIR) spectrometer for investigating chemical reactions of energy-related materials. Final report, April 1, 1995--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Eyring, E.M.

    1997-11-04

    Two step-scan Fourier transform infrared (FTIR) spectrometers were purchased with URI-DOE funds by the University of Utah. These infrared spectrometers have been used to carry out the following investigations: the determination of strength of adsorption of organic molecules at the liquid-solid interface of coated attenuated total reflectance (ATR) elements, the kinetic study of the photoinitiated polymerization of a dental resin, the exploration of the kinetics of photochemical reactions of organic molecules in solution, and the development of a stopped-flow FTIR interface for measuring rates and mechanisms of reactions in solution that are not photoinitiated and do not have convenient ultraviolet-visible spectral features.

  4. Gas Measurement Using Static Fourier Transform Infrared Spectrometers.

    Science.gov (United States)

    Köhler, Michael H; Schardt, Michael; Rauscher, Markus S; Koch, Alexander W

    2017-11-13

    Online monitoring of gases in industrial processes is an ambitious task due to adverse conditions such as mechanical vibrations and temperature fluctuations. Whereas conventional Fourier transform infrared (FTIR) spectrometers use rather complex optical and mechanical designs to ensure stable operation, static FTIR spectrometers do not require moving parts and thus offer inherent stability at comparatively low costs. Therefore, we present a novel, compact gas measurement system using a static single-mirror Fourier transform spectrometer (sSMFTS). The system works in the mid-infrared range from 650 cm - 1 to 1250 cm - 1 and can be operated with a customized White cell, yielding optical path lengths of up to 120 cm for highly sensitive quantification of gas concentrations. To validate the system, we measure different concentrations of 1,1,1,2-Tetrafluoroethane (R134a) and perform a PLS regression analysis of the acquired infrared spectra. Thereby, the measured absorption spectra show good agreement with reference data. Since the system additionally permits measurement rates of up to 200 Hz and high signal-to-noise ratios, an application in process analysis appears promising.

  5. Outdoor chamber measurements of biological aerosols with a passive FTIR spectrometer

    Science.gov (United States)

    D'Amico, Francis M.; Emge, Darren K.; Roelant, Geoffrey J.

    2004-02-01

    Outdoor measurements of dry bacillus subtilis (BG) spores were conducted with a passive Fourier transform infrared (FTIR) spectrometer using two types of chambers. One was a large open-ended cell, and the other was a canyon of similar dimensions. The canyon exposes the aerosol plume to downwelling sky radiance, while the open-ended cell does not. The goal of the experiments was to develop a suitable test methodology for evaluation of passive standoff detectors for open-air aerosol measurements. Dry BG aerosol particles were dispersed with a blower through an opening in the side of the chamber to create a pseudo-stationary plume, wind conditions permitting. Numerous trials were performed with the FTIR spectrometer positioned to view mountain, sky and mixed mountain-sky backgrounds. This paper will discuss the results of the FTIR measurements for BG and Kaolin dust releases.

  6. Ultra-compact MEMS FTIR spectrometer

    Science.gov (United States)

    Sabry, Yasser M.; Hassan, Khaled; Anwar, Momen; Alharon, Mohamed H.; Medhat, Mostafa; Adib, George A.; Dumont, Rich; Saadany, Bassam; Khalil, Diaa

    2017-05-01

    Portable and handheld spectrometers are being developed and commercialized in the late few years leveraging the rapidly-progressing technology and triggering new markets in the field of on-site spectroscopic analysis. Although handheld devices were commercialized for the near-infrared spectroscopy (NIRS), their size and cost stand as an obstacle against the deployment of the spectrometer as spectral sensing components needed for the smart phone industry and the IoT applications. In this work we report a chip-sized microelectromechanical system (MEMS)-based FTIR spectrometer. The core optical engine of the solution is built using a passive-alignment integration technique for a selfaligned MEMS chip; self-aligned microoptics and a single detector in a tiny package sized about 1 cm3. The MEMS chip is a monolithic, high-throughput scanning Michelson interferometer fabricated using deep reactive ion etching technology of silicon-on-insulator substrate. The micro-optical part is used for conditioning the input/output light to/from the MEMS and for further light direction to the detector. Thanks to the all-reflective design of the conditioning microoptics, the performance is free of chromatic aberration. Complemented by the excellent transmission properties of the silicon in the infrared region, the integrated solution allows very wide spectral range of operation. The reported sensor's spectral resolution is about 33 cm-1 and working in the range of 1270 nm to 2700 nm; upper limited by the extended InGaAs detector. The presented solution provides a low cost, low power, tiny size, wide wavelength range NIR spectral sensor that can be manufactured with extremely high volumes. All these features promise the compatibility of this technology with the forthcoming demand of smart portable and IoT devices.

  7. Camtracker: a new camera controlled high precision solar tracker system for FTIR-spectrometers

    Directory of Open Access Journals (Sweden)

    M. Gisi

    2011-01-01

    Full Text Available A new system to very precisely couple radiation of a moving source into a Fourier Transform Infrared (FTIR Spectrometer is presented. The Camtracker consists of a homemade altazimuthal solar tracker, a digital camera and a homemade program to process the camera data and to control the motion of the tracker. The key idea is to evaluate the image of the radiation source on the entrance field stop of the spectrometer. We prove that the system reaches tracking accuracies of about 10 arc s for a ground-based solar absorption FTIR spectrometer, which is significantly better than current solar trackers. Moreover, due to the incorporation of a camera, the new system allows to document residual pointing errors and to point onto the solar disk center even in case of variable intensity distributions across the source due to cirrus or haze.

  8. Surface plasmon excitation using a Fourier-transform infrared spectrometer: Live cell and bacteria sensing

    Science.gov (United States)

    Lirtsman, Vladislav; Golosovsky, Michael; Davidov, Dan

    2017-10-01

    We report an accessory for beam collimation to be used as a plug-in for a conventional Fourier-Transform Infrared (FTIR) spectrometer. The beam collimator makes use of the built-in focusing mirror of the FTIR spectrometer which focuses the infrared beam onto the pinhole mounted in the place usually reserved for the sample. The beam is collimated by a small parabolic mirror and is redirected to the sample by a pair of plane mirrors. The reflected beam is conveyed by another pair of plane mirrors to the built-in detector of the FTIR spectrometer. This accessory is most useful for the surface plasmon excitation. We demonstrate how it can be employed for label-free and real-time sensing of dynamic processes in bacterial and live cell layers. In particular, by measuring the intensity of the CO2 absorption peak one can assess the cell layer metabolism, while by measuring the position of the surface plasmon resonance one assesses the cell layer morphology.

  9. Non-Contact Measurement of the Spectral Emissivity through Active/Passive Synergy of CO2 Laser at 10.6 µm and 102F FTIR (Fourier Transform Infrared) Spectrometer

    Science.gov (United States)

    Zhang, Ren-Hua; Su, Hong-Bo; Tian, Jing; Mi, Su-Juan; Li, Zhao-Liang

    2016-01-01

    In the inversion of land surface temperature (LST) from satellite data, obtaining the information on land surface emissivity is most challenging. How to solve both the emissivity and the LST from the underdetermined equations for thermal infrared radiation is a hot research topic related to quantitative thermal infrared remote sensing. The academic research and practical applications based on the temperature-emissivity retrieval algorithms show that directly measuring the emissivity of objects at a fixed thermal infrared waveband is an important way to close the underdetermined equations for thermal infrared radiation. Based on the prior research results of both the authors and others, this paper proposes a new approach of obtaining the spectral emissivity of the object at 8–14 µm with a single-band CO2 laser at 10.6 µm and a 102F FTIR spectrometer. Through experiments, the spectral emissivity of several key samples, including aluminum plate, iron plate, copper plate, marble plate, rubber sheet, and paper board, at 8–14 µm is obtained, and the measured data are basically consistent with the hemispherical emissivity measurement by a Nicolet iS10 FTIR spectrometer for the same objects. For the rough surface of materials, such as marble and rusty iron, the RMSE of emissivity is below 0.05. The differences in the field of view angle and in the measuring direction between the Nicolet FTIR method and the method proposed in the paper, and the heterogeneity in the degree of oxidation, polishing and composition of the samples, are the main reasons for the differences of the emissivities between the two methods. PMID:27347964

  10. Photoacoustic Fourier Transform Infrared (FTIR) Spectroscopy Of Solids

    Science.gov (United States)

    Vidrine, D. Warren

    1981-10-01

    After discovering the photoacoustic effect, Alexander Graham Bell predicted its use in spectrometers, and that it would find its greatest utility "in the ultra-red." More than ninety years were required to fulfil his first prediction, and the second is still a prophecy. There is no record whether he ever imagined that an invention being developed that same winter by a young protege of his named Albert Michelson would ever be combined with his photoacoustic effect. A century later, the combination was made by Farrow Burnham, and Eyring, using a visible-range interferometer spectrometer of their own design. Soon afterwards, Rockley and myself, working independently, applied the technique to infrared measurements of solid samples. Photoacoustic cells are now commercially available as FT-IR accessories, and the technique is in use in the field.

  11. Identification and characterization of salmonella serotypes using DNA spectral characteristics by fourier transform infrared (FT-IR) spectroscopy

    Science.gov (United States)

    Analysis of DNA samples of Salmonella serotypes (Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky) were performed using Fourier transform infrared spectroscopy (FT-IR) spectrometer by placing directly in contact with a diamond attenua...

  12. Characterization of southern yellow pine bark layers by Attenuated Total Reflectance (ATR) and Fourier Transform Infrared (FT-IR) Spectroscopy

    Science.gov (United States)

    Thomas L. Eberhardt

    2009-01-01

    The outer bark (rhytidome) of the southern yellow pines is a complex structure comprised of alternating layers of obliterated phloem and periderm tissues, with the latter comprised of three layers, those being phellem, phellogen, and phelloderm. An attenuated total reflectance (ATR) sampling accessory, coupled with a Fourier transform infrared (FTIR) spectrometer,...

  13. Efficacy of using multiple open-path Fourier transform infrared (OP-FTIR) spectrometers in an odor emission episode investigation at a semiconductor manufacturing plant

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, Yung-Chieh; Wu, Chang-Fu [Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei City 100, Taiwan (China); Chang, Pao-Erh; Chen, Shin-Yu [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu City 310, Taiwan 310 (China); Hwang, Yaw-Huei, E-mail: yhhwang@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei City 100, Taiwan (China); Department of Public Health, College of Public Health, National Taiwan University, Taipei City 100, Taiwan (China)

    2011-08-01

    This study evaluated the efficacy of simultaneously employing three open-path Fourier transform infrared (OP-FTIR) spectrometers with 3-day consecutive monitoring, using an odor episode as an example. The corresponding monitoring paths were allocated among the possible emission sources of a semiconductor manufacturing plant and the surrounding optoelectronic and electronic-related factories, which were located in a high-tech industrial park. There was a combined total odor rate of 43.9% for the three monitoring paths, each comprised of 736 continuous 5-minute monitoring records and containing detectable odor compounds, such as ammonia, ozone, butyl acetate, and propylene glycol monomethyl ether acetate (PGMEA). The results of the logistic regression model indicated that the prevailing south wind and the OP-FTIR monitoring path closest to the emission source in down-wind direction resulted in a high efficacy for detecting odorous samples with odds ratios (OR) of 3.8 (95% confidence interval (CI): 2.9-5.0) and 5.1 (95% CI: 3.6-7.2), respectively. Meanwhile, the odds ratio for detecting ammonia odorous samples was 7.5 for Path II, which was downwind closer to the possible source, as compared to Path III, downwind far away from the possible source. PGMEA could not be monitored at Path II but could be at Path III, indicating the importance of the monitoring path and flow ejection velocities inside the stacks on the monitoring performance of OP-FTIR. Besides, an odds ratio of 5.1 for odorous sample detection was obtained with south prevailing wind comprising 65.0% of the monitoring time period. In general, it is concluded that OP-FTIR operated with multiple paths simultaneously shall be considered for investigation on relatively complicated episodes such as emergency of chemical release, multiple-source emission and chemical monitoring for odor in a densely populated plant area to enhance the efficacy of OP-FTIR monitoring. - Research highlights: {yields} To conduct

  14. Efficacy of using multiple open-path Fourier transform infrared (OP-FTIR) spectrometers in an odor emission episode investigation at a semiconductor manufacturing plant

    International Nuclear Information System (INIS)

    Tsao, Yung-Chieh; Wu, Chang-Fu; Chang, Pao-Erh; Chen, Shin-Yu; Hwang, Yaw-Huei

    2011-01-01

    This study evaluated the efficacy of simultaneously employing three open-path Fourier transform infrared (OP-FTIR) spectrometers with 3-day consecutive monitoring, using an odor episode as an example. The corresponding monitoring paths were allocated among the possible emission sources of a semiconductor manufacturing plant and the surrounding optoelectronic and electronic-related factories, which were located in a high-tech industrial park. There was a combined total odor rate of 43.9% for the three monitoring paths, each comprised of 736 continuous 5-minute monitoring records and containing detectable odor compounds, such as ammonia, ozone, butyl acetate, and propylene glycol monomethyl ether acetate (PGMEA). The results of the logistic regression model indicated that the prevailing south wind and the OP-FTIR monitoring path closest to the emission source in down-wind direction resulted in a high efficacy for detecting odorous samples with odds ratios (OR) of 3.8 (95% confidence interval (CI): 2.9-5.0) and 5.1 (95% CI: 3.6-7.2), respectively. Meanwhile, the odds ratio for detecting ammonia odorous samples was 7.5 for Path II, which was downwind closer to the possible source, as compared to Path III, downwind far away from the possible source. PGMEA could not be monitored at Path II but could be at Path III, indicating the importance of the monitoring path and flow ejection velocities inside the stacks on the monitoring performance of OP-FTIR. Besides, an odds ratio of 5.1 for odorous sample detection was obtained with south prevailing wind comprising 65.0% of the monitoring time period. In general, it is concluded that OP-FTIR operated with multiple paths simultaneously shall be considered for investigation on relatively complicated episodes such as emergency of chemical release, multiple-source emission and chemical monitoring for odor in a densely populated plant area to enhance the efficacy of OP-FTIR monitoring. - Research highlights: → To conduct multi

  15. Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling

    Science.gov (United States)

    Rentz Dupuis, Julia; Mansur, David J.; Vaillancourt, Robert; Carlson, David; Evans, Thomas; Schundler, Elizabeth; Todd, Lori; Mottus, Kathleen

    2010-04-01

    OPTRA has developed an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach is intended as a referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill. In this paper, we summarize the design and build and detail system characterization and test of a prototype I-OP-FTIR instrument. System characterization includes radiometric performance and spectral resolution. Results from a series of tomographic reconstructions of sulfur hexafluoride plumes in a laboratory setting are also presented.

  16. Evaluation and benchmarking of an EC-QCL-based mid-infrared spectrometer for monitoring metabolic blood parameters in critical care units

    Science.gov (United States)

    Grafen, M.; Delbeck, S.; Busch, H.; Heise, H. M.; Ostendorf, A.

    2018-02-01

    Mid-infrared spectroscopy hyphenated with micro-dialysis is an excellent method for monitoring metabolic blood parameters as it enables the concurrent, reagent-free and precise measurement of multiple clinically relevant substances such as glucose, lactate and urea in micro-dialysates of blood or interstitial fluid. For a marketable implementation, quantum cascade lasers (QCL) seem to represent a favourable technology due to their high degree of miniaturization and potentially low production costs. In this work, an external cavity (EC) - QCL-based spectrometer and two Fourier-transform infrared (FTIR) spectrometers were benchmarked with regard to the precision, accuracy and long-term stability needed for the monitoring of critically ill patients. For the tests, ternary aqueous solutions of glucose, lactate and mannitol (the latter for dialysis recovery determination) were measured in custom-made flow-through transmission cells of different pathlengths and analyzed by Partial Least Squares calibration models. It was revealed, that the wavenumber tuning speed of the QCL had a severe impact on the EC-mirror trajectory due to matching the digital-analog-converter step frequency with the mechanical resonance frequency of the mirror actuation. By selecting an appropriate tuning speed, the mirror oscillations acted as a hardware smoothing filter for the significant intensity variations caused by mode hopping. Besides the tuning speed, the effects of averaging over multiple spectra and software smoothing parameters (Savitzky-Golay-filters and FT-smoothing) were investigated. The final settings led to a performance of the QCL-system, which was comparable with a research FTIR-spectrometer and even surpassed the performance of a small FTIR-mini-spectrometer.

  17. [Motion control of moving mirror based on fixed-mirror adjustment in FTIR spectrometer].

    Science.gov (United States)

    Li, Zhong-bing; Xu, Xian-ze; Le, Yi; Xu, Feng-qiu; Li, Jun-wei

    2012-08-01

    The performance of the uniform motion of the moving mirror, which is the only constant motion part in FTIR spectrometer, and the performance of the alignment of the fixed mirror play a key role in FTIR spectrometer, and affect the interference effect and the quality of the spectrogram and may restrict the precision and resolution of the instrument directly. The present article focuses on the research on the uniform motion of the moving mirror and the alignment of the fixed mirror. In order to improve the FTIR spectrometer, the maglev support system was designed for the moving mirror and the phase detection technology was adopted to adjust the tilt angle between the moving mirror and the fixed mirror. This paper also introduces an improved fuzzy PID control algorithm to get the accurate speed of the moving mirror and realize the control strategy from both hardware design and algorithm. The results show that the development of the moving mirror motion control system gets sufficient accuracy and real-time, which can ensure the uniform motion of the moving mirror and the alignment of the fixed mirror.

  18. Retrieval and satellite intercomparison of O3 measurements from ground-based FTIR Spectrometer at Equatorial Station: Addis Ababa, Ethiopia

    Directory of Open Access Journals (Sweden)

    T. von Clarmann

    2013-02-01

    Full Text Available Since May 2009, high-resolution Fourier Transform Infrared (FTIR solar absorption spectra have been recorded at Addis Ababa (9.01° N latitude, 38.76° E longitude, 2443 m altitude above sea level, Ethiopia. The vertical profiles and total column amounts of ozone (O3 are deduced from the spectra by using the retrieval code PROFFIT (V9.5 and regularly determined instrumental line shape (ILS. A detailed error analysis of the O3 retrieval is performed. Averaging kernels of the target gas shows that the major contribution to the retrieved information comes from the measurement. The degrees of freedom for signals is found to be 2.1 on average for the retrieval of O3 from the observed FTIR spectra. The ozone Volume Mixing Ratio (VMR profiles and column amounts retrieved from FTIR spectra are compared with the coincident satellite observations of Microwave Limb Sounding (MLS, Michelson Interferometer for Passive Atmospheric Sounding (MIPAS, Tropospheric Emission Spectrometer (TES, Ozone Monitoring Instrument (OMI, Atmospheric Infrared Sounding (AIRS and Global Ozone Monitoring Experiment (GOME-2 instruments. The mean relative differences in ozone profiles of FTIR from MLS and MIPAS are generally lower than 15% within the altitude range of 27 to 36 km, whereas difference from TES is lower than 1%. Comparisons of measurements of column amounts from the satellite and the ground-based FTIR show very good agreement as exhibited by relative differences within +0.2% to +2.8% for FTIR versus MLS and GOME-2; and −0.9 to −9.0% for FTIR versus OMI, TES and AIRS. The corresponding standard deviations are within 2.0 to 2.8% for FTIR versus MLS and GOME-2 comparisons whereas that of FTIR versus OMI, TES and AIRS are within 3.5 to 7.3%. Thus, the retrieved O3 VMR and column amounts from a tropical site, Addis Ababa, is found to exhibit very good agreement with all coincident satellite observations over an approximate 3-yr period.

  19. FTIR Emission spectroscopy of surfaces

    Science.gov (United States)

    Van Woerkom, P. C. M.

    A number of vibrational spectroscopic techniques are available For the study of surfaces, such as ATR, IR reflection-absorption, IR emission, etc. Infrared emission is hardly used, although interesting applications are possible now due to the high sensitivity of Fourier transform IR (FTIR) spectrometers. Two examples, where infrared emission measurements are very fruitful, will be given. One is the investigation of the curing behaviour of organic coatings, the other is the in situ study of heterogeneously catalyzed reactions. Undoubtedly, infrared emission measurements offer a number of specific advantages in some cases. Especially the less critical demands on the sample preparation are important.

  20. Fourier transform infrared (FTIR) fiber optic monitoring of composites during cure in an autoclave

    Science.gov (United States)

    Druy, Mark A.; Elandjian, Lucy; Stevenson, William A.; Driver, Richard D.; Leskowitz, Garett M.

    1990-01-01

    Real-time in situ monitoring of the chemical states of epoxy resins was investigated during cure in an autoclave using infrared evanescent spectroscopy. Fiber evanescent sensors were developed which may be sandwiched between the plies of the prepreg sample. A short length of sapphire fiber was used as the sensor cell portion of the fiber probe. Heavy metal fluoride glass optical fiber cables were designed for connecting the FTIR spectrometer to the sensor fiber within the autoclave. The sapphire fibers have outstanding mechanical thermal properties which should permit their use as an embedded link in all thermoset composites. The system is capable of operation at a temperature of 250 C for periods up to 8 hours without major changes to the fiber transmission. A discussion of the selection of suitable sensor fibers, the construction of a fiber-optic interface, and the interpretation of in situ infrared spectra of the curing process is presented.

  1. The Scope Of Fourier Transform Infrared (FTIR)

    Science.gov (United States)

    Hirschfeld, T.

    1981-10-01

    Three auarters of a century after its inception, a generation after its advantages were recognized, and a decade after its first commercialization, FT-IR dominates the growth of the IR market, and reigns alone over its high performance end. What lies ahead for FT-IR now? On one hand, the boundary between it and the classical scanning spectrometers is becoming fuzzy, as gratings attempt to use as much of FT-IR's computer technology as they can handle, and smaller FT systems invade the medium cost instrument range. On the other hand, technology advances in IR detectors, non-Fourier interference devices, and the often announced tunable laser are at long last getting set to make serious inroads in the field (although not necessarily in the manner most of us expected). However, the dominance of FT-IR as the leading edge of IR spectroscopy seems assured for a good many years. The evolution of FT-IR will be dominated by demands not yet fully satisfied such as rapid sample turnover, better quantitation, automated interpretation, higher GC-IR sensitivity, improved LC-IR, and, above all else, reliability and ease of use. These developments will be based on multiple small advances in hardware, large advances in the way systems are put together, and the traditional yearly revolutionary advances of the computer industry. The big question in the field will, however, still be whether our ambition and our skill can continue to keep up with the advances of our tools. It will be fun.

  2. Fourier transform infrared (FTIR) spectroscopy for identification of ...

    African Journals Online (AJOL)

    Fourier transform infrared (FTIR) spectroscopy was used in this study to identify and determine spectral features of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. Two cultures were grown in a chemically-defined media under photoautotrophic culture conditions isolated from eutrophic ...

  3. Analysis of Index Gases of Coal Spontaneous Combustion Using Fourier Transform Infrared Spectrometer

    Directory of Open Access Journals (Sweden)

    Xiaojun Tang

    2014-01-01

    Full Text Available Analysis of the index gases of coal for the prevention of spontaneous combustion is of great importance for the enhancement of coal mine safety. In this work, Fourier Transform Infrared Spectrometer (FTIRS is presented to be used to analyze the index gases of coal in real time to monitor spontaneous combustion conditions. Both the instrument parameters and the analysis method are introduced at first by combining characteristics of the absorption spectra of the target analyte with the analysis requirements. Next, more than ten sets of the gas mixture containing ten components (CH4, C2H6, C3H8, iso-C4H10, n-C4H10, C2H4, C3H6, C2H2, CO, and CO2 are included and analyzed with a Spectrum Two FTIRS made by Perkin Elmer. The testing results show that the detection limit of most analytes is less than 2×10-6. All the detection limits meet the monitoring requirements of coal spontaneous combustion in China, which means that FTIRS may be an ideal instrument and the analysis method used in this paper is sufficient for spontaneous combustion gas monitoring on-line and even in situ, since FTIRS has many advantages such as fast analysis, being maintenance-free, and good safety.

  4. A hybrid thermal video and FTIR spectrometer system for rapidly locating and characterizing gas leaks

    Science.gov (United States)

    Williams, David J.; Wadsworth, Winthrop; Salvaggio, Carl; Messinger, David W.

    2006-08-01

    Undiscovered gas leaks, known as fugitive emissions, in chemical plants and refinery operations can impact regional air quality and present a loss of product for industry. Surveying a facility for potential gas leaks can be a daunting task. Industrial leak detection and repair programs can be expensive to administer. An efficient, accurate and cost effective method for detecting and quantifying gas leaks would both save industries money by identifying production losses and improve regional air quality. Specialized thermal video systems have proven effective in rapidly locating gas leaks. These systems, however, do not have the spectral resolution for compound identification. Passive FTIR spectrometers can be used for gas compound identification, but using these systems for facility surveys is problematic due to their small field of view. A hybrid approach has been developed that utilizes the thermal video system to locate gas plumes using real time visualization of the leaks, coupled with the high spectral resolution FTIR spectrometer for compound identification and quantification. The prototype hybrid video/spectrometer system uses a sterling cooled thermal camera, operating in the MWIR (3-5 μm) with an additional notch filter set at around 3.4 μm, which allows for the visualization of gas compounds that absorb in this narrow spectral range, such as alkane hydrocarbons. This camera is positioned alongside of a portable, high speed passive FTIR spectrometer, which has a spectral range of 2 - 25 μm and operates at 4 cm -1 resolution. This system uses a 10 cm telescope foreoptic with an onboard blackbody for calibration. The two units are optically aligned using a turning mirror on the spectrometer's telescope with the video camera's output.

  5. Use of Fourier transformed infrared spectrophotometer (FTIR) for determination of breastmilk output by the deuterium dilution method among Senegalese women

    International Nuclear Information System (INIS)

    Sarr Cisse, Aita; Diaham, Babou; Dossou, Nicole; Guiro, Amadou Tidiane; Wade, Salimata; Bluck, Leslie

    2002-01-01

    Breastmilk output can be estimated from the mother's total body water and water turnover rates after oral administration of deuterium oxide. Usually the deuterium enrichments are determined using a isotope ratio mass spectrometer, which is expensive and requires a specialist for operation and maintenance. Such equipment is dfficult to set up in developing countries. A less expensive method was developed which uses a Fourier transform infrared spectrophotometer (FTIR) for deuterium enrichment analysis. This study evaluated the constraints of using FTIR to study lactating women in Senegal. The deuterium isotope method was found to be adequate for free living subjects and presented few constraints except for the duration of the saliva sampling (14 days). The method offers the opportunity to determine simultaneously breastmilk output, mother's body composition, and breastfeeding practices. Deuterium sample enrichments measured with FTIR were fast and easy, but for spectrum quality some environmental control is required to optimize the results. (Authors)

  6. Fourier Transform Infrared Spectroscopy Part III. Applications.

    Science.gov (United States)

    Perkins, W. D.

    1987-01-01

    Discusses the use of the FT-IR spectrometer in analyses that were previously avoided. Examines some of the applications of this spectroscopy with aqueous solutions, circular internal reflection, samples with low transmission, diffuse reflectance, infrared emission, and the infrared microscope. (TW)

  7. Comparison of Fiber Optic and Conduit Attenuated Total Reflection (ATR) Fourier Transform Infrared (FT-IR) Setup for In-Line Fermentation Monitoring.

    Science.gov (United States)

    Koch, Cosima; Posch, Andreas E; Herwig, Christoph; Lendl, Bernhard

    2016-12-01

    The performance of a fiber optic and an optical conduit in-line attenuated total reflection mid-infrared (IR) probe during in situ monitoring of Penicillium chrysogenum fermentation were compared. The fiber optic probe was connected to a sealed, portable, Fourier transform infrared (FT-IR) process spectrometer via a plug-and-play interface. The optical conduit, on the other hand, was connected to a FT-IR process spectrometer via a knuckled probe with mirrors that had to be adjusted prior to each fermentation, which were purged with dry air. Penicillin V (PenV) and its precursor phenoxyacetic acid (POX) concentrations were determined by online high-performance liquid chromatography and the obtained concentrations were used as reference to build partial least squares regression models. Cross-validated root-mean-square errors of prediction were found to be 0.2 g L -1 (POX) and 0.19 g L -1 (PenV) for the fiber optic setup and 0.17 g L -1 (both POX and PenV) for the conduit setup. Higher noise-levels and spectrum-to-spectrum variations of the fiber optic setup lead to higher noise of estimated (i.e., unknown) POX and PenV concentrations than was found for the conduit setup. It seems that trade-off has to be made between ease of handling (fiber optic setup) and measurement accuracy (optical conduit setup) when choosing one of these systems for bioprocess monitoring. © The Author(s) 2016.

  8. Analysis of F-Canyon Effluents During the Dissolution Cycle with a Fourier Transform Infrared Spectrometer/Multipath Cell

    International Nuclear Information System (INIS)

    Villa, E.

    1999-01-01

    Air samples from F-Canyon effluents were collected at the F-Canyon stack and transported to a laboratory at the Savannah River Technology Center (SRTC) for analysis using a Fourier transform infrared spectrometer in conjunction with a multipath cell. Air samples were collected during the decladding and acid cuts of the dissolution of the irradiated aluminum-cladded slugs. The FTIR analyses of the air samples show the presence of NO2, NO, HNO2, N2O, SF6, and 85Kr during the dissolution cycle. The concentration time profiles of these effluents corresponded with expected release rates from the F-Canyon operations

  9. Portable Gas Analyzer Based on Fourier Transform Infrared Spectrometer for Patrolling and Examining Gas Exhaust

    Directory of Open Access Journals (Sweden)

    Yuntao Liang

    2015-01-01

    Full Text Available Aimed at monitoring emission of organic gases such as CH4, C2H6, C3H8, iso-C4H10, n-C4H10, C2H4, C3H6, C2H2, CO, and CO2, from coal mines, petroleum refineries, and other plants, a Fourier Transform Infrared (FT-IR spectrometer was used to develop a portable gas analyzer for patrolling and examining gas exhaust. Firstly, structure of the instrument was introduced. Then, a spectral analysis approach was presented. Finally, instrument was tested with standard gases and with actual gases emitted from a petroleum refinery. For the latter test, a gas chromatograph (GC was used as a reference instrument. The test results showed that the detection limit of every component of analyte was less than 10 × 10−6. The maximum test error of every analyte was less than 15 × 10−6 when its practical concentration was no more than 500 × 10−6. A final comparison showed that the result curves of analytes obtained with FT-IR spectrometer almost overlapped with those obtained with GC, and their resulting noise was less than 6.4% when the practical gas concentration was above 100 × 10−6. As a result, our instrument was suitable to be used as a portable instrument for monitoring exhaust gases.

  10. Heavy fuel oil pyrolysis and combustion: kinetics and evolved gases investigated by TGA-FTIR

    KAUST Repository

    Abdul Jameel, Abdul Gani; Han, Yunqing; Brignoli, Omar; Telalovic, Selvedin; Elbaz, Ayman M.; Im, Hong G.; Roberts, William L.; Sarathy, Mani

    2017-01-01

    investigated using non-isothermal thermo-gravimetric analysis (TGA) coupled with a Fourier-transform infrared (FTIR) spectrometer. TG and DTG (differential thermo-gravimetry) were used for the kinetic analysis and to study the mass loss characteristics due

  11. An Airborne Infrared Spectrometer for Solar Eclipse Observations

    Science.gov (United States)

    Samra, Jenna; DeLuca, Edward E.; Golub, Leon; Cheimets, Peter; Philip, Judge

    2016-05-01

    The airborne infrared spectrometer (AIR-Spec) is an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). AIR-Spec will image five infrared coronal emission lines to determine whether they may be useful probes of coronal magnetism.The solar magnetic field provides the free energy that controls coronal heating, structure, and dynamics. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections and ultimately drives space weather. Therefore, direct coronal field measurements have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind.While current instruments routinely observe only the photospheric and chromospheric magnetic fields, AIR-Spec will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. During the total solar eclipse of 2017, AIR-Spec will observe five magnetically sensitive coronal emission lines between 1.4 and 4 µm from the HIAPER Gulfstream V at an altitude above 14.9 km. The instrument will measure emission line intensity, width, and Doppler shift, map the spatial distribution of infrared emitting plasma, and search for waves in the emission line velocities.AIR-Spec consists of an optical system (feed telescope, grating spectrometer, and infrared detector) and an image stabilization system, which uses a fast steering mirror to correct the line-of-sight for platform perturbations. To ensure that the instrument meets its research goals, both systems are undergoing extensive performance modeling and testing. These results are shown with reference to the science requirements.

  12. Principle and analysis of a rotational motion Fourier transform infrared spectrometer

    Science.gov (United States)

    Cai, Qisheng; Min, Huang; Han, Wei; Liu, Yixuan; Qian, Lulu; Lu, Xiangning

    2017-09-01

    Fourier transform infrared spectroscopy is an important technique in studying molecular energy levels, analyzing material compositions, and environmental pollutants detection. A novel rotational motion Fourier transform infrared spectrometer with high stability and ultra-rapid scanning characteristics is proposed in this paper. The basic principle, the optical path difference (OPD) calculations, and some tolerance analysis are elaborated. The OPD of this spectrometer is obtained by the continuously rotational motion of a pair of parallel mirrors instead of the translational motion in traditional Michelson interferometer. Because of the rotational motion, it avoids the tilt problems occurred in the translational motion Michelson interferometer. There is a cosine function relationship between the OPD and the rotating angle of the parallel mirrors. An optical model is setup in non-sequential mode of the ZEMAX software, and the interferogram of a monochromatic light is simulated using ray tracing method. The simulated interferogram is consistent with the theoretically calculated interferogram. As the rotating mirrors are the only moving elements in this spectrometer, the parallelism of the rotating mirrors and the vibration during the scan are analyzed. The vibration of the parallel mirrors is the main error during the rotation. This high stability and ultra-rapid scanning Fourier transform infrared spectrometer is a suitable candidate for airborne and space-borne remote sensing spectrometer.

  13. Detection of emission sources using passive-remote Fourier transform infrared spectroscopy

    International Nuclear Information System (INIS)

    Demirgian, J.C.; Macha, S.M.; Darby, S.M.; Ditillo, J.

    1995-01-01

    The detection and identification of toxic chemicals released in the environment is important for public safety. Passive-remote Fourier transform infrared (FTIR) spectrometers can be used to detect these releases. Their primary advantages are their small size and ease of setup and use. Open-path FTIR spectrometers are used to detect concentrations of pollutants from a fixed frame of reference. These instruments detect plumes, but they are too large and difficult to aim to be used to track a plume to its source. Passive remote FTIR spectrometers contain an interferometer, optics, and a detector. They can be used on tripods and in some cases can be hand-held. A telescope can be added to most units. We will discuss the capability of passive-remote FTIR spectrometers to detect the origin of plumes. Low concentration plumes were released using a custom-constructed vaporizer. These plumes were detected with different spectrometers from different distances. Passive-remote spectrometers were able to detect small 10 cm on a side chemical releases at concentration-pathlengths at the low parts per million-meter (ppm-m) level

  14. High-definition Fourier Transform Infrared (FT-IR) Spectroscopic Imaging of Human Tissue Sections towards Improving Pathology

    Science.gov (United States)

    Nguyen, Peter L.; Davidson, Bennett; Akkina, Sanjeev; Guzman, Grace; Setty, Suman; Kajdacsy-Balla, Andre; Walsh, Michael J.

    2015-01-01

    High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging is an emerging approach to obtain detailed images that have associated biochemical information. FT-IR imaging of tissue is based on the principle that different regions of the mid-infrared are absorbed by different chemical bonds (e.g., C=O, C-H, N-H) within cells or tissue that can then be related to the presence and composition of biomolecules (e.g., lipids, DNA, glycogen, protein, collagen). In an FT-IR image, every pixel within the image comprises an entire Infrared (IR) spectrum that can give information on the biochemical status of the cells that can then be exploited for cell-type or disease-type classification. In this paper, we show: how to obtain IR images from human tissues using an FT-IR system, how to modify existing instrumentation to allow for high-definition imaging capabilities, and how to visualize FT-IR images. We then present some applications of FT-IR for pathology using the liver and kidney as examples. FT-IR imaging holds exciting applications in providing a novel route to obtain biochemical information from cells and tissue in an entirely label-free non-perturbing route towards giving new insight into biomolecular changes as part of disease processes. Additionally, this biochemical information can potentially allow for objective and automated analysis of certain aspects of disease diagnosis. PMID:25650759

  15. Automated Fast Screening Method for Cocaine Identification in Seized Drug Samples Using a Portable Fourier Transform Infrared (FT-IR) Instrument.

    Science.gov (United States)

    Mainali, Dipak; Seelenbinder, John

    2016-05-01

    Quick and presumptive identification of seized drug samples without destroying evidence is necessary for law enforcement officials to control the trafficking and abuse of drugs. This work reports an automated screening method to detect the presence of cocaine in seized samples using portable Fourier transform infrared (FT-IR) spectrometers. The method is based on the identification of well-defined characteristic vibrational frequencies related to the functional group of the cocaine molecule and is fully automated through the use of an expert system. Traditionally, analysts look for key functional group bands in the infrared spectra and characterization of the molecules present is dependent on user interpretation. This implies the need for user expertise, especially in samples that likely are mixtures. As such, this approach is biased and also not suitable for non-experts. The method proposed in this work uses the well-established "center of gravity" peak picking mathematical algorithm and combines it with the conditional reporting feature in MicroLab software to provide an automated method that can be successfully employed by users with varied experience levels. The method reports the confidence level of cocaine present only when a certain number of cocaine related peaks are identified by the automated method. Unlike library search and chemometric methods that are dependent on the library database or the training set samples used to build the calibration model, the proposed method is relatively independent of adulterants and diluents present in the seized mixture. This automated method in combination with a portable FT-IR spectrometer provides law enforcement officials, criminal investigators, or forensic experts a quick field-based prescreening capability for the presence of cocaine in seized drug samples. © The Author(s) 2016.

  16. Visible-infrared micro-spectrometer based on a preaggregated silver nanoparticle monolayer film and an infrared sensor card

    Science.gov (United States)

    Yang, Tao; Peng, Jing-xiao; Ho, Ho-pui; Song, Chun-yuan; Huang, Xiao-li; Zhu, Yong-yuan; Li, Xing-ao; Huang, Wei

    2018-01-01

    By using a preaggregated silver nanoparticle monolayer film and an infrared sensor card, we demonstrate a miniature spectrometer design that covers a broad wavelength range from visible to infrared with high spectral resolution. The spectral contents of an incident probe beam are reconstructed by solving a matrix equation with a smoothing simulated annealing algorithm. The proposed spectrometer offers significant advantages over current instruments that are based on Fourier transform and grating dispersion, in terms of size, resolution, spectral range, cost and reliability. The spectrometer contains three components, which are used for dispersion, frequency conversion and detection. Disordered silver nanoparticles in dispersion component reduce the fabrication complexity. An infrared sensor card in the conversion component broaden the operational spectral range of the system into visible and infrared bands. Since the CCD used in the detection component provides very large number of intensity measurements, one can reconstruct the final spectrum with high resolution. An additional feature of our algorithm for solving the matrix equation, which is suitable for reconstructing both broadband and narrowband signals, we have adopted a smoothing step based on a simulated annealing algorithm. This algorithm improve the accuracy of the spectral reconstruction.

  17. Surface analysis by Fourier-transform infrared (FTIR) spectroscopy

    International Nuclear Information System (INIS)

    Powell, G.L.; Smyrl, N.R.; Fuller, E.L.

    1981-01-01

    A diffuse-reflectance capability for the Fourier transform infrared spectrometer at the Y-12 Plant Laboratory has been implemented. A sample cell with a 25 to 400 0 C temperature-controlled sample stage and an ultrahigh-vacuum-to-atmospheric pressure gas-handling capability has been developed. Absorbance of light from the spectrometer beam, resulting from the beam being scattered from a powder sample, can be measured. This capability of detecting molecular species on and in powders is to be used to study chemisorption on actinide and rare-earth metals, alloys, and compounds. Cell design is described along with experiments demonstrating its performance in detecting moisture absorption on uranium oxide, moisture and carbon dioxide absorption on the lithium hydride/hydroxide system, and carbon dioxide absorption on potassium borohydride. 13 figures

  18. Monitoring wine aging with Fourier transform infrared spectroscopy (FT-IR

    Directory of Open Access Journals (Sweden)

    Basalekou Marianthi

    2015-01-01

    Full Text Available Oak wood has commonly been used in wine aging but recently other wood types such as Acacia and Chestnut, have attracted the interest of the researchers due to their possible positive contribution to wine quality. However, only the use of oak and chestnut woods is approved by the International Enological Codex of the International Organisation of Vine and Wine. In this study Fourier Transform (FT-mid-infrared spectroscopy combined with Discriminant Analysis was used to differentiate wines aged in barrels made from French oak, American oak, Acacia and Chestnut and in tanks with oak chips, over a period of 12 months. Two red (Mandilaria, Kotsifali and two white (Vilana, Dafni native Greek grape varieties where used to produce four wines. The Fourier Transform Infrared (FT-IR spectra of the samples were recorded on a Zinc Selenide (ZnSe window after incubation at 40 °C for 30 min. A complete differentiation of the samples according to both the type of wood used and the contact time was achieved based on their FT-IR spectra.

  19. Advances in passive-remote and extractive Fourier transform infrared spectroscopic systems

    International Nuclear Information System (INIS)

    Demirgian, J.C.; Hammer, C.; Hwang, E.; Mao, Zhuoxiong.

    1993-01-01

    The Clean Air Act of 1990 requires the monitoring of air toxics including those from incinerator emissions. Continuous emission monitors (CEM) would demonstrate the safety of incinerators and address public concern about emissions of hazardous organic compounds. Fourier transform infrared (FTIR) spectroscopy can provide the technology for continuous emission monitoring of stacks. Stack effluent can be extracted and analyzed in less than one minute with conventional FTIR spectrometers. Passive-remote FTIR spectrometers can detect certain emission gases over 1 km away from a stack. The authors discuss advances in both extractive and passive-remote FTIR technology. Extractive systems are being tested with EPA protocols, which will soon replace periodic testing methods. Standard operating procedures for extractive systems are being developed and tested. Passive-remote FTIR spectrometers have the advantage of not requiring an extracted sample; however, they have less sensitivity. We have evaluated the ability of commercially available systems to detect fugitive plumes and to monitor carbon monoxide at a coal-fired power plant

  20. Signal-to-noise ratio of FT-IR CO gas spectra

    DEFF Research Database (Denmark)

    Bak, J.; Clausen, Sønnik

    1999-01-01

    in emission and transmission spectrometry, an investigation of the SNR in CO gas spectra as a function of spectral resolution has been carried out. We present a method to (1) determine experimentally the SNR at constant throughput, (2) determine the SNR on the basis of measured noise levels and Hitran......The minimum amount of a gaseous compound which can be detected and quantified with Fourier transform infrared (FT-IR) spectrometers depends on the signal-to-noise ratio (SNR) of the measured gas spectra. In order to use low-resolution FT-IR spectrometers to measure combustion gases like CO and CO2...... simulated signals, and (3) determine the SNR of CO from high to low spectral resolutions related to the molecular linewidth and vibrational-rotational lines spacing. In addition, SNR values representing different spectral resolutions but scaled to equal measurement times were compared. It was found...

  1. Scientific Payload Of The Emirates Mars Mission: Emirates Mars Infrared Spectrometer (Emirs) Overview.

    Science.gov (United States)

    Altunaiji, E. S.; Edwards, C. S.; Christensen, P. R.; Smith, M. D.; Badri, K. M., Sr.

    2017-12-01

    The Emirates Mars Mission (EMM) will launch in 2020 to explore the dynamics in the atmosphere of Mars on a global scale. EMM has three scientific instruments to an improved understanding of circulation and weather in the Martian lower and middle atmosphere. Two of the EMM's instruments, which are the Emirates eXploration Imager (EXI) and Emirates Mars Infrared Spectrometer (EMIRS) will focus on the lower atmosphere observing dust, ice clouds, water vapor and ozone. On the other hand, the third instrument Emirates Mars Ultraviolet Spectrometer (EMUS) will focus on both the thermosphere of the planet and its exosphere. The EMIRS instrument, shown in Figure 1, is an interferometric thermal infrared spectrometer that is jointly developed by Arizona State University (ASU) and Mohammed Bin Rashid Space Centre (MBRSC). It builds on a long heritage of thermal infrared spectrometers designed, built, and managed, by ASU's Mars Space Flight Facility, including the Thermal Emission Spectrometer (TES), Miniature Thermal Emission Spectrometer (Mini-TES), and the OSIRIS-REx Thermal Emission Spectrometer (OTES). EMIRS operates in the 6-40+ µm range with 5 cm-1 spectral sampling, enabled by a Chemical Vapor-Deposited (CVD) diamond beamsplitter and state of the art electronics. This instrument utilizes a 3×3 detector array and a scan mirror to make high-precision infrared radiance measurements over most of a Martian hemisphere. The EMIRS instrument is optimized to capture the integrated, lower-middle atmosphere dynamics over a Martian hemisphere and will capture 60 global images per week ( 20 images per orbit) at a resolution of 100-300 km/pixel. After processing through an atmospheric retrieval algorithm, EMIRS will determine the vertical temperature profiles to 50km altitude and measure the column integrated global distribution and abundances of key atmospheric parameters (e.g. dust, water ice (clouds) and water vapor) over the Martian day, seasons and year.

  2. Numerous applications of fiber optic evanescent wave Fourier transform infrared (FEW-FTIR) spectroscopy for subsurface structural analysis

    Science.gov (United States)

    Afanasyeva, Natalia I.; Welser, Leslie; Bruch, Reinhard F.; Kano, Angelique; Makhine, Volodymyr

    1999-10-01

    A new infrared (IR) interferometric method has been developed in conjunction with low-loss, flexible optical fibers, sensors, and probes. This combination of fiber optical sensors and Fourier Transform (FT) spectrometers can be applied to many fields, including (1) noninvasive medical diagnostics of cancer and other different diseases in vivo, (2) minimally invasive bulk diagnostics of tissue, (3) remote monitoring of tissue, chemical processes, and environment, (4) surface analysis of polymers and other materials, (5) characterization of the quality of food, pharmacological products, cosmetics, paper, and other wood-related products, as well as (6) agricultural, forensic, geological, mining, and archeological field measurements. In particular, our nondestructive, fast, compact, portable, remote and highly sensitive diagnostics tools are very promising for subsurface analysis at the molecular level without sample preparation. For example, this technique is ideal for different types of soft porous foams, rough polymers, and rock surfaces. Such surfaces, as well as living tissue, are very difficult to investigate by traditional FTIR methods. We present here FEW-FTIR spectra of polymers, banana and grapefruit peels, and living tissues detected directly at surfaces. In addition, results on the vibrational spectral analysis of normal and pathological skin tissue in the region of 850 - 4000 cm-1 are discussed.

  3. Analyzing FTIR spectra using high sensitivity compare function of FTIR software for 2-pack epoxy paints

    Science.gov (United States)

    Saaid, Farish Irfal; Chan, Chin Han; Ong, Max Chong Hup; Winie, Tan; Harun, Mohamad Kamal

    2015-08-01

    The existing problem of oil and gas companies faced for on-site jobs of polymeric coatings on steel pipelines is that the quality of polymeric coatings varies from job to job for the same product brand from the same supplier or paint manufacturer. This can be due to the inherent problem of the reformulation of polymeric coatings or in other words adulterated polymeric coatings are supplied, where the quality of the coatings deviates from the submitted specifications for prequalification and tender purpose. Major oil and gas companies in Malaysia are calling for Coating Fingerprinting Certificate for the supply of polymeric coatings from local paint manufactures as quality assurance requirement of the coatings supplied. This will reduce the possibility of failures of the polymeric coatings, which lead to the corrosion of steel pipelines resulting in leakage of crude oil and gas to the environment. In this case, Fourier-transform infrared (FTIR) is a simple and reliable tool for coating fingerprinting. In this study, we conclude that, revelation of possible components of the 2-pack epoxy paints by carrying out extensive FTIR libraries search on FTIR spectra seems to be extremely challenging. Estimation of correlation of the sample spectrum to that of the reference spectrum using Compare function from one FTIR manufacturer, even the FTIR spectra are collected by different FTIR spectrometers from different FTIR manufacturers, can be made. The results of the correlation are reproducible.

  4. Eclipse Science Results from the Airborne Infrared Spectrometer (AIR-Spec)

    Science.gov (United States)

    Samra, J.; Cheimets, P.; DeLuca, E.; Golub, L.; Judge, P. G.; Lussier, L.; Madsen, C. A.; Marquez, V.; Tomczyk, S.; Vira, A.

    2017-12-01

    We present the first science results from the commissioning flight of the Airborne Infrared Spectrometer (AIR-Spec), an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). During the eclipse, AIR-Spec will image five magnetically sensitive coronal emission lines between 1.4 and 4 microns to determine whether they may be useful probes of coronal magnetism. The instrument will measure emission line intensity, FWHM, and Doppler shift from an altitude of over 14 km, above local weather and most of the absorbing water vapor. Instrumentation includes an image stabilization system, feed telescope, grating spectrometer, infrared camera, and visible slit-jaw imager. Results from the 2017 eclipse are presented in the context of the mission's science goals. AIR-Spec will identify line strengths as a function of position in the solar corona and search for the high frequency waves that are candidates for heating and acceleration of the solar wind. The instrument will also identify large scale flows in the corona, particularly in polar coronal holes. Three of the five lines are expected to be strong in coronal hole plasmas because they are excited in part by scattered photospheric light. Line profile analysis will probe the origins of the fast and slow solar wind. Finally, the AIR-Spec measurements will complement ground based eclipse observations to provide detailed plasma diagnostics throughout the corona. AIR-Spec will measure infrared emission of ions observed in the visible from the ground, giving insight into plasma heating and acceleration at radial distances inaccessible to existing or planned spectrometers.

  5. Comparison of Portable and Bench-Top Spectrometers for Mid-Infrared Diffuse Reflectance Measurements of Soils.

    Science.gov (United States)

    Hutengs, Christopher; Ludwig, Bernard; Jung, András; Eisele, Andreas; Vohland, Michael

    2018-03-27

    Mid-infrared (MIR) spectroscopy has received widespread interest as a method to complement traditional soil analysis. Recently available portable MIR spectrometers additionally offer potential for on-site applications, given sufficient spectral data quality. We therefore tested the performance of the Agilent 4300 Handheld FTIR (DRIFT spectra) in comparison to a Bruker Tensor 27 bench-top instrument in terms of (i) spectral quality and measurement noise quantified by wavelet analysis; (ii) accuracy of partial least squares (PLS) calibrations for soil organic carbon (SOC), total nitrogen (N), pH, clay and sand content with a repeated cross-validation analysis; and (iii) key spectral regions for these soil properties identified with a Monte Carlo spectral variable selection approach. Measurements and multivariate calibrations with the handheld device were as good as or slightly better than Bruker equipped with a DRIFT accessory, but not as accurate as with directional hemispherical reflectance (DHR) data collected with an integrating sphere. Variations in noise did not markedly affect the accuracy of multivariate PLS calibrations. Identified key spectral regions for PLS calibrations provided a good match between Agilent and Bruker DHR data, especially for SOC and N. Our findings suggest that portable FTIR instruments are a viable alternative for MIR measurements in the laboratory and offer great potential for on-site applications.

  6. Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions.

    Science.gov (United States)

    Meng, Yingying; Yao, Changhong; Xue, Song; Yang, Haibo

    2014-01-01

    Fourier transform infrared spectroscopy (FT-IR) was applied in algal strain screening and monitoring cell composition dynamics in a marine microalga Isochrysis zhangjiangensis during algal cultivation. The content of lipid, carbohydrate and protein of samples determined by traditional methods had validated the accuracy of FT-IR method. For algal screening, the band absorption ratios of lipid/amide I and carbo/amide I from FT-IR measurements allowed for the selection of Isochrysis sp. and Tetraselmis subcordiformis as the most potential lipid and carbohydrate producers, respectively. The cell composition dynamics of I. zhangjiangensis measured by FT-IR revealed the diversion of carbon allocation from protein to carbohydrate and neutral lipid when nitrogen-replete cells were subjected to nitrogen limitation. The carbo/amide I band absorption ratio had also been demonstrated to depict physiological status under nutrient stress in T. subcordiformis. FT-IR serves as a tool for the simultaneous measurement of lipid, carbohydrate, and protein content in cell. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Multi-channel up-conversion infrared spectrometer and method of detecting a spectral distribution of light

    DEFF Research Database (Denmark)

    2015-01-01

    A multi-channel infrared spectrometer for detecting an infrared spectrum of light received from an object. The spectrometer comprises a wavelength converter system comprising a nonlinear material and having an input side and an output side. The wavelength converter system comprises at least a first...... on the first side into light in a second output wavelength range output on the second side. The spectrometer further comprises a demultiplexer configured for demultiplexing light in the first up-conversion channel and light in the second up-conversion channel. The demultiplexer is located on the first side...

  8. Using Extractive FTIR to Measure N2O from Medium Heavy Duty Vehicles Powered with Diesel and Biodiesel Fuels

    Science.gov (United States)

    A Fourier Transform Infrared (FTIR) spectrometer was used to measure N2O and other pollutant gases during an evaluation of two medium heavy-duty diesel trucks equipped with a Diesel Particulate Filter (DPF). The emissions of these trucks were characterized under a variety of oper...

  9. Methodological effects in Fourier transform infrared (FTIR) spectroscopy: Implications for structural analyses of biomacromolecular samples

    Science.gov (United States)

    Kamnev, Alexander A.; Tugarova, Anna V.; Dyatlova, Yulia A.; Tarantilis, Petros A.; Grigoryeva, Olga P.; Fainleib, Alexander M.; De Luca, Stefania

    2018-03-01

    A set of experimental data obtained by Fourier transform infrared (FTIR) spectroscopy (involving the use of samples ground and pressed with KBr, i.e. in a polar halide matrix) and by matrix-free transmission FTIR or diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic methodologies (involving measurements of thin films or pure powdered samples, respectively) were compared for several different biomacromolecular substances. The samples under study included poly-3-hydroxybutyrate (PHB) isolated from cell biomass of the rhizobacterium Azospirillum brasilense; dry PHB-containing A. brasilense biomass; pectin (natural carboxylated heteropolysaccharide of plant origin; obtained from apple peel) as well as its chemically modified derivatives obtained by partial esterification of its galacturonide-chain hydroxyl moieties with palmitic, oleic and linoleic acids. Significant shifts of some FTIR vibrational bands related to polar functional groups of all the biomacromolecules under study, induced by the halide matrix used for preparing the samples for spectroscopic measurements, were shown and discussed. A polar halide matrix used for preparing samples for FTIR measurements was shown to be likely to affect band positions not only per se, by affecting band energies or via ion exchange (e.g., with carboxylate moieties), but also by inducing crystallisation of metastable amorphous biopolymers (e.g., PHB of microbial origin). The results obtained have important implications for correct structural analyses of polar, H-bonded and/or amphiphilic biomacromolecular systems using different methodologies of FTIR spectroscopy.

  10. High-resolution far-infrared synchrotron FTIR spectrum of the ν12 band of formamide-d1 (DCONH2)

    Science.gov (United States)

    Tan, T. L.; Wu, Q. Y.; Ng, L. L.; Appadoo, Dominique R. T.; McNaughton, Don

    2018-05-01

    The spectrum of the ν12 band of formamide-d1 (DCONH2) was recorded using a synchrotron Fourier transform infrared (FTIR) spectrometer coupled to the Australian Synchrotron THz/Far-IR beamline, with an unapodized resolution of 0.00096 cm-1 in the 350-210 cm-1 region. For the first time, rovibrational constants up to five quartic and two sextic terms were derived for the v12 = 1 state through the fitting of a total of 2072 far-infrared transitions using Watson's A-reduced Hamiltonian in the Ir representation with a root-mean-square (rms) deviation of 0.000073 cm-1. The band centre of the ν12 band of DCONH2 was found to be 289.3327553(47) cm-1 although the experimental uncertainty was limited to ±0.0002 cm-1. Ground state rovibrational constants of DCONH2 up to five quartic and two sextic constants were derived from a fit of 847 ground state combination differences (GSCDs) obtained from the infrared transitions of the ν12 band, together with 6 previously reported microwave transitions, with a rms deviation of 0.000108 cm-1. The ground state rotational constants (A, B, and C) of DCONH2 were improved while the ground state centrifugal distortion constants were accurately obtained for the first time. The uncertainty of the measured infrared lines was estimated to be ±0.0002 cm-1. From the ground state rotational constants, the inertial defect of DCONH2 was calculated to be 0.0169412(11) uÅ2.

  11. A Simple, Student-Built Spectrometer to Explore Infrared Radiation and Greenhouse Gases

    Science.gov (United States)

    Bruce, Mitchell R. M.; Wilson, Tiffany A.; Bruce, Alice E.; Bessey, S. Max; Flood, Virginia J.

    2016-01-01

    In this experiment, students build a spectrometer to explore infrared radiation and greenhouse gases in an inquiry-based investigation to introduce climate science in a general chemistry lab course. The lab is based on the exploration of the thermal effects of molecular absorption of infrared radiation by greenhouse and non-greenhouse gases. A…

  12. Chemical fingerprinting of Arabidopsis using Fourier transform infrared (FT-IR) spectroscopic approaches.

    Science.gov (United States)

    Gorzsás, András; Sundberg, Björn

    2014-01-01

    Fourier transform infrared (FT-IR) spectroscopy is a fast, sensitive, inexpensive, and nondestructive technique for chemical profiling of plant materials. In this chapter we discuss the instrumental setup, the basic principles of analysis, and the possibilities for and limitations of obtaining qualitative and semiquantitative information by FT-IR spectroscopy. We provide detailed protocols for four fully customizable techniques: (1) Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS): a sensitive and high-throughput technique for powders; (2) attenuated total reflectance (ATR) spectroscopy: a technique that requires no sample preparation and can be used for solid samples as well as for cell cultures; (3) microspectroscopy using a single element (SE) detector: a technique used for analyzing sections at low spatial resolution; and (4) microspectroscopy using a focal plane array (FPA) detector: a technique for rapid chemical profiling of plant sections at cellular resolution. Sample preparation, measurement, and data analysis steps are listed for each of the techniques to help the user collect the best quality spectra and prepare them for subsequent multivariate analysis.

  13. Comparison of Portable and Bench-Top Spectrometers for Mid-Infrared Diffuse Reflectance Measurements of Soils

    Directory of Open Access Journals (Sweden)

    Christopher Hutengs

    2018-03-01

    Full Text Available Mid-infrared (MIR spectroscopy has received widespread interest as a method to complement traditional soil analysis. Recently available portable MIR spectrometers additionally offer potential for on-site applications, given sufficient spectral data quality. We therefore tested the performance of the Agilent 4300 Handheld FTIR (DRIFT spectra in comparison to a Bruker Tensor 27 bench-top instrument in terms of (i spectral quality and measurement noise quantified by wavelet analysis; (ii accuracy of partial least squares (PLS calibrations for soil organic carbon (SOC, total nitrogen (N, pH, clay and sand content with a repeated cross-validation analysis; and (iii key spectral regions for these soil properties identified with a Monte Carlo spectral variable selection approach. Measurements and multivariate calibrations with the handheld device were as good as or slightly better than Bruker equipped with a DRIFT accessory, but not as accurate as with directional hemispherical reflectance (DHR data collected with an integrating sphere. Variations in noise did not markedly affect the accuracy of multivariate PLS calibrations. Identified key spectral regions for PLS calibrations provided a good match between Agilent and Bruker DHR data, especially for SOC and N. Our findings suggest that portable FTIR instruments are a viable alternative for MIR measurements in the laboratory and offer great potential for on-site applications.

  14. Diffuse reflectance FTIR of stains on grit blasted metals

    Energy Technology Data Exchange (ETDEWEB)

    Powell, G.L.; Hallman, R.L. Jr.; Cox, R.L. [Oak Ridge Centers for Manufacturing Technologies, TN (United States)

    1997-08-09

    Diffuse reflectance mid-infrared Fourier transform (DRIFT) spectroscopy has been applied to the detection of oil contamination on grit-blasted metals. The object of this application is to detect and discriminate between silicone and hydrocarbon oil contamination at levels approaching 10 mg/m{sup 2}. A portable FTIR spectrometer with dedicated diffuse reflectance optics was developed for this purpose. Using translation devices positioned by instructions from the spectrometer operating system, images of macroscopic substrates were produced with millimeter spatial resolution. The pixels that comprise an image are each a full mid-infrared spectrum with excellent signal-to-noise, each determined as individual files and uniquely saved to disc. Reduced spectra amplitudes, based on peak height, area, or other chemometric techniques, mapped as a function of the spatial coordinates of the pixel are used to display the image. This paper demonstrates the application of the technique to the analysis of stains on grit-blasted metals, including the calibration of the method, the inspection of substrates, and the migration of oil contamination.

  15. Evaluation of chemometric models in an FTIR study of the gas phase during atmospheric-pressure CVD of tin oxide thin films

    NARCIS (Netherlands)

    Alcott, G.R.; Mol, A.M.B. van; Spee, C.I.M.A.

    2000-01-01

    The potentially fast data acquisition capability and high resolution of the Fourier transform infrared (FTIR) spectrometer makes it an attractive tool for in-situ analysis of CVD systems. However, real-time extraction of useful quantitative information from the spectra recorded at medium (4 cm-1) or

  16. Fourier Transform Infrared Spectroscopy (FTIR) as a Tool for the Identification and Differentiation of Pathogenic Bacteria.

    Science.gov (United States)

    Zarnowiec, Paulina; Lechowicz, Łukasz; Czerwonka, Grzegorz; Kaca, Wiesław

    2015-01-01

    Methods of human bacterial pathogen identification need to be fast, reliable, inexpensive, and time efficient. These requirements may be met by vibrational spectroscopic techniques. The method that is most often used for bacterial detection and identification is Fourier transform infrared spectroscopy (FTIR). It enables biochemical scans of whole bacterial cells or parts thereof at infrared frequencies (4,000-600 cm(-1)). The recorded spectra must be subsequently transformed in order to minimize data variability and to amplify the chemically-based spectral differences in order to facilitate spectra interpretation and analysis. In the next step, the transformed spectra are analyzed by data reduction tools, regression techniques, and classification methods. Chemometric analysis of FTIR spectra is a basic technique for discriminating between bacteria at the genus, species, and clonal levels. Examples of bacterial pathogen identification and methods of differentiation up to the clonal level, based on infrared spectroscopy, are presented below.

  17. Study of cancer cell lines with Fourier transform infrared (FTIR)/vibrational absorption (VA) spectroscopy

    DEFF Research Database (Denmark)

    Uceda Otero, E. P.; Eliel, G. S. N.; Fonseca, E. J. S.

    2013-01-01

    In this work we have used Fourier transform infrared (FTIR) / vibrational absorption (VA) spectroscopy to study two cancer cell lines: the Henrietta Lacks (HeLa) human cervix carcinoma and 5637 human bladder carcinoma cell lines. Our goal is to experimentally investigate biochemical changes...

  18. Nimbus-4 Infrared Interferometer Spectrometer (IRIS) Level 1 Radiance Data V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-4 Infrared Interferometer Spectrometer (IRIS) Level 1 Radiance Data contain thermal emissions of the Earth's atmosphere at wave numbers between 400 and...

  19. Calibrated infrared ground/air radiometric spectrometer

    Science.gov (United States)

    Silk, J. K.; Schildkraut, Elliot Robert; Bauldree, Russell S.; Goodrich, Shawn M.

    1996-06-01

    The calibrated infrared ground/air radiometric spectrometer (CIGARS) is a new high performance, multi-purpose, multi- platform Fourier transform spectrometer (FPS) sensor. It covers the waveband from 0.2 to 12 micrometer, has spectral resolution as fine as 0.3 cm-1, and records over 100 spectra per second. Two CIGARS units are being used for observations of target signatures in the air or on the ground from fixed or moving platforms, including high performance jet aircraft. In this paper we describe the characteristics and capabilities of the CIGARS sensor, which uses four interchangeable detector modules (Si, InGaAs, InSb, and HgCdTe) and two optics modules, with internal calibration. The data recording electronics support observations of transient events, even without precise information on the timing of the event. We present test and calibration data on the sensitivity, spectral resolution, stability, and spectral rate of CIGARS, and examples of in- flight observations of real targets. We also discuss plans for adapting CIGARS for imaging spectroscopy observations, with simultaneous spectral and spatial data, by replacing the existing detectors with a focal plane array (FPA).

  20. FTIR Calibration Methods and Issues

    Science.gov (United States)

    Perron, Gaetan

    Over the past 10 years, several space-borne FTIR missions were launched for atmospheric research, environmental monitoring and meteorology. One can think of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) launched by the European Space Agency, the Atmospheric Chemistry Experiment (ACE) launched by the Canadian Space Agency, the Tropospheric Emission Spectrometer (TES) launched by NASA and the Infrared Atmospheric Sounding Interferometer (IASI) launched by Eumetsat in Europe. Others are near to be launched, namely the Cross-track Infrared Sounder (CrIS) from the Integrated Program Of- fice in the United States and the Thermal And Near infrared Sensor for carbon Observation (TANSO) from the Japan Aerospace Exploration Agency. Moreover, several missions under definition foresee the use of this technology as sensor, e.g. Meteosat Third Generation (MTG), Eumetsat Polar System (EPS) and the Premier mission, one of the six candidates of the next ESA Earth Explorer Core Mission. In order to produce good quality products, calibration is essential. Calibrated data is the output of three main sub-systems that are tightly coupled: the instrument, the calibration targets and the level 1B processor. Calibration requirements must be carefully defined and propagated to each sub-system. Often, they are carried out by different parties which add to the complexity. Under budget and schedule pressure, some aspects are sometimes neglected and jeopardized final quality. For space-borne FTIR, level 1B outputs are spectra that are radiometrically, spectrally calibrated and geolocated. Radiometric calibration means to assign an intensity value in units to the y-axis. Spectral calibration means to assign to the x-axis the proper frequency value in units. Finally, geolocated means to assign a target position over the earth geoid i.e. longitude, latitude and altitude. This paper will present calibration methods and issues related to space-borne FTIR missions, e.g. two

  1. Food Powder Classification Using a Portable Visible-Near-Infrared Spectrometer

    Directory of Open Access Journals (Sweden)

    Hanjong You

    2017-10-01

    Full Text Available Visible-near-infrared (VIS-NIR spectroscopy is a fast and non-destructive method for analyzing materials. However, most commercial VIS-NIR spectrometers are inappropriate for use in various locations such as in homes or offices because of their size and cost. In this paper, we classified eight food powders using a portable VIS-NIR spectrometer with a wavelength range of 450–1,000 nm. We developed three machine learning models using the spectral data for the eight food powders. The proposed three machine learning models (random forest, k-nearest neighbors, and support vector machine achieved an accuracy of 87%, 98%, and 100%, respectively. Our experimental results showed that the support vector machine model is the most suitable for classifying non-linear spectral data. We demonstrated the potential of material analysis using a portable VIS-NIR spectrometer.

  2. Detection of fatty product falsifications using a portable near infrared spectrometer

    Science.gov (United States)

    Kalinin, A. V.; Krasheninnikov, V. N.

    2017-01-01

    Spreading sales of counterfeited fatty-oil foods leads to a development of portable and operational analyzer of typical fatty acids (FA) which may be a near infrared (NIR) spectrometer. In this work the calibration models for prediction of named FA were built with the spectra of FT-NIR spectrometer for different absorption bands of the FA. The best parameters were obtained for the wavelength sub-band 1.0-1.8 μ, which includes the 2nd and 3rd overtones of C-H stretching vibrations (near 1.7 and 1.2 μ) and the combination band (1.42 μ). Applicability of the portable spectrometer based on linear NIR array photosensor for the quality analysis of spread, butter and fish oil by the typical FA has been tested.

  3. Nuclear magnetic resonance (1.40 T) and mid infrared (FTIR-ATR) associated with chemometrics as analytical methods for the analysis of methyl ester yield obtained by esterification reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kollar, Sara R.M.; Suarez, Paulo A.Z., E-mail: psuarez@unb.br [Universidade de Brasilia (UnB), Brasília, DF (Brazil). Instituto de Química; Novotny, Etelvino H. [Embrapa Solos, Rio de Janeiro, RJ (Brazil); Nascimento, Claudia J. do [Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, (Brazil). Instituto de Biociências

    2017-07-01

    In this work, we compared 1.40 T nuclear magnetic resonance (NMR) to 7.05 T (60 and 300 MHz for proton, respectively), and mid-infrared with attenuated total reflectance (FTIR-ATR), associated with chemometrics methods, for the quantification of the reaction yield during esterification of fatty acids with methanol. The results showed that the integrated intensities of the ester C=O stretching region, relative to the total C=O stretching region, is useful to quantify the fatty acid methyl ester (FAME) concentration. Comparing the results obtained by the different final models: NMR (1.40 T and 7.05 T), FTIR-ATR using multivariate partial last squares regression (PLS) with orthogonal signal correction (OSC), and univariate ordinary least squares (OLS), the NMR of 1.40 T (60 MHz for proton) showed more advantages when compared to a high field spectrometer, due to the non-use of cryogenic and solvents and less laborious work for obtaining results. (author)

  4. Development of infrared Echelle spectrograph and mid-infrared heterodyne spectrometer on a small telescope at Haleakala, Hawaii for planetary observation

    Science.gov (United States)

    Sakanoi, Takeshi; Kasaba, Yasumasa; Kagitani, Masato; Nakagawa, Hiromu; Kuhn, Jeff; Okano, Shoichi

    2014-08-01

    We report the development of infrared Echelle spectrograph covering 1 - 4 micron and mid-infrared heterodyne spectrometer around 10 micron installed on the 60-cm telescope at the summit of Haleakala, Hawaii (alt.=3000m). It is essential to carry out continuous measurement of planetary atmosphere, such as the Jovian infrared aurora and the volcanoes on Jovian satellite Io, to understand its time and spatial variations. A compact and easy-to-use high resolution infrared spectrometer provide the good opportunity to investigate these objects continuously. We are developing an Echelle spectrograph called ESPRIT: Echelle Spectrograph for Planetary Research In Tohoku university. The main target of ESPRIT is to measure the Jovian H3+ fundamental line at 3.9 micron, and H2 nu=1 at 2.1 micron. The 256x256 pixel CRC463 InSb array is used. An appropriate Echelle grating is selected to optimize at 3.9 micron and 2.1 micron for the Jovian infrared auroral observations. The pixel scale corresponds to the atmospheric seeing (0.3 arcsec/pixel). This spectrograph is characterized by a long slit field-of-view of ~ 50 arcsec with a spectral resolution is over 20,000. In addition, we recently developed a heterodyne spectrometer called MILAHI on the 60 cm telescope. MILAHI is characterized by super high-resolving power (more than 1,500,000) covering from 7 - 13 microns. Its sensitivity is 2400 K at 9.6 micron with a MCT photo diode detector of which bandwidth of 3000 MHz. ESPRIT and MILAHI is planned to be installed on 60 cm telescope is planned in 2014.

  5. Limitations and potential of spectral subtractions in fourier-transform infrared (FTIR) spectroscopy of soil samples

    Science.gov (United States)

    Soil science research is increasingly applying Fourier transform infrared (FTIR) spectroscopy for analysis of soil organic matter (SOM). However, the compositional complexity of soils and the dominance of the mineral component can limit spectroscopic resolution of SOM and other minor components. The...

