WorldWideScience

Sample records for infrared difference spectroscopy

  1. Infrared spectroscopy of different phosphates structures.

    Jastrzębski, W; Sitarz, M; Rokita, M; Bułat, K

    2011-08-15

    Infrared (IR) spectroscopic studies of mineral and synthetic phosphates have been presented. The interpretation of the spectra has been preceded by the isolated [PO(4)](3-) tetrahedron spectra analyse. The K(3)PO(4) saturated aqueous solution was measured in the special cell for liquids. The obtained IR results have been compared with the theoretical number of IR-active modes. The number and positions of the bands due to P-O vibrations have been established. The phase composition of the phosphates has been determined using XRD and IR spectroscopy methods. The influence of non-tetrahedral cations on the shape of the spectra and the positions of bands has been analysed and the crystalline field splitting effect has been discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Study on Senna alata and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation infrared spectroscopy

    Adiana, M. A.; Mazura, M. P.

    2011-04-01

    Senna alata L. commonly known as candle bush belongs to the family of Fabaceae and the plant has been reported to possess anti-inflammatory, analgesic, laxative and antiplatelet-aggregating activity. In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional infrared correlation spectroscopy (2D-IR) to study the main constituents of S. alata and its different extracts (extracted by hexane, dichloromethane, ethyl acetate and methanol in turn). The findings indicated that FT-IR and 2D-IR can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can identify the main chemical constituents in medicinal materials and their extracts, but also compare the components differences among similar samples. In a conclusion, FT-IR spectroscopy combined with 2D correlation analysis provides a powerful method for the quality control of traditional medicines.

  3. Discrimination of different red wine by Fourier-transform infrared and two-dimensional infrared correlation spectroscopy

    Zhang, Yan-ling; Chen, Jian-bo; Lei, Yu; Zhou, Qun; Sun, Su-qin; Noda, Isao

    2010-06-01

    Fourier-transform infrared spectroscopy (FT-IR) and two-dimensional infrared (2D IR) correlation spectroscopy were applied to analyze main components of liquid red wine with different sugar contents and volatilization residues of dry red wine from different manufactures. The infrared spectra, second derivative spectra of dry red wine show the typical peaks of alcohol, while the spectra of sweet wine are composed of the peaks of both alcohol and sugar, and the contribution of sugar enhanced as the increase of sugar content. Using principal component analysis (PCA) method, dry and sweet wine can be readily classified. Analysis of the infrared spectra of the volatilization residues of dry red wine samples from five different manufactures indicates that dry red wine may be composed of glycerol, carboxylic acids or esters and carboxyl ate, at the same time, different dry red wine show different characteristic peaks in the second derivative spectra and 2D IR correlation spectra, which can be used to discriminate the different manufactures and evaluate the quality of wine samples. The results suggested that infrared spectroscopy is a direct and effective method for the analysis of principle components of different red wines and discrimination of different red wines.

  4. Study on Angelica and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy

    Liu, Hong-xia; Sun, Su-qin; Lv, Guang-hua; Chan, Kelvin K. C.

    2006-05-01

    In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional correlation infrared spectroscopy (2D-IR) to study the main constituents in traditional Chinese medicine Angelica and its different extracts (extracted by petroleum ether, ethanol and water in turn). The findings indicated that FT-IR spectrum can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can not only identify the main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. This analytical method is highly rapid, effective, visual and accurate for pharmaceutical research.

  5. Ultrafast infrared vibrational spectroscopy

    Fayer, Michael D

    2013-01-01

    The past ten years or so have seen the introduction of multidimensional methods into infrared and optical spectroscopy. The technology of multidimensional spectroscopy is developing rapidly and its applications are spreading to biology and materials science. Edited by a recognized leader in the field and with contributions from top researchers, including experimentalists and theoreticians, this book presents the latest research methods and results and will serve as an excellent resource for other researchers.

  6. Mid-infrared upconversion spectroscopy

    Tidemand-Lichtenberg, Peter; Dam, Jeppe Seidelin; Andersen, H. V.

    2016-01-01

    Mid-infrared (MIR) spectroscopy is emerging as an attractive alternative to near-infrared or visible spectroscopy. MIR spectroscopy offers a unique possibility to probe the fundamental absorption bands of a large number of gases as well as the vibrational spectra of complex molecules. In this paper...

  7. [Study on Different Parts of Wild and Cultivated Gentiana Rigescens with Fourier Transform Infrared Spectroscopy].

    Shen, Yun-xia; Zhao, Yan-li; Zhang, Ji; Zuo, Zhi-tian; Wang, Yuan-zhong; Zhang, Qing-zhi

    2016-03-01

    The application of traditional Chinese medicine (TCM) and their preparations have a long history. With the deepening of the research, the market demand is increasing. However, wild resources are so limited that it can not meet the needs of the market. The development of wild and cultivated samples and research on accumulation dynamics of chemical component are of great significance. In order to compare composition difference of different parts (root, stem, and leaf) of wild and cultivated G. rigescens, Fourier infrared spectroscopy (FTIR) and second derivative spectra were used to analyze and evaluate. The second derivative spectra of 60 samples and the rate of affinity (the match values) were measured automatically using the appropriate software (Omnic 8.0). The results showed that the various parts of wild and cultivated G. rigescens. were high similar the peaks at 1732, 1 643, 1 613, 1 510, 1 417, 1 366, 1 322, 1 070 cm(-1) were the characteristic peak of esters, terpenoids and saccharides, respectively. Moreover, the shape and peak intensity were more distinct in the second derivative spectrum of samples. In the second derivative spectrum range of 1 800-600 cm(-1), the fingerprint characteristic peak of samples and gentiopicroside standards were 1 679, 1 613, 1 466, 1 272, 1 204, 1 103, 1 074, 985, 935 cm(-1). The characteristic peak intensity of gentiopicroside of roots of wild and cultivated samples at 1 613 cm(-1) (C-C) was higher than stems and leaves which indicated the higher content of gentiopicroside in root than in stem and leaves. Stems of wild samples at 1 521, 1 462 and 1 452 cm(-1) are the skeletal vibration peak of benzene ring of lignin, and the stem of cultivated sample have stronger peak than other samples which showed that rich lignin in stems. The iInfrared spectrum of samples were similar with the average spectral of root of wild samples, and significant difference was found for the correlation between second derivative spectrum of samples

  8. Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts regenerated with deuterated tyrosine

    Dollinger, G.; Eisenstein, L.; Lin, S.L.; Nakanishi, K.; Termini, J.

    1986-01-01

    Fourier transform infrared (FTIR) difference spectroscopy has been used to detect the vibrational modes due to tyrosine residues in the protein that change in position or intensity between light-adapted bacteriorhodopsin (LA) and other species, namely, the K and M intermediates and dark-adapted bacteriorhodopsin (DA). To aid in the identification of the bands that change in these various species, the FTIR spectra of the free amino acids Tyr-d0, Tyr-d2 ( 2 H at positions ortho to OH), and Tyr-d4 ( 2 H at positions ortho and meta to OH) were measured in H 2 O and D 2 O at low and high pH. The characteristic frequencies of the Tyr species obtained in this manner were then used to identify the changes in protonation state of the tyrosine residues in the various bacteriorhodopsin species. The two diagnostically most useful bands were the approximately 1480-cm-1 band of Tyr(OH)-d2 and the approximately 1277-cm-1 band of Tyr(O-)-d0. Mainly by observing the appearance or disappearance of these bands in the difference spectra of pigments incorporating the tyrosine isotopes, it was possible to identify the following: in LA, one tyrosine and one tyrosinate; in the K intermediate, two tyrosines; in the M intermediate, one tyrosine and one tyrosinate; and in DA, two tyrosines. Since these residues were observed in the difference spectra K/LA, M/LA, and DA/LA, they represent the tyrosine or tyrosinate groups that most likely undergo changes in protonation state due to the conversions. These changes are most likely linked to the proton translocation process of bacteriorhodopsin

  9. Investigations of the functional states of dendritic cells under different conditioned microenvironments by Fourier transformed infrared spectroscopy.

    Dong, Rong; Long, Jinhua; Xu, Xiaoli; Zhang, Chunlin; Wen, Zongyao; Li, Long; Yao, Weijuan; Zeng, Zhu

    2014-01-10

    Dendritic cells are potent and specialized antigen presenting cells, which play a crucial role in initiating and amplifying both the innate and adaptive immune responses. The dendritic cell-based vaccination against cancer has been clinically achieved promising successes. But there are still many challenges in its clinical application, especially for how to identify the functional states. The CD14+ monocytes were isolated from human peripheral blood after plastic adherence and purified to approximately 98% with cocktail immunomagnetic beads. The immature dendritic cells and mature dendritic cells were induced by traditional protocols. The resulting dendritic cells were cocultured with normal cells and cancer cells. The functional state of dendritic cells including immature dendritic cells (imDCs) and mature dendritic cells (mDCs) under different conditioned microenvironments were investigated by Fourier transformed infrared spectroscopy (FTIR) and molecular biological methods. The results of Fourier transformed infrared spectroscopy showed that the gene transcription activity and energy states of dendritic cells were specifically suppressed by tumor cells (P Fourier transformed infrared spectroscopy at given wave numbers were closely correlated with the expression levels of NF-κB (R2:0.69 and R2:0.81, respectively). Our results confirmed that the ratios of absorption intensities of Fourier transformed infrared spectroscopy at given wave numbers were positively correlated with the expression levels of NF-κB, suggesting that Fourier transformed infrared spectroscopy technology could be clinically applied to identify the functional states of dendritic cell when performing dendritic cell-based vaccination. It's significant for the simplification and standardization of dendritic cell-based vaccination clinical preparation protocols.

  10. Near-infrared spectroscopy

    Virendra Jain

    2015-01-01

    Full Text Available Tissue ischaemia can be a significant contributor to increased morbidity and mortality. Conventional oxygenation monitoring modalities measure systemic oxygenation, but regional tissue oxygenation is not monitored. Near-infrared spectroscopy (NIRS is a non-invasive monitor for measuring regional oxygen saturation which provides real-time information. There has been increased interest in the clinical application of NIRS following numerous studies that show improved outcome in various clinical situations especially cardiac surgery. Its use has shown improved neurological outcome and decreased postoperative stay in cardiac surgery. Its usefulness has been investigated in various high risk surgeries such as carotid endarterectomy, thoracic surgeries, paediatric population and has shown promising results. There is however, limited data supporting its role in neurosurgical population. We strongly feel, it might play a key role in future. It has significant advantages over other neuromonitoring modalities, but more technological advances are needed before it can be used more widely into clinical practice.

  11. Sex differences in prefrontal hemodynamic response to mental arithmetic as assessed by near-infrared spectroscopy.

    Yang, Hongyu; Wang, Ying; Zhou, Zhenyu; Gong, Hui; Luo, Qingming; Wang, Yiwen; Lu, Zuhong

    2009-12-01

    Sex differences in cognitive tasks have been widely investigated. With brain-imaging techniques, the functions of the brain during the performance of tasks can be examined. Mental arithmetic and near-infrared spectroscopy (NIRS) were used to assess sex differences in prefrontal area activation in a functional brain study. Healthy college students were recruited to perform 2 mental arithmetic tasks. In the first (easy) task, students had to subtract a 1-digit number from a 3-digit number. In the second (difficult) task, they had to subtract a 2-digit number from a 3-digit number. Changes in the concentration of oxygenated hemoglobin (oxy-Hgb) in the prefrontal area during the tasks were measured with NIRS. Thirty students (15 men, 15 women; mean [SD] age: 24.9 [2.2] and 24.3 [2.6] years, respectively) were recruited from Southeast University, Nanjing, China, to participate in the study. The concentration of oxy-Hgb increased during both mental arithmetic tasks (difficult task vs easy task, mean [SD] % arbitrary units: 4.36 [4.38] vs 2.26 [2.82]; F(1,28) = 222.80; P men and women were observed in the mean (SD) response time (men vs women, sec: 3.60 [0.74] vs 3.56 [0.49] for the easy task, 6.55 [0.77] vs 6.44 [0.75] for the difficult task; F(1,28) = 0.67; P = NS) or accuracy rate (men vs women, %: 95.33 [7.40] vs 92.77 [8.80] for the easy task, 62.67 [28.56] vs 54.67 [18.75] for the difficult task; F(1,28) = 0.54; P = NS). Male students showed neural efficiency (less prefrontal activation in subjects with better performance) during the difficult task. In these subjects, sex differences in prefrontal response when performing mental arithmetic were associated with the intensity of the task. Compared with men, women had greater efficiency in task performance (ie, less activation or oxygen consumption for equal performance). Copyright 2009 Excerpta Medica Inc. All rights reserved.

  12. Quantifying ternary mixtures of different solid-state forms of indomethacin by Raman and near-infrared spectroscopy

    Heinz, Andrea; Savolainen, Marja; Rades, Thomas

    2007-01-01

    by mean centering proved to be the best approaches to pre-process the data. With four partial least squares factors, root mean square errors of prediction ranging from 5.3% to 6.5% for Raman spectroscopy and 4.0% to 5.9% for near-infrared spectroscopy were calculated. In addition, the effects of potential...... indomethacin. Partial least squares regression was employed to create quantitative models. To improve the model performance various pre-treatment algorithms and scaling methods were applied to the spectral data and different spectral regions were tested. Standard normal variate transformation and scaling...

  13. Semiconductor optoelectronic infrared spectroscopy

    Hollingworth, A.R.

    2001-08-01

    We use spectroscopy to study infrared optoelectronic inter and intraband semiconductor carrier dynamics. The overall aim of this thesis was to study both III-V and Pb chalcogenide material systems in order to show their future potential use in infrared emitters. The effects of bandstructure engineering have been studied in the output characteristics of mid-IR III-V laser diodes to show which processes (defects, radiative, Auger and phonon) dominate and whether non-radiative processes can be suppressed. A new three-beam pump probe experiment was used to investigate interband recombination directly in passive materials. Experiments on PbSe and theory for non-parabolic near-mirror bands and non-degenerate statistics were in good agreement. Comparisons with HgCdTe showed a reduction in the Auger coefficient of 1-2 orders of magnitude in the PbSe. Using Landau confinement to model spatial confinement in quantum dots (QDs) 'phonon bottlenecking' was studied. The results obtained from pump probe and cyclotron resonance saturation measurements showed a clear suppression in the cooling of carriers when Landau level separation was not resonant with LO phonon energy. When a bulk laser diode was placed in a magnetic field to produce a quasi quantum wire device the resulting enhanced differential gain and reduced Auger recombination lowered I th by 30%. This result showed many peaks in the light output which occurred when the LO phonon energy was a multiple of the Landau level separation. This showed for the first time evidence of the phonon bottleneck in a working laser device. A new technique called time resolved optically detected cyclotron resonance, was used as a precursor to finding the carrier dynamics within a spatially confined quantum dot. By moving to the case of a spatial QD using an optically detected intraband resonance it was possible to measure the energy separation interband levels and conduction and valence sublevels within the dot simultaneously. Furthermore

  14. Transient Infrared Emission Spectroscopy

    Jones, Roger W.; McClelland, John F.

    1989-12-01

    Transient Infrared Emission Spectroscopy (TIRES) is a new technique that reduces the occurrence of self-absorption in optically thick solid samples so that analytically useful emission spectra may be observed. Conventional emission spectroscopy, in which the sample is held at an elevated, uniform temperature, is practical only for optically thin samples. In thick samples the emission from deep layers of the material is partially absorbed by overlying layers.1 This self-absorption results in emission spectra from most optically thick samples that closely resemble black-body spectra. The characteristic discrete emission bands are severely truncated and altered in shape. TIRES bypasses this difficulty by using a laser to heat only an optically thin surface layer. The increased temperature of the layer is transient since the layer will rapidly cool and thicken by thermal diffusion; hence the emission collection must be correlated with the laser heating. TIRES may be done with both pulsed and cw lasers.2,3 When a pulsed laser is used, the spectrometer sampling must be synchronized with the laser pulsing so that only emission during and immediately after each laser pulse is observed.3 If a cw laser is used, the sample must move rapidly through the beam. The hot, transient layer is then in the beam track on the sample at and immediately behind the beam position, so the spectrometer field of view must be limited to this region near the beam position.2 How much self-absorption the observed emission suffers depends on how thick the heated layer has grown by thermal diffusion when the spectrometer samples the emission. Use of a pulsed laser synchronized with the spectrometer sampling readily permits reduction of the time available for heat diffusion to about 100 acs .3 When a cw laser is used, the heat-diffusion time is controlled by how small the spectrometer field of view is and by how rapidly the sample moves past within this field. Both a very small field of view and a

  15. Identification of the traditional Tibetan medicine "Shaji" and their different extracts through tri-step infrared spectroscopy

    Liu, Yue; Li, Jingyi; Fan, Gang; Sun, Suqin; Zhang, Yuxin; Zhang, Yi; Tu, Ya

    2016-11-01

    Hippophae rhamnoides subsp. sinensis Rousi, Hippophae gyantsensis (Rousi) Y. S. Lian, Hippophae neurocarpa S. W. Liu & T. N. He and Hippophae tibetana Schlechtendal are typically used under one name "Shaji", to treat cardiovascular diseases and lung disorders in Tibetan medicine (TM). A complete set of infrared (IR) macro-fingerprints of these four Hippophae species should be characterized and compared simply, accurately, and in detail for identification. In the present study, tri-step IR spectroscopy, which included Fourier transform IR (FT-IR) spectroscopy, second derivative IR (SD-IR) spectroscopy and two-dimensional correlation IR (2D-IR) spectroscopy, was employed to discriminate the four Hippophae species and their corresponding extracts using different solvents. The relevant spectra exhibited the holistic chemical compositions and variations. Flavonoids, fatty acids and sugars were found to be the main chemical components. Characteristic peak positions, intensities and shapes derived from FT-IR, SD-IR and 2D-IR spectra provided valuable information for sample discrimination. Principal component analysis (PCA) of spectral differences was performed to illustrate the objective identification. Results showed that the species and their extracts can be clearly distinguished. Thus, a quick, precise and effective tri-step IR spectroscopy combined with PCA can be applied to identify and discriminate medicinal materials and their extracts in TM research.

  16. Infrared diode laser spectroscopy

    Civiš, Svatopluk; Cihelka, Jaroslav; Matulková, Irena

    2010-01-01

    Roč. 18, č. 4 (2010), s. 408-420 ISSN 1230-3402 R&D Projects: GA AV ČR IAA400400705 Institutional research plan: CEZ:AV0Z40400503 Keywords : FTIR spectroscopy * absorption spectroscopy * laser diodes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.027, year: 2010

  17. Near-infrared Raman spectroscopy for estimating biochemical changes associated with different pathological conditions of cervix

    Daniel, Amuthachelvi; Prakasarao, Aruna; Ganesan, Singaravelu

    2018-02-01

    The molecular level changes associated with oncogenesis precede the morphological changes in cells and tissues. Hence molecular level diagnosis would promote early diagnosis of the disease. Raman spectroscopy is capable of providing specific spectral signature of various biomolecules present in the cells and tissues under various pathological conditions. The aim of this work is to develop a non-linear multi-class statistical methodology for discrimination of normal, neoplastic and malignant cells/tissues. The tissues were classified as normal, pre-malignant and malignant by employing Principal Component Analysis followed by Artificial Neural Network (PC-ANN). The overall accuracy achieved was 99%. Further, to get an insight into the quantitative biochemical composition of the normal, neoplastic and malignant tissues, a linear combination of the major biochemicals by non-negative least squares technique was fit to the measured Raman spectra of the tissues. This technique confirms the changes in the major biomolecules such as lipids, nucleic acids, actin, glycogen and collagen associated with the different pathological conditions. To study the efficacy of this technique in comparison with histopathology, we have utilized Principal Component followed by Linear Discriminant Analysis (PC-LDA) to discriminate the well differentiated, moderately differentiated and poorly differentiated squamous cell carcinoma with an accuracy of 94.0%. And the results demonstrated that Raman spectroscopy has the potential to complement the good old technique of histopathology.

  18. Infrared spectroscopy reveals both qualitative and quantitative differences in equine subchondral bone during maturation

    Kobrina, Yevgeniya; Isaksson, Hanna; Sinisaari, Miikka; Rieppo, Lassi; Brama, Pieter A.; van Weeren, René; Helminen, Heikki J.; Jurvelin, Jukka S.; Saarakkala, Simo

    2010-11-01

    The collagen phase in bone is known to undergo major changes during growth and maturation. The objective of this study is to clarify whether Fourier transform infrared (FTIR) microspectroscopy, coupled with cluster analysis, can detect quantitative and qualitative changes in the collagen matrix of subchondral bone in horses during maturation and growth. Equine subchondral bone samples (n = 29) from the proximal joint surface of the first phalanx are prepared from two sites subjected to different loading conditions. Three age groups are studied: newborn (0 days old), immature (5 to 11 months old), and adult (6 to 10 years old) horses. Spatial collagen content and collagen cross-link ratio are quantified from the spectra. Additionally, normalized second derivative spectra of samples are clustered using the k-means clustering algorithm. In quantitative analysis, collagen content in the subchondral bone increases rapidly between the newborn and immature horses. The collagen cross-link ratio increases significantly with age. In qualitative analysis, clustering is able to separate newborn and adult samples into two different groups. The immature samples display some nonhomogeneity. In conclusion, this is the first study showing that FTIR spectral imaging combined with clustering techniques can detect quantitative and qualitative changes in the collagen matrix of subchondral bone during growth and maturation.

  19. Determination of Chinese rice wine from different wineries by near-infrared spectroscopy combined with chemometrics methods

    Niu, Xiaoying; Ying, Yibin; Yu, Haiyan; Xie, Lijuan; Fu, Xiaping; Zhou, Ying; Jiang, Xuesong

    2007-09-01

    In this paper, 104 samples of Chinese rice wines of the same variety (Shaoxing rice wine), collected in three winery ("guyuelongshan", "pagoda" brand, "kuaijishan"), three brewed years (2002, 2004, 2004-2006) were analyzed by near-infrared transmission spectroscopy between 800 and 2500 nm. The spectral differences were studied by principal components analysis (PCA), and Classifications, according the brand, were carried out by discriminant analysis (DA) and partial least squares discriminant analysis (PLSDA). The DA model gained a total accuracy of 94.23% and when used to predict the brand of the validation set samples, a better result, correctly classified all of the three kinds of Chinese rice wine up to 100%, are obtained by PLSDA model. The work reported here is a feasibility study and requires further development with considerable samples of more different brands. Further studies are needed in order to improve the accuracy and robustness, and to extend the discrimination to other Chinese rice wine varieties or brands.

  20. Photographic infrared spectroscopy and near infrared photometry of Be stars

    Swings, J.P.

    1976-01-01

    Two topics are tackled in this presentation: spectroscopy and photometry. The following definitions are chosen: photographic infrared spectroscopy (wavelengths Hα<=lambda<1.2 μ); near infrared photometry (wavebands: 1.6 μ<=lambda<=20 μ). Near infrared spectroscopy and photometry of classical and peculiar Be stars are discussed and some future developments in the field are outlined. (Auth.)

  1. Assessment of genetically modified soybean crops and different cultivars by Fourier transform infrared spectroscopy and chemometric analysis

    Glaucia Braz Alcantara

    2010-06-01

    Full Text Available This paper describes the potentiality of Fourier transform infrared (FT-IR spectroscopy associated to chemometric analysis for assessment of conventional and genetically modified soybean crops. Recently, genetically modified organisms have been queried about their influence on the environment and their safety as food/feed. In this regard, chemical investigations are ever more required. Thus three different soybean cultivars distributed in transgenic Roundup ReadyTM soybean and theirs conventional counterparts were directly investigated by FT-IR spectroscopy and chemometric analysis. The application of PCA and KNN methods permitted the discrimination and classification of the genetically modified samples from conventional ones when they were separately analysed. The analyses showed the chemical variation according to genetic modification. Furthermore, this methodology was efficient for cultivar grouping and highlights cultivar dependence for discrimination between transgenic and non-transgenic samples. According to this study, FT-IR and chemometrics could be used as a quick, easy and low cost tool to assess the chemical composition variation in genetically modified organisms.

  2. Analysis of Different Classification Techniques for Two-Class Functional Near-Infrared Spectroscopy-Based Brain-Computer Interface

    Noman Naseer

    2016-01-01

    Full Text Available We analyse and compare the classification accuracies of six different classifiers for a two-class mental task (mental arithmetic and rest using functional near-infrared spectroscopy (fNIRS signals. The signals of the mental arithmetic and rest tasks from the prefrontal cortex region of the brain for seven healthy subjects were acquired using a multichannel continuous-wave imaging system. After removal of the physiological noises, six features were extracted from the oxygenated hemoglobin (HbO signals. Two- and three-dimensional combinations of those features were used for classification of mental tasks. In the classification, six different modalities, linear discriminant analysis (LDA, quadratic discriminant analysis (QDA, k-nearest neighbour (kNN, the Naïve Bayes approach, support vector machine (SVM, and artificial neural networks (ANN, were utilized. With these classifiers, the average classification accuracies among the seven subjects for the 2- and 3-dimensional combinations of features were 71.6, 90.0, 69.7, 89.8, 89.5, and 91.4% and 79.6, 95.2, 64.5, 94.8, 95.2, and 96.3%, respectively. ANN showed the maximum classification accuracies: 91.4 and 96.3%. In order to validate the results, a statistical significance test was performed, which confirmed that the p values were statistically significant relative to all of the other classifiers (p < 0.005 using HbO signals.

  3. Classification of different tomato seed cultivars by multispectral visible-near infrared spectroscopy and chemometrics

    Shrestha, Santosh; Deleuran, Lise Christina; Gislum, René

    2016-01-01

    nm were extracted from multispectral images of tomato seeds. Principal component analysis (PCA) was used for data exploration, while partial least squares discriminant analysis (PLS-DA) and support vector machine discriminant analysis (SVM-DA) were used to classify the five different tomato cultivars....... The results showed very good classification accuracy for two independent test sets ranging from 94% to 100% for all tomato cultivars irrespective of chemometric methods. The overall classification error rates were 3.2% and 0.4% for the PLS-DA and SVM-DA calibration models, respectively. The results indicate...

  4. Predicting and Mapping Soil Carbon Using Visible Near Infrared Spectroscopy at Different Scales

    Deng, Fan

    . The third objective was to test whether SOC calibration models built for different subdivisions of the Danish soil spectral library according to pedological or geological stratification would improve estimation of SOC content from Vis-NIR scans. The fourth objective was to explore the use of Vis...... in situ measurements for soil spectra may be obtained in spring and autumn, when soils are slightly drier than field capacity. We assumed that the prediction capabilities of the Danish soil spectra library could be improved by dividing it into rather homogeneous subpopulations and building separate...... in these soil cores, but did not improve the calibration of SOC. Interestingly, the prediction ability for SOC increased when the Danish spectral library was spiked with local samples from Vindum. This indicates that the full variation in Danish soils is not yet fully represented in the library. The 3...

  5. Near-infrared spectroscopy assessment of microvasculature detects difference in lower limb vascular responsiveness in obese compared to lean individuals.

    Soares, Rogério Nogueira; Murias, Juan M

    2018-07-01

    Microvascular dysfunction is an early complication in obesity-related cardiovascular disease (CVD) that can lead to changes in hemodynamic function and endothelial cell expression throughout the vasculature that is vessel specific. This study aimed to evaluate whether the near-infrared spectroscopy (NIRS) combined with a vascular occlusion (VOT) assessment was capable of detecting differences in vascular responsiveness within the microvasculature of the lower limb between lean and obese individuals. Twenty lean (BMI = 21.6 ± 1.3) and 17 obese individuals (BMI = 33.9 ± 1.1) participated in the study. Individuals underwent a VOT (5 min of baseline, 5 min of occlusion, and 8 min following cuff release) and vascular responsiveness was evaluated by the Slope 2 (Slope 2 StO 2 ) and the area under the curve (StO 2AUC ) of oxygen saturation (StO 2 ) signal during reperfusion. The difference between the minimal and the maximal value of StO 2 was calculated as the Amplitude of the StO 2 response. The Slope 2 StO 2 of the obese individuals was smaller (0.68 ± 0.07%·s -1 ) than the Slope 2 StO 2 of the lean individuals (1.08 ± 0.13%·s -1 ;P lean individuals (1708 ± 168%·s -1 ; P lean ones (30.4 ± 2.9 vs 21.6 ± 1.3 StO 2 (%), respectively; P lean individuals (r = 0.745; P lean and obese individuals. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Near infrared spectroscopy and exercise

    Angus, Caroline

    2002-01-01

    Near infrared spectroscopy (NIRS) provides a non-invasive method for the continuous monitoring of changes in tissue oxygenation and blood volume during aerobic exercise. During incremental exercise in adult subjects there was a positive correlation between lactate threshold (measured by blood sampling) and changes in the rate of muscle deoxygenation (measured by NIRS). However, the 7% failure rate for the NIRS test mitigated against the general use of this method. NIRS did not provide a valid method for LT determination in an adolescent population. NIRS was then used to examine whether haemodynamic changes could be a contributing factor to the mechanism underlying the cross-transfer effect. During a one-legged incremental aerobic exercise test the muscle was more deoxygenated in the exercising leg than in the non-exercising leg, consistent with oxygen consumption outstripping blood flow to the exercising limb. However, muscle blood volume increased equally in both legs. This suggests that blood flow may be raised to similar levels in both the legs; although local factors may signal an increase in blood volume, this effect is expressed in both legs. Muscle blood flow and changes in muscle blood volume were then measured directly by NIRS during an incremental one-arm aerobic exercise test. There was no significant difference in either blood volume or blood flow in the two arms at the end of the test. In the non-exercising arm changes in blood flow and blood volume were measured throughout the protocol. At higher exercise intensities, blood volume continued to rise as muscle blood flow plateaued, indicating that blood volume changes become independent of changes in blood flow. Finally, the effect of different training regimes on changes in muscle blood volume was examined. Subjects were assigned to a training group; two-arm training, one-arm training or a control group. Training did not affect blood volume changes during two-arm exercise. However, during one

  7. Inter- and intra-individual differences in skin hydration and surface lipids measured with mid-infrared spectroscopy

    Ezerskaia, A.; Pereira, S. F.; Urbach, H. P.; Varghese, B.

    2016-03-01

    Skin health is characterized by heterogeneous system of water and lipids in upper layers providing protection from external environment and preventing loss of vital components of the body. Skin hydration (moisture) and sebum (skin surface lipids) are considered to be important factors in skin health; a right balance between these components is an indication of healthy skin and plays a central role in protecting and preserving skin integrity. In this manuscript we present inter- and intra-individual variation in skin hydration and surface lipids measured with a home-built experimental prototype based on infrared spectroscopy. Results show good agreement with measurements performed by commercially available instruments Corneometer and Sebumeter used for skin hydration and sebum measurements respectively.

  8. Near-infrared spectroscopy can detect differences in vascular responsiveness to a hyperglycaemic challenge in individuals with obesity compared to normal-weight individuals.

    Soares, Rogério Nogueira; Reimer, Raylene A; Alenezi, Zaid; Doyle-Baker, Patricia K; Murias, Juan Manuel

    2018-01-01

    To examine whether the near-infrared spectroscopy combined with vascular occlusion test technique could detect differences in vascular responsiveness during hyperglycaemia between normal-weight individuals and individuals with obesity. A total of 16 normal-weight individuals (body mass index, 21.3 ± 1.7 kg/m 2 ) and 13 individuals with obesity (body mass index, 34.4 ± 2.0 kg/m 2 ) were submitted to five vascular occlusion tests (Pre, 30, 60, 90 and 120 min after glucose challenge). Vascular responsiveness was determined by the Slope 2 (Slope 2 StO 2 ) and the area under the curve (StO 2AUC ) of oxygen saturation derived from near-infrared spectroscopy-vascular occlusion test. The Slope 2 StO 2 increased from 1.07 ± 0.16%/s (Pre) to 1.53 ± 0.21%/s at 90 min ( p obese it increased from 0.71 ± 0.09%/s (Pre) to 0.92 ± 0.14%/s at 60 min ( p obesity. Near-infrared spectroscopy-vascular occlusion test technique was capable of detecting differences in vascular responsiveness during hyperglycaemia between normal-weight individuals and individuals with obesity.

  9. Infrared and Raman spectroscopy: principles and spectral interpretation

    Larkin, Peter

    2011-01-01

    "Infrared and Raman Spectroscopy: Principles and Spectral Interpretation explains the background, core principles and tests the readers understanding of the important techniques of Infrared and Raman Spectroscopy...

  10. Quantum cascade laser infrared spectroscopy of single cancer cells

    Patel, Imran

    2017-03-27

    Quantum cascade laser infrared spectroscopy is a next generation novel imaging technique allowing high resolution spectral imaging of cells. We show after spectral pre-processing, identification of different cancer cell populations within minutes.

  11. Quantum cascade laser infrared spectroscopy of single cancer cells

    Patel, Imran; Rajamanickam, Vijayakumar Palanisamy; Bertoncini, Andrea; Pagliari, Francesca; Tirinato, Luca; Laptenok, Sergey P.; Liberale, Carlo

    2017-01-01

    Quantum cascade laser infrared spectroscopy is a next generation novel imaging technique allowing high resolution spectral imaging of cells. We show after spectral pre-processing, identification of different cancer cell populations within minutes.

  12. Differentiation of different mixed Listeria strains and also acid-injured, heat-injured, and repaired cells of Listeria monocytogenes using fourier transform infrared spectroscopy.

    Nyarko, Esmond; Donnelly, Catherine

    2015-03-01

    Fourier transform infrared (FT-IR) spectroscopy was used to differentiate mixed strains of Listeria monocytogenes and mixed strains of L. monocytogenes and Listeria innocua. FT-IR spectroscopy was also applied to investigate the hypothesis that heat-injured and acid-injured cells would return to their original physiological integrity following repair. Thin smears of cells on infrared slides were prepared from cultures for mixed strains of L. monocytogenes, mixed strains of L. monocytogenes and L. innocua, and each individual strain. Heat-injured and acid-injured cells were prepared by exposing harvested cells of L. monocytogenes strain R2-764 to a temperature of 56 ± 0.2°C for 10 min or lactic acid at pH 3 for 60 min, respectively. Cellular repair involved incubating aliquots of acid-injured and heat-injured cells separately in Trypticase soy broth supplemented with 0.6% yeast extract for 22 to 24 h; bacterial thin smears on infrared slides were prepared for each treatment. Spectral collection was done using 250 scans at a resolution of 4 cm(-1) in the mid-infrared wavelength region. Application of multivariate discriminant analysis to the wavelength region from 1,800 to 900 cm(-1) separated the individual L. monocytogenes strains. Mixed strains of L. monocytogenes and L. monocytogenes cocultured with L. innocua were successfully differentiated from the individual strains when the discriminant analysis was applied. Different mixed strains of L. monocytogenes were also successfully separated when the discriminant analysis was applied. A data set for injury and repair analysis resulted in the separation of acid-injured, heat-injured, and intact cells; repaired cells clustered closer to intact cells when the discriminant analysis (1,800 to 600 cm(-1)) was applied. FT-IR spectroscopy can be used for the rapid source tracking of L. monocytogenes strains because it can differentiate between different mixed strains and individual strains of the pathogen.

  13. Fourier Transform Infrared Spectroscopy Part III. Applications.

    Perkins, W. D.

    1987-01-01

    Discusses the use of the FT-IR spectrometer in analyses that were previously avoided. Examines some of the applications of this spectroscopy with aqueous solutions, circular internal reflection, samples with low transmission, diffuse reflectance, infrared emission, and the infrared microscope. (TW)

  14. Analysis and identification of two similar traditional Chinese medicines by using a three-stage infrared spectroscopy: Ligusticum chuanxiong, Angelica sinensis and their different extracts

    Xiang, Li; Wang, Jingjuan; Zhang, Guijun; Rong, Lixin; Wu, Haozhong; Sun, Suqin; Guo, Yizhen; Yang, Yanfang; Lu, Lina; Qu, Lei

    2016-11-01

    Rhizoma Chuanxiong (CX) and Radix Angelica sinensis (DG) are very important Traditional Chinese Medicine (TCM) and usually used in clinic. They both are from the Umbelliferae family, and have almost similar chemical constituents with each other. It is complicated, time-consuming and laborious to discriminate them by using the chromatographic methods such as high performance liquid chromatography (HPLC) and gas chromatography (GC). Therefore, to find a fast, applicable and effective identification method for two herbs is urged in quality research of TCM. In this paper, by using a three-stage infrared spectroscopy (Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2D-IR)), we analyzed and discriminated CX, DG and their different extracts (aqueous extract, alcoholic extract and petroleum ether extract). In FT-IR, all the CX and DG samples' spectra seemed similar, but they had their own unique macroscopic fingerprints to identify. Through comparing with the spectra of sucrose and the similarity calculation, we found the content of sucrose in DG raw materials was higher than in CX raw materials. The significant differences in alcoholic extract appeared that in CX alcoholic extract, the peaks at 1743 cm-1 was obviously stronger than the peak at same position in DG alcoholic extract. Besides in petroleum ether extract, we concluded CX contained much more ligustilide than DG by the similarity calculation. With the function of SD-IR, some tiny differences were amplified and overlapped peaks were also unfolded in FT-IR. In the range of 1100-1175 cm-1, there were six peaks in the SD-IR spectra of DG and the intensity, shape and location of those six peaks were similar to that of sucrose, while only two peaks could be observed in that of CX and those two peaks were totally different from sucrose in shape and relative intensity. This result was consistent with that of the

  15. High resolution infrared spectroscopy of symbiotic stars

    Bensammar, S.

    1989-01-01

    We report here very early results of high resolution (5x10 3 - 4x10 4 ) infrared spectroscopy (1 - 2.5 μm) of different symbiotic stars (T CrB, RW Hya, CI Cyg, PU Vul) observed with the Fourier Transform Spectrometer of the 3.60m Canada France Hawaii Telescope. These stars are usually considered as interacting binaries and only little details are known about the nature of their cool component. CO absorption lines are detected for the four stars. Very different profiles of hydrogen Brackett γ and helium 10830 A lines are shown for CI Cyg observed at different phases, while Pu Vul shows very intense emission lines

  16. Infrared spectroscopy with synchrotron radiation

    Lagarde, P.

    1978-01-01

    Storage rings are normally used as sources of radiation in the X-ray and the u.v. part of the spectrum. It is shown that, with a specially designed component, a storage ring like ACO at Orsay is a very powerful far-infrared source, whose advantages over classical wide band sources are reviewed. (author)

  17. Proton transfers in a channelrhodopsin-1 studied by Fourier transform infrared (FTIR) difference spectroscopy and site-directed mutagenesis.

    Ogren, John I; Yi, Adrian; Mamaev, Sergey; Li, Hai; Spudich, John L; Rothschild, Kenneth J

    2015-05-15

    Channelrhodopsin-1 from the alga Chlamydomonas augustae (CaChR1) is a low-efficiency light-activated cation channel that exhibits properties useful for optogenetic applications such as a slow light inactivation and a red-shifted visible absorption maximum as compared with the more extensively studied channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Previously, both resonance Raman and low-temperature FTIR difference spectroscopy revealed that unlike CrChR2, CaChR1 under our conditions exhibits an almost pure all-trans retinal composition in the unphotolyzed ground state and undergoes an all-trans to 13-cis isomerization during the primary phototransition typical of other microbial rhodopsins such as bacteriorhodopsin (BR). Here, we apply static and rapid-scan FTIR difference spectroscopy along with site-directed mutagenesis to characterize the proton transfer events occurring upon the formation of the long-lived conducting P2 (380) state of CaChR1. Assignment of carboxylic C=O stretch bands indicates that Asp-299 (homolog to Asp-212 in BR) becomes protonated and Asp-169 (homolog to Asp-85 in BR) undergoes a net change in hydrogen bonding relative to the unphotolyzed ground state of CaChR1. These data along with earlier FTIR measurements on the CaChR1 → P1 transition are consistent with a two-step proton relay mechanism that transfers a proton from Glu-169 to Asp-299 during the primary phototransition and from the Schiff base to Glu-169 during P2 (380) formation. The unusual charge neutrality of both Schiff base counterions in the P2 (380) conducting state suggests that these residues may function as part of a cation selective filter in the open channel state of CaChR1 as well as other low-efficiency ChRs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. [Identification of Dendrobium varieties by infrared spectroscopy].

    Liu, Fei; Wang, Yuan-Zhong; Yang, Chun-Yan; Jin, Hang

    2014-11-01

    The difference of Dendrobium varieties were analyzed by Fourier transform infrared (FTIR) spectroscopy. The infrared spectra of 206 stems from 30 Dendrobium varieties were obtained, and showed that polysaccharides, especially fiber, were the main components in Dendrobium plants. FTIR combined with Wilks' Lambda stepwise discriminative analysis was used to identify Dendrobium varieties. The effects of spectral range and number of training samples on the discrimination results were also analysed. Two hundred eighty seven variables in the spectral range of 1 800-1 250 cm(-1) were studied, and showed that the return discrimination is 100% correct when the training samples number of each species was 2, 3, 4, 5, and 6, respectively, whereas for the remaining samples the correct rates of identification were equal to 79.4%, 91.3%, 93.0%, 98.2%, and 100%, respectively. The same discriminative analyses on five different training samples in the spectral range of 1 800-1 500, 1 500-1 250, 1 250-600, 1 250-950 and 950-650 cm(-1) were compared, which showed that the variables in the range of 1 800-1 250, 1 800-1 500 and 950-600 cm(-1) were more suitable for variety identification, and one can obtain the satisfactory result for discriminative analysis when the training sample is more than 3. Our results indicate that FTIR combined with stepwise discriminative analysis is an effective way to distinguish different Dendrobium varieties.

  19. Infrared characterization of environmental samples by pulsed photothermal spectroscopy

    Seidel, W.; Foerstendorf, H.; Heise, K.H.; Nicolai, R.; Schamlott, A.; Ortega, J.M.; Glotin, F.; Prazeres, R.

    2004-01-01

    Low concentration of toxic radioactive metals in environmental samples often limits the interpretation of results of infrared studies investigating the interaction processes between the metal ions and environmental compartments. For the first time, we could show that photothermal infrared spectroscopy performed with a pulsed free electron laser can provide reliable infrared spectra throughout a distinct spectral range of interest. In this model investigation, we provide vibrational absorption spectra of a rare earth metal salt dissolved in a KBr matrix and a natural calcite sample obtained by photothermal beam deflection (PTBD) technique and FT-IR (Fourier-transform infrared) spectroscopy, respectively. General agreement was found between all spectra of the different recording techniques. Spectral deviations were observed with samples containing low concentration of the rare earth metal salt indicating a lower detection limit of the photothermal method as compared to conventional FT-IR spectroscopy. (authors)

  20. Buccal microbiology analyzed by infrared spectroscopy

    de Abreu, Geraldo Magno Alves; da Silva, Gislene Rodrigues; Khouri, Sônia; Favero, Priscila Pereira; Raniero, Leandro; Martin, Airton Abrahão

    2012-01-01

    Rapid microbiological identification and characterization are very important in dentistry and medicine. In addition to dental diseases, pathogens are directly linked to cases of endocarditis, premature delivery, low birth weight, and loss of organ transplants. Fourier Transform Infrared Spectroscopy (FTIR) was used to analyze oral pathogens Aggregatibacter actinomycetemcomitans ATCC 29523, Aggregatibacter actinomycetemcomitans-JP2, and Aggregatibacter actinomycetemcomitans which was clinically isolated from the human blood-CI. Significant spectra differences were found among each organism allowing the identification and characterization of each bacterial species. Vibrational modes in the regions of 3500-2800 cm-1, the 1484-1420 cm-1, and 1000-750 cm-1 were used in this differentiation. The identification and classification of each strain were performed by cluster analysis achieving 100% separation of strains. This study demonstrated that FTIR can be used to decrease the identification time, compared to the traditional methods, of fastidious buccal microorganisms associated with the etiology of the manifestation of periodontitis.

  1. Using mid-Infrared External Reflectance Spectroscopy to Distinguish Between Different Commercially Produced Poly[Methyl MethAcrylate] (PMMA) Samples - A Null Result

    Fajardo, Mario; Neel, Christopher; Lacina, David

    2017-06-01

    We report (null) results of experiments testing the hypothesis that mid-infrared (mid-IR) spectroscopy can be used to distinguish samples of poly[methyl methacrylate] (PMMA) obtained from different commercial suppliers. This work was motivated by the desire for a simple non-destructive and non-invasive test for pre-sorting PMMA samples prior to use in shock and high-strain-rate experiments, where PMMA is commonly used as a standard material. We discuss: our choice of mid-IR external reflectance spectroscopy, our approach to recording reflectance spectra at near-normal (θ = 0 + / - 5 degree) incidence and for extracting the wavelength-weighted absorption spectrum from the raw reflectance data via a Kramers-Krönig analysis. We employ extensive signal, which necessitates adopting a special experimental protocol to mitigate the effects of instrumental drift. Finally, we report spectra of three PMMA samples with different commercial pedigrees, and show that they are virtually identical (+ / - 1 % error, 95% confidence); obviating the use of mid-IR reflectance spectroscopy to tell the samples apart.

  2. Evaluation of different near-infrared spectroscopy technologies for assessment of tissue oxygen saturation during a vascular occlusion test.

    Steenhaut, Kevin; Lapage, Koen; Bové, Thierry; De Hert, Stefan; Moerman, Annelies

    2017-12-01

    An increasing number of NIRS devices are used to provide measurements of peripheral tissue oxygen saturation (S t O 2 ). The aim of the present study is to test the hypothesis that despite technological differences between devices, similar trend values will be obtained during a vascular occlusion test. The devices compared are NIRO-200NX, which measures S t O 2 and oxyhemoglobin by spatially resolved spectroscopy and the Beer-Lambert law, respectively, and INVOS 5100C and Foresight Elite, which both measure S t O 2 with the Beer-Lambert law, enhanced with the spatial resolution technique. Forty consenting adults scheduled for CABG surgery were recruited. The respective sensors of the three NIRS devices were applied over the brachioradial muscle. Before induction of anesthesia, 3 min of ischemia were induced by inflating a blood pressure cuff at the upper arm, whereafter cuff pressure was rapidly released. Tissue oxygenation measurements included baseline, minimum and maximum values, desaturation and resaturation slopes, and rise time. Comparisons between devices were performed with the Kruskal-Wallis test with post hoc Mann-Whitney pairwise comparisons. Agreement was evaluated using Bland-Altman plots. Oxyhemoglobin measured with NIRO responded faster than the other NIRS technologies to changes in peripheral tissue oxygenation (20 vs. 27-40 s, p ≤ 0.01). When comparing INVOS with Foresight, oxygenation changes were prompter (upslope 311 [92-523]%/min vs. 114[65-199]%/min, p ≤ 0.01) and more pronounced (minimum value 36 [21-48] vs. 45 [40-51]%, p ≤ 0.01) with INVOS. Significant differences in tissue oxygen saturation measurements were observed, both within the same device as between different devices using the same measurement technology.

  3. Nanoscale Infrared Spectroscopy of Biopolymeric Materials

    Curtis Marcott; Michael Lo; Kevin Kjoller; Craig Prater; Roshan Shetty; Joseph Jakes; Isao Noda

    2012-01-01

    Atomic Force Microscopy (AFM) and infrared (IR) spectroscopy have been combined in a single instrument capable of producing 100 nm spatial resolution IR spectra and images. This new capability enables the spectroscopic characterization of biomaterial domains at levels not previously possible. A tunable IR laser source generating pulses on the order of 10 ns was used...

  4. Near Infrared Spectroscopy Systems for Tissue Oximetry

    Petersen, Søren Dahl

    for other medical applications. The tissue oximeters are realised by incorporation of pn-diodes into the silicon in order to form arrays of infrared detectors. These arrays can then be used for spatially resolved spectroscopy measurements, with the targeted end user being prematurely born infant children...

  5. Infrared spectroscopy of ionic clusters

    Price, J.M.

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm -1 region. The species studied include: the hydrated hydronium ions, H 3 O + (H 2 O) 3 -10 , ammoniated ammonium ions, NH 4 + (NH 3 ) 1 -10 and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH 4 + (NH 3 ) n (H 2 O) m (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs

  6. Infrared spectroscopy of ionic clusters

    Price, J.M. (California Univ., Berkeley, CA (USA). Dept. of Chemistry Lawrence Berkeley Lab., CA (USA))

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

  7. Near-infrared spectroscopy for cocrystal screening

    Allesø, Morten; Velaga, Sitaram; Alhalaweh, Amjad

    2008-01-01

    Near-infrared (NIR) spectroscopy is a well-established technique for solid-state analysis, providing fast, noninvasive measurements. The use of NIR spectroscopy for polymorph screening and the associated advantages have recently been demonstrated. The objective of this work was to evaluate...... the analytical potential of NIR spectroscopy for cocrystal screening using Raman spectroscopy as a comparative method. Indomethacin was used as the parent molecule, while saccharin and l-aspartic acid were chosen as guest molecules. Molar ratios of 1:1 for each system were subjected to two types of preparative...... retained in a physical mixture with the guest molecule, while liquid-assisted cogrinding did not induce any changes in the crystal lattice. The good chemical peak selectivity of Raman spectroscopy allowed a straightforward interpretation of sample data by analyzing peak positions and comparing to those...

  8. Short separation regression improves statistical significance and better localizes the hemodynamic response obtained by near-infrared spectroscopy for tasks with differing autonomic responses.

    Yücel, Meryem A; Selb, Juliette; Aasted, Christopher M; Petkov, Mike P; Becerra, Lino; Borsook, David; Boas, David A

    2015-07-01

    Autonomic nervous system response is known to be highly task-dependent. The sensitivity of near-infrared spectroscopy (NIRS) measurements to superficial layers, particularly to the scalp, makes it highly susceptible to systemic physiological changes. Thus, one critical step in NIRS data processing is to remove the contribution of superficial layers to the NIRS signal and to obtain the actual brain response. This can be achieved using short separation channels that are sensitive only to the hemodynamics in the scalp. We investigated the contribution of hemodynamic fluctuations due to autonomous nervous system activation during various tasks. Our results provide clear demonstrations of the critical role of using short separation channels in NIRS measurements to disentangle differing autonomic responses from the brain activation signal of interest.

  9. Infrared spectroscopy by use of synchrotron radiation

    Nanba, Takao

    1991-01-01

    During five years since the author wrote the paper on the utilization of synchrotron radiation in long wavelength region, it seems to be recognized that in synchrotron radiation, the light from infrared to milli wave can be utilized, and is considerably useful. Recently the research on coherent synchrotron radiation in this region using electron linac has been developed by Tohoku University group, and the high capability of synchrotron radiation as light source is verified. This paper is the report on the infrared spectroscopic research using incoherent synchrotron radiation obtained from the deflection electromagnet part of electron storage rings. Synchrotron radiation is high luminance white light source including from X-ray to micro wave. The example of research that the author carried out at UVSOR is reported, and the perspective in near future is mentioned. Synchrotron radiation as the light source for infrared spectroscopy, the intensity and dimensions of the light source, far infrared region and mid infrared region, far infrared high pressure spectroscopic experiment, and the heightening of luminance of synchrotron radiation as infrared light source are described. (K.I.)

  10. Infrared spectroscopy of anionic hydrated fluorobenzenes

    Schneider, Holger; Vogelhuber, Kristen M.; Weber, J. Mathias

    2007-01-01

    We investigate the structural motifs of anionic hydrated fluorobenzenes by infrared photodissociation spectroscopy and density functional theory. Our calculations show that all fluorobenzene anions under investigation are strongly distorted from the neutral planar molecular geometries. In the anions, different F atoms are no longer equivalent, providing structurally different binding sites for water molecules and giving rise to a multitude of low-lying isomers. The absorption bands for hexa- and pentafluorobenzene show that only one isomer for the respective monohydrate complexes is populated in our experiment. For C 6 F 6 - ·H 2 O, we can assign these bands to an isomer where water forms a weak double ionic hydrogen bond with two F atoms in the ion, in accord with the results of Bowen et al. [J. Chem. Phys. 127, 014312 (2007), following paper.] The spectroscopic motif of the binary complexes changes slightly with decreasing fluorination of the aromatic anion. For dihydrated hexafluorobenzene anions, several isomers are populated in our experiments, some of which may be due to hydrogen bonding between water molecules

  11. Femtosecond infrared spectroscopy: study, development and applications

    Bonvalet, Adeline

    1997-01-01

    This work has been devoted to the development and the applications of a new technique of infrared (5-20 μm) spectroscopy allowing a temporal resolution of 100 fs. This technique relies on a source of ultrashort infrared pulses obtained by frequency mixing in a nonlinear material. In particular, the optical rectification of 12-fs visible pulses in gallium arsenide has allowed us to obtain 40-fs infrared pulses with a spectrum extending from 5 pm up to 15 μm. Spectral resolution has been achieved by Fourier transform spectroscopy, using a novel device we have called Diffracting FTIR. These developments allow to study inter-subband transitions in quantum-well structures. The inter-subband relaxation time has been measured by a pump-probe experiment, in which the sample was excited with a visible pulse, and the variations of inter-subband absorption probed with an infrared pulse. Besides, we have developed a method of coherent emission spectroscopy allowing to monitor the electric field emitted by coherent charge oscillations in quantum wells. The decay of the oscillations due to the loss of coherence between excited levels yields a direct measurement of the dephasing time between these levels. Other applications include biological macromolecules like reaction centers of photosynthetic bacteria. We have shown that we were able to monitor variations of infrared absorption of about 10 -4 optical densities with a temporal resolution of 100 fs. This would constitute a relevant tool to study the role of molecular vibrations during the primary steps of biological processes. (author) [fr

  12. Infrared spectroscopy of some organocobalt (III) compounds

    Benedetti, A.V.; Mauro, A.E.

    1982-01-01

    The compounds [MeCo(DH) 2 py], [MeCo(DH) 2 H 2 O] (M = methyl; DH = dimethyl-glyoxymate; py = pyridine) and others of general formulae [Co(L)(H 2 O) 2 ] ClO 4 , where L = SALOPHEN = bis (salicylaldehyde)-o-phenylenediimine; SALCN = 1,2-bis (salicylaldehyde) cyclohexylenediimine; SALEN = bis (salicylaldehyde) ethylenediimine; BAE = bis (acetylacetone)-ethylenediimine were synthesized and studied by infrared spectroscopy. The frequencies observed have been assigned to specific group vibrations. (Author) [pt

  13. Fourier Transform Infrared Spectroscopy and Photoacoustic Spectroscopy for Saliva Analysis.

    Mikkonen, Jopi J W; Raittila, Jussi; Rieppo, Lassi; Lappalainen, Reijo; Kullaa, Arja M; Myllymaa, Sami

    2016-09-01

    Saliva provides a valuable tool for assessing oral and systemic diseases, but concentrations of salivary components are very small, calling the need for precise analysis methods. In this work, Fourier transform infrared (FT-IR) spectroscopy using transmission and photoacoustic (PA) modes were compared for quantitative analysis of saliva. The performance of these techniques was compared with a calibration series. The linearity of spectrum output was verified by using albumin-thiocyanate (SCN(-)) solution at different SCN(-) concentrations. Saliva samples used as a comparison were obtained from healthy subjects. Saliva droplets of 15 µL were applied on the silicon sample substrate, 6 drops for each specimen, and dried at 37 ℃ overnight. The measurements were carried out using an FT-IR spectrometer in conjunction with an accessory unit for PA measurements. The findings with both transmission and PA modes mirror each other. The major bands presented were 1500-1750 cm(-1) for proteins and 1050-1200 cm(-1) for carbohydrates. In addition, the distinct spectral band at 2050 cm(-1) derives from SCN(-) anions, which is converted by salivary peroxidases to hypothiocyanate (OSCN(-)). The correlation between the spectroscopic data with SCN(-) concentration (r > 0.990 for transmission and r = 0.967 for PA mode) was found to be significant (P < 0.01), thus promising to be utilized in future applications. © The Author(s) 2016.

  14. Infrared spectroscopy of fluid lipid bilayers.

    Hull, Marshall C; Cambrea, Lee R; Hovis, Jennifer S

    2005-09-15

    Infrared spectroscopy is a powerful technique for examining lipid bilayers; however, it says little about the fluidity of the bilayer-a key physical aspect. It is shown here that it is possible to both acquire spectroscopic data of supported lipid bilayer samples and make measurements of the membrane fluidity. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FT-IR) is used to obtain the spectroscopic information and fluorescence recovery after photobleaching (FRAP) is used to determine the fluidity of the samples. In the infrared spectra of lipid bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, the following major peaks were observed; nu(as)(CH3) 2954 cm(-1), nu(s)(CH3) 2870 cm(-1), nu(as)(CH2) 2924 cm(-1), nu(s)(CH2) 2852 cm(-1), nu(C=O) 1734 cm(-1), delta(CH2) 1463-1473 cm(-1), nu(as)(PO2-) 1226 cm(-1), nu(s)(PO2-) 1084 cm(-1), and nu(as)(N+(CH3)3) 973 cm(-1). The diffusion coefficient of the same lipid bilayer was measured to be 3.5 +/- 0.5 micom(2)/s with visual recovery also noted through use of epifluorescence microscopy. FRAP and visual data confirm the formation of a uniform, mobile supported lipid bilayer. The combination of ATR-FT-IR and FRAP provides complementary data giving a more complete picture of fully hydrated model membrane systems.

  15. High resolution spectroscopy in the microwave and far infrared

    Pickett, Herbert M.

    1990-01-01

    High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.

  16. Coherent atomic and molecular spectroscopy in the far infrared

    Inguscio, M.

    1988-01-01

    Recent advances in far infrared spectroscopy of atoms (fine structure transitions) and molecules (rotational transitions) are reviewed. Results obtained by means of Laser Magnetic Resonance, using fixed frequency lasers, and Tunable Far Infrared spectrometers are illustrated. The importance of far infrared spectroscopy for several fields, including astrophysics, atmospheric physics, atomic structure and metology, is discussed. (orig.)

  17. Fourier transform infrared spectroscopy of peptides.

    Bakshi, Kunal; Liyanage, Mangala R; Volkin, David B; Middaugh, C Russell

    2014-01-01

    Fourier transform infrared (FTIR) spectroscopy provides data that are widely used for secondary structure characterization of peptides. A wide array of available sampling methods permits structural analysis of peptides in diverse environments such as aqueous solution (including optically turbid media), powders, detergent micelles, and lipid bilayers. In some cases, side chain vibrations can also be resolved and used for tertiary structure and chemical analysis. Data from several low-resolution spectroscopic techniques, including FTIR, can be combined to generate an empirical phase diagram, an overall picture of peptide structure as a function of environmental conditions that can aid in the global interpretation of large amounts of spectroscopic data.

  18. Evaluation on the concentration change of paeoniflorin and glycyrrhizic acid in different formulations of Shaoyao-Gancao-Tang by the tri-level infrared macro-fingerprint spectroscopy and the whole analysis method

    Liu, Aoxue; Wang, Jingjuan; Guo, Yizhen; Xiao, Yao; Wang, Yue; Sun, Suqin; Chen, Jianbo

    2018-03-01

    As a kind of common prescriptions, Shaoyao-Gancao-Tang (SGT) contains two Chinese herbs with four different proportions which have different clinical efficacy because of their various components. In order to investigate the herb-herb interaction mechanisms, we used the method of tri-level infrared macro-fingerprint spectroscopy to evaluate the concentration change of active components of four SGTs in this research. Fourier transform infrared spectroscopy (FT-IR) and Second derivative infrared spectroscopy (SD-IR) can recognize the multiple prescriptions directly and simultaneously. 2D-IR spectra enhance the spectral resolution and obtain much new information for discriminating the similar complicated samples of SGT. Furthermore, the whole analysis method from the analysis of the main components to the specific components and the relative content of the components may evaluate the quality of TCM better. Then we concluded that paeoniflorin and glycyrrhizic acid were the highest proportion in active ingredients in SGT-12:1 and the lowest one in SGT-12:12, which matched the HPLC-DAD results. It is demonstrated that the method composed by the tri-level infrared macro-fingerprint spectroscopy and the whole analysis can be applicable for effective, visual and accurate analysis and identification of very complicated and similar mixture systems of traditional Chinese medicine.

  19. Near infrared spectroscopy of human muscles

    Gasbarrone, R.; Currà, A.; Cardillo, A.; Bonifazi, G.; Serranti, S.

    2018-02-01

    Optical spectroscopy is a powerful tool in research and industrial applications. Its properties of being rapid, non-invasive and not destructive make it a promising technique for qualitative as well as quantitative analysis in medicine. Recent advances in materials and fabrication techniques provided portable, performant, sensing spectrometers readily operated by user-friendly cabled or wireless systems. We used such a system to test whether infrared spectroscopy techniques, currently utilized in many areas as primary/secondary raw materials sector, cultural heritage, agricultural/food industry, environmental remote and proximal sensing, pharmaceutical industry, etc., could be applied in living humans to categorize muscles. We acquired muscles infrared spectra in the Vis-SWIR regions (350-2500 nm), utilizing an ASD FieldSpec 4 Standard-Res Spectroradiometer with a spectral sampling capability of 1.4 nm at 350-1000 nm and 1.1 nm at 1001-2500 nm. After a preliminary spectra pre-processing (i.e. signal scattering reduction), Principal Component Analysis (PCA) was applied to identify similar spectral features presence and to realize their further grouping. Partial Least-Squares Discriminant Analysis (PLS-DA) was utilized to implement discrimination/prediction models. We studied 22 healthy subjects (age 25-89 years, 11 females), by acquiring Vis-SWIR spectra from the upper limb muscles (i.e. biceps, a forearm flexor, and triceps, a forearm extensor). Spectroscopy was performed in fixed limb postures (elbow angle approximately 90‡). We found that optical spectroscopy can be applied to study human tissues in vivo. Vis-SWIR spectra acquired from the arm detect muscles, distinguish flexors from extensors.

  20. Infrared spectroscopy of mass-selected carbocations

    Duncan, Michael A. [Department of Chemistry, University of Georgia, Athens, Georgia 30602 (United States)

    2015-01-22

    Small carbocations are of longstanding interest in astrophysics, but there are few measurements of their infrared spectroscopy in the gas phase at low temperature. There are fewer-still measurements of spectra across the full range of IR frequencies useful to obtain an IR signature of these ions to detect them in space. We have developed a pulsed-discharge supersonic nozzle ion source producing high densities of small carbocations at low temperatures (50–70K). We employ mass-selected photodissociation spectroscopy and the method of rare gas “tagging”, together with new broadly tunable infrared OPO lasers, to obtain IR spectra for a variety of small carbocations including C{sub 2}H{sub 3}{sup +}, C{sub 3}H{sub 3}{sup +}, C{sub 3}H{sub 5}{sup +}, protonated benzene and protonated naphthalene. Spectra in the frequency range of 600–4500 cm{sup −1} provide new IR data for these ions and evidence for the presence of co-existing isomeric structures (e.g., C{sub 3}H{sub 3}{sup +} is present as both cyclopropenyl and propargyl). Protonated naphthalene has sharp bands at 6.2, 7.7 and 8.6 microns matching prominent features in the UIR spectra.

