WorldWideScience

Sample records for infrared c-o vibrational

  1. Transient infrared absorption of t-CH3C(O)OO, c-CH3C(O)OO, and α-lactone recorded in gaseous reactions of CH3CO and O2

    Science.gov (United States)

    Chen, Sun-Yang; Lee, Yuan-Pern

    2010-03-01

    A step-scan Fourier-transform infrared spectrometer coupled with a multipass absorption cell was utilized to monitor the transient species produced in gaseous reactions of CH3CO and O2; IR absorption spectra of CH3C(O)OO and α-lactone were observed. Absorption bands with origins at 1851±1, 1372±2, 1169±6, and 1102±3 cm-1 are attributed to t-CH3C(O)OO, and those at 1862±3, 1142±4, and 1078±6 cm-1 are assigned to c-CH3C(O)OO. A weak band near 1960 cm-1 is assigned to α-lactone, cyc-CH2C(O)O, a coproduct of OH. These observed rotational contours agree satisfactorily with simulated bands based on predicted rotational parameters and dipole derivatives, and observed vibrational wavenumbers agree with harmonic vibrational wavenumbers predicted with B3LYP/aug-cc-pVDZ density-functional theory. The observed relative intensities indicate that t-CH3C(O)OO is more stable than c-CH3C(O)OO by 3±2 kJ mol-1. Based on these observations, the branching ratio for the OH+α-lactone channel of the CH3CO+O2 reaction is estimated to be 0.04±0.01 under 100 Torr of O2 at 298 K. A simple kinetic model is employed to account for the decay of CH3C(O)OO.

  2. Transient infrared absorption of t-CH3C(O)OO, c-CH3C(O)OO, and alpha-lactone recorded in gaseous reactions of CH3CO and O2.

    Science.gov (United States)

    Chen, Sun-Yang; Lee, Yuan-Pern

    2010-03-21

    A step-scan Fourier-transform infrared spectrometer coupled with a multipass absorption cell was utilized to monitor the transient species produced in gaseous reactions of CH(3)CO and O(2); IR absorption spectra of CH(3)C(O)OO and alpha-lactone were observed. Absorption bands with origins at 1851+/-1, 1372+/-2, 1169+/-6, and 1102+/-3 cm(-1) are attributed to t-CH(3)C(O)OO, and those at 1862+/-3, 1142+/-4, and 1078+/-6 cm(-1) are assigned to c-CH(3)C(O)OO. A weak band near 1960 cm(-1) is assigned to alpha-lactone, cyc-CH(2)C(=O)O, a coproduct of OH. These observed rotational contours agree satisfactorily with simulated bands based on predicted rotational parameters and dipole derivatives, and observed vibrational wavenumbers agree with harmonic vibrational wavenumbers predicted with B3LYP/aug-cc-pVDZ density-functional theory. The observed relative intensities indicate that t-CH(3)C(O)OO is more stable than c-CH(3)C(O)OO by 3+/-2 kJ mol(-1). Based on these observations, the branching ratio for the OH+alpha-lactone channel of the CH(3)CO+O(2) reaction is estimated to be 0.04+/-0.01 under 100 Torr of O(2) at 298 K. A simple kinetic model is employed to account for the decay of CH(3)C(O)OO.

  3. Prediction of absolute infrared intensities for the fundamental vibrations of H2O2

    Science.gov (United States)

    Rogers, J. D.; Hillman, J. J.

    1981-01-01

    Absolute infrared intensities are predicted for the vibrational bands of gas-phase H2O2 by the use of a hydrogen atomic polar tensor transferred from the hydroxyl hydrogen atom of CH3OH. These predicted intensities are compared with intensities predicted by the use of a hydrogen atomic polar tensor transferred from H2O. The predicted relative intensities agree well with published spectra of gas-phase H2O2, and the predicted absolute intensities are expected to be accurate to within at least a factor of two. Among the vibrational degrees of freedom, the antisymmetric O-H bending mode nu(6) is found to be the strongest with a calculated intensity of 60.5 km/mole. The torsional band, a consequence of hindered rotation, is found to be the most intense fundamental with a predicted intensity of 120 km/mole. These results are compared with the recent absolute intensity determinations for the nu(6) band.

  4. 13C and 18O isotope enrichment by vibrational energy exchange pumping of CO

    International Nuclear Information System (INIS)

    Bergman, R.C.; Homicz, G.F.; Rich, J.W.; Wolk, G.L.

    1983-01-01

    Measurements of preferential vibration-to-vibration (V--V) pumping of high vibrational states of 13 C 16 O and 12 C 18 O in optically excited CO gas are reported. It is found that the v = 22, 25, 27, 30, and 32 states of 13 C 16 O and the v = 8, 10, and 12 states of 12 C 18 O are substantially overpopulated compared to the same states in 12 C 16 O in strongly V--V pumped CO. Such mixtures are observed to react, forming products enriched in 13 C. The results are in reasonable agreement with an analytical kinetic model of V--V pumping in binary mixtures of diatomic gases

  5. Vibrational Spectroscopy of Intramolecular Hydrogen Bonds in the Infrared and Near-Infrared Regions

    DEFF Research Database (Denmark)

    Schrøder, Sidsel Dahl

    and 1,4-diaminobutane). Experimentally, the hydrogen bonds have been studied with vibrational spectroscopy in the infrared and near-infrared regions. The focus is primarily on spectra recorded in the near-infrared regions, which in these studies are dominated by O-H and N-H stretching overtones....... Overtone spectra have been recorded with intracavity laser photoacoustic laser spectroscopy and conventional long path absorption spectroscopy. Theoretically, a combination of electronic structure calculations and local mode models have been employed to guide the assignment of bands in the vibrational......,4-diaminobutane, no sign of intramolecular N-H···N hydrogen bonds were identified in the overtone spectra. However, theoretical analyzes indicate that intramolecular N-H···N hydrogen bonds are present in all three diamines if two hydrogen atoms on one of the methylene groups are substituted with triuoromethyl...

  6. Study of the solvent effects on the molecular structure and Cdbnd O stretching vibrations of flurbiprofen

    Science.gov (United States)

    Tekin, Nalan; Pir, Hacer; Sagdinc, Seda

    2012-12-01

    The effects of 15 solvents on the C=O stretching vibrational frequency of flurbiprofen (FBF) were determined to investigate solvent-solute interactions. Solvent effects on the geometry and C=O stretching vibrational frequency, ν(C=O), of FBF were studied theoretically at the DFT/B3LYP and HF level in combination with the polarizable continuum model and experimentally using attenuated total reflection infrared spectroscopy (ATR-IR). The calculated C=O stretching frequencies in the liquid phase are in agreement with experimental values. Moreover, the wavenumbers of ν(C=O) of FBF in different solvents have been obtained and correlated with the Kirkwood-Bauer-Magat equation (KBM), the solvent acceptor numbers (ANs), and the linear solvation energy relationships (LSERs). The solvent-induced stretching vibrational frequency shifts displayed a better correlation with the LSERs than with the ANs and KBM.

  7. Vibrational spectroscopic study of poldervaartite CaCa[SiO3(OH)(OH)

    Science.gov (United States)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Lima, Rosa Malena Fernandes

    2015-02-01

    We have studied the mineral poldervaartite CaCa[SiO3(OH)(OH)] which forms a series with its manganese analogue olmiite CaMn[SiO3(OH)](OH) using a range of techniques including scanning electron microscopy, thermogravimetric analysis, Raman and infrared spectroscopy. Chemical analysis shows the mineral is reasonably pure and contains only calcium and manganese with low amounts of Al and F. Thermogravimetric analysis proves the mineral decomposes at 485 °C with a mass loss of 7.6% compared with the theoretical mass loss of 7.7%. A strong Raman band at 852 cm-1 is assigned to the SiO stretching vibration of the SiO3(OH) units. Two Raman bands at 914 and 953 cm-1 are attributed to the antisymmetric vibrations. Intense prominent peaks observed at 3487, 3502, 3509, 3521 and 3547 cm-1 are assigned to the OH stretching vibration of the SiO3(OH) units. The observation of multiple OH bands supports the concept of the non-equivalence of the OH units. Vibrational spectroscopy enables a detailed assessment of the molecular structure of poldervaartite.

  8. a Study of Vibrational Mode Coupling in 2-FLUOROETHANOL and 1,2-DIFLUOROETHANE Using High-Resolution Infrared Spectroscopy.

    Science.gov (United States)

    Mork, Steven Wayne

    High resolution infrared spectroscopy was used to examine intramolecular vibrational interactions in 2 -fluoroethanol (2FE) and 1,2-difluoroethane (DFE). A high resolution infrared spectrophotometer capable of better than 10 MHz spectral resolution was designed and constructed. The excitation source consists of three lasers: an argon-ion pumped dye laser which pumps a color -center laser. The infrared beam from the color-center laser is used to excite sample molecules which are rotationally and vibrationally cooled in a supersonic molecular beam. Rovibrational excitation of the sample molecules is detected by monitoring the kinetic energy of the molecular beam with a bolometer. The high resolution infrared spectrum of 2FE was collected and analyzed over the 2977-2990 cm^ {-1}^ectral region. This region contains the asymmetric CH stretch on the fluorinated carbon. The spectrum revealed extensive perturbations in the rotational fine structure. Analysis of these perturbations has provided a quantitative measure of selective vibrational mode coupling between the C-H stretch and its many neighboring dark vibrational modes. Interestingly, excitation of the C-H stretch is known to induce a photoisomerization reaction between 2FE's Gg^' and Tt conformers. Implications of the role of mode coupling in the reaction mechanism are also addressed. Similarly, the high resolution infrared spectrum of DFE was collected and analyzed over the 2978-2996 cm ^{-1}^ectral region. This region contains the symmetric combination of asymmetric C-H stretches in DFE. Perturbations in the rotational fine structure indicate vibrational mode coupling to a single dark vibrational state. The dark state is split by approximately 19 cm^{-1} due to tunneling between two identical gauche conformers. The coupling mechanism is largely anharmonic with a minor component of B/C-plane Coriolis coupling. Effects of centrifugal distortion along the molecular A-axis are also observed. The coupled vibrational

  9. The millimeter-wave spectrum of highly vibrationally excited SiO

    International Nuclear Information System (INIS)

    Mollaaghababa, R.; Gottlieb, C.A.; Vrtilek, J.M.; Thaddeus, P.

    1991-01-01

    The millimeter-wave rotational spectra of SiO in high vibrational states (v = 0-40) in its electronic ground state were measured between 228 and 347 GHz in a laboratory discharge through SiH4 and CO. On ascending the vibrational ladder, populations decline precipitously for the first few levels, with a vibrational temperature of about 1000 K; at v of roughly 3, however, they markedly flatten out, and from there to v of roughly 40 the temperature is of the order of 10,000 K. With the Dunham coefficients determined here, the rotational spectrum of highly vibrationally excited SiO can now be calculated into the far-infrared to accuracies required for radioastronomy. Possible astronomical sources of highly vibrationally excited SiO are certain stellar atmospheres, ultracompact H II regions, very young supernova ejecta, and dense interstellar shocks. 16 refs

  10. Theoretical study of the changes in the vibrational characteristics arising from the hydrogen bonding between Vitamin C ( L-ascorbic acid) and H 2O

    Science.gov (United States)

    Dimitrova, Yordanka

    2006-02-01

    The vibrational characteristics (vibrational frequencies, infrared intensities and Raman activities) for the hydrogen-bonded system of Vitamin C ( L-ascorbic acid) with five water molecules have been predicted using ab initio SCF/6-31G(d, p) calculations and DFT (BLYP) calculations with 6-31G(d, p) and 6-31++G(d, p) basis sets. The changes in the vibrational characteristics from free monomers to a complex have been calculated. The ab initio and BLYP calculations show that the complexation between Vitamin C and five water molecules leads to large red shifts of the stretching vibrations for the monomer bonds involved in the hydrogen bonding and very strong increase in their IR intensity. The predicted frequency shifts for the stretching vibrations from Vitamin C taking part in the hydrogen bonding are up to -508 cm -1. The magnitude of the wavenumber shifts is indicative of relatively strong OH···H hydrogen-bonded interactions. In the same time the IR intensity and Raman activity of these vibrations increase upon complexation. The IR intensity increases dramatically (up to 12 times) and Raman activity increases up to three times. The ab initio and BLYP calculations show, that the symmetric OH vibrations of water molecules are more sensitive to the complexation. The hydrogen bonding leads to very large red shifts of these vibrations and very strong increase in their IR intensity. The asymmetric OH stretching vibrations of water, free from hydrogen bonding are less sensitive to the complexation than the hydrogen-bonded symmetric O sbnd H stretching vibrations. The increases of the IR intensities for these vibrations are lower and red shifts are negligible.

  11. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    International Nuclear Information System (INIS)

    Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui

    2013-01-01

    Highlights: ► Vibrational dynamics of conjugated C=O and N=N modes of ethyl diazoacetate was studied. ► Their frequency–frequency correlation functions are different. ► The dual-frequency 2D IR spectrum indicates anticorrelated frequency fluctuations. ► Correlation effects on dual-frequency 2D IR spectra are discussed. ► The existence of cis and trans conformers is revealed in 2D IR spectra. - Abstract: We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester C=O and diazo N=N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency–frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single C=O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed

  12. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Hiroaki; Sul, Soohwan [Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025 (United States); Ge, Nien-Hui, E-mail: nhge@uci.edu [Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025 (United States)

    2013-08-30

    Highlights: ► Vibrational dynamics of conjugated C=O and N=N modes of ethyl diazoacetate was studied. ► Their frequency–frequency correlation functions are different. ► The dual-frequency 2D IR spectrum indicates anticorrelated frequency fluctuations. ► Correlation effects on dual-frequency 2D IR spectra are discussed. ► The existence of cis and trans conformers is revealed in 2D IR spectra. - Abstract: We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester C=O and diazo N=N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency–frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single C=O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.

  13. Thermal analysis and vibrational spectroscopic characterization of the boro silicate mineral datolite - CaBSiO4(OH)

    Science.gov (United States)

    Frost, Ray L.; Xi, Yunfei; Scholz, Ricardo; Lima, Rosa Malena Fernandes; Horta, Laura Frota Campos; Lopez, Andres

    2013-11-01

    The objective of this work is to determine the thermal stability and vibrational spectra of datolite CaBSiO4(OH) and relate these properties to the structure of the mineral. The thermal analysis of datolite shows a mass loss of 5.83% over a 700-775 °C temperature range. This mass loss corresponds to 1 water (H2O) molecules pfu. A quantitative chemical analysis using electron probe was undertaken. The Raman spectrum of datolite is characterized by bands at 917 and 1077 cm-1 assigned to the symmetric stretching modes of BO and SiO tetrahedra. A very intense Raman band is observed at 3498 cm-1 assigned to the stretching vibration of the OH units in the structure of datolite. BOH out-of-plane vibrations are characterized by the infrared band at 782 cm-1. The vibrational spectra are based upon the structure of datolite based on sheets of four- and eight-membered rings of alternating SiO4 and BO3(OH) tetrahedra with the sheets bonded together by calcium atoms.

  14. Infrared Spectroscopy and Raman Scattering Studies on the Structure of Ag2O. B2O3. TeO2 Glass

    International Nuclear Information System (INIS)

    Thazin Myint; Soe Soe Thin; Pho Kaung; Sein Htoon

    2006-06-01

    Infrared spectroscopy investigation of silver - borate - tellurite glasses in the system 0.4 Ag2 O. 0.6 (x B2 O2. (1-x) TeO2) for various of x (0 < x < 1) has been performed in order to understand the glass modifying properties of the TeO2. In pure crystalline TeO2 spectra observed absorption bands at 780 cm-1 and 660 cm-1 have been ascribed to the stretching vibration of TeO bonds in the TeO4 units. In the glass 0.4 Ag2 O. 0.6 (x B2 O3. (1-x) TeO2) the bands at 700 cm-1 and 694 cm-1 are assigned to the symmetric breathing vibration of the boroxol group and the pentaborate one. The glasses show bands at 630 cm-1 which corresponds to the vibrations due to TeO4 units

  15. Felix Spectroscopy of Likely Astronomical Molecular Ions: HC_3O^+, C_2H_3CNH^+, and C_2H_5CNH^+

    Science.gov (United States)

    Thorwirth, Sven; Asvany, Oskar; Brünken, Sandra; Jusko, Pavol; Schlemmer, Stephan; Martin-Drumel, Marie-Aline; McCarthy, Michael C.

    2017-06-01

    Infrared signatures of three molecular ions of relevance to the interstellar medium and planetary atmospheres have been detected at the Free Electron Laser for Infrared eXperiments, FELIX, at Radboud University (Nijmegen, The Netherlands) in combination with the 4K FELion 22-pole ion trap facility. Mid-infrared vibrational modes of protonated tricarbon monoxide, HC_3O^+, protonated vinyl cyanide, C_2H_3CNH^+, and protonated ethyl cyanide, C_2H_5CNH^+, were detected using resonant photodissociation of the respective Ne-complexes by monitoring the depletion of their cluster mass signal as a function of wavenumber. The infrared fingerprints compare very favorably with results from high-level quantum-chemical calculations performed at the CCSD(T) level of theory.

  16. Fourier transform infrared spectroscopic study of gamma irradiated SiO2 nanoparticles

    Science.gov (United States)

    Huseynov, Elchin; Garibov, Adil; Mehdiyeva, Ravan; Huseynova, Efsane

    2018-03-01

    In the present work, nano SiO2 particles are investigated before and after gamma irradiation (25, 50, 75, 100 and 200 kGy) using Fourier transform infrared (FTIR) spectroscopy method for the wavenumber between 400-4000 cm-1. It is found that as a result of spectroscopic analysis, five new peaks have appeared after gamma radiation. Two of new obtained peaks (which are located at 687 cm-1 and 2357 cm-1 of wavenumber) were formed as a result of gamma radiation interaction with Si-O bonds. Another three new peaks (peaks appropriate to 941, 2052 and 2357 cm-1 values of wavenumber) appear as a result of interaction of water with nano SiO2 particles after gamma irradiation. It has been defined as asymmetrical bending vibration, symmetrical bending vibration, symmetrical stretching vibration and asymmetrical stretching vibration of Si-O bonds appropriate to peaks.

  17. Synchrotron radiation in the Far-Infrared: Adsorbate-substrate vibrations and resonant interactions

    International Nuclear Information System (INIS)

    Hoffmann, F.M.; Williams, G.P.; Hirschmugl, C.J.; Chabal, Y.J.

    1991-01-01

    Synchrotron radiation in the Far Infrared offers the potential for a broadband source of high brightness and intensity. Recent development of a Far-Infrared Beamline at the NSLS in Brookhaven provides an unique high intensity source in the FIR spectral range (800-10 cm -1 ). This talk reviews its application to surface vibrational spectroscopy of low frequency adsorbate-substrate vibrations and resonant interactions on metal surfaces

  18. The molecular structure of the borate mineral inderite Mg(H4B3O7)(OH) · 5H2O--a vibrational spectroscopic study.

    Science.gov (United States)

    Frost, Ray L; López, Andrés; Xi, Yunfei; Lima, Rosa Malena Fernandes; Scholz, Ricardo; Granja, Amanda

    2013-12-01

    We have undertaken a study of the mineral inderite Mg(H4B3O7)(OH) · 5H2O a hydrated hydroxy borate mineral of magnesium using scanning electron microscopy, thermogravimetry and vibrational spectroscopic techniques. The structure consists of [Formula: see text] soroborate groups and Mg(OH)2(H2O)4 octahedra interconnected into discrete molecules by the sharing of two OH groups. Thermogravimetry shows a mass loss of 47.2% at 137.5 °C, proving the mineral is thermally unstable. Raman bands at 954, 1047 and 1116 cm(-1) are assigned to the trigonal symmetric stretching mode. The two bands at 880 and 916 cm(-1) are attributed to the symmetric stretching mode of the tetrahedral boron. Both the Raman and infrared spectra of inderite show complexity. Raman bands are observed at 3052, 3233, 3330, 3392 attributed to water stretching vibrations and 3459 cm(-1) with sharper bands at 3459, 3530 and 3562 cm(-1) assigned to OH stretching vibrations. Vibrational spectroscopy is used to assess the molecular structure of inderite. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Vibration mitigation in J-TEXT far-infrared diagnostic systems

    International Nuclear Information System (INIS)

    Li, Q.; Chen, J.; Zhuang, G.; Wang, Z. J.; Gao, L.; Chen, W.

    2012-01-01

    Optical structure stability is an important issue for far-infrared (FIR) phase measurements. To ensure good signal quality, influence of vibration should be minimized. Mechanical amelioration and optical optimization can be taken in turn to decrease vibration's influence and ensure acceptable measurement. J-TEXT (Joint Texal Experiment Tokamak, formerly TEXT-U) has two FIR diagnostic systems: a HCN interferometer system for electron density measurement and a three-wave polarimeter-interferometer system (POLARIS) for electron density and Faraday effect measurements. All use phase detection techniques. HCN interferometer system has almost eliminated the influence of vibration after mechanical amelioration and optical optimization. POLARIS also obtained first experimental results after mechanical stability improvements and is expected to further reduce vibration's influence on Faraday angle to 0.1° after optical optimization.

  20. Infrared and Raman spectroscopic characterization of the silicate mineral olmiite CaMn2+[SiO3(OH)](OH) - implications for the molecular structure

    Science.gov (United States)

    Frost, Ray L.; Scholz, Ricardo; López, Andrés; Xi, Yunfei; Granja, Amanda; Žigovečki Gobac, Željka; Lima, Rosa Malena Fernandes

    2013-12-01

    We have studied the mineral olmiite CaMn[SiO3(OH)](OH) which forms a series with its calcium analogue poldervaartite CaCa[SiO3(OH)](OH) using a range of techniques including scanning electron microscopy, thermogravimetric analysis, Raman and infrared spectroscopy. Chemical analysis shows the mineral is pure and contains only calcium and manganese in the formula. Thermogravimetric analysis proves the mineral decomposes at 502 °C with a mass loss of 8.8% compared with the theoretical mass loss of 8.737%. A strong Raman band at 853 cm-1 is assigned to the SiO stretching vibration of the SiO3(OH) units. Two Raman bands at 914 and 953 cm-1 are attributed to the antisymmetric vibrations. Two intense Raman bands observed at 3511 and 3550 cm-1 are assigned to the OH stretching vibration of the SiO3(OH) units. The observation of multiple OH bands supports the concept of the non-equivalence of the OH units. Vibrational spectroscopy enables a detailed assessment of the molecular structure of olmiite.

  1. Two-dimensional infrared spectroscopy of vibrational polaritons.

    Science.gov (United States)

    Xiang, Bo; Ribeiro, Raphael F; Dunkelberger, Adam D; Wang, Jiaxi; Li, Yingmin; Simpkins, Blake S; Owrutsky, Jeffrey C; Yuen-Zhou, Joel; Xiong, Wei

    2018-04-19

    We report experimental 2D infrared (2D IR) spectra of coherent light-matter excitations--molecular vibrational polaritons. The application of advanced 2D IR spectroscopy to vibrational polaritons challenges and advances our understanding in both fields. First, the 2D IR spectra of polaritons differ drastically from free uncoupled excitations and a new interpretation is needed. Second, 2D IR uniquely resolves excitation of hybrid light-matter polaritons and unexpected dark states in a state-selective manner, revealing otherwise hidden interactions between them. Moreover, 2D IR signals highlight the impact of molecular anharmonicities which are applicable to virtually all molecular systems. A quantum-mechanical model is developed which incorporates both nuclear and electrical anharmonicities and provides the basis for interpreting this class of 2D IR spectra. This work lays the foundation for investigating phenomena of nonlinear photonics and chemistry of molecular vibrational polaritons which cannot be probed with traditional linear spectroscopy.

  2. Modulational instabilities in acetanilide taking into account both the N-H and the C=O vibrational self-trappings

    International Nuclear Information System (INIS)

    Simo, Elie

    2007-01-01

    A model of crystalline acetanilide, ACN accounting for the C=O and N-H vibrational self-trappings is presented. We develop a fully discrete version of ACN. We show that ACN can be described by a set of two coupled discrete nonlinear Schroedinger (DNLS) equations. Modulational instabilities (MI) are studied both theoretically and numerically. Dispersion laws for the wavenumbers and frequencies of the linear modulation waves are determined. We also derived the criterion for the existence of MI. Numerical simulations are carried out for a variety of selected wave amplitudes in the unstable zone. It is shown that instabilities grow as the wavenumbers and amplitudes of the modulated waves increase. MI grow faster in the N-H mode than in the C=O mode. Temporal evolution of the density probabilities of the vibrational excitons are obtained by the numerical integration of the coupled DNLS equations governing the ACN molecule. These investigations confirm the generation of localized modes by the phenomenon of MI and the predominance of the N-H vibrational mode in the MI process of the ACN

  3. Modulational instabilities in acetanilide taking into account both the N-H and the C=O vibrational self-trappings

    International Nuclear Information System (INIS)

    Simo, E.

    2005-10-01

    A model of crystalline acetanilide, ACN accounting for the C=O and N-H vibrational self-trappings is presented. We develop a fully discrete version of ACN. We show that acetanilide can be described by a set of two coupled discrete nonlinear Schroedinger (DNLS) equations. Modulational instabilities (MI) are studied both theoretically and numerically. Dispersion laws for the wave numbers and frequencies of the linear modulation waves are determined. We also derived the criterion for the existence of MI. Numerical simulations are carried out for a variety of selected wave amplitudes in the unstable zone. It is shown that instabilities grow as the wave numbers and amplitudes of the modulated waves increase. MI grow faster in the N-H mode than in the C=O mode. Temporal evolution of the density probabilities of the vibrational excitons are obtained by the numerical integration of the coupled DNLS equations governing the ACN molecule. These investigations confirm the generation of localized modes by the phenomenon of MI and the predominance of the N-H vibrational mode in the MI process of the acetanilide. (author)

  4. Modulational instabilities in acetanilide taking into account both the N-H and the C=O vibrational self-trappings

    Energy Technology Data Exchange (ETDEWEB)

    Simo, Elie [Departement de Physique, Faculte des Sciences, Universite de Yaoune I, B.P. 812 Yaounde (Cameroon)

    2007-02-15

    A model of crystalline acetanilide, ACN accounting for the C=O and N-H vibrational self-trappings is presented. We develop a fully discrete version of ACN. We show that ACN can be described by a set of two coupled discrete nonlinear Schroedinger (DNLS) equations. Modulational instabilities (MI) are studied both theoretically and numerically. Dispersion laws for the wavenumbers and frequencies of the linear modulation waves are determined. We also derived the criterion for the existence of MI. Numerical simulations are carried out for a variety of selected wave amplitudes in the unstable zone. It is shown that instabilities grow as the wavenumbers and amplitudes of the modulated waves increase. MI grow faster in the N-H mode than in the C=O mode. Temporal evolution of the density probabilities of the vibrational excitons are obtained by the numerical integration of the coupled DNLS equations governing the ACN molecule. These investigations confirm the generation of localized modes by the phenomenon of MI and the predominance of the N-H vibrational mode in the MI process of the ACN.

  5. Modulational instabilities in acetanilide taking into account both the N H and the C=O vibrational self-trappings

    Science.gov (United States)

    Simo, Elie

    2007-02-01

    A model of crystalline acetanilide, ACN accounting for the C=O and N-H vibrational self-trappings is presented. We develop a fully discrete version of ACN. We show that ACN can be described by a set of two coupled discrete nonlinear Schrödinger (DNLS) equations. Modulational instabilities (MI) are studied both theoretically and numerically. Dispersion laws for the wavenumbers and frequencies of the linear modulation waves are determined. We also derived the criterion for the existence of MI. Numerical simulations are carried out for a variety of selected wave amplitudes in the unstable zone. It is shown that instabilities grow as the wavenumbers and amplitudes of the modulated waves increase. MI grow faster in the N-H mode than in the C=O mode. Temporal evolution of the density probabilities of the vibrational excitons are obtained by the numerical integration of the coupled DNLS equations governing the ACN molecule. These investigations confirm the generation of localized modes by the phenomenon of MI and the predominance of the N-H vibrational mode in the MI process of the ACN.

  6. Vibrational spectroscopy of NO^+(H_2O)_n: Evidence for the intracluster reaction NO^+(H_2O)_n→H_3O^+(H_2O)_(n-2)(HONO) at n≥4

    OpenAIRE

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-01-01

    Infrared spectra of mass‐selected clusters NO^+(H_2O)_n for n=1 to 5 were recorded from 2700 to 3800 cm^(−1) by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second‐order Møller–Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H_2O...

  7. Vibrational spectrum of solid picene (C22H14)

    International Nuclear Information System (INIS)

    Joseph, B; Capitani, F; Boeri, L; Malavasi, L; Artioli, G A; Protti, S; Fagnoni, M; Albini, A; Marini, C; Baldassarre, L; Perucchi, A; Lupi, S; Postorino, P; Dore, P

    2012-01-01

    Recently, Mitsuhashi et al observed superconductivity with a transition temperature up to 18 K in potassium doped picene (C 22 H 14 ), a polycyclic aromatic hydrocarbon compound (Mitsuhashi et al 2010 Nature 464 76). Theoretical analysis indicates the importance of electron-phonon coupling in the superconducting mechanisms of these systems, with different emphasis on inter- and intra-molecular vibrations, depending on the approximations used. Here we present a combined experimental and ab initio study of the Raman and infrared spectrum of undoped solid picene, which allows us to unambiguously assign the vibrational modes. This combined study enables the identification of the modes which couple strongly to electrons and hence can play an important role in the superconducting properties of the doped samples. (fast track communication)

  8. Experimental and theoretical investigation of vibrational spectra of coordination polymers based on TCE-TTF.

    Science.gov (United States)

    Olejniczak, Iwona; Lapiński, Andrzej; Swietlik, Roman; Olivier, Jean; Golhen, Stéphane; Ouahab, Lahcène

    2011-08-01

    The room-temperature infrared and Raman spectra of a series of four isostructural polymeric salts of 2,3,6,7-tetrakis(2-cyanoethylthio)-tetrathiafulvalene (TCE-TTF) with paramagnetic (Co(II), Mn(II)) and diamagnetic (Zn(II), Cd(II)) ions, together with BF(4)(-) or ClO(4)(-) anions are reported. Infrared and Raman-active modes are identified and assigned based on theoretical calculations for neutral and ionized TCE-TTF using density functional theory (DFT) methods. It is confirmed that the TCE-TTF molecules in all the materials investigated are fully ionized and interact in the crystal structure through cyanoethylthio groups. The vibrational modes related to the C=C stretching vibrations of TCE-TTF are analyzed assuming the occurrence of electron-molecular vibration coupling (EMV). The presence of the antisymmetric C=C dimeric mode provides evidence that charge transfer takes place between TCE-TTF molecules belonging to neighboring polymeric networks. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Far-infrared spectroscopy in ordered and disordered BaMg1/3Nb2/3O3 microwave ceramics

    Science.gov (United States)

    Dias, Anderson; Moreira, Roberto Luiz

    2003-09-01

    Ba(Mg1/3Nb2/3)O3 ceramics with suitable microwave dielectric properties for application in wireless communications and information access technologies were studied by far-infrared spectroscopy. Samples with different B-site ordering degrees, obtained by hydrothermal synthesis followed by sintering at various temperatures, were employed in this investigation. The sixteen infrared modes predicted by factor-group analysis were observed and adjusted according to a four-parameter semiquantum model. The dispersion parameters were determined in order to calculate the real part of the dielectric permittivity and the quality factors associated with the dielectric losses in the microwave region. The materials exhibited increasing ɛ0 and Q values up to 1100 °C, increasing more substantially when the temperature attained 1300 °C. The B-site ordering played an important role on this behavior along with the microstructural evolution above 1100 °C (grain growth), which also increased the phonon lifetime and contributed to the Q improvement. Kramers-Kronig analyses were carried out in all experimental data and the contributions of the main optical polar modes to the dielectric and microwave properties were carefully analyzed in order to identify and attribute the Ba-BO3 external mode, the inner modes related to the O-Mg-O and O-Nb-O bending vibrations, and the stretching modes of each MgO6 and NbO6 octahedron.

  10. Formation and vibrational structure of Si nano-clusters in ZnO matrix

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Serrano, J. [Universidad Autonoma del Estado de Hidalgo, Hidalgo (Mexico); Pal, U. [Universidad Autonoma de Puebla, Puebla (Mexico); Koshizaki, N.; Sasaki, T. [National Institute of Materials and Chemical Research, Ibaraki (Japan)

    2001-02-01

    We have studied the formation and vibrational structure of Si nano-clusters in ZnO matrix prepared by radio-frequency (r.f.) co-sputtering, and characterized by Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS) and Infrared (IR) spectroscopy techniques. The composite films of Si/ZnO were grown o quartz substrates by co-sputtering of Si and ZnO targets. TEM images show a homogeneous distribution of clusters in the matrix with average size varied from 3.7 nm to 34 nm depending on the temperature of annealing. IR absorption measurements revealed the bands correspond to the modes of vibrations of Si{sub 3} in its triangular geometrical structure. By analysing the IR absorption and XPS spectra we found that the nano-clusters consist of a Si{sub 3} core and a SiO{sub x} cap layer. With the increase of annealing temperature, the vibrational states of Si changed from the triplet {sup 3}B1(C2{sub v}) and {sup 3}A'{sub 2}(D{sub 3h}) states to its singlet ground state {sup 1}A{sub 1}(C2{sub v}) and the oxidation state of Si in SiO{sub x} increased. The evolution of the local atomic structure of the Si nano-clusters with the variation of Si content in the film and with the variation of the temperature of annealing are discussed. [Spanish] Se estudia la formacion y estructura vibracional de nano-cumulos de Si en matriz de ZnO preparados por la tecnica de radio-frecuencia (r.f.) co-sputtering, y caracterizados por Microscopia Electronica de Transmision (TEM), Espectroscopia Fotoelectronica de rayos X (XPS) y Espectroscopia de Infrarrojo (IR). Las peliculas compositas de Si/ZnO fueron crecidas sobre sustratos de cuarzo mediante el co-sputtering de blancos de Si y ZnO. Las imagenes de TEM mostraron una distribucion homogenea de cumulos en la matriz con un tamano promedio de 3.7 nm a 34 nm dependiendo de la temperatura de tratamiento. Las mediciones de IR relevaron las bandas correspondientes a los modos de vibracion de Si{sub 3} en su estructura

  11. Infrared spectroscopy, vibrational predissociation dynamics and stability of the hydrogen trioxy (HOOO) radical and estimation of its abundance in the atmosphere

    Science.gov (United States)

    Derro, Erika L.

    The hydrogen trioxy (HOOO) radical has been implicated as an important intermediate in key processes in the atmosphere. In the present studies, HOOO is produced by the combination of O2 and photolytically generated OH radicals in the collisional region of a pulsed supersonic expansion. Rotationally cooled HOOO is probed in the effectively collision-free region of the expansion using infrared action spectroscopy, an infrared-pump, ultraviolet-probe technique, in which HOOO is vibrationally excited and the nascent OH products of vibrational predissociation are probed via laser-induced fluorescence. High resolution infrared spectra of HOOO and DOOO were observed in the fundamental and overtone OH/D stretching regions (nui and 2nu 1), which comprise a rotationally structured band attributed to the trans conformer, and an unstructured component assigned to the cis conformer. Infrared spectra of HOOO and DOOO combination bands composed of the OH stretch and a low frequency mode (nu1 + nun) were also observed. This allowed identification of vibrational frequencies for five of the six modes for trans-H/DOOO and four of the six modes for cis-HOOO and DOOO. Identification of low frequency modes provides critical information on the vibrational dynamics and thermochemical properties of the HOOO radical, and furthermore, provides a potential means for detecting HOOO in situ in the atmosphere. In addition, the nascent OH X2pi products following vibrational predissociation of HOOO have been investigated. The product state distributions reveal a distinct preference for population of pi(A ') Λ-doublets in OH that is indicative of a planar dissociation of trans-HOOO in which the symmetry of the bonding orbital is maintained. The highest observed OH quantum state allows determination of the stability of HOOO relative to the OH + O 2 asymptote using a conservation of energy approach. In conjunction with a similar investigation of DOOO, the binding energy is determined to be ≤ 5

  12. TERAHERTZ SPECTROSCOPY AND GLOBAL ANALYSIS OF THE BENDING VIBRATIONS OF ACETYLENE 12C2D2

    International Nuclear Information System (INIS)

    Yu Shanshan; Drouin, Brian J.; Pearson, John C.; Pickett, Herbert M.; Lattanzi, Valerio; Walters, Adam

    2009-01-01

    Two hundred and fifty-one 12 C 2 D 2 transitions have been measured in the 0.2-1.6 THz region of its ν 5 -ν 4 difference band and 202 of them were observed for the first time. The accuracy of these measurements is estimated to be ranging from 50 kHz to 100 kHz. The 12 C 2 D 2 molecules were generated under room temperature by passing 120-150 mTorr D 2 O vapor through calcium carbide (CaC 2 ) powder. A multistate analysis was carried out for the bending vibrational modes ν 4 and ν 5 of 12 C 2 D 2 , which includes the lines observed in this work and prior microwave, far-infrared and infrared data on the pure bending levels. Significantly improved molecular parameters were obtained for 12 C 2 D 2 by adding the new measurements to the old data set, which had only 10 lines with microwave measurement precision. New frequency and intensity predictions have been made based on the obtained molecular parameters. The more precise measurements and new predictions reported here will support the analyses of astronomical observations by the future high-resolution spectroscopy telescopes such as Herschel, SOFIA, and ALMA, which will work in the terahertz spectral region.

  13. Linear and non-linear infrared response of one-dimensional vibrational Holstein polarons in the anti-adiabatic limit: Optical and acoustical phonon models

    Science.gov (United States)

    Falvo, Cyril

    2018-02-01

    The theory of linear and non-linear infrared response of vibrational Holstein polarons in one-dimensional lattices is presented in order to identify the spectral signatures of self-trapping phenomena. Using a canonical transformation, the optical response is computed from the small polaron point of view which is valid in the anti-adiabatic limit. Two types of phonon baths are considered: optical phonons and acoustical phonons, and simple expressions are derived for the infrared response. It is shown that for the case of optical phonons, the linear response can directly probe the polaron density of states. The model is used to interpret the experimental spectrum of crystalline acetanilide in the C=O range. For the case of acoustical phonons, it is shown that two bound states can be observed in the two-dimensional infrared spectrum at low temperature. At high temperature, analysis of the time-dependence of the two-dimensional infrared spectrum indicates that bath mediated correlations slow down spectral diffusion. The model is used to interpret the experimental linear-spectroscopy of model α-helix and β-sheet polypeptides. This work shows that the Davydov Hamiltonian cannot explain the observations in the NH stretching range.

  14. Crystal structure, vibrational and DFT simulation studies of melaminium dihydrogen phosphite monohydrate

    Science.gov (United States)

    Arjunan, V.; Kalaivani, M.; Marchewka, M. K.; Mohan, S.

    2013-08-01

    The crystal structure investigations of melamine with phosphorous acid, namely melaminium dihydrogenphosphite monohydrate (C3N6H7·H2PO3·H2O) have been investigated by means of single crystal X-ray diffraction method. The title compound crystallizes in monoclinic crystal system, and the space group is P21/c with a = 10.069 Å, b = 21.592 Å, c = 12.409 Å and Z = 12. The vibrational assignments and analysis of melaminium dihydrogen phosphite monohydrate have also been performed by FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical simulations were performed with DFT (B3LYP) method using 6-31G**, cc-pVTZ, and 6-311++G** basis sets to determine the energy, structural, thermodynamic parameters and vibrational frequencies of melaminium dihydrogen phosphite monohydrate. The hydrogen atom from phosphorous acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak Osbnd H···O and Nsbnd H···O hydrogen bonds shows notable vibrational effects.

  15. Temperature dependence of the phonon structure in the high-temperature superconductor Bi2Sr2CaCu2O8 studied by infrared reflectance spectroscopy

    International Nuclear Information System (INIS)

    Kamaras, K.; Herr, S.L.; Porter, C.D.; Tanner, D.B.; Etemad, S.; Tarascon, J.

    1991-01-01

    We have investigated a ceramic sample of the high-temperature superconductor Bi 2 Sr 2 CaCu 2 O 8 (T c =85 K) by infrared and visible reflectance spectroscopy at several temperatures both below and above the superconducting transition. We find that the temperature variation in the vibrational region is associated with minima or antiresonance features of the optical conductivity, instead of maxima, indicating strong Fano-type electron-phonon interaction and implying that the phonon structure in the infrared is strongly affected by the ab-plane response

  16. Competition between weak OH···π and CH··O hydrogen bonds: THz spectroscopy of the C2H2—H2O and C2H4—H2O complexes

    DEFF Research Database (Denmark)

    Andersen, Jonas; Heimdal, Jimmy; Nelander, B.

    2017-01-01

    -bonded configuration with the H2O subunit acting as the hydrogen bond donor to the π-cloud of C2H4. A (semi)-empirical value for the change of vibrational zero-point energy of 4.0–4.1 kJ mol−1 is proposed and the combination with quantum chemical calculations at the CCSD(T)-F12b/aug-cc-pVQZ level provides a reliable....... The present findings demonstrate that the relative stability of the weak hydrogen bond motifs is not entirely rooted in differences of electronic energy but also to a large extent by differences in the vibrational zero-point energy contributions arising from the class of large-amplitude intermolecular modes....... estimate of 7.1 ± 0.3 kJ mol−1 for the dissociation energy D0 of the C2H4—H2O complex. In addition, tentative assignments for the two strongly infrared active OH librational modes of the ternary C2H4—HOH—C2H4 complex having H2O as a doubly OH⋯π hydrogen bond donor are proposed at 213.6 and 222.3 cm−1...

  17. The application of infrared synchrotron radiation to the study of interfacial vibrational modes

    International Nuclear Information System (INIS)

    Hirschmugl, C.J.; Williams, G.P.

    1992-01-01

    Synchrotron radiation provides an extremely bright broad-band source in the infrared which is ideally suited to the study of surface and interface vibrational modes in the range 50--3,000 cm -1 . Thus it covers the important range of molecule-substrate interactions, as well as overlapping with the more easily accessible near-ir region where molecular internal modes are found. Compared to standard broadband infrared sources such as globars, not only is it 1,000 times brighter, but its emittance matches the phase-space of the electrochemical cell leading to full utilization of this brightness advantage. In addition, the source is more stable even than water-cooled globars in vacuum for both short-term and long-term fluctuations. The authors summarize the properties of synchrotron radiation in the infrared, in particular pointing out the distinct differences between this and the x-ray region. They use experimental data in discussing important issues of signal to noise and address the unique problems and advantages of the synchrotron source. Thus they emphasize the important considerations necessary for developing new facilities. This analysis then leads to a discussion of phase-space matching to electrochemical cells, and to other surfaces in vacuum. Finally they show several examples of the application of infrared synchrotron radiation to surface vibrational spectroscopy. The examples are for metal crystal surfaces in ultra-high vacuum and include CO/Cu(100) and (111) and CO/K/Cu(100). The experiments show how the stability of the synchrotron source allows subtle changes in the background to be observed in addition to the discrete vibrational modes. These changes are due to electronic states induced by the adsorbate. In some cases the authors have seen interferences between these and the discrete vibrational modes, leading to a breakdown of the dipole selection rules, and the observation of additional modes

  18. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy

    International Nuclear Information System (INIS)

    Fischer, B M; Walther, M; Jepsen, P Uhd

    2002-01-01

    The far-infrared dielectric function of a wide range of organic molecules is dominated by vibrations involving a substantial fraction of the atoms forming the molecule and motion associated with intermolecular hydrogen bond vibrations. Due to their collective nature such modes are highly sensitive to the intra- and intermolecular structure and thus provide a unique fingerprint of the conformational state of the molecule and effects of its environment. We demonstrate the use of terahertz time-domain spectroscopy (THz-TDS) for recording the far-infrared (0.5-4.0 THz) dielectric function of the four nucleobases and corresponding nucleosides forming the building blocks of deoxyribose nucleic acid (DNA). We observe numerous distinct spectral features with large differences between the molecules in both frequency-dependent absorption coefficient and index of refraction. Assisted by results from density-functional calculations we interpret the origin of the observed resonances as vibrations of hydrogen bonds between the molecules

  19. Raman and infrared spectroscopic studies of the structure of water (H2O, HOD, D2O) in stoichiometric crystalline hydrates and in electrolyte solutions

    International Nuclear Information System (INIS)

    Buanam-Om, C.

    1981-01-01

    The chapter of reviews presents in particular the Badger-Bauer-rule, distance and angle dependence of O-H...Y hydrogen bond and the structure of aqueous electrolyte solutions. A chapter of vibrational spectroscopic investigations of crystalline hydrates - metal perchlorate hydrates follows. Two further chapters just so investigate metal halide hydrates and some sulfate hydrates and related systems. The following chapter describes near infrared spectroscopic investigations of HOD(D 2 O) and its electrolyte solutions. The concluding chapter contains thermodynamic consequences and some properties of electrolyte solutions from vibrational spectroscopic investigations. (SPI) [de

  20. Infrared line intensities of chlorine monoxide

    Science.gov (United States)

    Kostiuk, T.; Faris, J. L.; Mumma, M. J.; Deming, D.; Hillman, J. J.

    1986-01-01

    Absolute infrared line intensities of several ClO lines in the rotational-vibrational (1-0) band were measured using infrared heterodyne spectroscopy near 12 microns. A measurement technique using combined ultraviolet absorption and infrared line measurements near 9.5 microns and 12 microns permitted an accurate determination of the column densities of O3 and ClO in the absorption cell and thus improved ClO line intensities. Results indicate ClO line and band intensities approximately 2.4 times lower than previous experimental results. Effects of possible failure of local thermodynamic equilibrium conditions in the absorption cell and the implication of the results for stratospheric ClO measurements in the infrared are discussed.

  1. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    Science.gov (United States)

    Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui

    2013-08-01

    We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester Cdbnd O and diazo Ndbnd N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency-frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single Cdbnd O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.

  2. Vibrational mode frequencies of silica species in SiO2-H2O liquids and glasses from ab initio molecular dynamics.

    Science.gov (United States)

    Spiekermann, Georg; Steele-MacInnis, Matthew; Schmidt, Christian; Jahn, Sandro

    2012-04-21

    Vibrational spectroscopy techniques are commonly used to probe the atomic-scale structure of silica species in aqueous solution and hydrous silica glasses. However, unequivocal assignment of individual spectroscopic features to specific vibrational modes is challenging. In this contribution, we establish a connection between experimentally observed vibrational bands and ab initio molecular dynamics (MD) of silica species in solution and in hydrous silica glass. Using the mode-projection approach, we decompose the vibrations of silica species into subspectra resulting from several fundamental structural subunits: The SiO(4) tetrahedron of symmetry T(d), the bridging oxygen (BO) Si-O-Si of symmetry C(2v), the geminal oxygen O-Si-O of symmetry C(2v), the individual Si-OH stretching, and the specific ethane-like symmetric stretching contribution of the H(6)Si(2)O(7) dimer. This allows us to study relevant vibrations of these subunits in any degree of polymerization, from the Q(0) monomer up to the fully polymerized Q(4) tetrahedra. Demonstrating the potential of this approach for supplementing the interpretation of experimental spectra, we compare the calculated frequencies to those extracted from experimental Raman spectra of hydrous silica glasses and silica species in aqueous solution. We discuss observed features such as the double-peaked contribution of the Q(2) tetrahedral symmetric stretch, the individual Si-OH stretching vibrations, the origin of the experimentally observed band at 970 cm(-1) and the ethane-like vibrational contribution of the H(6)Si(2)O(7) dimer at 870 cm(-1).

  3. Vibrational spectra of 1-hydroxy- and 1,4-dihydroxyanthraquinones and their magnesium chelate complexes. I. Isotopic effects of OH/OD and 24Mg/26Mg substitutions

    International Nuclear Information System (INIS)

    Kirszenbaum, Marek

    1977-01-01

    The vibrational spectra of 1-hydroxy- and 1,4-dihydroxyanthraquinones, their deuterated derivatives and their 24 Mg/ 26 Mg chelate complexes are examined in the spectral region 1700-250cm -1 . The study of deuteroxyanthraquinones allow an assignment of the OH/OD group vibrations and show the multiple coupling of the delta OH vibrations with the vCC and delta CH quinonic vibrations. These results lead to a modification of some spectral assignments of magnesium chelate complexe of 1-OH-AQ. The isotopic 24 Mg/ 26 Mg substitution enables the chelate ring vibrations which depend on the motions of the magnesium atom to be observed. The vC=O and vC-O vibrations frequencies of magnesium chelate complexe [Mg(1,4-O 2 -AQ)]sub(n) show an important difference of the chelate ring electronic state in comparison of those of 1,4-(OH) 2 -AQ. The discussion of the infrared and Raman spectra in the Mg-O vibrations region lead to the conclusion that the configuration of oxygens arround the magnesium is tetrahedral [fr

  4. Raman and infrared investigations of glass and glass-ceramics with composition 2Na2O·1CaO·3SiO2

    OpenAIRE

    Ziemath, Ervino C.; Aegerter, Michel A.

    1994-01-01

    Precursor glass and glass-ceramics with molar composition 2Na2O·1CaO·3SiO2 are studied by infrared, conventional, and microprobe Raman techniques. The Gaussian deconvoluted Raman spectrum of the glass presents bands at 625 and 660 cm-1, attributed to bending vibrations of Si-O-Si bonds, and at 860, 920, 975 and 1030 cm-1, attributed to symmetric stretching vibrations of SiO4 tetrahedra with 4, 3, 2, and 1 nonbridging oxygens, respectively. The Raman microprobe spectrum of a highly crystalliz...

  5. Optical and vibrational properties of (ZnO){sub k} In{sub 2}O{sub 3} natural superlattice nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Margueron, Samuel [Laboratoire Matériaux Optiques, Photonique et Systèmes, Université de Lorraine et CentraleSupélec, 57070 Metz (France); John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Maryland 02138 (United States); Pokorny, Jan; Skiadopoulou, Stella; Kamba, Stanislav [Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Liang, Xin [School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu Province 213164 (China); Clarke, David R. [John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Maryland 02138 (United States)

    2016-05-21

    A thermodynamically stable series of superlattices, (ZnO){sub k}In{sub 2}O{sub 3}, form in the ZnO-In{sub 2}O{sub 3} binary oxide system for InO{sub 1.5} concentrations from about 13 up to about 33 mole percent (m/o). These natural superlattices, which consist of a periodic stacking of single, two-dimensional sheets of InO{sub 6} octahedra, are found to give rise to systematic changes in the optical and vibrational properties of the superlattices. Low-frequency Raman scattering provides the evidence for the activation of acoustic phonons due to the folding of Brillouin zone. New vibrational modes at 520 and 620 cm{sup −1}, not present in either ZnO or In{sub 2}O{sub 3}, become Raman active. These new modes are attributed to collective plasmon oscillations localized at the two-dimensional InO{sub 1.5} sheets. Infrared reflectivity experiments, and simulations taking into account a negative dielectric susceptibility due to electron carriers in ZnO and interface modes of the dielectric layer of InO{sub 2}, explain the occurrence of these new modes. We postulate that a localized electron gas forms at the ZnO/InO{sub 2} interface due to the electron band alignment and polarization effects. All our observations suggest that there are quantum contributions to the thermal and electrical conductivity in these natural superlattices.

  6. Mixed-Alkali Effect in Li2O-Na2O-K2O-B2O3 Glasses: Infrared and Optical Absorption Studies

    Science.gov (United States)

    Samee, M. A.; Edukondalu, A.; Ahmmad, Shaik Kareem; Taqiullah, Sair Md.; Rahman, Syed

    2013-08-01

    The mixed-alkali effect (MAE) has been investigated in the glass system (40 - x)Li2O- xNa2O-10K2O-50B2O3 (0 mol% ≤ x ≤ 40 mol%) through density, modulated differential scanning calorimetry (DSC), and optical absorption studies. From the absorption studies, the values of the optical band gap ( E opt) for direct transition and Urbach energy (Δ E) have been evaluated. The values of E opt and Δ E show nonlinear behavior with the compositional parameter. The density and glass-transition temperature of the present glasses also show nonlinear variation, supporting the existence of MAE. The infrared (IR) spectra of the glasses reveal the presence of three- and four-coordinated boron atoms. The specific vibrations of Li-O, Na-O, and K-O bonds were observed in the present IR study.

  7. Lanthanum trilactate: Vibrational spectroscopic study - infrared/Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Švecová, M.; Novák, Vít; Bartůněk, V.; Člupek, M.

    2016-01-01

    Roč. 87, Nov (2016), s. 123-128 ISSN 0924-2031 Institutional support: RVO:61388963 Keywords : lanthanum trilactate * tris(2-hydroxypropanoato-O1,O2) * lanthanum tris[2-(hydroxy-kappa O)propanoato-kappa O] * Raman spectra * infrared spectra * DFT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.740, year: 2016

  8. Linking structure and vibrational mode coupling using high-resolution infrared spectroscopy: A comparison of gauche and trans 1-chloro-2-fluoroethane

    Science.gov (United States)

    Miller, C. Cameron; Stone, Stephen C.; Philips, Laura A.

    1995-01-01

    The high-resolution infrared spectrum of 1-chloro-2-fluoroethane in a molecular beam was collected over the 2975-2994 cm-1 spectral region. The spectral region of 2975-2981 cm-1 contains a symmetric C-H stretching vibrational band of the gauche conformer containing the 35Cl isotope. The spectral region of 2985-2994 cm-1 contains three vibrational bands of the trans conformer. Two of the three bands are assigned as an antisymmetric C-H stretch of each of the two different chlorine isotopes. The third band is assigned as a symmetric C-H stretch of the 35Cl isotope. The gauche conformer of 1-chloro-2-fluoroethane showed doublet patterns similar to those previously observed in 1,2-difluoroethane. The model for 1,2-difluoroethane is further refined in the present work. These refinements suggest that the coupling dark state in 1,2-difluoroethane is composed of 1 quantum C-H bend, 1 quantum C-C stretch, and 12 quanta of torsion. For 1-chloro-2-fluoroethane the dark state could not be identified due to a small data set. The trans conformer of 1-chloro-2-fluoroethane showed no evidence of mode coupling in the three vibrational bands. Including 2-fluoroethanol in this series of molecules, the extent of vibrational mode coupling did not correlate with the density of states available for coupling. Therefore, density of states alone is insufficient to explain the observed trend. A correlation was observed between the degree of intramolecular interaction and vibrational mode coupling.

  9. Vibrationally induced nuclear quadrupole coupling in the v3 = 1 state of 189OsO4

    International Nuclear Information System (INIS)

    Scappini, F.; Kreiner, W.A.; Frye, J.M.; Oka, T.

    1987-01-01

    Electric nuclear quadrupole hyperfine structure arising from a quadrupolar nucleus at the center of tetrahedral molecules, such as 189 OsO 4 , is symmetry forbidden. However, through vibration--rotation distortion a small nuclear quadrupole coupling is induced. The hyperfine structure due to the vibrationally induced eqQ has been measured for a number of P- and R-branch transitions in the ν 3 fundamental of 189 OsO 4 , by using inverse Lamb dip spectroscopy. Microwave modulation sidebands of CO 2 laser lines have been used as the tunable infrared radiation. From the analysis of the observed hyperfine structure patterns, the values of the scalar and tensor coupling constants have been determined to be chi/sup V//sub s/ = -4.103 +- 0.048 MHz and chi/sup V//sub t/ = -3.090 +- 0.059 MHz

  10. Self-consistent Non-LTE Model of Infrared Molecular Emissions and Oxygen Dayglows in the Mesosphere and Lower Thermosphere

    Science.gov (United States)

    Feofilov, Artem G.; Yankovsky, Valentine A.; Pesnell, William D.; Kutepov, Alexander A.; Goldberg, Richard A.; Mauilova, Rada O.

    2007-01-01

    We present the new version of the ALI-ARMS (for Accelerated Lambda Iterations for Atmospheric Radiation and Molecular Spectra) model. The model allows simultaneous self-consistent calculating the non-LTE populations of the electronic-vibrational levels of the O3 and O2 photolysis products and vibrational level populations of CO2, N2,O2, O3, H2O, CO and other molecules with detailed accounting for the variety of the electronic-vibrational, vibrational-vibrational and vibrational-translational energy exchange processes. The model was used as the reference one for modeling the O2 dayglows and infrared molecular emissions for self-consistent diagnostics of the multi-channel space observations of MLT in the SABER experiment It also allows reevaluating the thermalization efficiency of the absorbed solar ultraviolet energy and infrared radiative cooling/heating of MLT by detailed accounting of the electronic-vibrational relaxation of excited photolysis products via the complex chain of collisional energy conversion processes down to the vibrational energy of optically active trace gas molecules.

  11. Mid-infrared signatures of hydroxyl containing water clusters: Infrared laser Stark spectroscopy of OH–H{sub 2}O and OH(D{sub 2}O){sub n} (n = 1-3)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Federico J. [Department of Chemistry, University of Georgia, Athens, Georgia 30602 (United States); INFIQC, Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón, X5000HUA Córdoba (Argentina); Brice, Joseph T.; Leavitt, Christopher M.; Liang, Tao; Douberly, Gary E., E-mail: douberly@uga.edu [Department of Chemistry, University of Georgia, Athens, Georgia 30602 (United States); Raston, Paul L. [Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807 (United States); Pino, Gustavo A. [INFIQC, Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón, X5000HUA Córdoba (Argentina)

    2015-10-28

    Small water clusters containing a single hydroxyl radical are synthesized in liquid helium droplets. The OH–H{sub 2}O and OH(D{sub 2}O){sub n} clusters (n = 1-3) are probed with infrared laser spectroscopy in the vicinity of the hydroxyl radical OH stretch vibration. Experimental band origins are qualitatively consistent with ab initio calculations of the global minimum structures; however, frequency shifts from isolated OH are significantly over-predicted by both B3LYP and MP2 methods. An effective Hamiltonian that accounts for partial quenching of electronic angular momentum is used to analyze Stark spectra of the OH–H{sub 2}O and OH–D{sub 2}O binary complexes, revealing a 3.70(5) D permanent electric dipole moment. Computations of the dipole moment are in good agreement with experiment when large-amplitude vibrational averaging is taken into account. Polarization spectroscopy is employed to characterize two vibrational bands assigned to OH(D{sub 2}O){sub 2}, revealing two nearly isoenergetic cyclic isomers that differ in the orientation of the non-hydrogen-bonded deuterium atoms relative to the plane of the three oxygen atoms. The dipole moments for these clusters are determined to be approximately 2.5 and 1.8 D for “up-up” and “up-down” structures, respectively. Hydroxyl stretching bands of larger clusters containing three or more D{sub 2}O molecules are observed shifted approximately 300 cm{sup −1} to the red of the isolated OH radical. Pressure dependence studies and ab initio calculations imply the presence of multiple cyclic isomers of OH(D{sub 2}O){sub 3}.

  12. Application of high-resolution photoelectron spectroscopy: Vibrational resolved C 1s and O 1s spectra of CO adsorbed on Ni(100)

    Energy Technology Data Exchange (ETDEWEB)

    Foehlisch, A.; Nilsson, A.; Martensson, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    There are various effects which determine the line shape of a core-level electron spectrum. These are due to the finite life-time of the core hole, inelastic scattering of the outgoing photoelectron, electronic shake-up and shake-off processes and vibrational excitations. For free atoms and molecules the different contributions to the observed line shapes can often be well separated. For solids, surfaces and adsorbates the line shapes are in general much broader and it has in the past been assumed that no separation of the various contributions can be made. In the present report the authors will show that this is indeed not the case. Surprisingly, the vibrational fine structure of CO adsorbed on Ni(100) can be resolved in the C 1s and O 1s electron spectra. This was achieved by the combination of highly monochromatized soft X-rays from B18.0 with a high resolution Scienta 200 mm photoelectron spectrometer. X-ray photoelectron spectroscopy (XPS) with tunable excitation energy yields as a core level spectroscopy atomic and site-specific information. The presented measurements allow for a determination of internuclear distances and potential energy curves in corehole ionized adsorbed molecules. The authors analysis of the c(2x2) phase CO/Ni(100) on {open_quotes}top{close_quotes} yielded a vibrational splitting of 217 +/- 2 meV for C 1s ionization. For O 1s ionization a splitting of 173 +/- 8 meV was found.

  13. Vibrational normal modes of diazo-dimedone: A comparative study by Fourier infrared/Raman spectroscopies and conformational analysis by MM/QM

    Science.gov (United States)

    Téllez Soto, C. A.; Ramos, J. M.; Rianelli, R. S.; de Souza, M. C. B. V.; Ferreira, V. F.

    2007-07-01

    The 2-diazo-5,5-dimethyl-cyclohexane-1,3-dione ( 3) was synthesized and the FT-IR/Raman spectra were measured with the purpose of obtain a full assignment of the vibrational modes. Singular aspects concerning the -C dbnd N dbnd N oscillator are discussed in view of two strong bands observed in the region of 2300-2100 cm -1 in both, Infrared and Raman spectra. The density functional theory (DFT) was used to obtain the geometrical structure and for assisting in the vibrational assignment joint to the traditional normal coordinate analysis (NCA). The observed wavenumbers at 2145 (IR), 2144(R) are assigned as the coupled ν(N dbnd N) + ν(C dbnd N) vibrational mode with higher participation of the N dbnd N stretching. A 2188 cm -1 (IR) and at 2186 cm -1 (R) can be assigned as a overtone of one of ν(CC) normal mode or to a combination band of the fundamentals δ(CCH) found at 1169 cm -1 and the δ (CC dbnd N) found at 1017 cm -1 enhanced by Fermi resonance.

  14. Vibrational spectroscopy of NO + (H2O)n: Evidence for the intracluster reaction NO + (H2O)n --> H3O + (H2O)n - 2 (HONO) at n => 4

    Science.gov (United States)

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-05-01

    Infrared spectra of mass-selected clusters NO+(H2O)n for n=1 to 5 were recorded from 2700 to 3800 cm-1 by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second-order Møller-Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H2O ligands bound to a nitrosonium ion NO+ core. They possessed perturbed H2O stretch bands and dissociated by loss of H2O. The H2O antisymmetric stretch was absent in n=1 and gradually increased in intensity with n. In the n=4 clusters, we found evidence for the beginning of a second solvation shell as well as the onset of an intracluster reaction that formed HONO. These clusters exhibited additional weak, broad bands between 3200 and 3400 cm-1 and two new minor photodissociation channels, loss of HONO and loss of two H2O molecules. The reaction appeared to go to completion within the n=5 clusters. The primary dissociation channel was loss of HONO, and seven vibrational bands were observed. From an analysis of the spectrum, we concluded that the n=5 cluster rearranged to form H3O+(H2O)3(HONO), i.e., an adduct of the reaction products.

  15. [Study on the vibrational spectra and XRD characters of Huanglong jade from Longling County, Yunnan Province].

    Science.gov (United States)

    Pei, Jing-cheng; Fan, Lu-wei; Xie, Hao

    2014-12-01

    Based on the conventional test methods, the infrared absorption spectrum, Raman spectrum and X-ray diffraction (XRD) were employed to study the characters of the vibration spectrum and mineral composition of Huanglong jade. The testing results show that Huanglong jade shows typical vibrational spectrum characteristics of quartziferous jade. The main infrared absorption bands at 1162, 1076, 800, 779, 691, 530 and 466 cm(-1) were induced by the asymmetric stretching vibration, symmetrical stretching vibration and bending vibration of Si-O-Si separately. Especially the absorption band near 800 cm(-1) is split, which indicates that Huanglong jade has good crystallinity. In Raman spectrum, the main strong vibration bands at 463 and 355 cm(-1) were attributed to bending vibration of Si-O-Si. XRD test confirmed that Quartz is main mineral composition of Huanglong jade and there is a small amount of hematite in red color samples which induced the red color of Huanglong jade. This is the first report on the infrared, Raman and XRD spectra feature of Huanglong jade. It will provide a scientific basis for the identification, naming and other research for huanglong jade.

  16. Study of cancer cell lines with Fourier transform infrared (FTIR)/vibrational absorption (VA) spectroscopy

    DEFF Research Database (Denmark)

    Uceda Otero, E. P.; Eliel, G. S. N.; Fonseca, E. J. S.

    2013-01-01

    In this work we have used Fourier transform infrared (FTIR) / vibrational absorption (VA) spectroscopy to study two cancer cell lines: the Henrietta Lacks (HeLa) human cervix carcinoma and 5637 human bladder carcinoma cell lines. Our goal is to experimentally investigate biochemical changes...

  17. Investigating vibrational anharmonic couplings in cyanide-bridged transition metal mixed valence complexes using two-dimensional infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Slenkamp, Karla M.; Lynch, Michael S.; Van Kuiken, Benjamin E.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira, E-mail: mkhalil@chem.washington.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)

    2014-02-28

    Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (ν{sub CN}) vibrations found in [(NH{sub 3}){sub 5}Ru{sup III}NCFe{sup II}(CN){sub 5}]{sup −} (FeRu) dissolved in D{sub 2}O and formamide and [(NC){sub 5}Fe{sup II}CNPt{sup IV}(NH{sub 3}){sub 4}NCFe{sup II}(CN){sub 5}]{sup 4−} (FePtFe) dissolved in D{sub 2}O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the ν{sub CN} modes in the electronic ground state. The FTIR spectra of the ν{sub CN} modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic ν{sub CN} modes. The vibrational mode anharmonicities of the individual ν{sub CN} modes range from 14 to 28 cm{sup −1}. The mixed-mode anharmonicities range from 2 to 14 cm{sup −1}. In general, the bridging ν{sub CN} mode is most weakly coupled to the radial ν{sub CN} mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four ν{sub CN} modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D{sub 2}O. The ν{sub CN} modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm{sup −1}. This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the ν{sub CN} modes in cyanide-bridged transition metal mixed valence complexes.

  18. INTERPRETATION OF INFRARED VIBRATION-ROTATION SPECTRA OF INTERSTELLAR AND CIRCUMSTELLAR MOLECULES

    International Nuclear Information System (INIS)

    Lacy, John H.

    2013-01-01

    Infrared vibration-rotation lines can be valuable probes of interstellar and circumstellar molecules, especially symmetric molecules, which have no pure rotational transitions. But most such observations have been interpreted with an isothermal absorbing slab model, which leaves out important radiative transfer and molecular excitation effects. A more realistic non-LTE and non-isothermal radiative transfer model has been constructed. The results of this model are in much better agreement with the observations, including cases where lines in one branch of a vibration-rotation band are in absorption and another in emission. In general, conclusions based on the isothermal absorbing slab model can be very misleading, but the assumption of LTE may not lead to such large errors, particularly if the radiation field temperature is close to the gas temperature.

  19. Infrared absorption of CH3OSO and CD3OSO radicals produced upon photolysis of CH3OS(O)Cl and CD3OS(O)Cl in p-H2 matrices

    International Nuclear Information System (INIS)

    Lee, Yu-Fang; Kong, Lin-Jun; Lee, Yuan-Pern

    2012-01-01

    Irradiation at 239 ± 20 nm of a p-H 2 matrix containing methoxysulfinyl chloride, CH 3 OS(O)Cl, at 3.2 K with filtered light from a medium-pressure mercury lamp produced infrared (IR) absorption lines at 3028.4 (attributable to ν 1 , CH 2 antisymmetric stretching), 2999.5 (ν 2 , CH 3 antisymmetric stretching), 2950.4 (ν 3 , CH 3 symmetric stretching), 1465.2 (ν 4 , CH 2 scissoring), 1452.0 (ν 5 , CH 3 deformation), 1417.8 (ν 6 , CH 3 umbrella), 1165.2 (ν 7 , CH 3 wagging), 1152.1 (ν 8 , S=O stretching mixed with CH 3 rocking), 1147.8 (ν 9 , S=O stretching mixed with CH 3 wagging), 989.7 (ν 10 , C-O stretching), and 714.5 cm -1 (ν 11 , S-O stretching) modes of syn-CH 3 OSO. When CD 3 OS(O)Cl in a p-H 2 matrix was used, lines at 2275.9 (ν 1 ), 2251.9 (ν 2 ), 2083.3 (ν 3 ), 1070.3 (ν 4 ), 1056.0 (ν 5 ), 1085.5 (ν 6 ), 1159.7 (ν 7 ), 920.1 (ν 8 ), 889.0 (ν 9 ), 976.9 (ν 10 ), and 688.9 (ν 11 ) cm -1 appeared and are assigned to syn-CD 3 OSO; the mode numbers correspond to those used for syn-CH 3 OSO. The assignments are based on the photolytic behavior and a comparison of observed vibrational wavenumbers, infrared intensities, and deuterium isotopic shifts with those predicted with the B3P86/aug-cc-pVTZ method. Our results extend the previously reported four transient IR absorption bands of gaseous syn-CH 3 OSO near 2991, 2956, 1152, and 994 cm -1 to 11 lines, including those associated with C-O, O-S, and S=O stretching modes. Vibrational wavenumbers of syn-CD 3 OSO are new. These results demonstrate the advantage of a diminished cage effect of solid p-H 2 such that the Cl atom, produced via UV photodissociation of CH 3 OS(O)Cl in situ, might escape from the original cage to yield isolated CH 3 OSO radicals.