  6. Measuring Heterogeneous Reaction Rates with ATR-FTIR Spectroscopy to Evaluate Chemical Fates in an Atmospheric Environment: A Physical Chemistry and Environmental Chemistry Laboratory Experiment

    Science.gov (United States)

    Roberts, Jason E.; Zeng, Guang; Maron, Marta K.; Mach, Mindy; Dwebi, Iman; Liu, Yong

    2016-01-01

    This paper reports an undergraduate laboratory experiment to measure heterogeneous liquid/gas reaction kinetics (ozone-oleic acid and ozone-phenothrin) using a flow reactor coupled to an attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometer. The experiment is specially designed for an upper-level undergraduate Physical…

  7. Infrared Spectrometer for ExoMars: A Mast-Mounted Instrument for the Rover

    Science.gov (United States)

    Korablev, Oleg I.; Dobrolensky, Yurii; Evdokimova, Nadezhda; Fedorova, Anna A.; Kuzmin, Ruslan O.; Mantsevich, Sergei N.; Cloutis, Edward A.; Carter, John; Poulet, Francois; Flahaut, Jessica; Griffiths, Andrew; Gunn, Matthew; Schmitz, Nicole; Martín-Torres, Javier; Zorzano, Maria-Paz; Rodionov, Daniil S.; Vago, Jorge L.; Stepanov, Alexander V.; Titov, Andrei Yu.; Vyazovetsky, Nikita A.; Trokhimovskiy, Alexander Yu.; Sapgir, Alexander G.; Kalinnikov, Yurii K.; Ivanov, Yurii S.; Shapkin, Alexei A.; Ivanov, Andrei Yu.

    2017-07-01

    ISEM (Infrared Spectrometer for ExoMars) is a pencil-beam infrared spectrometer that will measure reflected solar radiation in the near infrared range for context assessment of the surface mineralogy in the vicinity of the ExoMars rover. The instrument will be accommodated on the mast of the rover and will be operated together with the panoramic camera (PanCam), high-resolution camera (HRC). ISEM will study the mineralogical and petrographic composition of the martian surface in the vicinity of the rover, and in combination with the other remote sensing instruments, it will aid in the selection of potential targets for close-up investigations and drilling sites. Of particular scientific interest are water-bearing minerals, such as phyllosilicates, sulfates, carbonates, and minerals indicative of astrobiological potential, such as borates, nitrates, and ammonium-bearing minerals. The instrument has an ˜1° field of view and covers the spectral range between 1.15 and 3.30 μm with a spectral resolution varying from 3.3 nm at 1.15 μm to 28 nm at 3.30 μm. The ISEM optical head is mounted on the mast, and its electronics box is located inside the rover's body. The spectrometer uses an acousto-optic tunable filter and a Peltier-cooled InAs detector. The mass of ISEM is 1.74 kg, including the electronics and harness. The science objectives of the experiment, the instrument design, and operational scenarios are described.

  8. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy

    Science.gov (United States)

    Qu, Lei; Chen, Jian-bo; Zhang, Gui-Jun; Sun, Su-qin; Zheng, Jing

    2017-03-01

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p = 0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  9. Detection of fatty product falsifications using a portable near infrared spectrometer

    Directory of Open Access Journals (Sweden)

    Kalinin A.V.

    2017-01-01

    Full Text Available Spreading sales of counterfeited fatty-oil foods leads to a development of portable and operational analyzer of typical fatty acids (FA which may be a near infrared (NIR spectrometer. In this work the calibration models for prediction of named FA were built with the spectra of FT-NIR spectrometer for different absorption bands of the FA. The best parameters were obtained for the wavelength sub-band 1.0-1.8 μ, which includes the 2nd and 3rd overtones of C-H stretching vibrations (near 1.7 and 1.2 μ and the combination band (1.42 μ. Applicability of the portable spectrometer based on linear NIR array photosensor for the quality analysis of spread, butter and fish oil by the typical FA has been tested.

  10. Assessment of Azithromycin in Pharmaceutical Formulation by Fourier-transform Infrared (FT-IR Transmission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Mallah

    2011-12-01

    Full Text Available A simple, rapid and economical method for azithromycin quantification in solid tablet and capsule formulations has been developed by applying Fourier-transform Infrared (FT-IR transmission spectroscopy for regular quality monitoring. The newly developed method avoids the sample preparation, except grinding for pellet formation and does not involve consumption of any solvent as it absolutely eliminates the need of extraction. KBr pellets were employed for the appraisal of azithromycin while acquiring spectra of standards as well as samples on FT-IR. By selecting the FT-IR carbonyl band (C=O in the region 1,744–1,709 cm−1 the calibration model was developed based on simple Beer’s law. The excellent regression coefficient (R2 0.999 was accomplished for calibration set having standard error of calibration equal to 0.01 mg. The current work exposes that transmission FT-IR spectroscopy can definitely be applied to determine the exact amount of azithromycin to control the processing and quality of solid formulations with reduced cost and short analysis time.

  11. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    Science.gov (United States)

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan

    2015-01-01

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems. PMID:26694380

  12. Ground-based FTIR retrievals of SF6 on Reunion Island

    Directory of Open Access Journals (Sweden)

    M. Zhou

    2018-02-01

    Full Text Available SF6 total columns were successfully retrieved from FTIR (Fourier transform infrared measurements (Saint Denis and Maïdo on Reunion Island (21° S, 55° E between 2004 and 2016 using the SFIT4 algorithm: the retrieval strategy and the error budget were presented. The FTIR SF6 retrieval has independent information in only one individual layer, covering the whole of the troposphere and the lower stratosphere. The trend in SF6 was analysed based on the FTIR-retrieved dry-air column-averaged mole fractions (XSF6 on Reunion Island, the in situ measurements at America Samoa (SMO and the collocated satellite measurements (Michelson Interferometer for Passive Atmospheric Sounding, MIPAS, and Atmospheric Chemistry Experiment Fourier Transform Spectrometer, ACE-FTS in the southern tropics. The SF6 annual growth rate from FTIR retrievals is 0.265 ± 0.013 pptv year−1 for 2004–2016, which is slightly weaker than that from the SMO in situ measurements (0.285 ± 0.002 pptv year−1 for the same time period. The SF6 trend in the troposphere from MIPAS and ACE-FTS observations is also close to the ones from the FTIR retrievals and the SMO in situ measurements.

  13. Ground-based FTIR retrievals of SF6 on Reunion Island

    Science.gov (United States)

    Zhou, Minqiang; Langerock, Bavo; Vigouroux, Corinne; Wang, Pucai; Hermans, Christian; Stiller, Gabriele; Walker, Kaley A.; Dutton, Geoff; Mahieu, Emmanuel; De Mazière, Martine

    2018-02-01

    SF6 total columns were successfully retrieved from FTIR (Fourier transform infrared) measurements (Saint Denis and Maïdo) on Reunion Island (21° S, 55° E) between 2004 and 2016 using the SFIT4 algorithm: the retrieval strategy and the error budget were presented. The FTIR SF6 retrieval has independent information in only one individual layer, covering the whole of the troposphere and the lower stratosphere. The trend in SF6 was analysed based on the FTIR-retrieved dry-air column-averaged mole fractions (XSF6) on Reunion Island, the in situ measurements at America Samoa (SMO) and the collocated satellite measurements (Michelson Interferometer for Passive Atmospheric Sounding, MIPAS, and Atmospheric Chemistry Experiment Fourier Transform Spectrometer, ACE-FTS) in the southern tropics. The SF6 annual growth rate from FTIR retrievals is 0.265 ± 0.013 pptv year-1 for 2004-2016, which is slightly weaker than that from the SMO in situ measurements (0.285 ± 0.002 pptv year-1) for the same time period. The SF6 trend in the troposphere from MIPAS and ACE-FTS observations is also close to the ones from the FTIR retrievals and the SMO in situ measurements.

  14. FTIR Spectroscopy on Basic Materials in THz Region for Compact FEL-Based Imaging

    CERN Document Server

    Cha, H J; Lee, B C; Park, S H

    2005-01-01

    We are making experiments on THz(terahertz) imaging using a compact high power FEL (free-electron laser) which is operating as a users facility at KAERI. The wavelength range of output pulses is 100~1200 μm, which corresponds to 0.3~3 THz in the frequency region. We should select the optimum wavelength for the constituents of specimens to realize the imaging based on the THz FEL. A FTIR (Fourier-transform infrared) spectrometer was modified to measure the optical constants of the specimens in THz region. A polyester film of which thickness is 3.7 μm was used as a beam splitter of the spectrometer. In the case of normal incidence, the transmittance of the film was measured to be more than 90%, and the estimated loss by absorption was approximately 2% at the FEL frequency of 3 THz. Several tens of nanometer-thick-silver was coated on the polyester film to balance both transmission and reflection of THz waves in the beam splitter. We investigated FTIR spectroscopy on air, vapor and liquid water...

  15. Fourier transform infrared spectroscopy in physics laboratory courses

    International Nuclear Information System (INIS)

    Möllmann, K-P; Vollmer, M

    2013-01-01

    Infrared spectrometry is one of the most important tools in the field of spectroscopic analysis. This is due to the high information content of spectra in the so-called spectroscopic fingerprint region, which enables measurement not only of gases, but also of liquids and solids. Today, infrared spectroscopy is almost completely dominated by Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy is able to detect minute quantities in the ppm and ppb ranges, and the respective analyses are now standard tools in science as well as industry. Therefore FTIR spectroscopy should be taught within the standard curriculum at university to physicists and engineers. Here we present respective undergraduate laboratory experiments designed for students at the end of their third year. Experiments deal first with understanding the spectrometer and second with recording and analysing spectra. On the one hand, transmission spectra of gases are treated which relate to environmental analytics (being probably the most prominent and well-known examples), and on the other hand, the focus is on the transmission and reflection spectra of solids. In particular, silicon wafers are studied—as is regularly done in the microelectronics industry—in order to characterize their thickness, oxygen content and phonon modes. (paper)

  16. Characterization and identification of microorganisms by FT-IR microspectrometry

    Science.gov (United States)

    Ngo-Thi, N. A.; Kirschner, C.; Naumann, D.

    2003-12-01

    We report on a novel FT-IR approach for microbial characterization/identification based on a light microscope coupled to an infrared spectrometer which offers the possibility to acquire IR-spectra of microcolonies containing only few hundred cells. Microcolony samples suitable for FT-IR microspectroscopic measurements were obtained by a replica technique with a stamping device that transfers spatially accurate cells of microcolonies growing on solid culture plates to a special, IR-transparent or reflecting stamping plate. High quality spectra could be recorded either by applying the transmission/absorbance or the reflectance/absorbance mode of the infrared microscope. Signal to noise ratios higher than 1000 were obtained for microcolonies as small as 40 μm in diameter. Reproducibility levels were established that allowed species and strain identification. The differentiation and classification capacity of the FT-IR microscopic technique was tested for different selected microorganisms. Cluster and factor analysis methods were used to evaluate the complex spectral data. Excellent discrimination between bacteria and yeasts, and at the same time Gram-negative and Gram-positive bacterial strains was obtained. Twenty-two selected strains of different species within the genus Staphylococcus were repetitively measured and could be grouped into correct species cluster. Moreover, the results indicated that the method allows also identifications at the subspecies level. Additionally, the new approach allowed spectral mapping analysis of single colonies which provided spatially resolved characterization of growth heterogeneity within complex microbial populations such as colonies.

  17. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy.

    Science.gov (United States)

    Qu, Lei; Chen, Jian-Bo; Zhang, Gui-Jun; Sun, Su-Qin; Zheng, Jing

    2017-03-05

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p=0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The infrared stage Linkam FTIR 600 for microthermometric studies in dark and opaque minerals associated to uranium mineralization

    International Nuclear Information System (INIS)

    Lima, Tatiana Aparecida Fernandes de; Rios, Francisco Javier; Fuzikawa, Kazuo; Oliveira, Lucilia A. Ramos de; Oliveira, Elizabeth Kerpe; Neves, Jose Marques Correia; Prates, Sonia Pinto

    2009-01-01

    Fluid composition studies, throughout fluid inclusions (FI), contribute to improve the understanding of mineral deposits. FI correspond to small portions of fluids trapped in minerals by many processes that preserve relevant information related to fluid composition which forms ore deposits. Microscopy and microthermometry techniques applied to fluid inclusions studies of opaque and/or dark minerals use infrared light (IR). A specific stage heating/cooling that allows working in the near infrared (NIR). Thus, the infrared stage model FTIR600 Linkam coupled the IR OLYMPUS BX51, with the automatic controllers LNP 94/2 and TMS 94, and software Linksys 32 - Linkam installed in computer was implemented and tested. An infrared QUICAM fast 1394 QIMAGING TM camera with the program QCAPTURE SUITE was acquisition for images capture and adapted the new system. This infrared stage Linkam FTIR600 reach temperatures between -196 deg C to +600 deg C, with the differential of working in the NIR; it is all automated, obtaining computerized data, graphics in real time of analysis and storage the data. It also controls the speed of the experiment (up to 130 deg C/min); it runs consecutively heating and cooling with a small N 2 (l) consuming; besides greater results repeatability, obtaining accurate and precise temperatures. Actually the Linkam stage FTIR600 is operating in the Metallogenesis and Fluid Inclusions Laboratory (LIFM) at CDTN/CNEN. Uranium ore and/or others mineralization studies which shows dark or opaque mineral have been developed. The uranium mineralization in the Lagoa Real Uraniferous Province, Bahia, Brazil, shows several rock-forming minerals together with the dark and opaque minerals (garnet, magnetite, pyroxene) emphasized in the present work. (author)

  19. Near-Infrared Mapping Spectrometer for investigation of Jupiter and its satellites

    International Nuclear Information System (INIS)

    Aptaker, I.M.

    1988-01-01

    The Near-Infrared-Mapping Spectrometer (NIMS) is one of the science instruments in the Galileo mission, which will explore Jupiter and its satellites in the mid-1990's. The NIMS experiment will map geological units on the surfaces of the Jovian satellites and characterize their mineral content; and, for the atmosphere of Jupiter, investigate cloud properties and the spatial and temporal variability of molecular abundances. The optics are gold-coated reflective and consist of a telescope and a grating spectrometer. The balance of the instrument includes a 17-detector (silicon and indium antimonide) focal plane array, a tuning fork chopper, microprocessor-controlled electronics, and a passive radiative cooler. A wobbling secondary mirror in the telescope provides 20 pixels in one dimension of spatial scanning in a pushbroom mode with 0.5 mr x 0.5 mr instantaneous field of view. The spectral range is 0.7-5.2 microns; resolution is 0.025 micron. NIMS is the first infrared experiment to combine both spatial and spectral mapping capability in one instrument

  20. Multidimensional spectrometer

    Science.gov (United States)

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  1. Time-resolved FTIR [Fourier transform infrared] emission studies of laser photofragmentation and chain reactions

    International Nuclear Information System (INIS)

    Leone, S.R.

    1990-01-01

    Recent progress is described resulting from the past three years of DOE support for studies of combustion-related photofragmentation dynamics, energy transfer, and reaction processes using a time-resolved Fourier transform infrared (FTIR) emission technique. The FTIR is coupled to a high repetition rate excimer laser which produces radicals by photolysis to obtain novel, high resolution measurements on vibrational and rotational state dynamics. The results are important for the study of numerous radical species relevant to combustion processes. The method has been applied to the detailed study of photofragmentation dynamics in systems such as acetylene, which produces C 2 H; chlorofluoroethylene to study the HF product channel; vinyl chloride and dichloroethylene, which produce HCl; acetone, which produces CO and CH 3 ; and ammonia, which produces NH 2 . In addition, we have recently demonstrated use of the FTIR technique for preliminary studies of energy transfer events under near single collision conditions, radical-radical reactions, and laser-initiated chain reaction processes

  2. Thyroid lesions diagnosis by Fourier transformed infrared absorption spectroscopy (FTIR)

    International Nuclear Information System (INIS)

    Albero, Felipe Guimaraes

    2009-01-01

    Thyroid nodules are a common disorder, with 4-7% of incidence in the Brazilian population. Although the fine needle aspiration (FNA) is an accurate method for thyroid tumors diagnosis, the discrimination between benign and malignant neoplasm is currently not possible in some cases with high incidence of false negative diagnosis, leading to a surgical intervention due to the risk of carcinomas. The aim of this study was to verify if the Fourier Transform infrared spectroscopy (FTIR) can contribute to the diagnosis of thyroid carcinomas and goiters, using samples of tissue and aspirates. Samples of FNA, homogenates and tissues of thyroid nodules with histopathological diagnosis were obtained and prepared for FTIR spectroscopy analysis. The FNA and homogenates samples were measured by μ-FTIR (between 950 . 1750 cm -1 ), at a nominal resolution of 4 cm -1 and 120 scans). Tissue samples were analyzed directly by ATR-FTIR technique, at a resolution 2 cm -1 , with 60 scans in the same region. All spectra were corrected by the baseline and normalized by amides area (1550-1640 cm -1 ) in order to minimize variations of sample homogeneity. Then, spectra were converted into second derivatives using the Savitzk-Golay algorithm with a 13 points window. The Ward's minimum variance algorithm and Euclidean distances among the points were used for cluster analysis. Some FNA samples showed complex spectral pattern. All samples showed some cell pellets and large amount of hormone, represented by the bands of 1545 and 1655 cm -1 . Bands in 1409, 1412, 1414, 1578 and 1579 cm -1 were also found, indicating possible presence of sugar, DNA, citric acid or metabolic products. In this study, it was obtained an excellent separation between goiter and malign lesion for the samples of tissues, with 100% of specificity in specific cluster and 67% sensibility and 50 of specificity. In homogenate and FNA samples this sensibility and specificity were lower, because among these samples, it were

  3. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR in the Geological Sciences—A Review

    Directory of Open Access Journals (Sweden)

    Yanyan Chen

    2015-12-01

    Full Text Available Fourier transform infrared spectroscopy (FTIR can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic systems.

  4. The Investigation of Property of Radiation and Absorbed of Infrared Lights of the Biological Tissues

    Science.gov (United States)

    Pang, Xiao-Feng; Deng, Bo; Xiao, He-Lan; Cai, Guo-Ping

    2010-04-01

    The properties of absorption of infrared light for collagen, hemoglobin, bivine serum albumen (BSA) protein molecules with α- helix structure and water in the living systems as well as the infrared transmission spectra for person’s skins and finger hands of human body in the region of 400-4000 cm-1 (i.e., wavelengths of 2-20 μm) have been collected and determined by using a Nicolet Nexus 670 FT-IR Spectrometer, a Perkin Elmer GX FT-IR spectrometer, an OMA (optical multichannel analysis) and an infrared probe systems, respectively. The experimental results obtained show that the protein molecules and water can all absorb the infrared lights in the ranges of 600-1900 cm-1 and 2900-3900 cm-l, but their properties of absorption are somewhat different due to distinctions of their structure and conformation and molecular weight. We know from the transmission spectra of person’s finger hands and skin that the infrared lights with wavelengths of 2 μm-7 μm can not only transmit over the person’s skin and finger hands, but also be absorbed by the above proteins and water in the living systems. Thus, we can conclude from this study that the human beings and animals can absorb the infrared lights with wavelengths of 2 μm-7 μm.

  5. Detection and classification of salmonella serotypes using spectral signatures collected by fourier transform infrared (FT-IR) spectroscopy

    Science.gov (United States)

    Spectral signatures of Salmonella serotypes namely Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky were collected using Fourier transform infrared spectroscopy (FT-IR). About 5-10 µL of Salmonella suspensions with concentrations of 1...

  6. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): THE NARROW-BAND SPECTROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Korngut, P. M.; Bock, J. [Jet Propulsion Laboratory (JPL), National Aeronautics and Space Administration (NASA), Pasadena, CA 91109 (United States); Renbarger, T.; Keating, B. [Department of Physics, University of California, San Diego, San Diego, CA 92093 (United States); Arai, T.; Matsumoto, T.; Matsuura, S. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Battle, J.; Hristov, V.; Lanz, A.; Levenson, L. R.; Mason, P. [Department of Physics, California Institute of Technology, Pasadena, CA 91125 (United States); Brown, S. W.; Lykke, K. R.; Smith, A. W. [Sensor Science Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States); Cooray, A. [Center for Cosmology, University of California, Irvine, Irvine, CA 92697 (United States); Kim, M. G. [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, D. H.; Nam, U. W. [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Shultz, B., E-mail: pkorngut@caltech.edu [Materion Barr Precision Optics and Thin Film Coatings, Westford, MA 01886 (United States); and others

    2013-08-15

    We have developed a near-infrared spectrometer designed to measure the absolute intensity of the solar 854.2 nm Ca II Fraunhofer line, scattered by interplanetary dust, in the zodiacal light (ZL) spectrum. Based on the known equivalent line width in the solar spectrum, this measurement can derive the zodiacal brightness, testing models of the ZL based on morphology that are used to determine the extragalactic background light in absolute photometry measurements. The spectrometer is based on a simple high-resolution tipped filter placed in front of a compact camera with wide-field refractive optics to provide the large optical throughput and high sensitivity required for rocket-borne observations. We discuss the instrument requirements for an accurate measurement of the absolute ZL brightness, the measured laboratory characterization, and the instrument performance in flight.

  7. Application of FTIR Spectrometry Using Multivariate Analysis For Prediction Fuel in Engine Oil

    Directory of Open Access Journals (Sweden)

    Marie Sejkorová

    2017-01-01

    Full Text Available This work presents the potentiality of partial least squares (PLS regression associated with Fourier transform infrared spectroscopy (FTIR spectrometry for detecting penetration of diesel fuel into the mineral engine oil SAE 15W‑40 in the concentration range from 0 % to 9.5 % (w/w. As a best practice has proven FTIR‑PLS model, which uses the data file in the spectral range 835 – 688 cm−1.The quality of the model was evaluated using the root mean square error of calibration (RMSEC and cross validation (RMSECV. A correlation coefficient R = 0.999 and values of RMSEC, RMSECV were obtained 0.11 % and 0.38 % respectively. After the calibration of the FTIR spectrometer, the contamination engine oil with diesel fuel could be obtained in 1 – 2 min per sample.

  8. Correlation spectrometer

    Science.gov (United States)

    Sinclair, Michael B [Albuquerque, NM; Pfeifer, Kent B [Los Lunas, NM; Flemming, Jeb H [Albuquerque, NM; Jones, Gary D [Tijeras, NM; Tigges, Chris P [Albuquerque, NM

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  9. Infrared spectroscopy as a tool to characterise starch ordered structure--a joint FTIR-ATR, NMR, XRD and DSC study.

    Science.gov (United States)

    Warren, Frederick J; Gidley, Michael J; Flanagan, Bernadine M

    2016-03-30

    Starch has a heterogeneous, semi-crystalline granular structure and the degree of ordered structure can affect its behaviour in foods and bioplastics. A range of methodologies are employed to study starch structure; differential scanning calorimetry, (13)C nuclear magnetic resonance, X-ray diffraction and Fourier transform infrared spectroscopy (FTIR). Despite the appeal of FTIR as a rapid, non-destructive methodology, there is currently no systematically defined quantitative relationship between FTIR spectral features and other starch structural measures. Here, we subject 61 starch samples to structural analysis, and systematically correlate FTIR spectra with other measures of starch structure. A hydration dependent peak position shift in the FTIR spectra of starch is observed, resulting from increased molecular order, but with complex, non-linear behaviour. We demonstrate that FTIR is a tool that can quantitatively probe short range interactions in starch structure. However, the assumptions of linear relationships between starch ordered structure and peak ratios are overly simplistic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The Designing of Magnetic-Driven Micromirror for Portable FTIRs

    Directory of Open Access Journals (Sweden)

    Shaoxi Wang

    2018-01-01

    Full Text Available Fourier transform infrared spectroscopy is a widely used instrument to analyze and test different materials including organic and inorganic. Most of current commercial Fourier transform infrared spectrometers are limited in miniaturization and scanning velocity by their macroscopic components. MEMS FTIR spectroscopy is one of the important applications of translational actuator-driven systems by using MEMS technology. The critical component in MEMS FTIRs is the large displacement translating micromirror and its actuator. The paper presents a large displacement and high-surface quality micromirror. The micromirror consists of a micromagnetic actuator and a micromirror plate. The mirror plate and the actuator are fabricated separately and bonded together afterwards, and its size is 3.6 × 3.6 mm2 high-surface quality square mirror plate and a 1cm2 moving part. The microactuator’s moving part is fabricated using MetalMUMPS, and its fixed part includes a ring permanent magnet and a solenoid to realize a large displacement. The mirror plate is fabricated using polished silicon coated with metal layer with high-surface prototypes that are fabricated and experimentally tested. A maximum stroke of 400 μm has been achieved in pull-in whereas only 140 μm stroke have been measured for a 4 to 5-volt DC-controlled displacement, and the resonance frequency is 10 Hz.

  11. Angular acceptance analysis of an infrared focal plane array with a built-in stationary Fourier transform spectrometer.

    Science.gov (United States)

    Gillard, Frédéric; Ferrec, Yann; Guérineau, Nicolas; Rommeluère, Sylvain; Taboury, Jean; Chavel, Pierre

    2012-06-01

    Stationary Fourier transform spectrometry is an interesting concept for building reliable field or embedded spectroradiometers, especially for the mid- and far- IR. Here, a very compact configuration of a cryogenic stationary Fourier transform IR (FTIR) spectrometer is investigated, where the interferometer is directly integrated in the focal plane array (FPA). We present a theoretical analysis to explain and describe the fringe formation inside the FTIR-FPA structure when illuminated by an extended source positioned at a finite distance from the detection plane. The results are then exploited to propose a simple front lens design compatible with a handheld package.

  12. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): THE LOW RESOLUTION SPECTROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Tsumura, K.; Arai, T.; Matsumoto, T.; Matsuura, S.; Murata, K. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronoutical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Battle, J.; Bock, J. [Jet Propulsion Laboratory (JPL), National Aeronautics and Space Administration (NASA), Pasadena, CA 91109 (United States); Brown, S.; Lykke, K.; Smith, A. [Optical Technology Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States); Cooray, A. [Center for Cosmology, University of California, Irvine, Irvine, CA 92697 (United States); Hristov, V.; Levenson, L. R.; Mason, P. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Keating, B.; Renbarger, T. [Department of Physics, University of California, San Diego, San Diego, CA 92093 (United States); Kim, M. G. [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, D. H.; Nam, U. W. [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Sullivan, I., E-mail: tsumura@ir.isas.jaxa.jp [Department of Physics, The University of Washington, Seattle, WA 98195 (United States); and others

    2013-08-15

    Absolute spectrophotometric measurements of diffuse radiation at 1 {mu}m to 2 {mu}m are crucial to our understanding of the radiative content of the universe from nucleosynthesis since the epoch of reionization, the composition and structure of the zodiacal dust cloud in our solar system, and the diffuse galactic light arising from starlight scattered by interstellar dust. The Low Resolution Spectrometer (LRS) on the rocket-borne Cosmic Infrared Background Experiment is a {lambda}/{Delta}{lambda} {approx} 15-30 absolute spectrophotometer designed to make precision measurements of the absolute near-infrared sky brightness between 0.75 {mu}m <{lambda} < 2.1 {mu}m. This paper presents the optical, mechanical, and electronic design of the LRS, as well as the ground testing, characterization, and calibration measurements undertaken before flight to verify its performance. The LRS is shown to work to specifications, achieving the necessary optical and sensitivity performance. We describe our understanding and control of sources of systematic error for absolute photometry of the near-infrared extragalactic background light.

  13. Qualitative analysis of thin films of crude oil deposits on the metallic substrate by Fourier transform infrared (FTIR) microscopy

    DEFF Research Database (Denmark)

    Batina, N.; Reyna-Cordova, A.; Trinidad-Reyes, Y.

    2005-01-01

    Thin films of crude oil samples were prepared for atomic force microscopy (AFM) analysis on the gold substrate. Sample preparation involved evaporation during a long (24 h) but mild thermal exposure (80 °C). Fourier transform infrared (FTIR) microscopy (reflectance spectroscopy) was employed...... of oxidation state was compared to surface morphology data by AFM previously reported. The reported results emphasize the advantage of complementary techniques (AFM/FTIR microscopy) in the analysis of petroleum thin films that should be considered during analysis and interpretation of this type of data....... to determinate the quality of the thin film surface, before the morphology characterization. The surface reflectance spectra were compared to direct transmittance FTIR of liquid oil samples. The two FTIR techniques showed different spectral characteristics related to oxygenated functionalities. This clearly...

  14. Vacuum FTIR Observation on the Dynamic Hygroscopicity of Aerosols under Pulsed Relative Humidity.

    Science.gov (United States)

    Leng, Chun-Bo; Pang, Shu-Feng; Zhang, Yun; Cai, Chen; Liu, Yong; Zhang, Yun-Hong

    2015-08-04

    A novel approach based on a combination of a pulse RH controlling system and a rapid scan vacuum FTIR spectrometer (PRHCS-RSVFTIR) was utilized to investigate dynamic hygroscopicity of two atmospheric aerosols: ammonium sulfate ((NH4)2SO4) and magnesium sulfate (MgSO4). In this approach, rapid-scan infrared spectra of water vapor and aerosols were obtained to determine relative humidity (RH) in sample cell and hygroscopic property of aerosols with a subsecond time resolution. Heterogeneous nucleation rates of (NH4)2SO4 were, for the first time, measured under low RH conditions (nucleation kinetics of liquid aerosols.

  15. [Relation between PMI and FTIR spectral changes in asphyxiated rat's liver and spleen].

    Science.gov (United States)

    Li, Shi-ying; Shao, Yu; Li, Zheng-dong; Zou, Dong-hua; Qin, Zhi-qiang; Chen, Yi-jiu; Huang, Ping

    2012-10-01

    Fourier transform infrared (FTIR) spectroscopy was applied to observe the postmortem degradation process in mechanical asphyxiated rat's liver and spleen for providing a new method of estimating PMI. Rats were sacrificed by mechanical asphyxia and cadavers were kept at (20 +/- 2) degrees C in a control chamber. The liver and spleen were sub-sampled from the same rat at intervals of 0-15 days postmortem and the data were measured by FTIR spectrometer. The different absorbance (A) ratios of peaks were calculated and the curve estimation analysis between absorbance ratios (x) and PMI (y) were performed to establish mathematical models by the statistical software. The band absorbance ratios showed increase, decrease and stable with PMI. The cubic model functions showed the strongest correlation coefficient. Compared with the spleen, the liver showed a higher correlation coefficient. The A1541/A1396 of liver showed the highest correlation coefficient (r=0.966). After 6-7 days postmortem, band absorbance ratios showed a steady period. FTIR spectroscopy can be a new and efficient method to estimate PMI within 7 days.

  16. A new network of faint calibration stars from the near infrared spectrometer (NIRS) on the IRTS

    Science.gov (United States)

    Freund, Minoru M.; Matsuura, Mikako; Murakami, Hiroshi; Cohen, Martin; Noda, Manabu; Matsuura, Shuji; Matsumoto, Toshio

    1997-01-01

    The point source extraction and calibration of the near infrared spectrometer (NIRS) onboard the Infrared Telescope in Space (IRTS) is described. About 7 percent of the sky was observed during a one month mission in the range of 1.4 micrometers to 4 micrometers. The accuracy of the spectral shape and absolute values of calibration stars provided by the NIRS/IRTS were validated.

  17. On the Use of Fourier Transform Infrared (FT-IR) Spectroscopy and Synthetic Calibration Spectra to Quantify Gas Concentrations in a Fischer-Tropsch Catalyst System

    Science.gov (United States)

    Ferguson, Frank T.; Johnson, Natasha M.; Nuth, Joseph A., III

    2015-01-01

    One possible origin of prebiotic organic material is that these compounds were formed via Fischer-Tropsch-type (FTT) reactions of carbon monoxide and hydrogen on silicate and oxide grains in the warm, inner-solar nebula. To investigate this possibility, an experimental system has been built in which the catalytic efficiency of different grain-analog materials can be tested. During such runs, the gas phase above these grain analogs is sampled using Fourier transform infrared (FT-IR) spectroscopy. To provide quantitative estimates of the concentration of these gases, a technique in which high-resolution spectra of the gases are calculated using the high-resolution transmission molecular absorption (HITRAN) database is used. Next, these spectra are processed via a method that mimics the processes giving rise to the instrumental line shape of the FT-IR spectrometer, including apodization, self-apodization, and broadening due to the finite resolution. The result is a very close match between the measured and computed spectra. This technique was tested using four major gases found in the FTT reactions: carbon monoxide, methane, carbon dioxide, and water. For the ranges typical of the FTT reactions, the carbon monoxide results were found to be accurate to within 5% and the remaining gases accurate to within 10%. These spectra can then be used to generate synthetic calibration data, allowing the rapid computation of the gas concentrations in the FTT experiments.

  18. Authentication of Whey Protein Powders by Portable Mid-Infrared Spectrometers Combined with Pattern Recognition Analysis.

    Science.gov (United States)

    Wang, Ting; Tan, Siow Ying; Mutilangi, William; Aykas, Didem P; Rodriguez-Saona, Luis E

    2015-10-01

    The objective of this study was to develop a simple and rapid method to differentiate whey protein types (WPC, WPI, and WPH) used for beverage manufacturing by combining the spectral signature collected from portable mid-infrared spectrometers and pattern recognition analysis. Whey protein powders from different suppliers are produced using a large number of processing and compositional variables, resulting in variation in composition, concentration, protein structure, and thus functionality. Whey protein powders including whey protein isolates, whey protein concentrates and whey protein hydrolysates were obtained from different suppliers and their spectra collected using portable mid-infrared spectrometers (single and triple reflection) by pressing the powder onto an Attenuated Total Reflectance (ATR) diamond crystal with a pressure clamp. Spectra were analyzed by soft independent modeling of class analogy (SIMCA) generating a classification model showing the ability to differentiate whey protein types by forming tight clusters with interclass distance values of >3, considered to be significantly different from each other. The major bands centered at 1640 and 1580 cm(-1) were responsible for separation and were associated with differences in amide I and amide II vibrations of proteins, respectively. Another important band in whey protein clustering was associated with carboxylate vibrations of acidic amino acids (∼1570 cm(-1)). The use of a portable mid-IR spectrometer combined with pattern recognition analysis showed potential for discriminating whey protein ingredients that can help to streamline the analytical procedure so that it is more applicable for field-based screening of ingredients. A rapid, simple and accurate method was developed to authenticate commercial whey protein products by using portable mid-infrared spectrometers combined with chemometrics, which could help ensure the functionality of whey protein ingredients in food applications. © 2015

  19. Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy.

    Science.gov (United States)

    Rohman, A; Sismindari; Erwanto, Y; Che Man, Yaakob B

    2011-05-01

    Meatball is one of the favorite foods in Indonesia. The adulteration of pork in beef meatball is frequently occurring. This study was aimed to develop a fast and non destructive technique for the detection and quantification of pork in beef meatball using Fourier transform infrared (FTIR) spectroscopy and partial least square (PLS) calibration. The spectral bands associated with pork fat (PF), beef fat (BF), and their mixtures in meatball formulation were scanned, interpreted, and identified by relating them to those spectroscopically representative to pure PF and BF. For quantitative analysis, PLS regression was used to develop a calibration model at the selected fingerprint regions of 1200-1000 cm(-1). The equation obtained for the relationship between actual PF value and FTIR predicted values in PLS calibration model was y = 0.999x + 0.004, with coefficient of determination (R(2)) and root mean square error of calibration are 0.999 and 0.442, respectively. The PLS calibration model was subsequently used for the prediction of independent samples using laboratory made meatball samples containing the mixtures of BF and PF. Using 4 principal components, root mean square error of prediction is 0.742. The results showed that FTIR spectroscopy can be used for the detection and quantification of pork in beef meatball formulation for Halal verification purposes. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  20. The Airborne Visible / Infrared Imaging Spectrometer AVIS: Design, Characterization and Calibration

    Directory of Open Access Journals (Sweden)

    Wolfram Mauser

    2007-09-01

    Full Text Available The Airborne Visible / Infrared imaging Spectrometer AVIS is a hyperspectralimager designed for environmental monitoring purposes. The sensor, which wasconstructed entirely from commercially available components, has been successfullydeployed during several experiments between 1999 and 2007. We describe the instrumentdesign and present the results of laboratory characterization and calibration of the system’ssecond generation, AVIS-2, which is currently being operated. The processing of the datais described and examples of remote sensing reflectance data are presented.

  1. The FTIR study of uranium oxides by the method of light pipe reflection spectroscopy

    International Nuclear Information System (INIS)

    Bao Zhu Yu; Hansen, W.N.

    1988-01-01

    Light pipe infrared reflection spectra of UO 2 , UO 3 , U 3 O 8 have been studied by using an FTIR spectrometer. The uranium oxide powders were ground to ensure fine particle size and distributed on the inner surface of a straight glass pipe with gold coating. The infrared beam from the inter-ferometer was focused into one end of the pipe at 45 0 incidence and then the transmitted beam was refocused by a pair of Cassegrainian type mirrors. The resultant spectra show the infrared characteristics of the ...-U-O-U-O-..., uranyl ion UO 2 2+ bond vibration and the active lattice vibrations predicted by group theory calculations. In comparison to the transmission spectra measured by authors or reported in literature, this 45 0 incident light pipe method as well as the previous light pipe method offer advantages of sensitivity, ease of acquisition and interpretation, and require a very small sample. It confirms the power of the light pipe method for studying powders and its special utility for the infrared studies of hazardous materials. (Author)

  2. Fringes in FTIR spectroscopy revisited: understanding and modelling fringes in infrared spectroscopy of thin films.

    Science.gov (United States)

    Konevskikh, Tatiana; Ponossov, Arkadi; Blümel, Reinhold; Lukacs, Rozalia; Kohler, Achim

    2015-06-21

    The appearance of fringes in the infrared spectroscopy of thin films seriously hinders the interpretation of chemical bands because fringes change the relative peak heights of chemical spectral bands. Thus, for the correct interpretation of chemical absorption bands, physical properties need to be separated from chemical characteristics. In the paper at hand we revisit the theory of the scattering of infrared radiation at thin absorbing films. Although, in general, scattering and absorption are connected by a complex refractive index, we show that for the scattering of infrared radiation at thin biological films, fringes and chemical absorbance can in good approximation be treated as additive. We further introduce a model-based pre-processing technique for separating fringes from chemical absorbance by extended multiplicative signal correction (EMSC). The technique is validated by simulated and experimental FTIR spectra. It is further shown that EMSC, as opposed to other suggested filtering methods for the removal of fringes, does not remove information related to chemical absorption.

  3. Far-infrared high resolution synchrotron FTIR spectroscopy of the ν11 bending vibrational fundamental transition of dimethylsulfoxyde

    Science.gov (United States)

    Cuisset, Arnaud; Nanobashvili, Lia; Smirnova, Irina; Bocquet, Robin; Hindle, Francis; Mouret, Gaël; Pirali, Olivier; Roy, Pascale; Sadovskií, Dmitrií A.

    2010-05-01

    We report the first successful high resolution gas phase study of the 'parallel' band of DMSO at 380 cm -1 associated with the ν11 bending vibrational mode. The spectrum was recorded with a resolution of 0.0015 cm -1 using the AILES beamline of the SOLEIL synchrotron source, the IFS 125 FTIR spectrometer and a multipass cell providing an optical path of 150 m. The rotational constants and centrifugal corrections obtained from the analysis of the resolved rotational transitions reproduce the spectrum to the experimental accuracy.

  4. Fast infrared array spectrometer with a thermoelectrically cooled 160-element PbSe detector

    International Nuclear Information System (INIS)

    Ji Jun; Gore, Jay P.; Sivathanu, Yudaya R.; Lim, Jongmook

    2004-01-01

    A fast infrared array spectrometer (FIAS) with a thermoelectrically cooled 160-element PbSe detector was demonstrated using measurements of instantaneous infrared radiation intensities simultaneously over the 1.8-4.9 μm wavelength range at a sampling rate of 390 Hz. A three-point second-degree Lagrange interpolation polynomial was constructed to calibrate the FIAS because of the nonlinear response of the infrared array detector to the incident radiation beam. This calibration method gave excellent measurements of blackbody radiation spectra except for a narrow band at wavelength of 4.3 μm due to absorption by room carbon dioxide, which is one of the two major gas radiation peaks (2.7 and 4.3 μm) from the lean premixed hydrocarbon/air combustion products in the midinfrared spectrum. Therefore, the absorption coefficient of room carbon dioxide was conveniently measured on site with the blackbody reference source, and was used in the calibration of the FIAS and also in the calculations of the radiation spectra. Blackbody tests showed that this procedure was effective in correcting for the room carbon dioxide absorption in the radiation spectra measured by the FIAS. For an example of its application, the calibrated FIAS was used to measure spectral radiation intensities from three lean premixed laminar flames and a premixed turbulent jet flame for which reference data with a grating spectrometer were available for comparison. The agreement between the FIAS measurements and the reference data was excellent

  5. Technology of the Gramophone Records of the Music Museum by Fourier Transform Infrared Spectrometry (FTIR Method

    Directory of Open Access Journals (Sweden)

    Seyedeh Zeinab Afzali

    2017-02-01

    Full Text Available Music is one of the branches of the art whose helpful role and usefulness in the human’s mind and soul is undeniable. It is the only art which in the philosophers’ divisions is directly linked with the human spirit and immediate overflows the ears of his soul. The sound, as a psychological phenomenon is associated with the emotion and excitement so that sometimes calms and sometimes confuses the human. This study aims to examine the technology of the gramophone records in the Music Museum by Fourier transform infrared spectrometry (FTIR. The method of this research is experimental and the data are collected by documentation, library, and using FTIR tests. Some records of the Music Museum were studied including four samples of 78 rpm platter (stone platter, one sample of 45 rpm, and one sample of 33 rpm (vinyl platter. The results of the FTIR test indicated that the materials of the records were vinyl and shellac and in their raw material, some of the softening additives (phthalates and fillers (silica and calcium carbonate compounds had been used.

  6. Ion-induced molecular emission of polymers: analytical potentialities of FTIR and mass spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Picq, V.; Balanzat, E. E-mail: balanzat@ganil.fr

    1999-05-02

    The release of small gaseous molecules is a general phenomenon of irradiated polymers. Polyethylene (PE), polypropylene (PP) and polybutene (PB) were irradiated with ions of different electronic stopping power. We show that the gas emission can provide important information on the damage process if a reliable chemical identification of the molecules released and accurate yield values are obtained. The outgassing products were analysed by two techniques: (1) by a novel set-up using a Fourier Transform Infrared (FTIR) analysis of the gas mixture released from the polymer film and (2) by residual gas analysis (RGA) with a quadrupole mass spectrometer. Comparing the analytical potentialities of both methods we come to the conclusion that the FTIR method gives a more straightforward and accurate determination of the chemical nature and of the yield of most of the released molecules. However, RGA provides complementary information on the gas release kinetics and also on the release of heavy hydrocarbon molecules and symmetric molecules like molecular hydrogen.

  7. Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties.

    Science.gov (United States)

    Amir, Rai Muhammad; Anjum, Faqir Muhammad; Khan, Muhammad Issa; Khan, Moazzam Rafiq; Pasha, Imran; Nadeem, Muhammad

    2013-10-01

    Quality characteristics of wheat are determined by different physiochemical and rheological analysis by using different AACC methods. AACC methods are expensive, time consuming and cause destruction of samples. Fourier transforms infrared (FTIR) spectroscopy is one of the most important and emerging tool used for analyzing wheat for different quality parameters. This technique is rapid and sensitive with a great variety of sampling techniques. In the present study different wheat varieties were analyzed for quality assessment and were also characterized by using AACC methods and FTIR technique. The straight grade flour was analyzed for physical, chemical and rheological properties by standard methods and results were obtained. FTIR works on the basis of functional groups and provide information in the form of peaks. On basis of peaks the value of moisture, protein, fat, ash, carbohydrates and hardness of grain were determined. Peaks for water were observed in the range 1,640 cm(-1) and 3,300 cm(-1) on the basis of functional group H and OH. Protein was observed in the range from 1,600 cm(-1) to 1,700 cm(-1) and 1,550 cm(-1) to 1,570 cm(-1) on the basis of bond amide I and amide II respectively. Fat was also observed within these ranges but on the basis of C-H bond and also starch was observed in the range from 2,800 and 3,000 cm(-1) (C-H stretch region) and in the range 3,000 and 3,600 cm(-1) (O-H stretch region). As FTIR is a fast tool it can be easily emplyed for wheat varieties identification according to a set criterion.

  8. Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Connor J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Radiation Measurement (ARM) Program

    2016-03-01

    The Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) measures the absolute infrared (IR) spectral radiance (watts per square meter per steradian per wavenumber) of the sky directly above the instrument. More information about the instrument can be found through the manufacturer’s website. The spectral measurement range of the instrument is 3300 to 520 wavenumbers (cm-1) or 3-19.2 microns for the normal-range instruments and 3300 to 400 cm-1 or 3-25 microns, for the extended-range polar instruments. Spectral resolution is 1.0 cm-1. Instrument field-of-view is 1.3 degrees. Calibrated sky radiance spectra are produced on cycle of about 141 seconds with a group of 6 radiance spectra zenith having dwell times of about 14 seconds each interspersed with 55 seconds of calibration and mirror motion. The ASSIST data is comparable to the Atmospheric Emitted Radiance Interferometer (AERI) data and can be used for 1) evaluating line-by-line radiative transport codes, 2) detecting/quantifying cloud effects on ground-based measurements of infrared spectral radiance (and hence is valuable for cloud property retrievals), and 3) calculating vertical atmospheric profiles of temperature and water vapor and the detection of trace gases.

  9. Ring-patterned plasmonic photonic crystal thermal light source for miniaturized near-infrared spectrometers

    Science.gov (United States)

    Labib, Shady R.; Elsayed, Ahmed A.; Sabry, Yasser M.; Khalil, Diaa

    2018-02-01

    There is a growing number of spectroscopy applications in the near-infrared (NIR) range including gas sensing, food analysis, pharmaceutical and industrial applications that requires highly efficient, more compact and low-cost miniaturized spectrometers. One of the key components for such systems is the wideband light source that can be fabricated using Silicon technology and hence integrated with other components on the same chip. In this work, we report a ring-patterned plasmonic photonic crystal (PC) thermal light source for miniaturized near-infrared spectrometers. The design is based on silicon and tuned to achieve wavelength selectivity in the emitted spectrum. The design is optimized by using Rigorous Coupled-Wave Analysis (RCWA) simulation, which is used to compute the power reflectance and transmittance that are used to predict the emissivity of the structure. The design consists of a PC of silicon rings coated with platinum. The period of the structure is about 2 μm and the silicon is highly-doped with n-type doping level in the order of 1019-1020 cm-3 to enhance the free-carrier absorption. The ring etching depth, diameter and shell thickness are optimized to increase its emissivity within a specific wavelength range of interest. The simulation results show an emissivity exceeding 0.9 in the NIR range up to 2.5 μm, while the emissivity is decreased significantly for longer wavelengths suppressing the emission out of the range of interest, and hence increasing the efficiency for the source. The reported results open the door for black body radiation engineering in integrated silicon sources for spectrometer miniaturization.

  10. Thermal infrared spectrometer MERTIS for the BepiColumbo Mission to Mercury

    Science.gov (United States)

    Zeh, T.; Kaiser, S.; Lenfert, K.; Peter, G.; Walter, I.; Hirsch, H.; Knollenberg, J.; Helbert, J.; Multhaup, K.; Hiesinger, H.; Gebhardt, A.; Risse, S.; Damm, C.; Eberhardt, R.; Baier, V.; Kessler, E.

    2017-11-01

    The MERTIS instrument is a thermal infrared imaging spectrometer onboard of ESA's cornerstone mission BepiColombo to Mercury. MERTIS will provide detailed information about the mineralogical composition of Mercury's surface layer by measuring the spectral emittance in the spectral range from 7-14 μm with a high spatial and spectral resolution. Furthermore MERTIS will obtain radiometric measurements in the spectral range from 7-40 μm to study the thermo-physical properties of the surface material. Under the lead of the German Aerospace Center DLR (Dep. Optical Information Systems, Berlin) a development model (DM) is in development which integrates all MERTIS sub-units of later flight models. With the DM the general design and performance goals of the system shall be investigated and verified. Besides a general overview about the instrument principles the following topics are addressed: Optics setup with a Three Mirror Anastigmatic (TMA) telescope and Offner Spectrometer, Manufacturing techniques for the robust and high precision optics and Radiometer Concept and Design

  11. Identification of carbonates as additives in pressure-sensitive adhesive tape substrate with Fourier transform infrared spectroscopy (FTIR) and its application in three explosive cases.

    Science.gov (United States)

    Lv, Jungang; Feng, Jimin; Zhang, Wen; Shi, Rongguang; Liu, Yong; Wang, Zhaohong; Zhao, Meng

    2013-01-01

    Pressure-sensitive tape is often used to bind explosive devices. It can become important trace evidence in many cases. Three types of calcium carbonate (heavy, light, and active CaCO(3)), which were widely used as additives in pressure-sensitive tape substrate, were analyzed with Fourier transform infrared spectroscopy (FTIR) in this study. A Spectrum GX 2000 system with a diamond anvil cell and a deuterated triglycine sulfate detector was employed for IR observation. Background was subtracted for every measurement, and triplicate tests were performed. Differences in positions of main peaks and the corresponding functional groups were investigated. Heavy CaCO(3) could be identified from the two absorptions near 873 and 855/cm, while light CaCO(3) only has one peak near 873/cm because of the low content of aragonite. Active CaCO(3) could be identified from the absorptions in the 2800-2900/cm region because of the existence of organic compounds. Tiny but indicative changes in the 878-853/cm region were found in the spectra of CaCO(3) with different content of aragonite and calcite. CaCO(3) in pressure-sensitive tape, which cannot be differentiated by scanning electron microscope/energy dispersive X-ray spectrometer and thermal analysis, can be easily identified using FTIR. The findings were successfully applied to three specific explosive cases and would be helpful in finding the possible source of explosive devices in future cases. © 2012 American Academy of Forensic Sciences.

  12. Applications of FT-IR spectrophotometry in cancer diagnostics.

    Science.gov (United States)

    Bunaciu, Andrei A; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2015-01-01

    This review provides a brief background to the application of infrared spectroscopy, including Fourier transform-infrared spectroscopy, in biological fluids. It is not meant to be complete or exhaustive but to provide the reader with sufficient background for selected applications in cancer diagnostics. Fourier transform-infrared spectroscopy (FT-IR) is a fast and nondestructive analytical method. The infrared spectrum of a mixture serves as the basis to quantitate its constituents, and a number of common clinical chemistry tests have proven to be feasible using this approach. This review focuses on biomedical FT-IR applications, published in the period 2009-2013, used for early detection of cancer through qualitative and quantitative analysis.

  13. Analysis of the physical simulation on Fourier transform infrared spectrometer

    Science.gov (United States)

    Yue, Peng-yuan; Wan, Yu-xi; Zhao, Zhen

    2017-10-01

    A kind of oscillating arm type Fourier Transform Infrared Spectrometer (FTS) which based on the corner cube retroreflector is presented, and its principle and properties are studied. It consists of a pair of corner cube retroreflector, beam splitter and compensator. The optical path difference(OPD) is created by oscillating reciprocating motion of the moving corner cube pair, and the OPD value is four times the physical shift value of the moving corner cube pair. Due to the basic property of corner cube retroreflector, the oscillating arm type FTS has no tilt problems. It is almost ideal for very high resolution infrared spectrometer. However, there are some factors to reduce the FTS capability. First, wavefront aberration due to the figures of these surfaces will reduce modulation of FTS system; second, corner cube retroreflector consist of three plane mirror, and orthogonal to each other. When there is a deviation from right angle, it will reduced the modulation of system; third, the apexes of corner cube retroreflector are symmetric about the surface of beam splitter, if one or both of the corner cube retroreflector is displaced laterally from its nominal position, phase of off-axis rays returning from the two arms were difference, this also contributes to loss of modulation of system. In order to solve these problems, this paper sets up a non-sequential interference model, and a small amount of oscillating arm rotation is set to realize the dynamic simulation process, the dynamic interference energy data were acquired at different times, and calculated the modulation of the FTS system. In the simulation, the influence of wedge error of beam splitter, compensator or between them were discussed; effects of oscillating arm shaft deviation from the coplanar of beam splitter was analyzed; and compensation effect of corner cube retroreflector alignment on beam splitter, oscillating arm rotary shaft alignment error is analyzed. In addition, the adjustment procedure

  14. Infrared emission from a polycyclic aromatic hydrocarbon (PAH) excited by ultraviolet laser

    International Nuclear Information System (INIS)

    Cherchneff, I.; Barker, J.R.

    1989-01-01

    The infrared fluorescence spectrum from the C-H stretch modes of vibrationally excited azulene (C10H8), a PAH was measured in the laboratory. PAHs are candidates as carriers of the unidentified infrared emission bands that are observed in many astronomical objects associated with dust and ultraviolet light. In the present experiment, gas phase azulene was excited with light from a 308 nm pulsed laser, and the infrared emission spectrum was time-resolved and wavelength-resolved. Moreover, the infrared absorption spectrum of gas phase azulene was obtained using an FTIR spectrometer. The laboratory emission spectrum resembles observed infrared emission spectra from the interstellar medium, providing support for the hypothesis that PAHs are the responsible carriers. The azulene C-H stretch emission spectrum is more asymmetric than the absorption spectrum, probably due to anharmonicity of levels higher than nu = 1. 36 refs

  15. High Resolution Near Infrared Spectrometer to Study the Zodiacal Light Spectrum

    Science.gov (United States)

    Kutyrev, Alexander; Arendt, R.; Dwek, E.; Moseley, S. H.; Silverberg, R.; Rapchun, D.

    2007-12-01

    We are developing a near infrared spectrometer for measuring solar absorption lines in the zodiacal light in the near infrared region. R. Reynolds at el. (2004, ApJ 612, 1206) demonstrated that observing single Fraunhofer line can be a powerful tool for extracting zodiacal light parameters based on their measurements of the profile of the Mg I line at 5184 A. We are extending this technique to the near infrared with the primary goal of measuring the absolute intensity of the zodiacal light. This measurement will provide the crucial information needed to accurately subtract zodiacal emission from the DIRBE measurements to get a much higher quality measurement of the extragalactic IR background. The instrument design is based on a dual Fabry-Perot interferometer with a narrow band filter. Its double etalon design allows to achieve high spectral contrast to reject the bright out of band telluric OH emission. High spectral contrast is absolutely necessary to achieve detection limits needed to accurately measure the intensity of the absorption line. We present the design, estimated performance of the instrument with the expected results of the observing program. The project is supported by NASA ROSES-APRA grant.

  16. Study of Kerogen Maturity using Transmission Fourier Transform Infrared Spectroscopy (FTIR)

    Science.gov (United States)

    Dang, S. T.

    2014-12-01

    Maturity of kerogen in shale governs the productivity and generation hydrocarbon type. There are generally two accepted methods to measure kerogen maturity; one is the measurement of vitrinite reflectance, %Ro, and another is the measurement of Tmax through pyrolysis. However, each of these techniques has its own limits; vitrinite reflectance measurement cannot be applied to marine shale and pre-Silurian shales, which lack plant materials. Furthermore, %Ro, requires the isolation and identification of vitrinite macerals and statistical measurements of at least 50 macerals. Tmax measurement is questionable for mature and post-mature samples. In addition, there are questions involving the effects of solvents on Tmax determinations. Fourier Transmission Infrared Spectroscopy, FTIR, can be applied for both qualitative and quantitative assessment on organics maturity in shale. The technique does not require separating organic matter or identifying macerals. A CH2/CH3 index, RCH, calculated from FTIR spectra is more objective than other measurements. The index increases with maturity (both natural maturation and synthetic maturation through hydrous and dry pyrolysis). The new maturity index RCH can be calibrated to vitrinite reflectance which allows the definition of the following values for levels of maturity: 1) immature—RCH > 1.6±0.2; 2) oil window-- 1.6±0.2 1.3±0.3; 3) wet gas window--1.3±0.3 1.13±0.05; and 4) dry gas window RCH < 1.13±0.05.

  17. Propionaldehyde infrared cross-sections and band strengths

    International Nuclear Information System (INIS)

    Köroğlu, Batikan; Loparo, Zachary; Nath, Janardan; Peale, Robert E.; Vasu, Subith S.

    2015-01-01

    The use of oxygenated biofuels reduces the greenhouse gas emissions; however, they also result in increased toxic aldehyde by-products, mainly formaldehyde, acetaldehyde, acrolein, and propionaldehyde. These aldehydes are carcinogenic and/or toxic and therefore it is important to understand their formation and destruction pathways in combustion and atmospheric systems. Accurate information about their infrared cross-sections and integrated strengths are crucially needed for development of quantitative detection schemes and modeling tools. Critical to the development of such diagnostics are accurate characterization of the absorption features of these species. In this study, the gas phase infrared spectra of propionaldehyde (also called propanal, CH 3 –CH 2 –CHO), a saturated three carbon aldehyde found in the exhaust emissions of biodiesel or diesel fuels, was studied using high resolution Fourier Transform Infrared (FTIR) spectroscopy over the wavenumber range of 750−3300 cm −1 and at room temperature 295 K. The absorption cross sections of propionaldehyde were recorded at resolutions of 0.08 and 0.096 cm −1 and at seven different pressures (4−33 Torr). The calculated band-strengths were reported and the integrated band intensity results were compared with values taken from the Pacific Northwest National Laboratory (PNNL) database (showing less than 2% discrepancy). The peak positions of the 19 different vibrational bands of propionaldehyde were also compared with previous studies taken at a lower resolution of 1 cm −1 . To the best of our knowledge, the current FTIR measurements provide the first highest resolution infrared cross section data for propionaldehyde. - Highlights: • High resolution IR spectra of propionaldehyde were measured by FTIR spectrometer. • The discrepancy between the present study and PNNL database was less than 2%. • The fundamental vibrational frequencies were reported at high resolution. • The rovibrational Q

  18. TG-FTIR analysis of biomass pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Bassilakis, R.; Carangelo, R.M.; Wojtowicz, M.A. [Advanced Fuel Research Inc., Hartford, CT (United States)

    2001-10-09

    A great need exists for comprehensive biomass-pyrolysis models that could predict yields and evolution patterns of selected volatile products as a function of feedstock characteristics and process conditions. A thermogravimetric analyzer coupled with Fourier transform infrared analysis of evolving products (TG-FTIR) can provide useful input to such models in the form of kinetic information obtained under low heating rate conditions. In this work, robust TG-FTIR quantification routes were developed for infrared analysis of volatile products relevant to biomass pyrolysis. The analysis was applied to wheat straw, three types of tobacco (Burley, Oriental, and Bright) and three biomass model compounds (xylan, chlorogenic acid, and D-glucose). Product yields were compared with literature data, and species potentially quantifiable by FT-IR are reviewed. Product-evolution patterns are reported for all seven biomass samples. 41 refs., 7 figs., 2 tabs.

  19. JIRAM, the image spectrometer in the near infrared on board the Juno mission to Jupiter.

    Science.gov (United States)

    Adriani, Alberto; Coradini, Angioletta; Filacchione, Gianrico; Lunine, Jonathan I; Bini, Alessandro; Pasqui, Claudio; Calamai, Luciano; Colosimo, Fedele; Dinelli, Bianca M; Grassi, Davide; Magni, Gianfranco; Moriconi, Maria L; Orosei, Roberto

    2008-06-01

    The Jovian InfraRed Auroral Mapper (JIRAM) has been accepted by NASA for inclusion in the New Frontiers mission "Juno," which will launch in August 2011. JIRAM will explore the dynamics and the chemistry of Jupiter's auroral regions by high-contrast imaging and spectroscopy. It will also analyze jovian hot spots to determine their vertical structure and infer possible mechanisms for their formation. JIRAM will sound the jovian meteorological layer to map moist convection and determine water abundance and other constituents at depths that correspond to several bars pressure. JIRAM is equipped with a single telescope that accommodates both an infrared camera and a spectrometer to facilitate a large observational flexibility in obtaining simultaneous images in the L and M bands with the spectral radiance over the central zone of the images. Moreover, JIRAM will be able to perform spectral imaging of the planet in the 2.0-5.0 microm interval of wavelengths with a spectral resolution better than 10 nm. Instrument design, modes, and observation strategy will be optimized for operations onboard a spinning satellite in polar orbit around Jupiter. The JIRAM heritage comes from Italian-made, visual-infrared imaging spectrometers dedicated to planetary exploration, such as VIMS-V on Cassini, VIRTIS on Rosetta and Venus Express, and VIR-MS on the Dawn mission.

  20. Identification Content of the Red Dragon Fruit Extract Skin Using Fourier Transform Infrared (FTIR and Phytochemistry

    Directory of Open Access Journals (Sweden)

    Muhammad Ilham Noor

    2016-08-01

    Full Text Available Corrosion is a decline in the quality of the metal due to electrochemical reaction between the metal by a corrosive medium. One effort to reduce the rate of corrosion is by adding inhibitors. Organic inhibitors that can be used include antioxidants and vitamin C. To determine both the content of the test method is used Fourier Transform Infrared (FTIR and phytochemicals. FTIR is a method to measure used to determine the group and the type of bonding of a compound based on the value of the wave number of a plant. Phytochemical screening is a test of the qualitative secondary metabolites biologically active compounds found in plants. In this study used a sample of red dragon fruit. The results of the analysis provide information regarding the types of biologically active compounds and levels of the active compound contained in the red dragon fruit.

  1. A Low Mass Translation Mechanism for Planetary FTIR Spectrometry using an Ultrasonic Piezo Linear Motor

    Science.gov (United States)

    Heverly, Matthew; Dougherty, Sean; Toon, Geoffrey; Soto, Alejandro; Blavier, Jean-Francois

    2004-01-01

    One of the key components of a Fourier Transform Infrared Spectrometer (FTIR) is the linear translation stage used to vary the optical path length between the two arms of the interferometer. This translation mechanism must produce extremely constant velocity motion across its entire range of travel to allow the instrument to attain high signal-to-noise ratio and spectral resolving power. A new spectrometer is being developed at the Jet Propulsion Laboratory under NASA s Planetary Instrument Definition and Development Program (PIDDP). The goal of this project is to build upon existing spaceborne FTIR spectrometer technology to produce a new instrument prototype that has drastically superior spectral resolution and substantially lower mass, making it feasible for planetary exploration. In order to achieve these goals, Alliance Spacesystems, Inc. (ASI) has developed a linear translation mechanism using a novel ultrasonic piezo linear motor in conjunction with a fully kinematic, fault tolerant linear rail system. The piezo motor provides extremely smooth motion, is inherently redundant, and is capable of producing unlimited travel. The kinematic rail uses spherical Vespel(R). rollers and bushings, which eliminates the need for wet lubrication, while providing a fault tolerant platform for smooth linear motion that will not bind under misalignment or structural deformation. This system can produce velocities from 10 - 100 mm/s with less than 1% velocity error over the entire 100-mm length of travel for a total mechanism mass of less than 850 grams. This system has performed over half a million strokes under vacuum without excessive wear or degradation in performance. This paper covers the design, development, and testing of this linear translation mechanism as part of the Planetary Atmosphere Occultation Spectrometer (PAOS) instrument prototype development program.

  2. Airborne Laser Infrared Absorption Spectrometer (ALIAS-II) for in situ Atmospheric Measurements of N(sub 2)0, CH(sub 4), CO, HCl, and NO(sub 2) from Balloon or RPA Platforms

    Science.gov (United States)

    Scott, D.; Herman, R.; Webster, C.; May, R.; Flesch, G.; Moyer, E.

    1998-01-01

    The Airborne Laser Infrared Absorption Spectrometer II (ALIAS-II) is a lightweight, high-resolution (0.0003 cm-1), scanning, mid-infrared absorption spectrometer based on cooled (80 K) lead-salt tunable diode laser sources.

  3. Synchrotron FTIR Imaging For The Identification Of Cell Types Within Human Tissues

    International Nuclear Information System (INIS)

    Walsh, Michael J.; Pounder, F. Nell; Nasse, Michael J.; Macias, Virgilia; Kajdacsy-Balla, Andre; Hirschmugl, Carol; Bhargava, Rohit

    2010-01-01

    The use of synchrotron Fourier Transform Infrared spectroscopy (S-FTIR) has been shown to be a very promising tool for biomedical research. S-FTIR spectroscopy allows for the fast acquisition of infrared (IR) spectra at a spatial resolution approaching the IR diffraction limit. The development of the Infrared Environmental Imaging (IRENI) beamline at the Synchrotron Radiation Center (SRC) at the University of Wisconsin-Madison has allowed for diffraction limited imaging measurements of cells in human prostate and breast tissues. This has allowed for the identification of cell types within tissues that would otherwise not have been resolvable using conventional FTIR sources.

  4. Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) in the discrimination of normal and oral cancer blood plasma

    Science.gov (United States)

    Pachaiappan, Rekha; Prakasarao, Aruna; Singaravelu, Ganesan

    2017-02-01

    Oral cancer is the most frequent type of cancer that occurs with 75000 to 80000 new cases reported every year in India. The carcinogens from tobacco and related products are the main cause for the oral cancer. ATR-FTIR method is label free, fast and cost-effective diagnostic method would allow for rapid diagnostic results in earlier stages by the minimal chemical changes occur in the biological metabolites available in the blood plasma. The present study reports the use of ATR-FTIR data with advanced statistical model (LDA-ANN) in the diagnosis of oral cancer from normal with better accuracy. The infrared spectra were acquired on ATR-FTIR Jasco spectrophotometer at 4 cm-1 resolution, 30 scans, in the 1800-900 cm-1 spectral range. Each sample had 5 spectra recorded from each blood plasma sample. The spectral data were routed through the multilayer perception of artificial neural network to evaluate for the statistical efficacy. Among the spectral data it was found that amide II (1486 cm-1) and lipid (1526 cm-1) affords about 90 % in the discrimination between groups using LDA. These preliminary results indicate that ATR-FTIR is useful to differentiate normal subject from oral cancer patients using blood plasma.

  5. Near infrared measurements of SPICAM AOTF spectrometer on Mars Express

    Science.gov (United States)

    Korablev, O.; Bertaux, J. L.; Fedorova, A.; Perrier, S.; Moroz, V. I.; Rodin, A.; Stepanov, A.; Grigoriev, A.; Dimarellis, E.; Kalinnikov, Yu. K.

    The Near-Infrared channel of SPICAM, a lightweight (800 g) acousto-optical tuneable filter (AOTF) spectrometer observes the atmosphere and the surface of Mars from Mars Express orbiter. The spectrometer covers the spectral range between 1000 and 1700 nm with the resolving power λ /Δ λ superior to 1300. Signal-to noise ratio in individual Mars spectra varies from 30 to 100 and more depending on observation conditions. The total column abundance of water vapour is measured in nadir at 1380 nm simultaneously with ozone measured in the UV channel of SPICAM. Moreover, the O21Δ g emission at 1270 nm produced by photodissociation of ozone above 15-20km is systematically observed in nadir at the background of bright disk constraining (with the UV measurements of total ozone) its vertical distribution. Airmass reference is provided self-consistently from carbon dioxide measurements at 1430 and 1580 nm. At LS≈ 280 clear spectral signatures of CO2 and H2O ices has been detected at the permanent South Polar Cap (simultaneously with OMEGA and PFS findings) and above 55N. Limb measurements show that at the time when TES/MGS measurements indicate very clear atmosphere, the dust at the limb is observed up to 50-60km. We will present description of the spectrometer and its characterization, and describe the collected data, including nadir, limb and solar occultation measurements. Spectro-polarimetry capabilities of the AOTF will be discussed. This is the first experience of AOTF use in deep space, and we believe that a 800-g instrument capable to measure water vapour and much more on Mars should become a routine climate/environment tool on future missions.

  6. Application of fourier-transform infrared (ft-ir) spectroscopy for determination of total phenolics of freeze dried lemon juices

    International Nuclear Information System (INIS)

    Sherazi, S.T.H.; Bhutto, A.A.; Mehesar, S.A.

    2017-01-01

    A cost effective and environmentally safe analytical method for rapid assessment of total phenolic content (TPC) in freeze dried lemon juice samples was developed using transmission Fourier-transform infrared spectroscopy (FT-IR) in conjunction with chemometric techniques. Two types of calibrations i.e. simple Beer's law and partial least square (PLS) were applied to investigate most accurate calibration model based on region from1420 to 1330 cm-1. The better analytical performance was obtained by PLS technique coefficient of determination (R2), root mean square error of calibration (RMSEC) with the value of 0.999 and 0.00864, respectively. The results of TPC in freeze dried lemon juice samples obtained by transmission FT-IR were compared with TPC observed by Folin-Ciocalteu (FC) assay and found to be comparable. Outcomes of the present study indicate that transmission FT-IR spectroscopic approach could be used as an alternative approach in place of Folin-Ciocalteu (FC) assay which is expensive and time-consuming conventional chemical methods for determination of the total phenolic content of lemon fruits. (author)

  7. Classification and structural analysis of live and dead salmonella cells using fourier transform infrared (FT-IR) spectroscopy and principle component analysis (PCA)

    Science.gov (United States)

    Fourier Transform Infrared Spectroscopy (FT-IR) was used to detect Salmonella typhimurium and Salmonella enteritidis foodborne bacteria and distinguish between live and dead cells of both serotypes. Bacteria were loaded individually on the ZnSe Attenuated Total Reflection (ATR) crystal surface and s...

  8. Improving precursor adsorption characteristics in ATR-FTIR spectroscopy with a ZrO{sub 2} nanoparticle coating

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaeseo [Korea Research Institute of Standards and Science, Center for Vacuum Technology (Korea, Republic of); Mun, Jihun [University of Science and Technology, Department of Advanced Device Technology (Korea, Republic of); Shin, Jae-Soo; Kim, Jongho; Park, Hee Jung [Daejeon University, Department of Advanced Materials Engineering (Korea, Republic of); Kang, Sang-Woo, E-mail: swkang@kriss.re.kr [Korea Research Institute of Standards and Science, Center for Vacuum Technology (Korea, Republic of)

    2017-02-15

    Nanoparticles were applied to a crystal surface to increase its precursor adsorption efficiency in an attenuated total reflection Fourier transform infrared (ATR-FTIR) spectrometer. Nanoparticles with varying dispersion stabilities were employed and the resulting precursor adsorption characteristics were assessed. The size of the nanoparticles was <100 nm (TEM). In order to vary the dispersion stability, ZrO{sub 2} nanoparticles were dispersed in aqueous solutions of different pH. The ZrO{sub 2} dispersion solutions were analyzed using scanning electron microscopy (SEM) while particle distribution measurements were analyzed using electrophoretic light scattering (ELS) and dynamic light scattering (DLS) techniques. ZrO{sub 2} nanoparticles dispersed in solutions of pH 3 and 11 exhibited the most stable zeta potentials (≥+30 or ≤−30 mV); these observations were confirmed by SEM analysis and particle distribution measurements. Hexamethyldisilazane (HMDS) was used as a precursor for ATR-FTIR spectroscopy. Consequently, when ZrO{sub 2} nanoparticle solutions with the best dispersion stabilities (pH 3 and 11) were applied to the adsorption crystal surface, the measurement efficiency of ATR-FTIR spectroscopy improved by ∼200 and 300%, respectively.

  9. Biological Applications Of Fourier Transform Infrared (FTIR) Or Bloody FTIR

    Science.gov (United States)

    Jakobsen, R. J.; Winters, S.; Gendreau, R. M.

    1981-10-01

    An ex vivo FT-IR/ATR experiment for studying blood protein adsorption at the molecular level is described. This experiment involves the use of live dogs pumping the blood through a arterial-veinal shunt to the ATR cell and back into the animal. The results from these live dog experiments are compared to results obtained using donated whole blood. These experiments demonstrate that FT-IR can be used to study aqueous, physiological, flowing solutions in real time with the sensitivity necessary to detect minor changes.

  10. FTIR spectra of whey and casein hydrolysates in relation to their functional properties

    NARCIS (Netherlands)

    Ven, van der C.; Muresan, S.; Gruppen, H.; Bont, D.B.A.; Merck, K.B.; Voragen, A.G.J.