  1. Exploring proton doping in poly-3-methylpyrrole by infrared spectroscopy

    Sanchez de la Blanca, E.; Carrillo, I.; Redondo, M.I.; Gonzalez-Tejera, M.J.; Garcia, M.V.

    2007-01-01

    Structural changes induced by electrochemical redox processes or by pH variations on conducting poly-3-methylpyrrole, electrochemically synthesized in NaClO 4 acetonitrile solution, have been studied by infrared spectroscopy. With this aim infrared spectra of perchlorate doped poly-3-methylpyrrole films at different oxidation states as well as after immersion in acid (pH = 1) and basic (pH = 12.6) aqueous solutions have been analysed. The existence of proton-doping mechanism in this polymer has been confirmed from the comparative study of spectra of oxidized/reduced and acid/basic treated polymer

  2. Infrared Spectroscopy as a Chemical Fingerprinting Tool

    Huff, Timothy L.

    2003-01-01

    Infrared (IR) spectroscopy is a powerful analytical tool in the chemical fingerprinting of materials. Any sample material that will interact with infrared light produces a spectrum and, although normally associated with organic materials, inorganic compounds may also be infrared active. The technique is rapid, reproducible and usually non-invasive to the sample. That it is non-invasive allows for additional characterization of the original material using other analytical techniques including thermal analysis and RAMAN spectroscopic techniques. With the appropriate accessories, the technique can be used to examine samples in liquid, solid or gas phase. Both aqueous and non-aqueous free-flowing solutions can be analyzed, as can viscous liquids such as heavy oils and greases. Solid samples of varying sizes and shapes may also be examined and with the addition of microscopic IR (microspectroscopy) capabilities, minute materials such as single fibers and threads may be analyzed. With the addition of appropriate software, microspectroscopy can be used for automated discrete point or compositional surface area mapping, with the latter providing a means to record changes in the chemical composition of a material surface over a defined area. Due to the ability to characterize gaseous samples, IR spectroscopy can also be coupled with thermal processes such as thermogravimetric (TG) analyses to provide both thermal and chemical data in a single run. In this configuration, solids (or liquids) heated in a TG analyzer undergo decomposition, with the evolving gases directed into the IR spectrometer. Thus, information is provided on the thermal properties of a material and the order in which its chemical constituents are broken down during incremental heating. Specific examples of these varied applications will be cited, with data interpretation and method limitations further discussed.

  3. Introduction to experimental infrared spectroscopy fundamentals and practical methods

    Tasumi, Mitsuo; Ochiai, Shukichi

    2014-01-01

    Infrared spectroscopy is generally understood to mean the science of spectra relating to infrared radiation, namely electromagnetic waves, in the wavelength region occurring intermediately between visible light and microwaves. Measurements of infrared spectra have been providing useful information, for a variety of scientific research and industrial studies, for over half a century; this is set to continue in the foreseeable future. Introduction to Experimental Infrared Spectroscopy is intended to be a handy guide for those who have no, or limited, experience in infrared spectroscopi

  4. Near Infrared Spectroscopy as a Hemodynamic Monitor in Critical Illness.

    Ghanayem, Nancy S; Hoffman, George M

    2016-08-01

    The objectives of this review are to discuss the technology and clinical interpretation of near infrared spectroscopy oximetry and its clinical application in patients with congenital heart disease. MEDLINE and PubMed. Near infrared spectroscopy provides a continuous noninvasive assessment of tissue oxygenation. Over 20 years ago, near infrared spectroscopy was introduced into clinical practice for monitoring cerebral oxygenation during cardiopulmonary bypass in adults. Since that time, the utilization of near infrared spectroscopy has extended into the realm of pediatric cardiac surgery and is increasingly being used in the cardiac ICU to monitor tissue oxygenation perioperatively.

  5. Fast infrared spectroscopy in supercritical fluids

    Sun, X.

    2000-05-01

    Chapter 1: Introduction. A brief introduction to supercritical fluids is given, illustrating why supercritical fluids are unique solvents and why there is a wide application of supercritical fluids in industry and laboratories. Potential ways for solvation in supercritical fluids to affect reactivity are briefly reviewed. A general introduction to the photochemistry of organometallic complexes is also given. Chapter 2: Time resolved vibrational spectroscopy. Time resolved resonance Raman is introduced and compared with Time-resolved infrared spectroscopy (TRIR). The different approaches of TRIR, including microsecond, nanosecond, and ultrafast (picosecond and femtosecond) systems are discussed. The advantages and disadvantages of these systems are also compared. The TRIR apparatus using an IR diode laser used for work in this thesis are described in detail. Experimental procedures for supercritical fluid TRIR experiments are described with emphasis on handling the IR cell for supercritical fluids and preparation of supercritical fluid solutions. Chapter 3: Photochemistry of group VIB hexacarbonyl compounds in supercritical noble gases and CO 2 solutions. A systematic TRIR study of the photolysis of M(CO) 6 in supercritical Ar, Kr, Xe, and CO 2 and the observation of M(CO) 5 L (M = Cr, Mo, and W; L = Ar (W only), Kr, Xe, and CO 2 ) is described. The second-order rate constants for the reaction of M(CO) 5 L with CO have been evaluated and the reactivity for each metal is Kr > Xe ∼ CO 2 . For M(CO) 5 Kr, M(CO) 5 Xe, or M(CO) 5 (CO 2 ), the reactivity is Cr ∼ Mo > W. In supercritical Kr doped with either Xe or CO 2 , the M(CO) 5 moiety interacts with Xe or CO 2 in preference to Kr. The effect of solvent density on the rate of the reaction of W(CO) 5 (CO 2 ) with CO has been investigated. The reaction of W(CO) 5 (CO 2 ) with CO in scCO 2 is predominantly a dissociative process. The activation energies for the reaction of W(CO) 5 Xe and W(CO) 5 (CO 2 ) with CO and

  6. Cancer diagnosis by infrared spectroscopy: methodological aspects

    Jackson, Michael; Kim, Keith; Tetteh, John; Mansfield, James R.; Dolenko, Brion; Somorjai, Raymond L.; Orr, F. W.; Watson, Peter H.; Mantsch, Henry H.

    1998-04-01

    IR spectroscopy is proving to be a powerful tool for the study and diagnosis of cancer. The application of IR spectroscopy to the analysis of cultured tumor cells and grading of breast cancer sections is outlined. Potential sources of error in spectral interpretation due to variations in sample histology and artifacts associated with sample storage and preparation are discussed. The application of statistical techniques to assess differences between spectra and to non-subjectively classify spectra is demonstrated.

  7. Mid-infrared spectroscopy in skin cancer cell type identification

    Kastl, Lena; Kemper, Björn; Lloyd, Gavin R.; Nallala, Jayakrupakar; Stone, Nick; Naranjo, Valery; Penaranda, Francisco; Schnekenburger, Jürgen

    2017-07-01

    Mid infrared spectroscopy samples were developed for the analysis of skin tumor cell types and three dimensional tissue phantoms towards the application of midIR spectroscopy for fast and reliable skin cancer diagnostics.

  8. Visualizing Infrared (IR) Spectroscopy with Computer Animation

    Abrams, Charles B.; Fine, Leonard W.

    1996-01-01

    IR Tutor, an interactive, animated infrared (IR) spectroscopy tutorial has been developed for Macintosh and IBM-compatible computers. Using unique color animation, complicated vibrational modes can be introduced to beginning students. Rules governing the appearance of IR absorption bands become obvious because the vibrational modes can be visualized. Each peak in the IR spectrum is highlighted, and the animation of the corresponding normal mode can be shown. Students can study each spectrum stepwise, or click on any individual peak to see its assignment. Important regions of each spectrum can be expanded and spectra can be overlaid for comparison. An introduction to the theory of IR spectroscopy is included, making the program a complete instructional package. Our own success in using this software for teaching and research in both academic and industrial environments will be described. IR Tutor consists of three sections: (1) The 'Introduction' is a review of basic principles of spectroscopy. (2) 'Theory' begins with the classical model of a simple diatomic molecule and is expanded to include larger molecules by introducing normal modes and group frequencies. (3) 'Interpretation' is the heart of the tutorial. Thirteen IR spectra are analyzed in detail, covering the most important functional groups. This section features color animation of each normal mode, full interactivity, overlay of related spectra, and expansion of important regions. This section can also be used as a reference.

  9. Infrared spectroscopy of Landau levels of graphene.

    Jiang, Z; Henriksen, E A; Tung, L C; Wang, Y-J; Schwartz, M E; Han, M Y; Kim, P; Stormer, H L

    2007-05-11

    We report infrared studies of the Landau level (LL) transitions in single layer graphene. Our specimens are density tunable and show in situ half-integer quantum Hall plateaus. Infrared transmission is measured in magnetic fields up to B=18 T at selected LL fillings. Resonances between hole LLs and electron LLs, as well as resonances between hole and electron LLs, are resolved. Their transition energies are proportional to sqrt[B], and the deduced band velocity is (-)c approximately equal to 1.1 x 10(6) m/s. The lack of precise scaling between different LL transitions indicates considerable contributions of many-particle effects to the infrared transition energies.

  10. [Near infrared spectroscopy study on water content in turbine oil].

    Chen, Bin; Liu, Ge; Zhang, Xian-Ming

    2013-11-01

    Near infrared (NIR) spectroscopy combined with successive projections algorithm (SPA) was investigated for determination of water content in turbine oil. Through the 57 samples of different water content in turbine oil scanned applying near infrared (NIR) spectroscopy, with the water content in the turbine oil of 0-0.156%, different pretreatment methods such as the original spectra, first derivative spectra and differential polynomial least squares fitting algorithm Savitzky-Golay (SG), and successive projections algorithm (SPA) were applied for the extraction of effective wavelengths, the correlation coefficient (R) and root mean square error (RMSE) were used as the model evaluation indices, accordingly water content in turbine oil was investigated. The results indicated that the original spectra with different water content in turbine oil were pretreated by the performance of first derivative + SG pretreatments, then the selected effective wavelengths were used as the inputs of least square support vector machine (LS-SVM). A total of 16 variables selected by SPA were employed to construct the model of SPA and least square support vector machine (SPA-LS-SVM). There is 9 as The correlation coefficient was 0.975 9 and the root of mean square error of validation set was 2.655 8 x 10(-3) using the model, and it is feasible to determine the water content in oil using near infrared spectroscopy and SPA-LS-SVM, and an excellent prediction precision was obtained. This study supplied a new and alternative approach to the further application of near infrared spectroscopy in on-line monitoring of contamination such as water content in oil.

  11. Characterization of UO2 by infrared spectroscopy

    Faeda, Kelly C.M.; Machado, Geraldo C.; Lameiras, Fernando S.

    2011-01-01

    The characterization of nuclear fuel is of great importance to minimize the effects related to burnup and temperature and to achieve stability during in-core operation. The understanding the U-O system and its thermodynamic properties has fundamental importance in nuclear industry. Many physical properties of UO 2±x depend on the ratio O / U, such as the electrical conductivity and thermal properties, as well as the diffusivities of its constituents and solutes. The U-O system presents various oxides such as UO 2±x , U 4 O 9 , U 3 O 8 , and UO 3 . The control of the O/U relation is critical to the manufacturing process of UO 2 . In this work, the infrared spectroscopy was used to identify the presence of phases in UO 2 powder samples that cannot be identified by thermogravimetry and X-ray diffraction. (author)

  12. Infrared and THz spectroscopy of nanostructured dielectrics

    Jan Petzelt

    2009-09-01

    Full Text Available Results achieved using the infrared/THz spectroscopy of various inhomogeneous dielectrics in the Department of Dielectrics, Institute of Physics, Prague, during the last decade are briefly reviewed. The discussion concerns high-permittivity ceramics with inevitable low-permittivity dead layers along the grain boundaries, relaxor ferroelectrics with highly anisotropic polar nano-regions, classical matrix-type composites, core-shell composites, filled nanoporous glasses, polycrystalline and epitaxial thin films, heterostructures and superlattices on dielectric substrates. The analysis using models based on the effective medium approach is discussed. The importance of depolarizing field and of the percolation of components on the effective ac dielectric response and the excitations contributing to it are emphasized.

  13. Imperial College near infrared spectroscopy neuroimaging analysis framework.

    Orihuela-Espina, Felipe; Leff, Daniel R; James, David R C; Darzi, Ara W; Yang, Guang-Zhong

    2018-01-01

    This paper describes the Imperial College near infrared spectroscopy neuroimaging analysis (ICNNA) software tool for functional near infrared spectroscopy neuroimaging data. ICNNA is a MATLAB-based object-oriented framework encompassing an application programming interface and a graphical user interface. ICNNA incorporates reconstruction based on the modified Beer-Lambert law and basic processing and data validation capabilities. Emphasis is placed on the full experiment rather than individual neuroimages as the central element of analysis. The software offers three types of analyses including classical statistical methods based on comparison of changes in relative concentrations of hemoglobin between the task and baseline periods, graph theory-based metrics of connectivity and, distinctively, an analysis approach based on manifold embedding. This paper presents the different capabilities of ICNNA in its current version.

  14. Far infrared spectroscopy of H II regions

    Ward, D.B.

    1976-01-01

    A fully liquid helium cooled grating spectrometer has been developed for far infrared observations from the NASA Lear Jet. This instrument has been used in observations of the galactic HII regions M42 and M17. The instrument is described, and the results of various performance tests and calibrations are presented. The methods employed in observations from the Lear Jet are described, and the data analysis procedures are discussed. The results of a search for the (O III) 88.16 micron fine structure line are presented. The intensity of the line in M17 is reported, and an upper limit given for the intensity in M42. These results are compared with theoretical predictions, and future applications of infrared line observations are discussed. Coarse resolution spectra of M42 and M17 from 45 to 115 microns are also presented. The emission from M42 is shown to be a very smooth function of wavelength, closely fitting the wavelength dependence of a 105 0 K graybody. The spectrum of M17 is very different, having a bump at approximately 75 microns and a general far infrared excess. The observed spectrum is compared to the predictions of models for M17

  15. Usefulness of portable near infrared spectroscopy in olive breeding programs

    Leon-Moreno, L.

    2012-11-01

    The usefulness of portable near infrared (NIR) spectroscopy as a simple and efficient method to determine some of the main selection traits in olive breeding is evaluated in this work. Calibration models were developed and evaluated using partial least squares (PLS) regression from samples collected in different selection steps of the breeding work and under different experimental conditions. The results showed that accurate enough models (values of correlation between actual and predicted constituent higher than 0.9) were obtained for oil and moisture content in both cross validation and prediction results. Portable NIR spectroscopy could be used for selection of genotypes on the basis of these characters, providing similar ranking of genotypes than reference methods both in different selection steps of the breeding process (progenies and selection plots) and different experimental conditions (on-tree or under laboratory conditions). The advantages of this technique to improve the efficiency of the evaluation process in olive breeding programs are discussed. (Author) 21 refs.

  16. On-line monitoring the extract process of Fu-fang Shuanghua oral solution using near infrared spectroscopy and different PLS algorithms

    Kang, Qian; Ru, Qingguo; Liu, Yan; Xu, Lingyan; Liu, Jia; Wang, Yifei; Zhang, Yewen; Li, Hui; Zhang, Qing; Wu, Qing

    2016-01-01

    An on-line near infrared (NIR) spectroscopy monitoring method with an appropriate multivariate calibration method was developed for the extraction process of Fu-fang Shuanghua oral solution (FSOS). On-line NIR spectra were collected through two fiber optic probes, which were designed to transmit NIR radiation by a 2 mm flange. Partial least squares (PLS), interval PLS (iPLS) and synergy interval PLS (siPLS) algorithms were used comparatively for building the calibration regression models. During the extraction process, the feasibility of NIR spectroscopy was employed to determine the concentrations of chlorogenic acid (CA) content, total phenolic acids contents (TPC), total flavonoids contents (TFC) and soluble solid contents (SSC). High performance liquid chromatography (HPLC), ultraviolet spectrophotometric method (UV) and loss on drying methods were employed as reference methods. Experiment results showed that the performance of siPLS model is the best compared with PLS and iPLS. The calibration models for AC, TPC, TFC and SSC had high values of determination coefficients of (R2) (0.9948, 0.9992, 0.9950 and 0.9832) and low root mean square error of cross validation (RMSECV) (0.0113, 0.0341, 0.1787 and 1.2158), which indicate a good correlation between reference values and NIR predicted values. The overall results show that the on line detection method could be feasible in real application and would be of great value for monitoring the mixed decoction process of FSOS and other Chinese patent medicines.

  17. Galileo infrared imaging spectroscopy measurements at venus

    Carlson, R.W.; Baines, K.H.; Encrenaz, Th.; Taylor, F.W.; Drossart, P.; Kamp, L.W.; Pollack, James B.; Lellouch, E.; Collard, A.D.; Calcutt, S.B.; Grinspoon, D.; Weissman, P.R.; Smythe, W.D.; Ocampo, A.C.; Danielson, G.E.; Fanale, F.P.; Johnson, T.V.; Kieffer, H.H.; Matson, D.L.; McCord, T.B.; Soderblom, L.A.

    1991-01-01

    During the 1990 Galileo Venus flyby, the Near Infrared Mapping Spectrometer investigated the night-side atmosphere of Venus in the spectral range 0.7 to 5.2 micrometers. Multispectral images at high spatial resolution indicate substantial cloud opacity variations in the lower cloud levels, centered at 50 kilometers altitude. Zonal and meridional winds were derived for this level and are consistent with motion of the upper branch of a Hadley cell. Northern and southern hemisphere clouds appear to be markedly different. Spectral profiles were used to derive lower atmosphere abundances of water vapor and other species.

  18. Mid-Infrared Frequency-Agile Dual-Comb Spectroscopy

    Luo, Pei-Ling; Yan, Ming; Iwakuni, Kana; Millot, Guy; Hänsch, Theodor W.; Picqué, Nathalie

    2016-06-01

    We demonstrate a new approach to mid-infrared dual-comb spectroscopy. It opens up new opportunities for accurate real-time spectroscopic diagnostics and it significantly simplifies the technique of dual-comb spectroscopy. Two mid-infrared frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span are generated in the 2800-3200 cm-1 region. The generators rely on electro-optic modulators, nonlinear fibers for spectral broadening and difference frequency generation and do not involve mode-locked lasers. Flat-top frequency combs span up to 10 cm-1 with a comb line spacing of 100 MHz (3×10-3 cm-1). The performance of the spectrometer without any phase-lock electronics or correction scheme is illustrated with spectra showing resolved comb lines and Doppler-limited spectra of methane. High precision on the spectroscopic parameter (line positions and intensities) determination is demonstrated for spectra measured on a millisecond time scale and it is validated with comparison with literature data. G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T.W. Hänsch, N. Picqué, Frequency-agile dual-comb spectroscopy, Nature Photonics 10, 27-30 (2016).

  19. Differentiation and quality estimation of Cordyceps with infrared spectroscopy

    Yang, Ping; Song, Ping; Sun, Su-Qin; Zhou, Qun; Feng, Shu; Tao, Jia-Xun

    2009-11-01

    Heretofore, a scientific and systemic method for differentiation and quality estimation of a well-known Chinese traditional medicine, 'Cordyceps', has not been established in modern market. In this paper, Fourier-transform infrared spectroscopy (FTIR) and two-dimensional correlation infrared spectroscopy (2D-IR) are employed to propose a method for analysis of Cordyceps. It has presented that IR spectra of real Cordyceps of different origins and counterfeits have their own macroscopic fingerprints, with discriminated shapes, positions and intensities. Their secondary derivative spectra can amplify the differences and confirm the potentially characteristic IR absorption bands 1400-1700 cm -1 to be investigated in 2D-IR. Many characteristic fingerprints are discovered in 2D-IR spectra in the range of 1400-1700 cm -1 and hetero 2D spectra of 670-780 cm -1 × 1400-1700 cm -1. The different fingerprints display different chemical constitutes. Through the three steps, different Cordyceps and their counterfeits can be discriminated effectively and their qualities distinctly display. Successful analysis of eight Cordyceps capsule products has proved the practicability of the method, which can also be applied to the quality estimation of other Chinese traditional medicines.

  20. Infrared diode laser spectroscopy of lithium hydride

    Yamada, C.; Hirota, E.

    1988-01-01

    The fundamental and hot bands of the vibration--rotation transitions of 6 LiH, 7 LiH, 6 LiD, and 7 LiD were observed by infrared diode laser spectroscopy at Doppler-limited resolution. Lithium hydride molecules were produced by the reaction of the Li vapor with hydrogen at elevated temperatures. Some 40 transitions were observed and, after combined with submillimeter-wave spectra reported by G. M. Plummer et al. [J. Chem. Phys. 81, 4893 (1984)], were analyzed to yield Dunham-type constants with accuracies more than an order of magnitude higher than those published in the literature. It was clearly demonstrated that the Born--Oppenheimer approximation did not hold, and some parameters representing the breakdown were evaluated. The Born--Oppenheimer internuclear distance r/sup BO//sub e/ was derived to be 1.594 914 26 (59) A, where a new value of Planck's constant recommended by CODATA was employed. The relative intensity of absorption lines was measured to determine the ratio of the permanent dipole moment to its first derivative with respect to the internuclear distance: μ/sub e/ [(partialμpartialr)/sub e/ r/sub e/ ] = 1.743(86). The pressure broadening parameter Δν/sub p/ P was determined to be 6.40 (22) MHzTorr by measuring the linewidth dependence on the pressure of hydrogen, which was about four times larger than the value for the dipole--quadrupole interaction estimated by Kiefer and Bushkovitch's theory

  1. Ultrafast stimulated Raman spectroscopy in the near-infrared region

    Takaya, Tomohisa

    2016-01-01

    A number of electronic transitions in the near-infrared wavelength region are associated with migration or delocalization of electrons in large molecules or molecular systems. Time-resolved near-infrared Raman spectroscopy will be a powerful tool for investigating the structural dynamic of samples with delocalized electrons. However, the sensitivity of near-infrared spontaneous Raman spectrometers is significantly low due to an extremely small probability of Raman scattering and a low sensitivity of near-infrared detectors. Nonlinear Raman spectroscopy is one of the techniques that can overcome the sensitivity problems and enable us to obtain time-resolved Raman spectra in resonance with near-IR transitions. In this article, the author introduces recent progress of ultrafast time-resolved near-infrared stimulated Raman spectroscopy. Optical setup, spectral and temporal resolution, and applications of the spectrometer are described. (author)

  2. Cerebral near infrared spectroscopy oximetry in extremely preterm infants

    Hyttel-Sorensen, Simon; Pellicer, Adelina; Alderliesten, Thomas

    2015-01-01

    OBJECTIVE: To determine if it is possible to stabilise the cerebral oxygenation of extremely preterm infants monitored by cerebral near infrared spectroscopy (NIRS) oximetry. DESIGN: Phase II randomised, single blinded, parallel clinical trial. SETTING: Eight tertiary neonatal intensive care unit...

  3. Development of infrared spectroscopy techniques for environmental monitoring

    Sandsten, Jonas

    2000-08-01

    Infrared spectroscopy techniques have long been utilized in identifying and quantifying species of interest to us. Many of the elementary molecules in the atmosphere interact with infrared radiation through their ability to absorb and emit energy in vibrational and rotational transitions. A large variety of methods for monitoring of molecules and aerosol particles by collecting samples or by using remote sensing methods are available. The objective of the work presented in this thesis was to develop infrared spectroscopic techniques to further enhance the amount of useful information obtained from gathering spectral data. A new method for visualization and quantification of gas flows based on gas-correlation techniques was developed. Real-time imaging of gas leaks and incomplete or erratic flare combustion of ethene was demonstrated. The method relies on the thermal background as a radiation source and the gas can be visualized in absorption or in emission depending on the temperature difference. Diode laser spectroscopy was utilized to monitor three molecular species at the same time and over the same path. Two near-infrared diode lasers beams were combined in a periodically poled lithium niobate crystal and by difference-frequency generation a third beam was created, enabling simultaneous monitoring of oxygen, water vapor and methane. Models of aerosol particle cross sections were used to simulate the diffraction pattern of light scattered by fibers, spherical particles and real particles, such as pollen, through a new aerosol particle sensing prototype. The instrument, using a coupled cavity diode laser, has been designed with a ray-tracing program and the final prototype was employed for single aerosol particle sizing and identification.

  4. Two-dimensional infrared spectroscopy of vibrational polaritons.

    Xiang, Bo; Ribeiro, Raphael F; Dunkelberger, Adam D; Wang, Jiaxi; Li, Yingmin; Simpkins, Blake S; Owrutsky, Jeffrey C; Yuen-Zhou, Joel; Xiong, Wei

    2018-04-19

    We report experimental 2D infrared (2D IR) spectra of coherent light-matter excitations--molecular vibrational polaritons. The application of advanced 2D IR spectroscopy to vibrational polaritons challenges and advances our understanding in both fields. First, the 2D IR spectra of polaritons differ drastically from free uncoupled excitations and a new interpretation is needed. Second, 2D IR uniquely resolves excitation of hybrid light-matter polaritons and unexpected dark states in a state-selective manner, revealing otherwise hidden interactions between them. Moreover, 2D IR signals highlight the impact of molecular anharmonicities which are applicable to virtually all molecular systems. A quantum-mechanical model is developed which incorporates both nuclear and electrical anharmonicities and provides the basis for interpreting this class of 2D IR spectra. This work lays the foundation for investigating phenomena of nonlinear photonics and chemistry of molecular vibrational polaritons which cannot be probed with traditional linear spectroscopy.

  5. A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy

    El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens, E-mail: bredenbeck@biophysik.uni-frankfurt.org, E-mail: bredenbeck@biophysik.uni-frankfurt.de [Institut für Biophysik, Johann Wolfgang Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt (Germany)

    2015-08-15

    A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.

  6. A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy

    El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens

    2015-01-01

    A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported

  7. Bird sexing by Fourier transform infrared spectroscopy

    Steiner, Gerald; Bartels, Thomas; Krautwald-Junghanns, Maria-Elisabeth; Koch, Edmund

    2010-02-01

    Birds are traditionally classified as male or female based on their anatomy and plumage color as judged by the human eye. Knowledge of a bird's gender is important for the veterinary practitioner, the owner and the breeder. The accurate gender determination is essential for proper pairing of birds, and knowing the gender of a bird will allow the veterinarian to rule in or out gender-specific diseases. Several biochemical methods of gender determination have been developed for avian species where otherwise the gender of the birds cannot be determined by their physical appearances or characteristics. In this contribution, we demonstrate that FT-IR spectroscopy is a suitable tool for a quick and objective determination of the bird's gender. The method is based on differences in chromosome size. Male birds have two Z chromosomes and female birds have a W-chromosome and a Z-chromosome. Each Z-chromosome has approx. 75.000.000 bps whereas the W-chromosome has approx. 260.00 bps. This difference can be detected by FT-IR spectroscopy. Spectra were recorded from germ cells obtained from the feather pulp of chicks as well as from the germinal disk of fertilized but non-bred eggs. Significant changes between cells of male and female birds occur in the region of phosphate vibrations around 1080 and 1120 cm-1.

  8. Structural characterization of ammonium uranate by infrared spectroscopy

    Rodriguez S, A.

    1994-01-01

    Infrared spectroscopy have been used to investigate the chemical composition of some ammonium uranates. In this study, I have attempted to establish the interrelationship between the structure of the products, the character of their infrared spectra and x-ray diffraction data capable of consistent interpretation in terms of defining the compounds. (Author)

  9. [Application of near-infrared spectroscopy in golf turfgrass management].

    Li, Shu-Ying; Han, Jian-Guo

    2008-07-01

    The management of golf course is different from other turfs. Its particularity lies in its higher and more precise requirement during maintenance compare with other turfs. In case something happened to turf of golf course, more effective and higher speed detecting and resolution are required. Only the data about turf growth and environment were mastered precisely in time, the friendly environmental and scientific management goal could be completed effectively and economically. The near infrared spectroscopy is a new kind of effective, convenient and non-destructive analytical method in the turfgrass management of golf course in recent years. Many factors of turf-soil system in golf course could be determined by near infrared spectroscopy at the same time. In this paper, the existing literature that use of near infrared spectroscopy to study turfgrass and soil nutrient content, soil hygroscopic moisture, feasible fertilizer application time and rate, to fix the time and volume of irrigation, turfgrass visual quality evaluation, turfgrass disease prediction and prevention were reviewed. Most researchers considered the nutrition condition of turf impacted the visual and playing quality of golf course directly and then indirectly influenced most of assistant cultivation such as fertilization, mowing and irrigation and so on. The using of NIRS can detect the nutrient content of turfgrass effectively and estimate the nutrient is excessive or deficient quickly. And then the feasible time and rate of fertilizers can be decided. Comparing with the common judgment ways based on the season fertilization and visual estimation, the using of NIRS can reduce the application of fertilizers on the base of keeping the same turf quality simultaneously. NIRS can analysis many items of soil such as moisture, elements concentration, textures on the spot by the thousands. This method can get lots of cover-all data non-destructively. What's more, NIRS can analysis soil betimes quickly

  10. Infrared spectroscopy of molecular submonolayers on surfaces by infrared scanning tunneling microscopy: tetramantane on Au111.

    Pechenezhskiy, Ivan V; Hong, Xiaoping; Nguyen, Giang D; Dahl, Jeremy E P; Carlson, Robert M K; Wang, Feng; Crommie, Michael F

    2013-09-20

    We have developed a new scanning-tunneling-microscopy-based spectroscopy technique to characterize infrared (IR) absorption of submonolayers of molecules on conducting crystals. The technique employs a scanning tunneling microscope as a precise detector to measure the expansion of a molecule-decorated crystal that is irradiated by IR light from a tunable laser source. Using this technique, we obtain the IR absorption spectra of [121]tetramantane and [123]tetramantane on Au(111). Significant differences between the IR spectra for these two isomers show the power of this new technique to differentiate chemical structures even when single-molecule-resolved scanning tunneling microscopy (STM) images look quite similar. Furthermore, the new technique was found to yield significantly better spectral resolution than STM-based inelastic electron tunneling spectroscopy, and to allow determination of optical absorption cross sections. Compared to IR spectroscopy of bulk tetramantane powders, infrared scanning tunneling microscopy (IRSTM) spectra reveal narrower and blueshifted vibrational peaks for an ordered tetramantane adlayer. Differences between bulk and surface tetramantane vibrational spectra are explained via molecule-molecule interactions.

  11. Effect of motion artifacts and their correction on near-infrared spectroscopy oscillation data

    Selb, Juliette; Yücel, Meryem A; Phillip, Dorte

    2015-01-01

    Functional near-infrared spectroscopy is prone to contamination by motion artifacts (MAs). Motion correction algorithms have previously been proposed and their respective performance compared for evoked rain activation studies. We study instead the effect of MAs on "oscillation" data which...... in the frequency band around 0.1 and 0.04 Hz, suggesting a physiological origin for the difference. We emphasize the importance of considering MAs as a confounding factor in oscillation-based functional near-infrared spectroscopy studies....

  12. IR Cards: Inquiry-Based Introduction to Infrared Spectroscopy

    Bennett, Jacqueline; Forster, Tabetha

    2010-01-01

    As infrared spectroscopy (IR) is frequently used in undergraduate organic chemistry courses, an inductive introduction to IR spectroscopy that uses index cards printed with spectra, structures, and chemical names is described. Groups of students are given an alphabetized deck of these "IR cards" to sort into functional groups. The students then…

  13. Near-infrared spectroscopy during peripheral vascular surgery

    Eiberg, J P; Schroeder, T V; Vogt, K C

    1997-01-01

    Near-infrared spectroscopy was performed perioperatively on the dorsum of the foot in 14 patients who underwent infrainguinal bypass surgery using a prosthesis or the greater saphenous vein. Dual-wavelength continuous light spectroscopy was used to assess changes in tissue saturation before, duri...

  14. Far-infrared spectroscopy of HII regions

    Emery, R.J.; Kessler, M.F.

    1984-01-01

    Interest has developed rapidly in the astrophysics associated with far-infrared line emission from ionised regions, following the development of spectroscopic instruments and observing facilities appropriate to those wavelengths. Far-infrared observations and their interpretation are now at the stage where the need for specific developments in theoretical and laboratory work have been identified. The need is also apparent for the development of models dealing with more realistic astrophysical situations. (Auth.)

  15. Near infrared spectroscopy for qualitative comparison of pharmaceutical batches.

    Roggo, Y; Roeseler, C; Ulmschneider, M

    2004-11-19

    Pharmaceuticals are produced according to current pharmacopoeias, which require quality parameters. Tablets of identical formulation, produced by different factories should have the same properties before and after storage. In this article, we analyzed samples having two different origins before and after storage (30 degrees C, 75% relative moisture). The aim of the study is to propose two approaches to understand the differences between origins and the storage effect by near infrared spectroscopy. In the first part, the main wavelengths are identified in transmittance and reflectance near infrared spectra in order to identify the major differences between the samples. In this paper, this approach is called fingerprinting. In the second part, principal component analysis (PCA) is computed to confirm the fingerprinting interpretation. The two interpretations show the differences between batches: physical aspect and moisture content. The manufacturing process is responsible for the physical differences between batches. During the storage, changes are due to the increase of moisture content and the decrease of the active content.

  16. Infrared Spectroscopy of Discrete Uranyl Anion Complexes

    Groenewold, G. S.; Gianotto, Anita K.; McIIwain, Michael E.; Van Stipdonk, Michael J.; Kullman, Michael; Moore, David T.; Polfer, Nick; Oomens, Jos; Infante, Ivan A.; Visscher, Lucas; Siboulet, Bertrand; De Jong, Wibe A.

    2008-01-01

    The Free-Electron Laser for Infrared Experiments (FELIX) w 1 as used to study the wavelength-resolved multiple photon photodissociation of discrete, gas phase uranyl (UO2 2 2+) complexes containing a single anionic ligand (A), with or without ligated solvent molecules (S). The uranyl antisymmetric and symmetric stretching frequencies were measured for complexes with general formula [UO2A(S)n]+, where A was either hydroxide, methoxide, or acetate; S was water, ammonia, acetone, or acetonitrile; and n = 0-3. The values for the antisymmetric stretching frequency for uranyl ligated with only an anion ([UO2A]+) were as low or lower than measurements for [UO2]2+ ligated with as many as five strong neutral donor ligands, and are comparable to solution phase values. This result was surprising because initial DFT calculations predicted values that were 30-40 cm-1 higher, consistent with intuition but not with the data. Modification of the basis sets and use of alternative functionals improved computational accuracy for the methoxide and acetate complexes, but calculated values for the hydroxide were greater than the measurement regardless of the computational method used. Attachment of a neutral donor ligand S to [UO2A]+ produced [UO2AS]+, which produced only very modest changes to the uranyl antisymmetric stretch frequency, and did not universally shift the frequency to lower values. DFT calculations for [UO2AS]+ were in accord with trends in the data, and showed that attachment of the solvent was accommodated by weakening of the U-anion bond as well as the uranyl. When uranyl frequencies were compared for [UO2AS]+ species having different solvent neutrals, values decreased with increasing neutral nucleophilicity

  17. Physiological response of Arundo donax to cadmium stress by Fourier transform infrared spectroscopy

    Yu, Shunhui; Sheng, Li; Zhang, Chunyan; Deng, Hongping

    2018-06-01

    The present paper deals with the physiological response of the changes in chemical contents of the root, stem and leaf of Arundo donax seedlings stressed by excess cadmium using Fourier transform infrared spectroscopy technique, cadmium accumulation in plant by atomic absorption spectroscopy were tested after different concentrations cadmium stress. The results showed that low cadmium concentrations (spectroscopy technique for the non-invasive and rapid monitoring of the plants stressed with heavy metals, Arundo donax is suitable for phytoremediation of cadmium -contaminated wetland.

  18. Influence of earlobe thickness on near infrared spectroscopy

    Jiang, Jingying; Wang, Tianpei; Li, Si; Li, Lin; Liu, Jiajia; Xu, Kexin

    2017-03-01

    Near-infrared spectroscopy has been recognized as a potential technology for noninvasive blood glucose sensing. However, the detected spectral signal is unstable mainly because of (1) the weak light absorption of glucose itself within NIR range, (2) the influence of temperature and individual differences of biotissue. Our previous results demonstrated that the synergistic effect of both transmittance and reflectance could enhance the strength of the detection signal. In this talk, we design a set of experiments to analyze the effect of earlobe thickness on Near Infrared spectroscopic measurement by using home-made optical fiber probe within the wavelength of 1000-1600nm. Firstly, we made a MC simulation of single-layer skin model and five-layer skin model to get the diffused transmittance spectra and diffused reflectance spectra under different optaical path lengths. And then we obtain the spectra of the earlobes from different volunteers by the same way. The experimental results showed that with the increase of the thickness,the light intensity of diffused transmittance decreases, and the light intensity of diffused reflectance remaines substantially unchanged.

  19. Physiological response of Arundo donax to cadmium stress by Fourier transform infrared spectroscopy.

    Yu, Shunhui; Sheng, Li; Zhang, Chunyan; Deng, Hongping

    2018-06-05

    The present paper deals with the physiological response of the changes in chemical contents of the root, stem and leaf of Arundo donax seedlings stressed by excess cadmium using Fourier transform infrared spectroscopy technique, cadmium accumulation in plant by atomic absorption spectroscopy were tested after different concentrations cadmium stress. The results showed that low cadmium concentrations (Fourier transform infrared spectroscopy technique for the non-invasive and rapid monitoring of the plants stressed with heavy metals, Arundo donax is suitable for phytoremediation of cadmium -contaminated wetland. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. WW Domain Folding Complexity Revealed by Infrared Spectroscopy

    Davis, Caitlin M.; Dyer, R. Brian

    2014-01-01

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescen...

  1. Application of infrared spectroscopy for diagnosis of kidney tumor tissue

    Bandzevičiūtė, Rimantė

    2016-01-01

    Application of Infrared Spectroscopy for Diagnosis of Kidney Tumor Tissue It is possible to apply the technique of an attenuated total reflection of infrared radiation (ATR IR) for the characterisation of the removed tissues during the surgery. Application of this method for interstitium of the removed tissue does not require any specific sample preparation. For this reason ATR IR technique applied for the interstitium allows to get information about tissues immediately after surgical operati...

  2. Infrared and Raman Spectroscopy Principles and Spectral Interpretation

    Larkin, Peter

    2011-01-01

    Infrared and Raman Spectroscopy: Principles and Spectral Interpretation explains the background, core principles and tests the readers understanding of the important techniques of Infrared and Raman Spectroscopy. These techniques are used by chemists, environmental scientists, forensic scientists etc to identify unknown chemicals. In the case of an organic chemist these tools are part of an armory of techniques that enable them to conclusively prove what compound they have made, which is essential for those being used in medical applications. The book reviews basic principles, instrumentation

  3. Infrared absorption spectroscopy and chemical kinetics of free radicals

    Curl, R.F.; Glass, G.P. [Rice Univ., Houston, TX (United States)

    1993-12-01

    This research is directed at the detection, monitoring, and study of chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. During the last year, infrared kinetic spectroscopy using excimer laser flash photolysis and color-center laser probing has been employed to study the high resolution spectrum of HCCN, the rate constant of the reaction between ethynyl (C{sub 2}H) radical and H{sub 2} in the temperature region between 295 and 875 K, and the recombination rate of propargyl (CH{sub 2}CCH) at room temperature.

  4. NIRS - Near infrared spectroscopy - investigations in neurovascular diseases

    Schytz, Henrik Winther

    2015-01-01

    The purpose of this thesis was to explore and develop methods, where continuous wave near infrared spectroscopy (CW-NIRS) can be applied in different neurovascular diseases, in order to find biological markers that are useful in clinical neurology. To develop a new method to detect changes...... tomography (133Xe-SPECT) and the corrected BFI value. It was concluded, that it was not possible to obtain reliable BFI data with the ICG CW-NIRS method. NIRS measurements of low frequency oscillations (LFOs) may be a reliable method to investigate vascular alterations in neurovascular diseases......, but this requires an acceptable LFOs variation between hemispheres and over time in the healthy brain. The second study therefore investigated day-to-day and hemispheric variations in LFOs with NIRS. It was shown that NIRS might be useful in assessing LFOs between hemispheres, as well as interhemispheric phase...

  5. Mid-infrared spectroscopy for characterization of Baltic amber (succinite)

    Wagner-Wysiecka, Ewa

    2018-05-01

    Natural Baltic amber (succinite) is the most appreciated fossil resin of the rich cultural traditions dating back to prehistoric times. Its unequivocal identification is extremely important in many branches of science and trades including archeology, paleontology, chemistry and finally mineralogical and gemological societies. Current methods of modification of natural succinite are more and more sophisticated making the identification of natural Baltic amber often challenging. In article the systematic analytical approach for identification of natural and modified under different conditions succinite, using mid-infrared spectroscopy (transmission, Drifts and ATR techniques) is presented. The correlation between spectral characteristics and properties of succinite is discussed pointing that the understanding of the nature of changes is the key of identification of this precious material.

  6. Voyager infrared spectroscopy and radiometry investigation

    Hanel, R; Conrath, B; Gautier, D; Gierasch, P; Kumar, S; Kunde, V; Lowman, P; Maguire, W; Pearl, J; Pirraglia, J [National Aeronautics and Space Administration, Greenbelt, Md. (USA). Goddard Space Flight Center

    1977-11-01

    The infrared investigation on Voyager uses two interferometers covering the spectral ranges 60-600 cm/sup -1/ (17-170 ..mu..m) and 1000-7000 cm/sup -1/ (1.4-10 ..mu..m), and a radiometer covering the range 8000-25000 cm/sup -1/ (0.4-1.2 ..mu..m). Two spectral resolutions (approximately 6.5 and 2.0 cm/sup -1/) are available for each of the interferometers. In the middle of the thermal channel (far infrared interferometer) the noise level is equivalent to the signal from a target at 50 K; in the middle of the reflected sunlight channel (near infrared interferometer) the noise level is equivalent to the signal from an object of albedo 0.2 at the distance of Uranus. For planets and satellites with substantial atmospheres, the data will be used to investigate cloud and gas composition (including isotopic ratios), haze scale height, atmospheric vertical thermal structure, local and planetary circulation and dynamics, and planetary energy balance. For satellites with tenuous atmospheres, data will be gathered on surface and atmospheric compositon, surface temperature and thermal properties, local and global phase functions, and surface structure. For Saturn's rings, the composition and radial structure, particle size and thermal characteristics will be investigated. Comparative studies of the planets and their satellite systems will be carried out.

  7. Fourier transform infrared spectroscopy for sepia melanin

    Mbonyiryivuze, A

    2015-08-01

    Full Text Available Spectroscopy (FTIR) for assessing biogenic silica sample purity in geochemical analyses and palaeoenvironmental research,” Climate of the Past, vol. 7, p. 65- 74, 2011. [12] P. N. R. Sundar, Films minces à base de Si nanostructuré pour des cellules...

  8. Optimal hemodynamic response model for functional near-infrared spectroscopy

    Muhammad Ahmad Kamran

    2015-06-01

    Full Text Available Functional near-infrared spectroscopy (fNIRS is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650-950 nm wavelengths. The cortical hemodynamic response (HR differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF is modeled by using two Gamma functions with six unknown parameters. The HRF model is supposed to be linear combination of HRF, baseline and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown. An objective function is developed as a square of the residuals with constraints on twelve free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using ten real and fifteen simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis, i.e., (t-value >tcritical and p-value < 0.05.

  9. Two-dimensional spectroscopy at infrared and optical frequencies

    Hochstrasser, Robin M.

    2007-01-01

    This Perspective on multidimensional spectroscopy in the optical and infrared spectral regions focuses on the principles and the scientific and technical challenges facing these new fields. The methods hold great promise for advances in the visualization of time-dependent structural changes in complex systems ranging from liquids to biological assemblies, new materials, and fundamental physical processes. The papers in this special feature on multidimensional spectroscopy in chemistry, physic...

  10. An Overview of the Evolution of Infrared Spectroscopy Applied to Bacterial Typing.

    Quintelas, Cristina; Ferreira, Eugénio C; Lopes, João A; Sousa, Clara

    2018-01-01

    The sustained emergence of new declared bacterial species makes typing a continuous challenge for microbiologists. Molecular biology techniques have a very significant role in the context of bacterial typing, but they are often very laborious, time consuming, and eventually fail when dealing with very closely related species. Spectroscopic-based techniques appear in some situations as a viable alternative to molecular methods with advantages in terms of analysis time and cost. Infrared and mass spectrometry are among the most exploited techniques in this context: particularly, infrared spectroscopy emerged as a very promising method with multiple reported successful applications. This article presents a systematic review on infrared spectroscopy applications for bacterial typing, highlighting fundamental aspects of infrared spectroscopy, a detailed literature review (covering different taxonomic levels and bacterial species), advantages, and limitations of the technique over molecular biology methods and a comparison with other competing spectroscopic techniques such as MALDI-TOF MS, Raman, and intrinsic fluorescence. Infrared spectroscopy possesses a high potential for bacterial typing at distinct taxonomic levels and worthy of further developments and systematization. The development of databases appears fundamental toward the establishment of infrared spectroscopy as a viable method for bacterial typing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fourier transform infrared spectroscopy for the prediction of fatty acid profiles in Mucor fungi grown in media with different carbon sources.

    Shapaval, Volha; Afseth, Nils Kristian; Vogt, Gjermund; Kohler, Achim

    2014-09-11

    Fungal production of polyunsaturated fatty acids (PUFAs) is a highly potential approach in biotechnology. Currently the main focus is directed towards screening of hundreds strains in order to select of few potential ones. Thus, a reliable method for screening a high number of strains within a short period of time is needed. Here, we present a novel method for screening of PUFA-producing fungi by high-throughput microcultivation and FTIR spectroscopy. In the study selected Mucor fungi were grown in media with different carbon sources and fatty acid profiles were predicted on the basis of the obtained spectral data. FTIR spectra were calibrated against fatty acid analysis by GC-FD. The calibration models were cross-validated and correlation coefficients (R2) from 0.71 to 0.78 with RMSECV (root mean squared error) from 2.86% to 6.96% (percentage of total fat) were obtained. The FTIR results show a strong correlation to the results obtained by GC analysis, where high total contents of unsaturated fatty acids (both PUFA and MUFA) were achieved for Mucor plumbeus VI02019 cultivated in canola, olive and sunflower oil and Mucor hiemalis VI01993 cultivated in canola and olive oil.

  12. Role of Infrared Spectroscopy and Imaging in Cancer Diagnosis.

    Kumar, Saroj; Srinivasan, Alagiri; Nikolajeff, Fredrik

    2018-01-01

    Cancer is a major global health issue. It causes extensive individual suffering and gives a huge burden on the health care in society. Despite extensive research and different tools have been developed it still remains a challenge for early detection of this disease. FTIR imaging has been used to diagnose and differentiate the molecular differences between normal and diseased tissues. Fourier Transform Infrared Spectroscopy (FTIR) is able to measure biochemical changes in tissue, cell and biofluids based on the vibrational signature of their components. This technique enables to the distribution and structure of lipids, proteins, nucleic acids as well as other metabolites. These differences depended on the type and the grade of cancer. We emphasize here, that the FTIR spectroscopy and imaging can be considered as a promising technique and will find its place on the detection of this dreadful disease because of high sensitivity, accuracy and inexpensive technique. Now the medical community started using and accepting this technique for early stage cancer detection. We discussed this technique and the several challenges in its application for the diagnosis of cancer in regards of sample preparations, data interpretation, and data analysis. The sensitivity of chemotherapy drugs on individual specific has also discussed. So far progressed has done with the FTIR imaging in understanding of cancer disease pathology. However, more research is needed in this field and it is necessary to understand the morphology and biology of the sample before using the spectroscopy and imaging because invaluable information to be figured out. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Analysis of Chuanxiong Rhizoma and its active components by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy.

    Guo, Yizhen; Lv, Beiran; Wang, Jingjuan; Liu, Yang; Sun, Suqin; Xiao, Yao; Lu, Lina; Xiang, Li; Yang, Yanfang; Qu, Lei; Meng, Qinghong

    2016-01-15

    As complicated mixture systems, active components of Chuanxiong Rhizoma are very difficult to identify and discriminate. In this paper, the macroscopic IR fingerprint method including Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR), was applied to study and identify Chuanxiong raw materials and its different segmented production of HPD-100 macroporous resin. Chuanxiong Rhizoma is rich in sucrose. In the FT-IR spectra, water eluate is more similar to sucrose than the powder and the decoction. Their second derivative spectra amplified the differences and revealed the potentially characteristic IR absorption bands and combined with the correlation coefficient, concluding that 50% ethanol eluate had more ligustilide than other eluates. Finally, it can be found from 2DCOS-IR spectra that proteins were extracted by ethanol from Chuanxiong decoction by HPD-100 macroporous resin. It was demonstrated that the above three-step infrared spectroscopy could be applicable for quick, non-destructive and effective analysis and identification of very complicated and similar mixture systems of traditional Chinese medicines. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Infrared spectroscopy and microscopy in cancer research and diagnosis

    Bellisola, Giuseppe; Sorio, Claudio

    2012-01-01

    Since the middle of 20th century infrared (IR) spectroscopy coupled to microscopy (IR microspectroscopy) has been recognized as a non destructive, label free, highly sensitive and specific analytical method with many potential useful applications in different fields of biomedical research and in particular cancer research and diagnosis. Although many technological improvements have been made to facilitate biomedical applications of this powerful analytical technique, it has not yet properly come into the scientific background of many potential end users. Therefore, to achieve those fundamental objectives an interdisciplinary approach is needed with basic scientists, spectroscopists, biologists and clinicians who must effectively communicate and understand each other's requirements and challenges. In this review we aim at illustrating some principles of Fourier transform (FT) Infrared (IR) vibrational spectroscopy and microscopy (microFT-IR) as a useful method to interrogate molecules in specimen by mid-IR radiation. Penetrating into basics of molecular vibrations might help us to understand whether, when and how complementary information obtained by microFT-IR could become useful in our research and/or diagnostic activities. MicroFT-IR techniques allowing to acquire information about the molecular composition and structure of a sample within a micrometric scale in a matter of seconds will be illustrated as well as some limitations will be discussed. How biochemical, structural, and dynamical information about the systems can be obtained by bench top microFT-IR instrumentation will be also presented together with some methods to treat and interpret IR spectral data and applicative examples. The mid-IR absorbance spectrum is one of the most information-rich and concise way to represent the whole “… omics” of a cell and, as such, fits all the characteristics for the development of a clinically useful biomarker. PMID:22206042

  15. Determination of quercetins in onion (Allium cepa) using infrared spectroscopy.

    Lu, Xiaonan; Ross, Carolyn F; Powers, Joseph R; Rasco, Barbara A

    2011-06-22

    The rapid quantification of flavonoid compounds in onions by attenuated total reflectance (ATR) Fourier transform infrared (FT-IR) spectroscopy combined with multivariate analysis was evaluated as a possible alternative to high-performance liquid chromatography (HPLC) analysis. Quercetin content in onion varieties (yellow, red, and sweet) was quantified using ATR FT-IR (4000 to 400 cm⁻¹) spectroscopy and HPLC methods. Quercetin-3,4'-O-diglucoside (3,4'-Qdg) and quercetin-4'-O-glucoside (4'-Qmg) comprised >80% of the total flavonol content detected in the studied varieties. The quercetin compounds (3,4'-Qdg and 4'-Qmg) and total flavonol conjugates were quantified by HPLC, and results correlated closely with ATR-IR values (R > 0.95). Cross-validated (leave-one-out) partial least-squares regression (PLSR) models successfully predicted concentrations of these quercetins. The standard errors of cross-validation (SECV) of 3,4'-Qdg and 4'-Qmg, total quercetin, and total flavonol contents of onions were 20.43, 21.18, and 21.02 mg/kg fresh weight, respectively. In addition, supervised and unsupervised segregation analyses (principal component analysis, discriminant function analysis, and soft independent modeling of class analogue) were performed to classify onion varieties on the basis of unique infrared spectral features. There was a high degree of segregation (interclass distances > 3.0) for the different types of onion. This study indicated that the IR technique could predict 3,4'-Qdg, 4'-Qmg, total quercetin, and total flavonol contents and has advantages over the traditional HPLC method in providing a valid, efficient, and cost-effective method requiring less sample preparation for the quantification of quercetins in onion.

  16. Characterizing process effects on pharmaceutical solid forms using near-infrared spectroscopy and infrared imaging.

    Roggo, Y; Jent, N; Edmond, A; Chalus, P; Ulmschneider, M

    2005-09-01

    Near-infrared spectroscopy (NIRS) has become a widely used analytical technique in the pharmaceutical industry, serving for example to determine the active substance or water content of tablets. Its great advantage lies in the minimal sample preparation required and speed of measurement. In a study designed to detect the effects of process on tablet dissolution, we describe the application of NIRS to the detection and identification of changes in uncoated and coated tablets in response to pilot-scale changes in process parameters during melt granulation, compression, and coating. Beginning with a qualitative comparison between pharmaceutical batches, we show that NIRS and principal component analysis can separate batches produced with different melt granulation parameters and differentiate between cores compressed with different compaction forces. Complementary infrared imaging can also explain the difference in dissolution properties between samples produced with different melt granulation parameters. NIRS is sensitive to changes in coating formulation, the quality of a coating excipient (hydroxypropyl methylcellulose), and coating time. In a concluding quantitative analysis, we demonstrate the feasibility of NIRS in a manufacturing context for predicting coating time and detecting production cores failing to meet dissolution test specifications.

  17. Quantifying cerebral hypoxia by near-infrared spectroscopy tissue oximetry

    Rasmussen, Martin B.; Eriksen, Vibeke R.; Andresen, Bjørn

    2017-01-01

    Tissue oxygenation estimated by near-infrared spectroscopy (NIRS) is a volume-weighted mean of the arterial and venous hemoglobin oxygenation. In vivo validation assumes a fixed arterial-to-venous volume-ratio (AV-ratio). Regulatory cerebro-vascular mechanisms may change the AV-ratio. We used...

  18. Progress in far-infrared spectroscopy: Approximately 1890 to 1970

    Mitsuishi, Akiyoshi

    2014-03-01

    The history of far-infrared spectroscopy from its beginning to around 1970 is reviewed. Before World War II, the size of the community investigating this topic was limited. During this period, in particular before 1925, about 90% of the papers were published by H. Rubens and his co-workers in Germany. One or two researchers from the US joined the Rubens group per year from 1890 to the beginning of 1910. During the next year or two, some researchers joined M. Czerny, who is seen as the successor of Rubens. After World War II, far-infrared techniques progressed further in the US, which did not suffer damage during the war. The advanced techniques of far-infrared grating spectroscopy were transferred from the US (R. A. Oetjen) to Japan (H. Yoshinaga). Yoshinaga and his co-workers expanded the techniques by themselves. This paper describes the historical development of far-infrared spectroscopy before Fourier transform spectroscopy became popular around 1970.

  19. WW domain folding complexity revealed by infrared spectroscopy.

    Davis, Caitlin M; Dyer, R Brian

    2014-09-02

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescence spectroscopy, to study the folding of the FBP28 WW domain. Laser-induced temperature jumps coupled with fluorescence or infrared spectroscopy have been used to probe changes in the peptide backbone on the submillisecond time scale. The relaxation dynamics of the β-sheets and β-turn were measured independently by probing the corresponding IR bands assigned in the amide I region. Using these wavelength-dependent measurements, we observe three kinetics phases, with the fastest process corresponding to the relaxation kinetics of the turns. In contrast, fluorescence measurements of the wild-type WW domain and tryptophan mutants exhibit single-exponential kinetics with a lifetime that corresponds to the slowest phase observed by infrared spectroscopy. Mutant sequences provide evidence of an intermediate dry molten globule state. The slowest step in the folding of this WW domain is the tight packing of the side chains in the transition from the dry molten globule intermediate to the native structure. This study demonstrates that using multiple complementary probes enhances the interpretation of protein folding dynamics.

  20. Waiting Time Dynamics in Two-Dimensional Infrared Spectroscopy

    Jansen, Thomas L. C.; Knoester, Jasper

    We review recent work on the waiting time dynamics of coherent two-dimensional infrared (2DIR) spectroscopy. This dynamics can reveal chemical and physical processes that take place on the femto- and picosecond time scale, which is faster than the time scale that may be probed by, for example,

  1. Mid-infrared quantum cascade laser spectroscopy probing of the ...

    Aparajeo Chattopadhyay

    2018-05-07

    May 7, 2018 ... cm3 molecule. −1 s. −1 ... Quantum cascade laser; time-resolved mid-infrared spectroscopy; transient absorption; peroxy radicals .... peak of the laser emission profile. .... cal with O2 is a termolecular reaction (Eq. 3) and the.

  2. Fourier transform infrared (FTIR) spectroscopy for identification of ...

    Fourier transform infrared (FTIR) spectroscopy was used in this study to identify and determine spectral features of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. Two cultures were grown in a chemically-defined media under photoautotrophic culture conditions isolated from eutrophic ...

  3. Forensic applications of microscopical infrared internal reflection spectroscopy

    Tungol, Mary W.; Bartick, Edward G.; Reffner, John A.

    1994-01-01

    Applications of microscopical infrared internal reflection spectroscopy in forensic science are discussed. Internal reflection spectra of single fibers, hairs, paint chips, vehicle rubber bumpers, photocopy toners, carbon copies, writing ink on paper, lipstick on tissue, black electrical tape, and other types of forensic evidence have been obtained. The technique is convenient, non-destructive, and may permit smeared materials to be analyzed in situ.

  4. Broadband integrated mid infrared light sources as enabling technology for point of care mid-infrared spectroscopy

    2017-08-20

    AFRL-AFOSR-JP-TR-2017-0061 Broadband integrated mid-infrared light sources as enabling technology for point-of-care mid- infrared spectroscopy Alex...mid-infrared light sources as enabling technology for point-of-care mid-infrared spectroscopy 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-16-1-4037...Broadband integrated mid-infrared light sources as enabling technology for point-of-care mid- infrared spectroscopy ” Date: 16th August 2017 Name

  5. Computing protein infrared spectroscopy with quantum chemistry.

    Besley, Nicholas A

    2007-12-15

    Quantum chemistry is a field of science that has undergone unprecedented advances in the last 50 years. From the pioneering work of Boys in the 1950s, quantum chemistry has evolved from being regarded as a specialized and esoteric discipline to a widely used tool that underpins much of the current research in chemistry today. This achievement was recognized with the award of the 1998 Nobel Prize in Chemistry to John Pople and Walter Kohn. As the new millennium unfolds, quantum chemistry stands at the forefront of an exciting new era. Quantitative calculations on systems of the magnitude of proteins are becoming a realistic possibility, an achievement that would have been unimaginable to the early pioneers of quantum chemistry. In this article we will describe ongoing work towards this goal, focusing on the calculation of protein infrared amide bands directly with quantum chemical methods.

  6. Infrared quantitative spectroscopy and planetary atmospheres

    Flaud, J.-M.

    2009-04-01

    Optical measurements of atmospheric minor constituents are carried out using spectrometers working in the UV-visible, infrared and microwave spectral ranges. In all cases the quality of the analysis and of the interpretation of the atmospheric spectra requires the best possible knowledge of the molecular parameters of the species of interest. To illustrate this point we will concentrate on recent laboratory studies of nitric acid, chlorine nitrate and formaldehyde. Nitric acid is one of the important minor constituent of the terrestrial atmosphere. Using new and accurate experimental results concerning the spectroscopic properties of the H14NO3 and H15NO3 molecules, as well as improved theoretical methods (Perrin et al., 2004), it has been possible to generate an improved set of line parameters for these molecules in the 11.2 μm spectral region. These line parameters were used to detect for the first time the H15NO3 molecule in the atmosphere analyzing atmospheric spectra recorded by the MIPAS experiment. The retrievals of chlorine nitrate profiles are usually performed using absorption cross sections (Birk and Wagner, 2003). Following a high resolution analysis of the ν3 and ν4bands of this species in the 12.8 μm region wepropose, as a possibility, to use line by line calculation simulating its ν4Q-branch for the atmospheric temperature and pressure ranges. For the measurement of atmospheric formaldehyde concentrations, mid-infrared and ultraviolet absorptions are both used by ground, air or satellite instruments. It is then of the utmost importance to have consistent spectral parameters in these various spectral domains. Consequently the aim of the study performed at LISA (Gratien et al., 2007) was to intercalibrate formaldehyde spectra in the infrared and ultraviolet regions acquiring simultaneously UV and IR spectra using a common optical cell. The results of the work will be presented. Also high resolution infrared data derived from Perrin et al., 2003

  7. Fourier transform infrared spectroscopy in physics laboratory courses

    Möllmann, K-P; Vollmer, M

    2013-01-01

    Infrared spectrometry is one of the most important tools in the field of spectroscopic analysis. This is due to the high information content of spectra in the so-called spectroscopic fingerprint region, which enables measurement not only of gases, but also of liquids and solids. Today, infrared spectroscopy is almost completely dominated by Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy is able to detect minute quantities in the ppm and ppb ranges, and the respective analyses are now standard tools in science as well as industry. Therefore FTIR spectroscopy should be taught within the standard curriculum at university to physicists and engineers. Here we present respective undergraduate laboratory experiments designed for students at the end of their third year. Experiments deal first with understanding the spectrometer and second with recording and analysing spectra. On the one hand, transmission spectra of gases are treated which relate to environmental analytics (being probably the most prominent and well-known examples), and on the other hand, the focus is on the transmission and reflection spectra of solids. In particular, silicon wafers are studied—as is regularly done in the microelectronics industry—in order to characterize their thickness, oxygen content and phonon modes. (paper)

  8. Application of Near-Infrared and Fourier Transform Infrared Spectroscopy in the Characterization of Ligand-Induced Conformation Changes in Folate Binding Protein Purified from Bovine Milk

    Bruun, Susanne Wrang; Holm, Jan; Hansen, Steen Ingemann

    2006-01-01

    Fourier transform infrared (FT-IR) and near-infrared (NIR) spectroscopy have been applied to detect structural alterations in folate binding protein (FBP) induced by ligation in different buffer types. The amide I region pointed to a beta-sheet to alpha-helix transition upon ligation in acetate...

  9. Infrared Spectroscopy Beamline Based on a Tabletop Storage Ring

    Haque, Md. Monirul; Moon, Ahsa; Yamada, Hironari

    2012-01-01

    An optical beamline dedicated to the infrared (IR) spectroscopy has been constructed at MIRRORCLE, a tabletop storage ring. The beamline has been designed for the use of infrared synchrotron radiation (IRSR) emitted from a bending magnet of 156 mm bending radius with the acceptance angle of 355(H) × 138(V) mrad to obtain high flux. The IR emission is forced by an exactly circular optics, named photon storage ring (PhSR), placed around the electron orbit and is collected by a “magic mirror” as...

  10. Synchrotron-based far-infrared spectroscopy of nickel tungstate

    Kalinko, A.; Kuzmin, A.; Roy, P.; Evarestov, R.A.