  20. Infrared absorption of CH3OSO and CD3OSO radicals produced upon photolysis of CH3OS(O)Cl and CD3OS(O)Cl in p-H2 matrices.

    Science.gov (United States)

    Lee, Yu-Fang; Kong, Lin-Jun; Lee, Yuan-Pern

    2012-03-28

    Irradiation at 239 ± 20 nm of a p-H(2) matrix containing methoxysulfinyl chloride, CH(3)OS(O)Cl, at 3.2 K with filtered light from a medium-pressure mercury lamp produced infrared (IR) absorption lines at 3028.4 (attributable to ν(1), CH(2) antisymmetric stretching), 2999.5 (ν(2), CH(3) antisymmetric stretching), 2950.4 (ν(3), CH(3) symmetric stretching), 1465.2 (ν(4), CH(2) scissoring), 1452.0 (ν(5), CH(3) deformation), 1417.8 (ν(6), CH(3) umbrella), 1165.2 (ν(7), CH(3) wagging), 1152.1 (ν(8), S=O stretching mixed with CH(3) rocking), 1147.8 (ν(9), S=O stretching mixed with CH(3) wagging), 989.7 (ν(10), C-O stretching), and 714.5 cm(-1) (ν(11), S-O stretching) modes of syn-CH(3)OSO. When CD(3)OS(O)Cl in a p-H(2) matrix was used, lines at 2275.9 (ν(1)), 2251.9 (ν(2)), 2083.3 (ν(3)), 1070.3 (ν(4)), 1056.0 (ν(5)), 1085.5 (ν(6)), 1159.7 (ν(7)), 920.1 (ν(8)), 889.0 (ν(9)), 976.9 (ν(10)), and 688.9 (ν(11)) cm(-1) appeared and are assigned to syn-CD(3)OSO; the mode numbers correspond to those used for syn-CH(3)OSO. The assignments are based on the photolytic behavior and a comparison of observed vibrational wavenumbers, infrared intensities, and deuterium isotopic shifts with those predicted with the B3P86∕aug-cc-pVTZ method. Our results extend the previously reported four transient IR absorption bands of gaseous syn-CH(3)OSO near 2991, 2956, 1152, and 994 cm(-1) to 11 lines, including those associated with C-O, O-S, and S=O stretching modes. Vibrational wavenumbers of syn-CD(3)OSO are new. These results demonstrate the advantage of a diminished cage effect of solid p-H(2) such that the Cl atom, produced via UV photodissociation of CH(3)OS(O)Cl in situ, might escape from the original cage to yield isolated CH(3)OSO radicals.

  1. Laser-induced vibrational dynamics of ozone in solid argon

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Amstrup, B.; Henriksen, Niels Engholm

    1997-01-01

    We consider the vibrational dynamics, induced by an intense infrared laser pulse, in an ozone molecule with isotopic substitution, that is, (OOO)-O-16-O-16-O-18 and compare the dynamics in the gas phase and in solid ar on. not perturbed by argon on a time-scale of a few picoseconds and selective...

  2. Vibrational spectra and lattice instabilities in the high-T/sub c/ superconductors YBa2Cu3O7 and GdBa2Cu3O7

    International Nuclear Information System (INIS)

    Bozovic, I.; Mitzi, D.; Beasley, M.

    1987-01-01

    The exceptionally high T/sub c/ of layered cuprates was proposed recently as originating from electronically driven structural instabilities. We have studied the infrared and Raman spectra of YBa 2 Cu 3 O/sub 7-//sub δ/ and GdBa 2 Cu 3 O/sub 7-//sub δ/ over a broad range of temperatures, from 10 to 300 K. We observed neither mode softening nor any other spectroscopic signature of lattice instabilities

  3. Thermal analysis and infrared emission spectroscopic study of halloysite-potassium acetate intercalation compound

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hongfei [School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083 China (China); School of Mining Engineering, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Liu, Qinfu [School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083 China (China); Yang, Jing [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Zhang, Jinshan [School of Mining Engineering, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Frost, Ray L., E-mail: r.frost@qut.edu.au [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia)

    2010-11-20

    The thermal decomposition of halloysite-potassium acetate intercalation compound was investigated by thermogravimetric analysis and infrared emission spectroscopy. The X-ray diffraction patterns indicated that intercalation of potassium acetate into halloysite caused an increase of the basal spacing from 1.00 to 1.41 nm. The thermogravimetry results show that the mass losses of intercalation the compound occur in main three main steps, which correspond to (a) the loss of adsorbed water, (b) the loss of coordination water and (c) the loss of potassium acetate and dehydroxylation. The temperature of dehydroxylation and dehydration of halloysite is decreased about 100 {sup o}C. The infrared emission spectra clearly show the decomposition and dehydroxylation of the halloysite intercalation compound when the temperature is raised. The dehydration of the intercalation compound is followed by the loss of intensity of the stretching vibration bands at region 3600-3200 cm{sup -1}. Dehydroxylation is followed by the decrease in intensity in the bands between 3695 and 3620 cm{sup -1}. Dehydration was completed by 300 {sup o}C and partial dehydroxylation by 350 {sup o}C. The inner hydroxyl group remained until around 500 {sup o}C.

  4. Molecular structure, vibrational spectra, MEP, HOMO-LUMO and NBO analysis of Hf(SeO3)(SeO4)(H2O)4

    Science.gov (United States)

    Yankova, Rumyana; Genieva, Svetlana; Halachev, Nenko; Dimitrova, Ginka

    2016-02-01

    Hf(SeO3)(SeO4)(H2O)4 was obtained with the hydrothermal synthesis. The geometry optimization of this molecule was done by Density Functional Theory (DFT/B3LYP) method with 6-31G(d) basis set and LANL2DZ for Hf. The experimental infrared spectrum was compared with calculated and complete vibrational assignment was provided. The bond orders and the electronic properties of the molecule were calculated. The natural bond orbital analysis (NBO) was performed in order to study the intramolecular bonding interactions among bonds and delocalization of unpaired electrons. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) with frontier orbital gap were presented. The electrostatic potential was calculated in order to investigate the reaction properties of the molecule. The thermodynamic properties of the studied compound at different temperatures were calculated.

  5. Infrared and Raman spectroscopy and quantum chemistry calculation studies of C-H...O hydrogen bondings and thermal behavior of biodegradable polyhydroxyalkanoate

    Czech Academy of Sciences Publication Activity Database

    Sato, H.; Dybal, Jiří; Murakami, R.; Noda, I.; Ozaki, Y.

    744-747, - (2005), s. 35-46 ISSN 0022-2860 R&D Projects: GA AV ČR IAA4050208 Keywords : infrared and Raman spectroscopy * quantum chemical calculation * C-H...O hydrogen bonding Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.440, year: 2005

  6. OH vibrational activation and decay dynamics of CH4-OH entrance channel complexes

    International Nuclear Information System (INIS)

    Wheeler, Martyn D.; Tsiouris, Maria; Lester, Marsha I.; Lendvay, Gyoergy

    2000-01-01

    Infrared spectroscopy has been utilized to examine the structure and vibrational decay dynamics of CH 4 -OH complexes that have been stabilized in the entrance channel to the CH 4 +OH hydrogen abstraction reaction. Rotationally resolved infrared spectra of the CH 4 -OH complexes have been obtained in the OH fundamental and overtone regions using an IR-UV (infrared-ultraviolet) double-resonance technique. Pure OH stretching bands have been identified at 3563.45(5) and 6961.98(4) cm-1 (origins), along with combination bands involving the simultaneous excitation of OH stretching and intermolecular bending motions. The infrared spectra exhibit extensive homogeneous broadening arising from the rapid decay of vibrationally activated CH 4 -OH complexes due to vibrational relaxation and/or reaction. Lifetimes of 38(5) and 25(3) ps for CH 4 -OH prepared with one and two quanta of OH excitation, respectively, have been extracted from the infrared spectra. The nascent distribution of the OH products from vibrational predissociation has been evaluated by ultraviolet probe laser-induced fluorescence measurements. The dominant inelastic decay channel involves the transfer of one quantum of OH stretch to the pentad of CH 4 vibrational states with energies near 3000 cm-1. The experimental findings are compared with full collision studies of vibrationally excited OH with CH 4 . In addition, ab initio electronic structure calculations have been carried out to elucidate the minimum energy configuration of the CH 4 -OH complex. The calculations predict a C 3v geometry with the hydrogen of OH pointing toward one of four equivalent faces of the CH 4 tetrahedron, consistent with the analysis of the experimental infrared spectra. (c) 2000 American Institute of Physics

  7. Numerical solutions of anharmonic vibration of BaO and SrO molecules

    Energy Technology Data Exchange (ETDEWEB)

    Pramudito, Sidikrubadi; Sanjaya, Nugraha Wanda [Theoretical Physics Division, Department of Physics, Bogor Agricultural University, Jalan Meranti Kampus IPB Dramaga Bogor 16680 (Indonesia); Sumaryada, Tony, E-mail: tsumaryada@ipb.ac.id [Theoretical Physics Division, Department of Physics, Bogor Agricultural University, Jalan Meranti Kampus IPB Dramaga Bogor 16680 (Indonesia); Computational Biophysics and Molecular Modeling Research Group (CBMoRG), Department of Physics, Bogor Agricultural University, Jalan Meranti Kampus IPB Dramaga Bogor 16680 (Indonesia)

    2016-03-11

    The Morse potential is a potential model that is used to describe the anharmonic behavior of molecular vibration between atoms. The BaO and SrO molecules, which are two almost similar diatomic molecules, were investigated in this research. Some of their properties like the value of the dissociation energy, the energy eigenvalues of each energy level, and the profile of the wavefunctions in their correspondence vibrational states were presented in this paper. Calculation of the energy eigenvalues and plotting the wave function’s profiles were performed using Numerov method combined with the shooting method. In general we concluded that the Morse potential solved with numerical methods could accurately produce the vibrational properties and the wavefunction behavior of BaO and SrO molecules from the ground state to the higher states close to the dissociation level.

  8. Circularly polarized infrared and visible sum-frequency-generation spectroscopy: Vibrational optical activity measurement

    International Nuclear Information System (INIS)

    Cheon, Sangheon; Cho, Minhaeng

    2005-01-01

    Vibrational optical activity spectroscopies utilizing either circularly polarized ir or circularly polarized visible beams were theoretically investigated by considering the infrared and visible sum-frequency-generation (IV-SFG) schemes. In addition to the purely electric dipole-allowed chiral component of the IV-SFG susceptibility, the polarizability-electric quadrupole hyperpolarizability term also contributes to the vibrationally resonant IV-SFG susceptibility. The circular-intensity-difference signal is shown to be determined by the interferences between the all-electric dipole-allowed chiral component and the polarizability-electric-dipole or electric-dipole-electric-quadrupole Raman optical activity tensor components. The circularly polarized SFG methods are shown to be potentially useful coherent spectroscopic tools for determining absolute configurations of chiral molecules in condensed phases

  9. Two-Dimensional Infrared Study of Vibrational Coupling between Azide and Nitrile Reporters in a RNA Nucleoside.

    Science.gov (United States)

    Schmitz, Andrew J; Hogle, David G; Gai, Xin Sonia; Fenlon, Edward E; Brewer, Scott H; Tucker, Matthew J

    2016-09-08

    The vibrations in the azide, N3, asymmetric stretching region and nitrile, CN, symmetric stretching region of 2'-azido-5-cyano-2'-deoxyuridine (N3CNdU) are examined by two-dimensional infrared (2D IR) spectroscopy. At earlier waiting times, the 2D IR spectrum shows the presence of both vibrational transitions along the diagonal and off-diagonal cross peaks indicating vibrational coupling. The coupling strength is determined from the off-diagonal anharmonicity to be 66 cm(-1) for the intramolecular distance of ∼7.9 Å, based on a structural map generated for this model system. In addition, the frequency-frequency correlation decay is detected, monitoring the solvent dynamics around each individual probe position. Overall, these vibrational reporters can be utilized in tandem to simultaneously track global structural information and fast structural fluctuations.

  10. Infrared spectroscopy of water clusters isolated in methane matrices: Effects of isotope substitution and annealing

    International Nuclear Information System (INIS)

    Yamakawa, Koichiro; Ehara, Namika; Ozawa, Nozomi; Arakawa, Ichiro

    2016-01-01

    Using infrared-active solvents of CH_4 and CD_4 for matrix isolation, we measured infrared spectra of H_2O and D_2O clusters at 7 K. The solute-concentration dependence of the spectrum of H_2O clusters in a CH_4 matrix was investigated and was used for the peak assignment. Annealing procedures were found to promote the size growth of water clusters in methane matrices for all the combinations of (H_2O, CH_4), (H_2O, CD_4), (D_2O, CH_4), and (D_2O, CD_4). We also monitored the ν_3 absorption due to methane to find the annealing-induced structural change only of solid CH_4. The matrix effects on the vibrations of the clusters are discussed on the basis of “T_c plots”, where their frequencies are plotted as a function of the square root of the matrix critical temperature, T_c. The obtained plots assure the validity of the assignment of the cluster peaks.

  11. Infrared spectroscopy of ionic clusters

    International Nuclear Information System (INIS)

    Price, J.M.

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm -1 region. The species studied include: the hydrated hydronium ions, H 3 O + (H 2 O) 3 -10 , ammoniated ammonium ions, NH 4 + (NH 3 ) 1 -10 and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH 4 + (NH 3 ) n (H 2 O) m (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs

  12. Vibrational motions associated with primary processes in bacteriorhodopsin studied by coherent infrared emission spectroscopy.

    Science.gov (United States)

    Groma, Géza I; Colonna, Anne; Martin, Jean-Louis; Vos, Marten H

    2011-03-16

    The primary energetic processes driving the functional proton pump of bacteriorhodopsin take place in the form of complex molecular dynamic events after excitation of the retinal chromophore into the Franck-Condon state. These early events include a strong electronic polarization, skeletal stretching, and all-trans-to-13-cis isomerization upon formation of the J intermediate. The effectiveness of the photoreaction is ensured by a conical intersection between the electronic excited and ground states, providing highly nonadiabatic coupling to nuclear motions. Here, we study real-time vibrational coherences associated with these motions by analyzing light-induced infrared emission from oriented purple membranes in the 750-1400 cm(-)(1) region. The experimental technique applied is based on second-order femtosecond difference frequency generation on macroscopically ordered samples that also yield information on phase and direction of the underlying motions. Concerted use of several analysis methods resulted in the isolation and characterization of seven different vibrational modes, assigned as C-C stretches, out-of-plane methyl rocks, and hydrogen out-of-plane wags, whereas no in-plane H rock was found. Based on their lifetimes and several other criteria, we deduce that the majority of the observed modes take place on the potential energy surface of the excited electronic state. In particular, the direction sensitivity provides experimental evidence for large intermediate distortions of the retinal plane during the excited-state isomerization process. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Effect of rare earth Ce on the far infrared radiation property of iron ore tailings ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie [Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130 (China); Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130 (China); Meng, Junping, E-mail: srlj158@sina.com [Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130 (China); Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130 (China); Liang, Jinsheng; Duan, Xinhui [Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130 (China); Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130 (China); Huo, Xiaoli [Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130 (China); Tang, Qingguo [Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130 (China); Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130 (China)

    2015-06-15

    Highlights: • Detailed process proposed for preparation of iron ore tailings ceramics. • Replace natural minerals with iron ore tailings as raw materials for preparing functional ceramics. • Impact mechanism of Ce on far infrared ceramics, as well as its optimum addition amounts can be obtained. • Propose a new perspective on considering the mechanism of far infrared radiation. - Abstract: A kind of far infrared radiation ceramics was prepared by using iron ore tailings, CaCO{sub 3} and SiO{sub 2} as main raw materials, and Ce as additive. The result of Fourier transform infrared spectroscopy showed that the sample exhibits excellent radiation value of 0.914 when doping 7 wt.% Ce. Ce{sup 4+} dissolved into iron diopside and formed interstitial solid solution with it sintered at 1150 °C. The oxidation of Fe{sup 2+} to Fe{sup 3+} caused by Ce{sup 4+} led to a decrease of crystallite sizes and enhancement of Mg–O and Fe–O vibration in iron diopside, which consequently improved the far infrared radiation properties of iron ore tailings ceramics.

  14. HIGH-PRECISION C17O, C18O, AND C16O MEASUREMENTS IN YOUNG STELLAR OBJECTS: ANALOGUES FOR CO SELF-SHIELDING IN THE EARLY SOLAR SYSTEM

    International Nuclear Information System (INIS)

    Smith, Rachel L.; Young, Edward D.; Pontoppidan, Klaus M.; Morris, Mark R.; Van Dishoeck, Ewine F.

    2009-01-01

    Using very high resolution (λ/Δλ ∼ 95 000) 4.7 μm fundamental and 2.3 μm overtone rovibrational CO absorption spectra obtained with the Cryogenic Infrared Echelle Spectrograph infrared spectrometer on the Very Large Telescope (VLT), we report detections of four CO isotopologues-C 16 O, 13 CO, C 18 O, and the rare species, C 17 O-in the circumstellar environment of two young protostars: VV CrA, a binary T Tauri star in the Corona Australis molecular cloud, and Reipurth 50, an intermediate-mass FU Ori star in the Orion Molecular Cloud. We argue that the observed CO absorption lines probe a protoplanetary disk in VV CrA, and a protostellar envelope in Reipurth 50. All CO line profiles are spectrally resolved, with intrinsic line widths of ∼3-4 km s -1 (FWHM), permitting direct calculation of CO oxygen isotopologue ratios with 5%-10% accuracy. The rovibrational level populations for all species can be reproduced by assuming that CO absorption arises in two temperature regimes. In the higher temperature regime, in which the column densities are best determined, the derived oxygen isotope ratios in VV CrA are: [C 16 O]/[C 18 O] =690 ± 30; [C 16 O]/[C 17 O] =2800 ± 300, and [C 18 O]/[C 17 O]=4.1 ± 0.4. For Reipurth 50, we find [C 16 O]/[C 18 O] =490 ± 30; [C 16 O]/[C 17 O] =2200 ± 150, [C 18 O]/[C 17 O] = 4.4 ± 0.2. For both objects, 12 C/ 13 C are on the order of 100, nearly twice the expected interstellar medium (ISM) ratio. The derived oxygen abundance ratios for the VV CrA disk show a significant mass-independent deficit of C 17 O and C 18 O relative to C 16 O compared to ISM baseline abundances. The Reipurth 50 envelope shows no clear differences in oxygen CO isotopologue ratios compared with the local ISM. A mass-independent fractionation can be interpreted as being due to selective photodissociation of CO in the disk surface due to self-shielding. The deficits in C 17 O and C 18 O in the VV CrA protoplanetary disk are consistent with an analogous

  15. Probing electronic and vibrational properties at the electrochemical interface using SFG spectroscopy: Methanol electro-oxidation on Pt(1 1 0)

    Science.gov (United States)

    Vidal, F.; Busson, B.; Tadjeddine, A.

    2005-02-01

    We report the study of methanol electro-oxidation on Pt(1 1 0) using infrared-visible sum-frequency generation (SFG) vibrational spectroscopy. The use of this technique enables to probe the vibrational and electronic properties of the interface simultaneously in situ. We have investigated the vibrational properties of the interface in the CO ads internal stretch spectral region (1700-2150 cm -1) over a wide range of potentials. The analysis of the evolution of the C-O stretch line shape, which is related to the interference between the vibrational and electronic parts of the non-linear response, with the potential allows us to show that the onset of bulk methanol oxidation corresponds to the transition from a negatively to a positively charged surface.

  16. Infrared investigation of the phonon spectrum in the frustrated spin cluster compound FeTe{sub 2}O{sub 5}Cl

    Energy Technology Data Exchange (ETDEWEB)

    Pfuner, F; Degiorgi, L [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zuerich (Switzerland); Berger, H; Forro, L [Institut de Physique de la Matiere Complexe (IPMC), EPF Lausanne, CH-1015 Lausanne (Switzerland)

    2009-09-16

    We present our optical investigations on the frustrated spin cluster compound FeTe{sub 2}O{sub 5}Cl, which develops a long-range antiferromagnetic order below 10 K. We measure the optical reflectivity from the far-infrared to the ultraviolet with polarized light. We focus our attention on the lattice dynamics by discussing the infrared-active modes. Our findings reveal a polarization dependence of the vibrational modes but which do not seem to be affected by structural anomalies linked to the magnetically ordered state at low temperatures.

  17. Infrared spectra and stability of CO and H2O sorption over Ag-exchanged ZSM-5 zeolite: DFT study

    International Nuclear Information System (INIS)

    Jiang Shujun; Huang Shiping; Tu Weixia; Zhu Jiqin

    2009-01-01

    The infrared spectra and stability of CO and H 2 O sorption over Ag-exchanged ZSM-5 zeolite were investigated by using density function theory (DFT). The changes of NBO charge show that the electron transfers from CO molecule to the Ag + cation to form an σ-bond, and it accompanies by the back donation of d-electrons from Ag + cation to the CO (π*) orbital as one and two CO molecules are adsorbed on Ag-ZSM-5. The free energy changes ΔG, -5.55 kcal/mol and 6.52 kcal/mol for one and two CO molecules, illustrate that the Ag + (CO) 2 complex is unstable at the room temperature. The vibration frequency of C-O stretching of one CO molecule bonded to Ag + ion at 2211 cm -1 is in good agreement with the experimental results. The calculated C-O symmetric and antisymmetric stretching frequencies in the Ag + (CO) 2 complex shift to 2231 cm -1 and 2205 cm -1 when the second CO molecule is adsorbed. The calculated C-O stretching frequency in CO-Ag-ZSM-5-H 2 O complex shifts to 2199 cm -1 , the symmetric and antisymmetric O-H stretching frequencies are 3390 cm -1 and 3869 cm -1 , respectively. The Gibbs free energy change (ΔG H 2 O ) is -6.58 kcal/mol as a H 2 O molecule is adsorbed on CO-Ag-ZSM-5 complex at 298 K. The results show that CO-Ag-ZSM-5-H 2 O complex is more stable at room temperature

  18. Improved assignments of the vibrational fundamental modes of ortho -, meta -, and para -xylene using gas- and liquid-phase infrared and Raman spectra combined with ab initio calculations: Quantitative gas-phase infrared spectra for detection

    Energy Technology Data Exchange (ETDEWEB)

    Lindenmaier, Rodica; Scharko, Nicole K.; Tonkyn, Russell G.; Nguyen, Kiet T.; Williams, Stephen D.; Johnson, Timothy J.

    2017-07-25

    Xylenes contain a blend of the ortho-, meta-, and para- isomers, and all are abundant contaminants in the ground, surface waters, and air. To better characterize xylene and to better enable its detection, we report high quality quantitative vapor-phase infrared spectra of all three isomers over the 540-6500 cm-1 range. All fundamental vibrational modes are assigned based on these vapor-phase infrared spectra, liquid-phase infrared and Raman spectra, along with density functional theory (DFT), ab initio MP2 and high energy-accuracy compound theoretical model (W1BD) calculations. Both MP2 and DFT predict a single conformer with C2v symmetry for ortho-xylene, and two conformers each for meta- and para-xylene, depending on the preferred orientations of the methyl groups. For meta-xylene the two conformers have Cs and C2 symmetry, and for para-xylene these conformers have C2v or C2h symmetry. Since the relative population of the two conformers is approximately 50% for both isomers and predicted frequencies and intensities are very similar for each conformer, we made an arbitrary choice to discuss the Cs conformer for meta-xylene and the C2v conformer for para-xylene. We report integrated band intensities for all isomers. Using the quantitative infrared data, we determine the global warming potential values of each isomer and discuss potential bands for atmospheric monitoring.

  19. Infrared spectroscopy of some organocobalt (III) compounds

    International Nuclear Information System (INIS)

    Benedetti, A.V.; Mauro, A.E.

    1982-01-01

    The compounds [MeCo(DH) 2 py], [MeCo(DH) 2 H 2 O] (M = methyl; DH = dimethyl-glyoxymate; py = pyridine) and others of general formulae [Co(L)(H 2 O) 2 ] ClO 4 , where L = SALOPHEN = bis (salicylaldehyde)-o-phenylenediimine; SALCN = 1,2-bis (salicylaldehyde) cyclohexylenediimine; SALEN = bis (salicylaldehyde) ethylenediimine; BAE = bis (acetylacetone)-ethylenediimine were synthesized and studied by infrared spectroscopy. The frequencies observed have been assigned to specific group vibrations. (Author) [pt

  20. The Composition of Comet C/2009 PI (Garradd) from Infrared Spectroscopy: Evidence for an Oxygen-Rich Heritage?

    Science.gov (United States)

    DiSanti, M. A.; Bonev, B. P.; Villanueva, G. L.; Paganini, L.; Mumma, M. J.; Charnley, S. B.; Keane, J. V.; Meech, K. J.; Blake, G. A.; Boehnhardt, H.; hide

    2012-01-01

    Comets retain relatively primitive icy material remaining from the epoch of Solar System for111ation, however the extent to which their ices are modified remains a key question in cometary science. One way to address this is to measure the relative abundances of primary (parent) volatiles in comets (i.e., those ices native to the nucleus). High-resolution (lambda/delta lambda greater than 10(exp 4)) infrared spectroscopy is a powerful tool for measuring parent volatiles in comets through their vibrational emissions in the 3-5 micrometer region. With modern instrumentation on worldclass telescopes, we can quantify a multitude of species (e.g., H2O, C2H2, CH4, C2H6 CO, H2CO, CH3OH, HCN, NH3), even in comets with modest gas production. In space environments, compounds of keen interest to astrobiology could originate from HCN and NH3 (leading to amino acids), H2CO (leading to sugars), or C2H6 and CH4 (suggested precursors of ethyl- and methylamine). Measuring the abundances of these precursor molecules and their variability among comets contributes to understanding the synthesis of the more complex prebiotic compounds.

  1. NEW [SnR2(C2O42]2- (R = Ph, Bu MOIETY CONTAINING ADDUCTS AND COMPLEXES: SYNTHESIS, INFRARED AND MOSSBAUER STUDIES

    Directory of Open Access Journals (Sweden)

    YAYA SOW

    2015-05-01

    Full Text Available New oxalato and hydrogenoxalato organotin (IV derivatives containing mono- and bichelating oxalates or a monochelating hydrogenoxalate, have been synthesized and characterized by elemental analyses, infrared and Mossbauer spectroscopy. The suggested structures are discrete, the environments around the tin (IV atoms being trans octahedral, seven coordinated or tetrahedral. The cations when present are involved in NH…O bonds. A 1 D supramolecular architecture is suggested for SnPh2 (HC2O42.1/2 C6H6. The C6H6 molecules obtained in situ molecules are lattice. SnPh3OH is involved in hydrogen bonding.

  2. The Utilization of Low Frequency Raman Spectra of Gases for the Study of Molecules with Large Amplitude Vibration

    Institute of Scientific and Technical Information of China (English)

    James R. Durig; Sarah Xiao-hua Zhou; Joshua Klaassen; Arindam Ganguly

    2009-01-01

    The utilization of the Raman spectra of the low frequency bending mode for three quasi-linear molecules, disiloxane, (SiH3)2 O; methylisocyanate, CH3NCO; and dimethy lisocyanate, (CH3)2SiHNCO for observing the low frequency anharmonic bending vibration is demonstrated which is superior to the corresponding far infrared spectra. From the observed frequencies from the Raman spectra the potential function governing the heavy atom motion to linearity has been obtained from which the barrier has been determined. These experimental values are compared to the ab ini-tio predicted values. Also low frequency Raman spectra of the ring puckering vibration of chlorocy-clobutane, c-C4H7Cl, bromocyclobutane, c-C4H7Br, and aminocyclobutane, c-C4H7NH2, have been utilized to obtain the potential function governing the ring inversion for these molecules. The deter-mined barriers to planarity are compared to those obtained from MP2 (full) ab initio and density functional theory B3LYP calculations by utilizing a variety of basis sets. For all of these studies it is shown that the Raman spectra are superior to the infrared spectra for determining the frequencies of the excited state transitions.

  3. Lattice vibrations of materials for lithium rechargeable batteries II. Lithium extraction-insertion in spinel structures

    International Nuclear Information System (INIS)

    Julien, C.M.; Camacho-Lopez, M.A.

    2004-01-01

    Lithiated spinel manganese oxides with various amounts of lithium have been prepared through solid-state reaction and electrochemical intercalation and deintercalation. Local structure of the samples are studied using Raman scattering and Fourier transform infrared spectroscopy. We report vibrational spectra of lithiated manganese oxides Li x Mn 2 O 4 as a function of lithium concentration in the range 0.1≤x≤2.0. Raman and Fourier transform infrared (FTIR) spectral results indicated multiple-phase reactions when the lithium content is modified in the spinel lattice. Lattice dynamics of lithiated spinel manganese oxides have been interpreted using either a classical factor-group analysis or a local environment model. The structural modifications have been studied on the basis of vibrations of LiO 4 tetrahedral and MnO 6 octahedral units when Li/Mn≤0.5, and LiO 4 , LiO 6 , and MnO 6 structural units when Li/Mn>0.5

  4. Submillimeter vibrationally excited water emission from the peculiar red supergiant VY Canis Majoris

    Science.gov (United States)

    Menten, K. M.; Philipp, S. D.; Güsten, R.; Alcolea, J.; Polehampton, E. T.; Brünken, S.

    2006-08-01

    Context: .Vibrationally excited emission from the SiO and H2O molecules probes the innermost circumstellar envelopes of oxygen-rich red giant and supergiant stars. VY CMa is the most prolific known emission source in these molecules. Aims: .Observations were made to search for rotational lines in the lowest vibrationally excited state of H2O. Methods: .The APEX telescope was used for observations of H2O lines at frequencies around 300 GHz. Results: .Two vibrationally excited H2O lines were detected, a third one could not be found. In one of the lines we find evidence for weak maser action, similar to known (sub)millimeter ν2 = 1 lines. We find that the other line's intensity is consistent with thermal excitation by the circumstellar infrared radiation field. Several SiO lines were detected together with the H2O lines.

  5. Infrared spectroscopy of ionic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Price, J.M. (California Univ., Berkeley, CA (USA). Dept. of Chemistry Lawrence Berkeley Lab., CA (USA))

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

  6. Synthesis and characterization of magnetically recyclable Ag nanoparticles immobilized on Fe3O4@C nanospheres with catalytic activity

    International Nuclear Information System (INIS)

    Li, Wei-hong; Yue, Xiu-ping; Guo, Chang-sheng; Lv, Jia-pei; Liu, Si-si; Zhang, Yuan; Xu, Jian

    2015-01-01

    Highlights: • Ag-loaded Fe 3 O 4 @C nanospheres were synthesized by a facile method. • The Fe 3 O 4 encapsulated mesoporous carbon was decorated with 10 nm Ag nanocrystals. • The as-prepared Ag-Fe 3 O 4 @C nanocomposite showed excellent catalytic activity. • The nanocomposite had convenient magnetic separability. - Abstract: A novel approach for the synthesis of Ag-loaded Fe 3 O 4 @C nanospheres (Ag-Fe 3 O 4 @C) was successfully developed. The catalysts possessed a carbon-coated magnetic core and grew active silver nanoparticles on the outer shell using hydrazine monohydrate as the AgNO 3 reductant in ethanol. The morphology, inner structure, and magnetic properties of the as-prepared composites were studied with transmission electron microscopy (TEM), X-ray powder diffraction (XRD), fourier translation infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) techniques. Catalytic activity was investigated by degrading rhodamine B (RhB) in the designed experiment. The obtained products were monodispersed and bifunctional with high magnetization, as well as exhibited excellent catalytic activity toward organic dye with 98% of RhB conversion within 20 min in the presence of NaBH 4 . The product also exhibited convenient magnetic separability and maintained high catalytic activity after six cycle runs

  7. Structures of aspartic acid-96 in the L and N intermediates of bacteriorhodopsin: analysis by Fourier transform infrared spectroscopy

    Science.gov (United States)

    Maeda, A.; Sasaki, J.; Shichida, Y.; Yoshizawa, T.; Chang, M.; Ni, B.; Needleman, R.; Lanyi, J. K.

    1992-01-01

    The light-induced difference Fourier transform infrared spectrum between the L or N intermediate minus light-adapted bacteriorhodopsin (BR) was measured in order to examine the protonated states and the changes in the interactions of carboxylic acids of Asp-96 and Asp-115 in these intermediates. Vibrational bands due to the protonated and unprotonated carboxylic acid were identified by isotope shift and band depletion upon substitution of Asp-96 or -115 by asparagine. While the signal due to the deprotonation of Asp-96 was clearly observed in the N intermediate, this residue remained protonated in L. Asp-115 was partially deprotonated in L. The C = O stretching vibration of protonated Asp-96 of L showed almost no shift upon 2H2O substitution, in contrast to the corresponding band of Asp-96 or Asp-115 of BR, which shifted by 9-12 cm-1 under the same conditions. In the model system of acetic acid in organic solvents, such an absence of the shift of the C = O stretching vibration of the protonated carboxylic acid upon 2H2O substitution was seen only when the O-H of acetic acid is hydrogen-bonded. The non-hydrogen-bonded monomer showed the 2H2O-dependent shift. Thus, the O-H bond of Asp-96 enters into hydrogen bonding upon conversion of BR to L. Its increased hydrogen bonding in L is consistent with the observed downshift of the O-H stretching vibration of the carboxylic acid of Asp-96.

  8. Probing the global potential energy minimum of (CH2O)2: THz absorption spectrum of (CH2O)2 in solid neon and para-hydrogen

    DEFF Research Database (Denmark)

    Andersen, Jonas; Voute, A.; Mihrin, Dmytro

    2017-01-01

    conformations of Cs and C2h symmetry have almost identical energies. The present work demonstrates how the class of large-amplitude hydrogen bond vibrational motion probed in the THz region provides excellent direct spectroscopic observables for these weak intermolecular CH⋯O hydrogen bond motifs....... The combination of concentration dependency measurements, observed isotopic spectral shifts associated with H/D substitutions and dedicated annealing procedures, enables the unambiguous assignment of three large-amplitude infrared active hydrogen bond vibrational modes for the non-planar Cs configuration of (CH2O...

  9. Kinetics of highly vibrationally excited O2(X) molecules in inductively-coupled oxygen plasmas

    Science.gov (United States)

    Annušová, Adriana; Marinov, Daniil; Booth, Jean-Paul; Sirse, Nishant; Lino da Silva, Mário; Lopez, Bruno; Guerra, Vasco

    2018-04-01

    The high degree of vibrational excitation of O2 ground state molecules recently observed in inductively coupled plasma discharges is investigated experimentally in more detail and interpreted using a detailed self-consistent 0D global kinetic model for oxygen plasmas. Additional experimental results are presented and used to validate the model. The vibrational kinetics considers vibrational levels up to v = 41 and accounts for electron impact excitation and de-excitation (e-V), vibration-to-translation relaxation (V-T) in collisions with O2 molecules and O atoms, vibration-to-vibration energy exchanges (V-V), excitation of electronically excited states, dissociative electron attachment, and electron impact dissociation. Measurements were performed at pressures of 10–80 mTorr (1.33 and 10.67 Pa) and radio frequency (13.56 MHz) powers up to 500 W. The simulation results are compared with the absolute densities in each O2 vibrational level obtained by high sensitivity absorption spectroscopy measurements of the Schumann–Runge bands for O2(X, v = 4–18), O(3 P) atom density measurements by two-photon absorption laser induced fluorescence (TALIF) calibrated against Xe, and laser photodetachment measurements of the O‑ negative ions. The highly excited O2(X, v) distribution exhibits a shape similar to a Treanor-Gordiets distribution, but its origin lies in electron impact e-V collisions and not in V-V up-pumping, in contrast to what happens in all other molecular gases known to date. The relaxation of vibrational quanta is mainly due to V-T energy-transfer collisions with O atoms and to electron impact dissociation of vibrationally excited molecules, e+O2(X, v)→O(3P)+O(3P).

  10. The Composition of Comet C/2009 P1 (Garradd) from Infrared Spectroscopy: Evidence for an Oxygen-Rich Heritage?

    Science.gov (United States)

    DiSanti, M. A.; Bonev, B. P.; Villaneueva, G. L.; Paganini, L.; Mumma, M. J.; Charnley, S. B.; Keane, J. V.; Blake, G. A.; Boehnhardt, H.; Lippi, M.

    2012-01-01

    Comets retain relatively primitive icy material remaining from the epoch of Solar System formation, however the extent to which their ices are modified remains a key question in cometary science. One way to address this is to measure the relative abundances of primary (parent) volatiles in comets (i.e., those ices native to the nucleus). High-resolution (lambda/delta lambda greater than 10(exp 4)) infrared spectroscopy is a powerful tool for measuring parent volatiles in comets through their vibrational emissions in the approximately 3-5 micrometer region. With modern instrumentation on world-class telescopes, we can quantify a multitude of species (e.g., H2O, C2H2, CH4, C2H6, CO, H2CO, CH3OH, HCN, NH3), even in comets with modest gas production. In space environments, compounds of keen interest to astrobiology could originate from HCN and NH3 (leading to amino acids), H2CO (leading to sugars), or C2H6, and CH4 (suggested precursors of ethyl- and methylamine). Measuring the abundances of these precursor molecules and their variability among comets contributes to understanding the synthesis of the more complex prebiotic compounds.

  11. Application of comparative vibrational spectroscopic and mechanistic studies in analysis of fisetin structure

    Science.gov (United States)

    Dimitrić Marković, Jasmina M.; Marković, Zoran S.; Milenković, Dejan; Jeremić, Svetlana

    2011-12-01

    This paper addresses experimental and theoretical research in fisetin (2-(3,4-dihydroxyphenyl)-3,7-dihydroxychromen-4-one) structure by means of experimental IR and Raman spectroscopies and mechanistic calculations. Density Functional Theory calculations, with M05-2X functional and the 6-311+G (2df, p) basis set implemented in the Gaussian 09 package, are performed with the aim to support molecular structure, vibrational bands' positions and their intensities. Potential energy distribution (PED) values and the description of the largest vibrational contributions to the normal modes are calculated. The most intense bands appear in the 1650-1500 cm -1 wavenumber region. This region involves a combination of the C dbnd O, C2 dbnd C3 and C-C stretching vibrational modes. Most of the bands in the 1500-1000 cm -1 range involve C-C stretching, O-C stretching and in-plane C-C-H, C-O-H, C-C-O and C-C-C bending vibrations of the rings. The region below 1000 cm -1 is characteristic to the combination of in plane C-C-C-H, H-C-C-H, C-C-C-C, C-C-O-C and out of plane O-C-C-C, C-C-O-C, C-C-C-C torsional modes. The Raman spectra of baicalein and quercetin were used for qualitative comparison with fisetin spectrum and verification of band assignments. The applied detailed vibrational spectral analysis and the assignments of the bands, proposed on the basis of fundamentals, reproduced the experimental results with high degree of accuracy.

  12. Infrared and Raman spectroscopic characterizations on new Fe sulphoarsenate hilarionite (Fe2(III)(SO4)(AsO4)(OH)·6H2O): Implications for arsenic mineralogy in supergene environment of mine area

    Science.gov (United States)

    Liu, Jing; He, LiLe; Dong, Faqin; Frost, Ray L.

    2017-01-01

    Hilarionite (Fe2 (SO4)(AsO4)(OH)·6H2O) is a new Fe sulphoarsenates mineral, which recently is found in the famous Lavrion ore district, Atliki Prefecture, Greece. The spectroscopic study of hilarionite enriches the data of arsenic mineralogy in supergene environment of a mine area. The infrared and Raman means are used to characterize the molecular structure of this mineral. The IR bands at 875 and 905 cm- 1 are assigned to the antisymmetric stretching vibrations of AsO43 -. The IR bands at 1021, 1086 and 1136 cm- 1 correspond to the possible antisymmetric and symmetric stretching vibrations of SO42 -. The Raman bands at 807, 843 and 875 cm- 1 clearly show that arsenate components in the mineral structure, which are assigned to the symmetric stretching vibrations (ν1) of AsO43 - (807 and 843 cm- 1) and the antisymmetric vibration (ν3) (875 cm- 1). IR bands provide more sulfate information than Raman, which can be used as the basis to distinguish hilarionite from kaňkite. The powder XRD data shows that hilarionite has obvious differences with the mineral structure of kaňkite. The thermoanalysis and SEM-EDX results show that hilarionite has more sulfate than arsenate.

  13. Microwave, infrared and Raman spectra, adjusted r{sub 0} structural parameters, conformational stability, and vibrational assignment of cyclopropylfluorosilane

    Energy Technology Data Exchange (ETDEWEB)

    Panikar, Savitha S. [Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Guirgis, Gamil A.; Eddens, Matthew T.; Dukes, Horace W. [Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424 (United States); Conrad, Andrew R.; Tubergen, Michael J. [Department of Chemistry, Kent State University, Kent, OH 44242 (United States); Gounev, Todor K. [Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Durig, James R., E-mail: durigj@umkc.edu [Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States)

    2013-03-29

    Highlights: ► The most stable gauche conformer has been identified from microwave spectra. ► Enthalpy difference has been determined between the two forms. ► Adjusted r{sub 0} structures were obtained for the gauche form. ► Ab initio calculations were performed for the two conformers. - Abstract: FT-microwave, infrared spectra of gas and Raman spectra of liquid for cyclopropylfluorosilane, c-C{sub 3}H{sub 5}SiH{sub 2}F have been recorded. 51 transitions for the {sup 28}Si, {sup 29}Si, and {sup 30}Si isotopomers have been assigned for the gauche conformer. Enthalpy differences in xenon solution by variable temperature infrared spectra between the more stable gauche and lesser stable cis form gave 109 ± 9 cm{sup −1}. From the microwave rotational constants for the three isotopomers ({sup 28}Si, {sup 29}Si, {sup 30}Si) combined with structural parameters predicted from MP2(full)/6-311+G(d, p) calculations, adjusted r{sub 0} structural parameters were obtained for the gauche conformer. The heavy atom distances (Å): Si–C{sub 2} = 1.836(3); C{sub 2}–C{sub 4} = 1.525(3); C{sub 2}–C{sub 5} = 1.519(3); C{sub 4}–C{sub 5} = 1.494(3); Si–F = 1.594(3) and angles (°): ∠CSiF = 111.2(5); ∠SiC{sub 2}C{sub 4} = 117.5(5); ∠SiC{sub 2}C{sub 5} = 119.2(5). To support the vibrational assignments, MP2(full)/6-31G(d) calculations were carried out. Results are discussed and compared to the corresponding properties of some similar molecules.

  14. Infrared absorption of CH{sub 3}OSO and CD{sub 3}OSO radicals produced upon photolysis of CH{sub 3}OS(O)Cl and CD{sub 3}OS(O)Cl in p-H{sub 2} matrices

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yu-Fang; Kong, Lin-Jun [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 30010, Taiwan (China); Lee, Yuan-Pern [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 30010, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China)

    2012-03-28

    Irradiation at 239 {+-} 20 nm of a p-H{sub 2} matrix containing methoxysulfinyl chloride, CH{sub 3}OS(O)Cl, at 3.2 K with filtered light from a medium-pressure mercury lamp produced infrared (IR) absorption lines at 3028.4 (attributable to {nu}{sub 1}, CH{sub 2} antisymmetric stretching), 2999.5 ({nu}{sub 2}, CH{sub 3} antisymmetric stretching), 2950.4 ({nu}{sub 3}, CH{sub 3} symmetric stretching), 1465.2 ({nu}{sub 4}, CH{sub 2} scissoring), 1452.0 ({nu}{sub 5}, CH{sub 3} deformation), 1417.8 ({nu}{sub 6}, CH{sub 3} umbrella), 1165.2 ({nu}{sub 7}, CH{sub 3} wagging), 1152.1 ({nu}{sub 8}, S=O stretching mixed with CH{sub 3} rocking), 1147.8 ({nu}{sub 9}, S=O stretching mixed with CH{sub 3} wagging), 989.7 ({nu}{sub 10}, C-O stretching), and 714.5 cm{sup -1} ({nu}{sub 11}, S-O stretching) modes of syn-CH{sub 3}OSO. When CD{sub 3}OS(O)Cl in a p-H{sub 2} matrix was used, lines at 2275.9 ({nu}{sub 1}), 2251.9 ({nu}{sub 2}), 2083.3 ({nu}{sub 3}), 1070.3 ({nu}{sub 4}), 1056.0 ({nu}{sub 5}), 1085.5 ({nu}{sub 6}), 1159.7 ({nu}{sub 7}), 920.1 ({nu}{sub 8}), 889.0 ({nu}{sub 9}), 976.9 ({nu}{sub 10}), and 688.9 ({nu}{sub 11}) cm{sup -1} appeared and are assigned to syn-CD{sub 3}OSO; the mode numbers correspond to those used for syn-CH{sub 3}OSO. The assignments are based on the photolytic behavior and a comparison of observed vibrational wavenumbers, infrared intensities, and deuterium isotopic shifts with those predicted with the B3P86/aug-cc-pVTZ method. Our results extend the previously reported four transient IR absorption bands of gaseous syn-CH{sub 3}OSO near 2991, 2956, 1152, and 994 cm{sup -1} to 11 lines, including those associated with C-O, O-S, and S=O stretching modes. Vibrational wavenumbers of syn-CD{sub 3}OSO are new. These results demonstrate the advantage of a diminished cage effect of solid p-H{sub 2} such that the Cl atom, produced via UV photodissociation of CH{sub 3}OS(O)Cl in situ, might escape from the original cage to yield isolated CH{sub 3}OSO

  15. Molecular and vibrational structure of the extracellular bacterial signal compound N-butyryl-homoserine lactone (C4-HSL)

    DEFF Research Database (Denmark)

    Bak, Jimmy; Spanget-Larsen, Jens

    2009-01-01

    contributions from suspended micro-crystalline aggregates and dissolved monomeric species. The key vibrational bands of the monomeric form of C4-HSL are reported here for the first time: 3425cm−1 (ν(N-H)), 1784cm−1 (ν(C&dbnd;O), lactone), 1688cm−1 (amide I), and 1494cm−1 (amide II) (CCl4)....

  16. Effect of surface morphology and densification on the infrared emissivity of C/SiC composites

    International Nuclear Information System (INIS)

    Wang, Fuyuan; Cheng, Laifei; Zhang, Qing; Zhang, Litong

    2014-01-01

    Highlights: • The cauliflower-like microstructure improved the infrared emissivity multiply. • The infrared emissivity decreased continually with the improving surface flatness. • The densification process boosted the infrared emissivity. - Abstract: The effects of surface morphology and densification on the infrared emissivity of 2D C/SiC composites were investigated in 6–16 μm from 1000 °C to 1600 °C. As the sample surface was polished, the reflection and scattering for the electromagnetic waves of thermal radiation were reduced, causing a sustained decrease in the infrared emissivity. The space-variant polarizations caused by the cauliflower-like microstructure were enervated in the smooth surface, which enhanced the reduction trendy in the infrared emissivity. In densification process, the increasing SiC content and the growing amount of the cauliflower-like microstructure on sample surface improved the infrared emissivity of C/SiC composites, while the decreasing porosity decreased it. Due to the greater positive effects on the thermal radiation during the densification process, the infrared emissivity of C/SiC composites increased successively with density

  17. Effect of surface morphology and densification on the infrared emissivity of C/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fuyuan, E-mail: wangfy1986@gmail.com; Cheng, Laifei; Zhang, Qing, E-mail: zhangqing@nwpu.edu.cn; Zhang, Litong

    2014-09-15

    Highlights: • The cauliflower-like microstructure improved the infrared emissivity multiply. • The infrared emissivity decreased continually with the improving surface flatness. • The densification process boosted the infrared emissivity. - Abstract: The effects of surface morphology and densification on the infrared emissivity of 2D C/SiC composites were investigated in 6–16 μm from 1000 °C to 1600 °C. As the sample surface was polished, the reflection and scattering for the electromagnetic waves of thermal radiation were reduced, causing a sustained decrease in the infrared emissivity. The space-variant polarizations caused by the cauliflower-like microstructure were enervated in the smooth surface, which enhanced the reduction trendy in the infrared emissivity. In densification process, the increasing SiC content and the growing amount of the cauliflower-like microstructure on sample surface improved the infrared emissivity of C/SiC composites, while the decreasing porosity decreased it. Due to the greater positive effects on the thermal radiation during the densification process, the infrared emissivity of C/SiC composites increased successively with density.

  18. Lattice vibrational properties of transition metal carbides (TiC, ZrC

    Indian Academy of Sciences (India)

    Lattice vibrational properties of transition metal carbides (TiC, ZrC and HfC) have been presented by including the effects of free-carrier doping and three-body interactions in the rigid shell model. The short-range overlap repulsion is operative up to the second neighbour ions. An excellent agreement has been obtained ...

  19. Electrical and optical properties of thermally-evaporated thin films from A2[TiO(C2O4)2] (A = K, PPh4) and 1,8-dihydroxyanthraquinone

    International Nuclear Information System (INIS)

    Carbia-Ruelas, E.; Sanchez-Vergara, M.E.; Garcia-Montalvo, V.; Morales-Saavedra, O.G.; Alvarez-Bada, J.R.

    2011-01-01

    In this work, the synthesis of molecular materials formed from A 2 [TiO(C 2 O 4 ) 2 ] (A = K, PPh4) and 1,8 dihydroxyanthraquinone is reported. The synthesized materials were characterized by atomic force microscopy (AFM), infrared (IR) and ultraviolet-visible (UV-vis) spectroscopy. IR spectroscopy showed that the molecular-material thin-films, deposited by vacuum thermal evaporation, exhibit the same intra-molecular vibration modes as the starting powders, which suggests that the thermal evaporation process does not alter the initial chemical structures. Electrical transport properties were studied by dc conductivity measurements. The electrical activation energies of the complexes, which were in the range of 0.003-1.16 eV, were calculated from Arrhenius plots. Optical absorption studies in the wavelength range of 190-1090 nm at room temperature showed that the optical band gaps of the thin films were around 1.9-2.3 eV for direct transitions Eg d . The cubic NLO effects were substantially enhanced for materials synthesized from K 2 [TiO(C 2 O 4 ) 2 ], where χ (3) (-3ω; ω, ω, ω) values in the promising range of 10 -12 esu have been evaluated.

  20. Theoretical Study of Infrared and Raman Spectra of Hydrated Magnesium Sulfate Salts

    Science.gov (United States)

    Chaban, Galina M.; Huo, Winifred M.; Lee, Timothy J.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Harmonic and anharmonic vibrational frequencies, as well as infrared and Raman intensities, are calculated for MgSO4.nH20 (n=1-3). Electronic structure theory at the second order Moller-Plesset perturbation theory (MP2) level with a triple-zeta + polarization (TZP) basis set is used to determine the geometry, properties, and vibrational spectra of pure and hydrated MgSO4 salts. The direct vibrational self-consistent field (VSCF) method and its correlation corrected (CC-VSCF) extension are used to determine anharmonic corrections to vibrational frequencies and intensities for the pure MgSO4 and its complex with one water molecule. Very significant differences are found between vibrational of water molecules in complexes with MgSO4 and pure water. Some of the O-H stretching frequencies are shifted to the red very significantly (by up to 1500-2000/cm) upon complexation with magnesium sulfate. They should be observed between 1700 and 3000/cm in a region very different from the corresponding O-H stretch frequency region of pure water (3700-3800/cm). In addition, the SO2 stretching vibrations are found at lower frequency regions than the water vibrations. They can serve as unique identifiers for the presence of sulfate salts. The predicted infrared and Raman spectra should be of valuable help in the design of future missions and analysis of observed data from the ice surface of Jupiter's moon Europa that possibly contains hydrated MgSO4 salts.

  1. Infrared emissions in MgSrAl10O17:Er3+ phosphor co-doped with Yb3+/Ba2+/Ca2+ obtained by solution combustion route

    International Nuclear Information System (INIS)

    Singh, Vijay; Kumar Rai, Vineet; Venkatramu, V.; Chakradhar, R.P.S.; Hwan Kim, Sang

    2013-01-01

    An intense infrared emitting MgSrAl 10 O 17 :Er 3+ phosphor co-doped with Yb 3+ , Ba 2+ and Ca 2+ ions have been prepared by a solution combustion method. Phase purity of the derived compounds was confirmed by X-ray diffraction technique. The vibrational properties of MgSrAl 10 O 17 phosphor was studied by Fourier transform infrared spectroscopy. The broad and strong infrared emission of Er 3+ ions at around 1.53 μm was observed upon excitation at 980 nm. Effect of co-doping with the Yb 3+ , Ba 2+ and Ca 2+ ions on the infrared luminescence intensity of Er 3+ ions and the mechanism responsible for the variation in the infrared intensity have been discussed. The results indicate that these materials may be suitable for the optical telecommunication window and wavelength division multiplexing applications. - Highlights: ► The hexagonal phase of MgSrAl 10 O 17 could be obtained by the low temperature combustion method. ► The broad and strong infrared emission of Er 3+ ions at around 1.53 μm was observed. ► Effect of co-doping with the Yb 3+ , Ba 2+ and Ca 2+ ions on the infrared luminescence intensity of Er 3+ were reported.

  2. [Infrared spectral analysis for calcined borax].

    Science.gov (United States)

    Zhao, Cui; Ren, Li-Li; Wang, Dong; Zhou, Ping; Zhang, Qian; Wang, Bo-Tao

    2011-08-01

    To valuate the quality of calcined borax which is sold in the market, 18 samples of calcined borax were studied using the Fourier transform infrared, and samples with different water content were selected and analyzed. Then, the results of analysis were used to evaluate the quality of calcined borax. Results show that the infrared spectra of calcined borax include OH vibration, BO3(-3) vibration and BO4(5-) vibration absorption bands. The position and width of OH vibration absorption band depend on the level of water content, and the more the water content, the wider the absorption band. The number of BO3(3-) vibration and BO4(5-) vibration bands also depend on the level of water content, and the more the water content, and the stronger the hydrogen bond and the lower the symmetry of B atoms, the more the number of infrared absorption peaks. It was concluded that because the quality of calcined borax has direct correlation with water content, the infrared spectroscopy is an express and objective approach to quality analysis and evaluation of calcined borax.

  3. Quantum Monte Carlo for vibrating molecules

    International Nuclear Information System (INIS)

    Brown, W.R.; Lawrence Berkeley National Lab., CA

    1996-08-01

    Quantum Monte Carlo (QMC) has successfully computed the total electronic energies of atoms and molecules. The main goal of this work is to use correlation function quantum Monte Carlo (CFQMC) to compute the vibrational state energies of molecules given a potential energy surface (PES). In CFQMC, an ensemble of random walkers simulate the diffusion and branching processes of the imaginary-time time dependent Schroedinger equation in order to evaluate the matrix elements. The program QMCVIB was written to perform multi-state VMC and CFQMC calculations and employed for several calculations of the H 2 O and C 3 vibrational states, using 7 PES's, 3 trial wavefunction forms, two methods of non-linear basis function parameter optimization, and on both serial and parallel computers. In order to construct accurate trial wavefunctions different wavefunctions forms were required for H 2 O and C 3 . In order to construct accurate trial wavefunctions for C 3 , the non-linear parameters were optimized with respect to the sum of the energies of several low-lying vibrational states. In order to stabilize the statistical error estimates for C 3 the Monte Carlo data was collected into blocks. Accurate vibrational state energies were computed using both serial and parallel QMCVIB programs. Comparison of vibrational state energies computed from the three C 3 PES's suggested that a non-linear equilibrium geometry PES is the most accurate and that discrete potential representations may be used to conveniently determine vibrational state energies

  4. The vibrational spectrum of FeO{sub 2}{sup +} isomers—Theoretical benchmark and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Toni M.; Boese, A. Daniel; Sauer, Joachim, E-mail: js@chemie.hu-berlin.de [Institut für Chemie, Humboldt-Universität zu Berlin, Unter den Linden 6, D 10099 Berlin (Germany); Wende, Torsten; Fagiani, Matias [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D 14195 Berlin (Germany); Asmis, Knut R., E-mail: asmis@fhi-berlin.mpg.de [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D 14195 Berlin (Germany); Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, D-04103 Leipzig (Germany)

    2014-05-28

    Infrared photodissociation is used to record the vibrational spectrum of FeO{sub 2}{sup +}(He){sub 2–4} which shows three bands at 1035, 980, and 506 cm{sup −1}. Quantum chemical multi-reference configuration interaction calculations (MRCISD) of structures and harmonic frequencies show that these bands are due to two different isomers, an inserted dioxo complex with Fe in the +V oxidation state and a side-on superoxo complex with Fe in the +II oxidation state. These two are separated by a substantial barrier, 53 kJ/mol, whereas the third isomer, an end-on complex between Fe{sup +} and an O{sub 2} molecule, is easily converted into the side-on complex. For all three isomers, states of different spin multiplicity have been considered. Our best energies are computed at the MRCISD+Q level, including corrections for complete active space and basis set extension, core-valence correlation, relativistic effects, and zero-point vibrational energy. The average coupled pair functional (ACPF) yields very similar energies. Density functional theory (DFT) differs significantly from our best estimates for this system, with the TPSS functional yielding the best results. The other functionals tested are BP86, PBE, B3LYP, TPSSh, and B2PLYP. Complete active space second order perturbation theory (CASPT2) performs better than DFT, but less good than ACPF.

  5. Application of comparative vibrational spectroscopic and mechanistic studies in analysis of fisetin structure.

    Science.gov (United States)

    Dimitrić Marković, Jasmina M; Marković, Zoran S; Milenković, Dejan; Jeremić, Svetlana

    2011-12-01

    This paper addresses experimental and theoretical research in fisetin (2-(3,4-dihydroxyphenyl)-3,7-dihydroxychromen-4-one) structure by means of experimental IR and Raman spectroscopies and mechanistic calculations. Density Functional Theory calculations, with M05-2X functional and the 6-311+G (2df, p) basis set implemented in the Gaussian 09 package, are performed with the aim to support molecular structure, vibrational bands' positions and their intensities. Potential energy distribution (PED) values and the description of the largest vibrational contributions to the normal modes are calculated. The most intense bands appear in the 1650-1500 cm(-1) wavenumber region. This region involves a combination of the CO, C2C3 and C-C stretching vibrational modes. Most of the bands in the 1500-1000 cm(-1) range involve C-C stretching, O-C stretching and in-plane C-C-H, C-O-H, C-C-O and C-C-C bending vibrations of the rings. The region below 1000 cm(-1) is characteristic to the combination of in plane C-C-C-H, H-C-C-H, C-C-C-C, C-C-O-C and out of plane O-C-C-C, C-C-O-C, C-C-C-C torsional modes. The Raman spectra of baicalein and quercetin were used for qualitative comparison with fisetin spectrum and verification of band assignments. The applied detailed vibrational spectral analysis and the assignments of the bands, proposed on the basis of fundamentals, reproduced the experimental results with high degree of accuracy. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Polarized Raman and Infrared Spectroscopy and ab Initio Calculation of Palmitic and Stearic Acids in the Bm and C Forms.

    Science.gov (United States)

    L da Silva, L F; Andrade-Filho, T; Freire, P T C; Filho, J Mendes; da Silva Filho, J G; Saraiva, G D; Moreira, S G C; de Sousa, F F

    2017-06-29

    A complete experimental study on the vibrational properties of palmitic and stearic acids crystallized in the B m and C forms, both belonging to the monoclinic system with the P2 1 /a (C 2h 5 ) space group, through polarized Raman and infrared spectroscopy, is reported in this paper. Density functional theory calculations were also performed to assign the normal modes and to help in the interpretation of the experimental data. The different polarizations were compared and their influence on the spectral profiles, in both the lattice and the internal mode regions, was discussed. In general, the Raman and infrared spectra exhibit accentuated differences among the polymorphic forms, which are associated with the different molecular modifications, defined as gauche and all-trans conformations. Insights about interaction among different groups are also furnished.

  7. Et2NH2C6H3(CO23SnBr2.4H2O: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    DAOUDA NDOYE

    2014-01-01

    Full Text Available The title compound has been obtained on allowing [C6H3(CO23(Et2NH23] to react with SnBr4. The molecular structure of Et2NH2C6H3(CO23SnBr2.4H2O has been determined on the basis of the infrared data. The suggested structure is a dimer in which each tin atom is hexacoordinated by two chelating C6H3(CO233- anions and two Br atoms. Cy2NH2+cations are involved through hydrogen bonds with non-coordinating CO2 groups. The suggested structure is a cage.

  8. [Study on crystal growth and vibrational spectra of Yb(x) : KY(1-x) (WO4)2].

    Science.gov (United States)

    Liu, Jing-He; Zhang, Ying; Zhang, Li-Jie; Zeng, Fan-Ming; Wang, Cheng-Wei; Zhang, Xue-Jian

    2008-02-01

    Yb(x) : KY(1-x)W (x = 0.05)and KYbW crystals were grown by TSSG method. Both of the structure and spectral properties were compared. The condition for the crystal growth is: the rotation rate 10-15 r x min(-1), the pulling speed 1-2 d(-1), the growing period 10-15 d, cooling growing speed 0.05-0.1 degrees C x h(-1), and the cooling speed 20 degrees C x h(-1). X-ray powder diffraction analysis was performed for the crystal powder. They belong to beta-KYW structure with low thermal phase. The cell parameters of the two crystals were calculated, and they are respectively a1 = 1.063 nm, b1 = 1.034 nm, c1 = 0.755 nm, beta1 = 130.75 degrees, Z1 = 4 and a2 = 1.061 nm, b2 = 1.029 nm, c2 = 0.749 nm, beta2 = 130.65 degrees and Z2 = 4. The infrared spectrum and Raman spectrum of crystal were measured. The sample of Yb(x) : KY(1-x) W (x = 0.05) had stronger infrared absorption peaks at 925, 891, 840, 777 and 749 cm(-1), which were caused by stretching vibration. The sample of KYW had stronger infrared absorption peaks at 484 and 437 cm(-1) caused by bending vibration. The vibration modes were analysed and vibrational frequencies of vibratory activity was assigned. The two crystals had strong Raman activity. The vibration of WOOW and WOW exists from 200 to 1000 cm(-1).

  9. High throughput assessment of cells and tissues: Bayesian classification of spectral metrics from infrared vibrational spectroscopic imaging data.

    Science.gov (United States)

    Bhargava, Rohit; Fernandez, Daniel C; Hewitt, Stephen M; Levin, Ira W

    2006-07-01

    Vibrational spectroscopy allows a visualization of tissue constituents based on intrinsic chemical composition and provides a potential route to obtaining diagnostic markers of diseases. Characterizations utilizing infrared vibrational spectroscopy, in particular, are conventionally low throughput in data acquisition, generally lacking in spatial resolution with the resulting data requiring intensive numerical computations to extract information. These factors impair the ability of infrared spectroscopic measurements to represent accurately the spatial heterogeneity in tissue, to incorporate robustly the diversity introduced by patient cohorts or preparative artifacts and to validate developed protocols in large population studies. In this manuscript, we demonstrate a combination of Fourier transform infrared (FTIR) spectroscopic imaging, tissue microarrays (TMAs) and fast numerical analysis as a paradigm for the rapid analysis, development and validation of high throughput spectroscopic characterization protocols. We provide an extended description of the data treatment algorithm and a discussion of various factors that may influence decision-making using this approach. Finally, a number of prostate tissue biopsies, arranged in an array modality, are employed to examine the efficacy of this approach in histologic recognition of epithelial cell polarization in patients displaying a variety of normal, malignant and hyperplastic conditions. An index of epithelial cell polarization, derived from a combined spectral and morphological analysis, is determined to be a potentially useful diagnostic marker.

  10. Crystal and molecular structure of N-(4-nitrophenyl)-β-alanine—Its vibrational spectra and theoretical calculations

    Science.gov (United States)

    Marchewka, M. K.; Drozd, M.; Janczak, J.

    2011-08-01

    The N-(4-nitrophenyl)-β-alanine in crystalline form directly by the addition of 4-nitroaniline to the acrylic acid in aqueous solution has been obtained. The title β-alanine derivative crystallizes in the P2 1/ c space group of monoclinic system with four molecules per unit cell. The X-ray geometry of β-alanine derivative molecule has been compared with those obtained by molecular orbital calculations corresponding to the gas phase. In the crystal the molecules related by an inversion center interact via symmetrically equivalent O-H⋯O hydrogen bonds with O⋯O distance of 2.656(2) Å forming a dimeric structure. The dimers of β-alanine derivative weakly interact via N-H⋯O hydrogen bonds between the H atom of β-amine groups and one of O atom of nitro groups. The room temperature powder vibrational (infrared and Raman) measurements are in accordance with the X-ray analysis. In aqueous solution of 4-nitroaniline and acrylic acid, the double C dbnd C bond of vinyl group of acrylic acid breaks as result of 4-nitroaniline addition.

  11. Cortical activation pattern during shoulder simple versus vibration exercises: a functional near infrared spectroscopy study.

    Science.gov (United States)

    Jang, Sung Ho; Yeo, Sang Seok; Lee, Seung Hyun; Jin, Sang Hyun; Lee, Mi Young

    2017-08-01

    To date, the cortical effect of exercise has not been fully elucidated. Using the functional near infrared spectroscopy, we attempted to compare the cortical effect between shoulder vibration exercise and shoulder simple exercise. Eight healthy subjects were recruited for this study. Two different exercise tasks (shoulder vibration exercise using the flexible pole and shoulder simple exercise) were performed using a block paradigm. We measured the values of oxygenated hemoglobin in the four regions of interest: the primary sensory-motor cortex (SM1 total, arm somatotopy, and leg and trunk somatotopy), the premotor cortex, the supplementary motor area, and the prefrontal cortex. During shoulder vibration exercise and shoulder simple exercise, cortical activation was observed in SM1 (total, arm somatotopy, and leg and trunk somatotopy), premotor cortex, supplementary motor area, and prefrontal cortex. Higher oxygenated hemoglobin values were also observed in the areas of arm somatotopy of SM1 compared with those of other regions of interest. However, no significant difference in the arm somatotopy of SM1 was observed between the two exercises. By contrast, in the leg and trunk somatotopy of SM1, shoulder vibration exercise led to a significantly higher oxy-hemoglobin value than shoulder simple exercise. These two exercises may result in cortical activation effects for the motor areas relevant to the shoulder exercise, especially in the arm somatotopy of SM1. However, shoulder vibration exercise has an additional cortical activation effect for the leg and trunk somatotopy of SM1.

  12. Cortical activation pattern during shoulder simple versus vibration exercises: a functional near infrared spectroscopy study

    Directory of Open Access Journals (Sweden)

    Sung Ho Jang

    2017-01-01

    Full Text Available To date, the cortical effect of exercise has not been fully elucidated. Using the functional near infrared spectroscopy, we attempted to compare the cortical effect between shoulder vibration exercise and shoulder simple exercise. Eight healthy subjects were recruited for this study. Two different exercise tasks (shoulder vibration exercise using the flexible pole and shoulder simple exercise were performed using a block paradigm. We measured the values of oxygenated hemoglobin in the four regions of interest: the primary sensory-motor cortex (SM1 total, arm somatotopy, and leg and trunk somatotopy, the premotor cortex, the supplementary motor area, and the prefrontal cortex. During shoulder vibration exercise and shoulder simple exercise, cortical activation was observed in SM1 (total, arm somatotopy, and leg and trunk somatotopy, premotor cortex, supplementary motor area, and prefrontal cortex. Higher oxygenated hemoglobin values were also observed in the areas of arm somatotopy of SM1 compared with those of other regions of interest. However, no significant difference in the arm somatotopy of SM1 was observed between the two exercises. By contrast, in the leg and trunk somatotopy of SM1, shoulder vibration exercise led to a significantly higher oxy-hemoglobin value than shoulder simple exercise. These two exercises may result in cortical activation effects for the motor areas relevant to the shoulder exercise, especially in the arm somatotopy of SM1. However, shoulder vibration exercise has an additional cortical activation effect for the leg and trunk somatotopy of SM1.