    2002-01-01

    Mid-infrared spectra of whey and casein hydrolysates were recorded using Fourier transform infrared (FTIR) spectroscopy. Multivariate data analysis techniques were used to investigate the capacity of FTIR spectra to classify hydrolysates and to study the ability of the spectra to predict bitterness,

  11. Detection of nitric acid and nitric oxides in the terrestrial atmosphere in the middle-infrared spectral region

    Directory of Open Access Journals (Sweden)

    M. I. Blecka

    1996-11-01

    Full Text Available A proposal for combined space and ground-based observations of the vertical distributions and the column densities of nitric acid and nitric oxide concentrations in the earth's atmosphere is discussed. We focus on the aspects that are particular to the idea of correlative measurements: geometrical considerations, simulations of the solar absorption spectra in the middle-infrared region corresponding to the different observational geometries, and the associated retrieval methods. These studies are done specifically for the Belgian-French experiment MIRAS (MIR Infrared Atmospheric Spectrometer onboard the Russian Space Station MIR and correlative ground-based FTIR measurements in the Tatra mountains.

  12. Influence of the Zeolite ZSM-5 on Catalytic Pyrolysis of Biomass via TG-FTIR

    Directory of Open Access Journals (Sweden)

    Ze Wang

    2015-06-01

    Full Text Available Bio-oil from the pyrolysis of biomass is an important renewable source for liquid fuel. However, the application of bio-oil has been severely restricted due to its high viscosity, acidity, and low heating value. Thus, it has been necessary to upgrade bio-oil for automobile fuel via catalytic deoxygenation reactions. Herein, the effects of the zeolite ZSM-5 on the pyrolysis of four biomass materials (corn cob, corn straw, pine powder, and cellulose were investigated via TG-FTIR (thermogravimetric analyzer coupled with a Fourier transform infrared spectrometer to better understand the working mechanism of ZSM-5. The contents of the products of H2O, CO, CO2, and the C-O, C=O, and OH groups evolved with increasing pyrolytic temperature were monitored by FTIR. It was found that the relative contents of the C-O and C=O groups were decreased under the catalysis of ZSM-5, while the formations of CO, H2O, and the OH containing compounds were promoted. To explain the regulations, reaction routes were speculated and the catalytic conversion mechanisms were deduced.

  13. Evaluation of polybutadiene rubbers using FTIR spectra

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, L.N.; Schimidt, F., E-mail: lucas@ifg.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Goias (IFG), Goiania, GO (Brazil); Antonio, P.L.; Caldas, L.V.E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vieira, S.L. [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Instituto de Fisica

    2017-09-01

    Radiation dosimetry for medical and industrial purposes has increasingly evolved over the last few decades with the introduction of various new detectors. Depending on the properties exhibited for radiation dosimetry, some detectors present their applications in a specific area. From a physics point of view, an ideal dosimeter should be able to measure absorbed dose. In this work, synthetic materials based on polybutadiene rubbers (PBR) were proposed as a new class of radiation detectors. The influence of radiation dose on their properties has been investigated for application in radiation dosimetry. The rubber samples were exposed to absorbed doses from 10 Gy up to 250 Gy, using a {sup 60}Co Gamma Cell-220 system. Their responses were carried out with a Fourier Transform Infrared (FTIR) Spectrometer to investigate the presence of absorbance peaks. The results suggested the existence of a relationship between the absorbed doses and the absorbance peaks associated with stretching (1300-1200 cm{sup -1}), deformation (1450-1340 cm{sup -1}) and vibration (1500-1400 cm{sup -1}) processes in the material. (author)

  14. Evaluation of polybutadiene rubbers using FTIR spectra

    International Nuclear Information System (INIS)

    Oliveira, L.N.; Schimidt, F.; Antonio, P.L.; Caldas, L.V.E.; Vieira, S.L.

    2017-01-01

    Radiation dosimetry for medical and industrial purposes has increasingly evolved over the last few decades with the introduction of various new detectors. Depending on the properties exhibited for radiation dosimetry, some detectors present their applications in a specific area. From a physics point of view, an ideal dosimeter should be able to measure absorbed dose. In this work, synthetic materials based on polybutadiene rubbers (PBR) were proposed as a new class of radiation detectors. The influence of radiation dose on their properties has been investigated for application in radiation dosimetry. The rubber samples were exposed to absorbed doses from 10 Gy up to 250 Gy, using a "6"0Co Gamma Cell-220 system. Their responses were carried out with a Fourier Transform Infrared (FTIR) Spectrometer to investigate the presence of absorbance peaks. The results suggested the existence of a relationship between the absorbed doses and the absorbance peaks associated with stretching (1300-1200 cm"-"1), deformation (1450-1340 cm"-"1) and vibration (1500-1400 cm"-"1) processes in the material. (author)

  15. Development of transition edge superconducting bolometers for the SAFARI Far-Infrared spectrometer on the SPICA space-borne telescope

    NARCIS (Netherlands)

    Mauskopf, P.; Morozov, D.; Glowacka, D.; Goldie, D.; Withington, S.; Bruijn, M.; De Korte, P.; Hoevers, H.; Ridder, M.; Van der Kuur, J.; Gao, J.R.

    2008-01-01

    We describe the optimization of transition edge superconducting (TES) detectors for use in a far-infrared (FIR) Fourier transform spectrometer (FTS) mounted on a cryogenically cooled space-borne telescope (e.g. SPICA). The required noise equivalent power (NEP) of the detectors is approximately 10?19

  16. Design of a miniaturized integrated spectrometer for spectral tissue sensing

    Science.gov (United States)

    Belay, Gebirie Yizengaw; Hoving, Willem; Ottevaere, Heidi; van der Put, Arthur; Weltjens, Wim; Thienpont, Hugo

    2016-04-01

    Minimally-invasive image-guided procedures become increasingly used by physicians to obtain real-time characterization feedback from the tissue at the tip of their interventional device (needle, catheter, endoscopic or laparoscopic probes, etc…) which can significantly improve the outcome of diagnosis and treatment, and ultimately reduce cost of the medical treatment. Spectral tissue sensing using compact photonic probes has the potential to be a valuable tool for screening and diagnostic purposes, e.g. for discriminating between healthy and tumorous tissue. However, this technique requires a low-cost broadband miniature spectrometer so that it is commercially viable for screening at point-of-care locations such as physicians' offices and outpatient centers. Our goal is therefore to develop a miniaturized spectrometer based on diffractive optics that combines the functionalities of a visible/near-infrared (VIS/NIR) and shortwave-infrared (SWIR) spectrometer in one very compact housing. A second goal is that the hardware can be produced in high volume at low cost without expensive time consuming alignment and calibration steps. We have designed a miniaturized spectrometer which operates both in the visible/near-infrared and shortwave-infrared wavelength regions ranging from 400 nm to 1700 nm. The visible/near-infrared part of the spectrometer is designed for wavelengths from 400 nm to 800 nm whereas the shortwave-infrared segment ranges from 850 nm to 1700 nm. The spectrometer has a resolution of 6 nm in the visible/near-infrared wavelength region and 10 nm in the shortwave-infrared. The minimum SNR of the spectrometer for the intended application is about 151 in the VIS/NIR range and 6000 for SWIR. In this paper, the modelling and design, and power budget analysis of the miniaturized spectrometer are presented. Our work opens a door for future affordable micro- spectrometers which can be integrated with smartphones and tablets, and used for point

  17. Biological infrared microspectroscopy at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Miller, Lisa M.; Carr, G. Lawrence; Williams, Gwyn P.; Sullivan, Michael; Chance, Mark R.

    2000-01-01

    Beamline U2B at the National Synchrotron Light Source has been designed and built as an infrared beamline dedicated to the study of biomedical problems. In 1997, the horizontal and vertical acceptances of Beamline U2B were increased in order to increase the overall flux of the beamline. A wedged, CVD diamond window separates the UHV vacuum of the VUV ring from the rough vacuum of the beamline. The endstation consists of a Nicolet Magna 860 step-scan FTIR and a NicPlan infrared microscope. The spectrometer is equipped with beamsplitter/detector combinations that permit data collection in the mid-and far-infrared regions. We have also made provisions for mounting an external detector (e.g. bolometer) for far infrared microspectroscopy. Thus far, Beamline U2B has been used to (1) perform chemical imaging of bone tissue and brain cells to address issues related to bone disease and epilepsy, respectively, and (2) examine time-resolved protein structure in the sub-millisecond folding of cytochrome c

  18. FTIR gas analysis with improved sensitivity and selectivity for CWA and TIC detection

    Science.gov (United States)

    Phillips, Charles M.; Tan, Huwei

    2010-04-01

    This presentation describes the use of an FTIR (Fourier Transform Infrared)-based spectrometer designed to continuously monitor ambient air for the presence of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). The necessity of a reliable system capable of quickly and accurately detecting very low levels of CWAs and TICs while simultaneously retaining a negligible false alarm rate will be explored. Technological advancements in FTIR sensing have reduced noise while increasing selectivity and speed of detection. These novel analyzer design characteristics are discussed in detail and descriptions are provided which show how optical throughput, gas cell form factor, and detector response are optimized. The hardware and algorithms described here will explain why this FTIR system is very effective for the simultaneous detection and speciation of a wide variety of toxic compounds at ppb concentrations. Analytical test data will be reviewed demonstrating the system's sensitivity to and selectivity for specific CWAs and TICs; this will include recent data acquired as part of the DHS ARFCAM (Autonomous Rapid Facility Chemical Agent Monitor) project. These results include analyses of the data from live agent testing for the determination of CWA detection limits, immunity to interferences, detection times, residual noise analysis and false alarm rates. Sensing systems such as this are critical for effective chemical hazard identification which is directly relevant to the CBRNE community.

  19. A review on the applications of portable near-infrared spectrometers in the agro-food industry.

    Science.gov (United States)

    dos Santos, Cláudia A Teixeira; Lopo, Miguel; Páscoa, Ricardo N M J; Lopes, João A

    2013-11-01

    Industry has created the need for a cost-effective and nondestructive quality-control analysis system. This requirement has increased interest in near-infrared (NIR) spectroscopy, leading to the development and marketing of handheld devices that enable new applications that can be implemented in situ. Portable NIR spectrometers are powerful instruments offering several advantages for nondestructive, online, or in situ analysis: small size, low cost, robustness, simplicity of analysis, sample user interface, portability, and ergonomic design. Several studies of on-site NIR applications are presented: characterization of internal and external parameters of fruits and vegetables; conservation state and fat content of meat and fish; distinguishing among and quality evaluation of beverages and dairy products; protein content of cereals; evaluation of grape ripeness in vineyards; and soil analysis. Chemometrics is an essential part of NIR spectroscopy manipulation because wavelength-dependent scattering effects, instrumental noise, ambient effects, and other sources of variability may complicate the spectra. As a consequence, it is difficult to assign specific absorption bands to specific functional groups. To achieve useful and meaningful results, multivariate statistical techniques (essentially involving regression techniques coupled with spectral preprocessing) are therefore required to extract the information hidden in the spectra. This work reviews the evolution of the use of portable near-infrared spectrometers in the agro-food industry.

  20. A miniaturized near infrared spectrometer for non-invasive sensing of bio-markers as a wearable healthcare solution

    Science.gov (United States)

    Bae, Jungmok; Druzhin, Vladislav V.; Anikanov, Alexey G.; Afanasyev, Sergey V.; Shchekin, Alexey; Medvedev, Anton S.; Morozov, Alexander V.; Kim, Dongho; Kim, Sang Kyu; Moon, Hyunseok; Jang, Hyeongseok; Shim, Jaewook; Park, Jongae

    2017-02-01

    A novel miniaturized near-infrared spectrometer readily mountable to wearable devices for continuous monitoring of individual's key bio-markers was proposed. Spectrum is measured by sequential illuminations with LED's, having independent spectrum profiles and a continuous detection of light radiations from the skin tissue with a single cell PD. Based on Tikhonov regularization with singular value decomposition, a spectrum resolution less than 10nm was reconstructed based on experimentally measured LED profiles. A prototype covering first overtone band (1500-1800nm) where bio-markers have pronounced absorption peaks was fabricated and verified of its performance. Reconstructed spectrum shows that the novel concept of miniaturized spectrometer is valid.

  1. Measurement of tracer gas distributions using an open-path FTIR system coupled with computed tomography

    Science.gov (United States)

    Drescher, Anushka C.; Yost, Michael G.; Park, Doo Y.; Levine, Steven P.; Gadgil, Ashok J.; Fischer, Marc L.; Nazaroff, William W.

    1995-05-01

    Optical remote sensing and iterative computed tomography (CT) can be combined to measure the spatial distribution of gaseous pollutant concentrations in a plane. We have conducted chamber experiments to test this combination of techniques using an Open Path Fourier Transform Infrared Spectrometer (OP-FTIR) and a standard algebraic reconstruction technique (ART). ART was found to converge to solutions that showed excellent agreement with the ray integral concentrations measured by the FTIR but were inconsistent with simultaneously gathered point sample concentration measurements. A new CT method was developed based on (a) the superposition of bivariate Gaussians to model the concentration distribution and (b) a simulated annealing minimization routine to find the parameters of the Gaussians that resulted in the best fit to the ray integral concentration data. This new method, named smooth basis function minimization (SBFM) generated reconstructions that agreed well, both qualitatively and quantitatively, with the concentration profiles generated from point sampling. We present one set of illustrative experimental data to compare the performance of ART and SBFM.

  2. Studies on infrared drying of paper, use of integrating spheres in FTIR measurements, and heat and mass transfer inside paper

    Energy Technology Data Exchange (ETDEWEB)

    Ojala, K

    1994-12-31

    The effect of various factors on the efficiency of infrared dryers has been studied by modelling and simulation of radiative heat transfer in these dryers. Generally, 20-35 % of the radiation from electrical IR dryers becomes absorbed by the web, whereas in the case of a gas-fired dryer 30-50 % of the energy becomes absorbed. The efficiency is strongly dependent on the dryer design, power, geometry, cleanness, and the material to be dried. Ways to improve the efficiency of installed dryers are proposed and tested. The escape of radiation from the system can be reduced, the optical properties of the surfaces can be improved, the amount of cooling can be reduced in low power circumstances, and the way of installation can be changed. A very promising method is to install the dryer far from the web and attach side flanges of high emissivity beside the dryer. The spectral properties of papers and dryer materials are studied with an FTIR spectrometer using integrating sphere techniques. The heat and mass transfer processes inside the paper during drying has been studied. The drying model was applied to the simulation of the wetting experiments. The approximate magnitude for the permeability of liquid water inside the web was determined by adapting the liquid movement to these results. Applying this enhanced model, the flows of liquid water and vapor inside paper have been studied during the drying process on a hot cylinder

  3. A calibration method for the measurement of IR detector spectral responses using a FTIR spectrometer equipped with a DTGS reference cell

    Science.gov (United States)

    Gravrand, Olivier; Wlassow, J.; Bonnefond, L.

    2014-07-01

    Various high performance IR detectors are today available on the market from QWIPs to narrow gap semiconductor photodiodes, which exhibit various spectral features. In the astrophysics community, the knowledge of the detector spectral shape is of first importance. This quantity (spectral QE or response) is usually measured by means of a monochromator followed by an integrating sphere and compared to a calibrated reference detector. This approach is usually very efficient in the visible range, where all optical elements are very well known, particularly the reference detector. This setup is also widely used in the near IR (up to 3μm) but as the wavelength increases, it becomes less efficient. For instance, the internal emittance of integrating spheres in the IR, and the bad knowledge of reference detectors for longer wavelengths tend to degrade the measurement reliability. Another approach may therefore be considered, using a Fourier transform IR spectrometer (FTIR). In this case, as opposed to the monochromator, the tested detector is not in low flux condition, the incident light containing a mix of different wavelengths. Therefore, the reference detector has to be to be sensitive (and known) in the whole spectral band of interest, because it will sense all those wavelengths at the same time. A popular detector used in this case is a Deuterated Triglycine Sulfate thermal detector (DTGS). Being a pyro detetector, the spectral response of such a detector is very flat, mainly limited by its window. However, the response of such a detector is very slow, highly depending on the temporal frequency of the input signal. Moreover, being a differential detector, it doesn't work in DC. In commercial FTIR spectrometers, the source luminance is usually continuously modulated by the moving interferometer, and the result is that the interferogram mixes optical spectral information (optical path difference) and temporal variations (temporal frequency) so that the temporal

  4. FT-IR, RAMAN AND DFT STUDIES ON THE VIBRATIONAL ...

    African Journals Online (AJOL)

    Department of Physics, Science Faculty, Anadolu University, Eskişehir, Turkey ... IR spectrum was recorded using Bruker Optics IFS66v/s FTIR spectrometer at a ... spectrum was obtained using a Bruker Senterra Dispersive Raman microscope.

  5. Short-Wave Near-Infrared Spectrometer for Alcohol Determination and Temperature Correction

    Directory of Open Access Journals (Sweden)

    Qingbo Fu

    2012-01-01

    Full Text Available A multichannel short-wave near-infrared (SW-NIR spectrometer module based on charge-coupled device (CCD detection was designed. The design relied on a tungsten lamp enhanced by light emitting diodes, a fixed grating monochromator and a linear CCD array. The main advantages were high optical resolution and an optimized signal-to-noise ratio (0.24 nm and 500, resp. in the whole wavelength range of 650 to 1100 nm. An application to alcohol determination using partial least squares calibration and the temperature correction was presented. It was found that the direct transfer method had significant systematic prediction errors due to temperature effect. Generalized least squares weighting (GLSW method was utilized for temperature correction. After recalibration, the RMSEP found for the 25°C model was 0.53% v/v and errors of the same order of magnitude were obtained at other temperatures (15, 35 and 40°C. And an 2 better than 0.99 was achieved for each validation set. The possibility and accuracy of using the miniature SW-NIR spectrometer and GLSW transfer calibration method for alcohol determination at different temperatures were proven. And the analysis procedure was simple and fast, allowing a strict control of alcohol content in the wine industry.

  6. Geographical origin discrimination and polysaccharides quantitative analysis of Radix codonopsis with micro near-infrared spectrometer engine

    Directory of Open Access Journals (Sweden)

    Jiayue Wang

    2018-01-01

    Full Text Available At present, Tradition Chinese Medicine (TCM industry in China is in the stage from the empirical development to industrial production. Near infrared (NIR spectroscopy has been widely used in the quality control of TCM’s modernization with its characteristics including rapidness, nondestruction, simplicity, economy, and so on. In this study, as one type of a portable micro NIR spectrometer, Micro NIR 1700 was used to establish the qualitative models for identification of geographical region and authenticity of Radix codonopsis based on discriminant analysis (DA method. Both of the DA models had better predictive ability with 100% accuracy. In addition, a method for rapid quantitative analysis of polysaccharide in Radix codonopsis was also developed based on Micro NIR 1700 spectrometer with partial least-squares (PLS algorithm. In the PLS calibration model, the NIR spectra of samples were pretreated with different preprocessing methods and the spectral region was selected with different variable selection methods as well. The performance of the final PLS model was evaluated according to correlation coefficient of calibration (Rc, correlation coefficient of prediction (Rp, root mean squared error of cross validation (RMSECV, and root mean squared of prediction (RMSEP. The values of Rc, Rp, RMSECV, and RMSEP were 0.9775, 0.9602, 2.496, and 2.734g/mL, respectively. This work demonstrated that micro infrared spectrometer could be more convenient and rapid for quality control of Radix codonopsis, and the presented models would be a useful reference for quality control of other similar raw materials of TCM.

  7. Study of the gamma radiation effect on lincomycin by two techniques thermal analysis and fourier transform infrared (FTIR)

    International Nuclear Information System (INIS)

    Al-Zier, A.; Al-Kassiri, H.; Al Aji, Z.

    1999-02-01

    Sample of Lincomycin were irradiated by means of gamma radiation ( 60 Co) at dose rate ca. (408 kGy/h) in the range (3, 5, 15, 20)kGy in presence of air. Samples were investigated using two techniques: Thermal analysis (Differential Scanning Calorimetry (DSC) and Thermogravimetry (TG)) and Fourier Transform Infrared (FTIR). DSC purity study, which depends on Vant Hof equation, showed that the purity of Lincomycin reduced by means of gamma radiation. The purity of theses samples decreased by increasing the dose, and the purity of lincomycin was still above (99%) at dose (10 kGy). To follow up this effects, (FTIR) spectrums of these sample were recorded before and after irradiation. The two peaks at (1500 - 1750 Cm -1 ) which belong to amide group, and the peak at (1050 - 1100 Cm -1 ) which belongs to the S-C groups have reduced. (author)

  8. Validation of the CrIS fast physical NH3 retrieval with ground-based FTIR

    NARCIS (Netherlands)

    Dammers, E.; Shephard, M.W.; Palm, M.; Cady-Pereira, K.; Capps, S.; Lutsch, E.; Strong, K.; Hannigan, J.W.; Ortega, I.; Toon, G.C.; Stremme, W.; Grutter, M.; Jones, N.; Smale, D.; Siemons, J.; Hrpcek, K.; Tremblay, D.; Schaap, M.; Notholt, J.; Willem Erisman, J.

    2017-01-01

    Presented here is the validation of the CrIS (Cross-track Infrared Sounder) fast physical NH3 retrieval (CFPR) column and profile measurements using ground-based Fourier transform infrared (FTIR) observations. We use the total columns and profiles from seven FTIR sites in the Network for the

  9. Mid-infrared spectroscopic characterisation of an ultra-broadband tunable EC-QCL system intended for biomedical applications

    Science.gov (United States)

    Vahlsing, T.; Moser, H.; Grafen, M.; Nalpantidis, K.; Brandstetter, M.; Heise, H. M.; Lendl, B.; Leonhardt, S.; Ihrig, D.; Ostendorf, A.

    2015-07-01

    Mid-infrared spectroscopy has been successfully applied for reagent-free clinical chemistry applications. Our aim is to design a portable bed-side system for ICU patient monitoring, based on mid-infrared absorption spectra of continuously sampled body-fluids. Robust and miniature bed-side systems can be achieved with tunable external cavity quantum cascade lasers (EC-QCL). Previously, single EC-QCL modules covering a wavenumber interval up to 250 cm-1 have been utilized. However, for broader applicability in biomedical research an extended interval around the mid-infrared fingerprint region should be accessible, which is possible with at least three or four EC-QCL modules. For such purpose, a tunable ultra-broadband system (1920 - 780 cm-1, Block Engineering) has been studied with regard to its transient emission characteristics in ns time resolution during different laser pulse widths using a VERTEX 80v FTIR spectrometer with step-scan option. Furthermore, laser emission line profiles of all four incorporated EC-QCL modules have been analysed at high spectral resolution (0.08 cm-1) and beam profiles with few deviations from the TEM 00 spatial mode have been manifested. Emission line reproducibility has been tested for various wavenumbers in step tune mode. The overall accuracy of manufacturer default wavenumber setting has been found between ± 3 cm-1 compared to the FTIR spectrometer scale. With regard to an application in clinical chemistry, theoretically achievable concentration accuracies for different blood substrates based on blood plasma and dialysate spectra previously recorded by FTIRspectrometers have been estimated taking into account the now accessible extended wavenumber interval.

  10. Correcting the effect of refraction and dispersion of light in FT-IR spectroscopic imaging in transmission through thick infrared windows.

    Science.gov (United States)

    Chan, K L Andrew; Kazarian, Sergei G

    2013-01-15

    Transmission mode is one of the most common sampling methods for FT-IR spectroscopic imaging because the spectra obtained generally have a reasonable signal-to-noise ratio. However, dispersion and refraction of infrared light occurs when samples are sandwiched between infrared windows or placed underneath a layer of liquid. Dispersion and refraction cause infrared light to focus with different focal lengths depending on the wavelength (wavenumber) of the light. As a result, images obtained are in focus only at a particular wavenumber while they are defocused at other wavenumber values. In this work, a solution to correct this spread of focus by means of adding a lens on top of the infrared transparent window, such that a pseudo hemisphere is formed, has been investigated. Through this lens (or pseudo hemisphere), refraction of light is removed and the light across the spectral range has the same focal depth. Furthermore, the lens acts as a solid immersion objective and an increase of both magnification and spatial resolution (by 1.4 times) is demonstrated. The spatial resolution was investigated using an USAF resolution target, showing that the Rayleigh criterion can be achieved, as well as a sample with a sharp polymer interface to indicate the spatial resolution that can be expected in real samples. The reported approach was used to obtain chemical images of cross sections of cancer tissue and hair samples sandwiched between infrared windows showing the versatility and applicability of the method. In addition to the improved spatial resolution, the results reported herein also demonstrate that the lens can reduce the effect of scattering near the edges of tissue samples. The advantages of the presented approach, obtaining FT-IR spectroscopic images in transmission mode with the same focus across all wavenumber values and simultaneous improvement in spatial resolution, will have wide implications ranging from studies of live cells to sorption of drugs into tissues.

  11. Cryogenic optical systems for the rapid infrared imager/spectrometer (RIMAS)

    Science.gov (United States)

    Capone, John I.; Content, David A.; Kutyrev, Alexander S.; Robinson, Frederick D.; Lotkin, Gennadiy N.; Toy, Vicki L.; Veilleux, Sylvain; Moseley, Samuel H.; Gehrels, Neil A.; Vogel, Stuart N.

    2014-07-01

    The Rapid Infrared Imager/Spectrometer (RIMAS) is designed to perform follow-up observations of transient astronomical sources at near infrared (NIR) wavelengths (0.9 - 2.4 microns). In particular, RIMAS will be used to perform photometric and spectroscopic observations of gamma-ray burst (GRB) afterglows to compliment the Swift satellite's science goals. Upon completion, RIMAS will be installed on Lowell Observatory's 4.3 meter Discovery Channel Telescope (DCT) located in Happy Jack, Arizona. The instrument's optical design includes a collimator lens assembly, a dichroic to divide the wavelength coverage into two optical arms (0.9 - 1.4 microns and 1.4 - 2.4 microns respectively), and a camera lens assembly for each optical arm. Because the wavelength coverage extends out to 2.4 microns, all optical elements are cooled to ~70 K. Filters and transmission gratings are located on wheels prior to each camera allowing the instrument to be quickly configured for photometry or spectroscopy. An athermal optomechanical design is being implemented to prevent lenses from loosing their room temperature alignment as the system is cooled. The thermal expansion of materials used in this design have been measured in the lab. Additionally, RIMAS has a guide camera consisting of four lenses to aid observers in passing light from target sources through spectroscopic slits. Efforts to align these optics are ongoing.

  12. USING FOURIER TRANSFORM INFRARED (FTIR TO CHARACTERIZE TSUNAMI DEPOSITS IN NEAR-SHORE AND COASTAL WATERS OF THAILAND

    Directory of Open Access Journals (Sweden)

    S. Pongpiachan

    2013-01-01

    Full Text Available Understanding the tsunami cycle requires a simple method for identification of tsunami backwash deposits. This study investigates Fourier transform infrared (FTIR spectroscopy followed by careful analysis of variance (ANOVA, Gaussian distribution, hierarchical cluster analysis (HCA and principal component analysis (PCA for the discrimination of typical marine sediments and tsunami backwash deposits. In order to test the suitability of FTIR spectra as innovative methods for classifications of tsunami deposits, typical marine sediments and terrestrial soils were classified into three zones, namely zone-1 (i.e. typical marine sediments, zone-2 (i.e. including tsunami backwash deposits and zone-3 (i.e. coastal terrestrial soils. HCA was performed to group the spectra according to their spectral similarity in a dendrogram and successfully separate FTIR spectra of all three sampling zones into two main clusters with five sub-clusters. The simplicifolious (i.e. single-leafed type of dendrogram was observed with the strong dissimilarity of terrestrial components in subcluster- 5. Graphical displays of PC1 vs PC2 highlight the prominent features of zone-1, which is explicitly different from those of zone-2 and zone-3. The acceptable discrimination of typical marine sediments and tsunami backwash deposits, even six years after the tsunami on Boxing Day 2004, dramatically demonstrates the potential of the method for the identification of paleotsunami.

  13. Detection of Black Plastics in the Middle Infrared Spectrum (MIR Using Photon Up-Conversion Technique for Polymer Recycling Purposes

    Directory of Open Access Journals (Sweden)

    Wolfgang Becker

    2017-09-01

    Full Text Available The identification of black polymers which contain about 0.5 to 3 mass percent soot or black master batch is still an essential problem in recycling sorting processes. Near infrared spectroscopy (NIRS of non-black polymers offers a reliable and fast identification, and is therefore suitable for industrial application. NIRS is consequently widely used in polymer sorting plants. However, this method cannot be used for black polymers because small amounts of carbon black or soot absorb all light in the NIR spectral region. Spectroscopy in the mid infrared spectral region (MIR offers a possibility to identify black polymers. MIR spectral measurements carried out with Fourier-transform infrared spectrometers (FTIR are not fast enough to meet economic requirements in sorting plants. By contrast, spectrometer systems based on the photon up-conversion technique are fast and sensitive enough and can be applied to sort black polymer parts. Such a system is able to measure several thousand spectra per second hence is suitable for industrial applications. The results of spectral measurements of black polymers are presented.

  14. Application of Fourier-transform infrared (FT-IR) spectroscopy for simple and easy determination of chylomicron-triglyceride and very low density lipoprotein-triglyceride.

    Science.gov (United States)

    Sato, Kenichi; Seimiya, Masanori; Kodera, Yoshio; Kitamura, Akihide; Nomura, Fumio

    2010-02-01

    Fourier-transform infrared (FT-IR) spectroscopy is a simple and reagent-free physicochemical analysis method, and is a potential alternative to more time-consuming and labor-intensive procedures. In this study, we aimed to use FT-IR spectroscopy to determine serum concentrations of chylomicron-triglyceride (TG) and very low density lipoprotein (VLDL)-TG. We analyzed a chylomicron fraction and VLDL fraction, which had been obtained by ultracentrifugation, to search for wavelengths to designate to each fraction. Then, partial least square (PLS) calibrations were developed using a training set of samples, for which TG concentrations had been determined by conventional procedures. Validation was conducted with another set of samples using the PLS model to predict serum TG concentrations on the basis of the samples' IR spectra. We analyzed a total of 150 samples. Serum concentrations of chylomicron-TG and VLDL-TG estimated by FT-IR spectroscopy agreed well with those obtained by the reference method (r=0.97 for both lipoprotein fractions). FT-IR spectrometric analysis required 15mul of serum and was completed within 1min. Serum chylomicron-TG and VLDL-TG concentrations can be determined with FT-IR spectroscopy. This rapid and simple test may have a great impact on the management of patients with dyslipidemia. Copyright 2009. Published by Elsevier B.V.

  15. Thyroid lesions diagnosis by Fourier transformed infrared absorption spectroscopy (FTIR); Diagnostico de lesoes da tireoide pela espectroscopia de absorcao no infravermelho por transformada de Fourier - FTIR

    Energy Technology Data Exchange (ETDEWEB)

    Albero, Felipe Guimaraes

    2009-07-01

    Thyroid nodules are a common disorder, with 4-7% of incidence in the Brazilian population. Although the fine needle aspiration (FNA) is an accurate method for thyroid tumors diagnosis, the discrimination between benign and malignant neoplasm is currently not possible in some cases with high incidence of false negative diagnosis, leading to a surgical intervention due to the risk of carcinomas. The aim of this study was to verify if the Fourier Transform infrared spectroscopy (FTIR) can contribute to the diagnosis of thyroid carcinomas and goiters, using samples of tissue and aspirates. Samples of FNA, homogenates and tissues of thyroid nodules with histopathological diagnosis were obtained and prepared for FTIR spectroscopy analysis. The FNA and homogenates samples were measured by {mu}-FTIR (between 950 . 1750 cm{sup -1}), at a nominal resolution of 4 cm{sup -1} and 120 scans). Tissue samples were analyzed directly by ATR-FTIR technique, at a resolution 2 cm{sup -1}, with 60 scans in the same region. All spectra were corrected by the baseline and normalized by amides area (1550-1640 cm{sup -1}) in order to minimize variations of sample homogeneity. Then, spectra were converted into second derivatives using the Savitzk-Golay algorithm with a 13 points window. The Ward's minimum variance algorithm and Euclidean distances among the points were used for cluster analysis. Some FNA samples showed complex spectral pattern. All samples showed some cell pellets and large amount of hormone, represented by the bands of 1545 and 1655 cm{sup -1}. Bands in 1409, 1412, 1414, 1578 and 1579 cm{sup -1} were also found, indicating possible presence of sugar, DNA, citric acid or metabolic products. In this study, it was obtained an excellent separation between goiter and malign lesion for the samples of tissues, with 100% of specificity in specific cluster and 67% sensibility and 50 of specificity. In homogenate and FNA samples this sensibility and specificity were lower

  16. Spectroscopic analysis of bladder cancer tissues using Fourier transform infrared spectroscopy

    Science.gov (United States)

    Al-Muslet, Nafie A.; Ali, Essam E.

    2012-03-01

    Bladder cancer is one of the most common cancers in Africa. It takes several days to reach a diagnosis using histological examinations of specimens obtained by endoscope, which increases the medical expense. Recently, spectroscopic analysis of bladder cancer tissues has received considerable attention as a diagnosis technique due to its sensitivity to biochemical variations in the samples. This study investigated the use of Fourier transform infrared (FTIR) spectroscopy to analyze a number of bladder cancer tissues. Twenty-two samples were collected from 11 patients diagnosed with bladder cancer from different hospitals without any pretreatment. From each patient two samples were collected, one normal and another cancerous. FTIR spectrometer was used to differentiate between normal and cancerous bladder tissues via changes in spectra of these samples. The investigations detected obvious changes in the bands of proteins (1650, 1550 cm-1), lipids (2925, 2850 cm-1), and nucleic acid (1080, 1236 cm-1). The results show that FTIR spectroscopy is promising as a rapid, accurate, nondestructive, and easy to use alternative method for identification and diagnosis of bladder cancer tissues.

  17. Spectral emissivity measurements of liquid refractory metals by spectrometers combined with an electrostatic levitator

    International Nuclear Information System (INIS)

    Ishikawa, Takehiko; Okada, Junpei T; Paradis, Paul-François; Ito, Yusuke; Masaki, Tadahiko; Watanabe, Yuki

    2012-01-01

    A spectral emissivity measurement system combined with an electrostatic levitator was developed for high-temperature melts. The radiation intensity from a high-temperature sample was measured with a multichannel photospectrometer (MCPD) over the 700–1000 nm spectral range, while a Fourier transform infrared spectrometer (FTIR) measured the radiation over the 1.1–6 µm interval. These spectrometers were calibrated with a blackbody radiation furnace, and the spectral hemispherical emissivity was calculated. The system's capability was evaluated with molten zirconium samples. The spectral hemispherical emissivity of molten zirconium showed a negative wavelength dependence and an almost constant variation over the 1850–2210 K temperature range. The total hemispherical emissivity of zirconium calculated by integrating the spectral hemispherical emissivity was found to be around 0.32, which showed good agreement with the literature values. The constant pressure heat capacity of molten zirconium at melting temperature was calculated to be 40.9 J mol −1 K −1 . (paper)

  18. Rapid, nondestructive estimation of surface polymer layer thickness using attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy and synthetic spectra derived from optical principles.

    Science.gov (United States)

    Weinstock, B André; Guiney, Linda M; Loose, Christopher

    2012-11-01

    We have developed a rapid, nondestructive analytical method that estimates the thickness of a surface polymer layer with high precision but unknown accuracy using a single attenuated total reflection Fourier transform infrared (ATR FT-IR) measurement. Because the method is rapid, nondestructive, and requires no sample preparation, it is ideal as a process analytical technique. Prior to implementation, the ATR FT-IR spectrum of the substrate layer pure component and the ATR FT-IR and real refractive index spectra of the surface layer pure component must be known. From these three input spectra a synthetic mid-infrared spectral matrix of surface layers 0 nm to 10,000 nm thick on substrate is created de novo. A minimum statistical distance match between a process sample's ATR FT-IR spectrum and the synthetic spectral matrix provides the thickness of that sample. We show that this method can be used to successfully estimate the thickness of polysulfobetaine surface modification, a hydrated polymeric surface layer covalently bonded onto a polyetherurethane substrate. A database of 1850 sample spectra was examined. Spectrochemical matrix-effect unknowns, such as the nonuniform and molecularly novel polysulfobetaine-polyetherurethane interface, were found to be minimal. A partial least squares regression analysis of the database spectra versus their thicknesses as calculated by the method described yielded an estimate of precision of ±52 nm.

  19. Vacuum Radiance-Temperature Standard Facility for Infrared Remote Sensing at NIM

    Science.gov (United States)

    Hao, X. P.; Song, J.; Xu, M.; Sun, J. P.; Gong, L. Y.; Yuan, Z. D.; Lu, X. F.

    2018-06-01

    As infrared remote sensors are very important parts of Earth observation satellites, they must be calibrated based on the radiance temperature of a blackbody in a vacuum chamber prior to launch. The uncertainty of such temperature is thus an essential component of the sensors' uncertainty. This paper describes the vacuum radiance-temperature standard facility (VRTSF) at the National Institute of Metrology of China, which will serve to calibrate infrared remote sensors on Chinese meteorological satellites. The VRTSF can be used to calibrate vacuum blackbody radiance temperature, including those used to calibrate infrared remote sensors. The components of the VRTSF are described in this paper, including the VMTBB, the LNBB, the FTIR spectrometer, the reduced-background optical system, the vacuum chamber used to calibrate customers' blackbody, the vacuum-pumping system and the liquid-nitrogen-support system. The experimental methods and results are expounded. The uncertainty of the radiance temperature of VMTBB is 0.026 °C at 30 °C over 10 μm.

  20. [Near infrared distance sensing method for Chang'e-3 alpha particle X-ray spectrometer].

    Science.gov (United States)

    Liang, Xiao-Hua; Wu, Ming-Ye; Wang, Huan-Yu; Peng, Wen-Xi; Zhang, Cheng-Mo; Cui, Xing-Zhu; Wang, Jin-Zhou; Zhang, Jia-Yu; Yang, Jia-Wei; Fan, Rui-Rui; Gao, Min; Liu, Ya-Qing; Zhang, Fei; Dong, Yi-Fan; Guo, Dong-Ya

    2013-05-01

    Alpha particle X-ray spectrometer (APXS) is one of the payloads of Chang'E-3 lunar rover, the scientific objective of which is in-situ observation and off-line analysis of lunar regolith and rock. Distance measurement is one of the important functions for APXS to perform effective detection on the moon. The present paper will first give a brief introduction to APXS, and then analyze the specific requirements and constraints to realize distance measurement, at last present a new near infrared distance sensing algorithm by using the inflection point of response curve. The theoretical analysis and the experiment results verify the feasibility of this algorithm. Although the theoretical analysis shows that this method is not sensitive to the operating temperature and reflectance of the lunar surface, the solar infrared radiant intensity may make photosensor saturation. The solutions are reducing the gain of device and avoiding direct exposure to sun light.

  1. Authenticity assessment of banknotes using portable near infrared spectrometer and chemometrics.

    Science.gov (United States)

    da Silva Oliveira, Vanessa; Honorato, Ricardo Saldanha; Honorato, Fernanda Araújo; Pereira, Claudete Fernandes

    2018-05-01

    Spectra recorded using a portable near infrared (NIR) spectrometer, Soft Independent Modeling of Class Analogy (SIMCA) and Linear Discriminant Analysis (LDA) associated to Successive Projections Algorithm (SPA) models were applied to identify counterfeit and authentic Brazilian Real (R$20, R$50 and R$100) banknotes, enabling a simple field analysis. NIR spectra (950-1650nm) were recorded from seven different areas of the banknotes (two with fluorescent ink, one over watermark, three with intaglio printing process and one over the serial numbers with typography printing). SIMCA and SPA-LDA models were built using 1st derivative preprocessed spectral data from one of the intaglio areas. For the SIMCA models, all authentic (300) banknotes were correctly classified and the counterfeits (227) were not classified. For the two classes SPA-LDA models (authentic and counterfeit currencies), all the test samples were correctly classified into their respective class. The number of selected variables by SPA varied from two to nineteen for R$20, R$50 and R$100 currencies. These results show that the use of the portable near-infrared with SIMCA or SPA-LDA models can be a completely effective, fast, and non-destructive way to identify authenticity of banknotes as well as permitting field analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Study of the gamma radiation effect on the lincomycin by two techniques thermal analysis and fourier transform infrared (FTIR)

    International Nuclear Information System (INIS)

    Al-Zier, A.; Al-Kassiri, H.

    1999-01-01

    Sample of Lincomycin were irradiated by means of gamma radiation ( 60 Co) at dose rate ca. (408 kGy/h) in the range (3, 5, 15, 20)kGy in presence of air. Samples were investigated using two techniques: Thermal analysis (Differential Scanning Calorimetry (DSC) and Thermogravimetry (TG)) and Fourier Transform Infrared (FTIR). DSC purity study, which depends on Vant Hof equation, showed that the purity of Lincomycin reduced by means of gamma radiation. The purity of theses samples decreased by increasing the dose, and the purity of lincomycin was still above (99%) at dose (10 kGy). To follow up this effects, (FTIR) spectrums of these sample were recorded before and after irradiation. The two peaks at (1500 - 1750 Cm -1 ) which belong to amide group, and the peak at (1050 - 1100 Cm -1 ) which belongs to the S-C groups have reduced. (author)

  3. Micro-Spec: an Integrated, Direct-Detection Spectrometer for Far-Infrared and Submillimeter Astronomy

    Science.gov (United States)

    Cataldo, Giuseppe

    2014-01-01

    The far-infrared and submillimeter portions of the electromagnetic spectrum provide a unique view of the astrophysical processes present in the early universe. Our ability to fully explore this rich spectral region has been limited, however, by the size and cost of the cryogenic spectrometers required to carry out such measurements. Micro-Spec (u-Spec) is a high-sensitivity, direct-detection spectrometer concept working in the 450-1000 micromillimeter wavelength range which will enable a wide range of flight missions that would otherwise be challenging due to the large size of current instruments with the required spectral resolution and sensitivity. The spectrometer design utilizes two internal antenna arrays, one for transmitting and one for receiving, superconducting microstrip transmission lines for power division and phase delay, and an array of microwave kinetic inductance detectors (MKIDs) to achieve these goals. The instrument will be integrated on a approximately 10 square cm silicon chip and can therefore become an important capability under the low background conditions accessible via space and high-altitude borne platforms. In this paper, an optical design methodology for Micro-Spec is presented, with particular attention given to its twodimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the maximization of the instrument resolving power and minimization of the RMS phase error on the instrument focal plane. This two-step optimization can generate geometrical configurations given specific requirements on spectrometer size, operating spectral range and performance. A point design with resolving power of 257, an RMS phase error less than 0.1 radians and four stigmatic points was developed for initial demonstration and will be the basis of future instruments with resolving power up to about 1200.

  4. Correlation between Onset Oxidation Temperature (OOT) and Fourier Transform Infrared Spectroscopy (FTIR) for monitoring the restabilization of Recycled Low-density Polyethylene (LDPE)

    Energy Technology Data Exchange (ETDEWEB)

    Ruvolo-Filho, Adhemar; Pelozzi, Tadeu Luiz Alonso, E-mail: adhemar@power.ufscar.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica

    2013-07-01

    In this work a new method was developed for monitoring the oxidative stability of restabilized and non-restabilized low-density polyethylene (LDPE) during multiple extrusion cycles. The method is based on correlations between Fourier Transform Infrared Spectroscopy (FTIR) and Onset Oxidation Temperature (OOT). Non-linear calibration curves correlating the concentration of primary or secondary antioxidants and the OOT values were obtained. (author)

  5. Application of the FTIR system K300 for the emission and immission measurement of atmospheric trace gases and harmful substances in the air: examples of cases and results. Anwendung des FTIR-Systems K300 zur Emissions- und Immissionsmessung atmosphaerischer Spurengase und Luftschadstoffe: Fallbeispiele und Ergebnisse

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, T [Kayser-Threde GmbH, Muenchen (Germany); Mosebach, H [Kayser-Threde GmbH, Muenchen (Germany); Bittner, H [Kayser-Threde GmbH, Muenchen (Germany)

    1993-01-01

    The K300 double oscillation interferometer used for the investigations is a Fourier transform infrared (FTIR) spectrometer which, due to its special optical design, is very suitable for high resolution remote sensing emission and immission (long-path monitoring) measurements of harmful substances in the air and atmospheric trace gases, when used in the field. The spectrum of applications extends from the direct measurement of hot chimney waste gases and of engine exhaust gases via the monitoring of industrial plants or waste dumps (diffuse emission) to the immission measurement of sites with heavy traffic. For direct emission measurements, the infrared characteristic radiation of hot waste gases is used; for the measurement of cold diffuse emission or immission, one measures against an artificial infrared source of radiation, which can be erected at a distance of several hundred metres from the equipment (bistatic configuration, socalled long-path monitoring). The results of different applications, which were obtained in the context of various campaigns of measurements, are shown after a short introduction of the system. (orig./BBR)

  6. Atmospheric carbonyl sulfide (OCS measured remotely by FTIR solar absorption spectrometry

    Directory of Open Access Journals (Sweden)

    G. C. Toon

    2018-02-01

    Full Text Available Atmospheric OCS abundances have been retrieved from infrared spectra measured by the Jet Propulsion Laboratory (JPL MkIV Fourier transform infra-red (FTIR spectrometer during 24 balloon flights and during nearly 1100 days of ground-based observations since 1985. Our spectral fitting approach uses broad windows to enhance the precision and robustness of the retrievals. Since OCS has a vertical profile similar in shape to that of N2O, and since tropospheric N2O is very stable, we reference the OCS observations to those of N2O, measured simultaneously in the same air mass, to remove the effects of stratospheric transport, allowing a clearer assessment of secular changes in OCS. Balloon measurements reveal less than 5 % change in stratospheric OCS amounts over the past 25 years. Ground-based measurements reveal a springtime peak of tropospheric OCS, followed by a rapid early-summer decrease, similar to the behavior of CO2. This results in a peak-to-peak seasonal cycle of 5–6 % of the total OCS column at northern mid-latitudes. In the long-term tropospheric OCS record, a 5 % decrease is seen from 1990 to 2002, followed by a 5 % increase from 2003 to 2012.

  7. Fourier transform infrared-attenuated total reflectance (FTIR-ATR spectroscopy and chemometric techniques for the determination of adulteration in petrodiesel/biodiesel blends

    Directory of Open Access Journals (Sweden)

    Armando Guerrero Peña

    2014-06-01

    Full Text Available We propose an analytical method based on fourier transform infrared-attenuated total reflectance (FTIR-ATR spectroscopy to detect the adulteration of petrodiesel and petrodiesel/palm biodiesel blends with African crude palm oil. The infrared spectral fingerprints from the sample analysis were used to perform principal components analysis (PCA and to construct a prediction model using partial least squares (PLS regression. The PCA results separated the samples into three groups, allowing identification of those subjected to adulteration with palm oil. The obtained model shows a good predictive capacity for determining the concentration of palm oil in petrodiesel/biodiesel blends. Advantages of the proposed method include cost-effectiveness and speed; it is also environmentally friendly.

  8. Fourier Transform Infrared Spectroscopy (FT-IR) and Simple Algorithm Analysis for Rapid and Non-Destructive Assessment of Developmental Cotton Fibers.

    Science.gov (United States)

    Liu, Yongliang; Kim, Hee-Jin

    2017-06-22

    With cotton fiber growth or maturation, cellulose content in cotton fibers markedly increases. Traditional chemical methods have been developed to determine cellulose content, but it is time-consuming and labor-intensive, mostly owing to the slow hydrolysis process of fiber cellulose components. As one approach, the attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy technique has also been utilized to monitor cotton cellulose formation, by implementing various spectral interpretation strategies of both multivariate principal component analysis (PCA) and 1-, 2- or 3-band/-variable intensity or intensity ratios. The main objective of this study was to compare the correlations between cellulose content determined by chemical analysis and ATR FT-IR spectral indices acquired by the reported procedures, among developmental Texas Marker-1 (TM-1) and immature fiber ( im ) mutant cotton fibers. It was observed that the R value, CI IR , and the integrated intensity of the 895 cm -1 band exhibited strong and linear relationships with cellulose content. The results have demonstrated the suitability and utility of ATR FT-IR spectroscopy, combined with a simple algorithm analysis, in assessing cotton fiber cellulose content, maturity, and crystallinity in a manner which is rapid, routine, and non-destructive.

  9. Micro-Spec: An Ultracompact, High-sensitivity Spectrometer for Far-Infrared and Submillimeter Astronomy

    Science.gov (United States)

    Cataldo, Giuseppe; Hsieh, Wen-Ting; Huang, Wei-Chung; Moseley, S. Harvey; Stevenson, Thomas R.; Wollack, Edward J.

    2014-01-01

    High-performance, integrated spectrometers operating in the far-infrared and submillimeter ranges promise to be powerful tools for the exploration of the epochs of reionization and initial galaxy formation. These devices, using high-efficiency superconducting transmission lines, can achieve the performance of a meter-scale grating spectrometer in an instrument implemented on a 4 inch silicon wafer. Such a device, when combined with a cryogenic telescope in space, provides an enabling capability for studies of the early universe. Here, the optical design process for Micro-Spec (micron-Spec) is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the stigmatization and minimization of the light path function in this bounded region, which results in an optimized geometrical configuration. A point design with an efficiency of (is) approximately 90% has been developed for initial demonstration and can serve as the basis for future instruments. Design variations on this implementation are also discussed, which can lead to lower efficiencies due to diffractive losses in the multimode region.

  10. Raman and FTIR spectroscopy of methane in olivine

    Science.gov (United States)

    Smith, A.; Oze, C.; Rossman, G. R.; Celestian, A. J.

    2017-12-01

    Olivine has been proposed to be a direct source of methane (CH4) in serpentinization systems and experiments. Here, Raman and Fourier Transform Infrared (FTIR) spectroscopy were used to verify the presence and abundance of CH4 in olivine samples from nine localities, including the San Carlos olivine. Raman analyses did not identify any methane in the olivine samples. As olivine is orthorhombic, three polarized FTIR spectra were obtained for the olivine samples. No methane was detected in any of the olivine samples using FTIR. Overall, olivine investigated in this study does not appear to be a primary source of methane.

  11. Rapid and automatic chemical identification of the medicinal flower buds of Lonicera plants by the benchtop and hand-held Fourier transform infrared spectroscopy

    Science.gov (United States)

    Chen, Jianbo; Guo, Baolin; Yan, Rui; Sun, Suqin; Zhou, Qun

    2017-07-01

    With the utilization of the hand-held equipment, Fourier transform infrared (FT-IR) spectroscopy is a promising analytical technique to minimize the time cost for the chemical identification of herbal materials. This research examines the feasibility of the hand-held FT-IR spectrometer for the on-site testing of herbal materials, using Lonicerae Japonicae Flos (LJF) and Lonicerae Flos (LF) as examples. Correlation-based linear discriminant models for LJF and LF are established based on the benchtop and hand-held FT-IR instruments. The benchtop FT-IR models can exactly recognize all articles of LJF and LF. Although a few LF articles are misjudged at the sub-class level, the hand-held FT-IR models are able to exactly discriminate LJF and LF. As a direct and label-free analytical technique, FT-IR spectroscopy has great potential in the rapid and automatic chemical identification of herbal materials either in laboratories or in fields. This is helpful to prevent the spread and use of adulterated herbal materials in time.

  12. FTIR measurements of mid-IR absorption spectra of gaseous fatty acid methyl esters at T=25–500 °C

    International Nuclear Information System (INIS)

    Campbell, M.F.; Freeman, K.G.; Davidson, D.F.; Hanson, R.K.

    2014-01-01

    Gas-phase mid-infrared (IR) absorption spectra (2500–3400 cm −1 ) for eleven fatty acid methyl esters (FAMEs) have been quantitatively measured at temperatures between 25 and 500 °C using an FTIR spectrometer with a resolution of 1 cm −1 . Using these spectra, the absorption cross section at 3.39 μm, corresponding to the monochromatic output of a helium–neon laser, is reported for each of these fuels as a function of temperature. The data indicate that the 3.39 μm cross section values of saturated FAMEs vary linearly with the logarithm of the number of C-H bonds in the molecule. - Highlights: • Infrared spectra of 11 fatty acid methyl esters (C 3 –C 11 ) have been measured. • A linear relationship for predicting 3.39 μm cross section values is proposed. • A molecule’s integrated area is linearly related to its number of C-H bonds. • Mono-unsaturation decreases cross section values

  13. [Determination of fat, protein and DM in raw milk by portable short-wave near infrared spectrometer].

    Science.gov (United States)

    Li, Xiao-yun; Wang, Jia-hua; Huang, Ya-wei; Han, Dong-hai

    2011-03-01

    Near infrared diffuse reflectance spectroscopy calibrations of fat, protein and DM in raw milk were studied with partial least-squares (PLS) regression using portable short-wave near infrared spectrometer. The results indicated that good calibrations of fat and DM were found, the correlation coefficients were all 0.98, the RMSEC were 0.187 and 0.217, RMSEP were 0.187 and 0.296, the RPDs were 5.02 and 3.20 respectively; the calibration of protein needed to be improved but can be used for practice, the correlation coefficient was 0.95, RMSEC was 0.105, RMSEP was 0.120, and RPD was 2.60. Furthermore, the measuring accuracy was improved by analyzing the correction relation of fat and DM in raw milk This study will probably provide a new on-site method for nondestructive and rapid measurement of milk.

  14. Quantitative gas analysis with FT-IR

    DEFF Research Database (Denmark)

    Bak, J.; Larsen, A.

    1995-01-01

    Calibration spectra of CO in the 2.38-5100 ppm concentration range (22 spectra) have been measured with a spectral resolution of 4 cm(-1), in the mid-IR (2186-2001 cm(-1)) region, with a Fourier transform infrared (FT-IR) instrument. The multivariate calibration method partial least-squares (PLS1...

  15. Using XCO2 retrievals for assessing the long-term consistency of NDACC/FTIR data sets

    Science.gov (United States)

    Barthlott, S.; Schneider, M.; Hase, F.; Wiegele, A.; Christner, E.; González, Y.; Blumenstock, T.; Dohe, S.; García, O. E.; Sepúlveda, E.; Strong, K.; Mendonca, J.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Mahieu, E.; Jones, N.; Griffith, D. W. T.; Velazco, V. A.; Smale, D.; Robinson, J.; Kivi, R.; Heikkinen, P.; Raffalski, U.

    2015-03-01

    Within the NDACC (Network for the Detection of Atmospheric Composition Change), more than 20 FTIR (Fourier-transform infrared) spectrometers, spread worldwide, provide long-term data records of many atmospheric trace gases. We present a method that uses measured and modelled XCO2 for assessing the consistency of these NDACC data records. Our XCO2 retrieval setup is kept simple so that it can easily be adopted for any NDACC/FTIR-like measurement made since the late 1950s. By a comparison to coincident TCCON (Total Carbon Column Observing Network) measurements, we empirically demonstrate the useful quality of this suggested NDACC XCO2 product (empirically obtained scatter between TCCON and NDACC is about 4‰ for daily mean as well as monthly mean comparisons, and the bias is 25‰). Our XCO2 model is a simple regression model fitted to CarbonTracker results and the Mauna Loa CO2 in situ records. A comparison to TCCON data suggests an uncertainty of the model for monthly mean data of below 3‰. We apply the method to the NDACC/FTIR spectra that are used within the project MUSICA (multi-platform remote sensing of isotopologues for investigating the cycle of atmospheric water) and demonstrate that there is a good consistency for these globally representative set of spectra measured since 1996: the scatter between the modelled and measured XCO2 on a yearly time scale is only 3‰.

  16. Scientific objectives and selection of targets for the SMART-1 Infrared Spectrometer (SIR)

    Science.gov (United States)

    Basilevsky, A. T.; Keller, H. U.; Nathues, A.; Mall, U.; Hiesinger, H.; Rosiek, M.

    2004-12-01

    The European SMART-1 mission to the Moon, primarily a testbed for innovative technologies, was launched in September 2003 and will reach the Moon in 2005. On board are several scientific instruments, including the point-spectrometer SMART-1 Infrared Spectrometer (SIR). Taking into account the capabilities of the SMART-1 mission and the SIR instrument in particular, as well as the open questions in lunar science, a selection of targets for SIR observations has been compiled. SIR can address at least five topics: (1) Surface/regolith processes; (2) Lunar volcanism; (3) Lunar crust structure; (4) Search for spectral signatures of ices at the lunar poles; and (5) Ground truth and study of geometric effects on the spectral shape. For each topic we will discuss specific observation modes, necessary to achieve our scientific goals. The majority of SIR targets will be observed in the nadir-tracking mode. More than 100 targets, which require off-nadir pointing and off-nadir tracking, are planned. It is expected that results of SIR observations will significantly increase our understanding of the Moon. Since the exact arrival date and the orbital parameters of the SMART-1 spacecraft are not known yet, a more detailed planning of the scientific observations will follow in the near future.

  17. FTIR analysis of flue gases - combined in-situ and dry extractive gas sampling; Kombination av in-situ och kallextraktiv roekgasmaetning med FTIR

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer; Soederbom, J [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    1996-10-01

    Fourier Transform Infra Red (FTIR) spectroscopy is a promising and versatile technique for gas analysis which lately has moved from the laboratory to industrial applications such as emission monitoring of combustion plants. This has been made possible by recent developments of spectrometers and software. The single most important advantage of the FTIR is its capability to simultaneously analyse virtually all gas species of interest in flue gas applications. The project has studied the feasibility of using the technique as a multi-component emission monitoring system. A specific aim was to evaluate different implementations of the technique to flue gas analysis: in-situ, hot/dry and cold extraction or combinations of these. The goal was to demonstrate a system in which gas components that normally require hot extraction (NH{sub 3}, HCl, H{sub 2}O) could instead be measured in-situ. In this way potential sampling artefacts e.g. for ammonia monitoring, can be avoided. The remaining gas components are measured using cold extraction and thereby minimizing interference from water. The latter advantage can be crucial for the accuracy of e.g. NO{sub x} measurements. Prior to the project start in-situ monitoring using FTIR was, a to a large extent, an untried method. The fact that broad band IR radiation can not be guided through optical fibres, presented a major technical obstacle. An `in-situ probe` was developed to serve the purpose. The probe is equipped with a gold plated mirror at the end and is mounted on the support structure of the FTIR-spectrometer. The arrangement proved to be a robust solution without being unnecessary complex or cumbersome to use. 10 refs, 45 figs, 10 tabs

  18. Micro-Spec: An Ultra-Compact, High-Sensitivity Spectrometer for Far-Infrared and Sub-Millimeter Astronomy

    Science.gov (United States)

    Cataldo, Giuseppe; Hsieh, Wen-Ting; Huang, Wei-Chung; Moseley, S. Harvey; Stevenson, Thomas R.; Wollack, Edward J.

    2013-01-01

    High-performance, integrated spectrometers operating in the far-infrared and sub-millimeter promise to be powerful tools for the exploration of the epochs of reionization and initial galaxy formation. These devices, using high-efficiency superconducting transmission lines, can achieve the performance of a meter-scale grating spectrometer in an instrument implemented on a four-inch silicon wafer. Such a device, when combined with a cryogenic telescope in space, provides an enabling capability for studies of the early universe. Here, the optical design process for Micro-Spec (mu-Spec) is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the stigmatization and minimization of the light path function in this bounded region, which results in an optimized geometrical configuration. A point design with an efficiency of approx. 90% has been developed for initial demonstration, and can serve as the basis for future instruments. Design variations on this implementation are also discussed, which can lead to lower efficiencies due to diffractive losses in the multimode region.

  19. Detection and differentiation of bacterial spores in a mineral matrix by Fourier transform infrared spectroscopy (FTIR and chemometrical data treatment

    Directory of Open Access Journals (Sweden)

    Brandes Ammann Andrea

    2011-07-01

    Full Text Available Abstract Background Fourier transform infrared spectroscopy (FTIR has been used as analytical tool in chemistry for many years. In addition, FTIR can also be applied as a rapid and non-invasive method to detect and identify microorganisms. The specific and fingerprint-like spectra allow - under optimal conditions - discrimination down to the species level. The aim of this study was to develop a fast and reproducible non-molecular method to differentiate pure samples of Bacillus spores originating from different species as well as to identify spores in a simple matrix, such as the clay mineral, bentonite. Results We investigated spores from pure cultures of seven different Bacillus species by FTIR in reflection or transmission mode followed by chemometrical data treatment. All species investigated (B. atrophaeus, B. brevis, B. circulans, B. lentus, B. megaterium, B. subtilis, B. thuringiensis are typical aerobic soil-borne spore formers. Additionally, a solid matrix (bentonite and mixtures of benonite with spores of B. megaterium at various wt/wt ratios were included in the study. Both hierarchical cluster analysis and principal component analysis of the spectra along with multidimensional scaling allowed the discrimination of different species and spore-matrix-mixtures. Conclusions Our results show that FTIR spectroscopy is a fast method for species-level discrimination of Bacillus spores. Spores were still detectable in the presence of the clay mineral bentonite. Even a tenfold excess of bentonite (corresponding to 2.1 × 1010 colony forming units per gram of mineral matrix still resulted in an unambiguous identification of B. megaterium spores.

  20. In situ FTIR assessment of desiccation-tolerant tissues

    NARCIS (Netherlands)

    Wolkers, W.F.; Hoekstra, F.A.

    2003-01-01

    This essay shows how Fourier transform infrared (FTIR) microspectroscopy can be applied to study thermodynamic parameters and conformation of endogenous biomolecules in desiccation-tolerant biological tissues. Desiccation tolerance is the remarkable ability of some organisms to survive complete

  1. MEMS tunable grating micro-spectrometer

    Science.gov (United States)

    Tormen, Maurizio; Lockhart, R.; Niedermann, P.; Overstolz, T.; Hoogerwerf, A.; Mayor, J.-M.; Pierer, J.; Bosshard, C.; Ischer, R.; Voirin, G.; Stanley, R. P.

    2017-11-01

    The interest in MEMS based Micro-Spectrometers is increasing due to their potential in terms of flexibility as well as cost, low mass, small volume and power savings. This interest, especially in the Near-Infrared and Mid- Infrared, ranges from planetary exploration missions to astronomy, e.g. the search for extra solar planets, as well as to many other terrestrial fields of application such as, industrial quality and surface control, chemical analysis of soil and water, detection of chemical pollutants, exhausted gas analysis, food quality control, process control in pharmaceuticals, to name a few. A compact MEMS-based Spectrometer for Near- Infrared and Mid-InfraRed operation have been conceived, designed and demonstrated. The design based on tunable MEMS blazed grating, developed in the past at CSEM [1], achieves state of the art results in terms of spectral resolution, operational wavelength range, light throughput, overall dimensions, and power consumption.

  2. Synchrotron-based FTIR spectromicroscopy: Cytotoxicity and heating considerations

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Hoi-Ying N.; Martin, Michael C.; McKinney, Wayne R.

    2002-12-13

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). These studies have established an important foundation for SR-FTIR spectromicroscopy in biological and biomedical research.

  3. Synchrotron-based FTIR spectromicroscopy Cytotoxicity and heating considerations

    CERN Document Server

    Holman, H Y N; McKinney, W R

    2002-01-01

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). These studies have established an important foundation for SR-FTIR spectromicroscopy in biological and biomedical research.

  4. The MIRI Medium Resolution Spectrometer calibration pipeline

    NARCIS (Netherlands)

    Labiano, A.; Azzollini, R.; Bailey, J.; Beard, S.; Dicken, D.; García-Marín, M.; Geers, V.; Glasse, A.; Glauser, A.; Gordon, K.; Justtanont, K.; Klaassen, P.; Lahuis, F.; Law, D.; Morrison, J.; Müller, M.; Rieke, G.; Vandenbussche, B.; Wright, G.

    2016-01-01

    The Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer (MRS) is the only mid-IR Integral Field Spectrometer on board James Webb Space Telescope. The complexity of the MRS requires a very specialized pipeline, with some specific steps not present in other pipelines of JWST instruments,

  5. Heavy fuel oil pyrolysis and combustion: kinetics and evolved gases investigated by TGA-FTIR

    KAUST Repository

    Abdul Jameel, Abdul Gani

    2017-08-24

    Heavy fuel oil (HFO) obtained from crude oil distillation is a widely used fuel in marine engines and power generation technologies. In the present study, the pyrolysis and combustion of a Saudi Arabian HFO in nitrogen and in air, respectively, were investigated using non-isothermal thermo-gravimetric analysis (TGA) coupled with a Fourier-transform infrared (FTIR) spectrometer. TG and DTG (differential thermo-gravimetry) were used for the kinetic analysis and to study the mass loss characteristics due to the thermal degradation of HFO at temperatures up to 1000°C and at various heating rates of 5, 10 and 20°C/min, in air and N2 atmospheres. FTIR analysis was then performed to study the composition of the evolved gases. The TG/DTG curves during HFO combustion show the presence of three distinct stages: the low temperature oxidation (LTO); fuel decomposition (FD); and high temperature oxidation (HTO) stages. The TG/DTG curves obtained during HFO pyrolysis show the presence of two devolatilization stages similar to that seen in the LTO stage of HFO combustion. Apart from this, the TG/DTG curves obtained during HFO combustion and pyrolysis differ significantly. Kinetic analysis was also performed using the distributed activation energy model, and the kinetic parameter (E) was determined for the different stages of HFO combustion and pyrolysis processes, yielding a good agreement with the measured TG profiles. FTIR analysis showed the signal of CO2 as approximately 50 times more compared to the other pollutant gases under combustion conditions. Under pyrolytic conditions, the signal intensity of alkane functional groups was the highest followed by alkenes. The TGA-FTIR results provide new insights into the overall HFO combustion processes, which can be used to improve combustor designs and control emissions.

  6. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Laroche, G. [Laboratoire d' Ingenierie de Surface, Centre de Recherche sur les Materiaux Avances, Departement de genie des mines, de la metallurgie et des materiaux, Universite Laval, 1065, avenue de la Medecine, Quebec G1V 0A6 (Canada); Centre de recherche du CHUQ, Hopital St Francois d' Assise, 10, rue de l' Espinay, local E0-165, Quebec G1L 3L5 (Canada); Vallade, J. [Laboratoire Procedes, Materiaux et Energie Solaire, PROMES, CNRS, Technosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Agence de l' environnement et de la Ma Latin-Small-Letter-Dotless-I -carettrise de l' Energie, 20, avenue du Gresille, BP 90406, F-49004 Angers Cedex 01 (France); Bazinette, R.; Hernandez, E.; Hernandez, G.; Massines, F. [Laboratoire Procedes, Materiaux et Energie Solaire, PROMES, CNRS, Technosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Nijnatten, P. van [OMT Solutions bv, High Tech Campus 9, 5656AE Eindhoven (Netherlands)

    2012-10-15

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm Multiplication-Sign 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45 Degree-Sign beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  7. Spherical grating spectrometers

    Science.gov (United States)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  8. High-sensitivity Raman spectrometer to study pristine and irradiated interstellar ice analogs.

    Science.gov (United States)

    Bennett, Chris J; Brotton, Stephen J; Jones, Brant M; Misra, Anupam K; Sharma, Shiv K; Kaiser, Ralf I

    2013-06-18

    We discuss the novel design of a sensitive, normal-Raman spectrometer interfaced to an ultra-high vacuum chamber (5 × 10(-11) Torr) utilized to investigate the interaction of ionizing radiation with low temperature ices relevant to the solar system and interstellar medium. The design is based on a pulsed Nd:YAG laser which takes advantage of gating techniques to isolate the scattered Raman signal from the competing fluorescence signal. The setup incorporates innovations to achieve maximum sensitivity without detectable heating of the sample. Thin films of carbon dioxide (CO2) ices of 10 to 396 nm thickness were prepared and characterized using both Fourier transform infrared (FT-IR) spectroscopy and HeNe interference techniques. The ν+ and ν- Fermi resonance bands of CO2 ices were observed by Raman spectroscopy at 1385 and 1278 cm(-1), respectively, and the band areas showed a linear dependence on ice thickness. Preliminary irradiation experiments are conducted on a 450 nm thick sample of CO2 ice using energetic electrons. Both carbon monoxide (CO) and the infrared inactive molecular oxygen (O2) products are readily detected from their characteristic Raman bands at 2145 and 1545 cm(-1), respectively. Detection limits of 4 ± 3 and 6 ± 4 monolayers of CO and O2 were derived, demonstrating the unique power to detect newly formed molecules in irradiated ices in situ. The setup is universally applicable to the detection of low-abundance species, since no Raman signal enhancement is required, demonstrating Raman spectroscopy as a reliable alternative, or complement, to FT-IR spectroscopy in space science applications.

  9. Differentiation between probiotic and wild-type Bacillus cereus isolates by antibiotic susceptibility test and Fourier transform infrared spectroscopy (FT-IR).

    Science.gov (United States)

    Mietke, Henriette; Beer, W; Schleif, Julia; Schabert, G; Reissbrodt, R

    2010-05-30

    Animal feed often contains probiotic Bacillus strains used as feed additives. Spores of the non-pathogenic B. cereus var. toyoi (product name Toyocerin) are used. Distinguishing between toxic wild-type Bacillus cereus strains and this probiotic strain is essential for evaluating the quality and risk of feed. Bacillus cereus CIP 5832 (product name Paciflor was used as probiotic strain until 2001. The properties of the two probiotic strains are quite similar. Differentiating between probiotic strains and wild-type B. cereus strains is not easy. ss-lactam antibiotics such as penicillin and cefamandole exhibit an inhibition zone in the agar diffusion test of probiotic B. cereus strains which are not seen for wild-type strains. Therefore, performing the agar diffusion test first may make sense before FT-IR testing. When randomly checking these strains by Fourier transform infrared spectroscopy (FT-IR), the probiotic B. cereus strains were separated from wild-type B. cereus/B. thuringiensis/B. mycoides/B. weihenstephanensis strains by means of hierarchical cluster analysis. The discriminatory information was contained in the spectral windows 3000-2800 cm(-1) ("fatty acid region"), 1200-900 cm(-1) ("carbohydrate region") and 900-700 cm(-1) ("fingerprint region"). It is concluded that FT-IR spectroscopy can be used for the rapid quality control and risk analysis of animal feed containing probiotic B. cereus strains. (c) 2010 Elsevier B.V. All rights reserved.

  10. Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity.

    Science.gov (United States)

    Liu, Yongliang; Thibodeaux, Devron; Gamble, Gary; Bauer, Philip; VanDerveer, Don

    2012-08-01

    Despite considerable efforts in developing curve-fitting protocols to evaluate the crystallinity index (CI) from X-ray diffraction (XRD) measurements, in its present state XRD can only provide a qualitative or semi-quantitative assessment of the amounts of crystalline or amorphous fraction in a sample. The greatest barrier to establishing quantitative XRD is the lack of appropriate cellulose standards, which are needed to calibrate the XRD measurements. In practice, samples with known CI are very difficult to prepare or determine. In a previous study, we reported the development of a simple algorithm for determining fiber crystallinity information from Fourier transform infrared (FT-IR) spectroscopy. Hence, in this study we not only compared the fiber crystallinity information between FT-IR and XRD measurements, by developing a simple XRD algorithm in place of a time-consuming and subjective curve-fitting process, but we also suggested a direct way of determining cotton cellulose CI by calibrating XRD with the use of CI(IR) as references.

  11. A multi-channel THz and infrared spectrometer for femtosecond electron bunch diagnostics by single-shot spectroscopy of coherent radiation

    Energy Technology Data Exchange (ETDEWEB)

    Wesch, Stephan; Schmidt, Bernhard; Behrens, Christopher; Delsim-Hashemi, Hossein; Schmueser, Peter

    2011-08-15

    The high peak current required in free-electron lasers (FELs) is realized by longitudinal compression of the electron bunches to sub-picosecond length. In this paper, a frequency-domain diagnostic method is described that is capable of resolving structures in the femtosecond regime. A novel in-vacuum spectrometer has been developed for spectroscopy of coherent radiation in the THz and infrared range. The spectrometer is equipped with five consecutive dispersion gratings and 120 parallel readout channels; it can be operated either in short wavelength mode (5-44 {mu}m) or in long wavelength mode (45-430 {mu}m). Fast parallel readout permits the spectroscopy of coherent radiation from single electron bunches. Test measurements at the soft X-ray free-electron laser FLASH, using coherent transition radiation, demonstrate excellent performance of the spectrometer. The high sensitivity down to a few micrometers allows study of short bunch features caused for example by microbunching e ects in magnetic chicanes. The device is planned for use as an online bunch profile monitor during regular FEL operation. (orig.)