    2016-01-01

    Monoclinic antiferromagnetic NiWO 4 was studied by far-infrared (30-600 cm -1 ) absorption spectroscopy in the temperature range of 5-300 K using the synchrotron radiation from SOLEIL source. Two isomorphous CoWO 4 and ZnWO 4 tungstates were investigated for comparison. The phonon contributions in the far-infrared range of tungstates were interpreted using the first-principles spin-polarized linear combination of atomic orbital calculations. No contributions from magnetic excitations were found in NiWO 4 and CoWO 4 below their Neel temperatures down to 5 K.

  11. Infrared-emission spectroscopy of CO on Ni

    Chiang, S.; Tobin, R.G.; Richards, P.L.

    1982-09-01

    We report the first observation of thermally emitted infrared radiation from vibrational modes of molecules adsorbed on clean, single-crystal metal surfaces. The observation of emission from CO adsorbed on Ni demonstrates the surface sensitivity of a novel apparatus for infrared vibrational spectroscopy, with a resolution of 1 to 15 cm -1 over the frequency range from 330 to 3000 cm -1 . A liquid-helium-cooled grating spectrometer measures the thermal radiation from a room-temperature, single-crystal sample, which is mounted in an ultrahigh-vacuum system. Measurements of frequencies and linewidths of CO on a single-crystal Ni sample, as a function of coverage, are discussed

  12. Breast phantom for mammary tissue characterization by near infrared spectroscopy

    Miranda, D A; Cristiano, K L; Gutiérrez, J C

    2013-01-01

    Breast cancer is a disease associated to a high morbidity and mortality in the entire world. In the study of early detection of breast cancer the development of phantom is so important. In this research we fabricate a breast phantom using a ballistic gel with special modifications to simulate a normal and abnormal human breast. Optical properties of woman breast in the near infrared region were modelled with the phantom we developed. The developed phantom was evaluated with near infrared spectroscopy in order to study its relation with breast tissue. A good optical behaviour was achieved with the model fabricated

  13. Optimal hemodynamic response model for functional near-infrared spectroscopy.

    Kamran, Muhammad A; Jeong, Myung Yung; Mannan, Malik M N

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650-950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by two Gamma functions with six unknown parameters (four of them to model the shape and other two to scale and baseline respectively). The HRF model is supposed to be a linear combination of HRF, baseline, and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on 12 free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis (i.e., t-value > t critical and p-value < 0.05).

  14. Protein folding and misfolding shining light by infrared spectroscopy

    Fabian, Heinz

    2012-01-01

    Infrared spectroscopy is a new and innovative technology to study protein folding/misfolding events in the broad arsenal of techniques conventionally used in this field. The progress in understanding protein folding and misfolding is primarily due to the development of biophysical methods which permit to probe conformational changes with high kinetic and structural resolution. The most commonly used approaches rely on rapid mixing methods to initiate the folding event via a sudden change in solvent conditions. Traditionally, techniques such as fluorescence, circular dichroism or visible absorption are applied to probe the process. In contrast to these techniques, infrared spectroscopy came into play only very recently, and the progress made in this field up to date which now permits to probe folding events over the time scale from picoseconds to minutes has not yet been discussed in a book. The aim of this book is to provide an overview of the developments as seen by some of the main contributors to the field...

  15. Enhancing the Responsivity of Uncooled Infrared Detectors Using Plasmonics for High-Performance Infrared Spectroscopy

    Amr Shebl Ahmed

    2017-04-01

    Full Text Available A lead zirconate titanate (PZT;Pb(Zr0.52Ti0.48O3 layer embedded infrared (IR detector decorated with wavelength-selective plasmonic crystals has been investigated for high-performance non-dispersive infrared (NDIR spectroscopy. A plasmonic IR detector with an enhanced IR absorption band has been designed based on numerical simulations, fabricated by conventional microfabrication techniques, and characterized with a broadly tunable quantum cascade laser. The enhanced responsivity of the plasmonic IR detector at specific wavelength band has improved the performance of NDIR spectroscopy and pushed the limit of detection (LOD by an order of magnitude. In this paper, a 13-fold enhancement in the LOD of a methane gas sensing using NDIR spectroscopy is demonstrated with the plasmonic IR detector.

  16. Practical guide to interpretive near-infrared spectroscopy

    Workman, Jr, Jerry

    2007-01-01

    Containing focused, comprehensive coverage, Practical Guide to Interpretive Near-Infrared Spectroscopy gives you the tools necessary to interpret NIR spectra. The authors present extensive tables, charts, and figures with NIR absorption band assignments and structural information for a broad range of functional groups, organic compounds, and polymers. They include visual spectral representation of all major compound functional groupings and NIR frequency ranges. Organized by functional group type and chemical structure, based on standard compound classification, the chapters are easy to

  17. Core-shell particle composition by liquid phase infrared spectroscopy

    Ribeiro, Luiz F.B.; Machado, Ricardo A.F.; Goncalves, Odinei H.; Bona, Evandro

    2011-01-01

    Polymeric particles with core-shell morphology can offer advantages over conventional particles improving properties like mechanical and chemical resistance. However, particle composition must be known due to its influence on the final properties. In this work liquid phase infrared spectroscopy was used to determine the overall composition of core-shell particles composed by polystyrene (core) and poly(methyl methacrylate) (shell). Results were in agreement with those obtained with H 1 Nuclear Magnetic Resonance data (Goncalves et al, 2008). (author)

  18. Radiolysis of ferrocyanide solutions studied by infrared spectroscopy

    Le Caer, S. [CEA/Saclay, DSM/DRECAM/SCM/URA 331 CNRS, F-91191Gif-sur-Yvette Cedex (France)]. E-mail: sophie.le-caer@cea.fr; Vigneron, G. [CEA/Saclay, DSM/DRECAM/SCM/URA 331 CNRS, F-91191Gif-sur-Yvette Cedex (France); Renault, J.P. [CEA/Saclay, DSM/DRECAM/SCM/URA 331 CNRS, F-91191Gif-sur-Yvette Cedex (France); Pommeret, S. [CEA/Saclay, DSM/DRECAM/SCM/URA 331 CNRS, F-91191Gif-sur-Yvette Cedex (France)

    2007-08-15

    The behavior of the neutral and basic aqueous ferrocyanide system under irradiation is investigated using the coupling of a LINAC with infrared spectroscopy. The comparison between the neutral and basic system evidences the formation of the hydroxopentacyanoferrate (III) ions and gives information on the reaction mechanisms. The pseudo-protective effect of the dissolved dioxygen on the ferrocyanide is explained via a mechanism implying the superoxide radical anion.

  19. Far-infrared ferroelectric soft mode spectroscopy on thin films

    Petzelt, Jan; Ostapchuk, Tetyana

    2001-01-01

    Roč. 249, 1-2 (2001), s. 81-88 ISSN 0015-0193 R&D Projects: GA ČR GA202/98/1282; GA AV ČR IAA1010918; GA MŠk OC 514.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : far-infrared spectroscopy * soft mode * dielectric spectra * permitivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.471, year: 2001

  20. Burned bones forensic investigations employing near infrared spectroscopy

    Cascant, Mari Merce; Rubio, Sonia; Gallello, Gianni; Pastor, Agustin; Garrigues, Salvador; De la Guardia, Miguel

    2017-01-01

    The use of near infrared (NIR) spectroscopy was evaluated, by using chemometric tools, for the study of the environmental impact on burned bones. Spectra of internal and external parts of burned bones, together with sediment samples, were treated by Principal Component Analysis and cluster classification as exploratory techniques to select burned bone samples, less affected by environmental processes, to properly carry out forensic studies. Partial Least Square Discriminant Analysis was used ...

  1. Predicting the ethanol potential of wheat straw using near-infrared spectroscopy and chemometrics

    Rinnan, Åsmund; Bruun, Sander; Lindedam, Jane

    2017-01-01

    of using near-infrared spectroscopy to evaluate the ethanol potential of wheat straw by analyzing more than 1000 samples from different wheat varieties and growth conditions. During the calibration model development, the prime emphasis was to investigate the correlation structure between the two major...

  2. Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy

    Boeriu, C.G.; Bravo, D.; Gosselink, R.J.A.; Dam, van J.E.G.

    2004-01-01

    Fourier-transformed infrared spectroscopy (FT-IR) was evaluated as an analytical technique for the estimation of the chemical composition and functional properties of lignin. A sample set containing various non-wood, hardwood and softwood lignins isolated by different processing technologies was

  3. Use of near infrared spectroscopy to measure the chemical and mechanical properties of solid wood

    Stephen S. Kelley; Timothy G. Rials; Rebecca Snell; Leslie H. Groom; Amie Sluiter

    2004-01-01

    Near infrared (NIR) spectroscopy (500 nm-2400 nm), coupled with multivariate analytic (MVA) statistical techniques, have been used to predict the chemical and mechanical properties of solid loblolly pine wood. The samples were selected from different radial locations and heights of three loblolly pine trees grown in Arkansas. The chemical composition and mechanical...

  4. Screening experiments of ecstasy street samples using near infrared spectroscopy.

    Sondermann, N; Kovar, K A

    1999-12-20

    Twelve different sets of confiscated ecstasy samples were analysed applying both near infrared spectroscopy in reflectance mode (1100-2500 nm) and high-performance liquid chromatography (HPLC). The sets showed a large variance in composition. A calibration data set was generated based on the theory of factorial designs. It contained 221 N-methyl-3,4-methylenedioxyamphetamine (MDMA) samples, 167 N-ethyl-3,4-methylenedioxyamphetamine (MDE), 111 amphetamine and 106 samples without a controlled substance, which will be called placebo samples thereafter. From this data set, PLS-1 models were calculated and were successfully applied for validation of various external laboratory test sets. The transferability of these results to confiscated tablets is demonstrated here. It is shown that differentiation into placebo, amphetamine and ecstasy samples is possible. Analysis of intact tablets is practicable. However, more reliable results are obtained from pulverised samples. This is due to ill-defined production procedures. The use of mathematically pretreated spectra improves the prediction quality of all the PLS-1 models studied. It is possible to improve discrimination between MDE and MDMA with the help of a second model based on raw spectra. Alternative strategies are briefly discussed.

  5. Prediction of tablets disintegration times using near-infrared diffuse reflectance spectroscopy as a nondestructive method.

    Donoso, M; Ghaly, Evone S

    2005-01-01

    The goals of this study are to user near-infrared reflectance (NIR) spectroscopy to measure the disintegration time of a series of tablets compacted at different compressional forces, calibrate NIR data vs. laboratory equipment data, develop a model equation, validate the model, and test the model's predictive ability. Seven theophylline tablet formulations of the same composition but with different disintegration time values (0.224, 1.141, 2.797, 5.492, 9.397, 16.8, and 30.092 min) were prepared along with five placebo tablet formulations with different disintegration times. Laboratory disintegration time was compared to near-infrared diffuse reflectance data. Linear regression, quadratic, cubic, and partial least square techniques were used to determine the relationship between disintegration time and near-infrared spectra. The results demonstrated that an increase in disintegration time produced an increase in near-infrared absorbance. Series of model equations, which depended on the mathematical technique used for regression, were developed from the calibration of disintegration time using laboratory equipment vs. the near-infrared diffuse reflectance for each formulation. The results of NIR disintegration time were similar to laboratory tests. The near-infrared diffuse reflectance spectroscopy method is an alternative nondestructive method for measurement of disintegration time of tablets.

  6. Chlorococcalean microalgae Ankistrodesmus convolutes biodiesel characterization with Fourier transform-infrared spectroscopy and gas chromatography mass spectroscopy techniques

    Swati SONAWANE

    2015-12-01

    Full Text Available The Chlorococcalean microalgae Ankistrodesmus convolutes was found in fresh water Godawari reservoir, Ahmednagar district of Maharashtra State, India. Microalgae are modern biomass for the production of liquid biofuel due to its high solar cultivation efficiency. The collection, harvesting and drying processes were play vital role in converting algal biomass into energy liquid fuel. The oil extraction was the important step for the biodiesel synthesis. The fatty acid methyl ester (FAME synthesis was carried through base catalyzed transesterification method. The product was analyzed by using the hyphened techniques like Fourier Transform-Infrared spectroscopy (FT-IR and Gas Chromatography Mass Spectroscopy (GCMS. FT-IR Spectroscopy was results the ester as functional group of obtained product while the Gas Chromatography Mass Spectroscopy was results the six type of fatty acid methyl ester with different concentration. Ankistrodesmus convolutes biodiesel consist of 46.5% saturated and 49.14% unsaturated FAME.

  7. Infrared Spectroscopy of Noh Suspended in Solid Parahydrogen: Part Two

    Balabanoff, Morgan E.; Mutunga, Fredrick M.; Anderson, David T.

    2015-06-01

    The only report in the literature on the infrared spectroscopy of the parent oxynitrene NOH was performed using Ar matrix isolation spectroscopy at 10 K. In this previous study, they performed detailed isotopic studies to make definitive vibrational assignments. NOH is predicted by high-level calculations to be in a triplet ground electronic state, but the Ar matrix isolation spectra cannot be used to verify this triplet assignment. In our 2013 preliminary report, we showed that 193 nm in situ photolysis of NO trapped in solid parahydrogen can also be used to prepare the NOH molecule. Over the ensuing two years we have been studying the infrared spectroscopy of this species in more detail. The spectra reveal that NOH can undergo hindered rotation in solid parahydrogen such that we can observe both a-type and b-type rovibrational transitions for the O-H stretch vibrational mode, but only a-type for the mode assigned to the bend. In addition, both observed a-type infrared absorption features (bend and OH stretch) display fine structure; an intense central peak with weaker peaks spaced symmetrically to both lower and higher wavenumbers. The spacing between the peaks is nearly identical for both vibrational modes. We now believe this fine structure is due to spin-rotation interactions and we will present a detailed analysis of this fine structure. Currently, we are performing additional experiments aimed at making 15NOH to test these preliminary assignments. The most recent data and up-to-date analysis will be presented in this talk. G. Maier, H. P. Reisenauer, M. De Marco, Angew. Chem. Int. Ed. 38, 108-110 (1999). U. Bozkaya, J. M. Turney, Y. Yamaguchi, and H. F. Schaefer III, J. Chem. Phys. 136, 164303 (2012). David T. Anderson and Mahmut Ruzi, 68th Ohio State University International Symposium on Molecular Spectroscopy, talk TE01 (2013).

  8. Fourier transform infrared spectroscopy for Kona coffee authentication.

    Wang, Jun; Jun, Soojin; Bittenbender, H C; Gautz, Loren; Li, Qing X

    2009-06-01

    Kona coffee, the variety of "Kona typica" grown in the north and south districts of Kona-Island, carries a unique stamp of the region of Big Island of Hawaii, U.S.A. The excellent quality of Kona coffee makes it among the best coffee products in the world. Fourier transform infrared (FTIR) spectroscopy integrated with an attenuated total reflectance (ATR) accessory and multivariate analysis was used for qualitative and quantitative analysis of ground and brewed Kona coffee and blends made with Kona coffee. The calibration set of Kona coffee consisted of 10 different blends of Kona-grown original coffee mixture from 14 different farms in Hawaii and a non-Kona-grown original coffee mixture from 3 different sampling sites in Hawaii. Derivative transformations (1st and 2nd), mathematical enhancements such as mean centering and variance scaling, multivariate regressions by partial least square (PLS), and principal components regression (PCR) were implemented to develop and enhance the calibration model. The calibration model was successfully validated using 9 synthetic blend sets of 100% Kona coffee mixture and its adulterant, 100% non-Kona coffee mixture. There were distinct peak variations of ground and brewed coffee blends in the spectral "fingerprint" region between 800 and 1900 cm(-1). The PLS-2nd derivative calibration model based on brewed Kona coffee with mean centering data processing showed the highest degree of accuracy with the lowest standard error of calibration value of 0.81 and the highest R(2) value of 0.999. The model was further validated by quantitative analysis of commercial Kona coffee blends. Results demonstrate that FTIR can be a rapid alternative to authenticate Kona coffee, which only needs very quick and simple sample preparations.

  9. Can infrared spectroscopy provide information on protein-protein interactions?

    Haris, Parvez I

    2010-08-01

    For most biophysical techniques, characterization of protein-protein interactions is challenging; this is especially true with methods that rely on a physical phenomenon that is common to both of the interacting proteins. Thus, for example, in IR spectroscopy, the carbonyl vibration (1600-1700 cm(-1)) associated with the amide bonds from both of the interacting proteins will overlap extensively, making the interpretation of spectral changes very complicated. Isotope-edited infrared spectroscopy, where one of the interacting proteins is uniformly labelled with (13)C or (13)C,(15)N has been introduced as a solution to this problem, enabling the study of protein-protein interactions using IR spectroscopy. The large shift of the amide I band (approx. 45 cm(-1) towards lower frequency) upon (13)C labelling of one of the proteins reveals the amide I band of the unlabelled protein, enabling it to be used as a probe for monitoring conformational changes. With site-specific isotopic labelling, structural resolution at the level of individual amino acid residues can be achieved. Furthermore, the ability to record IR spectra of proteins in diverse environments means that isotope-edited IR spectroscopy can be used to structurally characterize difficult systems such as protein-protein complexes bound to membranes or large insoluble peptide/protein aggregates. In the present article, examples of application of isotope-edited IR spectroscopy for studying protein-protein interactions are provided.

  10. Fourier Transform Infrared Spectroscopy (FTIR) as a Tool for the Identification and Differentiation of Pathogenic Bacteria.

    Zarnowiec, Paulina; Lechowicz, Łukasz; Czerwonka, Grzegorz; Kaca, Wiesław

    2015-01-01

    Methods of human bacterial pathogen identification need to be fast, reliable, inexpensive, and time efficient. These requirements may be met by vibrational spectroscopic techniques. The method that is most often used for bacterial detection and identification is Fourier transform infrared spectroscopy (FTIR). It enables biochemical scans of whole bacterial cells or parts thereof at infrared frequencies (4,000-600 cm(-1)). The recorded spectra must be subsequently transformed in order to minimize data variability and to amplify the chemically-based spectral differences in order to facilitate spectra interpretation and analysis. In the next step, the transformed spectra are analyzed by data reduction tools, regression techniques, and classification methods. Chemometric analysis of FTIR spectra is a basic technique for discriminating between bacteria at the genus, species, and clonal levels. Examples of bacterial pathogen identification and methods of differentiation up to the clonal level, based on infrared spectroscopy, are presented below.

  11. Photoacoustic-based detector for infrared laser spectroscopy

    Scholz, L.; Palzer, S., E-mail: stefan.palzer@imtek.uni-freiburg.de [Department of Microsystems Engineering-IMTEK, Laboratory for Gas Sensors, University of Freiburg, Georges-Köhler-Allee 102, Freiburg 79110 (Germany)

    2016-07-25

    In this contribution, we present an alternative detector technology for use in direct absorption spectroscopy setups. Instead of a semiconductor based detector, we use the photoacoustic effect to gauge the light intensity. To this end, the target gas species is hermetically sealed under excess pressure inside a miniature cell along with a MEMS microphone. Optical access to the cell is provided by a quartz window. The approach is particularly suitable for tunable diode laser spectroscopy in the mid-infrared range, where numerous molecules exhibit large absorption cross sections. Moreover, a frequency standard is integrated into the method since the number density and pressure inside the cell are constant. We demonstrate that the information extracted by our method is at least equivalent to that achieved using a semiconductor-based photon detector. As exemplary and highly relevant target gas, we have performed direct spectroscopy of methane at the R3-line of the 2v{sub 3} band at 6046.95 cm{sup −1} using both detector technologies in parallel. The results may be transferred to other infrared-active transitions without loss of generality.

  12. Surface enhanced infrared spectroscopy using interacting gold nanowires

    Neubrech, Frank; Weber, Daniel; Pucci, Annemarie [Kirchhoff-Institut fuer Physik, Heidelberg (Germany); Shen, Hong [Universite Troyes, Troyes (France); Lamy de la Chapelle, Marc [Universite Paris 13, Bobigny (France)

    2009-07-01

    We performed surface enhanced infrared spectroscopy (SEIRS) of molecules adsorbed on gold nanowires using synchrotron light of the ANKA IR-beamline at the Forschungszentrum Karlsruhe (Germany). Arrays of gold nanowires with interparticle spacings down to 30nm were prepared by electron beam lithography. The interparticle distance was reduced further by wet-chemically increasing the size of the gold nanowires. The growth of the wires was proofed using IR spectroscopy as well as scanning electron microscopy. After this preparation step, appropriate arrays of nanowires with an interparticle distance down to a few nanometers were selected to demonstrate the surface enhanced infrared spectroscopy of one monolayer octadecanthiol (ODT). As know from SEIRS studies using single gold nanowires, the spectral position of the antenna-like resonance in relation to the absorption bands of ODT (2850cm-1 and 2919cm-1) is crucial for both, the lineshape of the molecular vibration and the signal enhancement. In contrast to single nanowires studies, a further increase of the enhanced signals is expected due to the interaction of the electromagnetic fields of the close-by nanowires.

  13. Equal prefrontal cortex activation between males and females in a motor tasks and different visual imagery perspectives: a functional near-infrared spectroscopy (fNIRS study

    Thiago F. Dias Kanthack

    2013-09-01

    Full Text Available The purpose of this study was to compare the prefrontal cortex (PFC blood flow variation and time on in males and females while performing a motor task and imagery perspectives. Eighteen right handed subjects (11 males and 7 females were volunteers to this study. All subjects went through three randomly conditions, a motor task condition (MT in which they had to do a simple finger tap. The other conditions included practicing imagery in first and third views. During all the conditions, the fNIRS device was attached to the subject forehead to obtain the blood flow; the total time in each task which was measured with a chronometer. No difference had been found in any condition for both sexes in the PFC and time, nor for all subjects integrated in the PFC. Therefore, we conclu-de that both imageries can be used to mentally train a motor task, and probably both sexes can be benefited.

  14. Far-infrared spectroscopy of thermally annealed tungsten silicide films

    Amiotti, M.; Borghesi, A.; Guizzetti, G.; Nava, F.; Santoro, G.

    1991-01-01

    The far-infrared transmittance spectrum of tungsten silicide has been observed for the first time. WSi 2 polycrystalline films were prepared by coevaporation and chemical-vapour deposition on silicon wafers, and subsequently thermally annealed at different temperatures. The observed structures are interpreted, on the basis of the symmetry properties of the crystal, such as infrared-active vibrational modes. Moreover, the marked lineshape dependence on annealing temperature enables this technique to analyse the formation of the solid silicide phases

  15. Implanted near-infrared spectroscopy for cardiac monitoring

    Bhunia, Sourav K.; Cinbis, Can

    2011-02-01

    Implanted Cardioverter Defibrillator (ICD) provides one of the most effective therapies for the prevention of sudden cardiac death, but also delivers some high voltage shocks inappropriately, causing morbidity and mortality. Implanted near-infrared spectroscopy (NIRS) may augment ICD arrhythmia detection by monitoring skeletal muscle perfusion. A two-wavelength, single-distance, continuous-wave implanted NIRS has been evaluated in-vivo. A weighted difference of the changes in attenuation at two wavelengths, across the isobestic point of the hemoglobin spectra, was taken to be the microvascular oxygenation trend indicator (O2 Index). Although the exact weight depends on the local vascular distribution and their oxygen levels, the hypothesis that a constant weight may be adequate for hemodynamic trending during short arrhythmic episodes, was tested. The sensor was implanted subcutaneously both on fresh tissue and inside scar tissue that formed around a pre-existing implant, in 3 animals each. Attenuations were recorded at 660 and 890 nm during normal sinus rhythm (NSR) and induced ventricular fibrillation (VF). The slope of the O2 Index over 10 seconds was computed for 7 NSR and 8 VF episodes in fresh and 13 NSR and 15 VF episodes in scar tissue pockets. The mean O2 Index slope was significantly different (p<0.0001) between NSR and VF rhythms for both the fresh and scar tissue pockets. Therefore implanted NIRS may be useful for preventing inappropriate detection of VF during electromagnetic interference, double counting of ECG T-wave as an R-wave, ICD lead failure, electrocardiographic aberrancy etc.

  16. Vibrational Spectroscopy of Intramolecular Hydrogen Bonds in the Infrared and Near-Infrared Regions

    Schrøder, Sidsel Dahl

    and 1,4-diaminobutane). Experimentally, the hydrogen bonds have been studied with vibrational spectroscopy in the infrared and near-infrared regions. The focus is primarily on spectra recorded in the near-infrared regions, which in these studies are dominated by O-H and N-H stretching overtones....... Overtone spectra have been recorded with intracavity laser photoacoustic laser spectroscopy and conventional long path absorption spectroscopy. Theoretically, a combination of electronic structure calculations and local mode models have been employed to guide the assignment of bands in the vibrational......,4-diaminobutane, no sign of intramolecular N-H···N hydrogen bonds were identified in the overtone spectra. However, theoretical analyzes indicate that intramolecular N-H···N hydrogen bonds are present in all three diamines if two hydrogen atoms on one of the methylene groups are substituted with triuoromethyl...

  17. Functional Near Infrared Spectroscopy: Enabling Routine Functional Brain Imaging.

    Yücel, Meryem A; Selb, Juliette J; Huppert, Theodore J; Franceschini, Maria Angela; Boas, David A

    2017-12-01

    Functional Near-Infrared Spectroscopy (fNIRS) maps human brain function by measuring and imaging local changes in hemoglobin concentrations in the brain that arise from the modulation of cerebral blood flow and oxygen metabolism by neural activity. Since its advent over 20 years ago, researchers have exploited and continuously advanced the ability of near infrared light to penetrate through the scalp and skull in order to non-invasively monitor changes in cerebral hemoglobin concentrations that reflect brain activity. We review recent advances in signal processing and hardware that significantly improve the capabilities of fNIRS by reducing the impact of confounding signals to improve statistical robustness of the brain signals and by enhancing the density, spatial coverage, and wearability of measuring devices respectively. We then summarize the application areas that are experiencing rapid growth as fNIRS begins to enable routine functional brain imaging.

  18. Neuroimaging with functional near infrared spectroscopy: From formation to interpretation

    Herrera-Vega, Javier; Treviño-Palacios, Carlos G.; Orihuela-Espina, Felipe

    2017-09-01

    Functional Near Infrared Spectroscopy (fNIRS) is gaining momentum as a functional neuroimaging modality to investigate the cerebral hemodynamics subsequent to neural metabolism. As other neuroimaging modalities, it is neuroscience's tool to understand brain systems functions at behaviour and cognitive levels. To extract useful knowledge from functional neuroimages it is critical to understand the series of transformations applied during the process of the information retrieval and how they bound the interpretation. This process starts with the irradiation of the head tissues with infrared light to obtain the raw neuroimage and proceeds with computational and statistical analysis revealing hidden associations between pixels intensities and neural activity encoded to end up with the explanation of some particular aspect regarding brain function.To comprehend the overall process involved in fNIRS there is extensive literature addressing each individual step separately. This paper overviews the complete transformation sequence through image formation, reconstruction and analysis to provide an insight of the final functional interpretation.

  19. Near-infrared spectroscopy. Innovative technology summary report

    1999-07-01

    A near-infrared (NIR) spectroscopy system with a remote fiber-optic probe was developed and demonstrated to measure the water content of high-level radioactive wastes from the underground storage tanks at the Hanford Site in richland Washington. The technology was developed as a cost-effective and safer alternative to the thermogravimetric analysis (TGA) technique in use as the baseline. This work was supported by the Tanks Focus Area (TFA) within the Department of Energy's (DOE) Office of Science and Technology (OST) in cooperation with the Hanford Tank Waste Remediation System (TWRS) Program

  20. Optical characterization of semiconductors infrared, Raman, and photoluminescence spectroscopy

    Perkowitz, Sidney

    1993-01-01

    This is the first book to explain, illustrate, and compare the most widely used methods in optics: photoluminescence, infrared spectroscopy, and Raman scattering. Written with non-experts in mind, the book develops the background needed to understand the why and how of each technique, but does not require special knowledge of semiconductors or optics. Each method is illustrated with numerous case studies. Practical information drawn from the authors experience is given to help establish optical facilities, including commercial sources for equipment, and experimental details. For industrial sci

  1. Exploring process dynamics by near infrared spectroscopy in lactic fermentations

    Svendsen, Carina; Cieplak, Tomasz; van der Berg, Franciscus Winfried J

    2016-01-01

    In the industrial production of yoghurt, measurement of pH is normally the only in-line technique applied as a real-time monitoring signalfor following the dynamics during the fermentation process. However, every dairy company would benefit from an in-line technique giving information about...... the chemical composition, physical/textural properties and/or microbial contamination. In this study lactic fermentation batches with the starter bacteria Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus are explored by in-line near infrared (NIR) spectroscopy. The dynamics obtained...

  2. Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy

    Nader, Nima; Maser, Daniel L.; Cruz, Flavio C.; Kowligy, Abijith; Timmers, Henry; Chiles, Jeff; Fredrick, Connor; Westly, Daron A.; Nam, Sae Woo; Mirin, Richard P.; Shainline, Jeffrey M.; Diddams, Scott

    2018-03-01

    Laser frequency combs, with their unique combination of precisely defined spectral lines and broad bandwidth, are a powerful tool for basic and applied spectroscopy. Here, we report offset-free, mid-infrared frequency combs and dual-comb spectroscopy through supercontinuum generation in silicon-on-sapphire waveguides. We leverage robust fabrication and geometrical dispersion engineering of nanophotonic waveguides for multi-band, coherent frequency combs spanning 70 THz in the mid-infrared (2.5 μm-6.2 μm). Precise waveguide fabrication provides significant spectral broadening with engineered spectra targeted at specific mid-infrared bands. We characterize the relative-intensity-noise of different bands and show that the measured levels do not pose any limitation for spectroscopy applications. Additionally, we use the fabricated photonic devices to demonstrate dual-comb spectroscopy of a carbonyl sulfide gas sample at 5 μm. This work forms the technological basis for applications such as point sensors for fundamental spectroscopy, atmospheric chemistry, trace and hazardous gas detection, and biological microscopy.

  3. Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy

    Nima Nader

    2018-03-01

    Full Text Available Laser frequency combs, with their unique combination of precisely defined spectral lines and broad bandwidth, are a powerful tool for basic and applied spectroscopy. Here, we report offset-free, mid-infrared frequency combs and dual-comb spectroscopy through supercontinuum generation in silicon-on-sapphire waveguides. We leverage robust fabrication and geometrical dispersion engineering of nanophotonic waveguides for multi-band, coherent frequency combs spanning 70 THz in the mid-infrared (2.5 μm–6.2 μm. Precise waveguide fabrication provides significant spectral broadening with engineered spectra targeted at specific mid-infrared bands. We characterize the relative-intensity-noise of different bands and show that the measured levels do not pose any limitation for spectroscopy applications. Additionally, we use the fabricated photonic devices to demonstrate dual-comb spectroscopy of a carbonyl sulfide gas sample at 5 μm. This work forms the technological basis for applications such as point sensors for fundamental spectroscopy, atmospheric chemistry, trace and hazardous gas detection, and biological microscopy.

  4. Predicting rapeseed oil content with near-infrared spectroscopy

    Roberta Rossato

    2013-12-01

    Full Text Available The objective of this work was to establish a calibration equation and to estimate the efficiency of near-infrared reflectance (NIR spectroscopy for evaluating rapeseed oil content in Southern Brazil. Spectral data from 124 half-sib families were correlated with oil contents determined by the chemical method. The accuracy of the equation was verified by coefficient of determination (R² of 0.92, error of calibration (SEC of 0.78, and error of performance (SEP of 1.22. The oil content of ten genotypes, which were not included in the calibration with NIR, was similar to the one obtained by the standard chemical method. NIR spectroscopy is adequate to differentiate oil content of rapeseed genotypes.

  5. Gum Arabic authentication and mixture quantification by near infrared spectroscopy

    Dong, Yongjiang; Sørensen, Klavs Martin; He, Sailing

    2017-01-01

    A rapid and reliable method is developed for Gum Arabic authentication based on Near Infrared (NIR) spectroscopy and chemometric methods. On a large industrial collection of authentic gum Arabics, the two major Acacia gum species, Acacia senegal and Acacia seyal could be assigned perfectly...... by the NIR spectroscopic method. In addition, a partial least squares (PLS) regression model is calibrated to predict the blending percentage of the two pure gum types, producing an accuracy, root mean square error of cross validation (RMSECV) of 2.8%. Sampling of the Gum Arabic ‘tears’ is discussed......, and it was determined that subsamples from three ‘tears’ is required for a representative result. It is concluded that NIR spectroscopy is a very powerful and reliable method for authenticity testing of Gum Arabic species....

  6. Near infrared spectroscopy in the development of solid dosage forms.

    Räsänen, Eetu; Sandler, Niklas

    2007-02-01

    The use of near infrared (NIR) spectroscopy has rapidly grown partly due to demands of process analytical applications in the pharmaceutical industry. Furthermore, newest regulatory guidelines have advanced the increase of the use of NIR technologies. The non-destructive and non-invasive nature of measurements makes NIR a powerful tool in characterization of pharmaceutical solids. These benefits among others often make NIR advantageous over traditional analytical methods. However, in addition to NIR, a wide variety of other tools are naturally also available for analysis in pharmaceutical development and manufacturing, and those can often be more suitable for a given application. The versatility and rapidness of NIR will ensure its contribution to increased process understanding, better process control and improved quality of drug products. This review concentrates on the use of NIR spectroscopy from a process research perspective and highlights recent applications in the field.

  7. Species authentication and geographical origin discrimination of herbal medicines by near infrared spectroscopy: A review

    Wang, Pei; Yu, Zhiguo

    2015-01-01

    Near infrared (NIR) spectroscopy as a rapid and nondestructive analytical technique, integrated with chemometrics, is a powerful process analytical tool for the pharmaceutical industry and is becoming an attractive complementary technique for herbal medicine analysis. This review mainly focuses on the recent applications of NIR spectroscopy in species authentication of herbal medicines and their geographical origin discrimination. Keywords: Near infrared spectroscopy, Herbal medicine, Species...

  8. Near-infrared laboratory spectroscopy of mineral chemistry: A review

    Meer, Freek van der

    2018-03-01

    Spectroscopy is the science concerned with the investigation and measurement of spectra produced when materials interacts with or emits electromagnetic radiation. Commercial infrared spectrometer were designed from the 1950's onward and found their way into the pharmaceutical and chemical industries. In the 1970's and 1980's also natural sciences notably mineralogy and vegetation science started systematically to measure optical properties of leaves and minerals/rocks with spectrometers. In the last decade spectroscopy has made the step from qualitative observations of mineral classes, soil type and vegetation biomass to quantitative estimates of mineral, soil and vegetation chemistry. This resulted in geothermometers used to characterize metamorphic and hydrothermal systems and to the advent of foliar biochemistry. More research is still needed to bridge the gap between laboratory spectroscopy and field spectroscopy. Empirical studies of minerals either as soil or rock constituents (and vegetation parameters) derived from regression analysis of spectra against chemistry is important in understanding the physics of the interaction of electromagnetic radiation and matter which in turn is important in the design of future satellite missions. Physics based models and retrievals are needed to operationalize these relationships and implement them in future earth observation missions as these are more robust and easy to transfer to other areas and data sets.

  9. Multivariate Calibration Models for Sorghum Composition using Near-Infrared Spectroscopy

    Wolfrum, E.; Payne, C.; Stefaniak, T.; Rooney, W.; Dighe, N.; Bean, B.; Dahlberg, J.

    2013-03-01

    NREL developed calibration models based on near-infrared (NIR) spectroscopy coupled with multivariate statistics to predict compositional properties relevant to cellulosic biofuels production for a variety of sorghum cultivars. A robust calibration population was developed in an iterative fashion. The quality of models developed using the same sample geometry on two different types of NIR spectrometers and two different sample geometries on the same spectrometer did not vary greatly.

  10. Far-infrared spectroscopy of lanthanide-based molecular magnetic materials

    Haas, Sabrina

    2015-05-13

    This thesis demonstrates the applicability of far-infrared spectroscopy for the study of the crystal-field splitting of lanthanides in single-molecular magnetic materials. The far-infrared studies of three different kinds of single-molecular-magnetic materials, a single-ion magnet, a single-chain magnet and an exchange-coupled cluster, yielded a deeper understanding of the crystal-field splitting of the lanthanides in these materials. In addition, our results offered the opportunity to gain a deeper insight into the relaxation processes of these materials.

  11. Characterizing aeroallergens by infrared spectroscopy of fungal spores and pollen.

    Boris Zimmermann

    Full Text Available Fungal spores and plant pollen cause respiratory diseases in susceptible individuals, such as asthma, allergic rhinitis and hypersensitivity pneumonitis. Aeroallergen monitoring networks are an important part of treatment strategies, but unfortunately traditional analysis is time consuming and expensive. We have explored the use of infrared spectroscopy of pollen and spores for an inexpensive and rapid characterization of aeroallergens.The study is based on measurement of spore and pollen samples by single reflectance attenuated total reflectance Fourier transform infrared spectroscopy (SR-ATR FTIR. The experimental set includes 71 spore (Basidiomycota and 121 pollen (Pinales, Fagales and Poales samples. Along with fresh basidiospores, the study has been conducted on the archived samples collected within the last 50 years.The spectroscopic-based methodology enables clear spectral differentiation between pollen and spores, as well as the separation of confamiliar and congeneric species. In addition, the analysis of the scattering signals inherent in the infrared spectra indicates that the FTIR methodology offers indirect estimation of morphology of pollen and spores. The analysis of fresh and archived spores shows that chemical composition of spores is well preserved even after decades of storage, including the characteristic taxonomy-related signals. Therefore, biochemical analysis of fungal spores by FTIR could provide economical, reliable and timely methodologies for improving fungal taxonomy, as well as for fungal identification and monitoring. This proof of principle study shows the potential for using FTIR as a rapid tool in aeroallergen studies. In addition, the presented method is ready to be immediately implemented in biological and ecological studies for direct measurement of pollen and spores from flowers and sporocarps.

  12. Fringes in FTIR spectroscopy revisited: understanding and modelling fringes in infrared spectroscopy of thin films.

    Konevskikh, Tatiana; Ponossov, Arkadi; Blümel, Reinhold; Lukacs, Rozalia; Kohler, Achim

    2015-06-21

    The appearance of fringes in the infrared spectroscopy of thin films seriously hinders the interpretation of chemical bands because fringes change the relative peak heights of chemical spectral bands. Thus, for the correct interpretation of chemical absorption bands, physical properties need to be separated from chemical characteristics. In the paper at hand we revisit the theory of the scattering of infrared radiation at thin absorbing films. Although, in general, scattering and absorption are connected by a complex refractive index, we show that for the scattering of infrared radiation at thin biological films, fringes and chemical absorbance can in good approximation be treated as additive. We further introduce a model-based pre-processing technique for separating fringes from chemical absorbance by extended multiplicative signal correction (EMSC). The technique is validated by simulated and experimental FTIR spectra. It is further shown that EMSC, as opposed to other suggested filtering methods for the removal of fringes, does not remove information related to chemical absorption.

  13. Advances in Contactless Silicon Defect and Impurity Diagnostics Based on Lifetime Spectroscopy and Infrared Imaging

    Jan Schmidt

    2007-01-01

    Full Text Available This paper gives a review of some recent developments in the field of contactless silicon wafer characterization techniques based on lifetime spectroscopy and infrared imaging. In the first part of the contribution, we outline the status of different lifetime spectroscopy approaches suitable for the identification of impurities in silicon and discuss—in more detail—the technique of temperature- and injection-dependent lifetime spectroscopy. The second part of the paper focuses on the application of infrared cameras to analyze spatial inhomogeneities in silicon wafers. By measuring the infrared signal absorbed or emitted from light-generated free excess carriers, high-resolution recombination lifetime mappings can be generated within seconds to minutes. In addition, mappings of non-recombination-active trapping centers can be deduced from injection-dependent infrared lifetime images. The trap density has been demonstrated to be an important additional parameter in the characterization and assessment of solar-grade multicrystalline silicon wafers, as areas of increased trap density tend to deteriorate during solar cell processing.

  14. Electrochemical and Infrared Absorption Spectroscopy Detection of SF₆ Decomposition Products.

    Dong, Ming; Zhang, Chongxing; Ren, Ming; Albarracín, Ricardo; Ye, Rixin

    2017-11-15

    Sulfur hexafluoride (SF₆) gas-insulated electrical equipment is widely used in high-voltage (HV) and extra-high-voltage (EHV) power systems. Partial discharge (PD) and local heating can occur in the electrical equipment because of insulation faults, which results in SF₆ decomposition and ultimately generates several types of decomposition products. These SF₆ decomposition products can be qualitatively and quantitatively detected with relevant detection methods, and such detection contributes to diagnosing the internal faults and evaluating the security risks of the equipment. At present, multiple detection methods exist for analyzing the SF₆ decomposition products, and electrochemical sensing (ES) and infrared (IR) spectroscopy are well suited for application in online detection. In this study, the combination of ES with IR spectroscopy is used to detect SF₆ gas decomposition. First, the characteristics of these two detection methods are studied, and the data analysis matrix is established. Then, a qualitative and quantitative analysis ES-IR model is established by adopting a two-step approach. A SF₆ decomposition detector is designed and manufactured by combining an electrochemical sensor and IR spectroscopy technology. The detector is used to detect SF₆ gas decomposition and is verified to reliably and accurately detect the gas components and concentrations.

  15. Assessment of hyaline cartilage matrix composition using near infrared spectroscopy.

    Palukuru, Uday P; McGoverin, Cushla M; Pleshko, Nancy

    2014-09-01

    Changes in the composition of the extracellular matrix (ECM) are characteristic of injury or disease in cartilage tissue. Various imaging modalities and biochemical techniques have been used to assess the changes in cartilage tissue but lack adequate sensitivity, or in the case of biochemical techniques, result in destruction of the sample. Fourier transform near infrared (FT-NIR) spectroscopy has shown promise for the study of cartilage composition. In the current study NIR spectroscopy was used to identify the contributions of individual components of cartilage in the NIR spectra by assessment of the major cartilage components, collagen and chondroitin sulfate, in pure component mixtures. The NIR spectra were obtained using homogenous pellets made by dilution with potassium bromide. A partial least squares (PLS) model was calculated to predict composition in bovine cartilage samples. Characteristic absorbance peaks between 4000 and 5000 cm(-1) could be attributed to components of cartilage, i.e. collagen and chondroitin sulfate. Prediction of the amount of collagen and chondroitin sulfate in tissues was possible within 8% (w/dw) of values obtained by gold standard biochemical assessment. These results support the use of NIR spectroscopy for in vitro and in vivo applications to assess matrix composition of cartilage tissues, especially when tissue destruction should be avoided. Copyright © 2014. Published by Elsevier B.V.

  16. Bio-analytical applications of mid-infrared spectroscopy using silver halide fiber-optic probes

    Heise, H.M.; Kuepper, L.; Butvina, L.N.

    2002-01-01

    Infrared-spectroscopy has proved to be a powerful method for the study of various biomedical samples, in particular for in-vitro analysis in the clinical laboratory and for non-invasive diagnostics. In general, the analysis of biofluids such as whole blood, urine, microdialysates and bioreactor broth media takes advantage of the fact that a multitude of analytes can be quantified simultaneously and rapidly without the need for reagents. Progress in the quality of infrared silver halide fibers enabled us to construct several flexible fiber-optic probes of different geometries, which are particularly suitable for the measurement of small biosamples. Recent trends show that dry film measurements by mid-infrared spectroscopy could revolutionize analytical tools in the clinical chemistry laboratory, and an example is given. Infrared diagnostic tools show a promising potential for patients, and minimal-invasive blood glucose assays or skin tissue pathology in particular cannot be left out using mid-infrared fiber-based probes. Other applications include the measurement of skin samples including penetration studies of vitamins and constituents of cosmetic cream formulations. A further field is the micro-domain analysis of biopsy samples from bog mummified corpses, and recent results on the chemistry of dermis and hair samples are reported. Another field of application, for which results are reported, is food analysis and bio-reactor monitoring

  17. Characterization of Modified and Polymer Coated Alumina Surfaces by Infrared Spectroscopy

    Ashraf Yehia El-Naggar

    2013-01-01

    Full Text Available The prepared, modified, and coated alumina surfaces were characterized by infrared spectroscopy (FTIR to investigate the surface properties of the individual and double modified samples. FTIR helps in reporting the changes occurred in hydroxyl groups as well as the structure changes as a result of thermal treating, hydrothermal treating, silylation treating, alkali metal treating, coating, and bonding with polymer. FTIR spectroscopy represents the strength and abundance of surface acidic OH which determine the adsorption properties of polar and nonpolar sorbents. Generally, all treated samples exhibit decrease of OH groups compared with those of parent ones producing alumina surfaces of different adsorptive powers.

  18. Disposable attenuated total reflection-infrared crystals from silicon wafer: a versatile approach to surface infrared spectroscopy.

    Karabudak, Engin; Kas, Recep; Ogieglo, Wojciech; Rafieian, Damon; Schlautmann, Stefan; Lammertink, R G H; Gardeniers, Han J G E; Mul, Guido

    2013-01-02

    Attenuated total reflection-infrared (ATR-IR) spectroscopy is increasingly used to characterize solids and liquids as well as (catalytic) chemical conversion. Here we demonstrate that a piece of silicon wafer cut by a dicing machine or cleaved manually can be used as disposable internal reflection element (IRE) without the need for polishing and laborious edge preparation. Technical aspects, fundamental differences, and pros and cons of these novel disposable IREs and commercial IREs are discussed. The use of a crystal (the Si wafer) in a disposable manner enables simultaneous preparation and analysis of substrates and application of ATR spectroscopy in high temperature processes that may lead to irreversible interaction between the crystal and the substrate. As representative application examples, the disposable IREs were used to study high temperature thermal decomposition and chemical changes of polyvinyl alcohol (PVA) in a titania (TiO(2)) matrix and assemblies of 65-450 nm thick polystyrene (PS) films.

  19. Near-infrared spectroscopy (NIRS) in a piglet model

    Clausen, Nicola Groes; Spielmann, Nelly; Ringer, Simone K.

    2017-01-01

    Near-infrared spectroscopy (NIRS) in a piglet model: readings are influenced by the colour of the cover Clausen NG1,2, Spielmann N1,3, Weiss M1,3, Ringer SK4 1Children’s Research Center, University Children’s Hospital of Zurich, Switzerland; 2Department of Anaesthesiology and Intensive Care, Odense....... The rSO2 was measured by placing NIRS sensors in the supra glabellar region. In 12 animals sensors were covered with a uni-coloured pink (P) napkin and a turquoise (T) napkin in a random order (Setting A). In further 13 animals sensors were covered with blue-coloured surgical drape (SD) and a napkin...... with a reddish SantaClaus (SC) motive (Setting B). Uncovered (UC) baseline values were captured and measurements obtained for a period of three minutes. During measurements, the animals were kept in normoterm, normotensive, normoglycaemic and normoxic condition. Inspired oxygen fraction and ventilatory settings...

  20. Measuring protein dynamics with ultrafast two-dimensional infrared spectroscopy

    Adamczyk, Katrin; Candelaresi, Marco; Hunt, Neil T; Robb, Kirsty; Hoskisson, Paul A; Tucker, Nicholas P; Gumiero, Andrea; Walsh, Martin A; Parker, Anthony W

    2012-01-01

    Recent advances in the methodology and application of ultrafast two-dimensional infrared (2D-IR) spectroscopy to biomolecular systems are reviewed. A description of the 2D-IR technique and the molecular contributions to the observed spectra are presented followed by a discussion of recent literature relating to the use of 2D-IR and associated approaches for measuring protein dynamics. In particular, these include the use of diatomic ligand groups for measuring haem protein dynamics, isotopic labelling strategies and the use of vibrational probe groups. The final section reports on the current state of the art regarding the use of 2D-IR methods to provide insights into biological reaction mechanisms. (topical review)

  1. Demonstration of a Fast, Precise Propane Measurement Using Infrared Spectroscopy

    Zahniser, M. S.; Roscioli, J. R.; Nelson, D. D.; Herndon, S. C.

    2016-12-01

    Propane is one of the primary components of emissions from natural gas extraction and processing activities. In addition to being an air pollutant, its ratio to other hydrocarbons such as methane and ethane can serve as a "fingerprint" of a particular facility or process, aiding in identifying emission sources. Quantifying propane has typically required laboratory analysis of flask samples, resulting in low temporal resolution and making plume-based measurements infeasible. Here we demonstrate fast (1-second), high precision (infrared spectroscopy at 2967 wavenumbers. In addition, we explore the impact of nearby water and ethane absorption lines on the accuracy and precision of the propane measurement. Finally, we discuss development of a dual-laser instrument capable of simultaneous measurements of methane, ethane, and propane (the C1-C3 compounds), all within a small spatial package that can be easily deployed aboard a mobile platform.

  2. A rheumatoid arthritis study by Fourier transform infrared spectroscopy

    Carvalho, Carolina S.; Silva, Ana Carla A.; Santos, Tatiano J. P. S.; Martin, Airton A.; dos Santos Fernandes, Ana Célia; Andrade, Luís E.; Raniero, Leandro

    2012-01-01

    Rheumatoid arthritis is a systemic inflammatory disease of unknown causes and a new methods to identify it in early stages are needed. The main purpose of this work is the biochemical differentiation of sera between normal and RA patients, through the establishment of a statistical method that can be appropriately used for serological analysis. The human sera from 39 healthy donors and 39 rheumatics donors were collected and analyzed by Fourier Transform Infrared Spectroscopy. The results show significant spectral variations with p<0.05 in regions corresponding to protein, lipids and immunoglobulins. The technique of latex particles, coated with human IgG and monoclonal anti-CRP by indirect agglutination known as FR and CRP, was performed to confirm possible false-negative results within the groups, facilitating the statistical interpretation and validation of the technique.

  3. Infrared spectroscopy for monitoring gas hydrates in aqueous solution

    Dobbs, G.T.; Luzinova, Y.; Mizaikoff, B. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Chemistry and Biochemistry; Raichlin, Y.; Katzir, A. [Tel-Aviv Univ., Tel-Aviv (Israel). Shool of Physics and Astronomy

    2008-07-01

    This paper introduced the first principles for monitoring gas hydrate formation and dissociation in aqueous solution by evaluating state-responsive infrared (IR) absorption features of water with fiberoptic evanescent field spectroscopy. A first order linear functional relationship was also derived according to Lambert Beer's law in order to quantify the percentage gas hydrate within the volume of water probed via the evanescent field. In addition, spectroscopic studies evaluating seafloor sediments collected from a gas hydrate site in the Gulf of Mexico revealed minimal spectral interferences from sediment matrix components. As such, evanescent field sensing strategies were established as a promising perspective for monitoring the dynamics of gas hydrates in oceanic environments. 21 refs., 5 figs.

  4. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals

    Curl, Robert F; Glass, Graham

    2004-11-01

    This research was directed at the detection, monitoring, and study of the chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. Work on the reaction of OH with acetaldehyde has been completed and published and work on the reaction of O({sup 1}D) with CH{sub 4} has been completed and submitted for publication. In the course of our investigation of branching ratios of the reactions of O({sup 1}D) with acetaldehyde and methane, we discovered that hot atom chemistry effects are not negligible at the gas pressures (13 Torr) initially used. Branching ratios of the reaction of O({sup 1}D) with CH{sub 4} have been measured at a tenfold higher He flow and fivefold higher pressure.

  5. Infrared spectroscopy of self-assembled monolayer films on silicon

    Rowell, N. L.; Tay, Lilin; Boukherroub, R.; Lockwood, D. J.

    2007-07-01

    Infrared vibrational spectroscopy in an attenuated total reflection (ATR) geometry has been employed to investigate the presence of organic thin layers on Si-wafer surfaces. The phenomena have been simulated to show there can be a field enhancement with the presented single-reflection ATR (SR-ATR) approach which is substantially larger than for conventional ATR or specular reflection. In SR-ATR, a discontinuity of the field normal to the film contributes a field enhancement in the lower index thin film causing a two order of magnitude increase in sensitivity. SR-ATR was employed to characterize a single monolayer of undecylenic acid self-assembled on Si(1 1 1) and to investigate a two monolayer system obtained by adding a monolayer of bovine serum albumin protein.

  6. Brain plasticity and rehabilitation by using Near-Infrared Spectroscopy

    Balconi Michela

    2016-04-01

    Full Text Available The present review elucidated the use of optical imaging technique (Near-Infrared Spectroscopy, NIRS to better explain the brain plasticity for learning mechanisms, rehabilitation and post-traumatic brain recovery. Some recent applications were discussed, with specific focus on the usability of integrated measures (such as electroencephalography, EEG-NIRS; Transcranial Magnet Stimulation, TMS-NIRS to study plasticity and its dynamic effects. NIRS-Neurofeedback and NIRS-BCI (Brain Computer Interface were also explored as possible tools to produce a specific long-lasting learning in relationship with a specific cognitive domain. Finally a proficient domain where NIRS was found to be useful to test neuroplasticity is the interpersonal brain-to-brain coupling, termed “hyperscanning”, a new emerging paradigm in neuroscience which measures brain activity from two or more people simultaneously.

  7. Near-infrared Spectroscopy in the Brewing Industry.

    Sileoni, Valeria; Marconi, Ombretta; Perretti, Giuseppe

    2015-01-01

    This article offers an exhaustive description of the use of Near-Infrared (NIR) Spectroscopy in the brewing industry. This technique is widely used for quality control testing of raw materials, intermediates, and finished products, as well as process monitoring during malting and brewing. In particular, most of the reviewed works focus on the assessment of barley properties, aimed at quickly selecting the best barley varieties in order to produce a high-quality malt leading to high-quality beer. Various works concerning the use of NIR in the evaluation of raw materials, such as barley, malt, hop, and yeast, are also summarized here. The implementation of NIR sensors for the control of malting and brewing processes is also highlighted, as well as the use of NIR for quality assessment of the final product.

  8. Functional near-infrared spectroscopy studies in children

    Nagamitsu Shinichiro

    2012-03-01

    Full Text Available Abstract Psychosomatic and developmental behavioral medicine in pediatrics has been the subject of significant recent attention, with infants, school-age children, and adolescents frequently presenting with psychosomatic, behavioral, and psychiatric symptoms. These may be a consequence of insecurity of attachment, reduced self-confidence, and peer -relationship conflicts during their developmental stages. Developmental cognitive neuroscience has revealed significant associations between specific brain lesions and particular cognitive dysfunctions. Thus, identifying the biological deficits underlying such cognitive dysfunction may provide new insights into therapeutic prospects for the management of those symptoms in children. Recent advances in noninvasive neuroimaging techniques, and especially functional near-infrared spectroscopy (NIRS, have contributed significant findings to the field of developmental cognitive neuroscience in pediatrics. We present here a comprehensive review of functional NIRS studies of children who have developed normally and of children with psychosomatic and behavioral disorders.

  9. Near-infrared spectroscopy for monitoring muscle oxygenation

    Boushel, Robert Christopher; Piantadosi, C A

    2000-01-01

    Near-infrared spectroscopy (NIRS) is a non-invasive method for monitoring oxygen availability and utilization by the tissues. In intact skeletal muscle, NIRS allows semi-quantitative measurements of haemoglobin plus myoglobin oxygenation (tissue O2 stores) and the haemoglobin volume. Specialized...... algorithms allow assessment of the oxidation-reduction (redox) state of the copper moiety (CuA) of mitochondrial cytochrome c oxidase and, with the use of specific tracers, accurate assessment of regional blood flow. NIRS has demonstrated utility for monitoring changes in muscle oxygenation and blood flow...... during submaximal and maximal exercise and under pathophysiological conditions including cardiovascular disease and sepsis. During work, the extent to which skeletal muscles deoxygenate varies according to the type of muscle, type of exercise and blood flow response. In some instances, a strong...

  10. Gastric cancer differentiation using Fourier transform near-infrared spectroscopy with unsupervised pattern recognition

    Yi, Wei-song; Cui, Dian-sheng; Li, Zhi; Wu, Lan-lan; Shen, Ai-guo; Hu, Ji-ming

    2013-01-01

    The manuscript has investigated the application of near-infrared (NIR) spectroscopy for differentiation gastric cancer. The 90 spectra from cancerous and normal tissues were collected from a total of 30 surgical specimens using Fourier transform near-infrared spectroscopy (FT-NIR) equipped with a fiber-optic probe. Major spectral differences were observed in the CH-stretching second overtone (9000-7000 cm-1), CH-stretching first overtone (6000-5200 cm-1), and CH-stretching combination (4500-4000 cm-1) regions. By use of unsupervised pattern recognition, such as principal component analysis (PCA) and cluster analysis (CA), all spectra were classified into cancerous and normal tissue groups with accuracy up to 81.1%. The sensitivity and specificity was 100% and 68.2%, respectively. These present results indicate that CH-stretching first, combination band and second overtone regions can serve as diagnostic markers for gastric cancer.

  11. Noninvasive detection of change in skeletal muscle oxygenation during incremental exercise with near-infrared spectroscopy

    Liu, Fang; Luo, Qingming; Xu, Guodong; Li, Pengcheng

    2003-12-01

    Near infrared spectroscopy (NIRS) has been developed as a non-invasive method to assess O2 delivery, O2 consumption and blood flow, in diverse local muscle groups at rest and during exercise. The aim of this study was to investigate local O2 consumption in exercising muscle by use of near-infrared spectroscopy (NIRS). Ten elite athletes of different sport items were tested in rest and during step incremental load exercise. Local variations of quadriceps muscles were investigated with our wireless NIRS blood oxygen monitor system. The results show that the changes of blood oxygen relate on the sport items, type of muscle, kinetic capacity et al. These results indicate that NIRS is a potential useful tool to detect local muscle oxygenation and blood flow profiles; therefore it might be easily applied for evaluating the effect of athletes training.

  12. Infrared Spectroscopy of HNO and Noh Suspended in Solid Parahydrogen

    Anderson, David T.; Ruzi, Mahmut

    2013-06-01

    The only report in the literature on the infrared spectroscopy of the parent oxynitrene NOH was performed using Ar matrix isolation spectroscopy at 10 K. In this previous study, the NOH is synthesized by co-deposition of NO/Ar and a H_2/Ar mixture that is passed through a microwave discharge to create H-atoms. The H-atoms recombine with NO in the Ar matrix to produce mostly HNO, but some NOH is produced as well. In this work we irradiate NO doped parahydrogen solids at 2 K using 193 nm radiation which is known to generate H-atoms as by-products. After the photolysis laser is stopped, we detect growth of HNO and NOH presumably due to reactions of H-atoms with NO analogous to the previous Ar matrix study. The higher energy NOH isomer is predicted by high-level calculations to be in a triplet ground electronic state. Interestingly, the infrared absorptions of NOH for the two observed vibrational modes (bend and OH stretch) display fine structure; an intense central peak with smaller peaks spaced symmetrically to both lower and higher wavenumbers. Further, the spacing between the peaks is the same for both vibrational modes. We believe this fine structure reflects the zero-field splitting of the triplet ground state of NOH (magnetic dipole-dipole interaction) and our most current results and analysis will be presented. G. Maier, H. P. Reisenauer, M. De Marco, Angew. Chem. Int. Ed. 38, 108-110 (1999). M. Fushitani and T. Momose, Low Temp. Phys. 29, 740-743 (2003). U. Bozkaya, J. M. Turney, Y. Yamaguchi, and H. F. Schaefer III, J. Chem. Phys. 136, 164303 (2012).

  13. Pulsed near-infrared photoacoustic spectroscopy of blood

    Laufer, Jan G.; Elwell, Clare E.; Delpy, Dave T.; Beard, Paul C.

    2004-07-01

    The aim of this study was to use pulsed near infrared photoacoustic spectroscopy to determine the oxygen saturation (SO2) of a saline suspension of red blood cells in vitro. The photoacoustic measurements were made in a cuvette which formed part of a larger circuit through which the red blood cell suspension was circulated. Oxygen saturation of the red blood cell suspension was altered between 2-3% to 100% in step increments using a membrane oxygenator and at each increment an independent measurement of oxygen saturation was made using a co-oximeter. An optical parametric oscillator laser system provided nanosecond excitation pulses at a number of wavelengths in the near-infrared spectrum (740-1040nm) which were incident on the cuvette. The resulting acoustic signals were detected using a broadband (15MHz) Fabry-Perot polymer film transducer. The optical transport coefficient and amplitude were determined from the acoustic signals as a function of wavelength. These data were then used to calculate the relative concentrations of oxy- and deoxyhaemoglobin, using their known specific absorption coefficients and an empirically determined wavelength dependence of optical scattering over the wavelength range investigated. From this, the oxygen saturation of the suspension was derived with an accuracy of +/-5% compared to the co-oximeter SO2 measurements.

  14. Near-infrared spectroscopy and microstructure of the scales of Sabethes ( Sabethes albiprivus (Diptera: Culicidae

    Betina Westphal-Ferreira

    Full Text Available ABSTRACT Near-infrared spectroscopy and microstructure of the scales of Sabethes (Sabethes albiprivus (Diptera: Culicidae. Sabethes (Sabethes albiprivus Theobald individuals vary considerably in size and color of the reflections of the scales on their thorax, abdomen, antepronotal lobes and occiput. The goal of this study was to investigate and to characterize the differences in the color of the scales among preserved specimens and to analyze the differences in the microstructures of the scales that cover their bodies using near-infrared spectroscopy, and to evaluate whether the latter is efficient in distinguishing the populations. A total of 201 adult females were analyzed for the characterization of color patterns. In addition, absorbance spectra and scanning electron microscope images were obtained from them. As a result of color analysis, two variations were identified, one represented by specimens with yellow or green scales and the other with blue or purple scales. The same two variations were corroborated using NIRS. Analysis of the microstructure of the scales lining the mesonotum, occiput and antepronotal lobes resulted in the same variations. The three methodologies, near-infrared spectroscopy, scanning electron microscopy and coloration of the reflections of the scales revealed two variations within Sa. albiprivus.

  15. Investigation of carbonates in the Sutter's Mill meteorite grains with hyperspectral infrared imaging micro-spectroscopy

    Yesiltas, Mehmet

    2018-04-01

    Synchrotron-based high spatial resolution hyperspectral infrared imaging technique provides thousands of infrared spectra with high resolution, thus allowing us to acquire detailed spatial maps of chemical molecular structures for many grains in short times. Utilizing this technique, thousands of infrared spectra were analyzed at once instead of inspecting each spectrum separately. Sutter's Mill meteorite is a unique carbonaceous type meteorite with highly heterogeneous chemical composition. Multiple grains from the Sutter's Mill meteorite have been studied using this technique and the presence of both hydrous and anhydrous silicate minerals have been observed. It is observed that the carbonate mineralogy varies from simple to more complex carbonates even within a few microns in the meteorite grains. These variations, the type and distribution of calcite-like vs. dolomite-like carbonates are presented by means of hyperspectral FTIR imaging spectroscopy with high resolution. Various scenarios for the formation of different carbonate compositions in the Sutter's Mill parent body are discussed.

  16. Infrared spectroscopy and thermal analysis of prepared cation exchangers from cellulosic materials

    Nada, A.M.A.; EI-Sherief, S.; Nasr, A.; Kamel, M.