  13. A First-Principles Study on the Vibrational and Electronic Properties of Zr-C MXenes

    Science.gov (United States)

    Wang, Chang-Ying; Guo, Yong-Liang; Zhao, Yuan-Yuan; Zeng, Guang-Li; Zhang, Wei; Ren, Cui-Lan; Han, Han; Huai, Ping

    2018-03-01

    Within the framework of density functional theory calculations, the structural, vibrational, and electronic properties of Zr n C n - 1 (n = 2, 3, and 4) and their functionalized MXenes have been investigated. We find that the most stable configurations for Zr-C MXene are the ones that the terminal groups F, O, and OH locate on the common hollow site of the superficial Zr layer and its adjacent C layer. F and OH-terminated Zr 3 C 2 and Zr 4 C 3 have small imaginary acoustic phonon branches around Γ point while the others have no negative phonon modes. The pristine MXenes (Zr 2 C, Zr 3 C 2 and Zr 4 C 3 ) are all metallic with large DOS contributed by the Zr atom at the Fermi energy. When functionalized by F, O and OH, new hybridization states appear and the DOS at the Fermi level are reduced. Moreover, we find that their metallic characteristic increases with an increase in n. For (Zr n C n - 1 )O 2, Zr 2 CO 2 is a semiconductor, Zr 3C2O2 is a semimetal, and Zr 4 C 3O2 becomes a metal. Supported by the National Natural Science Foundation of China under Grant Nos. 11605273, 21571185, U1404111, 11504089, 21501189, 21676291, the Shanghai Municipal Science and Technology Commission 16ZR1443100, the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA02040104)

  14. Thermally and vibrationally induced conformational isomerizations, infrared spectra, and photochemistry of gallic acid in low-temperature matrices

    Energy Technology Data Exchange (ETDEWEB)

    Justino, Licínia L. G., E-mail: liciniaj@ci.uc.pt; Reva, Igor; Fausto, Rui [CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal)

    2016-07-07

    Near-infrared (near-IR) narrowband selective vibrational excitation and annealing of gallic acid (3,4,5-trihydroxybenzoic acid) isolated in cryogenic matrices were used to induce interconversions between its most stable conformers. The isomerizations were probed by infrared spectroscopy. An extensive set of quantum chemical calculations, carried out at the DFT(B3LYP)/6-311++G(d,p) level of approximation, was used to undertake a detailed analysis of the ground state potential energy surface of the molecule. This investigation of the molecule conformational space allowed extracting mechanistic insights into the observed annealing- or near-IR-induced isomerization processes. The infrared spectra of the two most stable conformers of gallic acid in N{sub 2}, Xe, and Ar matrices were fully assigned. Finally, the UV-induced photochemistry of the matrix isolated compound was investigated.

  15. Thermally and vibrationally induced conformational isomerizations, infrared spectra, and photochemistry of gallic acid in low-temperature matrices

    Science.gov (United States)

    Justino, Licínia L. G.; Reva, Igor; Fausto, Rui

    2016-07-01

    Near-infrared (near-IR) narrowband selective vibrational excitation and annealing of gallic acid (3,4,5-trihydroxybenzoic acid) isolated in cryogenic matrices were used to induce interconversions between its most stable conformers. The isomerizations were probed by infrared spectroscopy. An extensive set of quantum chemical calculations, carried out at the DFT(B3LYP)/6-311++G(d,p) level of approximation, was used to undertake a detailed analysis of the ground state potential energy surface of the molecule. This investigation of the molecule conformational space allowed extracting mechanistic insights into the observed annealing- or near-IR-induced isomerization processes. The infrared spectra of the two most stable conformers of gallic acid in N2, Xe, and Ar matrices were fully assigned. Finally, the UV-induced photochemistry of the matrix isolated compound was investigated.

  16. Thermally and vibrationally induced conformational isomerizations, infrared spectra, and photochemistry of gallic acid in low-temperature matrices

    International Nuclear Information System (INIS)

    Justino, Licínia L. G.; Reva, Igor; Fausto, Rui

    2016-01-01

    Near-infrared (near-IR) narrowband selective vibrational excitation and annealing of gallic acid (3,4,5-trihydroxybenzoic acid) isolated in cryogenic matrices were used to induce interconversions between its most stable conformers. The isomerizations were probed by infrared spectroscopy. An extensive set of quantum chemical calculations, carried out at the DFT(B3LYP)/6-311++G(d,p) level of approximation, was used to undertake a detailed analysis of the ground state potential energy surface of the molecule. This investigation of the molecule conformational space allowed extracting mechanistic insights into the observed annealing- or near-IR-induced isomerization processes. The infrared spectra of the two most stable conformers of gallic acid in N 2 , Xe, and Ar matrices were fully assigned. Finally, the UV-induced photochemistry of the matrix isolated compound was investigated.

  17. Crystal structure, vibrational spectra, optical and DFT studies of bis (3-azaniumylpropyl) azanium pentachloroantimonate (III) chloride monohydrate (C6H20N3)SbCl5·Cl·H2O

    Science.gov (United States)

    Ahmed, Houssem Eddine; Kamoun, Slaheddine

    2017-09-01

    The crystal structure of (C6H20N3)SbCl5·Cl·H2O is built up of [NH3(CH2)3NH2(CH2)3NH3]3 + cations, [SbCl5]2 - anions, free Cl- anions and neutral water molecules connected together by Nsbnd H ⋯ Cl, Nsbnd H ⋯ O and Osbnd H ⋯ Cl hydrogen bonds. The optical band gap determined by diffuse reflection spectroscopy (DRS) is 3.78 eV for a direct allowed transition. Optimized molecular geometry, atomic Mulliken charges, harmonic vibrational frequencies, HOMO-LUMO and related molecular properties of the (C6H20N3)SbCl5·Cl·H2O compound were calculated by Density functional theory (DFT) using B3LYP method with GenECP sets. The calculated structural parameters (bond lengths and angles) are in good agreement with the experimental XRD data. The vibrational unscaled wavenumbers were calculated and scaled by a proper scaling factor of 0.984. Acceptable consistency was observed between calculated and experimental results. The assignments of wavenumbers were made on the basis of potential energy distribution (PED) using Vibrational Energy Distribution Analysis (VEDA) software. The HOMO-LUMO study was extended to calculate various molecular parameters like ionization potential, electron affinity, global hardness, electro-chemical potential, electronegativity and global electrophilicity of the given molecule.

  18. Overtone vibrational spectroscopy in H2-H2O complexes: a combined high level theoretical ab initio, dynamical and experimental study.

    Science.gov (United States)

    Ziemkiewicz, Michael P; Pluetzer, Christian; Nesbitt, David J; Scribano, Yohann; Faure, Alexandre; van der Avoird, Ad

    2012-08-28

    First results are reported on overtone (v(OH) = 2 ← 0) spectroscopy of weakly bound H(2)-H(2)O complexes in a slit supersonic jet, based on a novel combination of (i) vibrationally mediated predissociation of H(2)-H(2)O, followed by (ii) UV photodissociation of the resulting H(2)O, and (iii) UV laser induced fluorescence on the nascent OH radical. In addition, intermolecular dynamical calculations are performed in full 5D on the recent ab initio intermolecular potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008)] in order to further elucidate the identity of the infrared transitions detected. Excellent agreement is achieved between experimental and theoretical spectral predictions for the most strongly bound van der Waals complex consisting of ortho (I = 1) H(2) and ortho (I = 1) H(2)O (oH(2)-oH(2)O). Specifically, two distinct bands are seen in the oH(2)-oH(2)O spectrum, corresponding to internal rotor states in the upper vibrational manifold of Σ and Π rotational character. However, none of the three other possible nuclear spin modifications (pH(2)-oH(2)O, pH(2)-pH(2)O, or oH(2)-pH(2)O) are observed above current signal to noise level, which for the pH(2) complexes is argued to arise from displacement by oH(2) in the expansion mixture to preferentially form the more strongly bound species. Direct measurement of oH(2)-oH(2)O vibrational predissociation in the time domain reveals lifetimes of 15(2) ns and <5(2) ns for the Σ and Π states, respectively. Theoretical calculations permit the results to be interpreted in terms of near resonant energy levels and intermolecular alignment of the H(2) and H(2)O wavefunctions, providing insight into predissociation dynamical pathways from these metastable levels.

  19. Infrared spectra of cyanoacetaldehyde (NCCH2CHO): a potential prebiotic compound of astrochemical interest.

    Science.gov (United States)

    Benidar, Abdessamad; Georges, Robert; Guillemin, Jean-Claude; Mó, Otilia; Yáñez, Manuel

    2013-08-26

    Cyanoacetaldehyde (NC-CH2CH=O) and its isomer, cyanovinylalcohol (NC-CH=CH-OH), as possible components of the interstellar medium, comets, or planetary atmospheres, exist in equilibrium in the gas phase, although the latter compound is very much in the minority (2%). The recording and analysis of the gas-phase infrared spectrum of the former compound within the 4000-500 cm(-1) spectroscopic range and the potential presence of the latter isomer, which could be vital for their detection in these media, are reported. CCSD(T) and G4 high-level ab initio methods, as well as density functional theory calculations, predict the existence of two stable rotamers of cyanoacetaldehyde. The global minimum has a structure with an unusual O-C-C-C dihedral angle (150°) that falls between the antiperiplanar (180°) and anticlinal forms (120°). The second rotamer, which is about 4.0 kJ mol(-1) less stable in terms of free energy, has a planar structure that corresponds to the synperiplanar form (O-C-C-C dihedral angle: 0°). The absorption vibrational bands of the two aldehyde rotamers that are present in the mixture lead to a spectrum with a very complex structure in the region of deformation movements, in which several low-intensity bands overlap. A complete and unambiguous assignment of the experimental spectrum has been achieved by using the calculated harmonic and anharmonic vibrational frequencies. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Vibrational lifetimes of protein amide modes

    International Nuclear Information System (INIS)

    Peterson, K.A.; Rella, C.A.

    1995-01-01

    Measurement of the lifetimes of vibrational modes in proteins has been achieved with a single frequency infrared pump-probe technique using the Stanford Picosecond Free-electron Laser, These are the first direct measurements of vibrational dynamics in the polyamide structure of proteins. In this study, modes associated with the protein backbone are investigated. Results for the amide I band, which consists mainly of the stretching motion of the carbonyl unit of the amide linkage, show that relaxation from the first vibrational excited level (v=1) to the vibrational ground state (v=0) occurs within 1.5 picoseconds with apparent first order kinetics. Comparison of lifetimes for myoglobin and azurin, which have differing secondary structures, show a small but significant difference. The lifetime for the amide I band of myoglobin is 300 femtoseconds shorter than for azurin. Further measurements are in progress on other backbone vibrational modes and on the temperature dependence of the lifetimes. Comparison of vibrational dynamics for proteins with differing secondary structure and for different vibrational modes within a protein will lead to a greater understanding of energy transfer and dissipation in biological systems. In addition, these results have relevance to tissue ablation studies which have been conducted with pulsed infrared lasers. Vibrational lifetimes are necessary for calculating the rate at which the energy from absorbed infrared photons is converted to equilibrium thermal energy within the irradiated volume. The very fast vibrational lifetimes measured here indicate that mechanisms which involve direct vibrational up-pumping of the amide modes with consecutive laser pulses, leading to bond breakage or weakening, are not valid

  1. Off-resonant vibrational excitation: Orientational dependence and spatial control of photofragments

    DEFF Research Database (Denmark)

    Machholm, Mette; Henriksen, Niels Engholm

    2000-01-01

    Off-resonant and resonant vibrational excitation with short intense infrared (IR) laser pulses creates localized oscillating wave packets, but differs by the efficiency of the excitation and surprisingly by the orientational dependence. Orientational selectivity of the vibrational excitation...... of randomly oriented heteronuclear diatomic molecules can be obtained under simultaneous irradiation by a resonant and an off-resonant intense IR laser pulse: Molecules with one initial orientation will be vibrationally excited, while those with the opposite orientation will be at rest. The orientation-dependent...... distribution. (C) 2000 American Institute of Physics....

  2. Adsorption of F2C=CFCl on TiO2 nano-powder: Structures, energetics and vibrational properties from DRIFT spectroscopy and periodic quantum chemical calculations

    International Nuclear Information System (INIS)

    Tasinato, Nicola; Moro, Daniele; Stoppa, Paolo; Pietropolli Charmet, Andrea; Toninello, Piero; Giorgianni, Santi

    2015-01-01

    Graphical abstract: - Highlights: • Adsorption of F 2 C=CFCl on TiO 2 unveiled by DRIFTS and periodic DFT. • Structural, energetic and vibrational properties of F 2 C=CFCl @ anatase (1 0 1). • Binding energies (B3LYP-D2) between −17 and −46 kJ mol −1 depending on the anchor point. • Theory and experiment converge on the CF 2 moiety as the main anchor point. - Abstract: Photodegradation over titanium dioxide (TiO 2 ) is a very appealing technology for removing environmental pollutants from the air, the adsorption interaction being the first step of the whole reaction pathway. In the present work the adsorption of F 2 C=CFCl (chlorotrifluoroethene, halon 1113), a compound used by industry and detected in the atmosphere, on a commercial TiO 2 nano-powder is investigated experimentally by in situ DRIFT spectroscopy and theoretically through periodic ab initio calculations rooted in DFT. The spectra of the adsorbed molecule suggest that the anchoring to the surface mainly takes place through F atoms. Theoretically, five adsorption configurations for the molecule interacting with the anatase (1 0 1) surface are simulated at B3LYP level and for each of them, structures, binding energies and vibrational frequencies are derived. The interplay between theory and experiments shows the coexistence of different adsorption configurations, the foremost ones featuring the interaction of one F atom with a fivefold coordinated Ti 4+ of the surface. These two adsorption models, which mostly differ for the orientation of the adsorbate with respect to the surface, feature a binding energy of −45.6 and −41.0 kJ mol −1 according to dispersion corrected DFT calculations. The favorable adsorption interaction appears as an important requirement toward the application of titanium dioxide technologies for the photocatalytic degradation of halon 1113.

  3. Isolation of I and C cabinets against shocks, vibrations and seismic movements

    International Nuclear Information System (INIS)

    Ciocan, George; Zamfir, Madalina; Florea, Ioana; Androne, Marian; Serban, Viorel; Prisecaru, Ilie

    2007-01-01

    This paper presents SERB-CITON solution to isolate the I and C cabinets against shocks, vibrations and seismic movements. The seismic qualification is required because the I and C components installed inside the cabinets are generally sensitive to shocks, vibrations and seismic movements and many times, the manufacturer does not guarantee them for a level of shocks, vibrations and seismic movements higher and equal to the level corresponding to the location where they are installed. The document also presents the solution to isolate such I and C cabinets associated to the hydrogen sulfide compressors located in ROMAG-PROD Drobeta Turnu-Severin. (authors)

  4. Separation of boron isotopes by infrared laser

    International Nuclear Information System (INIS)

    Suzuki, Kazuya

    1995-01-01

    Vibrationally excited chemical reaction of boron tribromide (BBr 3 ) with oxygen (O 2 ) is utilized to separate 10 B and 11 B. Infrared absorption of 10 BBr 3 is at 11.68μ and that of 11 BBr 3 is at 12.18μ. The wavelengths of ammonia laser made in the laboratory were mainly 11.71μ, 12.08μ and 12.26μ. Irradiation was done by focussing the laser with ZnSe lens on the sample gas (mixture of 1.5 torr of natural BBr 3 and 4.5 torr of O 2 ) in the reaction cell. Depletions of 10 BBr 3 and 11 BBr 3 due to chemical reaction of BBr 3 with O 2 was measured with infrared spectrometer. The maximum separation factor β( 10 B/ 11 B) obtained was about 4.5 (author)

  5. Distinguishing Nitro vs Nitrito Coordination in Cytochrome c' Using Vibrational Spectroscopy and Density Functional Theory.

    Science.gov (United States)

    Nilsson, Zach N; Mandella, Brian L; Sen, Kakali; Kekilli, Demet; Hough, Michael A; Moënne-Loccoz, Pierre; Strange, Richard W; Andrew, Colin R

    2017-11-06

    Nitrite coordination to heme cofactors is a key step in the anaerobic production of the signaling molecule nitric oxide (NO). An ambidentate ligand, nitrite has the potential to coordinate via the N- (nitro) or O- (nitrito) atoms in a manner that can direct its reactivity. Distinguishing nitro vs nitrito coordination, along with the influence of the surrounding protein, is therefore of particular interest. In this study, we probed Fe(III) heme-nitrite coordination in Alcaligenes xylosoxidans cytochrome c' (AXCP), an NO carrier that excludes anions in its native state but that readily binds nitrite (K d ∼ 0.5 mM) following a distal Leu16 → Gly mutation to remove distal steric constraints. Room-temperature resonance Raman spectra (407 nm excitation) identify ν(Fe-NO 2 ), δ(ONO), and ν s (NO 2 ) nitrite ligand vibrations in solution. Illumination with 351 nm UV light results in photoconversion to {FeNO} 6 and {FeNO} 7 states, enabling FTIR measurements to distinguish ν s (NO 2 ) and ν as (NO 2 ) vibrations from differential spectra. Density functional theory calculations highlight the connections between heme environment, nitrite coordination mode, and vibrational properties and confirm that nitrite binds to L16G AXCP exclusively through the N atom. Efforts to obtain the nitrite complex crystal structure were hampered by photochemistry in the X-ray beam. Although low dose crystal structures could be modeled with a mixed nitrite (nitro)/H 2 O distal population, their photosensitivity and partial occupancy underscores the value of the vibrational approach. Overall, this study sheds light on steric determinants of heme-nitrite binding and provides vibrational benchmarks for future studies of heme protein nitrite reactions.

  6. Model of daytime emissions of electronically-vibrationally excited products of O3 and O2 photolysis: application to ozone retrieval

    Directory of Open Access Journals (Sweden)

    V. A. Yankovsky

    2006-11-01

    Full Text Available The traditional kinetics of electronically excited products of O3 and O2 photolysis is supplemented with the processes of the energy transfer between electronically-vibrationally excited levels O2(a1Δg, v and O2(b1Σ+g, v, excited atomic oxygen O(1D, and the O2 molecules in the ground electronic state O2(X3Σg−, v. In contrast to the previous models of kinetics of O2(a1Δg and O2 (b1Σ+g, our model takes into consideration the following basic facts: first, photolysis of O3 and O2 and the processes of energy exchange between the metastable products of photolysis involve generation of oxygen molecules on highly excited vibrational levels in all considered electronic states – b1Σ+g, a1Δg and X3Σg−; second, the absorption of solar radiation not only leads to populating the electronic states on vibrational levels with vibrational quantum number v equal to 0 – O2(b1Σ+g, v=0 (at 762 nm and O2(a1Δg, v=0 (at 1.27 µm, but also leads to populating the excited electronic–vibrational states O2(b1Σ+g, v=1 and O2(b1Σ+g, v=2 (at 689 nm and 629 nm. The proposed model allows one to calculate not only the vertical profiles of the O2(a1Δg, v=0 and O2(b1Σg, v=0 concentrations, but also the profiles of [O2(a1Δg, v≤5], [O2 (b1Σ+g , v=1, 2] and O2(X3Σg−, v=1–35. In the altitude range 60–125 km, consideration of the electronic-vibrational kinetics significantly changes the calculated concentrations of the metastable oxygen molecules and reduces the discrepancy between the altitude profiles of ozone concentrations retrieved from the 762-nm and 1.27-µm emissions measured simultaneously.

  7. Raman and infrared spectroscopic investigations of a ferroelastic phase transition in B a2ZnTe O6 double perovskite

    Science.gov (United States)

    Moreira, Roberto L.; Lobo, Ricardo P. S. M.; Ramos, Sérgio L. L. M.; Sebastian, Mailadil T.; Matinaga, Franklin M.; Righi, Ariete; Dias, Anderson

    2018-05-01

    The low-temperature vibrational properties of B a2ZnTe O6 double-perovskite ceramics obtained by the solid-state route were investigated by Raman scattering and Fourier-transform infrared reflectivity. We found that this material undergoes a reversible ferroelastic phase transition at around 140 K, well compatible with a recently proposed rhombohedral-to-monoclinic structural change that would occur below 165 K. Complementary calorimetric measurements showed that the phase transition has a first-order character, with an entropy jump compatible with a displacive mechanism. The vibrational spectra show clearly the splitting of the doubly degenerate E modes into nondegenerate representations of the low-symmetry phase. In particular, the lowest-frequency Raman mode presents soft-mode behavior and splits below the critical temperature, confirming the in-plane ferroelastic deformation in the low-temperature phase.

  8. Simulation of the vibrational chemistry and the infrared signature induced by a Sprite streamer in the mesosphere

    Science.gov (United States)

    Romand, F.; Payan, S.; Croize, L.

    2017-12-01

    Since their first observation in 1989, effect of TLEs on the atmospheric composition has become an open and important question. The lack of suitable experimental data is a shortcoming that hampers our understanding of the physics and chemistry induced by these effects. HALESIS (High-Altitude Luminous Events Studied by Infrared Spectro-imagery) is a future experiment dedicated to the measurement of the atmospheric perturbation induced by a TLE in the minutes following its occurrence, from a stratospheric balloon flying at an altitude of 25 km to 40 km. This work aims to quantify the local chemical impact of sprites in the stratosphere and mesosphere. In this paper, we will present the development of a tool which simulates (i) the impact of a sprite on the vibrational chemistry, (ii) the resulting infrared signature and (iii) the propagation of this signature through the atmosphere to an observer. First the Non Local Thermodynamic Equilibrium populations of a background atmosphere were computed using SAMM2 code. The initial thermodynamic and chemical description of atmosphere comes from the Whole Atmosphere community Climate Model (WACCM). Then a perturbation was applied to simulate a sprite. Chemistry due to TLEs was computed using Gordillo-Vazquez kinetic model. Rate coefficients that depend on the electron energy distribution function were calculated from collision cross-section data by solving the electron Boltzmann equation (BE). Time evolutions of the species densities and of vibrational populations in the non-thermal plasma consecutive to sprite discharge were simulated using the computer code ZDPlasKin (S. Pancheshn et al.). Finally, the resulting infrared signatures were propagated from the disturbed area through the atmosphere to an instrument placed in a limb line of sight using a line by line radiative transfer model. We will conclude that sprite could produce a significant infrared signature that last a few tens of seconds after the visible flash.

  9. A Small Fullerene (C{sub 24}) may be the Carrier of the 11.2 μ m Unidentified Infrared Band

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, L. S.; Shroll, R. M. [Spectral Sciences, Inc., 4 Fourth Ave., Burlington, MA 01803 (United States); Lynch, D. K. [Thule Scientific, P.O. Box 953, Topanga, CA 90290 (United States); Clark, F. O., E-mail: larry@spectral.com, E-mail: rshroll@spectral.com, E-mail: dave@caltech.edu, E-mail: frank.clark@gmail.com [Wopeco Research, 125 South Great Road, Lincoln, MA 01773 (United States)

    2017-02-20

    We analyze the spectrum of the 11.2 μ m unidentified infrared band (UIR) from NGC 7027 and identify a small fullerene (C{sub 24}) as a plausible carrier. The blurring effects of lifetime and vibrational anharmonicity broadening obscure the narrower, intrinsic spectral profiles of the UIR band carriers. We use a spectral deconvolution algorithm to remove the blurring, in order to retrieve the intrinsic profile of the UIR band. The shape of the intrinsic profile—a sharp blue peak and an extended red tail—suggests that the UIR band originates from a molecular vibration–rotation band with a blue band head. The fractional area of the band-head feature indicates a spheroidal molecule, implying a nonpolar molecule and precluding rotational emission. Its rotational temperature should be well approximated by that measured for nonpolar molecular hydrogen, ∼825 K for NGC 7027. Using this temperature, and the inferred spherical symmetry, we perform a spectral fit to the intrinsic profile, which results in a rotational constant implying C{sub 24} as the carrier. We show that the spectroscopic parameters derived for NGC 7027 are consistent with the 11.2 μ m UIR bands observed for other objects. We present density functional theory (DFT) calculations for the frequencies and infrared intensities of C{sub 24}. The DFT results are used to predict a spectral energy distribution (SED) originating from absorption of a 5 eV photon, and characterized by an effective vibrational temperature of 930 K. The C{sub 24} SED is consistent with the entire UIR spectrum and is the dominant contributor to the 11.2 and 12.7 μ m bands.

  10. Image quality analysis of vibration effects In C-arm-flat panel X-ray imaging

    NARCIS (Netherlands)

    Snoeren, R.M.; Kroon, J.N.; With, de P.H.N.

    2011-01-01

    The motion of C-arm scanning X-ray systems may result in vibrations of the imaging sub-system. In this paper, we connect C-arm system vibrations to Image Quality (IQ) deterioration for 2D angiography and 3D cone beam X-ray imaging, using large Flat Panel detectors. Vibrations will affect the

  11. Localized vibrations in superconducting YB a2C u3O7 revealed by ultrafast optical coherent spectroscopy

    Science.gov (United States)

    Novelli, Fabio; Giovannetti, Gianluca; Avella, Adolfo; Cilento, Federico; Patthey, Luc; Radovic, Milan; Capone, Massimo; Parmigiani, Fulvio; Fausti, Daniele

    2017-05-01

    The interaction between phonons and high-energy excitations of electronic origin in cuprates and their role in the superconducting mechanisms is still controversial. Here we use coherent vibrational time-domain spectroscopy together with density functional and dynamical mean-field theory calculations to establish a direct link between the c -axis phonon modes and the in-plane electronic charge excitations in optimally doped YB a2C u3O7 . The nonequilibrium Raman tensor is measured by means of the broadband "coherent-phonon" response in pump-probe experiments and is qualitatively described by our model using density functional theory in the frozen-phonon approximation plus single-band dynamical mean-field theory to account for the electronic correlations. The major outcome of our experimental and theoretical study is to establish the link between out-of-plane copper ion displacements and the in-plane electronic correlations, and to estimate at a few unit cells the correlation length of the associated phonon mode. The approach introduced here could help in revealing the complex interplay between fluctuations of different nature and spatial correlation in several strongly correlated materials.

  12. Probing electron density of H-bonding between cation-anion of imidazolium-based ionic liquids with different anions by vibrational spectroscopy.

    Science.gov (United States)

    Gao, Yan; Zhang, Liqun; Wang, Yong; Li, Haoran

    2010-03-04

    Attenuated total reflection infrared spectroscopy and density functional theory calculation have been employed to study the spectral properties of imidazolium-based ionic liquids (ILs) with different anions. ILs based on 1-butyl-3-methylimidazolium cation with different anions, OH(-), CF(3)CO(2)(-), HSO(4)(-), H(2)PO(4)(-), Cl(-), PF(6)(-), and BF(4)(-), are investigated in the present work. It has been shown that the C(2)-H stretching vibration of the imidazolium ring is closely related to the electron density of H-bonding between the two closest cations and anions for pure ILs. The electron density of H-bonding between cation and anion with different anions decreases in the order [OH](-) > [H(2)PO(4)](-) > [HSO(4)](-) > [CF(3)CO(2)](-) > [Cl](-) > [BF(4)](-) > [PF(6)](-). For aqueous ILs, with increasing water content, the aromatic C-H stretching vibration of the imidazolium cation showed systematic blue-shifts. Especially for BmimOH, the nu(C(2))(-H) undergoes a drastic blue-shift by 58 cm(-1), suggesting that the formation of the strong hydrogen bonds O-H...O may greatly weaken the electron density of H-bonding between the cation and anion of ILs.

  13. Raman spectrum, quantum mechanical calculations and vibrational assignments of (95% alpha-TeO2/5% Sm2O3) glass.

    Science.gov (United States)

    Shaltout, I; Mohamed, Tarek A

    2007-06-01

    Chozen system of tellurite glasses doped with rare earth oxides (95% alpha-TeO(2)+5% Sm2O3) was prepared by melt quenching. Consequently, the Raman spectrum (150-1250 cm(-1)) of the modified tellurite have been recorded. As a continuation to our normal coordinate analysis, force constants and quantum mechanical (QM) calculations for tbp TeO4(4-) (triagonal bipyramid, C(2v)) and TeO(3+1); Te2O7(6-) (bridged tetrahedral), we have carried out ab initio frequency calculations for tpy TeO3(2-) (triagonal pyramidal, C(3v) and C(s)) and tp TeO3(2-) (triagonal planar, D(3h)) ions. The quantum mechanical calculations at the levels of RHF, B3LYP and MP2 allow confident vibrational assignments and structural identification in the binary oxide glass (95% alpha-TeO2 +5% Sm2O3). The dominant three-dimensional network structures in the modified glass are triagonal pyramidal TeO3 with minor features of short range distorted tbp TeO4 and bridged tetrahedral unit of TeO(3+1), leading to a structure of infinite chain. Therefore, alpha-TeO2/Sm2O3 (95/5%) glass experience structural changes from TeO4 (tbp); Te2O7 (TeO(3+1))-->TeO3 (tpy).

  14. Auroral nitric oxide concentration and infrared emission

    Science.gov (United States)

    Reidy, W. P.; Degges, T. C.; Hurd, A. G.; Stair, A. T., Jr.; Ulwick, J. C.

    1982-05-01

    Rocket-borne measurements of infrared auroral emission by nitric oxide are analyzed. Four rocket flights provided opportunities to measure 5.3- and 2.7-micron NO emission by means of infrared fixed band radiometers and CVF spectrometers, narrow band photometers, and incident energy spectra on various occasions. Analysis of infrared emission profiles and electron flux data indicates the NO density to be significantly enhanced with respect to midlatitude values. NO emission in the fundamental 5.3-micron band is attributed to resonance excitation by warm earth radiation, collisional excitation primarily by O atoms and chemiluminescence from the reaction of N with O2; with an energy efficiency of 0.015. The overtone band emission at 2.7 microns is accounted for by chemiluminescence produced with an energy efficiency of 0.0054. Total photon yield for the chemiluminescence reaction is estimated to range from 1.2 to 2.4 vibrational quanta per NO molecule.

  15. Sum Frequency Generation Vibrational Spectroscopy of 1,3-Butadiene Hydrogenation on 4 nm Pt@SiO 2 , Pd@SiO 2 , and Rh@SiO 2 Core–Shell Catalysts

    KAUST Repository

    Krier, James M.

    2015-01-14

    © 2014 American Chemical Society. 1,3-Butadiene (1,3-BD) hydrogenation was performed on 4 nm Pt, Pd, and Rh nanoparticles (NPs) encapsulated in SiO2 shells at 20, 60, and 100 °C. The core-shells were grown around polyvinylpyrrolidone (PVP) coated NPs (Stöber encapsulation) prepared by colloidal synthesis. Sum frequency generation (SFG) vibrational spectroscopy was performed to correlate surface intermediates observed in situ with reaction selectivity. It is shown that calcination is effective in removing PVP, and the SFG signal can be generated from the metal surface. Using SFG, it is possible to compare the surface vibrational spectrum of Pt@SiO2 (1,3-BD is hydrogenated through multiple paths and produces butane, 1-butene, and cis/trans-2-butene) to Pd@SiO2 (1,3-BD favors one path and produces 1-butene and cis/trans-2-butene). In contrast to Pt@SiO2 and Pd@SiO2, SFG and kinetic experiments of Rh@SiO2 show a permanent accumulation of organic material.

  16. Crystal structure, quantum mechanical investigation, IR and NMR spectroscopy of two new organic perchlorates: (C6H18N3)·(ClO4)3H2O (I) and (C9H11N2)·ClO4(II)

    Science.gov (United States)

    Bayar, I.; Khedhiri, L.; Soudani, S.; Lefebvre, F.; Ferretti, V.; Ben Nasr, C.

    2018-06-01

    The reaction of perchloric acid with 1-(2-aminoethyl)piperazine or 5,6-dimethyl-benzimidazole results in the formation of 1-(2-amonioethyl)piperazine-1,4-dium triperchlorate hydrate (C6H18N3)·(ClO4)3·H2O (I) or 5,6-dimethyl-benzylimidazolium perchlorate (C9H11N2)·ClO4(II). Both compounds were fully structurally characterized including single crystal X-ray diffraction analysis. Compound (I) crystallizes in the centrosymmetric triclinic space group P 1 bar with the lattice parameters a = 7.455 (2), b = 10.462 (2), c = 10.824 (2) Å, α = 80.832 (2), β = 88.243 (2), γ = 88.160 (2) °, Z = 2 and V = 832.77 (3) Å3. Compound (II) has been found to belong to the P21/c space group of the monoclinic system, with a = 7.590 (3), b = 9.266 (3), c = 16.503 (6) Å, β = 107.38 (2) °, V = 1107.69 (7) Å3 and Z = 4. The structures of (I) and (II) consist of slightly distorted [ClO4]- tetrahedra anions and 1-(2-amonioethyl)piperazine-1,4-dium trication (I) or 5,6-dimethyl-benzylimidazolium cations (II) and additionally a lattice water in (I). The crystal structures of (I) and (II) exhibit complex three-dimensional networks of H-bonds connecting all their components. In the atomic arrangement of (I), the ClO4- anions form corrugated chains, while in (II) the atomic arrangement exhibits wide pseudo-hexagonal channels of ClO4 tetrahedra including the organic entities. The lattice water serves as a link between pairs of cations and pairs of anions via several Osbnd H⋯O and N-H⋯O interactions in compound (I). The vibrational absorption bands were identified by infrared spectroscopy. These compounds were also investigated by solid-state 13C, 35Cl and 15N NMR spectroscopy. DFT calculations allowed the attribution of the IR and NMR bands. Intermolecular interactions were investigated by Hirshfeld surfaces. Electronic properties such as HOMO and LUMO energies were derived.

  17. Molybdenum(VI) Oxosulfato Complexes in MoO3–K2S2O7–K2SO4 Molten Mixtures: Stoichiometry, Vibrational Properties, and Molecular Structures

    DEFF Research Database (Denmark)

    Kalampounias, Angelos G.; Tsilomelekis, George; Berg, Rolf W.

    2012-01-01

    effects were explored in the XMoO30 = 0–0.5 range. MoO3 undergoes a dissolution reaction in molten K2S2O7, and the Raman spectra point to the formation of molybdenum(VI) oxosulfato complexes. The MoO stretching region of the Raman spectrum provides sound evidence for the occurrence of a dioxo Mo(O)2...... configuration as a core. The stoichiometry of the dissolution reaction MoO3 + nS2O72– → C2n– was inferred by exploiting the Raman band intensities, and it was found that n = 1. Therefore, depending on the MoO3 content, monomeric MoO2(SO4)22– and/or associated [MoO2(SO4)2]m2m– complexes are formed in the binary...... with ab initio quantum chemical calculations carried out on [MoO2(SO4)3]4– and [{MoO2}2(SO4)4(μ-SO4)2]8– ions, in assumed isolated gaseous free states, at the DFT/B3LYP (HF) level and with the 3-21G basis set. The calculations included determination of vibrational infrared and Raman spectra, by use...

  18. Role of Fe doping on structural and vibrational properties of ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyarajan, T.; Udayabhaskar, R.; Karthikeyan, B. [National Institute of Technology, Department of Physics, Tiruchirappalli (India)

    2012-05-15

    In this report, Raman and Fourier Transform Infrared (FTIR) measurements were carried out to study the phonon modes of pure and Fe doped ZnO nanoparticles. The nanoparticles were prepared by sol-gel technique at room temperature. The X-ray diffraction measurements reveal that the nanoparticles are in hexagonal wurtzite structure and doping makes the shrinkage of the lattice parameters, whereas there is no alteration in the unit cell. Raman measurements show both E{sub 2}{sup low} and E{sub 2}{sup High} optical phonon mode is shifted towards lower wave number with Fe incorporation and explained on the basis of force constant variation, stress measurements, respectively. In addition, Fe related local vibrational modes (LVM) were observed for higher concentration of Fe doping. FTIR spectra reveal a band at 444 cm{sup -1} which is specific to E{sub 1} (TO) mode; a red-shift of this mode in Fe doped samples and some surface phonon modes were observed. Furthermore, the observation of additional IR modes, which is considered to have an origin related to Fe dopant in the ZnO nanostructures, is also reported. These additional mode features can be regarded as an indicator for the incorporation of Fe ions into the lattice position of the ZnO nanostructures. (orig.)

  19. Annealing temperature effects on the magnetic properties and induced defects in C/N/O implanted MgO

    Science.gov (United States)

    Li, Qiang; Ye, Bonian; Hao, Yingping; Liu, Jiandang; Kong, Wei; Ye, Bangjiao

    2013-02-01

    Virgin MgO single crystals were implanted with 70 keV C/N/O ions at room temperature to a dose of 2 × 1017/cm2. After implantation the samples showed room temperature hysteresis in magnetization loops. The annealing effects on the magnetic properties and induced defects of these samples were determined by vibrating sample magnetometer and positron annihilation spectroscopy, respectively. The experimental results indicate that ferromagnetism can be introduced to MgO single crystals by doping with C, N or introduction of Mg related vacancy defects. However, the Mg vacancies coexistence with C or N ions in the C-/N-implanted samples may play a negative role in magnetic performance in these MgO samples. The rapid increase of magnetic moment in O-implanted sample is attributed to the formation of new type of vacancy defects.

  20. Application of mid-infrared free-electron laser tuned to amide bands for dissociation of aggregate structure of protein.

    Science.gov (United States)

    Kawasaki, Takayasu; Yaji, Toyonari; Ohta, Toshiaki; Tsukiyama, Koichi

    2016-01-01

    A mid-infrared free-electron laser (FEL) is a linearly polarized, high-peak powered pulse laser with tunable wavelength within the mid-infrared absorption region. It was recently found that pathogenic amyloid fibrils could be partially dissociated to the monomer form by the irradiation of the FEL targeting the amide I band (C=O stretching vibration), amide II band (N-H bending vibration) and amide III band (C-N stretching vibration). In this study, the irradiation effect of the FEL on keratin aggregate was tested as another model to demonstrate an applicability of the FEL for dissociation of protein aggregates. Synchrotron radiation infrared microscopy analysis showed that the α-helix content in the aggregate structure decreased to almost the same level as that in the monomer state after FEL irradiation tuned to 6.06 µm (amide I band). Both irradiations at 6.51 µm (amide II band) and 8.06 µm (amide III band) also decreased the content of the aggregate but to a lesser extent than for the irradiation at the amide I band. On the contrary, the irradiation tuned to 5.6 µm (non-absorbance region) changed little the secondary structure of the aggregate. Scanning-electron microscopy observation at the submicrometer order showed that the angular solid of the aggregate was converted to non-ordered fragments by the irradiation at each amide band, while the aggregate was hardly deformed by the irradiation at 5.6 µm. These results demonstrate that the amide-specific irradiation by the FEL was effective for dissociation of the protein aggregate to the monomer form.

  1. ALMA INVESTIGATION OF VIBRATIONALLY EXCITED HCN/HCO{sup +}/HNC EMISSION LINES IN THE AGN-HOSTING ULTRALUMINOUS INFRARED GALAXY IRAS 20551−4250

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Masatoshi [Subaru Telescope, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Nakanishi, Kouichiro [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Izumi, Takuma, E-mail: masa.imanishi@nao.ac.jp [Institute of Astronomy, School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan)

    2016-07-01

    We present the results of ALMA Cycle 2 observations of the ultraluminous infrared galaxy IRAS 20551−4250 at HCN/HCO{sup +}/HNC J = 3–2 lines at both vibrational ground ( v = 0) and vibrationally excited ( v {sub 2} = 1) levels. This galaxy contains a luminous buried active galactic nucleus (AGN), in addition to starburst activity, and our ALMA Cycle 0 data revealed a tentatively detected vibrationally excited HCN v {sub 2} = 1f J = 4–3 emission line. In our ALMA Cycle 2 data, the HCN/HCO{sup +}/HNC J = 3–2 emission lines at v = 0 are clearly detected. The HCN and HNC v {sub 2} = 1f J = 3–2 emission lines are also detected, but the HCO{sup +} v {sub 2} = 1f J = 3–2 emission line is not. Given the high energy level of v {sub 2} = 1 and the resulting difficulty of collisional excitation, we compared these results with those of the calculation of infrared radiative pumping, using the available infrared 5–35 μ m spectrum. We found that all of the observational results were reproduced if the HCN abundance was significantly higher than that of HCO{sup +} and HNC. The flux ratio and excitation temperature between v {sub 2} = 1f and v = 0, after correction for possible line opacity, suggests that infrared radiative pumping affects rotational ( J -level) excitation at v = 0 at least for HCN and HNC. The HCN-to-HCO{sup +} v = 0 flux ratio is higher than those of starburst-dominated regions, and will increase even more when the derived high HCN opacity is corrected. The enhanced HCN-to-HCO{sup +} flux ratio in this AGN-hosting galaxy can be explained by the high HCN-to-HCO{sup +} abundance ratio and sufficient HCN excitation at up to J = 4, rather than the significantly higher efficiency of infrared radiative pumping for HCN than HCO{sup +}.

  2. Study of L-ascorbic acid (vitamin C)/H 2O mixture across glass transition

    Science.gov (United States)

    Migliardo, F.; Branca, C.; Faraone, A.; Magazù, S.; Migliardo, P.

    2001-07-01

    In this paper, we report quasi elastic neutron scattering (QENS) spectra of vitamin C aqueous solutions, obtained using MIBEMOL spectrometer (LLB). The main purpose of this work is to characterize the relaxational and vibrational properties of the Vitamin C/H 2O system below and above the glass transition temperature by analysing the low-frequency neutron scattering spectra. The determination of the relative weight of vibrational over relaxational contributions allows to get information on the fragility degree of this peculiar hydrogen-bond system.

  3. Laser Spectroscopy Monitoring of 13C18O16O and 12C17O16O of Atmospheric Carbon Dioxide

    Science.gov (United States)

    Shorter, J. H.; Nelson, D. D.; Ono, S.; McManus, J. B.; Zahniser, M. S.

    2017-12-01

    One of the main challenges to making accurate predictions of future changes in CO2 concentration is the capability to determine what fraction of human produced CO2 remains in the atmosphere. We present our progress in the application of Tunable Infrared Laser Direct Absorption Spectroscopy (TILDAS) to the measurement of the primary clumped (13C18O16O) as well as 17O (12C17O16O) isotopologues of atmospheric CO2, as a tracer of its sources and sinks. We expect unique isotopologue signals in CO2 from high-temperature combustion sources, plants, soils, and air-sea exchange processes. High sampling frequency (a few minutes for each sample vs. reference cycle) achieved by a TILDAS instrument is expected to enable us to document local heterogeneous sources and temporal variations. The TILDAS is equipped with a newly developed 400-meter absorption cell. We designed a dual pressure measurement technique in which the clumped isotopologue, 13C18O16O, and 13C16O16O are first measured at 30 torr cell pressure. This is followed by measurement of 12C17O16O, 12C18O16O and 12C16O16O at lower ( 5 torr) cell pressure. Isotopologue ratios are compared between reference and sample gases. Preliminary tests demonstrated a precision approaching 0.03 ‰ for the ratio 13C18O16O/13C16O16O and 0.08‰ for Δ13C18O16O value (1σ repeatability for 4 min sample vs. reference cycle). Sample size for a single analysis is approximately 100 mL of air (1.6μmol of CO2). Given the previously observed range of variations for Δ13C18O16O and Δ17O values as large as 0.6 to 0.3 ‰, respectively, TILDAS offers a novel approach for real time monitoring of atmospheric CO2 isotopologues. It was found that achieving better than 0.1‰ requires careful matching of CO2 mixing ratios between reference and sample air. A primary cause of pressure and mixing ratio dependence is inaccurate baseline fitting (analogous to abundance sensitivity or pressure baseline for IRMS). Given that mixing ratios of atmospheric

  4. Vibron Solitons and Soliton-Induced Infrared Spectra of Crystalline Acetanilide

    Science.gov (United States)

    Takeno, S.

    1986-01-01

    Red-shifted infrared spectra at low temperatures of amide I (C=O stretching) vibrations of crystalline acetanilide measured by Careri et al. are shown to be due to vibron solitons, which are nonlinearity-induced localized modes of vibrons arising from their nonlinear interactions with optic-type phonons. A nonlinear eigenvalue equation giving the eigenfrequency of stationary solitons is solved approximately by introducing lattice Green's functions, and the obtained result is in good agreement with the experimental result. Inclusion of interactions with acoustic phonons yields the Debye-Waller factor in the zero-phonon line spectrum of vibron solitons, in a manner analogous to the case of impurity-induced localized harmonic phonon modes in alkali halides.

  5. Vibrational and electronic spectroscopy of ion-implantation-induced defects in fused silica and crystalline quartz

    International Nuclear Information System (INIS)

    Arnold, G.W.

    1978-01-01

    Defects produced by implantation of various atomic species in fused and crystalline SiO 2 were studied using infrared reflection spectroscopy (IRS) with UV-visible spectroscopy. We observe a new vibrational band at 830 cm -1 which is tentatively associated with the creation of two nonbridging O atoms in SiO 4 units. Numerous chemical effects were also observed, including evidence for chemical incorporation of Li and anomalously large O-vacancy production for Al + , B + and Si + implantation

  6. Molecular vibrations the theory of infrared and Raman vibrational spectra

    CERN Document Server

    Wilson, E Bright; Cross, Paul C

    1980-01-01

    Pedagogical classic and essential reference focuses on mathematics of detailed vibrational analyses of polyatomic molecules, advancing from application of wave mechanics to potential functions and methods of solving secular determinant.

  7. Studies of interstellar vibrationally-excited molecules

    International Nuclear Information System (INIS)

    Ziurys, L.M.; Snell, R.L.; Erickson, N.R.

    1986-01-01

    Several molecules thus far have been detected in the ISM in vibrationally-excited states, including H 2 , SiO, HC 3 N, and CH 3 CN. In order for vibrational-excitation to occur, these species must be present in unusually hot and dense gas and/or where strong infrared radiation is present. In order to do a more thorough investigation of vibrational excitation in the interstellar medium (ISM), studies were done of several mm-wave transitions originating in excited vibrational modes of HCN, an abundant interstellar molecule. Vibrationally-excited HCN was recently detected toward Orion-KL and IRC+10216, using a 12 meter antenna. The J=3-2 rotational transitions were detected in the molecule's lowest vibrational state, the bending mode, which is split into two separate levels, due to l-type doubling. This bending mode lies 1025K above ground state, with an Einstein A coefficient of 3.6/s. The J=3-2 line mode of HCN, which lies 2050K above ground state, was also observed toward IRC+10216, and subsequently in Orion-KL. Further measurements of vibrationally-excited HCN were done using a 14 meter telescope, which include the observations of the (0,1,0) and (0,2,0) modes towards Orion-KL, via their J=3-2 transitions at 265-267 GHz. The spectrum of the J=3-2 line in Orion taken with the 14 meter telescope, is shown, along with a map, which indicates that emission from vibrationally-excited HCN arises from a region probably smaller than the 14 meter telescope's 20 arcsec beam

  8. Infrared emission from a polycyclic aromatic hydrocarbon (PAH) excited by ultraviolet laser

    International Nuclear Information System (INIS)

    Cherchneff, I.; Barker, J.R.

    1989-01-01

    The infrared fluorescence spectrum from the C-H stretch modes of vibrationally excited azulene (C10H8), a PAH was measured in the laboratory. PAHs are candidates as carriers of the unidentified infrared emission bands that are observed in many astronomical objects associated with dust and ultraviolet light. In the present experiment, gas phase azulene was excited with light from a 308 nm pulsed laser, and the infrared emission spectrum was time-resolved and wavelength-resolved. Moreover, the infrared absorption spectrum of gas phase azulene was obtained using an FTIR spectrometer. The laboratory emission spectrum resembles observed infrared emission spectra from the interstellar medium, providing support for the hypothesis that PAHs are the responsible carriers. The azulene C-H stretch emission spectrum is more asymmetric than the absorption spectrum, probably due to anharmonicity of levels higher than nu = 1. 36 refs

  9. Medium-range structural properties of vitreous germania obtained through first-principles analysis of vibrational spectra.

    Science.gov (United States)

    Giacomazzi, Luigi; Umari, P; Pasquarello, Alfredo

    2005-08-12

    We analyze the principal vibrational spectra of vitreous GeO(2) and derive therefrom structural properties referring to length scales beyond the basic tetrahedral unit. We generate a model structure that yields a neutron structure factor in accord with experiment. The inelastic-neutron, the infrared, and the Raman spectra, calculated within a density-functional approach, also agree with respective experimental spectra. The accord for the Raman spectrum supports a Ge-O-Ge angle distribution centered at 135 degrees. The Raman feature X(2) is found to result from vibrations in three-membered rings, and therefore constitutes a distinctive characteristic of the medium-range structure.

  10. Preparation and infrared spectra of differently deuterated tetramethyl-derivatives of the IV. main group

    International Nuclear Information System (INIS)

    Biedermann, S.

    1972-01-01

    19 different deuterated tetramethyl derivates of the type (CH 3 )sub(4-n)M(CH 3 )sub(n) of C, Si, Ge, Sn and Pb were prepared. Gas cuvettes with polyethylene, NaCl and KBr windows were used to absorb the infra-red spectra, the IR equipment Beckman IR 11 and IR 12 were used. The infra-red spectra of the above mentioned compounds were indicated from 33 to 4,000 cm -1 , the ground, upper and combination vibrations assigned, the PR separations of the partly well resolved rotation-vibration outlines determined and were compared with the calculated PR separations. The revision of the correlations performed by Graham for γsub(s)CH 3 and γsub(as)CH 3 in the race of vibration F 2 with Sn(CH 3 ) 4 and Pb(CH 3 ) 4 and the proposed one with C(CH 3 ) 4 , Si(CH 3 ) 4 and Ge(CH 3 ) 4 could be disproved by the new experimental results. (FW) [de

  11. Hypersonic vibrations of Ag@SiO2 (cubic core)-shell nanospheres.

    Science.gov (United States)

    Sun, Jing Ya; Wang, Zhi Kui; Lim, Hock Siah; Ng, Ser Choon; Kuok, Meng Hau; Tran, Toan Trong; Lu, Xianmao

    2010-12-28

    The intriguing optical and catalytic properties of metal-silica core-shell nanoparticles, inherited from their plasmonic metallic cores together with the rich surface chemistry and increased stability offered by their silica shells, have enabled a wide variety of applications. In this work, we investigate the confined vibrational modes of a series of monodisperse Ag@SiO(2) (cubic core)-shell nanospheres synthesized using a modified Stöber sol-gel method. The particle-size dependence of their mode frequencies has been mapped by Brillouin light scattering, a powerful tool for probing hypersonic vibrations. Unlike the larger particles, the observed spheroidal-like mode frequencies of the smaller ones do not scale with inverse diameter. Interestingly, the onset of the deviation from this linearity occurs at a smaller particle size for higher-energy modes than for lower-energy ones. Finite element simulations show that the mode displacement profiles of the Ag@SiO(2) core-shells closely resemble those of a homogeneous SiO(2) sphere. Simulations have also been performed to ascertain the effects that the core shape and the relative hardness of the core and shell materials have on the vibrations of the core-shell as a whole. As the vibrational modes of a particle have a bearing on its thermal and mechanical properties, the findings would be of value in designing core-shell nanostructures with customized thermal and mechanical characteristics.

  12. Vibrational spectra of aminoacetonitrile

    International Nuclear Information System (INIS)

    Bak, B.; Hansen, E.L.; Nicolaisen, F.M.; Nielsen, O.F.

    1975-01-01

    The preparation of pure, stable aminoacetonitrile(1-amino, 1'-cyanomethane)CH 2 NH 2 CN (1) is described. The Raman spectrum, now complete, and a novel infrared spectrum extending over the 50-3600 cm -1 region are reported. A tentative normal vibration analysis is presented and supported by Raman and infrared data from the spectra of CH 2 NHDCN (2) and CH 2 ND 2 CN (3). The predominance of the trans rotamer may be attributed to intramolecular hydrogen bonding but this is too unimportant to influence the vibrational frequencies of gaseous 1, 2, and 3. However, large gas/liquid frequency shifts occur. (author)

  13. New Phases of YBaCuGeO Superconductors Identified from X-ray Diffraction and Infra-red Absorption Measurements

    Science.gov (United States)

    Abo-Arais, Ahmed; Dawoud, Mohamad Ahmad Taher

    2005-01-01

    X-ray powder diffraction patterns and infra-red absorption spectra have been evaluated and analysed for the Y1 Ba2 Cu3 O7-d - Gex compound samples prepared by the solid state reaction with x values ranging from 0.0 to 1.13. All samples show bulk superconductivity above liquid nitrogen temperature using the levitation test (Meissner effect). Samples with Ge content up to x = 0.2 have offset Tc between 83K and 92K while the sample with x = 1.13 shows semiconducting behavior above 100K. As a result of the solid state interaction between YBCO and Ge, new phases are observed and determined, mainly three phases are concluded from X-ray powder diffraction analysis: (i) Ba2GeO4 (ii) Y2BaCuO5 (iii) BaCO3. The unit cell parameters a, b and c of the orthorhombic superconducting phase are calculated for all the prepared samples. The anisotropy factor is evaluated and related to the new structural phases in YBCO-Ge composite system. The I-R absorption spectra for the samples with orthorhombic symmetry have been determined. The phonon modes between ~ 400 cm-1 and 630 cm-1 are attributed to the Cu - O octahedron and pyramid vibrations for the CuO2 -planes and CuO-chains, while the peaks in the range from ~ 700 cm-1 to ~ 860 cm-1 may be due to defects such as the new phase Ba2GeO4 and the green phase Y2BaCuO5. The obtained results are discussed according to the superconductor - semi-conductor composite model and with the phonon-mediated charge transfer between CuO2 -planes and CuO- chains through apex oxygen (BaO).

  14. Probing the global potential energy minimum of (CH2O)2: THz absorption spectrum of (CH2O)2 in solid neon and para-hydrogen.

    Science.gov (United States)

    Andersen, J; Voute, A; Mihrin, D; Heimdal, J; Berg, R W; Torsson, M; Wugt Larsen, R

    2017-06-28

    The true global potential energy minimum configuration of the formaldehyde dimer (CH 2 O) 2 , including the presence of a single or a double weak intermolecular CH⋯O hydrogen bond motif, has been a long-standing subject among both experimentalists and theoreticians as two different energy minima conformations of C s and C 2h symmetry have almost identical energies. The present work demonstrates how the class of large-amplitude hydrogen bond vibrational motion probed in the THz region provides excellent direct spectroscopic observables for these weak intermolecular CH⋯O hydrogen bond motifs. The combination of concentration dependency measurements, observed isotopic spectral shifts associated with H/D substitutions and dedicated annealing procedures, enables the unambiguous assignment of three large-amplitude infrared active hydrogen bond vibrational modes for the non-planar C s configuration of (CH 2 O) 2 embedded in cryogenic neon and enriched para-hydrogen matrices. A (semi)-empirical value for the change of vibrational zero-point energy of 5.5 ± 0.3 kJ mol -1 is proposed for the dimerization process. These THz spectroscopic observations are complemented by CCSD(T)-F12/aug-cc-pV5Z (electronic energies) and MP2/aug-cc-pVQZ (force fields) electronic structure calculations yielding a (semi)-empirical value of 13.7 ± 0.3 kJ mol -1 for the dissociation energy D 0 of this global potential energy minimum.

  15. Electronic, optical, infrared, and elastic properties of KCdCO3F from first principles

    Science.gov (United States)

    Huang, Xue-Qian; Xue, Han-Yu; Zhang, Can; Pang, Dong-Dong; Lv, Zhen-Long; Duan, Man-Yi

    2018-05-01

    KCdCO3F is a newly synthesized promising ultraviolet nonlinear optical crystal, but its structure is disputed and its fundamental properties have not been well studied. Here our first-principles study indicates that the structure with the space group P 6 bar c2 is energetically more stable than the P 6 bar m2 phase. We systematically investigated its electronic, optical, vibrational, infrared, and elastic properties. The results reveal that KCdCO3F is a direct-band-gap insulator with rather flat bands below the Fermi level. Analyses of its partial density of states revealed that the top (bottom) of its valence (conduction) band is formed by the O 2p (Cd 5s) orbital. It is a negative uniaxial crystal with ionic-covalent nature. Both infrared-active and Raman-active modes exist at its Brillouin zone center, and ions contribute more to its static dielectric constants. Its optical spectra in the visual and infrared ranges were studied, and their origins were revealed. Calculations indicate that KCdCO3F is mechanically stable but anisotropic since it is more vulnerable to shear stress and is easy to cleave along the c axis.

  16. Communication: Disorder-suppressed vibrational relaxation in vapor-deposited high-density amorphous ice

    Science.gov (United States)

    Shalit, Andrey; Perakis, Fivos; Hamm, Peter

    2014-04-01

    We apply two-dimensional infrared spectroscopy to differentiate between the two polyamorphous forms of glassy water, low-density (LDA) and high-density (HDA) amorphous ices, that were obtained by slow vapor deposition at 80 and 11 K, respectively. Both the vibrational lifetime and the bandwidth of the 1-2 transition of the isolated OD stretch vibration of HDO in H2O exhibit characteristic differences when comparing hexagonal (Ih), LDA, and HDA ices, which we attribute to the different local structures - in particular the presence of interstitial waters in HDA ice - that cause different delocalization lengths of intermolecular phonon degrees of freedom. Moreover, temperature dependent measurements show that the vibrational lifetime closely follows the structural transition between HDA and LDA phases.

  17. Electrical and optical properties of thermally-evaporated thin films from A{sub 2}[TiO(C{sub 2}O{sub 4}){sub 2}] (A = K, PPh{sub 4}) and 1,8-dihydroxyanthraquinone

    Energy Technology Data Exchange (ETDEWEB)

    Carbia-Ruelas, E. [Coordinacion de Ingenieria Mecatronica. Facultad de Ingenieria, Universidad Anahuac Mexico Norte. Avenida Universidad Anahuac 46, Col. Lomas Anahuac, 52786, Huixquilucan (Mexico); Sanchez-Vergara, M.E., E-mail: elena.sanchez@anahuac.mx [Coordinacion de Ingenieria Mecatronica. Facultad de Ingenieria, Universidad Anahuac Mexico Norte. Avenida Universidad Anahuac 46, Col. Lomas Anahuac, 52786, Huixquilucan (Mexico); Garcia-Montalvo, V. [Instituto de Quimica, Universidad Nacional Autonoma de Mexico. Circuito Exterior, Ciudad Universitaria, 04510, Mexico, D. F (Mexico); Morales-Saavedra, O.G. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, CCADET-UNAM. A. P. 70-186, Coyoacan, 04510, Mexico, D. F (Mexico); Alvarez-Bada, J.R. [Coordinacion de Ingenieria Mecatronica. Facultad de Ingenieria, Universidad Anahuac Mexico Norte. Avenida Universidad Anahuac 46, Col. Lomas Anahuac, 52786, Huixquilucan (Mexico)

    2011-02-01

    In this work, the synthesis of molecular materials formed from A{sub 2}[TiO(C{sub 2}O{sub 4}){sub 2}] (A = K, PPh4) and 1,8 dihydroxyanthraquinone is reported. The synthesized materials were characterized by atomic force microscopy (AFM), infrared (IR) and ultraviolet-visible (UV-vis) spectroscopy. IR spectroscopy showed that the molecular-material thin-films, deposited by vacuum thermal evaporation, exhibit the same intra-molecular vibration modes as the starting powders, which suggests that the thermal evaporation process does not alter the initial chemical structures. Electrical transport properties were studied by dc conductivity measurements. The electrical activation energies of the complexes, which were in the range of 0.003-1.16 eV, were calculated from Arrhenius plots. Optical absorption studies in the wavelength range of 190-1090 nm at room temperature showed that the optical band gaps of the thin films were around 1.9-2.3 eV for direct transitions Eg{sub d}. The cubic NLO effects were substantially enhanced for materials synthesized from K{sub 2}[TiO(C{sub 2}O{sub 4}){sub 2}], where {chi}{sup (3)} (-3{omega}; {omega}, {omega}, {omega}) values in the promising range of 10{sup -12} esu have been evaluated.

  18. Mode-selective vibrational modulation of charge transport in organic electronic devices

    KAUST Repository

    Bakulin, Artem A.

    2015-08-06

    The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500–1,700 cm−1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron–phonon coupling and charge dynamics in (bio)molecular materials.

  19. Mode-selective vibrational modulation of charge transport in organic electronic devices

    KAUST Repository

    Bakulin, Artem A.; Lovrincic, Robert; Yu, Xi; Selig, Oleg; Bakker, Huib J.; Rezus, Yves L. A.; Nayak, Pabitra K.; Fonari, Alexandr; Coropceanu, Veaceslav; Bredas, Jean-Luc; Cahen, David

    2015-01-01

    The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500–1,700 cm−1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron–phonon coupling and charge dynamics in (bio)molecular materials.

  20. Far infrared near normal specular reflectivity of Nix(SiO2)1-x (x = 1.0, 0.84, 0.75, 0.61, 0.54, 0.28) granular films

    KAUST Repository

    Massa, Néstor E.

    2010-04-01

    One of the current issues at the basis of the understanding of novel materials is the degree of the role played by spatial inhomogeneities due to subtle phase separations. To clarify this picture here we compare the plain glass network response of transition metal granular films with different metal fractions against what is known for conducting oxides. Films for Nix(SiO2)1-x (x = 1.0, 0.84, 0.75, 0.61, 0.54, 0.28) were studied by temperature dependent far infrared measurements. While for pure Ni the spectrum shows a flat high reflectivity, those for x ∼ 0.84 and ∼0.75 have a Drude component, vibrational modes mostly carrier screened, and a long tail that extents toward near infrared. This is associated with hopping electron conductivity and strong electron-phonon interactions. The relative reduction of the number of carriers in Ni0.75(SiO2)0.25 allows less screened phonon bands on the top of a continuum and a wide and overdamped oscillator at mid-infrared frequencies. Ni0.54(SiO2)0.46 and Ni0.28(SiO2)0.72 have well defined vibrational bands and a sharp threshold at ∼1450 cm-1. It is most remarkable that a distinctive resonant peak at ∼1250 cm-1 found for p-polarized angle dependent specular reflectivity. It originates in an electron cloud traced to electrons that are not able to overcome the metal-dielectric interface that, beating against the positive background, generates the electric dipole. Overall, we conclude that the spectra are analogous to those regularly found in conducting oxides where with a suitable percolating network polarons are formed. © 2009 Elsevier B.V. All rights reserved.

  1. Infrared Spectra of the 10-μm Bands of 1,2-Difluoroethane and 1,1,2-Trifluoroethane: Vibrationally Mediated Torsional Tunneling in 1,1,2-Trifluoroethane

    Science.gov (United States)

    Stone, Stephen C.; Miller, C. Cameron; Philips, Laura A.; Andrews, A. M.; Fraser, G. T.; Pate, B. H.; Xu, Li-Hong

    1995-12-01

    The 3-MHz-resolution infrared spectra of the 10-μm bands of thegaucheconformer of 1,2-difluoroethane (HFC152) and theC1-symmetry conformer of 1,1,2-trifluoroethane (HFC143) have been measured using a molecular-beam electric-resonance optothermal spectrometer with a tunable microwave-sideband CO2laser source. For 1,2-difluoroethane, two bands have been studied, the ν17B-symmetry C-F stretch at 1077.3 cm-1and the ν13B-symmetry CH2rock at 896.6 cm-1. Both bands are well fit to a asymmetric-rotor Hamiltonian to better than 0.5 MHz. The ν13band is effectively unperturbed, while the ν17band is weakly perturbed, as shown by the large change in centrifugal distortion constants from the ground state values. Two bands have also been studied for 1,1,2-trifluoroethane, the ν11symmetric CF2stretch at 1077.2 cm-1and the ν13C-C stretch at 905.1 cm-1. One of the two bands, ν11, is unperturbed and fit to near the experimental precision. The ν13vibration, on the other hand, is weakly perturbed by an interaction with a nearby state. This perturbation leads to a doubling or splitting of the lines, due to a perturbation-induced lifting of the degeneracy of the symmetric and antisymmetric tunneling states associated with tunneling between the two equivalentC1forms. For theJ,Kastates studied, the splittings are as large as 37 MHz. Combining this observation with published low-resolution far-infrared measurements of torsional sequence-band and hot-band frequencies and calculations from an empirical torsional potential allows us to identify the perturbing state as ν17+ 6ν18. Here, ν17is the CF2twist and ν18is the torsion. The matrix element responsible for this interaction exchanges eight vibrational quanta!

  2. Infrared emission properties and energy transfer in ZnO-SiO2:Yb3+ composites

    International Nuclear Information System (INIS)

    Xiao, F.; Chen, R.; Shen, Y.Q.; Liu, B.; Gurzadyan, G.G.; Dong, Z.L.; Zhang, Q.Y.; Sun, H.D.

    2011-01-01

    Graphical abstract: Highlights: → ZnO-SiO 2 :Yb 3+ composites have been prepared via a facile sol-gel method. Intense near-infrared emission at around 1 μm has been obtained upon broadband ultraviolet light excitation. → Efficient energy transfer from ZnO quantum dots to Yb 3+ ions has been clarified by the systematic measurements and analysis of static and time resolved photoluminescence spectra. → Codoping with Li + ions leads to about twice enhancement of the near-infrared luminescence intensity around 1 μm at room temperature. - Abstract: Intense near-infrared emission at 1 μm has been obtained in ZnO-SiO 2 :Yb 3+ composites via a facile sol-gel method upon broadband ultraviolet light excitation. Systematic optical measurements including static and time-resolved photoluminescence have been performed to elucidate the energy transfer from ZnO quantum dots to Yb 3+ ions. The dependence of energy transfer efficiency on Yb 3+ concentration has been investigated in detail. Codoping with Li + ions leads to about twice enhancement of the near-infrared luminescence intensity around 1 μm at room temperature. The enhancement in the luminescence intensity could be mostly attributed to the modification of the local symmetry around Yb 3+ ions by codoping with Li + ions.

  3. High-Power Piezoelectric Vibration Characteristics of Textured SrBi2Nb2O9 Ceramics

    Science.gov (United States)

    Kawada, Shinichiro; Ogawa, Hirozumi; Kimura, Masahiko; Shiratsuyu, Kosuke; Niimi, Hideaki

    2006-09-01

    The high-power piezoelectric vibration characteristics of textured SrBi2Nb2O9 (SBN) ceramics, that is bismuth-layer-structured ferroelectrics, were studied in the longitudinal mode (33-mode) by constant current driving method and compared with those of ordinary randomly oriented SBN and widely used Pb(Ti,Zr)O3 (PZT) ceramics. In the case of textured SBN ceramics, resonant properties are stable up to a vibration velocity of 2.6 m/s. Vibration velocity at resonant frequency increases proportionally with the applied electric field, and resonant frequency is almost constant in high-vibration-velocity driving. On the other hand, in the case of randomly oriented SBN and PZT ceramics, the increase in vibration velocity is not proportional to the applied high electric field, and resonant frequency decreases with increasing vibration velocity. The resonant sharpness Q of textured SBN ceramics is about 2000, even at a vibration velocity of 2.6 m/s. Therefore, textured SBN ceramics are good candidates for high-power piezoelectric applications.

  4. Synthesis, vibrational and optical properties of a new three-layered organic-inorganic perovskite (C4H9NH3)4Pb3I4Br6

    International Nuclear Information System (INIS)

    Dammak, T.; Elleuch, S.; Bougzhala, H.; Mlayah, A.; Chtourou, R.; Abid, Y.

    2009-01-01

    An organic-inorganic hybrid perovskite (C 4 H 9 NH 3 ) 4 Pb 3 I 4 Br 6 was synthesized and studied by X-ray diffraction, Raman and infrared spectroscopies, optical transmission and photoluminescence. The title compound, abbreviated (C 4 ) 4 Pb 3 I 4 Br 6 , crystallises in a periodic two-dimensional multilayer structure with P2 1 /a space group. The structure is built up from alternating inorganic and organic layers. Each inorganic layer consists of three sheets of PbX 6 (X=I, Br) octahedra. Raman and infrared spectra of the title compound were recorded in the 100-3500 and 400-4000 cm -1 frequency ranges, respectively. An assignment of the observed vibration modes is reported. Optical transmission measurements, performed on thin films of (C 4 ) 4 Pb 3 I 4 Br 6 , revealed two absorption bands at 474 and 508 nm. Photoluminescence measurements have shown a green emission peak at 519 nm.

  5. Rotational structure in molecular infrared spectra

    CERN Document Server

    di Lauro, Carlo

    2013-01-01

    Recent advances in infrared molecular spectroscopy have resulted in sophisticated theoretical and laboratory methods that are difficult to grasp without a solid understanding of the basic principles and underlying theory of vibration-rotation absorption spectroscopy. Rotational Structure in Molecular Infrared Spectra fills the gap between these recent, complex topics and the most elementary methods in the field of rotational structure in the infrared spectra of gaseous molecules. There is an increasing need for people with the skills and knowledge to interpret vibration-rotation spectra in many scientific disciplines, including applications in atmospheric and planetary research. Consequently, the basic principles of vibration-rotation absorption spectroscopy are addressed for contemporary applications. In addition to covering operational quantum mechanical methods, spherical tensor algebra, and group theoretical methods applied to molecular symmetry, attention is also given to phase conventions and their effe...