  12. A multi-channel THz and infrared spectrometer for femtosecond electron bunch diagnostics by single-shot spectroscopy of coherent radiation

    International Nuclear Information System (INIS)

    Wesch, Stephan; Schmidt, Bernhard; Behrens, Christopher; Delsim-Hashemi, Hossein; Schmueser, Peter

    2011-08-01

    The high peak current required in free-electron lasers (FELs) is realized by longitudinal compression of the electron bunches to sub-picosecond length. In this paper, a frequency-domain diagnostic method is described that is capable of resolving structures in the femtosecond regime. A novel in-vacuum spectrometer has been developed for spectroscopy of coherent radiation in the THz and infrared range. The spectrometer is equipped with five consecutive dispersion gratings and 120 parallel readout channels; it can be operated either in short wavelength mode (5-44 μm) or in long wavelength mode (45-430 μm). Fast parallel readout permits the spectroscopy of coherent radiation from single electron bunches. Test measurements at the soft X-ray free-electron laser FLASH, using coherent transition radiation, demonstrate excellent performance of the spectrometer. The high sensitivity down to a few micrometers allows study of short bunch features caused for example by microbunching e ects in magnetic chicanes. The device is planned for use as an online bunch profile monitor during regular FEL operation. (orig.)

  13. Fourier transform infrared spectra applications to chemical systems

    CERN Document Server

    Ferraro, John R

    1978-01-01

    Fourier Transform Infrared Spectroscopy: Applications to Chemical Systems presents the chemical applications of the Fourier transform interferometry (FT-IR).The book contains discussions on the applications of FT-IR in the fields of chromatography FT-IR, polymers and biological macromolecules, emission spectroscopy, matrix isolation, high-pressure interferometry, and far infrared interferometry. The final chapter is devoted to the presentation of the use of FT-IR in solving national technical problems such as air pollution, space exploration, and energy related subjects.Researc

  14. Analysis by Fourier Transform Infrared (FTIR) of the gamma radiation effect on epoxy resin, used as solidification agent of radioactive wastes

    International Nuclear Information System (INIS)

    Liu, C.H.; Riella, H.G.; Guedes, S.M.L.

    1995-01-01

    The effects of gamma radiation on Epoxy resin, used as solidification agent of radioactive wastes, were studied by Fourier Transform Infrared (FTIR). The spectra showed no significant modifications on Epoxy resin functional groups (irradiated with dose from 0 to 1 MGy). Up to 1 MGy Epoxy resin did not oxidize, confirming the Epoxy good radiation strength. The presence of aromatic chain and amine group, mainly tertiary amine, give good radiolytic stability to the Epoxy, increasing the interest to use this material in nuclear facilities. (author). 3 refs, 2 figs

  15. Assessment of quality parameters in grapes during ripening using a miniature fiber-optic near-infrared spectrometer.

    Science.gov (United States)

    Fernández-Novales, Juan; López, María-Isabel; Sánchez, María-Teresa; García-Mesa, José-Antonio; González-Caballero, Virginia

    2009-01-01

    Changes in the chemical properties of wine grapes during ripening were studied using near-infrared (NIR) spectroscopy. A miniature fiber-optic NIR spectrometer system working in transmission mode in the spectral region (700 - 1,060 nm) was evaluated for this purpose. Spectra and analytical data were used to develop partial least square calibration models to quantify changes in the major parameters used to chart ripening in this fruit. NIR spectroscopy provided excellent precision for soluble solid content and for reducing sugars, and good precision for maturity index, while for pH and titratable acidity the miniature NIR spectroscopy instrument proved less accurate. The performance of the instrument in classifying wine grapes by grape type and by irrigation regime was also studied. Percentages of correctly classified samples ranged from 82.7% to 96.2%. The results show that the monitoring of soluble solid content and reducing sugars' changes in wine grape quality parameters during ripening, as well as the classification of grapes, can be performed non-destructively using a miniature fiber-optic NIR spectrometer.

  16. Absolutely nondestructive discrimination of Huoshan Dendrobium nobile species with miniature near-infrared (NIR) spectrometer engine.

    Science.gov (United States)

    Hu, Tian; Yang, Hai-Long; Tang, Qing; Zhang, Hui; Nie, Lei; Li, Lian; Wang, Jin-Feng; Liu, Dong-Ming; Jiang, Wei; Wang, Fei; Zang, Heng-Chang

    2014-10-01

    As one very precious traditional Chinese medicine (TCM), Huoshan Dendrobium has not only high price, but also significant pharmaceutical efficacy. However, different species of Huoshan Dendrobium exhibit considerable difference in pharmaceutical efficacy, so rapid and absolutely non-destructive discrimination of Huoshan Dendrobium nobile according to different species is crucial to quality control and pharmaceutical effect. In this study, as one type of miniature near-infrared (NIR) spectrometer, MicroNIR 1700 was used for absolutely nondestructive determination of NIR spectra of 90 batches of Dendrobium from five species of differ- ent commodity grades. The samples were intact and not smashed. Soft independent modeling of class analogy (SIMCA) pattern recognition based on principal component analysis (PCA) was used to classify and recognize different species of Dendrobium samples. The results indicated that the SIMCA qualitative models established with pretreatment method of standard normal variate transformation (SNV) in the spectra range selected by Qs method had 100% recognition rates and 100% rejection rates. This study demonstrated that a rapid and absolutely non-destructive analytical technique based on MicroNIR 1700 spectrometer was developed for successful discrimination of five different species of Huoshan Dendrobium with acceptable accuracy.

  17. FTIR Laboratory in Support of the PV Program

    International Nuclear Information System (INIS)

    Keyes, B. M.; Gedvilas, L. M.; Bhattacharya, R.; Xu, Y.; Li, X.; Wang, Q.

    2005-01-01

    The Fourier Transform Infrared Spectroscopy (FTIR) Laboratory supports the Solar Energy Technologies Program through the measurement and characterization of solar energy-related materials and devices. The FTIR technique is a fast, accurate, and reliable method for studying molecular structure and composition. This ability to identify atomic species and their bonding environment is a powerful combination that finds use in many research and development efforts. A brief overview of the technical approach used is contained in Section 2 of this report. Because of its versatility and accessibility, the FTIR Laboratory is a valuable contributor to the Solar Energy Technologies Program. The laboratory provides support for, and collaborates with, several in-house programs as well as our industry and university partners. By the end of FY 2004, the FTIR Laboratory performed over 1100 measurements on PV-related materials. These contributions resulted in conference and workshop presentations and several peer-reviewed publications. A brief summary of a few of these efforts is contained in Section 3 of this report

  18. Euclid Near Infrared Spectrometer and Photometer instrument concept and first test results obtained for different breadboards models at the end of phase C

    DEFF Research Database (Denmark)

    Maciaszek, Thierry; Ealet, Anne; Jahnke, Knud

    2016-01-01

    program with its launch planned for 2020 (ref [1]). The NISP (Near Infrared Spectrometer and Photometer) is one of the two Euclid instruments and is operating in the near-IR spectral region (900- 2000nm) as a photometer and spectrometer. The instrument is composed of: - a cold (135K) optomechanical...... subsystem consisting of a Silicon carbide structure, an optical assembly (corrector and camera lens), a filter wheel mechanism, a grism wheel mechanism, a calibration unit and a thermal control system - a detection subsystem based on a mosaic of 16 HAWAII2RG cooled to 95K with their front-end readout...

  19. Grazing incidence angle based sensing approach integrated with fiber-optic Fourier transform infrared (FO-FTIR) spectroscopy for remote and label-free detection of medical device contaminations

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Moinuddin, E-mail: moinuddin.hassan@fda.hhs.gov; Ilev, Ilko [Optical Therapeutics and Medical Nanophotonics Laboratory, Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States)

    2014-10-15

    Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contact and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm{sup 2}. The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.

  20. High-density polyethylene dosimetry by transvinylene FTIR analysis

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Silverman, J.; Al-Sheikhly, M.

    1999-01-01

    and electrons. The useful dose range of 0.053 cm thick high-density polyethylene film (rho = 0.961 g cm(-3); melt index = 0.8 dg min(-1)), for irradiations by (60)Co gamma radiation and 2.0 and 0.4 MeV electron beams in deaerated atmosphere (Na gas), is about 50-10(3) kGy for FTIR transvinylene......The formation of transvinylene unsaturation, -CH=CH-, due to free-radical or cationic-initiated dehydrogenation by irradiation, is a basic reaction in polyethylene and is useful for dosimetry at high absorbed doses. The radiation-enhanced infrared absorption having a maximum at nu = 965 cm......(-l) (lambda = 10.36 mu m) is stable in air and can be measured by Fourier-transform infrared (FTIR) spectrophotometry. The quantitative analysis is a useful means of product end-point dosimetry for radiation processing with gamma rays and electrons, where polyethylene is a component of the processed product...

  1. A high-throughput FTIR spectroscopy approach to assess adaptive variation in the chemical composition of pollen.

    Science.gov (United States)

    Zimmermann, Boris; Bağcıoğlu, Murat; Tafinstseva, Valeria; Kohler, Achim; Ohlson, Mikael; Fjellheim, Siri

    2017-12-01

    The two factors defining male reproductive success in plants are pollen quantity and quality, but our knowledge about the importance of pollen quality is limited due to methodological constraints. Pollen quality in terms of chemical composition may be either genetically fixed for high performance independent of environmental conditions, or it may be plastic to maximize reproductive output under different environmental conditions. In this study, we validated a new approach for studying the role of chemical composition of pollen in adaptation to local climate. The approach is based on high-throughput Fourier infrared (FTIR) characterization and biochemical interpretation of pollen chemical composition in response to environmental conditions. The study covered three grass species, Poa alpina , Anthoxanthum odoratum , and Festuca ovina . For each species, plants were grown from seeds of three populations with wide geographic and climate variation. Each individual plant was divided into four genetically identical clones which were grown in different controlled environments (high and low levels of temperature and nutrients). In total, 389 samples were measured using a high-throughput FTIR spectrometer. The biochemical fingerprints of pollen were species and population specific, and plastic in response to different environmental conditions. The response was most pronounced for temperature, influencing the levels of proteins, lipids, and carbohydrates in pollen of all species. Furthermore, there is considerable variation in plasticity of the chemical composition of pollen among species and populations. The use of high-throughput FTIR spectroscopy provides fast, cheap, and simple assessment of the chemical composition of pollen. In combination with controlled-condition growth experiments and multivariate analyses, FTIR spectroscopy opens up for studies of the adaptive role of pollen that until now has been difficult with available methodology. The approach can easily be

  2. Infrared absorption cross sections for ethane (C2H6) in the 3 μm region

    International Nuclear Information System (INIS)

    Harrison, Jeremy J.; Allen, Nicholas D.C.; Bernath, Peter F.

    2010-01-01

    Infrared absorption cross sections for ethane have been measured in the 3 μm spectral region from spectra recorded using a high-resolution FTIR spectrometer (Bruker IFS 125/HR). Results are presented for pure ethane gas from spectra recorded at 0.004 cm -1 resolution and for mixtures with dry synthetic air from spectra obtained at 0.015 cm -1 resolution (calculated as 0.9/MOPD using the Bruker definition of resolution), at a number of temperatures and pressures appropriate for atmospheric conditions. Intensities were calibrated using three ethane spectra (recorded at 278, 293, and 323 K) taken from the Pacific Northwest National Laboratory (PNNL) IR database.

  3. Dual waveband compact catadioptric imaging spectrometer

    Science.gov (United States)

    Chrisp, Michael P.

    2012-12-25

    A catadioptric dual waveband imaging spectrometer that covers the visible through short-wave infrared, and the midwave infrared spectral regions, dispersing the visible through shortwave infrared with a zinc selenide grating and midwave infrared with a sapphire prism. The grating and prism are at the cold stop position, enabling the pupil to be split between them. The spectra for both wavebands are focused onto the relevant sections of a single dual waveband detector. Spatial keystone distortion is controlled to less than one tenth of a pixel over the full wavelength range, facilitating the matching of the spectra in the midwave infrared with the shorter wavelength region.

  4. FTIR characterization of Mexican honey and its adulteration with sugar syrups by using chemometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Rios-Corripio, M A; Rojas-Lopez, M; Delgado-Macuil, R [CIBA-Tlaxcala, IPN, Tlaxcala, Tlax. (Mexico); Rios-Leal, E [CINVESTAV, Zacatenco, Mexico D.F. (Mexico)

    2011-01-01

    A chemometric analysis of adulteration of Mexican honey by sugar syrups such as corn syrup and cane sugar syrup was realized. Fourier transform infrared spectroscopy (FTIR) was used to measure the absorption of a group of bee honey samples from central region of Mexico. Principal component analysis (PCA) was used to process FTIR spectra to determine the adulteration of bee honey. In addition to that, the content of individual sugars from honey samples: glucose, fructose, sucrose and monosaccharides was determined by using PLS-FTIR analysis validated by HPLC measurements. This analytical methodology which is based in infrared spectroscopy and chemometry can be an alternative technique to characterize and also to determine the purity and authenticity of nutritional products as bee honey and other natural products.

  5. Kvantitativní FTIR spektrometrie huminových látek

    Czech Academy of Sciences Publication Activity Database

    Novák, F.; Machovič, Vladimír; Hrabalová, H.; Novotná, M.

    2017-01-01

    Roč. 111, č. 6 (2017), s. 363-373 ISSN 0009-2770 Institutional support: RVO:67985891 Keywords : FTIR * humic substances * infrared-spectroscopy * structure Subject RIV: DD - Geochemistry OBOR OECD: Analytical chemistry Impact factor: 0.387, year: 2016

  6. A prototype stationary Fourier transform spectrometer for near-infrared absorption spectroscopy.

    Science.gov (United States)

    Li, Jinyang; Lu, Dan-feng; Qi, Zhi-mei

    2015-09-01

    A prototype stationary Fourier transform spectrometer (FTS) was constructed with a fiber-coupled lithium niobate (LiNbO3) waveguide Mach-Zehnder interferometer (MZI) for the purpose of rapid on-site spectroscopy of biological and chemical measurands. The MZI contains push-pull electrodes for electro-optic modulation, and its interferogram as a plot of intensity against voltage was obtained by scanning the modulating voltage from -60 to +60 V in 50 ms. The power spectrum of input signal was retrieved by Fourier transform processing of the interferogram combined with the wavelength dispersion of half-wave voltage determined for the MZI used. The prototype FTS operates in the single-mode wavelength range from 1200 to 1700 nm and allows for reproducible spectroscopy. A linear concentration dependence of the absorbance at λmax = 1451 nm for water in ethanolic solution was obtained using the prototype FTS. The near-infrared spectroscopy of solid samples was also implemented, and the different spectra obtained with different materials evidenced the chemical recognition capability of the prototype FTS. To make this prototype FTS practically applicable, work on improving its spectral resolution by increasing the maximum optical path length difference is in progress.

  7. Current instrument status of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    Science.gov (United States)

    Eastwood, Michael L.; Sarture, Charles M.; Chrien, Thomas G.; Green, Robert O.; Porter, Wallace M.

    1991-01-01

    An upgraded version of AVIRIS, an airborne imaging spectrometer based on a whiskbroom-type scanner coupled via optical fibers to four dispersive spectrometers, that has been in operation since 1987 is described. Emphasis is placed on specific AVIRIS subsystems including foreoptics, fiber optics, and an in-flight reference source; spectrometers and detector dewars; a scan drive mechanism; a signal chain; digital electronics; a tape recorder; calibration systems; and ground support requirements.

  8. Validation of MOPITT carbon monoxide using ground-based Fourier transform infrared spectrometer data from NDACC

    Science.gov (United States)

    Buchholz, Rebecca R.; Deeter, Merritt N.; Worden, Helen M.; Gille, John; Edwards, David P.; Hannigan, James W.; Jones, Nicholas B.; Paton-Walsh, Clare; Griffith, David W. T.; Smale, Dan; Robinson, John; Strong, Kimberly; Conway, Stephanie; Sussmann, Ralf; Hase, Frank; Blumenstock, Thomas; Mahieu, Emmanuel; Langerock, Bavo

    2017-06-01

    The Measurements of Pollution in the Troposphere (MOPITT) satellite instrument provides the longest continuous dataset of carbon monoxide (CO) from space. We perform the first validation of MOPITT version 6 retrievals using total column CO measurements from ground-based remote-sensing Fourier transform infrared spectrometers (FTSs). Validation uses data recorded at 14 stations, that span a wide range of latitudes (80° N to 78° S), in the Network for the Detection of Atmospheric Composition Change (NDACC). MOPITT measurements are spatially co-located with each station, and different vertical sensitivities between instruments are accounted for by using MOPITT averaging kernels (AKs). All three MOPITT retrieval types are analyzed: thermal infrared (TIR-only), joint thermal and near infrared (TIR-NIR), and near infrared (NIR-only). Generally, MOPITT measurements overestimate CO relative to FTS measurements, but the bias is typically less than 10 %. Mean bias is 2.4 % for TIR-only, 5.1 % for TIR-NIR, and 6.5 % for NIR-only. The TIR-NIR and NIR-only products consistently produce a larger bias and lower correlation than the TIR-only. Validation performance of MOPITT for TIR-only and TIR-NIR retrievals over land or water scenes is equivalent. The four MOPITT detector element pixels are validated separately to account for their different uncertainty characteristics. Pixel 1 produces the highest standard deviation and lowest correlation for all three MOPITT products. However, for TIR-only and TIR-NIR, the error-weighted average that includes all four pixels often provides the best correlation, indicating compensating pixel biases and well-captured error characteristics. We find that MOPITT bias does not depend on latitude but rather is influenced by the proximity to rapidly changing atmospheric CO. MOPITT bias drift has been bound geographically to within ±0.5 % yr-1 or lower at almost all locations.

  9. FIR and sub-mm direct detection spectrometers for spaceborne astronomy

    Science.gov (United States)

    Wijnbergen, Jan J.; de Graauw, Thijs

    1990-12-01

    Candidate spaceborne sub-mm instrumentation proposed for space projects with large passively cooled telescopes are reviewed. Grating instruments and Fourier transform spectroscopy (FTS) spectrometers are discussed. Particular attention is given to imaging Fabry-Perot spectrometers. The special needs of the Large Deployable Reflector (LDR) and for the Far InfraRed Space Telescope (FIRST) missions in this area are outlined. Possible Fabry-Perot spectrometer setups are diagrammed and outlined. The use of spherical and multiplex Fabry-Perot spectrometers is discussed.

  10. Studies of the structure of insulin fibrils by Fourier transform infrared (FTIR) spectroscopy and electron microscopy.

    Science.gov (United States)

    Nielsen, L; Frokjaer, S; Carpenter, J F; Brange, J

    2001-01-01

    Fibril formation (aggregation) of insulin was investigated in acid media by visual inspection, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. Insulin fibrillated faster in hydrochloric acid than in acetic acid at elevated temperatures, whereas the fibrillation tendencies were reversed at ambient temperatures. Electron micrographs showed that bovine insulin fibrils consisted of long fibers with a diameter of 5 to 10 nm and lengths of several microns. The fibrils appeared either as helical filaments (in hydrochloric acid) or arranged laterally in bundles (in acetic acid, NaCl). Freeze-thawing cycles broke the fibrils into shorter segments. FTIR spectroscopy showed that the native secondary structure of insulin was identical in hydrochloric acid and acetic acid, whereas the secondary structure of fibrils formed in hydrochloric acid was different from that formed in acetic acid. Fibrils of bovine insulin prepared by heating or agitating an acid solution of insulin showed an increased content of beta-sheet (mostly intermolecular) and a decrease in the intensity of the alpha-helix band. In hydrochloric acid, the frequencies of the beta-sheet bands depended on whether the fibrillation was induced by heating or agitation. This difference was not seen in acetic acid. Freeze-thawing cycles of the fibrils in hydrochloric acid caused an increase in the intensity of the band at 1635 cm(-1) concomitant with reduction of the band at 1622 cm(-1). The results showed that the structure of insulin fibrils is highly dependent on the composition of the acid media and on the treatment. Copyright 2001 Wiley-Liss Inc. and the American Pharmaceutical Association J Pharm Sci 90: 29-37, 2001

  11. Multi-Gas analysis of ambient air using FTIR spectroscopy over Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Grutter, Michel [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico (UNAM), Mexico, D.F. (Mexico)

    2003-01-01

    A Fourier Transform Infrared (FTIR) spectrometer was used to analyze the composition of ambient air at a specific site in Mexico City metropolitan area. A continuous flow of air was passed through a multi-pass cell and the absorption spectra were collected over a period of two weeks. Quantitative analysis was performed by means of the classical-least square (CLS) method using synthetically generated spectra as references and calibration sources. Ambient levels of CO, CO{sup 2}, CH{sub 4} and N{sub 2}O are reported with a time resolution of five minutes for September 2001, showing interesting results in their diurnal patterns. Comments on the precision, detection limits and signal to noise of the instrument are included for the evaluation of this technique. Water concentrations were estimated and compared with those obtained with a relative humidity sensor. The technique of extractive FTIR for ambient trace gas monitoring was utilized in Mexico for the fist time and some potential applications are given. [Spanish] Se utilizo un espectrometro en el infrarrojo por transformadas de Fourier (FTIR) para analizar la composicion de aire ambiente en un sitio de la zona metropolitana de la Ciudad de Mexico. Para ello se introdujo un flujo constante de aire a una celda de gases de paso multiple y se colectaron los espectros durante un periodo de dos semanas. Para el analisis cuantitativo, se aplico el metodo clasico de minimos cuadrados (CLS) utilizando espectros sinteticos como referencias y fuentes de calibracion. Se observaron patrones interesantes en los niveles ambientales de CO, CO{sup 2}, CH{sub 4} y N{sub 2}O, los cuales son reportados con una resolucion temporal de cinco minutos para el mes de septiembre del 2001. En la evaluacion de esta tecnica se incluyen comentarios sobre la precision, los limites de deteccion, asi como de la relacion senal/ruido del instrumento. Se estimaron concentraciones de vapor de agua a traves de sus absorciones en el infrarrojo y se

  12. Study on Senna alata and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation infrared spectroscopy

    Science.gov (United States)

    Adiana, M. A.; Mazura, M. P.

    2011-04-01

    Senna alata L. commonly known as candle bush belongs to the family of Fabaceae and the plant has been reported to possess anti-inflammatory, analgesic, laxative and antiplatelet-aggregating activity. In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional infrared correlation spectroscopy (2D-IR) to study the main constituents of S. alata and its different extracts (extracted by hexane, dichloromethane, ethyl acetate and methanol in turn). The findings indicated that FT-IR and 2D-IR can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can identify the main chemical constituents in medicinal materials and their extracts, but also compare the components differences among similar samples. In a conclusion, FT-IR spectroscopy combined with 2D correlation analysis provides a powerful method for the quality control of traditional medicines.

  13. Evaluation of FTIR-based analytical methods for the analysis of simulated wastes

    International Nuclear Information System (INIS)

    Rebagay, T.V.; Cash, R.J.; Dodd, D.A.; Lockrem, L.L.; Meacham, J.E.; Winkelman, W.D.

    1994-01-01

    Three FTIR-based analytical methods that have potential to characterize simulated waste tank materials have been evaluated. These include: (1) fiber optics, (2) modular transfer optic using light guides equipped with non-contact sampling peripherals, and (3) photoacoustic spectroscopy. Pertinent instrumentation and experimental procedures for each method are described. The results show that the near-infrared (NIR) region of the infrared spectrum is the region of choice for the measurement of moisture in waste simulants. Differentiation of the NIR spectrum, as a preprocessing steps, will improve the analytical result. Preliminary data indicate that prominent combination bands of water and the first overtone band of the ferrocyanide stretching vibration may be utilized to measure water and ferrocyanide species simultaneously. Both near-infrared and mid-infrared spectra must be collected, however, to measure ferrocyanide species unambiguously and accurately. For ease of sample handling and the potential for field or waste tank deployment, the FTIR-Fiber Optic method is preferred over the other two methods. Modular transfer optic using light guides and photoacoustic spectroscopy may be used as backup systems and for the validation of the fiber optic data

  14. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Reyes-Gasga, José; Martínez-Piñeiro, Esmeralda L.; Rodríguez-Álvarez, Galois; Tiznado-Orozco, Gaby E.; García-García, Ramiro

    2013-01-01

    The crystallinity index (CI) is a measure of the percentage of crystalline material in a given sample and it is also correlated to the degree of order within the crystals. In the literature two ways are reported to measure the CI: X-ray diffraction and infrared spectroscopy. Although the CI determined by these techniques has been adopted in the field of archeology as a structural order measure in the bone with the idea that it can help e.g. in the sequencing of the bones in chronological and/or stratigraphic order, some debate remains about the reliability of the CI values. To investigate similarities and differences between the two techniques, the CI of sound human tooth enamel and synthetic hydroxyapatite (HAP) was measured in this work by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), at room temperature and after heat treatment. Although the (CI) XRD index is related to the crystal structure of the samples and the (CI) FTIR index is related to the vibration modes of the molecular bonds, both indices showed similar qualitative behavior for heat-treated samples. At room temperature, the (CI) XRD value indicated that enamel is more crystalline than synthetic HAP, while (CI) FTIR indicated the opposite. Scanning (SEM) and transmission (TEM) images were also used to corroborate the measured CI values. - Highlights: • XRD and FTIR crystallinity indices for tooth enamel and synthetic HAP were obtained. • SEM and TEM images were more correlated with (CI) XRD than with (CI) FTIR . • Regardless of the temperature, (CI) XRD and (CI) FTIR showed similar behavior. • XRD and FTIR crystallinity indices resulted in a fast and qualitative measurement

  15. Multivariate analysis of ATR-FTIR spectra for assessment of oil shale organic geochemical properties

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-01-01

    In this study, attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR) was coupled with partial least squares regression (PLSR) analysis to relate spectral data to parameters from total organic carbon (TOC) analysis and programmed pyrolysis to assess the feasibility of developing predictive models to estimate important organic geochemical parameters. The advantage of ATR-FTIR over traditional analytical methods is that source rocks can be analyzed in the laboratory or field in seconds, facilitating more rapid and thorough screening than would be possible using other tools. ATR-FTIR spectra, TOC concentrations and Rock–Eval parameters were measured for a set of oil shales from deposits around the world and several pyrolyzed oil shale samples. PLSR models were developed to predict the measured geochemical parameters from infrared spectra. Application of the resulting models to a set of test spectra excluded from the training set generated accurate predictions of TOC and most Rock–Eval parameters. The critical region of the infrared spectrum for assessing S1, S2, Hydrogen Index and TOC consisted of aliphatic organic moieties (2800–3000 cm−1) and the models generated a better correlation with measured values of TOC and S2 than did integrated aliphatic peak areas. The results suggest that combining ATR-FTIR with PLSR is a reliable approach for estimating useful geochemical parameters of oil shales that is faster and requires less sample preparation than current screening methods.

  16. The effect of mutations on the structure of insulin fibrils studied by Fourier transform infrared (FTIR) spectroscopy and electron microscopy.

    Science.gov (United States)

    Garriques, Liza Nielsen; Frokjaer, Sven; Carpenter, John F; Brange, Jens

    2002-12-01

    Fibril formation (aggregation) of human and bovine insulin and six human insulin mutants in hydrochloric acid were investigated by visual inspection, Thioflavin T fluorescence spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The fibrillation tendencies of the wild-type insulins and the insulin mutants were (in order of decreasing fibrillation tendencies): Glu(B1) + Glu(B27) = bovine < human < des-(B1,B2)-insulin < Ser(B2) + Asp(B10) < Glu(A13) + Glu(B10) = Gln(B17) < Asp(B10). Transmission electron micrographs showed that the protofibrils of the mutants were similar to those of wild-type insulins and had a diameter of 5-10 nm and lengths varying from 50 nm to several microns. The fibrils of human insulin mutants exhibited varying degrees of lateral aggregation. The Asp(B10) mutant and human insulin had greater tendency to form laterally aggregated fibrils arranged in parallel bundles, whereas fibrils of the other mutants and bovine insulin were mainly arranged in helical filaments. FTIR spectroscopy showed that the native secondary structure of the wild-type insulins and the human insulin mutants in hydrochloric acid were identical, whereas the secondary structure of the fibrils formed by heating at 50 degrees C depended on the amino acid substitution. FTIR spectra of fibrils of the human insulin mutants exhibited different beta-sheet bands at 1,620-1,640 cm(-1), indicating that the beta-sheet interactions in the fibrils depended on variations in the primary structure of insulin. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:2473-2480, 2002

  17. Burning and radiance properties of red phosphorus in Magnesium/PTFE/Viton (MTV)-based compositions

    Science.gov (United States)

    Li, Jie; Chen, Xian; Wang, Yanli; Shi, Yuanliang; Shang, Junteng

    2017-09-01

    Red phosphorus (RP) a highly efficient smoke-producing agent. In this study different contents of RP are added into the Magnesium/PTFE/Viton (MTV)-based composition, with the aim of investigating the influence of RP on the burning and radiance properties of MTV-based composition by using a high-temperature differential thermobalance method, a Fourier Transform Infrared (FTIR) remote-sensing spectrometer, a FTIR Spectrometer and a far-infrared thermal imager. The results show that RP improves the initial reaction temperature and reduces the mass burning rate by 0.1-0.17 g·s-1 (34-59%). The addition of RP has no obvious effect on the burning temperature and far-infrared radiation brightness, but the radiating area raises substantially (by 141%), and thus improves the radiation intensity (by 155%).

  18. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.

    Science.gov (United States)

    Ramachandran, Gayathri

    2017-01-01

    Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.

  19. Using FTIR-photoacoustic spectroscopy for phosphorus speciation analysis of biochars

    DEFF Research Database (Denmark)

    Bekiaris, Georgios; Peltre, Clément; Jensen, Lars Stoumann

    2016-01-01

    In the last decade, numerous studies have evaluated the benefits of biochar for improving soil quality. The purposes of the current study were to use Fourier transform infrared-photoacoustic spectroscopy (FTIR-PAS) to analyse P species in biochar and to determine the effect of pyrolysis temperatu...

  20. Electro-Optical Imaging Fourier-Transform Spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin; Zhou, Hanying

    2006-01-01

    An electro-optical (E-O) imaging Fourier-transform spectrometer (IFTS), now under development, is a prototype of improved imaging spectrometers to be used for hyperspectral imaging, especially in the infrared spectral region. Unlike both imaging and non-imaging traditional Fourier-transform spectrometers, the E-O IFTS does not contain any moving parts. Elimination of the moving parts and the associated actuator mechanisms and supporting structures would increase reliability while enabling reductions in size and mass, relative to traditional Fourier-transform spectrometers that offer equivalent capabilities. Elimination of moving parts would also eliminate the vibrations caused by the motions of those parts. Figure 1 schematically depicts a traditional Fourier-transform spectrometer, wherein a critical time delay is varied by translating one the mirrors of a Michelson interferometer. The time-dependent optical output is a periodic representation of the input spectrum. Data characterizing the input spectrum are generated through fast-Fourier-transform (FFT) post-processing of the output in conjunction with the varying time delay.

  1. Rapid habitability assessment of Mars samples by pyrolysis-FTIR

    Science.gov (United States)

    Gordon, Peter R.; Sephton, Mark A.

    2016-02-01

    Pyrolysis Fourier transform infrared spectroscopy (pyrolysis FTIR) is a potential sample selection method for Mars Sample Return missions. FTIR spectroscopy can be performed on solid and liquid samples but also on gases following preliminary thermal extraction, pyrolysis or gasification steps. The detection of hydrocarbon and non-hydrocarbon gases can reveal information on sample mineralogy and past habitability of the environment in which the sample was created. The absorption of IR radiation at specific wavenumbers by organic functional groups can indicate the presence and type of any organic matter present. Here we assess the utility of pyrolysis-FTIR to release water, carbon dioxide, sulfur dioxide and organic matter from Mars relevant materials to enable a rapid habitability assessment of target rocks for sample return. For our assessment a range of minerals were analyzed by attenuated total reflectance FTIR. Subsequently, the mineral samples were subjected to single step pyrolysis and multi step pyrolysis and the products characterised by gas phase FTIR. Data from both single step and multi step pyrolysis-FTIR provide the ability to identify minerals that reflect habitable environments through their water and carbon dioxide responses. Multi step pyrolysis-FTIR can be used to gain more detailed information on the sources of the liberated water and carbon dioxide owing to the characteristic decomposition temperatures of different mineral phases. Habitation can be suggested when pyrolysis-FTIR indicates the presence of organic matter within the sample. Pyrolysis-FTIR, therefore, represents an effective method to assess whether Mars Sample Return target rocks represent habitable conditions and potential records of habitation and can play an important role in sample triage operations.

  2. Infrared absorption of human breast tissues in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chenglin [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Physics Department of Yancheng Teachers' College, Yancheng 224002 (China); Zhang Yuan [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Yan Xiaohui [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Zhang Xinyi [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China) and Shanghai Research Center of Acupuncture and Meridian, Pudong, Shanghai 201203 (China)]. E-mail: xy-zhang@fudan.edu.cn; Li Chengxiang [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Yang Wentao [Cancer Hospital, Medical Center, Fudan University, Shanghai 200032 (China); Shi Daren [Cancer Hospital, Medical Center, Fudan University, Shanghai 200032 (China)

    2006-07-15

    The spectral characteristics of human breast tissues in normal status and during different cancerous stages have been investigated by synchrotron radiation based Fourier transform infrared (SR-FTIR) absorption spectroscopy. Thanks to the excellent synchrotron radiation infrared (IR) source, higher resolving power is achieved in SR-FTIR absorption spectra than in conventional IR absorption measurements. Obvious variations in IR absorption spectrum of breast tissues were found as they change from healthy to diseased, or say in progression to cancer. On the other hand, some specific absorption peaks were found in breast cancer tissues by SR-FTIR spectroscopic methods. These spectral characteristics of breast tissue may help us in early diagnosis of breast cancer.

  3. Modeling Microalgal Biosediment Formation Based on Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Monitoring.

    Science.gov (United States)

    Ogburn, Zachary L; Vogt, Frank

    2018-03-01

    With increasing amounts of anthropogenic pollutants being released into ecosystems, it becomes ever more important to understand their fate and interactions with living organisms. Microalgae play an important ecological role as they are ubiquitous in marine environments and sequester inorganic pollutants which they transform into organic biomass. Of particular interest in this study is their role as a sink for atmospheric CO 2 , a greenhouse gas, and nitrate, one cause of harmful algal blooms. Novel chemometric hard-modeling methodologies have been developed for interpreting phytoplankton's chemical and physiological adaptations to changes in their growing environment. These methodologies will facilitate investigations of environmental impacts of anthropogenic pollutants on chemical and physiological properties of marine microalgae (here: Nannochloropsis oculata). It has been demonstrated that attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can gain insights into both and this study only focuses on the latter. From time-series of spectra, the rate of microalgal biomass settling on top of a horizontal ATR element is derived which reflects several of phytoplankton's physiological parameters such as growth rate, cell concentrations, cell size, and buoyancy. In order to assess environmental impacts on such parameters, microalgae cultures were grown under 25 different chemical scenarios covering 200-600 ppm atmospheric CO 2 and 0.35-0.75 mM dissolved NO 3 - . After recording time-series of ATR FT-IR spectra, a multivariate curve resolution-alternating least squares (MCR-ALS) algorithm extracted spectroscopic and time profiles from each data set. From the time profiles, it was found that in the considered concentration ranges only NO 3 - has an impact on the cells' physiological properties. In particular, the cultures' growth rate has been influenced by the ambient chemical conditions. Thus, the presented spectroscopic

  4. MERTIS: the thermal infrared imaging spectrometer onboard of the Mercury Planetary Orbiter

    Science.gov (United States)

    Zeh, T.; Peter, G.; Walter, I.; Kopp, E.; Knollenberg, J.; Helbert, J.; Gebhardt, A.; Weber, I.; Hiesinger, Harry

    2017-11-01

    The MERTIS instrument is a thermal infrared imaging spectrometer onboard of ESA's cornerstone mission BepiColombo to Mercury. MERTIS has four goals: the study of Mercury's surface composition, identification of rock-forming minerals, mapping of the surface mineralogy, and the study of the surface temperature variations and thermal inertia. MERTIS will provide detailed information about the mineralogical composition of Mercury's surface layer by measuring the spectral emittance in the spectral range from 7-14 μm at high spatial and spectral resolution. Furthermore MERTIS will obtain radiometric measurements in the spectral range from 7-40 μm to study the thermo-physical properties of the surface material. The MERTIS detector is based on an uncooled micro-bolometer array providing spectral separation and spatial resolution according to its 2-dimensional shape. The operation principle is characterized by intermediate scanning of the planet surface and three different calibration targets - free space view and two on-board black body sources. In the current project phase, the MERTIS Qualification Model (QM) is under a rigorous testing program. Besides a general overview of the instrument principles, the papers addresses major aspects of the instrument design, manufacturing and verification.

  5. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Gasga, José, E-mail: jreyes@fisica.unam.mx [Instituto de Física, UNAM, Circuito de la Investigación Científica s/n., Cd. Universitaria, Coyoacán 04510, México, D.F. (Mexico); Martínez-Piñeiro, Esmeralda L., E-mail: esmemapi@gmail.com [Instituto de Física, UNAM, Circuito de la Investigación Científica s/n., Cd. Universitaria, Coyoacán 04510, México, D.F. (Mexico); Rodríguez-Álvarez, Galois, E-mail: galoisborre@yahoo.com [Instituto de Física, UNAM, Circuito de la Investigación Científica s/n., Cd. Universitaria, Coyoacán 04510, México, D.F. (Mexico); Tiznado-Orozco, Gaby E., E-mail: gab0409@yahoo.com.mx [Unidad Académica de Odontología, Universidad Autónoma de Nayarit, Edificio E7, Ciudad de la Cultura “Amado Nervo”, C.P. 63190 Tepic, Nayarit (Mexico); García-García, Ramiro, E-mail: ramiro@fisica.unam.mx [Instituto de Física, UNAM, Circuito de la Investigación Científica s/n., Cd. Universitaria, Coyoacán 04510, México, D.F. (Mexico); and others

    2013-12-01

    The crystallinity index (CI) is a measure of the percentage of crystalline material in a given sample and it is also correlated to the degree of order within the crystals. In the literature two ways are reported to measure the CI: X-ray diffraction and infrared spectroscopy. Although the CI determined by these techniques has been adopted in the field of archeology as a structural order measure in the bone with the idea that it can help e.g. in the sequencing of the bones in chronological and/or stratigraphic order, some debate remains about the reliability of the CI values. To investigate similarities and differences between the two techniques, the CI of sound human tooth enamel and synthetic hydroxyapatite (HAP) was measured in this work by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), at room temperature and after heat treatment. Although the (CI){sub XRD} index is related to the crystal structure of the samples and the (CI){sub FTIR} index is related to the vibration modes of the molecular bonds, both indices showed similar qualitative behavior for heat-treated samples. At room temperature, the (CI){sub XRD} value indicated that enamel is more crystalline than synthetic HAP, while (CI){sub FTIR} indicated the opposite. Scanning (SEM) and transmission (TEM) images were also used to corroborate the measured CI values. - Highlights: • XRD and FTIR crystallinity indices for tooth enamel and synthetic HAP were obtained. • SEM and TEM images were more correlated with (CI){sub XRD} than with (CI){sub FTIR}. • Regardless of the temperature, (CI){sub XRD} and (CI){sub FTIR} showed similar behavior. • XRD and FTIR crystallinity indices resulted in a fast and qualitative measurement.

  6. Infrared Spectroscopy with a Cavity Ring-Down Spectrometer

    Science.gov (United States)

    2014-08-01

    this is a negligible shift as far as the performance of the spectrometers are concerned, knowledge of the shift would allow for compensation if...Safety and Health NIST National Institute of Standards and Technology ODS Optical Devices and Sensors Team OSHA Occupational Safety and Health

  7. ANN-based calibration model of FTIR used in transformer online monitoring

    Science.gov (United States)

    Li, Honglei; Liu, Xian-yong; Zhou, Fangjie; Tan, Kexiong

    2005-02-01

    Recently, chromatography column and gas sensor have been used in online monitoring device of dissolved gases in transformer oil. But some disadvantages still exist in these devices: consumption of carrier gas, requirement of calibration, etc. Since FTIR has high accuracy, consume no carrier gas and require no calibration, the researcher studied the application of FTIR in such monitoring device. Experiments of "Flow gas method" were designed, and spectrum of mixture composed of different gases was collected with A BOMEM MB104 FTIR Spectrometer. A key question in the application of FTIR is that: the absorbance spectrum of 3 fault key gases, including C2H4, CH4 and C2H6, are overlapped seriously at 2700~3400cm-1. Because Absorbance Law is no longer appropriate, a nonlinear calibration model based on BP ANN was setup to in the quantitative analysis. The height absorbance of C2H4, CH4 and C2H6 were adopted as quantitative feature, and all the data were normalized before training the ANN. Computing results show that the calibration model can effectively eliminate the cross disturbance to measurement.

  8. Analytical method development and validation for quantification of uranium by Fourier Transform Infrared Spectroscopy (FTIR) for routine quality control analysis

    International Nuclear Information System (INIS)

    Pereira, Elaine; Silva, Ieda de S.; Gomide, Ricardo G.; Pires, Maria Aparecida F.

    2015-01-01

    This work presents a low cost, simple and new methodology for direct determination uranium in different matrices uranium: organic phase (UO 2 (NO 3 ) 2 .2TBP - uranyl nitrate complex) and aqueous phase (UO 2 (NO 3 ) 2 - NTU - uranyl nitrate), based on Fourier Transform Infrared spectroscopy (FTIR) using KBr pellets technique. The analytical validation is essential to define if a developed methodology is completely adjusted to the objectives that it is destined and is considered one of the main instruments of quality control. The parameters used in the validation process were: selectivity, linearity, limits of detection (LD) and quantitation (LQ), precision (repeatability and intermediate precision), accuracy and robustness. The method for uranium in organic phase (UO 2 (NO 3 ) 2 .2TBP in hexane/embedded in KBr) was linear (r=0.9989) over the range of 1.0 g L -1 a 14.3 g L -1 , LD were 92.1 mg L -1 and LQ 113.1 mg L -1 , precision (RSD < 1.6% and p-value < 0.05), accurate (recovery of 100.1% - 102.9%). The method for uranium aqueous phase (UO 2 (NO 3 )2/embedded in KBr) was linear (r=0.9964) over the range of 5.4 g L -1 a 51.2 g L -1 , LD were 835 mg L -1 and LQ 958 mg L -1 , precision (RSD < 1.0% and p-value < 0.05), accurate (recovery of 99.1% - 102.0%). The FTIR method is robust regarding most of the variables analyzed, as the difference between results obtained under nominal and modified conditions were lower than the critical value for all analytical parameters studied. Some process samples were analyzed in FTIR and compared with gravimetric and x ray fluorescence (XRF) analyses showing similar results in all three methods. The statistical tests (Student-t and Fischer) showed that the techniques are equivalent. (author)

  9. Development and Evaluation of the Interferometric Monitor for Greenhouse Gases: a High-throughput Fourier-transform Infrared Radiometer for Nadir Earth Observation

    Science.gov (United States)

    Kobayashi, Hirokazu; Shimota, Akiro; Kondo, Kayoko; Okumura, Eisuke; Kameda, Yoshihiko; Shimoda, Haruhisa; Ogawa, Toshihiro

    1999-11-01

    The interferometric monitor for greenhouse gases (IMG) was the precursor of the high-resolution Fourier-transform infrared radiometer (FTIR) onboard a satellite for observation of the Earth. The IMG endured the stress of a rocket launch, demonstrating that the high-resolution, high-throughput spectrometer is indeed feasible for use onboard a satellite. The IMG adopted a newly developed lubricant-free magnetic suspension mechanism and a dynamic alignment system for the moving mirror with a maximum traveling distance of 10 cm. We present the instrumentation of the IMG, characteristics of the movable mirror drive system, and the evaluation results of sensor specifications during space operation.

  10. A Fourier transform spectrometer for visible and near ultra-violet measurements of atmospheric absorption

    Science.gov (United States)

    Parsons, C. L.; Gerlach, J. C.; Whitehurst, M.

    1982-01-01

    The development of a prototype, ground-based, Sun-pointed Michelson interferometric spectrometer is described. Its intended use is to measure the atmospheric amount of various gases which absorb in the near-infrared, visible, and near-ultraviolet portions of the electromagnetic spectrum. Preliminary spectra which contain the alpha, 0.8 micrometer, and rho sigma tau water vapor absorption bands in the near-infrared are presented to indicate the present capability of the system. Ultimately, the spectrometer can be used to explore the feasible applications of Fourier transform spectroscopy in the ultraviolet where grating spectrometers were used exclusively.

  11. The Kinetics of Mo(Co)6 Substitution Monitored by Fourier Transform Infrared Spectrophotometry.

    Science.gov (United States)

    Suslick, Kenneth S.; And Others

    1987-01-01

    Describes a physical chemistry experiment that uses Fourier transform (FTIR) spectrometers and microcomputers as a way of introducing students to the spectral storage and manipulation techniques associated with digitized data. It can be used to illustrate FTIR spectroscopy, simple kinetics, inorganic mechanisms, and Beer's Law. (TW)

  12. Prediction of Pectin Yield and Quality by FTIR and Carbohydrate Microarray Analysis

    DEFF Research Database (Denmark)

    Baum, Andreas; Dominiak, Malgorzata Maria; Vidal-Melgosa, Silvia

    2017-01-01

    and carbohydrate microarray analysis were performed directly on the crude lime peel extracts during the time course of the extractions. Multivariate analysis of the data was carried out to predict final pectin yields. Fourier transform infrared spectroscopy (FTIR) was found applicable for determining the optimal...... extraction time for the enzymatic and acidic extraction processes, respectively. The combined results of FTIR and carbohydrate microarray analysis suggested major differences in the crude pectin extracts obtained by enzymatic and acid extraction, respectively. Enzymatically extracted pectin, thus, showed......, and that FTIR and carbohydrate microarray analysis have potential to be developed into online process analysis tools for prediction of pectin extraction yields and pectin features from measurements on crude pectin extracts....

  13. Spectrometer Baseline Control Via Spatial Filtering

    Science.gov (United States)

    Burleigh, M. R.; Richey, C. R.; Rinehart, S. A.; Quijada, M. A.; Wollack, E. J.

    2016-01-01

    An absorptive half-moon aperture mask is experimentally explored as a broad-bandwidth means of eliminating spurious spectral features arising from reprocessed radiation in an infrared Fourier transform spectrometer. In the presence of the spatial filter, an order of magnitude improvement in the fidelity of the spectrometer baseline is observed. The method is readily accommodated within the context of commonly employed instrument configurations and leads to a factor of two reduction in optical throughput. A detailed discussion of the underlying mechanism and limitations of the method are provided.

  14. Evaluation of an open-path fourier-transform infrared spectrometer for monitoring vehicle emissions over a suburban roadway intersection

    International Nuclear Information System (INIS)

    Einfield, W.

    1997-05-01

    The ability of an open-path, fourier-transform infrared spectrometer to detect vehicle exhaust emissions approximately 3 meters above the roadway surface at a busy Albuquerque suburban intersection was evaluated in this study. Multiple measurements of carbon monoxide and carbon dioxide were carried out over pathlengths up to 100 meters during the morning commute period on multiple days in the summer of 1993. The carbon monoxide to fuel carbon ratio was computed from all spectral data in order to derive a vehicle fleet average ratio. The data were determined to be normally distributed with an overall carbon monoxide-fuel carbon ratio of 0.15. The 95% confidence interval about the mean was ± 0.009. Day-to-day variation of the mean ratio was determined to be on the order of 3%. The results indicate that anticipated reductions in carbon monoxide emissions following the implementation of a winter-season oxygenated fuel program could be reliably detected with an open-path fourier transform spectrometer. The periodic use of such an instrument may offer a cost-effective means of generating a city-wide carbon monoxide emission budget for vehicles sources

  15. Multi-spectrometer calibration transfer based on independent component analysis.

    Science.gov (United States)

    Liu, Yan; Xu, Hao; Xia, Zhenzhen; Gong, Zhiyong

    2018-02-26

    Calibration transfer is indispensable for practical applications of near infrared (NIR) spectroscopy due to the need for precise and consistent measurements across different spectrometers. In this work, a method for multi-spectrometer calibration transfer is described based on independent component analysis (ICA). A spectral matrix is first obtained by aligning the spectra measured on different spectrometers. Then, by using independent component analysis, the aligned spectral matrix is decomposed into the mixing matrix and the independent components of different spectrometers. These differing measurements between spectrometers can then be standardized by correcting the coefficients within the independent components. Two NIR datasets of corn and edible oil samples measured with three and four spectrometers, respectively, were used to test the reliability of this method. The results of both datasets reveal that spectra measurements across different spectrometers can be transferred simultaneously and that the partial least squares (PLS) models built with the measurements on one spectrometer can predict that the spectra can be transferred correctly on another.

  16. In-situ ATR-FTIR for characterization of thin biorelated polymer films

    International Nuclear Information System (INIS)

    Müller, M.; Torger, B.; Bittrich, E.; Kaul, E.; Ionov, L.; Uhlmann, P.; Stamm, M.

    2014-01-01

    We present and review in-situ-attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic data from thin biorelated polymer films useful for the modification and functionalization of polymer and inorganic materials and discuss their applications related to life sciences. A special ATR mirror attachment operated by the single-beam-sample-reference (SBSR) concept and housing a homebuilt thermostatable flow cell was used, which allows for appropriate background compensation and signal to noise ratio. ATR-FTIR data on the reactive deposition of dopamine on inorganic model surfaces are shown. Information on the structure and deposition pathway for such bioinspired melanin-like films is provided. ATR-FTIR data on thermosensitive polymer brushes of poly(N-isopropylacrylamide) (PNIPAAM) is then presented. The thermotropic hydration and hydrogen bonding behavior of PNIPAAM brush films is described. Finally, ATR-FTIR data on biorelated polyelectrolyte multilayers (PEM) are given together with details on PEM growth and detection. Applications of these latter films for biopassivation/activation and local drug delivery are addressed

  17. Differentiation of Body Fluid Stains on Fabrics Using External Reflection Fourier Transform Infrared Spectroscopy (FT-IR) and Chemometrics.

    Science.gov (United States)

    Zapata, Félix; de la Ossa, Ma Ángeles Fernández; García-Ruiz, Carmen

    2016-04-01

    Body fluids are evidence of great forensic interest due to the DNA extracted from them, which allows genetic identification of people. This study focuses on the discrimination among semen, vaginal fluid, and urine stains (main fluids in sexual crimes) placed on different colored cotton fabrics by external reflection Fourier transform infrared spectroscopy (FT-IR) combined with chemometrics. Semen-vaginal fluid mixtures and potential false positive substances commonly found in daily life such as soaps, milk, juices, and lotions were also studied. Results demonstrated that the IR spectral signature obtained for each body fluid allowed its identification and the correct classification of unknown stains by means of principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). Interestingly, results proved that these IR spectra did not show any bands due to the color of the fabric and no substance of those present in daily life which were analyzed, provided a false positive. © The Author(s) 2016.

  18. Antioxidant activity and FT-IR analysis of Datura innoxia and Datura ...

    African Journals Online (AJOL)

    Materials and Methods: Determination of total phenolic content and total flavonoid content and antioxidant activity in terms of total antioxidant assay, ABTS assay, DPPH assay and in-vitro lipid peroxidation inhibiting activity were determined along with the FT-IR (Fourier transform infrared spectroscopy) analysis of the ...

  19. Infrared spectrometry of Venus: IR Fourier spectrometer on Venera 15 as a precursor of PFS for Venus express

    Science.gov (United States)

    Zasova, L. V.; Moroz, V. I.; Formisano, V.; Ignatiev, N. I.; Khatuntsev, I. V.

    2004-01-01

    Thermal infrared spectrometry in the range 6-40 μm with spectral resolution of 4.5-6.5 cm -1 was realized onboard of Venera 15 for the middle atmosphere of Venus investigations. The 3-D temperature and zonal wind fields ( h, ϕ, LT) in the range 55-100 km and the 3-D aerosol field ( h, ϕ, LT) in the range 55-70 km were retrieved and analyzed. The solar related waves at isobaric levels, generated by the absorbed solar energy, were investigated. In the thermal IR spectral range the, ν1, ν2 and ν3 SO 2 and the H 2O rotational (40 μm) and vibro-rotational (6.3 μm) absorption bands are observed and used for minor compounds retrieval. An advantage of the thermal infrared spectrometry method is that both the temperature and aerosol profiles, which need for retrieval of the vertical profiles of minor compounds, are evaluated from the same spectrum. The Fourier spectrometer on Venera-15 may be considered as a precursor of the Planetary Fourier Spectrometer (PI Prof. V. Formisano), which is included in the payload of the planned Venus Express mission. It has a spectral range 0.9-45 μm, separated into two channels: a short wavelength channel (SWC) in the range 0.9-5 μm and a long wavelength channel (LWC) from 6 to 45 μm, and spectral resolution of 1-2 cm -1. In the history of planetary Fourier spectrometry the PFS is a unique instrument, which possesses a short wavelength channel. A functioning of this instrument on the polar orbit with a good spatial and local time coverage will advance our knowledge in the fundamental problems of the Venus atmosphere.

  20. In Situ Focused Beam Reflectance Measurement (FBRM, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR and Raman Characterization of the Polymorphic Transformation of Carbamazepine

    Directory of Open Access Journals (Sweden)

    Sohrab Rohani

    2012-02-01

    Full Text Available The objective of this work was to study the polymorphic transformation of carbamazepine from Form II to Form III in 1-propanol during seeded isothermal batch crystallization. First, the pure Form II and Form III were obtained and characterized. Then their solubilities and metastable zone limits were measured by in-situ attenuated total reflectance Fourier transform infrared (ATR-FTIR spectroscopy and focused beam reflectance measurement (FBRM. A transition temperature at about 34.2 °C was deduced suggesting the enantiotropic nature of this compound over the studied temperature range. To quantify the polymorph ratio during the transformation process, a new in-situ quantitative method was developed to measure the fraction of Form II by Raman spectroscopy. Successful tracking of the nucleation of the stable form and the transformation from Form II to Form III during isothermal crystallization was achieved by Raman spectroscopy and FBRM. The results from these three in-situ techniques, FBRM, FTIR and Raman were consistent with each other. The results showed a strong dependency on the amount of seeds added during isothermal crystallization.

  1. Artificial intelligence for geologic mapping with imaging spectrometers

    Science.gov (United States)

    Kruse, F. A.

    1993-01-01

    This project was a three year study at the Center for the Study of Earth from Space (CSES) within the Cooperative Institute for Research in Environmental Science (CIRES) at the University of Colorado, Boulder. The goal of this research was to develop an expert system to allow automated identification of geologic materials based on their spectral characteristics in imaging spectrometer data such as the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). This requirement was dictated by the volume of data produced by imaging spectrometers, which prohibits manual analysis. The research described is based on the development of automated techniques for analysis of imaging spectrometer data that emulate the analytical processes used by a human observer. The research tested the feasibility of such an approach, implemented an operational system, and tested the validity of the results for selected imaging spectrometer data sets.

  2. Air Contamination Quantification by FTIR with Gas Cell

    Science.gov (United States)

    Freischlag, Jason

    2017-01-01

    Air quality is of utmost importance in environmental studies and has many industrial applications such as aviators grade breathing oxygen (ABO) for pilots and breathing air for fire fighters. Contamination is a major concern for these industries as identified in MIL-PRF-27210, CGA G-4.3, CGA G-7.1, and NFPA 1989. Fourier Transform Infrared Spectroscopy (FTIR) is a powerful tool that when combined with a gas cell has tremendous potential for gas contamination analysis. Current procedures focus mostly on GC-MS for contamination quantification. Introduction of this topic will be done through a comparison of the currently used deterministic methods for gas contamination with those of FTIR gas analysis. Certification of the mentioned standards through the ISOIEC 17065 certifying body A2LA will be addressed followed by an evaluation of quality information such as the determinations of linearity and the limits of detection and quantitation. Major interferences and issues arising from the use of the FTIR for accredited work with ABO and breathing air will be covered.

  3. Fourier transform infrared spectroscopy of dental unit water line biofilm bacteria

    OpenAIRE

    Liaqat, Iram

    2009-01-01

    Fourier transform-infrared (FT-IR) spectroscopy has become an important tool for rapid analysis of complex biological samples. The infrared absorbance spectrum could be regarded as a “fingerprint” which is a feature of biochemical substances. The FT-IR spectra of fresh and stored dried samples of six bacterial isolates (Klebsiella sp., Bacillus cereus, Bacillus subtilis, Pseudomonas aeruginosa, Achromobacter xylosoxidans and Achromobacter sp.) were observed by variation in sample preparation....

  4. Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures

    DEFF Research Database (Denmark)

    Jensen, P.S.; Bak, J.; Andersson-Engels, S.

    2003-01-01

    transmission cell controlled within 0.02 degreesC. Pathlengths of 50 mum and 0.4 mm were used in the mid- and near-infrared spectral region, respectively. Difference spectra were used to determine the effect of temperature on the water spectra quantitatively. These spectra were obtained by subtracting the 37...... degreesC water spectrum from the spectra measured at other temperatures. The difference spectra reveal that the effect of temperature is highest in the vicinity of the strong absorption bands, with a number of isosbestic points with no temperature dependence and relatively flat plateaus in between......Near- and mid-infrared absorption spectra of pure water and aqueous 1.0 g/dL glucose solutions in the wavenumber range 8000-950 cm(-1) were measured in the temperature range 30-42 C in steps of 2 degreesC. Measurements were carried out with an FT-IR spectrometer and a variable pathlength...

  5. Standard test method for the analysis of refrigerant 114, plus other carbon-containing and fluorine-containing compounds in uranium hexafluoride via fourier-transform infrared (FTIR) spectroscopy

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This test method covers determining the concentrations of refrigerant-114, other carbon-containing and fluorine-containing compounds, hydrocarbons, and partially or completely substituted halohydrocarbons that may be impurities in uranium hexafluoride. The two options are outlined for this test method. They are designated as Part A and Part B. 1.1.1 To provide instructions for performing Fourier-Transform Infrared (FTIR) spectroscopic analysis for the possible presence of Refrigerant-114 impurity in a gaseous sample of uranium hexafluoride, collected in a "2S" container or equivalent at room temperature. The all gas procedure applies to the analysis of possible Refrigerant-114 impurity in uranium hexafluoride, and to the gas manifold system used for FTIR applications. The pressure and temperatures must be controlled to maintain a gaseous sample. The concentration units are in mole percent. This is Part A. 1.2 Part B involves a high pressure liquid sample of uranium hexafluoride. This method can be appli...

  6. Characterization of Soil Organic Matter in Peat Soil with Different Humification Levels using FTIR

    Science.gov (United States)

    Teong, I. T.; Felix, N. L. L.; Mohd, S.; Sulaeman, A.

    2016-07-01

    Peat soil is defined as an accumulation of the debris and vegetative under the water logging condition. Soil organic matter of peat soil was affected by the environmental, weather, types of vegetative. Peat soil was normally classified based on its level of humification. Humification can be defined as the transformation of numerous group of substances (proteins, carbohydrates, lipids, etc.) and individual molecules present in living organic matter into group of substances with similar properties (humic substances). During the peat transformation process, content of soil organic matter also will change. Hence, that is important to determine out the types of the organic compound. FTIR (Fourier Transform Infrared) is a machine which is used to differential soil organic matter by using infrared. Infrared is a types of low energy which can determine the organic minerals. Hence, FTIR can be suitable as an indicator on its level of humification. The main objective of this study is to identify an optimized method to characterization of the soil organic content in different level of humification. The case study areas which had been chosen for this study are Parit Sulong, Batu Pahat and UCTS, Sibu. Peat soil samples were taken by every 0.5 m depth until it reached the clay layer. However, the soil organic matter in different humification levels is not significant. FTIR is an indicator which is used to determine the types of soil, but it is unable to differentiate the soil organic matter in peat soil FTIR can determine different types of the soil based on different wave length. Generally, soil organic matter was found that it is not significant to the level of humification.

  7. Ultrafast stimulated Raman spectroscopy in the near-infrared region

    International Nuclear Information System (INIS)

    Takaya, Tomohisa

    2016-01-01

    A number of electronic transitions in the near-infrared wavelength region are associated with migration or delocalization of electrons in large molecules or molecular systems. Time-resolved near-infrared Raman spectroscopy will be a powerful tool for investigating the structural dynamic of samples with delocalized electrons. However, the sensitivity of near-infrared spontaneous Raman spectrometers is significantly low due to an extremely small probability of Raman scattering and a low sensitivity of near-infrared detectors. Nonlinear Raman spectroscopy is one of the techniques that can overcome the sensitivity problems and enable us to obtain time-resolved Raman spectra in resonance with near-IR transitions. In this article, the author introduces recent progress of ultrafast time-resolved near-infrared stimulated Raman spectroscopy. Optical setup, spectral and temporal resolution, and applications of the spectrometer are described. (author)

  8. Reconciling FTIR Spectroscopy with Top-off Operations at the Advanced Light Source

    International Nuclear Information System (INIS)

    Vernoud, Laetitia; Bechtel, Hans A.; Borondics, Ferenc; Martin, Michael C.

    2009-01-01

    Top-off operations is a quasi-continuous injection mode that increases the flux and brightness of a synchrotron source and improves thermal stability of optical components by maintaining a constant current in the storage ring. Although the increased and constant flux is advantageous for FTIR measurements, the frequent injections (about one every 30 seconds in the ALS case) introduce artifacts into the spectrum by creating spikes in the interferogram data. These spikes are caused by brief beam motion during the injection event. Here, we describe our efforts to minimize the effects of top-off generated interferogram spikes on several FTIR spectrometers. They include using a fast feedback mirror system to correct for beam motion and a gating signal to inhibit interferogram collection during a top-off injection.

  9. Study of melanoma invasion by FTIR spectroscopy

    Science.gov (United States)

    Yang, Y.; Sulé-Suso, J.; Sockalingum, G. D.

    2008-02-01

    Compared to other forms of skin cancer, a malignant melanoma has a high risk of spreading to other parts of the body. Melanoma invasion is a complex process involving changes in cell-extracellular matrix (ECM) interaction and cell-cell interactions. To fully understand the factors which control the invasion process, a human skin model system was reconstructed. HBL (a commercially available cell line) melanoma cells were seeded on a skin model with and without the presence of keratinocytes and/or fibroblasts. After 14 days culture, the skin specimens were fixed, parafin embedded and cut into 7 µm sections. The de-parafinised sections were investigated by synchrotron Fourier transformed infrared (FTIR) microspectroscopy to study skin cell invasion behaviour. The advantage of using FTIR is its ability to obtain the fingerprint information of the invading cells in terms of protein secondary structure in comparison to non-invading cells and the concentration of the enzyme (matrix-metalloproteinase) which digests protein matrix, near the invading cells. With aid of the spectral mapping images, it is possible to pinpoint the cells in non-invasion and invasion area and analyse the respective spectra. It has been observed that the protein bands in cells and matrix shifted between non-invasive and invasive cells in the reconstructed skin model. We hypothesise that by careful analysis of the FTIR data and validation by other models, FTIR studies can reveal information on which type of cells and proteins are involved in melanoma invasion. Thus, it is possible to trace the cell invasion path by mapping the spectra along the interface of cell layer and matrix body by FTIR spectroscopy.

  10. Thermal and Chemical Characterization of Non-Metallic Materials Using Coupled Thermogravimetric Analysis and Infrared Spectroscopy

    Science.gov (United States)

    Huff, Timothy L.

    2002-01-01

    Thermogravimetric analysis (TGA) is widely employed in the thermal characterization of non-metallic materials, yielding valuable information on decomposition characteristics of a sample over a wide temperature range. However, a potential wealth of chemical information is lost during the process, with the evolving gases generated during thermal decomposition escaping through the exhaust line. Fourier Transform-Infrared spectroscopy (FT-IR) is a powerful analytical technique for determining many chemical constituents while in any material state, in this application, the gas phase. By linking these two techniques, evolving gases generated during the TGA process are directed into an appropriately equipped infrared spectrometer for chemical speciation. Consequently, both thermal decomposition and chemical characterization of a material may be obtained in a single sample run. In practice, a heated transfer line is employed to connect the two instruments while a purge gas stream directs the evolving gases into the FT-IR. The purge gas can be either high purity air or an inert gas such as nitrogen to allow oxidative and pyrolytic processes to be examined, respectively. The FT-IR data is collected realtime, allowing continuous monitoring of chemical compositional changes over the course of thermal decomposition. Using this coupled technique, an array of diverse materials has been examined, including composites, plastics, rubber, fiberglass epoxy resins, polycarbonates, silicones, lubricants and fluorocarbon materials. The benefit of combining these two methodologies is of particular importance in the aerospace community, where newly developing materials have little available data with which to refer. By providing both thermal and chemical data simultaneously, a more definitive and comprehensive characterization of the material is possible. Additionally, this procedure has been found to be a viable screening technique for certain materials, with the generated data useful in

  11. Fourier–transform infrared spectroscopic characterization of natu ...

    Indian Academy of Sciences (India)

    We present here the characterization of the fulgurites by Fourier transform infrared (FTIR) absorption, X-ray diffraction and X-ray fluorescence methods. The amorphous nature of the substance has been confirmed by Fourier transform infrared spectra of the fulgurites, which exhibit prominent absorption band in the region ...

  12. Optical Remote Sensing to Determine Strength of Nonpoint Sources: Duke Forest Validation Study (ESTCP #CP-0214)

    National Research Council Canada - National Science Library

    Varma, Ravl; Hashmonay, Ram; Kagann, Robery; Bolch, Adam

    2005-01-01

    ...-path Fourier Transform Infra-Red spectrometer (OP-FTIR). Trace gases, nitrous oxide, ethylene and acetylene, propylene and propane, are released in a controlled manner and their locations of release are recorded...

  13. Use of the Fourier transform infrared (FTIR) technique for determination of the composition of final phosphate coatings on grain-oriented electrical steel

    International Nuclear Information System (INIS)

    Poultney, Darren; Snell, David

    2008-01-01

    Electrical steels are highly specialised, magnetically soft materials, used to form the cores that carry the magnetic flux in electrical machines such as motors, generators and transformers. The steel strip is coated with a phosphate-based solution, which, on curing, provides an electrically insulating layer that also imparts a tension onto the strip. It has previously been shown that the magnetic losses of the material are affected by the ratio of phosphate and silica within the coating solution [O. Tanaka, H. Kobayashi, E. Minematsu, New insulating coating for grain-oriented electrical steel, J. Mater. Eng. 13 (1991) 161-168.]. It would therefore be highly beneficial to possess an analytical technique that can be used to accurately and rapidly determine the composition of this coating. This paper details the evaluation of the Fourier transform infrared (FTIR) technique for this purpose. Analysing each of the important constituents separately enabled their specific absorption bands to be identified, and laboratory trials produced spectra that exhibited a good agreement with theoretical predictions. Analysis of samples coated under production conditions was found to be more challenging due to the detection of an underlying forsterite layer. However, there is potential for FTIR analysis when using regions of the spectra that were unaffected by this compound

  14. Infrared characterization of environmental samples by pulsed photothermal spectroscopy

    International Nuclear Information System (INIS)

    Seidel, W.; Foerstendorf, H.; Heise, K.H.; Nicolai, R.; Schamlott, A.; Ortega, J.M.; Glotin, F.; Prazeres, R.

    2004-01-01

    Low concentration of toxic radioactive metals in environmental samples often limits the interpretation of results of infrared studies investigating the interaction processes between the metal ions and environmental compartments. For the first time, we could show that photothermal infrared spectroscopy performed with a pulsed free electron laser can provide reliable infrared spectra throughout a distinct spectral range of interest. In this model investigation, we provide vibrational absorption spectra of a rare earth metal salt dissolved in a KBr matrix and a natural calcite sample obtained by photothermal beam deflection (PTBD) technique and FT-IR (Fourier-transform infrared) spectroscopy, respectively. General agreement was found between all spectra of the different recording techniques. Spectral deviations were observed with samples containing low concentration of the rare earth metal salt indicating a lower detection limit of the photothermal method as compared to conventional FT-IR spectroscopy. (authors)

  15. Supercritical Fluid Chromatography/Fourier Transform Infrared Spectroscopy Of Food Components

    Science.gov (United States)

    Calvey, Elizabeth M.; Page, Samuel W.; Taylor, Larry T.

    1989-12-01

    Supercritical fluid (SF) technologies are being investigated extensively for applications in food processing. The number of SF-related patents issued testifies to the level of interest. Among the properties of materials at temperatures and pressures above their critical points (supercritical fluids) is density-dependent solvating power. Supercritical CO2 is of particular interest to the food industry because of its low critical temperature (31.3°C) and low toxicity. Many of the components in food matrices react or degrade at elevated temperatures and may be adversely affected by high temperature extractions. Likewise, these components may not be amenable to GC analyses. Our SF research has been in the development of methods employing supercritical fluid chromatography (SFC) and extraction (SFE) coupled to a Fourier transform infrared (FT-IR) spectrometer to investigate food composition. The effects of processing techniques on the isomeric fatty acid content of edible oils and the analysis of lipid oxidation products using SFC/FT-IR with a flow-cell interface are described.

  16. Quantitative analysis of Sudan dye adulteration in paprika powder using FTIR spectroscopy

    Science.gov (United States)

    The presence of Sudan dye used illegally for coloring in food stuffs has become a point of food safety concern, especially in paprika- and chili-containing food products. Fourier transform infrared (FTIR) spectroscopy has been extensively used as an analytical method for quality control and safety m...

  17. Forensic Hair Differentiation Using Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy.

    Science.gov (United States)

    Manheim, Jeremy; Doty, Kyle C; McLaughlin, Gregory; Lednev, Igor K

    2016-07-01

    Hair and fibers are common forms of trace evidence found at crime scenes. The current methodology of microscopic examination of potential hair evidence is absent of statistical measures of performance, and examiner results for identification can be subjective. Here, attenuated total reflection (ATR) Fourier transform-infrared (FT-IR) spectroscopy was used to analyze synthetic fibers and natural hairs of human, cat, and dog origin. Chemometric analysis was used to differentiate hair spectra from the three different species, and to predict unknown hairs to their proper species class, with a high degree of certainty. A species-specific partial least squares discriminant analysis (PLSDA) model was constructed to discriminate human hair from cat and dog hairs. This model was successful in distinguishing between the three classes and, more importantly, all human samples were correctly predicted as human. An external validation resulted in zero false positive and false negative assignments for the human class. From a forensic perspective, this technique would be complementary to microscopic hair examination, and in no way replace it. As such, this methodology is able to provide a statistical measure of confidence to the identification of a sample of human, cat, and dog hair, which was called for in the 2009 National Academy of Sciences report. More importantly, this approach is non-destructive, rapid, can provide reliable results, and requires no sample preparation, making it of ample importance to the field of forensic science. © The Author(s) 2016.