    2005-01-01

    Different cation exchangers were prepared by incorporation of phosphate and sulfate groups into acid or alkali treated wood pulp. The molecular structure of these cation exchangers were followed by infrared spectroscopy and thermal degradation analysis technique. From infrared spectra, a new bands are seen at 1200 and 980 cm-1 in phosphorylated wood pulp due to the formation of C-O-P bond. Another bands were seen at 1400, 1200 and 980 cm-1 in phospho sulfonated wood pulp due to the formation of CO- P and C-O-S bonds. Also, it is seen from infrared spectra that the crystallinity index for acid treated wood pulp has a higher value than untreated and alkali treated wood pulp. On the other hand, the acid treated and phosphorylated acid treated wood pulp have a higher activation energy than untreated and phosphorylated alkali treated wood pulp

  17. Infrared spectroscopy: a tool for determination of the degree of conversion in dental composites

    Luciene Gonçalves Palmeira Moraes

    2008-04-01

    Full Text Available Infrared spectroscopy is one of the most widely used techniques for measurement of conversion degree in dental composites. However, to obtain good quality spectra and quantitative analysis from spectral data, appropriate expertise and knowledge of the technique are mandatory. This paper presents important details to use infrared spectroscopy for determination of the conversion degree.

  18. Near-Infrared Spatially Resolved Spectroscopy for Tablet Quality Determination.

    Igne, Benoît; Talwar, Sameer; Feng, Hanzhou; Drennen, James K; Anderson, Carl A

    2015-12-01

    Near-infrared (NIR) spectroscopy has become a well-established tool for the characterization of solid oral dosage forms manufacturing processes and finished products. In this work, the utility of a traditional single-point NIR measurement was compared with that of a spatially resolved spectroscopic (SRS) measurement for the determination of tablet assay. Experimental designs were used to create samples that allowed for calibration models to be developed and tested on both instruments. Samples possessing a poor distribution of ingredients (highly heterogeneous) were prepared by under-blending constituents prior to compaction to compare the analytical capabilities of the two NIR methods. The results indicate that SRS can provide spatial information that is usually obtainable only through imaging experiments for the determination of local heterogeneity and detection of abnormal tablets that would not be detected with single-point spectroscopy, thus complementing traditional NIR measurement systems for in-line, and in real-time tablet analysis. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. Near-infrared spectroscopy for cocrystal screening. A comparative study with Raman spectroscopy.

    Allesø, Morten; Velaga, Sitaram; Alhalaweh, Amjad; Cornett, Claus; Rasmussen, Morten A; van den Berg, Frans; de Diego, Heidi Lopez; Rantanen, Jukka

    2008-10-15

    Near-infrared (NIR) spectroscopy is a well-established technique for solid-state analysis, providing fast, noninvasive measurements. The use of NIR spectroscopy for polymorph screening and the associated advantages have recently been demonstrated. The objective of this work was to evaluate the analytical potential of NIR spectroscopy for cocrystal screening using Raman spectroscopy as a comparative method. Indomethacin was used as the parent molecule, while saccharin and l-aspartic acid were chosen as guest molecules. Molar ratios of 1:1 for each system were subjected to two types of preparative methods. In the case of saccharin, liquid-assisted cogrinding as well as cocrystallization from solution resulted in a stable 1:1 cocrystalline phase termed IND-SAC cocrystal. For l-aspartic acid, the solution-based method resulted in a polymorphic transition of indomethacin into the metastable alpha form retained in a physical mixture with the guest molecule, while liquid-assisted cogrinding did not induce any changes in the crystal lattice. The good chemical peak selectivity of Raman spectroscopy allowed a straightforward interpretation of sample data by analyzing peak positions and comparing to those of pure references. In addition, Raman spectroscopy provided additional information on the crystal structure of the IND-SAC cocrystal. The broad spectral line shapes of NIR spectra make visual interpretation of the spectra difficult, and consequently, multivariate modeling by principal component analysis (PCA) was applied. Successful use of NIR/PCA was possible only through the inclusion of a set of reference mixtures of parent and guest molecules representing possible solid-state outcomes from the cocrystal screening. The practical hurdle related to the need for reference mixtures seems to restrict the applicability of NIR spectroscopy in cocrystal screening.

  20. Advanced multivariate data evaluation for Fourier transform infrared spectroscopy

    Diewok, J.

    2002-12-01

    The objective of the presented dissertation was the evaluation, application and further development of advanced multivariate data evaluation methods for qualitative and quantitative Fourier transform infrared (FT-IR) measurements, especially of aqueous samples. The focus was set on 'evolving systems'; i.e. chemical systems that change gradually with a master variable, such as pH, reaction time, elution time, etc. and that are increasingly encountered in analytical chemistry. FT-IR measurements on such systems yield 2-way and 3-way data sets, i.e. data matrices and cubes. The chemometric methods used were soft-modeling techniques, like multivariate curve resolution - alternating least squares (MCR-ALS) or principal component analysis (PCA), hard modeling of equilibrium systems and two-dimensional correlation spectroscopy (2D-CoS). The research results are presented in six publications and comprise: A new combination of FT-IR flow titrations and second-order calibration by MCR-ALS for the quantitative analysis of mixture samples of organic acids and sugars. A novel combination of MCR-ALS with a hard-modeled equilibrium constraint for second-order quantitation in pH-modulated samples where analytes and interferences show very similar acid-base behavior. A detailed study in which MCR-ALS and 2D-CoS are directly compared for the first time. From the analysis of simulated and experimental acid-base equilibrium systems, the performance and interpretability of the two methods is evaluated. Investigation of the binding process of vancomycin, an important antibiotic, to a cell wall analogue tripeptide by time-resolved FT-IR spectroscopy and detailed chemometric evaluation. Determination of red wine constituents by liquid chromatography with FT-IR detection and MCR-ALS for resolution of overlapped peaks. Classification of red wine cultivars from FT-IR spectroscopy of phenolic wine extracts with hierarchical clustering and soft independent modeling of class analogy (SIMCA

  1. Discrimination of wild-growing and cultivated Lentinus edodes by tri-step infrared spectroscopy

    Lin, Haojian; Liu, Gang; Yang, Weimei; An, Ran; Ou, Quanhong

    2018-01-01

    It's not easy to discriminate dried wild-growing Lentinus edodes (WL) and cultivated Lentinus edodes (CL) by conventional method based on the morphological inspection of fruiting bodies. In this paper, fruiting body samples of WL and CL are discriminated by a tri-step IR spectroscopy method, including Fourier transform infrared (FT-IR) spectroscopy, second derivatives infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy under thermal perturbation. The results show that the FT-IR spectra of WL and CL are similar in holistic spectral profile. More significant differences are exhibited in their SD-IR spectra in the range of 1700 - 900 cm-1. Furthermore, more evident differences have been observed in their synchronous 2D-IR spectra in the range of 2970 - 2900, 1678 - 1390, 1250 -1104 and 1090 - 1030 cm-1. The CL has thirteen auto-peaks at 2958, 2921, 1649, 1563, 1450, 1218, 1192, 1161, 1140, 1110, 1082, 1065 and 1047 cm-1, in which the four strongest auto-peaks are at 2921, 1563, 1192 and 1082 cm-1. The WL shows fifteen auto-peaks at 2960, 2937, 2921, 1650, 1615, 1555, 1458, 1219, 1190, 1138, 1111, 1084, 1068, 1048 and 1033 cm-1, in which the four strongest auto-peaks are at 2921, 1650, 1190 and 1068 cm-1. This study shows the potential of FT-IR spectroscopy and 2D correlation analysis in a simple and quick distinction of wild-growing and cultivated mushrooms.

  2. High-speed high-sensitivity infrared spectroscopy using mid-infrared swept lasers (Conference Presentation)

    Childs, David T. D.; Groom, Kristian M.; Hogg, Richard A.; Revin, Dmitry G.; Cockburn, John W.; Rehman, Ihtesham U.; Matcher, Stephen J.

    2016-03-01

    Infrared spectroscopy is a highly attractive read-out technology for compositional analysis of biomedical specimens because of its unique combination of high molecular sensitivity without the need for exogenous labels. Traditional techniques such as FTIR and Raman have suffered from comparatively low speed and sensitivity however recent innovations are challenging this situation. Direct mid-IR spectroscopy is being speeded up by innovations such as MEMS-based FTIR instruments with very high mirror speeds and supercontinuum sources producing very high sample irradiation levels. Here we explore another possible method - external cavity quantum cascade lasers (EC-QCL's) with high cavity tuning speeds (mid-IR swept lasers). Swept lasers have been heavily developed in the near-infrared where they are used for non-destructive low-coherence imaging (OCT). We adapt these concepts in two ways. Firstly by combining mid-IR quantum cascade gain chips with external cavity designs adapted from OCT we achieve spectral acquisition rates approaching 1 kHz and demonstrate potential to reach 100 kHz. Secondly we show that mid-IR swept lasers share a fundamental sensitivity advantage with near-IR OCT swept lasers. This makes them potentially able to achieve the same spectral SNR as an FTIR instrument in a time x N shorter (N being the number of spectral points) under otherwise matched conditions. This effect is demonstrated using measurements of a PDMS sample. The combination of potentially very high spectral acquisition rates, fundamental SNR advantage and the use of low-cost detector systems could make mid-IR swept lasers a powerful technology for high-throughput biomedical spectroscopy.

  3. Sensing cocaine in saliva with infrared laser spectroscopy

    Hans, Kerstin M.-C.; Müller, Matthias; Gianella, Michele; Wägli, Ph.; Sigrist, Markus W.

    2013-02-01

    Increasing numbers of accidents caused by drivers under the influence of drugs, raise drug tests to worldwide interest. We developed a one-step extraction technique for cocaine in saliva and analyzed reference samples with laser spectroscopy employing two different schemes. The first is based on attenuated total reflection (ATR), which is applied to dried samples. The second scheme uses transmission measurements for the analysis of liquid samples. ATR spectroscopy achieved a limit of detection (LOD) of 3μg/ml. The LOD for the transmission approach in liquid samples is cocaine. An improved stabilization of the set-up should lower the limit of detection significantly.

  4. Detecting adulterants in milk with lower cost mid-infrared and Raman spectroscopy

    Lee, Changwon; Wang, Wenbo; Wilson, Benjamin K.; Connett, Marie; Keller, Matthew D.

    2018-02-01

    Adulteration of milk for economic gains is a widespread issue throughout the developing world that can have far-reaching health and nutritional impacts. Milk analysis technologies, such as infrared spectroscopy, can screen for adulteration, but the cost of these technologies has prohibited their use in low resource settings. Recent developments in infrared and Raman spectroscopy hardware have led to commercially available low-cost devices. In this work, we evaluated the performance of two such spectrometers in detecting and quantifying the presence of milk adulterants. Five common adulterants - ammonium sulfate, melamine, sodium bicarbonate, sucrose, and urea, were spiked into five different raw cow and goat milk samples at different concentrations. Collected MIR and Raman spectra were analyzed using partial least squares regression. The limit of detection (LOD) for each adulterant was determined to be in the range of 0.04 to 0.28% (400 to 2800 ppm) using MIR spectroscopy. Raman spectroscopy showed similar LOD's for some of the adulterants, notably those with strong amine group signals, and slightly higher LOD's (up to 1.0%) for other molecules. Overall, the LODs were comparable to other spectroscopic milk analyzers on the market, and they were within the economically relevant concentration range of 100 to 4000 ppm. These lower cost spectroscopic devices therefore appear to hold promise for use in low resource settings.

  5. Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy.

    Pfeifer, Marcel; Ruf, Alexander; Fischer, Peer

    2013-11-04

    We record vibrational spectra with two indirect schemes that depend on the real part of the index of refraction: mid-infrared refractometry and photothermal spectroscopy. In the former, a quantum cascade laser (QCL) spot is imaged to determine the angles of total internal reflection, which yields the absorption line via a beam profile analysis. In the photothermal measurements, a tunable QCL excites vibrational resonances of a molecular monolayer, which heats the surrounding medium and changes its refractive index. This is observed with a probe laser in the visible. Sub-monolayer sensitivities are demonstrated.

  6. APPLICATION OF NEAR INFRARED SPECTROSCOPY AND EXPLORATORY DATA ANALYSIS FOR THE IDENTIFICATION OF WOODS IN THE FURNITURE INDUSTRY

    Lucas Ferreira Bastos

    2012-07-01

    Full Text Available The paper aimed to investigate the application of infrared spectroscopy and exploratory data analysis to distinguish the different types of natural woods, contributing to the control of the origin of the materials used in the furniture industry. The near infrared spectroscopy (NIR was used for the characterization of 44 samples of 19 different types of wood, and the principal component analysis (PCA to discriminate. The proposed methodology was efficient in the separation of some samples, but further studies should be performed for the diffusion of this methodology in the routine of the furniture industry.

  7. Infrared

    Vollmer, M.

    2013-11-01

    underlying physics. There are now at least six different disciplines that deal with infrared radiation in one form or another, and in one or several different spectral portions of the whole IR range. These are spectroscopy, astronomy, thermal imaging, detector and source development and metrology, as well the field of optical data transmission. Scientists working in these fields range from chemists and astronomers through to physicists and even photographers. This issue presents examples from some of these fields. All the papers—though some of them deal with fundamental or applied research—include interesting elements that make them directly applicable to university-level teaching at the graduate or postgraduate level. Source (e.g. quantum cascade lasers) and detector development (e.g. multispectral sensors), as well as metrology issues and optical data transmission, are omitted since they belong to fundamental research journals. Using a more-or-less arbitrary order according to wavelength range, the issue starts with a paper on the physics of near-infrared photography using consumer product cameras in the spectral range from 800 nm to 1.1 µm [1]. It is followed by a series of three papers dealing with IR imaging in spectral ranges from 3 to 14 µm [2-4]. One of them deals with laboratory courses that may help to characterize the IR camera response [2], the second discusses potential applications for nondestructive testing techniques [3] and the third gives an example of how IR thermal imaging may be used to understand cloud cover of the Earth [4], which is the prerequisite for successful climate modelling. The next two papers cover the vast field of IR spectroscopy [5, 6]. The first of these deals with Fourier transform infrared spectroscopy in the spectral range from 2.5 to 25 µm, studying e.g. ro-vibrational excitations in gases or optical phonon interactions within solids [5]. The second deals mostly with the spectroscopy of liquids such as biofuels and special

  8. Discrimination of mineral waters using near infrared spectroscopy and aquaphotomics

    Munćan Jelena S.

    2014-01-01

    Full Text Available Despite that water is one of the most studied materials today its dynamic properties are still not well understood. Water state in human organism is of high importance for normal healthy functioning of human body. Different kinds of water are usually classified according to its present solutes, and concentrations of these solutes, but though it is known that water molecules can form clusters around present solutes, classification of waters based on types of water molecular organization and present clusters is not present in current literature. In this study we used multivariate analysis for classification of commercial mineral waters based on their near infrared spectra (NIR. Further, we applied Aquaphotomics, a new approach for interpretation of near infrared spectra of water, which gives insight into organization of water molecules in each of these waters.

  9. The importance of spectroscopy for infrared multiphoton excitation

    Fuss, W.; Kompa, K.L.

    1980-07-01

    It is substantiated by examples that the infrared spectra of molecules in high vibrational states are similar in width to those of the ground states. Therefore in order to explain collisionless infrared multiphoton excitation, the existence of resonance has to be checked, not only for the first three steps, but for all of them. That is, their (low resolution) spectra should be studied. This review summarizes the spectroscopic mechanisms contributing to multiphoton excitation, which have been suggested to date, including several kinds of rotational compensation and of vibrational level splitting, which cooperate to overcome the anharmonic shift. The spectral quasicontinuum, generated by intensity borrowing, must neither be very broad nor dense, and collisionless vibrational relaxation is only important at very high energies. Knowledge of relatively few spectroscopic detailes helps to understand many details and many differences in multiphoton excitatio. (orig.)

  10. Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques

    Balabin, Roman M.; Safieva, Ravilya Z.; Lomakina, Ekaterina I.

    2010-01-01

    Near infrared (NIR) spectroscopy is a non-destructive (vibrational spectroscopy based) measurement technique for many multicomponent chemical systems, including products of petroleum (crude oil) refining and petrochemicals, food products (tea, fruits, e.g., apples, milk, wine, spirits, meat, bread, cheese, etc.), pharmaceuticals (drugs, tablets, bioreactor monitoring, etc.), and combustion products. In this paper we have compared the abilities of nine different multivariate classification methods: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), soft independent modeling of class analogy (SIMCA), partial least squares (PLS) classification, K-nearest neighbor (KNN), support vector machines (SVM), probabilistic neural network (PNN), and multilayer perceptron (ANN-MLP) - for gasoline classification. Three sets of near infrared (NIR) spectra (450, 415, and 345 spectra) were used for classification of gasolines into 3, 6, and 3 classes, respectively, according to their source (refinery or process) and type. The 14,000-8000 cm -1 NIR spectral region was chosen. In all cases NIR spectroscopy was found to be effective for gasoline classification purposes, when compared with nuclear magnetic resonance (NMR) spectroscopy or gas chromatography (GC). KNN, SVM, and PNN techniques for classification were found to be among the most effective ones. Artificial neural network (ANN-MLP) approach based on principal component analysis (PCA), which was believed to be efficient, has shown much worse results. We hope that the results obtained in this study will help both further chemometric (multivariate data analysis) investigations and investigations in the sphere of applied vibrational (infrared/IR, near-IR, and Raman) spectroscopy of sophisticated multicomponent systems.

  11. Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques

    Balabin, Roman M., E-mail: balabin@org.chem.ethz.ch [Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich (Switzerland); Safieva, Ravilya Z. [Gubkin Russian State University of Oil and Gas, 119991 Moscow (Russian Federation); Lomakina, Ekaterina I. [Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119992 Moscow (Russian Federation)

    2010-06-25

    Near infrared (NIR) spectroscopy is a non-destructive (vibrational spectroscopy based) measurement technique for many multicomponent chemical systems, including products of petroleum (crude oil) refining and petrochemicals, food products (tea, fruits, e.g., apples, milk, wine, spirits, meat, bread, cheese, etc.), pharmaceuticals (drugs, tablets, bioreactor monitoring, etc.), and combustion products. In this paper we have compared the abilities of nine different multivariate classification methods: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), soft independent modeling of class analogy (SIMCA), partial least squares (PLS) classification, K-nearest neighbor (KNN), support vector machines (SVM), probabilistic neural network (PNN), and multilayer perceptron (ANN-MLP) - for gasoline classification. Three sets of near infrared (NIR) spectra (450, 415, and 345 spectra) were used for classification of gasolines into 3, 6, and 3 classes, respectively, according to their source (refinery or process) and type. The 14,000-8000 cm{sup -1} NIR spectral region was chosen. In all cases NIR spectroscopy was found to be effective for gasoline classification purposes, when compared with nuclear magnetic resonance (NMR) spectroscopy or gas chromatography (GC). KNN, SVM, and PNN techniques for classification were found to be among the most effective ones. Artificial neural network (ANN-MLP) approach based on principal component analysis (PCA), which was believed to be efficient, has shown much worse results. We hope that the results obtained in this study will help both further chemometric (multivariate data analysis) investigations and investigations in the sphere of applied vibrational (infrared/IR, near-IR, and Raman) spectroscopy of sophisticated multicomponent systems.

  12. Species authentication and geographical origin discrimination of herbal medicines by near infrared spectroscopy: A review

    Pei Wang

    2015-10-01

    Full Text Available Near infrared (NIR spectroscopy as a rapid and nondestructive analytical technique, integrated with chemometrics, is a powerful process analytical tool for the pharmaceutical industry and is becoming an attractive complementary technique for herbal medicine analysis. This review mainly focuses on the recent applications of NIR spectroscopy in species authentication of herbal medicines and their geographical origin discrimination. Keywords: Near infrared spectroscopy, Herbal medicine, Species authentication, Geographical origin discrimination, Quality control

  13. Infrared Multiple Photon Dissociation Spectroscopy Of Metal Cluster-Adducts

    Cox, D. M.; Kaldor, A.; Zakin, M. R.

    1987-01-01

    Recent development of the laser vaporization technique combined with mass-selective detection has made possible new studies of the fundamental chemical and physical properties of unsupported transition metal clusters as a function of the number of constituent atoms. A variety of experimental techniques have been developed in our laboratory to measure ionization threshold energies, magnetic moments, and gas phase reactivity of clusters. However, studies have so far been unable to determine the cluster structure or the chemical state of chemisorbed species on gas phase clusters. The application of infrared multiple photon dissociation IRMPD to obtain the IR absorption properties of metal cluster-adsorbate species in a molecular beam is described here. Specifically using a high power, pulsed CO2 laser as the infrared source, the IRMPD spectrum for methanol chemisorbed on small iron clusters is measured as a function of the number of both iron atoms and methanols in the complex for different methanol isotopes. Both the feasibility and potential utility of IRMPD for characterizing metal cluster-adsorbate interactions are demonstrated. The method is generally applicable to any cluster or cluster-adsorbate system dependent only upon the availability of appropriate high power infrared sources.

  14. Differentiation and detection of microorganisms using Fourier transform infrared photoacoustic spectroscopy

    Irudayaraj, Joseph; Yang, Hong; Sakhamuri, Sivakesava

    2002-03-01

    Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was used to differentiate and identify microorganisms on a food (apple) surface. Microorganisms considered include bacteria (Lactobacillus casei, Bacillus cereus, and Escherichia coli), yeast (Saccharomyces cerevisiae), and fungi (Aspergillus niger and Fusarium verticilliodes). Discriminant analysis was used to differentiate apples contaminated with the different microorganisms from uncontaminated apple. Mahalanobis distances were calculated to quantify the differences. The higher the value of the Mahalanobis distance metric between different microorganisms, the greater is their difference. Additionally, pathogenic (O157:H7) E. coli was successfully differentiated from non-pathogenic strains. Results demonstrate that FTIR-PAS spectroscopy has the potential to become a non-destructive analysis tool in food safety related research.

  15. State of dissolved water in triglycerides as determined by Fourier transform infrared and near infrared spectroscopy

    Kurashige, J. (Ajinomoto Co. Inc., Tokyo (Japan)); Takaoka, K.; Takasago, M.; Taru, Y.; Kobayashi, K. (Musashi Institute of Technology, Tokyo (Japan))

    1991-07-20

    The states of dissolved water in triglycerides (TG) such as tristearin, triolein, trilinolein and trilinolenin were analyzed by Fourier transform infrared (FT-IR) and near infrared (FT-NIR) spectroscopy, and compared with those of water itself. In the case of water, its states were considered to be mainly polymer clusters larger than dimer ones at 20{degree}C, and mostly monomer or dimer clusters at 120{degree}C. In TG, the states varied widely from monomer to polymer clusters at 20{degree}C. The distribution ratios of the water clusters observed in TG depended on the kinds of fatty acids of TG, and the water state was noted to change due to the interaction between unsaturated bonds and dissolved water. Although the states of dissolved water in trilinolein were similar to those of original water at 20{degree}C, the ratio of monomer water decreased and polymer clusters bigger than those in original water increased with an increase in number of unsaturated bonds of TG. 9 refs., 6 figs., 3 tabs.

  16. Voxel-based measurement sensitivity of spatially resolved near-infrared spectroscopy in layered tissues.

    Niwayama, Masatsugu

    2018-03-01

    We quantitatively investigated the measurement sensitivity of spatially resolved spectroscopy (SRS) across six tissue models: cerebral tissue, a small animal brain, the forehead of a fetus, an adult brain, forearm muscle, and thigh muscle. The optical path length in the voxel of the model was analyzed using Monte Carlo simulations. It was found that the measurement sensitivity can be represented as the product of the change in the absorption coefficient and the difference in optical path length in two states with different source-detector distances. The results clarified the sensitivity ratio between the surface layer and the deep layer at each source-detector distance for each model and identified changes in the deep measurement area when one of the detectors was close to the light source. A comparison was made with the results from continuous-wave spectroscopy. The study also identified measurement challenges that arise when the surface layer is inhomogeneous. Findings on the measurement sensitivity of SRS at each voxel and in each layer can support the correct interpretation of measured values when near-infrared oximetry or functional near-infrared spectroscopy is used to investigate different tissue structures. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  17. Investigation of Filtration Membranes from the Dairy Protein Industry for Residual Fouling Using Infrared Spectroscopy and Chemometrics

    Jensen, Jannie Krog

    the reversible fouling can be removed/cleaned. The aim of this thesis is to investigate the residual fouling that is deposited on ultrafiltration and microfiltration membranes after usage. The membrane surfaces are investigated using infrared spectroscopy with an attenuated reflectance sampling unit...... and this is thesis work highlights the strengths and weaknesses of using infrared spectroscopy to investigate residual fouling on membranes and in particular the challenges with the infrared penetration depth when layering in the samples occurs. Real size production membrane cartridges at different stages of use...... microfiltration membrane cartridges were investigated with Attenuated- Total-Reflection Fourier-Transform-Infrared (ATR FT-IR) to map the residual fouling on both types of cartridges. The height of the characteristic amide peaks from proteins were used to determine the relative concentrations. The first...

  18. Thyroid lesions diagnosis by Fourier transformed infrared absorption spectroscopy (FTIR)

    Albero, Felipe Guimaraes

    2009-01-01

    Thyroid nodules are a common disorder, with 4-7% of incidence in the Brazilian population. Although the fine needle aspiration (FNA) is an accurate method for thyroid tumors diagnosis, the discrimination between benign and malignant neoplasm is currently not possible in some cases with high incidence of false negative diagnosis, leading to a surgical intervention due to the risk of carcinomas. The aim of this study was to verify if the Fourier Transform infrared spectroscopy (FTIR) can contribute to the diagnosis of thyroid carcinomas and goiters, using samples of tissue and aspirates. Samples of FNA, homogenates and tissues of thyroid nodules with histopathological diagnosis were obtained and prepared for FTIR spectroscopy analysis. The FNA and homogenates samples were measured by μ-FTIR (between 950 . 1750 cm -1 ), at a nominal resolution of 4 cm -1 and 120 scans). Tissue samples were analyzed directly by ATR-FTIR technique, at a resolution 2 cm -1 , with 60 scans in the same region. All spectra were corrected by the baseline and normalized by amides area (1550-1640 cm -1 ) in order to minimize variations of sample homogeneity. Then, spectra were converted into second derivatives using the Savitzk-Golay algorithm with a 13 points window. The Ward's minimum variance algorithm and Euclidean distances among the points were used for cluster analysis. Some FNA samples showed complex spectral pattern. All samples showed some cell pellets and large amount of hormone, represented by the bands of 1545 and 1655 cm -1 . Bands in 1409, 1412, 1414, 1578 and 1579 cm -1 were also found, indicating possible presence of sugar, DNA, citric acid or metabolic products. In this study, it was obtained an excellent separation between goiter and malign lesion for the samples of tissues, with 100% of specificity in specific cluster and 67% sensibility and 50 of specificity. In homogenate and FNA samples this sensibility and specificity were lower, because among these samples, it were

  19. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management

    Smidt, Ena; Meissl, Katharina

    2007-01-01

    State and stability or reactivity of waste materials are important properties that must be determined to obtain information about the future behavior and the emission potential of the materials. Different chemical and biological parameters are used to describe the stage of organic matter in waste materials. Fourier transform infrared spectroscopy provides information about the chemistry of waste materials in a general way. Several indicator bands that are referred to functional groups represent components or metabolic products. Their presence and intensity or their absence shed light on the phase of degradation or stabilization. The rapid assessment of the stage of organic matter decomposition is a very important field of application. Therefore, infrared spectroscopy is an appropriate tool for process and quality control, for the assessment of abandoned landfills and for checking of the successful landfill remediation. A wide range of applications are presented in this study for different waste materials. Progressing stages of a typical yard/kitchen waste composting process are shown. The fate of anaerobically 'stabilized' leftovers in a subsequent liquid aerobic process is revealed by spectroscopic characteristics. A compost that underwent the biological stabilization process is distinguished from a 'substrate' that comprises immature biogenic waste mixed with mineral compounds. Infrared spectra of freeze-dried leachate from untreated and aerated landfill material prove the effect of the aerobic treatment during 10 weeks in laboratory-scale experiments

  20. Near infrared spectroscopy in the study of polymorphic transformations

    Blanco, Marcel [Department of Chemistry, Analytical Chemistry Unity, Faculty of Sciences, Autonomous University of Barcelona, E-08193 Bellaterra, Barcelona (Spain)]. E-mail: marcel.blanco@uab.es; Alcala, Manel [Department of Chemistry, Analytical Chemistry Unity, Faculty of Sciences, Autonomous University of Barcelona, E-08193 Bellaterra, Barcelona (Spain); Gonzalez, Josep M. [Laboratorios Menarini S.A., c/. Alfons XII, 587, E-08918 Badalona, Barcelona (Spain); Torras, Ester [Laboratorios Menarini S.A., c/. Alfons XII, 587, E-08918 Badalona, Barcelona (Spain)

    2006-05-17

    The potential of near infrared (NIR) spectroscopy for the characterization of polymorphs in the active principle of a commercial formulation prior to and after the manufacturing process was assessed. Polymorphism in active principles is extremely significant to the pharmaceutical industry. Polymorphic changes during the production of commercial pharmaceutical formulations can alter some properties of the resulting end-products. Multivariate curve resolution-alternating least squares (MCR-ALS) methodology was used to obtain the 'pure' NIR spectrum for the active principle without the need to pretreat samples. This methodology exposed the polymorphic transformation of Dexketoprofen Trometamol (DKP) in both laboratory and production samples obtained by wet granulation. No polymorphic transformation, however, was observed in samples obtained by direct compaction. These results were confirmed using by X-ray powder diffractometry (XRD) and differential scanning calorimetry (DSC) measurements. Pure crystalline polymorphs of DKP were available in the laboratory but amorphous form was not, nevertheless the developed methodology allows the identification of amorphous and crystal forms in spite of the lack of pure DKP.

  1. The application of near infrared spectroscopy in nutritional intervention studies

    Philippa A Jackson

    2013-08-01

    Full Text Available Functional near infrared spectroscopy (NIRS is a non-invasive optical imaging technique used to monitor cerebral blood flow (CBF and by proxy neuronal activation. The use of NIRS in nutritional intervention studies is a relatively novel application of this technique, with only a small, but growing, number of trials published to date. These trials—in which the effects on CBF following administration of dietary components such as caffeine, polyphenols and omega-3 polyunsaturated fatty acids are assessed—have successfully demonstrated NIRS as a sensitive measure of change in haemodynamic response during cognitive tasks in both acute and chronic treatment intervention paradigms. The existent research in this area has been limited by the constraints of the technique itself however advancements in the measurement technology, paired with studies endeavouring increased sophistication in number and locations of channels over the head should render the use of NIRS in nutritional interventions particularly valuable in advancing our understanding of the effects of nutrients and dietary components on the brain.

  2. Quantification of atmospheric formaldehyde by infrared absorption spectroscopy

    Hoffnagle, John; Fleck, Derek; Rella, Chris; Kim-Hak, David

    2017-04-01

    Formaldehyde is a toxic, carcinogenic compound that can contaminate ambient air as a result of combustion or outgassing of commercial products such as adhesives used to fabricate plywood and to affix indoor carpeting. Like many small molecules, formaldehyde has an infrared absorption spectrum exhibiting bands of ro-vibrational transitions that are well resolved at low pressure and therefore well suited for optical analysis of formaldehyde concentration. We describe progress in applying cavity ring-down spectroscopy of the 2v5 band (the first overtone of the asymmetric C-H stretch, origin at 1770 nm) to the quantitative analysis of formaldehyde concentration in ambient air. Preliminary results suggest that a sensitivity of 1-2 ppb in a measurement interval of a few seconds, and 0.1-0.2 ppb in a few minutes, should be achievable with a compact, robust, and field-deployable instrument. Finally, we note that recent satellites monitoring snapshots of formaldehyde columns give insights into global formaldehyde production, migration and lifetime. The ability to monitor formaldehyde with a small and portable analyzer has the potential to aid in validation of these snapshots and to provide complementary data to show vertical dispersions with high spatial accuracy.

  3. Portable Infrared Laser Spectroscopy for On-site Mycotoxin Analysis

    Sieger, Markus; Kos, Gregor; Sulyok, Michael; Godejohann, Matthias; Krska, Rudolf; Mizaikoff, Boris

    2017-03-01

    Mycotoxins are toxic secondary metabolites of fungi that spoil food, and severely impact human health (e.g., causing cancer). Therefore, the rapid determination of mycotoxin contamination including deoxynivalenol and aflatoxin B1 in food and feed samples is of prime interest for commodity importers and processors. While chromatography-based techniques are well established in laboratory environments, only very few (i.e., mostly immunochemical) techniques exist enabling direct on-site analysis for traders and manufacturers. In this study, we present MYCOSPEC - an innovative approach for spectroscopic mycotoxin contamination analysis at EU regulatory limits for the first time utilizing mid-infrared tunable quantum cascade laser (QCL) spectroscopy. This analysis technique facilitates on-site mycotoxin analysis by combining QCL technology with GaAs/AlGaAs thin-film waveguides. Multivariate data mining strategies (i.e., principal component analysis) enabled the classification of deoxynivalenol-contaminated maize and wheat samples, and of aflatoxin B1 affected peanuts at EU regulatory limits of 1250 μg kg-1 and 8 μg kg-1, respectively.

  4. Near-infrared imaging spectroscopy for counterfeit drug detection

    Arnold, Thomas; De Biasio, Martin; Leitner, Raimund

    2011-06-01

    Pharmaceutical counterfeiting is a significant issue in the healthcare community as well as for the pharmaceutical industry worldwide. The use of counterfeit medicines can result in treatment failure or even death. A rapid screening technique such as near infrared (NIR) spectroscopy could aid in the search for and identification of counterfeit drugs. This work presents a comparison of two laboratory NIR imaging systems and the chemometric analysis of the acquired spectroscopic image data. The first imaging system utilizes a NIR liquid crystal tuneable filter and is designed for the investigation of stationary objects. The second imaging system utilizes a NIR imaging spectrograph and is designed for the fast analysis of moving objects on a conveyor belt. Several drugs in form of tablets and capsules were analyzed. Spectral unmixing techniques were applied to the mixed reflectance spectra to identify constituent parts of the investigated drugs. The results show that NIR spectroscopic imaging can be used for contact-less detection and identification of a variety of counterfeit drugs.

  5. Near Infrared Spectroscopy during pediatric cardiac surgery: errors and pitfalls.

    Durandy, Y; Rubatti, M; Couturier, R

    2011-09-01

    As a result of improvements in early outcomes, long-term neurologicalal outcomes are becoming a major issue in pediatric cardiac surgery. The mechanisms of brain injury are numerous, but a vast majority of injuries are impervious to therapy and only a few are modifiable. The quality of perfusion during cardiac surgery is a modifiable factor and cerebral monitoring during bypass is the way to assess the quality of intra-operative cerebral perfusion. Near infrared spectroscopy (NIRS), as a diagnostic tool, has gained in popularity within the perfusion community. However, NIRS is becoming the standard of care before its scientific validation. This manuscript relates four clinical cases, demonstrating the limitations of NIRS monitoring during pediatric cardiac surgery as well as uncertainties about the interpretation of the recorded values. The clinical relevance of cerebral oxymetry is needed before the use of NIRS as a decision making tool. Multimodal brain monitoring with NIRS, trans-cranial Doppler and electroencephalogram are currently under way in several pediatric centers. The benefit of this time-consuming and expensive monitoring system has yet to be demonstrated.

  6. Near infrared spectroscopy based brain-computer interface

    Ranganatha, Sitaram; Hoshi, Yoko; Guan, Cuntai

    2005-04-01

    A brain-computer interface (BCI) provides users with an alternative output channel other than the normal output path of the brain. BCI is being given much attention recently as an alternate mode of communication and control for the disabled, such as patients suffering from Amyotrophic Lateral Sclerosis (ALS) or "locked-in". BCI may also find applications in military, education and entertainment. Most of the existing BCI systems which rely on the brain's electrical activity use scalp EEG signals. The scalp EEG is an inherently noisy and non-linear signal. The signal is detrimentally affected by various artifacts such as the EOG, EMG, ECG and so forth. EEG is cumbersome to use in practice, because of the need for applying conductive gel, and the need for the subject to be immobile. There is an urgent need for a more accessible interface that uses a more direct measure of cognitive function to control an output device. The optical response of Near Infrared Spectroscopy (NIRS) denoting brain activation can be used as an alternative to electrical signals, with the intention of developing a more practical and user-friendly BCI. In this paper, a new method of brain-computer interface (BCI) based on NIRS is proposed. Preliminary results of our experiments towards developing this system are reported.

  7. Human Milk Analysis Using Mid-Infrared Spectroscopy.

    Groh-Wargo, Sharon; Valentic, Jennifer; Khaira, Sharmeel; Super, Dennis M; Collin, Marc

    2016-04-01

    The composition of human milk is known to vary with length of gestation, stage of lactation, and other factors. Human milk contains all nutrients required for infant health but requires fortification to meet the needs of low-birth-weight infants. Without a known nutrient profile of the mother's milk or donor milk fed to a baby, the composition of the fortified product is only an estimate. Human milk analysis has the potential to improve the nutrition care of high-risk newborns by increasing the information about human milk composition. Equipment to analyze human milk is available, and the technology is rapidly evolving. This pilot study compares mid-infrared (MIR) spectroscopy to reference laboratory milk analysis. After obtaining informed consent, we collected human milk samples from mothers of infants weighing milk obtained by MIR vs reference laboratory analysis. MIR analysis appears to provide an accurate assessment of macronutrient content in expressed human milk from mothers of preterm infants. The small sample size of this study limits confidence in the results. Measurement of lactose is confounded by the presence of oligosaccharides. Human milk analysis is a potentially useful tool for establishing an individualized fortification plan. © 2015 American Society for Parenteral and Enteral Nutrition.

  8. Fully Automated Lipid Pool Detection Using Near Infrared Spectroscopy

    Elżbieta Pociask

    2016-01-01

    Full Text Available Background. Detecting and identifying vulnerable plaque, which is prone to rupture, is still a challenge for cardiologist. Such lipid core-containing plaque is still not identifiable by everyday angiography, thus triggering the need to develop a new tool where NIRS-IVUS can visualize plaque characterization in terms of its chemical and morphologic characteristic. The new tool can lead to the development of new methods of interpreting the newly obtained data. In this study, the algorithm to fully automated lipid pool detection on NIRS images is proposed. Method. Designed algorithm is divided into four stages: preprocessing (image enhancement, segmentation of artifacts, detection of lipid areas, and calculation of Lipid Core Burden Index. Results. A total of 31 NIRS chemograms were analyzed by two methods. The metrics, total LCBI, maximal LCBI in 4 mm blocks, and maximal LCBI in 2 mm blocks, were calculated to compare presented algorithm with commercial available system. Both intraclass correlation (ICC and Bland-Altman plots showed good agreement and correlation between used methods. Conclusions. Proposed algorithm is fully automated lipid pool detection on near infrared spectroscopy images. It is a tool developed for offline data analysis, which could be easily augmented for newer functions and projects.

  9. State-of-art application of near infrared spectroscopy for functional diagnostics in neonatology

    Wolf, M.; Paiziev, A.

    2013-01-01

    The present brief review is devoted to application of near infra-red spectroscopy (NIRS) for early diagnostics of human brain injury. The number of commercially accessible NIRS instruments, and accordingly their users, increases but the precision of measurements and their reproducibility from the clinical point of view essentially depend on used algorithms, a kind of the NIRS-instrument, sensors, which frequently leads to the different values of the measurable parameters of blood oxygen saturation (StO 2 ). We present some commercially accessible NIRS instruments for control of an oxygen saturation degree in human blood, first of all in neonatology, on the basis of absorption and scattering of near infra-red light at human tissue chromophores. The results of clinical investigations of different NIRS-spectrometers for measurements of in-vivo new-born child' blood saturation are presented as well. (authors)

  10. The infrared spectroscopy in the study of the bone crystallinity thermally affected

    Medina, C.; Tiesler, V.; Azamar, J.A.; Alvarado G, J.J.; Quintana, P.

    2006-01-01

    Bone is made up by both organic and inorganic components. Among the latter stands out hydroxyapatite (HAP), composed by hexagonal crystallites arranged in a laminar form. The size of the hydroxyapatite crystals may be altered by different conditions, among those figures thermal exhibition, since during burning the bone eliminates organic matrix and thus promotes the crystallization process of the material. An experimental series was designed to measure crystallinity, in which pig bone remains were burnt at different temperatures and analyzed by infrared spectroscopy (FTIR). By means of analogy a comparison was made between the infrared spectra in order to compare with the ones obtained from the archaeological samples, coming from the Classic period Maya sites of Calakmul and Becan, Campeche. (Author)

  11. Infrared and NIR Raman spectroscopy in medical microbiology

    Naumann, Dieter

    1998-04-01

    FTIR and FT-NIR Raman spectra of intact microbial cells are highly specific, fingerprint-like signatures which can be used to (i) discriminate between diverse microbial species and strains, (ii) detect in situ intracellular components or structures such as inclusion bodies, storage materials or endospores, (iii) detect and quantify metabolically released CO2 in response to various different substrate, and (iv) characterize growth-dependent phenomena and cell-drug interactions. The characteristic information is extracted from the spectral contours by applying resolution enhancement techniques, difference spectroscopy, and pattern recognition methods such as factor-, cluster-, linear discriminant analysis, and artificial neural networks. Particularly interesting applications arise by means of a light microscope coupled to the spectrometer. FTIR spectra of micro-colonies containing less than 103 cells can be obtained from colony replica by a stamping technique that transfers micro-colonies growing on culture plates to a special IR-sample holder. Using a computer controlled x, y- stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro- organisms can be integrated in one single apparatus. FTIR and NIR-FT-Raman spectroscopy can also be used in tandem to characterize medically important microorganisms. Currently novel methodologies are tested to take advantage of the complementary information of IR and Raman spectra. Representative examples on medically important microorganisms will be given that highlight the new possibilities of vibrational spectroscopies.

  12. Real time near-infrared Raman spectroscopy for the diagnosis of nasopharyngeal cancer.

    Ming, Lim Chwee; Gangodu, Nagaraja Rao; Loh, Thomas; Zheng, Wei; Wang, Jianfeng; Lin, Kan; Zhiwei, Huang

    2017-07-25

    Near-infrared (NIR) Raman spectroscopy has been investigated as a tool to differentiate nasopharyngeal cancer (NPC) from normal nasopharyngeal tissue in an ex-vivo setting. Recently, we have miniaturized the fiber-optic Raman probe to investigate its utility in real time in-vivo surveillance of NPC patients. A posterior probability model using partial linear square (PLS) mathematical technique was constructed to verify the sensitivity and specificity of Raman spectroscopy in diagnosing NPC from post-irradiated and normal tissue using a diagnostic algorithm from three significant latent variables. NIR-Raman signals of 135 sites were measured from 79 patients with either newly diagnosed NPC (N = 12), post irradiated nasopharynx (N = 37) and normal nasopharynx (N = 30). The mean Raman spectra peaks identified differences at several Raman peaks at 853 cm-1, 940 cm-1, 1078 cm-1, 1335 cm-1, 1554 cm-1, 2885 cm-1 and 2940 cm-1 in the three different nasopharyngeal conditions. The sensitivity and specificity of distinguishing Raman signatures among normal nasopharynx versus NPC and post-irradiated nasopharynx versus NPC were 91% and 95%; and 77% and 96% respectively. Real time near-infrared Raman spectroscopy has a high specificity in distinguishing malignant from normal nasopharyngeal tissue in vivo, and may be investigated as a novel non-invasive surveillance tool in patients with nasopharyngeal cancer.

  13. Analysis of serum cortisol levels by Fourier Transform Infrared Spectroscopy for diagnosis of stress in athletes

    Lia Campos Lemes

    Full Text Available Abstract Introduction Fourier-transform infrared (FT-IR spectroscopy is a technique with great potential for body fluids analyses. The aim of this study was to examine the impact of session training on cortisol concentrations in rugby players by means of infrared analysis of serum. Methods Blood collections were performed pre, post and 24 hours after of rugby training sessions. Serum cortisol was analyzed by FT-IR spectroscopy and chemiluminescent immunoassay. Results There was a significant difference between the integrated area, in the region of 1180-1102 cm-1, of the spectra for pre, post and post 24 h serums. The cortisol concentration obtained by chemiluminescent immunoassay showed no significant difference between pre, post and post 24 h. Positive correlations were obtained between the techniques (r = 0.75, post (r = 0.83 and post 24 h (r = 0.73. Conclusion The results showed no increase in cortisol levels of the players after the training sessions, as well as positive correlations indicating that FT-IR spectroscopy have produced promising results for the analysis of serum for diagnosis of stress.

  14. Generation of pulsed far-infrared radiation and its application for far-infrared time-resolved spectroscopy

    Kondo, Yasuhiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1996-07-01

    So-called time-resolved spectroscopy technique has been used from old time as the means for studying the dynamic optical property, light-induced reaction and so on of matters. As an example, there is the method called pump and probe, and here, the wavelength of this probe light is the problem. If the object energy region is limited to about 0.1 eV, fast time-resolved spectroscopy is feasible relatively easily. However, energy region is extended to low energy region, the light source which is available as the pulsed probe light having sufficient intensity is limited. In this paper, the attempt of time-resolved spectroscopy utilizing coherent radiation, which has ended in failure, and the laser pulse-induced far-infrared radiation which can be utilized as new far-infrared probe light are reported. The reason why far-infrared radiation is used is explained. The attempt of time-resolved spectroscopy using NaCl crystals is reported on the equipment, the method of measuring absorption spectra and the results. Laser pulse-induced far-infrared radiation and the method of generating it are described. The multi-channel detector for far-infrared radiation which was made for trial is shown. (K.I.)

  15. From Selenium- to Tellurium-Based Glass Optical Fibers for Infrared Spectroscopies

    Jacques Lucas

    2013-05-01

    Full Text Available Chalcogenide glasses are based on sulfur, selenium and tellurium elements, and have been studied for several decades regarding different applications. Among them, selenide glasses exhibit excellent infrared transmission in the 1 to 15 µm region. Due to their good thermo-mechanical properties, these glasses could be easily shaped into optical devices such as lenses and optical fibers. During the past decade of research, selenide glass fibers have been proved to be suitable for infrared sensing in an original spectroscopic method named Fiber Evanescent Wave Spectroscopy (FEWS. FEWS has provided very nice and promising results, for example for medical diagnosis. Then, some sophisticated fibers, also based on selenide glasses, were developed: rare-earth doped fibers and microstructured fibers. In parallel, the study of telluride glasses, which can have transmission up to 28 µm due to its atom heaviness, has been intensified thanks to the DARWIN mission led by the European Space Agency (ESA. The development of telluride glass fiber enables a successful observation of CO2 absorption band located around 15 µm. In this paper we review recent results obtained in the Glass and Ceramics Laboratory at Rennes on the development of selenide to telluride glass optical fibers, and their use for spectroscopy from the mid to the far infrared ranges.

  16. Analysis of bacteria on steel surfaces using reflectance micro-Fourier transform infrared spectroscopy.

    Ojeda, Jesús J; Romero-González, María E; Banwart, Steven A

    2009-08-01

    Reflectance micro-Fourier transform infrared (FT-IR) analysis has been applied to characterize biofilm formation of Aquabacterium commune, a common microorganism present on drinking water distribution systems, onto the increasingly popular pipe material stainless steel EN1.4307. The applicability of the reflectance micro-FT-IR technique for analyzing the bacterial functional groups is discussed, and the results are compared to spectra obtained using more conventional FT-IR techniques: transmission micro-FT-IR, attenuated transmitted reflectance (ATR), and KBr pellets. The differences between the infrared spectra of wet and dried bacteria, as well as free versus attached bacteria, are also discussed. The spectra obtained using reflectance micro-FT-IR spectroscopy were comparable to those obtained using other FT-IR techniques. The absence of sample preparation, the potential to analyze intact samples, and the ability to characterize opaque and thick samples without the need to transfer the bacterial samples to an infrared transparent medium or produce a pure culture were the main advantages of reflectance micro-FT-IR spectroscopy.

  17. Raman, Infrared, and Laser-Induced Breakdown Spectroscopy Identification of Particles in Raw Materials.

    Lee, Kathryn; Lankers, Markus; Valet, Oliver

    2018-02-01

    Raw materials need to be of a certain quality with respect to physical and chemical composition. They also need to have no contaminants, including particles, because these could indicate raw material impurities or contaminate the product. Particle identification allows determination of process conditions that caused them and whether the quality of the final product is acceptable. Particles may appear to the eye to be very different things than they actually are. They may be coated with the raw material and may consist of several components; therefore, chemical and elemental analyses are required for accuracy in proper identification and definitive information about their source. Thus, microscope versions of Raman spectroscopy, laser-induced breakdown spectroscopy (LIBS), and infrared (IR) spectroscopy are excellent tools for identifying particles in materials. Those tools are fast and accurate, and can provide chemical and elemental composition as well as images that can aid identification. The micro-analysis capabilities allow for easy analysis of different portions of samples so that multiple components can be identified and sample preparation can be reduced or eliminated. The differences in sensitivities of Raman and IR spectroscopies to different functional groups as well as the elemental analysis provided by LIBS and the image analysis provided by the microscopy makes these complementary techniques and provides the advantage of identifying various chemical components. Proper spectral searching techniques and interpretation of the results are important for interpretation and identification of trace contaminants.

  18. Infrared absorption spectroscopy and chemical kinetics of free radicals

    Curl, R.F.; Glass, G.P.

    1991-01-01

    A new channel producing ketenyl radical (HCCO) was discovered in the flash photolysis of ketene at 193 nm. H 2 CCO + hν(193 nm) → H + HCCO by observation near 2020 cm -1 of the infrared fundamental of ketenyl corresponding to the antisymmetric motion of the heavy atoms. This band has been partially rotationally analyzed and the rate constant for the reaction of ketenyl with NO has been determined. The OH stretching fundamental of hydroxymethyl radical (CH 2 OH) has been observed near 3600 cm -1 producing the radical either by the excimer flash photolysis of acetol (CH 3 COCH 2 OH) or by Cl atom abstraction of a methyl hydrogen from methanol. The assignment of the spectrum to CH 2 OH was confirmed by the agreement of the rate constant for the reaction of the species with O 2 with the literature value. The mechanism of the reaction of C 2 H with O 2 has been explored. There appear to be two channels producing CO product: a fast, direct one producing highly vibrationally excited CO up to v = 6 at the same rate C 2 H disappears and a slow, indirect one producing primarily ground state CO on a much longer timescale than the disappearance of C 2 H. The rate constants for the reactions of C 2 H with CH 4 , C 2 H 6 , C 2 H 4 , D 2 , and CO were determined by following the time decay of a C 2 H infrared transient absorption line originating from the ground vibronic state using diode laser spectroscopy creating the C 2 H by excimer laser flash photolysis (ArF, 193 nm) of CF 3 CCH. The branching ratio into OH of the reaction between NH 2 , and NO, which is the channel thought to propagate the radical chain of the Thermal deNOx process, has been measured up to 925 degree C. The OH yield thus obtained appears to be too small to maintain the process. 5 refs., 3 figs

  19. Application of Raman Spectroscopy and Infrared Spectroscopy in the Identification of Breast Cancer.

    Depciuch, Joanna; Kaznowska, Ewa; Zawlik, Izabela; Wojnarowska, Renata; Cholewa, Marian; Heraud, Philip; Cebulski, Józef

    2016-02-01

    Raman spectroscopy and infrared (IR) spectroscopy are both techniques that allow for the investigation of vibrating chemical particles. These techniques provide information not only about chemical particles through the identification of functional groups and spectral analysis of so-called "fingerprints", these methods allow for the qualitative and quantitative analyses of chemical substances in the sample. Both of these spectral techniques are frequently being used in biology and medicine in diagnosing illnesses and monitoring methods of therapy. The type of breast cancer found in woman is often a malignant tumor, causing 1.38 million new cases of breast cancer and 458 000 deaths in the world in 2013. The most important risk factors for breast cancer development are: sex, age, family history, specific benign breast conditions in the breast, ionizing radiation, and lifestyle. The main purpose of breast cancer screening tests is to establish early diagnostics and to apply proper treatment. Diagnoses of breast cancer are based on: (1) physical techniques (e.g., ultrasonography, mammography, elastography, magnetic resonance, positron emission tomography [PET]); (2) histopathological techniques; (3) biological techniques; and (4) optical techniques (e.g., photo acoustic imaging, fluorescence tomography). However, none of these techniques provides unique or especially revealing answers. The aim of our study is comparative spectroscopic measurements on patients with the following: normal non-cancerous breast tissue; breast cancer tissues before chemotherapy; breast cancer tissues after chemotherapy; and normal breast tissues received around the cancerous breast region. Spectra collected from breast cancer patients shows changes in amounts of carotenoids and fats. We also observed changes in carbohydrate and protein levels (e.g., lack of amino acids, changes in the concentration of amino acids, structural changes) in comparison with normal breast tissues. This fact

  20. Non-linear calibration models for near infrared spectroscopy

    Ni, Wangdong; Nørgaard, Lars; Mørup, Morten

    2014-01-01

    by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non-linear...... models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS......-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration...

  1. Twenty years of functional near-infrared spectroscopy: introduction for the special issue.

    Boas, David A; Elwell, Clare E; Ferrari, Marco; Taga, Gentaro

    2014-01-15

    Papers from four different groups were published in 1993 demonstrating the ability of functional near infrared spectroscopy (fNIRS) to non-invasively measure hemoglobin concentration responses to brain function in humans. This special issue commemorates the first 20years of fNIRS research. The 9 reviews and 49 contributed papers provide a comprehensive survey of the exciting advances driving the field forward and of the myriad of applications that will benefit from fNIRS. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. [Current progress in food geographical origin traceability by near infrared spectroscopy technology].

    Ma, Dong-Hong; Wang, Xi-Chang; Liu, Li-Ping; Liu, Yuan

    2011-04-01

    The geographical origin traceability of food, an important part of traceability system, is effective in protecting the quality and safety of foodstuffs. Near-infrared spectroscopy (NIR), which is a powerful technique for geographical origin traceability, has attracted extensive attention by scientists due to its speediness, non-pollution and simple operation. This paper presents the advantages and disadvantages of techniques that have been used for food geographical origin traceability. The basic principles of NIR and its applications in different food geographical origin traceability are presented too. Furthermore, problems in applications are analyzed and the future development trends are discussed.

  3. Early detection of emerging street drugs by near infrared spectroscopy and chemometrics.

    Risoluti, R; Materazzi, S; Gregori, A; Ripani, L

    2016-06-01

    Near-infrared spectroscopy (NIRs) is spreading as the tool of choice for fast and non-destructive analysis and detection of different compounds in complex matrices. This paper investigated the feasibility of using near infrared (NIR) spectroscopy coupled to chemometrics calibration to detect new psychoactive substances in street samples. The capabilities of this approach in forensic chemistry were assessed in the determination of new molecules appeared in the illicit market and often claimed to contain "non-illegal" compounds, although exhibiting important psychoactive effects. The study focused on synthetic molecules belonging to the classes of synthetic cannabinoids and phenethylamines. The approach was validated comparing results with officials methods and has been successfully applied for "in site" determination of illicit drugs in confiscated real samples, in cooperation with the Scientific Investigation Department (Carabinieri-RIS) of Rome. The achieved results allow to consider NIR spectroscopy analysis followed by chemometrics as a fast, cost-effective and useful tool for the preliminary determination of new psychoactive substances in forensic science. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Nonlinear optics in germanium mid-infrared fiber material: Detuning oscillations in femtosecond mid-infrared spectroscopy

    M. Ordu

    2017-09-01

    Full Text Available Germanium optical fibers hold great promise in extending semiconductor photonics into the fundamentally important mid-infrared region of the electromagnetic spectrum. The demonstration of nonlinear response in fabricated Ge fiber samples is a key step in the development of mid-infrared fiber materials. Here we report the observation of detuning oscillations in a germanium fiber in the mid-infrared region using femtosecond dispersed pump-probe spectroscopy. Detuning oscillations are observed in the frequency-resolved response when mid-infrared pump and probe pulses are overlapped in a fiber segment. The oscillations arise from the nonlinear frequency resolved nonlinear (χ(3 response in the germanium semiconductor. Our work represents the first observation of coherent oscillations in the emerging field of germanium mid-infrared fiber optics.

  5. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy

    Fischer, B M; Walther, M; Jepsen, P Uhd

    2002-01-01

    The far-infrared dielectric function of a wide range of organic molecules is dominated by vibrations involving a substantial fraction of the atoms forming the molecule and motion associated with intermolecular hydrogen bond vibrations. Due to their collective nature such modes are highly sensitive to the intra- and intermolecular structure and thus provide a unique fingerprint of the conformational state of the molecule and effects of its environment. We demonstrate the use of terahertz time-domain spectroscopy (THz-TDS) for recording the far-infrared (0.5-4.0 THz) dielectric function of the four nucleobases and corresponding nucleosides forming the building blocks of deoxyribose nucleic acid (DNA). We observe numerous distinct spectral features with large differences between the molecules in both frequency-dependent absorption coefficient and index of refraction. Assisted by results from density-functional calculations we interpret the origin of the observed resonances as vibrations of hydrogen bonds between the molecules

  6. Investigation into interaction of CO/sub 2/ molecules with zeolites by infrared spectroscopy

    Ignat' eva, L A; Levshin, L V; Chukin, G D; Efimenko, L V; Kozlova, T I [Moskovskij Gosudarstvennyj Univ. (USSR). Kafedra Optiki

    1975-07-01

    Interaction of CO/sub 2/ molecules with zeolites, particularly with SrNaJ was studied by infrared-spectroscopy. To obtain infrared-spectra the zeolites were pressed into tablets and were calcinated at 500 deg. In the spectra the bands of chemisorbed CO/sub 2/ absorption were found in the range 1300 - 1600 cm/sup -1/. The CO/sub 2/ molecule was found to be strongly deformed due to chemisorption. In terms of electronic structure of the zeolite crystalline skeleton several types of CO/sub 2/ molecules interaction with different active zeolites were found. The position of the high-frequency band of CO/sub 2/ absorption in zeolites spectra was found to be a linear function of electrostatic field of the cations.

  7. Advantages of infrared transflection micro spectroscopy and paraffin-embedded sample preparation for biological studies

    Yao, Jie; Li, Qian; Zhou, Bo; Wang, Dan; Wu, Rie

    2018-04-01

    Fourier-Transform Infrared micro-spectroscopy is an excellent method for biological analyses. In this paper, series metal coating films on ITO glass were prepared by the electrochemical method and the different thicknesses of paraffin embedding rat's brain tissue on the substrates were studied by IR micro-spetroscopy in attenuated total reflection (ATR) mode and transflection mode respectively. The Co-Ni-Cu alloy coating film with low cost is good reflection substrates for the IR analysis. The infrared microscopic transflection mode needs not to touch the sample at all and can get the IR spectra with higher signal to noise ratios. The Paraffin-embedding method allows tissues to be stored for a long time for re-analysis to ensure the traceability of the sample. Also it isolates the sample from the metal and avoids the interaction of biological tissue with the metals. The best thickness of the tissues is 4 μm.

  8. Methanogenic activity tests by Infrared Tunable Diode Laser Absorption Spectroscopy.

    Martinez-Cruz, Karla; Sepulveda-Jauregui, Armando; Escobar-Orozco, Nayeli; Thalasso, Frederic

    2012-10-01

    Methanogenic activity (MA) tests are commonly carried out to estimate the capability of anaerobic biomass to treat effluents, to evaluate anaerobic activity in bioreactors or natural ecosystems, or to quantify inhibitory effects on methanogenic activity. These activity tests are usually based on the measurement of the volume of biogas produced by volumetric, pressure increase or gas chromatography (GC) methods. In this study, we present an alternative method for non-invasive measurement of methane produced during activity tests in closed vials, based on Infrared Tunable Diode Laser Absorption Spectroscopy (MA-TDLAS). This new method was tested during model acetoclastic and hydrogenotrophic methanogenic activity tests and was compared to a more traditional method based on gas chromatography. From the results obtained, the CH(4) detection limit of the method was estimated to 60 ppm and the minimum measurable methane production rate was estimated to 1.09(.)10(-3) mg l(-1) h(-1), which is below CH(4) production rate usually reported in both anaerobic reactors and natural ecosystems. Additionally to sensitivity, the method has several potential interests compared to more traditional methods among which short measurements time allowing the measurement of a large number of MA test vials, non-invasive measurements avoiding leakage or external interferences and similar cost to GC based methods. It is concluded that MA-TDLAS is a promising method that could be of interest not only in the field of anaerobic digestion but also, in the field of environmental ecology where CH(4) production rates are usually very low. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Effect of mechanical optical clearing on near-infrared spectroscopy.

    Idelson, Christopher R; Vogt, William C; King-Casas, Brooks; LaConte, Stephen M; Rylander, Christopher G

    2015-08-01

    Near-infrared Spectroscopy (NIRS) is a broadly utilized technology with many emerging applications including clinical diagnostics, sports medicine, and functional neuroimaging, to name a few. For functional brain imaging NIR light is delivered at multiple wavelengths through the scalp and skull to the brain to enable spatial oximetry measurements. Dynamic changes in brain oxygenation are highly correlated with neural stimulation, activation, and function. Unfortunately, NIRS is currently limited by its low spatial resolution, shallow penetration depth, and, perhaps most importantly, signal corruption due to light interactions with superficial non-target tissues such as scalp and skull. In response to these issues, we have combined the non-invasive and rapidly reversible method of mechanical tissue optical clearing (MOC) with a commercially available NIRS system. MOC utilizes a compressive loading force on tissue, causing the lateral displacement of blood and water, while simultaneously thinning the tissue. A MOC-NIRS Breath Hold Test displayed a ∼3.5-fold decrease in the time-averaged standard deviation between channels, consequentially promoting greater channel agreement. A Skin Pinch Test was implemented to negate brain and muscle activity from affecting the recorded signal. These results displayed a 2.5-3.0 fold increase in raw signal amplitude. Existing NIRS instrumentation has been further integrated within a custom helmet device to provide a uniform force distribution across the NIRS sensor array. These results showed a gradual decrease in time-averaged standard deviation among channels with an increase in applied pressure. Through these experiments, and the development of the MOC-NIRS helmet device, MOC appears to provide enhancement of NIRS technology beyond its current limitations. © 2015 Wiley Periodicals, Inc.