  6. Infra-red laser ablative micromachining of parylene-C on SiO2 substrates for rapid prototyping, high yield, human neuronal cell patterning

    International Nuclear Information System (INIS)

    Raos, B J; Unsworth, C P; Costa, J L; Rohde, C A; Simpson, M C; Doyle, C S; Dickinson, M E; Bunting, A S; Murray, A F; Delivopoulos, E; Graham, E S

    2013-01-01

    Cell patterning commonly employs photolithographic methods for the micro fabrication of structures on silicon chips. These require expensive photo-mask development and complex photolithographic processing. Laser based patterning of cells has been studied in vitro and laser ablation of polymers is an active area of research promising high aspect ratios. This paper disseminates how 800 nm femtosecond infrared (IR) laser radiation can be successfully used to perform laser ablative micromachining of parylene-C on SiO 2 substrates for the patterning of human hNT astrocytes (derived from the human teratocarcinoma cell line (hNT)) whilst 248 nm nanosecond ultra-violet laser radiation produces photo-oxidization of the parylene-C and destroys cell patterning. In this work, we report the laser ablation methods used and the ablation characteristics of parylene-C for IR pulse fluences. Results follow that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells. We disseminate the variation in yield of patterned hNT astrocytes on parylene-C with laser pulse spacing, pulse number, pulse fluence and parylene-C strip width. The findings demonstrate how laser ablative micromachining of parylene-C on SiO 2 substrates can offer an accessible alternative for rapid prototyping, high yield cell patterning with broad application to multi-electrode arrays, cellular micro-arrays and microfluidics. (paper)

  7. The far infrared radiation characteristics for Li2O.Al2O3.4SiO2(LAS) glass-ceramics and transition-metal oxide

    International Nuclear Information System (INIS)

    Huh, Nam Jung; Yang, Joong Sik

    1991-01-01

    The far infrared radiation characteristic for Li 2 O.Al 2 O 3 .4SiO 2 (LAS) glass, the LAS glass-ceramic and sintered transition metal oxides such as CuO, Fe 2 O 3 and Co 3 O 4 , were investigated. LAS glass and LAS glass-ceramic was higher than that of the LAS glass. Heat-treated CuO and Co 3 o 4 had radiation characteristic of high efficiency infrared radiant, and heat-treated Fe 2 O 3 had radiation characteristic that infrared emissivity decreased in higher was length above 15μm. (Author)

  8. Infrared studies of the evolution of the C{sub i}O{sub i}(Si{sub I}) defect in irradiated Si upon isothermal anneals

    Energy Technology Data Exchange (ETDEWEB)

    Angeletos, T.; Londos, C. A., E-mail: hlontos@phys.uoa.gr [University of Athens, Solid State Physics Section, Panepistimiopolis Zografos, Athens 157 84 (Greece); Chroneos, A., E-mail: alexander.chroneos@imperial.ac.uk [Faculty of Engineering, Environment and Computing, Coventry University, Priory Street, Coventry CV1 5FB (United Kingdom); Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-03-28

    Carbon-oxygen-self-interstitial complexes were investigated in silicon by means of Fourier transform infrared spectroscopy. Upon irradiation, the C{sub i}O{sub i} defect (C{sub 3}) forms which for high doses attract self-interstitials (Si{sub I}s) leading to the formation of the C{sub i}O{sub i}(Si{sub I}) defect (C{sub 4}) with two well-known related bands at 939.6 and 1024 cm{sup −1}. The bands are detectable in the spectra both in room temperature (RT) and liquid helium (LH) temperature. Upon annealing at 150 °C, these bands were transformed to three bands at 725, 952, and 973 cm{sup −1}, detectable only at LH temperatures. Upon annealing at 220 °C, these bands were transformed to three bands at 951, 969.5, and 977 cm{sup −1}, detectable both at RT and LH temperatures. Annealing at 280 °C resulted in the transformation of these bands to two new bands at 973 and 1024 cm{sup −1}. The latter bands disappear from the spectra upon annealing at 315 °C without the emergence of other bands in the spectra. Considering reaction kinetics and defect metastability, we developed a model to describe the experimental results. Annealing at 150 °C triggers the capturing of Si{sub I}s by the C{sub 4} defect leading to the formation of the C{sub i}O{sub i}(Si{sub I}){sub 2} complex. The latter structure appears to be bistable: measuring at LH, the defect is in configuration C{sub i}O{sub i}(Si{sub I}){sub 2} giving rise to the bands at 725, 952, and 973 cm{sup −1}, whereas on measurements at RT, the defect converts to another configuration C{sub i}O{sub i}(Si{sub I}){sub 2}{sup *} without detectable bands in the spectra. Possible structures of the two C{sub i}O{sub i}(Si{sub I}){sub 2} configurations are considered and discussed. Upon annealing at 220 °C, additional Si{sub I}s are captured by the C{sub i}O{sub i}(Si{sub I}){sub 2} defect leading to the formation of the C{sub i}O{sub i}(Si{sub I}){sub 3} complex, which in turn on annealing at

  9. Far-infrared spectroscopic study of CeO2 nanocrystals

    International Nuclear Information System (INIS)

    Popović, Z. V.; Grujić-Brojčin, M.; Paunović, N.; Radonjić, M. M.; Araújo, V. D.; Bernardi, M. I. B.; Lima, M. M. de; Cantarero, A.

    2015-01-01

    We present the far-infrared reflectivity spectra of 5 nm-sized pure and copper-doped Ce 1−x Cu x O 2−y (x = 0; 0.01 and 0.10) nanocrystals measured at room temperature in the 50–650 cm −1 spectral range. Reflectivity spectra were analyzed using the factorized form of the dielectric function, which includes the phonon and the free carriers contribution. Four oscillators with TO energies of approximately 135, 280, 370, and 490 cm −1 were included in the fitting procedure. These oscillators represent local maxima of the CeO 2 phonon density of states, which is also calculated using the density functional theory. The lowest energy oscillator represents TA(L)/TA(X) phonon states, which become infrared-active E u modes at the L and X points of the Brillouin zone (BZ). The second oscillator originates from TO(Γ) phonon states. The oscillator at ∼400 cm −1 originates from Raman mode phonon states, which at the L point of BZ also becomes infrared-active E u mode. The last oscillator describes phonons with dominantly LO(Γ) infrared mode character. The appearance of phonon density of states related oscillators, instead of single F 2u infrared-active mode in the far-infrared reflectivity spectra, is a consequence of the nanosized dimension of the CeO 2 particles. The best fit spectra are obtained using the generalized Bruggeman model for inhomogeneous media, which takes into account the nanocrystal volume fraction and the pore shape

  10. Non-equilibrium vibrational and chemical kinetics in shock heated carbon dioxide

    Science.gov (United States)

    Kosareva, A. A.

    2018-05-01

    The flows of CO2/CO/O2/O/C and CO2/CO/O mixtures behind shock waves are studied in the three-temperature, two-temperature and one-temperature approximations. The influence of the vibrational relaxation and chemical reactions on the flow composition, temperature and velocity is investigated. It is shown that the vibrational non-equilibrium has a significant effect on the macroscopic parameters of the flow near the front of the shock wave. It was found that the composition of the mixture has the greatest effect on the numerical density of CO molecules and O atoms. Also, significant differences between the values of the vibrational temperature of the asymmetric regime have been revealed.

  11. Mid-infrared upconversion spectroscopy

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Dam, Jeppe Seidelin; Andersen, H. V.

    2016-01-01

    Mid-infrared (MIR) spectroscopy is emerging as an attractive alternative to near-infrared or visible spectroscopy. MIR spectroscopy offers a unique possibility to probe the fundamental absorption bands of a large number of gases as well as the vibrational spectra of complex molecules. In this paper...

  12. The infrared spectrum of polypyrrole-T2O system

    International Nuclear Information System (INIS)

    Kanesaka, Isao; Oda, Kazuhiro

    1995-01-01

    The infrared spectra of polypyrrole contacting with T 2 O gas were observed for ca. 100 days. After adding T 2 O (1.2 Ci; isotopic purity: 15%) the band at 2180 cm -1 was observed, which is assigned to the N-T stretch. Although the bands at 1560 and 1204 cm -1 were initially strong, they became relatively weak by Tβ-irradiation. On the other hand, the bands at 1655 and 1400 cm -1 , as well as 1700 cm -1 , became relatively strong by Tβ-irradiation. This is explained in that the quinonoid-type structure with partially aromatic-type structure decreases and a structure with probable C=N bonds is formed. It was also found that many carbonyl defects are formed in both the atmosphere and Tβ-radiolysis. (author)

  13. Infrared spectra and tunneling dynamics of the N2-D2O and OC-D2O complexes in the v2 bend region of D2O.

    Science.gov (United States)

    Zhu, Yu; Zheng, Rui; Li, Song; Yang, Yu; Duan, Chuanxi

    2013-12-07

    The rovibrational spectra of the N2-D2O and OC-D2O complexes in the v2 bend region of D2O have been measured in a supersonic slit jet expansion using a rapid-scan tunable diode laser spectrometer. Both a-type and b-type transitions were observed for these two complexes. All transitions are doubled, due to the heavy water tunneling within the complexes. Assuming the tunneling splittings are the same in K(a) = 0 and K(a) = 1, the band origins, all three rotational and several distortion constants of each tunneling state were determined for N2-D2O in the ground and excited vibrational states, and for OC-D2O in the excited vibrational state, respectively. The averaged band origin of OC-D2O is blueshifted by 2.241 cm(-1) from that of the v2 band of the D2O monomer, compared with 1.247 cm(-1) for N2-D2O. The tunneling splitting of N2-D2O in the ground state is 0.16359(28) cm(-1), which is about five times that of OC-D2O. The tunneling splittings decrease by about 26% for N2-D2O and 23% for OC-D2O, respectively, upon excitation of the D2O bending vibration, indicating an increase of the tunneling barrier in the excited vibrational state. The tunneling splittings are found to have a strong dependence on intramolecular vibrational excitation as well as a weak dependence on quantum number K(a).

  14. Carbon Chemistry in IRC+10216: Infrared Detection of Diacetylene

    Science.gov (United States)

    Fonfría, J. P.; Agúndez, M.; Cernicharo, J.; Richter, M. J.; Lacy, J. H.

    2018-01-01

    We present the detection of C4H2 for first time in the envelope of the C-rich AGB star IRC+10216, based on high spectral resolution mid-infrared observations carried out with the Texas Echelon-cross-Echelle Spectrograph mounted on the Infrared Telescope Facility. The obtained spectrum contains 24 narrow absorption features above the detection limit, identified as lines of the ro-vibrational C4H2 band {ν }6+{ν }8({σ }u+). The analysis of these lines through a ro-vibrational diagram indicates that the column density of C4H2 is (2.4 ± 1.5) × 1016 cm‑2. Diacetylene is distributed in two excitation populations accounting for 20% and 80% of the total column density and with rotational temperatures of 47 ± 7 and 420 ± 120 K, respectively. This two-folded rotational temperature suggests that the absorbing gas is located beyond ≃0.″4 ≃ 20 R ⋆ from the star, with a noticeable cold contribution outwards from ≃10″ ≃ 500 R ⋆. This outer shell matches up with the place where cyanoacetylenes and carbon chains are known to form due to the action of the Galactic dissociating radiation field on the neutral gas coming from the inner layers of the envelope.

  15. Adsorption of F{sub 2}C=CFCl on TiO{sub 2} nano-powder: Structures, energetics and vibrational properties from DRIFT spectroscopy and periodic quantum chemical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Tasinato, Nicola, E-mail: tasinato@unive.it; Moro, Daniele; Stoppa, Paolo; Pietropolli Charmet, Andrea; Toninello, Piero; Giorgianni, Santi

    2015-10-30

    Graphical abstract: - Highlights: • Adsorption of F{sub 2}C=CFCl on TiO{sub 2} unveiled by DRIFTS and periodic DFT. • Structural, energetic and vibrational properties of F{sub 2}C=CFCl @ anatase (1 0 1). • Binding energies (B3LYP-D2) between −17 and −46 kJ mol{sup −1} depending on the anchor point. • Theory and experiment converge on the CF{sub 2} moiety as the main anchor point. - Abstract: Photodegradation over titanium dioxide (TiO{sub 2}) is a very appealing technology for removing environmental pollutants from the air, the adsorption interaction being the first step of the whole reaction pathway. In the present work the adsorption of F{sub 2}C=CFCl (chlorotrifluoroethene, halon 1113), a compound used by industry and detected in the atmosphere, on a commercial TiO{sub 2} nano-powder is investigated experimentally by in situ DRIFT spectroscopy and theoretically through periodic ab initio calculations rooted in DFT. The spectra of the adsorbed molecule suggest that the anchoring to the surface mainly takes place through F atoms. Theoretically, five adsorption configurations for the molecule interacting with the anatase (1 0 1) surface are simulated at B3LYP level and for each of them, structures, binding energies and vibrational frequencies are derived. The interplay between theory and experiments shows the coexistence of different adsorption configurations, the foremost ones featuring the interaction of one F atom with a fivefold coordinated Ti{sup 4+} of the surface. These two adsorption models, which mostly differ for the orientation of the adsorbate with respect to the surface, feature a binding energy of −45.6 and −41.0 kJ mol{sup −1} according to dispersion corrected DFT calculations. The favorable adsorption interaction appears as an important requirement toward the application of titanium dioxide technologies for the photocatalytic degradation of halon 1113.

  16. Vibrational properties of water molecules adsorbed in different zeolitic frameworks

    International Nuclear Information System (INIS)

    Crupi, V; Longo, F; Majolino, D; Venuti, V

    2006-01-01

    The perturbation of water 'sorbed' in samples of zeolites of different structural type, genesis, and cation composition (K-, Na-, Mg- and Ca-rich zeolites), namely the CHA framework of a synthetic K-chabazite, the LTA framework of synthetic Na-A and Mg50-A zeolites, and the NAT framework of a natural scolecite, has been studied by FTIR-ATR spectroscopy, in the -10 to +80 o C temperature range. The aim was to show how differences in the chemical composition and/or in the topology of the zeolite framework and, in particular, the possibility for the guest water molecules to develop guest-guest and/or host-guest interactions, lead to substantial differences in their vibrational dynamical properties. The spectra, collected in the O-H stretching and H 2 O bending mode regions, are complex, with multiple bands being observed. As far as water in the CHA and LTA frameworks is concerned, whose behaviour is governed by the balance of water-water, water-framework and water-extra-framework cations interactions, the assignment of the resolved components of the O-H stretching band has been discussed by fitting the band shapes into individual components attributed to H 2 O molecules engaged in different degrees of hydrogen bonding. A detailed quantitative picture of the connectivity pattern of water, as a function of temperature and according to the chemical and topological properties of the environment, is furnished. The H 2 O bending vibrational bands give additional information that perfectly agrees with the results obtained from the analysis of the O-H stretching spectral region. In the case of scolecite, a small-pored zeolite where water-water interactions are eliminated, the increased complexity observed in the infrared spectra in the O-H stretching and H 2 O bending regions was explained as due to the hydrogen bonding between the water molecules and the network, and also with the extra-framework cation. Furthermore, these observations have been correlated with the different

  17. Tight beta-turns in peptides. DFT-based study of infrared absorption and vibrational circular dichroism for various conformers including solvent effects

    Czech Academy of Sciences Publication Activity Database

    Kim, J.; Kapitán, Josef; Lakhani, A.; Bouř, Petr; Keiderling, T. A.

    2008-01-01

    Roč. 119, 1/3 (2008), s. 81-97 ISSN 1432-881X R&D Projects: GA ČR GA203/06/0420 Grant - others:NSF(US) CHE03-16014 Institutional research plan: CEZ:AV0Z40550506 Keywords : peptide beta -turn * density functional theory * infrared absorption * vibrational circular dichroism Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.370, year: 2008

  18. Characterization of sonicated natural zeolite/ferric chloride hexahydrate by infrared spectroscopy

    Science.gov (United States)

    Prasetyo, T. A. B.; Soegijono, B.

    2018-03-01

    The characteristics of sonicated Bayah natural zeolite with and without ferric chloride hexahydrate solution using infrared method has been studied. High intensity ultrasonic waves were exposed to the samples for 40 min, 80 min and 120 min. Infra red spectra analysis was conducted to evaluate zeolite vibrational spectrum contributions, namely, the vibrations from the framework of the zeolite, from the charge-balancing cations, and from the relatively isolated groups, such as the surface OH groups and their behavior after sonication process. An addition of FeCl3.6H2O and sonication process on natural zeolite improved secondary building units link by forming oxygen bridges and also close relationship with duration of applied high intensity ultrasonic process. Longer ultrasonic process resulted in more increment of O-H absorbance.

  19. Vibrational Investigations of Silver-Doped Hydroxyapatite with Antibacterial Properties

    OpenAIRE

    Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Le Coustumer, Phillippe; Predoi, Daniela

    2013-01-01

    Silver-doped hydroxyapatite (Ag:HAp) was obtained by coprecipitation method. Transmission electron microscopy (TEM), infrared, and Raman analysis confirmed the development of Ag:HAp with good crystal structure. Transmission electron microscopy analysis showed an uniform ellipsoidal morphology with particles from 5 nm to 15 nm. The main vibrational bands characteristic to HAp were identified. The bands assigned to phosphate vibrational group were highlighted in infrared and Raman spectra. The...

  20. Far-infrared spectroscopic study of CeO2 nanocrystals

    Science.gov (United States)

    Popović, Z. V.; Grujić-Brojčin, M.; Paunović, N.; Radonjić, M. M.; Araújo, V. D.; Bernardi, M. I. B.; de Lima, M. M.; Cantarero, A.

    2015-01-01

    We present the far-infrared reflectivity spectra of 5 nm-sized pure and copper-doped Ce1- x Cu x O2- y ( x = 0; 0.01 and 0.10) nanocrystals measured at room temperature in the 50-650 cm-1 spectral range. Reflectivity spectra were analyzed using the factorized form of the dielectric function, which includes the phonon and the free carriers contribution. Four oscillators with TO energies of approximately 135, 280, 370, and 490 cm-1 were included in the fitting procedure. These oscillators represent local maxima of the CeO2 phonon density of states, which is also calculated using the density functional theory. The lowest energy oscillator represents TA(L)/TA(X) phonon states, which become infrared-active E u modes at the L and X points of the Brillouin zone (BZ). The second oscillator originates from TO(Γ) phonon states. The oscillator at 400 cm-1 originates from Raman mode phonon states, which at the L point of BZ also becomes infrared-active E u mode. The last oscillator describes phonons with dominantly LO(Γ) infrared mode character. The appearance of phonon density of states related oscillators, instead of single F 2uinfrared-active mode in the far-infrared reflectivity spectra, is a consequence of the nanosized dimension of the CeO2 particles. The best fit spectra are obtained using the generalized Bruggeman model for inhomogeneous media, which takes into account the nanocrystal volume fraction and the pore shape.

  1. Carbon dioxide adsorption on a ZnO(101[combining macron]0) substrate studied by infrared reflection absorption spectroscopy.

    Science.gov (United States)

    Buchholz, Maria; Weidler, Peter G; Bebensee, Fabian; Nefedov, Alexei; Wöll, Christof

    2014-01-28

    The adsorption of carbon dioxide on the mixed-terminated ZnO(101[combining macron]0) surface of a bulk single crystal was studied by UHV Infrared Reflection Absorption Spectroscopy (IRRAS). In contrast to metals, the classic surface selection rule for IRRAS does not apply to bulk oxide crystals, and hence vibrational bands can also be observed for s-polarized light. Although this fact substantially complicates data interpretation, a careful analysis allows for a direct determination of the adsorbate geometry. Here, we demonstrate the huge potential of IR-spectroscopy for investigations on oxide single crystal surfaces by considering all three components of the incident polarized light separately. We find that the tridentate (surface) carbonate is aligned along the [0001] direction. A comparison to data reported previously for CO2 adsorbed on the surfaces of ZnO nanoparticles provides important insight into the role of defects in the surface chemistry of powder particles.

  2. Vibrational spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  3. Apparent and standard molar volumes and heat capacities of aqueous Ni(ClO4)2 from 25 to 85oC

    International Nuclear Information System (INIS)

    Pan, P.; Campbell, A.B.

    1997-01-01

    Apparent molar heat capacities and volumes of aqueous Ni(ClO 4 ) 2 were measured from 25 to 85 o C over a concentration range of 0.02 to 0.8 mol-kg -1 using a Picker flow microcalorimeter and a Picker vibrating-tube densimeter. An extended Debye-Huckel equation was fitted to the experimental data to obtain expressions for the apparent molar properties as functions of ionic strength for Ni(ClO 4 ) 2 (aq). The standard-state partial molar properties for Ni(ClO 4 ) 2 (aq) in the temperature range 25 to 85 o C were obtained and can be expressed by empirical equations. The standard partial molar heat capacities and volumes for Ni 2+ (aq) from 25 to 86 o C were obtained by using the additivity rule and data for ClO - 4 (aq) in the literature. These values were extrapolated to 300 o C by employing the Helgeson-Kirkham-Flower (HKF) equations, amended to include a standard-state correction term. (author)

  4. Surface chemistry of plasma-assisted atomic layer deposition of Al2O3 studied by infrared spectroscopy

    NARCIS (Netherlands)

    Langereis, E.; Keijmel, J.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2008-01-01

    The surface groups created during plasma-assisted atomic layer deposition (ALD) of Al2O3 were studied by infrared spectroscopy. For temperatures in the range of 25–150 °C, –CH3 and –OH were unveiled as dominant surface groups after the Al(CH3)3precursor and O2 plasma half-cycles, respectively. At

  5. Infrared emissions in MgSrAl{sub 10}O{sub 17}:Er{sup 3+} phosphor co-doped with Yb{sup 3+}/Ba{sup 2+}/Ca{sup 2+} obtained by solution combustion route

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vijay, E-mail: vijayjiin2006@yahoo.com [Physical Chemistry, Institute for Pure and Applied Chemistry and Center of Interface Science, University of Oldenburg, 26129 Oldenburg (Germany); Kumar Rai, Vineet [Department of Applied Physics, Indian School of Mines, Dhanbad 826 004 (India); Venkatramu, V. [Department of Physics, Yogi Vemana University, Kadapa 516 003 (India); Chakradhar, R.P.S. [CSIR-National Aerospace, Bangalore 560 017 (India); Hwan Kim, Sang [Department of Chemical Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2013-02-15

    An intense infrared emitting MgSrAl{sub 10}O{sub 17}:Er{sup 3+} phosphor co-doped with Yb{sup 3+}, Ba{sup 2+} and Ca{sup 2+} ions have been prepared by a solution combustion method. Phase purity of the derived compounds was confirmed by X-ray diffraction technique. The vibrational properties of MgSrAl{sub 10}O{sub 17} phosphor was studied by Fourier transform infrared spectroscopy. The broad and strong infrared emission of Er{sup 3+} ions at around 1.53 {mu}m was observed upon excitation at 980 nm. Effect of co-doping with the Yb{sup 3+}{sub ,} Ba{sup 2+} and Ca{sup 2+} ions on the infrared luminescence intensity of Er{sup 3+} ions and the mechanism responsible for the variation in the infrared intensity have been discussed. The results indicate that these materials may be suitable for the optical telecommunication window and wavelength division multiplexing applications. - Highlights: Black-Right-Pointing-Pointer The hexagonal phase of MgSrAl{sub 10}O{sub 17} could be obtained by the low temperature combustion method. Black-Right-Pointing-Pointer The broad and strong infrared emission of Er{sup 3+} ions at around 1.53 {mu}m was observed. Black-Right-Pointing-Pointer Effect of co-doping with the Yb{sup 3+}{sub ,} Ba{sup 2+} and Ca{sup 2+} ions on the infrared luminescence intensity of Er{sup 3+} were reported.

  6. Ultrafast infrared vibrational spectroscopy

    CERN Document Server

    Fayer, Michael D

    2013-01-01

    The past ten years or so have seen the introduction of multidimensional methods into infrared and optical spectroscopy. The technology of multidimensional spectroscopy is developing rapidly and its applications are spreading to biology and materials science. Edited by a recognized leader in the field and with contributions from top researchers, including experimentalists and theoreticians, this book presents the latest research methods and results and will serve as an excellent resource for other researchers.

  7. Infrared studies of the superconducting energy gap and normal-state dynamics of the high-Tc superconductor YBa2Cu3O7

    International Nuclear Information System (INIS)

    Schlesinger, Z.; Collins, R.T.; Holtzberg, F.; Feild, C.; Koren, G.; Gupta, A.

    1990-01-01

    A detailed study of infrared properties (reflectivity, conductivity, and dielectric response), emphasizing reproducible results from fully oxygenated YBa 2 Cu 3 O 7 crystals (T c congruent 93 K) and films, is presented. The extrapolated values of σ 1 (ω) at low frequency are roughly consistent with the measured temperature-dependent dc resistivity. Although not well understood, this infrared conductivity can be interpreted in terms of a frequency-dependent scattering rate of ∼kT+ℎω, with a low-frequency mass enhancement of roughly 2 to 4 associated with a carrier-spin related interaction. Infrared measurements polarized along the c axis suggest a conductivity anisotropy of roughly 40:1 near T c in the normal state. In the superconducting state an energy scale of 2Δ c congruent 3kT c is suggested by c-axis polarized measurements, while a much larger characteristic energy of 2Δ a-b congruent 8kT c is evident in the (a-b)-plane conductivity. From the area missing from the conductivity up to this very large gap, a reasonable estimate (congruent 1700 A) for the (a-b)-plane penetration depth is obtained. Evidence for non-BCS temperature dependence, strong pair breaking scattering, and possible fluctuation effects is discussed. A comparison to infrared data from Bi 2 Sr 2 CaCu 2 O 8-y shows a similarly large energy scale, 2Δ a-b congruent 8kT c ; for the cubic Ba 0.6 K 0.4 BiO 3 superconductor a more conventional energy scale, 2Δ congruent 4kT c is observed

  8. Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions

    International Nuclear Information System (INIS)

    Thompson, Michael C.; Weber, J. Mathias; Baraban, Joshua H.; Matthews, Devin A.; Stanton, John F.

    2015-01-01

    We report infrared spectra of nitromethane anion, CH 3 NO 2 − , in the region 700–2150 cm −1 , obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states

  9. Correlation of infrared spectra and phase transitions in annealed proton-exchanged MgO doped LiNbO3

    International Nuclear Information System (INIS)

    Sun, Jian; Xu, Chang-qing

    2015-01-01

    Infrared spectra of OH − groups in annealed proton-exchanged (APE) 5 mol. % MgO-doped LiNbO 3 (MgO:LiNbO 3 ) crystals were studied using the Fourier transform infrared spectroscopy technique. Samples were prepared by benzoic acid proton-exchange followed with thermal annealing in oxygen. Evolutions of absorption peaks in APE MgO:LiNbO 3 crystals were recorded and analyzed. Comparing with none-doped APE LiNbO 3 crystals, a different phase transition behavior was found during thermal annealing. A periodically poled MgO:LiNbO 3 slab waveguide was prepared using identical procedures, and the second harmonic generation (SHG) signals were measured. Comparing the obtained SHG results with the infrared spectra, relationships between the phase transitions and the recovery of second-order nonlinear coefficients during thermal annealing were investigated. Finally, a method for optimizing the performance of MgO:LiNbO 3 waveguides was proposed

  10. Infrared absorption spectroscopy and chemical kinetics of free radicals

    International Nuclear Information System (INIS)

    Curl, R.F.; Glass, G.P.

    1991-01-01

    A new channel producing ketenyl radical (HCCO) was discovered in the flash photolysis of ketene at 193 nm. H 2 CCO + hν(193 nm) → H + HCCO by observation near 2020 cm -1 of the infrared fundamental of ketenyl corresponding to the antisymmetric motion of the heavy atoms. This band has been partially rotationally analyzed and the rate constant for the reaction of ketenyl with NO has been determined. The OH stretching fundamental of hydroxymethyl radical (CH 2 OH) has been observed near 3600 cm -1 producing the radical either by the excimer flash photolysis of acetol (CH 3 COCH 2 OH) or by Cl atom abstraction of a methyl hydrogen from methanol. The assignment of the spectrum to CH 2 OH was confirmed by the agreement of the rate constant for the reaction of the species with O 2 with the literature value. The mechanism of the reaction of C 2 H with O 2 has been explored. There appear to be two channels producing CO product: a fast, direct one producing highly vibrationally excited CO up to v = 6 at the same rate C 2 H disappears and a slow, indirect one producing primarily ground state CO on a much longer timescale than the disappearance of C 2 H. The rate constants for the reactions of C 2 H with CH 4 , C 2 H 6 , C 2 H 4 , D 2 , and CO were determined by following the time decay of a C 2 H infrared transient absorption line originating from the ground vibronic state using diode laser spectroscopy creating the C 2 H by excimer laser flash photolysis (ArF, 193 nm) of CF 3 CCH. The branching ratio into OH of the reaction between NH 2 , and NO, which is the channel thought to propagate the radical chain of the Thermal deNOx process, has been measured up to 925 degree C. The OH yield thus obtained appears to be too small to maintain the process. 5 refs., 3 figs

  11. Óxidos Mistos de Al2O3/ZrO2 como Inibidores de Corrosão do Aço SAE 1020

    Directory of Open Access Journals (Sweden)

    Marcelo Rodrigues da Silva

    2014-01-01

    Full Text Available This paper describes the use of Al2O3/ZrO2 mixed oxides synthesized by sol-gel process with different amounts of ZrO2 (5%, 10%, 15% and 20% by mass in the Al2O3 matrix and different temperatures of calcination, such as interesting inhibitor materials of corrosive processes of SAE 1020 steel. The materials were characterized by Infrared Spectroscopy Fourier Transform (FTIR and X-Ray Diffraction (XRD techniques. FTIR spectra show the typical Al-O and Zr-O bonds vibrations in the mixed oxides. The XRD patterns of the samples calcined at 800 °C and 1000 °C shows the ZrO2 tetragonal and γ-Al2O3 face-centered cubic (FCC phases. The corrosion tests showed that the SAE 1020 steel covered with mixed oxides have an anodic passive region, thereby inhibiting the corrosive processes on the metal surface. Furthermore, the found values for steel coated with mixed oxide synthesized indicate a decrease in corrosion potentials (Ecor and corrosion current (icor. With respect to different samples of mixed oxides, the sample with 20 % of ZrO2 in the Al2O3 matrix proved to be the best inhibitor of steel corrosion, with the lowest values of corrosion potential and corrosion current, - 1.32 V and 0.31 μA cm-2, respectively.

  12. Self Assembly and Properties of C:WO3 Nano-Platelets and C:VO2/V2O5 Triangular Capsules Produced by Laser Solution Photolysis

    Directory of Open Access Journals (Sweden)

    Sideras-Haddad E

    2009-01-01

    Full Text Available Abstract Laser photolysis of WCl6 in ethanol and a specific mixture of V2O5 and VCl3 in ethanol lead to carbon modified vanadium and tungsten oxides with interesting properties. The presence of graphene’s aromatic rings (from the vibrational frequency of 1,600 cm−1 together with C–C bonding of carbon (from the Raman shift of 1,124 cm−1 present unique optical, vibrational, electronic and structural properties of the intended tungsten trioxide and vanadium dioxide materials. The morphology of these samples shows nano-platelets in WO x samples and, in VO x samples, encapsulated spherical quantum dots in conjunction with fullerenes of VO x . Conductivity studies revealed that the VO2/V2O5 nanostructures are more sensitive to Cl than to the presence of ethanol, whereas the C:WO3 nano-platelets are more sensitive to ethanol than atomic C.

  13. 110 °C range athermalization of wavefront coding infrared imaging systems

    Science.gov (United States)

    Feng, Bin; Shi, Zelin; Chang, Zheng; Liu, Haizheng; Zhao, Yaohong

    2017-09-01

    110 °C range athermalization is significant but difficult for designing infrared imaging systems. Our wavefront coding athermalized infrared imaging system adopts an optical phase mask with less manufacturing errors and a decoding method based on shrinkage function. The qualitative experiments prove that our wavefront coding athermalized infrared imaging system has three prominent merits: (1) working well over a temperature range of 110 °C; (2) extending the focal depth up to 15.2 times; (3) achieving a decoded image being approximate to its corresponding in-focus infrared image, with a mean structural similarity index (MSSIM) value greater than 0.85.

  14. Effect of lithium doping in BaTiO3 ceramics for vibration sensor application

    Science.gov (United States)

    Praveen, E.; Murugan, S.; Jayakumar, K.

    2018-04-01

    Phase pure undoped and Lithium doped BaTiO3 particles have been synthesized by high temperature solid-state reaction method. Substitution of Lithium at the Ba2+ site in BaTiO3 lattice has been investigated. The structural, vibrational, electrical and mechanical characterization have been carried out. The poled samples were used as a sensing element for the detection of mechanical oscillations and the presence of 80 Hz pulse in the output spectrum manifest the response of the sensor element to the applied mechanical stress. In comparison with pure BaTiO3 the sensitivity of Li doped BaTiO3 is 14 times greater than the pure BaTiO3. This confirms that Li doped BaTiO3 could be an efficient candidate for the functionalization of vibration sensors in space application.

  15. Infrared spectroscopic studies on the cluster size dependence of charge carrier structure in nitrous oxide cluster anions

    International Nuclear Information System (INIS)

    Thompson, Michael C.; Weber, J. Mathias

    2016-01-01

    We report infrared photodissociation spectra of nitrous oxide cluster anions of the form (N 2 O) n O − (n = 1–12) and (N 2 O) n − (n = 7–15) in the region 800–1600 cm −1 . The charge carriers in these ions are NNO 2 − and O − for (N 2 O) n O − clusters with a solvation induced core ion switch, and N 2 O − for (N 2 O) n − clusters. The N–N and N–O stretching vibrations of N 2 O − (solvated by N 2 O) are reported for the first time, and they are found at (1595 ± 3) cm −1 and (894 ± 5) cm −1 , respectively. We interpret our infrared spectra by comparison with the existing photoelectron spectroscopy data and with computational data in the framework of density functional theory.

  16. Probing the mid-infrared spectrum of YBa2Cu3O6.0 with high magnetic fields and Zink doping

    NARCIS (Netherlands)

    Gruninger, M; vanderMarel, D; vanBentum, PJM; Erb, A; Wolf, T; Kopp, T

    1996-01-01

    The mid-infrared phonon and spin-wave spectrum of antiferromagnetic YBa2Cu3O6.0 was investigated by infrared transmission measurements (k(-->) parallel to c-axis) at T=4K. Peaks at 178 meV, 346 meV and 470 meV were previously interpreted as excitations of single magnons of the optical branch and of

  17. Femtosecond time-resolved vibrational SFG spectroscopy of CO/Ru( 0 0 1 )

    Science.gov (United States)

    Hess, Ch.; Wolf, M.; Roke, S.; Bonn, M.

    2002-04-01

    Vibrational sum-frequency generation (SFG) employing femtosecond infrared (IR) laser pulses is used to study the dynamics of the C-O stretch vibration on Ru(0 0 1). Time-resolved measurements of the free induction decay (FID) of the IR-polarization for 0.33 ML CO/Ru(0 0 1) exhibit single exponential decays over three decades corresponding to dephasing times of T2=1.94 ps at 95 K and T2=1.16 ps at 340 K. This is consistent with pure homogeneous broadening due to anharmonic coupling with the thermally activated low-frequency dephasing mode together with a contribution from saturation of the IR transition. In pump-probe SFG experiments using a strong visible (VIS) pump pulse the perturbation of the FID leads to transient line shifts even at negative delay times, i.e. when the IR-VIS SFG probe pair precedes the pump pulse. Based on an analysis of the time-dependent polarization we discuss the influence of the perturbed FID on time-resolved SFG spectra. We investigate how coherent effects affect the SFG spectra and we examine the time resolution in these experiments, in particular in dependence of the dephasing time.

  18. Vibrational Spectral Studies of Gemfibrozil

    Science.gov (United States)

    Benitta, T. Asenath; Balendiran, G. K.; James, C.

    2008-11-01

    The Fourier Transform Raman and infrared spectra of the crystallized drug molecule 5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanoic acid (Gemfibrozil) have been recorded and analyzed. Quantum chemical computational methods have been employed using Gaussian 03 software package based on Hartree Fock method for theoretically modeling the grown molecule. The optimized geometry and vibrational frequencies have been predicted. Observed vibrational modes have been assigned with the aid of normal coordinate analysis.

  19. Vibrational spectroscopic investigation of polymorphs and cocrystals of indomethacin.

    Science.gov (United States)

    Ali, Hassan Refat H; Alhalaweh, Amjad; Velaga, Sitaram P

    2013-05-01

    Identification of optimal solid form of an active pharmaceutical ingredient and form control are very important in drug development. Thus, the structural information of these forms and in-depth insight on the modes of molecular interactions are necessary, and vibrational spectroscopic methods are well suited for this purpose. In-depth structural analysis of different solid forms of indomethacin (IND) using Raman and infrared (IR) spectroscopy is the objective. We have investigated the modes of molecular interactions in polymorphs (α and γ), amorphous and discovered cocrystals of IND with nicotinamide (NIC) and trans-cinnamic acid (CIN) coformers. The solid forms of IND have been prepared; their purity has been verified by differential scanning calorimetry and powder X-ray diffractometry and then studied in the solid-state by Raman and IR spectroscopy. The modes of the interactions were closely investigated from the vibrational data. The key vibrational features of IND solid forms have been specified. The IR (C=O) band at 1713 cm(-1) attributed to cyclic acid dimer of γ IND has disappeared in IND-NIC/CIN whilst retained in IND-SAC cocrystal. IND cocrystallizes in different conformations and crystal lattices with different coformers. The cyclic acid dimer of IND has been kept on its cocrystallization with saccharin and it could have been broken with NIC and CIN. The complementary nature of Raman and IR spectroscopy allowed unambiguous investigation of the chemical composition of pharmaceutical materials which is of particular importance in the absence of detailed structural information, as in the case of IND-NIC and IND-CIN.

  20. Vibrational Order, Structural Properties, and Optical Gap of ZnO Nanostructures Sintered through Thermal Decomposition

    Directory of Open Access Journals (Sweden)

    Alejandra Londono-Calderon

    2014-01-01

    Full Text Available The sintering of different ZnO nanostructures by the thermal decomposition of zinc acetate is reported. Morphological changes from nanorods to nanoparticles are exhibited with the increase of the decomposition temperature from 300 to 500°C. The material showed a loss in the crystalline order with the increase in the temperature, which is correlated to the loss of oxygen due to the low heating rate used. Nanoparticles have a greater vibrational freedom than nanorods which is demonstrated in the rise of the main Raman mode E 2(high during the transformation. The energy band gap of the nanostructured material is lower than the ZnO bulk material and decreases with the rise in the temperature.

  1. Role of a Water Network around the Mn4CaO5 Cluster in Photosynthetic Water Oxidation: A Fourier Transform Infrared Spectroscopy and Quantum Mechanics/Molecular Mechanics Calculation Study.

    Science.gov (United States)

    Nakamura, Shin; Ota, Kai; Shibuya, Yuichi; Noguchi, Takumi

    2016-01-26

    Photosynthetic water oxidation takes place at the Mn4CaO5 cluster in photosystem II. Around the Mn4CaO5 cluster, a hydrogen bond network is formed by several water molecules, including four water ligands. To clarify the role of this water network in the mechanism of water oxidation, we investigated the effects of the removal of Ca(2+) and substitution with metal ions on the vibrations of water molecules coupled to the Mn4CaO5 cluster by means of Fourier transform infrared (FTIR) difference spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations. The OH stretching vibrations of nine water molecules forming a network between D1-D61 and YZ were calculated using the QM/MM method. On the the calculated normal modes, a broad positive feature at 3200-2500 cm(-1) in an S2-minus-S1 FTIR spectrum was attributed to the vibrations of strongly hydrogen-bonded OH bonds of water involving the vibrations of water ligands to a Mn ion and the in-phase coupled vibration of a water network connected to YZ, while bands in the 3700-3500 cm(-1) region were assigned to the coupled vibrations of weakly hydrogen-bonded OH bonds of water. All the water bands were lost upon Ca(2+) depletion and Ba(2+) substitution, which inhibit the S2 → S3 transition, indicating that a solid water network was broken by these treatments. By contrast, Sr(2+) substitution slightly altered the water bands around 3600 cm(-1), reflecting minor modification in water interactions, consistent with the retention of water oxidation activity with a decreased efficiency. These results suggest that the water network around the Mn4CaO5 cluster plays an essential role in the water oxidation mechanism particularly in a concerted process of proton transfer and water insertion during the S2 → S3 transition.

  2. Vibrational spectroscopy of shock-compressed fluid N2 and O2

    International Nuclear Information System (INIS)

    Schmidt, S.C.; Moore, D.S.; Shaw, M.S.; Johnson, J.D.

    1987-01-01

    Single-pulse multiplex coherent anti-Stokes Raman scattering (CARS) was used to observe the vibrational spectra of liquid N 2 shock-compressed to several pressures and temperatures up to 41 GPa and 5200 K and liquid O 2 shock-compressed to several pressures and temperatures up to 10 GPa and 1000 K. For N 2 , the experimental spectra were compared to synthetic spectra calculated using a semiclassical model for CARS intensities and estimated vibrational frequencies, peak Raman susceptibilities, and Raman line widths. The question of excited state populations in the shock-compressed state is addressed

  3. Non-linear vibrational modes in biomolecules: A periodic orbits description

    International Nuclear Information System (INIS)

    Kampanarakis, Alexandros; Farantos, Stavros C.; Daskalakis, Vangelis; Varotsis, Constantinos

    2012-01-01

    Graphical abstract: Vibrational frequency shifts in Fe IV = O species of the active site of cytochrome c oxidase are attributed to changes in the surrounding Coulomb field. Periodic orbits analysis assists to find the most anharmonic modes in model biomolecules. Highlights: ► Periodic orbits are extended to multidimensional potentials of biomolecules. ► Highly anharmonic vibrational modes and center-saddle bifurcations are detected. ► Vibrational frequencies shifts in Oxoferryl species of CcO are observed. - Abstract: The vibrational harmonic normal modes of a molecule, which are valid at energies close to an equilibrium point (a minimum, maximum or saddle of the potential energy surface), are extended by periodic orbits to high energies where anharmonicity and coupling of the degrees of freedom are significant. In this way the assignment of the spectra, and thus the extraction of dynamics in highly excited molecules, can be obtained. New vibrational modes emanating from bifurcations of periodic orbits and long living localized trajectories signal the birth and localization of new quantum states. In this article we review and further study non-linear vibrational modes for model biomolecules such as alanine dipeptide and the active site in the oxoferryl oxidation state of the enzyme cytochrome c oxidase. We locate periodic orbits which exhibit high anhamonicity and lead to center-saddle bifurcations. These modes are associated to an isomerization process in alanine dipeptide and to frequency shifts in the oxoferryl observed by modifying the Coulomb field around the Imidazole–Fe IV = O species.

  4. A Pictorial Visualization of Normal Mode Vibrations of the Fullerene (C[subscript 60]) Molecule in Terms of Vibrations of a Hollow Sphere

    Science.gov (United States)

    Dunn, Janette L.

    2010-01-01

    Understanding the normal mode vibrations of a molecule is important in the analysis of vibrational spectra. However, the complicated 3D motion of large molecules can be difficult to interpret. We show how images of normal modes of the fullerene molecule C[subscript 60] can be made easier to understand by superimposing them on images of the normal…

  5. O2(a1Δ) vibrational kinetics in oxygen-iodine laser

    Science.gov (United States)

    Torbin, A. P.; Pershin, A. A.; Heaven, M. C.; Azyazov, V. N.; Mebel, A. M.

    2018-04-01

    Kinetics of vibrationally-excited singlet oxygen O2(a1Δ,ν) in gas mixture O3/N2/CO2 was studied using a pulse laser technique. Molecules O2(a1Δ,ν) were produced by laser photolysis of ozone at 266 nm. The O3 molecules number density was followed using time-resolved absorption spectroscopy. It was found that an upper bound for the rate constant of chemical reaction O2(a1Δ,ν)+ O3 is about 10-15 cm3/s. The rate constants of O2(a1Δ,ν= 1, 2 and 3) quenching by CO2 are presented.

  6. Low temperature deposition: Properties of SiO{sub 2} films from TEOS and ozone by APCVD system

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, H; Diaz, T; Rosendo, E; Garcia, G; Mora, F; Escalante, G [Centro de Investigacion en Dispositivos Semiconductores, Universidad Autonoma de Puebla, 14 Sur and Av. San Claudio, San Manuel 72000, Puebla (Mexico); Pacio, M; GarcIa, A, E-mail: hjuarez@cs.buap.m [Ingenieria Electrica, Secciaan Electranica del Estado Salido, Centro de Investigacian y de Estudios Avanzados del I. P. N., Av. Instituto Politecnico Nacional 2508, San Pedro Zacatenco, 07360 Mexico, D. F. (Mexico)

    2009-05-01

    An Atmospheric Pressure Chemical Vapor Deposition (APCVD) system was implemented for SiO{sub 2} nanometric films deposition on silicon substrates. Tetraethoxysilane (TEOS) and ozone (O{sub 3}) were used and they were mixed into the APCVD system. The deposition temperatures were very low, from 125 to 250 {sup 0}C and the deposition time ranged from 1 to 15 minutes. The measured thicknesses from the deposited SiO{sub 2} films were between 5 and 300 nm. From the by Fourier-Transform Infrared (FTIR) spectra the typical absorption bands of the Si-O bond were observed and it was also observed a dependence on the vibrational modes corresponding to hydroxyl groups with the deposition temperature where the intensity of these vibrations can be related with the grade porosity grade of the films. Furthermore an analytical model has been evoked to determine the activation energy of the reactions in the surface and the gas phase in the deposit films process.

  7. Primary photodissociation pathways of epichlorohydrin and analysis of the C-C bond fission channels from an O(3P)+allyl radical intermediate

    International Nuclear Information System (INIS)

    FitzPatrick, Benjamin L.; Alligood, Bridget W.; Butler, Laurie J.; Lee, Shih-Huang; Lin, Jim Jr-Min

    2010-01-01

    This study initially characterizes the primary photodissociation processes of epichlorohydrin, c-(H 2 COCH)CH 2 Cl. The three dominant photoproduct channels analyzed are c-(H 2 COCH)CH 2 +Cl, c-(H 2 COCH)+CH 2 Cl, and C 3 H 4 O+HCl. In the second channel, the c-(H 2 COCH) photofission product is a higher energy intermediate on C 2 H 3 O global potential energy surface and has a small isomerization barrier to vinoxy. The resulting highly vibrationally excited vinoxy radicals likely dissociate to give the observed signal at the mass corresponding to ketene, H 2 CCO. The final primary photodissociation pathway HCl+C 3 H 4 O evidences a recoil kinetic energy distribution similar to that of four-center HCl elimination in chlorinated alkenes, so is assigned to production of c-(H 2 COC)=CH 2 ; the epoxide product is formed with enough vibrational energy to isomerize to acrolein and dissociate. The paper then analyzes the dynamics of the C 3 H 5 O radical produced from C-Cl bond photofission. When the epoxide radical photoproduct undergoes facile ring opening, it is the radical intermediate formed in the O( 3 P)+allyl bimolecular reaction when the O atom adds to an end C atom. We focus on the HCO+C 2 H 4 and H 2 CO+C 2 H 3 product channels from this radical intermediate in this report. Analysis of the velocity distribution of the momentum-matched signals from the HCO+C 2 H 4 products at m/e=29 and 28 shows that the dissociation of the radical intermediate imparts a high relative kinetic energy, peaking near 20 kcal/mol, between the products. Similarly, the energy imparted to relative kinetic energy in the H 2 CO+C 2 H 3 product channel of the O( 3 P)+allyl radical intermediate also peaks at high-recoil kinetic energies, near 18 kcal/mol. The strongly forward-backward peaked angular distributions and the high kinetic energy release result from tangential recoil during the dissociation of highly rotationally excited nascent radicals formed photolytically in this experiment

  8. Primary photodissociation pathways of epichlorohydrin and analysis of the C-C bond fission channels from an O(3P)+allyl radical intermediate

    Science.gov (United States)

    FitzPatrick, Benjamin L.; Alligood, Bridget W.; Butler, Laurie J.; Lee, Shih-Huang; Lin, Jim-Min, Jr.

    2010-09-01

    This study initially characterizes the primary photodissociation processes of epichlorohydrin, c-(H2COCH)CH2Cl. The three dominant photoproduct channels analyzed are c-(H2COCH)CH2+Cl, c-(H2COCH)+CH2Cl, and C3H4O+HCl. In the second channel, the c-(H2COCH) photofission product is a higher energy intermediate on C2H3O global potential energy surface and has a small isomerization barrier to vinoxy. The resulting highly vibrationally excited vinoxy radicals likely dissociate to give the observed signal at the mass corresponding to ketene, H2CCO. The final primary photodissociation pathway HCl+C3H4O evidences a recoil kinetic energy distribution similar to that of four-center HCl elimination in chlorinated alkenes, so is assigned to production of c-(H2COC)=CH2; the epoxide product is formed with enough vibrational energy to isomerize to acrolein and dissociate. The paper then analyzes the dynamics of the C3H5O radical produced from C-Cl bond photofission. When the epoxide radical photoproduct undergoes facile ring opening, it is the radical intermediate formed in the O(P3)+allyl bimolecular reaction when the O atom adds to an end C atom. We focus on the HCO+C2H4 and H2CO+C2H3 product channels from this radical intermediate in this report. Analysis of the velocity distribution of the momentum-matched signals from the HCO+C2H4 products at m/e=29 and 28 shows that the dissociation of the radical intermediate imparts a high relative kinetic energy, peaking near 20 kcal/mol, between the products. Similarly, the energy imparted to relative kinetic energy in the H2CO+C2H3 product channel of the O(P3)+allyl radical intermediate also peaks at high-recoil kinetic energies, near 18 kcal/mol. The strongly forward-backward peaked angular distributions and the high kinetic energy release result from tangential recoil during the dissociation of highly rotationally excited nascent radicals formed photolytically in this experiment. The data also reveal substantial branching to an HCCH+H3

  9. Electronic and vibrational spectroscopy and vibrationally mediated photodissociation of V+(OCO).

    Science.gov (United States)

    Citir, Murat; Altinay, Gokhan; Metz, Ricardo B

    2006-04-20

    Electronic spectra of gas-phase V+(OCO) are measured in the near-infrared from 6050 to 7420 cm(-1) and in the visible from 15,500 to 16,560 cm(-1), using photofragment spectroscopy. The near-IR band is complex, with a 107 cm(-1) progression in the metal-ligand stretch. The visible band shows clearly resolved vibrational progressions in the metal-ligand stretch and rock, and in the OCO bend, as observed by Brucat and co-workers. A vibrational hot band gives the metal-ligand stretch frequency in the ground electronic state nu3'' = 210 cm(-1). The OCO antisymmetric stretch frequency in the ground electronic state (nu1'') is measured by using vibrationally mediated photodissociation. An IR laser vibrationally excites ions to nu1'' = 1. Vibrationally excited ions selectively dissociate following absorption of a second, visible photon at the nu1' = 1 CO2, due to interaction with the metal. Larger blue shifts observed for complexes with fewer ligands agree with trends seen for larger V+(OCO)n clusters.

  10. Coupled quantum treatment of vibrationally inelastic and vibronic charge transfer in proton-O2 collisions

    International Nuclear Information System (INIS)

    Gianturco, F.A.; Palma, A.; Semprini, E.; Stefani, F.; Baer, M.

    1990-01-01

    A three-dimensional quantum-mechanical study of vibrational, state-resolved differential cross sections (DCS) for the direct inelastic and for the charge-transfer scattering channels has been carried out for the H + +O 2 system. The collision energy considered was E c.m. =23.0 eV, which is the same as that examined by Noll and Toennies in their experiments [J. Chem. Phys. 85, 3313 (1986)]. The scattering treatment employed was the charge-transfer infinite-order sudden approximation (CT IOSA) with the vibrational states correctly expanded over the relevant adiabatic basis for each of the two electronic channels. The state-to-state DCS are found to follow closely the behavior of the experimental quantities, both in the inelastic and the charge-transfer channels. Moreover, a careful comparison between the measured relative probabilities and computed values allows us to test in minute detail the efficiency of the scattering model and the reliability of the potential-energy surfaces employed. It is found that vibrational energy transfer is overestimated in the vibrational inelastic channels while in the charge-transfer inelastic channels the same energy transfer is slightly underestimated by the calculations. The total flux distribution, however, is found to be in very good accord with experiments. Angular distributions are also well reproduced both by the DCS and by the average energy-transfer values. The study of some of the CT IOSA quantities also allows us to establish clearly the importance of nonadiabatic transitions in enhancing vibrational inelasticity in the present system

  11. High resolution infrared and Raman spectra of 13C12CD2: The CD stretching fundamentals and associated combination and hot bands

    International Nuclear Information System (INIS)

    Di Lonardo, G.; Fusina, L.; Canè, E.; Tamassia, F.; Martínez, R. Z.; Bermejo, D.

    2015-01-01

    Infrared and Raman spectra of mono 13 C fully deuterated acetylene, 13 C 12 CD 2 , have been recorded and analysed to obtain detailed information on the C—D stretching fundamentals and associated combination, overtone, and hot bands. Infrared spectra were recorded at an instrumental resolution ranging between 0.006 and 0.01 cm −1 in the region 1800–7800 cm −1 . Sixty new bands involving the ν 1 and ν 3 C—D stretching modes also associated with the ν 4 and ν 5 bending vibrations have been observed and analysed. In total, 5881 transitions have been assigned in the investigated spectral region. In addition, the Q branch of the ν 1 fundamental was recorded using inverse Raman spectroscopy, with an instrumental resolution of about 0.003 cm −1 . The transitions relative to each stretching mode, i.e., the fundamental band, its first overtone, and associated hot and combination bands involving bending states with υ 4 + υ 5 up to 2 were fitted simultaneously. The usual Hamiltonian appropriate to a linear molecule, including vibration and rotation l-type and the Darling–Dennison interaction between υ 4 = 2 and υ 5 = 2 levels associated with the stretching states, was adopted for the analysis. The standard deviation for each global fit is ≤0.0004 cm −1 , of the same order of magnitude of the measurement precision. Slightly improved parameters for the bending and the ν 2 manifold have been also determined. Precise values of spectroscopic parameters deperturbed from the resonance interactions have been obtained. They provide quantitative information on the anharmonic character of the potential energy surface, which can be useful, in addition to those reported in the literature, for the determination of a general anharmonic force field for the molecule. Finally, the obtained values of the Darling–Dennison constants can be valuable for understanding energy flows between independent vibrations

  12. XRD, SEM and infrared study into the intercalation of sodium hexadecyl sulfate (SHS) into hydrocalumite.

    Science.gov (United States)

    Zhang, Ping; Wang, Tianqi; Zhang, Longlong; Wu, Daishe; Frost, Ray L

    2015-12-05

    Hydrocalumite (CaAl-LDH-Cl) interacted with a natural anionic surfactant, sodium hexadecyl sulfate (SHS), was performed using an intercalation method. To understand the intercalation behavior and characterize the resulting products, powder X-ray diffraction (XRD), scan electron microscopy (SEM) and mid-infrared (MIR) spectroscopy combined with near-infrared (NIR) spectroscopy technique were used. The XRD analysis indicated that SHS was intercalated into CaAl-LDH-Cl successfully, resulting in an expansion of the interlayer (from 0.78 nm to 2.74 nm). The bands of C-H stretching vibrations of SHS were observed in the near-infrared spectra, which indicated that the resulting products were indeed CaAl-LDH-SHS. In addition, the bands of water stretching vibrations and OH groups shifted to higher wavenumbers when SHS was intercalated into CaAl-LDH-Cl interlayer space. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Far-infrared spectroscopic study of CeO{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Popović, Z. V., E-mail: zoran.popovic@ipb.ac.rs; Grujić-Brojčin, M.; Paunović, N. [University of Belgrade, Center for Solid State Physics and New Materials, Institute of Physics (Serbia); Radonjić, M. M. [University of Belgrade, Scientific Computing Laboratory, Institute of Physics Belgrade (Serbia); Araújo, V. D.; Bernardi, M. I. B. [Universidade de São Paulo-USP, Instituto de Fisica (Brazil); Lima, M. M. de; Cantarero, A. [Universidad de Valencia, Instituto de Ciencia de Los Materiales (Spain)

    2015-01-15

    We present the far-infrared reflectivity spectra of 5 nm-sized pure and copper-doped Ce{sub 1−x}Cu{sub x}O{sub 2−y} (x = 0; 0.01 and 0.10) nanocrystals measured at room temperature in the 50–650 cm{sup −1} spectral range. Reflectivity spectra were analyzed using the factorized form of the dielectric function, which includes the phonon and the free carriers contribution. Four oscillators with TO energies of approximately 135, 280, 370, and 490 cm{sup −1} were included in the fitting procedure. These oscillators represent local maxima of the CeO{sub 2} phonon density of states, which is also calculated using the density functional theory. The lowest energy oscillator represents TA(L)/TA(X) phonon states, which become infrared-active E{sub u} modes at the L and X points of the Brillouin zone (BZ). The second oscillator originates from TO(Γ) phonon states. The oscillator at ∼400 cm{sup −1} originates from Raman mode phonon states, which at the L point of BZ also becomes infrared-active E{sub u} mode. The last oscillator describes phonons with dominantly LO(Γ) infrared mode character. The appearance of phonon density of states related oscillators, instead of single F{sub 2u}infrared-active mode in the far-infrared reflectivity spectra, is a consequence of the nanosized dimension of the CeO{sub 2} particles. The best fit spectra are obtained using the generalized Bruggeman model for inhomogeneous media, which takes into account the nanocrystal volume fraction and the pore shape.

  14. AKARI NEAR-INFRARED SPECTROSCOPIC SURVEY FOR CO2 IN 18 COMETS

    International Nuclear Information System (INIS)

    Ootsubo, Takafumi; Kawakita, Hideyo; Hamada, Saki; Kobayashi, Hitomi; Yamaguchi, Mitsuru; Usui, Fumihiko; Nakagawa, Takao; Ueno, Munetaka; Ishiguro, Masateru; Sekiguchi, Tomohiko; Watanabe, Jun-ichi; Sakon, Itsuki; Shimonishi, Takashi; Onaka, Takashi

    2012-01-01

    We conducted a spectroscopic survey of cometary volatiles with the Infrared Camera on board the Japanese infrared satellite AKARI in the wavelength range from 2.5 to 5 μm. In our survey, 18 comets, including both the Oort cloud comets and the Jupiter-family comets, were observed in the period from 2008 June to 2010 January, most of which were observed at least twice. The prominent emission bands in the observed spectra are the fundamental vibrational bands of water (H 2 O) at 2.7 μm and carbon dioxide (CO 2 ) at 4.3 μm. The fundamental vibrational band of carbon monoxide (CO) around 4.7 μm and the broad emission feature, probably related to carbon-hydrogen-bearing molecules, can also be recognized around the 3.3-3.5-μm region in some of the comets. With respect to H 2 O, gas production rate ratios of CO 2 have been derived in 17 comets, except for the comet 29P/Schwassmann-Wachmann 1. Our data set provides the largest homogeneous database of CO 2 /H 2 O production rate ratios in comets obtained so far. The CO 2 /H 2 O production rate ratios are considered to reflect the composition of cometary ice when a comet is observed at a heliocentric distance within ∼2.5 AU, since H 2 O ice fully sublimates there. The CO 2 /H 2 O ratio in cometary ice spans from several to ∼30% among the comets observed at 2 in the comets seems to be smaller than unity based on our observations, although we only obtain upper limits for CO in most of the comets.

  15. A Low Temperature Infrared Study Of Deuterated NH4VO3

    Science.gov (United States)

    de Waal, D.; Heyns, A. M.

    1989-12-01

    The existence of (NH4)2V6016 as an intermediate in the thermal decomposition of NH4V03 to V205 has been confirmed by vibrational spectroscopy, resulting in the following reaction in an open systeml: NH4VO3 1 bar, air, 50-200°C/(1) (NH4)2v6o16 1 bar, air, ca.360°C/(2) V205 The kinetics of reaction (1) was studied by means of Raman spectroscopy, and structural information on NH4V03 and (N114)V60 16 was required to obtain an accurate description of the reaction mechanism2. Information on the site symmetry of an ammonium ion and hydrogen bonding in a crystal can be obtained by considering the infrared spectra of isotopically dilute NH3D+ ions in the lattice at liquid nitrogen temperatures3, especially as the position of hydrogen atoms in (NHO2V6016 could not be determined by X-ray methods.

  16. Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution.

    Science.gov (United States)

    Raschke, Markus B; Molina, Leopoldo; Elsaesser, Thomas; Kim, Dong Ha; Knoll, Wolfgang; Hinrichs, Karsten

    2005-10-14

    Nanodomains formed by microphase separation in thin films of the diblock copolymers poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) and poly(styrene-b-ethyleneoxide) (PS-b-PEO) were imaged by means of infrared scattering-type near-field microscopy. When probing at 3.39 mum (2950 cm(-1)), contrast is obtained due to spectral differences between the C--H stretching vibrational resonances of the respective polymer constituents. An all-optical spatial resolution better than 10 nm was achieved, which corresponds to a sensitivity of just several thousand C--H groups facilitated by the local-field enhancement at the sharp metallic probe tips. The results demonstrate that infrared spectroscopy with access to intramolecular dimensions is within reach.

  17. IR and Raman spectra of LaH(SeO3)2 and FeH(SeO3)2

    International Nuclear Information System (INIS)

    Ratheesh, R.; Suresh, G.; Nayar, V.U.; Morris, R.E.

    1995-01-01

    The infrared and Raman spectra of LaH(SeO 3 ) 2 and FeH(SeO 3 ) 2 crystals are recorded and analysed. Bands confirm the coexistence of HSeO 3 - and SeO 3 2- ions in both LaH(SeO 3 ) 2 and FeH(SeO 3 ) 2 crystals. The Se-OH stretching vibrations are observed to be at lower wavenumbers in LaH(SeO 3 ) 2 than that in the iron compound in agreement with the short O-O distance in the former. Observed bands indicate that the SeO 3 2- ions are more angularly distorted in FeH(SeO 3 ) 2 crystal. ABC bands, characteristic of strong hydrogen bonded systems are observed in the infrared spectra of both the crystals. (author). 15 refs., 2 figs., 1 tab

  18. Vibrations of bioionic liquids by ab initio molecular dynamics and vibrational spectroscopy.

    Science.gov (United States)

    Tanzi, Luana; Benassi, Paola; Nardone, Michele; Ramondo, Fabio

    2014-12-26

    Density functional theory and vibrational spectroscopy are used to investigate a class of bioionic liquids consisting of a choline cation and carboxylate anions. Through quantum mechanical studies of motionless ion pairs and molecular dynamics of small portions of the liquid, we have characterized important structural features of the ionic liquid. Hydrogen bonding produces stable ion pairs in the liquid and induces vibrational features of the carboxylate groups comparable with experimental results. Infrared and Raman spectra of liquids have been measured, and main bands have been assigned on the basis of theoretical spectra.

  19. High-resolution sub-Doppler infrared spectroscopy of atmospherically relevant Criegee precursor CH2I radicals: CH2 stretch vibrations and "charge-sloshing" dynamics

    Science.gov (United States)

    Kortyna, A.; Lesko, D. M. B.; Nesbitt, D. J.

    2018-05-01

    The combination of a pulsed supersonic slit-discharge source and single-mode difference frequency direct absorption infrared spectroscopy permit first high resolution infrared study of the iodomethyl (CH2I) radical, with the CH2I radical species generated in a slit jet Ne/He discharge and cooled to 16 K in the supersonic expansion. Dual laser beam detection and collisional collimation in the slit expansion yield sub-Doppler linewidths (60 MHz), an absolute frequency calibration of 13 MHz, and absorbance sensitivities within a factor of two of the shot-noise limit. Fully rovibrationally resolved direct absorption spectra of the CH2 symmetric stretch mode (ν2) are obtained and fitted to a Watson asymmetric top Hamiltonian with electron spin-rotation coupling, providing precision rotational constants and spin-rotation tensor elements for the vibrationally excited state. Analysis of the asymmetric top rotational constants confirms a vibrationally averaged planar geometry in both the ground- and first-excited vibrational levels. Sub-Doppler resolution permits additional nuclear spin hyperfine structures to be observed, with splittings in excellent agreement with microwave measurements on the ground state. Spectroscopic data on CH2I facilitate systematic comparison with previous studies of halogen-substituted methyl radicals, with the periodic trends strongly correlated with the electronegativity of the halogen atom. Interestingly, we do not observe any asymmetric CH2 stretch transitions, despite S/N ≈ 25:1 on strongest lines in the corresponding symmetric CH2 stretch manifold. This dramatic reversal of the more typical 3:1 antisymmetric/symmetric CH2 stretch intensity ratio signals a vibrational transition moment poorly described by simple "bond-dipole" models. Instead, the data suggest that this anomalous intensity ratio arises from "charge sloshing" dynamics in the highly polar carbon-iodine bond, as supported by ab initio electron differential density plots and

  20. Nature of infrared-active phonon sidebands to internal vibrations: Spectroscopic studies of solid oxygen and nitrogen

    Science.gov (United States)

    Brodyanski, A. P.; Medvedev, S. A.; Vetter, M.; Kreutz, J.; Jodl, H. J.

    2002-09-01

    The ir-active phonon sidebands to internal vibrations of oxygen and nitrogen were precisely investigated by Fourier transform infrared spectroscopy in the fundamental and first overtone spectral regions from 10 K to the boiling points at ambient pressure. We showed that an analysis of ir-active phonon sidebands yields important information on the internal vibrations of molecules in a condensed medium (solid or liquid), being complementary to Raman data on vibron frequencies. Analyzing the complete profile of these bands, we determined the band origin frequencies and explored their temperature behavior in all phases of both substances. We present unambiguous direct experimental proofs that this quality corresponds to the frequency of internal vibrations of single molecules. Considering solid oxygen and nitrogen as two limiting cases for simple molecular solids, we interpret this result as a strong evidence for a general fact that an ir-active phonon sideband possesses the same physical origin in pure molecular solids and in impurity centers. The key characteristics of the fundamental vibron energy zone (environmental and resonance frequency shifts) were deduced from the combined analysis of ir and Raman experimental data and their temperature behavior was explored in solid and liquid phases of oxygen and nitrogen at ambient pressure. The character of the short-range orientational order was established in the β-nitrogen based on our theoretical analysis consistent with the present experimental results. We also present the explanation of the origin of pressure-caused changes in the frequency of the Raman vibron mode of solid oxygen at low temperatures.

  1. Infrared dispersion analysis and Raman scattering spectra of taurine single crystals

    Science.gov (United States)

    Moreira, Roberto L.; Lobo, Ricardo P. S. M.; Dias, Anderson

    2018-01-01

    A comprehensive set of optical vibrational modes of monoclinic taurine crystals was determined by Raman scattering, and infrared reflectivity and transmission spectroscopies. By using appropriate scattering/reflection geometries, the vibrational modes were resolved by polarization and the most relevant modes of the crystal could be assigned. In particular, we were able to review the symmetry of the gerade modes and to resolve ambiguities in the literature. Owing to the non-orthogonal character of Bu modes in monoclinic crystals (lying on the optic axial plane), we carried out a generalized Lorentz dispersion analysis consisting of simultaneous adjust of infrared-reflectivity spectra at various light polarization angles. The Au modes (parallel to the C2-axis) were treated within the classical Lorentz model. The behavior of off-diagonal and diagonal terms of the complex dielectric tensors and the presence of anomalous dispersion were discussed as consequences of the low symmetry of the crystal.

  2. Direct observation of vibrational energy flow in cytochrome c.

    Science.gov (United States)

    Fujii, Naoki; Mizuno, Misao; Mizutani, Yasuhisa

    2011-11-10

    Vibrational energy flow in ferric cytochrome c has been examined by picosecond time-resolved anti-Stokes ultraviolet resonance Raman (UVRR) measurements. By taking advantage of the extremely short nonradiative excited state lifetime of heme in the protein (energy of 20000-25000 cm(-1) was optically deposited selectively at the heme site. Subsequent energy relaxation in the protein moiety was investigated by monitoring the anti-Stokes UVRR intensities of the Trp59 residue, which is a single tryptophan residue involved in the protein that is located close to the heme group. It was found from temporal changes of the anti-Stokes UVRR intensities that the energy flow from the heme to Trp59 and the energy release from Trp59 took place with the time constants of 1-3 and ~8 ps, respectively. These data are consistent with the time constants for the vibrational relaxation of the heme and heating of water reported for hemeproteins. The kinetics of the energy flow were not affected by the amount of excess energy deposited at the heme group. These results demonstrate that the present technique is a powerful tool for studying the vibrational energy flow in proteins.

  3. Synthesis and characterization of Fe{sub 2}O{sub 3} nanoparticles by simple precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Sankadiya, Siyaram, E-mail: siyaramsankdiya@gmail.com; Oswal, Nidhi, E-mail: oswal03nidhi@gmail.com [Dept. of Applied Physics, Shri Govindram Sakseria Inst. of Tech. and Sci., 23 Park Road, Indore(MP) 452003 (India); Jain, Pranat, E-mail: pranatjain@gmail.com [Dept. of Material Sc. & Metallurgical Eng., Maulana Azad National Inst. of Tech., Bhopal (MP) 4620003 (India); Gupta, Nitish, E-mail: nitish.nidhi75@gmail.com [Dept. of Applied Chemistry, Shri Govindram Sakseria Inst. of Tech. and Sci., 23 Park Road, Indore (MP) 452003 (India)

    2016-04-13

    A simple and efficient synthesis of Iron-oxide nanoparticles was carried out by precipitation method using ferric chloride as precursor and ammonium hydroxide as a stabilizing agent at different calcination temperatures. The synthesized powder was characterized by powder X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscope (FE-SEM) and Transmission Electron Microscopy (TEM). X-ray diffraction indicated the formation hematite Fe{sub 2}O{sub 3} structure. FTIR showed various functional groups of particles and absorption bands related to metal oxygen vibration modes. The heating temperatures were varied at 100 °C, 200°C, and 300°C. The Fe{sub 2}O{sub 3} nanostructures with the average particle size of about 36.22 nm were prepared at 300°C for 4h. TEM study is also confirming the nanosize of Fe{sub 2}O{sub 3} particle. This aqueous precipitation method gives a large scale production of Fe{sub 2}O{sub 3} nanoparticles easily.