  18. FAR-INFRARED LINE SPECTRA OF SEYFERT GALAXIES FROM THE HERSCHEL-PACS SPECTROMETER

    International Nuclear Information System (INIS)

    Spinoglio, Luigi; Pereira-Santaella, Miguel; Busquet, Gemma; Dasyra, Kalliopi M.; Calzoletti, Luca; Malkan, Matthew A.; Tommasin, Silvia

    2015-01-01

    We observed the far-IR fine-structure lines of 26 Seyfert galaxies with the Herschel-PACS spectrometer. These observations are complemented with Spitzer Infrared Spectrograph and Herschel SPIRE spectroscopy. We used the ionic lines to determine electron densities in the ionized gas and the [C I] lines, observed with SPIRE, to measure the neutral gas densities, while the [O I] lines measure the gas temperature, at densities below ∼10 4  cm –3 . Using the [O I]145 μm/63 μm and [S III]33/18 μm line ratios, we find an anti-correlation of the temperature with the gas density. Various fine-structure line ratios show density stratifications in these active galaxies. On average, electron densities increase with the ionization potential of the ions. The infrared lines arise partly in the narrow line region, photoionized by the active galactic nucleus (AGN), partly in H II regions photoionized by hot stars, and partly in photo-dissociated regions. We attempt to separate the contributions to the line emission produced in these different regions by comparing our observed emission line ratios to theoretical values. In particular, we tried to separate the contribution of AGNs and star formation by using a combination of Spitzer and Herschel lines, and we found that besides the well-known mid-IR line ratios, the line ratio of [O III]88 μm/[O IV]26 μm can reliably discriminate the two emission regions, while the far-IR line ratio of [C II]157 μm/[O I]63 μm is only able to mildly separate the two regimes. By comparing the observed [C II]157 μm/[N II]205 μm ratio with photoionization models, we also found that most of the [C II] emission in the galaxies we examined is due to photodissociation regions

  19. FAR-INFRARED LINE SPECTRA OF SEYFERT GALAXIES FROM THE HERSCHEL-PACS SPECTROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Spinoglio, Luigi; Pereira-Santaella, Miguel; Busquet, Gemma [Istituto di Astrofisica e Planetologia Spaziali, INAF, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Dasyra, Kalliopi M. [Observatoire de Paris, LERMA (CNRS:UMR8112), 61 Av. de l' Observatoire, F-75014, Paris (France); Calzoletti, Luca [Agenzia Spaziale Italiana (ASI) Science Data Center, I-00044 Frascati (Roma) (Italy); Malkan, Matthew A. [Astronomy Division, University of California, Los Angeles, CA 90095-1547 (United States); Tommasin, Silvia, E-mail: luigi.spinoglio@iaps.inaf.it [Weizmann Institute of Science, Department of Neurobiology, Rehovot 76100 (Israel)

    2015-01-20

    We observed the far-IR fine-structure lines of 26 Seyfert galaxies with the Herschel-PACS spectrometer. These observations are complemented with Spitzer Infrared Spectrograph and Herschel SPIRE spectroscopy. We used the ionic lines to determine electron densities in the ionized gas and the [C I] lines, observed with SPIRE, to measure the neutral gas densities, while the [O I] lines measure the gas temperature, at densities below ∼10{sup 4} cm{sup –3}. Using the [O I]145 μm/63 μm and [S III]33/18 μm line ratios, we find an anti-correlation of the temperature with the gas density. Various fine-structure line ratios show density stratifications in these active galaxies. On average, electron densities increase with the ionization potential of the ions. The infrared lines arise partly in the narrow line region, photoionized by the active galactic nucleus (AGN), partly in H II regions photoionized by hot stars, and partly in photo-dissociated regions. We attempt to separate the contributions to the line emission produced in these different regions by comparing our observed emission line ratios to theoretical values. In particular, we tried to separate the contribution of AGNs and star formation by using a combination of Spitzer and Herschel lines, and we found that besides the well-known mid-IR line ratios, the line ratio of [O III]88 μm/[O IV]26 μm can reliably discriminate the two emission regions, while the far-IR line ratio of [C II]157 μm/[O I]63 μm is only able to mildly separate the two regimes. By comparing the observed [C II]157 μm/[N II]205 μm ratio with photoionization models, we also found that most of the [C II] emission in the galaxies we examined is due to photodissociation regions.

  20. Application of microfluidic devices for time resolved FTIR spectroscopy

    International Nuclear Information System (INIS)

    Wagner, C.

    2012-01-01

    Within this thesis, micro fluidic mixers, operated in continuous flow mode, were used for time resolved FTIR studies of chemical reactions in aqueous solution. Any chemical reaction, that can be started upon mixing two reagents, can be examined with this technique. The mixing channel also serves as the observation window for the IR measurements. The actual measurements take place at well defined spots along this channel, corresponding to specific reaction times: moving the measurement spot (100 × 100 μm 2 ) towards the entry yields shorter reaction times, moving it towards the channel's end gives longer reaction times. The temporal resolution of the experiment depends on the flow rate inside the mixing channel and the spacing between subsequent measurement points. Fast flow rates, limited by the back pressure of the mixer leading to leakages, allow time resolutions in the sub-millisecond time range using a standard FTIR microscope, whereas slow flow rates allow the measurement of reaction times up to 1000 ms. Evaluating the mixer using a fast chemical reaction resulted in mixing times of approximately 5 ms and a homogeneous distribution of the liquids across the width of the mixing channel. The mixer was then used for the measurement of the H/D exchange on carbohydrates, the complex formaldehyde sulfite clock reaction, and the folding of the protein ubiquitin from its native to the ''A'' state, induced by mixing it with an acidified methanol solution. For cleaning the mixer a software tool, called ATLAS, was developed in LabVIEW, which was used to automatize the necessary cleaning steps performed by a dedicated flow system. Additionally, the micro mixer technology was combined with the step scan measurement technique using a beam condenser focusing the IR beam of an FTIR spectrometer down to a spot size of 1 mm diameter and through the mixer. The laser light, initiating the chemical reaction inside the mixing channel, was coupled into the focusing unit using a

  1. Fourier Transform Infrared Spectroscopy as a Tool in Analysis of Proteus mirabilis Endotoxins.

    Science.gov (United States)

    Żarnowiec, Paulina; Czerwonka, Grzegorz; Kaca, Wiesław

    2017-01-01

    Fourier transform infrared spectroscopy (FT-IR) was used to scan whole bacterial cells as well as lipopolysaccharides (LPSs, endotoxins) isolated from them. Proteus mirabilis cells, with chemically defined LPSs, served as a model for the ATR FT-IR method. The paper focuses on three steps of infrared spectroscopy: (1) sample preparation, (2) IR scanning, and (3) multivariate analysis of IR data (principal component analysis, PCA).

  2. Geometric and radiometric preprocessing of airborne visible/infrared imaging spectrometer (AVIRIS) data in rugged terrain for quantitative data analysis

    Science.gov (United States)

    Meyer, Peter; Green, Robert O.; Staenz, Karl; Itten, Klaus I.

    1994-01-01

    A geocoding procedure for remotely sensed data of airborne systems in rugged terrain is affected by several factors: buffeting of the aircraft by turbulence, variations in ground speed, changes in altitude, attitude variations, and surface topography. The current investigation was carried out with an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) scene of central Switzerland (Rigi) from NASA's Multi Aircraft Campaign (MAC) in Europe (1991). The parametric approach reconstructs for every pixel the observation geometry based on the flight line, aircraft attitude, and surface topography. To utilize the data for analysis of materials on the surface, the AVIRIS data are corrected to apparent reflectance using algorithms based on MODTRAN (moderate resolution transfer code).

  3. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Directory of Open Access Journals (Sweden)

    Benedicto de Campos Vidal

    Full Text Available Rat ear cartilage was studied using Fourier transform-infrared (FT-IR microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1 after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1 overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  4. Analysis of human gallstones by FTIR

    International Nuclear Information System (INIS)

    Channa, Naseem A.; Khand, Fateh D.

    2008-01-01

    The present study was aimed at determining the composition of gallstones removed from patients in Southern Sindh, Pakistan. 109 gallstone samples surgically removed from as many patients (98 females and 11 males; age range 20 to 80 years) admitted for treatment in Liaquat University hospital, Jamshsoro during 2000 to 2003, were analyzed for composition by Fourier Transform Infrared (FTIR) spectroscopy. 74 (67.9%) of the 109 gallstone samples were found to be pure cholesterol stones, 5 (4.6%) pure calcium carbonate stones, 13 (11.9%) cholesterol + calcium carbonate, 10 (9.2%) cholesterol + bilirubin and 07 (6.4%) calcium bilirubinate stones. In mixed composition gallstones cholesterol was concentrated more at periphery than in the center of stone. Cholesterol either singly (67.9%) or in combination with either calcium carbonate (11.9%) or bilirubin (9.2%) was the most predominant component of gallstones. Analysis of gallstones based on FTIR suggests that cholesterol either singly or in combination with either calcium carbonate or bilirubin is the most predominant component of gallstones from Southern Sindh, Pakistan. (author)

  5. FTIR- Microspectroscopy as diagnostic method for cancer cells

    International Nuclear Information System (INIS)

    Vitaly Erukhimovitch, Vitaly; Mukmenev, Igor; Huleihel, Mahmoud

    2010-01-01

    In the present study we have compared the spectral behavior of malignant cells with normal un transformed cells using microscopic Fourier-Transform Infrared (FTIR-M) spectroscopy in order to evaluate the potential of this technique for early detection of cancer cells. Cells were transformed by infection with murine sarcoma virus (MuSV) and examined at various times post infection (p. i) by FTIR M. Our results showed significant and consistent differences between the normal cells and malignant cells. A considerable decrease in carbohydrates and phosphates levels was seen in malignant cells compared to the normal cells. In addition, the peak attributed to the PO2- symmetric stretching mode at 1082 cm-1 in normal cells was shifted significantly to 1087 cm-1 in malignant cells. These spectral changes in addition to others were seen already about 24 h p.i., while no morphological changes were observed at this time by optical microscope. These results in addition to further differences in the shapes of various bands may indicate for promising potential of FTIR microscopy technique for detection of malignant cells at early stages of malignant transformation.(Author)

  6. Evaluation of FTIR Spectroscopy as a diagnostic tool for lung cancer using sputum

    Directory of Open Access Journals (Sweden)

    Wills John

    2010-11-01

    Full Text Available Abstract Background Survival time for lung cancer is poor with over 90% of patients dying within five years of diagnosis primarily due to detection at late stage. The main objective of this study was to evaluate Fourier transform infrared spectroscopy (FTIR as a high throughput and cost effective method for identifying biochemical changes in sputum as biomarkers for detection of lung cancer. Methods Sputum was collected from 25 lung cancer patients in the Medlung observational study and 25 healthy controls. FTIR spectra were generated from sputum cell pellets using infrared wavenumbers within the 1800 to 950 cm-1 "fingerprint" region. Results A panel of 92 infrared wavenumbers had absorbances significantly different between cancer and normal sputum spectra and were associated with putative changes in protein, nucleic acid and glycogen levels in tumours. Five prominent significant wavenumbers at 964 cm-1, 1024 cm-1, 1411 cm-1, 1577 cm-1 and 1656 cm-1 separated cancer spectra from normal spectra into two distinct groups using multivariate analysis (group 1: 100% cancer cases; group 2: 92% normal cases. Principal components analysis revealed that these wavenumbers were also able to distinguish lung cancer patients who had previously been diagnosed with breast cancer. No patterns of spectra groupings were associated with inflammation or other diseases of the airways. Conclusions Our results suggest that FTIR applied to sputum might have high sensitivity and specificity in diagnosing lung cancer with potential as a non-invasive, cost-effective and high-throughput method for screening. Trial Registration ClinicalTrials.gov: NCT00899262

  7. Versatile mid-infrared frequency-comb referenced sub-Doppler spectrometer

    Science.gov (United States)

    Gambetta, A.; Vicentini, E.; Coluccelli, N.; Wang, Y.; Fernandez, T. T.; Maddaloni, P.; De Natale, P.; Castrillo, A.; Gianfrani, L.; Laporta, P.; Galzerano, G.

    2018-04-01

    We present a mid-IR high-precision spectrometer capable of performing accurate Doppler-free measurements with absolute calibration of the optical axis and high signal-to-noise ratio. The system is based on a widely tunable mid-IR offset-free frequency comb and a Quantum-Cascade-Laser (QCL). The QCL emission frequency is offset locked to one of the comb teeth to provide absolute-frequency calibration, spectral-narrowing, and accurate fine frequency tuning. Both the comb repetition frequency and QCL-comb offset frequency can be modulated to provide, respectively, slow- and fast-frequency-calibrated scanning capabilities. The characterisation of the spectrometer is demonstrated by recording sub-Doppler saturated absorption features of the CHF3 molecule at around 8.6 μm with a maximum signal-to-noise ratio of ˜7 × 103 in 10 s integration time, frequency-resolution of 160 kHz, and accuracy of less than 10 kHz.

  8. Versatile mid-infrared frequency-comb referenced sub-Doppler spectrometer

    Directory of Open Access Journals (Sweden)

    A. Gambetta

    2018-04-01

    Full Text Available We present a mid-IR high-precision spectrometer capable of performing accurate Doppler-free measurements with absolute calibration of the optical axis and high signal-to-noise ratio. The system is based on a widely tunable mid-IR offset-free frequency comb and a Quantum-Cascade-Laser (QCL. The QCL emission frequency is offset locked to one of the comb teeth to provide absolute-frequency calibration, spectral-narrowing, and accurate fine frequency tuning. Both the comb repetition frequency and QCL-comb offset frequency can be modulated to provide, respectively, slow- and fast-frequency-calibrated scanning capabilities. The characterisation of the spectrometer is demonstrated by recording sub-Doppler saturated absorption features of the CHF3 molecule at around 8.6 μm with a maximum signal-to-noise ratio of ∼7 × 103 in 10 s integration time, frequency-resolution of 160 kHz, and accuracy of less than 10 kHz.

  9. Optical Determination of Lead Chrome Green in Green Tea by Fourier Transform Infrared (FT-IR Transmission Spectroscopy.

    Directory of Open Access Journals (Sweden)

    Xiaoli Li

    Full Text Available The potential of Fourier transform infrared (FT-IR transmission spectroscopy for determination of lead chrome green in green tea was investigated based on chemometric methods. Firstly, the qualitative analysis of lead chrome green in tea was performed based on partial least squares discriminant analysis (PLS-DA, and the correct rate of classification was 100%. And then, a hybrid method of interval partial least squares (iPLS regression and successive projections algorithm (SPA was proposed to select characteristic wavenumbers for the quantitative analysis of lead chrome green in green tea, and 19 wavenumbers were obtained finally. Among these wavenumbers, 1384 (C = C, 1456, 1438, 1419(C = N, and 1506 (CNH cm-1 were the characteristic wavenumbers of lead chrome green. Then, these 19 wavenumbers were used to build determination models. The best model was achieved by least squares support vector machine (LS-SVMalgorithm with high coefficient of determination and low root-mean square error of prediction set (R2p = 0.864 and RMSEP = 0.291. All these results indicated the feasibility of IR spectra for detecting lead chrome green in green tea.

  10. Carbon Nanotube Bolometer for Absolute FTIR Spectroscopy

    Science.gov (United States)

    Woods, Solomon; Neira, Jorge; Tomlin, Nathan; Lehman, John

    We have developed and calibrated planar electrical-substitution bolometers which employ absorbers made from vertically-aligned carbon nanotube arrays. The nearly complete absorption of light by the carbon nanotubes from the visible range to the far-infrared can be exploited to enable a device with read-out in native units equivalent to optical power. Operated at cryogenic temperatures near 4 K, these infrared detectors are designed to have time constant near 10 ms and a noise floor of about 10 pW. Built upon a micro-machined silicon platform, each device has an integrated heater and thermometer, either a carbon nanotube thermistor or superconducting transition edge sensor, for temperature control. We are optimizing temperature-controlled measurement techniques to enable high resolution spectral calibrations using these devices with a Fourier-transform spectrometer.

  11. Application of Fourier Transform Infrared Spectra (FTIR) Fingerprint in the Quality Control of Mineral Chinese Medicine Limonitum.

    Science.gov (United States)

    Liu, Sheng-jin; Yang, Huan; Wu, De-kang; Xu, Chun-xiang; Lin, Rui-chao; Tian, Jin-gai; Fang, Fang

    2015-04-01

    In the present paper, the fingerprint of Limonitum (a mineral Chinese medicine) by FTIR was established, and the spectrograms among crude samples, processed one and the adulterant sample were compared. Eighteen batches of Limonitum samples from different production areas were analyzed and the angle cosine value of transmittance (%) of common peaks was calculated to get the similarity of the FTIR fingerprints. The result showed that the similarities and the coefficients of the samples were all more than 0.90. The processed samples revealed significant differences compared with the crude one. This study analyzed the composition characteristics of Limonitum in FTIR fingerprint, and it was simple and fast to distinguish the crude, processed and the counterfeit samples. The FTIR fingerprints provide a new method for evaluating the quality of Limonitum.

  12. A Microdrop Generator for the Calibration of a Water Vapor Isotope Ratio Spectrometer

    NARCIS (Netherlands)

    Iannone, Rosario Q.; Romanini, Daniele; Kassi, Samir; Meijer, Harro A. J.; Kerstel, Erik R. Th.

    A microdrop generator is described that produces water vapor with a known isotopic composition and volume mixing ratio for the calibration of a near-infrared diode laser water isotope ratio spectrometer. The spectrometer is designed to measure in situ the water vapor deuterium and oxygen ((17)O and

  13. Monitorando a degradação da poliamida 11 (PA-11 via espectroscopia na região do infravermelho médio com transformada de fourier (FTIR Monitoring the degradation of polyamide 11 (PA-11 via fourier transform infrared spectroscopy (FTIR

    Directory of Open Access Journals (Sweden)

    Eloilson Domingos

    2012-01-01

    Full Text Available O potencial da técnica de espectroscopia de infravermelho com transformada de Fourier e acessório de reflexão total atenuada (FTIR-ATR foi avaliado para o monitoramento da degradação da poliamida 11 (PA-11 usada em dutos flexíveis. As amostras foram submetidas a envelhecimento em reatores com pressão controlada e atmosfera inerte. Os corpos de prova foram imersos em água deionizada (pH 7, nas temperaturas de 110, 120 e 140 ºC por um período de até 50 dias. A técnica recomendada para monitoramento da degradação da PA-11 é a viscosimetria, através de medidas da viscosidade inerente corrigida (VIC e a análise termogravimétrica (TGA. O comportamento observado para a VIC e TGA durante o envelhecimento possibilitou a construção de modelos que correlacionam com a técnica de FTIR-ATR. A partir dos resultados de FTIR-ATR, a variação na intensidade da banda atribuída à fase amorfa, 1161 cm-1, possibilitou o monitoramento do envelhecimento quando associamos a técnica a modelos quimiométricos como o de regressão dos mínimos quadrados parciais, PLS. Portanto, a técnica FTIR-ATR pode ser uma nova alternativa no monitoramento da degradação hidrolítica da PA-11, eliminando assim o uso de solventes orgânicos tóxicos e reduzindo, consequentemente, o tempo de análise.The potential of the infrared spectroscopy with the attenuated total reflection technique (FTIR-ATR was evaluated to monitor degradation of polyamide 11, PA-11, applied in flexible pipes. The samples were subjected to aging on reactors with controlled pressure and atmosphere. The samples were immersed in deionized water, pH 7, at temperatures of 110, 120 and 140 ºC over a period of up to 50 days. The typical technique recommended for monitoring PA-11 degradation is viscometry from inherent viscosity corrected (VIC and thermogravimetric (TGA measurements. TGA and VIC results allowed the use of chemometric models that can be related to FTIR-ATR spectra, with

  14. Monitorando a degradação da poliamida 11 (PA-11 via espectroscopia na região do infravermelho médio com transformada de fourier (FTIR Monitoring the degradation of polyamide 11 (PA-11 via fourier transform infrared spectroscopy (FTIR

    Directory of Open Access Journals (Sweden)

    Eloilson Domingos

    2013-01-01

    Full Text Available O potencial da técnica de espectroscopia de infravermelho com transformada de Fourier e acessório de reflexão total atenuada (FTIR-ATR foi avaliado para o monitoramento da degradação da poliamida 11 (PA-11 usada em dutos flexíveis. As amostras foram submetidas a envelhecimento em reatores com pressão controlada e atmosfera inerte. Os corpos de prova foram imersos em água deionizada (pH 7, nas temperaturas de 110, 120 e 140 ºC por um período de até 50 dias. A técnica recomendada para monitoramento da degradação da PA-11 é a viscosimetria, através de medidas da viscosidade inerente corrigida (VIC e a análise termogravimétrica (TGA. O comportamento observado para a VIC e TGA durante o envelhecimento possibilitou a construção de modelos que correlacionam com a técnica de FTIR-ATR. A partir dos resultados de FTIR-ATR, a variação na intensidade da banda atribuída à fase amorfa, 1161 cm-1, possibilitou o monitoramento do envelhecimento quando associamos a técnica a modelos quimiométricos como o de regressão dos mínimos quadrados parciais, PLS. Portanto, a técnica FTIR-ATR pode ser uma nova alternativa no monitoramento da degradação hidrolítica da PA-11, eliminando assim o uso de solventes orgânicos tóxicos e reduzindo, consequentemente, o tempo de análise.The potential of the infrared spectroscopy with the attenuated total reflection technique (FTIR-ATR was evaluated to monitor degradation of polyamide 11, PA-11, applied in flexible pipes. The samples were subjected to aging on reactors with controlled pressure and atmosphere. The samples were immersed in deionized water, pH 7, at temperatures of 110, 120 and 140 ºC over a period of up to 50 days. The typical technique recommended for monitoring PA-11 degradation is viscometry from inherent viscosity corrected (VIC and thermogravimetric (TGA measurements. TGA and VIC results allowed the use of chemometric models that can be related to FTIR-ATR spectra, with

  15. 1738-IJBCS-Article-Saw Yaya

    African Journals Online (AJOL)

    hp

    the “Instituto de Quimica, -(U.N.A.M),. Mexico” - while Mössbauer spectra were obtained as described previously (DE Sousa et al., 2006). The infrared spectra were obtained with FTIR spectrometer, the samples being as. KBr pellets. Infrared data are given in cm-1. IR abbreviations: (vs) very strong, (s) strong, (m) medium ...

  16. Infrared monitoring of combustion

    International Nuclear Information System (INIS)

    Bates, S.C.; Morrison, P.W. Jr.; Solomon, P.R.

    1991-01-01

    In this paper, the use of Fourier Transform Infrared (FT-IR) spectroscopy for combustion monitoring is described. A combination of emission, transmission, and reflection FT-IR spectroscopy yields data on the temperature and composition of the gases, surfaces and suspended particles in the combustion environment. Detection sensitivity of such trace exhaust gases as CO, CO 2 , SO 2 , NO x , and unburned hydrocarbons is at the ppm level. Tomographic reconstruction converts line-of-sight measurements into spatially resolved temperature and concentration data. Examples from various combustion processes are used to demonstrate the capabilities of the technique. Industrial measurements are described that have been performed directly in the combustion zone and in the exhaust duct of a large chemical recovery boiler. Other measurements of hot slag show how FT-IR spectroscopy can determine the temperature and optical properties of surfaces. In addition, experiments with water droplets show that transmission FT-IR data yield spectra that characterize particle size and number density

  17. Characterization of adsorbed water in MIL-53(Al) by FTIR spectroscopy and ab-initio calculations.

    Science.gov (United States)

    Salazar, J M; Weber, G; Simon, J M; Bezverkhyy, I; Bellat, J P

    2015-03-28

    Here, we report ab-initio calculations developed with a twofold purpose: understand how adsorbed water molecules alter the infrared spectrum of the metal-organic framework MIL-53(Al) and to investigate which are the associated physico-chemical processes. The analyzed structures are the two anhydrous narrow (np⊘) and large (lp⊘) pore forms and the hydrated narrow pore form (np-H2O) of the MIL-53(Al). For these structures, we determined their corresponding infrared spectra (FTIR) and we identified the vibrational modes associated to the dominant spectral lines. We show that wagging and scissoring modes of CO2 give flexibility to the structure for facilitating the lp⊘- np⊘ transition. In our studies, this transition is identified by eight vibrational modes including the δCH(18a) vibrational mode currently used to identify the mentioned transition. We report an exhaustive band identification of the infrared spectra associated to the analyzed structures. Moreover, the FTIR for the np-H2O structure allowed us to identify four types of water molecules linked to the host structure by one to three hydrogen bonds.

  18. Structural features and functional properties of water in model DMPC membranes: thermally stimulated depolarization currents (TSDCs) and Fourier transform infrared (FTIR) studies

    Science.gov (United States)

    Bridelli, M. G.; Capelletti, R.; Mora, C.

    2013-12-01

    Thermally stimulated depolarization currents (TSDCs) and Fourier transform infrared (FTIR) spectroscopies were employed to investigate the state of water incorporated in a model DMPC (dimyristoyl-phosphatidylcholine) membrane. The lipid multilayers, highly inhomogeneous from the dielectric point of view, originate complex TSDC spectra critically dependent on the sample water content and thermal history. Different temperature ranges were chosen to polarize the sample, i.e. 100-300 K (type I) and 100-285 K (type II). The purpose of the latter choice was to avoid any sample heating above the DMPC phase transition temperature (295 K) along the sample polarization. According to the results, water in a fully hydrated system (aw = 0.92) (1) is ordered around the hydrophilic head molecular groups, (2) is layered in the interbilayer space and (3) penetrates among the hydrocarbon chains. It can assume different local structural configurations depending on the lipid packing. Irreversible conformational transitions in the lipid array system were monitored as a consequence of different dehydration treatments. FTIR absorption measurements were performed to study the water sorption kinetics into a DMPC thin film. The water related OH band was decomposed into three components, describing three water states, with different propensity to the H-bond formation. The changes of the lipid characteristic groups (CH2/CH3, PO_{2}^{-} and C=O) absorption bands as a function of increasing hydration level were monitored and discussed.

  19. Tracking chemical changes in a live cell: Biomedical applications of SR-FTIR spectromicroscopy

    International Nuclear Information System (INIS)

    Holman, Hoi-Ying N.; Martin, Michael C.; McKinney, Wayne R.

    2002-01-01

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). We will then present several examples demonstrating the application potentials of SR-FTIR spectromicroscopy in biomedical research. These will include monitoring living cells progressing through the cell cycle, including death, and cells reacting to dilute concentrations of toxins

  20. Tracking chemical changes in a live cell: Biomedical applications of SR-FTIR spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Hoi-Ying N.; Martin, Michael C.; McKinney, Wayne R.

    2002-07-25

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). We will then present several examples demonstrating the application potentials of SR-FTIR spectromicroscopy in biomedical research. These will include monitoring living cells progressing through the cell cycle, including death, and cells reacting to dilute concentrations of toxins.

  1. Optical design for a breadboard high-resolution spectrometer for SIRTF/IRS

    Science.gov (United States)

    Brown, Robert J.; Houck, James R.; van Cleve, Jeffrey E.

    1996-11-01

    The optical design of a breadboard high resolution infrared spectrometer for the IRS instrument on the SIRTF mission is discussed. The spectrometer uses a crossed echelle grating configuration to cover the spectral region from 10 to 20 micrometer with a resolving power of approximately equals 600. The all reflective spectrometer forms a nearly diffraction limited image of the two dimensional spectrum on a 128 multiplied by 128 arsenic doped silicon area array with 75 micrometer pixels. The design aspects discussed include, grating numerology, image quality, packaging and alignment philosophy.

  2. A portable infrared laser spectrometer for flux measurements of trace gases at the geosphere–atmosphere interface

    International Nuclear Information System (INIS)

    Guimbaud, C; Catoire, V; Robert, C; Chartier, M; Pomathiod, L; Gogo, S; Laggoun-Défarge, F; Albéric, P; Grossel, A; Nicoullaud, B; Richard, G

    2011-01-01

    A portable infrared laser absorption spectrometer named SPIRIT (SPectromètre Infra-Rouge In situ Troposphérique) has been set up for the simultaneous flux measurements of trace gases at the geosphere–atmosphere interface. It uses a continuous wave distributed feedback room temperature quantum cascade laser and a patented new optical multi-pass cell. The aim of SPIRIT field studies is to get a better understanding of land and water bodies to atmosphere exchange mechanisms of greenhouse gases (GHG). The analytical procedures to derive concentrations and fluxes are described, as well as the performances of the instrument under field conditions. The ability of SPIRIT to assess space and time dependence emissions of two GHG—nitrous oxide (N 2 O) and methane (CH 4 )—for different types of ecosystems is demonstrated through in situ measurements on peatland, on fertilized soil, and on water body systems. The objectives of these investigations and preliminary significant results are reported

  3. Infrared and Raman spectroscopy on synthetic glasses as analogues of planetary surfaces.

    Science.gov (United States)

    Weber, Iris; Morlok, Andreas; Klemme, Stephan; Dittmer, Isabelle; Stojic, Aleksandra N.; Hiesinger, Harald; Sohn, Martin; Helbert, Jörn

    2015-04-01

    One of the fundamental aims of space mission is to understand the physical, chemical, and geologic processes and conditions of planetary formation and evolution. For this purpose, it is important to investigate analog material to correctly interpret the returned spacecraft data, including the spectral information from remote planetary surfaces. For example, mid-infrared spectroscopy provides detailed information on the mineralogical compositions of planetary surfaces via remote sensing. Data is affected by numerous factors such as grain size, illumination geometry, space weathering, and temperature. These features need to be systematically investigated on analog material in terrestrial laboratories in order to understand the mineralogy/composition of a planetary surface. In addition, Raman spectroscopy allows non-destructive analyses of planetary surfaces in the case of a landing mission. Our work at the IRIS (Infrared spectroscopy for Interplanetary Studies) laboratory at the Institut für Planetologie produces spectra for a database of the ESA/JAXA BepiColombo mission to Mercury. Onboard is a mid-infrared spectrometer (MERTIS-Mercury Radiometer and Thermal Infrared Spectrometer). This unique instrument allows us to map spectral features in the 7-14 µm range, with a spatial resolution of ~500 m [1-5]. Comparably, using our Raman spectrometer, we are continuously contributing to the Raman database for upcoming mission, e.g., the Raman Laser Spectrometer (RLS) onboard of ExoMars [6]. Material on the surface of Mercury and the other terrestrial bodies was exposed to heavy impact cratering [4]. Depending on the P/T conditions during the impact, minerals on planetary surfaces can react with the formation of glassy material. Thus, understanding the effects of impact shock and heat on the mineral structure and the resulting corresponding change in the spectral properties is of high interest for the MERTIS project. Here, we present spectral information on the first glass

  4. An off Axis Cavity Enhanced Absorption Spectrometer and a Rapid Scan Spectrometer with a Room-Temperature External Cavity Quantum Cascade Laser

    Science.gov (United States)

    Liu, Xunchen; Kang, Cheolhwa; Xu, Yunjie

    2009-06-01

    Quantum cascade laser (QCL) is a new type of mid-infrared tunable diode lasers with superior output power and mode quality. Recent developments, such as room temperature operation, wide frequency tunability, and narrow line width, make QCLs an ideal light source for high resolution spectroscopy. Two slit jet infrared spectrometers, namely an off-axis cavity enhanced absorption (CEA) spectrometer and a rapid scan spectrometer with an astigmatic multi-pass cell assembly, have been coupled with a newly purchased room temperature tunable mod-hop-free QCL with a frequency coverage from 1592 cm^{-1} to 1698 cm^{-1} and a scan rate of 0.1 cm^{-1}/ms. Our aim is to utilize these two sensitive spectrometers, that are equipped with a molecular jet expansion, to investigate the chiral molecules-(water)_n clusters. To demonstrate the resolution and sensitivity achieved, the rovibrational transitions of the static N_2O gas and the bending rovibrational transitions of the Ar-water complex, a test system, at 1634 cm^{-1} have been measured. D. Hofstetter and J. Faist in High performance quantum cascade lasers and their applications, Vol.89 Springer-Verlag Berlin & Heidelberg, 2003, pp. 61-98. Y. Xu, X. Liu, Z. Su, R. M. Kulkarni, W. S. Tam, C. Kang, I. Leonov and L. D'Agostino, Proc. Spie, 2009, 722208 (1-11). M. J. Weida and D. J. Nesbitt, J. Chem. Phys. 1997, 106, 3078-3089.

  5. Procurement of a Large Area Mapping FTIR Microscope for Organic-Inorganic Interfacial Analysis in Biological Materials

    Science.gov (United States)

    2015-12-31

    SECURITY CLASSIFICATION OF: After acquiring the Infrared Imaging Microscope with large area mapping capabilities for structure -function research and...Inorganic Interfacial Analysis in Biological Materials The views, opinions and/or findings contained in this report are those of the author(s) and should...of a Large Area Mapping FTIR Microscope for Organic-Inorganic Interfacial Analysis in Biological Materials Report Title After acquiring the Infrared

  6. Understanding the distribution of natural wax in starch-wax films using synchrotron-based FTIR (S-FTIR).

    Science.gov (United States)

    Muscat, Delina; Tobin, Mark J; Guo, Qipeng; Adhikari, Benu

    2014-02-15

    High amylose starch-glycerol (HAG) films were produced incorporating beeswax, candelilla wax and carnauba wax in the presence and absence of Tween-80 in order to determine the distribution of wax in the films during the film formation process. The distribution of these waxes within the film was studied using Synchrotron based Fourier Transform Infrared Spectroscopy (S-FTIR) which provided 2D mapping along the thickness of the film. The incorporation of 5% and 10% wax in HAG films produced randomly distributed wax or wax-rich domains, respectively, within these films. Consequently, the addition of these waxes to HAG increased the surface roughness and hydrophobicity of these films. The addition of Tween-80 caused variations in wax-rich bands within the films. The HAG+carnauba wax+Tween-80 films exhibited domed wax-rich domains displayed with high integrated CH2 absorption value at the interior of the films, rougher surface and higher contact angle values than the other films. The S-FTIR 2D images indicated that the distribution of wax in starch-wax films correlated with the roughness and hydrophobicity of the starch-wax films. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The use of direct geometry spectrometers in molecular spectroscopy

    International Nuclear Information System (INIS)

    Parker, Stewart F; Ramirez-Cuesta, Anibal J; Albers, Peter W; Lennon, David

    2014-01-01

    The advantages and disadvantages of the use of direct geometry spectrometers for molecular spectroscopy and catalysis studies are described. We show that both direct and indirect geometry INS spectrometers are important tools for the study of industrially relevant areas such as catalysis, proton conductors and gas separation. We propose a novel hybrid instrument, Cerberus, that would offer high sensitivity and high-to-reasonable resolution across the entire 'mid-infrared' spectral range that would effectively advance research in these areas

  8. SigmaPlot 2000, Version 6.00, SPSS Inc. Computer Software Project Management, Requirements, and Design Document

    Energy Technology Data Exchange (ETDEWEB)

    HURLBUT, S.T.

    2000-10-24

    SigmaPlot is a vendor software product that will be used to convert the area under an absorbance curve generated by a Fourier transform infrared spectrometer (FTIR) to a relative area. SigmaPlot will be used in conjunction with procedure ZA-565-301, ''Determination of Moisture by Supercritical Fluid Extraction and Infrared Detection.''

  9. TG-FTIR Study of the Influence of potassium Chloride on Wheat Straw Pyrolysis

    DEFF Research Database (Denmark)

    Jensen, Anker; Dam-Johansen, Kim; Wójtowicz, M.A.

    1998-01-01

    of products into char, tar and gas. In this work, a combination of thermogravimetry and evolved gas analysis by Fourier transform infrared analysis (TG-FTIR) has been applied to study the influence of potassium chloride (KCl) on wheat straw pyrolysis. Raw straw, washed straw and washed straw impregnated...

  10. Direct detection of saponins in crude extracts of soapnuts by FTIR.

    Science.gov (United States)

    Almutairi, Meshari Saad; Ali, Muhammad

    2015-01-01

    Direct detection of saponins in soapnuts (Sapindus mukorossi) using Fourier transform infrared (FTIR) spectroscopy is investigated in this project. Potassium bromide powder was mixed with extracted powder of soapnuts and compressed to a thin pellet for examination process. The outcome of the FTIR spectra of saponin demonstrated characteristic triterpenoid saponin absorptions of OH, C = O, C-H, and C = C, while the glycoside linkages to the sapogenins were indicated by the absorptions of C-O. The significance of this study is that saponin absorption peaks are directly detectable in crude aqueous and 95% ethanol extracts of soapnuts powder using FTIR spectroscopy, thereby eliminating the need of further expensive and exhaustive purification steps. The extracts of soapnuts were screened for saponins along with controls by phytochemical tests, and advanced spectroscopic techniques such as ultra fast liquid chromatography and ultra performance liquid chromatography quadrupole-time of flight-mass spectrometry were also implemented to validate the saponins.

  11. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both?

    Science.gov (United States)

    Käppler, Andrea; Fischer, Dieter; Oberbeckmann, Sonja; Schernewski, Gerald; Labrenz, Matthias; Eichhorn, Klaus-Jochen; Voit, Brigitte

    2016-11-01

    The contamination of aquatic ecosystems with microplastics has recently been reported through many studies, and negative impacts on the aquatic biota have been described. For the chemical identification of microplastics, mainly Fourier transform infrared (FTIR) and Raman spectroscopy are used. But up to now, a critical comparison and validation of both spectroscopic methods with respect to microplastics analysis is missing. To close this knowledge gap, we investigated environmental samples by both Raman and FTIR spectroscopy. Firstly, particles and fibres >500 μm extracted from beach sediment samples were analysed by Raman and FTIR microspectroscopic single measurements. Our results illustrate that both methods are in principle suitable to identify microplastics from the environment. However, in some cases, especially for coloured particles, a combination of both spectroscopic methods is necessary for a complete and reliable characterisation of the chemical composition. Secondly, a marine sample containing particles microplastics as well as spectra quality, measurement time and handling. We show that FTIR imaging leads to significant underestimation (about 35 %) of microplastics compared to Raman imaging, especially in the size range microplastics fraction into 500-50 μm (rapid and reliable analysis by FTIR imaging) and into 50-1 μm (detailed and more time-consuming analysis by Raman imaging). Graphical Abstract Marine microplastic sample (fraction <400 μm) on a silicon filter (middle) with the corresponding Raman and IR images.

  12. Coherent atomic and molecular spectroscopy in the far infrared

    International Nuclear Information System (INIS)

    Inguscio, M.

    1988-01-01

    Recent advances in far infrared spectroscopy of atoms (fine structure transitions) and molecules (rotational transitions) are reviewed. Results obtained by means of Laser Magnetic Resonance, using fixed frequency lasers, and Tunable Far Infrared spectrometers are illustrated. The importance of far infrared spectroscopy for several fields, including astrophysics, atmospheric physics, atomic structure and metology, is discussed. (orig.)

  13. Application of FTIR spectroscopy for analysis of the quality of honey

    Directory of Open Access Journals (Sweden)

    Kędzierska-Matysek Monika

    2018-01-01

    Full Text Available Every kind of honey is a very precious natural product which is made by Mellifera bees species. The chemical composition of honey depends on its origin or mode of production. Honey consists essentially of different sugars, predominantly fructose and glucose. There are also non – sugar ingredients like proteins and amino acids, as well as some kind of enzymes, such as: invertase, amylase, glucose oxidase, catalase and phosphatase. The fact that honey is one of the oldest medicine known worldwide is remarkable. Scientists all over the world have been trying to improve analytical methods as well as to implement new ones in order to reaffirm the high quality of honey the benefits of which may be distracted or disturbed. There are many methods and popular analytical techniques, including as follows: mass spectroscopy and molecular spectroscopy (especially FTIR spectroscopy. The infrared spectroscopy technique is one of the most common analytical methods which are used to analyse honey nowadays. The main aim of the task was to use ATR-FTIR infrared spectroscopy to compare selected honey samples as well as typical sequences coming out from certain functional groups in the analysed samples.

  14. Using MicroFTIR to Map Mineral Distributions in Serpentinizing Systems

    Science.gov (United States)

    Johnson, A.; Kubo, M. D.; Cardace, D.

    2016-12-01

    Serpentinization, the water-rock reaction forming serpentine mineral assemblages from ultramafic precursors, can co-occur with the production of hydrogen, methane, and diverse organic compounds (McCollom and Seewald, 2013), evolving water appropriate for carbonate precipitation, including in ophiolite groundwater flow systems and travertine-producing seeps/springs. Serpentinization is regarded as a geologic process important to the sustainability of the deep biosphere (Schrenk et al., 2013) and the origin of life (Schulte et al., 2006). In this study, we manually polished wafers of ultramafic rocks/associated minerals (serpentinite, peridotite, pyroxenite, dunite; olivine, diopside, serpentine, magnetite), and travertine/constituent minerals (carbonate crusts; calcite, dolomite), and observed mineral boundaries and interfaces using µFTIR analysis in reflection mode. We used a Thermo Nicolet iS50 FTIR spectrometer coupled with a Continuum IR microscope to map minerals/boundaries. We identify, confirm, and document FTIR wavenumber regions linked to serpentinite- and travertine-associated minerals by referencing IR spectra (RRUFF) and aligning with x-ray diffraction. The ultramafic and carbonate samples are from the following field localities: McLaughlin Natural Reserve - a UC research reserve, Lower Lake, CA; Zambales, PH; Ontario, CA; Yellow Dog, MI; Taskesti, TK; Twin Sisters Range, WA; Sharon, MA; Klamath Mountains, CA; Dun Mountain, NZ; and Sussex County, NJ. Our goals are to provide comprehensive µFTIR characterization of mineral profiles important in serpentinites and related rocks, and evaluate the resolving power of µFTIR for the detection of mineral-encapsulated, residual organic compounds from biological activity. We report on µFTIR data for naturally occurring ultramafics and travertines and also estimate the limit of detection for cell membrane components in mineral matrices, impregnating increasing mass proportions of xanthan gum in a peridotite sand

  15. Fourier Transform Infrared (FTIR Spectroscopy with Chemometric Techniques for the Classification of Ballpoint Pen Inks

    Directory of Open Access Journals (Sweden)

    Muhammad Naeim Mohamad Asri

    2015-12-01

    Full Text Available FTIR spectroscopic techniques have been shown to possess good abilities to analyse ballpoint pen inks. These in-situ techniques involve directing light onto ballpoint ink samples to generate an FTIR spectrum, providing “molecular fingerprints” of the ink samples thus allowing comparison by direct visual comparison. In this study, ink from blue (n=15 and red (n=15 ballpoint pens of five different brands: Kilometrico®, G-Soft®, Stabilo®, Pilot® and Faber Castell® was analysed using the FTIR technique with the objective of establishing a distinctive differentiation according to the brand. The resulting spectra were first compared and grouped manually. Due to the similarities in terms of colour and shade of the inks, distinctive differentiation could not be achieved by means of direct visual comparison. However, when the same spectral data was analysed by Principal Component Analysis (PCA software, distinctive grouping of the ballpoint pen inks was achieved. Our results demonstrate that PCA can be used objectively to investigate ballpoint pen inks of similar colour and more importantly of different brands.

  16. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite.

    Science.gov (United States)

    Reyes-Gasga, José; Martínez-Piñeiro, Esmeralda L; Rodríguez-Álvarez, Galois; Tiznado-Orozco, Gaby E; García-García, Ramiro; Brès, Etienne F

    2013-12-01

    The crystallinity index (CI) is a measure of the percentage of crystalline material in a given sample and it is also correlated to the degree of order within the crystals. In the literature two ways are reported to measure the CI: X-ray diffraction and infrared spectroscopy. Although the CI determined by these techniques has been adopted in the field of archeology as a structural order measure in the bone with the idea that it can help e.g. in the sequencing of the bones in chronological and/or stratigraphic order, some debate remains about the reliability of the CI values. To investigate similarities and differences between the two techniques, the CI of sound human tooth enamel and synthetic hydroxyapatite (HAP) was measured in this work by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), at room temperature and after heat treatment. Although the (CI)XRD index is related to the crystal structure of the samples and the (CI)FTIR index is related to the vibration modes of the molecular bonds, both indices showed similar qualitative behavior for heat-treated samples. At room temperature, the (CI)XRD value indicated that enamel is more crystalline than synthetic HAP, while (CI)FTIR indicated the opposite. Scanning (SEM) and transmission (TEM) images were also used to corroborate the measured CI values. © 2013.

  17. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development

    Science.gov (United States)

    Gardner, Jonathan (Technical Monitor); Tolls, Volker

    2004-01-01

    The optical modulation spectrometer (OMS) is a novel, highly efficient, low mass backend for heterodyne receiver systems. Current and future heterodyne receiver systems operating at frequencies up to a few THz require broadband spectrometer backends to achieve spectral resolutions of R approximately 10(exp 5) to 10(exp 6) to carry out many important astronomical investigations. Among these are observations of broad emission and absorption lines from extra-galactic objects at high redshifts, spectral line surveys, and observations of planetary atmospheres. Many of these lines are pressure or velocity broadened with either large half-widths or line wings extending over several GHz. Current backend systems can cover the needed bandwidth only by combining the output of several spectrometers, each with typically up to 1 GHz bandwidth, or by combining several frequency-shifted spectra taken with a single spectrometer. An ultra-wideband optical modulation spectrometer with 10 - 40 GHz bandwidth will enable broadband ob- servations without the limitations and disadvantages of hybrid spectrometers. Spectrometers like the OMS will be important for both ground-based observatories and future space missions like the Single Aperture Far-Infrared Telescope (SAFIR) which might carry IR/submm array heterodyne receiver systems requiring a spectrometer for each array pixel. Small size, low mass and small power consumption are extremely important for space missions. This report summarizes the specifications developed for the OMS and lists already identified commercial parts. The report starts with a review of the principle of operation, then describes the most important components and their specifications which were derived from theory, and finishes with a conclusion and outlook.

  18. Multivariate analysis of attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopic data to confirm phase partitioning in methacrylate-based dentin adhesive.

    Science.gov (United States)

    Ye, Qiang; Parthasarathy, Ranganathan; Abedin, Farhana; Laurence, Jennifer S; Misra, Anil; Spencer, Paulette

    2013-12-01

    Water is ubiquitous in the mouths of healthy individuals and is a major interfering factor in the development of a durable seal between the tooth and composite restoration. Water leads to the formation of a variety of defects in dentin adhesives; these defects undermine the tooth-composite bond. Our group recently analyzed phase partitioning of dentin adhesives using high-performance liquid chromatography (HPLC). The concentration measurements provided by HPLC offered a more thorough representation of current adhesive performance and elucidated directions to be taken for further improvement. The sample preparation and instrument analysis using HPLC are, however, time-consuming and labor-intensive. The objective of this work was to develop a methodology for rapid, reliable, and accurate quantitative analysis of near-equilibrium phase partitioning in adhesives exposed to conditions simulating the wet oral environment. Analysis by Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate statistical methods, including partial least squares (PLS) regression and principal component regression (PCR), were used for multivariate calibration to quantify the compositions in separated phases. Excellent predictions were achieved when either the hydrophobic-rich phase or the hydrophilic-rich phase mixtures were analyzed. These results indicate that FT-IR spectroscopy has excellent potential as a rapid method of detection and quantification of dentin adhesives that experience phase separation under conditions that simulate the wet oral environment.

  19. Structural features and functional properties of water in model DMPC membranes: thermally stimulated depolarization currents (TSDCs) and Fourier transform infrared (FTIR) studies

    International Nuclear Information System (INIS)

    Bridelli, M G; Capelletti, R; Mora, C

    2013-01-01

    Thermally stimulated depolarization currents (TSDCs) and Fourier transform infrared (FTIR) spectroscopies were employed to investigate the state of water incorporated in a model DMPC (dimyristoyl-phosphatidylcholine) membrane. The lipid multilayers, highly inhomogeneous from the dielectric point of view, originate complex TSDC spectra critically dependent on the sample water content and thermal history. Different temperature ranges were chosen to polarize the sample, i.e. 100–300 K (type I) and 100–285 K (type II). The purpose of the latter choice was to avoid any sample heating above the DMPC phase transition temperature (295 K) along the sample polarization. According to the results, water in a fully hydrated system (a w  = 0.92) (1) is ordered around the hydrophilic head molecular groups, (2) is layered in the interbilayer space and (3) penetrates among the hydrocarbon chains. It can assume different local structural configurations depending on the lipid packing. Irreversible conformational transitions in the lipid array system were monitored as a consequence of different dehydration treatments. FTIR absorption measurements were performed to study the water sorption kinetics into a DMPC thin film. The water related OH band was decomposed into three components, describing three water states, with different propensity to the H-bond formation. The changes of the lipid characteristic groups (CH 2 /CH 3 , PO 2 − and C=O) absorption bands as a function of increasing hydration level were monitored and discussed. (paper)

  20. QUANTITATIVE FOURIER TRANSFORM INFRARED SPECTROSCOPIC INVESTIGATION OF HUMIC SUBSTANCE FUNCTIONAL GROUP COMPOSITION

    Science.gov (United States)

    Infrared (IR) spectroscopy has been widely used for the structural investigation of humic substances. Although Fourier Transform Infrared (FTIR) instrumentation has been available for sometime, relatively little work with these instruments has been reported for humic substances,...

  1. Application of Near-Infrared and Fourier Transform Infrared Spectroscopy in the Characterization of Ligand-Induced Conformation Changes in Folate Binding Protein Purified from Bovine Milk

    DEFF Research Database (Denmark)

    Bruun, Susanne Wrang; Holm, Jan; Hansen, Steen Ingemann

    2006-01-01

    Fourier transform infrared (FT-IR) and near-infrared (NIR) spectroscopy have been applied to detect structural alterations in folate binding protein (FBP) induced by ligation in different buffer types. The amide I region pointed to a beta-sheet to alpha-helix transition upon ligation in acetate...

  2. Fourier Transform Infrared Spectroscopy and Photoacoustic Spectroscopy for Saliva Analysis.

    Science.gov (United States)

    Mikkonen, Jopi J W; Raittila, Jussi; Rieppo, Lassi; Lappalainen, Reijo; Kullaa, Arja M; Myllymaa, Sami

    2016-09-01

    Saliva provides a valuable tool for assessing oral and systemic diseases, but concentrations of salivary components are very small, calling the need for precise analysis methods. In this work, Fourier transform infrared (FT-IR) spectroscopy using transmission and photoacoustic (PA) modes were compared for quantitative analysis of saliva. The performance of these techniques was compared with a calibration series. The linearity of spectrum output was verified by using albumin-thiocyanate (SCN(-)) solution at different SCN(-) concentrations. Saliva samples used as a comparison were obtained from healthy subjects. Saliva droplets of 15 µL were applied on the silicon sample substrate, 6 drops for each specimen, and dried at 37 ℃ overnight. The measurements were carried out using an FT-IR spectrometer in conjunction with an accessory unit for PA measurements. The findings with both transmission and PA modes mirror each other. The major bands presented were 1500-1750 cm(-1) for proteins and 1050-1200 cm(-1) for carbohydrates. In addition, the distinct spectral band at 2050 cm(-1) derives from SCN(-) anions, which is converted by salivary peroxidases to hypothiocyanate (OSCN(-)). The correlation between the spectroscopic data with SCN(-) concentration (r > 0.990 for transmission and r = 0.967 for PA mode) was found to be significant (P < 0.01), thus promising to be utilized in future applications. © The Author(s) 2016.

  3. ATR-FTIR for rapid detection and quantification of counterfeit medicines

    OpenAIRE

    Ogwu, John; Lawson, Graham; Tanna, Sangeeta

    2015-01-01

    From therapeutic to lifestyle medicines, the counterfeiting of medicines has been on the rise in recent times [1]. Estimates indicate that about 10% of medicines worldwide are counterfeits with much higher figures in developing countries [2]. Currently, the rapid screening of medicines is a challenge leaving many patients at risk [1]. This study considered the potential use of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) for rapid quantitative analysis of ta...

  4. Assessment of Transition Element Speciation in Glasses Using a Portable Transmission Ultraviolet-Visible-Near-Infrared (UV-Vis-NIR) Spectrometer.

    Science.gov (United States)

    Hunault, Myrtille; Lelong, Gérald; Gauthier, Michel; Gélébart, Frédéric; Ismael, Saindou; Galoisy, Laurence; Bauchau, Fanny; Loisel, Claudine; Calas, Georges

    2016-05-01

    A new low-cost experimental setup based on two compact dispersive optical spectrometers has been developed to measure optical absorption transmission spectra over the 350-2500 nm energy range. We demonstrate how near-infrared (NIR) data are essential to identify the coloring species in addition to ultraviolet visible data. After calibration with reference glasses, the use of an original sample stage that maintains the window panel in the vertical position enables the comparison of ancient and modern glasses embedded in a panel from the Sainte-Chapelle of Paris, without any sampling. The spectral resolution enables to observe fine resonances arising in the absorption bands of Cr(3+), and the complementary information obtained in the NIR enables to determine the contribution of Fe(2+), a key indicator of glassmaking conditions. © The Author(s) 2016.

  5. EARLY SCIENCE WITH SOFIA, THE STRATOSPHERIC OBSERVATORY FOR INFRARED ASTRONOMY

    Energy Technology Data Exchange (ETDEWEB)

    Young, E. T.; Becklin, E. E.; De Buizer, J. M.; Andersson, B.-G.; Casey, S. C.; Helton, L. A. [SOFIA Science Center, Universities Space Research Association, NASA Ames Research Center, MS 232, Moffett Field, CA 94035 (United States); Marcum, P. M.; Roellig, T. L.; Temi, P. [NASA Ames Research Center, MS 232, Moffett Field, CA 94035 (United States); Herter, T. L. [Astronomy Department, 202 Space Sciences Building, Cornell University, Ithaca, NY 14853-6801 (United States); Guesten, R. [Max-Planck Institut fuer Radioastronomie, Auf dem Huegel 69, Bonn (Germany); Dunham, E. W. [Lowell Observatory, 1400 W. Mars Hill Rd., Flagstaff AZ 86001 (United States); Backman, D.; Burgdorf, M. [SOFIA Science Center, NASA Ames Research Center, MS 211-1, Moffett Field, CA 94035 (United States); Caroff, L. J.; Erickson, E. F. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Davidson, J. A. [School of Physics, The University of Western Australia (M013), 35 Stirling Highway, Crawley WA 6009 (Australia); Gehrz, R. D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S. E., University of Minnesota, Minneapolis, MN 55455 (United States); Harper, D. A. [Yerkes Observatory, University of Chicago, 373 W. Geneva St., Williams Bay, WI (United States); Harvey, P. M. [Astronomy Department, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); and others

    2012-04-20

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is an airborne observatory consisting of a specially modified Boeing 747SP with a 2.7 m telescope, flying at altitudes as high as 13.7 km (45,000 ft). Designed to observe at wavelengths from 0.3 {mu}m to 1.6 mm, SOFIA operates above 99.8% of the water vapor that obscures much of the infrared and submillimeter. SOFIA has seven science instruments under development, including an occultation photometer, near-, mid-, and far-infrared cameras, infrared spectrometers, and heterodyne receivers. SOFIA, a joint project between NASA and the German Aerospace Center Deutsches Zentrum fuer Luft und-Raumfahrt, began initial science flights in 2010 December, and has conducted 30 science flights in the subsequent year. During this early science period three instruments have flown: the mid-infrared camera FORCAST, the heterodyne spectrometer GREAT, and the occultation photometer HIPO. This Letter provides an overview of the observatory and its early performance.

  6. Combination of FTIR and SEM for Identifying Freshwater-Cultured Pearls from Different Quality

    Science.gov (United States)

    Satitkune, Somruedee; Monarumit, Natthapong; Boonmee, Chakkrich; Phlayrahan, Aumaparn; Promdee, Kittiphop; Won-in, Krit

    2016-03-01

    The freshwater-cultured pearl ( Chamberlainia hainesiana species) is an organic gemstone mainly composed of calcium carbonate mineral including calcite, aragonite and vaterite phases. Generally, the quality of freshwater-cultured pearl is based on its luster. The high luster pearl is full of the aragonite phase without vaterite phase. On the other hand, the low luster pearl consists of aragonite and vaterite phases. These data could be proved by the Fourier Transform Infrared (FTIR) spectroscopy combined with the scanning electron microscopy (SEM). As the results, the high luster pearl similarly shows the FTIR spectrum of aragonite phase, and also, it shows the hexagonal shape of aragonite for the SEM image. On the other hand, the FTIR spectrum of low luster pearl has been pointed to the mixture component among aragonite and vaterite phases, and based on the SEM image; the irregular form is also interpreted to the mixture of aragonite and vaterite phases. This research concludes that the quality of freshwater-cultured pearls can be identified by the combination data of FTIR spectra and SEM images. These techniques are suitable for applied gemology.

  7. Imaging of lipids in atherosclerotic lesion in aorta from ApoE/LDLR-/- mice by FT-IR spectroscopy and Hierarchical Cluster Analysis.

    Science.gov (United States)

    P Wrobel, Tomasz; Mateuszuk, Lukasz; Chlopicki, Stefan; Malek, Kamilla; Baranska, Malgorzata

    2011-12-21

    Spectroscopy-based approaches can provide an insight into the biochemical composition of a tissue sample. In the present work Fourier transform infrared (FT-IR) spectroscopy was used to develop a reliable methodology to study the content of free fatty acids, triglycerides, cholesteryl esters as well as cholesterol in aorta from mice with atherosclerosis (ApoE/LDLR(-/-) mice). In particular, distribution and concentration of palmitic, oleic and linoleic acid derivatives were analyzed. Spectral analysis of pure compounds allowed for clear discrimination between free fatty acids and other similar moieties based on the carbonyl band position (1699-1710 cm(-1) range). In order to distinguish cholesteryl esters from triglycerides a ratio of carbonyl band to signal at 1010 cm(-1) was used. Imaging of lipids in atherosclerotic aortic lesions in ApoE/LDLR(-/-) mice was followed by Hierarchical Cluster Analysis (HCA). The aorta from C57Bl/6J control mice (fed with chow diet) was used for comparison. The measurements were completed with an FT-IR spectrometer equipped with a 128 × 128 FPA detector. In cross-section of aorta from ApoE/LDLR(-/-) mice a region of atherosclerotic plaque was clearly identified by HCA, which was later divided into 2 sub-regions, one characterized by the higher content of cholesterol, while the other by higher contents of cholesteryl esters. HCA of tissues deposited on normal microscopic glass, hence limited to the 2200-3800 cm(-1) spectral range, also identified a region of atherosclerotic plaque. Importantly, this region correlates with the area stained by standard histological staining for atherosclerotic plaque (Oil Red O). In conclusion, the use of FT-IR and HCA may provide a novel tool for qualitative and quantitative analysis of contents and distribution of lipids in atherosclerotic plaque.

  8. Validation of HNO3, ClONO2, and N2O5 from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS

    Directory of Open Access Journals (Sweden)

    P. Raspollini

    2008-07-01

    Full Text Available The Atmospheric Chemistry Experiment (ACE satellite was launched on 12 August 2003. Its two instruments measure vertical profiles of over 30 atmospheric trace gases by analyzing solar occultation spectra in the ultraviolet/visible and infrared wavelength regions. The reservoir gases HNO3, ClONO2, and N2O5 are three of the key species provided by the primary instrument, the ACE Fourier Transform Spectrometer (ACE-FTS. This paper describes the ACE-FTS version 2.2 data products, including the N2O5 update, for the three species and presents validation comparisons with available observations. We have compared volume mixing ratio (VMR profiles of HNO3, ClONO2, and N2O5 with measurements by other satellite instruments (SMR, MLS, MIPAS, aircraft measurements (ASUR, and single balloon-flights (SPIRALE, FIRS-2. Partial columns of HNO3 and ClONO2 were also compared with measurements by ground-based Fourier Transform Infrared (FTIR spectrometers. Overall the quality of the ACE-FTS v2.2 HNO3 VMR profiles is good from 18 to 35 km. For the statistical satellite comparisons, the mean absolute differences are generally within ±1 ppbv ±20% from 18 to 35 km. For MIPAS and MLS comparisons only, mean relative differences lie within±10% between 10 and 36 km. ACE-FTS HNO3 partial columns (~15–30 km show a slight negative bias of −1.3% relative to the ground-based FTIRs at latitudes ranging from 77.8° S–76.5° N. Good agreement between ACE-FTS ClONO2 and MIPAS, using the Institut für Meteorologie und Klimaforschung and Instituto de Astrofísica de Andalucía (IMK-IAA data processor is seen. Mean absolute differences are typically within ±0.01 ppbv between 16 and 27 km and less than +0.09 ppbv between 27 and 34 km. The ClONO2 partial column comparisons show varying degrees of agreement, depending on the location and the quality of the FTIR measurements. Good agreement was found for the comparisons with the midlatitude Jungfraujoch partial columns for which

  9. Absorption cross-section measurements of methane, ethane, ethylene and methanol at high temperatures

    KAUST Repository

    Alrefae, Majed; Es-sebbar, Et-touhami; Farooq, Aamir

    2014-01-01

    Mid-IR absorption cross-sections are measured for methane, ethane, ethylene and methanol over 2800-3400 cm-1 (2.9-3.6 μm) spectral region. Measurements are carried out using a Fourier-Transform-Infrared (FTIR) spectrometer with temperatures ranging

  10. Analysis of Chuanxiong Rhizoma and its active components by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy.

    Science.gov (United States)

    Guo, Yizhen; Lv, Beiran; Wang, Jingjuan; Liu, Yang; Sun, Suqin; Xiao, Yao; Lu, Lina; Xiang, Li; Yang, Yanfang; Qu, Lei; Meng, Qinghong

    2016-01-15

    As complicated mixture systems, active components of Chuanxiong Rhizoma are very difficult to identify and discriminate. In this paper, the macroscopic IR fingerprint method including Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR), was applied to study and identify Chuanxiong raw materials and its different segmented production of HPD-100 macroporous resin. Chuanxiong Rhizoma is rich in sucrose. In the FT-IR spectra, water eluate is more similar to sucrose than the powder and the decoction. Their second derivative spectra amplified the differences and revealed the potentially characteristic IR absorption bands and combined with the correlation coefficient, concluding that 50% ethanol eluate had more ligustilide than other eluates. Finally, it can be found from 2DCOS-IR spectra that proteins were extracted by ethanol from Chuanxiong decoction by HPD-100 macroporous resin. It was demonstrated that the above three-step infrared spectroscopy could be applicable for quick, non-destructive and effective analysis and identification of very complicated and similar mixture systems of traditional Chinese medicines. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Assessment of the Inhibitory Effect of Rifampicin on Amyloid Formation of Hen Egg White Lysozyme: Thioflavin T Fluorescence Assay versus FTIR Difference Spectroscopy

    Directory of Open Access Journals (Sweden)

    Gang Ma

    2014-01-01

    Full Text Available The inhibitory effect of rifampicin on the amyloid formation of hen egg white lysozyme was assessed with both Thioflavin T (ThT fluorescence assay and Fourier transform infrared (FTIR difference spectroscopy. We reveal that ThT fluorescence assay gives a false positive result due to rifampicin interference, while FTIR difference spectroscopy provides a reliable assessment. With FTIR, we show that rifampicin only has marginally inhibitory effect. We then propose that FTIR difference spectroscopy can potentially be a convenient method for inhibitor screening in amyloid study.

  12. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy as an Analytical Method to Investigate the Secondary Structure of a Model Protein Embedded in Solid Lipid Matrices.

    Science.gov (United States)

    Zeeshan, Farrukh; Tabbassum, Misbah; Jorgensen, Lene; Medlicott, Natalie J

    2018-02-01

    Protein drugs may encounter conformational perturbations during the formulation processing of lipid-based solid dosage forms. In aqueous protein solutions, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can investigate these conformational changes following the subtraction of spectral interference of solvent with protein amide I bands. However, in solid dosage forms, the possible spectral contribution of lipid carriers to protein amide I band may be an obstacle to determine conformational alterations. The objective of this study was to develop an ATR FT-IR spectroscopic method for the analysis of protein secondary structure embedded in solid lipid matrices. Bovine serum albumin (BSA) was chosen as a model protein, while Precirol AT05 (glycerol palmitostearate, melting point 58 ℃) was employed as the model lipid matrix. Bovine serum albumin was incorporated into lipid using physical mixing, melting and mixing, or wet granulation mixing methods. Attenuated total reflection FT-IR spectroscopy and size exclusion chromatography (SEC) were performed for the analysis of BSA secondary structure and its dissolution in aqueous media, respectively. The results showed significant interference of Precirol ATO5 with BSA amide I band which was subtracted up to 90% w/w lipid content to analyze BSA secondary structure. In addition, ATR FT-IR spectroscopy also detected thermally denatured BSA solid alone and in the presence of lipid matrix indicating its suitability for the detection of denatured protein solids in lipid matrices. Despite being in the solid state, conformational changes occurred to BSA upon incorporation into solid lipid matrices. However, the extent of these conformational alterations was found to be dependent on the mixing method employed as indicated by area overlap calculations. For instance, the melting and mixing method imparted negligible effect on BSA secondary structure, whereas the wet granulation mixing method promoted

  13. Characterisation of model compounds and a synthetic coal by TG/MS/FTIR to represent the pyrolysis behaviour of coal

    Energy Technology Data Exchange (ETDEWEB)

    Arenillas, A.; Pevida, C.; Rubiera, F.; Garcia, R.; Pis, J.J. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2004-06-01

    Coal pyrolysis is the initial, accompanying reaction of a number of coal conversion processes such as hydrogenation, combustion and gasification. However, because of the inherent complexity of coal composition, it is difficult to describe coal pyrolysis clearly. Single model compounds have been used before in order to provide additional insight into the complex processes that occur in the pyrolysis of coal. Yet the picture obtained is a simplified one and certain important aspects such as coal structure, interactions between different surface groups and cross-links are omitted. The approach used in this work involves the preparation of a synthetic coal, SC, with a known structure by curing a mixture of single, well-defined model compounds. By means of chemical characterisation, the SC was shown to contain the macroscopic features of a high volatile coal (proximate and ultimate analyses). FTIR characterisation revealed the presence of functional groups similar to those of coal in the structure of the SC. Temperature-programmed pyrolysis tests were performed in a thermobalance linked to a mass spectrometer and a Fourier transform infrared analyser (TG/MS/FTIR). The thermal behaviour of the synthetic coal (i.e., rate of mass loss and the evolution profiles of gaseous compounds during pyrolysis tests) is very similar to that of the high volatile bituminous coal which was used as a reference material. The great advantage of using SC lies in the fact that its composition and structure can be accurately determined and employed in subsequent applications in basic and mechanistic studies.

  14. Visible and infrared mapping spectrometer (VIMS) - a facility instrument for planetary missions

    International Nuclear Information System (INIS)

    Wellman, J.B.; Duval, J.; Juergens, D.; Voss, J.

    1988-01-01

    A second-generation visible and IR mapping spectrometer (VIMS), selected for both the Mars Observer and Comet Rendezvous Asteroid Flyby (CRAF) missions, is described. VIMS is a scanning spectrometer with a focal plane consisting of linear arrays of visible and IR detectors, cooled by a radiative cooler. It is noted that a wide-angle scan using a full-aperture scan mirror was implemented for the Mars Observer; a narrow-angle scan using a scanning secondary mirror within a Cassegrain foreoptic was achieved for the CRAF mission. 11 references

  15. Mineral Potential in India Using Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) Data

    Science.gov (United States)

    Oommen, T.; Chatterjee, S.

    2017-12-01

    NASA and the Indian Space Research Organization (ISRO) are generating Earth surface features data using Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) within 380 to 2500 nm spectral range. This research focuses on the utilization of such data to better understand the mineral potential in India and to demonstrate the application of spectral data in rock type discrimination and mapping for mineral exploration by using automated mapping techniques. The primary focus area of this research is the Hutti-Maski greenstone belt, located in Karnataka, India. The AVIRIS-NG data was integrated with field analyzed data (laboratory scaled compositional analysis, mineralogy, and spectral library) to characterize minerals and rock types. An expert system was developed to produce mineral maps from AVIRIS-NG data automatically. The ground truth data from the study areas was obtained from the existing literature and collaborators from India. The Bayesian spectral unmixing algorithm was used in AVIRIS-NG data for endmember selection. The classification maps of the minerals and rock types were developed using support vector machine algorithm. The ground truth data was used to verify the mineral maps.

  16. SIBI: A compact hyperspectral camera in the mid-infrared

    Science.gov (United States)

    Pola Fossi, Armande; Ferrec, Yann; Domel, Roland; Coudrain, Christophe; Guerineau, Nicolas; Roux, Nicolas; D'Almeida, Oscar; Bousquet, Marc; Kling, Emmanuel; Sauer, Hervé

    2015-10-01

    Recent developments in unmanned aerial vehicles have increased the demand for more and more compact optical systems. In order to bring solutions to this demand, several infrared systems are being developed at ONERA such as spectrometers, imaging devices, multispectral and hyperspectral imaging systems. In the field of compact infrared hyperspectral imaging devices, ONERA and Sagem Défense et Sécurité have collaborated to develop a prototype called SIBI, which stands for "Spectro-Imageur Birefringent Infrarouge". It is a static Fourier transform imaging spectrometer which operates in the mid-wavelength infrared spectral range and uses a birefringent lateral shearing interferometer. Up to now, birefringent interferometers have not been often used for hyperspectral imaging in the mid-infrared because of the lack of crystal manufacturers, contrary to the visible spectral domain where the production of uniaxial crystals like calcite are mastered for various optical applications. In the following, we will present the design and the realization of SIBI as well as the first experimental results.

  17. FTIR study of aquamarines after gamma irradiation, heat treatment and electrodiffusion

    International Nuclear Information System (INIS)

    Alkmim, Danielle Gomides; Almeida, Frederico Ozanan Tomaz de; Lameiras, Fernando Soares

    2017-01-01

    Beryl, Be_3Al_2(SiO_3)_6, is a natural gemstone with many colors. Some of these colors can be induced or modified by exposure to ionizing radiation, by heating, and maybe by electrodiffusion. Small contents of chromophore chemical elements are related to the colors of beryl, like iron, chromium, vanadium, manganese, and others. There is great interest in relation to methods of improving or inducing colors in beryl. There is evidence that infrared spectroscopy (FTIR) can contribute to foresee beryl behavior submitted to procedures for color change. It was observed that electrodiffusion with or without contaminant ions did not alter the FTIR spectrum of aquamarines, unlike heat treatment. Green samples have a higher content of type I water molecules, whereas blue samples have a higher content of type II water molecules. Significant changes in FTIR spectra of aquamarines were observed only in green samples after exposure to gamma rays or to heat. The vanishing of the band at 3633 cm"-"1 may be related to the position of Na"+ ion in the crystal lattice of beryl. (author)

  18. FTIR study of aquamarines after gamma irradiation, heat treatment and electrodiffusion

    Directory of Open Access Journals (Sweden)

    Danielle Gomides Alkmim

    Full Text Available Abstract Beryl, Be3Al2(SiO36, is a natural gemstone with many colors. Some of these colors can be induced or modified by exposure to ionizing radiation, by heating, and maybe by electrodiffusion. Small contents of chromophore chemical elements are related to the colors of beryl, like iron, chromium, vanadium, manganese, and others. There is great interest in relation to methods of improving or inducing colors in beryl. There is evidence that infrared spectroscopy (FTIR can contribute to foresee beryl behavior submitted to procedures for color change. It was observed that electrodiffusion with or without contaminant ions did not alter the FTIR spectrum of aquamarines, unlike heat treatment. Green samples have a higher content of type I water molecules, whereas blue samples have a higher content of type II water molecules. Significant changes in FTIR spectra of aquamarines were observed only in green samples after exposure to gamma rays or to heat. The vanishing of the band at 3633 cm-1 may be related to the position of Na+ ion in the crystal lattice of beryl.

  19. Complex refractive index measurements for BaF 2 and CaF 2 via single-angle infrared reflectance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kelly-Gorham, Molly Rose K.; DeVetter, Brent M.; Brauer, Carolyn S.; Cannon, Bret D.; Burton, Sarah D.; Bliss, Mary; Johnson, Timothy J.; Myers, Tanya L.

    2017-10-01

    We have re-investigated the optical constants n and k for the homologous series of inorganic salts barium fluoride (BaF2) and calcium fluoride (CaF2) using a single-angle near-normal incidence reflectance device in combination with a calibrated Fourier transform infrared (FTIR) spectrometer. Our results are in good qualitative agreement with most previous works. However, certain features of the previously published data near the reststrahlen band exhibit distinct differences in spectral characteristics. Notably, our measurements of BaF2 do not include a spectral feature in the ~250 cm-1 reststrahlen band that was previously published. Additionally, CaF2 exhibits a distinct wavelength shift relative to the model derived from previously published data. We confirmed our results with recently published works that use significantly more modern instrumentation and data reduction techniques

  20. Identification of Quercus agrifolia (coast live oak resistant to the invasive pathogen Phytophthora ramorum in native stands using Fourier-transform infrared (FT-IR spectroscopy

    Directory of Open Access Journals (Sweden)

    Anna Olivia Conrad

    2014-10-01

    Full Text Available Over the last two decades coast live oak (CLO dominance in many California coastal ecosystems has been threatened by the alien invasive pathogen Phytophthora ramorum, the causal agent of sudden oak death. In spite of high infection and mortality rates in some areas, the presence of apparently resistant trees has been observed, including trees that become infected but recover over time. However, identifying resistant trees based on recovery alone can take many years. The objective of this study was to determine if Fourier-transform infrared (FT-IR spectroscopy, a chemical fingerprinting technique, can be used to identify CLO resistant to P. ramorum prior to infection. Soft independent modeling of class analogy identified spectral regions that differed between resistant and susceptible trees. Regions most useful for discrimination were associated with carbonyl group vibrations. Additionally, concentrations of two putative phenolic biomarkers of resistance were predicted using partial least squares regression; > 99% of the variation was explained by this analysis. This study demonstrates that chemical fingerprinting can be used to identify resistance in a natural population of forest trees prior to infection with a pathogen. FT-IR spectroscopy may be a useful approach for managing forests impacted by sudden oak death, as well as in other situations where emerging or existing forest pests and diseases are of concern.