  10. Application of miniaturized near-infrared spectroscopy for quality control of extemporaneous orodispersible films.

    Foo, Wen Chin; Widjaja, Effendi; Khong, Yuet Mei; Gokhale, Rajeev; Chan, Sui Yung

    2018-02-20

    Extemporaneous oral preparations are routinely compounded in the pharmacy due to a lack of suitable formulations for special populations. Such small-scale pharmacy preparations also present an avenue for individualized pharmacotherapy. Orodispersible films (ODF) have increasingly been evaluated as a suitable dosage form for extemporaneous oral preparations. Nevertheless, as with all other extemporaneous preparations, safety and quality remain a concern. Although the United States Pharmacopeia (USP) recommends analytical testing of compounded preparations for quality assurance, pharmaceutical assays are typically not routinely performed for such non-sterile pharmacy preparations, due to the complexity and high cost of conventional assay methods such as high performance liquid chromatography (HPLC). Spectroscopic methods including Raman, infrared and near-infrared spectroscopy have been successfully applied as quality control tools in the industry. The state-of-art benchtop spectrometers used in those studies have the advantage of superior resolution and performance, but are not suitable for use in a small-scale pharmacy setting. In this study, we investigated the application of a miniaturized near infrared (NIR) spectrometer as a quality control tool for identification and quantification of drug content in extemporaneous ODFs. Miniaturized near infrared (NIR) spectroscopy is suitable for small-scale pharmacy applications in view of its small size, portability, simple user interface, rapid measurement and real-time prediction results. Nevertheless, the challenge with miniaturized NIR spectroscopy is its lower resolution compared to state-of-art benchtop equipment. We have successfully developed NIR spectroscopy calibration models for identification of ODFs containing five different drugs, and quantification of drug content in ODFs containing 2-10mg ondansetron (OND). The qualitative model for drug identification produced 100% prediction accuracy. The quantitative

  11. Trace gas absorption spectroscopy using laser difference-frequency spectrometer for environmental application

    Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.

    2001-01-01

    A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.

  12. Photon-Counting Microwave Kinetic Inductance Detectors (MKIDs) for High Resolution Far-Infrared Spectroscopy

    National Aeronautics and Space Administration — We are developing ultrasensitive Microwave Kinetic Inductance Detectors (MKIDs) for high resolution far-infrared spectroscopy applications, with a long-term goal of...

  13. ARTIFICIAL NEURAL-NETWORK PREDICTIONS OF URINARY CALCULUS COMPOSITIONS ANALYZED WITH INFRARED-SPECTROSCOPY

    VOLMER, M; WOLTHERS, BG; METTING, HJ; DEHAAN, THY; COENEGRACHT, PMJ; VANDERSLIK, W

    Infrared (IR) spectroscopy is used to analyze urinary calculus (renal stone) constituents. However, interpretation of IR spectra for quantifying urinary calculus constituents in mixtures is difficult, requiring expert knowledge by trained technicians. In our laboratory IR spectra of unknown calculi

  14. Infrared-x-ray pump-probe spectroscopy of the NO molecule

    Guimaraes, F.F.; Felicissimo, V.C.; Kimberg, V.; Gel'mukhanov, F.; Aagren, H.; Cesar, A.

    2005-01-01

    Two color infrared-x-ray pump-probe spectroscopy of the NO molecule is studied theoretically and numerically in order to obtain a deeper insight of the underlying physics and of the potential of this suggested technology. From the theoretical investigation a number of conclusions could be drawn: It is found that the phase of the infrared field strongly influences the trajectory of the nuclear wave packet, and hence, the x-ray spectrum. The trajectory experiences fast oscillations with the vibrational frequency with a modulation due to the anharmonicity of the potential. The dependences of the x-ray spectra on the delay time, the duration, and the shape of the pulses are studied in detail. It is shown that the x-ray spectrum keep memory about the infrared phase after the pump field left the system. This memory effect is sensitive to the time of switching-off the pump field and the Rabi frequency. The phase effect takes maximum value when the duration of the x-ray pulse is one-fourth of the infrared field period, and can be enhanced by a proper control of the duration and intensity of the pump pulse. The manifestation of the phase is different for oriented and disordered molecules and depends strongly on the intensity of the pump radiation

  15. Infrared x-ray pump-probe spectroscopy of the NO molecule

    Guimarães, F. F.; Kimberg, V.; Felicíssimo, V. C.; Gel'Mukhanov, F.; Cesar, A.; Ågren, H.

    2005-07-01

    Two color infrared x-ray pump-probe spectroscopy of the NO molecule is studied theoretically and numerically in order to obtain a deeper insight of the underlying physics and of the potential of this suggested technology. From the theoretical investigation a number of conclusions could be drawn: It is found that the phase of the infrared field strongly influences the trajectory of the nuclear wave packet, and hence, the x-ray spectrum. The trajectory experiences fast oscillations with the vibrational frequency with a modulation due to the anharmonicity of the potential. The dependences of the x-ray spectra on the delay time, the duration, and the shape of the pulses are studied in detail. It is shown that the x-ray spectrum keep memory about the infrared phase after the pump field left the system. This memory effect is sensitive to the time of switching-off the pump field and the Rabi frequency. The phase effect takes maximum value when the duration of the x-ray pulse is one-fourth of the infrared field period, and can be enhanced by a proper control of the duration and intensity of the pump pulse. The manifestation of the phase is different for oriented and disordered molecules and depends strongly on the intensity of the pump radiation.

  16. [Discrimination of Rice Syrup Adulterant of Acacia Honey Based Using Near-Infrared Spectroscopy].

    Zhang, Yan-nan; Chen, Lan-zhen; Xue, Xiao-feng; Wu, Li-ming; Li, Yi; Yang, Juan

    2015-09-01

    At present, the rice syrup as a low price of the sweeteners was often adulterated into acacia honey and the adulterated honeys were sold in honey markets, while there is no suitable and fast method to identify honey adulterated with rice syrup. In this study, Near infrared spectroscopy (NIR) combined with chemometric methods were used to discriminate authenticity of honey. 20 unprocessed acacia honey samples from the different honey producing areas, mixed? with different proportion of rice syrup, were prepared of seven different concentration gradient? including 121 samples. The near infrared spectrum (NIR) instrument and spectrum processing software have been applied in the? spectrum? scanning and data conversion on adulterant samples, respectively. Then it was analyzed by Principal component analysis (PCA) and canonical discriminant analysis methods in order to discriminating adulterated honey. The results showed that after principal components analysis, the first two principal components accounted for 97.23% of total variation, but the regionalism of the score plot of the first two PCs was not obvious, so the canonical discriminant analysis was used to make the further discrimination, all samples had been discriminated correctly, the first two discriminant functions accounted for 91.6% among the six canonical discriminant functions, Then the different concentration of adulterant samples can be discriminated correctly, it illustrate that canonical discriminant analysis method combined with NIR spectroscopy is not only feasible but also practical for rapid and effective discriminate of the rice syrup adulterant of acacia honey.

  17. Fourier Transform Infrared Spectroscopy as a Tool in Analysis of Proteus mirabilis Endotoxins.

    Żarnowiec, Paulina; Czerwonka, Grzegorz; Kaca, Wiesław

    2017-01-01

    Fourier transform infrared spectroscopy (FT-IR) was used to scan whole bacterial cells as well as lipopolysaccharides (LPSs, endotoxins) isolated from them. Proteus mirabilis cells, with chemically defined LPSs, served as a model for the ATR FT-IR method. The paper focuses on three steps of infrared spectroscopy: (1) sample preparation, (2) IR scanning, and (3) multivariate analysis of IR data (principal component analysis, PCA).

  18. Quantitative determination of the human breast milk macronutrients by near-infrared Raman spectroscopy

    Motta, Edlene d. C. M.; Zângaro, Renato A.; Silveira, Landulfo, Jr.

    2012-03-01

    This work proposes the evaluation of the macronutrient constitution of human breast milk based on the spectral information provided by near-infrared Raman spectroscopy. Human breast milk (5 mL) from a subject was collected during the first two weeks of breastfeeding and stocked in -20°C freezer. Raman spectra were measured using a Raman spectrometer (830 nm excitation) coupled to a fiber based Raman probe. Spectra of human milk were dominated by bands of proteins, lipids and carbohydrates in the 600-1800 cm-1 spectral region. Raman spectroscopy revealed differences in the biochemical constitution of human milk depending on the time of breastfeeding startup. This technique could be employed to develop a classification routine for the milk in Human Milk Banking (HMB) depending on the nutritional facts.

  19. Challenges in the noninvasive detection of body composition using near-infrared spectroscopy

    Wenliang Chen

    2014-11-01

    Full Text Available Noninvasive detection of body composition plays a significant role in the improvement of life quality and reduction in complications of the patients, and the near-infrared (NIR spectroscopy, with the advantages of painlessness and convenience, is considered as the most promising tool for the online noninvasive monitoring of body composition. However, quite different from other fields of online detection using NIR spectroscopy, such as food safety and environment monitoring, noninvasive detection of body composition demands higher precision of the instruments as well as more rigorousness of measurement conditions. Therefore, new challenges emerge when NIR spectroscopy is applied to the noninvasive detection of body composition, which, in this paper, are first concluded from the aspects of measurement methods, measurement conditions, instrument precision, multi-component influence, individual difference and novel weak-signal extraction method based on our previous research in the cutting-edge field of NIR noninvasive blood glucose detection. Moreover, novel ideas and approaches of our group to solve these problems are introduced, which may provide evidence for the future development of noninvasive blood glucose detection, and further contribute to the noninvasive detection of other body compositions using NIR spectroscopy.

  20. Silicon oxide particle formation in RF plasmas investigated by infrared absorption spectroscopy and mass spectrometry

    Hollenstein, Ch.; Howling, A.A.; Courteille, C.; Magni, D.; Scholz, S.M.; Kroesen, G.M.W.; Simons, N.; de Zeeuw, W.; Schwarzenbach, W.

    1998-01-01

    In situ Fourier transform infrared absorption spectroscopy has been used to study the composition of particles formed and suspended in radio-frequency discharges of silane - oxygen-argon gas mixtures. The silane gas consumption was observed by infrared absorption. The stoichiometry of the produced

  1. Development of secondary cell wall in cotton fibers as examined with Fourier transform-infrared spectroscopy

    Our presentation will focus on continuing efforts to examine secondary cell wall development in cotton fibers using infrared Spectroscopy. Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-...

  2. Infrared and Raman spectroscopy: principles and spectral interpretation

    Larkin, Peter

    2011-01-01

    .... The book reviews basic principles, instrumentation, sampling methods, quantitative analysis, origin of group frequencies and qualitative interpretation using generalized Infrared (IR) and Raman spectra...

  3. [Application of Fourier transform infrared spectroscopy in identification of wine spoilage].

    Zhao, Xian-De; Dong, Da-Ming; Zheng, Wen-Gang; Jiao, Lei-Zi; Lang, Yun

    2014-10-01

    In the present work, fresh and spoiled wine samples from three wines produced by different companies were studied u- sing Fourier transform infrared (FTIR) spectroscopy. We analyzed the physicochemical property change in the process of spoil- age, and then, gave out the attribution of some main FTIR absorption peaks. A novel determination method was explored based on the comparisons of some absorbance ratios at different wavebands although the absorbance ratios in this method were relative. Through the compare of the wine spectra before and after spoiled, the authors found that they were informative at the bands of 3,020~2,790, 1,760~1,620 and 1,550~800 cm(-1). In order to find the relation between these informative spectral bands and the wine deterioration and achieve the discriminant analysis, chemometrics methods were introduced. Principal compounds analysis (PCA) and soft independent modeling of class analogy (SIMCA) were used for classifying different-quality wines. And partial least squares discriminant analysis (PLS-DA) was applied to identify spoiled wines and good wines. Results showed that FTIR technique combined with chemometrics methods could effectively distinguish spoiled wines from fresh samples. The effect of classification at the wave band of 1 550-800 cm(-1) was the best. The recognition rate of SIMCA and PLSDA were respectively 94% and 100%. This study demonstrates that Fourier transform infrared spectroscopy is an effective tool for monitoring red wine's spoilage and provides theoretical support for developing early-warning equipments.

  4. NEAR-INFRARED SPECTROSCOPY OF POST-AGB STARS

    OUDMAIJER, RD; WATERS, LBFM; VANDERVEEN, WECJ; GEBALLE, TR

    The results of a medium resolution near-infrared spectral survey of 18 post-AGB candidate stars are presented. Most of the stars have near-infrared hydrogen lines in absorption, which is normal for their spectral types. Three stars, HD 101584, HD 179821 and HD 170756 have the CO first overtone bands

  5. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy

    Qu, Lei; Chen, Jian-bo; Zhang, Gui-Jun; Sun, Su-qin; Zheng, Jing

    2017-03-01

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p = 0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  6. Immersion Gratings for Infrared High-resolution Spectroscopy

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  7. TIME-RESOLVED INFRARED SPECTROSCOPY IN THE U121R BEAMLINE AT THE NSLS

    CARR, G.L.; LAVEIGNE, J.D.; LOBO, R.P.S.M.; REITZE, D.H.; TANNER, D.B.

    1999-01-01

    A facility for performing time-resolved infrared spectroscopy has been developed at the NSLS, primarily at beamline U12IR. The pulsed IR light from the synchrotron is used to perform pump-probe spectroscopy. The authors present here a description of the facility and results for the relaxation of photoexcitations in both a semiconductor and superconductor

  8. Species authentication and geographical origin discrimination of herbal medicines by near infrared spectroscopy: A review.

    Wang, Pei; Yu, Zhiguo

    2015-10-01

    Near infrared (NIR) spectroscopy as a rapid and nondestructive analytical technique, integrated with chemometrics, is a powerful process analytical tool for the pharmaceutical industry and is becoming an attractive complementary technique for herbal medicine analysis. This review mainly focuses on the recent applications of NIR spectroscopy in species authentication of herbal medicines and their geographical origin discrimination.

  9. Far infrared and terahertz spectroscopy of ferroelectric soft modes in thin films: a review

    Petzelt, Jan; Kamba, Stanislav

    2016-01-01

    Roč. 503, č. 1 (2016), s. 19-44 ISSN 0015-0193 R&D Projects: GA ČR GA15-08389S Institutional support: RVO:68378271 Keywords : soft mode * central mode * ferroelectric thin film * terahertz spectroscopy * far-infrared spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.551, year: 2016

  10. Methodological effects in Fourier transform infrared (FTIR) spectroscopy: Implications for structural analyses of biomacromolecular samples

    Kamnev, Alexander A.; Tugarova, Anna V.; Dyatlova, Yulia A.; Tarantilis, Petros A.; Grigoryeva, Olga P.; Fainleib, Alexander M.; De Luca, Stefania

    2018-03-01

    A set of experimental data obtained by Fourier transform infrared (FTIR) spectroscopy (involving the use of samples ground and pressed with KBr, i.e. in a polar halide matrix) and by matrix-free transmission FTIR or diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic methodologies (involving measurements of thin films or pure powdered samples, respectively) were compared for several different biomacromolecular substances. The samples under study included poly-3-hydroxybutyrate (PHB) isolated from cell biomass of the rhizobacterium Azospirillum brasilense; dry PHB-containing A. brasilense biomass; pectin (natural carboxylated heteropolysaccharide of plant origin; obtained from apple peel) as well as its chemically modified derivatives obtained by partial esterification of its galacturonide-chain hydroxyl moieties with palmitic, oleic and linoleic acids. Significant shifts of some FTIR vibrational bands related to polar functional groups of all the biomacromolecules under study, induced by the halide matrix used for preparing the samples for spectroscopic measurements, were shown and discussed. A polar halide matrix used for preparing samples for FTIR measurements was shown to be likely to affect band positions not only per se, by affecting band energies or via ion exchange (e.g., with carboxylate moieties), but also by inducing crystallisation of metastable amorphous biopolymers (e.g., PHB of microbial origin). The results obtained have important implications for correct structural analyses of polar, H-bonded and/or amphiphilic biomacromolecular systems using different methodologies of FTIR spectroscopy.

  11. Rapid assessment of selected free amino acids during Edam cheese ripening by near infrared spectroscopy

    Jiří Mlček

    2013-01-01

    Full Text Available The study focuses on rapid determination of free amino acids produced during the ripening of cheese, by using near infrared spectroscopy. Analyses of 96 samples of Edam cheese (30% and 45% of fat in dry matter were performed at monthly intervals up to the ripening age of 6 months. In total, 19 amino acids were analysed with infrared spectrometer using two different methods, either in the regime of reflectance in the integrating sphere of the apparatus or using a fibre optic apparatus with the fibre optic probe. Reference data based on high-performance liquid chromatography were used for calibration of the spectrophotometer. Calibration models were developed using a partial least square algorithm and tested by means of cross-validation. When measured with the integrating sphere and with the probe, the values of correlation coefficients ranged from 0.835 to 0.993 and from 0.739 to 0.995, respectively. Paired t-test did not show significant differences between the reference and predicted values (P < 0.05. The results of this new calibration method showed the possibility of near infrared technology for fast determination of free amino acids, which occur during the ripening of Edam cheese. The content of free amino acids allow us to prepare Edam cheese quickly and efficiently for sale or to prepare the material for processed cheese.

  12. Far Infrared spectroscopy of proteinogenic and other less common amino acids

    Iglesias-Groth, S.; Cataldo, F.

    2018-05-01

    Far infrared spectroscopy is a powerful tool complementing the potential of mid infrared spectroscopy for the search and identification of organic molecules in space. The far infrared spectra of a total of 29 amino acids are reported in this study. In addition to the spectra of 20 common proteinogenic amino acids, spectra of a selection of 9 non-proteinogenic amino acids are also reported, including the 2-aminoisobutyric acid or α-aminoisobutyric acid which, with glycine, it is one of the most abundant amino acids found in meteorites. The present database of 29 far infrared spectra may serve as reference in the search for amino acids in space environments, given the new apportunities that JWST offers for mid and far IR spectroscopy.

  13. Surface Composition of Trojan Asteroids from Thermal-Infrared Spectroscopy

    Martin, A.; Emery, J. P.; Lindsay, S. S.

    2017-12-01

    Asteroid origins provide an effective means of constraining the events that dynamically shaped the solar system. Jupiter Trojan asteroids (hereafter Trojans) may help in determining the extent of radial mixing that occurred during giant planet migration. Previous studies aimed at characterizing surface composition show that Trojans have low albedo surfaces and fall into two distinct spectral groups the near infrared (NIR). Though, featureless in this spectral region, NIR spectra of Trojans either exhibit a red or less-red slope. Typically, red-sloped spectra are associated with organics, but it has been shown that Trojans are not host to much, if any, organic material. Instead, the red slope is likely due to anhydrous silicates. The thermal infrared (TIR) wavelength range has advantages for detecting silicates on low albedo asteroids such as Trojans. The 10 µm region exhibits strong features due to the Si-O fundamental molecular vibrations. We hypothesize that the two Trojan spectral groups have different compositions (silicate mineralogy). With TIR spectra from the Spitzer Space Telescope, we identify mineralogical features from the surface of 11 Trojan asteroids, five red and six less-red. Preliminary results from analysis of the 10 µm region indicate red-sloped Trojans have a higher spectral contrast compared to less-red-sloped Trojans. Fine-grain mixtures of crystalline pyroxene and olivine exhibit a 10 µm feature with sharp cutoffs between about 9 µm and 12 µm, which create a broad flat plateau. Amorphous phases, when present, smooth the sharp emission features, resulting in a dome-like shape. Further spectral analysis in the 10 µm, 18 µm, and 30 µm band region will be performed for a more robust analysis. If all Trojans come from the same region, it is expected that they share spectral and compositional characteristics. Therefore, if spectral analysis in the TIR reinforce the NIR spectral slope dichotomy, it is likely that Trojans were sourced from

  14. A prototype stationary Fourier transform spectrometer for near-infrared absorption spectroscopy.

    Li, Jinyang; Lu, Dan-feng; Qi, Zhi-mei

    2015-09-01

    A prototype stationary Fourier transform spectrometer (FTS) was constructed with a fiber-coupled lithium niobate (LiNbO3) waveguide Mach-Zehnder interferometer (MZI) for the purpose of rapid on-site spectroscopy of biological and chemical measurands. The MZI contains push-pull electrodes for electro-optic modulation, and its interferogram as a plot of intensity against voltage was obtained by scanning the modulating voltage from -60 to +60 V in 50 ms. The power spectrum of input signal was retrieved by Fourier transform processing of the interferogram combined with the wavelength dispersion of half-wave voltage determined for the MZI used. The prototype FTS operates in the single-mode wavelength range from 1200 to 1700 nm and allows for reproducible spectroscopy. A linear concentration dependence of the absorbance at λmax = 1451 nm for water in ethanolic solution was obtained using the prototype FTS. The near-infrared spectroscopy of solid samples was also implemented, and the different spectra obtained with different materials evidenced the chemical recognition capability of the prototype FTS. To make this prototype FTS practically applicable, work on improving its spectral resolution by increasing the maximum optical path length difference is in progress.

  15. Bound states of water in gelatin discriminated by near-infrared spectroscopy

    Otsuka, Yukiko; Shirakashi, Ryo; Hirakawa, Kazuhiko

    2017-11-01

    By near-infrared spectroscopy, we classified water molecules in hydrated gelatin membranes in a drying process. Absorbance spectra in the frequency range of 4500-5500 cm-1 were resolved into three peaks, S0, S1, and S2, that correspond to water molecules with different hydrogen bond states. From the areas of the absorbance peaks as a function of the water content of gelatin, together with the information on the freezing properties of water measured by differential scanning calorimetry, we found that, when the water content is less than 20%, free water disappears and only weakly and strongly bound waters remain. We also found that the weakly bound water consists of S0, S1, and S2 water molecules with a simple composition of \\text{S}0:\\text{S}1:\\text{S}2 ≈ 1:2:0. Using this information, most of the freezable water was determined to be free water. Our classification provides a simple method of estimating the retention and freezing properties of processed foods or drugs by infrared spectroscopy.

  16. Infrared fiber optic evanescent wave spectroscopy: applications in biology and medicine

    Afanasyeva, Natalia I.; Bruch, Reinhard F.; Katzir, Abraham

    1999-04-01

    A new powerful and highly sensitive technique for non-invasive biomedical diagnostics in vivo has been developed using Infrared Fiberoptic Evanescent Wave Fourier Transform Spectroscopy (FEW-FTIR). This compact and portable method allows to detect functional chemical groups and bonds via vibrational spectroscopy directly from surfaces including living tissue. Such differences and similarities in molecular structure of tissue and materials can be evaluated online. Operating in the attenuated total reflection (ATR) regime in the middle-infrared (MIR) range, the FEW-FTIR technique provides direct contact between the fiber probe and tissue for non-destructive, non-invasive, fast and remote (few meters) diagnostics and quality control of materials. This method utilizes highly flexible and extremely low loss unclad fibers, for example silver halide fibers. Applications of this method include investigations of normal skin, precancerous and cancerous conditions, monitoring of the process of aging, allergic reactions and radiation damage to the skin. This setup is suitable as well for the detection of the influence of environmental factors (sun, water, pollution, and weather) on skin surfaces. The FEW-FTIR technique is very promising also for fast histological examinations in vitro. In this review, we present recent investigations of skin, breast, lung, stomach, kidney tissues in vivo and ex vivo (during surgery) to define the areas of tumor localization. The main advantages of the FEW-FTIR technique for biomedical, clinical, and environmental applications are discussed.

  17. Far-infrared spectroscopy of neutral interstellar clouds

    Watson, D.M.

    1984-01-01

    A summary is presented of airborne observations of the far-infrared fine structure lines of neutral atomic oxygen and singly-ionized carbon, and of the far-infrared rotational lines of CO, OH, NH 3 and HD, together with a brief description of the analysis and interpretation of the spectra. The 'state of the art' in instrument performance and the prospects for improved sensitivity and resolution are also surveyed. (Auth.)

  18. Comparing predictive ability of laser-induced breakdown spectroscopy to visible near-infrared spectroscopy for soil property determination

    Knadel, Maria; Gislum, René; Hermansen, Cecilie

    2017-01-01

    Soil organic carbon (SOC) and particle size fractions have a practical value for agronomy and the environment. Thus, alternative techniques to replace the expensive conventional analyses of soil are needed. Visible near-infrared reflectance spectroscopy (viseNIRS) has already shown potential...

  19. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy

    Chen Li [Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen (Germany); Ueta, Hirokazu; Beck, Rainer D. [Laboratoire de Chimie Physique Moleculaire, Ecole Polytechnique Federale de Lausanne (Switzerland); Bisson, Regis [Aix-Marseille Universite, PIIM, CNRS, UMR 7345, 13397 Marseille (France)

    2013-05-15

    We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S({theta}). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.

  20. Noninvasive measurement of postocclusive parameters in human forearm blood by near infrared spectroscopy

    Rao, K. Prahlad; Radhakrishnan, S.; Reddy, M. Ramasubba

    2005-04-01

    Near infrared (NIR) light in the wavelength range from 700 to 900 nm can pass through skin, bone and other tissues relatively easily. As a result, NIR techniques allow a noninvasive assessment of hemoglobin saturation for a wide range of applications, such as in the study of muscle metabolism, the diagnosis of vascular disorders, brain imaging, and breast cancer detection. Near infrared Spectroscopy (NIRS) is an effective tool to measure the hemoglobin concentration in the tissues, which can discriminate optically the oxy- and deoxy- hemoglobin species because of their different near-infrared absorption spectra. We have developed an NIRS probe consisting of a laser diode of 830 nm wavelength and a PIN photodiode in reflectance mode. We have selected a set of healthy volunteers (mean age 30, range 26-40 years) for the study. The probe is placed on forearm of each subject and the backscattered light intensity is measured by occluding the blood flow at 210, 110 and 85 mmHg pressures. Recovery time, peak time and time after 50% release of the cuff pressure are determined from the optical densities during the post occlusive state of forearm. These parameters are useful for determining the transient increase in blood flow after the release of blood occlusion. Clinically, the functional aspects of blood flow in the limbs could be evaluated noninvasively by NIRS.

  1. Application of far-infrared spectroscopy to the structural identification of protein materials.

    Han, Yanchen; Ling, Shengjie; Qi, Zeming; Shao, Zhengzhong; Chen, Xin

    2018-05-03

    Although far-infrared (IR) spectroscopy has been shown to be a powerful tool to determine peptide structure and to detect structural transitions in peptides, it has been overlooked in the characterization of proteins. Herein, we used far-IR spectroscopy to monitor the structure of four abundant non-bioactive proteins, namely, soybean protein isolate (SPI), pea protein isolate (PPI) and two types of silk fibroins (SFs), domestic Bombyx mori and wild Antheraea pernyi. The two globular proteins SPI and PPI result in broad and weak far-IR bands (between 50 and 700 cm-1), in agreement with those of some other bioactive globular proteins previously studied (lysozyme, myoglobin, hemoglobin, etc.) that generally only have random amino acid sequences. Interestingly, the two SFs, which are characterized by a structure composed of highly repetitive motifs, show several sharp far-IR characteristic absorption peaks. Moreover, some of these characteristic peaks (such as the peaks at 260 and 428 cm-1 in B. mori, and the peaks at 245 and 448 cm-1 in A. pernyi) are sensitive to conformational changes; hence, they can be directly used to monitor conformational transitions in SFs. Furthermore, since SF absorption bands clearly differ from those of globular proteins and different SFs even show distinct adsorption bands, far-IR spectroscopy can be applied to distinguish and determine the specific SF component within protein blends.

  2. The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments.

    Ferrari, Marco; Muthalib, Makii; Quaresima, Valentina

    2011-11-28

    This article provides a snapshot of muscle near-infrared spectroscopy (NIRS) at the end of 2010 summarizing the recent literature, offering the present status and perspectives of the NIRS instrumentation and methods, describing the main NIRS studies on skeletal muscle physiology, posing open questions and outlining future directions. So far, different NIRS techniques (e.g. continuous-wave (CW) and spatially, time- and frequency-resolved spectroscopy) have been used for measuring muscle oxygenation during exercise. In the last four years, approximately 160 muscle NIRS articles have been published on different physiological aspects (primarily muscle oxygenation and haemodynamics) of several upper- and lower-limb muscle groups investigated by using mainly two-channel CW and spatially resolved spectroscopy commercial instruments. Unfortunately, in only 15 of these studies were the advantages of using multi-channel instruments exploited. There are still several open questions in the application of NIRS in muscle studies: (i) whether NIRS can be used in subjects with a large fat layer; (ii) the contribution of myoglobin desaturation to the NIRS signal during exercise; (iii) the effect of scattering changes during exercise; and (iv) the effect of changes in skin perfusion, particularly during prolonged exercise. Recommendations for instrumentation advancements and future muscle NIRS studies are provided.

  3. Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data

    Balabin, Roman M., E-mail: balabin@org.chem.ethz.ch [Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich (Switzerland); Safieva, Ravilya Z. [Gubkin Russian State University of Oil and Gas, 119991 Moscow (Russian Federation)

    2011-03-18

    The use of biofuels, such as bioethanol or biodiesel, has rapidly increased in the last few years. Near infrared (near-IR, NIR, or NIRS) spectroscopy (>4000 cm{sup -1}) has previously been reported as a cheap and fast alternative for biodiesel quality control when compared with infrared, Raman, or nuclear magnetic resonance (NMR) methods; in addition, NIR can easily be done in real time (on-line). In this proof-of-principle paper, we attempt to find a correlation between the near infrared spectrum of a biodiesel sample and its base stock. This correlation is used to classify fuel samples into 10 groups according to their origin (vegetable oil): sunflower, coconut, palm, soy/soya, cottonseed, castor, Jatropha, etc. Principal component analysis (PCA) is used for outlier detection and dimensionality reduction of the NIR spectral data. Four different multivariate data analysis techniques are used to solve the classification problem, including regularized discriminant analysis (RDA), partial least squares method/projection on latent structures (PLS-DA), K-nearest neighbors (KNN) technique, and support vector machines (SVMs). Classifying biodiesel by feedstock (base stock) type can be successfully solved with modern machine learning techniques and NIR spectroscopy data. KNN and SVM methods were found to be highly effective for biodiesel classification by feedstock oil type. A classification error (E) of less than 5% can be reached using an SVM-based approach. If computational time is an important consideration, the KNN technique (E = 6.2%) can be recommended for practical (industrial) implementation. Comparison with gasoline and motor oil data shows the relative simplicity of this methodology for biodiesel classification.

  4. Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data

    Balabin, Roman M.; Safieva, Ravilya Z.

    2011-01-01

    The use of biofuels, such as bioethanol or biodiesel, has rapidly increased in the last few years. Near infrared (near-IR, NIR, or NIRS) spectroscopy (>4000 cm -1 ) has previously been reported as a cheap and fast alternative for biodiesel quality control when compared with infrared, Raman, or nuclear magnetic resonance (NMR) methods; in addition, NIR can easily be done in real time (on-line). In this proof-of-principle paper, we attempt to find a correlation between the near infrared spectrum of a biodiesel sample and its base stock. This correlation is used to classify fuel samples into 10 groups according to their origin (vegetable oil): sunflower, coconut, palm, soy/soya, cottonseed, castor, Jatropha, etc. Principal component analysis (PCA) is used for outlier detection and dimensionality reduction of the NIR spectral data. Four different multivariate data analysis techniques are used to solve the classification problem, including regularized discriminant analysis (RDA), partial least squares method/projection on latent structures (PLS-DA), K-nearest neighbors (KNN) technique, and support vector machines (SVMs). Classifying biodiesel by feedstock (base stock) type can be successfully solved with modern machine learning techniques and NIR spectroscopy data. KNN and SVM methods were found to be highly effective for biodiesel classification by feedstock oil type. A classification error (E) of less than 5% can be reached using an SVM-based approach. If computational time is an important consideration, the KNN technique (E = 6.2%) can be recommended for practical (industrial) implementation. Comparison with gasoline and motor oil data shows the relative simplicity of this methodology for biodiesel classification.

  5. New applications of near infrared spectroscopy in the food industry

    Groenewald, C.A. (Peter Rassloff Instruments and Services, Norwood, South Africa)

    The near infrared spectroscopic method of analysis was initially developed for rapid analyses of protein in wheat. A brief explanation of the theory and history of near infrared spectroscopic analysis will be given. Research was done on the application of near infrared spectroscopic (NIR) in the food industry. Especially exciting was the breakthrough achieved in applying NIR to determine the dry solid content of bread. Such application could revolutionise the baking industry. Results will also be presented of research done on the application of NIR techniques for the determination of protein and fat in bread based on dry matter; hardness in wheat; absorption and sedimentation in pasta products; and use in process control in snack products manufacture. The limitations that were found in the application of NIR analysis will also be covered. The developments in NIR technology may result in these methods becoming standard practice in many food laboratories.

  6. New applications of near infrared spectroscopy in the food industry

    Groenewald, C.A.

    1984-01-01

    The near infrared spectroscopic method of analysis was initially developed for rapid analyses of protein in wheat. A brief explanation of the theory and history of near infrared spectroscopic analysis will be given. Research was done on the application of near infrared spectroscopic (NIR) in the food industry. Especially exciting was the breakthrough achieved in applying NIR to determine the dry solid content of bread. Such application could revolutionise the baking industry. Results will also be presented of research done on the application of NIR techniques for the determination of protein and fat in bread based on dry matter; hardness in wheat; absorption and sedimentation in pasta products; and use in process control in snack products manufacture. The limitations that were found in the application of NIR analysis will also be covered. The developments in NIR technology may result in these methods becoming standard practice in many food laboratories

  7. Formation and Thermal Infrared Spectroscopy of Halite Crusts

    Baldridge, A. M.; Christensen, P. R.

    2003-12-01

    Efflorescent salt crusts form as groundwater evaporates from capillary updraw of brine through sediment. Salts precipitate at the surface, coating and cementing the upper few layers of sediment. If enough brine is present to completely saturate and pond on top of the surface, halite will precipitate at the surface of the brine and settle out as layers of crystalline salt on top of the sediment. In playa environments, salts such as sulfates, carbonates and halides, and forms such crusts. In remote sensing studies of such surfaces, it is important to understand how the presence of salt crusts affects the spectral features of the surrounding sediment. This is especially true when the crusts form from a non-absorbing salt such as halite. Halite has been observed to exhibit unusual spectral properties in the thermal infrared. Specifically, granular mixtures of minerals with halite produced spectra in which the spectral features inverted form reflectivity, shifted to shorter wavelengths and the spectral contrast increased near absorption bands. However, in crusted surfaces, in which the halite cements, coats or overlays the mineral grains, the presence of halite has a different affect on the spectra. This work will examine the precipitation of halite and the formation of salt crusts for several sediment and brine mixtures. Laboratory measurements of thermal emission spectra for the crusts will be compared to previous studies for particulate mixtures of halite with minerals and well as to natural surface crusts. Detailed knowledge of such surfaces will allow for their discrimination and identification in terrestrial playa settings as well as in paleo-environments on Mars.

  8. Functional Group Analysis of Biomass Burning Particles Using Infrared Spectroscopy

    Horrell, K.; Lau, A.; Bond, T.; Iraci, L. T.

    2008-12-01

    Biomass burning is a significant source of particulate organic carbon in the atmosphere. These particles affect the energy balance of the atmosphere directly by absorbing and scattering solar radiation, and indirectly through their ability to act as cloud condensation nuclei (CCN). The chemical composition of biomass burning particles influences their ability to act as CCN, thus understanding the chemistry of these particles is required for understanding their effects on climate and air quality. As climate change influences the frequency and severity of boreal forest fires, the influence of biomass burning aerosols on the atmosphere may become significantly greater. Only a small portion of the organic carbon (OC) fraction of these particles has been identified at the molecular level, although several studies have explored the general chemical classes found in biomass burning smoke. To complement those studies and provide additional information about the reactive functional groups present, we are developing a method for polarity-based separation of compound classes found in the OC fraction, followed by infrared (IR) spectroscopic analysis of each polarity fraction. It is our goal to find a simple, relatively low-tech method which will provide a moderate chemical understanding of the entire suite of compounds present in the OC fraction of biomass burning particles. Here we present preliminary results from pine and oak samples representative of Midwestern United States forests burned at several different temperatures. Wood type and combustion temperature are both seen to affect the composition of the particles. The latter seems to affect relative contributions of certain functional groups, while oak demonstrates at least one additional chemical class of compounds, particularly at lower burning temperatures, where gradual solid-gas phase reactions can produce relatively large amounts of incompletely oxidized products.

  9. Far-infrared and submillimeter spectroscopy of photodissociation regions

    Qaiyum, A.

    1993-12-01

    The physical properties of the galactic and extragalactic photodissociation regions, warm gas components molecular clouds are, generally, derived through the far-infrared (FIR) fine structure and submillimeter line emissions arising out of these regions. In the theoretical studies of these lines the model of Tielens and Hollenbach (herein after referred as TH) are usually employed in which all the opacity is assumed local in escape probability formalism and inward directed photons do not escape. These assumptions are contrary to the observational facts, where most of the lines are found optically thin except OI (63 μm) and low rotational transitions of CO and some other molecules. The optically thin medium will allow the radiation to escape through any face of the region. These observational evidences let us to assume finite parallel plane slab, instead of semi-infinite parallel slab, in which the photons are allowed to escape from both surfaces (back and front). In the present study an attempt has been made to incorporate the two sided escape of photons from the PDRs and to study its effect on the FIR and submillimeter line emission from the PDRs/molecular clouds. Further the present formalism is also employed to study the clumpy PDRs/molecular clouds. The preliminary results show that now serious consequences are found on the thermal and chemical structure of the regions but individual line emissions are modified by differing factors. Particularly at low density and low kinetic temperature the change is substantial but at density greater than the critical density of the line and temperature close to the excitation temperature its effect is almost negligible. An attempt has also been made to study the physical conditions of the M17 region employing the present formalism. (author). 49 refs, 8 figs, 1 tab

  10. Variable selection in near-infrared spectroscopy: Benchmarking of feature selection methods on biodiesel data

    Balabin, Roman M.; Smirnov, Sergey V.

    2011-01-01

    During the past several years, near-infrared (near-IR/NIR) spectroscopy has increasingly been adopted as an analytical tool in various fields from petroleum to biomedical sectors. The NIR spectrum (above 4000 cm -1 ) of a sample is typically measured by modern instruments at a few hundred of wavelengths. Recently, considerable effort has been directed towards developing procedures to identify variables (wavelengths) that contribute useful information. Variable selection (VS) or feature selection, also called frequency selection or wavelength selection, is a critical step in data analysis for vibrational spectroscopy (infrared, Raman, or NIRS). In this paper, we compare the performance of 16 different feature selection methods for the prediction of properties of biodiesel fuel, including density, viscosity, methanol content, and water concentration. The feature selection algorithms tested include stepwise multiple linear regression (MLR-step), interval partial least squares regression (iPLS), backward iPLS (BiPLS), forward iPLS (FiPLS), moving window partial least squares regression (MWPLS), (modified) changeable size moving window partial least squares (CSMWPLS/MCSMWPLSR), searching combination moving window partial least squares (SCMWPLS), successive projections algorithm (SPA), uninformative variable elimination (UVE, including UVE-SPA), simulated annealing (SA), back-propagation artificial neural networks (BP-ANN), Kohonen artificial neural network (K-ANN), and genetic algorithms (GAs, including GA-iPLS). Two linear techniques for calibration model building, namely multiple linear regression (MLR) and partial least squares regression/projection to latent structures (PLS/PLSR), are used for the evaluation of biofuel properties. A comparison with a non-linear calibration model, artificial neural networks (ANN-MLP), is also provided. Discussion of gasoline, ethanol-gasoline (bioethanol), and diesel fuel data is presented. The results of other spectroscopic

  11. ATR and transmission analysis of pigments by means of far infrared spectroscopy.

    Kendix, Elsebeth L; Prati, Silvia; Joseph, Edith; Sciutto, Giorgia; Mazzeo, Rocco

    2009-06-01

    In the field of FTIR spectroscopy, the far infrared (FIR) spectral region has been so far less investigated than the mid-infrared (MIR), even though it presents great advantages in the characterization of those inorganic compounds, which are inactive in the MIR, such as some art pigments, corrosion products, etc. Furthermore, FIR spectroscopy is complementary to Raman spectroscopy if the fluorescence effects caused by the latter analytical technique are considered. In this paper, ATR in the FIR region is proposed as an alternative method to transmission for the analyses of pigments. This methodology was selected in order to reduce the sample amount needed for analysis, which is a must when examining cultural heritage materials. A selection of pigments have been analyzed in both ATR and transmission mode, and the resulting spectra were compared with each other. To better perform this comparison, an evaluation of the possible effect induced by the thermal treatment needed for the preparation of the polyethylene pellets on the transmission spectra of the samples has been carried out. Therefore, pigments have been analyzed in ATR mode before and after heating them at the same temperature employed for the polyethylene pellet preparation. The results showed that while the heating treatment causes only small changes in the intensity of some bands, the ATR spectra were characterized by differences in both intensity and band shifts towards lower frequencies if compared with those recorded in transmission mode. All pigments' transmission and ATR spectra are presented and discussed, and the ATR method was validated on a real case study.

  12. Radiofrequency/infrared double resonance spectroscopy of the HD+ ion

    Carrington, Alan; McNab, I.R.; Montgomerie, C.A.

    1989-01-01

    We describe a double resonance technique for obtaining radiofrequency spectra of the HD + ion in vibration-rotation levels close to the dissociation limit. Infrared transitions are driven by Doppler tuning an HD + ion beam into resonance with a carbon dioxide infrared laser, and are detected by measuring H + fragment ions produced by electric field dissociation of the upper vibration-rotation level. Radiofrequency transitions between nuclear hyperfine components of the lower vibration-rotation level are then detected through resonant increases in the H + fragment ion current. The high spectroscopic resolution obtained, and the ability to measure magnetic dipole hyperfine transitions, will enable the hyperfine constants to be determined accurately. (author)

  13. Chilean flour and wheat grain: tracing their origin using near infrared spectroscopy and chemometrics.

    González-Martín, Ma Inmaculada; Wells Moncada, Guillermo; González-Pérez, Claudio; Zapata San Martín, Nelson; López-González, Fernando; Lobos Ortega, Iris; Hernández-Hierro, Jose-Miguel

    2014-02-15

    Instrumental techniques such a near-infrared spectroscopy (NIRS) are used in industry to monitor and establish product composition and quality. As occurs with other food industries, the Chilean flour industry needs simple, rapid techniques to objectively assess the origin of different products, which is often related to their quality. In this sense, NIRS has been used in combination with chemometric methods to predict the geographic origin of wheat grain and flour samples produced in different regions of Chile. Here, the spectral data obtained with NIRS were analysed using a supervised pattern recognition method, Discriminat Partial Least Squares (DPLS). The method correctly classified 76% of the wheat grain samples and between 90% and 96% of the flour samples according to their geographic origin. The results show that NIRS, together with chemometric methods, provides a rapid tool for the classification of wheat grain and flour samples according to their geographic origin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Determination of adsorbed protein concentration in aluminum hydroxide suspensions by near-infrared transmittance Spectroscopy

    Lai, Xuxin; Zheng, Yiwu; Jacobsen, Susanne

    2008-01-01

    , using the partial least square regression (PLSR) method to construct a calibration model. The linear concentration range of adsorbed BSA is from 0 to 1.75 mg/mL by using 10 mm path length cuvettes. The influence of the sedimentation in suspension, different buffers, and different aluminum hydroxide......Analysis of aluminum hydroxide based vaccines is difficult after antigen adsorption. Adsorbed protein is often assessed by measuring residual unadsorbed protein for quality control. A new method for the direct determination of adsorbed protein concentration in suspension using near-infrared (NIR......) transmittance spectroscopy is proposed here. A simple adsorption system using albumin from bovine serum (BSA) and aluminum hydroxide as a model system is employed. The results show that the NIR absorbance at 700-1300 nm is correlated to the adsorbed BSA concentration, measured by the ultraviolet (UV) method...

  15. Variety identification of brown sugar using short-wave near infrared spectroscopy and multivariate calibration

    Yang, Haiqing; Wu, Di; He, Yong

    2007-11-01

    Near-infrared spectroscopy (NIRS) with the characteristics of high speed, non-destructiveness, high precision and reliable detection data, etc. is a pollution-free, rapid, quantitative and qualitative analysis method. A new approach for variety discrimination of brown sugars using short-wave NIR spectroscopy (800-1050nm) was developed in this work. The relationship between the absorbance spectra and brown sugar varieties was established. The spectral data were compressed by the principal component analysis (PCA). The resulting features can be visualized in principal component (PC) space, which can lead to discovery of structures correlative with the different class of spectral samples. It appears to provide a reasonable variety clustering of brown sugars. The 2-D PCs plot obtained using the first two PCs can be used for the pattern recognition. Least-squares support vector machines (LS-SVM) was applied to solve the multivariate calibration problems in a relatively fast way. The work has shown that short-wave NIR spectroscopy technique is available for the brand identification of brown sugar, and LS-SVM has the better identification ability than PLS when the calibration set is small.

  16. Solid state spectroscopy by using of far-infrared synchrotron radiation

    Nanba, Takao [Kobe Univ. (Japan). Faculty of Science

    1996-07-01

    If the spectroscopic system corresponding to the wavelength region required for experiment is installed, the light source with continuous wavelength is to be obtainable by synchrotron radiation. This report is that of the research on solid state spectroscopy using the ordinary incoherent synchrotron radiation which is obtained from the deflection electromagnet parts of electron storage ring. At present in the world, the facilities which can be utilized in far-infrared spectroscopy region are five, including the UVSOR of Molecular Science Research Institute in Japan. The optical arrangement of the measuring system of the UVSOR is shown. The spectrum distribution of the light passing through the pinholes with different diameter in the place of setting samples was compared in case of the UVSOR and a high pressure mercury lamp, and it was shown that synchrotron radiation has high luminance. The researches on solid state spectroscopy carried out in the above mentioned five facilities are enumerated. In this paper, the high pressure spectroscopic experiment which has been carried out at the UVSOR is reported. The observation of the phase transition of fine particles and the surface phonons of fine particles are described. As fine particle size became smaller, the critical pressure at which phase transition occurred was high. (K.I.)

  17. Site-Specific Characterization of Cytochrome P450cam Conformations by Infrared Spectroscopy.

    Basom, Edward J; Maj, Michał; Cho, Minhaeng; Thielges, Megan C

    2016-06-21

    Conformational changes are central to protein function but challenging to characterize with both high spatial and temporal precision. The inherently fast time scale and small chromophores of infrared (IR) spectroscopy are well-suited for characterization of potentially rapidly fluctuating environments, and when frequency-resolved probes are incorporated to overcome spectral congestion, enable characterization of specific sites in proteins. We selectively incorporated p-cyanophenylalanine (CNF) as a vibrational probe at five distinct locations in the enzyme cytochrome P450cam and used IR spectroscopy to characterize the environments in substrate and/or ligand complexes reflecting those in the catalytic cycle. Molecular dynamics (MD) simulations were performed to provide a structural basis for spectral interpretation. Together the experimental and simulation data suggest that the CN frequencies are sensitive to both long-range influences, resulting from the particular location of a residue within the enzyme, as well as short-range influences from hydrogen bonding and packing interactions. The IR spectra demonstrate that the environments and effects of substrate and/or ligand binding are different at each position probed and also provide evidence that a single site can experience multiple environments. This study illustrates how IR spectroscopy, when combined with the spectral decongestion and spatial selectivity afforded by CNF incorporation, provides detailed information about protein structural changes that underlie function.

  18. Correlation between near infrared spectroscopy and electrical techniques in measuring skin moisture content

    Mohamad, M; Sabbri, A R M; Jafri, M Z Mat; Omar, A F

    2014-01-01

    Near infrared (NIR) spectroscopy technique serves as an important tool for the measurement of moisture content of skin owing to the advantages it has over the other techniques. The purpose of the study is to develop a correlation between NIR spectrometer with electrical conventional techniques for skin moisture measurement. A non-invasive measurement of moisture content of skin was performed on different part of human face and hand under control environment (temperature 21 ± 1 °C, relative humidity 45 ± 5 %). Ten healthy volunteers age between 21-25 (male and female) participated in this study. The moisture content of skin was measured using DermaLab ® USB Moisture Module, Scalar Moisture Checker and NIR spectroscopy (NIRQuest). Higher correlation was observed between NIRQuest and Dermalab moisture probe with a coefficient of determination (R 2 ) above 70 % for all the subjects. However, the value of R 2 between NIRQuest and Moisture Checker was observed to be lower with the R 2 values ranges from 51.6 to 94.4 %. The correlation of NIR spectroscopy technique successfully developed for measuring moisture content of the skin. The analysis of this correlation can help to establish novel instruments based on an optical system in clinical used especially in the dermatology field

  19. Determination of geographical origin and icariin content of Herba Epimedii using near infrared spectroscopy and chemometrics

    Yang, Yue; Wu, Yongjiang; Li, Weili; Liu, Xuesong; Zheng, Jiyu; Zhang, Wentao; Chen, Yong

    2018-02-01

    Near infrared (NIR) spectroscopy coupled with chemometrics was used to discriminate the geographical origin of Herba Epimedii in this work. Four different classification models, namely discriminant analysis (DA), back propagation neural network (BPNN), K-nearest neighbor (KNN), and support vector machine (SVM), were constructed, and their performances in terms of recognition accuracy were compared. The results indicated that the SVM model was superior over the other models in the geographical origin identification of Herba Epimedii. The recognition rates of the optimum SVM model were up to 100% for the calibration set and 94.44% for the prediction set, respectively. In addition, the feasibility of NIR spectroscopy with the CARS-PLSR calibration model in prediction of icariin content of Herba Epimedii was also investigated. The determination coefficient (RP2) and root-mean-square error (RMSEP) for prediction set were 0.9269 and 0.0480, respectively. It can be concluded that the NIR spectroscopy technique in combination with chemometrics has great potential in determination of geographical origin and icariin content of Herba Epimedii. This study can provide a valuable reference for rapid quality control of food products.

  20. Monitoring breast cancer treatment using a Fourier transform infrared spectroscopy-based computational model.

    Depciuch, J; Kaznowska, E; Golowski, S; Koziorowska, A; Zawlik, I; Cholewa, M; Szmuc, K; Cebulski, J

    2017-09-05

    Breast cancer affects one in four women, therefore, the search for new diagnostic technologies and therapeutic approaches is of critical importance. This involves the development of diagnostic tools to facilitate the detection of cancer cells, which is useful for assessing the efficacy of cancer therapies. One of the major challenges for chemotherapy is the lack of tools to monitor efficacy during the course of treatment. Vibrational spectroscopy appears to be a promising tool for such a purpose, as it yields Fourier transformation infrared (FTIR) spectra which can be used to provide information on the chemical composition of the tissue. Previous research by our group has demonstrated significant differences between the infrared spectra of healthy, cancerous and post-chemotherapy breast tissue. Furthermore, the results obtained for three extreme patient cases revealed that the infrared spectra of post-chemotherapy breast tissue closely resembles that of healthy breast tissue when chemotherapy is effective (i.e., a good therapeutic response is achieved), or that of cancerous breast tissue when chemotherapy is ineffective. In the current study, we compared the infrared spectra of healthy, cancerous and post-chemotherapy breast tissue. Characteristic parameters were designated for the obtained spectra, spreading the function of absorbance using the Kramers-Kronig transformation and the best fit procedure to obtain Lorentz functions, which represent components of the bands. The Lorentz function parameters were used to develop a physics-based computational model to verify the efficacy of a given chemotherapy protocol in a given case. The results obtained using this model reflected the actual patient data retrieved from medical records (health improvement or no improvement). Therefore, we propose this model as a useful tool for monitoring the efficacy of chemotherapy in patients with breast cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Just add water: Accuracy of analysis of diluted human milk samples using mid-infrared spectroscopy.

    Smith, R W; Adamkin, D H; Farris, A; Radmacher, P G

    2017-01-01

    To determine the maximum dilution of human milk (HM) that yields reliable results for protein, fat and lactose when analyzed by mid-infrared spectroscopy. De-identified samples of frozen HM were obtained. Milk was thawed and warmed (40°C) prior to analysis. Undiluted (native) HM was analyzed by mid-infrared spectroscopy for macronutrient composition: total protein (P), fat (F), carbohydrate (C); Energy (E) was calculated from the macronutrient results. Subsequent analyses were done with 1 : 2, 1 : 3, 1 : 5 and 1 : 10 dilutions of each sample with distilled water. Additional samples were sent to a certified lab for external validation. Quantitatively, F and P showed statistically significant but clinically non-critical differences in 1 : 2 and 1 : 3 dilutions. Differences at higher dilutions were statistically significant and deviated from native values enough to render those dilutions unreliable. External validation studies also showed statistically significant but clinically unimportant differences at 1 : 2 and 1 : 3 dilutions. The Calais Human Milk Analyzer can be used with HM samples diluted 1 : 2 and 1 : 3 and return results within 5% of values from undiluted HM. At a 1 : 5 or 1 : 10 dilution, however, results vary as much as 10%, especially with P and F. At the 1 : 2 and 1 : 3 dilutions these differences appear to be insignificant in the context of nutritional management. However, the accuracy and reliability of the 1 : 5 and 1 : 10 dilutions are questionable.

  2. Lanthanum trilactate: Vibrational spectroscopic study - infrared/Raman spectroscopy

    Švecová, M.; Novák, Vít; Bartůněk, V.; Člupek, M.

    2016-01-01

    Roč. 87, Nov (2016), s. 123-128 ISSN 0924-2031 Institutional support: RVO:61388963 Keywords : lanthanum trilactate * tris(2-hydroxypropanoato-O1,O2) * lanthanum tris[2-(hydroxy-kappa O)propanoato-kappa O] * Raman spectra * infrared spectra * DFT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.740, year: 2016

  3. Applications of infrared photo-acoustic spectroscopy for wood samples

    Mon-Lin Kuo; John F. McClelland; Siquan Luo; Po-Liang Chien; R.D. Walker; Chung-Yun Hse

    1988-01-01

    Various infrared (IR) spectroscopic techniques for the analysis of wood samples are briefly discussed. Theories and instrumentation of the newly developed photoacoustic spectroscopic (PAS) technique for measuring absorbance spectra of solids are presented. Some important applications of the PAS technique in wood science research are discussed. The application of the...

  4. [Application of Fourier transform attenuated total reflection infrared spectroscopy in analysis of pulp and paper industry].

    Zhang, Yong; Cao, Chun-yu; Feng, Wen-ying; Xu, Ming; Su, Zhen-hua; Liu, Xiao-meng; Lü, Wei-jun

    2011-03-01

    As one of the most powerful tools to investigate the compositions of raw materials and the property of pulp and paper, infrared spectroscopy has played an important role in pulp and paper industry. However, the traditional transmission infrared spectroscopy has not met the requirements of the producing processes because of its disadvantages of time consuming and sample destruction. New technique would be needed to be found. Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR) is an advanced spectroscopic tool for nondestructive evaluation and could rapidly, accurately estimate the production properties of each process in pulp and paper industry. The present review describes the application of ATR-FTIR in analysis of pulp and paper industry. The analysis processes will include: pulping, papermaking, environmental protecting, special processing and paper identifying.

  5. Background and state of the art of near infrared spectroscopy in the forest sector base

    Muñiz, G.I.B. de; Magalhães, W.L.E.; Carneiro, M.E.; Viana, L.C.

    2012-01-01

    The knowledge of wood properties is the fundamental importance for the indication of the potential and use of this material. In the search for new alternatives for a fast, simple and reliable characterization, there are the non-destructive evaluations of wood. The near infrared spectroscopy (NIRS) has been used as a non-destructive method that allows qualitative and quantitative information of the constituents of biomass through the interaction of electromagnetic waves with near-infrared next to the sample. This work aims to provide a review of the technique of near infrared spectroscopy and its application in forestry. The technique is used in virtually all areas due to the level of development that this technology has reached in recent years. NIR spectroscopy has proved a quick and efficient replacement of several tests that determine the quality of the wood. This is a literature review and state of the art on the theme [pt

  6. A rapid identification of four medicinal chrysanthemum varieties with near infrared spectroscopy.

    Han, Bangxing; Yan, Hui; Chen, Cunwu; Yao, Houjun; Dai, Jun; Chen, Naifu

    2014-07-01

    For genuine medicinal material in Chinese herbs; the efficient, rapid, and precise identification is the focus and difficulty in the filed studying Chinese herbal medicines. Chrysanthemum morifolium as herbs has a long planting history in China, culturing high quality ones and different varieties. Different chrysanthemum varieties differ in quality, chemical composition, functions, and application. Therefore, chrysanthemum varieties in the market demands precise identification to provide reference for reasonable and correct application as genuine medicinal material. A total of 244 batches of chrysanthemum samples were randomly divided into calibration set (160 batches) and prediction set (84 batches). The near infrared diffuses reflectance spectra of chrysanthemum varieties were preprocessed by first order derivative (D1) and autoscaling and was built model with partial least squares (PLS). In this study of four chrysanthemum varieties identification, the accuracy rates in calibration sets of Boju, Chuju, Hangju, and Gongju are respectively 100, 100, 98.65, and 96.67%; while the accuracy rates in prediction sets are 100% except for 99.1% of Hangju. The research results demonstrate that the qualitative analysis can be conducted by machine learning combined with near infrared spectroscopy (NIR), which provides a new method for rapid and noninvasive identification of chrysanthemum varieties.

  7. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy.

    Qu, Lei; Chen, Jian-Bo; Zhang, Gui-Jun; Sun, Su-Qin; Zheng, Jing

    2017-03-05

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p=0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Fourier transform infrared spectroscopy of dental unit water line biofilm bacteria

    Liaqat, Iram

    2009-01-01

    Fourier transform-infrared (FT-IR) spectroscopy has become an important tool for rapid analysis of complex biological samples. The infrared absorbance spectrum could be regarded as a “fingerprint” which is a feature of biochemical substances. The FT-IR spectra of fresh and stored dried samples of six bacterial isolates (Klebsiella sp., Bacillus cereus, Bacillus subtilis, Pseudomonas aeruginosa, Achromobacter xylosoxidans and Achromobacter sp.) were observed by variation in sample preparation....

  9. Dirac charge dynamics in graphene by infrared spectroscopy

    Martin, Michael C; Li, Z.Q.; Henriksen, E.A.; Jiang, Z.; Hao, Z.; Martin, Michael C; Kim, P.; Stormer, H.L.; Basov, Dimitri N.

    2008-01-01

    A remarkable manifestation of the quantum character of electrons in matter is offered by graphene, a single atomic layer of graphite. Unlike conventional solids where electrons are described with the Schroedinger equation, electronic excitations in graphene are governed by the Dirac hamiltonian. Some of the intriguing electronic properties of graphene, such as massless Dirac quasiparticles with linear energy-momentum dispersion, have been confirmed by recent observations. Here, we report an infrared spectromicroscopy study of charge dynamics in graphene integrated in gated devices. Our measurements verify the expected characteristics of graphene and, owing to the previously unattainable accuracy of infrared experiments, also uncover significant departures of the quasiparticle dynamics from predictions made for Dirac fermions in idealized, free-standing graphene. Several observations reported here indicate the relevance of many-body interactions to the electromagnetic response of graphene

  10. Design of high-efficiency diffractive optical elements towards ultrafast mid-infrared time-stretched imaging and spectroscopy

    Xie, Hongbo; Ren, Delun; Wang, Chao; Mao, Chensheng; Yang, Lei

    2018-02-01

    Ultrafast time stretch imaging offers unprecedented imaging speed and enables new discoveries in scientific research and engineering. One challenge in exploiting time stretch imaging in mid-infrared is the lack of high-quality diffractive optical elements (DOEs), which encode the image information into mid-infrared optical spectrum. This work reports the design and optimization of mid-infrared DOE with high diffraction-efficiency, broad bandwidth and large field of view. Using various typical materials with their refractive indices ranging from 1.32 to 4.06 in ? mid-infrared band, diffraction efficiencies of single-layer and double-layer DOEs have been studied in different wavelength bands with different field of views. More importantly, by replacing the air gap of double-layer DOE with carefully selected optical materials, one optimized ? triple-layer DOE, with efficiency higher than 95% in the whole ? mid-infrared window and field of view greater than ?, is designed and analyzed. This new DOE device holds great potential in ultrafast mid-infrared time stretch imaging and spectroscopy.

  11. THE INFRARED SPECTROSCOPY OF NEUTRAL POLYCYCLIC AROMATIC HYDROCARBON CLUSTERS

    Ricca, Alessandra; Bauschlicher, Charles W. Jr.; Allamandola, Louis J.

    2013-01-01

    The mid-infrared spectra of neutral homogeneous polycyclic aromatic hydrocarbon (PAH) clusters have been computed using density functional theory including an empirical correction for dispersion. The C-H out-of-plane bending modes are redshifted for all the clusters considered in this work. The magnitude of the redshift and the peak broadening are dependent on PAH size, shape, and on the PAH arrangement in the cluster

  12. THE INFRARED SPECTROSCOPY OF NEUTRAL POLYCYCLIC AROMATIC HYDROCARBON CLUSTERS

    Ricca, Alessandra [Carl Sagan Center, SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Bauschlicher, Charles W. Jr. [Entry Systems and Technology Division, Mail Stop 230-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Allamandola, Louis J., E-mail: Alessandra.Ricca-1@nasa.gov, E-mail: Charles.W.Bauschlicher@nasa.gov [Space Science Division, Mail Stop 245-6, NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2013-10-10

    The mid-infrared spectra of neutral homogeneous polycyclic aromatic hydrocarbon (PAH) clusters have been computed using density functional theory including an empirical correction for dispersion. The C-H out-of-plane bending modes are redshifted for all the clusters considered in this work. The magnitude of the redshift and the peak broadening are dependent on PAH size, shape, and on the PAH arrangement in the cluster.

  13. Polyisobutenylsuccinimides as detergents and dispersants in fuel: infrared spectroscopy application

    Aleman-Vazquez, L.O.; Villagomez-Ibarra, J.R. [Instituto Mexicano del Petrole, San Bartolo Atepehuacan (Mexico). Gerencia de Productos Quimicos

    2001-05-01

    Polyalkenylsuccinimides were synthesized and their dispersancy properties evaluated in an internal combustion engine. The synthesis is based on the reaction of polyisobutene with maleic anhydride as the first step. The polyisobutenylsuccinic anhydride obtained reacts with primary amines in the last step to give polyalkenylsuccinimides. The results of the evaluations showed that some polyisobutenylsuccinimides reduce the deposit formation in the intake system with good efficiency. Infrared spectra of the prepared compounds allowed their identification. 16 refs., 2 tabs.

  14. Study on the surface hydroxyl group on solid breeding materials by infrared absorption spectroscopy

    Tanaka, Satoru; Taniguchi, Masaki [Tokyo Univ. (Japan). Faculty of Engineering

    1996-10-01

    Hydroxyl groups on the surface of Li{sub 2}O were studied by using a diffuse reflectance method with Fourier transform infrared absorption spectroscopy at high temperature up to 973K under controlled D{sub 2}O or D{sub 2} partial pressure. It was found that hydroxyl groups could exist on Li{sub 2}O surface up to 973K under Ar atmosphere. Under D{sub 2}O containing atmosphere, only the sharp peak at 2520cm{sup -1} was observed at 973K in the O-D stretching vibration region. Below 973K, multiple peaks due to the surface -OD were observed and they showed different behavior with temperature or atmosphere. Multiple peaks mean that surface is not homogeneous for D{sub 2}O adsorption. Assignment of the observed peaks to the surface bonding structure was also discussed. (author)

  15. Identifying Cortical Lateralization of Speech Processing in Infants Using Near-Infrared Spectroscopy

    Bortfeld, Heather; Fava, Eswen; Boas, David A.