  4. Development of integrated platform based on chalcogenides for sensing applications in the mid-infrared

    Science.gov (United States)

    Gutierrez-Arroyo, Aldo; Bodiou, Loïc.; Lemaitre, Jonathan; Baudet, Emeline; Baillieul, Marion; Hardy, Isabelle; Caillaud, Celine; Colas, Florent; Boukerma, Kada; Rinnert, Emmanuel; Michel, Karine; Bureau, Bruno; Nazabal, Virginie; Charrier, Joël.

    2018-03-01

    Mid-Infrared (mid-IR) spectral range, spanning from 2 μm to 20 μm, is ideal for chemical sensing using spectroscopy thanks to the presence of vibrational absorption bands of many liquid and gas substances in this wavelength range. Indeed, mid-IR spectroscopy allows simultaneous qualitative and quantitative analysis by, respectively, identifying molecules from their spectral signature and relating the concentrations of different chemical agents to their absorption coefficient according to Beer-Lambert law. In the last years, photonic integrated sensors based on mid-IR spectroscopy have emerged as a cheap, accurate, and compact solution that would enable continuous real-time on-site diagnostics and monitoring of molecular species without the need to collect samples for off-site measurements. Here, we report the design, processing and characterization of a photonic integrated transducer based on selenide ridge waveguides. Evanescent wave detection of chemical substances in liquid phase (isopropyl alcohol, C3H8O, and acetic acid, C2H4O2, both dissolved in cyclohexane) is presented using their absorption at a wavelength of 7.7 μm.

  5. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water-dimer III: Mixed Jacobi-valence parametrization and benchmark results for the zero point energy, vibrationally excited states, and infrared spectrum.

    Science.gov (United States)

    Vendrell, Oriol; Brill, Michael; Gatti, Fabien; Lauvergnat, David; Meyer, Hans-Dieter

    2009-06-21

    Quantum dynamical calculations are reported for the zero point energy, several low-lying vibrational states, and the infrared spectrum of the H(5)O(2)(+) cation. The calculations are performed by the multiconfiguration time-dependent Hartree (MCTDH) method. A new vector parametrization based on a mixed Jacobi-valence description of the system is presented. With this parametrization the potential energy surface coupling is reduced with respect to a full Jacobi description, providing a better convergence of the n-mode representation of the potential. However, new coupling terms appear in the kinetic energy operator. These terms are derived and discussed. A mode-combination scheme based on six combined coordinates is used, and the representation of the 15-dimensional potential in terms of a six-combined mode cluster expansion including up to some 7-dimensional grids is discussed. A statistical analysis of the accuracy of the n-mode representation of the potential at all orders is performed. Benchmark, fully converged results are reported for the zero point energy, which lie within the statistical uncertainty of the reference diffusion Monte Carlo result for this system. Some low-lying vibrationally excited eigenstates are computed by block improved relaxation, illustrating the applicability of the approach to large systems. Benchmark calculations of the linear infrared spectrum are provided, and convergence with increasing size of the time-dependent basis and as a function of the order of the n-mode representation is studied. The calculations presented here make use of recent developments in the parallel version of the MCTDH code, which are briefly discussed. We also show that the infrared spectrum can be computed, to a very good approximation, within D(2d) symmetry, instead of the G(16) symmetry used before, in which the complete rotation of one water molecule with respect to the other is allowed, thus simplifying the dynamical problem.

  6. Electron dynamics in films made of transition metal nanograins embedded in SiO[sub 2]: Infrared reflectivity and nanoplasma infrared resonance

    KAUST Repository

    Massa, Néstor E.

    2009-06-04

    We report on near normal infrared reflectivityspectra of ∼550 nm thick films made of cosputtered transition metal nanograins and SiO2 in a wide range of metal fractions. Co0.85(SiO2)0.15,with conductivity well above the percolation threshold has a frequency and temperature behavior according to what it is find in conductingmetal oxides. The electron scattering rate displays a unique relaxation time characteristic of single type of carriers experiencing strong electron-phonon interactions. Using small polaron fits we identify those phonons as glass vibrational modes. Ni0.61(SiO2)0.39, with a metal fraction closer to the percolation threshold, undergoes a metal-nonmetal transition at ∼77 K. Here, as it is suggested by the scattering rate nearly quadratic dependence, we broadly identify two relaxation times (two carrier contributions) associated to a Drude mode and a midinfrared overdamped band, respectively. Disorder induced, the midinfrared contribution drives the phase transition by thermal electron localization. Co0.51(SiO2)0.49 has the reflectivity of an insulator with a distinctive band at ∼1450 cm−1 originating in electron promotion, localization, and defect induced polaron formation. Angle dependent oblique reflectivity of globally insulating Co0.38(SiO2)0.62, Fe0.34(SiO2)0.66, and Ni0.28(SiO2)0.72, reveals a remarkable resonance at that band threshold. We understand this as due to the excitation by normal to the film electric fields of defect localized electrons in the metallic nanoparticles. At higher oblique angles, this localized nanoplasma couples to SiO2 longitudinal optical Berreman phonons resulting in band peak softening reminiscent to the phonon behavior undergoing strong electron-phonon interactions. Singular to a globally insulating phase, we believe that this resonance might be a useful tool for tracking metal-insulator phase transitions in inhomogeneous materials.

  7. Formation time of a small electron polaron in LiNbO3: measurements and interpretation

    International Nuclear Information System (INIS)

    Qiu, Yong; Ucer, K.B.; Williams, R.T.

    2005-01-01

    Infrared optical absorption attributed to the electron polaron on a non-defective site in LiNbO 3 and KNbO 3 has previously been observed using pulsed electron and laser techniques. With subpicosecond laser excitation and spectroscopy, it is possible to measure a rise time of the infrared absorption, which may be interpreted as the time for a band-state conduction electron to cool by phonon scattering, collapse its wavefunction around a site made attractive by thermal disorder, and relax vibrationally to a small polaron. This is a process which is of fundamental interest, involving dynamics of self-localization from band states and vibrational relaxation of a localized electron in an otherwise non-defective lattice. For example, Gavartin and Shluger have recently performed calculations on the role of thermal fluctuations in self-trapping of holes in MgO. We report initial measurements on the rise time of infrared absorption at 0.95 eV (Mg-perturbed polaron) in LiNbO 3 :Mg to be τ R ∼230 fs at T=20 K and τ R ∼110 fs at T=296 K. We discuss 2 stages that together may account for the delay and its temperature dependence: free-electron cooling and vibrational relaxation of a ''defect'' (small polaron) in a host. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Mid - infrared transmission of polycrystalline (LaSr) (MnNi)O3

    International Nuclear Information System (INIS)

    Laksanawati, W. D.; Kurniawan, B.; Saptari, S. A.

    2016-01-01

    Polycrystalline (LaSr)(MnNi)O 3 was shintesized using sol gel methods with nitrat precursors La(NO 3 ) 3 , Sr(NO 3 ) 2 , Mn(NO 3 ) 2 .4H 2 O, and Ni(NO3)2.6H2O and the different heating process. Sample (LaSr)(MnNi)O 3 with chemical formulation La 0,67 Sr 0,33 Mn 1-x Ni x O 3 with × = 0,05 and 0,10. We report the crystallite structure of La 0,67 Sr 0,33 Mn 1-x Ni x O 3 with x= 0,00 and 0,10 are single phase with characterization by X-ray diffraction. Refinement has result that crystallite size of La 0,67 Sr 0,33 Mn 0,95 Ni 0,05 O 3 is 24,67 and La 0,67 Sr 0,33 Mn 0,9 Ni 0,1 O 3 is 21,84 with crystallite system rombohedral, it show us that increasing at Ni composition influence of decreased crystallite size. Sampel (LaSr)(MnNi)O3 has been characterization with Fourier Transform Infrared with range of wave number from 450 to 4000 cm -1 were chategories at mid infrared wave. The FTIR pattern show to us that the Mn-O-Mn bounded has absorp infrared at wave number 605 cm -1 and the dominant peak at wave number 3750 cm -1 caused the hidroxy compound in sampel La 0,67 Sr 0,33 Mn 0,95 Ni 0,05 O 3 . (paper)

  9. Vibrational spectroscopy of proteins

    International Nuclear Information System (INIS)

    Schwaighofer, A.

    2013-01-01

    Two important steps for the development of a biosensor are the immobilization of the biological component (e.g. protein) on a surface and the enhancement of the signal to improve the sensitivity of detection. To address these subjects, the present work describes Fourier transform infrared (FTIR) investigations of several proteins bound to the surface of an attenuated total reflection (ATR) crystal. Furthermore, new nanostructured surfaces for signal enhancement were developed for use in FTIR microscopy. The mitochondrial redox-protein cytochrome c oxidase (CcO) was incorporated into a protein-tethered bilayer lipid membrane (ptBLM) on an ATR crystal featuring a roughened two-layer gold surface for signal enhancement. Electrochemical excitation by periodic potential pulses at different modulation frequencies was followed by time-resolved FTIR spectroscopy. Phase sensitive detection was used for deconvolution of the IR spectra into vibrational components. A model based on protonation-dependent chemical reaction kinetics could be fitted to the time evolution of IR bands attributed to several different redox centers of the CcO. Further investigations involved the odorant binding protein 14 (OBP14) of the honey bee (Apis mellifera), which was studied using ATR-FTIR spectroscopy and circular dichroism. OBP14 was found to be thermally stable up to 45 °C, thus permitting the potential application of this protein for the fabrication of biosensors. Thermal denaturation measurements showed that odorant binding increases the thermal stability of the OBP-odorant complex. In another project, plasmonic nanostructures were fabricated that enhance the absorbance in FTIR microscopy measurements. The nanostructures are composed of an array of round-shaped insulator and gold discs on top of a continuous gold layer. Enhancement factors of up to ⁓125 could be observed with self-assembled monolayers of dodecanethiol molecules immobilized on the gold surface (author) [de

  10. Mid-infrared and near-infrared spectroscopic study of selected magnesium carbonate minerals containing ferric iron-Implications for the geosequestration of greenhouse gases.

    Science.gov (United States)

    Frost, Ray L; Reddy, B Jagannadha; Bahfenne, Silmarilly; Graham, Jessica

    2009-04-01

    The proposal to remove greenhouse gases by pumping liquefied CO(2) several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals brugnatellite and coalingite are probable. Two ferric ion bearing minerals brugnatellite and coalingite with a hydrotalcite-like structure have been characterised by a combination of infrared and near-infrared (NIR) spectroscopy. The infrared spectra of the OH stretching region are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra in the 7030-7235 cm(-1) and 10,490-10,570 cm(-1) regions. Intense (CO(3))(2-) symmetric and antisymmetric stretching vibrations support the concept that the carbonate ion is distorted. The position of the water bending vibration indicates the water is strongly hydrogen bonded in the mineral structure. Split NIR bands at around 8675 and 11,100 cm(-1) indicate that some replacement of magnesium ions by ferrous ions in the mineral structure has occurred. Near-infrared spectroscopy is ideal for the assessment of the formation of carbonate minerals.

  11. Are water simulation models consistent with steady-state and ultrafast vibrational spectroscopy experiments?

    International Nuclear Information System (INIS)

    Schmidt, J.R.; Roberts, S.T.; Loparo, J.J.; Tokmakoff, A.; Fayer, M.D.; Skinner, J.L.

    2007-01-01

    Vibrational spectroscopy can provide important information about structure and dynamics in liquids. In the case of liquid water, this is particularly true for isotopically dilute HOD/D 2 O and HOD/H 2 O systems. Infrared and Raman line shapes for these systems were measured some time ago. Very recently, ultrafast three-pulse vibrational echo experiments have been performed on these systems, which provide new, exciting, and important dynamical benchmarks for liquid water. There has been tremendous theoretical effort expended on the development of classical simulation models for liquid water. These models have been parameterized from experimental structural and thermodynamic measurements. The goal of this paper is to determine if representative simulation models are consistent with steady-state, and especially with these new ultrafast, experiments. Such a comparison provides information about the accuracy of the dynamics of these simulation models. We perform this comparison using theoretical methods developed in previous papers, and calculate the experimental observables directly, without making the Condon and cumulant approximations, and taking into account molecular rotation, vibrational relaxation, and finite excitation pulses. On the whole, the simulation models do remarkably well; perhaps the best overall agreement with experiment comes from the SPC/E model

  12. Hydrothermal Synthesis, Characterization, and Optical Properties of Ce Doped Bi2MoO6 Nanoplates

    Directory of Open Access Journals (Sweden)

    Anukorn Phuruangrat

    2014-01-01

    Full Text Available Undoped and Ce doped Bi2MoO6 samples were synthesized by hydrothermal reaction at 180°C for 20 h. Phase, morphology, atomic vibration, and optical properties were characterized by X-ray powder diffraction (XRD, X-ray photoelectron spectroscopy (XPS, Raman spectrophotometry, Fourier transform infrared (FTIR spectroscopy, scanning electron microscopy (SEM, transmission electron microscopy (TEM, selected area electron diffraction (SAED, and UV-visible spectroscopy. In this research, the products were orthorhombic Bi2MoO6 nanoplates with the growth direction along the [0b0], including the asymmetric and symmetric stretching and bending modes of Bi–O and Mo–O. Undoped and Ce doped Bi2MoO6 samples show a strong absorption in the UV region.

  13. Photocatalytic Graphene-TiO2 Thin Films Fabricated by Low-Temperature Ultrasonic Vibration-Assisted Spin and Spray Coating in a Sol-Gel Process

    Directory of Open Access Journals (Sweden)

    Fatemeh Zabihi

    2017-05-01

    Full Text Available In this work, we communicate a facile and low temperature synthesis process for the fabrication of graphene-TiO2 photocatalytic composite thin films. A sol-gel chemical route is used to synthesize TiO2 from the precursor solutions and spin and spray coating are used to deposit the films. Excitation of the wet films during the casting process by ultrasonic vibration favorably influences both the sol-gel route and the deposition process, through the following mechanisms. The ultrasound energy imparted to the wet film breaks down the physical bonds of the gel phase. As a result, only a low-temperature post annealing process is required to eliminate the residues to complete the conversion of precursors to TiO2. In addition, ultrasonic vibration creates a nanoscale agitating motion or microstreaming in the liquid film that facilitates mixing of TiO2 and graphene nanosheets. The films made based on the above-mentioned ultrasonic vibration-assisted method and annealed at 150 °C contain both rutile and anatase phases of TiO2, which is the most favorable configuration for photocatalytic applications. The photoinduced and photocatalytic experiments demonstrate effective photocurrent generation and elimination of pollutants by graphene-TiO2 composite thin films fabricated via scalable spray coating and mild temperature processing, the results of which are comparable with those made using lab-scale and energy-intensive processes.

  14. Gas-phase infrared spectrum of phosphorus (III) oxycyanide, OPCN: Experimental and theoretical and theoretical investigations

    International Nuclear Information System (INIS)

    Allaf, A.W.; Kassem, M.; Alibrahim, M.

    1999-01-01

    An attempt was made to observe the gas-phase infrared spectrum of phosphorus (III) oxycyanide, OPCN for the first time. This molecule was produced by on-line process using phosphorus (III) oxychloride, OPCI as precursor passed over heated Ag CN. The products were characterised by the infrared spectra of their vapours. The low resolution gas-phase Fourier transform infrared spectrum shows two bands at 2165 and 1385 cm -1 . These bands are assigned to ν 1 (C≡N stretch) and ν 2 (O=P stretch), respectively. Ab initio self-consistent-field (SCF) molecular orbital (MO) and Moeller - Plesset second order perturbation theory (MP2) calculations were performed to determine the geometry, total energy and vibrational frequencies of OPCN. (authors)

  15. Characterisation of the SOFC material, LaCrO 3, using vibrational spectroscopy

    Science.gov (United States)

    Tompsett, G. A.; Sammes, N. M.

    LaCrO 3 is reported to undergo a low to high temperature (HT) phase transition from orthorhombic ( Pnma) to rhombohedral ( R-3 c), at ca. 255 °C. The phases involved in the low temperature phase transition of LaCrO 3 have been determined using Raman spectroscopy at temperatures from -196 to 300 °C. There are nine Raman bands observed from a total of 24 predicted modes, seven of which are assigned from comparison with the Raman profile and relative band positions observed and calculated for the isostructural compound, YMnO 3, as follows: 131(B 2g), 150(B 3g), 174(A g), 252(B 1g), 279(A g), 441(A g) and 590(A g) cm -1. A phase transformation was observed at ca. 260 °C from the change in the Raman profile. The high temperature rhombohedral phase of LaCrO 3 had four bands which are assigned as follows: 58(E g), 161(E g), 288(A 1g) and 434(E g, E g) cm -1, from comparison with the Raman profile and relative band positions observed for the isostructural compound, NdAlO 3. The Fourier transform infrared (FTIR) spectrum of LaCrO 3 showed a total of eight bands discernible at room temperature from 25 predicted modes for the orthorhombic structure. The mode assignments were determined by comparison with the Raman profile and relative band positions observed and calculated for the isostructural compound, SmAlO 3, as follows: 138(B 2u), 166(B 3u), 197(B 1u), 240(B 3u), 266(B 2u), 332(B 2u), 357(B 2u), 381(B 3u), 425(B 3u), 446(B 1u), 471(B 3u), 493(B 3u), 573(B 1u), 606(B 3u) and 670 (B 1u) cm -1.

  16. Interface engineered carbon nanotubes with SiO{sub 2} for flexible infrared detectors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenlong [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Gao, Min, E-mail: mingao@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Pan, Taisong [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Wei, Xianhua [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010 (China); Chen, Chonglin [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249 (United States); Department of Physics and the Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Lin, Yuan, E-mail: linyuan@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China)

    2017-08-15

    Highlights: • Interface engineered carbon nanotubes with SiO{sub 2} is used to construct a kind of flexible infrared detector. • The interface between the MWCNTs and SiO{sub 2} could enhance the IR response speed. • Detector based on the integrated interface of MWCNTs and SiO{sub 2} has successfully detected the movements of the human fingers. - Abstract: Nitrogen-doped/non-doped carbon nanotubes (CNTs) were integrated on SiO{sub 2}/Si and PMMA substrates for understanding the infrared sensing mechanisms. The nanotube structures on SiO{sub 2} substrates exhibit a much shorter response time (about 40 ms) than those directly on PMMA substrates (about 1200 ms), indicating the interface effects between CNTs and the substrates. The infrared responses for both structures show a linear relationship with the light power density even at the radiation power as low as 0.1 mW/mm{sup 2}. Moreover, a new concept flexible IR detector was designed and fabricated by transferring the CNTs/SiO{sub 2} structure onto the PMMA substrate, which exhibits both short response time (50 ms) and good flexibility. The successful detection of human finger movements indicates the practical applications of the CNT-based detectors for the detection of weak thermal or far infrared radiation.

  17. Vibrational spectroscopy of hydrated potassium hexauranate for the phase study of the UO3-KCl-H2O system

    International Nuclear Information System (INIS)

    Dothee, Daniel.

    1980-02-01

    In the study of the UO 3 -KCl-H 2 O system, a phase, called C phase, was isolated; it has a radiocrystallogram very close to the hexauranate K 2 U 6 O 19 ,11H 2 O, but K + and Cl - are found in its composition. Links between these two phases are studied and especially structure relationships. Hydrated potassium hexauranate structure was determined previously with a natural crystal. Position of potassium and uranium atoms only are known. As monocrystal preparation is impossible a direct structural study is impossible too. Vibrational spectroscopic analysis was selected for this study. Hexauranate structure is determined and results are extended for the study of the C phase. The hydrate UO 3 .0.8 H 2 O a stable and well defined compound is chosen for the hydrothermal synthesis of the different phases. Four main phases are evidenced: the chloro-uranate Ksub(x)UO 3 Clsub(x) (already known), a hydrated potassium uranate and two phases (one is the C phase) containing chloride ions are intermediaries between the chloro-uranate and the uranate [fr

  18. Radiofrequency/infrared double resonance spectroscopy of the HD+ ion

    International Nuclear Information System (INIS)

    Carrington, Alan; McNab, I.R.; Montgomerie, C.A.

    1989-01-01

    We describe a double resonance technique for obtaining radiofrequency spectra of the HD + ion in vibration-rotation levels close to the dissociation limit. Infrared transitions are driven by Doppler tuning an HD + ion beam into resonance with a carbon dioxide infrared laser, and are detected by measuring H + fragment ions produced by electric field dissociation of the upper vibration-rotation level. Radiofrequency transitions between nuclear hyperfine components of the lower vibration-rotation level are then detected through resonant increases in the H + fragment ion current. The high spectroscopic resolution obtained, and the ability to measure magnetic dipole hyperfine transitions, will enable the hyperfine constants to be determined accurately. (author)

  19. Vibrational properties of SrCu{sub 2}O{sub 2} studied via Density Functional Theory calculations and compared to Raman and infrared spectroscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Even, J., E-mail: jacky.even@insa.rennes.fr [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France); Pedesseau, L.; Durand, O. [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France); Modreanu, M. [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland); Huyberechts, G. [FLAMAC, Technologiepark 903, 9052 Zwijnaarde (Belgium); Servet, B. [Thales Research and Technology France, Campus Polytechnique, 1, avenue Augustin Fresnel, 91767 Palaiseau cedex France (France); Chaix-Pluchery, O. [Laboratoire des Matériaux et du Génie Physique, Grenoble INP—Minatec, 3, parvis Louis Néel, BP 257, 38016 Grenoble Cedex 1 (France)

    2013-08-31

    The SrCu{sub 2}O{sub 2} material is a p-type transparent conductive oxide. A theoretical study of the SrCu{sub 2}O{sub 2} crystal is performed with a state of the art implementation of the Density Functional Theory. The simulated crystal structure is compared with available X-ray diffraction data and previous theoretical modeling. Density Functional Perturbation Theory is used to study the vibrational properties of the SrCu{sub 2}O{sub 2} crystal. A symmetry analysis of the optical phonon eigenvectors at the Brillouin zone center is proposed. The Raman spectra simulated using the derivatives of the dielectric susceptibility, show a good agreement with Raman scattering experimental results. - Highlights: ► The symmetry properties of the optical phonons of the SrCu{sub 2}O{sub 2} crystal are analyzed. ► Born charges and the dynamical matrix are calculated at the Brillouin zone center. ► Density Functional Perturbation Theory (DFPT) is used to compute Raman spectrum. ► DFPT Raman spectrum is compared with experimental results.

  20. Study on infrared multiphoton excitation of the linear triatomic molecule by the Lie-algebra approach

    International Nuclear Information System (INIS)

    Feng, H.; Zheng, Y.; Ding, S.

    2007-01-01

    Infrared multiphoton vibrational excitation of the linear triatomic molecule has been studied using the quadratic anharmonic Lie-algebra model, unitary transformations, and Magnus approximation. An explicit Lie-algebra expression for the vibrational transition probability is obtained by using a Lie-algebra approach. This explicit Lie-algebra expressions for time-evolution operator and vibrational transition probabilities make the computation clearer and easier. The infrared multiphoton vibrational excitation of the DCN linear tri-atomic molecule is discussed as an example

  1. Up-regulation of cerebral cytochrome-c-oxidase and hemodynamics by transcranial infrared laser stimulation: A broadband near-infrared spectroscopy study.

    Science.gov (United States)

    Wang, Xinlong; Tian, Fenghua; Reddy, Divya D; Nalawade, Sahil S; Barrett, Douglas W; Gonzalez-Lima, Francisco; Liu, Hanli

    2017-12-01

    Transcranial infrared laser stimulation (TILS) is a noninvasive form of brain photobiomulation. Cytochrome-c-oxidase (CCO), the terminal enzyme in the mitochondrial electron transport chain, is hypothesized to be the primary intracellular photoacceptor. We hypothesized that TILS up-regulates cerebral CCO and causes hemodynamic changes. We delivered 1064-nm laser stimulation to the forehead of healthy participants ( n = 11), while broadband near-infrared spectroscopy was utilized to acquire light reflectance from the TILS-treated cortical region before, during, and after TILS. Placebo experiments were also performed for accurate comparison. Time course of spectroscopic readings were analyzed and fitted to the modified Beer-Lambert law. With respect to the placebo readings, we observed (1) significant increases in cerebral concentrations of oxidized CCO (Δ[CCO]; >0.08 µM; p 0.8 µM; p 0.5 µM; p < 0.01) during and after TILS, and (2) linear interplays between Δ[CCO] versus Δ[HbO] and between Δ[CCO] versus Δ[HbT]. Ratios of Δ[CCO]/Δ[HbO] and Δ[CCO]/Δ[HbT] were introduced as TILS-induced metabolic-hemodynamic coupling indices to quantify the coupling strength between TILS-enhanced cerebral metabolism and blood oxygen supply. This study provides the first demonstration that TILS causes up-regulation of oxidized CCO in the human brain, and contributes important insight into the physiological mechanisms.

  2. SEM, EDS and vibrational spectroscopic study of dawsonite NaAl(CO3)(OH)2

    Science.gov (United States)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Sampaio, Ney Pinheiro; de Oliveira, Fernando A. N.

    2015-02-01

    In this work we have studied the mineral dawsonite by using a combination of scanning electron microscopy with EDS and vibrational spectroscopy. Single crystals show an acicular habitus forming aggregates with a rosette shape. The chemical analysis shows a phase composed of C, Al, and Na. Two distinct Raman bands at 1091 and 1068 cm-1 are assigned to the CO32- ν1 symmetric stretching mode. Multiple bands are observed in both the Raman and infrared spectra in the antisymmetric stretching and bending regions showing that the symmetry of the carbonate anion is reduced and in all probability the carbonate anions are not equivalent in the dawsonite structure. Multiple OH deformation vibrations centred upon 950 cm-1 in both the Raman and infrared spectra show that the OH units in the dawsonite structure are non-equivalent. Raman bands observed at 3250, 3283 and 3295 cm-1 are assigned to OH stretching vibrations. The position of these bands indicates strong hydrogen bonding of the OH units in the dawsonite structure. The formation of the mineral dawsonite has the potential to offer a mechanism for the geosequestration of greenhouse gases.

  3. Rotational and High-resolution Infrared Spectrum of HC3N: Global Ro-vibrational Analysis and Improved Line Catalog for Astrophysical Observations

    Science.gov (United States)

    Bizzocchi, Luca; Tamassia, Filippo; Laas, Jacob; Giuliano, Barbara M.; Degli Esposti, Claudio; Dore, Luca; Melosso, Mattia; Canè, Elisabetta; Pietropolli Charmet, Andrea; Müller, Holger S. P.; Spahn, Holger; Belloche, Arnaud; Caselli, Paola; Menten, Karl M.; Garrod, Robin T.

    2017-11-01

    HC3N is a ubiquitous molecule in interstellar environments, from external galaxies to Galactic interstellar clouds, star-forming regions, and planetary atmospheres. Observations of its rotational and vibrational transitions provide important information on the physical and chemical structures of the above environments. We present the most complete global analysis of the spectroscopic data of HC3N. We recorded the high-resolution infrared spectrum from 450 to 1350 cm-1, a region dominated by the intense {ν }5 and {ν }6 fundamental bands, located at 660 and 500 cm-1, respectively, and their associated hot bands. Pure rotational transitions in the ground and vibrationally excited states were recorded in the millimeter and submillimeter regions in order to extend the frequency range so far considered in previous investigations. All of the transitions from the literature and from this work involving energy levels lower than 1000 cm-1 were fitted together to an effective Hamiltonian. Because of the presence of various anharmonic resonances, the Hamiltonian includes a number of interaction constants, in addition to the conventional rotational and vibrational l-type resonance terms. The data set contains about 3400 ro-vibrational lines of 13 bands and some 1500 pure rotational lines belonging to 12 vibrational states. More than 120 spectroscopic constants were determined directly from the fit, without any assumption deduced from theoretical calculations or comparisons with similar molecules. An extensive list of highly accurate rest frequencies was produced to assist astronomical searches and data interpretation. These improved data enabled a refined analysis of the ALMA observations toward Sgr B2(N2).

  4. Development of on-line heavy water analysis by vibrating probe density meter and multiple internal reflectance infrared spectrometry

    International Nuclear Information System (INIS)

    Jones, V.D.; Nora, B.

    1984-01-01

    Achieving high productivity in the Savannah River Plant nuclear reactors requires that the heavy water (D 2 O) moderator be maintained at a high purity level. Since the D 2 O purity will degrade with time, a fraction of the moderator must be continually reprocessed to remove H 2 O. This rework process uses a series of fractional distillation columns. The process control is based on laboratory analyses of process samples every four hours. The sample streams, which can range from 0.10 to 99.80 mol % D 2 O, are analyzed using infrared spectrophotometry. An automatic on-line analysis would provide tighter process control and reduce personnel exposure to the tritiated moderator. Two instruments are being evaluated for on-line control; an Anton/Parr DPR 2000 density measuring system and a General Analysis Corporation LAN-I infrared liquid stream monitor

  5. Broadband near infrared quantum cutting in Bi–Yb codoped Y2O3 transparent films on crystalline silicon

    International Nuclear Information System (INIS)

    Qu Minghao; Wang Ruzhi; Chen Yan; Zhang Ying; Li Kaiyu; Yan Hui

    2012-01-01

    By a pulsed laser deposition technique the efficient broadband near-infrared downconversion Bi–Yb codoped crystallization Y 2 O 3 transparent films have been grown successfully on Si (1 0 0) substrates. Upon excitation of ultraviolet photon varying from 300 to 400 nm, the near infrared quantum cutting has been obtained, which is originated from the transitions of the transition-metal Bi 3+3 P 1 level to Yb 3+2 F 5/2 level. The downconversion quantum efficiency of films is estimated to be 152%. The transparent Y 2 O 3 films may have potential application in enhancing the conversion efficiency of crystalline Si solar cells. - Highlights: ► The downconversion Y 2 O 3 :Bi,Yb films has good transparency. ► Y 2 O 3 :Bi,Yb films possess a broadband absorption in the UV region of 300–400 nm. ► The films may have potential application in enhancing the efficiency of c-Si cells.

  6. Structural, Optical, and Vibrational Properties of ZnO Microrods Deposited on Silicon Substrate

    Science.gov (United States)

    Lahlouh, Bashar I.; Ikhmayies, Shadia J.; Juwhari, Hassan K.

    2018-03-01

    Zinc oxide (ZnO) microrod films deposited by spray pyrolysis on silicon substrate at 350 ± 5°C have been studied and evaluated, and compared with thin films deposited by electron beam to confirm the identity of the studied samples. The films were characterized using different techniques. The microrod structure was studied and confirmed by scanning electron microscopy. Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction analysis confirmed successful deposition of ZnO thin films with the expected wurtzite structure. Reflectance data showed a substantial drop across the whole studied wavelength range. The photoluminescence (PL) spectra of the studied samples showed a peak at ˜ 360 nm, representing a signature of ZnO. The shift in the PL peak position is due to defects and other species present in the films, as confirmed by FTIR and energy-dispersive x-ray spectroscopy results.

  7. Quantitative infrared and near-infrared gas-phase spectra for pyridine: Absolute intensities and vibrational assignments

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T. J.; Aker, P. M.; Scharko, N. K.; Williams, S. D.

    2018-02-01

    Using vetted methods for generating quantitative absorption reference data, broadband infrared and near-infrared spectra (total range 11,000 – 600 cm-1) of pyridine vapor were recorded at 0.1 cm-1 spectral resolution, with the analyte thermostatted at 298 K and pressure-broadened to 1 atmosphere using N2 ballast gas. The quantitative spectrum is reported for the first time, and we have re-assigned some of the 27 fundamental modes. Fundamental assignments were confirmed by IR vapor phase band shapes, FT-Raman measurements and comparison with previous analyses. For the 760-Torr vapor-phase IR data several bands show resolved peaks (Q-branches). We have also assigned for the first time hundreds of combination and overtone bands in the mid- and near-IR. All assignments were made via comparison to theoretically calculated frequencies and intensities: The frequencies were computed with Gaussian03 with the anharmonic option, using MP2 and the ccpvtz basis set. The intensities were taken from a VSCF calculation in GAMESS using Hartree-Fock (for overtones and combination bands) or from the harmonic MP2 for fundamentals. Overtone and combination band harmonic and anharmonic frequencies, as well as intensities were also calculated using the CFOUR program. It is seen in the NIR spectrum near 6000 cm-1 that the very strong bands arise from the C-H first overtones, whereas only much weaker bands are observed for combination bands of C-H stretching modes. Certain features are discussed for their potential utility for atmospheric monitoring.

  8. Molecular Geometry And Vibrational Spectra of 2'-chloroacetanilide

    International Nuclear Information System (INIS)

    Gokce, H.

    2008-01-01

    The molecular structure, vibrational frequencies and the corresponding vibrational assingments of 2'-chloroacetanilide in the ground state have been calculated by using Hartree-Fock (HF) and Density Functional Theory (DFT/B3LYP) methods with 6-311++G(d,p) basis set. The obtained vibrational frequencies and optimized geometric parameters (bond lenghts and angles) are in very good agreement with the experimental data. The comparison of the observed and calculated vibrational frequencies assignments of 2'-chloroacetanilide exhibit that the scaled DFT/B3LYP method is superior to be scaled HF method. Furthermore the calculated Infrared and Raman intensities are also reported

  9. Comparison between tympanic and anal temperature with a clinical infrared ray thermometer in dogs Comparação entre a temperatura timpânica e a temperatura anal usando um termômetro clínico de raio infravermelho em cães

    Directory of Open Access Journals (Sweden)

    G.G.S. Wiedemann

    2006-08-01

    Full Text Available A clinical thermometer of infrared rays was used twice to record consecutively the temperature of the tympanic membrane in each ear and in the anus of 53 dogs. Temperatures did not differ significantly between organs, and were strongly correlated. The anal temperature measurement with an infrared thermometer in dogs is feasible and trustworthy, as well as the thermal checking of tympanic temperature.Utilizou-se um termômetro clínico de emissão de raios infravermelhos para medir, duas vezes consecutivas, a temperatura da membrana timpânica de cada ouvido e duas vezes a temperatura no ânus de 53 cães. Não houve diferença entre as temperaturas quanto ao órgão estudado e a correlação entre as temperaturas foi alta. Em cães, a medida da temperatura anal com o termômetro clínico de emissão de raios infravermelhos é rápida e confiável tanto quanto a da temperatura timpânica.

  10. DETAILED ANALYSIS OF NEAR-IR WATER (H2O) EMISSION IN COMET C/2014 Q2 (LOVEJOY) WITH THE GIANO/TNG SPECTROGRAPH

    International Nuclear Information System (INIS)

    Faggi, S.; Brucato, J. R.; Tozzi, G. P.; Oliva, E.; Massi, F.; Sanna, N.; Tozzi, A.; Villanueva, G. L.; Mumma, M. J.

    2016-01-01

    We observed the Oort cloud comet C/2014 Q2 (Lovejoy) on 2015 January 31 and February 1 and 2 at a heliocentric distance of 1.3 au and geocentric distance of 0.8 au during its approach to the Sun. Comet Lovejoy was observed with GIANO, the near-infrared high-resolution spectrograph mounted at the Nasmyth-A focus of the TNG (Telescopio Nazionale Galileo) telescope in La Palma, Canary Islands, Spain. We detected strong emissions of radical CN and water, along with many emission features of unidentified origin, across the 1–2.5 μ m region. Spectral lines from eight ro-vibrational bands of H 2 O were detected, six of them for the first time. We quantified the water production rate [ Q (H 2 O), (3.11 ± 0.14) × 10 29 s −1 ] by comparing the calibrated line fluxes with the Goddard full non-resonance cascade fluorescence model for H 2 O. The production rates of ortho-water [ Q (H 2 O) ORTHO , (2.33 ± 0.11) × 10 29 s −1 ] and para-water [ Q (H 2 O) PARA , (0.87 ± 0.21) × 1029 s −1 ] provide a measure of the ortho-to-para ratio (2.70 ± 0.76)). The confidence limits are not small enough to provide a critical test of the nuclear spin temperature.

  11. Detailed Analysis of Near-IR Water (H2O) Emission in Comet C/2014 Q2 (LOVEJOY) with the GIANO/TNG Spectrograph

    Science.gov (United States)

    Faggi, S.; Villanueva, G. L.; Mumma, M. J.; Brucato, J.R.; Tozzi, G. P.; Oliva, E.; Massi, F.; Sanna, N.; Tozzi, A.

    2016-01-01

    We observed the Oort cloud comet C/2014 Q2 (Lovejoy) on 2015 January 31 and February 1 and 2 at a heliocentric distance of 1.3 au and geocentric distance of 0.8 au during its approach to the Sun. Comet Lovejoy was observed with GIANO, the near-infrared high-resolution spectrograph mounted at the Nasmyth-A focus of the TNG (Telescopio Nazionale Galileo) telescope in La Palma, Canary Islands, Spain. We detected strong emissions of radical CN and water, along with many emission features of unidentified origin, across the 1-2.5 micron region. Spectral lines from eight ro-vibrational bands of H2O were detected, six of them for the first time. We quantified the water production rate [Q(H2O), (3.11+/- 0.14) x 10(exp 29)/s] by comparing the calibrated line fluxes with the Goddard full non-resonance cascade fluorescence model for H2O. The production rates of ortho-water [Q(H2O)ORTHO, (2.33+/- 0.11) x 10(exp 29)/s] and para-water [Q(H2O)PARA, (0.87+/-0.21) x 10(exp 29)/s] provide a measure of the ortho-to-para ratio (2.70+/- 0.76)). The confidence limits are not small enough to provide a critical test of the nuclear spin temperature.

  12. The initial scientific program at the NSLS infrared beamline

    International Nuclear Information System (INIS)

    Williams, G.P.

    1989-01-01

    Unique extraction optics (90 x 90 mrads) at the NSLS U4IR line offer high brightness beams at up to mm wavelengths with a ∼1ns pulse structure. Radiation from this port has now been carefully characterized and agrees well with calculations, making it 100--1000 times brighter than conventional sources in the middle and far infrared regions. Using rapid scan Michelson interferometers with liquid He cooled bolometer detectors we have been able for the first time to measure molecule substrate vibrations in surface science. We have also made the first measurements of the transmission of a film of the high Tc material YBaCuO in the BCS gap region. These initial experiments have demonstrated the advantages of the superior signal to noise available from this infrared beamline. 19 refs., 6 figs

  13. Infrared and Raman Spectra of Magnesium Ammonium Phosphate Hexahydrate (Struvite) and its Isomorphous Analogues. VIII. Spectra of Protiated and Partially Deuterated Magnesium Rubidium Phosphate Hexahydrate and Magnesium Thallium Phosphate Hexahydrate.

    Science.gov (United States)

    Soptrajanov, Bojan; Cahil, Adnan; Najdoski, Metodija; Koleva, Violeta; Stefov, Viktor

    2011-09-01

    The infrared and Raman spectra of magnesium rubidium phosphate hexahydrate MgRbPO4 • 6H2O and magnesium thallium phosphate hexahydrate, MgTlPO4 • 6H2O were recorded at room temperature (RT) and the boiling temperature of liquid nitrogen (LNT). To facilitate their analysis, also recorded were the spectra of partially deuterated analogues with varying content of deuterium. The effects of deuteration and those of lowering the temperature were the basis of the conclusions drawn regarding the origin of the observed bands which were assigned to vibrations which are predominantly localized in the water molecules (four crystallographically different types of such molecules exist in the structures) and those with PO43- character. It was concluded that in some cases coupling of phosphate and water vibrations is likely to take place. The appearance of the infrared spectra in the O-H stretching regions of the infrared spectra is explained as being the result of an extensive overlap of bands due to components of the fundamental stretching modes of the H2O units with a possible participation of bands due to second-order transitions. A broad band reminiscent of the B band of the well-known ABC trio characteristic of spectra of substances containing strong hydrogen bonds in their structure was found around 2400 cm-1 in the infrared spectra of the two studied compounds.

  14. Photocatalytic decomposition of N2O over TiO2/g-C3N4 photocatalysts heterojunction

    Science.gov (United States)

    Kočí, K.; Reli, M.; Troppová, I.; Šihor, M.; Kupková, J.; Kustrowski, P.; Praus, P.

    2017-02-01

    TiO2/g-C3N4 photocatalysts with the various TiO2/g-C3N4 weight ratios from 1:2 to 1:6 were fabricated by mechanical mixing in water suspension followed by calcination. Pure TiO2 was prepared by thermal hydrolysis and pure g-C3N4 was prepared from commercial melamine by thermal annealing at 620 °C. All the nanocomposites were characterized by X-ray powder diffraction, UV-vis diffuse reflectance spectroscopy, Raman spectroscopy, infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, photoelectrochemical measurements and nitrogen physisorption. The prepared mixtures along with pure TiO2 and g-C3N4 were tested for the photocatalytic decomposition of nitrous oxide under UVC (λ = 254 nm), UVA (λ = 365 nm) and Vis (λ > 400 nm) irradiation. The TiO2/g-C3N4 nanocomposites showed moderate improvement compared to pure g-C3N4 but pure TiO2 proved to be a better photocatalyst under UVC irradiation. However, under UVA irradiation conditions, the photocatalytic activity of TiO2/g-C3N4 (1:2) nanocomposite exhibited an increase compared to pure TiO2. Nevertheless, further increase of g-C3N4 amount leads/led to a decrease in reactivity. These results are suggesting the nanocomposite with the optimal weight ratio of TiO2 and g-C3N4 have shifted absorption edge energy towards longer wavelengths and decreased the recombination rate of charge carriers compared to pure g-C3N4. This is probably due to the generation of heterojunction on the TiO2/g-C3N4 interface.

  15. Evidence for phosphorus bonding in phosphorus trichloride-methanol adduct: a matrix isolation infrared and ab initio computational study.

    Science.gov (United States)

    Joshi, Prasad Ramesh; Ramanathan, N; Sundararajan, K; Sankaran, K

    2015-04-09

    The weak interaction between PCl3 and CH3OH was investigated using matrix isolation infrared spectroscopy and ab initio computations. In a nitrogen matrix at low temperature, the noncovalent adduct was generated and characterized using Fourier transform infrared spectroscopy. Computations were performed at B3LYP/6-311++G(d,p), B3LYP/aug-cc-pVDZ, and MP2/6-311++G(d,p) levels of theory to optimize the possible geometries of PCl3-CH3OH adducts. Computations revealed two minima on the potential energy surface, of which, the global minimum is stabilized by a noncovalent P···O interaction, known as a pnictogen bonding (phosphorus bonding or P-bonding). The local minimum corresponded to a cyclic adduct, stabilized by the conventional hydrogen bonding (Cl···H-O and Cl···H-C interactions). Experimentally, 1:1 P-bonded PCl3-CH3OH adduct in nitrogen matrix was identified, where shifts in the P-Cl modes of PCl3, O-C, and O-H modes of CH3OH submolecules were observed. The observed vibrational frequencies of the P-bonded adduct in a nitrogen matrix agreed well with the computed frequencies. Furthermore, computations also predicted that the P-bonded adduct is stronger than H-bonded adduct by ∼1.56 kcal/mol. Atoms in molecules and natural bond orbital analyses were performed to understand the nature of interactions and effect of charge transfer interaction on the stability of the adducts.

  16. Vibrational spectroscopy at high external pressures the diamond anvil cell

    CERN Document Server

    Ferraro, John R

    1984-01-01

    Vibrational Spectroscopy at High External Pressures: The Diamond Anvil Cell presents the effects of high pressure on the vibrational properties of materials as accomplished in a diamond anvil cell (DAC). The DAC serves the dual purpose of generating the pressures and being transparent to infrared radiation, allowing the observation of changes caused by pressure. The optical probes highlighted will deal principally with infrared and Raman scattering, although some observations in the visible region will also be presented. The book begins with a discussion of the effects of pressure and pres

  17. Crystallographic and infrared spectroscopic study of bond distances in Ln[Fe(CN)6].4H2O (Ln=lanthanide)

    International Nuclear Information System (INIS)

    Zhou Xianju; Wong, W.-T.; Faucher, Michele D.; Tanner, Peter A.

    2008-01-01

    Along with crystallographic data of Ln[Fe(CN) 6 ].4H 2 O (Ln=lanthanide), the infrared spectra are reassigned to examine bond length trends across the series of Ln. The changes in mean Ln-O, Ln-N, C≡N and Fe-C distances are discussed and the bond natures of Ln-N and Ln-O are studied by bond length linear or quadratic fitting and comparisons with relevant ionic radii. The two different C≡N bond distances have been simulated by the covalo-electrostatic model. - Graphical abstract: Crystallographic and FTIR data for Ln[Fe(CN) 6 ].4H 2 O enable the changes in Ln-O, Ln-N, C≡N and Fe-C distances to be determined and modeled across the lanthanide series

  18. Force Limited Vibration Testing: Computation C2 for Real Load and Probabilistic Source

    Science.gov (United States)

    Wijker, J. J.; de Boer, A.; Ellenbroek, M. H. M.

    2014-06-01

    To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications, in which the factor C2 is besides the random vibration specification, the total mass and the turnover frequency of the load(test item), a very important parameter. A number of computational methods to estimate C2 are described in the literature, i.e. the simple and the complex two degrees of freedom system, STDFS and CTDFS, respectively. Both the STDFS and the CTDFS describe in a very reduced (simplified) manner the load and the source (adjacent structure to test item transferring the excitation forces, i.e. spacecraft supporting an instrument).The motivation of this work is to establish a method for the computation of a realistic value of C2 to perform a representative random vibration test based on force limitation, when the adjacent structure (source) description is more or less unknown. Marchand formulated a conservative estimation of C2 based on maximum modal effective mass and damping of the test item (load) , when no description of the supporting structure (source) is available [13].Marchand discussed the formal description of getting C 2 , using the maximum PSD of the acceleration and maximum PSD of the force, both at the interface between load and source, in combination with the apparent mass and total mass of the the load. This method is very convenient to compute the factor C 2 . However, finite element models are needed to compute the spectra of the PSD of both the acceleration and force at the interface between load and source.Stevens presented the coupled systems modal approach (CSMA), where simplified asparagus patch models (parallel-oscillator representation) of load and source are connected, consisting of modal effective masses and the spring stiffnesses associated with the natural frequencies. When the random acceleration vibration specification is given the CMSA

  19. Characterization and gas sensing properties of CuO synthesized by DC directly applying voltage

    International Nuclear Information System (INIS)

    Klinbumrung, Arrak; Thongtem, Titipun; Thongtem, Somchai

    2014-01-01

    Highlights: • CuO as a p-type semiconductor. • It was synthesized by directly applying voltage. • A promising material for ammonia detection. - Abstract: CuO microstructure was successfully synthesized by 50 A and 3.6 V DC directly applying voltage. Crystalline structure was characterized by X-ray diffraction (XRD), morphology by scanning and transmission electron microscopy (SEM, TEM). The sample of the 15 min processing time has an irregular shape with diameter about several hundreds of nanometer. Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–vis) absorption spectroscopy and photoluminescence (PL) were used to determine vibrational modes and optical properties of the as-synthesized samples: 529 and 585 cm −1 vibrational modes, 3.95 eV band gap, and 402 nm emitting wavelength in violet region of CuO. X-ray photoelectron (XPS) spectroscopy was used to determine chemical composition, Cu(II)O, of the metal oxide surface. Gas sensing performance exposing to NH 3 mixed with air at various working temperatures and NH 3 concentrations of the as-synthesized CuO has the best response at the optimal working temperature of 250 °C: sensitivity of 56.6% exposed to 5275 ppm NH 3

  20. Terbium doped SnO2 nanoparticles as white emitters and SnO2:5Tb/Fe3O4 magnetic luminescent nanohybrids for hyperthermia application and biocompatibility with HeLa cancer cells.

    Science.gov (United States)

    Singh, Laishram Priyobarta; Singh, Ningthoujam Premananda; Srivastava, Sri Krishna

    2015-04-14

    SnO2:5Tb (SnO2 doped with 5 at% Tb(3+)) nanoparticles were synthesised by a polyol method and their luminescence properties at different annealing temperatures were studied. Characterization of nanomaterials was done by X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). XRD studies indicate that the prepared nanoparticles were of tetragonal structures. Upon Tb(3+) ion incorporation into SnO2, Sn(4+) changes to Sn(2+) and, on annealing again at higher temperature, Sn(2+) changes to Sn(4+). The prepared nanoparticles were spherical in shape. Sn-O vibrations were found from the FTIR studies. In photoluminescence studies, the intensity of the emission peaks of Tb(3+) ions increases with the increase of annealing temperature, and emission spectra lie in the region of white emission in the CIE diagram. CCT calculations show that the SnO2:5Tb emission lies in cold white emission. Quantum yields up to 38% can be obtained for 900 °C annealed samples. SnO2:5Tb nanoparticles were well incorporated into the PVA polymer and such a material incorporated into the polymer can be used for display devices. The SnO2:5Tb/Fe3O4 nanohybrid was prepared and investigated for hyperthermia applications at different concentrations of the nanohybrid. This achieves a hyperthermia temperature (42 °C) under an AC magnetic field. The hybrid nanomaterial SnO2:5Tb/Fe3O4 was found to exhibit biocompatibility with HeLa cells (human cervical cancer cells) at concentrations up to 74% for 100 μg L(-1). Also, this nanohybrid shows green emission and thus it will be helpful in tracing magnetic nanoparticles through optical imaging in vivo and in vitro application.

  1. Vibrational excitation of hydrogen molecules by two-photon absorption and third-harmonic generation

    Science.gov (United States)

    Miyamoto, Yuki; Hara, Hideaki; Hiraki, Takahiro; Masuda, Takahiko; Sasao, Noboru; Uetake, Satoshi; Yoshimi, Akihiro; Yoshimura, Koji; Yoshimura, Motohiko

    2018-01-01

    We report the coherent excitation of the vibrational state of hydrogen molecules by two-photon absorption and the resultant third-harmonic generation (THG). Parahydrogen molecules cooled by liquid nitrogen are irradiated by mid-infrared nanosecond pulses at 4.8 μm with a nearly Fourier-transform-limited linewidth. The first excited vibrational state of parahydrogen is populated by two-photon absorption of the mid-infrared photons. Because of the narrow linewidth of the mid-infrared pulses, coherence between the ground and excited states is sufficient to induce higher-order processes. Near-infrared photons from the THG are observed at 1.6 μm. The dependence of the intensity of the near-infrared radiation on mid-infrared pulse energy, target pressure, and cell length is determined. We used a simple formula for THG with consideration of realistic experimental conditions to explain the observed results.

  2. Preparation and near-infrared absorption of nano-SnO{sub 2}/SiO{sub 2} assemblies with doping and without doping

    Energy Technology Data Exchange (ETDEWEB)

    Hai Shujie [Faculty of Material Science and Chemical Engineering, China University of Geosciences, Lu Mo Road 388, Wuhan 430074 (China); Yan Chunjie, E-mail: chjyan2005@126.co [Engineering Research Center of Nano-Geomaterials, Ministry of Education, China University of Geosciences, Lu Mo Road 388, Wuhan 430074 (China); Yu Hongjie; Xiao Guoqi; Wang Duo [Faculty of Material Science and Chemical Engineering, China University of Geosciences, Lu Mo Road 388, Wuhan 430074 (China)

    2009-11-20

    The assemblies of nano-SnO{sub 2}/SiO{sub 2} and Sb- or Pd-doped nano-SnO{sub 2}/SiO{sub 2}, in which the nano-SnO{sub 2} particles are located in the pores of mesoporous SiO{sub 2} dry gels, were synthesized. Only for the Sb-doped nano-SnO{sub 2}/SiO{sub 2} assemblies, a broad near-infrared absorption step occurs in the optical absorption spectrum of the wavelength range from 300 to 1500 nm. The near-infrared absorption phenomenon is attributed to electronic transitions from the ground states to the excitation states of the impurity energy levels, which are formed by Sb doping in SnO{sub 2}. With increasing the weight ratio of SnO{sub 2}:SiO{sub 2} or the annealing temperature, the near-infrared absorption step slope side exhibits 'red shift', which is caused by the quantum confinement effect weakening due to the increased SnO{sub 2} crystalline diameter.

  3. Preparation, characterization and infrared emissivity study of helical polyurethane-SiO2 core-shell composite

    International Nuclear Information System (INIS)

    Wang Zhiqiang; Zhou Yuming; Yao Qingzhao; Sun Yanqing

    2009-01-01

    Helical polyurethane-SiO 2 (HPU-SiO 2 ) core-shell composite was prepared after surface modification of SiO 2 nanoparticles. HPU-SiO 2 was characterized by Fourier-transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet (UV) spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results indicate that the helical polyurethane has been successfully grafted onto the surfaces of the modified SiO 2 . HPU-SiO 2 composite exhibits clearly core-shell structure. The ultraviolet absorption and crystallizability of HPU-SiO 2 are changed due to the shell of helical polyurethane, which possesses regular single-handed conformation and inter-chain hydrogen bonds. The infrared emissivity of HPU-SiO 2 was also investigated. The result indicates that the interfacial interactions between organic shell and inorganic core induce the infrared emissivity value being reduced from 0.781 for SiO 2 to 0.503 for HPU-SiO 2 .

  4. Room-temperature picosecond high-order stimulated Raman scattering in laser garnet crystal hosts Gd3Ga5O12, Gd3Sc2Ga3O12, and Ca3(Nb,Ga)2Ga3O12

    International Nuclear Information System (INIS)

    Kaminskii, Alexandr A; Eichler, H J; Findeisen, J; Ueda, Ken-ichi; Fernandez, J; Balda, R

    1998-01-01

    High-order Stokes and anti-Stokes generation in the visible and near-infrared in cubic laser crystal hosts Gd 3 Ga 5 O 12 , Gd 3 Sc 2 Ga 3 O 12 , and Ca 3 (Nb,Ga) 2 Ga 3 O 12 was observed for the first time. All scattering-laser components were identified and attributed to the SRS-active vibration modes of these garnet crystals. (letters to the editor)

  5. ALMA DETECTION OF THE VIBRATIONALLY EXCITED HCN J = 4-3 EMISSION LINE IN THE AGN-HOSTING LUMINOUS INFRARED GALAXY IRAS 20551–4250

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Masatoshi [Subaru Telescope, 650 North A' ohoku Place, Hilo, Hawaii, 96720 (United States); Nakanishi, Kouichiro, E-mail: masa.imanishi@nao.ac.jp [Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763-0355, Santiago de Chile (Chile)

    2013-10-01

    We present results from our ALMA Cycle 0 observations, at the frequencies around the HCN, HCO{sup +}, and HNC J = 4-3 transition lines, of the luminous infrared galaxy IRAS 20551–4250 at z = 0.043, which is known to host an energetically important obscured active galactic nucleus (AGN). In addition to the targeted HCN, HCO{sup +}, and HNC J = 4-3 emission lines, two additional strong emission lines are seen, which we attribute to H{sub 2}S and CH{sub 3}CN(+CCH). The HCN-to-HCO{sup +} J = 4-3 flux ratio (∼0.7) is higher than in the other starburst-dominated galaxy (∼0.2) observed in our ALMA Cycle 0 program. We tentatively (∼5σ) detected the vibrationally excited (v {sub 2} = 1) HCN J = 4-3 (l = 1f) emission line, which is important for testing an infrared radiative pumping scenario for HCN. This is the second detection of this molecular transition in external galaxies. The most likely reason for this detection is not only the high flux of this emission line, but also the small molecular line widths observed in this galaxy, suggesting that vibrational excitation of HCN may be relatively common in AGN-hosting galaxies.

  6. Vibrational and electronic spectroscopic studies of melatonin

    Science.gov (United States)

    Singh, Gurpreet; Abbas, J. M.; Dogra, Sukh Dev; Sachdeva, Ritika; Rai, Bimal; Tripathi, S. K.; Prakash, Satya; Sathe, Vasant; Saini, G. S. S.

    2014-01-01

    We report the infrared absorption and Raman spectra of melatonin recorded with 488 and 632.8 nm excitations in 3600-2700 and 1700-70 cm-1 regions. Further, we optimized molecular structure of the three conformers of melatonin within density functional theory calculations. Vibrational frequencies of all three conformers have also been calculated. Observed vibrational bands have been assigned to different vibrational motions of the molecules on the basis of potential energy distribution calculations and calculated vibrational frequencies. Observed band positions match well with the calculated values after scaling except Nsbnd H stretching mode frequencies. It is found that the observed and calculated frequencies mismatch of Nsbnd H stretching is due to intermolecular interactions between melatonin molecules.

  7. Molecular structure and vibrational spectra of Bis(melaminium) terephthalate dihydrate: A DFT computational study

    Science.gov (United States)

    Tanak, Hasan; Marchewka, Mariusz K.; Drozd, Marek

    2013-03-01

    The experimental and theoretical vibrational spectra of Bis(melaminium) terephthalate dihydrate were studied. The Fourier transform infrared (FT-IR) spectra of the Bis(melaminium) terephthalate dihydrate and its deuterated analogue were recorded in the solid phase. The molecular geometry and vibrational frequencies of Bis(melaminium) terephthalate dihydrate in the ground state have been calculated by using the density functional method (B3LYP) with 6-31++G(d,p) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The molecule contains the weak hydrogen bonds of Nsbnd H⋯O, Nsbnd H⋯N and Osbnd H⋯O types, and those bonds are calculated with DFT method. In addition, molecular electrostatic potential, frontier molecular orbitals and natural bond orbital analysis of the title compound were investigated by theoretical calculations. The lack of the second harmonic generation (SHG) confirms the presence of macroscopic center of inversion.

  8. Pressure-induced structural and semiconductor-semiconductor transitions in C o0.5M g0.5C r2O4

    Science.gov (United States)

    Rahman, S.; Saqib, Hajra; Zhang, Jinbo; Errandonea, D.; Menéndez, C.; Cazorla, C.; Samanta, Sudeshna; Li, Xiaodong; Lu, Junling; Wang, Lin

    2018-05-01

    The effect of pressure on the structural, vibrational, and electronic properties of Mg-doped Cr bearing spinel C o0.5M g0.5C r2O4 was studied up to 55 GPa at room-temperature using x-ray diffraction, Raman spectroscopy, electrical transport measurements, and ab initio calculations. We found that the ambient-pressure phase is cubic (spinel-type, F d 3 ¯m ) and underwent a pressure-induced structural transition to a tetragonal phase (space group I 4 ¯m 2 ) above 28 GPa. The ab initio calculation confirmed this first-order phase transition. The resistivity of the sample decreased at low pressures with the existence of a low-pressure (LP) phase and started to increase with the emergence of a high-pressure (HP) phase. The temperature dependent resistivity experiments at different pressures illustrated the wide band gap semiconducting nature of both the LP and HP phases with different activation energies, suggesting a semiconductor-semiconductor transition at HP. No evidence of chemical decomposition or a semiconductor-metal transition was observed in our studies.

  9. Determination of carbon content of UO2, (U, Gd)O2 and (U, Pu)O2 powders and sintered pellets - Combustion in a high-frequency induction furnace -Infrared absorption spectrometry

    International Nuclear Information System (INIS)

    2008-01-01

    This International Standard describes a method for determining the carbon content in UO 2 , (U,Gd)O 2 and (U,Pu)O 2 powder and sintered pellets by combustion in an induction furnace and infrared absorption spectroscopy measurement. It is applicable for determining 10 μg/g to 500 μg/g of carbon in UO 2 , (U,Gd)O 2 and (U,Pu)O 2 powder and pellets. The sample is heated to a temperature above 1500 deg. C in an induction furnace, under pure oxygen atmosphere, to convert any carbon compounds to carbon dioxide gas. The resulting carbon dioxide gas is filtered and dried before measurement using infrared spectroscopy to measure the carbon dioxide signal at 2350 cm -1 . The result is converted into the carbon content of the material analysed

  10. Infrared and Raman spectroscopic studies of tris-[3-(trimethoxysilyl)propyl] isocyanurate, its sol-gel process, and coating on aluminum and copper.

    Science.gov (United States)

    Li, Ying-Sing; Church, Jeffrey S; Woodhead, Andrea L; Vecchio, Nicolas E; Yang, Johnny

    2014-11-11

    Tris-[3-(trimethoxysilyl)propyl] isocyanurate (TTPI) has been used as a precursor to prepare a sol using ethanol as the solvent under acidic conditions. The sol-gel was applied for the surface treatment of aluminum and copper. Infrared and Raman spectra have been recorded for pure TTPI and the TTPI sol, xerogel and TTPI sol-gel coated metals. From the vibrational spectra, TTPI is likely to have the C1 point group. Vibrational assignments are suggested based on group frequencies, the expected reactions in the sol-gel process and the vibrational studies of some related molecules. From the experimental infrared spectra of xerogels annealed at different temperatures and from the thermal-gravimetric analysis, it is found that the TTPI xerogel decomposes at around 450°C with silica being the major decomposition product. A cyclic voltammetric study of the metal electrodes coated with different concentrations of TTPI ranging from 5% to 42% (v/v) has shown that the films with high concentrations of sol would provide better corrosion protection for aluminum and copper. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Signature of self-gravitation in vibrating mirror interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Geszti, Tamas [Department of Physics of Complex Systems, Eoetvoes University, Budapest (Hungary)

    2007-05-15

    If - according to the Newton-Schroedinger scheme - gravitation is a classical field and its source is the mean mass density, that provides a force of attraction between the Schroedinger cat partners of the vibrating mirror in the proposed Marshall et al.experiment. That force is observable in principle as a shift of the visibility revival frequency, with respect to the c.o.m. vibration frequency to be observed mechanically. The effect is of observable size if short-range gravity is much stronger than long-range gravity.

  12. Solid-phase vibrational redox reactions in coordinated oxides

    International Nuclear Information System (INIS)

    Kostikova, G.P.; Korol'kov, D.V.; Kostikov, Yu.P.

    1996-01-01

    The properties of multicomponent oxides (YBa 2 Cu 3 O 7-x , etc.), incorporating different valency forms of each of two (or more) different elements have been compared with the properties of the known chemical systems, where vibrational (periodic) redox-reactions are realized a fortiori. The essence of the new theoretical concept suggested consists in the following: high-T c superconductivity of the complex oxides and similar compounds originates from vibrational redox reaction proceeding in solid phase and involving different valency atoms of every element

  13. Hydrothermal Synthesis and Photocatalytic Property of β-Ga2O3 Nanorods

    Science.gov (United States)

    Reddy, L. Sivananda; Ko, Yeong Hwan; Yu, Jae Su

    2015-09-01

    Gallium oxide (Ga2O3) nanorods were facilely prepared by a simple hydrothermal synthesis, and their morphology and photocatalytic property were studied. The gallium oxide hydroxide (GaOOH) nanorods were formed in aqueous growth solution containing gallium nitrate and ammonium hydroxide at 95 °C of growth temperature. Through the calcination treatment at 500 and 1000 °C for 3 h, the GaOOH nanorods were converted into single crystalline α-Ga2O3 and β-Ga2O3 phases. From X-ray diffraction analysis, it could be confirmed that a high crystalline quality of β-Ga2O3 nanorods was achieved by calcinating at 1000 °C. The thermal behavior of the Ga2O3 nanorods was also investigated by differential thermal analysis, and their vibrational bands were identified by Fourier transform infrared spectroscopy. In order to examine the photocatalytic activity of samples, the photodegradation of Rhodamine B solution was observed under UV light irradiation. As a result, the α-Ga2O3 and β-Ga2O3 nanorods exhibited high photodegeneration efficiencies of 62 and 79 %, respectively, for 180 min of UV irradiation time.

  14. Hydrothermal Synthesis and Photocatalytic Property of β-Ga2O3 Nanorods.

    Science.gov (United States)

    Reddy, L Sivananda; Ko, Yeong Hwan; Yu, Jae Su

    2015-12-01

    Gallium oxide (Ga2O3) nanorods were facilely prepared by a simple hydrothermal synthesis, and their morphology and photocatalytic property were studied. The gallium oxide hydroxide (GaOOH) nanorods were formed in aqueous growth solution containing gallium nitrate and ammonium hydroxide at 95 °C of growth temperature. Through the calcination treatment at 500 and 1000 °C for 3 h, the GaOOH nanorods were converted into single crystalline α-Ga2O3 and β-Ga2O3 phases. From X-ray diffraction analysis, it could be confirmed that a high crystalline quality of β-Ga2O3 nanorods was achieved by calcinating at 1000 °C. The thermal behavior of the Ga2O3 nanorods was also investigated by differential thermal analysis, and their vibrational bands were identified by Fourier transform infrared spectroscopy. In order to examine the photocatalytic activity of samples, the photodegradation of Rhodamine B solution was observed under UV light irradiation. As a result, the α-Ga2O3 and β-Ga2O3 nanorods exhibited high photodegeneration efficiencies of 62 and 79 %, respectively, for 180 min of UV irradiation time.

  15. AKARI NEAR-INFRARED SPECTROSCOPIC SURVEY FOR CO{sub 2} IN 18 COMETS

    Energy Technology Data Exchange (ETDEWEB)

    Ootsubo, Takafumi [Astronomical Institute, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Kawakita, Hideyo; Hamada, Saki; Kobayashi, Hitomi; Yamaguchi, Mitsuru [Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555 (Japan); Usui, Fumihiko; Nakagawa, Takao; Ueno, Munetaka [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Ishiguro, Masateru [Department of Physics and Astronomy, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Sekiguchi, Tomohiko [Department of Teacher Training, Hokkaido University of Education, Asahikawa Campus, Hokumon 9, Asahikawa, Hokkaido 070-8621 (Japan); Watanabe, Jun-ichi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Sakon, Itsuki; Shimonishi, Takashi; Onaka, Takashi, E-mail: ootsubo@astr.tohoku.ac.jp [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-06-10

    We conducted a spectroscopic survey of cometary volatiles with the Infrared Camera on board the Japanese infrared satellite AKARI in the wavelength range from 2.5 to 5 {mu}m. In our survey, 18 comets, including both the Oort cloud comets and the Jupiter-family comets, were observed in the period from 2008 June to 2010 January, most of which were observed at least twice. The prominent emission bands in the observed spectra are the fundamental vibrational bands of water (H{sub 2}O) at 2.7 {mu}m and carbon dioxide (CO{sub 2}) at 4.3 {mu}m. The fundamental vibrational band of carbon monoxide (CO) around 4.7 {mu}m and the broad emission feature, probably related to carbon-hydrogen-bearing molecules, can also be recognized around the 3.3-3.5-{mu}m region in some of the comets. With respect to H{sub 2}O, gas production rate ratios of CO{sub 2} have been derived in 17 comets, except for the comet 29P/Schwassmann-Wachmann 1. Our data set provides the largest homogeneous database of CO{sub 2}/H{sub 2}O production rate ratios in comets obtained so far. The CO{sub 2}/H{sub 2}O production rate ratios are considered to reflect the composition of cometary ice when a comet is observed at a heliocentric distance within {approx}2.5 AU, since H{sub 2}O ice fully sublimates there. The CO{sub 2}/H{sub 2}O ratio in cometary ice spans from several to {approx}30% among the comets observed at <2.5 AU (13 out of the 17 comets). Alternatively, the ratio of CO/CO{sub 2} in the comets seems to be smaller than unity based on our observations, although we only obtain upper limits for CO in most of the comets.

  16. Anomalous vibrational modes in acetanilide: A F.D.S. incoherent inelastic neutron scattering study

    International Nuclear Information System (INIS)

    Barthes, M.; Moret, J.; Eckert, J.; Johnson, S.W.; Swanson, B.I.; Unkefer, C.J.