  1. FTIR

    International Nuclear Information System (INIS)

    Gierczak, C.A.; Andino, J.M.; Butler, J.W.; Heiser, G.A.; Jesion, G.; Korniski, T.J.

    1991-01-01

    FTIR spectroscopy has been shown to be a valuable tool in the analysis of complex gas phase mixtures, such as dilute vehicle exhaust. Regulated and non-regulated vehicle emissions have been routinely sampled and analyzed using prototype instrumentation developed in this laboratory, and in several other laboratories over the last decade. More recently, commercial versions of these FTIR analyzers have become available through several manufacturers. This paper reviews the data acquisition and processing techniques utilized by the FTIR analyzer developed in this laboratory. The statistical detection limits for 22 of the components analyzed by the system are presented. In addition, the linearity of the carbon monoxide (CO) analysis is demonstrated over several orders of magnitude. Experiments designed to study the effects of environmental parameters on the accuracy and the sensitivity of the system are also described

  2. Quantitative determination of polyphosphate in sediments using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy and partial least squares regression.

    Science.gov (United States)

    Khoshmanesh, Aazam; Cook, Perran L M; Wood, Bayden R

    2012-08-21

    Phosphorus (P) is a major cause of eutrophication and subsequent loss of water quality in freshwater ecosystems. A major part of the flux of P to eutrophic lake sediments is organically bound or of biogenic origin. Despite the broad relevance of polyphosphate (Poly-P) in bioremediation and P release processes in the environment, its quantification is not yet well developed for sediment samples. Current methods possess significant disadvantages because of the difficulties associated with using a single extractant to extract a specific P compound without altering others. A fast and reliable method to estimate the quantitative contribution of microorganisms to sediment P release processes is needed, especially when an excessive P accumulation in the form of polyphosphate (Poly-P) occurs. Development of novel approaches for application of emerging spectroscopic techniques to complex environmental matrices such as sediments significantly contributes to the speciation models of P mobilization, biogeochemical nutrient cycling and development of nutrient models. In this study, for the first time Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy in combination with partial least squares (PLS) was used to quantify Poly-P in sediments. To reduce the high absorption matrix components in sediments such as silica, a physical extraction method was developed to separate sediment biological materials from abiotic particles. The aim was to achieve optimal separation of the biological materials from sediment abiotic particles with minimum chemical change in the sample matrix prior to ATR-FTIR analysis. Using a calibration set of 60 samples for the PLS prediction models in the Poly-P concentration range of 0-1 mg g(-1) d.w. (dry weight of sediment) (R(2) = 0.984 and root mean square error of prediction RMSEP = 0.041 at Factor-1) Poly-P could be detected at less than 50 μg g(-l) d.w. Using this technique, there is no solvent extraction or chemical

  3. Aberration-free FTIR spectroscopic imaging of live cells in microfluidic devices.

    Science.gov (United States)

    Chan, K L Andrew; Kazarian, Sergei G

    2013-07-21

    The label-free, non-destructive chemical analysis offered by FTIR spectroscopic imaging is a very attractive and potentially powerful tool for studies of live biological cells. FTIR imaging of live cells is a challenging task, due to the fact that cells are cultured in an aqueous environment. While the synchrotron facility has proven to be a valuable tool for FTIR microspectroscopic studies of single live cells, we have demonstrated that high quality infrared spectra of single live cells using an ordinary Globar source can also be obtained by adding a pair of lenses to a common transmission liquid cell. The lenses, when placed on the transmission cell window, form pseudo hemispheres which removes the refraction of light and hence improve the imaging and spectral quality of the obtained data. This study demonstrates that infrared spectra of single live cells can be obtained without the focus shifting effect at different wavenumbers, caused by the chromatic aberration. Spectra of the single cells have confirmed that the measured spectral region remains in focus across the whole range, while spectra of the single cells measured without the lenses have shown some erroneous features as a result of the shift of focus. It has also been demonstrated that the addition of lenses can be applied to the imaging of cells in microfabricated devices. We have shown that it was not possible to obtain a focused image of an isolated cell in a droplet of DPBS in oil unless the lenses are applied. The use of the approach described herein allows for well focused images of single cells in DPBS droplets to be obtained.

  4. Methods for quantitative infrared directional-hemispherical and diffuse reflectance measurements using an FTIR and a commercial integrating sphere

    Energy Technology Data Exchange (ETDEWEB)

    Blake, Thomas A.; Johnson, Timothy J.; Tonkyn, Russell G.; Forland, Brenda M.; Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong; Bernacki, Bruce E.; Hanssen, Leonard; Gonzalez, Gerardo

    2018-01-01

    Infrared integrating sphere measurements of solid samples are important in providing reference data for contact, standoff and remote sensing applications. At the Pacific Northwest National Laboratory (PNNL) we have developed protocols to measure both the directional-hemispherical ( and diffuse (d) reflectances of powders, liquids, and disks of powders and solid materials using a commercially available, matte gold-coated integrating sphere and Fourier transform infrared spectrometer. Detailed descriptions of the sphere alignment and its use for making these reflectance measurements are given. Diffuse reflectance values were found to be dependent on the bidirectional reflection distribution function (BRDF) of the sample and the solid angle intercepted by the sphere’s specular exclusion port. To determine how well the sphere and protocols produce quantitative reflectance data, measurements were made of three diffuse and two specular standards prepared by the National institute of Standards and Technology (NIST, USA), LabSphere Infragold and Spectralon standards, hand-loaded sulfur and talc powder samples, and water. The five NIST standards behaved as expected: the three diffuse standards had a high degree of “diffuseness,” d/ = D > 0.9, whereas the two specular standards had D ≤ 0.03. The average absolute differences between the NIST and PNNL measurements of the NIST standards for both directional-hemispherical and diffuse reflectances are on the order of 0.01 reflectance units. Other quantitative differences between the PNNL-measured and calibration (where available) or literature reflectance values for these standards and materials are given and the possible origins of discrepancies are discussed. Random uncertainties and estimates of systematic uncertainties are presented. Corrections necessary to provide better agreement between the PNNL reflectance values as measured for the NIST standards and the NIST reflectance values for these same standards are also

  5. Raman and Fourier Transform Infrared (FT-IR) Mineral to Matrix Ratios Correlate with Physical Chemical Properties of Model Compounds and Native Bone Tissue.

    Science.gov (United States)

    Taylor, Erik A; Lloyd, Ashley A; Salazar-Lara, Carolina; Donnelly, Eve

    2017-10-01

    Raman and Fourier transform infrared (FT-IR) spectroscopic imaging techniques can be used to characterize bone composition. In this study, our objective was to validate the Raman mineral:matrix ratios (ν 1 PO 4 :amide III, ν 1 PO 4 :amide I, ν 1 PO 4 :Proline + hydroxyproline, ν 1 PO 4 :Phenylalanine, ν 1 PO 4 :δ CH 2 peak area ratios) by correlating them to ash fraction and the IR mineral:matrix ratio (ν 3 PO 4 :amide I peak area ratio) in chemical standards and native bone tissue. Chemical standards consisting of varying ratios of synthetic hydroxyapatite (HA) and collagen, as well as bone tissue from humans, sheep, and mice, were characterized with confocal Raman spectroscopy and FT-IR spectroscopy and gravimetric analysis. Raman and IR mineral:matrix ratio values from chemical standards increased reciprocally with ash fraction (Raman ν 1 PO 4 /Amide III: P Raman ν 1 PO 4 /Amide I: P Raman ν 1 PO 4 /Proline + Hydroxyproline: P Raman ν 1 PO 4 /Phenylalanine: P Raman ν 1 PO 4 /δ CH 2 : P Raman and IR mineral:matrix ratio values were strongly correlated ( P Raman mineral:matrix bone composition parameter correlates strongly to ash fraction and to its IR counterpart. Finally, the mineral:matrix ratio values of the native bone tissue are similar to those of both chemical standards and theoretical values, confirming the biological relevance of the chemical standards and the characterization techniques.

  6. A FTIR study water in membrane of nitrocellulose prepared by phase inversion

    International Nuclear Information System (INIS)

    Benosmane, N.; Boutemeur, B.; Hamdi, M.

    2004-01-01

    Full text.Cellulose derivates were the first biopolymers used to produce synthesis membranes for technical applications, in this study the state of water in asymmetric membrane of nitrocellulose, prepared by the phase inversion process, was investigated using infrared spectroscopy (FTIR), after membrane preparation by the wet inversion process in acetone, the spectre FTIR of wet asymmetric membrane of nitrocellulose after immersion in water (after one week) is compared to the spectre of dried asymmetric membrane of nitrocellulose, the difference in spectre of dried and wet membrane indicate a weakly hydrogen-bonded to the polymer hydroxyl groups between water and hydroxyl groups in surface of membrane, the results demonstrate the amount of water species present in the surface of asymmetric membrane and heterogeneous of surface

  7. Measurement of conjugated linoleic acid (CLA) in CLA-rich soy oil by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR).

    Science.gov (United States)

    Kadamne, Jeta V; Jain, Vishal P; Saleh, Mohammed; Proctor, Andrew

    2009-11-25

    Conjugated linoleic acid (CLA) isomers in oils are currently measured as fatty acid methyl esters by a gas chromatography-flame ionization detector (GC-FID) technique, which requires approximately 2 h to complete the analysis. Hence, we aim to develop a method to rapidly determine CLA isomers in CLA-rich soy oil. Soy oil with 0.38-25.11% total CLA was obtained by photo-isomerization of 96 soy oil samples for 24 h. A sample was withdrawn at 30 min intervals with repeated processing using a second batch of oil. Six replicates of GC-FID fatty acid analysis were conducted for each oil sample. The oil samples were scanned using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and the spectrum was collected. Calibration models were developed using partial least-squares (PLS-1) regression using Unscrambler software. Models were validated using a full cross-validation technique and tested using samples that were not included in the calibration sample set. Measured and predicted total CLA, trans,trans CLA isomers, total mono trans CLA isomers, trans-10,cis-12 CLA, trans-9,cis-11 CLA and cis-10,trans-12 CLA, and cis-9,trans-11 CLA had cross-validated coefficients of determinations (R2v) of 0.97, 0.98, 0.97, 0.98, 0.97, and 0.99 and corresponding root-mean-square error of validation (RMSEV) of 1.14, 0.69, 0.27, 0.07, 0.14, and 0.07% CLA, respectively. The ATR-FTIR technique is a rapid and less expensive method for determining CLA isomers in linoleic acid photo-isomerized soy oil than GC-FID.

  8. Analytical method development and validation for quantification of uranium in compounds of the nuclear fuel cycle by Fourier Transform Infrared (FTIR) Spectroscopy

    International Nuclear Information System (INIS)

    Pereira, Elaine

    2016-01-01

    This work presents a low cost, simple and new methodology for direct quantification of uranium in compounds of the nuclear fuel cycle, based on Fourier Transform Infrared (FTIR) spectroscopy using KBr pressed discs technique. Uranium in different matrices were used to development and validation: UO 2 (NO 3 )2.2TBP complex (TBP uranyl nitrate complex) in organic phase and uranyl nitrate (UO 2 (NO 3 ) 2 ) in aqueous phase. The parameters used in the validation process were: linearity, selectivity, accuracy, limits of detection (LD) and quantitation (LQ), precision (repeatability and intermediate precision) and robustness. The method for uranium in organic phase (UO 2 (NO 3 )2.2TBP complex in hexane/embedded in KBr) was linear (r = 0.9980) over the range of 0.20% 2.85% U/ KBr disc, LD 0.02% and LQ 0.03%, accurate (recoveries were over 101.0%), robust and precise (RSD < 1.6%). The method for uranium aqueous phase (UO 2 (NO 3 ) 2 /embedded in KBr) was linear (r = 0.9900) over the range of 0.14% 1.29% U/KBr disc, LD 0.01% and LQ 0.02%, accurate (recoveries were over 99.4%), robust and precise (RSD < 1.6%). Some process samples were analyzed in FTIR and compared with gravimetric and X-ray fluorescence (XRF) analyses showing similar results in all three methods. The statistical tests (t-Student and Fischer) showed that the techniques are equivalent. The validated method can be successfully employed for routine quality control analysis for nuclear compounds. (author)

  9. Hydrogenated fullerenes in space: FT-IR spectra analysis

    Energy Technology Data Exchange (ETDEWEB)

    El-Barbary, A. A. [Physics Department, Faculty of Education, Ain-Shams University, Cairo, Egypt Physics Department, Faculty of Science, Jazan University, Jazan (Saudi Arabia)

    2016-06-10

    Fullerenes and hydrogenated fullerenes are found in circumstellar and interstellar environments. But the determination structures for the detected bands in the interstellar and circumstellar space are not completely understood so far. For that purpose, the aim of this article is to provide all possible infrared spectra for C{sub 20} and C{sub 60} fullerenes and their hydrogenated fullerenes. Density Functional theory (DFT) is applied using B3LYP exchange-functional with basis set 6–31G(d, p). The Fourier transform infrared spectroscopy (FT-IR) is found to be capable of distinguishing between fullerenes, mono hydrogenated fullerenes and fully hydrogenated fullerenes. In addition, deposition of one hydrogen atom outside the fully hydrogenated fullerenes is found to be distinguished by forming H{sub 2} molecule at peak around 4440 cm{sup −1}. However, deposition of one hydrogen atom inside the fully hydrogenated fullerenes cannot be distinguished. The obtained spectral structures are analyzed and are compared with available experimental results.

  10. Hydrogenated fullerenes in space: FT-IR spectra analysis

    International Nuclear Information System (INIS)

    El-Barbary, A. A.

    2016-01-01

    Fullerenes and hydrogenated fullerenes are found in circumstellar and interstellar environments. But the determination structures for the detected bands in the interstellar and circumstellar space are not completely understood so far. For that purpose, the aim of this article is to provide all possible infrared spectra for C 20 and C 60 fullerenes and their hydrogenated fullerenes. Density Functional theory (DFT) is applied using B3LYP exchange-functional with basis set 6–31G(d, p). The Fourier transform infrared spectroscopy (FT-IR) is found to be capable of distinguishing between fullerenes, mono hydrogenated fullerenes and fully hydrogenated fullerenes. In addition, deposition of one hydrogen atom outside the fully hydrogenated fullerenes is found to be distinguished by forming H 2 molecule at peak around 4440 cm −1 . However, deposition of one hydrogen atom inside the fully hydrogenated fullerenes cannot be distinguished. The obtained spectral structures are analyzed and are compared with available experimental results.

  11. An FT-Raman, FT-IR, and Quantum Chemical Investigation of Stanozolol and Oxandrolone

    Directory of Open Access Journals (Sweden)

    Tibebe Lemma

    2017-12-01

    Full Text Available We have studied the Fourier Transform Infrared (FT-IR and the Fourier transform Raman (FT-Raman spectra of stanozolol and oxandrolone, and we have performed quantum chemical calculations based on the density functional theory (DFT with a B3LYP/6-31G (d, p level of theory. The FT-IR and FT-Raman spectra were collected in a solid phase. The consistency between the calculated and experimental FT-IR and FT-Raman data indicates that the B3LYP/6-31G (d, p can generate reliable geometry and related properties of the title compounds. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution. The good agreement between the experimental and theoretical spectra allowed positive assignment of the observed vibrational absorption bands. Finally, the calculation results were applied to simulate the Raman and IR spectra of the title compounds, which show agreement with the observed spectra.

  12. Strategy for high-accuracy-and-precision retrieval of atmospheric methane from the mid-infrared FTIR network

    Directory of Open Access Journals (Sweden)

    R. Sussmann

    2011-09-01

    Full Text Available We present a strategy (MIR-GBM v1.0 for the retrieval of column-averaged dry-air mole fractions of methane (XCH4 with a precision <0.3% (1-σ diurnal variation, 7-min integration and a seasonal bias <0.14% from mid-infrared ground-based solar FTIR measurements of the Network for the Detection of Atmospheric Composition Change (NDACC, comprising 22 FTIR stations. This makes NDACC methane data useful for satellite validation and for the inversion of regional-scale sources and sinks in addition to long-term trend analysis. Such retrievals complement the high accuracy and precision near-infrared observations of the younger Total Carbon Column Observing Network (TCCON with time series dating back 15 years or so before TCCON operations began.

    MIR-GBM v1.0 is using HITRAN 2000 (including the 2001 update release and 3 spectral micro windows (2613.70–2615.40 cm−1, 2835.50–2835.80 cm−1, 2921.00–2921.60 cm−1. A first-order Tikhonov constraint is applied to the state vector given in units of per cent of volume mixing ratio. It is tuned to achieve minimum diurnal variation without damping seasonality. Final quality selection of the retrievals uses a threshold for the goodness of fit (χ2 < 1 as well as for the ratio of root-mean-square spectral noise and information content (<0.15%. Column-averaged dry-air mole fractions are calculated using the retrieved methane profiles and four-times-daily pressure-temperature-humidity profiles from National Center for Environmental Prediction (NCEP interpolated to the time of measurement.

    MIR-GBM v1.0 is the optimum of 24 tested retrieval strategies (8 different spectral micro-window selections, 3 spectroscopic line lists: HITRAN 2000, 2004, 2008. Dominant errors of the non-optimum retrieval strategies are systematic HDO/H2O-CH4 interference errors leading to a seasonal bias up to ≈5%. Therefore interference

  13. Validation of the CrIS fast physical NH3 retrieval with ground-based FTIR

    Directory of Open Access Journals (Sweden)

    E. Dammers

    2017-07-01

    Full Text Available Presented here is the validation of the CrIS (Cross-track Infrared Sounder fast physical NH3 retrieval (CFPR column and profile measurements using ground-based Fourier transform infrared (FTIR observations. We use the total columns and profiles from seven FTIR sites in the Network for the Detection of Atmospheric Composition Change (NDACC to validate the satellite data products. The overall FTIR and CrIS total columns have a positive correlation of r  =  0.77 (N  =  218 with very little bias (a slope of 1.02. Binning the comparisons by total column amounts, for concentrations larger than 1.0  ×  1016 molecules cm−2, i.e. ranging from moderate to polluted conditions, the relative difference is on average ∼ 0–5 % with a standard deviation of 25–50 %, which is comparable to the estimated retrieval uncertainties in both CrIS and the FTIR. For the smallest total column range (< 1.0  × 1016 molecules cm−2 where there are a large number of observations at or near the CrIS noise level (detection limit the absolute differences between CrIS and the FTIR total columns show a slight positive column bias. The CrIS and FTIR profile comparison differences are mostly within the range of the single-level retrieved profile values from estimated retrieval uncertainties, showing average differences in the range of  ∼ 20 to 40 %. The CrIS retrievals typically show good vertical sensitivity down into the boundary layer which typically peaks at  ∼ 850 hPa (∼ 1.5 km. At this level the median absolute difference is 0.87 (std  =  ±0.08 ppb, corresponding to a median relative difference of 39 % (std  =  ±2 %. Most of the absolute and relative profile comparison differences are in the range of the estimated retrieval uncertainties. At the surface, where CrIS typically has lower sensitivity, it tends to overestimate in low-concentration conditions and underestimate

  14. Use of UAV-Borne Spectrometer for Land Cover Classification

    Directory of Open Access Journals (Sweden)

    Sowmya Natesan

    2018-04-01

    Full Text Available Unmanned aerial vehicles (UAV are being used for low altitude remote sensing for thematic land classification using visible light and multi-spectral sensors. The objective of this work was to investigate the use of UAV equipped with a compact spectrometer for land cover classification. The UAV platform used was a DJI Flamewheel F550 hexacopter equipped with GPS and Inertial Measurement Unit (IMU navigation sensors, and a Raspberry Pi processor and camera module. The spectrometer used was the FLAME-NIR, a near-infrared spectrometer for hyperspectral measurements. RGB images and spectrometer data were captured simultaneously. As spectrometer data do not provide continuous terrain coverage, the locations of their ground elliptical footprints were determined from the bundle adjustment solution of the captured images. For each of the spectrometer ground ellipses, the land cover signature at the footprint location was determined to enable the characterization, identification, and classification of land cover elements. To attain a continuous land cover classification map, spatial interpolation was carried out from the irregularly distributed labeled spectrometer points. The accuracy of the classification was assessed using spatial intersection with the object-based image classification performed using the RGB images. Results show that in homogeneous land cover, like water, the accuracy of classification is 78% and in mixed classes, like grass, trees and manmade features, the average accuracy is 50%, thus, indicating the contribution of hyperspectral measurements of low altitude UAV-borne spectrometers to improve land cover classification.

  15. Analysis of bacteria on steel surfaces using reflectance micro-Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Ojeda, Jesús J; Romero-González, María E; Banwart, Steven A

    2009-08-01

    Reflectance micro-Fourier transform infrared (FT-IR) analysis has been applied to characterize biofilm formation of Aquabacterium commune, a common microorganism present on drinking water distribution systems, onto the increasingly popular pipe material stainless steel EN1.4307. The applicability of the reflectance micro-FT-IR technique for analyzing the bacterial functional groups is discussed, and the results are compared to spectra obtained using more conventional FT-IR techniques: transmission micro-FT-IR, attenuated transmitted reflectance (ATR), and KBr pellets. The differences between the infrared spectra of wet and dried bacteria, as well as free versus attached bacteria, are also discussed. The spectra obtained using reflectance micro-FT-IR spectroscopy were comparable to those obtained using other FT-IR techniques. The absence of sample preparation, the potential to analyze intact samples, and the ability to characterize opaque and thick samples without the need to transfer the bacterial samples to an infrared transparent medium or produce a pure culture were the main advantages of reflectance micro-FT-IR spectroscopy.

  16. Measurements of industrial fugitive emissions by the FTIR Tracer Method (FTM)

    International Nuclear Information System (INIS)

    Mellqvist, J.; Arlander, B.; Galle, B.; Bergqvist, B.

    1996-01-01

    A new method called the FTIR Tracer Method (FTM), has been developed for measuring and quantifying fugitive (diffuse) emissions of hydrocarbons. The method has been evaluated in field experiments which were conducted in the vicinity of several petrochemical plants and an oil refinery during 1993-1995. The technique is based on concentration measurements with infrared remote sensing by Long Path Fourier Transform InfraRed (LPFTIR), combined with tracer releases. The field experiments show the FTM to be very useful for mass flux measurements of both alkanes and alkenes and that the measurements are consistent with the conventional SF 6 method. However, the technique needs to be further validated and a more thorough understanding of the measurement uncertainties have to be achieved

  17. [Relationship between PMI and ATR-FTIR Spectral Changes in Swine Costal Cartilages and Ribs].

    Science.gov (United States)

    Yao, Yao; Wang, Qi; Jing, Xiao-li; Li, Bing; Zhang, Yin-ming; Wang, Zhi-jun; Li, Cheng-zhi; Lin, Han-cheng; Zhang, Ji; Huang, Ping; Wang, Zhen-yuan

    2016-02-01

    To analyze postmortem chemical changes in Landrace costal cartilages and ribs using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, and to provide a novel technique for estimation of postmortem interval (PMI). The swines were sacrificed by hemorrhage and their costal cartilages and ribs were kept in 20 degrees C. The chemical analysis of the costal cartilages and ribs were performed using ATR-FTIR every 72 h. The correlation between the certain spectral parameters and PMI was also analyzed. The time-dependent changes of costal cartilages were more significant than ribs. There were no obvious changes for the main absorbance bands position, and some absorbance band ratios showed time-dependent changes and significant correlations with the PMI. ATR-FTIR has the ability to analyze postmortem chemical changes of the swine costal cartilages and ribs, and it can be a new method to estimate PMI based on spectroscopy.

  18. ATR-FTIR Spectroscopy Highlights the Problem of Distinguishing Between Exophiala dermatitidis and E. phaeomuriformis Using MALDI-TOF MS

    NARCIS (Netherlands)

    Ergin, C.; Gok, Y.; Baygu, Y.; Gumral, R.; Ozhak-Baysan, B.; Dogen, A.; Ogunc, D.; Ilkit, M.; Seyedmousavi, S.

    2016-01-01

    The present study compared two chemical-based methods, namely, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, to understand the misidentification of Exophiala

  19. Characterization of optical and micro-physical properties of cirrus clouds using a wideband thermal infrared spectrometer

    Science.gov (United States)

    Palchetti, Luca; Di Natale, Gianluca; Bianchini, Giovanni

    2014-05-01

    High-altitude ice clouds such as cirrus clouds play a key role in the Earth's radiation budget since they cover permanently about 20-30% of the surface of the planet, reaching even to 60-70% in the tropics. The modulation of the incoming solar radiation and the outgoing Earth's thermal emission due to cirrus can contribute to heat or to cool the atmosphere, according to their optical properties, which must be characterised with great accuracy and over the whole spectral range involved in the scattering and emission processes. Here we present the infrared measurements over the wide spectral range from 9 to 50 micron performed by the Fourier transform spectrometer REFIR-PAD (Radiation Explorer in Far InfraRed - Prototype for Application and Development) during many field campaigns that have taken place since 2007 from different high-altitude ground-based stations: Testa Grigia Station, Cervinia-Italy, (3480 m asl), Cerro Toco, Atacama-Chile, (5380 m asl), Concordia Base, Dome C-Antarctica (3230 m asl). These measurements show for the first time the spectral effect of cirrus clouds in the long-wave part of the emission spectrum above 15 micron of wavelength. To characterise these measurements over the wide spectral range as a function of the optical properties of ice particles, a model of the radiative transfer, that integrates the well known numerical code LBLRTM, which simulates the radiative transfer in the atmosphere, with a specific code which simulates the propagation of the radiation through the cloud, was developed. The optical properties of clouds have been modelled using the δ-scaled Eddington approximation for a single layer and the Ping Yang's database for the single-scattering properties of ice crystals. The preliminary results of the fit procedure used for the determination of the micro-physical parameters of ice crystals, such as the effective diameter, ice water path, effective temperature and optical thickness will be shown in the presentation. The

  20. [Application of FT-IR pattern recognition method for the quality control of pharmaceutical ingredients].

    Science.gov (United States)

    Horgos, József; Kóger, Péter; Zelkó, Romána

    2009-01-01

    Nowadays infrared spectroscopy and chemometrics have proven their effectiveness for both qualitative and quantitative analyses in different fields like agriculture, food, chemical and oil industry. Furier Transformation Infrared Spectroscopy (FT-IR) combined with Attenuated Total Reflectance (ATR) plate is a fast identification instrument. It is suitable for analysis of solid and liquid phase, too. Associated with chemometrics, it would be a powerful tool for the pharmaceutical wholesalers to detect the insufficient quality of pharmaceutical ingredients. In the present study beside the review of the infra red technology, pharmaceutical ingredients were examined with the help of our spectra library.

  1. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) for Rapid Determination of Microbial Cell Lipid Content: Correlation with Gas Chromatography-Mass Spectrometry (GC-MS).

    Science.gov (United States)

    Millan-Oropeza, Aaron; Rebois, Rolando; David, Michelle; Moussa, Fathi; Dazzi, Alexandre; Bleton, Jean; Virolle, Marie-Joelle; Deniset-Besseau, Ariane

    2017-10-01

    There is a growing interest worldwide for the production of renewable oil without mobilizing agriculture lands; fast and reliable methods are needed to identify highly oleaginous microorganisms of potential industrial interest. The aim of this study was to demonstrate the relevance of attenuated total reflection (ATR) spectroscopy to achieve this goal. To do so, the total lipid content of lyophilized samples of five Streptomyces strains with varying lipid content was assessed with two classical quantitative but time-consuming methods, gas chromatography-mass spectrometry (GC-MS) and ATR Fourier transform infrared (ATR FT-IR) spectroscopy in transmission mode with KBr pellets and the fast ATR method, often questioned for its lack of reliability. A linear correlation between these three methods was demonstrated allowing the establishment of equations to convert ATR values expressed as CO/amide I ratio, into micrograms of lipid per milligram of biomass. The ATR method proved to be as reliable and quantitative as the classical GC-MS and FT-IR in transmission mode methods but faster and more reproducible than the latter since it involves far less manipulation for sample preparation than the two others. Attenuated total reflection could be regarded as an efficient fast screening method to identify natural or genetically modified oleaginous microorganisms by the scientific community working in the field of bio-lipids.

  2. Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data

    Science.gov (United States)

    Lee, Zhongping; Carder, Kendall L.; Chen, Robert F.; Peacock, Thomas G.

    2001-06-01

    Using Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data as an example, we show in this study that the properties of the water column and bottom of a large, shallow area can be adequately retrieved using a model-driven optimization technique. The simultaneously derived properties include bottom depth, bottom albedo, and water absorption and backscattering coefficients, which in turn could be used to derive concentrations of chlorophyll, dissolved organic matter, and suspended sediments in the water column. The derived bottom depths were compared with a bathymetry chart and a boat survey and were found to agree very well. Also, the derived bottom albedo image shows clear spatial patterns, with end-members consistent with sand and seagrass. The image of absorption and backscattering coefficients indicates that the water is quite horizontally mixed. Without bottom corrections, chlorophyll a retrievals were ˜50 mg m-3, while the retrievals after bottom corrections were tenfold less, approximating real values. These results suggest that the model and approach used work very well for the retrieval of subsurface properties of shallow-water environments even for rather turbid environments like Tampa Bay, Florida.

  3. FTIR study of aquamarines after gamma irradiation, heat treatment and electrodiffusion

    Energy Technology Data Exchange (ETDEWEB)

    Alkmim, Danielle Gomides; Almeida, Frederico Ozanan Tomaz de; Lameiras, Fernando Soares, E-mail: alkmia@yahoo.com.br, E-mail: fredufmg@gmail.com, E-mail: fsl@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-15

    Beryl, Be{sub 3}Al{sub 2}(SiO{sub 3}){sub 6}, is a natural gemstone with many colors. Some of these colors can be induced or modified by exposure to ionizing radiation, by heating, and maybe by electrodiffusion. Small contents of chromophore chemical elements are related to the colors of beryl, like iron, chromium, vanadium, manganese, and others. There is great interest in relation to methods of improving or inducing colors in beryl. There is evidence that infrared spectroscopy (FTIR) can contribute to foresee beryl behavior submitted to procedures for color change. It was observed that electrodiffusion with or without contaminant ions did not alter the FTIR spectrum of aquamarines, unlike heat treatment. Green samples have a higher content of type I water molecules, whereas blue samples have a higher content of type II water molecules. Significant changes in FTIR spectra of aquamarines were observed only in green samples after exposure to gamma rays or to heat. The vanishing of the band at 3633 cm{sup -1} may be related to the position of Na{sup +} ion in the crystal lattice of beryl. (author)

  4. Demonstration of Experimental Infrastructure for Studying Cell-to-Cell Failure Propagation in Lithium-Ion Batteries

    Science.gov (United States)

    2014-09-11

    Newegg.com Sabertooth 990 FX BIOS AM3+ Socket Motherboard ASUS Newegg.com GeForce GTX 550 Ti 1 GB 2-Channel Graphics Card Nvidia Newegg.com...Analytical Instruments, Orange, California, USA) and an in-situ Fourier Transform Infrared (FTIR) Spectrometer (I-Series, MIDAC Corporation , Westfield

  5. Mid-infrared spectroscopy using optical waveguides in the marine environment

    International Nuclear Information System (INIS)

    Kraft, M.

    2000-05-01

    As part of the European research project SOFIE - 'Spectroscopy using Optical Fibers in the Marine Environment', a portable sensor system for chlorinated hydrocarbons and monocyclic aromatic hydrocarbons in seawater has been developed. A robust, miniaturized FT-IR spectrometer for in-situ underwater pollution monitoring applications was designed and built, based on parts from a Bruker Vector 22 FT-IR instrument. The assembled instrument, enclosed in a sealed aluminum pressure vessel is capable of maintenance-free operation in the oceans down to depths of 300 meters. It can be incorporated either in a tow frame or a remotely operated vehicle. A suitable sensor head geometry, optimized in terms of sensitivity and hydrodynamics alike, was developed and connected to the underwater FT-IR spectrometer. Due to the modular design, various sensor head configurations can be realized, ensuring easy adaptation of the instrument to future tasks. In a laboratory set-up using an ATR-crystal as a simplified sensor head, the sensor performance was investigated. The sensor is capable of detecting a wide range of chlorinated hydrocarbons and monocyclic aromatic hydrocarbons in sea- and river water down to the low ppb-range. Varying amounts of salinity, turbidity or humin acids, as well as seawater pollutants like aliphatic hydrocarbons or phenols, do not influence the sensor characteristics. In addition, the sensor exhibits a good long-time stability and a low susceptibility to sensor fouling. (author)

  6. Rietveld refinement and FTIR analysis of bulk ceramic Co3-xMnxO4 compositions

    Science.gov (United States)

    Meena, P. L.; Kumar, Ravi; Sreenivas, K.

    2013-02-01

    Co3-xMnxO4 (x = 0.0, 0.6, 1.2) prepared by solid state reaction method and characterized by powder X-ray diffraction (XRD) and Fourier transform infrared (FTIR). Lattice parameters (a), oxygen parameter (u), and ionic radii of cations have been determined through Rietveld analysis. Both a and u parameters are related to expansion of octahedral site as Mn content in Co3O4. Analysis of XRD data show that Mn (x ≤ 1.2) is accommodated at the octahedral site, while retaining the cubic spinel structure. FTIR results also confirm the same and signify strong interactions due to overlapping of Co and Mn octahedra.

  7. High-speed high-sensitivity infrared spectroscopy using mid-infrared swept lasers (Conference Presentation)

    Science.gov (United States)

    Childs, David T. D.; Groom, Kristian M.; Hogg, Richard A.; Revin, Dmitry G.; Cockburn, John W.; Rehman, Ihtesham U.; Matcher, Stephen J.

    2016-03-01

    Infrared spectroscopy is a highly attractive read-out technology for compositional analysis of biomedical specimens because of its unique combination of high molecular sensitivity without the need for exogenous labels. Traditional techniques such as FTIR and Raman have suffered from comparatively low speed and sensitivity however recent innovations are challenging this situation. Direct mid-IR spectroscopy is being speeded up by innovations such as MEMS-based FTIR instruments with very high mirror speeds and supercontinuum sources producing very high sample irradiation levels. Here we explore another possible method - external cavity quantum cascade lasers (EC-QCL's) with high cavity tuning speeds (mid-IR swept lasers). Swept lasers have been heavily developed in the near-infrared where they are used for non-destructive low-coherence imaging (OCT). We adapt these concepts in two ways. Firstly by combining mid-IR quantum cascade gain chips with external cavity designs adapted from OCT we achieve spectral acquisition rates approaching 1 kHz and demonstrate potential to reach 100 kHz. Secondly we show that mid-IR swept lasers share a fundamental sensitivity advantage with near-IR OCT swept lasers. This makes them potentially able to achieve the same spectral SNR as an FTIR instrument in a time x N shorter (N being the number of spectral points) under otherwise matched conditions. This effect is demonstrated using measurements of a PDMS sample. The combination of potentially very high spectral acquisition rates, fundamental SNR advantage and the use of low-cost detector systems could make mid-IR swept lasers a powerful technology for high-throughput biomedical spectroscopy.

  8. Infrared absorption study of hydrogen incorporation in thick nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Tang, C.J.; Neves, A.J.; Carmo, M.C.

    2005-01-01

    We present an infrared (IR) optical absorbance study of hydrogen incorporation in nanocrystalline diamond films. The thick nanocrystalline diamond films were synthesized by microwave plasma-assisted chemical vapor deposition and a high growth rate about 3.0 μm/h was achieved. The morphology, phase quality, and hydrogen incorporation were assessed by means of scanning electron microscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). Large amount of hydrogen bonded to nanocrystalline diamond is clearly evidenced by the huge CH stretching band in the FTIR spectrum. The mechanism of hydrogen incorporation is discussed in light of the growth mechanism of nanocrystalline diamond. This suggests the potential of nanocrystalline diamond for IR electro-optical device applications

  9. Non-Halal biomarkers identification based on Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography-Time of Flight Mass Spectroscopy (GC-TOF MS) techniques

    Science.gov (United States)

    Witjaksono, Gunawan; Saputra, Irwan; Latief, Marsad; Jaswir, Irwandi; Akmeliawati, Rini; Abdelkreem Saeed Rabih, Almur

    2017-11-01

    Consumption of meat from halal (lawful) sources is essential for Muslims. The identification of non-halal meat is one of the main issues that face consumers in meat markets, especially in non-Islamic countries. Pig is one of the non-halal sources of meat, and hence pig meat and its derivatives are forbidden for Muslims to consume. Although several studies have been conducted to identify the biomarkers for nonhalal meats like pig meat, these studies are still in their infancy stages, and as a result there is no universal biomarker which could be used for clear cut identification. The purpose of this paper is to use Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography-Time of Flight Mass Spectroscopy (GC-TOF MS) techniques to study fat of pig, cow, lamb and chicken to find possible biomarkers for pig fat (lard) identification. FTIR results showed that lard and chicken fat have unique peaks at wavenumbers 1159.6 cm-1, 1743.4 cm-1, 2853.1 cm-1 and 2922.5 cm-1 compared to lamb and beef fats which did not show peaks at these wavenumbers. On the other hand, GC/MS-TOF results showed that the concentration of 1,2,3-trimethyl-Benzene, Indane, and Undecane in lard are 250, 14.5 and 1.28 times higher than their concentrations in chicken fat, respectively, and 91.4, 2.3 and 1.24 times higher than their concentrations in cow fat, respectively. These initial results clearly indicate that there is a possibility to find biomarkers for non-halal identification.

  10. Micro-FTIR and EPMA Characterisation of Charoite from Murun Massif (Russia

    Directory of Open Access Journals (Sweden)

    Maria Lacalamita

    2018-01-01

    Full Text Available Combined micro-Fourier transform infrared (micro-FTIR and electron probe microanalyses (EPMA were performed on a single crystal of charoite from Murun Massif (Russia in order to get a deeper insight into the vibrational features of crystals with complex structure and chemistry. The micro-FTIR study of a single crystal of charoite was collected in the 6000–400 cm−1 at room temperature and after heating at 100°C. The structural complexity of this mineral is reflected by its infrared spectrum. The analysis revealed a prominent absorption in the OH stretching region as a consequence of band overlapping due to a combination of H2O and OH stretching vibrations. Several overtones of the O-H and Si-O stretching vibration bands were observed at about 4440 and 4080 cm−1 such as absorption possibly due to the organic matter at about 3000–2800 cm−1. No significant change due to the loss of adsorbed water was observed in the spectrum obtained after heating. The occurrence of well-resolved water bending vibration bands at about 1595 and 1667 cm−1 accounts for more than one structural water molecule as expected by charoite-90 polytype structure model from literature. The chemical composition of the studied crystal is close to the literature one.

  11. A polychromator-type near-infrared spectrometer with a high-sensitivity and high-resolution photodiode array detector for pharmaceutical process monitoring on the millisecond time scale.

    Science.gov (United States)

    Murayama, Kodai; Genkawa, Takuma; Ishikawa, Daitaro; Komiyama, Makoto; Ozaki, Yukihiro

    2013-02-01

    In the fine chemicals industry, particularly in the pharmaceutical industry, advanced sensing technologies have recently begun being incorporated into the process line in order to improve safety and quality in accordance with process analytical technology. For estimating the quality of powders without preparation during drug formulation, near-infrared (NIR) spectroscopy has been considered the most promising sensing approach. In this study, we have developed a compact polychromator-type NIR spectrometer equipped with a photodiode (PD) array detector. This detector is consisting of 640 InGaAs-PD elements with 20-μm pitch. Some high-specification spectrometers, which use InGaAs-PD with 512 elements, have a wavelength resolution of about 1.56 nm when covering 900-1700 nm range. On the other hand, the newly developed detector, having the PD with one of the world's highest density, enables wavelength resolution of below 1.25 nm. Moreover, thanks to the combination with a highly integrated charge amplifier array circuit, measurement speed of the detector is higher by two orders than that of existing PD array detectors. The developed spectrometer is small (120 mm × 220 mm × 200 mm) and light (6 kg), and it contains various key devices including the high-density and high-sensitivity PD array detector, NIR technology, and spectroscopy technology for a spectroscopic analyzer that has the required detection mechanism and high sensitivity for powder measurement, as well as a high-speed measuring function for blenders. Moreover, we have evaluated the characteristics of the developed NIR spectrometer, and the measurement of powder samples confirmed that it has high functionality.

  12. A polychromator-type near-infrared spectrometer with a high-sensitivity and high-resolution photodiode array detector for pharmaceutical process monitoring on the millisecond time scale

    Science.gov (United States)

    Murayama, Kodai; Genkawa, Takuma; Ishikawa, Daitaro; Komiyama, Makoto; Ozaki, Yukihiro

    2013-02-01

    In the fine chemicals industry, particularly in the pharmaceutical industry, advanced sensing technologies have recently begun being incorporated into the process line in order to improve safety and quality in accordance with process analytical technology. For estimating the quality of powders without preparation during drug formulation, near-infrared (NIR) spectroscopy has been considered the most promising sensing approach. In this study, we have developed a compact polychromator-type NIR spectrometer equipped with a photodiode (PD) array detector. This detector is consisting of 640 InGaAs-PD elements with 20-μm pitch. Some high-specification spectrometers, which use InGaAs-PD with 512 elements, have a wavelength resolution of about 1.56 nm when covering 900-1700 nm range. On the other hand, the newly developed detector, having the PD with one of the world's highest density, enables wavelength resolution of below 1.25 nm. Moreover, thanks to the combination with a highly integrated charge amplifier array circuit, measurement speed of the detector is higher by two orders than that of existing PD array detectors. The developed spectrometer is small (120 mm × 220 mm × 200 mm) and light (6 kg), and it contains various key devices including the high-density and high-sensitivity PD array detector, NIR technology, and spectroscopy technology for a spectroscopic analyzer that has the required detection mechanism and high sensitivity for powder measurement, as well as a high-speed measuring function for blenders. Moreover, we have evaluated the characteristics of the developed NIR spectrometer, and the measurement of powder samples confirmed that it has high functionality.

  13. Photoionization Modeling of Infrared Fine-Structure Lines in Luminous Galaxies with Central Dust-Bounded Nebulae

    National Research Council Canada - National Science Library

    Fischer, Jacqueline; Allen, Robert; Dudley, C. C; Satyapal, Shobita; Luhman, Michael L; Wolfire, Mark G; Smith, Howard A

    2001-01-01

    Far-infrared spectroscopy of a small sample of IR-bright galaxies taken with the Infrared Space Observatory Long Wavelength Spectrometer has revealed a dramatic progression extending from strong fine...

  14. Unsupervised explorative data analysis of normal human leukocytes and BCR/ABL positive leukemic cells mid-infrared spectra

    NARCIS (Netherlands)

    Bellisola, G.; Bolomini-Vittori, M.; Cinque, G.; Dumas, P.; Fiorini, Z.; Laudanna, C.; Mirenda, M.; Sandt, C.; Silvestri, G.; Tomasello, L.; Vezzalini, M.; Wehbe, K.; Sorio, C.

    2015-01-01

    We proved the ability of Fourier Transform Infrared microspectroscopy (microFTIR) complemented by Principal Component Analysis (PCA) to detect protein phosphorylation/de-phosphorylation in mammalian cells. We analyzed by microFTIR human polymorphonuclear neutrophil (PMNs) leukocytes, mouse-derived

  15. Field measurements of flue gases from combustion of miscellaneous fuels using a low-resolution FTIR gas analyzer

    International Nuclear Information System (INIS)

    Larjava, K.T.; Tormonen, K.E.; Jaakkola, P.T.; Roos, A.A.

    1997-01-01

    Combustion flue gases of three different industrial boilers firing miscellaneous fuels (peat, wood, and bark, sawdust and biological sludge) were monitored for a two-week period. Nitric oxide (NO), sulfur dioxide (SO 2 ), carbon monoxide (CO), carbon dioxide (CO 2 ), and total hydrocarbons (C x H y ) were continuously measured using single-component gas analyzers in parallel with a low-resolution Fourier Transform Infrared (FTIR) gas analyzer. Hydrogen chloride (HCl) was measured continuously using the FTIR analyzer and semi-continuously using a traditional liquid-absorption technique. Nitrous oxide (N 2 O), nitrogen dioxide (NO 2 ), and water vapor (H 2 O) were continuously measured using the FTIR analyzer only. Laboratory tests were conducted prior to the field measurements to assess the detection limits of the different measurement methods for each gas component. No significant differences were found between the results of the low-resolution FTIR analyzer and the single-component analyzers or the liquid absorption method. 11 refs., 10 figs., 3 tabs

  16. Ultrasensitive Mid-Infrared In Situ Spectrometer for Planetary Atmospheric Analysis, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Small Business Innovative Research Phase I proposal seeks to develop a compact, robust in situ spectrometer capable of detecting multiple gas-phase species in...

  17. Sulfato/thiosulfato reducing bacteria characterization by FT-IR spectroscopy: a new approach to biocorrosion control.

    Science.gov (United States)

    Rubio, Celine; Ott, Christelle; Amiel, Caroline; Dupont-Moral, Isabelle; Travert, Josette; Mariey, Laurence

    2006-03-01

    Sulfato and Thiosulfato Reducing Bacteria (SRB, TRB) can induce corrosion process on steel immersed in seawater. This phenomenon, called biocorrosion, costs approximatively 5 billion euros in France each year. We provide the first evidence that Fourier Transformed InfraRed (FTIR) spectroscopy is a competitive technique to evaluate the sulfurogen flora involved in biocorrosion in comparison with time consuming classical identification methods or PCR analyses. A great discrimination was obtained between SRB, TRB and some contamination bacteria known to be present in seawater and seem to be able to reduce sulfate under particular conditions. Moreover, this preliminary study demonstrates that FTIR spectroscopic and genotypic results present a good correlation (these results are confirmed by other data obtained before or later, data not shown here). The advantages gained by FTIR spectroscopy are to give information on strain phenotype and bacterial metabolism which are of great importance in corrosion processes.

  18. Iapetus: First data from the Cassini Visual Infrared Mapping Spectrometer

    Science.gov (United States)

    Buratti, B. J.; Cruikshank, D. P.; Clark, R.; Brown, R. H.; Bauer, J. M.; Simonelli, D. P.; Jaumann, R.; Hibbitts, K.; McCord, T. B.; Soderlund, K.; Baines, K. H.; Bellucci, G.; Bibring, J. P.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Drossart, P.; Formisano, V.; Langevin, Y.; Matson, D. L.; Mennella, V.; Nelson, R.; Nicholson, P. D.; Sicardy, B.; Sotin, C.

    2004-11-01

    Iapetus is perhaps the most enigmatic body in the solar system: One hemisphere is as dark as lampblack, and the other is almost as bright as snow. The models that have been offered to explain this dichotomy range from endogenously placed material (Smith et al., 1982, Science 215, 504), to material exogenously placed from Phoebe (Soter, 1974, IAU Colloq. 28), or other bodies (Owen et al., 2001, Icarus 149, 160; Buratti et al., 2002, Icarus 155, 375; Buratti et al., 2003, B.A.A.S, 915). No mechanism for the darkening process or purported source for the exogenic particles is entirely satisfactory. One key question is whether the process that led to the formation of the low-albedo hemisphere of Iapetus is unique, or whether the satellite has been subjected to a satellite alteration process in a more extreme form. Both Callisto and the outer satellites of Uranus show evidence for exogenic accretion of particles onto their leading sides. A targeted flyby of Iapetus by Cassini, during which the spacecraft will approach the satellite to within 1000 km, is scheduled to occur in September 2007. An untargeted approach of 65,000 km to the satellite will occur on New Year's day 2005, and observations are planned for the period around closest approach. However, a "sneak peak" of the satellite was afforded by Cassini on July 19, 2004, during which the spacecraft approached to less than three million miles (the Voyager closest approach was 909,070 km). The first disk resolved spectra of Iapetus in the 0.4 to 5 micron region were obtained by the Cassini Visual Infrared Mapping Spectrometer (VIMS). We report the tentative identification of carbon dioxide on the low-albedo portion of the surface. A comparison of the spectrum of Iapetus to that obtained by VIMS during its flyby of Phoebe on June 11, 2004 will be made. Mixing models incorporating water ice, minerals, and organics can replicate the spectrum of the dark hemisphere. Work performed at the Jet Propulsion Laboratory

  19. Antimicrobial, antioxidant properties and chemical composition of seaweeds collected from Saudi Arabia (Red Sea and Arabian Gulf

    Directory of Open Access Journals (Sweden)

    Nadine M.S. Moubayed

    2017-01-01

    FTIR Infrared Spectrometer analysis together with the high performance liquid chromatography provided a detailed description of the possible functional constituents and the major chemical components present in marine macroalgae particularly in brown seaweeds to be mainly of phenolic nature to which the potent antimicrobial activity is being attributed.

  20. Human papillomavirus detection using PCR and ATR-FTIR for cervical cancer screening

    Science.gov (United States)

    Rymsza, Taciana; Ribeiro, Eliane Aline; de Carvalho, Luis Felipe das Chagas e. Silva; Bhattacharjee, Tanmoy; de Azevedo Canevari, Renata

    2018-05-01

    The human papillomavirus (HPV) genital infection is considered one of the most common sexually transmitted diseases worldwide, and has been associated with cervical cancer. The objective of this study was to investigate the efficacy of the diagnostic methods: polymerase chain reaction (PCR) and Fourier transform infrared (FTIR) equipped with an ATR (Attenuated Total Reflectance) unit (Pike Tech) spectroscopy, to diagnose HPV infection in women undergoing gynecological examination. Seventeen patients (41.46%) of the 41 patients analyzed were diagnosed with exophytic/condyloma acuminate lesions by clinical analysis, 29 patients (70.7%) (G1 group) of the 41 patients, showed positive result for HPV cell injury by oncotic colpocitology and 12 patients (29.3%) (G2 group), presented negative result for cellular lesion and absence of clinical HPV lesion. Four samples were obtained per patient, which were submitted oncotic colpocitology analysis (Papanicolau staining, two samples), PCR (one sample) and ATR-FTIR analysis (one sample). L1 gene was amplified by PCR technique with specific GP5+/GP6+ and MY09/MY11 primers. PCR results were uniformly positive for presence of HPV in all analyzed samples. Multivariate analysis of ATR-FTIR spectra suggests no significant biochemical changes between groups and no clustering formed, concurring with results of PCR. This study suggests that PCR and ATR-FTIR are highly sensitive technique for HPV detection.

  1. High resolution FTIR spectroscopy of fluoroform 12CHF3 and critical analysis of the infrared spectrum from 25 to 1500 cm-1

    Science.gov (United States)

    Albert, S.; Bauerecker, S.; Bekhtereva, E. S.; Bolotova, I. B.; Hollenstein, H.; Quack, M.; Ulenikov, O. N.

    2018-05-01

    We report high-resolution (? 0.001 cm-1) Fourier Transform Infrared spectra of fluoroform (CHF3) including the pure rotational (far infrared or THz) range (28-65 cm-1), the ν3 fundamental (? = 700.099 cm-1), as well as the associated "hot' band 2ν3 - ν3 (? = 699.295 cm-1) and the 'atmospheric window' range 1100-1250 cm-1 containing the strongly coupled polyad of the levels ν2, ν5 and ν3 + ν6, at room temperature and at 120 K using the collisional cooling cell coupled to our Bruker IFS 125 HR prototype (ZP2001) spectrometer and Bruker IFS 125 HR ETH-SLS prototype at the Swiss Light Source providing intense synchrotron radiation. The pure rotational spectra provide new information about the vibrational ground state of CHF3, which is useful for further analysis of excited vibrational states. The ν3 fundamental band is re-investigated together with the corresponding 'hot' band 2ν3 - ν3 leading to an extension of the existing line lists up to 4430 transitions with ? = 66 for ν3 and 1040 transitions with ? = 43 for 2ν3 - ν3. About 6000 transitions were assigned to rovibrational levels in the polyad ν2/ν5/ν3 + ν6 with ? = 63 for ν2 (? = 1141.457 cm-1), ? = 63 for ν5 (? = 1157.335 cm-1) and ? = 59 for ν3 + ν6 (? = 1208.771 cm-1)(? = ? in each case). The resonance interactions between the ν2, ν5 and ν3 + ν6 states have been taken into account providing an accurate set of effective hamiltonian parameters, which reproduce the experimental results with an accuracy close to the experimental uncertainties (with a root mean square deviation drms = 0.00025 cm-1). The analysis is further extended to the ν4 fundamental (? = 1377.847 cm-1) interacting with 2ν3 (? = 1399.394 cm-1). The results are discussed in relation to the importance of understanding the spectra of CHF3 as a greenhouse gas and as part of our large effort to measure and understand the complete spectrum of CHF3 from the far-infrared to the near-infrared as a prototype for intramolecular

  2. Preliminary studies on the observation of oxygen-18 exchange in coal by Fourier Transform Infrared spectroscopy, investigations in the use of FTIR for coal ultimate analysis, and a fast pneumatic transfer system for 0-18 determination by neutron activation analysis

    International Nuclear Information System (INIS)

    DeKeyser, C.F. Jr.

    1984-01-01

    Use of isotope exchange kinetics for functional group determination in coal is investigated. Net exchange kinetics determined by time dependent Neutron Activation Analysis measurements (NAA) would be related to individual functional group exchange kinetics determined by Fourier Transform Infrared (FTIR) spectroscopy measurements. The work described herein can be grouped into three categories: 1) work relating to the FTIR spectroscopy of coal, 2) work relating to oxygen exchange in coal, and 3) work relating to measurements of O-18 by NAA. Methods are discussed for preparing IR observable samples of coal and ash, obtaining FTIR spectra of these samples, and reducing the spectral data to numerical form. Also included in this category is an investigation into the use of IR spectroscopic methods for the ultimate analysis of coals. An initial attempt at the observation of oxygen exchange in coal is described which includes two exchange schemes and the FTIR spectroscopic observation of their end products. A facile exchange between O-18 water and O-16 in coal was attempted with and without catalysts. Also, the design and construction of a fast pneumatic transfer system for the determination of O-18 is described

  3. Fourier transform infrared spectroscopy of peptides.

    Science.gov (United States)

    Bakshi, Kunal; Liyanage, Mangala R; Volkin, David B; Middaugh, C Russell

    2014-01-01

    Fourier transform infrared (FTIR) spectroscopy provides data that are widely used for secondary structure characterization of peptides. A wide array of available sampling methods permits structural analysis of peptides in diverse environments such as aqueous solution (including optically turbid media), powders, detergent micelles, and lipid bilayers. In some cases, side chain vibrations can also be resolved and used for tertiary structure and chemical analysis. Data from several low-resolution spectroscopic techniques, including FTIR, can be combined to generate an empirical phase diagram, an overall picture of peptide structure as a function of environmental conditions that can aid in the global interpretation of large amounts of spectroscopic data.

  4. Detailed characterization of bio-oil from pyrolysis of non-edible seed-cakes by Fourier Transform Infrared Spectroscopy (FTIR) and gas chromatography mass spectrometry (GC-MS) techniques.

    Science.gov (United States)

    Sugumaran, Vatsala; Prakash, Shanti; Ramu, Emmandi; Arora, Ajay Kumar; Bansal, Veena; Kagdiyal, Vivekanand; Saxena, Deepak

    2017-07-15

    Bio-oil obtained from pyrolysis is highly complicated mixture with valued chemicals. In order to reduce the complexity for unambiguous characterization of components present in bio-oil, solvent extractions using different solvents with increasing polarity have been adopted. The fractions have been analyzed by Fourier transform infrared (FTIR) spectroscopy for identifying the functional groups and Gas chromatography-mass spectrometry (GC-MS), for detailed characterization of components present in various fractions, thereby providing in-depth information at molecular level of various components in bio-oil. This paper reveals the potential of the analytical techniques in identification and brings out the similarities as well as differences in the components present in the bio-oil obtained from two non-edible oil seed-cakes, viz., Jatropha and Karanjia. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. First analysis of the hybrid A/B-type 2ν8 band of C2HD3 and the Coriolis interactions with the ν3 + ν4 band by high-resolution FTIR spectroscopy

    Science.gov (United States)

    Ng, L. L.; Tan, T. L.; Chia, A. H.

    2018-02-01

    Using a Fourier transform infrared (FTIR) spectrometer, the spectrum of the 2ν8 band of ethylene-d3 (C2HD3) was measured between 1745 to 1905 cm-1 at an unapodized resolution of 0.0063 cm-1. For the first time, 1664 perturbed and unperturbed a- and b-type absorption lines of the band were recorded, assigned and fitted using the Watson's A-reduced Hamiltonian in the Ir representation to derive rovibrational constants up to four quartic terms for the v8 = 2 state. Three rotational constants of the v3 = v4 = 1 state were also derived for the first time in this work from the analysis of the a- and b-Coriolis resonances with the v8 = 2 state, together with a set of resonance parameters. The root-mean-square (rms) deviation of the FTIR fit was 0.0010 cm-1. The band centers of the 2ν8 and ν3 + ν4 bands were determined to be 1831.457508 ± 0.000071 cm-1 and 1812.629 ± 0.022 cm-1, respectively. A set of ground state rovibrational constants of C2HD3 up to five quartic constants was also derived with improved precision from a simultaneous fit of 377 ground state combination differences (GSCDs) from a-type infrared transitions of the present analysis and 906 GSCDs from the previous work on the C-type ν8 band, with an rms deviation of 0.00043 cm-1. The transition dipole moment ratio | μa/μb | was found to be 2.194 ± 0.072.

  6. High resolution FTIR spectrum of the nu1 band of DCOOD.

    Science.gov (United States)

    Goh, K L; Ong, P P; Teo, H H; Tan, T L

    2000-04-01

    Accurate spectral information on formic acid has wide application to radioastronomy since it was the first organic acid found in interstellar space. In this work, the infrared absorption spectrum of the nu1 band of deuterated formic acid (DCOOD) has been measured on a Bomem DA3.002 Fourier transform spectrometer in the wavenumber region 2560-2690 cm(-1) with a resolution of 0.004 cm(-1). A total of 292 infrared transitions have been assigned in this hybrid type A and B band centred at 2631.8736 +/- 0.0004 cm(-1). The assigned transitions have been fitted to give a set of eight rovibrational constants for the nu1 = 1 state with a standard deviation of 0.00078 cm(-1).

  7. Characterizing aeroallergens by infrared spectroscopy of fungal spores and pollen.

    Directory of Open Access Journals (Sweden)

    Boris Zimmermann

    Full Text Available Fungal spores and plant pollen cause respiratory diseases in susceptible individuals, such as asthma, allergic rhinitis and hypersensitivity pneumonitis. Aeroallergen monitoring networks are an important part of treatment strategies, but unfortunately traditional analysis is time consuming and expensive. We have explored the use of infrared spectroscopy of pollen and spores for an inexpensive and rapid characterization of aeroallergens.The study is based on measurement of spore and pollen samples by single reflectance attenuated total reflectance Fourier transform infrared spectroscopy (SR-ATR FTIR. The experimental set includes 71 spore (Basidiomycota and 121 pollen (Pinales, Fagales and Poales samples. Along with fresh basidiospores, the study has been conducted on the archived samples collected within the last 50 years.The spectroscopic-based methodology enables clear spectral differentiation between pollen and spores, as well as the separation of confamiliar and congeneric species. In addition, the analysis of the scattering signals inherent in the infrared spectra indicates that the FTIR methodology offers indirect estimation of morphology of pollen and spores. The analysis of fresh and archived spores shows that chemical composition of spores is well preserved even after decades of storage, including the characteristic taxonomy-related signals. Therefore, biochemical analysis of fungal spores by FTIR could provide economical, reliable and timely methodologies for improving fungal taxonomy, as well as for fungal identification and monitoring. This proof of principle study shows the potential for using FTIR as a rapid tool in aeroallergen studies. In addition, the presented method is ready to be immediately implemented in biological and ecological studies for direct measurement of pollen and spores from flowers and sporocarps.

  8. Design of airborne imaging spectrometer based on curved prism

    Science.gov (United States)

    Nie, Yunfeng; Xiangli, Bin; Zhou, Jinsong; Wei, Xiaoxiao

    2011-11-01

    A novel moderate-resolution imaging spectrometer spreading from visible wavelength to near infrared wavelength range with a spectral resolution of 10 nm, which combines curved prisms with the Offner configuration, is introduced. Compared to conventional imaging spectrometers based on dispersive prism or diffractive grating, this design possesses characteristics of small size, compact structure, low mass as well as little spectral line curve (smile) and spectral band curve (keystone or frown). Besides, the usage of compound curved prisms with two or more different materials can greatly reduce the nonlinearity inevitably brought by prismatic dispersion. The utilization ratio of light radiation is much higher than imaging spectrometer of the same type based on combination of diffractive grating and concentric optics. In this paper, the Seidel aberration theory of curved prism and the optical principles of Offner configuration are illuminated firstly. Then the optical design layout of the spectrometer is presented, and the performance evaluation of this design, including spot diagram and MTF, is analyzed. To step further, several types of telescope matching this system are provided. This work provides an innovational perspective upon optical system design of airborne spectral imagers; therefore, it can offer theoretic guide for imaging spectrometer of the same kind.

  9. Calorimetric, FTIR and 1H NMR measurements in combination with DFT calculations for monitoring solid-state changes of dynamics of sibutramine hydrochloride.

    Science.gov (United States)

    Pajzderska, Aleksandra; Chudoba, Dorota M; Mielcarek, Jadwiga; Wąsicki, Jan

    2012-10-01

    Two forms of sibutramine hydrochloride, monohydrate and anhydrous, have been investigated by calorimetric methods, Fourier transform infrared (FTIR) absorption and (1) H nuclear magnetic resonance (NMR) measurements as well as by density functional theory (DFT) of vibrational frequencies and infrared intensities, calculations of steric hindrances and Monte Carlo simulations. The results of FTIR spectra combined with DFT calculations permitted identification of the bands corresponding to the dynamics and vibrations of water molecules. NMR study and Monte Carlo simulations revealed the occurrence of reorientation jumps of the methyl groups in sibutramine cation and also revealed that the reorientation of isopropyl group is possible only in sibutramine monohydrate hydrochloride. The hydration of sibutramine hydrochloride causes a change in the conformation of sibutramine cation. Copyright © 2012 Wiley-Liss, Inc.

  10. Gas monitoring onboard ISS using FTIR spectroscopy

    Science.gov (United States)

    Gisi, Michael; Stettner, Armin; Seurig, Roland; Honne, Atle; Witt, Johannes; Rebeyre, Pierre

    2017-06-01

    In the confined, enclosed environment of a spacecraft, the air quality must be monitored continuously in order to safeguard the crew's health. For this reason, OHB builds the ANITA2 (Analysing Interferometer for Ambient Air) technology demonstrator for trace gas monitoring onboard the International Space Station (ISS). The measurement principle of ANITA2 is based on the Fourier Transform Infrared (FTIR) technology with dedicated gas analysis software from the Norwegian partner SINTEF. This combination proved to provide high sensitivity, accuracy and precision for parallel measurements of 33 trace gases simultaneously onboard ISS by the precursor instrument ANITA1. The paper gives a technical overview about the opto-mechanical components of ANITA2, such as the interferometer, the reference Laser, the infrared source and the gas cell design and a quick overview about the gas analysis. ANITA2 is very well suited for measuring gas concentrations specifically but not limited to usage onboard spacecraft, as no consumables are required and measurements are performed autonomously. ANITA2 is a programme under the contract of the European Space Agency, and the air quality monitoring system is a stepping stone into the future, as a precursor system for manned exploration missions.

  11. LIQUID COAL CHARACTERISTIC ANALYSIS WITH FOURIER TRANSFORM INFRA RED (FTIR AND DIFFERENTIAL SCANNING CALORIMETER (DSC

    Directory of Open Access Journals (Sweden)

    ATUS BUKU

    2017-02-01

    Full Text Available The aim of this study is to identify the value of compounds contained in liquid coal by using Fourier Transform Infra-Red (FTIR and Differential Scanning Calorimeter (DSC. FTIR was used to analyse the components contained in liquid coal, while the DSC is done to observe the heat reaction to the environment. Based on the Fourier Transform Infra-Red (FTIR test results it is shown that the compound contained in the liquid Coal consisting of alkanes, alkenes and alkyne. These compounds are similar compounds. The alkanes, alkenes and alkynes compounds undergo complete combustion reaction with oxygen and would produce CO2 and water vapour [H2O (g]. If incomplete combustion occurs, the reaction proceeds in the form of Carbon Monoxide CO gas or solid carbon andH2O. Combustion reaction that occurs in all these three compounds also produces a number of considerable energy. And if it has higher value of Carbon then the boiling point would be higher. From the Differential Scanning Calorimetric (DSC test results obtained some of the factors that affect the reaction speed, which are the temperature, the reaction mixture composition, and pressure. Temperature has a profound influence in coal liquefaction, because if liquid coal heated with high pressure, the carbon chain would break down into smaller chains consisting of aromatic chain, hydro-aromatic, or aliphatic. This then triggers a reaction between oil formation and polymerization reactions to form solids (char.

  12. Organic and inorganic content of fluorotic rat incisors measured by FTIR spectroscopy

    Science.gov (United States)

    Porto, Isabel Maria; Saiani, Regina Aparecida; Chan, K. L. Andrew; Kazarian, Sergei G.; Gerlach, Raquel Fernanda; Bachmann, Luciano

    2010-09-01

    Details on how fluoride interferes in enamel mineralization are still controversial. Therefore, this study aimed at analyzing the organic contents of fluorosis-affected teeth using Fourier Transformation Infrared spectroscopy. To this end, 10 male Wistar rats were divided into two groups: one received 45 ppm fluoride in distilled water for 60 days; the other received distilled water only. Then, the lower incisors were removed and prepared for analysis by two FTIR techniques namely, transmission and micro-ATR. For the first technique, the enamel was powdered, whereas in the second case one fluorotic incisor was cut longitudinally for micro-ATR. Using transmission and powdered samples, FTIR showed a higher C-H content in the fluorotic enamel compared with control enamel ( p amelogenesis. Further studies along this line may definitely answer some questions regarding protein content in fluorotic enamel as well as their origin.

  13. Fast infrared spectroscopy in supercritical fluids

    International Nuclear Information System (INIS)

    Sun, X.

    2000-05-01

    the relative wavelength of the visible absorption maximum for Cr(CO) 5 Xe and Cr(CO) 5 (CO 2 ) all indicate a similar strength of interaction for Xe and CO 2 with the M(CO) 5 moiety. Chapter 4: Step-scan fourier transform time resolved infrared spectroscopy. In this chapter, conventional FTIR spectroscopy is introduced. Four methods of applying FTIR for time-resolved studies, i.e., rapid-scan FTIR, synchronous rapid-scan FTIR, asynchronous rapid-scan FTIR, and step-scan time-resolved FTIR are described. The using the step-scan FTIR spectrometer (Nicolet 860) in Nottingham for fast time resolved measurements is discussed. Time-resolved measurements on the photochemistry of [CpFe(CO) 2 ] 2 and Ciba Irgacure 184 in n-heptane solution show that this apparatus offers high spectral resolution, high sensitivity and fast time resolution. Chapter 5: Photochemistry of [CpMo(CO) 3 ] 2 and [Cp*Fe(CO) 2 ] 2 in supercritical CO 2 . This is the first study of the photochemistry of organometallic dimers in supercritical CO 2 . Radicals generated from visible (532nm) photolysis of [CpMo(CO) 3 ] 2 in scCO 2 , scXe, and n-heptane solution pressurised with CO 2 have been identified with ν(CO) bands. Three ν(CO) bands observed in scCO 2 and n-heptane solution pressurised with CO 2 , indicate coordination between Mo and CO 2 . A similar study with photolysis (532nm) of [Cp*Fe(CO) 2 ] 2 in scCO 2 finds no evidence of possible coordination between Fe and CO 2 . Radical recombination in scCO 2 is a second-order reaction. Study on pressure dependence of radical recombination rate shows no evidence of solvation enhancement on reaction rate in scCO 2 since the second-order rate constant is well below the diffusion controlled limit. lsomerisation of gauche-[CpMo(CO) 3 ] 2 and cis-[Cp*Fe(CO) 3 ] 2 is independent of the pressure of the solution. No cage effect is observed on the time scale of this measurement. Appendix: Three papers are attached outlining the work that I have completed during my

  14. Spectral Irradiance Calibration in the Infrared. XVI. Improved Accuracy in the Infrared Spectra of the Secondary and Tertiary Standard Calibration Stars

    Science.gov (United States)

    2006-10-01

    resolution ( AlA ). -, 400) spectroscopy obtained on infrared standard stars by the Short Wavelength Spectrometer on the Infrared Space Observatory with high...1995): 2.1-2.4 pm Strecker et al. (1979): 1.22-2.4 pm 6 See http://vizier.hia.nrc.ca/viz-bin/VizieR. REFERENCES Alonso, A., Salaris, M., Arribas , S...Haddock, D. J., Arribas , S., Leggett, S. K., & Mountain, C. M. 1988, A&AS, 74, 127

  15. The SOFIA/SAFIRE Far-Infrared Spectrometer: Highlighting Submillimeter Astrophysics and Technology

    Science.gov (United States)

    Benford, Dominic J.

    2009-01-01

    The Submillimeter and Far-InfraRed Experiment (SAFIRE) on the SOFIA airborne observatory is an imaging spectrometer for wavelengths between 28 microns and 440 microns. Our design is a dual-band long-slit grating spectrometer, which provides broadband (approx. 4000 km/s) observations in two lines simultaneously over a field of view roughly 10" wide by 320" long. The low backgrounds in spectroscopy require very sensitive detectors with noise equivalent powers of order 10(exp -18) W/square root of Hz. We are developing a kilopixel, filled detector array for SAFIRE in a 32 x 40 format. The detector consists of a transition edge sensor (TES) bolometer array, a per-pixel broadband absorbing backshort array, and a NIST SQUID multiplexer readout array. This general type of array has been used successfully in the GISMO instrument, so we extrapolate to the sensitivity needed for airborne spectroscopy. Much of the cryogenic, electronics, and software infrastructure for SAFIRE have been developed. I provide here an overview of the progress on SAFIRE.

  16. Fourier transform infrared spectrophotometry and X-ray powder ...

    African Journals Online (AJOL)

    This study aimed at demonstrating complementary roles offered by both Fourier transform infrared (FTIR) spectrophotometry and x-ray powder diffraction (XRPD) techniques in characterizing clay size fraction of kaolins. The clay size fraction of kaolin samples obtained from Kgwakgwe, Makoro, Lobatse and Serule kaolin ...