    2010-01-01

    We investigate the utility of near-infrared spectroscopy (NIRS) as an alternative technique for studying infant speech processing. NIRS is an optical imaging technology that uses relative changes in total hemoglobin concentration and oxygenation as an indicator of neural activation. Procedurally, NIRS has the advantage over more common methods (e.g., fMRI) in that it can be used to study the neural responses of behaviorally active infants. Older infants (aged 6–9 months) were allowed to sit on their caretakers’ laps during stimulus presentation to determine relative differences in focal activity in the temporal region of the brain during speech processing. Results revealed a dissociation of sensory-specific processing in two cortical regions, the left and right temporal lobes. These findings are consistent with those obtained using other neurophysiological methods and point to the utility of NIRS as a means of establishing neural correlates of language development in older (and more active) infants. PMID:19142766

  16. Functional connectivity in the prefrontal cortex measured by near-infrared spectroscopy during ultrarapid object recognition

    Medvedev, Andrei V.; Kainerstorfer, Jana M.; Borisov, Sergey V.; Vanmeter, John

    2011-01-01

    Near-infrared spectroscopy (NIRS) is a developing technology for low-cost noninvasive functional brain imaging. With multichannel optical instruments, it becomes possible to measure not only local changes in hemoglobin concentrations but also temporal correlations of those changes in different brain regions which gives an optical analog of functional connectivity traditionally measured by fMRI. We recorded hemodynamic activity during the Go-NoGo task from 11 right-handed subjects with probes placed bilaterally over prefrontal areas. Subjects were detecting animals as targets in natural scenes pressing a mouse button. Data were low-pass filtered right versus left hemisphere. Intra- and interhemispheric functional connectivity was also significantly stronger during the task compared to baseline. Functional connectivity between the inferior and the middle frontal regions was significantly stronger in the right hemisphere. Our results demonstrate that optical methods can be used to detect transient changes in functional connectivity during rapid cognitive processes.

  17. Circularly polarized infrared and visible sum-frequency-generation spectroscopy: Vibrational optical activity measurement

    Cheon, Sangheon; Cho, Minhaeng

    2005-01-01

    Vibrational optical activity spectroscopies utilizing either circularly polarized ir or circularly polarized visible beams were theoretically investigated by considering the infrared and visible sum-frequency-generation (IV-SFG) schemes. In addition to the purely electric dipole-allowed chiral component of the IV-SFG susceptibility, the polarizability-electric quadrupole hyperpolarizability term also contributes to the vibrationally resonant IV-SFG susceptibility. The circular-intensity-difference signal is shown to be determined by the interferences between the all-electric dipole-allowed chiral component and the polarizability-electric-dipole or electric-dipole-electric-quadrupole Raman optical activity tensor components. The circularly polarized SFG methods are shown to be potentially useful coherent spectroscopic tools for determining absolute configurations of chiral molecules in condensed phases

  18. Nondestructive evaluation of free acid content in apples using near-infrared spectroscopy

    Sohn, M.R.; Cho, R.K.

    1998-01-01

    In non-destructive evaluation of free acid content in apples by near- infrared spectroscopy(NIRS), browning and heat treatment of squeezed apple juice affected to the accuracy but titratable alkali concentration did not. The free acid content in apples after harvest was able to determine using different apples in harvest time for calibration making. The result of MLR, multiple correlation coefficient(R) was 0.77 and standard error of prediction(SEP) was 0.03%. The free acid content in apples during storage was able to determine using calibration equation established with stored apples, R was 0.90 and SEP was ca. 0.04%. The prediction accuracy by NIR was not sufficient for use of quantitative analysis of free acid content in apple, but classification of low and high level in acid content was supposed to be applicable

  19. Difference Raman spectroscopy of DNA molecules

    Anokhin, Andrey S; Yuzyuk, Yury I; Gorelik, Vladimir S; Dovbeshko, Galina I; Pyatyshev, Alexander Yu

    2015-01-01

    In this paper the micro-Raman spectra of calf DNA for different points of DNA sample have been recorded. The Raman spectra were made with help of difference Raman spectroscopy technique. Raman spectra were recorded with high spatial resolution from different points of the wet and dry samples in different spectral range (100÷4000cm −1 ) using two lasers: argon (514.5 nm) and helium -neon (632.8 nm). The significant differences in the Raman spectra for dry and wet DNA and for different points of DNA molecules were observed. The obtained data on difference Raman scattering spectra of DNA molecules may be used for identification of DNA types and for analysis of genetic information associated with the molecular structure of this molecule

  20. Infrared photon-echo spectroscopy of water : The thermalization effects

    Pshenichnikov, Maxim S.; Yeremenko, Sergey; Wiersma, Douwe A.; Kobayashi, Takayoshi; Kobayashi, Tetsuro; Nelson, Keith A.; Okada, Tadashi; Silvestri, Sandro De

    2005-01-01

    The larger part of the nonlinear response in IR photon-echo and transient-grating spectroscopy on HDO-D2O mixtures at > 1-ps delays is found to originate from the D2O refractive index modulation due to local volume thermalization.

  1. Diagnosis with near infrared spectroscopy during minimally invasive procedures

    R. Nachabé (Rami)

    2012-01-01

    textabstractThe goal of this dissertation is to present the potential of diffuse optical spectroscopy technique to characterize and differentiate types of tissue, including dysplastic and cancerous tissues, when measuring the tissue spectra during a surgical or an interventional procedure under

  2. High resolution mid-infrared spectroscopy based on frequency upconversion

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter

    2013-01-01

    signals can be analyzed. The obtainable frequency resolution is usually in the nm range where sub nm resolution is preferred in many applications, like gas spectroscopy. In this work we demonstrate how to obtain sub nm resolution when using upconversion. In the presented realization one object point...... high resolution spectral performance by observing emission from hot water vapor in a butane gas burner....

  3. Structural evolution of nanoporous silica thin films studied by positron annihilation spectroscopy and Fourier transform infrared spectroscopy

    Patel, N; Mariazzi, S; Toniutti, L; Checchetto, R; Miotello, A; Dire, S; Brusa, R S

    2007-01-01

    Three series of silica thin films with thicknesses in the 300 nm range were deposited by spin coating on Si substrates using different compositions of the sol precursors. Film samples were thermally treated in static air at temperatures ranging from 300 to 900 deg. C. The effect of sol precursors and thermal treatment temperature on the film porosity was analysed by Fourier transform infrared (FTIR) spectroscopy, depth profiling with positron annihilation spectroscopy (DP-PAS) and the analysis of the capacitance-voltage (C-V) characteristic. The maximum of the total porosity was found to occur at a temperature of 600 deg. C when removal of porogen and OH groups was completed. Film densification due to the collapsing of the pores was observed after drying at 900 deg. C. DP-PAS provides evidence that the increase in the total porosity is related to a progressive increase in the pore size. The increase in the pore size never gives rise to the onset of connected porosity. In the silica film samples prepared using a low acidity sol precursor, the pore size is always lower than 1 nm. By increasing the acid catalyst ratio in the sol, larger pores are formed. Pores with size larger than 2.3 nm can be obtained by adding porogen to the sol. In each series of silica film samples the shift of the antisymmetric Si-O-Si transversal optical (TO 3 ) mode upon thermal treatment correlates with a change of the pore size as evidenced by DP-PAS analysis. The pore microstructure of the three series of silica films is different at all the examined treatment temperatures and depends on the composition of the precursor sol

  4. Structural evolution of nanoporous silica thin films studied by positron annihilation spectroscopy and Fourier transform infrared spectroscopy

    Patel, N.; Mariazzi, S.; Toniutti, L.; Checchetto, R.; Miotello, A.; Dirè, S.; Brusa, R. S.

    2007-09-01

    Three series of silica thin films with thicknesses in the 300 nm range were deposited by spin coating on Si substrates using different compositions of the sol precursors. Film samples were thermally treated in static air at temperatures ranging from 300 to 900 °C. The effect of sol precursors and thermal treatment temperature on the film porosity was analysed by Fourier transform infrared (FTIR) spectroscopy, depth profiling with positron annihilation spectroscopy (DP-PAS) and the analysis of the capacitance-voltage (C-V) characteristic. The maximum of the total porosity was found to occur at a temperature of 600 °C when removal of porogen and OH groups was completed. Film densification due to the collapsing of the pores was observed after drying at 900 °C. DP-PAS provides evidence that the increase in the total porosity is related to a progressive increase in the pore size. The increase in the pore size never gives rise to the onset of connected porosity. In the silica film samples prepared using a low acidity sol precursor, the pore size is always lower than 1 nm. By increasing the acid catalyst ratio in the sol, larger pores are formed. Pores with size larger than 2.3 nm can be obtained by adding porogen to the sol. In each series of silica film samples the shift of the antisymmetric Si-O-Si transversal optical (TO3) mode upon thermal treatment correlates with a change of the pore size as evidenced by DP-PAS analysis. The pore microstructure of the three series of silica films is different at all the examined treatment temperatures and depends on the composition of the precursor sol.

  5. Comparing predictive ability of Laser-Induced Breakdown Spectroscopy to Near Infrared Spectroscopy for soil texture and organic carbon determination

    Knadel, Maria; Peng, Yi; Gislum, René

    Soil organic carbon (SOC) and texture have a practical value for agronomy and the environment. Thus, alternative techniques to supplement or substitute for the expensive conventional analysis of soil are developed. Here the feasibility of laser-induced breakdown spectroscopy (LIBS) to determine SOC...... and texture was tested and compared with near infrared spectroscopy (NIRS) technique and traditional laboratory analysis. Calibration models were developed on 50 topsoil samples. For all properties except silt, higher predictive ability of LIBS than NIRS models was obtained. Successful calibrations indicate...... that LIBS can be used as a fast and reliable method for SOC and texture estimation....

  6. Spectroscopy

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  7. Infrared spectroscopy of pollen identifies plant species and genus as well as environmental conditions.

    Boris Zimmermann

    Full Text Available BACKGROUND: It is imperative to have reliable and timely methodologies for analysis and monitoring of seed plants in order to determine climate-related plant processes. Moreover, impact of environment on plant fitness is predominantly based on studies of female functions, while the contribution of male gametophytes is mostly ignored due to missing data on pollen quality. We explored the use of infrared spectroscopy of pollen for an inexpensive and rapid characterization of plants. METHODOLOGY: The study was based on measurement of pollen samples by two Fourier transform infrared techniques: single reflectance attenuated total reflectance and transmission measurement of sample pellets. The experimental set, with a total of 813 samples, included five pollination seasons and 300 different plant species belonging to all principal spermatophyte clades (conifers, monocotyledons, eudicots, and magnoliids. RESULTS: The spectroscopic-based methodology enables detection of phylogenetic variations, including the separation of confamiliar and congeneric species. Furthermore, the methodology enables measurement of phenotypic plasticity by the detection of inter-annual variations within the populations. The spectral differences related to environment and taxonomy are interpreted biochemically, specifically variations of pollen lipids, proteins, carbohydrates, and sporopollenins. The study shows large variations of absolute content of nutrients for congenital species pollinating in the same environmental conditions. Moreover, clear correlation between carbohydrate-to-protein ratio and pollination strategy has been detected. Infrared spectral database with respect to biochemical variation among the range of species, climate and biogeography will significantly improve comprehension of plant-environment interactions, including impact of global climate change on plant communities.

  8. Classification of structurally related commercial contrast media by near infrared spectroscopy.

    Yip, Wai Lam; Soosainather, Tom Collin; Dyrstad, Knut; Sande, Sverre Arne

    2014-03-01

    Near infrared spectroscopy (NIRS) is a non-destructive measurement technique with broad application in pharmaceutical industry. Correct identification of pharmaceutical ingredients is an important task for quality control. Failure in this step can result in several adverse consequences, varied from economic loss to negative impact on patient safety. We have compared different methods in classification of a set of commercially available structurally related contrast media, Iodixanol (Visipaque(®)), Iohexol (Omnipaque(®)), Caldiamide Sodium and Gadodiamide (Omniscan(®)), by using NIR spectroscopy. The performance of classification models developed by soft independent modelling of class analogy (SIMCA), partial least squares discriminant analysis (PLS-DA) and Main and Interactions of Individual Principal Components Regression (MIPCR) were compared. Different variable selection methods were applied to optimize the classification models. Models developed by backward variable elimination partial least squares regression (BVE-PLS) and MIPCR were found to be most effective for classification of the set of contrast media. Below 1.5% of samples from the independent test set were not recognized by the BVE-PLS and MIPCR models, compared to up to 15% when models developed by other techniques were applied. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Surface enhanced infrared absorption spectroscopy for graphene functionalization on copper

    Matulková, I.; Kovaříček, Petr; Šlouf, Miroslav; Němec, I.; Kalbáč, Martin

    2017-01-01

    Roč. 124, NOV 2017 (2017), s. 250-255 ISSN 0008-6223 R&D Projects: GA ČR(CZ) GA15-01953S; GA MŠk LL1301; GA MŠk(CZ) LM2015073 Grant - others:AVČR PPPLZ(CZ) L200401551; GA MŠk(CZ) CZ.02.1.01/0.0/0.0/16_013/0001821 Institutional support: RVO:61388955 ; RVO:61389013 Keywords : chemical-vapor-deposition * diazonium salts * raman-spectroscopy * covalent functionalization * seira spectroscopy * grown graphene Subject RIV: CF - Physical ; Theoretical Chemistry; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Physical chemistry; Polymer science (UMCH-V) Impact factor: 6.337, year: 2016

  10. Hybrid classical/quantum simulation for infrared spectroscopy of water

    Maekawa, Yuki; Sasaoka, Kenji; Ube, Takuji; Ishiguro, Takashi; Yamamoto, Takahiro

    2018-05-01

    We have developed a hybrid classical/quantum simulation method to calculate the infrared (IR) spectrum of water. The proposed method achieves much higher accuracy than conventional classical molecular dynamics (MD) simulations at a much lower computational cost than ab initio MD simulations. The IR spectrum of water is obtained as an ensemble average of the eigenvalues of the dynamical matrix constructed by ab initio calculations, using the positions of oxygen atoms that constitute water molecules obtained from the classical MD simulation. The calculated IR spectrum is in excellent agreement with the experimental IR spectrum.

  11. Infrared spectroscopy for geologic interpretation of TIMS data

    Bartholomew, Mary Jane

    1986-01-01

    The Portable Field Emission Spectrometer (PFES) was designed to collect meaningful spectra in the field under climatic, thermal, and sky conditions that approximate those at the time of the overflight. The specifications and procedures of PFES are discussed. Laboratory reflectance measurements of rocks and minerals were examined for the purpose of interpreting Thermal Infrared Multispectral Scanner (TIMS) data. The capability is currently being developed to perform direct laboratory measurement of the normal spectral radiance of Earth surface materials at low temperatures (20 to 30 C) at the Jet Propulsion Laboratory.

  12. Quick detection and quantification of iron-cyanide complexes using fourier transform infrared spectroscopy

    Sut-Lohmann, Magdalena; Raab, Thomas

    2017-01-01

    The continuous release of persistent iron-cyanide (Fe-CN) complexes from various industrial sources poses a high hazard to the environment and indicates the necessity to analyze a considerable amount of samples. Conventional flow injection analysis (FIA) is a time and cost consuming method for cyanide (CN) determination. Thus, a rapid and economic alternative needs to be developed to quantify the Fe-CN complexes. 52 soil samples were collected at a former Manufactured Gas Plant (MGP) site in order to determine the feasibility of diffuse reflectance infrared Fourier spectroscopy (DRIFTS). Soil analysis revealed CN concentrations in a range from 8 to 14.809 mg kg −1 , where 97% was in the solid form (Fe 4 [Fe(CN) 6 ] 3 ), which is characterized by a single symmetrical CN band in the range 2092–2084 cm −1 . The partial least squares (PLS) calibration-validation model revealed IR response to CN tot which exceeds 2306 mg kg −1 (limit of detection, LOD). Leave-one-out cross-validation (LOO-CV) was performed on soil samples, which contained low CN tot (<900 mg kg −1 ). This improved the sensitivity of the model by reducing the LOD to 154 mg kg −1 . Finally, the LOO-CV conducted on the samples with CN tot  > 900 mg kg −1 resulted in LOD equal to 3751 mg kg −1 . It was found that FTIR spectroscopy provides the information concerning different CN species in the soil samples. Additionally, it is suitable for quantifying Fe-CN species in matrixes with CN tot  > 154 mg kg −1 . Thus, FTIR spectroscopy, in combination with the statistical approach applied here seems to be a feasible and quick method for screening of contaminated sites. - Highlights: • A protocol for a quick and cheap quantitative cyanide analysis in soil using FTIR is proposed. • Splitting of the data, resulting in low and high CN set, reduced the LOD and increased the sensitivity of the model. • Regression coefficients indicate positive response of IR frequencies to

  13. Development of a near-infrared spectroscopy instrument for applications in urology.

    Macnab, Andrew J; Stothers, Lynn

    2008-10-01

    Near infrared spectroscopy (NIRS) is an established technology using photons of light in the near infrared spectrum to monitor changes in tissue of naturally occurring chromophores, including oxygenated and deoxygenated hemoglobin. Technology and methodology have been validated for measurement of a range of physiologic parameters. NIRS has been applied successfully in urology research; however current instruments are designed principally for brain and muscle study. To describe development of a NIRS instrument specifically designed for monitoring changes in chromophore concentration in the bladder detrusor in real time, to facilitate research to establish the role of this non-invasive technology in the evaluation of patients with voiding dysfunction The portable continuous wave NIRS instrument has a 3 laser diode light source (785, 808 and 830 nanometers), fiber optic cables for light transmission, a self adhesive patient interface patch with an emitter and sensor, and software to detect the difference between the light transmitted and received by the instrument. Software incorporated auto-attenuates the optical signals and converts raw optical data into chromophore concentrations displayed graphically. The prototype was designed, tested, and iteratively developed to achieve optimal suprapubic transcutaneous monitoring of the detrusor in human subjects during bladder filling and emptying. Evaluation with simultaneous invasive urodynamic measurement in men and women indicates good specificity and sensitivity of NIRS chromophore concentration changes by receiver operator curve analysis, and correlation between NIRS data and urodynamic pressures. Urological monitoring with this NIRS instrument is feasible and generates data of potential diagnostic value.

  14. Vapor-phase infrared laser spectroscopy: from gas sensing to forensic urinalysis.

    Bartlome, Richard; Rey, Julien M; Sigrist, Markus W

    2008-07-15

    Numerous gas-sensing devices are based on infrared laser spectroscopy. In this paper, the technique is further developed and, for the first time, applied to forensic urinalysis. For this purpose, a difference frequency generation laser was coupled to an in-house-built, high-temperature multipass cell (HTMC). The continuous tuning range of the laser was extended to 329 cm(-1) in the fingerprint C-H stretching region between 3 and 4 microm. The HTMC is a long-path absorption cell designed to withstand organic samples in the vapor phase (Bartlome, R.; Baer, M.; Sigrist, M. W. Rev. Sci. Instrum. 2007, 78, 013110). Quantitative measurements were taken on pure ephedrine and pseudoephedrine vapors. Despite featuring similarities, the vapor-phase infrared spectra of these diastereoisomers are clearly distinguishable with respect to a vibrational band centered at 2970.5 and 2980.1 cm(-1), respectively. Ephedrine-positive and pseudoephedrine-positive urine samples were prepared by means of liquid-liquid extraction and directly evaporated in the HTMC without any preliminary chromatographic separation. When 10 or 20 mL of ephedrine-positive human urine is prepared, the detection limit of ephedrine, prohibited in sports as of 10 microg/mL, is 50 or 25 microg/mL, respectively. The laser spectrometer has room for much improvement; its potential is discussed with respect to doping agents detection.

  15. Rapid Characterization of Fatty Acids in Oleaginous Microalgae by Near-Infrared Spectroscopy

    Bin Liu

    2015-03-01

    Full Text Available The key properties of microalgal biodiesel are largely determined by the composition of its fatty acid methyl esters (FAMEs. The gas chromatography (GC based techniques for fatty acid analysis involve energy-intensive and time-consuming procedures and thus are less suitable for high-throughput screening applications. In the present study, a novel quantification method for microalgal fatty acids was established based on the near-infrared spectroscopy (NIRS technique. The lyophilized cells of oleaginous Chlorella containing different contents of lipids were scanned by NIRS and their fatty acid profiles were determined by GC-MS. NIRS models were developed based on the chemometric correlation of the near-infrared spectra with fatty acid profiles in algal biomass. The optimized NIRS models showed excellent performances for predicting the contents of total fatty acids, C16:0, C18:0, C18:1 and C18:3, with the coefficient of determination (R2 being 0.998, 0.997, 0.989, 0.991 and 0.997, respectively. Taken together, the NIRS method established here bypasses the procedures of cell disruption, oil extraction and transesterification, is rapid, reliable, and of great potential for high-throughput applications, and will facilitate the screening of microalgal mutants and optimization of their growth conditions for biodiesel production.

  16. Kinetic inductance detectors for far-infrared spectroscopy

    Barlis, A.; Aguirre, J.; Stevenson, T.

    2016-01-01

    The star formation mechanisms at work in the early universe remain one of the major unsolved problems of modern astrophysics. Many of the luminous galaxies present during the period of peak star formation (at redshift of about 2.5) were heavily enshrouded in dust, which makes observing their properties difficult at optical wavelengths. However, many spectral lines exist at far-infrared wavelengths that serve as tracers of star formation. Here, we describe a detector system suitable for a balloon-borne spectroscopic intensity mapping experiment at far-infrared wavelengths. The system uses lumped-element kinetic inductance detectors (KIDs), which have the potential to achieve high sensitivity and low noise levels. KIDs consist of separate capacitive and inductive elements, and use the inductive element as the radiation absorber. We describe the design considerations, fabrication process, and readout scheme for a prototype LEKID array of 1600 pixels. - Highlights: • We describe a concept for a balloon-borne telescope for far-IR wavelengths. • Telescope would use high-sensitivity kinetic inductance detectors. • Design considerations and fabrication process for prototype detectors.

  17. Kinetic inductance detectors for far-infrared spectroscopy

    Barlis, A., E-mail: abarlis@physics.upenn.edu [University of Pennsylvania Department of Physics and Astronomy, Philadelphia, Pennsylvania (United States); Aguirre, J. [University of Pennsylvania Department of Physics and Astronomy, Philadelphia, Pennsylvania (United States); Stevenson, T. [NASA Goddard Space Flight Center, Greenbelt, Maryland (United States)

    2016-07-11

    The star formation mechanisms at work in the early universe remain one of the major unsolved problems of modern astrophysics. Many of the luminous galaxies present during the period of peak star formation (at redshift of about 2.5) were heavily enshrouded in dust, which makes observing their properties difficult at optical wavelengths. However, many spectral lines exist at far-infrared wavelengths that serve as tracers of star formation. Here, we describe a detector system suitable for a balloon-borne spectroscopic intensity mapping experiment at far-infrared wavelengths. The system uses lumped-element kinetic inductance detectors (KIDs), which have the potential to achieve high sensitivity and low noise levels. KIDs consist of separate capacitive and inductive elements, and use the inductive element as the radiation absorber. We describe the design considerations, fabrication process, and readout scheme for a prototype LEKID array of 1600 pixels. - Highlights: • We describe a concept for a balloon-borne telescope for far-IR wavelengths. • Telescope would use high-sensitivity kinetic inductance detectors. • Design considerations and fabrication process for prototype detectors.

  18. Periodic array-based substrates for surface-enhanced infrared spectroscopy

    Mayerhöfer, Thomas G.; Popp, Jürgen

    2018-01-01

    At the beginning of the 1980s, the first reports of surface-enhanced infrared spectroscopy (SEIRS) surfaced. Probably due to signal-enhancement factors of only 101 to 103, which are modest compared to those of surface-enhanced Raman spectroscopy (SERS), SEIRS did not reach the same significance up to date. However, taking the compared to Raman scattering much larger cross-sections of infrared absorptions and the enhancement factors together, SEIRS reaches about the same sensitivity for molecular species on a surface in terms of the cross-sections as SERS and, due to the complementary nature of both techniques, can valuably augment information gained by SERS. For the first 20 years since its discovery, SEIRS relied completely on metal island films, fabricated by either vapor or electrochemical deposition. The resulting films showed a strong variance concerning their structure, which was essentially random. Therefore, the increase in the corresponding signal-enhancement factors of these structures stagnated in the last years. In the very same years, however, the development of periodic array-based substrates helped SEIRS to gather momentum. This development was supported by technological progress concerning electromagnetic field solvers, which help to understand plasmonic properties and allow targeted design. In addition, the strong progress concerning modern fabrication methods allowed to implement these designs into practice. The aim of this contribution is to critically review the development of these engineered surfaces for SEIRS, to compare the different approaches with regard to their performance where possible, and report further gain of knowledge around and in relation to these structures.

  19. Cortical response to categorical color perception in infants investigated by near-infrared spectroscopy.

    Yang, Jiale; Kanazawa, So; Yamaguchi, Masami K; Kuriki, Ichiro

    2016-03-01

    Perceptual color space is continuous; however, we tend to divide it into only a small number of categories. It is unclear whether categorical color perception is obtained solely through the development of the visual system or whether it is affected by language acquisition. To address this issue, we recruited prelinguistic infants (5- to 7-mo-olds) to measure changes in brain activity in relation to categorical color differences by using near-infrared spectroscopy (NIRS). We presented two sets of geometric figures to infants: One set altered in color between green and blue, and the other set altered between two different shades of green. We found a significant increase in hemodynamic responses during the between-category alternations, but not during the within-category alternations. These differences in hemodynamic response based on categorical relationship were observed only in the bilateral occipitotemporal regions, and not in the occipital region. We confirmed that categorical color differences yield behavioral differences in infants. We also observed comparable hemodynamic responses to categorical color differences in adults. The present study provided the first evidence, to our knowledge, that colors of different categories are represented differently in the visual cortex of prelinguistic infants, which implies that color categories may develop independently before language acquisition.

  20. Digital Breast Tomosynthesis guided Near Infrared Spectroscopy: Volumetric estimates of fibroglandular fraction and breast density from tomosynthesis reconstructions.

    Vedantham, Srinivasan; Shi, Linxi; Michaelsen, Kelly E; Krishnaswamy, Venkataramanan; Pogue, Brian W; Poplack, Steven P; Karellas, Andrew; Paulsen, Keith D

    A multimodality system combining a clinical prototype digital breast tomosynthesis with its imaging geometry modified to facilitate near-infrared spectroscopic imaging has been developed. The accuracy of parameters recovered from near-infrared spectroscopy is dependent on fibroglandular tissue content. Hence, in this study, volumetric estimates of fibroglandular tissue from tomosynthesis reconstructions were determined. A kernel-based fuzzy c-means algorithm was implemented to segment tomosynthesis reconstructed slices in order to estimate fibroglandular content and to provide anatomic priors for near-infrared spectroscopy. This algorithm was used to determine volumetric breast density (VBD), defined as the ratio of fibroglandular tissue volume to the total breast volume, expressed as percentage, from 62 tomosynthesis reconstructions of 34 study participants. For a subset of study participants who subsequently underwent mammography, VBD from mammography matched for subject, breast laterality and mammographic view was quantified using commercial software and statistically analyzed to determine if it differed from tomosynthesis. Summary statistics of the VBD from all study participants were compared with prior independent studies. The fibroglandular volume from tomosynthesis and mammography were not statistically different ( p =0.211, paired t-test). After accounting for the compressed breast thickness, which were different between tomosynthesis and mammography, the VBD from tomosynthesis was correlated with ( r =0.809, p 0.99, paired t-test), and was linearly related to, the VBD from mammography. Summary statistics of the VBD from tomosynthesis were not statistically different from prior studies using high-resolution dedicated breast computed tomography. The observation of correlation and linear association in VBD between mammography and tomosynthesis suggests that breast density associated risk measures determined for mammography are translatable to tomosynthesis

  1. Muscle metabolism from near infrared spectroscopy during rhythmic handgrip in humans

    Boushel, Robert Christopher; Pott, F; Madsen, P

    1998-01-01

    The rate of metabolism in forearm flexor muscles (MO2) was derived from near-infrared spectroscopy (NIRS-O2) during ischaemia at rest rhythmic handgrip at 15% and 30% of maximal voluntary contraction (MVC), post-exercise muscle ischaemia (PEMI), and recovery in seven subjects. The MO2 was compared...

  2. PARTICULATE MATTER MEASUREMENTS USING OPEN-PATH FOURIER TRANSFORM INFRARED SPECTROSCOPY

    Open-path Fourier transform infrared (OP-FT1R) spectroscopy is an accepted technology for measuring gaseous air contaminants. OP-FT1R absorbance spectra acquired during changing aerosols conditions reveal related changes in very broad baseline features. Usually, this shearing of ...

  3. Potential use of visible and near-infrared spectroscopy for pine ...

    The correct identification of pine species is necessary for proper application of wood in forest-based industries, since the quality of each species' wood depends on factors intrinsic to the material. The aim of this study was to evaluate the potential use of near-infrared and visible spectroscopy in the discrimination of pine ...

  4. Evaluation of portable near-infrared spectroscopy for organic milk authentication

    Liu, Ningjing; Parra, Hector Aya; Pustjens, Annemieke; Hettinga, Kasper; Mongondry, Philippe; Ruth, van Saskia M.

    2018-01-01

    Organic products are vulnerable to fraud due to their premium price. Analytical methodology helps to manage the risk of fraud and due to the miniaturization of equipment, tests may nowadays even be rapidly applied on-site. The current study aimed to evaluate portable near infrared spectroscopy

  5. Is near-infrared spectroscopy clinically useful in the preterm infant?

    da Costa, Cristine Sortica; Greisen, Gorm; Austin, Topun

    2015-01-01

    Near-infrared spectroscopy (NIRS) has been used to study cerebral haemodynamics and oxygenation in the preterm infant for many years, but its use as a clinical tool has remained elusive. This has partly been due to the challenges of providing a continuous quantitative measurement that is valid an...

  6. Infrared multiple photon dissociation spectroscopy of sodium and potassium chlorate anions

    Dain, R. P.; Leavitt, C. M.; Oomens, J.; Steill, J. D.; Groenewold, G. S.; van Stipdonk, M. J.

    2010-01-01

    The structures of gas-phase, metal chlorate anions with the formula [M(ClO3)(2)](-), M = Na and K, were determined using tandem mass spectrometry and infrared multiple photon dissociation (IRMPD) spectroscopy. Structural assignments for both anions are based on comparisons of the experimental

  7. Investigation of vegetation history of buried chernozem soils using near-infrared spectroscopy (NIRS)

    Vysloužilová, B.; Ertlen, D.; Šefrna, L.; Novák, T.; Virágh, K.; Rué, M.; Campaner, A.; Dreslerová, Dagmar; Schwartz, D.

    2015-01-01

    Roč. 365, 16 April (2015), s. 203-211 ISSN 1040-6182 Institutional support: RVO:67985912 Keywords : Holocene * paleopedology * paleoecology * near-infrared spectroscopy * chernozem * buried paleosol Subject RIV: DF - Soil Science Impact factor: 2.067, year: 2015

  8. Limitations and potential of spectral subtractions in fourier-transform infrared (FTIR) spectroscopy of soil samples

    Soil science research is increasingly applying Fourier transform infrared (FTIR) spectroscopy for analysis of soil organic matter (SOM). However, the compositional complexity of soils and the dominance of the mineral component can limit spectroscopic resolution of SOM and other minor components. The...

  9. Fast determination of the resin and rubber content in Parthenium argentatum biomass using near infrared spectroscopy

    Suchat, S.; Pioch, D.; Palu, S.; Tardan, E.; Loo, van E.N.; Davrieux, F.

    2013-01-01

    Guayule (Parthenium argentatum), a plant native of semi-arid regions of northern Mexico and southern Texas, United States, is an under-used source of hypoallergenic latex, a solution to the serious latex allergy IgE problem worldwide. This study aimed to develop near infrared spectroscopy (NIRS)

  10. Review of multidimensional data processing approaches for Raman and infrared spectroscopy

    Gautam, R.; Vanga, S.; Ariese, F.

    2015-01-01

    Raman and Infrared (IR) spectroscopies provide information about the structure, functional groups and environment of the molecules in the sample. In combination with a microscope, these techniques can also be used to study molecular distributions in heterogeneous samples. Over the past few decades

  11. Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9

    Conrath, B.; Curran, R.; Hanel, R.; Kunde, V.; Maguire, W.; Pearl, J.; Pirraglia, J.; Welker, J.; Burke, T.

    1973-01-01

    The infrared spectroscopy experiment on Mariner 9 obtained data over much of Mars. Interpretation of the thermal emission of Mars in terms of atmospheric temperatures, wind fields and dynamics, surface temperatures, surface pressure and topography, mineral composition, and minor atmospheric constituents including isotopic ratios, as well as a search for unexpected phenomena are reported.

  12. Mid-infrared Spectroscopy/Bioimaging: Moving toward MIR optical biopsy

    Seddon, Angela B.; Napier, Bruce; Lindsay, Ian

    2016-01-01

    ), with its ability to enable in vivo medical diagnosis, is particularly interesting. In fact, the European Commission provides support for a major effort to develop the technology through its Framework Seven (FP7) project called MINERVA (MId- to-NEaR- infrared spectroscopy for improVed medical diAgnostics)....

  13. New enhanced sensitivity infrared laser spectroscopy techniques applied to reactive plasmas and trace gas detection

    Welzel, S.

    2009-01-01

    Infrared laser absorption spectroscopy (IRLAS) employing both tuneable diode and quantum cascade lasers (TDLs, QCLs) has been applied with both high sensitivity and high time resolution to plasma diagnostics and trace gas measurements. TDLAS combined with a conventional White type multiple pass cell

  14. Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report)

    Trchová, Miroslava; Stejskal, Jaroslav

    2011-01-01

    Roč. 83, č. 10 (2011), s. 1803-1817 ISSN 0033-4545 R&D Projects: GA MŠk LA09028 Institutional research plan: CEZ:AV0Z40500505 Keywords : aniline oligomers * fourier transform infrared (FTIR) spectroscopy * IUPAC Polymer Division Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.789, year: 2011

  15. Screening suspected counterfeit Viagra and imitations of Viagra with near-infrared spectroscopy.

    Vredenbregt, M J; Blok-Tip, L; Hoogerbrugge, Ronald; Barends, D M; Kaste, D de

    2006-01-01

    We describe a near-infrared spectroscopy (NIRS) method for fast-screening Viagra tablets, counterfeit Viagra tablets, and imitations of Viagra. The method can (1) check the homogeneity of a batch; (2) distinguish counterfeits and imitations from authentic Viagra; (3) screen for the presence of

  16. On the oxidation mechanism of microcrystalline silicon thin films studied by Fourier transform infrared spectroscopy

    Bronneberg, A. C.; Smets, A. H. M.; Creatore, M.; M. C. M. van de Sanden,

    2011-01-01

    Insight into the oxidation mechanism of microcrystalline silicon thin films has been obtained by means of Fourier transform infrared spectroscopy. The films were deposited by using the expanding thermal plasma and their oxidation upon air exposure was followed in time. Transmission spectra were

  17. Advances in near-infrared spectroscopy to study the brain of the preterm and term neonate

    Wolf, Martin; Greisen, Gorm

    2009-01-01

    This article reviews tissue oximetry and imaging to study the preterm and newborn infant brain by near-infrared spectroscopy. These two technologies are now advanced; nearly 100 reports on their use in newborn infants have been published, and commercial instruments are available. The precision...

  18. Nondestructive detection of zebra chip disease in potatoes using near-infrared spectroscopy

    Near-Infrared (NIR) spectroscopy in the wavelength region from 900 nm to 2600 nm was evaluated as the basis for a rapid, non-destructive method for the detection of Zebra Chip disease in potatoes and the measurement of sugar concentrations in affected tubers. Using stepwise regression in conjunction...

  19. Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans

    Rostrup, Egill; Law, Ian; Pott, Frank

    2002-01-01

    Near-infrared spectroscopy (NIRS) enables continuous non-invasive quantification of blood and tissue oxygenation, and may be useful for quantification of cerebral blood volume (CBV) changes. In this study, changes in cerebral oxy- and deoxyhemoglobin were compared to corresponding changes in CBF ...

  20. Online analysis of wood pellets. Quality parameters by near infrared spectroscopy

    Petersen Julius, Lars; Joergensen, Pia [Dong Energy Power, Fredericia (Denmark); Plejdrup Houmoeller, Lars [Arla Foods amba, Global Ingedients R and D, Videbaek (Denmark); Groenkaer Pedersen, Joan [Academy Engineer Chemistry Fertin Pharma, Vejle (Denmark); Anov, Dan

    2010-07-01

    A near infrared spectroscopy system was installed online in a wood pellet production facility. The objective was to translate real time spectra to useful chemical information, like calorific value, water- and ash content. It was possible to successfully determine water content and calorific value, whereas ash content proved troublesome. (orig.)

  1. Moessbauer spectroscopy, X-ray diffraction and infrared studies of prehistoric materials from Minas Gerais

    Jesus Filho, M.F. de; Costa, G.M. da; Prous, A.

    1988-01-01

    Eight samples of pigmented materials from an archaelogical site in Santana do Riacho (Minas Gerais, Brazil) were studied by X-ray diffraction, infrared and Moessbauer spectroscopy. These three techniques and the results of chemical analysis allowed the approximated composition of each sample to be proposed. No trace of organic material was found in any sample. (author)

  2. Application of near-infrared spectroscopy to preservative-treated wood

    Chi-Leung So; Stan T. Lebow; Thomas L. Eberhardt; Leslie H. Groom; Todd F. Shupe

    2009-01-01

    Near infrared (NIR) spectroscopy is now a widely-used technique in the field of forest products, especially for physical and mechanical property determinations. This technique is also ideal for the chemical analysis of wood. There has been a growing need to find a rapid, inexpensive and reliable method to distinguish between preservative-treated and untreated waste...

  3. Near-infrared spectroscopy determined cerebral oxygenation with eliminated skin blood flow in young males

    Hirasawa, Ai; Kaneko, Takahito; Tanaka, Naoki

    2016-01-01

    We estimated cerebral oxygenation during handgrip exercise and a cognitive task using an algorithm that eliminates the influence of skin blood flow (SkBF) on the near-infrared spectroscopy (NIRS) signal. The algorithm involves a subtraction method to develop a correction factor for each subject. ...

  4. Intact neurovascular coupling during executive function in migraine without aura: interictal near-infrared spectroscopy study

    Schytz, H W; Ciftçi, K; Akin, A

    2010-01-01

    An altered neurovascular coupling has been proposed in migraine. We aimed to investigate neurovascular coupling during a mental task interictally in patients with migraine without aura (MO) by near-infrared spectroscopy (NIRS). Twelve migraineurs and 12 healthy controls were included. Using NIRS,...

  5. Near-infrared spectroscopy used to predict soybean seed germination and vigor

    The potential of using near-infrared (NIR) spectroscopy for differentiating levels in germination, vigor, and electrical conductivity of soybean seeds was investigated. For the 243 spectral data collected using the Perten DA7200, stratified sampling was used to obtain three calibration sets consisti...

  6. Measurement of soy contents in ground beef using near-infrared spectroscopy

    Models for determining contents of soy products in ground beef were developed using near-infrared (NIR) spectroscopy. Samples were prepared by mixing four kinds of soybean protein products (Arconet, toasted soy grits, Profam and textured vegetable protein (TVP)) with ground beef (content from 0%–100...

  7. Regional calibration models for predicting loblolly pine tracheid properties using near-infrared spectroscopy

    Mohamad Nabavi; Joseph Dahlen; Laurence Schimleck; Thomas L. Eberhardt; Cristian Montes

    2018-01-01

    This study developed regional calibration models for the prediction of loblolly pine (Pinus taeda) tracheid properties using near-infrared (NIR) spectroscopy. A total of 1842 pith-to-bark radial strips, aged 19–31 years, were acquired from 268 trees from 109 stands across the southeastern USA. Diffuse reflectance NIR spectra were collected at 10-mm...

  8. Study of cancer cell lines with Fourier transform infrared (FTIR)/vibrational absorption (VA) spectroscopy

    Uceda Otero, E. P.; Eliel, G. S. N.; Fonseca, E. J. S.

    2013-01-01

    In this work we have used Fourier transform infrared (FTIR) / vibrational absorption (VA) spectroscopy to study two cancer cell lines: the Henrietta Lacks (HeLa) human cervix carcinoma and 5637 human bladder carcinoma cell lines. Our goal is to experimentally investigate biochemical changes...

  9. Near infrared spectroscopy (NIRS) to monitor tissue haemoglobin (and myoglobin) oxygenation

    Scheeren, T. W. L.

    2010-01-01

    Introduction: Tissue oxygenation may be monitored noninvasively by near infrared spectroscopy (NIRS) both on the thenar eminescence (muscle) and on the forehead (brain). Thenar measurement have been used to guide therapy in trauma patients ( 1 ) and to determine the prognosis of septic patients ( 2

  10. The use of near infrared spectroscopy (NIRS) to predict the chemical ...

    resias

    Keywords: NIRS, ostrich TMR, chemical composition, nutritive value ... For adequate feeding of livestock, farmers need information about the nutritive value of available .... presented a SD/SECV ratio value of less than three, which is regarded as fair, .... The current and future role of near infrared reflectance spectroscopy in.

  11. Near-infrared spectroscopy can reveal increases in brain activity related to animal-assisted therapy.

    Morita, Yuka; Ebara, Fumio; Morita, Yoshimitsu; Horikawa, Etsuo

    2017-08-01

    [Purpose] Previous studies have indicated that animal-assisted therapy can promote recovery of psychological, social, and physiological function in mental disorders. This study was designed as a pilot evaluation of the use of near-infrared spectroscopy to objectively identify changes in brain activity that could mediate the effect of animal-assisted therapy. [Subjects and Methods] The participants were 20 healthy students (10 males and 10 females; age 19-21 years) of the Faculty of Agriculture, Saga University. Participants were shown a picture of a Tokara goat or shack (control) while prefrontal cortical oxygenated haemoglobin levels (representing neural activity) were measured by near-infrared spectroscopy. [Results] The prefrontal cortical near-infrared spectroscopy signal was significantly higher during viewing of the animal picture than during a rest condition or during viewing of the control picture. [Conclusion] Our results suggest that near-infrared spectroscopy can be used to objectively identify brain activity changes during human mentation regarding animals; furthermore, these preliminary results suggest the efficacy of animal-assisted therapy could be related to increased activation of the prefrontal cortex.

  12. 7 CFR 801.7 - Reference methods and tolerances for near-infrared spectroscopy (NIRS) analyzers.

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Reference methods and tolerances for near-infrared spectroscopy (NIRS) analyzers. 801.7 Section 801.7 Agriculture Regulations of the Department of Agriculture...), DEPARTMENT OF AGRICULTURE OFFICIAL PERFORMANCE REQUIREMENTS FOR GRAIN INSPECTION EQUIPMENT § 801.7 Reference...

  13. Cerebral near infrared spectroscopy oximetry in extremely preterm infants : Phase II randomised clinical trial

    Hyttel-Sorensen, Simon; Pellicer, Adelina; Alderliesten, Thomas; Austin, Topun; Van Bel, Frank; Benders, Manon; Claris, Olivier; Dempsey, Eugene; Franz, Axel R.; Fumagalli, Monica; Gluud, Christian; Grevstad, Berit; Hagmann, Cornelia; Lemmers, Petra; Van Oeveren, Wim; Pichler, Gerhard; Plomgaard, Anne Mette; Riera, Joan; Sanchez, Laura; Winkel, Per; Wolf, Martin; Greisen, Gorm

    2015-01-01

    Objective: To determine if it is possible to stabilise the cerebral oxygenation of extremely preterm infants monitored by cerebral near infrared spectroscopy (NIRS) oximetry. Design: Phase II randomised, single blinded, parallel clinical trial. Setting Eight tertiary neonatal intensive care units in

  14. Surface reactions during atomic layer deposition of Pt derived from gas phase infrared spectroscopy

    Kessels, W.M.M.; Knoops, H.C.M.; Dielissen, S.A.F.; Mackus, A.J.M.; Sanden, van de M.C.M.

    2009-01-01

    Infrared spectroscopy was used to obtain absolute number information on the reaction products during atomic layer deposition of Pt from (methylcyclopentadienyl)trimethylplatinum [(MeCp)PtMe3] and O2. From the detection of CO2 and H2O it was established that the precursor ligands are oxidatively

  15. [Identification of Dendrobium varieties by Fourier transform infrared spectroscopy combined with spectral retrieval].

    Liu, Fei; Wang, Yuan-zhong; Deng, Xing-yan; Jin, Hang; Yang, Chun-yan

    2014-06-01

    The infrared spectral of stems of 165 trees of 23 Dendrobium varieties were obtained by means of Fourier transform infrared spectroscopy technique. The spectra show that the spectra of all the samples were similar, and the main components of stem of Dendrobium is cellulose. By the spectral professional software Omnic8.0, three spectral databases were constructed. Lib01 includes of the average spectral of the first four trees of every variety, while Lib02 and Lib03 are constructed from the first-derivative spectra and the second-derivative spectra of average spectra, separately. The correlation search, the square difference retrieval and the square differential difference retrieval of the spectra are performed with the spectral database Lib01 in the specified range of 1 800-500 cm(-1), and the yield correct rate of 92.7%, 74.5% and 92.7%, respectively. The square differential difference retrieval of the first-derivative spectra and the second-derivative spectra is carried out with Lib02 and Lib03 in the same specified range 1 800-500 cm(-1), and shows correct rate of 93.9% for the former and 90.3% for the later. The results show that the first-derivative spectral retrieval of square differential difference algorithm is more suitabe for discerning Dendrobium varieties, and FTIR combining with the spectral retrieval method can identify different varieties of Dendrobium, and the correlation retrieval, the square differential retrieval, the first-derivative spectra and second-derivative spectra retrieval in the specified spectral range are effective and simple way of distinguishing different varieties of Dendrobium.

  16. Renal geology (quantitative renal stone analysis) by 'Fourier transform infrared spectroscopy'.

    Singh, Iqbal

    2008-01-01

    To prospectively determine the precise stone composition (quantitative analysis) by using infrared spectroscopy in patients with urinary stone disease presenting to our clinic. To determine an ideal method for stone analysis suitable for use in a clinical setting. After routine and a detailed metabolic workup of all patients of urolithiasis, stone samples of 50 patients of urolithiasis satisfying the entry criteria were subjected to the Fourier transform infrared spectroscopic analysis after adequate sample homogenization at a single testing center. Calcium oxalate monohydrate and dihydrate stone mixture was most commonly encountered in 35 (71%) followed by calcium phosphate, carbonate apatite, magnesium ammonium hexahydrate and xanthine stones. Fourier transform infrared spectroscopy allows an accurate, reliable quantitative method of stone analysis. It also helps in maintaining a computerized large reference library. Knowledge of precise stone composition may allow the institution of appropriate prophylactic therapy despite the absence of any detectable metabolic abnormalities. This may prevent and or delay stone recurrence.

  17. Applications of Infrared and Raman Spectroscopies to Probiotic Investigation

    Santos, Mauricio I.; Gerbino, Esteban; Tymczyszyn, Elizabeth; Gomez-Zavaglia, Andrea

    2015-01-01

    In this review, we overview the most important contributions of vibrational spectroscopy based techniques in the study of probiotics and lactic acid bacteria. First, we briefly introduce the fundamentals of these techniques, together with the main multivariate analytical tools used for spectral interpretation. Then, four main groups of applications are reported: (a) bacterial taxonomy (Subsection 4.1); (b) bacterial preservation (Subsection 4.2); (c) monitoring processes involving lactic acid bacteria and probiotics (Subsection 4.3); (d) imaging-based applications (Subsection 4.4). A final conclusion, underlying the potentialities of these techniques, is presented. PMID:28231205

  18. Applications of Infrared and Raman Spectroscopies to Probiotic Investigation

    Mauricio I. Santos

    2015-07-01

    Full Text Available In this review, we overview the most important contributions of vibrational spectroscopy based techniques in the study of probiotics and lactic acid bacteria. First, we briefly introduce the fundamentals of these techniques, together with the main multivariate analytical tools used for spectral interpretation. Then, four main groups of applications are reported: (a bacterial taxonomy (Subsection 4.1; (b bacterial preservation (Subsection 4.2; (c monitoring processes involving lactic acid bacteria and probiotics (Subsection 4.3; (d imaging-based applications (Subsection 4.4. A final conclusion, underlying the potentialities of these techniques, is presented.

  19. Evanescent field infrared spectroscopy using chalcogenide glass fiber

    Katz Moti

    1992-06-01

    In the last few years a simple and cheap fiber-optics based spectroscopy method was developed for the investigation of liquids, pastes gases and thin layers. The fiber is immersed in the sample, and the investigated material becomes the fiber cladding. the interaction between the guided radiation in the fiber and the specimen is taking place by evanescent field which extends outside the fiber. This work concentrates in the quantitative characterization of the absorption of the evanescent field by the fiber cladding (the specimen). This subject was dealt with only briefly in the earlier works, and the aim of this work is to obtain a comprehensive understanding of this issue. (author)

  20. Verification of Ganoderma (lingzhi) commercial products by Fourier Transform infrared spectroscopy and two-dimensional IR correlation spectroscopy

    Choong, Yew-Keong; Sun, Su-Qin; Zhou, Qun; Lan, Jin; Lee, Han-Lim; Chen, Xiang-Dong

    2014-07-01

    Ganoderma commercial products are typically based on two sources, raw material (powder form and/or spores) and extract (water and/or solvent). This study compared three types of Ganoderma commercial products using 1 Dimensional Fourier Transform infrared and second derivative spectroscopy. The analyzed spectra of Ganoderma raw material products were compared with spectra of cultivated Ganoderma raw material powder from different mushroom farms in Malaysia. The Ganoderma extract product was also compared with three types of cultivated Ganoderma extracts. Other medicinal Ganoderma contents in commercial extract product that included glucan and triterpenoid were analyzed by using FTIR and 2DIR. The results showed that water extract of cultivated Ganoderma possessed comparable spectra with that of Ganoderma product water extract. By comparing the content of Ganoderma commercial products using FTIR and 2DIR, product content profiles could be detected. In addition, the geographical origin of the Ganoderma products could be verified by comparing their spectra with Ganoderma products from known areas. This study demonstrated the possibility of developing verification tool to validate the purity of commercial medicinal herbal and mushroom products.

  1. Far-Infrared Spectroscopy of Weakly Bound Hydrated Cluster Molecules

    Andersen, Jonas

    The thermodynamic properties of condensed phases, the functionality of many materials and the molecular organization in biological organisms are all governed by the classes of non-covalent interactions that occur already on the microscopic scale between pairs of molecules. A detailed investigation...... of the intermolecular interactions between prototypical molecular assemblies are valuable for accurate descriptions of larger supramolecular systems such as materials, gas hydrates and biological macromolecules. The aim of this PhD dissertation is to investigate intermolecular interactions fora series of medium...... vibrational bands of the cluster molecules in the challenging far-infrared and terahertz spectral regions.A key parameter in the validation of the performance of theoretical predictions for weak non-covalent intermolecular interactions is the dissociation energy D0 that depends heavily on the class of large...

  2. Photoacoustic Fourier Transform Infrared (FTIR) Spectroscopy Of Solids

    Vidrine, D. Warren

    1981-10-01

    After discovering the photoacoustic effect, Alexander Graham Bell predicted its use in spectrometers, and that it would find its greatest utility "in the ultra-red." More than ninety years were required to fulfil his first prediction, and the second is still a prophecy. There is no record whether he ever imagined that an invention being developed that same winter by a young protege of his named Albert Michelson would ever be combined with his photoacoustic effect. A century later, the combination was made by Farrow Burnham, and Eyring, using a visible-range interferometer spectrometer of their own design. Soon afterwards, Rockley and myself, working independently, applied the technique to infrared measurements of solid samples. Photoacoustic cells are now commercially available as FT-IR accessories, and the technique is in use in the field.

  3. Mid-infrared spectroscopy and chemometrics in corn starch classification

    Dupuy, N.; Wojciechowski, C.; Ta, C. D.; Huvenne, J. P.; Legrand, P.

    1997-06-01

    The authentication of food is a very important issue for both the consumer and the food industry at all levels of the food chain from raw materials to finished products. Corn starch can be used in a wide variety of food preparations such as bakery cream fillings, sauces, salad dressings, frozen foods etc. Many modifications are made to corn starch in connection with its use in agrofood. The value of the product increases with the degree of modification. Some chemical and physical tests have been devised to solve the problem of identifying these modifications but all the methods are time consuming and require skilled operators. We separate corn starches into groups related to their modification on the basis of the infrared spectra.

  4. Surface analysis by Fourier-transform infrared (FTIR) spectroscopy

    Powell, G.L.; Smyrl, N.R.; Fuller, E.L.

    1981-01-01

    A diffuse-reflectance capability for the Fourier transform infrared spectrometer at the Y-12 Plant Laboratory has been implemented. A sample cell with a 25 to 400 0 C temperature-controlled sample stage and an ultrahigh-vacuum-to-atmospheric pressure gas-handling capability has been developed. Absorbance of light from the spectrometer beam, resulting from the beam being scattered from a powder sample, can be measured. This capability of detecting molecular species on and in powders is to be used to study chemisorption on actinide and rare-earth metals, alloys, and compounds. Cell design is described along with experiments demonstrating its performance in detecting moisture absorption on uranium oxide, moisture and carbon dioxide absorption on the lithium hydride/hydroxide system, and carbon dioxide absorption on potassium borohydride. 13 figures

  5. Fusion of Ultraviolet-Visible and Infrared Transient Absorption Spectroscopy Data to Model Ultrafast Photoisomerization.

    Debus, Bruno; Orio, Maylis; Rehault, Julien; Burdzinski, Gotard; Ruckebusch, Cyril; Sliwa, Michel

    2017-08-03

    Ultrafast photoisomerization reactions generally start at a higher excited state with excess of internal vibrational energy and occur via conical intersections. This leads to ultrafast dynamics which are difficult to investigate with a single transient absorption spectroscopy technique, be it in the ultraviolet-visible (UV-vis) or infrared (IR) domain. On one hand, the information available in the UV-vis domain is limited as only slight spectral changes are observed for different isomers. On the other hand, the interpretation of vibrational spectra is strongly hindered by intramolecular relaxation and vibrational cooling. These limitations can be circumvented by fusing UV-vis and IR transient absorption spectroscopy data in a multiset multivariate curve resolution analysis. We apply this approach to describe the spectrodynamics of the ultrafast cis-trans photoisomerization around the C-N double bond observed for aromatic Schiff bases. Twisted intermediate states could be elucidated, and isomerization was shown to occur through a continuous complete rotation. More broadly, data fusion can be used to rationalize a vast range of ultrafast photoisomerization processes of interest in photochemistry.

  6. Fourier transform infrared and fluorescence spectroscopy for analysis of vegetable oils

    Nigri S.

    2013-09-01

    Full Text Available Fourier transform infrared (FTIR and fluorescence spectroscopy, combined with chemometric approaches have been developed to analysis of extra virgin olive oil adulterated with pomace olive oil. The measurements were made on pure vegetable oils: extra virgin oil, pomace olive oil and that adulterated with varying concentration of pomace olive oil. Today, the application of FTIR spectroscopy has increased in food studied, and particularly has become a powerful analytical tool in the study of edible oils and fats. The spectral regions where the variations were observed chosen for developing models and cross validation was used. The synchronous fluorescence spectrometry takes advantage of the hardware capability to vary both the excitation and emission wavelengths during the analysis with constant wavelength difference is maintained between the two. The region between 300 and 400 nm is attributed to the tocopherols and phenols, the derivatives of vitamin E are associated with the region 400–600 nm and the bands in the region of 600–700 nm are attributed to the chlorophyll and peophytin pigments. The results presented in this study suggest that FTIR and fluorescence may be a useful tool for analysis and detecting adulteration of extra virgin olive oil with pomace oil.

  7. WIRELESS DISTRIBUTED ACQUISITION SYSTEM FOR NEAR INFRARED SPECTROSCOPY – WDA-NIRS

    J. SAFAIE

    2013-07-01

    Full Text Available The wireless distributed acquisition system for near infrared spectroscopy (WDA-NIRS is a portable, ultra-compact, continuous wave (CW NIRS system. Its main advantage is that it allows continuous synchronized multi-site hemodynamic monitoring. The WDA-NIRS system calculates online changes in hemoglobin concentration based on modified Beer–Lambert law and the tissue oxygenation index based on the spatial-resolved spectroscopy method. It consists of up to seven signal acquisition units, sufficiently small to be easily attached to any part of the body. These units are remotely synchronized by a PC base station for independent acquisition of NIRS signals. Each acquisition module can be freely adapted to individual requirements such as local skin properties and the microcirculation of interest, e.g., different muscles, brain, skin, etc. For this purpose, the light emitted by each LED can be individually, interactively or automatically adjusted to local needs. Furthermore, the user can freely create an emitter time-multiplexing protocol and choose the detector sensitivity most suitable to a particular situation. The potential diagnostic value of this advanced device is demonstrated by three typical applications.

  8. Two-color mid-infrared spectroscopy of optically doped semiconductors

    Forcales, M.; Klik, M.A.J.; Vinh, N.Q.; Phillips, J.; Wells, J-P.R.; Gregorkiewicz, T.

    2003-01-01

    Optical doping is an attractive method to tailor photonic properties of semiconductor matrices for development of solid-state electroluminescent structures. For practical applications, thermal stability of emission obtained from these materials is required. Thermal processes can be conveniently investigated by two-color spectroscopy in the visible and the mid-infrared. Free-electron laser is a versatile high-brilliance source of radiation in the latter spectral range. In this contribution, we briefly review some of the results obtained recently by the two-color spectroscopy with a free-electron laser in different semiconductors optically doped with rare earth and transition metal ions. Effects leading to both enhancement and quenching of emission from optical dopants will be presented. For InP:Yb, Si:Er, and Si:Cu activation of particular optically induced non-radiative recombination paths will be shown. For Si:Er and Si:Ag, observation of a low temperature optical memory effect will be reported

  9. Spectroscopic analysis of bladder cancer tissues using Fourier transform infrared spectroscopy

    Al-Muslet, Nafie A.; Ali, Essam E.

    2012-03-01

    Bladder cancer is one of the most common cancers in Africa. It takes several days to reach a diagnosis using histological examinations of specimens obtained by endoscope, which increases the medical expense. Recently, spectroscopic analysis of bladder cancer tissues has received considerable attention as a diagnosis technique due to its sensitivity to biochemical variations in the samples. This study investigated the use of Fourier transform infrared (FTIR) spectroscopy to analyze a number of bladder cancer tissues. Twenty-two samples were collected from 11 patients diagnosed with bladder cancer from different hospitals without any pretreatment. From each patient two samples were collected, one normal and another cancerous. FTIR spectrometer was used to differentiate between normal and cancerous bladder tissues via changes in spectra of these samples. The investigations detected obvious changes in the bands of proteins (1650, 1550 cm-1), lipids (2925, 2850 cm-1), and nucleic acid (1080, 1236 cm-1). The results show that FTIR spectroscopy is promising as a rapid, accurate, nondestructive, and easy to use alternative method for identification and diagnosis of bladder cancer tissues.

  10. Rapid Quantitative Analysis of Forest Biomass Using Fourier Transform Infrared Spectroscopy and Partial Least Squares Regression

    Gifty E. Acquah

    2016-01-01

    Full Text Available Fourier transform infrared reflectance (FTIR spectroscopy has been used to predict properties of forest logging residue, a very heterogeneous feedstock material. Properties studied included the chemical composition, thermal reactivity, and energy content. The ability to rapidly determine these properties is vital in the optimization of conversion technologies for the successful commercialization of biobased products. Partial least squares regression of first derivative treated FTIR spectra had good correlations with the conventionally measured properties. For the chemical composition, constructed models generally did a better job of predicting the extractives and lignin content than the carbohydrates. In predicting the thermochemical properties, models for volatile matter and fixed carbon performed very well (i.e., R2 > 0.80, RPD > 2.0. The effect of reducing the wavenumber range to the fingerprint region for PLS modeling and the relationship between the chemical composition and higher heating value of logging residue were also explored. This study is new and different in that it is the first to use FTIR spectroscopy to quantitatively analyze forest logging residue, an abundant resource that can be used as a feedstock in the emerging low carbon economy. Furthermore, it provides a complete and systematic characterization of this heterogeneous raw material.

  11. Spectroscopy

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  12. On-Line Monitoring of Fermentation Processes by Near Infrared and Fluorescence Spectroscopy

    Svendsen, Carina

    Monitoring and control of fermentation processes is important to ensure high product yield, product quality and product consistency. More knowledge on on-line analytical techniques such as near infrared and fluorescence spectroscopy is desired in the fermentation industry to increase the efficiency...... of on-line monitoring systems. The primary aim of this thesis is to elucidate and explore the dynamics in fermentation processes by spectroscopy. Though a number of successful on-line lab-scale monitoring systems have been reported, it seems that several challenges are still met, which limits the number...... of full-scale systems implemented in industrial fermentation processes. This thesis seeks to achieve a better understanding of the techniques near infrared and fluorescence spectroscopy and thereby to solve some of the challenges that are encountered. The thesis shows the advantages of applying real...

  13. Polarized Raman and Infrared Spectroscopy and ab Initio Calculation of Palmitic and Stearic Acids in the Bm and C Forms.

    L da Silva, L F; Andrade-Filho, T; Freire, P T C; Filho, J Mendes; da Silva Filho, J G; Saraiva, G D; Moreira, S G C; de Sousa, F F

    2017-06-29

    A complete experimental study on the vibrational properties of palmitic and stearic acids crystallized in the B m and C forms, both belonging to the monoclinic system with the P2 1 /a (C 2h 5 ) space group, through polarized Raman and infrared spectroscopy, is reported in this paper. Density functional theory calculations were also performed to assign the normal modes and to help in the interpretation of the experimental data. The different polarizations were compared and their influence on the spectral profiles, in both the lattice and the internal mode regions, was discussed. In general, the Raman and infrared spectra exhibit accentuated differences among the polymorphic forms, which are associated with the different molecular modifications, defined as gauche and all-trans conformations. Insights about interaction among different groups are also furnished.

  14. [Study on discrimination of varieties of fire resistive coating for steel structure based on near-infrared spectroscopy].

    Xue, Gang; Song, Wen-qi; Li, Shu-chao

    2015-01-01

    In order to achieve the rapid identification of fire resistive coating for steel structure of different brands in circulating, a new method for the fast discrimination of varieties of fire resistive coating for steel structure by means of near infrared spectroscopy was proposed. The raster scanning near infrared spectroscopy instrument and near infrared diffuse reflectance spectroscopy were applied to collect the spectral curve of different brands of fire resistive coating for steel structure and the spectral data were preprocessed with standard normal variate transformation(standard normal variate transformation, SNV) and Norris second derivative. The principal component analysis (principal component analysis, PCA)was used to near infrared spectra for cluster analysis. The analysis results showed that the cumulate reliabilities of PC1 to PC5 were 99. 791%. The 3-dimentional plot was drawn with the scores of PC1, PC2 and PC3 X 10, which appeared to provide the best clustering of the varieties of fire resistive coating for steel structure. A total of 150 fire resistive coating samples were divided into calibration set and validation set randomly, the calibration set had 125 samples with 25 samples of each variety, and the validation set had 25 samples with 5 samples of each variety. According to the principal component scores of unknown samples, Mahalanobis distance values between each variety and unknown samples were calculated to realize the discrimination of different varieties. The qualitative analysis model for external verification of unknown samples is a 10% recognition ration. The results demonstrated that this identification method can be used as a rapid, accurate method to identify the classification of fire resistive coating for steel structure and provide technical reference for market regulation.