    1991-01-01

    The origin of the anomalous infra-red and Raman modes in acetanilide (C 6 H 5 NHCOCH 3 , or ACN), remains a subject of considerable controversy. One family of theoretical models involves Davydov-like solitons nonlinear vibrational coupling, or ''polaronic'' localized modes. An alternative interpretation of the extra-bands in terms of a Fermi resonance was proposed and recently the existence of slightly non-degenerate hydrogen atom configurations in the H-bond was suggested as an explanation for the anomalies. In this paper we report some new results on the anomalous vibrational modes in ACN that were obtained by inelastic incoherent neutron scattering (INS)

  17. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, Californial 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States)

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  18. Infrared spectrum of the simplest Criegee intermediate CH2OO at resolution 0.25 cm−1 and new assignments of bands 2ν9 and ν5

    International Nuclear Information System (INIS)

    Huang, Yu-Hsuan; Li, Jun; Guo, Hua; Lee, Yuan-Pern

    2015-01-01

    The simplest Criegee intermediate CH 2 OO is important in atmospheric chemistry. It has been detected in the reaction of CH 2 I + O 2 with various spectral methods, including infrared spectroscopy; infrared absorption of CH 2 OO was recorded at resolution 1.0 cm −1 in our laboratory. We have improved our system and recorded the infrared spectrum of CH 2 OO at resolution 0.25 cm −1 with rotational structures partially resolved. Observed vibrational wavenumbers and relative intensities are improved from those of the previous report and agree well with those predicted with quantum-mechanical calculations using the MULTIMODE method on an accurate potential energy surface. Observed rotational structures also agree with the simulated spectra according to theoretical predictions. In addition to derivation of critical vibrational and rotational parameters of the vibrationally excited states to confirm the assignments, the spectrum with improved resolution provides new assignments for bands 2ν 9 at 1234.2 cm −1 and ν 5 at 1213.3 cm −1 ; some hot bands and combination bands are also tentatively assigned

  19. MWCNT-MnFe2O4 nanocomposite for efficient hyperthermia applications

    Science.gov (United States)

    Seal, Papori; Hazarika, Monalisa; Paul, Nibedita; Borah, J. P.

    2018-04-01

    In this work we present synthesis of multi-walled carbon nanotube (MWCNT)-Manganese ferrite (MnFe2O4) nanocomposite and its probable application in hyperthermia. MnFe2O4 nanoparticles were synthesized by co-precipitation method. X ray diffractogram (XRD) confirms the formation of cubic phase of MnFe2O4 with preferred crystallographic orientation along (311) plane. High resolution electron microscope (HRTEM) image of the composites confirms the presence of MnFe2O4 spherical nanoparticles on the surface of CNT which are bound strongly to the surface. MWCNT-MnFe2O4 nanocomposite were prepared after acid functionalization of MWCNT. Vibrational features of the synthesized samples were confirmed through Fourier transformed infra-red spectroscopy (FTIR). FTIR spectra of acid functionalized MWCNT shows a peak positioned at ˜1620cm-1 which corresponds to C=O functional group of carboxylic acid. Prepared MnFe2O4 nanoparticles and MWCNT-MnFe2O4 nanocomposites were subjected to hyperthermia studies.

  20. Infrared Spectroscopy of Noh Suspended in Solid Parahydrogen: Part Two

    Science.gov (United States)

    Balabanoff, Morgan E.; Mutunga, Fredrick M.; Anderson, David T.

    2015-06-01

    The only report in the literature on the infrared spectroscopy of the parent oxynitrene NOH was performed using Ar matrix isolation spectroscopy at 10 K. In this previous study, they performed detailed isotopic studies to make definitive vibrational assignments. NOH is predicted by high-level calculations to be in a triplet ground electronic state, but the Ar matrix isolation spectra cannot be used to verify this triplet assignment. In our 2013 preliminary report, we showed that 193 nm in situ photolysis of NO trapped in solid parahydrogen can also be used to prepare the NOH molecule. Over the ensuing two years we have been studying the infrared spectroscopy of this species in more detail. The spectra reveal that NOH can undergo hindered rotation in solid parahydrogen such that we can observe both a-type and b-type rovibrational transitions for the O-H stretch vibrational mode, but only a-type for the mode assigned to the bend. In addition, both observed a-type infrared absorption features (bend and OH stretch) display fine structure; an intense central peak with weaker peaks spaced symmetrically to both lower and higher wavenumbers. The spacing between the peaks is nearly identical for both vibrational modes. We now believe this fine structure is due to spin-rotation interactions and we will present a detailed analysis of this fine structure. Currently, we are performing additional experiments aimed at making 15NOH to test these preliminary assignments. The most recent data and up-to-date analysis will be presented in this talk. G. Maier, H. P. Reisenauer, M. De Marco, Angew. Chem. Int. Ed. 38, 108-110 (1999). U. Bozkaya, J. M. Turney, Y. Yamaguchi, and H. F. Schaefer III, J. Chem. Phys. 136, 164303 (2012). David T. Anderson and Mahmut Ruzi, 68th Ohio State University International Symposium on Molecular Spectroscopy, talk TE01 (2013).

  1. Generation of broadly tunable picosecond mid-infrared laser and sensitive detection of a mid-infrared signal by parametric frequency up-conversion in MgO:LiNbO3 optical parametric amplifiers

    International Nuclear Information System (INIS)

    Zhang Qiu-Lin; Zhang Jing; Qiu Kang-Sheng; Zhang Dong-Xiang; Feng Bao-Hua; Zhang Jing-Yuan

    2012-01-01

    Picosecond optical parametric generation and amplification in the near-infrared region within 1.361–1.656 μm and the mid-infrared region within 2.976–4.875 μm is constructed on the basis of bulk MgO:LiNbO 3 crystals pumped at 1.064 μm. The maximum pulse energy reaches 1.3 mJ at 1.464 μm and 0.47 mJ at 3.894 μm, corresponding to a pump-to-idler photon conversion efficiency of 25%. By seeding the hard-to-measure mid-infrared radiation as the idler in the optical parametric amplification and measuring the amplified and frequency up-converted signal in the near-infrared or even visible region, one can measure very week mid-infrared radiation with ordinary detectors, which are insensitive to mid-infrared radiation, with a very high gain. A maximum gain factor of about 7 × 10 7 is achieved at the mid-infrared wavelength of 3.374 μm and the corresponding energy detection limit is as low as about 390 aJ per pulse. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  2. Oxygen vibrations in the series Bi2Sr2Ca{_{n-1}}Cu{n}O{_{4+2 n+y}}

    Science.gov (United States)

    Faulques, E.; Dupouy, P.; Lefrant, S.

    1991-06-01

    We present a discussion of the oxygen vibrations in the Bi{2}Sr{2}Ca{n-1}Cu{n}O{4+2 n+y} high T_c superconductors with the aim of interpreting Raman spectra in the case of the non-symmorphic Amaa structure. Group theory shows that the oxygen atoms belonging to the central CuO{2} plane generate a Raman activity for the n=1,3 phases. Consequently, we propose a novel assignment for the lines of weak intensity at 297, 316 and 333 cm^{-1}. It is shown that the two components of the 460 cm^{-1} band may be consistent with the Amma structure. Spectra recorded in crossed polarization exhibit weak lines which could be assigned to B {1g} modes expected for the three phases. Nous présentons une discussion sur les vibrations des atomes d'oxygène dans la série des supraconducteurs Bi{2}Sr{2}Ca{n-1}Cu{n}O{4+2 n+y} dans le but d'interpréter les spectres Raman. L'analyse des modes normaux de vibration de la structure Amaa pour les phases n=1 ou 3 montre que les atomes d'oxygène du plan CuO{2} contenant les centres d'inversion donnent lieu à une activité Raman. En conséquence, nous proposons une nouvelle attribution pour les raies de faible intensité à 297, 316 et 333 cm^{-1}. Nous montrons que le dédoublement de la bande à 460 cm^{-1} pourrait être dû à la structure Amaa. Les spectres enregistrés en polarization croisée montrent de faibles bandes qui peuvent être attribuées aux modes B {1g} attendus pour les trois phases.

  3. Infrared-emission spectroscopy of CO on Ni

    International Nuclear Information System (INIS)

    Chiang, S.; Tobin, R.G.; Richards, P.L.

    1982-09-01

    We report the first observation of thermally emitted infrared radiation from vibrational modes of molecules adsorbed on clean, single-crystal metal surfaces. The observation of emission from CO adsorbed on Ni demonstrates the surface sensitivity of a novel apparatus for infrared vibrational spectroscopy, with a resolution of 1 to 15 cm -1 over the frequency range from 330 to 3000 cm -1 . A liquid-helium-cooled grating spectrometer measures the thermal radiation from a room-temperature, single-crystal sample, which is mounted in an ultrahigh-vacuum system. Measurements of frequencies and linewidths of CO on a single-crystal Ni sample, as a function of coverage, are discussed

  4. Vibrations and reorientations of H2O molecules in [Sr(H2O)6]Cl2 studied by Raman light scattering, incoherent inelastic neutron scattering and proton magnetic resonance.

    Science.gov (United States)

    Hetmańczyk, Joanna; Hetmańczyk, Lukasz; Migdał-Mikuli, Anna; Mikuli, Edward; Florek-Wojciechowska, Małgorzata; Harańczyk, Hubert

    2014-04-24

    Vibrational-reorientational dynamics of H2O ligands in the high- and low-temperature phases of [Sr(H2O)6]Cl2 was investigated by Raman Spectroscopy (RS), proton magnetic resonance ((1)H NMR), quasielastic and inelastic incoherent Neutron Scattering (QENS and IINS) methods. Neutron powder diffraction (NPD) measurements, performed simultaneously with QENS, did not indicated a change of the crystal structure at the phase transition (detected earlier by differential scanning calorimetry (DSC) at TC(h)=252.9 K (on heating) and at TC(c)=226.5K (on cooling)). Temperature dependence of the full-width at half-maximum (FWHM) of νs(OH) band at ca. 3248 cm(-1) in the RS spectra indicated small discontinuity in the vicinity of phase transition temperature, what suggests that the observed phase transition may be associated with a change of the H2O reorientational dynamics. However, an activation energy value (Ea) for the reorientational motions of H2O ligands in both phases is nearly the same and equals to ca. 8 kJ mol(-1). The QENS peaks, registered for low temperature phase do not show any broadening. However, in the high temperature phase a small QENS broadening is clearly visible, what implies that the reorientational dynamics of H2O ligands undergoes a change at the phase transition. (1)H NMR line is a superposition of two powder Pake doublets, differentiated by a dipolar broadening, suggesting that there are two types of the water molecules in the crystal lattice of [Sr(H2O)6]Cl2 which are structurally not equivalent average distances between the interacting protons are: 1.39 and 1.18 Å. However, their reorientational dynamics is very similar (τc=3.3⋅10(-10) s). Activation energies for the reorientational motion of these both kinds of H2O ligands have nearly the same values in an experimental error limit: and equal to ca. 40 kJ mole(-1). The phase transition is not seen in the (1)H NMR spectra temperature dependencies. Infrared (IR), Raman (RS) and inelastic

  5. Growth of ZnO nanocrystals in silica by rf co-sputter deposition and post-annealing

    International Nuclear Information System (INIS)

    Siva Kumar, V.V.; Singh, F.; Kumar, Amit; Avasthi, D.K.

    2006-01-01

    Thin films with ZnO nanocrystals in silica were synthesized by rf reactive magnetron co-sputter deposition and post-annealing. The films were deposited from a ZnO/Si composite target in an rf oxygen plasma. The deposited films were annealed in air/vacuum at high temperatures to grow ZnO nanocrystals. The deposited and annealed films were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), uv-vis spectroscopy (UV-VIS) and photoluminescence (PL) measurements. FT-IR results of the films show the vibrational features of Si-O-Si and Zn-O bonds. UV-VIS spectra of the deposited film shows the band edge of ZnO. The XRD results of the films annealed at 750 deg. C and 1000 deg. C indicate the growth of ZnO nanocrystals with average crystallite sizes between 7 nm and 26 nm. PL measurements of the deposited film show a broad visible luminescence peak which can be due to ZnO. These results suggest the growth of ZnO nanocrystals in silica matrix

  6. Ion-molecule interactions of biological importance. A vibrational spectroscopic study of magnesium complexes with hydroxylated quinones; Interactions ions-molecules d'interet biologique. Etude par spectrometrie de vibrations de la complexation du magnesium avec des molecules quinoniques hydroxylees

    Energy Technology Data Exchange (ETDEWEB)

    Kirszenbaum, Marek

    1976-06-14

    Luteoskyrin and rugulosin are two naturally occurring yellow pigments with hydroxylated bis-anthraquinonic structures. They cause serious liver disorders in man due to the formation of complexes of the type pigment-Mg{sup 2+}-DNA. In order to elucidate the structure of these complexes we have studied the vibrational spectra of some model systems, namely 1-hydroxy- and 1,4-dihydroxyanthraquinone, their magnesium chelate complexes, and a series of simpler complexes as the acetylacetonates of some divalent metals. Complete vibrational assignment are proposed for anthraquinone-9,10, the two hydroxylated and deureroxylated derivatives and their magnesium complexes. The substitution of {sup 26}Mg in place of {sup 24}Mg in these complexes enabled us to assign the Mg-O vibrations; their number corresponds to a hexa-coordinated metal in the acetylacetonate case and to a tetra-coordinated structure in the anthraquinone-olates complexes. The position of the ν C=0 and ν C-0 vibrations bands in the complexes shows that the bonds in the chelated ring of Mg(1-O-AQ){sub 2} retains their single and double bond characteristic whereas in the CMg(1,4-O{sub 2},-AQ){sub n} a resonating structure appears in the ring. The study of the IR and R spectra of the complexes enabled a tetrahedral structure to be proposed for the oxygens around the magnesium. Finally it was noted that the Mg-O bonds possessed a high degree of covalent character. (author) [French] La luteoskyrine et la rugulosine, deux pigments jaunes de structure de bis-anthraquinones hydroxylees, provoquent des troubles hepatiques graves par la formation des complexes pigment-Mg{sup 2+}-ADN. Dans le but d'eclaircir la structure de ces complexes nous avons etudie, par spectrometrie de vibrations, les systemes-modeles suivants: la 1-hydroxy- et la 1,4-dihydroxyanthraquinones, leurs complexes magnesies et une serie des complexes plus simples, tels que les acetylacetonates. de metaux divalents. Nous avons propose une attribution

  7. Fluorescent vibration-rotation excitation of cometary C2

    International Nuclear Information System (INIS)

    Gredel, R.; Van Dishoeck, E.F.; Black, J.H.

    1989-01-01

    The statistical equilibrium equations that determine the population densities of the energy levels in cometary C2 molecules due to fluorescent excitation are examined in detail. The adopted model and molecular parameters are discussed, and a theoretical estimate is made of the two intercombination transition moments. From the theoretical population densities in the various rotational levels, flux ratios and synthetic emission profiles are calculated as functions of the a 3Pi(u) - X 1Sigma(g)+ and the c 3Sigma(u)+ - X 3Sigma(g)+ intercombination transition moments. The influence of each of these two transitions separately on the vibrational and rotational excitation temperatures is investigated. The observed emission spectra of the (0,0) Swan band in Comet Halley are presented and compared to the synthetic profiles. 70 references

  8. Fluorescent vibration-rotation excitation of cometary C2

    Science.gov (United States)

    Gredel, Roland; Van Dishoeck, Ewine F.; Black, John H.

    1989-01-01

    The statistical equilibrium equations that determine the population densities of the energy levels in cometary C2 molecules due to fluorescent excitation are examined in detail. The adopted model and molecular parameters are discussed, and a theoretical estimate is made of the two intercombination transition moments. From the theoretical population densities in the various rotational levels, flux ratios and synthetic emission profiles are calculated as functions of the a 3Pi(u) - X 1Sigma(g)+ and the c 3Sigma(u)+ - X 3Sigma(g)+ intercombination transition moments. The influence of each of these two transitions separately on the vibrational and rotational excitation temperatures is investigated. The observed emission spectra of the (0,0) Swan band in Comet Halley are presented and compared to the synthetic profiles.

  9. Spectroscopic (FT-IR, FT-Raman, 1H- and 13C-NMR, Theoretical and Microbiological Study of trans o-Coumaric Acid and Alkali Metal o-Coumarates

    Directory of Open Access Journals (Sweden)

    Małgorzata Kowczyk-Sadowy

    2015-02-01

    Full Text Available This work is a continuation of research on a correlation between the molecular structure and electronic charge distribution of phenolic compounds and their biological activity. The influence of lithium, sodium, potassium, rubidium and cesium cations on the electronic system of trans o-coumaric (2-hydroxy-cinnamic acid was studied. We investigated the relationship between the molecular structure of the tested compounds and their antimicrobial activity. Complementary molecular spectroscopic techniques such as infrared (FT-IR, Raman (FT-Raman, ultraviolet-visible (UV-VIS and nuclear magnetic resonance (1H- and 13C-NMR were applied. Structures of the molecules were optimized and their structural characteristics were calculated by the density functional theory (DFT using the B3LYP method with 6-311++G** as a basis set. Geometric and magnetic aromaticity indices, atomic charges, dipole moments and energies were also calculated. Theoretical parameters were compared to the experimental characteristics of investigated compounds. Correlations between certain vibrational bands and some metal parameters, such as electronegativity, ionization energy, atomic and ionic radius, were found. The microbial activity of studied compounds was tested against Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, Proteus vulgaris and Candida albicans.

  10. Synthesis, crystal structure, vibrational spectra and theoretical calculations of quantum chemistry of a potential antimicrobial Meldrum's acid derivative

    Science.gov (United States)

    Campelo, M. J. M.; Freire, P. T. C.; Mendes Filho, J.; de Toledo, T. A.; Teixeira, A. M. R.; da Silva, L. E.; Bento, R. R. F.; Faria, J. L. B.; Pizani, P. S.; Gusmão, G. O. M.; Coutinho, H. D. M.; Oliveira, M. T. A.

    2017-10-01

    A new derivative of Meldrum's acid 5-((5-chloropyridin-2-ylamino)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (CYMM) of molecular formula C12H11ClN2O4 was synthesized and structurally characterized using single crystal X-ray diffraction technique. The vibrational properties of the crystal were studied by Fourier Transform infrared (FT-IR), Fourier Transform Raman (FT-Raman) techniques and theoretical calculations of quantum chemistry using Density functional theory (DFT) and Density functional perturbation theory (DFPT). A comparison with experimental spectra allowed the assignment of all the normal modes. The descriptions of the normal modes were carried by means of potential energy distribution (PED). Additionally, analysis of the antimicrobial activity and antibiotic resistance modulatory activity was carried out to evaluate the antibacterial potential of the CYMM.

  11. Sol-gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study

    International Nuclear Information System (INIS)

    Pradeep, A.; Priyadharsini, P.; Chandrasekaran, G.

    2008-01-01

    Nanoparticles of MgFe 2 O 4 are synthesized using sol-gel autocombustion method. Structural studies are carried out using X-ray diffraction (XRD). The XRD pattern of MgFe 2 O 4 provides information about single-phase formation of spinel structure with cubic symmetry. The grain size and lattice constant are obtained using XRD data. The cation distribution is also proposed theoretically. The change in site preference of cations in nano-MgFe 2 O 4 is compared with its bulk counterpart. The structural morphology of the nanoparticles is studied using Scanning Electron Microscopy (SEM). Formation of spinel structure is conformed using Fourier transform infrared spectroscopy (FTIR), which also lends support for the cation distribution proposed using XRD data. The effect of nanoregime on parameters such as bond length, vibration frequency and force constant are discussed with the help of FTIR data. The M-H loop of MgFe 2 O 4 has been traced using the Vibrating Sample Magnetometer (VSM) and magnetic parameters such as saturation magnetization (M S ), coercivity (H C ) and retentivity (M R ) are obtained from VSM data

  12. Vibrational spectra of ordered perovskites

    NARCIS (Netherlands)

    Corsmit, A.F.; Hoefdraad, H.E.; Blasse, G.

    1972-01-01

    The vibrational spectra of the molecular M6+O6 (M = Mo, Te, W) group in ordered perovskites of the type Ba2M2+M6+O6 are reported. These groups have symmetry Oh, whereas their site symmetry is also Oh. An assignment of the internal vibrations is presented.

  13. Vibrational properties of amorphous semiconductors

    International Nuclear Information System (INIS)

    Schulz, P.A.B.

    1985-01-01

    A model for the lattice dynamics of a-Si 1-X N X is introduced. This model is based on a Born hamiltonian, solved in the Bethe lattice approximation. Starting from the local density of vibrational states, we analize the infrared absoption spectra of this material. (author) [pt

  14. Infrared laser induced organic reactions. 2. Laser vs. thermal inducment of unimolecular and hydrogen bromide catalyzed bimolecular dehydration of alcohols

    International Nuclear Information System (INIS)

    Danen, W.C.

    1979-01-01

    It has been demonstrated that a mixture of reactant molecules can be induced by pulsed infrared laser radiation to react via a route which is totally different from the pathway resulting from heating the mixture at 300 0 C. The high-energy unimolecular elimination of H 2 O from ethanol in the presence of 2-propanol and HBr can be selectively induced with a pulsed CO 2 laser in preference to either a lower energy bimolecular HBr-catalyzed dehydration or the more facile dehydration of 2-propanol. Heating the mixture resulted in the almost exclusive reaction of 2-propanol to produce propylene. It was demonstrated that the bimolecular ethanol + HBr reaction cannot be effectively induced by the infrared laser radiation as evidenced by the detrimental effect on the yield of ethylene as the HBr pressure was increased. The selective, nonthermal inducement of H 2 O elimination from vibrationally excited ethanol in the presence of 2-propanol required relatively low reactant pressures. At higher pressures intermolecular V--V energy transfer allowed the thermally more facile dehydration from 2-propanol to become the predominant reaction channel

  15. Interaction between poly(vinyl pyrrolidone) PVP and fullerene C60 at the interface in PVP-C60 nanofluids–A spectroscopic study

    Science.gov (United States)

    Behera, M.; Ram, S.

    2018-03-01

    Fourier transform infrared and Raman bands shows a discernible enhancement in band intensity of C–H stretching, C=O stretching, C–N stretching, C–H2 bending, and C–H2 in-plane bending in PVP molecules in the presence of C60 molecules. Amplification in intensity is ascribed to microscopic interactions results when a donation of nonbonding electron (n) occurs from a “>N–C=O” entity of PVP into a lowest unoccupied molecular orbital of the C60 molecule in PVP-C60 charge transfer (CT) complex. The C=O stretching band intensity (integrated) Vs C60 content plot exhibits a peak near a critical 13.9 μM C60 value owing to percolation effect. Light emission spectra show that even a small addition of 4.63 μM C60 able to suppress the band intensity by ~23% as a result of an energy loss. The integrated band intensity also decreases through a peak near 13.9 μM when plotted against the C60-content. In correlation to the vibration spectra, the maximum effect observed both in light emission and excitation spectra suggests a percolation effect in the CT complex. Exhibition of percolation threshold in C60-PVP donor-acceptor complex will be helpful in optimizing the photovoltaic properties vital for solar cell applications.

  16. Synthesis, crystal structure, and vibrational spectroscopic and UV-visible studies of Cs{sub 2}MnP{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Kaoua, Saida; Krimi, Saida [LPCMI, Faculte des Sciences Aien Chok, UH2C, Casablanca (Morocco); Pechev, Stanislav; Gravereau, Pierre; Chaminade, Jean-Pierre [CNRS, Universite de Bordeaux, ICMCB, 87, Avenue du Dr. A. Schweitzer, Pessac (France); Couzi, Michel [CNRS, Universite de Bordeaux, ISM, UMR 5255, F-33400 Talence (France); El Jazouli, Abdelaziz, E-mail: eljazouli_abdelaziz@yahoo.fr [LCMS, URAC 17, Faculte des Sciences Ben M' Sik, UH2MC, Casablanca (Morocco)

    2013-02-15

    A new member of the A{sub 2}MP{sub 2}O{sub 7} diphosphate family, Cs{sub 2}MnP{sub 2}O{sub 7}, has been synthesized and structurally characterized. The crystal structure was determined by single crystal X-Ray diffraction. Cs{sub 2}MnP{sub 2}O{sub 7} crystallizes in the orthorhombic system, space group Pnma ( Music-Sharp-Sign 62), with the unit cell parameters a=16.3398(3), b=5.3872(1), c=9.8872(2) A, Z=4 and V=870.33(3) A{sup 3}. The structure parameters were refined to a final R{sub 1}/wR{sub 2}=0.0194/0.0441 for 1650 observed reflections. The 2D framework of Cs{sub 2}MnP{sub 2}O{sub 7} structure consists of P{sub 2}O{sub 7} and MnO{sub 5} units. The corner-shared MnO{sub 5} and P{sub 2}O{sub 7} units are alternately arranged along the b axis to form [(MnO)P{sub 2}O{sub 7}]{sub {infinity}} chains. These chains are interconnected by an oxygen atom to form sheets parallel to the (b, c) plane. The cesium atoms are located between the sheets in 9- and 10-fold coordinated sites. The infrared and Raman vibrational spectra have been investigated. A factor group analysis leads to the determination of internal modes of (P{sub 2}O{sub 7}) groups. UV-visible spectrum consists of weak bands, between 340 and 700 nm, assigned to the forbidden d-d transitions of Mn{sup 2+} ion, and of a strong band around 250 nm, attributed to the O--Mn charge transfer. - Graphical abstract: Structure of Cs{sub 2}MnP{sub 2}O{sub 7}: The 2D structure of Cs{sub 2}MnP{sub 2}O{sub 7} is built from P{sub 2}O{sub 7} diphosphate groups and MnO{sub 5} square pyramids which share corners and form [(MnO)P{sub 2}O{sub 7}]{sub {infinity}} chains along b axis. These chains are interconnected by an oxygen atom to form wavy (MnP{sub 2}O{sub 7}){sup 2-} sheets parallel to the (b, c) plane. The cesium ions are located between these sheets in the inter-layers space, in zigzag positions. Highlights: Black-Right-Pointing-Pointer A new diphosphate, Cs{sub 2}MnP{sub 2}O{sub 7}, has been synthesized and structurally

  17. Thermal properties of black phosphorene and doped phosphorene (C, N & O): A DFT study

    Science.gov (United States)

    Devi, Anjna; Singh, Amarjeet

    2018-04-01

    In this work, we present the results from a DFT based computational study of pristine phosphorene and doped (C, N & O) phosphorene. We systematically investigated the lattice thermal properties of black phosphorene and the effect of doping on its thermal properties. We first determined the vibrational properties of pristine and doped phosphorene and from these results we calculated their thermal properties. We doped the phosphorene with C, N and O and observed that the structural stability of doped phosphorene decreases, while the thermal stability is increased as compared to pristine phosphorene. The presence of finite temperature effects in the doped system can contribute to acceleration of progress in future nano-scale technology.

  18. Two-phonon absorption spectra and lattice vibration anisotropy in HfS2

    International Nuclear Information System (INIS)

    Riede, V.; Neumann, H.; Sobotta, H.

    1983-01-01

    The infrared absorption spectra for E-vector perpendicular to c-vector in the two-phonon combination mode range is measured and analysed in order to get additional information about the A/sub 2u/ mode frequencies in HfS 2 . The lattice vibrational properties have been analysed in terms of the polarizable ion model. This model accounts for the long-range Coulomb terms of the charge and the static dipole induced by the structural anisotropy at each anion site

  19. Thermal expansion of mullite-type Bi{sub 2}Al{sub 4}O{sub 9}: A study by X-ray diffraction, vibrational spectroscopy and density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Mangir Murshed, M., E-mail: murshed@uni-bremen.de [Chemische Kristallographie fester Stoffe, Institut für Anorganische Chemie, Universität Bremens, Leobener Straße, D-28359 Bremen (Germany); Mendive, Cecilia B.; Curti, Mariano [Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Dean Funes 3350, B7600AYL Mar del Plata (Argentina); Šehović, Malik [Chemische Kristallographie fester Stoffe, Institut für Anorganische Chemie, Universität Bremens, Leobener Straße, D-28359 Bremen (Germany); Friedrich, Alexandra [Institut für Geowissenschaften, Abteilung Kristallographie, Goethe-Universität Frankfurt, Altenhöferallee 1, D-60438 Frankfurt am Main (Germany); Fischer, Michael [Kristallographie, FB Geowissenschaften, Universität Bremen, Klagenfurter Straße, D-28359 Bremen (Germany); Gesing, Thorsten M. [Chemische Kristallographie fester Stoffe, Institut für Anorganische Chemie, Universität Bremens, Leobener Straße, D-28359 Bremen (Germany)

    2015-09-15

    Polycrystalline Bi{sub 2}Al{sub 4}O{sub 9} powder samples were synthesized using the glycerine method. Single crystals were produced from the powder product in a Bi{sub 2}O{sub 3} melt. The lattice thermal expansion of the mullite-type compound was studied using X-ray diffraction, Raman spectroscopy and density functional theory (DFT). The metric parameters were modeled using Grüneisen approximation for the zero pressure equation of state, where the temperature-dependent vibrational internal energy was calculated from the Debye characteristic frequency. Both the first-order and second-order Grüneisen approximations were applied for modeling the volumetric expansion, and the second-order approach provided physically meaningful axial parameters. The phonon density of states as well as phonon dispersion guided to set the characteristic frequency for simulation. The experimental infrared and Raman phonon bands were compared with those calculate from the DFT calculations. Selective Raman modes were analyzed for the thermal anharmonic behaviors using simplified Klemens model. The respective mode Grüneisen parameters were calculated from the pressure-dependent Raman spectra. - Graphical abstract: Crystal structure of mullite-type Bi{sub 2}Al{sub 4}O{sub 9} showing the edge-sharing AlO{sub 6} octahedra running parallel to the c-axis. - Highlights: • Thermal expansion of Bi{sub 2}Al{sub 4}O{sub 9} was studied using XRD, FTIR, Raman and DFT. • Metric parameters were modeled using Grüneisen approximation. • Phonon DOS and phonon dispersion helped to set the Debye frequency. • Mode Grüneisen parameters were calculated from the pressure-dependent Raman spectra. • Anharmonicity was analyzed for some selective Raman modes.

  20. Global Multi-isotopologue fit of measured rotation and vibration-rotation line positions of CO in X1Σ+ state and new set of mass-independent Dunham coefficients

    International Nuclear Information System (INIS)

    Velichko, T.I.; Mikhailenko, S.N.; Tashkun, S.A.

    2012-01-01

    A set of mass-independent U mj and Δ mj parameters globally describing vibration-rotation energy levels of the CO molecule in the X 1 Σ + ground electronic state was fitted to more than 19,000 transitions of 12 C 16 O, 13 C 16 O, 14 C 16 O, 12 C 17 O, 13 C 17 O, 12 C 18 O, and 13 C 18 O isotopologues collected from the literature. The maximal values of the vibrational V and the rotational J quantum numbers included in the fit was 41 and 128, respectively. The weighted standard deviation of the fit is .66. Fitted parameters were used for calculation of Dunham coefficients Y mj for nine isotopologues 12 C 16 O, 13 C 16 O, 14 C 16 O, 12 C 17 O, 13 C 17 O, 14 C 17 O, 12 C 18 O, 13 C 18 O, and 14 C 18 O. Calculated transition frequencies based on the fitted parameters were compared with previously reported. A critical analysis of the CO HITRAN and HITEMP data is also presented.

  1. Critical evaluation of measured rotational-vibrational transitions of four sulphur isotopologues of S16O2

    Science.gov (United States)

    Tóbiás, Roland; Furtenbacher, Tibor; Császár, Attila G.; Naumenko, Olga V.; Tennyson, Jonathan; Flaud, Jean-Marie; Kumar, Praveen; Poirier, Bill

    2018-03-01

    A critical evaluation and validation of the complete set of previously published experimental rotational-vibrational line positions is reported for the four stable sulphur isotopologues of the semirigid SO2 molecule - i.e., 32S16O2, 33S16O2, 34S16O2, and 36S16O2. The experimentally measured, assigned, and labeled transitions are collated from 43 sources. The 32S16O2, 33S16O2, 34S16O2, and 36S16O2 datasets contain 40,269, 15,628, 31,080, and 31 lines, respectively. Of the datasets collated, only the extremely limited 36S16O2 dataset is not subjected to a detailed analysis. As part of a detailed analysis of the experimental spectroscopic networks corresponding to the ground electronic states of the 32S16O2, 33S16O2, and 34S16O2 isotopologues, the MARVEL (Measured Active Rotational-Vibrational Energy Levels) procedure is used to determine the rovibrational energy levels. The rovibrational levels and their vibrational parent and asymmetric-top quantum numbers are compared to ones obtained from accurate variational nuclear-motion computations as well as to results of carefully designed effective Hamiltonian models. The rovibrational energy levels of the three isotopologues having the same labels are also compared against each other to ensure self-consistency. This careful, multifaceted analysis gives rise to 15,130, 5852, and 10,893 validated rovibrational energy levels, with a typical accuracy of a few 0.0001 cm-1 , for 32S16O2, 33S16O2, and 34S16O2, respectively. The extensive list of validated experimental lines and empirical (MARVEL) energy levels of the S16O2 isotopologues studied are deposited in the Supplementary Material of this article, as well as in the distributed information system ReSpecTh (http://respecth.hu).

  2. Characterization of molecular organization in pentacene thin films on SiO{sub 2} surface using infrared spectroscopy, spectroscopic ellipsometry, and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Frątczak, E.Z., E-mail: ewelinazofia@gmail.com [Faculty of Physics and Applied Informatics, University of Łódź, 90-236 Łódź, Pomorska 149/153 (Poland); Uznański, P., E-mail: puznansk@cbmm.lodz.pl [Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Sienkiewicza 112 (Poland); Moneta, M.E. [Faculty of Physics and Applied Informatics, University of Łódź, 90-236 Łódź, Pomorska 149/153 (Poland)

    2015-07-29

    Highlights: • Pentacene thin films of different thickness grown onto SiO{sub 2} substrates were studied. • Polarized IR GATR spectra were recorded and conclusions on pentacene orientation were deduced. • Optical anisotropic properties and morphology of pentacene films were analyzed. • Dielectric properties vary to some extent with the film thickness. - Abstract: Thin films of pentacene of 32 and 100 nm thickness obtained by organic molecular beam deposition (OMBD) in high vacuum conditions onto silicon/native silica (Si/SiO{sub 2}) and fused silica substrates were examined. Alignment, anisotropic optical properties and morphology were studied in ambient conditions using infrared (IR) transmission and polarized grazing angle attenuated total reflection (GATR) techniques, variable angle spectroscopic ellipsometry (VASE), UV–VIS absorption, and atomic force microscopy (AFM). For the first time dichroic GATR IR spectra were recorded for such thin films and conclusions on pentacene orientation were deduced on the basis of dichroic ratio of the IR-active vibrations. The symmetry assignment of the vibrational transitions is also discussed. The films exhibit continuous globular texture with uniaxial alignment of pentacene molecules and strongly anisotropic optical properties evidenced in the ellipsometric measurements. The results revealed that there are some quantitative differences in the orientation and in the dielectric properties between the two pentacene films of different thickness.

  3. Vibrational spectra of cholorophylls a and b labeled with 26Mg and 15N

    International Nuclear Information System (INIS)

    Lutz, M.; Kleo, J.; Gilet, R.; Henry, M.; Plus, R.; Leicknam, J.P.

    1975-01-01

    Chlorophyll molecules having their central natural magnesium replaced by 26 Mg and their natural nitrogens by 15 N were obtained by biosynthesis and examined by infrared and resonance Raman spectrometry. These observations provide unequivocal assignments of the molecular vibrational frequencies which involve the magnesium and nitrogen atoms. In particular, in both infrared and resonance Raman spectra, the absence of displacements in bands of frequency higher than 1550 cm -1 indicated the insignificant contributions of C=N stretching modes, which have maximum activity in the 1050 to 1180 cm -1 region. These results also indicate a configuration of chlorophyll in which the magnesium atom is not at a center of symmetry

  4. On the O2(a1Δ) quenching by vibrationally excited ozone

    Science.gov (United States)

    Azyazov, V. N.; Mikheyev, P. A.; Heaven, M. C.

    2010-09-01

    The development of a discharge oxygen iodine laser (DOIL) requires efficient production of singlet delta oxygen (O2(a)) in electric discharge. It is important to understand the mechanisms by which O2(a) is quenched in these devices. To gain understanding of this mechanisms quenching of O2(a) in O(3P)/O2/O3/CO2/He/Ar mixtures has been investigated. Oxygen atoms and singlet oxygen molecules were produced by the 248 nm laser photolysis of ozone. The kinetics of O2(a) quenching were followed by observing the 1268 nm fluorescence of the O2 a --> X transition. Fast quenching of O2(a) in the presence of oxygen atoms and molecules was observed. The mechanism of the process has been examined using kinetic models, which indicate that quenching by vibrationally excited ozone is the dominant reaction.

  5. The importance of spectroscopy for infrared multiphoton excitation

    International Nuclear Information System (INIS)

    Fuss, W.; Kompa, K.L.

    1980-07-01

    It is substantiated by examples that the infrared spectra of molecules in high vibrational states are similar in width to those of the ground states. Therefore in order to explain collisionless infrared multiphoton excitation, the existence of resonance has to be checked, not only for the first three steps, but for all of them. That is, their (low resolution) spectra should be studied. This review summarizes the spectroscopic mechanisms contributing to multiphoton excitation, which have been suggested to date, including several kinds of rotational compensation and of vibrational level splitting, which cooperate to overcome the anharmonic shift. The spectral quasicontinuum, generated by intensity borrowing, must neither be very broad nor dense, and collisionless vibrational relaxation is only important at very high energies. Knowledge of relatively few spectroscopic detailes helps to understand many details and many differences in multiphoton excitatio. (orig.)

  6. Nuclear resonance vibrational spectroscopic studies of iron-containing biomolecules

    International Nuclear Information System (INIS)

    Ohta, Takehiro; Seto, Makoto

    2014-01-01

    In this review, we report recent nuclear resonance vibrational spectroscopic (NRVS) studies of iron-containing biomolecules and their model complexes. The NRVS is synchrotron-based element-specific vibrational spectroscopic methods. Unlike Raman and infrared spectroscopy, the NRVS can investigate all iron motions without selection rules, which provide atomic level insights into the structure/reactivity correlation of biologically relevant iron complexes. (author)

  7. Infrared spectra of jennite and tobermorite from first-principles

    Energy Technology Data Exchange (ETDEWEB)

    Vidmer, Alexandre, E-mail: alexandre@vidmer.com; Sclauzero, Gabriele; Pasquarello, Alfredo

    2014-06-01

    The infrared absorption spectra of jennite, tobermorite 14 Å, anomalous tobermorite 11 Å, and normal tobermorite 11 Å are simulated within a density-functional-theory scheme. The atomic coordinates and the cell parameters are optimized resulting in structures which agree with previous studies. The vibrational frequencies and modes are obtained for each mineral. The vibrational density of states is analyzed through extensive projections on silicon tetrahedra, oxygen atoms, OH groups, and water molecules. The coupling with the electric field is achieved through the use of density functional perturbation theory, which yields Born effective charges and dielectric constants. The simulated absorption spectra reproduce well the experimental spectra, thereby allowing for a detailed interpretation of the spectral features in terms of the underlying vibrational modes. In the far-infrared part of the absorption spectra, the interplay between Ca and Si related vibrations leads to differences which are sensitive to the calcium/silicon ratio of the mineral.

  8. Electrostatics determine vibrational frequency shifts in hydrogen bonded complexes.

    Science.gov (United States)

    Dey, Arghya; Mondal, Sohidul Islam; Sen, Saumik; Ghosh, Debashree; Patwari, G Naresh

    2014-12-14

    The red-shifts in the acetylenic C-H stretching vibration of C-H∙∙∙X (X = O, N) hydrogen-bonded complexes increase with an increase in the basicity of the Lewis base. Analysis of various components of stabilization energy suggests that the observed red-shifts are correlated with the electrostatic component of the stabilization energy, while the dispersion modulates the stabilization energy.

  9. Multipole induced splitting of metal-cage vibrations in crystalline endohedral D2d-M2@C84 dimetallofullerenes.

    Science.gov (United States)

    Krause, M; Popov, V N; Inakuma, M; Tagmatarchis, N; Shinohara, H; Georgi, P; Dunsch, L; Kuzmany, H

    2004-01-22

    Metal-carbon cage vibrations of crystalline endohedral D2d-M2@C84 (M=Sc,Y,Dy) dimetallofullerenes were analyzed by temperature dependent Raman scattering and a dynamical force field model. Three groups of metal-carbon cage modes were found at energies of 35-200 cm(-1) and assigned to metal-cage stretching and deformation vibrations. They exhibit a textbook example for the splitting of molecular vibrations in a crystal field. Induced dipole-dipole and quadrupole-quadrupole interactions account quantitatively for the observed mode splitting. Based on the metal-cage vibrational structure it is demonstrated that D2d-Y2@C84 dimetallofullerene retains a monoclinic crystal structure up to 550 K and undergoes a transition from a disordered to an ordered orientational state at a temperature of approximately 150 K.

  10. C-plane Reconstructions from Sheaf Acquisition for Ultrasound Electrode Vibration Elastography.

    Science.gov (United States)

    Ingle, Atul; Varghese, Tomy

    2014-09-03

    This paper presents a novel algorithm for reconstructing and visualizing ablated volumes using radiofrequency ultrasound echo data acquired with the electrode vibration elastography approach. The ablation needle is vibrated using an actuator to generate shear wave pulses that are tracked in the ultrasound image plane at different locations away from the needle. This data is used for reconstructing shear wave velocity maps for each imaging plane. A C-plane reconstruction algorithm is proposed which estimates shear wave velocity values on a collection of transverse planes that are perpendicular to the imaging planes. The algorithm utilizes shear wave velocity maps from different imaging planes that share a common axis of intersection. These C-planes can be used to generate a 3D visualization of the ablated region. Experimental validation of this approach was carried out using data from a tissue mimicking phantom. The shear wave velocity estimates were within 20% of those obtained from a clinical scanner, and a contrast of over 4 dB was obtained between the stiff and soft regions of the phantom.

  11. Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsushi; Oku, Takeo [Department of Materials Science, The University of Shiga Prefecture 2500 Hassaka, Hikone, Shiga, 522-8533 (Japan)

    2016-02-01

    Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of {sup 13}C, {sup 14}N and {sup 1}H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in {sup 13}C, {sup 14}N and {sup 1}H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.

  12. Sol-gel synthesis and characterization of single-phase Ni ferrite nanoparticles dispersed in SiO2 matrix

    International Nuclear Information System (INIS)

    Nadeem, K.; Traussnig, T.; Letofsky-Papst, I.; Krenn, H.; Brossmann, U.; Wuerschum, R.

    2010-01-01

    Nanoparticles of NiFe 2 O 4 dispersed in SiO 2 (25 wt%) matrix were synthesized by sol-gel method using tetraethyl orthosilicate (TEOS), as a precursor for SiO 2 . The sol-gel method for nanocomposites normally provides multi-phase nanoparticles. We investigated by a synopsis of different analysis methods, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and SQUID-magnetometry, how the various chemical phases are transformed to a single-phase spinel structure during the various stages of annealing from 300 to 900 o C. We have developed a full phase diagram of chemical phases as a function of annealing temperature. The average particle size lies in the range 16-27 nm. The chemical phases formed below 900 o C are NiFe, NiO, γ-Fe 2 O 3 , α-Fe 2 O 3 , and NiFe 2 O 4 , respectively. The role of the TEOS prepared SiO 2 matrix is to restrict the particle size in a small range in order to rule out particle size effects. In the mid-infrared, a shift of the vibrational Fe-O bond is observed from 568 to 586 cm -1 for annealing between 500 and 700 o C which indicates an increasing NiFe 2 O 4 phase formation. A systematic study of coercivity field (ranging from 32 to 200 Oe) and saturation magnetic moment (ranging from 12.2 to 32.1 emu/g) for differently annealed samples supports our findings about the evolution of single-phase NiFe 2 O 4 at 900 o C. The opposite trend of saturation magnetic moment and coercivity with respect to annealing temperature clearly separates the different phases of metallic, antiferromagnetic, and finally single-phase spinel NiFe 2 O 4 .

  13. Rotation-vibration interactions in the spectra of polycyclic aromatic hydrocarbons: Quinoline as a test-case species

    International Nuclear Information System (INIS)

    Pirali, O.; Gruet, S.; Kisiel, Z.; Goubet, M.; Martin-Drumel, M. A.; Cuisset, A.; Hindle, F.; Mouret, G.

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are highly relevant for astrophysics as possible, though controversial, carriers of the unidentified infrared emission bands that are observed in a number of different astronomical objects. In support of radio-astronomical observations, high resolution laboratory spectroscopy has already provided the rotational spectra in the vibrational ground state of several molecules of this type, although the rotational study of their dense infrared (IR) bands has only recently become possible using a limited number of experimental set-ups. To date, all of the rotationally resolved data have concerned unperturbed spectra. We presently report the results of a high resolution study of the three lowest vibrational states of quinoline C 9 H 7 N, an N-bearing naphthalene derivative. While the pure rotational ground state spectrum of quinoline is unperturbed, severe complications appear in the spectra of the ν 45 and ν 44 vibrational modes (located at about 168 cm −1 and 178 cm −1 , respectively). In order to study these effects in detail, we employed three different and complementary experimental techniques: Fourier-transform microwave spectroscopy, millimeter-wave spectroscopy, and Fourier-transform far-infrared spectroscopy with a synchrotron radiation source. Due to the high density of states in the IR spectra of molecules as large as PAHs, perturbations in the rotational spectra of excited states should be ubiquitous. Our study identifies for the first time this effect and provides some insights into an appropriate treatment of such perturbations

  14. Rotation-vibration interactions in the spectra of polycyclic aromatic hydrocarbons: Quinoline as a test-case species

    Science.gov (United States)

    Pirali, O.; Kisiel, Z.; Goubet, M.; Gruet, S.; Martin-Drumel, M. A.; Cuisset, A.; Hindle, F.; Mouret, G.

    2015-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are highly relevant for astrophysics as possible, though controversial, carriers of the unidentified infrared emission bands that are observed in a number of different astronomical objects. In support of radio-astronomical observations, high resolution laboratory spectroscopy has already provided the rotational spectra in the vibrational ground state of several molecules of this type, although the rotational study of their dense infrared (IR) bands has only recently become possible using a limited number of experimental set-ups. To date, all of the rotationally resolved data have concerned unperturbed spectra. We presently report the results of a high resolution study of the three lowest vibrational states of quinoline C9H7N, an N-bearing naphthalene derivative. While the pure rotational ground state spectrum of quinoline is unperturbed, severe complications appear in the spectra of the ν45 and ν44 vibrational modes (located at about 168 cm-1 and 178 cm-1, respectively). In order to study these effects in detail, we employed three different and complementary experimental techniques: Fourier-transform microwave spectroscopy, millimeter-wave spectroscopy, and Fourier-transform far-infrared spectroscopy with a synchrotron radiation source. Due to the high density of states in the IR spectra of molecules as large as PAHs, perturbations in the rotational spectra of excited states should be ubiquitous. Our study identifies for the first time this effect and provides some insights into an appropriate treatment of such perturbations.

  15. Rotation-vibration interactions in the spectra of polycyclic aromatic hydrocarbons: Quinoline as a test-case species

    Energy Technology Data Exchange (ETDEWEB)

    Pirali, O.; Gruet, S. [AILES Beamline, Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette cedex (France); Institut des Sciences Moléculaires d’Orsay, UMR8214 CNRS – Université Paris-Sud, Bât. 210, 91405 Orsay cedex (France); Kisiel, Z. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Goubet, M. [Laboratoire de Physique des Lasers, Atomes et Molécules, UMR 8523 CNRS - Université Lille 1, Bâtiment P5, F-59655 Villeneuve d’Ascq Cedex (France); Martin-Drumel, M. A.; Cuisset, A.; Hindle, F.; Mouret, G. [Laboratoire de Physico-Chimie de l’Atmosphère, EA-4493, Université du Littoral – Côte d’Opale, 59140 Dunkerque (France)

    2015-03-14

    Polycyclic aromatic hydrocarbons (PAHs) are highly relevant for astrophysics as possible, though controversial, carriers of the unidentified infrared emission bands that are observed in a number of different astronomical objects. In support of radio-astronomical observations, high resolution laboratory spectroscopy has already provided the rotational spectra in the vibrational ground state of several molecules of this type, although the rotational study of their dense infrared (IR) bands has only recently become possible using a limited number of experimental set-ups. To date, all of the rotationally resolved data have concerned unperturbed spectra. We presently report the results of a high resolution study of the three lowest vibrational states of quinoline C{sub 9}H{sub 7}N, an N-bearing naphthalene derivative. While the pure rotational ground state spectrum of quinoline is unperturbed, severe complications appear in the spectra of the ν{sub 45} and ν{sub 44} vibrational modes (located at about 168 cm{sup −1} and 178 cm{sup −1}, respectively). In order to study these effects in detail, we employed three different and complementary experimental techniques: Fourier-transform microwave spectroscopy, millimeter-wave spectroscopy, and Fourier-transform far-infrared spectroscopy with a synchrotron radiation source. Due to the high density of states in the IR spectra of molecules as large as PAHs, perturbations in the rotational spectra of excited states should be ubiquitous. Our study identifies for the first time this effect and provides some insights into an appropriate treatment of such perturbations.

  16. Impurities in semiconductors: total energy and infrared absorption calculations

    International Nuclear Information System (INIS)

    Yndurain, F.

    1987-01-01

    A new method to calculate the electronic structure of infinite nonperiodic system is discussed. The calculations are performed using atomic pseudopotentials and a basis of atomic Gaussiam wave functions. The Hartree-Fock self consistent equations are solved in the cluster-Bethe lattice system. Electron correlation is partially included in second order pertubation approximation. The formalism is applied to hydrogenated amorphous silicon. Total energy calculations of finite clusters of silicon atom in the presence of impurities, are also presented. The results show how atomic oxygen breaks the covalent silicon silicon bond forming a local configuration similar to that of SiO 2 . Calculations of the infrared absorption due to the presence of atomic oxygen in cristalline silicon are presented. The Born Hamiltonian to calculate the vibrational modes of the system and a simplied model to describe the infrared absorption mechanism are used. The interstitial and the the substitutional cases are considered and analysed. The position of the main infrared absorption peak, their intensities and their isotope shifts are calculated. The results are satisfactory agreement with the available data. (author) [pt

  17. Decolorization of Methylene Blue by Ag/SrSnO3 Composites under Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    Patcharanan Junploy

    2014-01-01

    Full Text Available SrSn(OH6 precursors synthesized by a cyclic microwave radiation (CMR process were calcined at 900°C for 3 h to form rod-like SrSnO3. Further, the rod-like SrSnO3 and AgNO3 in ethylene glycol (EG were ultrasonically vibrated to form rod-like Ag/SrSnO3 composites, characterized by X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, electron microscopy (EM, Fourier transform infrared (FTIR spectroscopy, and UV-visible analysis. The photocatalyses of rod-like SrSnO3, 1 wt%, 5 wt%, and 10 wt% Ag/SrSnO3 composites were studied for degradation of methylene blue (MB, C16H18N3SCl dye under ultraviolet (UV radiation. In this research, the 5 wt% Ag/SrSnO3 composites showed the highest activity, enhanced by the electron-hole separation process. The photoactivity became lower by the excessive Ag nanoparticles due to the negative effect caused by reduction in the absorption of UV radiation.

  18. Vibrational Micro-Spectroscopy of Human Tissues Analysis: Review.

    Science.gov (United States)

    Bunaciu, Andrei A; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2017-05-04

    Vibrational spectroscopy (Infrared (IR) and Raman) and, in particular, micro-spectroscopy and micro-spectroscopic imaging have been used to characterize developmental changes in tissues, to monitor these changes in cell cultures and to detect disease and drug-induced modifications. The conventional methods for biochemical and histophatological tissue characterization necessitate complex and "time-consuming" sample manipulations and the results are rarely quantifiable. The spectroscopy of molecular vibrations using mid-IR or Raman techniques has been applied to samples of human tissue. This article reviews the application of these vibrational spectroscopic techniques for analysis of biological tissue published between 2005 and 2015.

  19. Electrophoretically-Deposited Nano-Fe3O4@carbon 3D Structure on Carbon Fiber as High-Performance Supercapacitors

    Science.gov (United States)

    Hajalilou, Abdollah; Etemadifar, Reza; Abbasi-Chianeh, Vahid; Abouzari-Lotf, Ebrahim

    2018-05-01

    Structural and electrochemical behaviors of electrophortically-deposited Fe3O4 and Fe3O4@C nanoparticles on carbon fiber (CF) were investigated. The nanoparticles were synthesized via a green-assisted hydrothermal route. The as-prepared samples were characterized by x-ray diffraction, transmission and scanning electron microscopies, Fourier transform infrared and UV-visible spectroscopies as well as by a vibration sample magnetometer. Surprisingly, the saturation magnetization (M s) of the Fe3O4@C ( 26.99 emu/g) was about 20% higher than that of Fe3O4 nanoparticles. A rather rectangular CV curve for both the elecrophortically-deposited Fe3O4 and Fe3O4@C on CF indicated the double-layer supercapacitor behavior of the samples. The synergistic effects of double shells improved the electrochemical behavior of Fe3O4@CF. The Fe3O4@C@CF composite exhibited a higher specific capacitance of 412 F g-1 at scan rate of 0.05 V/s compared to the Fe3O4@CF with a value of 193 F g-1. The superb electrochemical properties of Fe3O4@C@CF confirm their potential for applications as supercapacitors in the energy storage field.

  20. Damage-free vibrational spectroscopy of biological materials in the electron microscope.

    Science.gov (United States)

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L; Dellby, Niklas; Lovejoy, Tracy C; Wolf, Sharon G; Cohen, Hagai

    2016-03-10

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an 'aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope.

  1. Ultrasonic vibration imposed on nanoparticle-based ZnO film improves the performance of the ensuing perovskite solar cell

    Science.gov (United States)

    Miao, Yihe; Du, Peng; Wang, Zhiyu; Chen, Qianli; Eslamian, Morteza

    2018-02-01

    This work focuses on the development of nearly annealing-free ZnO-based perovskite solar cells (PSCs), suitable for low-cost manufacturing of PSCs on flexible substrates. To this end, thin film of ZnO nanoparticles is employed as the electron transporting layer (ETL), because of its low-temperature solution-processability and high electron mobility. In order to remove the structural and surface defects, ultrasonic vibration is imposed on the substrate of the as-spun wet ZnO films for a short duration of 3 min. It is shown that the ultrasonic excitation bridges the ZnO nanoparticles (cold sintering), and brings about significant improvement in the ZnO film nanostructure and functionality. In addition, ethyl acetate (EA), as an emerging volatile anti-solvent, is employed to deposit the methylammonium (MA) lead halide perovskite thin film atop the ZnO ETL, in order to prepare perovskite layers that only need an annealing time of 30 s. The ZnO-based PSCs, with a simple structure and free of additional treatments, except for the ultrasonic vibration, exhibit a promising performance with a power conversion efficiency (PCE) of over 11%, 40% higher than that of the control device. The ultrasonic vibration treatment is facile, low-cost, environmentally friendly, and compatible with the scalable coating and printing techniques, such as spray and blade coating.

  2. Preparation, characterization, and thermal stability of B2O3-ZrO2

    Directory of Open Access Journals (Sweden)

    Theresia Debora Simbolon

    2017-04-01

    Full Text Available Synthesis of the borate-based compound with ZrOCl2 to form B2O3-ZrO2 has been conducted. The compound was characterized by FT-IR spectrophotometer, X-ray diffraction, acidity and thermal stability test. The results showed that the FT-IR main vibration spectrum of B2O3-ZrO2 compound has appeared at wave number 401.2 cm-1 for Zr-O bonding vibration, 617.2 cm-1 for B-O-B bonding vibration and 910.4 cm-1 for B-O bonding vibration. The XRD diffraction pattern shows B2O3-ZrO2 compound has an amorphous structure. The FT-IR spectrum after saturated with ammonia and potentiometric titration indicates that the compound of B2O3-ZrO2 has acidic properties with a strong level of acidity. Thermal stability test shows that the B2O3-ZrO2 compounds have high stability on temperature with increasing crystallinity after the compound was heated at 700 °C. Keywords: B2O3-ZrO2, impregnation, thermal stability.

  3. Synthesis, vibrational and optical properties of a new three-layered organic-inorganic perovskite (C{sub 4}H{sub 9}NH{sub 3}){sub 4}Pb{sub 3}I{sub 4}Br{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Dammak, T., E-mail: thameurlpa@yahoo.f [Laboratoire de Physique appliquee (LPA), Faculte des Sciences de Sfax, 3018, BP 802 (Tunisia); Elleuch, S. [Laboratoire de Physique appliquee (LPA), Faculte des Sciences de Sfax, 3018, BP 802 (Tunisia); Bougzhala, H. [Laboratoire de cristallochimie et des materiaux, Faculte des Sciences de Tunis (Tunisia); Mlayah, A. [Centre d' Elaboration de Materiaux et d' Etudes Structurales, CNRS-Universite Paul Sabatier, 29 rue Jeanne Marvig, 31055 Toulouse, Cedex 4 (France); Chtourou, R. [Centre de Recherche et des Technologies de l' Energie CRTEn BP. 95, Hammam-Lif 2050, Laboratoire de Photovoltaique et de Semiconducteur (Tunisia); Abid, Y. [Laboratoire de Physique appliquee (LPA), Faculte des Sciences de Sfax, 3018, BP 802 (Tunisia)

    2009-09-15

    An organic-inorganic hybrid perovskite (C{sub 4}H{sub 9}NH{sub 3}){sub 4}Pb{sub 3}I{sub 4}Br{sub 6} was synthesized and studied by X-ray diffraction, Raman and infrared spectroscopies, optical transmission and photoluminescence. The title compound, abbreviated (C{sub 4}){sub 4}Pb{sub 3}I{sub 4}Br{sub 6}, crystallises in a periodic two-dimensional multilayer structure with P2{sub 1}/a space group. The structure is built up from alternating inorganic and organic layers. Each inorganic layer consists of three sheets of PbX{sub 6} (X=I, Br) octahedra. Raman and infrared spectra of the title compound were recorded in the 100-3500 and 400-4000 cm{sup -1} frequency ranges, respectively. An assignment of the observed vibration modes is reported. Optical transmission measurements, performed on thin films of (C{sub 4}){sub 4}Pb{sub 3}I{sub 4}Br{sub 6}, revealed two absorption bands at 474 and 508 nm. Photoluminescence measurements have shown a green emission peak at 519 nm.

  4. Infrared Spectroscopic and Theoretical Study of the HC_nO^+(N=5-12) Cations

    Science.gov (United States)

    Li, Wei; Jin, Jiaye; Wang, Guanjun; Zhou, Mingfei

    2017-06-01

    Carbon chains and derivatives are highly active species, which are widely existed as reactive intermediates in many chemical processes including atmospheric chemistry, hydrocarbon combustion, as well as interstellar chemistry. The carbon chain cations, HC_nO^+ (n = 5-12) are produced via pulsed laser vaporization of a graphite target in supersonic expansions containing carbon monoxide and hydrogen. The infrared spectra are measured via mass-selected infrared photodissociation spectroscopy of the CO "tagged" [HC_nO.CO] cation complexes in the 1600-3500 \\wn region. The geometries and electronic ground states of these cation complexes are determined by their infrared spectra in conjunction with theoretical calculations. All the HC_nO^+ (n = 5-12) core cations are characterized to be linear carbon chain derivatives terminated by hydrogen and oxygen. The HC_nO^+ cations with odd n have closed-shell singlet ground states with polyyne-like structures, while those with even n have triplet ground states with allene-like structures.

  5. Simulating the Agostic Interaction in Electron-deficient (16-e) Group ...

    African Journals Online (AJOL)

    NICO

    This theory was supported by the relative energies of the conformers and an NBO analysis. ... atomic charges, infrared stretching vibrations (C-H, C-C, and C-O), and the 1H and .... ∆H1-M (+2/0) (entry 2) is strong evidence that there is a new.

  6. Dynamics of photoprocesses induced by femtosecond infrared radiation in free molecules and clusters of iron pentacarbonyl

    International Nuclear Information System (INIS)

    Kompanets, V. O.; Lokhman, V. N.; Poydashev, D. G.; Chekalin, S. V.; Ryabov, E. A.

    2016-01-01

    The dynamics of photoprocesses induced by femtosecond infrared radiation in free Fe(CO) 5 molecules and their clusters owing to the resonant excitation of vibrations of CO bonds in the 5-μm range has been studied. The technique of infrared excitation and photoionization probing (λ = 400 nm) by femtosecond pulses has been used in combination with time-of-flight mass spectrometry. It has been found that an infrared pulse selectively excites vibrations of CO bonds in free molecules, which results in a decrease in the yield of the Fe(CO) 5 + molecular ion. Subsequent relaxation processes have been analyzed and the results have been interpreted. The time of the energy transfer from excited vibrations to other vibrations of the molecule owing to intramolecular relaxation has been measured. The dynamics of dissociation of [Fe(CO) 5 ] n clusters irradiated by femtosecond infrared radiation has been studied. The time dependence of the yield of free molecules has been measured under different infrared laser excitation conditions. We have proposed a model that well describes the results of the experiment and makes it possible, in particular, to calculate the profile of variation of the temperature of clusters within the “evaporation ensemble” concept. The intramolecular and intracluster vibrational relaxation rates in [Fe(CO) 5 ] n clusters have been estimated.

  7. Vibrational Characterizations of Zn0.72Li0.28O/Si Thin Films Studied by Fourier Transform Raman Spectroscopy

    International Nuclear Information System (INIS)

    Myo Myat Thet; Win Kyaw; Yin Maung Maung; Ko Ko Kyaw Soe

    2008-03-01

    The Zn0.72Li0.28O/Si (x = 0.28mol%) thin layers were fabricated on p-Si(100) substrate with five different process temperature. Vibrational characterizations of those thin films were investigated by FT- Raman spectroscopy. The resulted spectral line characters have been compared with that of Zn0.72Li0.28O/Glass thin films. Some vibrational motions of starting materials and final(candidate) thin films molecules were found in two substrates of glass and Si and vibrational frequencies were assigned by using molecular spectroscopy. Most of the frequencies of starting and final materials were found to be shifted in each of the films of two different substrates.

  8. Characterization and gas sensing properties of CuO synthesized by DC directly applying voltage

    Energy Technology Data Exchange (ETDEWEB)

    Klinbumrung, Arrak [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Somchai, E-mail: schthongtem@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-09-15

    Highlights: • CuO as a p-type semiconductor. • It was synthesized by directly applying voltage. • A promising material for ammonia detection. - Abstract: CuO microstructure was successfully synthesized by 50 A and 3.6 V DC directly applying voltage. Crystalline structure was characterized by X-ray diffraction (XRD), morphology by scanning and transmission electron microscopy (SEM, TEM). The sample of the 15 min processing time has an irregular shape with diameter about several hundreds of nanometer. Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–vis) absorption spectroscopy and photoluminescence (PL) were used to determine vibrational modes and optical properties of the as-synthesized samples: 529 and 585 cm{sup −1} vibrational modes, 3.95 eV band gap, and 402 nm emitting wavelength in violet region of CuO. X-ray photoelectron (XPS) spectroscopy was used to determine chemical composition, Cu(II)O, of the metal oxide surface. Gas sensing performance exposing to NH{sub 3} mixed with air at various working temperatures and NH{sub 3} concentrations of the as-synthesized CuO has the best response at the optimal working temperature of 250 °C: sensitivity of 56.6% exposed to 5275 ppm NH{sub 3}.

  9. The gas-phase bis-uranyl nitrate complex ((UO2)2(NO3)5)-: infrared spectrum and structure

    International Nuclear Information System (INIS)

    Groenewold, G.S.; van Stipdonk, Michael J.; Oomens, Jos; De Jong, Wibe A.; McIlwain, Michael E.

    2011-01-01

    The infrared spectrum of the bis-uranyl nitrate complex ((UO 2 ) 2 (NO 3 ) 5 ) - was measured in the gas phase using multiple photon dissociation (IRMPD). Intense absorptions corresponding to the nitrate symmetric and asymmetric vibrations, and the uranyl asymmetric vibration were observed. The nitrate v 3 vibrations indicate the presence of nitrate in a bridging configuration bound to both uranyl cations, and probably two distinct pendant nitrates in the complex. The coordination environment of the nitrate ligands and the uranyl cations were compared to those in the mono-uranyl complex. Overall, the uranyl cation is more loosely coordinated in the bis-uranyl complex ((UO 2 ) 2 (NO 3 ) 5 ) - compared to the mono-complex (UO 2 (NO 3 ) 3 ) - , as indicated by a higher O-U-O asymmetric stretching (v 3 ) frequency. However, the pendant nitrate ligands are more strongly bound in the bis-complex than they are in the mono-uranyl complex, as indicated by the v 3 frequencies of the pendant nitrate, which are split into nitrosyl and O-N-O vibrations as a result of bidentate coordination. These phenomena are consistent with lower electron density donation per uranyl by the nitrate bridging two uranyl centers compared to that of a pendant nitrate in the mono-uranyl complex. The lowest energy structure predicted by density functional theory (B3LYP functional) calculations was one in which the two uranyl molecules bridged by a single nitrate coordinated in a bis-bidentate fashion. Each uranyl molecule was coordinated by two pendant nitrate ligands. The corresponding vibrational spectrum was in excellent agreement with the IRMPD measurement, confirming the structural assignment.

  10. The gas-phase bis-uranyl nitrate complex ((UO2)2(NO3)5)-: infrared spectrum and structure

    International Nuclear Information System (INIS)

    Groenewold, Gary S.; van Stipdonk, Michael J.; Oomens, Jos; de Jong, Wibe; McIlwain, Michael E.

    2011-01-01

    The infrared spectrum of the bis-uranyl nitrate complex ((UO 2 ) 2 (NO 3 ) 5 ) - was measured in the gas phase using multiple photon dissociation (IRMPD). Intense absorptions corresponding to the nitrate symmetric and asymmetric vibrations, and the uranyl asymmetric vibration were observed. The nitrate nu3 vibrations indicate the presence of nitrate in a bridging configuration bound to both uranyl cations, and probably two distinct pendant nitrates in the complex. The coordination environment of the nitrate ligands and the uranyl cations were compared to those in the mono-uranyl complex. Overall, the uranyl cation is more loosely coordinated in the bis-uranyl complex ((UO 2 ) 2 (NO 3 ) 5 ) - compared to the mono-complex (UO 2 (NO 3 ) 3 ) - , as indicated by a higher O-U-O asymmetric stretching (nu3) frequency. However, the pendant nitrate ligands are more strongly bound in the bis-complex than they are in the mono-uranyl complex, as indicated by the ν 3 frequencies of the pendant nitrate, which are split into nitrosyl and O-N-O vibrations as a result of bidentate coordination. These phenomena are consistent with lower electron density donation per uranyl by the nitrate bridging two uranyl centers compared to that of a pendant nitrate in the mono-uranyl complex. The structure was calculated using density functional theory (B3LYP functional), which produced a structure in which the two uranyl molecules bridged by a single nitrate coordinated in a bis-bidentate fashion. Each uranyl molecule was coordinated by two pendant nitrate ligands. The corresponding vibrational spectrum was in excellent agreement with the IRMPD measurement, confirming the structural assignment.

  11. AIRS/Aqua Level 1C Infrared (IR) resampled and corrected radiances V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The AIRS Infrared (IR) level 1C data set contains AIRS infrared calibrated and geolocated radiances in W/m2/micron/ster. This data set is generated from AIRS level...

  12. Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors

    Science.gov (United States)

    Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li

    2016-09-01

    The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage ( C- V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage ( R- V) characteristics of variable-area photodiodes. The minority carrier lifetime, C- V characteristics, and R- V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.

  13. Preparation and properties of multifunctional Fe-C-Y2O3:Eu3+ nanocomposites

    International Nuclear Information System (INIS)

    Yang Jingxing; Yang Xuwei; Yang Hua

    2012-01-01

    Highlights: ► Multifunctional Fe/Fe 3 O 4 -Y 2 O 3 : Eu nanocomposites were prepared by a solvothermal method. ► Their structure, magnetic and luminescent properties were characterized by XRD, SEM, TEM, excitation and emission spectra and vibration sample magnetometry (VSM). ► It is shown that the nanocomposites exhibit high saturation magnetization and strong red emission under UV-light. - Abstract: Multifunctional Fe-C-Y 2 O 3 :Eu 3+ nanocomposites were prepared by the solvo thermal method, and their structure, magnetic and luminescent properties were characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and scanning electron microscope (SEM). Results show that the nanocomposites are spherical with a mean diameter of 700 nm and there are high special saturation magnetization (47.4 emu/g) and strong red emission under UV-light. Even dispersed in water solution, the nanocomposites also exhibit a strong red emission under ultraviolet light radiation, and it could be manipulated using an external magnet. Thus it looks promising for application in biomedicine field, especially in drug targeting and fluorescence label. And we also discussed the effect of the electron transfer process between the Fe magnetic core and Y 2 O 3 :Eu 3+ shell.

  14. Structural studies of gels and gel-glasses in the SiO2-GeO2 system using vibrational spectroscopy

    Science.gov (United States)

    Mukherjee, Shyama P.; Sharma, Shiv K.

    1986-01-01

    GeO2 gel and gels in the SiO2-GeO2 system synthesized by the hydrolytic polycondensation of metal alkoxides have been studied by infrared and Raman spectroscopic techniques. The molecular structures, hydroxyl contents, and crystallinity of gels and gel-glasses in relation to the thermal history and GeO2 concentration were investigated. The binary compositions having up to 70 mol percent GeO2 were examined.