  17. Infrared analysis of urinary calculi by a single reflection accessory and a neural network interpretation algorithm

    NARCIS (Netherlands)

    Volmer, M; de Vries, JCM; Goldschmidt, HMJ

    Background: Preparation of KBr tablets, used for Fourier transform infrared (FT-IR) analysis of urinary calculus composition, is time-consuming and often hampered by pellet breakage. We developed a new F:T-IR method for urinary calculus analysis. This method makes use of a Golden Gate Single

  18. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management

    International Nuclear Information System (INIS)

    Smidt, Ena; Meissl, Katharina

    2007-01-01

    State and stability or reactivity of waste materials are important properties that must be determined to obtain information about the future behavior and the emission potential of the materials. Different chemical and biological parameters are used to describe the stage of organic matter in waste materials. Fourier transform infrared spectroscopy provides information about the chemistry of waste materials in a general way. Several indicator bands that are referred to functional groups represent components or metabolic products. Their presence and intensity or their absence shed light on the phase of degradation or stabilization. The rapid assessment of the stage of organic matter decomposition is a very important field of application. Therefore, infrared spectroscopy is an appropriate tool for process and quality control, for the assessment of abandoned landfills and for checking of the successful landfill remediation. A wide range of applications are presented in this study for different waste materials. Progressing stages of a typical yard/kitchen waste composting process are shown. The fate of anaerobically 'stabilized' leftovers in a subsequent liquid aerobic process is revealed by spectroscopic characteristics. A compost that underwent the biological stabilization process is distinguished from a 'substrate' that comprises immature biogenic waste mixed with mineral compounds. Infrared spectra of freeze-dried leachate from untreated and aerated landfill material prove the effect of the aerobic treatment during 10 weeks in laboratory-scale experiments

  19. Detection and quantification of poliovirus infection using FTIR spectroscopy and cell culture

    Directory of Open Access Journals (Sweden)

    Lee-Montiel Felipe T

    2011-12-01

    Full Text Available Abstract Background In a globalized word, prevention of infectious diseases is a major challenge. Rapid detection of viable virus particles in water and other environmental samples is essential to public health risk assessment, homeland security and environmental protection. Current virus detection methods, especially assessing viral infectivity, are complex and time-consuming, making point-of-care detection a challenge. Faster, more sensitive, highly specific methods are needed to quantify potentially hazardous viral pathogens and to determine if suspected materials contain viable viral particles. Fourier transform infrared (FTIR spectroscopy combined with cellular-based sensing, may offer a precise way to detect specific viruses. This approach utilizes infrared light to monitor changes in molecular components of cells by tracking changes in absorbance patterns produced following virus infection. In this work poliovirus (PV1 was used to evaluate the utility of FTIR spectroscopy with cell culture for rapid detection of infective virus particles. Results Buffalo green monkey kidney (BGMK cells infected with different virus titers were studied at 1 - 12 hours post-infection (h.p.i.. A partial least squares (PLS regression method was used to analyze and model cellular responses to different infection titers and times post-infection. The model performs best at 8 h.p.i., resulting in an estimated root mean square error of cross validation (RMSECV of 17 plaque forming units (PFU/ml when using low titers of infection of 10 and 100 PFU/ml. Higher titers, from 103 to 106 PFU/ml, could also be reliably detected. Conclusions This approach to poliovirus detection and quantification using FTIR spectroscopy and cell culture could potentially be extended to compare biochemical cell responses to infection with different viruses. This virus detection method could feasibly be adapted to an automated scheme for use in areas such as water safety monitoring and

  20. Photoacoustic spectroscopy, FTIR spectra and thermal diffusivity investigation of emeraldine pellet

    International Nuclear Information System (INIS)

    Phing, T.E.; Fanny, C.Y.J.; Wan Mahmood Mat Yunus

    2001-01-01

    Photoacoustic spectra for both emeraldine base and emeraldine salt in bulk form were measured in the wavelength range of 350 nm to 700 nm. The Fourier transform Infrared spectroscopy (FTIR) have also been studied to determine the structure changes due to the protonation process. For the thermal diffusivity measurement, the open photoacoustic cell (OPC) technique has been used. It was found that the emeraldine salt exhibit higher thermal diffusivity compare to emeraldine base and this is similar to the higher conductivity characteristics of emeraldine salt. (Author)

  1. Identification and characterization of historical pigments with x-ray diffraction analysis (XRD), x-ray fluorescence analysis (XRA) and Fourier transformed infrared spectroscopy (FTIR)

    International Nuclear Information System (INIS)

    Hochleitner, B.

    2002-11-01

    This thesis presents a systematic characterization of historical inorganic pigments with respect to their crystallographic structure, main components, and trade elements, utilizing three complementary methods. The results are compiled in a computer-database containing the experimentally obtained information. The specimens examined in this study originate from a collection of 19th and 20th century pigments, dyes and binders with a wide variety of colors and materials at the Institute of Natural Sciences and Technologies in Art of the Academy of Fine Arts in Vienna. Approximately 400 different inorganic pigments were analysed for this first study of its kind by combining the experimental techniques explained in the next paragraph. For analyzing the inorganic pigments three different methods were applied: x-ray diffraction (XRD), x-ray fluorescence (XRF) and fourier-transformed infrared spectroscopy (FTIR) proved to be suitable techniques to identify and characterize the composition of the materials. The experimental work was focused on x-ray diffraction to detect the main components and to perform phase analysis for the identification of the crystallographic structure. To facilitate the analysis of the diffractograms and investigate differences in the elemental composition, XRF-measurements were carried out and complemented by FTIR-spectroscopy. The latter technique supports the identification of organic components of the samples and both ease phase analysis. In some cases, the obtained results show remarkable differences in composition for pigments having the same trade name. These differences consist either with respect to the identified elements or added components, such as pure white pigments. However, in most cases the chemical structure of the phase determining the color of the relevant pigment group was similar. Knowledge of the composition of the originally used pigments is of great importance for the restoration and conservation of art objects. In order to

  2. Cross-validation of IASI/MetOp derived tropospheric δD with TES and ground-based FTIR observations

    Science.gov (United States)

    Lacour, J.-L.; Clarisse, L.; Worden, J.; Schneider, M.; Barthlott, S.; Hase, F.; Risi, C.; Clerbaux, C.; Hurtmans, D.; Coheur, P.-F.

    2015-03-01

    The Infrared Atmospheric Sounding Interferometer (IASI) flying onboard MetOpA and MetOpB is able to capture fine isotopic variations of the HDO to H2O ratio (δD) in the troposphere. Such observations at the high spatio-temporal resolution of the sounder are of great interest to improve our understanding of the mechanisms controlling humidity in the troposphere. In this study we aim to empirically assess the validity of our error estimation previously evaluated theoretically. To achieve this, we compare IASI δD retrieved profiles with other available profiles of δD, from the TES infrared sounder onboard AURA and from three ground-based FTIR stations produced within the MUSICA project: the NDACC (Network for the Detection of Atmospheric Composition Change) sites Kiruna and Izaña, and the TCCON site Karlsruhe, which in addition to near-infrared TCCON spectra also records mid-infrared spectra. We describe the achievable level of agreement between the different retrievals and show that these theoretical errors are in good agreement with empirical differences. The comparisons are made at different locations from tropical to Arctic latitudes, above sea and above land. Generally IASI and TES are similarly sensitive to δD in the free troposphere which allows one to compare their measurements directly. At tropical latitudes where IASI's sensitivity is lower than that of TES, we show that the agreement improves when taking into account the sensitivity of IASI in the TES retrieval. For the comparison IASI-FTIR only direct comparisons are performed because the sensitivity profiles of the two observing systems do not allow to take into account their differences of sensitivity. We identify a quasi negligible bias in the free troposphere (-3‰) between IASI retrieved δD with the TES, which are bias corrected, but important with the ground-based FTIR reaching -47‰. We also suggest that model-satellite observation comparisons could be optimized with IASI thanks to its high

  3. High-resolution absorption measurements of NH3 at high temperatures: 2100–5500 cm−1

    DEFF Research Database (Denmark)

    Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2017-01-01

    Transform Infrared (FTIR) spectrometer at a nominal resolution of 0.09 cm−1. The spectra are analysed by comparison to a variational line list, BYTe, and experimental energy levels determined using the MARVEL procedure. 2308 lines have been assigned to 45 different bands, of which 1755 and 15 have been...

  4. Remote Determination of Cloud Temperature and Transmittance from Spectral Radiance Measurements: Method and Results

    Science.gov (United States)

    1996-10-01

    atmospherics temperatura and humidity profiles. Validation tests performed on experimental spectra demonstrate the occuracy of the method with typical...indicated as with the title.) Passive Remota Sensing Infrared Spectra Cloud Temperatura Cloud Transmittance FTIR Spectrometer Icing Hazard Detection (DCD03E.IFO - 95.02.22) UNCLASSIFIED SECURITY CLASSIFICATION OF FORM

  5. Verification of fresh grass feeding, pasture grazing and organic farming by FTIR spectroscopy analysis of bovine milk

    NARCIS (Netherlands)

    Capuano, E.; Rademaker, J.; Bijgaart, van den H.; Ruth, van S.M.

    2014-01-01

    In the present study, a total of 116 tank milk samples were collected from 30 farms located in The Netherlands and analysed by Fourier-transform infrared (FTIR) spectroscopy. Samples were collected in April, May and June 2011 and in February 2012. The samples differed in the time spent by the cows

  6. Sugar and acid content of Citrus prediction modeling using FT-IR fingerprinting in combination with multivariate statistical analysis.

    Science.gov (United States)

    Song, Seung Yeob; Lee, Young Koung; Kim, In-Jung

    2016-01-01

    A high-throughput screening system for Citrus lines were established with higher sugar and acid contents using Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate analysis. FT-IR spectra confirmed typical spectral differences between the frequency regions of 950-1100 cm(-1), 1300-1500 cm(-1), and 1500-1700 cm(-1). Principal component analysis (PCA) and subsequent partial least square-discriminant analysis (PLS-DA) were able to discriminate five Citrus lines into three separate clusters corresponding to their taxonomic relationships. The quantitative predictive modeling of sugar and acid contents from Citrus fruits was established using partial least square regression algorithms from FT-IR spectra. The regression coefficients (R(2)) between predicted values and estimated sugar and acid content values were 0.99. These results demonstrate that by using FT-IR spectra and applying quantitative prediction modeling to Citrus sugar and acid contents, excellent Citrus lines can be early detected with greater accuracy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A simplification of the deuterium oxide dilution technique using FT-IR analysis of plasma, for estimating piglet milk intake

    International Nuclear Information System (INIS)

    Glencross, B.D.; Tuckey, R.C.; Hartmann, P.E.; Mullan, B.P.

    1997-01-01

    Previous studies estimating milk intake using deuterium oxide (D 2 O) as a tracer have required sublimation of the sample fluid (usually plasma) to remove solids and retrieve total water. This procedure has been simplified by directly measuring the D 2 O content of plasma with a Fourier transform-infrared (FT-IR) spectrometer, removing the requirement for sample sublimation. Comparisons of samples that were split and then analysed as water of sublimation and as total plasma were performed. It was found that the direct analysis of the plasma could be achieved without a loss in fidelity of the results (sublimated v. plasma, r 2 = 0.976; n = 26). Linearity of assay standards was very high (r 2 > 0.997). The modified technique was used to determine the milk intake by piglets from litters of 7 sows during established lactation (Days 10-15). Water turnover (WTO) was shown to be the primary point by which differences in the piglet milk intakes were influenced. Differences in the milk composition had minimal effect on the milk intake determinations. Milk intake by each piglet was shown to be strongly correlated to piglet growth (r 2 = 0.59, P 2 = 0.84, P < 0.01). Copyright (1997) CSIRO Australia

  8. Chemical composition and surfactant characteristics of marine foams investigated by means of UV-vis, FTIR and FTNIR spectroscopy.

    Science.gov (United States)

    Mecozzi, Mauro; Pietroletti, Marco

    2016-11-01

    In this study, we collected the ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) and Fourier transform near-infrared (FTNIR) spectra of marine foams from different sites and foams produced by marine living organisms (i.e. algae and molluscs) to retrieve information about their molecular and structural composition. UV-vis spectra gave information concerning the lipid and pigment contents of foams. FTIR spectroscopy gave a more detailed qualitative information regarding carbohydrates, lipids and proteins in addition with information about the mineral contents of foams. FTNIR spectra confirmed the presence of carbohydrates, lipids and proteins in foams. Then, due to the higher content of structural information of FTIR spectroscopy with respect to FTNIR and UV-vis, we join the FTIR spectra of marine foams to those of humic substance from marine sediments and to the spectra of foams obtained by living organisms. We submitted this resulting FTIR spectral dataset to statistical multivariate methods to investigate specific aspects of foams such as structural similarity among foams and in addition, contributions from the organic matter of living organisms. Cluster analysis (CA) evidenced several cases (i.e. clusters) of marine foams having high structural similarity with foams from vegetal and animal samples and with humic substance extracted from sediments. These results suggested that all the living organisms of the marine environment can give contributions to the chemical composition of foams. Moreover, as CA also evidenced cases of structural differences within foam samples, we applied two-dimensional correlation analysis (2DCORR) to the FTIR spectra of marine foams to investigate the molecular characteristics which caused these structural differences. Asynchronous spectra of two-dimensional correlation analysis showed that the structural heterogeneity among foam samples depended reasonably on the presence and on the qualitative difference of

  9. HUBBLE SPACE TELESCOPE/NEAR-INFRARED CAMERA AND MULTI-OBJECT SPECTROMETER OBSERVATIONS OF THE GLIMPSE9 STELLAR CLUSTER

    International Nuclear Information System (INIS)

    Messineo, Maria; Figer, Donald F.; Davies, Ben; Trombley, Christine; Kudritzki, R. P.; Rich, R. Michael; MacKenty, John

    2010-01-01

    We present Hubble Space Telescope/Near-Infrared Camera and Multi-Object Spectrometer photometry, and low-resolution K-band spectra of the GLIMPSE9 stellar cluster. The newly obtained color-magnitude diagram shows a cluster sequence with H - K S = ∼1 mag, indicating an interstellar extinction A K s = 1.6 ± 0.2 mag. The spectra of the three brightest stars show deep CO band heads, which indicate red supergiants with spectral type M1-M2. Two 09-B2 supergiants are also identified, which yield a spectrophotometric distance of 4.2 ± 0.4 kpc. Presuming that the population is coeval, we derive an age between 15 and 27 Myr, and a total cluster mass of 1600 ± 400 M sun , integrated down to 1 M sun . In the vicinity of GLIMPSE9 are several H II regions and supernova remnants, all of which (including GLIMPSE9) are probably associated with a giant molecular cloud (GMC) in the inner galaxy. GLIMPSE9 probably represents one episode of massive star formation in this GMC. We have identified several other candidate stellar clusters of the same complex.

  10. Application of FTIR spectroscopy to the characterization of archeological wood.

    Science.gov (United States)

    Traoré, Mohamed; Kaal, Joeri; Martínez Cortizas, Antonio

    2016-01-15

    Two archeological wood samples were studied by attenuated total reflectance Fourier transform infrared (FTIR-ATR) spectroscopy. They originate from a shipwreck in Ribadeo Bay in the northwest of Spain and from a beam wood of an old nave of the Cathedral of Segovia in the central Spain. Principal component analysis was applied to the transposed data matrix (samples as columns and spectral bands as rows) of 43 recorded spectra (18 in the shipwreck and 25 in the beam wood). The results showed differences between the two samples, with a larger proportion of carbohydrates and smaller proportion of lignin in the beam than in the shipwreck wood. Within the beam wood, lignin content was significantly lower in the recent than the old tree rings (P=0.005). These variations can be attributed to species differences between the two woods (oak and pine respectively), with a mixture of guaiacyl and syringyl in hardwood lignin, whereas softwood lignin consists almost exclusively of guaiacyl moieties. The influence of environmental conditions on the FTIR fingerprint was probably reflected by enhanced oxidation of lignin in aerated conditions (beam wood) and hydrolysis of carbohydrates in submerged-anoxic conditions (shipwreck wood). Molecular characterization by analytical pyrolysis of selected samples from each wood type confirmed the interpretation of the mechanisms behind the variability in wood composition obtained by the FTIR-ATR. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Photoacoustic FTIR spectroscopic study of undisturbed nacre from red abalone

    Science.gov (United States)

    Verma, Devendra; Katti, Kalpana; Katti, Dinesh

    2006-07-01

    In this work, photoacoustic Fourier transform infrared (PA-FTIR) spectroscopy has been utilized to study interfacial interactions of undisturbed nacre and nacre powder from red abalone shell. The spectra of both undisturbed nacre and nacre powder showed characteristic bands of aragonite and proteins. Although nacre powder and undisturbed nacre are chemically identical, PA-FTIR spectrum of undisturbed nacre is found to be significantly different from that of nacre powder. A broad and strong band is observed at around 1485 cm -1 in nacre powder. The intensity of this band is notably reduced in undisturbed nacre. This result is explained on the basis of interfacial interactions between aragonite platelets and acidic proteins. It is also observed that band at around 1788 cm -1 originates from three overlapping bands 1797, 1787 and 1778 cm -1. The band at around 1787 cm -1 is assigned to C dbnd O stretching of carboxylate groups of acidic proteins. The other two bands at 1797 and 1778 cm -1, originate from aragonite and have been assigned to combination bands, ν 3 + ν 4a and ν 3 + ν 4b, respectively. For the study of stratification in undisturbed nacre, PA-FTIR spectra have been collected in step scan mode. The variation in spectra with depth can be attributed to changes in conformation of proteins as well as interfacial interactions.

  12. Real time observation of proteolysis with Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy: Watching a protease eat a protein

    Science.gov (United States)

    Güler, Günnur; Džafić, Enela; Vorob'ev, Mikhail M.; Vogel, Vitali; Mäntele, Werner

    2011-06-01

    Fourier transform infrared (FT-IR)- and UV-circular dichroism (UV-CD) spectroscopy have been used to study real-time proteolytic digestion of β-lactoglobulin (β-LG) and β-casein (β-CN) by trypsin at various substrate/enzyme ratios in D 2O-buffer at 37 °C. Both techniques confirm that protein substrate looses its secondary structure upon conversion to the peptide fragments. This perturbation alters the backbone of the protein chain resulting in conformational changes and degrading of the intact protein. Precisely, the most significant spectral changes which arise from digestion take place in the amide I and amide II regions. The FT-IR spectra for the degraded β-LG show a decrease around 1634 cm -1, suggesting a decrease of β-sheet structure in the course of hydrolysis. Similarly, the intensity around the 1654 cm -1 band decreases for β-CN digested by trypsin, indicating a reduction in the α-helical part. On the other hand, the intensity around ˜1594 cm -1 and ˜1406 cm -1 increases upon enzymatic breakdown of both substrates, suggesting an increase in the antisymmetric and symmetric stretching modes of free carboxylates, respectively, as released digestion products. Observation of further H/D exchange in the course of digestion manifests the structural opening of the buried groups and accessibility to the core of the substrate. On the basis of the UV-CD spectra recorded for β-LG and β-CN digested by trypsin, the unordered structure increases concomitant with a decrease in the remaining structure, thus, revealing breakdown of the intact protein into smaller fragments. This model study in a closed reaction system may serve as a basis for the much more complex digestion processes in an open reaction system such as the stomach.

  13. High-pressure synchrotron infrared spectroscopy at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Hemley, R.J.; Goncharov, A.F.; Lu, R.; Struzhkin, V.V.; Li, M.; Mao, H.K.

    1998-01-01

    The paper describes a synchrotron infrared facility for high-pressure spectroscopy and microspectroscopy at the National Synchrotron Light-Source (NSLS). Located at beamline U2B on the VUV ring of the NSLS, the facility utilizes a commercial FT-IR together with custom-built microscope optics designed for a variety of diamond anvil cell experiments, including low- and high- temperature studies. The system contains an integrated laser optical/grating spectrometer for concurrent optical experiments. The facility has been used to characterize a growing number of materials to ultrahigh pressure and has been instrumental of new high-pressure phenomena. Experiments on dense hydrogen to >200 GPa have led to the discovery of numerous unexpected properties of this fundamental system. The theoretically predicted molecular-atomic transition of H 2 O ice to the symmetric hydrogen-bonded structure has been identified, and new classes of high-density clathrates and molecular compounds have been characterized. Experiments on natural and synthetic mineral samples have been performed to study hydrogen speciation, phase transformations, and microscopic inclusions in multiphase assemblages. Detailed information on the behavior of new materials, including novel high-pressure glasses and ceramics, has also been obtained

  14. Fiber optic FTIR instrument for in vivo detection of colonic neoplasia

    Science.gov (United States)

    Van Nortwick, Matthew; Hargrove, John; Wolters, Rolf; Crawford, James M.; Arroyo, May; Mackanos, Mark; Contag, Christopher H.; Wang, Thomas D.

    2009-02-01

    We demonstrate the proof of concept for use of a fiber optic FTIR instrument to perform in vivo detection of colonic neoplasia as an adjunct to medical endoscopy. FTIR is sensitive to the molecular composition of tissue, and can be used as a guide for biopsy by identifying pre-malignant tissue (dysplasia). First, we demonstrate the use of a silver halide optical fiber to collect mid-infrared absorption spectra in the 950 to 1800 cm-1 regime with high signal-to-noise from biopsy specimens of colonic mucosa tissue ex vivo. We observed subtle differences in wavenumber and magnitude of the absorbance peaks over this regime. We then show that optimal sub-ranges can be defined within this spectral regime and that spectral pre-processing can be performed to classify the tissue as normal, hyperplasia, or dysplasia with high levels of performance. We used a partial least squares discriminant analysis and a leave-one-subject-out crossvalidation strategy to classify the spectra. The results were compared with histology, and the optimal thresholds resulted in an overall sensitivity, specificity, accuracy, and positive predictive value of 96%, 92%, 93%, and 82%, respectively for this technique. We demonstrate that mid-infrared absorption spectra can be collected remotely with an optical fiber and used to identify colonic dysplasia with high accuracy. We are now developing an endoscope compatible optical fiber to use this technique clinically for the early detection of cancer.

  15. Study on Angelica and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy

    Science.gov (United States)

    Liu, Hong-xia; Sun, Su-qin; Lv, Guang-hua; Chan, Kelvin K. C.

    2006-05-01

    In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional correlation infrared spectroscopy (2D-IR) to study the main constituents in traditional Chinese medicine Angelica and its different extracts (extracted by petroleum ether, ethanol and water in turn). The findings indicated that FT-IR spectrum can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can not only identify the main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. This analytical method is highly rapid, effective, visual and accurate for pharmaceutical research.

  16. Similarity maps and hierarchical clustering for annotating FT-IR spectral images.

    Science.gov (United States)

    Zhong, Qiaoyong; Yang, Chen; Großerüschkamp, Frederik; Kallenbach-Thieltges, Angela; Serocka, Peter; Gerwert, Klaus; Mosig, Axel

    2013-11-20

    Unsupervised segmentation of multi-spectral images plays an important role in annotating infrared microscopic images and is an essential step in label-free spectral histopathology. In this context, diverse clustering approaches have been utilized and evaluated in order to achieve segmentations of Fourier Transform Infrared (FT-IR) microscopic images that agree with histopathological characterization. We introduce so-called interactive similarity maps as an alternative annotation strategy for annotating infrared microscopic images. We demonstrate that segmentations obtained from interactive similarity maps lead to similarly accurate segmentations as segmentations obtained from conventionally used hierarchical clustering approaches. In order to perform this comparison on quantitative grounds, we provide a scheme that allows to identify non-horizontal cuts in dendrograms. This yields a validation scheme for hierarchical clustering approaches commonly used in infrared microscopy. We demonstrate that interactive similarity maps may identify more accurate segmentations than hierarchical clustering based approaches, and thus are a viable and due to their interactive nature attractive alternative to hierarchical clustering. Our validation scheme furthermore shows that performance of hierarchical two-means is comparable to the traditionally used Ward's clustering. As the former is much more efficient in time and memory, our results suggest another less resource demanding alternative for annotating large spectral images.

  17. In situ detection of cancerous kidney tissue by means of fiber ATR-FTIR spectroscopy

    Science.gov (United States)

    Sablinskas, Valdas; Velicka, Martynas; Pucetaite, Milda; Urboniene, Vidita; Ceponkus, Justinas; Bandzeviciute, Rimante; Jankevicius, Feliksas; Sakharova, Tatiana; Bibikova, Olga; Steiner, Gerald

    2018-02-01

    The crucial goal of kidney-sparing surgical resection of a malignant tumor is complete removal of the cancerous tissue. The exact border between the cancerous and normal tissues is not always possible to identify by naked eye, therefore, a supplementary intraoperative diagnosis is needed. Unfortunately, intraoperative pathology methods used nowadays are time consuming and of inadequate quality rendering not definitive diagnosis. It has recently been shown that ATR-FTIR spectroscopy can be used for fast discrimination between cancerous and normal kidney tissues by analyzing the collected spectra of the tissue touch imprint smears. Most prominent differences are obtained in the wavenumber region from 950 cm-1 to 1250 cm-1, where the spectral bands due to the molecular vibrations of glycogen arise in the spectra of cancerous tissue smears. Such method of detection of cancerous tissue is limited by requirement to transfer the suspected tissue from the body to the FTIR instrument and stamp it on an ATR crystal of the spectrometer. We propose a spectroscopic tool which exploits the same principle of detection of cancerous cells as mentioned above, but does not require the tissue to be transferred from the body to the spectrometer. The portable spectrometer used in this design is equipped with fiber ATR probe and a sensitive liquid nitrogen cooled MCT detector. The design of the fiber probe allows the ATR tip to be changed easily in order to use only new sterilized tips for each measurement point of the tissue. It also enables sampling multiple areas of the suspected tissue with high lateral resolution which, in turn, increases accuracy with which the marginal regions between normal and cancerous tissues can be identified. Due to the loss of optical signal in the fiber probe the spectra have lower signal-to-noise ratio than in the case of standard ATR sampling setup. However, software for the spectral analysis used with the fiber probe design is still able to distinguish

  18. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    Science.gov (United States)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  19. Electro-optic imaging Fourier transform spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)

    2009-01-01

    An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

  20. High-resolution transmission measurements of CO2 at high temperatures for industrial applications

    DEFF Research Database (Denmark)

    Evseev, Vadim; Fateev, Alexander; Clausen, Sønnik

    2012-01-01

    . The spectra have been recorded in a high-temperature flow gas cell and using a Fourier transform infrared (FTIR) spectrometer at a nominal resolution of 0.125 cm-1. The volume fractions of CO2 in the measurements were 1,10 and 100%. The measurements have been validated by comparison with medium...

  1. Fulltext PDF

    Indian Academy of Sciences (India)

    All calculations were performed on PC com- puter using WINGX program.20 Molecular graphics were generated using the DIAMOND Version 2,21 and. MERCURY 2.4 software.22. 2.3 Instrumentation. The infrared spectra were recorded on a Perkin Elmer. (FT-IR) Paragon 1000 Pc spectrometer in the range. 4000–400 cm.

  2. The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging.

    Science.gov (United States)

    Sroka-Bartnicka, Anna; Kimber, James A; Borkowski, Leszek; Pawlowska, Marta; Polkowska, Izabela; Kalisz, Grzegorz; Belcarz, Anna; Jozwiak, Krzysztof; Ginalska, Grazyna; Kazarian, Sergei G

    2015-10-01

    The spectroscopic approaches of FTIR imaging and Raman mapping were applied to the characterisation of a new carbon hydroxyapatite/β-glucan composite developed for bone tissue engineering. The composite is an artificial bone material with an apatite-forming ability for the bone repair process. Rabbit bone samples were tested with an implanted bioactive material for a period of several months. Using spectroscopic and chemometric methods, we were able to determine the presence of amides and phosphates and the distribution of lipid-rich domains in the bone tissue, providing an assessment of the composite's bioactivity. Samples were also imaged in transmission using an infrared microscope combined with a focal plane array detector. CaF2 lenses were also used on the infrared microscope to improve spectral quality by reducing scattering artefacts, improving chemometric analysis. The presence of collagen and lipids at the bone/composite interface confirmed biocompatibility and demonstrate the suitability of FTIR microscopic imaging with lenses in studying these samples. It confirmed that the composite is a very good background for collagen growth and increases collagen maturity with the time of the bone growth process. The results indicate the bioactive and biocompatible properties of this composite and demonstrate how Raman and FTIR spectroscopic imaging have been used as an effective tool for tissue characterisation.

  3. Detection of metanil yellow contamination in turmeric using FT-Raman and FT-IR spectroscopy

    Science.gov (United States)

    Dhakal, Sagar; Chao, Kuanglin; Qin, Jianwei; Kim, Moon; Schmidt, Walter; Chan, Dian

    2016-05-01

    Turmeric is well known for its medicinal value and is often used in Asian cuisine. Economically motivated contamination of turmeric by chemicals such as metanil yellow has been repeatedly reported. Although traditional technologies can detect such contaminants in food, high operational costs and operational complexities have limited their use to the laboratory. This study used Fourier Transform Raman Spectroscopy (FT-Raman) and Fourier Transform - Infrared Spectroscopy (FT-IR) to identify metanil yellow contamination in turmeric powder. Mixtures of metanil yellow in turmeric were prepared at concentrations of 30%, 25%, 20%, 15%, 10%, 5%, 1% and 0.01% (w/w). The FT-Raman and FT-IR spectral signal of pure turmeric powder, pure metanil yellow powder and the 8 sample mixtures were obtained and analyzed independently to identify metanil yellow contamination in turmeric. The results show that FT-Raman spectroscopy and FT-IR spectroscopy can detect metanil yellow mixed with turmeric at concentrations as low as 1% and 5%, respectively, and may be useful for non-destructive detection of adulterated turmeric powder.

  4. Multivariate Calibration Models for Sorghum Composition using Near-Infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wolfrum, E.; Payne, C.; Stefaniak, T.; Rooney, W.; Dighe, N.; Bean, B.; Dahlberg, J.

    2013-03-01

    NREL developed calibration models based on near-infrared (NIR) spectroscopy coupled with multivariate statistics to predict compositional properties relevant to cellulosic biofuels production for a variety of sorghum cultivars. A robust calibration population was developed in an iterative fashion. The quality of models developed using the same sample geometry on two different types of NIR spectrometers and two different sample geometries on the same spectrometer did not vary greatly.

  5. Intelligent Controller for a Compact Wide-Band Compositional Infrared Fourier Transform Spectrometer

    Science.gov (United States)

    Yiu, P.; Keymeulen, D.; Berisford, D. F.; Hand, K. P.; Carlson, R. W.

    2013-12-01

    This paper presents the design and integration of an intelligent controller for CIRIS (Compositional InfraRed Interferometric Spectrometer) on a stand-alone field programmable gate array (FPGA) architecture. CIRIS is a novel take on traditional Fourier Transform Spectrometers (FTS) and replaces linearly moving mirrors (characteristic of Michelson interferometers) with a constant-velocity rotating refractor to variably phase shift and alter the path length of incoming light. This design eliminates the need for periodically accelerating/decelerating mirrors inherent to canonical Michelson designs and allows for a compact and robust device that is intrinsically radiation-hard, making it ideal for spaceborne measurements in the near-IR to thermal-IR band (2-12 μm) on planetary exploration missions. A traditional Michelson FTS passes a monochromatic light source (incident light from the sample) through a system of refractors/mirrors followed by a mirror moving linearly in the plane of the incident light. This process selectively blocks certain wavelengths and permits measurement of the sample's absorption rates as a function of the wavelengths blocked to produce an 'inteferogram.' This is subsequently processed using a Fourier transform to obtain the sample's spectrum and ascertain the sample's composition. With our prototype CIRIS instrument in development at Design and Prototype Inc. and NASA-JPL, we propose the use of a rotating refractor spinning at a constant velocity to variably phase shift incident light to the detector as an alternative to a linearly moving mirror. This design eliminates sensitivity to vibrations, minimizing path length and non-linear errors due to minor perturbations to the system, in addition to facilitating compact design critical to meeting the strict volume requirements of spacecraft. Further, this is done without sacrificing spectral resolution or throughput when compared to Michelson or diffractive designs. While Michelson designs

  6. Collection of VLE data for acid gas - alkanolamine systems using Fourier transform infrared spectroscopy. Final report, September 29, 1990--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Bullin, J.A.; Rogers, W.J.

    1996-11-01

    This report describes research from September 29, 1990 through September 30, 1996, involving the development a novel Fourier transform infrared (FTIR) spectroscopic apparatus and method for measuring vapor - liquid equilibrium (VLE) systems of carbon dioxide and hydrogen sulfide with aqueous alkanolamine solutions. The original apparatus was developed and modified as it was used to collect VLE data on acid gas systems. Vapor and liquid calibrations were performed for spectral measurements of hydrogen sulfide and carbon dioxide in the vapor and in solution with aqueous diethanolamine (DEA) and methyldiethanolamine (MDEA). VLE measurements were made of systems of hydrogen sulfide and carbon dioxide in 20 wt % DEA at 50{degrees}C and 40{degrees}C. VLE measurements were made of systems of hydrogen sulfide and carbon dioxide in 50 wt% and 23 wt% MDEA at 40{degrees}C and in 23 wt% MDEA at 50{degrees}C. VLE measurements were made of systems of hydrogen sulfide and carbon dioxide in 35 wt% MDEA + 5 wt% DEA and in 35 wt% MDEA + 10 wt% DEA at 40{degrees}C and 50{degrees}C. Measurements were made of residual amounts of carbon dioxide in each VLE system. The new FTIR spectrometer is now a consistently working and performing apparatus.

  7. Karakteristik Beberapa Jenis Antibiotik Berdasarkan Pola Difraksi Sinar-X (XRD Dan Spektrum FTIR

    Directory of Open Access Journals (Sweden)

    Mirzan T Razzak

    2017-03-01

    Full Text Available Telah dilakukan pengukuran karakteristik difraksi sinar-x (XRD terhadap beberapa jenisantibiotik. Penelitian ini bertujuan untuk memahami karakteristik difraksi sinar-x suatuantibiotik sebagai upaya untuk identifikasi antibiotik secara cepat. Dalam penelitian ini diamatikarakteristik difraksi sinar-x dari 15 (lima belas antibiotik yang tersedia di pasaran. SpektrumXRD diukur pada sudut 2 antara 5 – 75 untuk dibandingkan dan dievaluasi mengenai bentukkristalnya. Selanjutnya diukur pula spektrum XRD dari pencampuran antibiotik dengan tepungtapioka. Pengukuran spektrum infrared dengan FTIR juga dilakukan untuk menguji konsistensihasil evaluasi spektrum XRD. Hasil penelitian menunjukkan bahwa amoxicillin dan ampicillinmempunyai struktur kristal yang sama, yaitu orthorombic primitif. Sayangnya baik XRDmaupun FTIR, tidak memberikan nilai kuantitatif pada antibiotik. Oleh sebab itu, perbedaankonsentrasi dengan pencampuran tepung tapioka tidak dapat dideteksi. Walaupun demikian,metode ini terbukti dapat digunakan untuk membedakan komposisi zat penyusun antibiotiksecara cepat dan akurat.

  8. FTIR Analysis of Phenolic Compound as Pancreatic Lipase Inhibitor from Inoculated Aquilaria Malaccensis

    International Nuclear Information System (INIS)

    Nur Fahana Jamahseri; Miradatul Najwa Mohd Rodhi; Nur Hidayah Zulkarnain; Nursyuhada Che Husain; Ahmad Fakhri Syahmi Masruddin

    2014-01-01

    This research aimed to discover the potential of inoculated Aquilaria malaccensis extract as a new and safe lipase inhibitor. The phenolic compounds in this plant are expected to promote inhibitory activity towards pancreatic lipase enzyme. Inoculated Aquilaria malaccensis was selected for this research, wherein the parts of this species (bark and leaves) were extracted via hydro distillation process. The extracts of this plant which are hydrosol, oil, and leaves were analyzed for phyto chemical compound via Fourier Transform Infrared Spectroscopy (FTIR). FTIR analysis of the extracts of inoculated Aquilaria malccensis revealed the presence of hydroxyl functional group in both leaves and hydrosol extracts but absence in oil. This validate the presence of phenolic compound in hydrosol and leaves extract. Therefore, the leaves and hydrosol extracts have potential as an anti-obesity agent by inhibiting pancreatic lipase. (author)

  9. Capillary supercritical fluid chromatography - Fourier transform infrared spectrometry

    International Nuclear Information System (INIS)

    Olesik, S.V.; French, S.B.; Movotny, M.

    1984-01-01

    One of the most demanding tasks asked of an analytical chemist today is to separate and identify the components of a nonvolatile complex mixture. An efficient separation technique combined with a universal detector that provides structural information, therefore, would be a great asset to analytical chemists. Capillary supercritical fluid chromatography (SFC) - Fourier transform infrared spectrometry (FTIR) shows great potential for being such a technique. SFC-FTIR shows great potential as a very powerful technique for separation and identification of thermally labile and nonvolatile compounds. Research is continuing in these labs to further optimize the technique. 2 refs

  10. Using Fourier transform infrared spectroscopy to evaluate biological effects induced by photodynamic therapy.

    Science.gov (United States)

    Lima, Cassio A; Goulart, Viviane P; Correa, Luciana; Zezell, Denise M

    2016-07-01

    Vibrational spectroscopic methods associated with multivariate statistical techniques have been succeeded in discriminating skin lesions from normal tissues. However, there is no study exploring the potential of these techniques to assess the alterations promoted by photodynamic effect in tissue. The present study aims to demonstrate the ability of Fourier Transform Infrared (FTIR) spectroscopy on Attenuated total reflection (ATR) sampling mode associated with principal component-linear discriminant analysis (PC-LDA) to evaluate the biochemical changes caused by photodynamic therapy (PDT) in skin neoplastic tissue. Cutaneous neoplastic lesions, precursors of squamous cell carcinoma (SCC), were chemically induced in Swiss mice and submitted to a single session of 5-aminolevulinic acid (ALA)-mediated PDT. Tissue sections with 5 μm thickness were obtained from formalin-fixed paraffin-embedded (FFPE) and processed prior to the histopathological analysis and spectroscopic measurements. Spectra were collected in mid-infrared region using a FTIR spectrometer on ATR sampling mode. Principal Component-Linear Discriminant Analysis (PC-LDA) was applied on preprocessed second derivatives spectra. Biochemical changes were assessed using PCA-loadings and accuracy of classification was obtained from PC-LDA . Sub-bands of Amide I (1,624 and 1,650 cm(-1) ) and Amide II (1,517 cm(-1) ) indicated a protein overexpression in non-treated and post-PDT neoplastic tissue compared with healthy skin, as well as a decrease in collagen fibers (1,204, 1,236, 1,282, and 1,338 cm(-1) ) and glycogen (1,028, 1,082, and 1,151 cm(-1) ) content. Photosensitized neoplastic tissue revealed shifted peak position and decreased β-sheet secondary structure of proteins (1,624 cm(-1) ) amount in comparison to non-treated neoplastic lesions. PC-LDA score plots discriminated non-treated neoplastic skin spectra from post-PDT cutaneous lesions with accuracy of 92.8%, whereas non-treated neoplastic

  11. Characterization of Modified and Polymer Coated Alumina Surfaces by Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ashraf Yehia El-Naggar

    2013-01-01

    Full Text Available The prepared, modified, and coated alumina surfaces were characterized by infrared spectroscopy (FTIR to investigate the surface properties of the individual and double modified samples. FTIR helps in reporting the changes occurred in hydroxyl groups as well as the structure changes as a result of thermal treating, hydrothermal treating, silylation treating, alkali metal treating, coating, and bonding with polymer. FTIR spectroscopy represents the strength and abundance of surface acidic OH which determine the adsorption properties of polar and nonpolar sorbents. Generally, all treated samples exhibit decrease of OH groups compared with those of parent ones producing alumina surfaces of different adsorptive powers.

  12. Nitrogen and hydrogen related infrared absorption in CVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Titus, E. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal)]. E-mail: elby@mec.ua.pt; Ali, N. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Cabral, G. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Madaleno, J.C. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Neto, V.F. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Gracio, J. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Ramesh Babu, P [Materials Ireland, Polymer research Centre, School of Physics, Dublin (Ireland); Sikder, A.K. [Department of Physics, Indian Institute of Technology (IIT), Bombay (India); Okpalugo, T.I. [Northern Ireland Bio-Engineering Centre, NIBEC, University of Ulster (United Kingdom); Misra, D.S. [Department of Physics, Indian Institute of Technology (IIT), Bombay (India)

    2006-09-25

    In this paper, we investigate on the presence of hydrogen and nitrogen related infrared absorptions in chemical vapour deposited (CVD) diamond films. Investigations were carried out in cross sections of diamond windows, deposited using hot filament CVD (HFCVD). The results of Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) and Raman spectroscopy carried out in a cross section of self-standing diamond sheets are presented. The FTIR spectra showed several features that have not been reported before. In order to confirm the frequency of nitrogen related vibrations, ab-initio calculations were carried out using GAMESS program. The investigations showed the presence of several C-N related peaks in one-phonon (1000-1333 cm{sup -1}). The deconvolution of the spectra in the three-phonon region (2700-3150 cm{sup -1}) also showed a number of vibration modes corresponding to sp {sup m}CH {sub n} phase of carbon. Elastic recoil detection analysis (ERDA) was employed to compare the H content measured using FTIR technique. Using these measurements we point out that the oscillator strength of the different IR modes varies depending upon the structure and H content of CVD diamond sheets.

  13. Characterization of Campylobacter jejuni applying flaA short variable region sequencing, multilocus sequencing and Fourier transform infrared spectroscopy

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hartmann; Bonnichsen, Lise; Larsson, Jonas

    flaA short variable region sequencing and phenetic Fourier transform infrared (FTIR) spectroscopy was applied on a collection of 102 Campylobacter jejuni isolated from continuous sampling of organic, free range geese and chickens. FTIR has been shown to serve as a valuable tool in typing...

  14. Differentiation of Leishmania species by FT-IR spectroscopy

    Science.gov (United States)

    Aguiar, Josafá C.; Mittmann, Josane; Ferreira, Isabelle; Ferreira-Strixino, Juliana; Raniero, Leandro

    2015-05-01

    Leishmaniasis is a parasitic infectious disease caused by protozoa that belong to the genus Leishmania. It is transmitted by the bite of an infected female Sand fly. The disease is endemic in 88 countries Desjeux (2001) [1] (16 developed countries and 72 developing countries) on four continents. In Brazil, epidemiological data show the disease is present in all Brazilian regions, with the highest incidences in the North and Northeast. There are several methods used to diagnose leishmaniasis, but these procedures have many limitations, are time consuming, have low sensitivity, and are expensive. In this context, Fourier Transform Infrared Spectroscopy (FT-IR) analysis has the potential to provide rapid results and may be adapted for a clinical test with high sensitivity and specificity. In this work, FT-IR was used as a tool to investigate the promastigotes of Leishmaniaamazonensis, Leishmaniachagasi, and Leishmaniamajor species. The spectra were analyzed by cluster analysis and deconvolution procedure base on spectra second derivatives. Results: cluster analysis found four specific regions that are able to identify the Leishmania species. The dendrogram representation clearly indicates the heterogeneity among Leishmania species. The band deconvolution done by the curve fitting in these regions quantitatively differentiated the polysaccharides, amide III, phospholipids, proteins, and nucleic acids. L. chagasi and L. major showed a greater biochemistry similarity and have three bands that were not registered in L. amazonensis. The L. amazonensis presented three specific bands that were not recorded in the other two species. It is evident that the FT-IR method is an indispensable tool to discriminate these parasites. The high sensitivity and specificity of this technique opens up the possibilities for further studies about characterization of other microorganisms.

  15. Effects of Cu stress on maize seedlings using X-ray energy spectrum and FTIR spectra methods

    International Nuclear Information System (INIS)

    Qiao Lin; Fu Zhaolin; Qiao Chuanying

    2011-01-01

    The effects of Cu 2+ stress on maize seedlings by using scanning electron microscope, X-ray energy spectrum and Fourier transform infrared attenuated total reflection (FTIR-ATR) spectrometry were investigated, and antioxidative enzymes activities such as SOD, CAT, POD, APX were measured. Results showed that, with the increasing of Cu concentration, the content of chlorophyll decreased, and antioxidative enzyme activities increased at first and then decreased at higher concentration stress. High concentration Cu 2+ treatment twisted the cells' shape and increased copper content on leaf surface, and absorption of other nutrients were also affected. The result of FTIR-ATR analysis showed that the organic content of leaf were changed by Cu 2+ stress. (authors)

  16. Characterization of ceramic matrix composite degradation using Fourier transform infrared spectroscopy

    Science.gov (United States)

    Henry, Christine; Criner, Amanda Keck; Imel, Megan; King, Derek

    2018-04-01

    Data collected with a handheld Fourier Transform Infrared (FTIR) device is analyzed and considered as a useful method for detecting and quantifying oxidation on the surface of ceramic matrix composite (CMC) materials. Experiments examine silicon carbide (SiC) coupons, looking for changes in chemical composition before and after thermal exposure. Using mathematical, physical and statistical models for FTIR reflectance data, this research seeks to quantify any detected spectral changes as an indicator of surface oxidation on the CMC coupon.

  17. Propionaldehyde infrared cross-sections and band strengths

    Science.gov (United States)

    Köroğlu, Batikan; Loparo, Zachary; Nath, Janardan; Peale, Robert E.; Vasu, Subith S.

    2015-02-01

    The use of oxygenated biofuels reduces the greenhouse gas emissions; however, they also result in increased toxic aldehyde by-products, mainly formaldehyde, acetaldehyde, acrolein, and propionaldehyde. These aldehydes are carcinogenic and/or toxic and therefore it is important to understand their formation and destruction pathways in combustion and atmospheric systems. Accurate information about their infrared cross-sections and integrated strengths are crucially needed for development of quantitative detection schemes and modeling tools. Critical to the development of such diagnostics are accurate characterization of the absorption features of these species. In this study, the gas phase infrared spectra of propionaldehyde (also called propanal, CH3-CH2-CHO), a saturated three carbon aldehyde found in the exhaust emissions of biodiesel or diesel fuels, was studied using high resolution Fourier Transform Infrared (FTIR) spectroscopy over the wavenumber range of 750-3300 cm-1 and at room temperature 295 K. The absorption cross sections of propionaldehyde were recorded at resolutions of 0.08 and 0.096 cm-1 and at seven different pressures (4-33 Torr). The calculated band-strengths were reported and the integrated band intensity results were compared with values taken from the Pacific Northwest National Laboratory (PNNL) database (showing less than 2% discrepancy). The peak positions of the 19 different vibrational bands of propionaldehyde were also compared with previous studies taken at a lower resolution of 1 cm-1. To the best of our knowledge, the current FTIR measurements provide the first highest resolution infrared cross section data for propionaldehyde.

  18. FT-IR microspectroscopy characterization of supports for enzyme immobilization in biosensing applications

    Science.gov (United States)

    Portaccio, M.; Della Ventura, B.; Gabrovska, K.; Marinov, I.; Godjevargova, T.; Mita, D. G.; Lepore, M.

    2010-04-01

    The investigation of materials suitable for enzyme immobilization in biosensing applications has a widespread interest. There are many studies on physico-chemical properties of these materials at macroscopic level but few studies have been devoted to examine and correlate these properties at microscopic level. FT-IR spectroscopy with Micro-Attenuated Total Reflection (Micro-ATR) approach can be extremely useful for understanding a variety of aspects of materials which can be used for optimising immobilization procedures. Moreover, this experimental approach is particularly simple to use (no sample preparation is required) and minimally invasive. Using a Perkin Elmer Spectrum One FT-IR spectrometer equipped with a mercury-cadmium-telluride detector and a micro-ATR element we investigated different materials used for immobilization procedures with various enzymes widely used for biosensing in environmental and clinical applications. In particular, composite membranes constituted by a chemically modified poly-acrylonitrile (PAN) membrane plus layers of tethered chitosan of different molecular weight have been examined. Also silica gel matrices without and with glucose oxidase have been investigated. Spectra have been analysed and the contribution of principal functional groups has been evidenced.

  19. Fourier-transform infrared spectroscopic studies of dithia ...

    Indian Academy of Sciences (India)

    Unknown

    limited region 1000–1150 cm–1.10 Therefore, in the present paper we report and analyse Fourier-trans- form infrared (FT-IR) spectra of S2TPP and its chemically prepared cation. 2. Experimental. Dithia tetraphenyl porphyrine was received from. Professor A L Verma as a gift and used without fur- ther purification. However ...

  20. FTIR Drug-Polymer Interactions Studies of Perindopril Erbumine

    International Nuclear Information System (INIS)

    Modni, A.; Ahmad, S.; Din, I.; Hussain, Z.

    2014-01-01

    The present study was carried out to prepare different combinations of Perindopril Erbumine with different polymers like Hydroxy propyl methyl cellulose, Hydroxy propyl methyl cellulose K4M, Hydroxy propyl methyl cellulose K15M, Xanthan gum and Ethyl cellulose, thereby to determine any possible interactions between Perindopril erbumine and polymers. The analytical technique Fourier Transform Infrared (FTIR) spectroscopy was used to take spectra of individual drug, polymers and combination of drug with polymers. The results were analyzed to find out any interactions of Perindopril erbumine and polymers. From this study it was concluded that there were no any significant changes in characteristic peaks of drug after combinations with polymers which indicated no interaction between Perindopril erbumine and polymers. (author)

  1. Investigation the effect of time detention on the removal of chromuim from aqueous solution by using polyaniline/polystyrene nanocomposite

    International Nuclear Information System (INIS)

    Eisazade, Hossein; Davodi, Behzad; Soleimani lashkenari, Mohammad

    2010-01-01

    In this study Polyaniline/polystyrene nanocomposites were prepared in the aqueous solution by using ammonium peroxy disulfate as an oxidant in the presence of poly (vinyl pyrrolidone) as surfactant. Morphology and chemical structure was characterized by using scaning electron micrograph(SEM), fourier transform infrared (FTIR) spectrometer and removal percentage obtained by using mass atomic absorption.

  2. The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter

    Science.gov (United States)

    Korablev, O.; Montmessin, F.; Trokhimovskiy, A.; Fedorova, A. A.; Shakun, A. V.; Grigoriev, A. V.; Moshkin, B. E.; Ignatiev, N. I.; Forget, F.; Lefèvre, F.; Anufreychik, K.; Dzuban, I.; Ivanov, Y. S.; Kalinnikov, Y. K.; Kozlova, T. O.; Kungurov, A.; Makarov, V.; Martynovich, F.; Maslov, I.; Merzlyakov, D.; Moiseev, P. P.; Nikolskiy, Y.; Patrakeev, A.; Patsaev, D.; Santos-Skripko, A.; Sazonov, O.; Semena, N.; Semenov, A.; Shashkin, V.; Sidorov, A.; Stepanov, A. V.; Stupin, I.; Timonin, D.; Titov, A. Y.; Viktorov, A.; Zharkov, A.; Altieri, F.; Arnold, G.; Belyaev, D. A.; Bertaux, J. L.; Betsis, D. S.; Duxbury, N.; Encrenaz, T.; Fouchet, T.; Gérard, J.-C.; Grassi, D.; Guerlet, S.; Hartogh, P.; Kasaba, Y.; Khatuntsev, I.; Krasnopolsky, V. A.; Kuzmin, R. O.; Lellouch, E.; Lopez-Valverde, M. A.; Luginin, M.; Määttänen, A.; Marcq, E.; Martin Torres, J.; Medvedev, A. S.; Millour, E.; Olsen, K. S.; Patel, M. R.; Quantin-Nataf, C.; Rodin, A. V.; Shematovich, V. I.; Thomas, I.; Thomas, N.; Vazquez, L.; Vincendon, M.; Wilquet, V.; Wilson, C. F.; Zasova, L. V.; Zelenyi, L. M.; Zorzano, M. P.

    2018-02-01

    The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7-1.6 μm spectral range with a resolving power of ˜20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2-4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7-17 μm with apodized resolution varying from 0.2 to 1.3 cm-1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ˜60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of

  3. [Application of Fourier transform attenuated total reflection infrared spectroscopy in analysis of pulp and paper industry].

    Science.gov (United States)

    Zhang, Yong; Cao, Chun-yu; Feng, Wen-ying; Xu, Ming; Su, Zhen-hua; Liu, Xiao-meng; Lü, Wei-jun

    2011-03-01

    As one of the most powerful tools to investigate the compositions of raw materials and the property of pulp and paper, infrared spectroscopy has played an important role in pulp and paper industry. However, the traditional transmission infrared spectroscopy has not met the requirements of the producing processes because of its disadvantages of time consuming and sample destruction. New technique would be needed to be found. Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR) is an advanced spectroscopic tool for nondestructive evaluation and could rapidly, accurately estimate the production properties of each process in pulp and paper industry. The present review describes the application of ATR-FTIR in analysis of pulp and paper industry. The analysis processes will include: pulping, papermaking, environmental protecting, special processing and paper identifying.

  4. [Research on Rapid Discrimination of Edible Oil by ATR Infrared Spectroscopy].

    Science.gov (United States)

    Ma, Xiao; Yuan, Hong-fu; Song, Chun-feng; Hu, Ai-qin; Li, Xiao-yu; Zhao, Zhong; Li, Xiu-qin; Guo Zhen; Zhu, Zhi-qiang

    2015-07-01

    A rapid discrimination method of edible oils, KL-BP model, was proposed by attenuated total reflectance infrared spectroscopy. The model extracts the characteristic of classification from source data by KL and reduces data dimension at the same time. Then the neural network model is constructed by the new data which as the input of the model. 84 edible oil samples which include sesame oil, corn oil, canola oil, blend oil, sunflower oil, peanut oil, olive oil, soybean oil and tea seed oil, were collected and their infrared spectra determined using an ATR FT-IR spectrometer. In order to compare the method performance, principal component analysis (PCA) direct-classification model, KL direct-classification model, PLS-DA model, PCA-BP model and KL-BP model are constructed in this paper. The results show that the recognition rates of PCA, PCA-BP, KL, PLS-DA and KL-BP are 59.1%, 68.2%, 77.3%, 77.3% and 90.9% for discriminating the 9 kinds of edible oils, respectively. KL extracts the eigenvector which make the distance between different class and distance of every class ratio is the largest. So the method can get much more classify information than PCA. BP neural network can effectively enhance the classification ability and accuracy. Taking full of the advantages of KL in extracting more category information in dimension reducing and the features of BP neural network in self-learning, adaptive, nonlinear, the KL-BP method has the best classification ability and recognition accuracy and great importance for rapidly recognizing edible oil in practice.

  5. Discrimination of different red wine by Fourier-transform infrared and two-dimensional infrared correlation spectroscopy

    Science.gov (United States)

    Zhang, Yan-ling; Chen, Jian-bo; Lei, Yu; Zhou, Qun; Sun, Su-qin; Noda, Isao

    2010-06-01

    Fourier-transform infrared spectroscopy (FT-IR) and two-dimensional infrared (2D IR) correlation spectroscopy were applied to analyze main components of liquid red wine with different sugar contents and volatilization residues of dry red wine from different manufactures. The infrared spectra, second derivative spectra of dry red wine show the typical peaks of alcohol, while the spectra of sweet wine are composed of the peaks of both alcohol and sugar, and the contribution of sugar enhanced as the increase of sugar content. Using principal component analysis (PCA) method, dry and sweet wine can be readily classified. Analysis of the infrared spectra of the volatilization residues of dry red wine samples from five different manufactures indicates that dry red wine may be composed of glycerol, carboxylic acids or esters and carboxyl ate, at the same time, different dry red wine show different characteristic peaks in the second derivative spectra and 2D IR correlation spectra, which can be used to discriminate the different manufactures and evaluate the quality of wine samples. The results suggested that infrared spectroscopy is a direct and effective method for the analysis of principle components of different red wines and discrimination of different red wines.

  6. Infrared fiber optic evanescent wave spectroscopy: applications in biology and medicine

    Science.gov (United States)

    Afanasyeva, Natalia I.; Bruch, Reinhard F.; Katzir, Abraham

    1999-04-01

    A new powerful and highly sensitive technique for non-invasive biomedical diagnostics in vivo has been developed using Infrared Fiberoptic Evanescent Wave Fourier Transform Spectroscopy (FEW-FTIR). This compact and portable method allows to detect functional chemical groups and bonds via vibrational spectroscopy directly from surfaces including living tissue. Such differences and similarities in molecular structure of tissue and materials can be evaluated online. Operating in the attenuated total reflection (ATR) regime in the middle-infrared (MIR) range, the FEW-FTIR technique provides direct contact between the fiber probe and tissue for non-destructive, non-invasive, fast and remote (few meters) diagnostics and quality control of materials. This method utilizes highly flexible and extremely low loss unclad fibers, for example silver halide fibers. Applications of this method include investigations of normal skin, precancerous and cancerous conditions, monitoring of the process of aging, allergic reactions and radiation damage to the skin. This setup is suitable as well for the detection of the influence of environmental factors (sun, water, pollution, and weather) on skin surfaces. The FEW-FTIR technique is very promising also for fast histological examinations in vitro. In this review, we present recent investigations of skin, breast, lung, stomach, kidney tissues in vivo and ex vivo (during surgery) to define the areas of tumor localization. The main advantages of the FEW-FTIR technique for biomedical, clinical, and environmental applications are discussed.

  7. Rapid authentication of edible bird's nest by FTIR spectroscopy combined with chemometrics.

    Science.gov (United States)

    Guo, Lili; Wu, Yajun; Liu, Mingchang; Ge, Yiqiang; Chen, Ying

    2018-06-01

    Edible bird's nests (EBNs) have been traditionally regarded as a kind of medicinal and healthy food in China. For economic reasons, they are frequently subjected to adulteration with some cheaper substitutes, such as Tremella fungus, agar, fried pigskin, and egg white. As a kind of precious and functional product, it is necessary to establish a robust method for the rapid authentication of EBNs with small amounts of samples by simple processes. In this study, the Fourier transform infrared spectroscopy (FTIR) system was utilized and its feasibility for identification of EBNs was verified. FTIR spectra data of authentic and adulterated EBNs were analyzed by chemometrics analyses including principal component analysis, linear discriminant analysis (LDA), support vector machine (SVM) and one-class partial least squares (OCPLS). The results showed that the established LDA and SVM models performed well and had satisfactory classification ability, with the former 94.12% and the latter 100%. The OCPLS model was developed with prediction sensitivity of 0.937 and specificity of 0.886. Further detection of commercial EBN samples confirmed these results. FTIR is applicable in the scene of rapid authentication of EBNs, especially for quality supervision departments, entry-exit inspection and quarantine, and customs administration. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Trace gas absorption spectroscopy using laser difference-frequency spectrometer for environmental application

    Science.gov (United States)

    Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.

    2001-01-01

    A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.

  9. Drift and transmission FT-IR spectroscopy of forest soils: an approach to determine decomposition processes of forest litter

    International Nuclear Information System (INIS)

    Haberhauer, G.; Gerzabek, M.H.

    1999-06-01

    A method is described to characterize organic soil layers using Fourier transformed infrared spectroscopy. The applicability of FT-IR, either dispersive or transmission, to investigate decomposition processes of spruce litter in soil originating from three different forest sites in two climatic regions was studied. Spectral information of transmission and diffuse reflection FT-IR spectra was analyzed and compared. For data evaluation Kubelka Munk (KM) transformation was applied to the DRIFT spectra. Sample preparation for DRIFT is simpler and less time consuming in comparison to transmission FT-IR, which uses KBr pellets. A variety of bands characteristics of molecular structures and functional groups has been identified for these complex samples. Analysis of both transmission FT-IR and DRIFT, showed that the intensity of distinct bands is a measure of the decomposition of forest litter. Interferences due to water adsorption spectra were reduced by DRIFT measurement in comparison to transmission FT-IR spectroscopy. However, data analysis revealed that intensity changes of several bands of DRIFT and transmission FT-IR were significantly correlated with soil horizons. The application of regression models enables identification and differentiation of organic forest soil horizons and allows to determine the decomposition status of soil organic matter in distinct layers. On the basis of the data presented in this study, it may be concluded that FT-IR spectroscopy is a powerful tool for the investigation of decomposition dynamics in forest soils. (author)

  10. Remote sensing FTIR-system for emission monitoring and ambient air control of atmospheric trace gases and air pollutants; Remote sensing FTIR-System zur Emissions- und Immissionsmessung atmosphaerischer Spurengasse und Luftschadstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, T; Mosebach, H; Bittner, H [Kayser-Threde GmbH, Muenchen (Germany)

    1994-01-01

    The Fourier Transform Infrared spectrometer K300, based on the double-pendulum interferometer, is due to its optical design particularly suitable for high resolution remote sensing emission and transmission (long path monitoring) measurements of air pollutants and atmospheric trace gases in the field. The applications encompass direct emission measurements of hot flue gases and aircraft engine exhaust as well as surveillance of industrial complexes and waste disposal sites and ambient air control of e.g. traffic polluted sites. For direct emission measurements the infrared radiation of hot gases is utilized. Monitoring of cold diffuse emissions (e.g. at waste disposal sites) and ambient air control is carried out applying a bistatic transmission configuration with an artificial infrared source (glowbar) facing the instrument from a distance up to several hundred meters (long-path monitoring). Following a short introduction of the measurement technique and system, results from the above mentioned applications, obtained during several field studies are depicted and discussed. 19 refs., 8 figs., 12 tabs.

  11. Biosorption of malachite green onto Haematococcus pluvialis observed through synchrotron-FTIR microspectroscopy.

    Science.gov (United States)

    Liu, J H; Zhang, L; Zha, D C; Chen, L Q; Chen, X X; Qi, Z M

    2018-06-28

    Microalgae have emerged as promising biosorbents for the treatment of malachite green in wastewater. However, the underlying mechanism for the biosorption of malachite green onto microalgae is still unclear and needs further intensive study. In this work, synchrotron Fourier-transform infrared (synchrotron-FTIR) microspectroscoy in combination with biochemical assay is employed to evaluate malachite green removal efficiency (95.2%, 75.6% and 66.5%) by three stages of Haematococcus pluvialis. Meanwhile, the various vital changes of algal cells including lipids, proteins, polysaccharides and carotenoids, is distinguished and quantified in situ. This study illustrates that synchrotron-FTIR microspectroscopy is an effective and powerful tool to scrutinize the mechanism for the interactions between the malachite green dye and microalgal cells and it even provides an effective and none-invasive new approach to screen potentially proper biosorbents for the removal of dyes from wastewater. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Tracking calcification in tissue-engineered bone using synchrotron micro-FTIR and SEM.

    Science.gov (United States)

    Deegan, Anthony J; Cinque, Gianfelice; Wehbe, Katia; Konduru, Sandeep; Yang, Ying

    2015-02-01

    One novel tissue engineering approach to mimic in vivo bone formation is the use of aggregate or micromass cultures. Various qualitative and quantitative techniques, such as histochemical staining, protein assay kits and RT-PCR, have been used previously on cellular aggregate studies to investigate how these intricate arrangements lead to mature bone tissue. However, these techniques struggle to reveal spatial and temporal distribution of proliferation and mineralization simultaneously. Synchrotron-based Fourier transform infrared microspectroscopy (micro-FTIR) offers a unique insight at the molecular scale by coupling high IR sensitivity to organic matter with the high spatial resolution allowed by diffraction limited SR microbeam. This study is set to investigate the effects of culture duration and aggregate size on the dynamics and spatial distribution of calcification in engineered bone aggregates by a combination of micro-FTIR and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX). A murine bone cell line has been used, and small/large bone aggregates have been induced using different chemically treated culture substrates. Our findings suggest that bone cell aggregate culturing can greatly increase levels of mineralization over short culture periods. The size of the aggregates influences mineralisation rates with larger aggregates mineralizing at a faster rate than their smaller counterparts. The micro-FTIR mapping has demonstrated that mineralization in the larger aggregates initiated from the periphery and spread to the centre, whilst the smaller aggregates have more minerals in the centre at the early stage and deposited more in the periphery after further culturing, implying that aggregate size influences calcification distribution and development over time. SEM/EDX data correlates well with the micro-FTIR results for the total mineral content. Thus, synchrotron-based micro-FTIR can accurately track mineralization process

  13. Miniaturisation of imaging spectrometer for planetary exploration

    Science.gov (United States)

    Drossart, Pierre; Sémery, Alain; Réess, Jean-Michel; Combes, Michel

    2017-11-01

    Future planetary exploration on telluric or giant planets will need a new kind of instrumentation combining imaging and spectroscopy at high spectral resolution to achieve new scientific measurements, in particular for atmospheric studies in nadir configuration. We present here a study of a Fourier Transform heterodyne spectrometer, which can achieve these objectives, in the visible or infrared. The system is composed of a Michelson interferometer, whose mirrors have been replaced by gratings, a configuration studied in the early days of Fourier Transform spectroscopy, but only recently reused for space instrumentation, with the availability of large infrared mosaics. A complete study of an instrument is underway, with optical and electronic tests, as well as data processing analysis. This instrument will be proposed for future planetary missions, including ESA/Bepi Colombo Mercury Planetary Orbiter or Earth orbiting platforms.

  14. Combined VIS-IR spectrometer with vertical probe beam

    Science.gov (United States)

    Protopopov, V.

    2017-12-01

    A prototype of a combined visible-infrared spectrometer with a vertical probe beam is designed and tested. The combined spectral range is 0.4-20 μ with spatial resolution 1 mm. Basic features include the ability to measure both visibly transparent and opaque substances, as well as buried structures, such as in semiconductor industry; horizontal orientation of a sample, including semiconductor wafers; and reflection mode of operation, delivering twice the sensitivity compared to the transmission mode.

  15. [Identification of Dendrobium varieties by infrared spectroscopy].

    Science.gov (United States)

    Liu, Fei; Wang, Yuan-Zhong; Yang, Chun-Yan; Jin, Hang

    2014-11-01

    The difference of Dendrobium varieties were analyzed by Fourier transform infrared (FTIR) spectroscopy. The infrared spectra of 206 stems from 30 Dendrobium varieties were obtained, and showed that polysaccharides, especially fiber, were the main components in Dendrobium plants. FTIR combined with Wilks' Lambda stepwise discriminative analysis was used to identify Dendrobium varieties. The effects of spectral range and number of training samples on the discrimination results were also analysed. Two hundred eighty seven variables in the spectral range of 1 800-1 250 cm(-1) were studied, and showed that the return discrimination is 100% correct when the training samples number of each species was 2, 3, 4, 5, and 6, respectively, whereas for the remaining samples the correct rates of identification were equal to 79.4%, 91.3%, 93.0%, 98.2%, and 100%, respectively. The same discriminative analyses on five different training samples in the spectral range of 1 800-1 500, 1 500-1 250, 1 250-600, 1 250-950 and 950-650 cm(-1) were compared, which showed that the variables in the range of 1 800-1 250, 1 800-1 500 and 950-600 cm(-1) were more suitable for variety identification, and one can obtain the satisfactory result for discriminative analysis when the training sample is more than 3. Our results indicate that FTIR combined with stepwise discriminative analysis is an effective way to distinguish different Dendrobium varieties.

  16. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues.

    Directory of Open Access Journals (Sweden)

    Arash Hanifi

    Full Text Available Hyaline cartilage and mechanically inferior fibrocartilage consisting of mixed collagen types are frequently found together in repairing articular cartilage. The present study seeks to develop methodology to identify collagen type and other tissue components using Fourier transform infrared (FTIR spectral evaluation of matrix composition in combination with multivariate analyses. FTIR spectra of the primary molecular components of repair cartilage, types I and II collagen, and aggrecan, were used to develop multivariate spectral models for discrimination of the matrix components of the tissues of interest. Infrared imaging data were collected from bovine bone, tendon, normal cartilage, meniscus and human repair cartilage tissues, and composition predicted using partial least squares analyses. Histology and immunohistochemistry results were used as standards for validation. Infrared fiber optic probe spectral data were also obtained from meniscus (a tissue with mixed collagen types to evaluate the potential of this method for identification of collagen type in a minimally-invasive clinical application. Concentration profiles of the tissue components obtained from multivariate analysis were in excellent agreement with histology and immunohistochemistry results. Bone and tendon showed a uniform distribution of predominantly type I collagen through the tissue. Normal cartilage showed a distribution of type II collagen and proteoglycan similar to the known composition, while in repair cartilage, the spectral distribution of both types I and II collagen were similar to that observed via immunohistochemistry. Using the probe, the outer and inner regions of the meniscus were shown to be primarily composed of type I and II collagen, respectively, in accordance with immunohistochemistry data. In summary, multivariate analysis of infrared spectra can indeed be used to differentiate collagen type I and type II, even in the presence of proteoglycan, in

  17. Near Infrared Microspectroscopy, Fluorescence Microspectroscopy, Infrared Chemical Imaging and High Resolution Nuclear Magnetic Resonance Analysis of Soybean Seeds, Somatic Embryos and Single Cells

    CERN Document Server

    Baianu, I C; Hofmann, N E; Korban, S S; Lozano, P; You, T; AOCS 94th Meeting, Kansas

    2002-01-01

    Novel methodologies are currently being developed and established for the chemical analysis of soybean seeds, embryos and single cells by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR) Microspectroscopy, Fluorescence and High-Resolution NMR (HR-NMR). The first FT-NIR chemical images of biological systems approaching one micron resolution are presented here. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos are also presented here with nanoliter precision. Such 400 MHz 1H NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. ~20%) compared to non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monitored by FT-NIR with a precision ...

  18. FTIR fiber optic methods for the analysis of Hanford Site waste

    International Nuclear Information System (INIS)

    Rebagay, T.V.; Cash, R.J.; Dodd, D.A.

    1995-06-01

    Sampling and chemical characterization of mixed high-level waste stored in underground tanks at the Hanford Site is currently in progress. Waste tank safety concerns have provided impetus to analyze this waste. A major safety issue is the possibility of significant concentrations of fuel (ferrocyanide and/or organic compounds) in contact with oxidizers (nitrates and nitrites). It is postulated that under dry conditions and elevated temperatures, ferrocyanide- and/or organic-bearing wastes could undergo rapid exothermic reactions. To maintain the tanks in a safe condition, data are needed on the moisture and fuel concentrations in the waste. Because of the highly radioactive nature of the waste, non-radioactive waste simulants mimicking actual waste are used to provide an initial basis for identifying realistic waste tank safety concerns. Emphasis has been placed on the use of new or existing Fourier transform infrared (FTIR)-based systems with potential for field or tank deployment to perform in situ remote waste characterization. Near-infrared diffuse reflectance and mid-infrared attenuated total reflectance fiber optic probes coupled to a Bio-Rad FTS 60A spectrometry system have been evaluated. The near-infrared diffuse reflectance fiber probe system has also been used for preliminary screening of the moisture content and chemical composition of actual Hanford Site waste tank waste core samples. The attributes of this method for analyzing actual radioactive waste are discussed

  19. Monitoring the Evolution of Major Chemical Compound in Dairy Products During Shelf-Life by FTIR

    Directory of Open Access Journals (Sweden)

    Adriana Păucean

    2014-11-01

    Full Text Available Fourier-transform infrared (FTIR spectroscopy is considered to be a comprehensive and sensitive method to characterize the chemical composition and for detection of molecular changes in different samples. In this study, FTIRspectroscopy  was employed as an rapid and low-cost technique in order to characterize the FTIR spectra and identify appropriate spectral regions for dairy product fermented by a lactic culture consisting by species of Lactococcus lactis and Leuconostoc mesenteroides. A second objective was to monitore the key chemical compounds (lactose, lactic acid, flavors during fermentation and refrigerated storage (1-21 days, at 4-6°C. By FT-IR fingerprint during fermentation we identified changes of the spectra pattern with specific increasing or decreasing peaks for lactose, lactic acid, esters, aromatic compounds, aminoacids, fatty acids. Also the technique was able to identify chemical compounds involved in the microbial activity such as phosphates and phosphorylated carbohydrates during fermentation and dairy product shelf-life. All the major chemical compounds recorded significant increaments during fermentation and refrigerated storage comparing with the raw milk.