  15. Analysis of Selected Properties of Fibreboard Panels Manufactured from Wood and Leather Using the Near Infrared Spectroscopy

    Kerstin Wagner

    2015-01-01

    Full Text Available This paper deals with the characterization of the properties of wood fibres leather shavings composite board by using the near infrared spectroscopy (NIRS and multivariate data analysis. In this study fibreboards were manufactured with different leather amounts by using spruce fibres, as well as vegetable and mineral tanned leather shavings (wet white and wet blue. The NIR spectroscopy was used to analyse the raw materials as well as the wood leather fibreboards. Moreover, the physical and mechanical features of the wood leather composite fibreboards were determined to characterize their properties for the further data analysis. The NIR spectra were analysed by univariate and multivariate methods using the Principal Component Analysis (PCA and the Partial Least Squares Regression (PLSR method. These results demonstrate the potential of FT-NIR spectroscopy to estimate the physical and mechanical properties (e.g., bending strength. This phenomenon provides a possibility for quality assurance systems by using the NIRS.

  16. Quick detection and quantification of iron-cyanide complexes using fourier transform infrared spectroscopy.

    Sut-Lohmann, Magdalena; Raab, Thomas

    2017-08-01

    The continuous release of persistent iron-cyanide (Fe-CN) complexes from various industrial sources poses a high hazard to the environment and indicates the necessity to analyze a considerable amount of samples. Conventional flow injection analysis (FIA) is a time and cost consuming method for cyanide (CN) determination. Thus, a rapid and economic alternative needs to be developed to quantify the Fe-CN complexes. 52 soil samples were collected at a former Manufactured Gas Plant (MGP) site in order to determine the feasibility of diffuse reflectance infrared Fourier spectroscopy (DRIFTS). Soil analysis revealed CN concentrations in a range from 8 to 14.809 mg kg -1 , where 97% was in the solid form (Fe 4 [Fe(CN) 6 ] 3 ), which is characterized by a single symmetrical CN band in the range 2092-2084 cm -1 . The partial least squares (PLS) calibration-validation model revealed IR response to CN tot which exceeds 2306 mg kg -1 (limit of detection, LOD). Leave-one-out cross-validation (LOO-CV) was performed on soil samples, which contained low CN tot ( 900 mg kg -1 resulted in LOD equal to 3751 mg kg -1 . It was found that FTIR spectroscopy provides the information concerning different CN species in the soil samples. Additionally, it is suitable for quantifying Fe-CN species in matrixes with CN tot  > 154 mg kg -1 . Thus, FTIR spectroscopy, in combination with the statistical approach applied here seems to be a feasible and quick method for screening of contaminated sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues.

    Arash Hanifi

    Full Text Available Hyaline cartilage and mechanically inferior fibrocartilage consisting of mixed collagen types are frequently found together in repairing articular cartilage. The present study seeks to develop methodology to identify collagen type and other tissue components using Fourier transform infrared (FTIR spectral evaluation of matrix composition in combination with multivariate analyses. FTIR spectra of the primary molecular components of repair cartilage, types I and II collagen, and aggrecan, were used to develop multivariate spectral models for discrimination of the matrix components of the tissues of interest. Infrared imaging data were collected from bovine bone, tendon, normal cartilage, meniscus and human repair cartilage tissues, and composition predicted using partial least squares analyses. Histology and immunohistochemistry results were used as standards for validation. Infrared fiber optic probe spectral data were also obtained from meniscus (a tissue with mixed collagen types to evaluate the potential of this method for identification of collagen type in a minimally-invasive clinical application. Concentration profiles of the tissue components obtained from multivariate analysis were in excellent agreement with histology and immunohistochemistry results. Bone and tendon showed a uniform distribution of predominantly type I collagen through the tissue. Normal cartilage showed a distribution of type II collagen and proteoglycan similar to the known composition, while in repair cartilage, the spectral distribution of both types I and II collagen were similar to that observed via immunohistochemistry. Using the probe, the outer and inner regions of the meniscus were shown to be primarily composed of type I and II collagen, respectively, in accordance with immunohistochemistry data. In summary, multivariate analysis of infrared spectra can indeed be used to differentiate collagen type I and type II, even in the presence of proteoglycan, in

  18. The application of near infrared spectroscopy (NIR technique for

    Sandor Barabassy

    2001-06-01

    Full Text Available The production of cow’s milk in Hungary fluctuates by 15-20 % annualy. Surplus milk is dried into powder and can also be converted to modified milk powders using techniques such as ultra filtration. From approximetely 20.000 tonnes, of all milk powder types, 3.000 tonnes, is converted using ultra filtration technology. Multivariable near infrared (NIR calibration was performed on powder mixtures of whole milk, skimmed milk, whey, retenate (protein concentrate and lactose for rapid fat, protein, lactose, water and ash content determination. More than 150 samples were prepared and measured in two NIRS labs (Scottish Agriculture College – SAC – Aberdeen and University of Horticulture and Food Science - UHFS – Budapest. The results obtained from the same samples were compared. The aims of the study were: 1. Rapid quantitative and qualitative determination of mixtures of milk powder products using NIR technique. 2. Comparison of the results achieved in Aberdeen (SAC and Budapest (UHFS institutes. The mass per cent varied between 0.0-2.8% for fat, 0.0-80% for protein, 6.6-100 % for lactose, 0.0-5.0 % for water and 0.0-8.0 % for ash. High correlation coefficients (0.97-0.99 were found for all five components.

  19. Gemini Near-infrared Spectroscopy of Luminous z~6 Quasars

    Jiang, Linhua; Fan, Xiaohui; Vestergaard, Marianne

    2007-01-01

    We present Gemini near-infrared spectroscopic observations of six luminous quasars at z=5.8$\\sim$6.3. Five of them were observed using Gemini-South/GNIRS, which provides a simultaneous wavelength coverage of 0.9--2.5 $\\mu$m in cross dispersion mode. The other source was observed in K band...... with Gemini-North/NIRI. We calculate line strengths for all detected emission lines and use their ratios to estimate gas metallicity in the broad-line regions of the quasars. The metallicity is found to be supersolar with a typical value of $\\sim$4 Z_{\\sun}, and a comparison with low-redshift observations...... shows no strong evolution in metallicity up to z$\\sim$6. The FeII/MgII ratio of the quasars is 4.9+/-1.4, consistent with low-redshift measurements. We estimate central BH masses of 10^9 to 10^{10} M_{\\sun} and Eddington luminosity ratios of order unity. We identify two MgII $\\lambda\\lambda$2796...

  20. Quantitative analysis of ice films by near-infrared spectroscopy

    Keiser, Joseph T.

    1990-01-01

    One of the outstanding problems in the Space Transportation System is the possibility of the ice buildup on the external fuel tank surface while it is mounted on the launch pad. During the T-2 hours (and holding) period, the frost/ice thickness on the external tank is monitored/measured. However, after the resumption of the countdown time, the tank surface can only be monitored remotely. Currently, remote sensing is done with a TV camera coupled to a thermal imaging device. This device is capable of identifying the presence of ice, especially if it is covered with a layer of frost. However, it has difficulty identifying transparent ice, and, it is not capable of determining the thickness of ice in any case. Thus, there is a need for developing a technique for measuring the thickness of frost/ice on the tank surface during this two hour period before launch. The external tank surface is flooded with sunlight (natural or simulated) before launch. It may be possible, therefore, to analyze the diffuse reflection of sunlight from the external tank to determine the presence and thickness of ice. The purpose was to investigate the feasibility of this approach. A near-infrared spectrophotometer was used to record spectra of ice. It was determined that the optimum frequencies for monitoring the ice films were 1.03 and 1.255 microns.

  1. Mid-infrared photoacoustic spectroscopy for atmospheric NO2 measurements

    Lassen, Mikael; Lamard, Laurent; Balslev-Harder, David; Peremans, Andre; Petersen, Jan C.

    2018-02-01

    A photoacoustic (PA) sensor for spectroscopic measurements of NO2-N2 at ambient pressure and temperature is demonstrated. The PA sensor is pumped resonantly by a nanosecond pulsed single-mode mid-infrared (MIR) optical parametric oscillator (OPO). Spectroscopic measurements of NO2-N2 in the 3.25 μm to 3.55 μm wavelength region with a resolution bandwidth of 5 cm-1 and with a single shot detection limit of 1.6 ppmV (μmol/mol) is demonstrated. The measurements were conducted with a constant flow rate of 300 ml/min, thus demonstrating the suitability of the gas sensor for real time trace gas measurements. The acquired spectra is compared with data from the Hitran database and good agreement is found. An Allan deviation analysis shows that the detection limit at optimum integration time for the PAS sensor is 14 ppbV (nmol/mol) at 170 seconds of integration time, corresponding to a normalized noise equivalent absorption (NNEA) coefficient of 3.3×10-7 W cm-1 Hz-1/2.

  2. HHT diagnosis by Mid-infrared spectroscopy and artificial neural network analysis.

    Lux, Andreas; Müller, Ralf; Tulk, Mark; Olivieri, Carla; Zarrabeita, Roberto; Salonikios, Theresia; Wirnitzer, Bernhard

    2013-06-27

    The vascular disorder Hereditary Hemorrhagic Telangiectasia (HHT) is in general an inherited disease caused by mutations in the TGF-β/BMP receptors endoglin or ALK1 or in rare cases by mutations of the TGF-β signal transducer protein Smad4 leading to the combined syndrome of juvenile polyposis and HHT. HHT is characterized by several clinical symptoms like spontaneous and recurrent epistaxis, multiple telangiectases at sites like lips, oral cavity, fingers, nose, and visceral lesions like gastrointestinal telangiectasia, pulmonary, hepatic, cerebral or spinal arteriovenous malformations. The disease shows an inter- and intra-family variability in penetrance as well as symptoms from mild to life threatening. Penetrance is also depending on age. Diagnosis of the disease is based on the presence of some of the listed symptoms or by genetic testing. HHT diagnosis is laborious, time consuming, costly and sometimes uncertain. Not all typical symptoms may be present, especially at a younger age, and genetic testing does not always identify the disease causing mutation. Infrared (IR) spectroscopy was investigated as a potential alternative to the current diagnostic methods. IR-spectra were obtained by Fourier-transform Mid-IR spectroscopy from blood plasma from HHT patients and a healthy control group. Spectral data were mathematically processed and subsequently classified and analysed by artificial neural network (ANN) analyses and by visual analysis of scatter plots of the dominant principal components. The analyses showed that for HHT a disease specific IR-spectrum exists that is significantly different from the control group. Furthermore, at the current stage with the here used methods, HHT can be diagnosed by Mid-IR-spectroscopy in combination with ANN analysis with a sensitivity and specificity of at least 95%. Visual analysis of PCA scatter plots revealed an inter class variation of the HHT group. IR-spectroscopy in combination with ANN analysis can be considered

  3. Quantification of SOC and Clay Content Using Visible Near-Infrared Reflectance–Mid-Infrared Reflectance Spectroscopy With Jack-Knifing Partial Least Squares Regression

    Peng, Yi; Knadel, Maria; Gislum, René

    2014-01-01

    A total of 125 soil samples were collected from a Danish field varying in soil texture from sandy to loamy. Visible near-infrared reflectance (Vis-NIR) and mid-infrared reflectance (MIR) spectroscopy combined with chemometric methods were used to predict soil organic carbon (SOC) and clay content...

  4. Studies of hydrogen incorporation in hydrogenated amorphous carbon films by infrared absorption spectroscopy

    Alameh, R.; Bounouh, Y.; Sadki, A.; Naud, C.; Theye, M.L.

    1997-01-01

    Author.Hydrogenated amorphous carbon (a-C:H) films presently attract considerable interest because of their potential applications in the domain of multifunctional coatings: transparent in the infrared, very hard, chemically inert, etc...This material is rather complex since it contains C atoms in both sp 3 (diamond) and sp 2 (graphite) electronic configurations, as well as a large concentration of H atoms. Its properties are strongly dependent on the deposition conditions which determine the film microstructure, i.e. the relative proportions of sp 3 and sp 2 C sites, their connection in the network and the hydrogen bonding modes. It has been suggested that the sp 2 C sites tend to cluster into unsaturated chains ans rings, which are then embedded in the sp 3 C sites m atrix . Hydrogen incorporation plays a crucial role in this intrinsic microheterogeneity, which determines the electronic properties, and especially the gap value, of a-C:H. We here present and discuss the results of Fourrier transform infrared absorption spectroscopy measurements performed on a-C:H films prepared under different conditions and submitted to controlled annealing cycles, which exhibit quite different optical gap values (from 1 to 2.5 eV). We carefully analyze the absorption bands detected in the 400-7500 cm -1 spectral range in terms of the vibration modes of C-H and C-C bonds in different local environments and we interpret the results in relation with the film microstructure and optical properties. Special attention is also paid to the absorption background and to the variations of the whole absorption spectra with measurement temperature

  5. [Determination of steviol in Stevia Rebaudiana leaves by near infrared spectroscopy].

    Tang, Qi-Kun; Wang, Yul; Wu, Yue-Jin; Min, Di; Chen, Da-Wei; Hu, Tong-Hua

    2014-10-01

    The objective of the present study is to develop a method for rapid determination of the content of stevioside (ST) and rebaudioside A (RA) in Stevia Rebaudiana leaves. One hundred and five samples of stevia from different areas containing ST of 0.27%-1.40% and RA of 0.61%-3.98% were used. The 105 groups' NIRS diagram was processed by different methods including subtracting a straight line (SLS), multiplicative scatter correction (MSC), first derivative (FD), second derivative (SD) and so on, and then all data were analyzed by partial least square (PLS). The study showed that SLS can be used to extracted spectra information thoroughly to analyze the contents of ST, the correlation coefficients of calibration (Re), the root-mean-square errors of calibration (RMSEC) and prediction (RMSEP), and the residual predictive deviation (RPD) were 0.986, 0.341, 1.00 and 2.8, respectively. The correlation coefficients of RA was 0.967, RMSEC was 1.50, RMSEP was 1.98 and RPD was 4.17. The results indicated that near infrared spectroscopy (NIRS) technique offers effective quantitative capability for ST and RA in Stevia Rebaudiana leaves. Then the model of stevia dried leaves was used to compare with the stevia powder near infrared model whose correlation coefficients of ST was 0.986, RMSEC was 0.32, RMSEP was 0.601 and RPD was 2.86 and the correlation coefficients of RA was 0.968, RMSEC was 1.50, RMSEP was 1.48 and RPD was 4.2. The result showed that there was no significant difference between the model of dried leaves and that of the powders. However, the dried leaves NIR model reduces the unnecessary the steps of drying and grinding in the actual detection process, saving the time and reducing the workload.

  6. Infrared Spectroscopy of Parent Volatiles in Comets: Implications for Astrobiology

    DiSanti, Michael A.

    2010-01-01

    Current cometary orbits provide information on their recent dynamical history. However, determining a given comet's formation region from its current dynamical state alone is complicated by radial migration in the proto-planetary disk and by dynamical interactions with the growing giant planets. Because comets reside for long periods of time in the outer Solar System, the ices contained in their nuclei (native ices) retain a relatively well-preserved footprint of when and where they formed, and this in turn can provide clues to conditions in the formation epoch. As a comet approaches the Sun, sublimation of its native ices releases parent volatiles into the coma where they can be measured spectroscopically. The past to - 15 years have seen the advent of infrared spectrometers with high sensitivity between about 2.8 and 5.0 micron, enabling a taxonomy among comets based on abundances of parent volatiles (e.g., H2O, CO, CH4, C2H6, HCN, CH30H, H2CO, NH3). Such molecules are of keen interest to Astrobiology, as they include important pre-biotic species that likely were required for the emergence of life on Earth and perhaps elsewhere. Approximately 20 comets have thus far been characterized, beginning with C/1996 82 (Hyakutake) in 1996. Molecular production rates are established through comparison of observed emission line intensities with those predicted by quantum mechanical fluorescence models. Abundances of parent volatiles (relative to H2O) vary among even the relatively small number of comets sampled, with the most volatile species (CO and CH4) displaying the largest variations. Techniques developed for measuring parent volatile abundances in comets will be discussed, as will possible implications for their formation.

  7. Analysis of degraded papers by infrared and Raman spectroscopy for forensic purposes

    Zięba-Palus, J.; Wesełucha-Birczyńska, A.; Trzcińska, B.; Kowalski, R.; Moskal, P.

    2017-07-01

    Paper being the basis of different documents is often the subject of forensic examination. Growing number of bogus or in other manner fraudulently alternated documents causes necessity of identification of individual paper sheets and discrimination between sheets being the parts of analyzed questioned document. Frequently it is necessary to distinguish between paper of the same type but of a different age. Thus, it is essential to know whether the degradation process of paper influences the possibility of differentiation between paper samples. Samples of five types of office paper from different manufacturers were artificially aged in a climatic chamber under 65% relative humidity in air at 90 °C for various periods of time up to 35 days. The conditioned samples were examined by the use of infrared and Raman spectroscopy. Three cards of each paper type were chosen for the experiment. Three different spots on each paper card were measured to assure reproducibility of the experiment in both spectroscopic methods. The possibility of differentiation between aged samples was evaluated. The 2D correlation analysis based on the Noda's method was carried out using ATR FTIR spectra as an input data for generating the correlation maps. It was found that pattern of 2D maps allow to distinguish tested paper samples, identified its components and get insight into paper degradation mechanism.

  8. Analysis of Leucaena mimosine, Acacia tannins and total phenols by near infrared reflectance spectroscopy

    Prasad, M N.V. [Hyderabad Univ. (India). Dept. of Plant Sciences

    1995-11-01

    The mimosine contents of Leucaena foliage, Acacia tannins and total phenols from leaf, bark and pod were analyzed by a near infrared relectance spectrophotometer (Compscan 3000). A calibration equation (linear summation regression) was developed with near infrared spectral analysis software, using 30 spectra from old and young leaves of Leucaena and 23 spectra from different samples of Acacia. The near infrared analyzer calculated that the percentages of mimosine, total phenols and tannins are closely comparable to laboratory results. (author)

  9. Discrimination of tomatoes bred by spaceflight mutagenesis using visible/near infrared spectroscopy and chemometrics

    Shao, Yongni; Xie, Chuanqi; Jiang, Linjun; Shi, Jiahui; Zhu, Jiajin; He, Yong

    2015-04-01

    Visible/near infrared spectroscopy (Vis/NIR) based on sensitive wavelengths (SWs) and chemometrics was proposed to discriminate different tomatoes bred by spaceflight mutagenesis from their leafs or fruits (green or mature). The tomato breeds were mutant M1, M2 and their parent. Partial least squares (PLS) analysis and least squares-support vector machine (LS-SVM) were implemented for calibration models. PLS analysis was implemented for calibration models with different wavebands including the visible region (400-700 nm) and the near infrared region (700-1000 nm). The best PLS models were achieved in the visible region for the leaf and green fruit samples and in the near infrared region for the mature fruit samples. Furthermore, different latent variables (4-8 LVs for leafs, 5-9 LVs for green fruits, and 4-9 LVs for mature fruits) were used as inputs of LS-SVM to develop the LV-LS-SVM models with the grid search technique and radial basis function (RBF) kernel. The optimal LV-LS-SVM models were achieved with six LVs for the leaf samples, seven LVs for green fruits, and six LVs for mature fruits, respectively, and they outperformed the PLS models. Moreover, independent component analysis (ICA) was executed to select several SWs based on loading weights. The optimal LS-SVM model was achieved with SWs of 550-560 nm, 562-574 nm, 670-680 nm and 705-715 nm for the leaf samples; 548-556 nm, 559-564 nm, 678-685 nm and 962-974 nm for the green fruit samples; and 712-718 nm, 720-729 nm, 968-978 nm and 820-830 nm for the mature fruit samples. All of them had better performance than PLS and LV-LS-SVM, with the parameters of correlation coefficient (rp), root mean square error of prediction (RMSEP) and bias of 0.9792, 0.2632 and 0.0901 based on leaf discrimination, 0.9837, 0.2783 and 0.1758 based on green fruit discrimination, 0.9804, 0.2215 and -0.0035 based on mature fruit discrimination, respectively. The overall results indicated that ICA was an effective way for the

  10. Qualitative Assessment of Soil Carbon in a Rehabilitated Forest Using Fourier Transform Infrared Spectroscopy

    Huck-Ywih Ch'ng

    2011-01-01

    Full Text Available Logging and poor shifting cultivation negatively affect initial soil carbon (C storage, especially at the initial stage of deforestation, as these practices lead to global warming. As a result, an afforestation program is needed to mitigate this problem. This study assessed initial soil C buildup of rehabilitated forests using Fourier transform infrared (FTIR spectroscopy. The relatively high E4/E6 values of humic acids (HAs in the rehabilitated forest indicate prominence of aliphatic components, suggesting that the HAs were of low molecular weight. The total acidity, carboxylic (-COOH and phenolic (-OH of the rehabilitated forest were found to be consistent with the ranges reported by other researchers. The spectra of all locations were similar because there was no significant difference in the quantities of C in humic acids (CHA regardless of forest age and soil depth. The spectra showed distinct absorbance at 3290, 1720, 1630, 1510, 1460, 1380, and 1270 cm-1. Increase of band at 1630 and 1510 cm-1 from 0–20 to 40–60 cm were observed, suggesting C buildup from the lowest depths 20–40 and 40–60 cm. However, the CHA content in the soil depths was not different. The band at 1630 cm-1 was assigned to carboxylic and aromatic groups. Increase in peak intensity at 1510 cm-1 was because C/N ratio increased with increasing soil depth. This indicates that decomposition rate decreased with increasing soil depth and decreased with CHA. The finding suggests that FTIR spectroscopy enables the assessment of C composition functional group buildup at different depths and ages.

  11. Headspace analysis gas-phase infrared spectroscopy: a study of xanthate decomposition on mineral surfaces

    Vreugdenhil, Andrew J.; Brienne, Stephane H. R.; Markwell, Ross D.; Butler, Ian S.; Finch, James A.

    1997-03-01

    The O-ethyldithiocarbonate (ethyl xanthate, CH 3CH 2OCS -2) anion is a widely used reagent in mineral processing for the separation of sulphide minerals by froth flotation. Ethyl xanthate interacts with mineral powders to produce a hydrophobic layer on the mineral surface. A novel infrared technique, headspace analysis gas-phase infrared spectroscopy (HAGIS) has been used to study the in situ thermal decomposition products of ethyl xanthate on mineral surfaces. These products include CS 2, COS, CO 2, CH 4, SO 2, and higher molecular weight alkyl-containing species. Decomposition pathways have been proposed with some information determined from 2H- and 13C-isotope labelling experiments.

  12. Quantification of changes in skin hydration and sebum after tape stripping using infrared spectroscopy

    Ezerskaia, A.; Pereira, S. F.; Urbach, H. P.; Varghese, B.

    2017-02-01

    Skin barrier function relies on well balanced water and lipid system of stratum corneum. Optimal hydration and oiliness levels are indicators of skin health and integrity. We demonstrate an accurate and sensitive depth profiling of stratum corneum sebum and hydration levels using short wave infrared spectroscopy in the spectral range around 1720 nm. We demonstrate that short wave infrared spectroscopic technique combined with tape stripping can provide morequantitative and more reliable skin barrier function information in the low hydration regime, compared to conventional biophysical methods.

  13. Fast measurement by infrared spectroscopy as support to woody biofuels quality determination

    Daniele Duca

    2016-03-01

    Full Text Available The increase in the demand for energy supply during the past few decades has brought and will bring to a growth in the utilisation of renewable resources, in particular of solid biomasses. Considering the variability in the properties of biomass and the globalisation of the timber market, a chemical and physical characterisation is essential to determine the biomass quality. The specific international standards on solid biofuels (ISO 17225 series describe proper specification and classification of wood chip and pellet, to ensure appropriate quality. Moreover, standard requires information about origin and source of the biomass, normally only to be declared by the producers. In order to fulfill the requirements for the biomass quality, the origin and the source should be assessed, even if currently is hard to determine, in particular on milled or densified biomass. Infrared spectroscopy can provide information on the biomass at the chemical level, directly linked also to its origin and source. This technique is fast and not destructive thus suitable also for online monitoring along the biofuel production chain. In this study, 60 samples belonging to 8 different species were collected and related spectra were acquired using a Fourier transform infrared (IR spectrometer equipped with a module for solid analysis and analysed by principal component analysis. The results obtained show that the method is very efficient in the identification between coniferous and deciduous wood (99% confidence level and good results were obtained in the recognition of coniferous/deciduous mixtures, too. Nevertheless, some clear differences have been also noted among intra-class grouping, but additional tests should be carried out. This technique can provide useful information to solid biofuel stakeholders about wood quality and origin, important especially for sustainability issues. Further work will be oriented to the development of IR methodologies for the fast

  14. An evaluation of IASI-NH3 with ground-based Fourier transform infrared spectroscopy measurements

    E. Dammers

    2016-08-01

    Full Text Available Global distributions of atmospheric ammonia (NH3 measured with satellite instruments such as the Infrared Atmospheric Sounding Interferometer (IASI contain valuable information on NH3 concentrations and variability in regions not yet covered by ground-based instruments. Due to their large spatial coverage and (bi-daily overpasses, the satellite observations have the potential to increase our knowledge of the distribution of NH3 emissions and associated seasonal cycles. However the observations remain poorly validated, with only a handful of available studies often using only surface measurements without any vertical information. In this study, we present the first validation of the IASI-NH3 product using ground-based Fourier transform infrared spectroscopy (FTIR observations. Using a recently developed consistent retrieval strategy, NH3 concentration profiles have been retrieved using observations from nine Network for the Detection of Atmospheric Composition Change (NDACC stations around the world between 2008 and 2015. We demonstrate the importance of strict spatio-temporal collocation criteria for the comparison. Large differences in the regression results are observed for changing intervals of spatial criteria, mostly due to terrain characteristics and the short lifetime of NH3 in the atmosphere. The seasonal variations of both datasets are consistent for most sites. Correlations are found to be high at sites in areas with considerable NH3 levels, whereas correlations are lower at sites with low atmospheric NH3 levels close to the detection limit of the IASI instrument. A combination of the observations from all sites (Nobs = 547 give a mean relative difference of −32.4 ± (56.3 %, a correlation r of 0.8 with a slope of 0.73. These results give an improved estimate of the IASI-NH3 product performance compared to the previous upper-bound estimates (−50 to +100 %.

  15. Food Safety Evaluation Based on Near Infrared Spectroscopy and Imaging: A Review.

    Fu, Xiaping; Ying, Yibin

    2016-08-17

    In recent years, due to the increasing consciousness of food safety and human health, much progress has been made in developing rapid and nondestructive techniques for the evaluation of food hazards, food authentication, and traceability. Near infrared (NIR) spectroscopy and imaging techniques have gained wide acceptance in many fields because of their advantages over other analytical techniques. Following a brief introduction of NIR spectroscopy and imaging basics, this review mainly focuses on recent NIR spectroscopy and imaging applications for food safety evaluation, including (1) chemical hazards detection; (2) microbiological hazards detection; (3) physical hazards detection; (4) new technology-induced food safety concerns; and (5) food traceability. The review shows NIR spectroscopy and imaging to be effective tools that will play indispensable roles for food safety evaluation. In addition, on-line/real-time applications of these techniques promise to be a huge growth field in the near future.

  16. Applying Fourier Transform Mid Infrared Spectroscopy to Detect the Adulteration of Salmo salar with Oncorhynchus mykiss

    Moreira, Maria João

    2018-01-01

    The aim of this study was to evaluate the potential of Fourier transform infrared (FTIR) spectroscopy coupled with chemometric methods to detect fish adulteration. Muscles of Atlantic salmon (Salmo salar) (SS) and Salmon trout (Onconrhynchus mykiss) (OM) muscles were mixed in different percentages and transformed into mini-burgers. These were stored at 3 °C, then examined at 0, 72, 160, and 240 h for deteriorative microorganisms. Mini-burgers was submitted to Soxhlet extraction, following which lipid extracts were analyzed by FTIR. The principal component analysis (PCA) described the studied adulteration using four principal components with an explained variance of 95.60%. PCA showed that the absorbance in the spectral region from 721, 1097, 1370, 1464, 1655, 2805, to 2935, 3009 cm−1 may be attributed to biochemical fingerprints related to differences between SS and OM. The partial least squares regression (PLS-R) predicted the presence/absence of adulteration in fish samples of an external set with high accuracy. The proposed methods have the advantage of allowing quick measurements, despite the storage time of the adulterated fish. FTIR combined with chemometrics showed that a methodology to identify the adulteration of SS with OM can be established, even when stored for different periods of time. PMID:29621135

  17. Variation in LOV Photoreceptor Activation Dynamics Probed by Time Resolved Infrared Spectroscopy

    Iuliano, James N.

    2017-12-14

    The light, oxygen, voltage (LOV) domain proteins are blue light photoreceptors that utilize a non-covalently bound flavin mononucleotide (FMN) cofactor as the chromophore. The modular nature of these proteins has led to their wide adoption in the emerging fields of optogenetics and optobiology, where the LOV domain has been fused to a variety of output domains leading to novel light-controlled applications. In the present work, we extend our studies of the sub-picosecond to several hundred microsecond transient infrared spectroscopy of the isolated LOV domain AsLOV2 to three full-length photoreceptors in which the LOV domain is fused to an output domain: the LOV-STAS protein, YtvA, the LOV-HTH transcription factor, EL222, and the LOV-histidine kinase, LovK. Despite differences in tertiary structure, the overall pathway leading to cysteine adduct formation from the FMN triplet state is highly conserved, although there are slight variations in rate. However significant differences are observed in the vibrational spectra and kinetics after adduct formation, which are directly linked to the specific output function of the LOV domain. While the rate of adduct formation varies by only 3.6-fold amongst the proteins, the subsequent large-scale structural changes in the full-length LOV photoreceptors occur over the micro- to sub-millisecond timescales and vary by orders of magnitude depending on the different output function of each LOV domain.

  18. Effect of Sampling Frequency for Real-Time Tablet Coating Monitoring Using Near Infrared Spectroscopy.

    Igne, Benoît; Arai, Hiroaki; Drennen, James K; Anderson, Carl A

    2016-09-01

    While the sampling of pharmaceutical products typically follows well-defined protocols, the parameterization of spectroscopic methods and their associated sampling frequency is not standard. Whereas, for blending, the sampling frequency is limited by the nature of the process, in other processes, such as tablet film coating, practitioners must determine the best approach to collecting spectral data. The present article studied how sampling practices affected the interpretation of the results provided by a near-infrared spectroscopy method for the monitoring of tablet moisture and coating weight gain during a pan-coating experiment. Several coating runs were monitored with different sampling frequencies (with or without co-adds (also known as sub-samples)) and with spectral averaging corresponding to processing cycles (1 to 15 pan rotations). Beyond integrating the sensor into the equipment, the present work demonstrated that it is necessary to have a good sense of the underlying phenomena that have the potential to affect the quality of the signal. The effects of co-adds and averaging was significant with respect to the quality of the spectral data. However, the type of output obtained from a sampling method dictated the type of information that one can gain on the dynamics of a process. Thus, different sampling frequencies may be needed at different stages of process development. © The Author(s) 2016.

  19. Variation in LOV Photoreceptor Activation Dynamics Probed by Time Resolved Infrared Spectroscopy

    Iuliano, James N.; Gil, Agnieszka A.; Laptenok, Sergey P.; Hall, Christopher R.; Tolentino Collado, Jinnette; Lukacs, Andras; Hag Ahmed, Safaa A; Abyad, Jenna; Daryaee, Taraneh; Greetham, Gregory M.; Sazanovich, Igor V.; Illarionov, Boris; Bacher, Adelbert; Fischer, Markus; Towrie, Michael; French, Jarrod B.; Meech, Stephen R.; Tonge, Peter J

    2017-01-01

    The light, oxygen, voltage (LOV) domain proteins are blue light photoreceptors that utilize a non-covalently bound flavin mononucleotide (FMN) cofactor as the chromophore. The modular nature of these proteins has led to their wide adoption in the emerging fields of optogenetics and optobiology, where the LOV domain has been fused to a variety of output domains leading to novel light-controlled applications. In the present work, we extend our studies of the sub-picosecond to several hundred microsecond transient infrared spectroscopy of the isolated LOV domain AsLOV2 to three full-length photoreceptors in which the LOV domain is fused to an output domain: the LOV-STAS protein, YtvA, the LOV-HTH transcription factor, EL222, and the LOV-histidine kinase, LovK. Despite differences in tertiary structure, the overall pathway leading to cysteine adduct formation from the FMN triplet state is highly conserved, although there are slight variations in rate. However significant differences are observed in the vibrational spectra and kinetics after adduct formation, which are directly linked to the specific output function of the LOV domain. While the rate of adduct formation varies by only 3.6-fold amongst the proteins, the subsequent large-scale structural changes in the full-length LOV photoreceptors occur over the micro- to sub-millisecond timescales and vary by orders of magnitude depending on the different output function of each LOV domain.

  20. Infrared spectroscopy: a potential tool in huanglongbing and citrus variegated chlorosis diagnosis.

    Cardinali, Marcelo Camponez do Brasil; Villas Boas, Paulino Ribeiro; Milori, Débora Marcondes Bastos Pereira; Ferreira, Ednaldo José; França e Silva, Marina; Machado, Marcos Antonio; Bellete, Barbara Sayuri; da Silva, Maria Fatima das Graças Fernandes

    2012-03-15

    Huanglongbing (HLB) and citrus variegated chlorosis (CVC) are serious threats to citrus production and have caused considerable economic losses worldwide, especially in Brazil, which is one of the biggest citrus producers in the world. Neither disease has a cure nor an efficient means of control. They are also generally confused with each other in the field since they share similar initial symptoms, e.g., yellowing blotchy leaves. The most efficient tool for detecting these diseases is by polymerase chain reaction (PCR). However, PCR is expensive, is not high throughput, and is subject to cross reaction and contamination. In this report, a diagnostic method is proposed for detecting HLB and CVC diseases in leaves of sweet orange trees using attenuated total reflectance Fourier transform infrared spectroscopy and the induced classifier via partial least-squares regression. Four different leaf types were considered: healthy, CVC-symptomatic, HLB-symptomatic, and HLB-asymptomatic. The results show a success rate of 93.8% in correctly identifying these different leaf types. In order to understand which compounds are responsible for the spectral differences between the leaf types, samples of carbohydrates starch, sucrose, and glucose, flavonoids hesperidin and naringin, and coumarin umbelliferone were also analyzed. The concentration of these compounds in leaves may vary due to biotic stresses. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Near infrared reflectance spectroscopy for the fast identification of PVC-based films.

    Laasonen, M; Rantanen, J; Harmia-Pulkkinen, T; Michiels, E; Hiltunen, R; Räsänen, M; Vuorela, H

    2001-07-01

    Near infrared (NIR) reflectance spectroscopy was used to develop a non-destructive and rapid qualitative method for the analysis of plastic films used by the pharmaceutical industry for blistering. Three types of films were investigated: 250 microm PVC [poly(vinyl chloride)] films, 250 microm PVC films coated with 40 g m(-2) of PVDC [poly(vinylidene dichloride)] and 250 microm PVC films coated with 5 g m(-2) of TE (Thermoelast) and 90 g m(-2) of PVDC. Three analyses were carried out using different pre-treatment options and a PLS (partial least squares) algorithm. Each analysis was aimed at identifying one type of film and rejecting all types of false sample (different thickness, colour or layer). True and false samples from four plastics manufacturers were included in the calibration sets in order to obtain robust methods that were suitable regardless of the supplier. Specificity was demonstrated by testing validation sets against the methods. The tests showed 0% of type I (false negative identification) and 1% of type II errors (false positive identification) for the PVC method, 13 and 3%, respectively, for the PVC-PVDC method and no error for the PVC-TE-PVDC method. Type II errors, mostly due to the slight sensitivity of the methods to film thickness, are easily corrected by simple thickness measurements. This study demonstrates that NIR spectroscopy is an excellent tool for the identification of PVC-based films. The three methods can be used by the pharmaceutical industry or plastics manufacturers for the quality control of films used in blister packaging.

  2. Early detection of melanoma with the combined use of acoustic microscopy, infrared reflectance and Raman spectroscopy

    Karagiannis, Georgios T.; Grivas, Ioannis; Tsingotjidou, Anastasia; Apostolidis, Georgios K.; Grigoriadou, Ifigeneia; Dori, I.; Poulatsidou, Kyriaki-Nefeli; Doumas, Argyrios; Wesarg, Stefan; Georgoulias, Panagiotis

    2015-03-01

    Malignant melanoma is a form of skin cancer, with increasing incidence worldwide. Early diagnosis is crucial for the prognosis and treatment of the disease. The objective of this study is to develop a novel animal model of melanoma and apply a combination of the non-invasive imaging techniques acoustic microscopy, infrared (IR) and Raman spectroscopies, for the detection of developing tumors. Acoustic microscopy provides information about the 3D structure of the tumor, whereas, both spectroscopic modalities give qualitative insight of biochemical changes during melanoma development. In order to efficiently set up the final devices, propagation of ultrasonic and electromagnetic waves in normal skin and melanoma simulated structures was performed. Synthetic and grape-extracted melanin (simulated tumors), endermally injected, were scanned and compared to normal skin. For both cases acoustic microscopy with central operating frequencies of 110MHz and 175MHz were used, resulting to the tomographic imaging of the simulated tumor, while with the spectroscopic modalities IR and Raman differences among spectra of normal and melanin- injected sites were identified in skin depth. Subsequently, growth of actual tumors in an animal melanoma model, with the use of human malignant melanoma cells was achieved. Acoustic microscopy and IR and Raman spectroscopies were also applied. The development of tumors at different time points was displayed using acoustic microscopy. Moreover, the changes of the IR and Raman spectra were studied between the melanoma tumors and adjacent healthy skin. The most significant changes between healthy skin and the melanoma area were observed in the range of 900-1800cm-1 and 350-2000cm-1, respectively.

  3. Studies of the structure of insulin fibrils by Fourier transform infrared (FTIR) spectroscopy and electron microscopy.

    Nielsen, L; Frokjaer, S; Carpenter, J F; Brange, J

    2001-01-01

    Fibril formation (aggregation) of insulin was investigated in acid media by visual inspection, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. Insulin fibrillated faster in hydrochloric acid than in acetic acid at elevated temperatures, whereas the fibrillation tendencies were reversed at ambient temperatures. Electron micrographs showed that bovine insulin fibrils consisted of long fibers with a diameter of 5 to 10 nm and lengths of several microns. The fibrils appeared either as helical filaments (in hydrochloric acid) or arranged laterally in bundles (in acetic acid, NaCl). Freeze-thawing cycles broke the fibrils into shorter segments. FTIR spectroscopy showed that the native secondary structure of insulin was identical in hydrochloric acid and acetic acid, whereas the secondary structure of fibrils formed in hydrochloric acid was different from that formed in acetic acid. Fibrils of bovine insulin prepared by heating or agitating an acid solution of insulin showed an increased content of beta-sheet (mostly intermolecular) and a decrease in the intensity of the alpha-helix band. In hydrochloric acid, the frequencies of the beta-sheet bands depended on whether the fibrillation was induced by heating or agitation. This difference was not seen in acetic acid. Freeze-thawing cycles of the fibrils in hydrochloric acid caused an increase in the intensity of the band at 1635 cm(-1) concomitant with reduction of the band at 1622 cm(-1). The results showed that the structure of insulin fibrils is highly dependent on the composition of the acid media and on the treatment. Copyright 2001 Wiley-Liss Inc. and the American Pharmaceutical Association J Pharm Sci 90: 29-37, 2001

  4. Synergy Effect of Combining Fluorescence and Mid Infrared Fiber Spectroscopy for Kidney Tumor Diagnostics

    Andrey Bogomolov

    2017-11-01

    Full Text Available Matching pairs of tumor and non-tumor kidney tissue samples of four patients were investigated ex vivo using a combination of two methods, attenuated total reflection mid infrared spectroscopy and fluorescence spectroscopy, through respectively prepared and adjusted fiber probes. In order to increase the data information content, the measurements on tissue samples in both methods were performed in the same 31 preselected positions. Multivariate data analysis revealed a synergic effect of combining the two methods for the diagnostics of kidney tumor compared to individual techniques.

  5. Mössbauer and infrared spectroscopy as a diagnostic tool for the characterization of ferric tannates

    Jaén, Juan A.; Navarro, César

    2009-07-01

    Fourier transform infrared spectroscopy and Mössbauer spectroscopy are use for the characterization and qualitative analysis of hydrolysable and condensed tannates. The two classes of tannates may be differentiated from the characteristic IR pattern. Mössbauer proof that a mixture of mono- and bis-type ferric tannate complexes, and an iron(II)-tannin complex are obtained from the interaction of hydrolysable tannins (tannic acid and chestnut tannin) and condensed tannins (mimosa and quebracho) with a ferric nitrate solution. At pH 7, a partially hydrolyzed ferric tannate complex was also obtained.

  6. Moessbauer and infrared spectroscopy as a diagnostic tool for the characterization of ferric tannates

    Jaen, Juan A.; Navarro, Cesar

    2009-01-01

    Fourier transform infrared spectroscopy and Moessbauer spectroscopy are use for the characterization and qualitative analysis of hydrolysable and condensed tannates. The two classes of tannates may be differentiated from the characteristic IR pattern. Moessbauer proof that a mixture of mono- and bis-type ferric tannate complexes, and an iron(II)-tannin complex are obtained from the interaction of hydrolysable tannins (tannic acid and chestnut tannin) and condensed tannins (mimosa and quebracho) with a ferric nitrate solution. At pH 7, a partially hydrolyzed ferric tannate complex was also obtained.

  7. Moessbauer and infrared spectroscopy as a diagnostic tool for the characterization of ferric tannates

    Jaen, Juan A., E-mail: jjaen@ancon.up.ac.p [Universidad de Panama, Depto. de Quimica Fisica, CITEN, Lab. No. 105, Edificio de Laboratorios Cientificos-VIP (Panama); Navarro, Cesar [Universidad de Panama, Escuela de Quimica, Facultad de Ciencias Naturales, Exactas y Tecnologia (Panama)

    2009-07-15

    Fourier transform infrared spectroscopy and Moessbauer spectroscopy are use for the characterization and qualitative analysis of hydrolysable and condensed tannates. The two classes of tannates may be differentiated from the characteristic IR pattern. Moessbauer proof that a mixture of mono- and bis-type ferric tannate complexes, and an iron(II)-tannin complex are obtained from the interaction of hydrolysable tannins (tannic acid and chestnut tannin) and condensed tannins (mimosa and quebracho) with a ferric nitrate solution. At pH 7, a partially hydrolyzed ferric tannate complex was also obtained.

  8. Dynamical interactions between solute and solvent studied by nonlinear infrared spectroscopy

    Ohta, K.; Tominaga, K.

    2006-01-01

    Interactions between solute and solvent play an important role in chemical reaction dynamics and in many relaxation processes in condensed phases. Recently third-order nonlinear infrared (IR) spectroscopy has shown to be useful to investigate solute-solvent interaction and dynamics of the vibrational transition. These studies provide detailed information on the energy relaxation of the vibrationally excited state, and the time scale and the magnitude of the time correlation functions of the vibrational frequency fluctuations. In this work we have studied vibrational energy relaxation (VER) of solutions and molecular complexes by nonlinear IR spectroscopy, especially IR pump-probe method, to understand the microscopic interactions in liquids. (authors)

  9. Production of high temperature superconductors and characteristics by infrared and Raman spectroscopy

    Thomsen, C.

    1991-01-01

    This final report, which is partly kept short, is concerned with electron/phonon interaction and the determination of the band gap in high temperature superconductors (YBa 2 Cu 3 O 7 ). The final report is divided into four parts, which reflect the individual working groups: 1. Raman spectroscopy, 2. IR spectroscopy (reflection measurements, isotope effect, superconducting energy gap, behaviour of infrared active phonons), 3. Magnetic field measurements, and 4. Theory (initial calculation of the metal/isolator transfer in BaBiO 3 ). (MM) [de

  10. PREFACE: 6th Workshop on Infrared Spectroscopy and Microscopy with Accelerator-Based Sources (WIRMS11)

    Lupi, Stefano; Perucchi, Andrea

    2012-05-01

    This volume of Journal of Physics: Conference Series is dedicated to a subset of papers related to the work presented at the 6th edition of the international Workshop on Infrared Spectroscopy and Microscopy with Accelerator-Based Sources (WIRMS), held in Trieste, Italy, September 4-8 2011. Previous editions of the conference were held in Porquerolles (France), Lake Tahoe (USA), Rathen (Germany), Awaji (Japan), and Banff (Canada). This edition was organized and chaired by Stefano Lupi (Roma La Sapienza) and co-chaired by Andrea Perucchi (Elettra), with the support of the Italian Synchrotron Light Laboratory ELETTRA, which was honored to host the WIRMS workshop in its tenth anniversary. The 6th WIRMS edition addressed several different topics, ranging from biochemistry to strongly correlated materials, from geology to conservation science, and from forensics to the study of cometary dusts. Representatives from the infrared scientific programs at synchrotron light sources and free-electron-laser facilities. This edition was attended by 88 participants, including representatives from the infrared scientific programs at synchrotron light sources and free-electron-laser facilities, who enjoyed the stimulating scientific presentations, several detailed discussions, and the beautiful weather and scenery of the Trieste gulf. Participants came from 16 different nations and four continents, including many young scientists, six of which were supported by the organizers. There were 45 scientific talks divided in 11 sessions: Facilities, Microspectroscopy (I, II, III), Time-Resolved Spectroscopies, Extreme Conditions, Condensed Matter, Near-Field, Imaging, THz Techniques and High-Resolution Spectroscopy. 37 posters were also presented at two very lively evening poster sessions. We would like to use the opportunity of writing this preface to thank all the participants of the workshop for the very high level of their scientific contribution and for the very friendly atmosphere

  11. Identification of Chinese medicinal fungus Cordyceps sinensis by depth-profiling mid-infrared photoacoustic spectroscopy

    Du, Changwen; Zhou, Jianmin; Liu, Jianfeng

    2017-02-01

    With increased demand for Cordyceps sinensis it needs rapid methods to meet the challenge of identification raised in quality control. In this study Cordyceps sinensis from four typical natural habitats in China was characterized by depth-profiling Fourier transform infrared photoacoustic spectroscopy. Results demonstrated that Cordyceps sinensis samples resulted in typical photoacoustic spectral appearance, but heterogeneity was sensed in the whole sample; due to the heterogeneity Cordyceps sinensis was represented by spectra of four groups including head, body, tail and leaf under a moving mirror velocity of 0.30 cm s- 1. The spectra of the four groups were used as input of a probabilistic neural network (PNN) to identify the source of Cordyceps sinensis, and all the samples were correctly identified by the PNN model. Therefore, depth-profiling Fourier transform infrared photoacoustic spectroscopy provides novel and unique technique to identify Cordyceps sinensis, which shows great potential in quality control of Cordyceps sinensis.

  12. [Research progress and application prospect of near infrared spectroscopy in soil nutrition analysis].

    Ding, Hai-quan; Lu, Qi-peng

    2012-01-01

    "Digital agriculture" or "precision agriculture" is an important direction of modern agriculture technique. It is the combination of the modern information technique and traditional agriculture and becomes a hotspot field in international agriculture research in recent years. As a nondestructive, real-time, effective and exact analysis technique, near infrared spectroscopy, by which precision agriculture could be carried out, has vast prospect in agrology and gradually gained the recognition. The present paper intends to review the basic theory of near infrared spectroscopy and its applications in the field of agrology, pointing out that the direction of NIR in agrology should based on portable NIR spectrograph in order to acquire qualitative or quantitative information from real-time measuring in field. In addition, NIRS could be combined with space remote sensing to macroscopically control the way crop is growing and the nutrition crops need, to change the current state of our country's agriculture radically.

  13. Near-infrared spectroscopy for the determination of testosterone in thin-film composites.

    Fountain, William; Dumstorf, Karen; Lowell, Amanda E; Lodder, Robert A; Mumper, Russell J

    2003-09-19

    More rapid, reproducible, and cost-effective methods to control product quality in the pharmaceutical industry continue to be a major emphasis, particularly with the FDA through its recent process analytical technologies (PAT) initiative. Many different methods have been used to determine the stability and content uniformity of a drug in various dosage forms; however, most of these methods include the destruction of the sample. Therefore, the development of nondestructive methods that allow the analysis of each individual dosage form has become the basis of much research. A new assay for the nondestructive determination of testosterone content in mucoadhesive bi-layer thin-film composites (TFCs) using near-infrared spectroscopy (NIR) was developed. Five sets of the circular films (n=5) with theoretical testosterone content of 0, 1, 2, 3, and 4 mg per 3/8th in. diameter disks were scanned in the near-infrared region of 1100-2500 nm to determine testosterone content. The NIR results were directly compared with those obtained using a previously developed ultraviolet assay for testosterone at 240 nm. Principal component regression (PCR) was performed to calibrate the NIR assay. This correlation produced r2=0.99 with a standard error of estimate (SEE)=0.18 mg, and a standard error of performance (SEP)=0.18 on cross validation with an equal number of samples (F test passed at P=0.05). Though the UV assay showed a slightly better r2 value, the NIR assay was much quicker, easier, and nondestructive. Therefore, the NIR assay may have significant potential for use in the quality control of pharmaceutical films containing drugs.

  14. Cofactors involved in light-driven charge separation in photosystem I identified by subpicosecond infrared spectroscopy.

    Di Donato, Mariangela; Stahl, Andreas D; van Stokkum, Ivo H M; van Grondelle, Rienk; Groot, Marie-Louise

    2011-02-01

    Photosystem I is one of the key players in the conversion of solar energy into chemical energy. While the chlorophyll dimer P(700) has long been identified as the primary electron donor, the components involved in the primary charge separation process in PSI remain undetermined. Here, we have studied the charge separation dynamics in Photosystem I trimers from Synechococcus elongatus by femtosecond vis-pump/mid-infrared-probe spectroscopy upon excitation at 700, 710, and 715 nm. Because of the high specificity of the infrared region for the redox state and small differences in the molecular structure of pigments, we were able to clearly identify specific marker bands indicating chlorophyll (Chl) oxidation. Magnitudes of chlorophyll cation signals are observed to increase faster than the time resolution of the experiment (~0.2 ps) upon both excitation conditions: 700 nm and selective red excitation. Two models, involving either ultrafast charge separation or charge transfer character of the red pigments in PSI, are discussed to explain this observation. A further increase in the magnitudes of cation signals on a subpicosecond time scale (0.8-1 ps) indicates the formation of the primary radical pair. Evolution in the cation region with time constants of 7 and 40 ps reveals the formation of the secondary radical pair, involving a secondary electron donor. Modeling of the data allows us to extract the spectra of the two radical pairs, which have IR signatures consistent with A+A₀- and P₇₀₀+A₁-. We conclude that the cofactor chlorophyll A acts as the primary donor in PSI. The existence of an equilibrium between the two radical pairs we interpret as concerted hole/electron transfer between the pairs of electron donors and acceptors, until after 40 ps, relaxation leads to a full population of the P₇₀₀+A₁. radical pair.

  15. [Research on Rapid Discrimination of Edible Oil by ATR Infrared Spectroscopy].

    Ma, Xiao; Yuan, Hong-fu; Song, Chun-feng; Hu, Ai-qin; Li, Xiao-yu; Zhao, Zhong; Li, Xiu-qin; Guo Zhen; Zhu, Zhi-qiang

    2015-07-01

    A rapid discrimination method of edible oils, KL-BP model, was proposed by attenuated total reflectance infrared spectroscopy. The model extracts the characteristic of classification from source data by KL and reduces data dimension at the same time. Then the neural network model is constructed by the new data which as the input of the model. 84 edible oil samples which include sesame oil, corn oil, canola oil, blend oil, sunflower oil, peanut oil, olive oil, soybean oil and tea seed oil, were collected and their infrared spectra determined using an ATR FT-IR spectrometer. In order to compare the method performance, principal component analysis (PCA) direct-classification model, KL direct-classification model, PLS-DA model, PCA-BP model and KL-BP model are constructed in this paper. The results show that the recognition rates of PCA, PCA-BP, KL, PLS-DA and KL-BP are 59.1%, 68.2%, 77.3%, 77.3% and 90.9% for discriminating the 9 kinds of edible oils, respectively. KL extracts the eigenvector which make the distance between different class and distance of every class ratio is the largest. So the method can get much more classify information than PCA. BP neural network can effectively enhance the classification ability and accuracy. Taking full of the advantages of KL in extracting more category information in dimension reducing and the features of BP neural network in self-learning, adaptive, nonlinear, the KL-BP method has the best classification ability and recognition accuracy and great importance for rapidly recognizing edible oil in practice.

  16. Recent Advances in Laboratory Infrared Spectroscopy of Polycyclic Aromatic Hydrocarbons: PAHs in the Far Infrared

    Mattioda, Andrew L.; Ricca, Alessandra; Tucker, Jonathan; Boersma, Christiaan; Bauschlicher, Charles, Jr.; Allamandola, Louis J.

    2010-01-01

    Over 25 years of observations and laboratory work have shown that the mid-IR spectra of a majority of astronomical sources are dominated by emission features near 3.3, 6.2, 7.7, and 11.2 microns, which originate in free polycyclic aromatic hydrocarbon (PAH) molecules. PAHs dominate the mid-IR emission from many galactic and extragalactic objects. As such, this material tracks a wide variety of astronomical processes, making this spectrum a powerful probe of the cosmos Apart from bands in the mid-IR, PAHs have bands spanning the Far-IR (FIR) and emission from these FIR features should be present in astronomical sources showing the Mid-IR PAH bands. However, with one exception, the FIR spectral characteristics are known only for a few neutral small PAHs trapped in salt pellets or oils at room temperature, data which is not relevant to astrophysics. Furthermore, since most emitting PAHs responsible for the mid-IR astronomical features are ionized, the absence of any experimental or theoretical PAH ion FIR spectra will make it impossible to correctly interpret the FIR data from these objects. In view of the upcoming Herschel space telescope mission and SOFIA's FIR airborne instrumentation, which will pioneer the FIR region, it is now urgent to obtain PAH FIR spectra. This talk will present an overview recent advances in the laboratory spectroscopy of PAHs, Highlighting the FIR spectroscopy along with some quantum calculations.

  17. Cortical activation pattern during shoulder simple versus vibration exercises: a functional near infrared spectroscopy study

    Sung Ho Jang

    2017-01-01

    Full Text Available To date, the cortical effect of exercise has not been fully elucidated. Using the functional near infrared spectroscopy, we attempted to compare the cortical effect between shoulder vibration exercise and shoulder simple exercise. Eight healthy subjects were recruited for this study. Two different exercise tasks (shoulder vibration exercise using the flexible pole and shoulder simple exercise were performed using a block paradigm. We measured the values of oxygenated hemoglobin in the four regions of interest: the primary sensory-motor cortex (SM1 total, arm somatotopy, and leg and trunk somatotopy, the premotor cortex, the supplementary motor area, and the prefrontal cortex. During shoulder vibration exercise and shoulder simple exercise, cortical activation was observed in SM1 (total, arm somatotopy, and leg and trunk somatotopy, premotor cortex, supplementary motor area, and prefrontal cortex. Higher oxygenated hemoglobin values were also observed in the areas of arm somatotopy of SM1 compared with those of other regions of interest. However, no significant difference in the arm somatotopy of SM1 was observed between the two exercises. By contrast, in the leg and trunk somatotopy of SM1, shoulder vibration exercise led to a significantly higher oxy-hemoglobin value than shoulder simple exercise. These two exercises may result in cortical activation effects for the motor areas relevant to the shoulder exercise, especially in the arm somatotopy of SM1. However, shoulder vibration exercise has an additional cortical activation effect for the leg and trunk somatotopy of SM1.

  18. Infrared spectroscopy, nano-mechanical properties, and scratch resistance of esthetic orthodontic coated archwires.

    da Silva, Dayanne Lopes; Santos, Emanuel; Camargo, Sérgio de Souza; Ruellas, Antônio Carlos de Oliveira

    2015-09-01

    To evaluate the material composition, mechanical properties (hardness and elastic modulus), and scratch resistance of the coating of four commercialized esthetic orthodontic archwires. The coating composition of esthetic archwires was assessed by Fourier-transform infrared spectroscopy (FTIR). Coating hardness and elastic modulus were analyzed with instrumented nano-indentation tests. Scratch resistance of coatings was evaluated by scratch test. Coating micromorphologic characteristics after scratch tests were observed in a scanning electron microscope. Statistical differences were investigated using analysis of variance and Tukey post hoc test. The FTIR results indicate that all analyzed coatings were markedly characterized by the benzene peak at about 1500 cm(-1). The coating hardness and elastic modulus average values ranged from 0.17 to 0.23 GPa and from 5.0 to 7.6 GPa, respectively. Scratch test showed a high coating elasticity after load removal with elastic recoveries >60%, but different failure features could be observed along the scratches. The coatings of esthetic archwires evaluated are probably a composite of polyester and polytetrafluoroethylene. Delamination, crack propagation, and debris generation could be observed along the coating scratches and could influence its durability in the oral environment.

  19. Experimental study by infrared spectroscopy of irradiation effects in silicates and ices, applied to astrophysics

    Rocard, F.

    1986-05-01

    This thesis presents the study of the radiation effects (erosion and synthesis) with ions of low energy (a few KeV/u) in silicates and ices. The erosion of the H 2 O ice is analysed by infrared spectroscopy versus different parameters: ion beam flux, mass and energy of the ions, and the thickness of the samples. The interpretation is that the erosion of the ice comes mainly from the dissociation, along the ion range, of the H 2 O molecules. A study of the synthesis in SiO 2 and H 2 O by carbon, nitrogen and hydrogen implantation leads to the characterization of the synthesized molecules and the determination of the yields. The irradiation of ices mixtures (H 2 O, CO 2 and NH 3 ) leads to the synthesis of a great variety of molecules which are identified. The experimental results are extrapolated to different astrophysical situations in the solar cavity (Moon, satellites of giant planets, comets) and in the interstellar medium (molecular clouds) [fr

  20. Application of near-infrared spectroscopy for the rapid quality assessment of Radix Paeoniae Rubra

    Zhan, Hao; Fang, Jing; Tang, Liying; Yang, Hongjun; Li, Hua; Wang, Zhuju; Yang, Bin; Wu, Hongwei; Fu, Meihong

    2017-08-01

    Near-infrared (NIR) spectroscopy with multivariate analysis was used to quantify gallic acid, catechin, albiflorin, and paeoniflorin in Radix Paeoniae Rubra, and the feasibility to classify the samples originating from different areas was investigated. A new high-performance liquid chromatography method was developed and validated to analyze gallic acid, catechin, albiflorin, and paeoniflorin in Radix Paeoniae Rubra as the reference. Partial least squares (PLS), principal component regression (PCR), and stepwise multivariate linear regression (SMLR) were performed to calibrate the regression model. Different data pretreatments such as derivatives (1st and 2nd), multiplicative scatter correction, standard normal variate, Savitzky-Golay filter, and Norris derivative filter were applied to remove the systematic errors. The performance of the model was evaluated according to the root mean square of calibration (RMSEC), root mean square error of prediction (RMSEP), root mean square error of cross-validation (RMSECV), and correlation coefficient (r). The results show that compared to PCR and SMLR, PLS had a lower RMSEC, RMSECV, and RMSEP and higher r for all the four analytes. PLS coupled with proper pretreatments showed good performance in both the fitting and predicting results. Furthermore, the original areas of Radix Paeoniae Rubra samples were partly distinguished by principal component analysis. This study shows that NIR with PLS is a reliable, inexpensive, and rapid tool for the quality assessment of Radix Paeoniae Rubra.

  1. Quality evaluation of regional forage resources by means of near infrared reflectance spectroscopy

    Bruno Ronchi

    2010-01-01

    Full Text Available Quality parameters of grassland and pasture samples collected during a three-year period at two environmentally andgeographically different areas were analysed by Near Infrared Reflectance Spectroscopy (NIRS. Chemical analysis forcrude protein (CP, crude fibre (CF, neutral detergent fibre (NDF, acid detergent fibre (ADF, acid detergent lignin (ADLand crude ash (ASH carried out on two-thirds of the samples were used in calibration processes. The remaining onethirdof the data was used to validate the best calibrations obtained. Samples selection is discussed. Different math pretreatments(derivative, gap, primary smoothing and secondary smoothing, light scattering correction methods and calibrationalgorithms were tested to achieve the better predictive performances. We obtained the best results using differentregression algorithms to correlate spectral information to chemical data. For CP (R2 = 0.94, SEP=1.3, NDF (R2 =0.95, SEP = 2.14 and ADF (R2 = 0.92, SEP=2.06 Multiple Linear Regression (MLR models fit chemical data better thanMean Partial Least Square (MPLS regression. A molecular basis explanation of wavelengths selected was carried out.MPLS models worked well for CF (R2 = 0.93, SEP=1.57, and ASH (R2 = 0.95, SEP=1.17 while poor calibrations wereobtained for ADL using both algorithms. To confirm the reliability of the models developed, uncertainties of predictionswere compared with findings on nutritional variations and animal performances.

  2. Which experimental model can sensitively indicate brain death by functional near-infrared spectroscopy?

    Pan, Boan; Liu, Weichao; Fang, Xiang; Huang, Xiaobo; Li, Ting

    2018-02-01

    Brain death is defined as permanent loss of the brain functions. The evaluation of it has many meanings, such as the relief of organ transplantation stress and family burden. However, it is hard to be judged precisely. The standard clinical tests are expensive, time consuming and even dangerous, and some auxiliary methods have limitations. Functional near infrared spectroscopy (fNIRS), monitoring cerebral hemodynamic responses noninvasively, evaluate brain death in some papers published, but there is no discussion about which experimental mode can monitor brain death patient more sensitively. Here, we attempt to use our fNIRS to evaluate brain death and find which experimental mode is effective. In order to discuss the problem, we detected eleven brain death patients and twenty normal patients under natural state. They were provided different fraction of inspiration O2 (FIO2) in different phase. We found that the ratio of Δ[HbO2] (the concentration changes in oxyhemoglobin) to Δ[Hb] (the concentration changes in deoxyhemoglobin) in brain death patients is significantly higher than normal patients in FIO2 experiment. Combined with the data analysis result, restore oxygen change process and low-high-low paradigm is more sensitively.

  3. Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial.