  15. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of a biomolecule: 5-Hydroxymethyluracil

    Science.gov (United States)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2014-06-01

    In the present work, the experimental and theoretical vibrational spectra of 5-hydroxymethyluracil were investigated. The FT-IR (4000-400 cm-1) spectrum of the molecule in the solid phase was recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared intensities of the title molecule in the ground state were calculated using density functional B3LYP and M06-2X methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data, and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 5-hydroxymethyluracil molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on its vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while its in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯O hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.

  16. Interpenetrating polymer network membranes for fuel cells: infrared vibrational spectroscopy; Membranes baseadas dm redes polimericas interpenetrantes para celulas a combustivel: estudo por espectroscopia vibracional no infravermelho

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, Felipe A.M.; Rocco, Ana Maria [Grupo de Materiais Condutores e Energia, Escola de Quimica, Universidade Federal do Rio de Janeiro, RJ (Brazil)], e-mail: amrocco@eq.ufrj.br; Pereira, Robson Pacheco [Instituto de Ciencias Exatas, Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil)

    2011-07-01

    In the present work, proton conductive membranes based on IPN matrices doped with H{sub 3}PO{sub 4} were developed. The characterization by infrared vibrational spectroscopy evidenced the polymerization of DGEBA and the immobilization of PEI chains, originating a structure containing basic sites suitable for proton coordination and conduction. The FTIR characterization evidenced the polymerization of DGEBA in the presence of PEI thus forming Semi-IPN membranes which, after doped with H{sub 3}PO{sub 4}, exhibited conductivity values of 10{sup -4} W{sup -1}cm{sup -1} at room temperature and 10{sup -3} {omega}{sup -1}cm{sup -1} at 80 degree C, as well as a dependency of conductivity with temperature following the Arrhenius model. The activation energy values (14,33 and 12,96 kJ.mol{sup -1}) indicated a proton conduction mechanism predominantly vehicular in the matrices studied under 100% relative humidity. (author)

  17. Nitrogen and hydrogen related infrared absorption in CVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Titus, E. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal)]. E-mail: elby@mec.ua.pt; Ali, N. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Cabral, G. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Madaleno, J.C. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Neto, V.F. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Gracio, J. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Ramesh Babu, P [Materials Ireland, Polymer research Centre, School of Physics, Dublin (Ireland); Sikder, A.K. [Department of Physics, Indian Institute of Technology (IIT), Bombay (India); Okpalugo, T.I. [Northern Ireland Bio-Engineering Centre, NIBEC, University of Ulster (United Kingdom); Misra, D.S. [Department of Physics, Indian Institute of Technology (IIT), Bombay (India)

    2006-09-25

    In this paper, we investigate on the presence of hydrogen and nitrogen related infrared absorptions in chemical vapour deposited (CVD) diamond films. Investigations were carried out in cross sections of diamond windows, deposited using hot filament CVD (HFCVD). The results of Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) and Raman spectroscopy carried out in a cross section of self-standing diamond sheets are presented. The FTIR spectra showed several features that have not been reported before. In order to confirm the frequency of nitrogen related vibrations, ab-initio calculations were carried out using GAMESS program. The investigations showed the presence of several C-N related peaks in one-phonon (1000-1333 cm{sup -1}). The deconvolution of the spectra in the three-phonon region (2700-3150 cm{sup -1}) also showed a number of vibration modes corresponding to sp {sup m}CH {sub n} phase of carbon. Elastic recoil detection analysis (ERDA) was employed to compare the H content measured using FTIR technique. Using these measurements we point out that the oscillator strength of the different IR modes varies depending upon the structure and H content of CVD diamond sheets.

  18. Herbig-haro objects and mid-infrared outflows in the VELA C molecular cloud

    International Nuclear Information System (INIS)

    Zhang, Miaomiao; Wang, Hongchi; Henning, Thomas

    2014-01-01

    We have performed a deep [S II] λλ6717/6731 wide field Herbig-Haro (HH) object survey toward the Vela C molecular cloud with a sky coverage of about 2 deg 2 . In total, 18 new HH objects, HH 1090-1107, are discovered and the two previously known HH objects, HH 73-74, are also detected in our [S II] images. We also present an investigation of mid-infrared outflows in the Vela C molecular cloud using the Wide-field Infrared Survey Explorer images taken from AllWISE data release. Using the method suggested by Zhang and Wang, 11 extended green objects (EGOs) are identified to be the mid-infrared outflows, including 6 new mid-infrared outflows that have not been detected previously at other wavelengths and 5 mid-infrared counterparts of the HH objects detected in this work. Using the AllWISE Source Catalog and the source classification scheme suggested by Koenig et al., we have identified 56 young stellar object (YSO) candidates in the Vela C molecular cloud. The possible driving sources of the HH objects and EGOs are discussed based on the morphology of HH objects and EGOs and the locations of HH objects, EGOs and YSO candidates. Finally we associate 12 HH objects and 5 EGOs with 10 YSOs and YSO candidates. The median length of the outflows in Vela C is 0.35 pc and the outflows seem to be oriented randomly.

  19. Testing of Tools for Measurement Vibration in Car

    Directory of Open Access Journals (Sweden)

    Martin JURÁNEK

    2009-06-01

    Full Text Available This work is specialized on testing of several sensors for measurement vibration, that be applicable for measurement on vehicles also behind running. These sensors are connected to PC and universal mobile measuring system cRIO (National Instruments with analog I/O module for measurement vibration, that is described in diploma work: [JURÁNEK 2008]. This system has upped mechanical and heat imunity, small proportions and is therefore acceptable also measurement behind ride vehicles. It compose from two head parts. First is measuring part, composite from instruments cRIO. First part is controlled and monitored by PDA there is connected of wireless (second part hereof system. To system cRIO is possible connect sensors by four BNC connector or after small software change is possible add sensor to other analog modul cRIO. Here will be test several different types of accelerometers (USB sensor company Phidgets, MEMS sensor company Freescale, piezoresistiv and Delta Tron accelerometers company Brüel&Kjær. These sensors is attach to stiff board, board is attach to vibrator and excite by proper signal. Testing will realized with reference to using for measurement in cars. Results will be compared with professional signal analyser LabShop pulse from company Brüel&Kjær.

  20. DETAILED ANALYSIS OF NEAR-IR WATER (H{sub 2}O) EMISSION IN COMET C/2014 Q2 (LOVEJOY) WITH THE GIANO/TNG SPECTROGRAPH

    Energy Technology Data Exchange (ETDEWEB)

    Faggi, S.; Brucato, J. R.; Tozzi, G. P.; Oliva, E.; Massi, F.; Sanna, N.; Tozzi, A. [Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Villanueva, G. L.; Mumma, M. J., E-mail: sfaggi@arcetri.astro.it [NASA Goddard Space Flight Centre, 8800 Greenbelt Rd, Greenbelt, MD 20771 (United States)

    2016-10-20

    We observed the Oort cloud comet C/2014 Q2 (Lovejoy) on 2015 January 31 and February 1 and 2 at a heliocentric distance of 1.3 au and geocentric distance of 0.8 au during its approach to the Sun. Comet Lovejoy was observed with GIANO, the near-infrared high-resolution spectrograph mounted at the Nasmyth-A focus of the TNG (Telescopio Nazionale Galileo) telescope in La Palma, Canary Islands, Spain. We detected strong emissions of radical CN and water, along with many emission features of unidentified origin, across the 1–2.5 μ m region. Spectral lines from eight ro-vibrational bands of H{sub 2}O were detected, six of them for the first time. We quantified the water production rate [ Q (H{sub 2}O), (3.11 ± 0.14) × 10{sup 29} s{sup −1}] by comparing the calibrated line fluxes with the Goddard full non-resonance cascade fluorescence model for H{sub 2}O. The production rates of ortho-water [ Q (H{sub 2}O){sup ORTHO}, (2.33 ± 0.11) × 10{sup 29} s{sup −1}] and para-water [ Q (H{sub 2}O){sup PARA}, (0.87 ± 0.21) × 1029 s{sup −1}] provide a measure of the ortho-to-para ratio (2.70 ± 0.76)). The confidence limits are not small enough to provide a critical test of the nuclear spin temperature.

  1. Molecular quantum mechanical gradients within the polarizable embedding approach—Application to the internal vibrational Stark shift of acetophenone

    DEFF Research Database (Denmark)

    List, Nanna Holmgaard; Beerepoot, Maarten; Olsen, Jógvan Magnus Haugaard

    2015-01-01

    for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn–Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark...

  2. Effects of intermolecular interactions on absorption intensities of the fundamental and the first, second, and third overtones of OH stretching vibrations of methanol and t-butanol‑d9 in n-hexane studied by visible/near-infrared/infrared spectroscopy

    Science.gov (United States)

    Morisawa, Yusuke; Suga, Arisa

    2018-05-01

    Visible (Vis), near-infrared (NIR) and IR spectra in the 15,600-2500 cm- 1 region were measured for methanol, methanol-d3, and t-butanol-d9 in n-hexane to investigate effects of intermolecular interaction on absorption intensities of the fundamental and the first, second, and third overtones of their OH stretching vibrations. The relative area intensities of OH stretching bands of free and hydrogen-bonded species were plotted versus the vibrational quantum number using logarithm plots (V = 1-4) for 0.5 M methanol, 0.5 M methanol‑d3, and 0.5 M t-butanol-d9 in n-hexane. In the logarithm plots the relative intensities of free species yield a linear dependence irrespective of the solutes while those of hydrogen-bonded species deviate significantly from the linearity. The observed results suggest that the modifications in dipole moment functions of the OH bond induced by the formation of the hydrogen bondings change transient dipole moment, leading to the deviations of the dependences of relative absorption intensities on the vibrational quantum number from the linearity.

  3. Infrared study of acid-base properties of thorium dioxide

    International Nuclear Information System (INIS)

    Lamotte, J.; Lavalley, J.C.; Druet, E.; Freund, E.

    1983-01-01

    Adsorption of CO 2 , C 5 H 5 N, CH 3 OCH 3 and CD 3 OCD 2 H on ThO 2 has been studied by Fourier-transform infrared spectroscopy. CO 2 adsorption gives rise to several types of species: polydentate carbonates, bidentate carboxylates, bidentate carbonates, hydrogenocarbonates, monodentate carbonates and linear CO 2 species. The carbonate species have been identified on the basis of the splitting of the ν 3 vibration and of thermal-stability considerations. These results show that thorium dioxide is a basic oxide. Considering the νsub(a)(CO 2 ) mode of linear CO 2 species, the νsub(8a) mode of pyridine, the ν(CH) band of CD 3 OCD 2 H and the ν(COC) modes of CH 3 OCH 3 , it is concluded that some Th 4+ ions are very weak Lewis-acid sites. The OH groups giving rise to the 3740 cm -1 band are basic (some are involved in the formation of hydrogenocarbonate species), while some of the OH groups corresponding to the 3655 cm -1 band are very weak proton donors. (author)

  4. Conformational and vibrational reassessment of solid paracetamol

    Science.gov (United States)

    Amado, Ana M.; Azevedo, Celeste; Ribeiro-Claro, Paulo J. A.

    2017-08-01

    This work provides an answer to the urge for a more detailed and accurate knowledge of the vibrational spectrum of the widely used analgesic/antipyretic drug commonly known as paracetamol. A comprehensive spectroscopic analysis - including infrared, Raman, and inelastic neutron scattering (INS) - is combined with a computational approach which takes account for the effects of intermolecular interactions in the solid state. This allows a full reassessment of the vibrational assignments for Paracetamol, thus preventing the propagation of incorrect data analysis and misassignments already found in the literature. In particular, the vibrational modes involving the hydrogen-bonded Nsbnd H and Osbnd H groups are correctly reallocated to bands shifted by up to 300 cm- 1 relatively to previous assignments.

  5. Vibrational Spectroscopy and Astrobiology

    Science.gov (United States)

    Chaban, Galina M.; Kwak, D. (Technical Monitor)

    2001-01-01

    Role of vibrational spectroscopy in solving problems related to astrobiology will be discussed. Vibrational (infrared) spectroscopy is a very sensitive tool for identifying molecules. Theoretical approach used in this work is based on direct computation of anharmonic vibrational frequencies and intensities from electronic structure codes. One of the applications of this computational technique is possible identification of biological building blocks (amino acids, small peptides, DNA bases) in the interstellar medium (ISM). Identifying small biological molecules in the ISM is very important from the point of view of origin of life. Hybrid (quantum mechanics/molecular mechanics) theoretical techniques will be discussed that may allow to obtain accurate vibrational spectra of biomolecular building blocks and to create a database of spectroscopic signatures that can assist observations of these molecules in space. Another application of the direct computational spectroscopy technique is to help to design and analyze experimental observations of ice surfaces of one of the Jupiter's moons, Europa, that possibly contains hydrated salts. The presence of hydrated salts on the surface can be an indication of a subsurface ocean and the possible existence of life forms inhabiting such an ocean.

  6. Vibrationally-resolved Charge Transfer of O^3+ Ions with Molecular Hydrogen

    Science.gov (United States)

    Wang, J. G.; Stancil, P. C.; Turner, A. R.; Cooper, D. L.

    2003-05-01

    Charge transfer processes due to collisions of ground state O^3+ ions with H2 are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. Vibrationally-resolved cross sections for energies between 0.1 eV/u and 2 keV/u using the infinite order sudden approximation (IOSA), vibrational sudden approximation (VSA), and electronic approximation (EA), but including Frank-Condon factors (the centroid approximation) will be presented. Comparison with existing experimental data for total cross sections shows best agreement with IOSA and discrepancies for VSA and EA. Triplet-singlet cross section ratios obtained with IOSA are found generally to be in harmony with experiment. JGW and PCS acknowledge support from NASA grant 11453.

  7. Microsolvation of the water cation in neon: Infrared spectra and potential energy surface of the H2O+-Ne open-shell ionic complex

    Science.gov (United States)

    Dopfer, Otto; Roth, Doris; Maier, John P.

    2001-04-01

    The intermolecular potential of the H2O+-Ne open-shell ionic dimer in its doublet electronic ground state has been investigated by infrared spectroscopy in the vicinity of the O-H stretch vibrations (ν1 and ν3) and ab initio calculations at the unrestricted Møller-Plesset second-order (MP2) level with a basis set of aug-cc-pVTZ quality. The rovibrational structure of the photodissociation spectrum is consistent with a proton-bound planar H-O-H-Ne structure and a Ne-H separation of R0=1.815(5) Å. The complexation-induced redshifts are Δν1=-69 cm-1 and Δν3=-6 cm-1, respectively. Tunneling splittings observed in the perpendicular component of the ν3 hybrid band of H2O+-Ne are attributed to hindered internal rotation between the two equivalent proton-bound equilibrium structures. The interpretation of the H2O+-Ne spectrum is supported by the spectrum of the monodeuterated species, for which both the proton-bound and the deuteron-bound isomers are observed (DOH+-Ne, HOD+-Ne). The equilibrium structure of the calculated potential energy surface of H2O+-Ne has a slightly translinear proton bond, which is characterized by a Ne-H separation of Re=1.77 Å, a bond angle of φe=174°, and dissociation energies of De=756 cm-1 and D0=476 cm-1. According to the calculated potential, the exchange tunneling between the two equivalent minima occurs via the planar bridged transition state with C2v symmetry and a barrier of 340 cm-1. In general, the calculated properties of H2O+-Ne show good agreement with the experimental data. Initial steps in the microsolvation of the water cation in neon are discussed by comparing the calculated and experimental properties of H2O+-Nen (n=0-2) with neon matrix isolation data (n→∞).

  8. Ultrasensitive Detection of Infrared Photon Using Microcantilever: Theoretical Analysis

    International Nuclear Information System (INIS)

    Li-Xin, Cao; Feng-Xin, Zhang; Yin-Fang, Zhu; Jin-Ling, Yang

    2010-01-01

    We present a new method for detecting near-infrared, mid-infrared, and far-infrared photons with an ultrahigh sensitivity. The infrared photon detection was carried out by monitoring the displacement change of a vibrating microcantilever under light pressure using a laser Doppler vibrometer. Ultrathin silicon cantilevers with high sensitivity were produced using micro/nano-fabrication technology. The photon detection system was set up. The response of the microcantilever to the photon illumination is theoretically estimated, and a nanowatt resolution for the infrared photon detection is expected at room temperature with this method

  9. Comet C/2013 US10 (CATALINA) - Dust in the Infrared with SOFIA

    Science.gov (United States)

    Woodward, Charles E.; Kelley, Michael S. P.; Harker, David E.; Russell, Ray W.; Kim, Daryl L.; Sitko, Michael L.; Wooden, Diane H.

    2018-01-01

    One of the major goals of modern astronomy is the "search for origins'' from the big bang to the development of intelligence. A key process in developing our understanding of these origins is how planetary systems are created from dusty disks around stars and evolve into planets with water and other molecules. Traces of primordial materials, and their least-processed products, are found in the outermost regions of the solar system -- the realm of comets -- in the form of ices of volatile materials (H2O, NH3, CO, CH4, and other more rare species), and more refractory dust grains. There is considerable evidence that in the cold regions where cometary material formed, existing comet bodies were mixed with refractory material processed at much higher temperatures. Remote sensing observation of comets provides a means to study the properties of this dust material to characterize the nature of refactory comet grains. These include observations of both the re-radiated thermal (spectrophotometric) and scattered light (spectrophotometric and polarimetric). The former technique provides our most direct link to the composition (mineral content) of the grains.Here we report our post-perihelion (TP = 2015 Nov 15.721 UT) infrared 2 to 31 micron spectrophotometric observations and dust thermal model analyses of comet C/2013 US10 (Catalina), a dynamically new Oort Cloud comet -- 1/aorg [reciprocal original semimajor axis ] = 0.00005339 -- conducted at two contemporaneous observational epochs near close Earth approach (Δ ≈ 0.93 AU) with NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) complemented by observations from the NASA Infrared Telescope Facility (IRTF).

  10. Effects of Partially Ionised Medical Oxygen, Especially with O2•−, in Vibration White Finger Patients

    Directory of Open Access Journals (Sweden)

    Slavomír Perečinský

    2014-05-01

    Full Text Available A major symptom of hand-arm vibration syndrome is a secondary Raynaud’s phenomenon—vibration white finger (VWF—which results from a vasospasm of the digital arteries caused by work with vibration devices leading to occupational disease. Pharmacotherapy of VWF is often ineffective or has adverse effects. The aim of this work was to verify the influence of inhalation of partially ionized oxygen (O2•− on peripheral blood vessels in the hands of patients with VWF. Ninety one (91patients with VWF underwent four-finger adsorption plethysmography, and the pulse wave amplitude was recorded expressed in numeric parameters—called the native record. Next, a cold water test was conducted following with second plethysmography. The patients were divided in to the three groups. First and second inhaled 20-min of ionized oxygen O2•− or oxygen O2 respectively. Thirth group was control without treatment. All three groups a follow-up third plethysmography—the post-therapy record. Changes in the pulse wave amplitudes were evaluated. Inpatients group inhaling O2•− a modest increase of pulse wave amplitude was observed compared to the native record; patients inhaling medical oxygen O2 and the control showed a undesirable decline of pulse wave amplitude in VWF fingers. Strong vasodilatation were more frequent in the group inhaling O2•− compare to O2 (p < 0.05. Peripheral vasodilatation achieved by inhalation of O2•− could be used for VWF treatment without undesirable side effect in hospital as well as at home environment.

  11. Analytic vibration-rotational matrix elements for diatomic molecules

    International Nuclear Information System (INIS)

    Bouanich, J.P.

    1987-01-01

    The vibration-rotational matrix elements for infrared or Raman transitions vJ → v'J' of diatomic molecules are calculated for powers of the reduced displacement X from parameters of the Dunham potential-energy function. (orig.)

  12. Influence of the precursors in the morphology, structure, vibrational order and optical gap of nano structured Zn O

    Energy Technology Data Exchange (ETDEWEB)

    Jurado, J. F.; Londono C, A.; Jurado L, F. F.; Romero S, J. D., E-mail: jfjurado@unal.edu.co [Universidad Nacional de Colombia, Laboratorio de Propiedades Termicas Dielectricas de Compositos, A. A. 127, Manizales (Colombia)

    2014-07-01

    The synthesis of Zn O by reaction in solid state from two precursor salts (zinc acetate and zinc sulfate), presented significant differences concerning morphology, structure, vibrational order and optical gap. As well as covering in the size of the compounds, a homogeneous distribution of nanoparticles of 21±3 nm and micro stars of 1.03±0.19 μm respectively. The Zn O showed a structural phase with a vibrational state of the hexagonal type (wurtzite). The variation in the morphology due to the precursor is attributed to the disorder within of lattice, which contributes to vibrational changes and is correlated to the degrees of freedom of molecules. Measurements of UV-Vis of nanoparticles displayed a band gap (E{sub g}) lower than the one reported for the bulk material. The structural characterization of the compounds was carried out by using a X-ray Bruker D8 Advance diffractometer. The vibrational order was assessed throughout micro-Raman with a monochromatic radiation source of 473 nm). (Author)

  13. New metal-organic frameworks of [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La, Ce) and [Ce2(C2O4)(C6H6O7)2] . 4H2O

    International Nuclear Information System (INIS)

    Weng Shengfeng; Wang, Yun-Hsin; Lee, Chi-Shen

    2012-01-01

    Two novel materials, [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2), with a metal-organic framework (MOF) were prepared with hydrothermal reactions and characterized with photoluminescence, magnetic susceptibility, thermogravimetric analysis and X-ray powder diffraction in situ. The crystal structures were determined by single-crystal X-ray diffraction. Compound 1 crystallized in triclinic space group P1-bar (No. 2); compound 2 crystallized in monoclinic space group P2 1 /c (No. 14). The structure of 1 is built from a 1D MOF, composed of deprotonated citric ligands of three kinds. Compound 2 contains a 2D MOF structure consisting of citrate and oxalate ligands; the oxalate ligand arose from the decomposition in situ of citric acid in the presence of Cu II ions. Photoluminescence spectra of compounds 1b and 2 revealed transitions between the 5d 1 excited state and two levels of the 4f 1 ground state ( 2 F 5/2 and 2 F 7/2 ). Compounds 1b and 2 containing Ce III ion exhibit a paramagnetic property with weak antiferromagnetic interactions between the two adjacent magnetic centers. - Graphical Abstract: [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2)—with 1D and 2D structures were synthesized and characterized. Highlights: ► Two MOF – [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2) – with 1D and 2D structures. ► The adjacent chains of the 1D framework were correlated with each other through an oxalate ligand to form a 2D layer structure. ► The source of the oxalate ligand was the decomposition in situ of citric acid oxidized in the presence of Cu II ions.

  14. Equivalence of Electron-Vibration Interaction and Charge-Induced Force Variations: A New O(1 Approach to an Old Problem

    Directory of Open Access Journals (Sweden)

    Tunna Baruah

    2012-04-01

    Full Text Available Calculating electron-vibration (vibronic interaction constants is computationally expensive. For molecules containing N nuclei it involves solving the Schrödinger equation for Ο(3N nuclear configurations in addition to the cost of determining the vibrational modes. We show that quantum vibronic interactions are proportional to the classical atomic forces induced when the total charge of the system is varied. This enables the calculation of vibronic interaction constants from O(1 solutions of the Schrödinger equation. We demonstrate that the O(1 approach produces numerically accurate results by calculating the vibronic interaction constants for several molecules. We investigate the role of molecular vibrations in the Mott transition in κ-(BEDT-TTF2Cu[N(CN2]Br.

  15. Near Infrared Lateral Photovoltaic Effect in LaTiO3 Films

    Directory of Open Access Journals (Sweden)

    Wujun Jin

    2013-01-01

    Full Text Available We have reported on the lateral photovoltaic effect of LaTiO3 films epitaxially grown on (100 SrTiO3 substrates. Under illumination of continuous 1064 nm laser beam on the LaTiO3 film through SrTiO3 substrate, the open-circuit photovoltage depended linearly on the illuminated position. The photosensitivity can be modified by bias current. These results indicated that the LaTiO3 films give rise to a potentially photoelectronic device for near infrared position-sensitive detection.

  16. Vibrational spectroscopic investigation of p-, m- and o-nitrobenzonitrile by using Hartree-Fock and density functional theory

    Science.gov (United States)

    Sert, Y.; Ucun, F.

    2013-08-01

    In the present work, the theoretical vibrational spectra of p-, m- and o-nitrobenzonitrile molecules have been analyzed. The harmonic vibrational frequencies and geometric parameters (bond lengths and bond angles) of these molecules have been calculated using ab initio Hartree-Fock and density functional theory methods with 6-311++G(d,p) basis set by Gaussian 03 W, for the first time. Assignments of the vibrational frequencies have been performed by potential energy distribution by using VEDA 4 program. The optimized geometric parameters and harmonic vibrational frequencies have been compared with the corresponding experimental data and seen to be in a good agreement with each other. Also, the highest occupied molecular orbital and lowest unoccupied molecular orbital energies have been obtained.

  17. Moessbauer effect and infrared study of some borate glass containing Mn and Fe oxides

    International Nuclear Information System (INIS)

    Gabr, M.

    2005-01-01

    Lithium borate glasses containing transition metals appeared now of very high technological and scientific interest. Therefore some lithium borate glasses containing mixed transition metal ions (manganese and iron) were investigated. The glass batches were melted at 1250 degree C for three hours and annealed at 350 degree C -over night- to obtain strain free glasses. Moessbauer Effect spectroscopy and Infrared analysis were employed to investigate the structural changes due to the change of their batches composition. Differential thermal analysis, magnetic susceptibility, density and molar volume measurements were also performed to study the effect of changing both manganese and iron oxides at the expense of boron oxide on these properties. Infrared analysis indicated the presence of different structural groups such as BO 3 , BO 4 , FeO 4 and MnO 6 as well as different vibrations indicated the presence of various bonds in the glass network. The values of the characteristic temperatures (T g , T c and T m ) showed gradual increase except those of the last sample where they showed a decrease. The mid sample showed the lowest stability value. It was found that the molar volume showed its highest value at R=0.33 [where R is the ratio of glass network modifier to the glass network former]. After that it showed gradual linear decrease. The magnetic susceptibility measurements showed approximately stable value between R=0.29 and 0.33, then it increased up to R=0.38, and after that, it decreased up to R= 0.43. The obtained magnetic susceptibility values indicated that all these glasses are paramagnetic. The obtained Moessbauer spectra and the calculated parameters confirmed that iron ions participated in the glass network as network former cations. It confirmed also that all glasses reflect paramagnetic character. The observed structural change were explained and correlated with the change of the measured physical properties

  18. Spectra and structure of silicon containing compounds. XXXII. Raman and infrared spectra, conformational stability, vibrational assignment and ab initio calculations of n-propylsilane-d0 and Si-d3.

    Science.gov (United States)

    Durig, James R; Pan, Chunhua; Guirgis, Gamil A

    2003-03-15

    The infrared (3100-40 cm(-1)) and Raman (3100-20 cm(-1)) spectra of gaseous and solid n-propylsilane, CH(3)CH(2)CH(2)SiH(3) and the Si-d(3) isotopomer, CH(3)CH(2)CH(2)SiD(3), have been recorded. Additionally, the Raman spectra of the liquids have been recorded and qualitative depolarization values obtained. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of n-propylsilane dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 220+/-22 cm(-1) (2.63+/-0.26 kJ mol(-1)) with the anti conformer the more stable form. A similar value of 234+/-23 cm(-1) (2.80+/-0.28 kJ mol(-1)) was obtained for deltaH for the Si-d(3) isotopomer. At ambient temperature it is estimated that there is 30+/-2% of the gauche conformer present. The potential function governing the conformation interchange has been estimated from the far infrared spectral data, the enthalpy difference, and the dihedral angle of the gauche conformer, which is compared to the one predicted from ab initio MP2/6-31G(d) calculations. The barriers to conformational interchange are: 942, 970 and 716 cm(-1) for the anti to gauche, gauche to gauche, and gauche to anti conformers, respectively. Relatively complete vibrational assignments are proposed for both the n-propylsilane-d(0) and Si-d(3) molecules based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios, and normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities and depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311 + G(d,p) and 6-311 + G(2

  19. Spectra and structure of silicon containing compounds. XXXII. Raman and infrared spectra, conformational stability, vibrational assignment and ab initio calculations of n-propylsilane-d 0 and Si-d 3

    Science.gov (United States)

    Durig, James R.; Pan, Chunhua; Guirgis, Gamil A.

    2003-03-01

    The infrared (3100-40 cm -1) and Raman (3100-20 cm -1) spectra of gaseous and solid n-propylsilane, CH 3CH 2CH 2SiH 3 and the Si-d 3 isotopomer, CH 3CH 2CH 2SiD 3, have been recorded. Additionally, the Raman spectra of the liquids have been recorded and qualitative depolarization values obtained. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 °C) studies of the infrared spectra of n-propylsilane dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 220±22 cm -1 (2.63±0.26 kJ mol -1) with the anti conformer the more stable form. A similar value of 234±23 cm -1 (2.80±0.28 kJ mol -1) was obtained for Δ H for the Si-d 3 isotopomer. At ambient temperature it is estimated that there is 30±2% of the gauche conformer present. The potential function governing the conformation interchange has been estimated from the far infrared spectral data, the enthalpy difference, and the dihedral angle of the gauche conformer, which is compared to the one predicted from ab initio MP2/6-31G(d) calculations. The barriers to conformational interchange are: 942, 970 and 716 cm -1 for the anti to gauche, gauche to gauche, and gauche to anti conformers, respectively. Relatively complete vibrational assignments are proposed for both the n-propylsilane-d 0 and Si-d 3 molecules based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios, and normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities and depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311+G(d,p) and 6-311+G(2d,2p) basis sets. From the isolated

  20. Vibrational and electronic investigations, thermodynamic parameters, HOMO and LUMO analysis on Lornoxicam by density functional theory

    Science.gov (United States)

    Suhasini, M.; Sailatha, E.; Gunasekaran, S.; Ramkumaar, G. R.

    2015-11-01

    The Fourier transform infrared (FT-IR) and FT-Raman spectra of Lornoxicam were recorded in the region 4000-450 cm-1 and 4000-50 cm-1 respectively. Density functional theory (DFT) has been used to calculate the optimized geometrical parameters, atomic charges, and vibrational wavenumbers and intensity of the vibrational bands. The computed vibrational wave numbers were compared with the FT-IR and FT-Raman experimental data. The computational calculations at DFT/B3LYP level with 6-31G(d,p) and 6-31++G(d,p) basis sets. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the Vibrational modes calculated using Vibrational Energy Distribution Analysis (VEDA 4) program. The oscillator's strength calculated by TD-DFT and Lornoxicam is approach complement with the experimental findings. The NMR chemical shifts 13C and 1H were recorded and calculated using the gauge independent atomic orbital (GIAO) method. The Natural charges and intermolecular contacts have been interpreted using Natural Bond orbital (NBO) analysis and the HOMO-LUMO energy gap has been calculated. The thermodynamic properties like Entropy, Enthalpy, Specific heat capacity and zero vibrational energy have been calculated. Besides, molecular electrostatic potential (MEP) was investigated using theoretical calculations.

  1. Microwave and Submillimeter-Wave Measurements of HD 12C 16O in the ν 4, ν 5, and ν 6 Bands: Evidence of Vibrational Induced Rotational Axis Switching ("VIRAS")

    Science.gov (United States)

    Perrin, A.; Flaud, J.-M.; Margulès, L.; Demaison, J.; Mäder, H.; Wörmke, S.

    2002-12-01

    The rotational spectrum of HDCO in the 4 1, 5 1, and 6 1 excited vibrational states has been investigated in Lille and Kiel using a sample enriched in deuterium. In Lille, the measurements were performed in the millimeter region (160-600 GHz). The spectra in Kiel were recorded using Fourier transform microwave spectrometers in the regions around 8-18 and 18-26 GHz, employing a rectangular waveguide of length 12 m and a circular waveguide of length 36 m, respectively. These results were combined with the 4 1, 5 1, and 6 1 infrared energy levels which were obtained from a previous analysis of FTS spectra of the ν 4 (CHD bend), ν 5 (CHD rocking), and ν 6 bands (out of plane bend) recorded in the 10-μm region at Giessen (A. Perrin, J.-M. Flaud, M. Smirnov, and M. Lock, J. Mol. Spectrosc.203, 175-187 (2000)). The energy level calculation of the 4 1, 5 1, and 6 1 interacting states accounts for the usual A- and B-type Coriolis resonances in the 5 1⇔6 1 and 4 1⇔6 1 off diagonals blocks. In addition, since the energy levels of the 5 1 and 6 1 states are very strongly resonating, it proved necessary, as in our previous study, to use a { Jx, Jz} nonorthorhombic term in the 5 1 and 6 1v-diagonal blocks of the Hamiltonian matrix in order to reproduce properly the observed microwave transitions and infrared energy levels. Therefore, this work confirms that HDCO is a good example of the vibrational induced rotational axis switching ("VIRAS") effect.

  2. Synthesis and characterization of magnetic diphase ZnFe2O4/γ-Fe2O3 electrospun fibers

    International Nuclear Information System (INIS)

    Arias, M.; Pantojas, V.M.; Perales, O.; Otano, W.

    2011-01-01

    Magnetic nanofibers of ZnFe 2 O 4 /γ-Fe 2 O 3 composite were synthesized by electrospinning from a sol-gel solution containing a molar ratio (Fe/Zn) of 3. The effects of the calcination temperature on phase composition, particle size and magnetic properties have been investigated. Zinc ferrite fibers were obtained by calcinating the electrospun fibers in air from 300 to 800 deg. C and characterized by thermogravimetric analyses, Fourier transformed infrared spectroscopy, X-ray photoemission spectroscopy, X-ray diffraction, vibration sample magnetometry and magnetic force microscopy. The resulting fibers, with diameters ranging from 90 to 150 nm, were ferrimagnetic with high saturation magnetization as compared to bulk. An increase in the calcination temperature resulted in an increase in particle size and saturation magnetization. The observed increase in saturation magnetization was most likely due to the formation and growth of ZnFe 2 O 4 /γ-Fe 2 O 3 diphase crystals. The highest saturation magnetization (45 emu/g) was obtained for fibers calcined at 800 deg. C. - Research highlights: → Nanofibers were produced by electrospinning from a sol-gel. → ZnFe 2 O 4 /γ-Fe 2 O 3 formed after cacination in air from 300 to 800 deg. C. → Fibers were ferrimagnetic with high saturation magnetization. → Crystallite particle size and saturation magnetization increase with temperature. → Magnetic domains with sizes similar to topographical grains were observed.

  3. Vibrational relaxation and energy transfer of matrix isolated HCl and DCl

    Energy Technology Data Exchange (ETDEWEB)

    Wiesenfeld, J.M.

    1977-12-01

    Vibrational kinetic and spectroscopic studies have been performed on matrix-isolated HCl and DCl between 9 and 20 K. Vibrational relaxation rates for v = 2 and v = 1 were measured by a tunable infrared laser-induced, time-resolved fluorescence technique. In an Ar matrix, vibrational decay times are faster than radiative and it is found that HCl relaxes about 35 times more rapidly than CCl, in spite of the fact that HCl must transfer more energy to the lattice than DCl. This result is explained by postulating that the rate-determining step for vibrational relaxation produces a highly rotationally excited guest in a V yield R step; rotational relaxation into lattice phonons follows rapidly. HCl v = 1, but not v = 2, excitation rapidly diffuses through the sample by a resonant dipole-dipole vibrational energy transfer process. Molecular complexes, and in particular the HCl dimer, relax too rapidly for direct observation, less than or approximately 1 ..mu..s, and act as energy sinks in the energy diffusion process. The temperature dependence for all these processes is weak--less than a factor of two between 9 and 20 K. Vibrational relaxation of HCl in N/sub 2/ and O/sub 2/ matrices is unobservable, presumably due to rapid V yield V transfer to the host. A V yield R binary collision model for relaxation in solids is successful in explaining the HCl(DCl)/Ar results as well as results of other experimenters. The model considers relaxation to be the result of ''collisions'' due to molecular motion in quantized lattice normal modes--gas phase potential parameters can fit the matrix kinetic data.

  4. Vibrational relaxation and energy transfer of matrix isolated HCl and DCl

    International Nuclear Information System (INIS)

    Wiesenfeld, J.M.

    1977-12-01

    Vibrational kinetic and spectroscopic studies have been performed on matrix-isolated HCl and DCl between 9 and 20 K. Vibrational relaxation rates for v = 2 and v = 1 were measured by a tunable infrared laser-induced, time-resolved fluorescence technique. In an Ar matrix, vibrational decay times are faster than radiative and it is found that HCl relaxes about 35 times more rapidly than CCl, in spite of the fact that HCl must transfer more energy to the lattice than DCl. This result is explained by postulating that the rate-determining step for vibrational relaxation produces a highly rotationally excited guest in a V yield R step; rotational relaxation into lattice phonons follows rapidly. HCl v = 1, but not v = 2, excitation rapidly diffuses through the sample by a resonant dipole-dipole vibrational energy transfer process. Molecular complexes, and in particular the HCl dimer, relax too rapidly for direct observation, less than or approximately 1 μs, and act as energy sinks in the energy diffusion process. The temperature dependence for all these processes is weak--less than a factor of two between 9 and 20 K. Vibrational relaxation of HCl in N 2 and O 2 matrices is unobservable, presumably due to rapid V yield V transfer to the host. A V yield R binary collision model for relaxation in solids is successful in explaining the HCl(DCl)/Ar results as well as results of other experimenters. The model considers relaxation to be the result of ''collisions'' due to molecular motion in quantized lattice normal modes--gas phase potential parameters can fit the matrix kinetic data

  5. Bandshapes in vibrational spectroscopy

    International Nuclear Information System (INIS)

    Dijkman, F.G.

    1978-01-01

    A detailed account is given of the development of modern bandshape theories since 1965. An investigation into the relative contributions of statistical irreversible relaxation processes is described, for a series of molecules in which gradually the length of one molecular axis is increased. An investigation into the theoretical and experimental investigation of the broadening brought about by the effect of fluctuating intermolecular potentials on the vibrational frequency is also described. The effect of an intermolecular perturbative potential on anharmonic and Morse oscillators is discussed and the results are presented of a computation on the broadening of the vibrational band of some diatomic molecules in a rigid lattice type solvent. The broadening of the OH-stretching vibration in a number of aliphatic alcohols, the vibrational bandshapes of the acetylenic C-H stretching vibration and of the symmetric methyl stretching vibration are investigated. (Auth./ C.F.)

  6. Protonated Nitrous Oxide, NNOH(+): Fundamental Vibrational Frequencies and Spectroscopic Constants from Quartic Force Fields

    Science.gov (United States)

    Huang, Xinchuan; Fortenberry, Ryan C.; Lee, Timothy J.

    2013-01-01

    The interstellar presence of protonated nitrous oxide has been suspected for some time. Using established high-accuracy quantum chemical techniques, spectroscopic constants and fundamental vibrational frequencies are provided for the lower energy O-protonated isomer of this cation and its deuterated isotopologue. The vibrationally-averaged B0 and C0 rotational constants are within 6 MHz of their experimental values and the D(subJ) quartic distortion constants agree with experiment to within 3%. The known gas phase O-H stretch of NNOH(+) is 3330.91 cm(exp-1), and the vibrational configuration interaction computed result is 3330.9 cm(exp-1). Other spectroscopic constants are also provided, as are the rest of the fundamental vibrational frequencies for NNOH(+) and its deuterated isotopologue. This high-accuracy data should serve to better inform future observational or experimental studies of the rovibrational bands of protonated nitrous oxide in the ISM and the laboratory.

  7. High resolution spectroscopy of 1,2-difluoroethane in a molecular beam: A case study of vibrational mode-coupling

    Science.gov (United States)

    Mork, Steven W.; Miller, C. Cameron; Philips, Laura A.

    1992-09-01

    The high resolution infrared spectrum of 1,2-difluoroethane (DFE) in a molecular beam has been obtained over the 2978-2996 cm-1 spectral region. This region corresponds to the symmetric combination of asymmetric C-H stretches in DFE. Observed rotational fine structure indicates that this C-H stretch is undergoing vibrational mode coupling to a single dark mode. The dark mode is split by approximately 19 cm-1 due to tunneling between the two identical gauche conformers. The mechanism of the coupling is largely anharmonic with a minor component of B/C plane Coriolis coupling. Effects of centrifugal distortion along the molecular A-axis are also observed. Analysis of the fine structure identifies the dark state as being composed of C-C torsion, CCF bend, and CH2 rock. Coupling between the C-H stretches and the C-C torsion is of particular interest because DFE has been observed to undergo vibrationally induced isomerization from the gauche to trans conformer upon excitation of the C-H stretch.

  8. Study on the surface hydroxyl group on solid breeding materials by infrared absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Satoru; Taniguchi, Masaki [Tokyo Univ. (Japan). Faculty of Engineering

    1996-10-01

    Hydroxyl groups on the surface of Li{sub 2}O were studied by using a diffuse reflectance method with Fourier transform infrared absorption spectroscopy at high temperature up to 973K under controlled D{sub 2}O or D{sub 2} partial pressure. It was found that hydroxyl groups could exist on Li{sub 2}O surface up to 973K under Ar atmosphere. Under D{sub 2}O containing atmosphere, only the sharp peak at 2520cm{sup -1} was observed at 973K in the O-D stretching vibration region. Below 973K, multiple peaks due to the surface -OD were observed and they showed different behavior with temperature or atmosphere. Multiple peaks mean that surface is not homogeneous for D{sub 2}O adsorption. Assignment of the observed peaks to the surface bonding structure was also discussed. (author)

  9. Vibrational spectroscopic study of terbutaline hemisulphate

    Science.gov (United States)

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-05-01

    The Raman spectrum of terbutaline hemisulphate is reported for the first time, and molecular assignments are proposed on the basis of ab initio BLYP DFT calculations with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation; these predictions compare favourably with the observed vibrational spectra. Comparison with previously published infrared data explains several spectral features. The results from this study provide data that can be used for the preparative process monitoring of terbutaline hemisulphate, an important β 2 agonist drug in various dosage forms and its interaction with excipients and other components.

  10. Safranin-O dye in the ground state. A study by density functional theory, Raman, SERS and infrared spectroscopy

    Science.gov (United States)

    Lofrumento, C.; Arci, F.; Carlesi, S.; Ricci, M.; Castellucci, E.; Becucci, M.

    2015-02-01

    The analysis of ground state structural and vibrational properties of Safranin-O is presented. The experimental results, obtained by FTIR, Raman and SERS spectroscopy, are discussed in comparison to the results of DFT calculations carried out at the B3LYP/6-311 + G(d,p) level of theory. The calculated spectra reproduce quite satisfactorily the experimental data. The calculated Safranin-O equilibrium structure and the assignment of the vibrational spectra are reported as well. From the changes between Raman and SERS spectra a model is presented for the interaction of Safranin-O with silver nanoparticles.

  11. Phase transition of Ni-Mn-Ga alloy powders prepared by vibration ball milling

    International Nuclear Information System (INIS)

    Tian, B.; Chen, F.; Tong, Y.X.; Li, L.; Zheng, Y.F.; Liu, Y.; Li, Q.Z.

    2011-01-01

    Research highlights: → The vibration ball milling with a high milling energy introduces the atomic disorder and large lattice distortion in the alloy during milling and makes the formation of disordered fcc structure phase in the alloy. → The transition temperature and activation energy for disordered fcc → disordered bcc are ∼320 o C and 209 ± 8 kJ/mol, respectively. → The alloy powders annealed at 800 o C for 1 h show a one-stage martensitic transformation with quite lower latent heat compared to the bulk alloy. - Abstract: This study investigated the phase transformation of the flaky shaped Ni-Mn-Ga powder particles with thickness around 1 μm prepared by vibration ball milling and post-annealing. The SEM, XRD, DSC and ac magnetic susceptibility measurement techniques were used to characterize the Ni-Mn-Ga powders. The structural transition of Heusler → disordered fcc occurred in the powders prepared by vibration ball milling (high milling energy) for 4 h, which was different from the structural transition of Heusler → disordered fct of the powders fabricated by planetary ball milling (low milling energy) for 4 h. The two different structures after ball milling should be due to the larger lattice distortion occurred in the vibration ball milling process than in the planetary ball milling process. The structural transition of disordered fcc → disordered bcc took place at ∼320 o C during heating the as-milled Ni-Mn-Ga powders, which was attributed to the elimination of lattice distortion caused by ball milling. The activation energy for this transition was 209 ± 8 kJ/mol. The Ni-Mn-Ga powder annealed at 800 o C mainly contained Heusler austenite phase at room temperature and showed a low volume of martensitic transformation upon cooling. The inhibition of martensitic transformation might be attributed to the reduction of grain size in the annealed Ni-Mn-Ga particles.

  12. Atom-radical reaction dynamics of O(3P)+C3H5→C3H4+OH: Nascent rovibrational state distributions of product OH

    Science.gov (United States)

    Park, Jong-Ho; Lee, Hohjai; Kwon, Han-Cheol; Kim, Hee-Kyung; Choi, Young-Sang; Choi, Jong-Ho

    2002-08-01

    The reaction dynamics of ground-state atomic oxygen [O(3P)] with allyl radicals (C3H5) has been investigated by applying a combination of crossed beams and laser induced fluorescence techniques. The reactants O(3P) and C3H5 were produced by the photodissociation of NO2 and the supersonic flash pyrolysis of precursor allyl iodide, respectively. A new exothermic channel of O(3P)+C3H5→C3H4+OH was observed and the nascent internal state distributions of the product OH (X 2Π:υ″=0,1) showed substantial bimodal internal excitations of the low- and high-N″ components without Λ-doublet and spin-orbit propensities in the ground and first excited vibrational states. With the aid of the CBS-QB3 level of ab initio theory and Rice-Ramsperger-Kassel-Marcus calculations, it is predicted that on the lowest doublet potential energy surface the major reaction channel of O(3P) with C3H5 is the formation of acrolein (CH2CHCHO)+H, which is consistent with the previous bulk kinetic experiments performed by Gutman et al. [J. Phys. Chem. 94, 3652 (1990)]. The counterpart C3H4 of the probed OH product in the title reaction is calculated to be allene after taking into account the factors of reaction enthalpy, barrier height and the number of intermediates involved along the reaction pathway. On the basis of population analyses and comparison with prior calculations, the statistical picture is not suitable to describe the reactive atom-radical scattering processes, and the dynamics of the title reaction is believed to proceed through two competing dynamical pathways. The major low N″-components with significant vibrational excitation may be described by the direct abstraction process, while the minor but extraordinarily hot rotational distribution of high N″-components implies that some fraction of reactants is sampled to proceed through the indirect short-lived addition-complex forming process.

  13. The dimers of glyoxal and acrolein with H 2O and HF: Negative intramolecular coupling and blue-shifted C-H stretch

    Science.gov (United States)

    Karpfen, Alfred; Kryachko, Eugene S.

    2010-04-01

    The structures and the vibrational spectra of the hydrogen-bonded complexes: glyoxal-H 2O, glyoxal-HF, acrolein-H 2O, and acrolein-HF, are investigated within the MP2/aug-cc-pVTZ computational approach. It is demonstrated that the calculated blue shifts of the C-H stretching frequencies in the glyoxal-H 2O complexes are only indirectly pertinent to hydrogen bonding to the C-H group. The comparison with the glyoxal-HF and the acrolein-HF complexes reveals that these blue shifts are a direct consequence of a negative intramolecular coupling between vicinal C dbnd O and C-H bonds in the aldehyde groups of isolated glyoxal and acrolein molecules. To support this interpretation, the halogen-bonded complexes glyoxal-BrF and acrolein-BrF are discussed.

  14. Design and fabrication of a double-sided piezoelectric transducer for harvesting vibration power

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Wei-Tsai; Chen, Ying-Chung [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC (China); Kao, Kuo-Sheng [Department of Computer and Communication, Shu-Te University, Kaohsiung, Taiwan, ROC (China); Chu, Yu-Hsien [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC (China); Cheng, Chien-Chuan, E-mail: chengccc@dlit.edu.tw [Department of Electronic Engineering, De Lin Institute of Technology, Taipei, Taiwan, ROC (China)

    2013-02-01

    This investigation examines a means of integrating high-performance ZnO piezoelectric thin films with a flexible stainless steel substrate (SUS304) to fabricate a double-sided piezoelectric transducer for vibration-energy harvesting applications. The double-sided piezoelectric transducer is constructed by depositing ZnO piezoelectric thin films on both the front and the back sides of the SUS304 substrate. The titanium and platinum layers were deposited using a dual-gun DC sputtering system between the ZnO piezoelectric thin film and the back side of the SUS304 substrate. The scanning electron microscopy and X-ray diffraction of ZnO piezoelectric films reveal a rigid surface structure and a highly c-axis-preferring orientation. To fabricate a transducer with a low resonant frequency, a tip-mass of 0.5 g and a vibration-area of 1 cm{sup 2} are designed, based on the cantilever vibration theory. The maximum open circuit voltage of the power transducer is approximately 18 V. After rectification and filtering through a 33 nF capacitor, a specific power output of 1.31 μW/cm{sup 2} is obtained from the transducers with a load resistance of 6 MΩ. The variation of the power output of ± 0.001% is obtained after 24-hour continuous test. - Highlights: ► A double-sided piezoelectric transducer is fabricated with the ZnO thin films. ► Vibrated frequency of a double-sided transducer is designed and presented. ► A maximum output power of 3.23 μW/cm{sup 2} is obtained under turbulent vibration.

  15. The radiative association of C and O and C(+) and O

    International Nuclear Information System (INIS)

    Dalgarno, A.; Du, M.L.; You, J.H.

    1990-01-01

    The formation of CO(+) and CO in the expanding metal-rich ejecta of SN 1987A has been discussed by Lepp et al. (1988) and by Petuchowski et al. (1989), who concluded that it probably proceeded through the radiative association of C(+) and O to form CO(+) by the reactions (1) C(+) + O - CO(+) + hnu, followed by charge transfer of CO(+) with O, (2) CO(+) + O - CO + O(+), and by the radiative association of C and O to form CO, (3) C + O - CO + hnu. Petuchowski et al. estimated the rate coefficients of reactions (1) and (3) and concluded that the sequence of (1) and (2) constitutes the major source of CO. An alternative calculation of the rate coefficients is made here that indicates that reaction (3) is probably more important. 36 refs

  16. X-ray diffraction, vibrational and quantum chemical investigations of 2-methyl-4-nitroanilinium trichloroacetate trichloroacetic acid

    Science.gov (United States)

    Arjunan, V.; Marchewka, Mariusz K.; Pietraszko, A.; Kalaivani, M.

    2012-11-01

    The structural investigations of the molecular complex of 2-methyl-4-nitroaniline with trichloroacetic acid, namely 2-methyl-4-nitroanilinium trichloroacetate trichloroacetic acid (C11H10Cl6N2O6) have been performed by means of single crystal and powder X-ray diffraction method. The complex was formed with accompanying proton transfer from trichloroacetic acid molecule to 2-methyl-4-nitroaniline. The studied crystal is built up of singly protonated 2-methyl-4-nitroanilinium cations, trichloroacetate anions and neutral trichloroacetic acid molecules. The crystals are monoclinic, space group P21/c, with a = 14.947 Å, b = 6.432 Å, c = 19.609 Å and Z = 4. The vibrational assignments and analysis of 2-methyl-4-nitroanilinium trichloroacetate trichloroacetic acid have also been performed by FTIR, FT-Raman and far-infrared spectral studies. More support on the experimental findings were added from the quantum chemical studies performed with DFT (B3LYP) method using 6-31G**, cc-pVDZ, 6-31G and 6-31++G basis sets. The structural parameters, energies, thermodynamic parameters and the NBO charges of 2M4NATCA were also determined by the DFT methods.

  17. Sono-chemical Synthesis Fe3O4-Mg(OH2 Nanocomposite and Its Photo-catalyst Investigation in Methyl Orange Degradation

    Directory of Open Access Journals (Sweden)

    G. Nabiyouni

    2014-10-01

    Full Text Available In this work firstly Fe3O4 nanoparticles were synthesized via a sono-chemical method. At the second step magnesium hydroxide shell was synthesized on the magnetite-core under ultrasonic waves. For preparation Fe3O4-MgO the product was calcinated at 400 ºC for 2h. Properties of the product were examined by X-ray diffraction pattern (XRD, scanning electron microscope (SEM and Fourier transform infrared (FT-IR spectroscopy. Vibrating sample magnetometer (VSM shows nanoparticles exhibit super-paramagnetic behavior. The photo-catalytic behavior of Fe3O4-Mg(OH2  nanocomposite was evaluated using the degradation of a methyl orange (MeO aqueous solution under ultraviolet (UV light irradiation. The results show that Fe3O4-Mg(OH2 nanocomposites have applicable magnetic and photo-catalytic performance.

  18. Electron dynamics in films made of transition metal nanograins embedded in SiO[sub 2]: Infrared reflectivity and nanoplasma infrared resonance

    KAUST Repository

    Massa, Néstor E.; Denardin, Juliano C.; Socolovsky, Leandro M.; Knobel, Marcelo; Zhang, Xixiang

    2009-01-01

    polaron fits we identify those phonons as glass vibrational modes. Ni0.61(SiO2)0.39, with a metal fraction closer to the percolation threshold, undergoes a metal-nonmetal transition at ∼77 K. Here, as it is suggested by the scattering rate nearly quadratic

  19. Infrared spectrum and compressibility of Ti3GeC2 to 51 GPa

    International Nuclear Information System (INIS)

    Manoun, Bouchaib; Yang, H.; Saxena, S.K.; Ganguly, A.; Barsoum, M.W.; El Bali, B.; Liu, Z.X.; Lachkar, M.

    2007-01-01

    Using a synchrotron radiation source and a diamond anvil cell, we measured the pressure dependence of the lattice parameters of a polycrystalline Ti 3 GeC 2 sample up to a pressure of 51 GPa. No phase transformations were observed. Like Ti 3 SiC 2 , and most other compounds belonging to the same family of ternary carbides and nitrides, the so-called MAX phases, the compressibility of Ti 3 GeC 2 along the c axis is greater than that along the a axis. The bulk modulus is 197 ± 4 GPa, with a pressure derivative of 3.4 ± 0.1. We also characterized Ti 3 GeC 2 by infrared spectroscopy; four of the five expected infrared modes were observed for this material

  20. Structure, spectra and thermal, mechanical, Faraday rotation properties of novel diamagnetic SeO2-PbO-Bi2O3-B2O3 glasses

    Science.gov (United States)

    Chen, Qiuling; Su, Kai; Li, Yantao; Zhao, Zhiwei

    2018-06-01

    Faraday rotation diamagnetic glass has attracted research attentions in photonics, sensing and magneto optical devices due to their high refractive index, wide transmittance in UV and Fourier transform infrared (FT-IR) range and temperature independent Faraday rotation. Selenite modified heavy metal oxides glasses with composition of xSeO2-(10-x) B2O3-45PbO-45Bi2O3 (x = 0, 1, 5 and 10mol%) and 15%SeO2-40%PbO-45%Bi2O3 have been fabricated by melt-quenching method in present study. The influence of SeO2 on glass forming ability, thermal, mechanical properties and Faraday rotation were evaluated through X-ray Diffraction (XRD), Fourier transforms infrared spectra (FT-IR), Raman, X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), Vicker's hardness and Verdet constant measurements. XRD spectra reveal that the good vitrification was achieved for glass with SeO2 amounts ≤10% even without B2O3. FT-IR, Raman and XPS spectra ascertain the existence of characteristic vibration of SeO4, SeO3, PbO4, BiO3 and BO3 units. The incorporation of SeO2 increases the connectivity of glassy network by increasing the Tg, thermal stability and mechanical hardness. The small band gap, high polarizable Se4+ ions and isolated SeO3 units contribute to Faraday rotation improvement.

  1. Fourier transform infrared studies of reduction of nitric oxide by ethylene over V[sub 2]O[sub 5] layered on ZrO[sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Takashi; Hatayama, Fumikazu (School of Allied Medical Sciences, Kobe University, Kobe (Japan)); Toda, Yoshio (Department of Industrial Chemistry, Osaka Prefectural Technical College, Osaka (Japan)); Konishi, Shoichiro; Miyata, Hisashi (Department of Applied Chemistry, University of Osaka Prefecture, Osaka (Japan))

    1994-12-31

    The reduction mechanism of nitric oxide by ethylene in the presence or absence of oxygen on mono- and multi-layer V[sub 2]O[sub 5]/ZrO[sub 2] and the structures of the catalysts under reaction conditions have been studied by Fourier transform infrared spectroscopy as well as by analysis of the reaction products. For the reaction of a mixture of NO+C[sub 2]H[sub 4], only carboxylate species were observed at higher temperatures, although at lower temperatures nitrate species were formed. No bands due to a complex of NO+C[sub 2]H[sub 4] were observed. From the results, it is proposed that ethylene is oxidized by the catalyst to form carbon dioxide via carbonyl and carboxylate species and nitric oxide reoxidizes the catalyst to form nitrogen. The quantitative analysis of the V=O band in the region of 1100-900 cm[sup -1] by band shape analysis indicates that only the surface V=O species in the top layer of the catalyst interacts with the adsorbed species

  2. Nanoantennas for surface enhanced infrared spectroscopy: Effects of interaction and higher order resonant excitations

    Directory of Open Access Journals (Sweden)

    J. Aizpurua

    2011-09-01

    Full Text Available The sensitivity in surface enhanced infrared spectroscopy (SEIRS strongly depends on where the resonant excitation is spectrally located compared to the molecular vibration that is to be enhanced. In this contribution, we study the effect of coupling in the electromagnetic properties of 2D gold nanorod arrays in the IR. We also study the SEIRS activity of higher order resonant excitations in long nanoantennas to identify polaritonic signals of a supporting SiO2 layer with nanometer thickness (3 nm on a silicon substrate.

  3. Vibrational Investigations of Silver-Doped Hydroxyapatite with Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Carmen Steluta Ciobanu

    2013-01-01

    Full Text Available Silver-doped hydroxyapatite (Ag:HAp was obtained by coprecipitation method. Transmission electron microscopy (TEM, infrared, and Raman analysis confirmed the development of Ag:HAp with good crystal structure. Transmission electron microscopy analysis showed an uniform ellipsoidal morphology with particles from 5 nm to 15 nm. The main vibrational bands characteristic to HAp were identified. The bands assigned to phosphate vibrational group were highlighted in infrared and Raman spectra. The most intense peak Raman spectrum is the narrow band observed at 960 cm−1. In this article Ag:HAp-NPs were also evaluated for their antimicrobial activities against gram-positive, gram-negative, and fungal strains. The specific antimicrobial activity revealed by the qualitative assay demonstrates that our compounds are interacting differently with the microbial targets.

  4. Infrared spectroscopy of different phosphates structures.

    Science.gov (United States)

    Jastrzębski, W; Sitarz, M; Rokita, M; Bułat, K

    2011-08-15

    Infrared (IR) spectroscopic studies of mineral and synthetic phosphates have been presented. The interpretation of the spectra has been preceded by the isolated [PO(4)](3-) tetrahedron spectra analyse. The K(3)PO(4) saturated aqueous solution was measured in the special cell for liquids. The obtained IR results have been compared with the theoretical number of IR-active modes. The number and positions of the bands due to P-O vibrations have been established. The phase composition of the phosphates has been determined using XRD and IR spectroscopy methods. The influence of non-tetrahedral cations on the shape of the spectra and the positions of bands has been analysed and the crystalline field splitting effect has been discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Influence of Zn/Fe Molar Ratio on Optical and Magnetic Properties of ZnO and ZnFe2O4 Nanocrystal as Calcined Products of Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Abdullah Ahmed Ali Ahmed

    2014-01-01

    Full Text Available The coprecipitation method has been used to synthesize layered double hydroxide (Zn-Fe-LDH nanostructure at different Zn2+/Fe3+ molar ratios. The structural properties of samples were studied using powder X-ray diffraction (PXRD. LDH samples were calcined at 600°C to produce mixed oxides (ZnO and ZnFe2O4. The crystallite size of mixed oxide was found in the nanometer scale (18.1 nm for ZnFe2O4 and 43.3 nm for ZnO. The photocatalytic activity of the calcination products was investigated using ultraviolet-visible-near infrared (UV-VIS-NIR diffuse reflectance spectroscopy. The magnetic properties of calcined LDHs were investigated using a vibrating sample magnetometer (VSM. The calcined samples showed a paramagnetic behavior for all Zn2+/Fe3+ molar ratios. The effect of molar ratio on magnetic susceptibility of the calcined samples was also studied.

  6. Infrared spectroscopy of flavones and flavonols. Reexamination of the hydroxyl and carbonyl vibrations in relation to the interactions of flavonoids with membrane lipids

    Science.gov (United States)

    Baranović, Goran; Šegota, Suzana

    2018-03-01

    Detailed vibrational assignments for twelve flavonoids (seven flavones (flavone, 3- and 5-hydroxyflavone, chrysin, apigenin, fisetin and luteolin) and five flavonols (galangin, kaempferol, quercetin, morin and myricetin)) have been made based on own and reported experimental data and calculations at the B3LYP/6-31 + G(d,p) level of theory. All the molecules are treated in a uniform way by using the same set of redundancy-free set of internal coordinates. A generalized harmonic mode mixing is used to corroborate the vibrational characteristics of this important class of molecules. Each flavonoid molecule can be treated from the vibrational point of view as made of relatively weakly coupled chromone and phenyl part. It has been shown that the strongest band around 1600 cm- 1 need not be attributable to the Cdbnd O stretching. The way the vibrations of any of the hydroxyl groups are mixed with ring vibrations and vibrations of other neighboring hydroxyl groups is rather involved. This imposes severe limitations on any attempt to describe normal modes of a flavonol in terms of hydroxyl or carbonyl group vibrations. The role of water molecules in the appearance of flavonoid IR spectra is emphasized. Knowing for the great affinity of phosphate groups in lipids towards water, the immediate consequence is a reasonable assumption that flavonoid lipid interactions is mediated by water.

  7. Infrared optical constants, dielectric constants, molar polarizabilities, transition moments, dipole moment derivatives and Raman spectrum of liquid cyclohexane

    Science.gov (United States)

    Keefe, C. Dale; Pickup, Janet E.

    2009-06-01

    Previous studies have been done in this laboratory focusing on the optical properties of several liquid aromatic and aliphatic hydrocarbons in the infrared. The current study reports the infrared and absorption Raman spectra of liquid cyclohexane. Infrared spectra were recorded at 25 °C over a wavenumber range of 7400-490 cm -1. Infrared measurements were taken using transmission cells with pathlengths ranging from 3 to 5000 μm. Raman spectra were recorded between 3700 and 100 cm -1 at 25 °C using a 180° reflection geometry. Ab initio calculations of the vibrational wavenumbers at the B3LYP/6311G level of theory were performed and used to help assign the observed IR and Raman spectra. Extensive assignments of the fundamentals and binary combinations observed in the infrared imaginary molar polarizability spectrum are reported. The imaginary molar polarizability spectrum was curve fitted to separate the intensity from the various transitions and used to determine the transition moments and magnitudes of the derivatives of the dipole moment with respect to the normal coordinates for the fundamentals.

  8. Molecular elimination of Br2 in photodissociation of CH2BrC(O)Br at 248 nm using cavity ring-down absorption spectroscopy.

    Science.gov (United States)

    Fan, He; Tsai, Po-Yu; Lin, King-Chuen; Lin, Cheng-Wei; Yan, Chi-Yu; Yang, Shu-Wei; Chang, A H H

    2012-12-07

    The primary elimination channel of bromine molecule in one-photon dissociation of CH(2)BrC(O)Br at 248 nm is investigated using cavity ring-down absorption spectroscopy. By means of spectral simulation, the ratio of nascent vibrational population in v = 0, 1, and 2 levels is evaluated to be 1:(0.5 ± 0.1):(0.2 ± 0.1), corresponding to a Boltzmann vibrational temperature of 581 ± 45 K. The quantum yield of the ground state Br(2) elimination reaction is determined to be 0.24 ± 0.08. With the aid of ab initio potential energy calculations, the obtained Br(2) fragments are anticipated to dissociate on the electronic ground state, yielding vibrationally hot Br(2) products. The temperature-dependence measurements support the proposed pathway via internal conversion. For comparison, the Br(2) yields are obtained analogously from CH(3)CHBrC(O)Br and (CH(3))(2)CBrC(O)Br to be 0.03 and 0.06, respectively. The trend of Br(2) yields among the three compounds is consistent with the branching ratio evaluation by Rice-Ramsperger-Kassel-Marcus method. However, the latter result for each molecule is smaller by an order of magnitude than the yield findings. A non-statistical pathway so-called roaming process might be an alternative to the Br(2) production, and its contribution might account for the underestimate of the branching ratio calculations.

  9. Study of vibrational and magnetic excitations in Ni sub c Mg sub 1 sub - sub c O solid solutions by Raman spectroscopy

    CERN Document Server

    Cazzanelli, E; Mariotto, G; Mironova-Ulmane, N

    2003-01-01

    The Raman scattering by phonons and magnons was studied for the first time in the polycrystalline solid solutions Ni sub c Mg sub 1 sub - sub c O. The experimental Raman spectrum for c = 0.9 is similar to that of NiO and consists of six well resolved bands, whose origins are the disorder-induced one-phonon scattering (bands at 400 and 500 cm sup - sup 1), two-phonon scattering (bands at 750, 900, and 1100 cm sup - sup 1), and two-magnon scattering (the broad band at approx 1400 cm sup - sup 1). We found that the dependence of the two-magnon band in solid solutions on the composition and temperature is consistent with their magnetic phase diagram. We also observed that the relative contribution of two-phonon scattering decreases strongly upon dilution with magnesium ions and disappears completely at c < 0.5. Such behaviour is explained in terms of a disorder-induced effect, which increases the probability of the one-phonon scattering processes.

  10. Kinetic model of vibrational relaxation in a humid-air pulsed corona discharge

    International Nuclear Information System (INIS)

    Komuro, Atsushi; Ono, Ryo; Oda, Tetsuji

    2010-01-01

    The effect of humidity on the vibrational relaxation of O 2 (v) and N 2 (v) in a humid-air pulsed corona discharge is studied using a kinetic model. We previously showed that humidity markedly increases the vibration-to-translation (V-T) rate of molecules in a humid-air pulsed corona discharge by measuring O 2 (v) density (Ono et al 2010 Plasma Sources Sci. Technol. 19 015009). In this paper, we numerically calculate the vibrational kinetics of O 2 , N 2 and H 2 O to study the reason behind the acceleration of V-T in the presence of humidity. The calculation closely reproduces the measured acceleration of V-T due to humidity, and shows that the increase in the V-T rate is caused by the fast vibration-to-vibration (V-V) processes of O 2 -H 2 O and N 2 -H 2 O and the subsequent rapid V-T process of H 2 O-H 2 O. In addition, it is shown that O atom density is also important in the vibrational kinetics owing to the rapid V-T process of O 2 -O.

  11. Infrared spectroscopic and theoretical study of the HC2n+1O+ (n = 2-5) cations

    Science.gov (United States)

    Jin, Jiaye; Li, Wei; Liu, Yuhong; Wang, Guanjun; Zhou, Mingfei

    2017-06-01

    The carbon chain cations, HC2n+1O+ (n = 2-5), are produced via pulsed laser vaporization of a graphite target in supersonic expansions containing carbon monoxide and hydrogen. The infrared spectra are measured via mass-selected infrared photodissociation spectroscopy of the CO "tagged" [HC2n+1O.CO]+ cation complexes in the 1600-3500 cm-1 region. The geometries and electronic ground states of these cation complexes are determined by their infrared spectra compared to the predications of theoretical calculations. All of the HC2n+1O+ (n = 2-5) core cations are characterized to be linear carbon chain derivatives terminated by hydrogen and oxygen, which have the closed-shell singlet ground states with polyyne-like carbon chain structures.

  12. Thermal infrared and microwave absorbing properties of SrTiO3/SrFe12O19/polyaniline nanocomposites

    International Nuclear Information System (INIS)

    Hosseini, Seyed Hossein; Zamani, Parisa; Mousavi, S.Y.