  20. FTIR Study of the Photoactivation Process of Xenopus (6-4) Photolyase†

    Science.gov (United States)

    Yamada, Daichi; Zhang, Yu; Iwata, Tatsuya; Hitomi, Kenichi; Getzoff, Elizabeth D.; Kandori, Hideki

    2012-01-01

    Photolyases (PHRs) are blue-light activated DNA repair enzymes that maintain genetic integrity by reverting UV-induced photoproducts into normal bases. The FAD chromophore of PHRs has four different redox states: oxidized (FADox), anion radical (FAD•−), neutral radical (FADH•) and fully reduced (FADH−). We combined difference Fourier-transform infrared (FTIR) spectroscopy with UV-visible spectroscopy to study the detailed photoactivation process of Xenopus (6-4) PHR. Two photons produce the enzymatically active, fully reduced PHR from oxidized FAD: FADox is converted to semiquinone via light-induced one-electron and one-proton transfers, and then to FADH− by light-induced one-electron transfer. We successfully trapped FAD•− at 200 K, where electron transfer occurs, but proton transfer does not. UV-visible spectroscopy following 450-nm illumination of FADox at 277 K defined the FADH•/FADH− mixture and allowed calculation of difference FTIR spectra among the four redox states. The absence of a characteristic C=O stretching vibration indicated that the proton donor is not a protonated carboxylic acid. Structural changes in Trp and Tyr are suggested from UV-visible and FTIR analysis of FAD•− at 200 K. Spectral analysis of amide-I vibrations revealed structural perturbation of the protein’s β-sheet during initial electron transfer (FAD•− formation), transient increase in α-helicity during proton transfer (FADH• formation) and reversion to the initial amide-I signal following subsequent electron transfer (FADH− formation). Consequently, in (6-4) PHR, unlike cryptochrome-DASH, formation of enzymatically active FADH− did not perturb α-helicity. Protein structural changes in the photoactivation of (6-4) PHR are discussed on the basis of the present FTIR observations. PMID:22747528

  1. Conservation of Moroccan manuscript papers aged 150, 200 and 800 years. Analysis by infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and scanning electron microscopy energy dispersive spectrometry (SEM-EDS).

    Science.gov (United States)

    Hajji, Latifa; Boukir, Abdellatif; Assouik, Jamal; Lakhiari, Hamid; Kerbal, Abdelali; Doumenq, Pierre; Mille, Gilbert; De Carvalho, Maria Luisa

    2015-02-05

    The preservation of manuscripts and archive materials is a serious problem for librarians and restorers. Paper manuscript is subjected to numerous degradation factors affecting their conservation state. This research represents an attempt to evaluate the conservation restoration process applied in Moroccan libraries, especially the alkaline treatment for strengthening weakened paper. In this study, we focused on six samples of degraded and restored paper taken from three different Moroccan manuscripts aged 150, 200 and 800 years. In addition, the Japanese paper used in restoration has been characterized. A modern paper was also analyzed as reference. A three-step analytical methodology based on infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD) and scanning electron microscopy coupled to energy dispersive spectrometry (SEM-EDS) analysis was developed before and after restoration in order to determine the effect of the consolidation treatment on the paper structure. The results obtained by XRD and ATR-FTIR disclosed the presence of barium sulfate (BaSO4) in all restored paper manuscripts. The presence of calcium carbonate (CaCO3) in all considered samples was confirmed by FTIR spectroscopy. The application of de-acidification treatment causes significant changes connected with the increase of intensity mostly in the region 1426 cm(-1), assigned to the asymmetric and symmetric CO stretching mode of calcite, indicating the effectiveness of de-acidification procedure proved by the rise of the alkaline reserve content allowing the long term preservation of paper. Observations performed by SEM magnify the typical paper morphology and the structure of fibbers, highlighting the effect of the restoration process, manifested by the reduction of impurities. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Miniature, Low-Power, Waveguide Based Infrared Fourier Transform Spectrometer for Spacecraft Remote Sensing

    Science.gov (United States)

    Hewagama, TIlak; Aslam, Shahid; Talabac, Stephen; Allen, John E., Jr.; Annen, John N.; Jennings, Donald E.

    2011-01-01

    Fourier transform spectrometers have a venerable heritage as flight instruments. However, obtaining an accurate spectrum exacts a penalty in instrument mass and power requirements. Recent advances in a broad class of non-scanning Fourier transform spectrometer (FTS) devices, generally called spatial heterodyne spectrometers, offer distinct advantages as flight optimized systems. We are developing a miniaturized system that employs photonics lightwave circuit principles and functions as an FTS operating in the 7-14 micrometer spectral region. The inteferogram is constructed from an ensemble of Mach-Zehnder interferometers with path length differences calibrated to mimic scan mirror sample positions of a classic Michelson type FTS. One potential long-term application of this technology in low cost planetary missions is the concept of a self-contained sensor system. We are developing a systems architecture concept for wide area in situ and remote monitoring of characteristic properties that are of scientific interest. The system will be based on wavelength- and resolution-independent spectroscopic sensors for studying atmospheric and surface chemistry, physics, and mineralogy. The self-contained sensor network is based on our concept of an Addressable Photonics Cube (APC) which has real-time flexibility and broad science applications. It is envisaged that a spatially distributed autonomous sensor web concept that integrates multiple APCs will be reactive and dynamically driven. The network is designed to respond in an event- or model-driven manner or reconfigured as needed.

  3. The classification of lung cancers and their degree of malignancy by FTIR, PCA-LDA analysis, and a physics-based computational model.

    Science.gov (United States)

    Kaznowska, E; Depciuch, J; Łach, K; Kołodziej, M; Koziorowska, A; Vongsvivut, J; Zawlik, I; Cholewa, M; Cebulski, J

    2018-08-15

    Lung cancer has the highest mortality rate of all malignant tumours. The current effects of cancer treatment, as well as its diagnostics, are unsatisfactory. Therefore it is very important to introduce modern diagnostic tools, which will allow for rapid classification of lung cancers and their degree of malignancy. For this purpose, the authors propose the use of Fourier Transform InfraRed (FTIR) spectroscopy combined with Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA) and a physics-based computational model. The results obtained for lung cancer tissues, adenocarcinoma and squamous cell carcinoma FTIR spectra, show a shift in wavenumbers compared to control tissue FTIR spectra. Furthermore, in the FTIR spectra of adenocarcinoma there are no peaks corresponding to glutamate or phospholipid functional groups. Moreover, in the case of G2 and G3 malignancy of adenocarcinoma lung cancer, the absence of an OH groups peak was noticed. Thus, it seems that FTIR spectroscopy is a valuable tool to classify lung cancer and to determine the degree of its malignancy. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Chemometric analysis of attenuated total reflectance infrared spectra of Proteus mirabilis strains with defined structures of LPS.

    Science.gov (United States)

    Zarnowiec, Paulina; Mizera, Andrzej; Chrapek, Magdalena; Urbaniak, Mariusz; Kaca, Wieslaw

    2016-07-01

    Proteus spp. strains are some of the most important pathogens associated with complicated urinary tract infections and bacteremia affecting patients with immunodeficiency and long-term urinary catheterization. For epidemiological purposes, various molecular typing methods have been developed for this pathogen. However, these methods are labor intensive and time consuming. We evaluated a new method of differentiation between strains. A collection of Proteus spp. strains was analyzed by attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy in the mid-infrared region. ATR FT-IR spectroscopy used in conjunction with a diamond ATR accessory directly produced the biochemical profile of the surface chemistry of bacteria. We conclude that a combination of ATR FT-IR spectroscopy and mathematical modeling provides a fast and reliable alternative for discrimination between Proteus isolates, contributing to epidemiological research. © The Author(s) 2016.

  5. Fourier transform infrared studies in solid egg white lysozyme

    International Nuclear Information System (INIS)

    Rivzi, T.Z.

    1994-12-01

    Fourier Transform Infrared (FTIR) Spectroscopy is the most recent addition to the arsenal of bioanalytical techniques capable of providing information about the secondary structure of proteins in a variety of environments. FTIR spectra have been obtained in solid egg white lysozyme. The spectra display the usual amide I, II and III bands. Secondary structural information obtained from the spectra after applying resolution enhancement techniques to the amide I band has been found consistent with the x-ray crystallographic data of the protein and also to the spectroscopic data of the protein in aqueous solution. (author). 17 refs, 6 figs, 2 tabs

  6. Self-corrected chip-based dual-comb spectrometer.

    Science.gov (United States)

    Hébert, Nicolas Bourbeau; Genest, Jérôme; Deschênes, Jean-Daniel; Bergeron, Hugo; Chen, George Y; Khurmi, Champak; Lancaster, David G

    2017-04-03

    We present a dual-comb spectrometer based on two passively mode-locked waveguide lasers integrated in a single Er-doped ZBLAN chip. This original design yields two free-running frequency combs having a high level of mutual stability. We developed in parallel a self-correction algorithm that compensates residual relative fluctuations and yields mode-resolved spectra without the help of any reference laser or control system. Fluctuations are extracted directly from the interferograms using the concept of ambiguity function, which leads to a significant simplification of the instrument that will greatly ease its widespread adoption and commercial deployment. Comparison with a correction algorithm relying on a single-frequency laser indicates discrepancies of only 50 attoseconds on optical timings. The capacities of this instrument are finally demonstrated with the acquisition of a high-resolution molecular spectrum covering 20 nm. This new chip-based multi-laser platform is ideal for the development of high-repetition-rate, compact and fieldable comb spectrometers in the near- and mid-infrared.

  7. Study of thermal pre-treatment on anaerobic digestion of slaughterhouse waste by TGA-MS and FTIR spectroscopy.

    Science.gov (United States)

    Rodríguez-Abalde, Ángela; Gómez, Xiomar; Blanco, Daniel; Cuetos, María José; Fernández, Belén; Flotats, Xavier

    2013-12-01

    Thermogravimetric analysis coupled to mass spectrometry (TGA-MS) and Fourier-transform infrared spectroscopy (FTIR) were used to describe the effect of pasteurization as a hygienic pre-treatment of animal by-products over biogas production. Piggery and poultry meat wastes were used as substrates for assessing the anaerobic digestion under batch conditions at mesophilic range. Poultry waste was characterized by high protein and carbohydrate content, while piggery waste presented a major fraction of fat and lower carbohydrate content. Results from anaerobic digestion tests showed a lower methane yield for the pre-treated poultry sample. TGA-MS and FTIR spectroscopy allowed the qualitative identification of recalcitrant nitrogen-containing compounds in the pre-treated poultry sample, produced by Maillard reactions. In the case of piggery waste, the recalcitrant compounds were not detected and its biodegradability test reported higher methane yield and production rates. TGA-MS and FTIR spectroscopy were demonstrated to be useful tools for explaining results obtained by anaerobic biodegradability test and in describing the presence of inhibitory problems.

  8. Study of micro-phase separation of two polystyrene-based copolymer mixture using the combination of PALS and FT-IR

    International Nuclear Information System (INIS)

    Jiang, Z.Y.; Jiang, X.Q.; Yang, Y.X.; Huang, Y.J.; Huang, H.B.; Hsia, Y.F.

    2005-01-01

    Positron annihilation lifetime (PAL) spectroscopy, Fourier transform infrared (FT-IR) and differential scanning calorimetry (DSC) have been applied to study the micro-phase separation in the blends of poly(styrene-co-methylmethacrylate) (SMMA) copolymer and poly(styrene-co-maleic anhydride) (SMA) copolymer. The DSC results indicate that the SMA/SMMA blends are miscible and weak intermolecular interactions exist between SMA and SMMA. The strength of intermolecular interactions to some degree exhibits somewhat non-monotonic variation with increasing of SMA component in the blends. The results of PAL measurement present the blend containing 20 wt% SMA is phase-separated in molecular level, which is interpreted by the results of FT-IR analysis. It was concluded that it is helpful to study the miscibility of polymer blends in molecular level by means of PAL method, accompanied with the requisite measurement of DSC and FT-IR

  9. Apparatus and method for transient thermal infrared spectrometry

    Science.gov (United States)

    McClelland, John F.; Jones, Roger W.

    1991-12-03

    A method and apparatus for enabling analysis of a material (16, 42) by applying a cooling medium (20, 54) to cool a thin surface layer portion of the material and to transiently generate a temperature differential between the thin surface layer portion and the lower portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material. The altered thermal infrared emission spectrum of the material is detected by a spectrometer/detector (28, 50) while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of the emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation, so that the detected altered thermal infrared emission spectrum is indicative of the characteristics relating to the molecular composition of the material.

  10. DIRECT-DEPOSITION INFRARED SPECTROMETRY WITH GAS AND SUPERCRITICAL FLUID CHROMATOGRAPHY

    Science.gov (United States)

    A direct-deposition Fourier transform infrared (FT-IR) system has been evaluated for applicability to gas chromatography (GC) and supercritical fluid chromatography (SFC) of environmental analytes. A 100-um i.d. fused-silica transfer line was used for GC, and a 50-um transfer lin...

  11. Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy

    NARCIS (Netherlands)

    Boeriu, C.G.; Bravo, D.; Gosselink, R.J.A.; Dam, van J.E.G.

    2004-01-01

    Fourier-transformed infrared spectroscopy (FT-IR) was evaluated as an analytical technique for the estimation of the chemical composition and functional properties of lignin. A sample set containing various non-wood, hardwood and softwood lignins isolated by different processing technologies was

  12. Infrared cross-sections and integrated band intensities of propylene: Temperature-dependent studies

    KAUST Repository

    Es-sebbar, Et-touhami; Alrefae, Majed; Farooq, Aamir

    2014-01-01

    intensities of propylene are essential for quantitative measurements and atmospheric modeling. We measured absolute IR cross-sections of propylene using Fourier Transform Infrared (FTIR) Spectroscopy over the wavenumber range of 400-6500cm-1 and at gas

  13. Field Implementation of Handheld FTIR Spectrometer for Polymer Content Determination and for Quality Control of RAP Mixtures : Research Project Capsule

    Science.gov (United States)

    2017-10-01

    The purpose of this research study is to determine if the implementation of FTIRS in Louisiana for determining polymer content in asphalt mixtures and for quality control of recycled asphalt mixtures is feasible. The ultimate objective is to develop ...

  14. Application of infrared spectroscopy in the identification of Ewing sarcoma: A preliminary report

    Science.gov (United States)

    Chaber, Radosław; Łach, Kornelia; Szmuc, Kamil; Michalak, Elżbieta; Raciborska, Anna; Mazur, Damian; Machaczka, Maciej; Cebulski, Józef

    2017-06-01

    Fourier transform infrared (FTIR) spectroscopy is a highly sensitive, non-invasive analytical technique that can provide information about molecular changes in a biological sample. FTIR spectrum is a sum of the frequencies of many biomolecules which reveals a biochemical fingerprint for mineral identification, and can be analyzed for information about the mineral structure of malignant cells. This gives us the potential to differentiate tumor cells from normal cells in the early stage of relapse, before the tumor cells would be detectable in light microscopy. Ewing sarcoma (ES) is the second most common malignant bone tumor found in children and adolescents. ES affects annually almost 3 persons/1,000,000 mostly children and young adults under 20 years of age annually. ES originates from primitive, low-differentiated neuroectodermal cells. The current standard of therapy for ES is the surgical resection of the primary tumor and metastasis in combination with the chemo- and radiotherapy. The aim of this study was to compare the spectra of ES bone samples and the spectra of normal bone tissues, analyzed before and after induction chemotherapy, by means of FTIR spectroscopy. Six patients with ES affecting bones aged 5.5-16.5 years (median age 11.2 years), who were treated between 2011 and 2015, were included to the study. In all analyzed patients, the diagnosis of ES and the assessment of response to the chemotherapy were performed according to the Euro-EWING-2008 protocol. The Fourier transform infrared spectroscope (FT-IR; Vertex 70v from Bruker) was used in this study. Tissue specimens were applied to the attenuated total reflection (ATR) in the infrared (IR) radiation from the mid-infrared range using a single-reflection snap ATR crystal diamond. In the FTIR spectra we observed a shift in the wave number of the phosphate ion (from 3 to 26 [cm-1]) associated with the presence of tumor tissue. After chemotherapy, a change of the FTIR spectrum was associated with the

  15. Sem-edx and ftir studies of chlorinated rubber coating

    International Nuclear Information System (INIS)

    Bano, H.; Khan, M.I.

    2013-01-01

    Summary: Anticorrosive performance of chlorinated rubber coating has been investigated by visual examination, Scanning electron microscopy (SEM)/Energy dispersive X-ray (EDX) analysis and Fourier transform infrared (FTIR) spectroscopy. After surface preparation, commercially available coating system based on chlorinated rubber (primer)/chlorinated rubber (topcoat) formulation was applied on mild steel test panels (10cm x 15cm sizes). Prepared coated panels were exposed at marine, industrial and urban test sites located in Karachi, Pakistan according to ISO 8565 norm. Accelerated testing was performed by using a salt spray chamber (ASTM B117 norm). Accelerated weathering methods are the methods in which the factors responsible for the degradation of coatings are artificially intensified in order to achieve the rapid degradation of coatings. Visual examination of blistering and rusting as well as SEM micrographs indicated a more severe degradation of the coating surface characteristics at natural exposure testing sites (particularly at marine test site) than for accelerated (salt spray) testing. EDX determination of the Oxygen/Carbon (O/C) ratios also indicated increased degradation at natural test sites compared to the accelerated (salt spray) testing. Photooxidation of the binder results in the formation of carbonyl compounds as revealed by FTIR spectroscopy which also indicated dehydrochlorination. (author)

  16. Experiments on the Porch Swing Bearing of Michelson Interferometer for Low Resolution FTIR

    OpenAIRE

    Tuomas Välikylä; Jyrki Kauppinen

    2013-01-01

    Porch swing bearing for the linear motion of the mirror in Michelson interferometer for mid-infrared low resolution Fourier transform spectrometer was studied experimentally using the modulation depth of the collimated laser beam. The mirror tilting was measured to be lower than 5 μrad over 3 mm mirror travel using two different bearings assemblies. Additionally, the manufacturing tolerances of the bearing type were proved to be loose enough not to limit the interferometer application. These ...

  17. Analysis of contaminants on electronic components by reflectance FTIR spectroscopy

    International Nuclear Information System (INIS)

    Griffith, G.W.

    1982-09-01

    The analysis of electronic component contaminants by infrared spectroscopy is often a difficult process. Most of the contaminants are very small, which necessitates the use of microsampling techniques. Beam condensers will provide the required sensitivity but most require that the sample be removed from the substrate before analysis. Since it can be difficult and time consuming, it is usually an undesirable approach. Micro ATR work can also be exasperating, due to the difficulty of positioning the sample at the correct place under the ATR plate in order to record a spectrum. This paper describes a modified reflection beam condensor which has been adapted to a Nicolet 7199 FTIR. The sample beam is directed onto the sample surface and reflected from the substrate back to the detector. A micropositioning XYZ stage and a close-focusing telescope are used to position the contaminant directly under the infrared beam. It is possible to analyze contaminants on 1 mm wide leads surrounded by an epoxy matrix using this device. Typical spectra of contaminants found on small circuit boards are included

  18. Infrared spectroscopic characterization of monocytic microvesicles (microparticles) released upon lipopolysaccharide stimulation.

    Science.gov (United States)

    Lee, Joonsup; Wen, Beryl; Carter, Elizabeth A; Combes, Valery; Grau, Georges E R; Lay, Peter A

    2017-07-01

    Microvesicles (MVs) are involved in cell-cell interactions, including disease pathogenesis. Nondestructive Fourier-transform infrared (FTIR) spectra from MVs were assessed as a technique to provide new biochemical insights into a LPS-induced monocyte model of septic shock. FTIR spectroscopy provided a quick method to investigate relative differences in biomolecular content of different MV populations that was complementary to traditional semiquantitative omics approaches, with which it is difficult to provide information on relative changes between classes (proteins, lipids, nucleic acids, carbohydrates) or protein conformations. Time-dependent changes were detected in biomolecular contents of MVs and in the monocytes from which they were released. Differences in phosphatidylcholine and phosphatidylserine contents were observed in MVs released under stimulation, and higher relative concentrations of RNA and α-helical structured proteins were present in stimulated MVs compared with MVs from resting cells. FTIR spectra of stimulated monocytes displayed changes that were consistent with those observed in the corresponding MVs they released. LPS-stimulated monocytes had reduced concentrations of nucleic acids, α-helical structured proteins, and phosphatidylcholine compared with resting monocytes but had an increase in total lipids. FTIR spectra of MV biomolecular content will be important in shedding new light on the mechanisms of MVs and the different roles they play in physiology and disease pathogenesis.-Lee, J., Wen, B., Carter, E. A., Combes, V., Grau, G. E. R., Lay, P. A. Infrared spectroscopic characterization of monocytic microvesicles (microparticles) released upon lipopolysaccharide stimulation. © FASEB.

  19. Thermostatic system of sensor in NIR spectrometer based on PID control

    Science.gov (United States)

    Wang, Zhihong; Qiao, Liwei; Ji, Xufei

    2016-11-01

    Aiming at the shortcomings of the primary sensor thermostatic control system in the near infrared (NIR) spectrometer, a novel thermostatic control system based on proportional-integral-derivative (PID) control technology was developed to improve the detection precision of the NIR spectrometer. There were five parts including bridge amplifier circuit, analog-digital conversion (ADC) circuit, microcontroller, digital-analog conversion (DAC) circuit and drive circuit in the system. The five parts formed a closed-loop control system based on PID algorithm that was used to control the error between the temperature calculated by the sampling data of ADC and the designed temperature to ensure the stability of the spectrometer's sensor. The experimental results show that, when the operating temperature of sensor is -11°, compared with the original system, the temperature control precision of the new control system is improved from ±0.64° to ±0.04° and the spectrum signal to noise ratio (SNR) is improved from 4891 to 5967.

  20. Study of consumer fireworks post-blast residues by ATR-FTIR.

    Science.gov (United States)

    Martín-Alberca, Carlos; Zapata, Félix; Carrascosa, Héctor; Ortega-Ojeda, Fernando E; García-Ruiz, Carmen

    2016-03-01

    Specific analytical procedures are requested for the forensic analysis of pre- and post-blast consumer firework samples, which present significant challenges. Up to date, vibrational spectroscopic techniques such as Fourier transform infrared spectroscopy (FTIR) have not been tested for the analysis of post-blast residues in spite of their interesting strengths for the forensic field. Therefore, this work proposes a simple and fast procedure for the sampling and analysis of consumer firework post-blast residues by a portable FTIR instrument with an Attenuated Total Reflection (ATR) accessory. In addition, the post-blast residues spectra of several consumer fireworks were studied in order to achieve the identification of their original chemical compositions. Hence, this work analysed 22 standard reagents usually employed to make consumer fireworks, or because they are related to their combustion products. Then, 5 different consumer fireworks were exploded, and their residues were sampled with dry cotton swabs and directly analysed by ATR-FTIR. In addition, their pre-blast fuses and charges were also analysed in order to stablish a proper comparison. As a result, the identification of the original chemical compositions of the post-blast samples was obtained. Some of the compounds found were potassium chlorate, barium nitrate, potassium nitrate, potassium perchlorate or charcoal. An additional study involving chemometric tools found that the results might greatly depend on the swab head type used for the sampling, and its sampling efficiency. The proposed procedure could be used as a complementary technique for the analysis of consumer fireworks post-blast residues. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Application of FT-IR spectroscopy on breast cancer serum analysis

    Science.gov (United States)

    Elmi, Fatemeh; Movaghar, Afshin Fayyaz; Elmi, Maryam Mitra; Alinezhad, Heshmatollah; Nikbakhsh, Novin

    2017-12-01

    Breast cancer is regarded as the most malignant tumor among women throughout the world. Therefore, early detection and proper diagnostic methods have been known to help save women's lives. Fourier Transform Infrared (FT-IR) spectroscopy, coupled with PCA-LDA analysis, is a new technique to investigate the characteristics of serum in breast cancer. In this study, 43 breast cancer and 43 healthy serum samples were collected, and the FT-IR spectra were recorded for each one. Then, PCA analysis and linear discriminant analysis (LDA) were used to analyze the spectral data. The results showed that there were differences between the spectra of the two groups. Discriminating wavenumbers were associated with several spectral differences over the 950-1200 cm- 1(sugar), 1190-1350 cm- 1 (collagen), 1475-1710 cm- 1 (protein), 1710-1760 cm- 1 (ester), 2800-3000 cm- 1 (stretching motions of -CH2 & -CH3), and 3090-3700 cm- 1 (NH stretching) regions. PCA-LDA performance on serum IR could recognize changes between the control and the breast cancer cases. The diagnostic accuracy, sensitivity, and specificity of PCA-LDA analysis for 3000-3600 cm- 1 (NH stretching) were found to be 83%, 84%, 74% for the control and 80%, 76%, 72% for the breast cancer cases, respectively. The results showed that the major spectral differences between the two groups were related to the differences in protein conformation in serum samples. It can be concluded that FT-IR spectroscopy, together with multivariate data analysis, is able to discriminate between breast cancer and healthy serum samples.

  2. Application of Fourier Transform Infrared (FTIR) Spectroscopy for Rapid Detection of Fumonisin B2 in Raisins.

    Science.gov (United States)

    Heperkan, Dilek; Gökmen, Ece

    2016-07-01

    The aim of this study was to investigate the potential use of FTIR spectroscopy as a rapid screening method to detect fumonisin produced by Aspergillus niger. A. niger spore suspensions isolated from raisins were inoculated in Petri dishes prepared with sultana raisin or black raisin extracts containing agar and malt extract agar (MEA). After 9 days of incubation at 25°C, fumonisin B2 (FB2) production on each agar plate was determined by subjecting the agar plugs to IR spectroscopy. The presence of amino group (at 1636-1639 cm(-1)) was especially indicative of fumonisin production in MEA and the raisin extracts containing agar. The results were confirmed by HPLC analysis of the agar sample extracts after immunoaffinity column cleanup. It was determined that A. niger produced more FB2 in sultana raisins than in MEA, with no FB2 being produced in black raisin extract agar. This study demonstrated that proper sample preparation procedure followed by FTIR analysis is a useful technique for identifying toxigenic molds and their mycotoxin production in agricultural commodities.

  3. Fourier Transform Near Infrared Microspectroscopy, Infrared Chemical Imaging, High-Resolution Nuclear Magnetic Resonance and Fluorescence Microspectroscopy Detection of Single Cancer Cells and Single Viral Particles

    CERN Document Server

    Baianu,I C; Hofmann, N E; Korban, S S; Lozano, P; You, T

    2004-01-01

    Single Cancer Cells from Human tumors are being detected and imaged by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR)Hyperspectral Imaging and Fluorescence Correlation Microspectroscopy. The first FT-NIR chemical, microscopic images of biological systems approaching one micron resolution are here reported. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are also presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos as well as 99% accurate calibrations are also presented here with nanoliter precision. Such high-resolution, 400 MHz H-1 NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. >~20%) compared to the average levels in non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monito...

  4. Characterization of the new NSLS infrared microspectroscopy beamline U10B

    Energy Technology Data Exchange (ETDEWEB)

    Carr, G.L.

    1999-07-19

    The first of several new infrared beamlines, built on a modified bending magnet port of the NSLS VUV ring, is now operational for mid-infrared microspectroscopy. The port simultaneously delivers 40 mrad by 40 mrad to two separate beamlines and spectrometer endstations designated U10A and U10B. The latter is equipped with a scanning infrared microspectrometer. The combination of this instrument and high brightness synchrotron radiation makes diffraction-limited microspectroscopy practical. This paper describes the beamline's performance and presents quantitative information on the diffraction-limited resolution.

  5. Non-isothermal dehydration kinetic study of aspartame hemihydrate using DSC, TGA and DSC-FTIR microspectroscopy

    Directory of Open Access Journals (Sweden)

    Wei-hsien Hsieh

    2018-05-01

    Full Text Available Three thermal analytical techniques such as differential scanning calorimetry (DSC, thermal gravimetric analysis (TGA using five heating rates, and DSC-Fourier Transform Infrared (DSC-FTIR microspectroscopy using one heating rate, were used to determine the thermal characteristics and the dehydration process of aspartame (APM hemihydrate in the solid state. The intramolecular cyclization process of APM anhydrate was also examined. One exothermic and four endothermic peaks were observed in the DSC thermogram of APM hemihydrate, in which the exothermic peak was due to the crystallization of some amorphous APM caused by dehydration process from hemihydrate to anhydride. While four endothermic peaks were corresponded to the evaporation of absorbed water, the dehydration of hemihydrate, the diketopiperazines (DKP formation via intramolecular cyclization, and the melting of DKP, respectively. The weight loss measured in TGA curve of APM hemihydrate was associated with these endothermic peaks in the DSC thermogram. According to the Flynn–Wall–Ozawa (FWO model, the activation energy of dehydration process within 100–150 °C was about 218 ± 11 kJ/mol determined by TGA technique. Both the dehydration and DKP formation processes for solid-state APM hemihydrate were markedly evidenced from the thermal-responsive changes in several specific FTIR bands by a single-step DSC-FTIR microspectroscopy. Keywords: Aspartame (APM hemihydrate, DSC/TGA, DSC-FTIR, Dehydration, Activation energy, DKP formation

  6. Determination of on-stream destruction removal efficiency using Fourier transform infrared spectroscopy

    International Nuclear Information System (INIS)

    Demirgian, J.C.; Mao, Zhouxiong; MacIntosh, M.; Wentz, C.A.

    1991-01-01

    The requirements of the Clean Air Act Amendments of 1990 and public concern about the safety of air emissions from incineration necessitate the development of continuous emission monitors for on-line determination of both the destruction removal efficiency (DRE) of hazardous wastes and the emission products of incomplete combustion (PICs). This paper describes a Fourier transform infrared (FTIR) spectroscopic method that has been developed for this purpose. A laboratory-scale hazardous waste incinerator was coupled directly, via heated sampling lines, to a heated long-path cell (LPC) combined with an FTIR analyzer. The DRE and PIC emission levels were measured, on-line, for toluene incineration. Thus, this new LPC/FTIR system has been demonstrated as an effective continuous emissions monitor. Further experimental work with other hydrocarbons is now underway using the FTIR system. 8 figs., 4 tabs

  7. Ground based mid-IR heterodyne spectrometer concept for planetary atmospheres observations

    Science.gov (United States)

    Garamov, V.; Benderov, O.; Semenov, V.; Spiridonov, M.; Rodin, A.; Stepanov, B.

    2017-09-01

    We present a heterodyne spectrometer concept based on distributed feedback (DFB) quantum cascade lasers (QCL) operated in midle infrared region (MIR). The instrument is assumed to be mount on the Russian infrared observatories. The core features of the concept are compact design, utilizing a novel mid-IR fiber optical components and dynamic local oscillator frequency locking using reference molecule absorption line. The instrument characteristics are similar to modern heterodyne devices THIS (Cologne University, Germany) and MILAHI (Tohoku University, Japan) in terms of fundamental parameters, including spectral resolution, spectral coverage in a single observation. At present moment we created laboratory setup including all necessary elements of MIR heterodyne spectrometer. We have studied different components of noises of our system and found optimal value of LO power. The measured signal to noise ratio (SNR) with MCT PD was about 10 times greater than LO's shot noise (theoretical limit of heterodyne technique SNR) and limited by QCL relative intensity noise (RIN). However, applying additional filtering it is possible to reduce this value better than 5 shot noise level, which is typical to TEC cooled MCT PD. Also we demonstrate heterodyne signal measurements using laboratory black body with temperature of 400 oC.

  8. Evaluation of flaA short variable region sequencing, multilocus sequence typing and Fourier transform infrared spectroscopy for discrimination between Campylobacter jejuni strains

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hartmann; Bonnichsen, Lise; Larsson, Jonas T.

    2012-01-01

    and Fourier transform infrared (FTIR) spectroscopy were applied on a collection of 102 epidemiologically related and unrelated Campylobacter jejuni strains. Previous application of FTIR spectroscopy for subtyping of Campylobacter has been limited. A subset of isolates, initially discriminated by flaA SVR...

  9. High spectral resolution infrared observations of V1057 Cygni

    International Nuclear Information System (INIS)

    Hartmann, L.; Kenyon, S.J.

    1987-01-01

    High-resolution near-infrared spectra of V1057 Cygni obtained in 1986 with the KPNO 4-m Fourier transform spectrometer provide support for a previously proposed accretion disk model. The model predicts that the observed rotational broadening of spectral lines should be smaller in the infrared than in the optical. The present observations show that V1057 Cyg rotates more slowly at 2.3 microns than at 6000 A by an amount quantitatively consistent with the simple disk models. The absence of any radial velocity variations in either the infrared or optical spectral regions supports the suggestion that the accreted material arises from a remnant disk of protostellar material. 19 references

  10. The Cosmic Infrared Background Experiment

    Science.gov (United States)

    Bock, James; Battle, J.; Cooray, A.; Hristov, V.; Kawada, M.; Keating, B.; Lee, D.; Matsumoto, T.; Matsuura, S.; Nam, U.; Renbarger, T.; Sullivan, I.; Tsumura, K.; Wada, T.; Zemcov, M.

    2009-01-01

    We are developing the Cosmic Infrared Background ExpeRiment (CIBER) to search for signatures of first-light galaxy emission in the extragalactic background. The first generation of stars produce characteristic signatures in the near-infrared extragalactic background, including a redshifted Ly-cutoff feature and a characteristic fluctuation power spectrum, that may be detectable with a specialized instrument. CIBER consists of two wide-field cameras to measure the fluctuation power spectrum, and a low-resolution and a narrow-band spectrometer to measure the absolute background. The cameras will search for fluctuations on angular scales from 7 arcseconds to 2 degrees, where the first-light galaxy spatial power spectrum peaks. The cameras have the necessary combination of sensitivity, wide field of view, spatial resolution, and multiple bands to make a definitive measurement. CIBER will determine if the fluctuations reported by Spitzer arise from first-light galaxies. The cameras observe in a single wide field of view, eliminating systematic errors associated with mosaicing. Two bands are chosen to maximize the first-light signal contrast, at 1.6 um near the expected spectral maximum, and at 1.0 um; the combination is a powerful discriminant against fluctuations arising from local sources. We will observe regions of the sky surveyed by Spitzer and Akari. The low-resolution spectrometer will search for the redshifted Lyman cutoff feature in the 0.7 - 1.8 um spectral region. The narrow-band spectrometer will measure the absolute Zodiacal brightness using the scattered 854.2 nm Ca II Fraunhofer line. The spectrometers will test if reports of a diffuse extragalactic background in the 1 - 2 um band continues into the optical, or is caused by an under estimation of the Zodiacal foreground. We report performance of the assembled and tested instrument as we prepare for a first sounding rocket flight in early 2009. CIBER is funded by the NASA/APRA sub-orbital program.

  11. Portable NIR-AOTF spectroscopy combined with winery FTIR spectroscopy for an easy, rapid, in-field monitoring of Sangiovese grape quality.

    Science.gov (United States)

    Barnaba, Federico Emanuele; Bellincontro, Andrea; Mencarelli, Fabio

    2014-04-01

    A near infrared acousto-optically tunable filter (NIR-AOTF) spectrophotometer was tested for three seasons on four different vineyards with the aim of monitoring the ripening evolution of the Italian red wine grape variety Sangiovese. Predictive models for the estimation of several enological parameters were carried out applying the partial least squares chemometric approach. Reference analysis was conducted using Fourier transform infrared spectroscopy (FTIR). Spectral detections were obtained working on whole grape berries. A global set of 96 samples (n = 76 in 2009, and n = 20 in 2010) each one represented by 100 intact grape berries was tested. Finally, in 2011, an external validation on an independent data set of 25 samples (50 grape berries per set) was carried out. Coupling the two spectroscopic applications, the following enological parameters were tested: °Brix, °Babo, total sugars (g L(-1)), glucose (g L(-1)), fructose (g L(-1)), density (g mL(-1)), titratable acidity (g L(-1)), tartaric acid (g L(-1)), pH, malic acid (g L(-1)), gluconic acid (g L(-1)), assumable nitrogen (mg L(-1) ), anthocyanins (mg L(-1)), and total phenols (mg L(-1)). NIR-AOTF spectroscopy was able to predict with a high correlation versus the measured data: °Brix, °Babo, total sugars, glucose, fructose and density. The coefficient of determination (R(2)) and the standard error in prediction were: 0.93 and 0.73 for °Brix; 0.93 and 0.62 for °Babo; 0.94 and 7.39 g L(-1) for total sugars; 0.93 and 5.39 g L(-1) for glucose; 0.92 and 5.07 g L(-1) for fructose; and 0.91 and 0.004 g mL(-1) for density, respectively. Significant correlations were found in prediction for tartaric acid and pH value. Promising validation results were recorded for anthocyanins and total phenols, even though predictive models were affected by the method of sample preparation in compound extraction. This study shows how NIR-AOTF spectroscopy can be used in viticulture to

  12. TIRCIS: A Thermal Infrared, Compact Imaging Spectrometer for Small Satellite Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will demonstrate how hyperspectral thermal infrared (TIR; 8-14 microns) image data, with a spectral resolution of up to 8 wavenumbers, can be acquired...

  13. SEASONAL DISAPPEARANCE OF FAR-INFRARED HAZE IN TITAN'S STRATOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Donald E.; Anderson, C. M.; Flasar, F. M.; Cottini, V. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Samuelson, R. E.; Nixon, C. A.; Kunde, V. G.; Achterberg, R. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); De Kok, R. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); Coustenis, A.; Vinatier, S. [LESIA, Observatoire de Paris-Meudon, 92195 Meudon Cedex (France); Calcutt, S. B., E-mail: donald.e.jennings@nasa.gov [Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2012-07-20

    A far-infrared emission band attributed to volatile or refractory haze in Titan's stratosphere has been decreasing in intensity since Cassini's arrival in 2004. The 220 cm{sup -1} feature, first seen by the Voyager Infrared Interferometer Spectrometer, has only been found in Titan's winter polar region. The emission peaks at about 140 km altitude near the winter stratospheric temperature minimum. Observations recorded over the period 2004-2012 by the Composite Infrared Spectrometer on Cassini show a decrease in the intensity of this feature by about a factor of four. Possible seasonal causes of this decline are an increase in photolytic destruction of source chemicals at high altitude, a lessening of condensation as solar heating increased, or a weakening of downwelling of vapors. As of early 2012, the 220 cm{sup -1} haze has not yet been detected in the south. The haze composition is unknown, but its decrease is similar to that of HC{sub 3}N gas in Titan's polar stratosphere, pointing to a nitrile origin.

  14. The relationship between cross-sectional shapes and FTIR profiles in synthetic wig fibers and their discriminating abilities - An evidential value perspective.

    Science.gov (United States)

    Joslin Yogi, Theresa A; Penrod, Michael; Holt, Melinda; Buzzini, Patrick

    2018-02-01

    Wig fragments or fibers may occasionally be recognized as potential physical evidence during criminal investigations. While analytical methods traditionally adopted for the examination of textile fibers are utilized for the characterizations and comparisons of wig specimens, it is essential to understand in deeper detail the valuable contribution of features of these non-routine evidentiary materials as well as the relationship of the gathered analytical data. This study explores the dependence between the microscopic features of cross-sectional shapes and the polymer type gathered by Fourier transform infrared (FTIR) spectroscopy. The discriminating power of the two methods of cross-sectioning and FTIR spectroscopy was also investigated. Forty-one synthetic wigs varying in both quality and price were collected: twenty-three brown, twelve blondes and six black samples. The collected samples were observed using light microscopy methods (bright field illumination and polarized light), before obtaining cross-sections using the Joliff method and analyze them using FTIR spectroscopy. The forty-one samples were divided into ten groups based on one or more of the ten types of cross-sectional shapes that were observed. The majority of encountered cross-sectional shapes were defined as horseshoe, dog bone and lobular. Infrared spectroscopy confirmed modacrylic to be the most prevalent fiber type. Blends of modacrylic and polyvinyl chloride fibers were also observed as well as polypropylene wig samples. The Goodman and Kruskal lambda statistical test was used and showed that the cross-sectional shape and infrared profile were related. From an evidentiary value perspective, this finding has implications when addressing questions about a common source between questioned wig specimens and a wig reference sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Diffusion and Mechanical Properties of Polyether-Polyurethanes Reinforced with Silica

    Science.gov (United States)

    2016-05-01

    a frequency of 1 Hz, and amplitude of 20 µm. Infrared (IR) spectra were recorded with a Nicolet Magna 560 ATR-FTIR spectrometer using films placed...Byrne CA, Mack DP, Sloan JM. Study of aliphatic polyurethane elastomers prepared from diisocyanate isomer mixtures. Rubber Chemistry and Technology...S. Transport of organic solvents through natural rubber /nitrile rubber /organically modified montmorillonite nanocomposites. J Material Science

  16. Using FT-IR Spectroscopy to Elucidate the Structures of Ablative Polymers

    Science.gov (United States)

    Fan, Wendy

    2011-01-01

    The composition and structure of an ablative polymer has a multifaceted influence on its thermal, mechanical and ablative properties. Understanding the molecular level information is critical to the optimization of material performance because it helps to establish correlations with the macroscopic properties of the material, the so-called structure-property relationship. Moreover, accurate information of molecular structures is also essential to predict the thermal decomposition pathways as well as to identify decomposition species that are fundamentally important to modeling work. In this presentation, I will describe the use of infrared transmission spectroscopy (FT-IR) as a convenient tool to aid the discovery and development of thermal protection system materials.

  17. The influence of incident beam's angle offset of Fourier transform infrared spectrometer on the spectrum measurement explored with synchrotron radiation

    International Nuclear Information System (INIS)

    Chen Wenhao; Chen Min; Xiao Tiqiao

    2011-01-01

    Effects of the incident angle offset on FT-IR spectra are investigated in this paper. The simulated FT-IR spectra are obtained by Fourier inverse transform. The results show that this frequency shift varies with the angle offset of the incident beam in FT-IR. As an example,the factors that affect the angle of incident IR light at SSRF are analyzed. According to performance specifications of the IR beamline, requirements of the optical component installation precision and position drift of the light source are given. (authors)

  18. GeMini: The Next-Generation Mechanically-Cooled Germanium Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Burks, M

    2008-11-12

    The next-generation mechanically-cooled germanium spectrometer has been developed. GeMini (MINIature GErmanium spectrometer) has been designed to bring high-resolution gamma-ray spectroscopy to a range of demanding field environments. Intended applications include short-notice inspections, border patrol, port monitoring and emergency response, where positive nuclide identification of radioactive materials is required but power and liquid cryogen are not easily available. GeMini weighs 2.75 kg for the basic instrument and 4.5 kg for the full instrument including user interface and ruggedized hermetic packaging. It is very low power allowing it to operate for 10 hours on a single set of rechargeable batteries. This instrument employs technology adapted from the gamma-ray spectrometer currently flying on NASA's Mercury MESSENGER spacecraft. Specifically, infrared shielding techniques allow for a vast reduction of thermal load. This in turn allows for a smaller, lighter-weight design, well-suited for a hand-held instrument. Three working prototypes have been built and tested in the lab. The measured energy resolution is 3 keV fwhm at 662 keV gamma-rays. This paper will focus on the design and performance of the instrument.

  19. Infrared temperature and gas measurements at the Haderslev power and heat plan[Denmark]; Infraroede temperatur- og gasmaelinger Haderslev Kraftvarmevaerk

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Soennik

    2007-04-15

    Report describe results from a two week measurement campaign at Haderslev Kraftvarmevaerk in 2006 as a part of PSO-project 5727 'On-line optimization of waste incinerators'. Non-contact gas temperature and gas composition was measured simultaneously with a FTIR spectrometer coupled to a water-cooled fiber-optic probe. Gas temperature and H{sub 2}O, CO{sub 2}, CO, C{sub x}H{sub y} and HCl concentrations was extracted from measured spectra of emitted thermal radiation from gas slab over a 25 cm path. Measurements where performed in different positions to obtain a overview of flow behavior and conditions during stable operation and during a step in operation conditions, e.g. changing combustion air flows. Furthermore, surface temperature of grate was monitored with a thermal camera and a cross stack reference measurement on hot outlet gas was performed with a FTIR spectrometer. (au)

  20. A Portable FTIR Analyser for Field Measurements of Trace Gases and their Isotopologues: CO2, CH4, N2O, CO, del13C in CO2 and delD in water vapour

    Science.gov (United States)

    Griffith, D. W.; Bryant, G. R.; Deutscher, N. M.; Wilson, S. R.; Kettlewell, G.; Riggenbach, M.

    2007-12-01

    We describe a portable Fourier Transform InfraRed (FTIR) analyser capable of simultaneous high precision analysis of CO2, CH4, N2O and CO in air, as well as δ13C in CO2 and δD in water vapour. The instrument is based on a commercial 1 cm-1 resolution FTIR spectrometer fitted with a mid-IR globar source, 26 m multipass White cell and thermoelectrically-cooled MCT detector operating between 2000 and 7500 cm-1. Air is passed through the cell and analysed in real time without any pre-treatment except for (optional) drying. An inlet selection manifold allows automated sequential analysis of samples from one or more inlet lines, with typical measurement times of 1-10 minutes per sample. The spectrometer, inlet sampling sequence, real-time quantitative spectrum analysis, data logging and display are all under the control of a single program running on a laptop PC, and can be left unattended for continuous measurements over periods of weeks to months. Selected spectral regions of typically 100-200 cm-1 width are analysed by a least squares fitting technique to retrieve concentrations of trace gases, 13CO2 and HDO. Typical precision is better than 0.1% without the need for calibration gases. Accuracy is similar if measurements are referenced to calibration standard gases. δ13C precision is typically around 0.1‰, and for δD it is 1‰. Applications of the analyser include clean and polluted air monitoring, tower-based flux measurements such as flux gradient or integrated horizontal flux measurements, automated soil chambers, and field-based measurements of isotopic fractionation in soil-plant-atmosphere systems. The simultaneous multi-component advantages can be exploited in tracer-type emission measurements, for example of CH4 from livestock using a co-released tracer gas and downwind measurement. We have also developed an open path variant especially suited to tracer release studies and measurements of NH3 emissions from agricultural sources. An illustrative

  1. Investigation of the Cross-Section Stratifications of Icons Using Micro-Raman and Micro-Fourier Transform Infrared (FT-IR) Spectroscopy.

    Science.gov (United States)

    Lazidou, Dimitra; Lampakis, Dimitrios; Karapanagiotis, Ioannis; Panayiotou, Costas

    2018-01-01

    The cross-section stratifications of samples, which were removed from six icons, are studied using optical microscopy, micro-Raman spectroscopy, and micro-Fourier transform infrared (FT-IR) spectroscopy. The icons, dated from the 14th to 19th centuries, are prominent examples of Byzantine painting art and are attributed to different artistic workshops of ​​northern Greece. The following materials are identified in the cross-sections of the icon samples using micro-Raman spectroscopy: anhydrite; calcite; carbon black; chrome yellow; cinnabar; gypsum; lead white; minium; orpiment; Prussian blue; red ochre; yellow ochre; and a paint of organic origin which can be either indigo ( Indigofera tinctoria L. and others) or woad ( Isatis tinctoria L.). The same samples are investigated using micro-FT-IR which leads to the following identifications: calcite; calcium oxalates; chrome yellow; gypsum; kaolinite; lead carboxylates; lead sulfate (or quartz); lead white; oil; protein; Prussian blue; saponified oil; shellac; silica; and tree resin. The study of the cross-sections of the icon samples reveals the combinations of the aforementioned inorganic and organic materials. Although the icons span over a long period of six centuries, the same stratification comprising gypsum ground layer, paint layers prepared by modified "egg tempera" techniques (proteinaceous materials mixed with oil and resins), and varnish layer is revealed in the investigated samples. Moreover, the presence of three layers of varnishes, one at the top and other two as intermediate layers, in the cross-section analysis of a sample from Virgin and Child provide evidence of later interventions.

  2. An Application for the Quantitative Analysis of Pharmaceutical Tablets Using a Rapid Switching System Between a Near-Infrared Spectrometer and a Portable Near-Infrared Imaging System Equipped with Fiber Optics.

    Science.gov (United States)

    Murayama, Kodai; Ishikawa, Daitaro; Genkawa, Takuma; Ozaki, Yukihiro

    2018-04-01

    We present a rapid switching system between a newly developed near-infrared (NIR) spectrometer and its imaging system to select the spot size of a diffuse reflectance (DR) probe. In a previous study, we developed a portable NIR imaging system, known as D-NIRs, which has significant advantages over other systems. Its high speed, high spectral resolution, and portability are particularly useful in the process of monitoring pharmaceutical tablets. However, the spectral accuracies relating to the changes in the formulation of the pharmaceutical tablets have not been fully discussed. Therefore, we improved the rapid optical switching system and present a new model of D-NIRs (ND-NIRs) here. This system can automatically switch the optical paths of the DR and NIR imaging probes, greatly contributing to the simultaneous measurement of both the imaging and spot. The NIR spectra of the model tablets, including 0-10% ascorbic acid, were measured and simultaneous NIR images of the tablets were obtained. The predicted results using spot sizes for the DR probe of 1 and 5 mm diameter, resulted in concentrations of R2 = 0.79 and 0.94, with root mean square errors (RMSE) of 1.78 and 0.89, respectively. For tablets with a high concentration of ascorbic acid, the NIR imaging results showed inhomogeneity in concentration. However, the predicted values for the low concentration samples appeared higher than the known concentration of the tablets, although the homogeneity of the concentration was confirmed. In addition, the optimal spot size using NIR imaging data was estimated to be 5-7 mm. The results obtained in this study show that the spot size of the fiber probe, attached to a spectrometer, is important in developing a highly reliable model to determine the component concentration of a tablet.

  3. A simple model for cell type recognition using 2D-correlation analysis of FTIR images from breast cancer tissue

    Science.gov (United States)

    Ali, Mohamed H.; Rakib, Fazle; Al-Saad, Khalid; Al-Saady, Rafif; Lyng, Fiona M.; Goormaghtigh, Erik

    2018-07-01

    Breast cancer is the second most common cancer after lung cancer. So far, in clinical practice, most cancer parameters originating from histopathology rely on the visualization by a pathologist of microscopic structures observed in stained tissue sections, including immunohistochemistry markers. Fourier transform infrared spectroscopy (FTIR) spectroscopy provides a biochemical fingerprint of a biopsy sample and, together with advanced data analysis techniques, can accurately classify cell types. Yet, one of the challenges when dealing with FTIR imaging is the slow recording of the data. One cm2 tissue section requires several hours of image recording. We show in the present paper that 2D covariance analysis singles out only a few wavenumbers where both variance and covariance are large. Simple models could be built using 4 wavenumbers to identify the 4 main cell types present in breast cancer tissue sections. Decision trees provide particularly simple models to reach discrimination between the 4 cell types. The robustness of these simple decision-tree models were challenged with FTIR spectral data obtained using different recording conditions. One test set was recorded by transflection on tissue sections in the presence of paraffin while the training set was obtained on dewaxed tissue sections by transmission. Furthermore, the test set was collected with a different brand of FTIR microscope and a different pixel size. Despite the different recording conditions, separating extracellular matrix (ECM) from carcinoma spectra was 100% successful, underlying the robustness of this univariate model and the utility of covariance analysis for revealing efficient wavenumbers. We suggest that 2D covariance maps using the full spectral range could be most useful to select the interesting wavenumbers and achieve very fast data acquisition on quantum cascade laser infrared imaging microscopes.

  4. Synchrotron-based multiple-beam FTIR chemical imaging of a multi-layered polymer in transmission and reflection: towards cultural heritage applications

    Science.gov (United States)

    Unger, Miriam; Mattson, Eric; Schmidt Patterson, Catherine; Alavi, Zahrasadet; Carson, David; Hirschmugl, Carol J.

    2013-04-01

    IRENI (infrared environmental imaging) is a recently commissioned Fourier transform infrared (FTIR) chemical imaging beamline at the Synchrotron Radiation Center in Madison, WI, USA. This novel beamline extracts 320 mrad of radiation, horizontally, from one bending magnet. The optical transport separates and recombines the beam into 12 parallel collimated beams to illuminate a commercial FTIR microspectrometer (Bruker Hyperion 3000) equipped with a focal plane array detector where single pixels in the detector image a projected sample area of either 0.54×0.54 μm2 or 2×2 μm2, depending in the measurement geometry. The 12 beams are partially overlapped and defocused, similar to wide-field microscopy, homogeneously illuminating a relatively large sample area compared to single-beam arrangements. Both transmission and reflection geometries are used to examine a model cross section from a layered polymer material. The compromises for sample preparation and measurement strategies are discussed, and the chemical composition and spatial definition of the layers are distinguished in chemical images generated from data sets. Deconvolution methods that may allow more detailed data analysis are also discussed.

  5. Discrimination of wild-growing and cultivated Lentinus edodes by tri-step infrared spectroscopy

    Science.gov (United States)

    Lin, Haojian; Liu, Gang; Yang, Weimei; An, Ran; Ou, Quanhong

    2018-01-01

    It's not easy to discriminate dried wild-growing Lentinus edodes (WL) and cultivated Lentinus edodes (CL) by conventional method based on the morphological inspection of fruiting bodies. In this paper, fruiting body samples of WL and CL are discriminated by a tri-step IR spectroscopy method, including Fourier transform infrared (FT-IR) spectroscopy, second derivatives infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy under thermal perturbation. The results show that the FT-IR spectra of WL and CL are similar in holistic spectral profile. More significant differences are exhibited in their SD-IR spectra in the range of 1700 - 900 cm-1. Furthermore, more evident differences have been observed in their synchronous 2D-IR spectra in the range of 2970 - 2900, 1678 - 1390, 1250 -1104 and 1090 - 1030 cm-1. The CL has thirteen auto-peaks at 2958, 2921, 1649, 1563, 1450, 1218, 1192, 1161, 1140, 1110, 1082, 1065 and 1047 cm-1, in which the four strongest auto-peaks are at 2921, 1563, 1192 and 1082 cm-1. The WL shows fifteen auto-peaks at 2960, 2937, 2921, 1650, 1615, 1555, 1458, 1219, 1190, 1138, 1111, 1084, 1068, 1048 and 1033 cm-1, in which the four strongest auto-peaks are at 2921, 1650, 1190 and 1068 cm-1. This study shows the potential of FT-IR spectroscopy and 2D correlation analysis in a simple and quick distinction of wild-growing and cultivated mushrooms.

  6. Effects of Near Infrared Radiation on DNA. DLS and ATR-FTIR Study

    Science.gov (United States)

    Szymborska-Małek, Katarzyna; Komorowska, Małgorzata; Gąsior-Głogowska, Marlena

    2018-01-01

    We presume that the primary effect of Near Infrared (NIR) radiation on aqueous solutions of biological molecules concerns modification of hydrogen bonded structures mainly the global and the hydration shell water molecules. Since water has a significant influence on the DNA structure, we expect that the thermal stability of DNA could be modified by NIR radiation. The herring sperm DNA was exposed to NIR radiation (700-1100 nm) for 5, 10, and 20 min periods. The temperature dependent infrared measurements were done for the thin films formed on the diamond ATR crystal from evaporated DNA solutions exposed and unexposed to NIR radiation. For the NIR-treated samples (at room temperature) the B form was better conserved than in the control sample independently of the irradiation period. Above 50 °C a considerable increase in the A form was only observed for 10 min NIR exposed samples. The hydrodynamic radius, (Rh), studied by the dynamic light scattering, showed drastic decrease with the increasing irradiation time. Principal components analysis (PCA) allowed to detect the spectral features correlated with the NIR effect and thermal stability of the DNA films. Obtained results strongly support the idea that the photoionization of water by NIR radiation in presence of DNA molecules is the main factor influencing on its physicochemical properties.

  7. A new and fast in-situ spectroscopic infrared absorption measurement technique

    NARCIS (Netherlands)

    Hest, van M.F.A.M.; Klaver, A.; Sanden, van de M.C.M.

    2001-01-01

    Silicon oxide like films are deposited using an expanding thermal plasma (cascaded arc) in combination with HMDSO and oxygen as deposition precursors. These films are deposited at high rate (up to 200 nm/s). In general Fourier transform infrared (FTIR) reflection absorption spectroscopy is a useful

  8. Apparatus and method for transient thermal infrared emission spectrometry

    Science.gov (United States)

    McClelland, John F.; Jones, Roger W.

    1991-12-24

    A method and apparatus for enabling analysis of a solid material (16, 42) by applying energy from an energy source (20, 70) top a surface region of the solid material sufficient to cause transient heating in a thin surface layer portion of the solid material (16, 42) so as to enable transient thermal emission of infrared radiation from the thin surface layer portion, and by detecting with a spectrometer/detector (28, 58) substantially only the transient thermal emission of infrared radiation from the thin surface layer portion of the solid material. The detected transient thermal emission of infrared radiation is sufficiently free of self-absorption by the solid material of emitted infrared radiation, so as to be indicative of characteristics relating to molecular composition of the solid material.

  9. A quantitative method to detect explosives and selected semivolatiles in soil samples by Fourier transform infrared spectroscopy

    International Nuclear Information System (INIS)

    Clapper-Gowdy, M.; Dermirgian, J.; Robitaille, G.

    1995-01-01

    This paper describes a novel Fourier transform infrared (FTIR) spectroscopic method that can be used to rapidly screen soil samples from potentially hazardous waste sites. Samples are heated in a thermal desorption unit and the resultant vapors are collected and analyzed in a long-path gas cell mounted in a FTIR. Laboratory analysis of a soil sample by FTIR takes approximately 10 minutes. This method has been developed to identify and quantify microgram concentrations of explosives in soil samples and is directly applicable to the detection of selected volatile organics, semivolatile organics, and pesticides

  10. Synchrotron radiation-based Fourier-transform infrared spectromicroscopy for characterization of the protein/peptide distribution in single microspheres

    Directory of Open Access Journals (Sweden)

    Manli Wang

    2015-05-01

    Full Text Available The present study establishes a visualization method for the measurement of the distribution and localization of protein/peptide constituents within a single poly-lactide-co-glycolide (PLGA microsphere using synchrotron radiation–based Fourier-transform infrared spectromicroscopy (SR-FTIR. The representative infrared wavenumbers specific for protein/peptide (Exenatide and excipient (PLGA were identified and chemical maps at the single microsphere level were generated by measuring and plotting the intensity of these specific bands. For quantitative analysis of the distribution within microspheres, Matlab software was used to transform the map file into a 3D matrix and the matrix values specific for the drug and excipient were extracted. Comparison of the normalized SR-FTIR maps of PLGA and Exenatide indicated that PLGA was uniformly distributed, while Exenatide was relatively non-uniformly distributed in the microspheres. In conclusion, SR-FTIR is a rapid, nondestructive and sensitive detection technology to provide the distribution of chemical constituents and functional groups in microparticles and microspheres.

  11. Preliminary Discrimination of Cheese Adulteration by FT-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Lucian Cuibus

    2014-11-01

    Full Text Available The present work describes a preliminary study to compare some traditional Romanian cheeses and adulterated cheeses using Attenuated Total Reflectance-Fourier transform infrared spectroscopy (ATR-FTIR. For PLS model calibration (6 concentration levels and validation (5 concentration levels sets were prepared from commercial Dalia Cheese from different manufacturers by spiking it with palm oil at concentrations ranging 2-50 % and 5-40 %, respectively. Fifteen Dalia Cheese were evaluated as external set. The spectra of each sample, after homogenization, were acquired in triplicate using a FTIR Shimatsu Prestige 21 Spectrophotometer, with a horizontal diamond ATR accessory in the MIR region 4000-600 cm-1. Statistical methods as PLS were applied using MVC1 routines written for Matlab R2010a. As first step the optimal condition for PLS model were obtained using cross-validation on the Calibration set. Spectral region in 3873-652 cm-1, and 3 PLS-factors were stated as the best conditions and showed an R2 value of 0.9338 and a relative error in the calibration of 17.2%. Then validation set was evaluated, obtaining good recovery rates (108% and acceptable dispersion of the data (20%. The curve of actual vs. predicted values shows slope near to 1 and origin close to 0, with an R2 of 0.9695. When the external sample set was evaluated, samples F19, F21, F22 and F24, showed detectable levels of palm fats. The results proved that FTIR-PLS is a reliable non-destructive technique for a rapid quantification the level of adulteration in cheese.  The spectroscopic methods could assist the quality control authority, traders and the producers to discriminate the adulterated cheeses with palm oil.

  12. Mid-infrared spectroscopy of Uranus from the Spitzer Infrared Spectrometer: 1. Determination of the mean temperature structure of the upper troposphere and stratosphere

    Science.gov (United States)

    Orton, Glenn S.; Fletcher, Leigh N.; Moses, Julianne I.; Mainzer, Amy K.; Hines, Dean; Hammel, Heidi B.; Martin-Torres, F. Javier; Burgdorf, Martin; Merlet, Cecile; Line, Michael R.

    2014-11-01

    On 2007 December 16-17, spectra were acquired of the disk of Uranus by the Spitzer Infrared Spectrometer (IRS), ten days after the planet's equinox, when its equator was close to the sub-Earth point. This spectrum provides the highest-resolution broad-band spectrum ever obtained for Uranus from space, allowing a determination of the disk-averaged temperature and molecule composition to a greater degree of accuracy than ever before. The temperature profiles derived from the Voyager radio occultation experiment by Lindal et al. (Lindal, G.F., Lyons, J.R., Sweetnam, D.N., Eshleman, V.R., Hinson, D.P. [1987]. J. Geophys. Res. 92, 14987-15001) and revisions suggested by Sromovsky et al. (Sromovsky, L.A., Fry, P.A., Kim, J.H. [2011]. Icarus 215, 292-312) that match these data best are those that assume a high abundance of methane in the deep atmosphere. However, none of these model profiles provides a satisfactory fit over the full spectral range sampled. This result could be the result of spatial differences between global and low-latitudinal regions, changes in time, missing continuum opacity sources such as stratospheric hazes or unknown tropospheric constituents, or undiagnosed systematic problems with either the Voyager radio-occultation or the Spitzer IRS data sets. The spectrum is compatible with the stratospheric temperatures derived from the Voyager ultraviolet occultations measurements by Herbert et al. (Herbert, F. et al. [1987]. J. Geophys. Res. 92, 15093-15109), but it is incompatible with the hot stratospheric temperatures derived from the same data by Stevens et al. (Stevens, M.H., Strobel, D.F., Herbert, F.H. [1993]. Icarus 101, 45-63). Thermospheric temperatures determined from the analysis of the observed H2 quadrupole emission features are colder than those derived by Herbert et al. at pressures less than ∼1 μbar. Extrapolation of the nominal model spectrum to far-infrared through millimeter wavelengths shows that the spectrum arising solely from H2

  13. Use of an Open-path FTIR sensor to measure VOCs at the Hanford Site

    International Nuclear Information System (INIS)

    Kagann, R.H.; Fancher, J.D.; Tomich, S.D.

    1994-01-01

    An Open-path Fourier Transform Infrared (OP-FTIR) instrument was used to measure carbo tetrachloride vapor emitted from contaminated soil and monitoring wells in the 200 West Area of the Hanford Site in southeastern Washington State (see Figure 1). Historical activities at US Department of Energy (DOE) facilities around the United States during World War II, including development of a nuclear deterrent, resulted in the discharge of chemical and radioactive materials to the environment. Beginning in 1955, carbon tetrachloride and other liquid wastes were released to the subsurface along with cocontaminants to three liquid waste disposal facilities. The DOE has now focused a major technical effort on the mitigation of the effects of those discharges through an environmental restoration program. The OP-FTIR was used over the soil surface near the 216-Z-9 Trench (one of the disposal facilities) in the 200 West Area. The Hanford demonstration of the OP-FTIR was conducted as part of the Volatile Organic Compound-Arid Integrated Demonstration (VOC-Arid ID), which is funded by the US Department of Energy, Office of Technology Development. The mission of the VOC-Arid ID is to identify, develop, and demonstrate new and innovative technologies to support environmental restoration

  14. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): A SOUNDING ROCKET PAYLOAD TO STUDY THE NEAR INFRARED EXTRAGALACTIC BACKGROUND LIGHT

    Energy Technology Data Exchange (ETDEWEB)

    Zemcov, M.; Bock, J.; Hristov, V.; Levenson, L. R.; Mason, P. [Department of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Arai, T.; Matsumoto, T.; Matsuura, S.; Tsumura, K.; Wada, T. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Battle, J. [Jet Propulsion Laboratory (JPL), National Aeronautics and Space Administration (NASA), Pasadena, CA 91109 (United States); Cooray, A. [Center for Cosmology, University of California, Irvine, Irvine, CA 92697 (United States); Keating, B.; Renbarger, T. [Department of Physics, University of California, San Diego, San Diego, CA 92093 (United States); Kim, M. G. [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, D. H.; Nam, U. W. [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Sullivan, I. [Department of Physics, The University of Washington, Seattle, WA 98195 (United States); Suzuki, K., E-mail: zemcov@caltech.edu [Instrument Development Group of Technical Center, Nagoya University, Nagoya, Aichi 464-8602 (Japan)

    2013-08-15

    The Cosmic Infrared Background Experiment (CIBER) is a suite of four instruments designed to study the near infrared (IR) background light from above the Earth's atmosphere. The instrument package comprises two imaging telescopes designed to characterize spatial anisotropy in the extragalactic IR background caused by cosmological structure during the epoch of reionization, a low resolution spectrometer to measure the absolute spectrum of the extragalactic IR background, and a narrow band spectrometer optimized to measure the absolute brightness of the zodiacal light foreground. In this paper we describe the design and characterization of the CIBER payload. The detailed mechanical, cryogenic, and electrical design of the system are presented, including all system components common to the four instruments. We present the methods and equipment used to characterize the instruments before and after flight, and give a detailed description of CIBER's flight profile and configurations. CIBER is designed to be recoverable and has flown four times, with modifications to the payload having been informed by analysis of the first flight data. All four instruments performed to specifications during the subsequent flights, and the scientific data from these flights are currently being analyzed.

  15. Synegies Between Visible/Near-Infrared Imaging Spectrometry and the Thermal Infrared in an Urban Environment: An Evaluation of the Hyperspectral Infrared Imager (HYSPIRI) Mission

    Science.gov (United States)

    Roberts, Dar A.; Quattrochi, Dale A.; Hulley, Glynn C.; Hook, Simon J.; Green, Robert O.

    2012-01-01

    A majority of the human population lives in urban areas and as such, the quality of urban environments is becoming increasingly important to the human population. Furthermore, these areas are major sources of environmental contaminants and sinks of energy and materials. Remote sensing provides an improved understanding of urban areas and their impacts by mapping urban extent, urban composition (vegetation and impervious cover fractions), and urban radiation balance through measures of albedo, emissivity and land surface temperature (LST). Recently, the National Research Council (NRC) completed an assessment of remote sensing needs for the next decade (NRC, 2007), proposing several missions suitable for urban studies, including a visible, near-infrared and shortwave infrared (VSWIR) imaging spectrometer and a multispectral thermal infrared (TIR) instrument called the Hyperspectral Infrared Imagery (HyspIRI). In this talk, we introduce the HyspIRI mission, focusing on potential synergies between VSWIR and TIR data in an urban area. We evaluate potential synergies using an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and MODIS-ASTER (MASTER) image pair acquired over Santa Barbara, United States. AVIRIS data were analyzed at their native spatial resolutions (7.5m VSWIR and 15m TIR), and aggregated 60 m spatial resolution similar to HyspIRI. Surface reflectance was calculated using ACORN and a ground reflectance target to remove atmospheric and sensor artifacts. MASTER data were processed to generate estimates of spectral emissivity and LST using Modtran radiative transfer code and the ASTER Temperature Emissivity Separation algorithm. A spectral library of common urban materials, including urban vegetation, roofs and roads was assembled from combined AVIRIS and field-measured reflectance spectra. LST and emissivity were also retrieved from MASTER and reflectance/emissivity spectra for a subset of urban materials were retrieved from co-located MASTER and

  16. Hydration induced material transfer in membranes of osmotic pump tablets measured by synchrotron radiation based FTIR.

    Science.gov (United States)

    Wu, Li; Yin, Xianzhen; Guo, Zhen; Tong, Yajun; Feng, Jing; York, Peter; Xiao, Tiqiao; Chen, Min; Gu, Jingkai; Zhang, Jiwen

    2016-03-10

    Osmotic pump tablets are reliable oral controlled drug delivery systems based on their semipermeable membrane coating. This research used synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy and imaging to investigate the hydration induced material transfer in the membranes of osmotic pump tablets. SR-FTIR was applied to record and map the chemical information of a micro-region of the membranes, composed of cellulose acetate (CA, as the water insoluble matrix) and polyethylene glycol (PEG, as the soluble pore forming agent and plasticizing agent). The microstructure and chemical change of membranes hydrated for 0, 5, 10 and 30min were measured using SR-FTIR, combined with scanning electronic microscopy and atom force microscopy. The SR-FTIR microspectroscopy results indicated that there was a major change at the absorption range of 2700-3100cm(-1) in the membranes after different periods of hydration time. The absorption bands at 2870-2880cm(-1) and 2950-2960cm(-1) were assigned to represent CA and PEG, respectively. The chemical group signal distribution illustrated by the ratio of PEG to CA demonstrated that the trigger of drug release in the preliminary stage was due to the rapid transfer of PEG into liquid medium with a sharp decrease of PEG in the membranes. The SR-FTIR mapping results have demonstrated the hydration induced material transfer in the membranes of osmotic pump tablets and enabled reassessment of the drug release mechanism of membrane controlled osmotic pump systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Diagnostic prediction of renal failure from blood serum analysis by FTIR spectrometry and chemometrics

    Science.gov (United States)

    Khanmohammadi, Mohammdreza; Ghasemi, Keyvan; Garmarudi, Amir Bagheri; Ramin, Mehdi

    2015-02-01

    A new diagnostic approach based on Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectrometry and classification algorithm has been introduced which provides a rapid, reliable, and easy way to perform blood test for the diagnosis of renal failure. Blood serum samples from 35 renal failure patients and 40 healthy persons were analyzed by ATR-FTIR spectrometry. The resulting data was processed by Quadratic Discriminant Analysis (QDA) and QDA combined with simple filtered method. Spectroscopic studies were performed in 900-2000 cm-1 spectral region with 3.85 cm-1 data space. Results showed 93.33% and 100% of accuracy for QDA and filter-QDA models, respectively. In the first step, 30 samples were applied to construct the model. In order to modify the capability of QDA in prediction of test samples, filter-based feature selection methods were applied. It was found that the filtered spectra coupled with QDA could correctly predict the test samples in most of the cases.

  18. Combining FT-IR spectroscopy and multivariate analysis for qualitative and quantitative analysis of the cell wall composition changes during apples development.

    Science.gov (United States)

    Szymanska-Chargot, M; Chylinska, M; Kruk, B; Zdunek, A

    2015-01-22

    The aim of this work was to quantitatively and qualitatively determine the composition of the cell wall material from apples during development by means of Fourier transform infrared (FT-IR) spectroscopy. The FT-IR region of 1500-800 cm(-1), containing characteristic bands for galacturonic acid, hemicellulose and cellulose, was examined using principal component analysis (PCA), k-means clustering and partial least squares (PLS). The samples were differentiated by development stage and cultivar using PCA and k-means clustering. PLS calibration models for galacturonic acid, hemicellulose and cellulose content from FT-IR spectra were developed and validated with the reference data. PLS models were tested using the root-mean-square errors of cross-validation for contents of galacturonic acid, hemicellulose and cellulose which was 8.30 mg/g, 4.08% and 1.74%, respectively. It was proven that FT-IR spectroscopy combined with chemometric methods has potential for fast and reliable determination of the main constituents of fruit cell walls. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Determination of Peroxide-Based Explosives Using Liquid Chromatography with On-Line Infrared Detection

    NARCIS (Netherlands)

    Schulte-Ladbeck, Rasmus; Edelmann, Andrea; Quintas, Guillermo; Lendl, Bernhard; Karst, U.

    2006-01-01

    A nondestructive analytical method for peroxide-based explosives determination in solid samples is described. Reversed-phase high-performance liquid chromatography in combination with on-line Fourier transform infrared (FT-IR) detection is used for the analysis of triacetonetriperoxide (TATP) and

  20. Characteristic Study of Some Different Kinds of Coal Particles Combustion with Online TG-MS-FTIR

    Science.gov (United States)

    Pan, Guanfu

    2018-01-01

    Four kinds of pulverized coal samples from China and Indonesia were studied by thermogravimetry coupled with mass spectrometry and fourier transform infrared spectroscopy (TG-MS-FTIR). The thermal behaviors and gaseous emissions of these coals were analyzed in this work. The results indicate that the relative lower values of H/C ratios, which normally represent the degree of aromatization and ring condensation in coal samples, could lead to the relative more intense thermal reaction. The time-evolved profiles of some typical gas products (i.e., CO, SO2, CH4, NO, NO2, NH3 and etc.) were provided by TG-MS-FTIR, and their variations are different. For all the samples, the releases of SO2 and COS can be found at lower temperature than those of NO and CO. As the temperature increases, the possible conversion of NO2 and NH3 to NO is deduced in this work.