    Aasted, Christopher M; Yücel, Meryem A; Cooper, Robert J; Dubb, Jay; Tsuzuki, Daisuke; Becerra, Lino; Petkov, Mike P; Borsook, David; Dan, Ippeita; Boas, David A

    2015-04-01

    Functional near-infrared spectroscopy (fNIRS) is an optical imaging method that is used to noninvasively measure cerebral hemoglobin concentration changes induced by brain activation. Using structural guidance in fNIRS research enhances interpretation of results and facilitates making comparisons between studies. AtlasViewer is an open-source software package we have developed that incorporates multiple spatial registration tools to enable structural guidance in the interpretation of fNIRS studies. We introduce the reader to the layout of the AtlasViewer graphical user interface, the folder structure, and user files required in the creation of fNIRS probes containing sources and detectors registered to desired locations on the head, evaluating probe fabrication error and intersubject probe placement variability, and different procedures for estimating measurement sensitivity to different brain regions as well as image reconstruction performance. Further, we detail how AtlasViewer provides a generic head atlas for guiding interpretation of fNIRS results, but also permits users to provide subject-specific head anatomies to interpret their results. We anticipate that AtlasViewer will be a valuable tool in improving the anatomical interpretation of fNIRS studies.

  4. Prefrontal Cortex Hemodynamics and Age: A Pilot Study Using Functional Near Infrared Spectroscopy in Children

    Afrouz A Anderson

    2014-12-01

    Full Text Available Cerebral hemodynamics reflect cognitive processes and underlying physiological processes, both of which are captured by functional near infrared spectroscopy (fNIRS. Here, we introduce a novel parameter of Oxygenation Variability directly obtained from fNIRS data —the OV Index—and we demonstrate its use in children. fNIRS data were collected from 17 children (ages 4-8 years, while they performed a standard Go/No-Go task. Data were analyzed using two frequency bands—the first attributed to cerebral autoregulation (CA (<0.1 Hz and the second to respiration (0.2-0.3 Hz. Results indicate differences in variability of oscillations of oxygen saturation (SO2 between the two different bands. These pilot data reveal a dynamic relationship between chronological age and OV index in CA associated frequency of <0.1 Hz. Specifically, OV index increased with age between 4 to 6 years. In addition, there was much higher variability in frequencies associated with CA than for respiration across subjects. These findings provide preliminary evidence for the utility of the OV index and are the first to describe the relationship between cerebral autoregulation and age in children using fNIRS methodology.

  5. Cortical activation pattern during shoulder simple versus vibration exercises: a functional near infrared spectroscopy study.

    Jang, Sung Ho; Yeo, Sang Seok; Lee, Seung Hyun; Jin, Sang Hyun; Lee, Mi Young

    2017-08-01

    To date, the cortical effect of exercise has not been fully elucidated. Using the functional near infrared spectroscopy, we attempted to compare the cortical effect between shoulder vibration exercise and shoulder simple exercise. Eight healthy subjects were recruited for this study. Two different exercise tasks (shoulder vibration exercise using the flexible pole and shoulder simple exercise) were performed using a block paradigm. We measured the values of oxygenated hemoglobin in the four regions of interest: the primary sensory-motor cortex (SM1 total, arm somatotopy, and leg and trunk somatotopy), the premotor cortex, the supplementary motor area, and the prefrontal cortex. During shoulder vibration exercise and shoulder simple exercise, cortical activation was observed in SM1 (total, arm somatotopy, and leg and trunk somatotopy), premotor cortex, supplementary motor area, and prefrontal cortex. Higher oxygenated hemoglobin values were also observed in the areas of arm somatotopy of SM1 compared with those of other regions of interest. However, no significant difference in the arm somatotopy of SM1 was observed between the two exercises. By contrast, in the leg and trunk somatotopy of SM1, shoulder vibration exercise led to a significantly higher oxy-hemoglobin value than shoulder simple exercise. These two exercises may result in cortical activation effects for the motor areas relevant to the shoulder exercise, especially in the arm somatotopy of SM1. However, shoulder vibration exercise has an additional cortical activation effect for the leg and trunk somatotopy of SM1.

  6. Prefrontal cerebral blood volume patterns while playing video games--a near-infrared spectroscopy study.

    Nagamitsu, Shinichiro; Nagano, Miki; Yamashita, Yushiro; Takashima, Sachio; Matsuishi, Toyojiro

    2006-06-01

    Video game playing is an attractive form of entertainment among school-age children. Although this activity reportedly has many adverse effects on child development, these effects remain controversial. To investigate the effect of video game playing on regional cerebral blood volume, we measured cerebral hemoglobin concentrations using near-infrared spectroscopy in 12 normal volunteers consisting of six children and six adults. A Hitachi Optical Topography system was used to measure hemoglobin changes. For all subjects, the video game Donkey Kong was played on a Game Boy device. After spectroscopic probes were positioned on the scalp near the target brain regions, the participants were asked to play the game for nine periods of 15s each, with 15-s rest intervals between these task periods. Significant increases in bilateral prefrontal total-hemoglobin concentrations were observed in four of the adults during video game playing. On the other hand, significant decreases in bilateral prefrontal total-hemoglobin concentrations were seen in two of the children. A significant positive correlation between mean oxy-hemoglobin changes in the prefrontal region and those in the bilateral motor cortex area was seen in adults. Playing video games gave rise to dynamic changes in cerebral blood volume in both age groups, while the difference in the prefrontal oxygenation patterns suggested an age-dependent utilization of different neural circuits during video game tasks.

  7. Characterization of herbal powder blends homogeneity using near-infrared spectroscopy

    Wenlong Li

    2014-11-01

    Full Text Available Homogeneity of powder blend is essential to obtain uniform contents for the tablets and capsules. Near-infrared (NIR spectroscopy with fiber-optic probe was used as an on-line technique for monitoring the homogeneity of pharmaceutical blend during the blending process instead of the traditional techniques, such as high performance liquid chromatograph (HPLC method. In this paper NIRS with a SabIR diffuse reflectance fiber-optic probe was used to monitor the blending process of coptis powder and lactose (excipient with different contents, and further qualitative methods, like similarity, moving block of standard deviation and mean square were used for calculation purposes with the collected spectra after the pretreatment of multiplicative signal correction (MSC and second derivative. Correlation spectrum was used for the wavelength selection. Four different coptis were blended with lactose separately to validate the proposed method, and the blending process of "liu wei di huang" pill was also simulated in bottles to verify this method on multiple herbal blends. The overall results suggest that NIRS is a simple, effective and noninvasive technique can be successfully applied to the determination of homogeneity in the herbal blend.

  8. Utilizing functional near-infrared spectroscopy for prediction of cognitive workload in noisy work environments.

    Gabbard, Ryan; Fendley, Mary; Dar, Irfaan A; Warren, Rik; Kashou, Nasser H

    2017-10-01

    Occupational noise frequently occurs in the work environment in military intelligence, surveillance, and reconnaissance operations. This impacts cognitive performance by acting as a stressor, potentially interfering with the analysts' decision-making process. We investigated the effects of different noise stimuli on analysts' performance and workload in anomaly detection by simulating a noisy work environment. We utilized functional near-infrared spectroscopy (fNIRS) to quantify oxy-hemoglobin (HbO) and deoxy-hemoglobin concentration changes in the prefrontal cortex (PFC), as well as behavioral measures, which include eye tracking, reaction time, and accuracy rate. We hypothesized that noisy environments would have a negative effect on the participant in terms of anomaly detection performance due to the increase in workload, which would be reflected by an increase in PFC activity. We found that HbO for some of the channels analyzed were significantly different across noise types ([Formula: see text]). Our results also indicated that HbO activation for short-intermittent noise stimuli was greater in the PFC compared to long-intermittent noises. These approaches using fNIRS in conjunction with an understanding of the impact on human analysts in anomaly detection could potentially lead to better performance by optimizing work environments.

  9. Assessing soil carbon lability by near infrared spectroscopy and NaOCL oxidation

    Thomsen, Ingrid Kaag; Bruun, Sander; Jensen, Lars Stoumann

    2009-01-01

    The feasibility of near infrared (NIR) spectroscopy for quantifying labile organic matter (OM) in arable soils and for predicting soil refractory OM fractions was tested on 37 soils varying in texture and soil carbon (C) content. Three sets of arable soils (0-20 cm depth) were sampled from 1) long......-term field experiments with different OM inputs, 2) individual sites with inherent with-in field gradients in soil texture and/or C content, and 3) from a range of different sites covering variations in management and geological origin. The labile OM fraction was defined by the CO2 evolved from the soils...... incubated for 34 weeks while refractory OM was obtained by NaOCl oxidation. The labile fraction of the soil C accounted for 2-12% of the total soil C content. No systematic relationship between labile C content and total soil C or clay was found, but NIR spectra could be correlated well with the labile C...

  10. Three Redox States of Trypanosoma brucei Alternative Oxidase Identified by Infrared Spectroscopy and Electrochemistry

    Maréchal, Amandine; Kido, Yasutoshi; Kita, Kiyoshi; Moore, Anthony L.; Rich, Peter R.

    2009-01-01

    Electrochemistry coupled with Fourier transform infrared (IR) spectroscopy was used to investigate the redox properties of recombinant alternative ubiquinol oxidase from Trypanosoma brucei, the organism responsible for African sleeping sickness. Stepwise reduction of the fully oxidized resting state of recombinant alternative ubiquinol oxidase revealed two distinct IR redox difference spectra. The first of these, signal 1, titrates in the reductive direction as an n = 2 Nernstian component with an apparent midpoint potential of 80 mV at pH 7.0. However, reoxidation of signal 1 in the same potential range under anaerobic conditions did not occur and only began with potentials in excess of 500 mV. Reoxidation by introduction of oxygen was also unsuccessful. Signal 1 contained clear features that can be assigned to protonation of at least one carboxylate group, further perturbations of carboxylic and histidine residues, bound ubiquinone, and a negative band at 1554 cm−1 that might arise from a radical in the fully oxidized protein. A second distinct IR redox difference spectrum, signal 2, appeared more slowly once signal 1 had been reduced. This component could be reoxidized with potentials above 100 mV. In addition, when both signals 1 and 2 were reduced, introduction of oxygen caused rapid oxidation of both components. These data are interpreted in terms of the possible active site structure and mechanism of oxygen reduction to water. PMID:19767647

  11. Near Infrared Spectroscopy for Improving Breast Core Needle Biopsy

    Bydlon, Torre M

    2008-01-01

    .... Tissue phantom studies revealed that data can be accurately extracted with the current imaging system and multi-channel fiber optic probe. To date partial mastectomy margins have been imaged on 43 patients and show statistically significant differences between negative and close/positive surgical margins.

  12. Near-infrared spectroscopy can reveal increases in brain activity related to animal-assisted therapy

    Morita, Yuka; Ebara, Fumio; Morita, Yoshimitsu; Horikawa, Etsuo

    2017-01-01

    [Purpose] Previous studies have indicated that animal-assisted therapy can promote recovery of psychological, social, and physiological function in mental disorders. This study was designed as a pilot evaluation of the use of near-infrared spectroscopy to objectively identify changes in brain activity that could mediate the effect of animal-assisted therapy. [Subjects and Methods] The participants were 20 healthy students (10 males and 10 females; age 19?21 years) of the Faculty of Agricultur...

  13. Multivariate Calibration and Model Integrity for Wood Chemistry Using Fourier Transform Infrared Spectroscopy

    Zhou, Chengfeng; Jiang, Wei; Cheng, Qingzheng; Via, Brian K.

    2015-01-01

    This research addressed a rapid method to monitor hardwood chemical composition by applying Fourier transform infrared (FT-IR) spectroscopy, with particular interest in model performance for interpretation and prediction. Partial least squares (PLS) and principal components regression (PCR) were chosen as the primary models for comparison. Standard laboratory chemistry methods were employed on a mixed genus/species hardwood sample set to collect the original data. PLS was found to provide bet...

  14. Underwater near-infrared spectroscopy can measure training adaptations in adolescent swimmers

    Ben Jones; Dave Parry; Chris E. Cooper

    2018-01-01

    The development of an underwater near-infrared spectroscopy (uNIRS) device has enabled previously unattainable measurements of peripheral muscle hemodynamics and oxygenation to be taken within the natural aquatic environment. The purposes of this study were (i) to trial the use of uNIRS, in a real world training study, and (ii) to monitor the effects of a swim training program upon muscle oxygenation status in short distance swimming. A total of 14 junior club level swimmers completed a repea...

  15. Study on Fracture Healing with Small-Splint-Fixation Therapy by Near-Infrared Raman Spectroscopy

    Hao Huang; Shangyuan Feng; Weiwei Chen; Yun Yu; Duo Lin; Rong Chen

    2013-01-01

    In this study, near-infrared (NIR) Raman spectroscopy was explored to assess the incorporation of calcium hydroxyapatite (CHA ~960 cm−1) and other biochemical substances during the recovery of rabbits with complete radial fractures treated with or without small splints. 24 rabbits were randomy divided into two groups, one treated with small-splint-fixation therapy and the other without any intervention. The rabbits were sacrificed at 7, 15, 23, and 30 days after surgery, and the surface layer...

  16. Orthostatic leg blood volume changes assessed by near-infrared spectroscopy

    Truijen, J; Kim, Y S; Krediet, C T P

    2012-01-01

    posture, volume accumulation in small blood vessels contributes significantly to the total fluid volume accumulated in the legs. Considering that near-infrared spectroscopy (NIRS) tracks postural blood volume changes within the small blood vessels of the lower leg, we evaluated the NIRS-determined changes......-linear accumulation of blood volume in the small vessels of the leg, with an initial fast phase followed by a more gradual increase at least partly contributing to the relocation of fluid during orthostatic stress....

  17. Quantitative near-infrared spectroscopy on patients with peripheral vascular disease

    Franceschini, MA; Fantini, S; Palumbo, R; Pasqualini, L; Vaudo, G; Franceschini, E; Gratton, E; Palumbo, B; Innocente, S; Mannarino, E

    1997-01-01

    We have used near-infrared spectroscopy to measure the hemoglobin saturation at rest and during exercise on patients affected by peripheral vascular disease (PVD). The instrument used in our study is a frequency-domain tissue oximeter which employs intensity modulated (110 MHz) laser diodes. We examined 9 subjects, 3 of which were controls and 6 were patients affected by stage II PVD. The optical probe was located on the calf muscle of the subjects. The measurement protocol consisted of: (1) ...

  18. Infrared spectroscopy for studying structure and aging effects in rhamnolipid biosurfactants

    Kiefer, Johannes; Radzuan, Mohd Nazren; Winterburn, James

    2017-01-01

    Biosurfactants are produced by microorganisms and represent amphiphilic compounds with polar and non-polar moieties; hence they can be used to stabilize emulsions, e.g. in the cosmetic and food sectors. Their structure and its changes when exposed to light and elevated temperature are yet to be fully understood. In this study, we demonstrate that attenuated total reflection infrared (ATR-IR) spectroscopy is a useful tool for the analysis of biosurfactants, using rhamnolipids produced by ferme...

  19. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer.

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, Arunachalam; Huang, Zhiwei

    2013-06-01

    Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023%; PC5, 0.00095%; PC8, 0.00022%, (p<0.05)], representing the primary tissue Raman features (e.g., 854, 937, 1095, 1253, 1311, 1445, and 1654 cm(-1)). Confocal Raman spectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.

  20. Near infrared spectroscopy of food systems using a supercontinuum laser

    Ringsted, Tine

    )) can be obtained, (c) that the supercontinuum light is fiber compatible i.e. it can couple directly to fibers, and (d) that the fast repetition rate of the supercontinuum pulses makes it possible to do very fast measurements. For these reasons, the supercontinuum light stands out from the commonly...... wavelength separation method called dispersive Fourier transformation. Different wavelengths travel at different speed through a dispersive element, which in this case is a 10.6 km long silica fiber, and the polychromatic light pulses will therefore be separated by wavelength. The signal...... will then be transformed from the time-domain to a frequency domain. The spectrometer has no moving parts, which makes it insensitive to mechanical vibrations. A spectrometer with a wavelength separating fiber is therefore an obvious candidate for industrial process measurements. This thesis presents preliminary results...

  1. Attenuated Total Reflection Mid-Infrared (ATR-MIR) Spectroscopy and Chemometrics for the Identification and Classification of Commercial Tannins.

    Ricci, Arianna; Parpinello, Giuseppina P; Olejar, Kenneth J; Kilmartin, Paul A; Versari, Andrea

    2015-11-01

    Attenuated total reflection Fourier transform infrared (FT-IR) spectroscopy was used to characterize 40 commercial tannins, including condensed and hydrolyzable chemical classes, provided as powder extracts from suppliers. Spectral data were processed to detect typical molecular vibrations of tannins bearing different chemical groups and of varying botanical origin (univariate qualitative analysis). The mid-infrared region between 4000 and 520 cm(-1) was analyzed, with a particular emphasis on the vibrational modes in the fingerprint region (1800-520 cm(-1)), which provide detailed information about skeletal structures and specific substituents. The region 1800-1500 cm(-1) contained signals due to hydrolyzable structures, while bands due to condensed tannins appeared at 1300-900 cm(-1) and exhibited specific hydroxylation patterns useful to elucidate the structure of the flavonoid monomeric units. The spectra were investigated further using principal component analysis for discriminative purposes, to enhance the ability of infrared spectroscopy in the classification and quality control of commercial dried extracts and to enhance their industrial exploitation.

  2. Noncontact blood species identification method based on spatially resolved near-infrared transmission spectroscopy

    Zhang, Linna; Sun, Meixiu; Wang, Zhennan; Li, Hongxiao; Li, Yingxin; Li, Gang; Lin, Ling

    2017-09-01

    The inspection and identification of whole blood are crucially significant for import-export ports and inspection and quarantine departments. In our previous research, we proved Near-Infrared diffuse transmitted spectroscopy method was potential for noninvasively identifying three blood species, including macaque, human and mouse, with samples measured in the cuvettes. However, in open sampling cases, inspectors may be endangered by virulence factors in blood samples. In this paper, we explored the noncontact measurement for classification, with blood samples measured in the vacuum blood vessels. Spatially resolved near-infrared spectroscopy was used to improve the prediction accuracy. Results showed that the prediction accuracy of the model built with nine detection points was more than 90% in identification between all five species, including chicken, goat, macaque, pig and rat, far better than the performance of the model built with single-point spectra. The results fully supported the idea that spatially resolved near-infrared spectroscopy method can improve the prediction ability, and demonstrated the feasibility of this method for noncontact blood species identification in practical applications.

  3. BACKGROUND AND STATE OF THEE ART OF NEAR INFRARED SPECTROSCOPY IN THE FOREST SECTOR BASE

    Graciela Inês Bolzon de Muñiz

    2012-12-01

    Full Text Available http://dx.doi.org/10.5902/198050987567The knowledge of wood properties is the fundamental importance for the indication of the potential and use of this material. In the search for new alternatives for a fast, simple and reliable characterization, there are the non-destructive evaluations of wood. The near infrared spectroscopy (NIRS has been used as a non-destructive method that allows qualitative and quantitative information of the constituents of biomass through the interaction of electromagnetic waves with near-infrared next to the sample. This work aims to provide a review of the technique of near infrared spectroscopy and its application in forestry. The technique is used in virtually all areas due to the level of development that this technology has reached in recent years. NIR spectroscopy has proved a quick and efficient replacement of several tests that determine the quality of the wood. This is a literature review and state of the art on the theme.

  4. Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy.

    Monico, Letizia; Rosi, Francesca; Miliani, Costanza; Daveri, Alessia; Brunetti, Brunetto G

    2013-12-01

    In this work a reflection mid-infrared spectroscopy study of twelve metal-oxalate complexes, of interest in art conservation science as alteration compounds, was performed. Spectra of the reference materials highlighted the presence of derivative-like and/or inverted features for the fundamental vibrational modes as result of the main contribution from the surface component of the reflected light. In order to provide insights in the interpretation of theses spectral distortions, reflection spectra were compared with conventional transmission ones. The Kramers-Kronig (KK) algorithm, employed to correct for the surface reflection distortions, worked properly only for the derivative-like bands. Therefore, to pay attention to the use of this algorithm when interpreting the reflection spectra is recommended. The outcome of this investigation was exploited to discriminate among different oxalates on thirteen polychrome artworks analyzed in situ by reflection mid-infrared spectroscopy. The visualization of the νs(CO) modes (1400-1200 cm(-1)) and low wavenumber bands (below 900 cm(-1)) in the raw reflection profiles allowed Ca, Cu and Zn oxalates to be identified. Further information about the speciation of different hydration forms of calcium oxalates were obtained by using the KK transform. The work proves reflection mid-infrared spectroscopy to be a reliable and sensitive spectro-analytical method for identifying and mapping different metal-oxalate alteration compounds on the surface of artworks, thus providing conservation scientists with a non-invasive tool to obtain information on the state of conservation and causes of alteration of artworks. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. [A method of temperature measurement for hot forging with surface oxide based on infrared spectroscopy].

    Zhang, Yu-cun; Qi, Yan-de; Fu, Xian-bin

    2012-05-01

    High temperature large forging is covered with a thick oxide during forging. It leads to a big measurement data error. In this paper, a method of measuring temperature based on infrared spectroscopy is presented. It can effectively eliminate the influence of surface oxide on the measurement of temperature. The method can measure the surface temperature and emissivity of the oxide directly using the infrared spectrum. The infrared spectrum is radiated from surface oxide of forging. Then it can derive the real temperature of hot forging covered with the oxide using the heat exchange equation. In order to greatly restrain interference spectroscopy through included in the received infrared radiation spectrum, three interference filter system was proposed, and a group of optimal gap parameter values using spectral simulation were obtained. The precision of temperature measurement was improved. The experimental results show that the method can accurately measure the surface temperature of high temperature forging covered with oxide. It meets the requirements of measurement accuracy, and the temperature measurement method is feasible according to the experiment result.

  6. Towards a low-cost mobile subcutaneous vein detection solution using near-infrared spectroscopy.

    Juric, Simon; Flis, Vojko; Debevc, Matjaz; Holzinger, Andreas; Zalik, Borut

    2014-01-01

    Excessive venipunctures are both time- and resource-consuming events, which cause anxiety, pain, and distress in patients, or can lead to severe harmful injuries. We propose a low-cost mobile health solution for subcutaneous vein detection using near-infrared spectroscopy, along with an assessment of the current state of the art in this field. The first objective of this study was to get a deeper overview of the research topic, through the initial team discussions and a detailed literature review (using both academic and grey literature). The second objective, that is, identifying the commercial systems employing near-infrared spectroscopy, was conducted using the PubMed database. The goal of the third objective was to identify and evaluate (using the IEEE Xplore database) the research efforts in the field of low-cost near-infrared imaging in general, as a basis for the conceptual model of the upcoming prototype. Although the reviewed commercial devices have demonstrated usefulness and value for peripheral veins visualization, other evaluated clinical outcomes are less conclusive. Previous studies regarding low-cost near-infrared systems demonstrated the general feasibility of developing cost-effective vein detection systems; however, their limitations are restricting their applicability to clinical practice. Finally, based on the current findings, we outline the future research direction.

  7. Towards a Low-Cost Mobile Subcutaneous Vein Detection Solution Using Near-Infrared Spectroscopy

    Simon Juric

    2014-01-01

    Full Text Available Excessive venipunctures are both time- and resource-consuming events, which cause anxiety, pain, and distress in patients, or can lead to severe harmful injuries. We propose a low-cost mobile health solution for subcutaneous vein detection using near-infrared spectroscopy, along with an assessment of the current state of the art in this field. The first objective of this study was to get a deeper overview of the research topic, through the initial team discussions and a detailed literature review (using both academic and grey literature. The second objective, that is, identifying the commercial systems employing near-infrared spectroscopy, was conducted using the PubMed database. The goal of the third objective was to identify and evaluate (using the IEEE Xplore database the research efforts in the field of low-cost near-infrared imaging in general, as a basis for the conceptual model of the upcoming prototype. Although the reviewed commercial devices have demonstrated usefulness and value for peripheral veins visualization, other evaluated clinical outcomes are less conclusive. Previous studies regarding low-cost near-infrared systems demonstrated the general feasibility of developing cost-effective vein detection systems; however, their limitations are restricting their applicability to clinical practice. Finally, based on the current findings, we outline the future research direction.

  8. Infrared multiple photon dissociation spectroscopy of ciprofloxacin: Investigation of the protonation site

    Bodo, E. [Dip. Di Chimica, Universita di Roma ' La Sapienza' , p.le A. Moro 5, 00185 Rome (Italy); Ciavardini, A. [Dip. di Chimica e Tecnologie del Farmaco, Universita di Roma ' ' La Sapienza' ' , p.le A. Moro 5, 00185 Rome (Italy); Dip. di Scienze e Tecnologie Chimiche, Universita di Roma ' ' Tor Vergata' ' , via della Ricerca Scientifica, 00133 Rome (Italy); Giardini, A.; Paladini, A. [CNR - IMIP, Tito Scalo (PZ) (Italy); Piccirillo, S., E-mail: picciril@uniroma2.it [Dip. di Scienze e Tecnologie Chimiche, Universita di Roma ' ' Tor Vergata' ' , via della Ricerca Scientifica, 00133 Rome (Italy); Rondino, F. [ENEA, C.R. Casaccia, (UTT-MAT), Via Anguillarese, 301, 00123 Rome (Italy); Scuderi, D. [Laboratoire de Chimie Physique, Universite Paris Sud 11, UMR 8000, Orsay (France)

    2012-04-04

    Highlights: Black-Right-Pointing-Pointer IRMPD spectroscopy of protonated ciprofloxacin electrosprayed from methanol solution. Black-Right-Pointing-Pointer Quantum chemical calculations to identify the possible isomers differing in the protonation site. Black-Right-Pointing-Pointer Bands are assigned to the isomer protonated. Black-Right-Pointing-Pointer Bands are assigned to the isomer protonated at the piperazinyl amino group. - Abstract: The vibrational spectrum of isolated protonated ciprofloxacin was recorded in the range 1100-2000 cm{sup -1} by means of infrared multiple photon dissociation (IRMPD) spectroscopy. The spectrum was obtained by electrospraying a methanol solution of ciprofloxacin in a Paul ion trap, coupled to the tunable IR radiation of a free electron laser. This spectroscopic study has been complemented by quantum chemical calculations at the DFT and MP2 levels of theory to identify the possible structures present under our experimental conditions. Several low-energy isomers with protonation occurring at the piperazinyl amino group and at the carbonyl group are predicted in the energy range 0-84 kJ mol{sup -1}. A good agreement between the measured IRMPD spectrum and the calculated absorption spectrum is observed for the isomer protonated at the piperazinyl amino group. This isomer is calculated at MP2 level of theory to lie about 76 kJ/mol above the most stable isomer which is protonated at the quinone carbonyl group. This discrepancy can be rationalized by assuming that the protonation at the piperazinyl amino group, typical of the zwitterionic form that is found in protic solvents, is retained in the ESI process. The vibrational bands observed in the IRMPD spectrum are assigned to normal modes of the isomer protonated at the piperazinyl amino group, with deviations of less than 20 cm{sup -1} between measured and calculated frequencies.

  9. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics.

    Davis, Caitlin M; Reddish, Michael J; Dyer, R Brian

    2017-05-05

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of jump induced difference spectrum from 50ns to 0.5ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effective rumen degradation of dry matter, crude protein and neutral detergent fibre in forage determined by near infrared reflectance spectroscopy

    Ohlsson, C; Houmøller, L P; Weisbjerg, Martin Riis

    2007-01-01

    The objective of the present study was to examine if near infrared reflectance spectroscopy (NIRS) could be used to predict degradation parameters and effective degradation from scans of original forage samples. Degradability of dry matter (DM), crude protein (CP) and neutral detergent fibre (NDF......) of 61 samples of perennial ryegrass (Lolium perenne L.) and orchardgrass (Dactylis glomerata L.) was tested by using the in situ technique. The grass samples were harvested at three different stages, early vegetative growth, early reproductive growth and late reproductive growth. Degradability...

  11. Algorithm for removing scalp signals from functional near-infrared spectroscopy signals in real time using multidistance optodes.

    Kiguchi, Masashi; Funane, Tsukasa

    2014-11-01

    A real-time algorithm for removing scalp-blood signals from functional near-infrared spectroscopy signals is proposed. Scalp and deep signals have different dependencies on the source-detector distance. These signals were separated using this characteristic. The algorithm was validated through an experiment using a dynamic phantom in which shallow and deep absorptions were independently changed. The algorithm for measurement of oxygenated and deoxygenated hemoglobins using two wavelengths was explicitly obtained. This algorithm is potentially useful for real-time systems, e.g., brain-computer interfaces and neuro-feedback systems.

  12. Application of Polarization Modulated Infrared Reflection Absorption Spectroscopy for electrocatalytic activity studies of laccase adsorbed on modified gold electrodes

    Olejnik, Piotr; Pawłowska, Aleksandra; Pałys, Barbara

    2013-01-01

    Orientation of the enzyme macromolecule on the electrode surface is crucially important for the efficiency of the electron transport between the active site and electrode surface. The orientation can be controlled by affecting the surface charge and the pH of the buffer solution. In this contribution we study laccase physically adsorbed on gold surface modified by mercapto-ethanol, lipid and variously charged diazonium salts. Polarization Modulated Infrared Reflection Absorption Spectroscopy (PMIRRAS) enables the molecular orientation study of the protein molecule by comparison of the amide I to amide II band intensity ratios assuming that the protein secondary structure does not change. We observe significant differences in the intensity ratios depending on the kind of support and the enzyme deposition. The comparison of infrared spectra and cyclic voltammetry responses of variously prepared laccase layers reveals that the parallel orientation of beta-sheet moieties results in high enzyme activity

  13. High resolution spectroscopy of six SOCl2 isotopologues from the microwave to the far-infrared

    Martin-Drumel, M. A.; Roucou, A.; Brown, G. G.; Thorwirth, S.; Pirali, O.; Mouret, G.; Hindle, F.; McCarthy, M. C.; Cuisset, A.

    2016-02-01

    Despite its potential role as an atmospheric pollutant, thionyl chloride, SOCl2, remains poorly characterized in the gas phase. In this study, the pure rotational and ro-vibrational spectra of six isotopologues of this molecule, all detected in natural abundance, have been extensively studied from the cm-wave band to the far-infrared region by means of three complementary techniques: chirped-pulse Fourier transform microwave spectroscopy, sub-millimeter-wave spectroscopy using frequency multiplier chain, and synchrotron-based far-infrared spectroscopy. Owing to the complex line pattern which results from two nuclei with non-zero spins, new, high-level quantum-chemical calculations of the hyperfine structure played a crucial role in the spectroscopic analysis. From the combined experimental and theoretical work, an accurate semi-experimental equilibrium structure (reSE) of SOCl2 has been derived. With the present data, spectroscopy-based methods can now be applied with confidence to detect and monitor this species, either by remote sensing or in situ.

  14. Active versus passive listening to auditory streaming stimuli: a near-infrared spectroscopy study

    Remijn, Gerard B.; Kojima, Haruyuki

    2010-05-01

    We use near-infrared spectroscopy (NIRS) to assess listeners' cortical responses to a 10-s series of pure tones separated in frequency. Listeners are instructed to either judge the rhythm of these ``streaming'' stimuli (active-response listening) or to listen to the stimuli passively. Experiment 1 shows that active-response listening causes increases in oxygenated hemoglobin (oxy-Hb) in response to all stimuli, generally over the (pre)motor cortices. The oxy-Hb increases are significantly larger over the right hemisphere than over the left for the final 5 s of the stimulus. Hemodynamic levels do not vary with changes in the frequency separation between the tones and corresponding changes in perceived rhythm (``gallop,'' ``streaming,'' or ``ambiguous''). Experiment 2 shows that hemodynamic levels are strongly influenced by listening mode. For the majority of time windows, active-response listening causes significantly larger oxy-Hb increases than passive listening, significantly over the left hemisphere during the stimulus and over both hemispheres after the stimulus. This difference cannot be attributed to physical motor activity and preparation related to button pressing after stimulus end, because this is required in both listening modes.

  15. Application of Fourier transform infrared spectroscopy with chemometrics on postmortem interval estimation based on pericardial fluids.

    Zhang, Ji; Li, Bing; Wang, Qi; Wei, Xin; Feng, Weibo; Chen, Yijiu; Huang, Ping; Wang, Zhenyuan

    2017-12-21

    Postmortem interval (PMI) evaluation remains a challenge in the forensic community due to the lack of efficient methods. Studies have focused on chemical analysis of biofluids for PMI estimation; however, no reports using spectroscopic methods in pericardial fluid (PF) are available. In this study, Fourier transform infrared (FTIR) spectroscopy with attenuated total reflectance (ATR) accessory was applied to collect comprehensive biochemical information from rabbit PF at different PMIs. The PMI-dependent spectral signature was determined by two-dimensional (2D) correlation analysis. The partial least square (PLS) and nu-support vector machine (nu-SVM) models were then established based on the acquired spectral dataset. Spectral variables associated with amide I, amide II, COO - , C-H bending, and C-O or C-OH vibrations arising from proteins, polypeptides, amino acids and carbohydrates, respectively, were susceptible to PMI in 2D correlation analysis. Moreover, the nu-SVM model appeared to achieve a more satisfactory prediction than the PLS model in calibration; the reliability of both models was determined in an external validation set. The study shows the possibility of application of ATR-FTIR methods in postmortem interval estimation using PF samples.

  16. Using near infrared spectroscopy and heart rate variability to detect mental overload.

    Durantin, G; Gagnon, J-F; Tremblay, S; Dehais, F

    2014-02-01

    Mental workload is a key factor influencing the occurrence of human error, especially during piloting and remotely operated vehicle (ROV) operations, where safety depends on the ability of pilots to act appropriately. In particular, excessively high or low mental workload can lead operators to neglect critical information. The objective of the present study is to investigate the potential of functional near infrared spectroscopy (fNIRS) - a non-invasive method of measuring prefrontal cortex activity - in combination with measurements of heart rate variability (HRV), to predict mental workload during a simulated piloting task, with particular regard to task engagement and disengagement. Twelve volunteers performed a computer-based piloting task in which they were asked to follow a dynamic target with their aircraft, a task designed to replicate key cognitive demands associated with real life ROV operating tasks. In order to cover a wide range of mental workload levels, task difficulty was manipulated in terms of processing load and difficulty of control - two critical sources of workload associated with piloting and remotely operating a vehicle. Results show that both fNIRS and HRV are sensitive to different levels of mental workload; notably, lower prefrontal activation as well as a lower LF/HF ratio at the highest level of difficulty, suggest that these measures are suitable for mental overload detection. Moreover, these latter measurements point toward the existence of a quadratic model of mental workload. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Using near infrared spectroscopy to classify soybean oil according to expiration date.

    da Costa, Gean Bezerra; Fernandes, David Douglas Sousa; Gomes, Adriano A; de Almeida, Valber Elias; Veras, Germano

    2016-04-01

    A rapid and non-destructive methodology is proposed for the screening of edible vegetable oils according to conservation state expiration date employing near infrared (NIR) spectroscopy and chemometric tools. A total of fifty samples of soybean vegetable oil, of different brands andlots, were used in this study; these included thirty expired and twenty non-expired samples. The oil oxidation was measured by peroxide index. NIR spectra were employed in raw form and preprocessed by offset baseline correction and Savitzky-Golay derivative procedure, followed by PCA exploratory analysis, which showed that NIR spectra would be suitable for the classification task of soybean oil samples. The classification models were based in SPA-LDA (Linear Discriminant Analysis coupled with Successive Projection Algorithm) and PLS-DA (Discriminant Analysis by Partial Least Squares). The set of samples (50) was partitioned into two groups of training (35 samples: 15 non-expired and 20 expired) and test samples (15 samples 5 non-expired and 10 expired) using sample-selection approaches: (i) Kennard-Stone, (ii) Duplex, and (iii) Random, in order to evaluate the robustness of the models. The obtained results for the independent test set (in terms of correct classification rate) were 96% and 98% for SPA-LDA and PLS-DA, respectively, indicating that the NIR spectra can be used as an alternative to evaluate the degree of oxidation of soybean oil samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A noninvasive brain computer interface using visually-induced near-infrared spectroscopy responses.

    Chen, Cheng-Hsuan; Ho, Ming-Shan; Shyu, Kuo-Kai; Hsu, Kou-Cheng; Wang, Kuo-Wei; Lee, Po-Lei

    2014-09-19

    Visually-induced near-infrared spectroscopy (NIRS) response was utilized to design a brain computer interface (BCI) system. Four circular checkerboards driven by distinct flickering sequences were displayed on a LCD screen as visual stimuli to induce subjects' NIRS responses. Each flickering sequence was a concatenated sequence of alternative flickering segments and resting segments. The flickering segment was designed with fixed duration of 3s whereas the resting segment was chosen randomly within 15-20s to create the mutual independencies among different flickering sequences. Six subjects were recruited in this study and subjects were requested to gaze at the four visual stimuli one-after-one in a random order. Since visual responses in human brain are time-locked to the onsets of visual stimuli and the flicker sequences of distinct visual stimuli were designed mutually independent, the NIRS responses induced by user's gazed targets can be discerned from non-gazed targets by applying a simple averaging process. The accuracies for the six subjects were higher than 90% after 10 or more epochs being averaged. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Quantification of active ingredients in semi-solid pharmaceutical formulations by near infrared spectroscopy.

    Schlegel, Lisa B; Schubert-Zsilavecz, Manfred; Abdel-Tawab, Mona

    2017-08-05

    Near infrared (NIR) spectroscopy is increasingly gaining significance in the pharmaceutical industry for quality and in-process control. However, the potential of this method for quantitative quality control in pharmacies has long been neglected and little data is available on its application in analysis of creams and ointments. This study evaluated the applicability of NIR spectrometer with limited wavelength range (1000-1900nm) for quantitative quality control of six different dermatological semi-solid pharmaceutical preparations. Each contained a frequently used active ingredient in a common concentration either in a water-free lipid base or in an aqueous cream matrix. Based on direct NIR transflectance measurements through standardized glass beakers and partial least squares (PLS) multivariate calibration, quantitative models were generated comparing several data pre-processing methods Whereas difficulties were observed for mixtures containing 2% (w/w) metronidazole or 4% (w/w) erythromycin, content determination was possible with sufficient accuracy for salicylic acid (5 % (w/w)) and urea (10% (w/w)) in hydrophilic as well as in lipophilic formulations meeting the limit of a maximum deviation of±5% (relative) from the reference values. Exemplarily, one of the methods was successfully validated according to the EMA Guideline, determining several figures of merit such as specificity, linearity, accuracy, precision and robustness. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Identification of cattle, llama and horse meat by near infrared reflectance or transflectance spectroscopy.

    Mamani-Linares, L W; Gallo, C; Alomar, D

    2012-02-01

    Visible and near infrared reflectance spectroscopy (VIS-NIRS) was used to discriminate meat and meat juices from three livestock species. In a first trial, samples of Longissimus lumborum muscle, corresponding to beef (31) llamas (21) and horses (27), were homogenised and their spectra collected in reflectance (NIRSystems 6500 scanning monochromator, in the range of 400-2500 nm). In the second trial, samples of meat juice (same muscle) from the same species (20 beef, 19 llama and 19 horse) were scanned in folded transmission (transflectance). Discriminating models (PLS regression) were developed against "dummy" variables, testing different mathematical treatments of the spectra. Best models indentified the species of almost all samples by their meat (reflectance) or meat juice (transflectance) spectra. A few (three of beef and one of llama, for meat samples; one of beef and one of horse, for juice samples) were classified as uncertain. It is concluded that NIRS is an effective tool to recognise meat and meat juice from beef, llama and horses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Infrared and visible laser spectroscopy for highly-charged Ni-like ions

    Ralchenko, Yuri

    2017-10-01

    Application of visible or infrared (IR) lasers for spectroscopy of highly-charged ions (HCI) has not been particularly extensive so far due to a mismatch in typical energies. We show here that the energy difference between the two lowest levels within the first excited configuration 3d9 4 s in Ni-like ions of heavy elements from ZN = 60 to ZN = 92 is within the range of visible or near-IR lasers. The wavelengths of these transitions are calculated within the relativistic model potential formalism and compared with other theoretical and limited experimental data. Detailed collisional-radiative simulations of non-Maxwellian and thermal plasmas are performed showing that photopumping between these levels using relatively moderate lasers is sufficient to provide a two-order of magnitude increase of the pumped level population. This accordingly results in a similar rise of the X-ray line intensity thereby allowing control of X-ray emission with visible/IR lasers.

  2. Trainability of hemodynamic parameters: A near-infrared spectroscopy based neurofeedback study.

    Kober, Silvia Erika; Hinterleitner, Vanessa; Bauernfeind, Günther; Neuper, Christa; Wood, Guilherme

    2018-05-18

    We investigated the trainability of the hemodynamic response as assessed with near-infrared spectroscopy (NIRS) during one neurofeedback (NF) session. Forty-eight participants were randomly assigned to four different groups that tried to either increase or decrease oxygenated (oxy-Hb) or deoxygenated hemoglobin (deoxy-Hb) over the inferior frontal gyrus during imagery of swallowing movements. Deoxy-Hb could be successfully up-regulated while oxy-Hb could be successfully down-regulated during NF. Participants were not able to down-regulate deoxy-Hb or to up-regulate oxy-Hb. These results show that the natural course of oxy- and deoxy-Hb during movement imagery can be reinforced by providing real-time feedback of the corresponding NIRS parameter since deoxy-Hb generally increases and oxy-Hb decreases during imagery of swallowing. Furthermore, signal-to-noise ratio of deoxy-Hb but not of oxy-Hb improved during training. Our results provide new insights into the trainability of the hemodynamic response as assessed with NIRS and have an impact on the application of NIRS-based real-time feedback. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Near-infrared spectroscopy technique to evaluate the effects of drugs in treating traumatic brain edema

    Xie, J.; Qian, Z.; Yang, T.; Li, W.; Hu, G.

    2011-01-01

    The aim of this study was to evaluate the effects of several drugs in treating traumatic brain edema (TBE) following traumatic brain injury (TBI) using near-infrared spectroscopy (NIRs) technology. Rats with TBE models were given hypertonic saline (HS), mannitol and mannitol+HS respectively for different groups. Light scattering properties of rat's local cortex was measured by NIRs within the wavelength range from 700 to 850 nm. TBE models were built in rats' left brains. The scattering properties of the right and left target corresponding to the position of normal and TBE tissue were measured and recorded in vivo and real-time by a bifurcated needle probe. The brain water contents (BWC) were measured by the wet and dry weight method after injury and treatment hours 1, 6, 24, 72 and 120. A marked linear relationship was observed between reduced scattering coefficient (μs') and BWC. By recording μs' of rats' brains, the entire progressions of effects of several drugs were observed. The result may suggest that the NIRs techniques have a potential for assessing effects in vivo and real-time on treatment of the brain injury.

  4. Identification of organic components and commercial grade dedication using Fourier Transform near infrared spectroscopy

    Azizian, H.

    2000-01-01

    The over all quality assurance programs for the design, fabrication, and construction of nuclear power plants, both in Canada and USA have long been established. A need for an acceptance process to allow the use of commercial grade items to be utilized in safety related applications has been recognized. A guideline in the EPRI NP-5652 report and in the Appendix D of the CAN3-N286.2-86 standard is outlined for testing of commercial grade components. A new nondestructive and cost effective NIR identification technology is now available to meet the above requirements. The Fourier Transform near infrared spectroscopy (FT-NIR), in the past, has shown to have the capabilities to identify cable insulation non-destructively and in-situ. This paper presents data to show the diversity of the NIR technology in the identification of three different non-metallic materials (wire insulation, 0-rings, and greases, all part of the operation of the safety related equipment) for the purposes of quality assurance, quality control, and the commercial grade dedication of components. The enhanced quality control and quality assurance will result in significant savings not only in testing but also in the continuous and reliable operations of power plants. (author)

  5. Near-infrared spectroscopy technique to evaluate the effects of drugs in treating traumatic brain edema

    Xie, J; Qian, Z; Li, W; Hu, G [Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China); Yang, T, E-mail: zhiyu@nuaa.edu.cn [School of Clinical Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009 (China)

    2011-01-01

    The aim of this study was to evaluate the effects of several drugs in treating traumatic brain edema (TBE) following traumatic brain injury (TBI) using near-infrared spectroscopy (NIRs) technology. Rats with TBE models were given hypertonic saline (HS), mannitol and mannitol+HS respectively for different groups. Light scattering properties of rat's local cortex was measured by NIRs within the wavelength range from 700 to 850 nm. TBE models were built in rats' left brains. The scattering properties of the right and left target corresponding to the position of normal and TBE tissue were measured and recorded in vivo and real-time by a bifurcated needle probe. The brain water contents (BWC) were measured by the wet and dry weight method after injury and treatment hours 1, 6, 24, 72 and 120. A marked linear relationship was observed between reduced scattering coefficient ({mu}{sub s}') and BWC. By recording {mu}{sub s}' of rats' brains, the entire progressions of effects of several drugs were observed. The result may suggest that the NIRs techniques have a potential for assessing effects in vivo and real-time on treatment of the brain injury.

  6. Near-infrared spectroscopy technique to evaluate the effects of drugs in treating traumatic brain edema

    Xie, J; Qian, Z; Li, W; Hu, G; Yang, T

    2011-01-01

    The aim of this study was to evaluate the effects of several drugs in treating traumatic brain edema (TBE) following traumatic brain injury (TBI) using near-infrared spectroscopy (NIRs) technology. Rats with TBE models were given hypertonic saline (HS), mannitol and mannitol+HS respectively for different groups. Light scattering properties of rat's local cortex was measured by NIRs within the wavelength range from 700 to 850 nm. TBE models were built in rats' left brains. The scattering properties of the right and left target corresponding to the position of normal and TBE tissue were measured and recorded in vivo and real-time by a bifurcated needle probe. The brain water contents (BWC) were measured by the wet and dry weight method after injury and treatment hours 1, 6, 24, 72 and 120. A marked linear relationship was observed between reduced scattering coefficient (μ s ') and BWC. By recording μ s ' of rats' brains, the entire progressions of effects of several drugs were observed. The result may suggest that the NIRs techniques have a potential for assessing effects in vivo and real-time on treatment of the brain injury.

  7. [Determination of Hard Rate of Alfalfa (Medicago sativa L.) Seeds with Near Infrared Spectroscopy].

    Wang, Xin-xun; Chen, Ling-ling; Zhang, Yun-wei; Mao, Pei-sheng

    2016-03-01

    Alfalfa (Medicago sativa L.) is the most commonly grown forage crop due to its better quality characteristics and high adaptability in China. However, there was 20%-80% hard seeds in alfalfa which could not be identified easily from non hard seeds which would cause the loss of seed utilization value and plant production. This experiment was designed for 121 samples of alfalfa. Seeds were collected according to different regions, harvested year and varieties. 31 samples were artificial matched as hard rates ranging from 20% to 80% to establish a model for hard seed rate by near infrared spectroscopy (NIRS) with Partial Least Square (PLS). The objective of this study was to establish a model and to estimate the efficiency of NIRS for determining hard rate of alfalfa seeds. The results showed that the correlation coefficient (R2(cal)) of calibration model was 0.981 6, root mean square error of cross validation (RMSECV) was 5.32, and the ratio of prediction to deviation (RPD) was 3.58. The forecast model in this experiment presented the satisfied precision. The proposed method using NIRS technology is feasible for identification and classification of hard seed in alfalfa. A new method, as nondestructive testing of hard seed rate, was provided to theoretical basis for fast nondestructive detection of hard seed rates in alfalfa.

  8. Metabolic inflexibility in individuals with obesity assessed by near-infrared spectroscopy.

    Soares, Rogério Nogueira; Reimer, Raylene A; Doyle-Baker, Patricia K; Murias, Juan M

    2017-11-01

    To non-invasively evaluate differences in oxidative metabolism in individuals with obesity compared to normal weight using the near-infrared spectroscopy and vascular occlusion technique during hyperglycaemia. In all, 16 normal-weight individuals (body mass index: 21.3 ± 1.7 kg/m 2 ) and 13 individuals with obesity (body mass index: 34.4 ± 2.0 kg/m 2 ) had five vascular occlusion tests (pre, 30, 60, 90 and 120 min after glucose ingestion). Oxygen utilization was estimated from the area under the curve of the deoxyhemoglobin [HHb] signal during occlusion. Muscle reperfusion was derived from the area above the curve after cuff release. The deoxyhemoglobin area under the curve during occlusion of the normal-weight individuals increased from 15,732 ± 2344 (% . s) at pre to 18,930 ± 3226 (% . s) ( p obesity. This study confirmed in vivo and non-invasively the metabolic inflexibility of skeletal muscle in individuals with obesity during hyperglycaemia.

  9. Shoulder muscle fatigue during repetitive tasks as measured by electromyography and near-infrared spectroscopy.

    Ferguson, Sue A; Allread, W Gary; Le, Peter; Rose, Joseph; Marras, William S

    2013-12-01

    The objective of this study was to quantify shoulder muscle fatigue during repetitive exertions similar to motions found in automobile assembly tasks. Shoulder musculoskeletal disorders (MSDs) are a common and costly problem in automotive manufacturing. Ten subjects participated in the study. There were three independent variables: shoulder angle, frequency, and force. There were two types of dependent measures: percentage change in near-infrared spectroscopy (NIRS) measures and change in electromyography (EMG) median frequency. The anterior deltoid and trapezius muscles were measured for both NIRS and EMG. Also, EMG was collected on the middle deltoid and biceps muscles. The results showed that oxygenated hemoglobin decreased significantly due to the main effects (shoulder angle, frequency, and force). The percentage change in oxygenated hemoglobin had a significant interaction attributable to force and repetition for the anterior deltoid muscle, indicating that as repetition increased, the magnitude of the differences between the forces increased. The interaction of repetition and shoulder angle was also significant for the percentage change in oxygenated hemoglobin. The median frequency decreased significantly for the main effects; however, no interactions were statistically significant. There was significant shoulder muscle fatigue as a function of shoulder angle, task frequency, and force level. Furthermore, percentage change in oxygenated hemoglobin had two statistically significant interactions, enhancing our understanding of these risk factors. Ergonomists should examine interactions of force and repetition as well as shoulder angle and repetition when evaluating the risk of shoulder MSDs.

  10. Detection of sibutramine in adulterated dietary supplements using attenuated total reflectance-infrared spectroscopy.

    Deconinck, E; Cauwenbergh, T; Bothy, J L; Custers, D; Courselle, P; De Beer, J O

    2014-11-01

    Sibutramine is one of the most occurring adulterants encountered in dietary supplements with slimming as indication. These adulterated dietary supplements often contain a herbal matrix. When customs intercept these kind of supplements it is almost impossible to discriminate between the legal products and the adulterated ones, due to misleading packaging. Therefore in most cases these products are confiscated and send to laboratories for analysis. This results inherently in the confiscation of legal, non-adulterated products. Therefore there is a need for easy to use equipment and techniques to perform an initial screening of samples. Attenuated total reflectance-infrared (ATR-IR) spectroscopy was evaluated for the detection of sibutramine in adulterated dietary supplements. Data interpretation was performed using different basic chemometric techniques. It was found that the use of ATR-IR combined with the k-Nearest Neighbours (k-NN) was able to detect all adulterated dietary supplements in an external test set and this with a minimum of false positive results. This means that a small amount of legal products will still be confiscated and analyzed in a laboratory to be found negative, but no adulterated samples will pass the initial ATR-IR screening. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  12. Assessment of the dynamics of human glymphatic system by near-infrared spectroscopy.

    Myllylä, Teemu; Harju, Markus; Korhonen, Vesa; Bykov, Alexander; Kiviniemi, Vesa; Meglinski, Igor

    2017-08-12

    Fluctuations in brain water content has attracted increasing interest, particularly as regards studies of the glymphatic system, which is connected with the complex organization of dural lymphatic vessels, responsible for cleaning tissue. Disturbances of glymphatic circulation are associated with several brain disorders, including dementia. This article introduces an approach to noninvasive measurement of water dynamics in the human brain utilizing near-infrared spectroscopy (NIRS). We demonstrate the possibility to sense dynamic variations of water content between the skull and grey matter, for instance, in the subarachnoid space. Measured fluctuations in water content, especially in the cerebrospinal fluid (CSF), are assumed to be correlated with the dynamics of glymphatic circulation. The sampling volume for the NIRS optode was estimated by Monte Carlo modelling for the wavelengths of 660, 740, 830 and 980 nm. In addition, using combinations of these wavelengths, this article presents the calculation models for quantifying water and haemodynamics. The presented NIRS technique allows long-term functional brain monitoring, including sleeping time. Furthermore, it is used in combination with different magnetic neuroimaging techniques, particularly magnetic resonance encephalography. Using the combined setup, we report the preliminary results on the interaction between CSF and blood oxygen level-dependent fluctuations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Investigating the bioavailability of graphene quantum dots in lung tissues via Fourier transform infrared spectroscopy.

    Tabish, Tanveer A; Lin, Liangxu; Ali, Muhammad; Jabeen, Farhat; Ali, Muhammad; Iqbal, Rehana; Horsell, David W; Winyard, Paul G; Zhang, Shaowei

    2018-06-06

    Biomolecular fractions affect the fate and behaviour of quantum dots (QDs) in living systems but how the interactions between biomolecules and QDs affect the bioavailability of QDs is a major knowledge gap in risk assessment analysis. The transport of QDs after release into a living organism is a complex process. The majority accumulate in the lungs where they can directly affect the inhalation process and lung architecture. Here, we investigate the bioavailability of graphene quantum dots (GQDs) to the lungs of rats by measuring the alterations in macromolecular fractions via Fourier transform infrared spectroscopy (FTIR). GQDs were intravenously injected into the rats in a dose-dependent manner (low (5 mg kg -1 ) and high (15 mg kg -1 ) doses of GQDs per body weight of rat) for 7 days. The lung tissues were isolated, processed and haematoxylin-eosin stained for histological analysis to identify cell death. Key biochemical differences were identified by spectral signatures: pronounced changes in cholesterol were found in two cases of low and high doses; a change in phosphorylation profile of substrate proteins in the tissues was observed in low dose at 24 h. This is the first time biomolecules have been measured in biological tissue using FTIR to investigate the biocompatibility of foreign material. We found that highly accurate toxicological changes can be investigated with FTIR measurements of tissue sections. As a result, FTIR could form the basis of a non-invasive pre-diagnostic tool for predicting the toxicity of GQDs.

  14. Imaging Brain Function with Functional Near-Infrared Spectroscopy in Unconstrained Environments

    Joana B. Balardin

    2017-05-01

    Full Text Available Assessing the neural correlates of motor and cognitive processes under naturalistic experimentation is challenging due to the movement constraints of traditional brain imaging technologies. The recent advent of portable technologies that are less sensitive to motion artifacts such as Functional Near Infrared Spectroscopy (fNIRS have been made possible the study of brain function in freely-moving participants. In this paper, we describe a series of proof-of-concept experiments examining the potential of fNIRS in assessing the neural correlates of cognitive and motor processes in unconstrained environments. We show illustrative applications for practicing a sport (i.e., table tennis, playing a musical instrument (i.e., piano and violin alone or in duo and performing daily activities for many hours (i.e., continuous monitoring. Our results expand upon previous research on the feasibility and robustness of fNIRS to monitor brain hemodynamic changes in different real life settings. We believe that these preliminary results showing the flexibility and robustness of fNIRS measurements may contribute by inspiring future work in the field of applied neuroscience.

  15. Stereochemistry of quinoxaline antagonist binding to a glutamate receptor investigated by Fourier transform infrared spectroscopy.

    Madden, D R; Thiran, S; Zimmermann, H; Romm, J; Jayaraman, V

    2001-10-12

    The stereochemistry of the interactions between quinoxaline antagonists and the ligand-binding domain of the glutamate receptor 4 (GluR4) have been investigated by probing their vibrational modes using Fourier transform infrared spectroscopy. In solution, the electron-withdrawing nitro groups of both compounds establish a resonance equilibrium that appears to stabilize the keto form of one of the cyclic amide carbonyl bonds. Changes in the 6,7-dinitro-2,3-dihydroxyquinoxaline vibrational spectra on binding to the glutamate receptor, interpreted within the framework of a published crystal structure, illuminate the stereochemistry of the interaction and suggest that the binding site imposes a more polarized electronic bonding configuration on this antagonist. Similar spectral changes are observed for 6-cyano-7-dinitro-2,3-dihydroxyquinoxaline, confirming that its interactions with the binding site are highly similar to those of 6,7-dinitro-2,3-dihydroxyquinoxaline and leading to a model of the 6-cyano-7-dinitro-2,3-dihydroxyquinoxaline-S1S2 complex, for which no crystal structure is available. Conformational changes within the GluR ligand binding domain were also monitored. Compared with the previously reported spectral changes seen on binding of the agonist glutamate, only a relatively small change is detected on antagonist binding. This correlation between the functional effects of different classes of ligand and the magnitude of the spectroscopic changes they induce suggests that the spectral data reflect physiologically relevant conformational processes.

  16. Near-infrared spectroscopy (NIRS evaluation and regional analysis of Chinese faba bean (Vicia faba L.

    Jiaojiao Wang

    2014-02-01

    Full Text Available To analyze the nutritional composition of faba bean (Vicia faba L. seed, estimation models were developed for protein, starch, oil, and total polyphenol using near infrared spectroscopy (NIRS. Two hundred and forty-four samples from twelve producing regions were measured in both milled powder and intact seed forms. Partial least squares (PLS regression was applied for model development. The model based on ground seed powder was generally superior to that based on the intact seed. The optimal seed powder-based models for protein, starch, and total polyphenol had coefficients of correlation (r2 of 0.97, 0.93 and 0.89, respectively. The relationship between nutrient contents and twelve producing areas was determined by two-step cluster analysis. Three distinct groupings were obtained with region-constituent features, i.e., Group 1 of high oil, Group 2 of high protein, and Group 3 of high starch as well as total polyphenol. The clustering accuracy was 79.5%. Moreover, the nutrition contents were affected by seeding date, longitude, latitude, and altitude of plant location. Cluster analysis revealed that the differences in the seed were strongly influenced by geographical factors.

  17. Near-Infrared Spectroscopy Analysis of Heavy Fuel Oils Using a New Diffusing Support.

    Dupuy, Nathalie; Brahem, Zeineb; Amat, Sandrine; Kister, Jacky

    2015-10-01

    The characterization of heavy fuel oils (HFOs), used as fuel for boats, requires the analysis of various properties that are essential for engine optimization and pollution control. For some time, near-infrared (NIR) spectroscopy combined with chemometric treatment of the spectra was used for on-line analysis. This preliminary study included 61 heavy fuels from Europe, America, and Asia with different specifications according to their geographical origin; their refining process; and their physicochemical properties, including density, flash point, viscosity, and sulfur content. We have developed a new method for sampling heavy fuels on a fiberglass cell support. This support offers the advantages of speed, easy implementation, repeatable results, and freedom from problems associated with tank cleaning. Two sample presentations, an integrating sphere and an optical fiber, were used to collect the NIR spectra. A theoretical study of the choice of the value of resolution, scan number, and spectral region was conducted. The best conditions were chosen as a function of the quality of quantitative analysis results on viscosity, sulfur content, flash point, and density. The two collecting methods were compared on the same criteria.

  18. Coregistering functional near-infrared spectroscopy with underlying cortical areas in infants

    Lloyd-Fox, Sarah; Richards, John E.; Blasi, Anna; Murphy, Declan G. M.; Elwell, Clare E.; Johnson, Mark H.

    2014-01-01

    Abstract. Functional near-infrared spectroscopy (fNIRS) is becoming a popular tool in developmental neuroscience for mapping functional localized brain responses. However, as it cannot provide information about underlying anatomy, researchers have begun to conduct spatial registration of fNIRS channels to cortical anatomy in adults. The current work investigated this issue with infants by coregistering fNIRS and magnetic resonance imaging (MRI) data from 55 individuals. Our findings suggest that fNIRS channels can be reliably registered with regions in the frontal and temporal cortex of infants from 4 to 7 months of age. Although some macro-anatomical regions are difficult to consistently define, others are more stable and fNIRS channels on an age-appropriate MRI template are often consistent with individual infant MRIs. We have generated a standardized scalp surface map of fNIRS channel locators to reliably locate cortical regions for fNIRS developmental researchers. This new map can be used to identify the inferior frontal gyrus, superior temporal sulcus (STS) region [which includes the superior and middle temporal gyri (MTG) nearest to the STS], and MTG and temporal-parietal regions in 4- to 7-month-old infants. Future work will model data for the whole head, taking into account the properties of light transport in tissue, and expanding to different ages across development. PMID:25558463

  19. Continuous correction of differential path length factor in near-infrared spectroscopy.

    Talukdar, Tanveer; Moore, Jason H; Diamond, Solomon G

    2013-05-01

    In continuous-wave near-infrared spectroscopy (CW-NIRS), changes in the concentration of oxyhemoglobin and deoxyhemoglobin can be calculated by solving a set of linear equations from the modified Beer-Lambert Law. Cross-talk error in the calculated hemodynamics can arise from inaccurate knowledge of the wavelength-dependent differential path length factor (DPF). We apply the extended Kalman filter (EKF) with a dynamical systems model to calculate relative concentration changes in oxy- and deoxyhemoglobin while simultaneously estimating relative changes in DPF. Results from simulated and experimental CW-NIRS data are compared with results from a weighted least squares (WLSQ) method. The EKF method was found to effectively correct for artificially introduced errors in DPF and to reduce the cross-talk error in simulation. With experimental CW-NIRS data, the hemodynamic estimates from EKF differ significantly from the WLSQ (p EKF method compared to WLSQ in three physiologically relevant spectral bands 0.04 to 0.15 Hz, 0.15 to 0.4 Hz and 0.4 to 2.0 Hz (p EKF method.

  20. Forensic Hair Differentiation Using Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy.

    Manheim, Jeremy; Doty, Kyle C; McLaughlin, Gregory; Lednev, Igor K

    2016-07-01

    Hair and fibers are common forms of trace evidence found at crime scenes. The current methodology of microscopic examination of potential hair evidence is absent of statistical measures of performance, and examiner results for identification can be subjective. Here, attenuated total reflection (ATR) Fourier transform-infrared (FT-IR) spectroscopy was used to analyze synthetic fibers and natural hairs of human, cat, and dog origin. Chemometric analysis was used to differentiate hair spectra from the three different species, and to predict unknown hairs to their proper species class, with a high degree of certainty. A species-specific partial least squares discriminant analysis (PLSDA) model was constructed to discriminate human hair from cat and dog hairs. This model was successful in distinguishing between the three classes and, more importantly, all human samples were correctly predicted as human. An external validation resulted in zero false positive and false negative assignments for the human class. From a forensic perspective, this technique would be complementary to microscopic hair examination, and in no way replace it. As such, this methodology is able to provide a statistical measure of confidence to the identification of a sample of human, cat, and dog hair, which was called for in the 2009 National Academy of Sciences report. More importantly, this approach is non-destructive, rapid, can provide reliable results, and requires no sample preparation, making it of ample importance to the field of forensic science. © The Author(s) 2016.