    2015-01-01

    Graphical abstract: We have developed a new perspective of applications and properties of conducting polymers. The combination of absorption ability prepared nanocomposites in the present of PANI display a great potential in organization of shielding structures into thermal IR and microwave. Further investigations using other conducting polymers to demonstrate their capability for advance thermal IR and microwave shielding devices is under way. The application of these samples may improve the IR thermographic detection, catalysis, sensors, magnetic data storage, electromagnetic resonance wave absorption, photonic crystals, and microelectronic devices and military aspects. - Highlights: • The SrTiO 3 /SrFe 12 O 19 /PANI exhibited electric and electromagnetic properties. • The SrTiO 3 /SrFe 12 O 19 /PANI has shielding structures into thermal IR and microwave. • Increasing weight ratios and thicknesses will increase thermal IR ability. • Increasing weight ratios and thicknesses will increase microwave absorption ability. - Abstract: Polyaniline (PANI) as a unique polymer that also has electromagnetic absorption used as the substrate. In this research, SrTiO 3 was synthesized as IR absorbent and core and then SrFe 12 O 19 as microwave absorbent was prepared on SrTiO 3 via co-precipitation method as the first shell. As the next step, PANI was coated on SrTiO 3 /SrFe 12 O 19 nanoparticles via in situ polymerization by multi core–shell structures (SrTiO 3 /SrFe 12 O 19 /PANI). Nanometer size and structures of samples were measured by TEM, XRD and FTIR. Morphology of nanocomposite was showed by SEM images. The magnetic and electric properties were also performed by VSM and four probe techniques. Thermal infrared (IR) absorption and microwave reflection loss of nanocomposites were investigated at 10–40 μm and 8–12 GHz, IR and microwave frequencies, respectively. The results showed that the SrTiO 3 /SrFe 12 O 19 /PANI nanocomposites have good compatible

  13. Vibrational analysis and thermodynamic properties of C120 nanotorus: a DFT study

    International Nuclear Information System (INIS)

    López-Chávez, Ernesto; Cruz-Torres, Armando; Landa Castillo-Alvarado, Fray de; Ortíz-López, Jaime; Peña-Castañeda, Yésica A.; Martínez-Magadán, José Manuel

    2011-01-01

    Density functional theory (DFT) computational methods are applied to a C 120 carbon nanotorus studied as an isolated molecular species, using the functional GGA PW91. This toroidal form of carbon contains five fold, six fold, and sevenfold rings. The calculated cohesive energy of the nanotorus, indicates that the ground state of this structure is energetically more stable than that of fullerene C 60 . Geometry and stability, Raman and IR vibrational analysis and thermodynamic properties have been reported and compared to the values obtained by other authors.

  14. Electromagnetic excitation of phonons at C(001) surfaces

    International Nuclear Information System (INIS)

    Perez-Sanchez, F L; Perez-Rodriguez, F

    2009-01-01

    The photon-phonon coupling at C(001)-(2 x 1) surfaces and its manifestation in far-infrared reflectance anisotropy spectra (FIR-RAS) are theoretically investigated. We solve the coupled system of equations for the electromagnetic field and lattice vibrations, described within the adiabatic bond charge model (ABCM), with the method of expansion into bulk phonon and photon modes. The calculated FIR-RAS exhibit resonances associated with zone-center surface phonons in good agreement with available HREELS experiments and predictions of vibrational modes for diamond (001)-(2 x 1) surfaces from ABCM and ab initio calculations. Interestingly, the reflectance anisotropy spectra for a C(001)-(2 x 1) surface turn out to be qualitatively different from the spectra for a Si(001)-(2 x 1) surface, reported previously.

  15. Electromagnetic excitation of phonons at C(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Sanchez, F L [Escuela de Ciencias, Universidad Autonoma ' Benito Juarez' de Oaxaca, Avenida Universidad S/N, Ex-Hacienda de Cinco Senores, Ciudad Universitaria, Oaxaca de Juarez, Oaxaca, 68120 (Mexico); Perez-Rodriguez, F, E-mail: fperez@sirio.ifuap.buap.m [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Apartado Post. J-48, Puebla 72570 (Mexico)

    2009-09-02

    The photon-phonon coupling at C(001)-(2 x 1) surfaces and its manifestation in far-infrared reflectance anisotropy spectra (FIR-RAS) are theoretically investigated. We solve the coupled system of equations for the electromagnetic field and lattice vibrations, described within the adiabatic bond charge model (ABCM), with the method of expansion into bulk phonon and photon modes. The calculated FIR-RAS exhibit resonances associated with zone-center surface phonons in good agreement with available HREELS experiments and predictions of vibrational modes for diamond (001)-(2 x 1) surfaces from ABCM and ab initio calculations. Interestingly, the reflectance anisotropy spectra for a C(001)-(2 x 1) surface turn out to be qualitatively different from the spectra for a Si(001)-(2 x 1) surface, reported previously.

  16. Alignment control of columnar liquid crystals with wavelength tunable CO2 laser irradiation

    International Nuclear Information System (INIS)

    Monobe, Hirosato; Awazu, Kunio; Shimizu, Yo

    2008-01-01

    Infrared-induced alignment change with wavelength tunable CO 2 laser irradiation for columnar liquid crystal domains was investigated for a liquid crystalline triphenylene derivative. A uniformly aligned alignment change of domains was observed when a chopped linearly polarized infrared laser light corresponding to the wavelength of the aromatic C-O-C stretching vibration band (9.65 μm) was irradiated. The results strongly imply that the infrared irradiation is a possible technique for device fabrication by use of columnar mesophase as a liquid crystalline semiconductor

  17. Gas sensing properties and in situ diffuse reflectance infrared Fourier transform spectroscopy study of trichloroethylene adsorption and reactions on SnO2 films

    Science.gov (United States)

    Zhang, Zhenxin; Huang, Kaijin; Yuan, Fangli; Xie, Changsheng

    2014-05-01

    The detection of trichloroethylene has attracted much attention because it has an important effect on human health. The sensitivity of the SnO2 flat-type coplanar gas sensor arrays to 100 ppm trichloroethylene in air was investigated. The adsorption and surface reactions of trichloroethylene were investigated at 100-200 °C by in-situ diffuse reflection Fourier transform infrared spectroscopy (DIRFTS) on SnO2 films. Molecularly adsorbed trichloroethylene, dichloroacetyl chloride (DCAC), phosgene, HCl, CO, H2O, CHCl3, Cl2 and CO2 surface species are formed during trichloroethylene adsorption at 100-200 °C. A possible mechanism of the reaction process is discussed.

  18. The Compositional Evolution of C/2012 S1 (ISON) from Ground-Based High-Resolution Infrared Spectroscopy as Part of a Worldwide Observing Campaign

    Science.gov (United States)

    Russo, N. Dello; Vervack, R. J., Jr.; Kawakita, H.; Cochran, A.; McKay, A. J.; Harris, W. M.; Weaver, H.A.; Lisse, C. M.; DiSanti, M. A.; Kobayashi, H.

    2015-01-01

    Volatile production rates, relative abundances, rotational temperatures, and spatial distributions in the coma were measured in C/2012 S1 (ISON) using long-slit high-dispersion (lambda/delta lambda approximately 2.5 times 10 (sup 4)) infrared spectroscopy as part of a worldwide observing campaign. Spectra were obtained on Universal Time 2013 October 26 and 28 with NIRSPEC (Near Infrared Spectrometer) at the W.M. Keck Observatory, and Universal Time 2013 November 19 and 20 with CSHELL (Cryogenic Echelle Spectrograph) at the NASA IRTF (Infrared Telescope Facility). H2O was detected on all dates, with production rates increasing markedly from (8.7 plus or minus 1.5) times 10 (sup 27) molecules per second on October 26 (Heliocentric Distance = 1.12 Astronomical Units) to (3.7 plus or minus 0.4) times 10 (sup 29) molecules per second on November 20 (Heliocentric Distance = 0.43 Astronomical Units). Short-term variability of H2O production is also seen as observations on November 19 show an increase in H2O production rate of nearly a factor of two over a period of about 6 hours. C2H6, CH3OH and CH4 abundances in ISON (International Scientific Optical Network) are slightly depleted relative to H2O when compared to mean values for comets measured at infrared wavelengths. On the November dates, C2H2, HCN and OCS abundances relative to H2O appear to be within the range of mean values, whereas H2CO and NH3 were significantly enhanced. There is evidence that the abundances with respect to H2O increased for some species but not others between October 28 (Heliocentric Distance = 1.07 Astronomical Units) and November 19 (Heliocentric Distance = 0.46 Astronomical Units). The high mixing ratios of H2CO to CH3OH and C2H2 to C2H6 on November 19, and changes in the mixing ratios of some species with respect to H2O between October 28 to November 19, indicates compositional changes that may be the result of a transition from sampling radiation-processed outer layers in this dynamically

  19. The Composition of Intermediate Products of the Thermal Decomposition of (NH4)2ZrF6 to ZrO2 from Vibrational-Spectroscopy Data

    Science.gov (United States)

    Voit, E. I.; Didenko, N. A.; Gaivoronskaya, K. A.

    2018-03-01

    Thermal decomposition of (NH4)2ZrF6 resulting in ZrO2 formation within the temperature range of 20°-750°C has been investigated by means of thermal and X-ray diffraction analysis and IR and Raman spectroscopy. It has been established that thermolysis proceeds in six stages. The vibrational-spectroscopy data for the intermediate products of thermal decomposition have been obtained, systematized, and summarized.

  20. Resonance states in 16O+16O, 12C+16O, α+ 16O and α+ 12C with ...

    Indian Academy of Sciences (India)

    The resonance states in 16O + 16O, 12C + 16O, + 16O and + 12C are described using modified Morse potential proposed earlier whose success has already been demon-strated in the case of 12C + 12C system. The general validity of such a potential with long range, shallow depth and repulsive soft core determined ...

  1. Analysis of solid-state transformations of pharmaceutical compounds using vibrational spectroscopy

    DEFF Research Database (Denmark)

    Heinz, Andrea; Strachan, Clare J; Gordon, Keith C

    2009-01-01

    OBJECTIVES: Solid-state transformations may occur during any stage of pharmaceutical processing and upon storage of a solid dosage form. Early detection and quantification of these transformations during the manufacture of solid dosage forms is important since the physical form of an active...... pharmaceutical ingredient can significantly influence its processing behaviour, including powder flow and compressibility, and biopharmaceutical properties such as solubility, dissolution rate and bioavailability. KEY FINDINGS: Vibrational spectroscopic techniques such as infrared, near-infrared, Raman and, most...... multivariate approaches where even overlapping spectral bands can be analysed. SUMMARY: This review discusses the applications of different vibrational spectroscopic techniques to detect and monitor solid-state transformations possible for crystalline polymorphs, hydrates and amorphous forms of pharmaceutical...

  2. Effects of Sm3+/Yb3+ co-doping and temperature on the Raman, IR spectra and structure of [TeO2-GeO2-K2O-Sm2O3/Yb2O3] glasses

    International Nuclear Information System (INIS)

    Shaltout, I.; Badr, Y.

    2006-01-01

    Effects of Sm 3+ /Yb 3+ co-doping on Raman scattering, IR absorption, temperature dependence of the Raman spectra up to 210 o C and the structure of two glass systems of the composition (80TeO 2 -10GeO 2 -8K 2 O-2Sm 2 O 3 /Yb 2 O 3 ) is discussed. It was found that the addition of Yb 3+ to the glass very strongly enhances the intensities of the antistokes' Raman bands at 155, 375, 557 and 828 cm -1 and quenches both the intensities of the stokes' vibration modes of the TeO 4 units in the range of 120-770 cm -1 and the intensities of the OH - stretching vibration modes in the range of 2600-3300 cm -1 . Sm 2 O 3 /Yb 2 O 3 rare earth co-doping has a great influence on removing and/or changing the nature of the OH - groups. The appearance and splitting of the stretching vibration modes of the OH - groups at lower frequencies (2770, 2970 cm -1 ) for the Sm +3 singly doped glass sample, compared to the band at ∼3200 cm -1 for the Sm 3+ /Yb 3+ co-doped glass sample, suggested that the OH - groups are more strongly bonded and incorporated with the glass matrix for the singly doped glass. Heating the sample up continuously weakens the hydrogen bonding of the OH - groups to the glass matrix leading to creation of NBO and breakdown of the connectivity of the OH - groups to the TeO 4 , TeO 3+1 and TeO 3 structural units. Raman bands at 286, 477, 666 and 769 cm -1 were assigned to its respective vibrations of Te 2 O 7 , TeO 4 -4 species, the (Te-O-Te) bending vibrations of the TeO 4 triagonal bipyramids (tbps), the axial symmetric stretching vibration modes (Te ax -O) s with bridging oxygen BO atoms and to the (Te-O) nbo non-bridging stretching vibration modes of the TeO 3+1 and/or TeO 3 pyramids

  3. The Influence of Cr3+ on TiO2 Crystal Growth and Photoactivity Properties

    Science.gov (United States)

    Wahyuningsih, S.; Hidayatika, W. N.; Sari, P. L.; Sari, P. P.; Hidayat, R.; Munawaroh, H.; Ramelan, A. H.

    2018-03-01

    The photocatalyst technology is an integrated combination of photochemical processes and catalysis in order to carry out a chemical transformation reaction. One of the semiconductor materials that have good photocatalytic activity is TiO2 anatase. This study aim to determine the effect of the Cr3+ addition on the growth of TiO2 rutile crystal and the increasing of TiO2 photoactivity. Diffractogram X-Ray of the samples showed that the synthesized TiO2 at 400 °C has been produced 100% TiO2 anatase. Synthesis of TiO2 doped Cr3+ composite was using wet impregnation method. The TiO2 doped Cr3+ composites have beed grown by annealed at a temperature of 300, 400, 500, 600 and 700 °C, respectively Annealing process have capabled to gain to the TiO2 doped Cr3+ nanocomposite. The result product annealed at 500 °C only appear anatase phase due to the Cr3+ addition influence that was able to suppress the growth of rutile. Identification of TiO2 doped Cr3+ composite using Fourier Transform Infra-Red (FT-IR) showed O-Cr vibration at 2283.72 cm-1. The TiO2 doped Cr3+ photoactivity was studied to degrade Rhodamin B. The best result on photodegradation of Rhodamin B was performed by using TiO2 doped Cr3+ composite which was annealed at 700 °C i.e. 74.71%.

  4. Study of vibrational and magnetic excitations in NicMg1-cO solid solutions by Raman spectroscopy

    International Nuclear Information System (INIS)

    Cazzanelli, E; Kuzmin, A; Mariotto, G; Mironova-Ulmane, N

    2003-01-01

    The Raman scattering by phonons and magnons was studied for the first time in the polycrystalline solid solutions Ni c Mg 1-c O. The experimental Raman spectrum for c = 0.9 is similar to that of NiO and consists of six well resolved bands, whose origins are the disorder-induced one-phonon scattering (bands at 400 and 500 cm -1 ), two-phonon scattering (bands at 750, 900, and 1100 cm -1 ), and two-magnon scattering (the broad band at ∼ 1400 cm -1 ). We found that the dependence of the two-magnon band in solid solutions on the composition and temperature is consistent with their magnetic phase diagram. We also observed that the relative contribution of two-phonon scattering decreases strongly upon dilution with magnesium ions and disappears completely at c < 0.5. Such behaviour is explained in terms of a disorder-induced effect, which increases the probability of the one-phonon scattering processes

  5. Magnetically Separable Fe2O3/g-C3N4 Nanocomposites with Cocoon-Like Shape: Magnetic Properties and Photocatalytic Activities

    Science.gov (United States)

    Yu, Xiaojia; Yang, Xiaoyu; Li, Guang

    2018-01-01

    We report magnetically separable Fe2O3/g-C3N4 nanocomposites as a photocatalyst under visible-light irradiation in this study. The Fe2O3/g-C3N4 nanocomposites were synthesized through a two-step hydrothermal method. The Fe2O3 with cocoon-like shape was obviously dispersed on the surface of g-C3N4 with porous and layered nanostructure as seen from micrographs of the particles. Furthermore, the magnetic conversion of the samples was studied via vibrating sample magnetometer technology. It was found that the saturated magnetization Ms of the Fe2O3/g-C3N4 nanoparticles obviously decreased in the presence of g-C3N4, and the photocatalytic activity of the samples investigated by degrading Rhodamine B suggested that the Fe2O3/g-C3N4 photocatalyst was prior to the pure Fe2O3 and g-C3N4 samples. In addition, the magnetically separable ability of Fe2O3/g-C3N4 nanocomposites was efficiently exhibited by an external magnet.

  6. Vibrational Spectroscopy of Ionic Liquids.

    Science.gov (United States)

    Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C

    2017-05-24

    Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.

  7. Infrared Imaging of Cotton Fiber Bundles Using a Focal Plane Array Detector and a Single Reflectance Accessory

    Directory of Open Access Journals (Sweden)

    Michael Santiago Cintrón

    2016-11-01

    Full Text Available Infrared imaging is gaining attention as a technique used in the examination of cotton fibers. This type of imaging combines spectral analysis with spatial resolution to create visual images that examine sample composition and distribution. Herein, we report on the use of an infrared instrument equipped with a reflection accessory and an array detector system for the examination of cotton fiber bundles. Cotton vibrational spectra and chemical images were acquired by grouping pixels in the detector array. This technique reduced spectral noise and was employed to visualize cell wall development in cotton fibers bundles. Fourier transform infrared spectra reveal band changes in the C–O bending region that matched previous studies. Imaging studies were quick, relied on small amounts of sample and provided a distribution of the cotton fiber cell wall composition. Thus, imaging of cotton bundles with an infrared detector array has potential for use in cotton fiber examinations.

  8. Vibrationally resolved rate coefficients and branching fractions in the dissociative recombination of O2+

    NARCIS (Netherlands)

    Petrignani, A.; Zande, W.J. van der; Cosby, P.C.; Hellberg, F.; Thomas, R.; Larsson, M.

    2005-01-01

    We have studied the dissociative recombination of the first three vibrational levels of O-2(+) in its electronic ground X (2)Pi(g) state. Absolute rate coefficients, cross sections, quantum yields and branching fractions have been determined in a merged-beam experiment in the heavy-ion storage ring,

  9. Mesospheric H2O Concentrations Retrieved from SABER/TIMED Measurements

    Science.gov (United States)

    Feofilov, A. G.; Marshall, B. T.; Garcia-Comas, M.; Kutepov, A. A.; Lopez-Puertas, M.; Manuilova, R. O.; Yankovsky, V.A.; Goldberg, R. A.; Gordley, L. L.; Petelin, S.; hide

    2008-01-01

    The SABER instrument on board the TIMED Satellite is a limb scanning infrared radiometer designed to measure temperature and minor constituent vertical profiles and energetics parameters in the mesosphere and lower thermosphere (MLT). The H2O concentrations are retrieved from 6.3 micron band radiances. The populations of H2O(v2) vibrational levels are in non-Local Thermodynamic Equilibrium (non-LTE) above approximately 55 km altitude and the interpretation of 6.3 micron radiance requires utilizing non-LTE H2O model that includes various energy exchange processes in the system of H2O vibrational levels coupled with O2, N2, and CO2 vibrational levels. We incorporated these processes including kinetics of O2/O3 photolysis products to our research non-LTE H2O model and applied it for the development and optimization of SABER operational model. The latter has been validated using simultaneous SCISAT1/ACE occultation measurements. This helped us to estimate CO2(020)-O2(X,v=I), O2(X,v=I)- H2O(010), and O2(X,v=1) O rates at mesopause temperatures that is critical for an adequate interpretation of non-LTE H2O radiances in the MLT. The first distributions of seasonal and meridional H2O concentrations retrieved from SABER 6.3 micron radiances applying an updated non-LTE H2O model are demonstrated and discussed.

  10. Infrared refractive index of thin YBa2Cu3O7 superconducting films

    International Nuclear Information System (INIS)

    Zhang, Z.M.; Choi, B.I.; Le, T.A.; Flik, M.I.; Siegal, M.P.; Phillips, J.M.

    1992-01-01

    This work investigates whether thin-film optics with a constant refractive index can be applied to high-T c superconducting thin films. The reflectance and transmittance of YBa 2 Cu 3 O 7 films on LaAlO 3 substrates are measured using a Fourier-transform infrared spectrometer at wavelengths from 1 to 100 μm at room temperature. The reflectance of these superconducting films at 10K in the wavelength region from 2.5 to 25 μm is measured using a cryogenic reflectance accessory. The film thickness varies from 10 to 200 nm. By modeling the frequency-dependent complex conductivity in the normal and superconducting states and applying electromagnetic-wave theory, the complex refractive index of YBa 2 Cu 3 O 7 films is obtained with a fitting technique. It is found that a thickness-independent refractive index can be applied even to a 25nm film, and average values of the spectral refractive index for film thicknesses between 25 and 200 nm are recommended for engineering applications

  11. Vibrational spectra of Cs2Cu(SO4)2·6H2O and Cs2Cu(SeO4)2·nH2O (n = 4, 6) with a crystal structure determination of the Tutton salt Cs2Cu(SeO4)2·6H2O

    Science.gov (United States)

    Wildner, M.; Marinova, D.; Stoilova, D.

    2016-02-01

    The solubility in the three-component systems Cs2SO4-CuSO4-H2O and Cs2SeO4-CuSeO4-H2O have been studied at 25 °C. The experimental results show that double salts, Cs2Cu(SO4)2·6H2O and Cs2Cu(SeO4)2·4H2O, crystallize from the ternary solutions within large concentration ranges. Crystals of Cs2Cu(SeO4)2·6H2O were synthesized at somewhat lower temperatures (7-8 °C). The thermal dehydration of the title compounds was studied by TG, DTA and DSC methods and the respective dehydration schemes are proposed. The calculated enthalpies of dehydration (ΔHdeh) have values of: 434.2 kJ mol-1 (Cs2Cu(SeO4)2·6H2O), 280.9 kJ mol-1 (Cs2Cu(SeO4)2·4H2O), and 420.2 kJ mol-1 (the phase transition of Cs2Cu(SO4)2·6H2O into Cs2Cu(SO4)2·H2O). The crystal structure of Cs2Cu(SeO4)2ṡ6H2O was determined from single crystal X-ray diffraction data. It belongs to the group of Tutton salts, crystallizing isotypic to the respective sulfate in a monoclinic structure which is characterized by isolated Cu(H2O)6 octahedra and SeO4 tetrahedra, interlinked by hydrogen bonds and [9]-coordinated Cs+ cations. Infrared spectra of the cesium copper compounds are presented and discussed with respect to both the normal modes of the tetrahedral ions and the water molecules. The analysis of the infrared spectra of the double compounds reveals that the distortion of the selenate tetrahedra in Cs2Cu(SeO4)2·4H2O is stronger than those in Cs2Cu(SeO4)2·6H2O in agreement with the structural data. Matrix-infrared spectroscopy was applied to confirm this claim - Δν3 for SO4 2 - ions matrix-isolated in Cs2Cu(SeO4)2·6H2O has a value of 35 cm-1 and that of the same ions included in Cs2Cu(SeO4)2·4H2O - 84 cm-1. This spectroscopic finding is due to the formation of strong covalent bands Cu-OSO3 on one hand, and on the other to the stronger deformation of the host SeO4 2 - tetrahedra in Cs2Cu(SeO4)2·4H2O as compared to those in Cs2Cu(SeO4)2·6H2O. The strength of the hydrogen bonds as deduced from the

  12. Infrared and UV-visible absorption measurement at Syowa Station (abstract)

    OpenAIRE

    Murata,Isao; Kita,Kazuyuki; Iwagami,Naomoto; Ogawa ,Toshihiro

    1993-01-01

    Vertical column contents of some trace gases were observed by solar infrared and UV-visible absorption techniques at Syowa Station, to study the dynamics and chemistry of Antarctic ozone. HCl, HF, N_2O, OCS, CO and C_2H_6 column contents were measured by infrared absorption spectroscopy in the 3-5

  13. Preparation of Ag/SiO{sub 2} near-infrared absorbers using the combination of sputtering and spin-coating depositions

    Energy Technology Data Exchange (ETDEWEB)

    Liau, Leo Chau-Kuang, E-mail: lckliau@saturn.yzu.edu.tw [Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 320, Taiwan (China); Lai, Guo-Bin [Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 320, Taiwan (China); Juang, Rei-Cheng; Chang, Bing-Hung [Green Energy and Environmental Laboratories, Industrial Technology Research Institute, Hsinchu 300, Taiwan (China); Yang, Thomas Chun-Kuang [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan (China)

    2015-03-02

    This study presents the design and fabrication of near-infrared (NIR) absorbers constructed in multilayer structures using Ag and SiO{sub 2} materials. The absorbers, consisting of Ag and SiO{sub 2} films, were fabricated using sputtering and spin-coating approaches, respectively. The fabricated absorbing devices were evaluated using ultraviolet–visible-NIR spectra. Results revealed that the structure of the Ag/SiO{sub 2}/Ag films exhibited an NIR absorbing effect. The absorbing properties were substantially influenced by the fabrication parameters and the thickness of the multilayer films. Furthermore, the NIR absorbing performance improved significantly when the SiO{sub 2} layer was annealed at 300 °C before the deposition of the top Ag film. Additionally, the absorptance of the absorbers was affected by the thickness of the top Ag layer. The long-term stability of the multilayer absorber was tested and verified based on absorptance data analysis. The NIR absorbing performance can be further improved using the optimal device design of the film thickness and by fabricating additional Ag/SiO{sub 2} layers. - Highlights: • Ag/SiO{sub 2} near-infrared absorbers were designed and fabricated. • The absorbing performance was greatly influenced by the fabrication schemes. • The optimal fabrication process of the absorber was obtained. • The long-term stability of the absorber was verified.

  14. Origin of Spectral Band Patterns in the Cosmic Unidentified Infrared Emission

    Science.gov (United States)

    Álvaro Galué, Héctor; Díaz Leines, Grisell

    2017-10-01

    The cosmic unidentified infrared emission (UIE) band phenomenon is generally considered as indicative of free-flying polycyclic aromatic hydrocarbon molecules in space. However, a coherent explanation of emission spectral band patterns depending on astrophysical source is yet to be resolved under this attribution. Meanwhile astronomers have restored the alternative origin as due to amorphous carbon particles, but assigning spectral patterns to specific structural elements of particles is equally challenging. Here we report a physical principle in which inclusion of nonplanar structural defects in aromatic core molecular structures (π domains) induces spectral patterns typical of the phenomenon. We show that defects in model π domains modulate the electronic-vibration coupling that activates the delocalized π -electron contribution to aromatic vibrational modes. The modulation naturally disperses C =C stretch modes in band patterns that readily resemble the UIE bands in the elusive 6 - 9 μ m range. The electron-vibration interaction mechanics governing the defect-induced band patterns underscores the importance of π delocalization in the emergence of UIE bands. We discuss the global UIE band regularity of this range as compatible with an emission from the delocalized s p2 phase, as π domains, confined in disordered carbon mixed-phase aggregates.

  15. Spectral Characterization of RDX, ETN, PETN, TATP, HMTD, HMX, and C-4 in the Mid-Infrared Region

    Science.gov (United States)

    2014-04-01

    Germany, 1996. 12. Bertie, J.E. and Keefe , C.D. “Infrared intensities of liquids XXIV: Optical constants of liquid benzene-h6 at 25°C extended to...Bertie, J.E.; Apelblat, Y.; Keefe , C.D. “Infrared intensities of liquids XXV: Optical constants of liquid toluene at 25°C between 4800 and 400 cm−1

  16. Infrared and Raman study of 2-formylpyrrole

    International Nuclear Information System (INIS)

    Limage, M.H.; Lautie, Alain; Novak, Alexandre

    1975-01-01

    The infrared and Raman spectra of liquid and polycristalline 2-formylpyrrole, C 4 H 3 NHCHO, and its deuterated derivatives C 4 H 3 NDCHO, C 4 H 3 NHCDO and C 4 H 3 NDCDO, have been investigated between 4000 and 40 cm -1 . Infrared spectra of gas and of some solutions were also examined. An assignment of 23 and 30 intramolecular fundamentals, from 30 expected ones, respectively for gas and condensed phases is given. The observed frequencies are compared to those of pyrrole and of some aldehydes. Molecular conformation, torsional barrier of CHO group, and the intramolecular influence of the CHO group on the molecular properties are discussed. There are hydrogen bonded cyclic dimers in the liquid and infinite chains in solid. The NH ... O hydrogen bonds are relatively strong because of the increased acidity of the NH group and the increased basicity of the CO group. They are characterized in the crystal, by a relative NH stretching frequency shift of 10% and by a N...O distance of about 2.90 A [fr

  17. Fourier transform infrared studies of the N2-O2 binary system

    International Nuclear Information System (INIS)

    Minenko, M.; Jodi, H.-J.

    2006-01-01

    Solid solutions (N 2 ) x (O 2 ) 1-x have been investigated by infrared absorption measurements mainly in the O 2 and N 2 stretching regions, between 60-10 K, completing former similar studies by Raman scattering. We produced thermodynamically stable samples by a careful thermal treatment, followed by cooling/heating cycles over weeks, during which we took spectra. From fingerprints in the infrared spectra we deduce phase-transition and solubility lines and suggest a refined, improved T-x % phase diagram in respect to the inconsistencies between those in the literature. The spectra of N 2 -O 2 mixtures are pretty complex, but by referring to known spectra of the pure systems N 2 or O 2 we were able to assign and interpret broad (∼100 cm - 1 ) phonon side bands to fundamentals and an electronic transition (O 2 ), depending on actual temperature and concentration. Narrow features in the spectra ( -1 ) were attributed to the vibron DOS of N 2 or O 2 , whose bandwidth, band shape, and intensity are different and characteristic for each phase. Differences between pure and mixed systems are pointed out. The matrix isolation technique (2 ppm of CO) was used to probe our mixture

  18. Dissociative ionization of liquid water induced by vibrational overtone excitation

    International Nuclear Information System (INIS)

    Natzle, W.C.

    1983-03-01

    Photochemistry of vibrationally activated ground electronic state liquid water to produce H + and OH - ions has been initiated by pulsed, single-photon excitation of overtone and combination transitions. Transient conductivity measurements were used to determine quantum yields as a function of photon energy, isotopic composition, and temperature. The equilibrium relaxation rate following perturbation by the vibrationally activated reaction was also measured as a function of temperature reaction and isotopic composition. In H 2 O, the quantum yield at 283 +- 1 K varies from 2 x 10 -9 to 4 x 10 -5 for wave numbers between 7605 and 18140 cm -1 . In D 2 O, the dependence of quantum yield on wavelength has the same qualitative shape as for H 2 O, but is shifted to lower quantum yields. The position of a minimum in the quantum yield versus hydrogen mole fraction curve is consistent with a lower quantum yield for excitation of HOD in D 2 O than for excitation of D 2 O. The ionic recombination distance of 5.8 +- 0.5 A is constant within experimental error with temperature in H 2 O and with isotopic composition at 25 +- 1 0 C

  19. Infrared multiple photon dissociation spectroscopy of group I and group II metal complexes with Boc-hydroxylamine.

    Science.gov (United States)

    Dain, Ryan P; Gresham, Gary; Groenewold, Gary S; Steill, Jeffrey D; Oomens, Jos; Van Stipdonk, Michael J

    2013-08-30

    Hydroxamates are essential growth factors for some microbes, acting primarily as siderophores that solubilize iron for transport into a cell. Here we determined the intrinsic structure of 1:1 complexes between Boc-protected hydroxylamine and group I ([M(L)](+)) and group II ([M(L-H)](+)) cations, where M and L are the cation and ligand, respectively, which are convenient models for the functional unit of hydroxamate siderphores. The relevant complex ions were generated by electrospray ionization (ESI) and isolated and stored in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Infrared spectra of the isolated complexes were collected by monitoring (infrared) photodissociation yield as a function of photon energy. Experimental spectra were then compared to those predicted by density functional theory (DFT) calculations. The infrared multiple photon dissociation (IRMPD) spectra collected are in good agreement with those predicted to be lowest-energy by DFT. The spectra for the group I complexes contain six resolved absorptions that can be attributed to amide I and II type and hydroxylamine N-OH vibrations. Similar absorptions are observed for the group II cation complexes, with shifts of the amide I and amide II vibrations due to the change in structure with deprotonation of the hydroxylamine group. IRMPD spectroscopy unequivocally shows that the intrinsic binding mode for the group I cations involves the O atoms of the amide carbonyl and hydroxylamine groups of Boc-hydroxylamine. A similar binding mode is preferred for the group II cations, except that in this case the metal ion is coordinated by the O atom of the deprotonated hydroxylamine group. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Vibrational microspectroscopic identification of powdered traditional medicines: Chemical micromorphology of Poria observed by infrared and Raman microspectroscopy

    Science.gov (United States)

    Chen, Jian-bo; Sun, Su-qin; Ma, Fang; Zhou, Qun

    2014-07-01

    Microscopic identification using optical microscopes is a simple and effective method to identify powdered traditional medicines made from plants, animals and fungi. Sometimes, the criteria based on physical properties of the microscopic characteristics of drug powder may be ambiguous, which makes the microscopic identification method subjective and empirical to some extent. In this research, the vibrational microspectroscopic identification method is proposed for more explicit discrimination of powdered traditional medicines. The chemical micromorphology, i.e., chemical compositions and related physical morphologies, of the drug powder can be profiled objectively and quantitatively by infrared and Raman microspectroscopy, leading to better understanding about the formation mechanisms of microscopic characteristics and more accurate identification criteria. As an example, the powder of Poria, which is one of the most used traditional Chinese medicines, is studied in this research. Three types of hyphae are classified according to their infrared spectral features in the region from 1200 to 900 cm-1. Different kinds of polysaccharides indicate that these hyphae may be in different stages of the growth. The granular and branched clumps observed by the optical microscope may be formed from the aggregation of the mature hyphae with β-D-glucan reserves. The newfound spherical particles may originate from the exuded droplets in the fresh Poria because they are both composed of α-D-glucan. The results are helpful to understand the development of the hyphae and the formation of active polysaccharides in Poria and to establish accurate microspectroscopic identification criteria.

  1. Infrared analysis of thin films: amorphous, hydrogenated carbon on silicon

    International Nuclear Information System (INIS)

    Jacob, Wolfgang; Keudell, Achim von; Schwarz-Selinger, Thomas

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, an experimentally measured spectrum has to be simulated using the full formalism including the Kramers-Kronig relation. Infrared absorption spectra and the resulting k spectra in the range of the CH vibrational bands around 3000 cm -1 are presented for a variety of a-C:H layers. The shape and the total intensity of the peak are quite sensitive to the film structure. Soft, polymerlike hydrocarbon layers are characterized by a well structured, intense IR absorption band, while hard, amorphous, hydrogenated carbon layers exhibit a structureless, broad IR absorption band with relative low intensity. The k spectra of the CH vibrational bands can be considered as fingerprint for the type of a-C:H film. (author)

  2. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water dimer. II. Infrared spectrum and vibrational dynamics

    DEFF Research Database (Denmark)

    Vendrell, Oriol; Gatti, Fabien; Meyer, Hans-Dieter

    2007-01-01

    The infrared absorption spectrum of the protonated water dimer (H5O2+) is simulated in full dimensionality (15 dimensional) in the spectral range of 0-4000 cm(-1). The calculations are performed using the multiconfiguration time-dependent Hartree (MCTDH) method for propagation of wavepackets. All...

  3. An ab initio investigation of vibrational, thermodynamic, and optical properties of Sc2AlC MAX compound

    International Nuclear Information System (INIS)

    Ali, M A; Nasir, M T; Khatun, M R; Naqib, S H; Islam, A K M A

    2016-01-01

    The structural vibrational, thermodynamical, and optical properties of potentially technologically important, weakly coupled MAX compound, Sc 2 AlC are calculated using density functional theory (DFT). The structural properties of Sc 2 AlC are compared with the results reported earlier. The vibrational, thermodynamical, and optical properties are theoretically estimated for the first time. The phonon dispersion curve is calculated and the dynamical stability of this compound is investigated. The optical and acoustic modes are observed clearly. We calculate the Helmholtz free energy ( F ), internal energy ( E ), entropy ( S ), and specific heat capacity ( C v ) from the phonon density of states. Various optical parameters are also calculated. The reflectance spectrum shows that this compound has the potential to be used as an efficient solar reflector. (paper)

  4. Enstatite, Mg2Si2O6: A neutron diffraction refinement of the crystal structure and a rigid-body analysis of the thermal vibration

    International Nuclear Information System (INIS)

    Ghose, S.; Schomaker, V.; McMullan, R.K.

    1986-01-01

    Synthetic enstatite, Mg 2 Si 2 O 6 , is orthorhombic, space group Pbca, with eight formula units per cell and lattice parameters a = 18.235(3), b = 8.818(1), c = 5.179(1) A at 23 0 C. A least-squares structure refinement based on 1790 neutron intensity data converged with an agreement factor R(F 2 ) = 0.032, yielding Mg-O and Si-O bond lengths with standard deviations of 0.0007 and 0.0008 A, respectively. The variations observed in the Si-O bond lengths within the silicate tetrahedra A and B are caused by the differences in primary coordination of the oxygen atoms and the proximity of the magnesium ions to the silicon atoms. The latter effect is most pronounced for the bridging bonds of tetrahedron. A. The smallest O-Si-O angle is the result of edge-sharing by the Mg(2) octahedron and the A tetrahedron. An analysis of rigid-body thermal vibrations of the two crystallographically independent [SiO 4 ] tetrahedra indicates considerable librational motion, leading to a thermal correction of apparent Si-O bond lengths as large as +0.002 A at room temperature. (orig.)

  5. Carbon/CuO nanosphere-anchored g-C3N4 nanosheets as ternary electrode material for supercapacitors

    Science.gov (United States)

    Vattikuti, S. V. Prabhakar; Reddy, B. Purusottam; Byon, Chan; Shim, Jaesool

    2018-06-01

    Novel electrode materials for supercapacitors comprised of carbon and copper oxide (CuO) nanospheres on graphitic carbon nitride (g-C3N4) nanosheets, denoted as C/CuO@g-C3N4 are self-assembled via a one-step co-pyrolysis decomposition method. The pure g-C3N4 and C/CuO@g-C3N4 were confirmed by powder X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), thermal gravimetric and differential thermal analysis (TG-DTA), X-ray photoelectron spectroscopy (XPS), N2 adsorption/desorption studies and Fourier-transform infrared spectroscopy (FTIR). The specific capacitance was 247.2 F g-1 in 0.5 M NaOH at a current density of 1 A g-1, and more than 92.1% of the capacitance was retained after 6000 cycles. The property enhancement was ascribed to the synergistic effects of the three components in the composite. These results suggest that C/CuO@g-C3N4 possessed an excellent cyclic stability with respect to their capacity performance as electrode materials.

  6. The Far Infrared Spectrum of Thiophosgene: Analysis of the νb{2} Fundamental Band at 500 wn

    Science.gov (United States)

    McKellar, A. R. W.; Billinghurst, B. E.

    2009-06-01

    Thiophosgene (Cl_2CS) is a model system for studies of vibrational dynamics. Many hundreds of vibrational levels in the ground electronic state have been experimentally observed, allowing a detailed anharmonic force field to be developed including all six vibrational modes. But there have been no previous high resolution studies of this molecule in the infrared, presumably because its mass and multiple isotopic species result in very congested spectra. Here we report a detailed study of the strong νb{2} fundamental band (symmetric C - Cl stretch) based on a spectrum obtained using synchrotron radiation with the Bruker IFS125 FT spectrometer at the Canadian Light Source far infrared beamline. Thiophosgene is an interesting example of an accidentally near-symmetric oblate rotor. Indeed, its inertial axes switch with isotopic substitution: for ^{35}Cl_2CS, the C_{2v} symmetry axis coincides with the a inertial axis, but for ^{37}Cl_2CS, this changes to the b axis. Fortunately for us, the ground state microwave spectrum has been well studied. Even so, it has required the full spectral resolution of the present results, with observed line widths of about 0.0008 wn, to achieve a true line-by-line analysis. [1] For example: P.D. Chowdary, B. Strickler, S. Lee, and M. Gruebele, Chem. Phys. Letters 434, 182 (2007). [2] J.H. Carpenter, D.F. Rimmer, J.G. Smith, and D.H. Whiffen, J. Chem. Soc. Faraday Trans. 2 71, 1752 (1971).

  7. Calculations of thermodynamic properties of PuO2 by the first-principles and lattice vibration

    International Nuclear Information System (INIS)

    Minamoto, Satoshi; Kato, Masato; Konashi, Kenji; Kawazoe, Yoshiyuki

    2009-01-01

    Plutonium dioxide (PuO 2 ) is a key compound of mixed oxide fuel (MOX fuel). To predict the thermal properties of PuO 2 at high temperature, it is important to understand the properties of MOX fuel. In this study, thermodynamic properties of PuO 2 were evaluated by coupling of first-principles and lattice dynamics calculation. Cohesive energy was estimated from first-principles calculations, and the contribution of lattice vibration to total energy was evaluated by phonon calculations. Thermodynamic properties such as volume thermal expansion, bulk modulus and specific heat of PuO 2 were investigated up to 1500 K

  8. Proceedings of the national conference on exploring the frontiers of vibrational spectroscopy: abstracts

    International Nuclear Information System (INIS)

    2011-01-01

    Spectroscopy has played and is playing a very important role as it is one of the most efficient methods of molecular structure studies with the help of which direct information about the chemical compounds can be obtained. Spectroscopy has its contribution in a number of branches in areas such as medicine, industry, environment, agriculture, power, construction, forensic analysis (both criminal and civil cases), etc., where it has revolutionized the very face of these sectors. Vibrational spectroscopic (Infrared and Raman) techniques have demonstrated potential to provide non-destructive, rapid clinically relevant diagnostic information. Raman and infrared spectroscopy enable the biochemical signatures from biological tissues to be extracted and analyzed there by advancing the treatment of cancer. Advancement in instrumentation has allowed the development of numerous infrared and Raman spectroscopic methods. Infrared spectroscopy is tremendously used in the fields of pharmaceuticals. medical diagnostics food and agrochemical quality control, and combustion research. Raman spectroscopy is used in condensed matter physics, biomedicinal fields for tissue analysis and chemistry to study vibrational, rotational, and other low-frequency modes in a system. Keeping in mind the fast development: in the Spectroscopy, we have planned to organize a national level conference for 2 days on 'Exploring the Frontiers of Vibrational Spectroscopy' to bring out the tremendous potential of various Spectroscopic techniques available at the global level. Papers relevant to INIS are indexed separately

  9. Crystal structure and vibrational spectra of melaminium arsenate

    Science.gov (United States)

    Anbalagan, G.; Marchewka, M. K.; Pawlus, K.; Kanagathara, N.

    2015-01-01

    The crystals of the new melaminium arsenate (MAS) [C3H7N6+ṡH2AsO4-] were obtained by the slow evaporation of an aqueous solution at room temperature. Single crystal X-ray diffraction analysis reveals that the crystal belongs to triclinic system with centro symmetric space group P-1. The crystals are built up from single protonated melaminium residues and single dissociated arsenate H2AsO4- anions. The protonated melaminium ring is almost planar. A combination of ionic and donor-acceptor hydrogen-bond interactions linking together the melaminium and arsenate residues forms a three-dimensional network. Vibrational spectroscopic analysis is reported on the basis of FT-IR and FT-Raman spectra recorded at room temperature. Hydrogen bonded network present in the crystal gives notable vibrational effect. DSC has also been performed for the crystal shows no phase transition in the studied temperature range (113-293 K).

  10. Anomalous vibrational modes in acetanilide: a F.D.S. incoherent inelastic neutron scattering study

    Science.gov (United States)

    Barthes, Mariette; Eckert, Juergen; Johnson, Susanna W.; Moret, Jacques; Swanson, Basil I.; Unkefer, Clifford J.

    The origin of the anomalous infra-red and Raman modes in acetanilide (C6H5NHCOCH3, or ACN)(1) , remains a subject of considerable controversy. One family of theoretical models involves Davydov-like solitons (2) nonlinear vibrational coupling (3), or "polaronic" localized modes (4)(5). An alternative interpretation of the extra-bands in terms of a Fermi resonance was proposed (6) and recently the existence of slightly non-degenerate hydrogen atom configurations (7) in the H-bond was suggested as an explanation for the anomalies.

  11. THE PHYSICAL MECHANISM BEHIND M DWARF METALLICITY INDICATORS AND THE ROLE OF C AND O ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    Veyette, Mark J.; Muirhead, Philip S. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Mann, Andrew W. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Allard, France [Centre de Recherche Astrophysique de Lyon, UMR 5574, Université de Lyon, ENS de Lyon, Université Lyon 1, CNRS, F-69007, Lyon (France)

    2016-09-10

    We present near-infrared (NIR) synthetic spectra based on PHOENIX stellar atmosphere models of typical early and mid-M dwarfs with varied C and O abundances. We apply multiple recently published methods for determining M dwarf metallicity to our models to determine the effects of C and O abundances on metallicity indicators. We find that the pseudo-continuum level is very sensitive to C/O and that all metallicity indicators show a dependence on C and O abundances, especially in lower T {sub eff} models. In some cases, the inferred metallicity ranges over a full order of magnitude (>1 dex) when [C/Fe] and [O/Fe] are varied independently by ±0.2. We also find that [(O−C)/Fe], the difference in O and C abundances, is a better tracer of the pseudo-continuum level than C/O. Models of mid-M dwarfs with [C/Fe], [O/Fe], and [M/H] that are realistic in the context of galactic chemical evolution suggest that variation in [(O−C)/Fe] is the primary physical mechanism behind the M dwarf metallicity tracers investigated here. Empirically calibrated metallicity indicators are still valid for most nearby M dwarfs due to the tight correlation between [(O−C)/Fe] and [Fe/H] evident in spectroscopic surveys of solar neighborhood FGK stars. Variations in C and O abundances also affect the spectral energy distribution of M dwarfs. Allowing [O/Fe] to be a free parameter provides better agreement between the synthetic spectra and observed spectra of metal-rich M dwarfs. We suggest that flux-calibrated, low-resolution, NIR spectra can provide a path toward measuring C and O abundances in M dwarfs and breaking the degeneracy between C/O and [Fe/H] present in M dwarf metallicity indicators.

  12. Two-dimensional vibrational-electronic spectroscopy

    Science.gov (United States)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  13. Two-dimensional vibrational-electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira, E-mail: mkhalil@uw.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a

  14. DNA Methylation Changes in Valproic Acid-Treated HeLa Cells as Assessed by Image Analysis, Immunofluorescence and Vibrational Microspectroscopy.

    Directory of Open Access Journals (Sweden)

    Giovana M B Veronezi

    Full Text Available Valproic acid (VPA, a well-known histone deacetylase inhibitor, has been reported to affect the DNA methylation status in addition to inducing histone hyperacetylation in several cell types. In HeLa cells, VPA promotes histone acetylation and chromatin remodeling. However, DNA demethylation was not checked in this cell model for standing effects longer than those provided by histone acetylation, which is a rapid and transient phenomenon. Demonstration of VPA-induced DNA demethylation in HeLa cells would contribute to understanding the effect of VPA on an aggressive tumor cell line. In the present work, DNA demethylation in VPA-treated HeLa cells was assessed by image analysis of chromatin texture, the abundance of 5-methylcytosine (5mC immunofluorescence signals and Fourier transform-infrared (FT-IR microspectroscopy centered on spectral regions related to the vibration of-CH3 groups. Image analysis indicated that increased chromatin unpacking promoted by a 4-h-treatment with 1.0 mM VPA persisted for 24 h in the absence of the drug, suggesting the occurrence of DNA demethylation that was confirmed by decreased 5mC immunofluorescence signals. FT-IR spectra of DNA samples from 1 mM or 20 mM VPA-treated cells subjected to a peak fitting analysis of the spectral window for-CH3 stretching vibrations showed decreased vibrations and energy of these groups as a function of the decreased abundance of 5mC induced by increased VPA concentrations. Only the 20 mM-VPA treatment caused an increase in the ratio of -CH3 bending vibrations evaluated at 1375 cm-1 in relation to in-plane vibrations of overall cytosines evaluated at 1492 cm-1. CH3 stretching vibrations showed to be more sensitive than-CH3 bending vibrations, as detected with FT-IR microspectroscopy, for studies aiming to associate vibrational spectroscopy and changes in DNA 5mC abundance.

  15. Infrared Spectroscopic Study For Structural Investigation Of Lithium Lead Silicate Glasses

    International Nuclear Information System (INIS)

    Ahlawat, Navneet; Aghamkar, Praveen; Ahlawat, Neetu; Agarwal, Ashish; Monica

    2011-01-01

    Lithium lead silicate glasses with composition 30Li 2 O·(70-x)PbO·xSiO 2 (where, x = 10, 20, 30, 40, 50 mol %)(LPS glasses) were prepared by normal melt quench technique at 1373 K for half an hour in air to understand their structure. Compositional dependence of density, molar volume and glass transition temperature of these glasses indicates more compactness of the glass structure with increasing SiO 2 content. Fourier transform infrared (FTIR) spectroscopic data obtained for these glasses was used to investigate the changes induced in the local structure of samples as the ratio between PbO and SiO 2 content changes from 6.0 to 0.4. The observed absorption band around 450-510 cm -1 in IR spectra of these glasses indicates the presence of network forming PbO 4 tetrahedral units in glass structure. The increase in intensity with increasing SiO 2 content (upto x = 30 mol %) suggests superposition of Pb-O and Si-O bond vibrations in absorption band around 450-510 cm -1 . The values of optical basicity in these glasses were found to be dependent directly on PbO/SiO 2 ratio.

  16. Structural and vibrational spectral investigations of melaminium maleate monohydrate by FTIR, FT-Raman and quantum chemical calculations

    Science.gov (United States)

    Arjunan, V.; Kalaivani, M.; Marchewka, M. K.; Mohan, S.

    2013-04-01

    The structural investigations of the molecular complex of melamine with maleic acid, namely melaminium maleate monohydrate have been carried out by quantum chemical methods in addition to FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical studies were performed with DFT (B3LYP) method using 6-31G**, cc-pVDZ and 6-311++G** basis sets to determine the energy, structural and thermodynamic parameters of melaminium maleate monohydrate. The hydrogen atom from maleic acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak Osbnd H⋯O and Nsbnd H⋯O hydrogen bonds shows notable vibrational effects.

  17. Far infrared and Raman response in tetragonal PZT ceramic films

    Energy Technology Data Exchange (ETDEWEB)

    Buixaderas, E.; Kadlec, C.; Vanek, P.; Drnovsek, S.; Ursic, H.; Malic, B.

    2015-07-01

    PbZr{sub 0}.38Ti{sub 0}.62O{sub 3} and PbZr{sub 0}.36Ti{sub 0}.64{sub O}3 thick films deposited by screen printing on (0 0 0 1) single crystal sapphire substrates and prepared at two different sintering temperatures, were studied by Fourier-transform infrared reflectivity, time-domain TH{sub z} transmission spectroscopy and micro-Raman spectroscopy. The dielectric response is discussed using the Lichtenecker model to account for the porosity of the films and to obtain the dense bulk dielectric functions. Results are compared with bulk tetragonal PZT 42/58 ceramics. The dynamic response in the films is dominated by an overdamped lead-based vibration in the TH{sub z} range, as known in PZT, but its evaluated dielectric contribution is affected by the porosity and roughness of the surface. (Author)

  18. Infrared spectra of the ammonium ion in ammonium hexavanadate (NH 4) 2V 6O 16

    Science.gov (United States)

    de Waal, D.; Heyns, A. M.; Range, K.-J.; Eglmeier, C.

    The infrared bands of the NH +4 and ND +4 groups in (NH 4) 2V 6O 16 and its deuterated analogue can be assigned with a fair amount of certainty at 90 K under the space group P2 1/ m( C22 h). The ND stretching modes of isotopically dilute NH 3D + ions in the crystal are in agreement with the predicted splitting into Cs, Cs and C1(2) components. The frequencies, shapes and temperature dependence of these modes suggest that both normal and bifurcated hydrogen bonds are formed. The latter closely resembles corresponding bonds in NH 4VO 3, but the normal hydrogen bonds are not as strong as the similar bonds in NH 4VO 3. This can be expected as NH +4 ions are dynamic in character in (NH 4) 2V 6O 16 and remain so down to temperatures of 90 K.

  19. Mid-infrared supercontinuum generation in the fingerprint region

    DEFF Research Database (Denmark)

    Møller, Uffe Visbech; Petersen, Christian Rosenberg; Kubat, Irnis

    The mid-infrared spectral region is of great technical and scientific interest because most molecules display fundamental vibrational absorptions in this region, leaving distinctive spectral fingerprints. Here, we demonstrate experimentally that launching intense ultra-short pulses with a central...... the potential of fibres to emit across the mid-infrared molecular fingerprint region, which is of key importance for applications such as early cancer diagnostics, gas sensing and food quality control....

  20. Conformational, structural, vibrational, electronic and quantum chemical investigations of cis-2-methoxycinnamic acid

    Science.gov (United States)

    Arjunan, V.; Anitha, R.; Marchewka, M. K.; Mohan, S.; Yang, Haifeng

    2015-01-01

    The Fourier transform infrared (FTIR) and FT-Raman spectra of cis-2-methoxycinnamic acid have been measured in the range 4000-400 and 4000-100 cm-1, respectively. Complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the observed FTIR and FT-Raman data. The geometry was optimised without any symmetry constrains using the DFT/B3LYP method utilising 6-311++G∗∗ and cc-pVTZ basis sets. The thermodynamic stability and chemical reactivity descriptors of the molecule have been determined. The exact environment of C and H of the molecule has been analysed by NMR spectroscopies through 1H and 13C NMR chemical shifts of the molecule. The energies of the frontier molecular orbitals have also been determined. Complete NBO analysis was also carried out to find out the intramolecular electronic interactions and their stabilisation energy. The vibrational frequencies which were determined experimentally are compared with those obtained theoretically from density functional theory (DFT) gradient calculations employing the B3LYP/6-311++G∗∗ and cc-pVTZ methods.

  1. Fabrication of TiO2/Carbon Photocatalyst using Submerged DC Arc Discharged in Ethanol/Acetic Acid Medium

    Science.gov (United States)

    Saraswati, T. E.; Nandika, A. O.; Andhika, I. F.; Patiha; Purnawan, C.; Wahyuningsih, S.; Rahardjo, S. B.

    2017-05-01

    This study aimed to fabricate a modified photocatalyst of TiO2/C to enhance its performance. The fabrication was achieved using the submerged direct current (DC) arc-discharge method employing two graphite electrodes, one of which was filled with a mixture of carbon powder, TiO2, and binder, in ethanol with acetic acid added in various concentrations. The arc-discharge method was conducted by flowing a current of 10-20 A (~20 V). X-ray diffraction (XRD) patterns showed significant placements of the main peak characteristics of TiO2, C graphite, and titanium carbide. The surface analysis using Fourier transform infrared spectroscopy (FTIR) revealed that fabricated TiO2/C nanoparticles had stretching vibrations of Ti-O, C-H, C═O, C-O, O-H and C═C in the regions of 450-550 cm-1, 2900-2880 cm-1, 1690-1760 cm-1, 1050-1300 cm-1, 3400-3700 cm-1 and ~1600 cm-1, respectively. In addition, the study investigated the photocatalysts of unmodified and modified TiO2/C for photodegradation of methylene blue (MB) dye solution under mercury lamp irradiation. The effectiveness of the degradation was defined by the decrease in 60-minute absorbance under a UV-Vis spectrophotometer. Modified TiO2/C proved to be significantly more efficient in reducing dye concentrations, reaching ~70%. It indicated that the oxygen-containing functional groups have been successfully attached to the surface of the nanoparticles and played a role in enhancing photocatalytic activity.

  2. $O(N)$ model in Euclidean de Sitter space: beyond the leading infrared approximation

    CERN Document Server

    Nacir, Diana López; Trombetta, Leonardo G

    2016-01-01

    We consider an $O(N)$ scalar field model with quartic interaction in $d$-dimensional Euclidean de Sitter space. In order to avoid the problems of the standard perturbative calculations for light and massless fields, we generalize to the $O(N)$ theory a systematic method introduced previously for a single field, which treats the zero modes exactly and the nonzero modes perturbatively. We compute the two-point functions taking into account not only the leading infrared contribution, coming from the self-interaction of the zero modes, but also corrections due to the interaction of the ultraviolet modes. For the model defined in the corresponding Lorentzian de Sitter spacetime, we obtain the two-point functions by analytical continuation. We point out that a partial resummation of the leading secular terms (which necessarily involves nonzero modes) is required to obtain a decay at large distances for massless fields. We implement this resummation along with a systematic double expansion in an effective coupling c...

  3. Preparation and infrared absorption properties of buried SiC layers

    International Nuclear Information System (INIS)

    Yan Hui; Chen Guanghua; Wong, S.P.; Kwok, R.W.M.

    1997-01-01

    Buried SiC layers were formed by using a metal vapor vacuum arc (MEVVA) ion source, with C + ions implanted into Si substrates under different doses. In the present study, the extracted voltage was 50 kV and the ion dose was varied from 3.0 x 10 17 to 1.6 x 10 18 cm -2 . According to infrared absorption measurements, it was fount that the structure of the buried SiC layers depended on the ion dose. Moreover, the results also demonstrated that the buried SiC layers including cubic crystalline SiC could be synthesized at an averaged substrate temperature of lower than 400 degree C with the MEVVA ion source

  4. Photodissociation of gaseous CH3COSH at 248 nm by time-resolved Fourier-transform infrared emission spectroscopy: Observation of three dissociation channels

    International Nuclear Information System (INIS)

    Hu, En-Lan; Tsai, Po-Yu; Fan, He; Lin, King-Chuen

    2013-01-01

    Upon one-photon excitation at 248 nm, gaseous CH 3 C(O)SH is dissociated following three pathways with the products of (1) OCS + CH 4 , (2) CH 3 SH + CO, and (3) CH 2 CO + H 2 S that are detected using time-resolved Fourier-transform infrared emission spectroscopy. The excited state 1 (n O , π * CO ) has a radiative lifetime of 249 ± 11 ns long enough to allow for Ar collisions that induce internal conversion and enhance the fragment yields. The rate constant of collision-induced internal conversion is estimated to be 1.1 × 10 −10 cm 3 molecule −1 s −1 . Among the primary dissociation products, a fraction of the CH 2 CO moiety may undergo further decomposition to CH 2 + CO, of which CH 2 is confirmed by reaction with O 2 producing CO 2 , CO, OH, and H 2 CO. Such a secondary decomposition was not observed previously in the Ar matrix-isolated experiments. The high-resolution spectra of CO are analyzed to determine the ro-vibrational energy deposition of 8.7 ± 0.7 kcal/mol, while the remaining primary products with smaller rotational constants are recognized but cannot be spectrally resolved. The CO fragment detected is mainly ascribed to the primary production. A prior distribution method is applied to predict the vibrational distribution of CO that is consistent with the experimental findings.

  5. Lattice dynamical investigation of the Raman and infrared wave numbers and heat capacity properties of the pyrochlores R2Zr2O7 (R = La, Nd, Sm, Eu)

    Science.gov (United States)

    Nandi, S.; Jana, Y. M.; Gupta, H. C.

    2018-04-01

    A short-range electrostatic forcefield model has been applied for the first time to investigate the Raman and infrared wave numbers in pyrochlore zirconates R2Zr2O7 (R3+ = La, Nd, Sm, Eu). The calculations of phonons involve five stretching and four bending force constants in the Wilson GF matrix method. The calculated phonon wave numbers are in reasonable agreement with the observed spectra in infrared and Raman excitation zones for all of these isomorphous compounds. The contributions of force constants to each mode show a similar trend of variation for all of these compounds. Furthermore, to validate the established forcefield model, we calculated the standard thermodynamic functions, e.g., molar heat capacity, entropy and enthalpy, and compared the results with the previous experimental data for each compound. Using the derived wave numbers for the acoustic and optical modes, the total phonon contribution to the heat capacity was calculated for all these zirconate compounds. The Schottky heat capacity contributions were also calculated for the magnetic compounds, Nd2Zr2O7, Sm2Zr2O7 and Eu2Zr2O7, taking account of crystal-field level schemes of the lanthanide ions. The derived total heat capacity and the integrated values of molar entropy and molar enthalpy showed satisfactory correlations at low temperatures with the experimental results available in the literature for these compounds. At higher temperatures, the discrepancies may be caused by the anharmonic effects of vibrations, phonon dispersion, distribution of phonon density of states, etc.

  6. β-Isocyanoalanine as an IR probe: comparison of vibrational dynamics between isonitrile and nitrile-derivatized IR probes.

    Science.gov (United States)

    Maj, Michał; Ahn, Changwoo; Kossowska, Dorota; Park, Kwanghee; Kwak, Kyungwon; Han, Hogyu; Cho, Minhaeng

    2015-05-07

    An infrared (IR) probe based on isonitrile (NC)-derivatized alanine 1 was synthesized and the vibrational properties of its NC stretching mode were investigated using FTIR and femtosecond IR pump-probe spectroscopy. It is found that the NC stretching mode is very sensitive to the hydrogen-bonding ability of solvent molecules. Moreover, its transition dipole strength is larger than that of nitrile (CN) in nitrile-derivatized IR probe 2. The vibrational lifetime of the NC stretching mode is found to be 5.5 ± 0.2 ps in both D2O and DMF solvents, which is several times longer than that of the azido (N3) stretching mode in azido-derivatized IR probe 3. Altogether these properties suggest that the NC group can be a very promising sensing moiety of IR probes for studying the solvation structure and dynamics of biomolecules.

  7. Infrared source test

    Energy Technology Data Exchange (ETDEWEB)

    Ott, L.

    1994-11-15

    The purpose of the Infrared Source Test (IRST) is to demonstrate the ability to track a ground target with an infrared sensor from an airplane. The system is being developed within the Advance Technology Program`s Theater Missile Defense/Unmanned Aerial Vehicle (UAV) section. The IRST payload consists of an Amber Radiance 1 infrared camera system, a computer, a gimbaled mirror, and a hard disk. The processor is a custom R3000 CPU board made by Risq Modular Systems, Inc. for LLNL. The board has ethernet, SCSI, parallel I/O, and serial ports, a DMA channel, a video (frame buffer) interface, and eight MBytes of main memory. The real-time operating system VxWorks has been ported to the processor. The application code is written in C on a host SUN 4 UNIX workstation. The IRST is the result of a combined effort by physicists, electrical and mechanical engineers, and computer scientists.

  8. Competing intramolecular N-H⋯O=C hydrogen bonds and extended intermolecular network in 1-(4-chlorobenzoyl)-3-(2-methyl-4-oxopentan-2-yl) thiourea analyzed by experimental and theoretical methods

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, Aamer, E-mail: aamersaeed@yahoo.com [Department of Chemistry, Quaid-I-Azam University, Islamabad 45320 (Pakistan); Khurshid, Asma [Department of Chemistry, Quaid-I-Azam University, Islamabad 45320 (Pakistan); Jasinski, Jerry P. [Department of Chemistry, Keene State College, 229 Main Street Keene, NH 03435-2001 (United States); Pozzi, C. Gustavo; Fantoni, Adolfo C. [Instituto de Física La Plata, Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 49 y 115, La Plata, Buenos Aires (Argentina); Erben, Mauricio F., E-mail: erben@quimica.unlp.edu.ar [CEQUINOR (UNLP, CONICET-CCT La Plata), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 962, (1900) La Plata, Buenos Aires (Argentina)

    2014-03-18

    Highlights: • Two distinct N-H⋯O=C intramolecular competing hydrogen bonds are feasible in the title molecule. • Crystal structures and vibrational properties were determined. • The C=O and C=S double bonds of the acyl-thiourea group are mutually oriented in opposite directions. • A strong hyperconjugative lpO1 → σ{sup ∗}(N2-H) remote interaction was detected. • Topological analysis reveals a Cl⋯N interaction playing a relevant role in crystal packing. - Abstract: The synthesis of a novel 1-acyl-thiourea species (C{sub 14}H{sub 17}N{sub 2}O{sub 2}SCl), has been tailored in such a way that two distinct N-H⋯O=C intramolecular competing hydrogen bonds are feasible. The X-ray structure analysis as well as the vibrational (FT-IR and FT-Raman) data reveal that the S conformation is preferred, with the C=O and C=S bonds of the acyl-thiourea group pointing in opposite directions. The preference for the intramolecular N-H⋯O=C hydrogen bond within the -C(O)NHC(S)NH- core is confirmed. The Natural Bond Orbital and the Atom in Molecule approaches demonstrate that a strong hyperconjugative lpO → σ{sup ∗}(N-H) remote interaction between the acyl and the thioamide N-H groups is responsible for the stabilization of the S conformation. Intermolecular interactions have been characterized in the periodic system electron density and the topological analysis reveals the presence of an extended intermolecular network in the crystal, including a Cl⋯N interaction playing a relevant role in crystal packing.

  9. Interplay between up-regulation of cytochrome-c-oxidase and hemoglobin oxygenation induced by near-infrared laser

    Science.gov (United States)

    Wang, Xinlong; Tian, Fenghua; Soni, Sagar S.; Gonzalez-Lima, F.; Liu, Hanli

    2016-08-01

    Photobiomodulation, also known as low-level laser/light therapy (LLLT), refers to the use of red-to-near-infrared light to stimulate cellular functions for physiological or clinical benefits. The mechanism of LLLT is assumed to rely on photon absorption by cytochrome c oxidase (CCO), the terminal enzyme in the mitochondrial respiratory chain that catalyzes the reduction of oxygen for energy metabolism. In this study, we used broadband near-infrared spectroscopy (NIRS) to measure the LLLT-induced changes in CCO and hemoglobin concentrations in human forearms in vivo. Eleven healthy participants were administered with 1064-nm laser and placebo treatments on their right forearms. The spectroscopic data were analyzed and fitted with wavelength-dependent, modified Beer-Lambert Law. We found that LLLT induced significant increases of CCO concentration (Δ[CCO]) and oxygenated hemoglobin concentration (Δ[HbO]) on the treated site as the laser energy dose accumulated over time. A strong linear interplay between Δ[CCO] and Δ[HbO] was observed for the first time during LLLT, indicating a hemodynamic response of oxygen supply and blood volume closely coupled to the up-regulation of CCO induced by photobiomodulation. These results demonstrate the tremendous potential of broadband NIRS as a non-invasive, in vivo means to study mechanisms of photobiomodulation and perform treatment evaluations of LLLT.

  10. Application of Fourier transform infrared spectroscopy with chemometrics on postmortem interval estimation based on pericardial fluids.

    Science.gov (United States)

    Zhang, Ji; Li, Bing; Wang, Qi; Wei, Xin; Feng, Weibo; Chen, Yijiu; Huang, Ping; Wang, Zhenyuan

    2017-12-21

    Postmortem interval (PMI) evaluation remains a challenge in the forensic community due to the lack of efficient methods. Studies have focused on chemical analysis of biofluids for PMI estimation; however, no reports using spectroscopic methods in pericardial fluid (PF) are available. In this study, Fourier transform infrared (FTIR) spectroscopy with attenuated total reflectance (ATR) accessory was applied to collect comprehensive biochemical information from rabbit PF at different PMIs. The PMI-dependent spectral signature was determined by two-dimensional (2D) correlation analysis. The partial least square (PLS) and nu-support vector machine (nu-SVM) models were then established based on the acquired spectral dataset. Spectral variables associated with amide I, amide II, COO - , C-H bending, and C-O or C-OH vibrations arising from proteins, polypeptides, amino acids and carbohydrates, respectively, were susceptible to PMI in 2D correlation analysis. Moreover, the nu-SVM model appeared to achieve a more satisfactory prediction than the PLS model in calibration; the reliability of both models was determined in an external validation set. The study shows the possibility of application of ATR-FTIR methods in postmortem interval estimation using PF samples.

  11. Synthesis, vibrational and quantum chemical investigations of hydrogen bonded complex betaine dihydrogen selenite

    Science.gov (United States)

    Arjunan, V.; Marchewka, Mariusz K.; Kalaivani, M.

    2012-10-01

    The molecular complex of betaine with selenious acid namely, betaine dihydrogen selenite (C5H13NO5Se, BDHSe) was synthesised by the reaction of betaine and SeO2 in a 1:1:1 solution of isopropanol, methanol and water. Crystals were grown from this solution by cooling to 253 K for few days. The complex was formed without accompanying proton transfer from selenious acid molecule to betaine. The complete vibrational assignments and analysis of BDHSe have been performed by FTIR, FT-Raman and far-infrared spectral studies. More support on the experimental findings was added from the quantum chemical studies performed with DFT (B3LYP) method using 6-311++G∗∗, 6-31G∗∗, cc-pVDZ and 3-21G basis sets. The structural parameters, energies, thermodynamic parameters and the NBO charges of BDHSe were determined by the DFT method. The 1H and 13C isotropic chemical shifts (δ ppm) of BDHSe with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. SHG experiment was carried out using Kurtz-Perry powder technique. The efficiency of second harmonic generation for BDHSe was estimated relatively to KDP: deff = 0.97 deff (KDP).

  12. Vibrational modes and Structure of Niobium(V) Oxosulfato Complexes in the Molten Nb2O5-K2S2O7-K2SO4 System Studied by Raman Spectroscopy

    DEFF Research Database (Denmark)

    Paulsen, Andreas L.; Borup, Flemming; Berg, Rolf W.

    2010-01-01

    The structural and vibrational properties of NbV oxosulfato complexes formed in Nb2O5-K2S2O7 and Nb2O5-K2S2O7-K2SO4 molten mixtures with 0 ... for the binary Nb2O5-K2S2O7 molten system indicate that the dissolution of Nb2O5 proceeds with consumption of S2O7 leading to the formation of a NbV oxosulfato complex according to Nb2O5 + nS2O7 --> C2n-; a simple formalism exploiting the relative Raman band intensities is used for determining the stoichiometric...... coefficient, n, pointing to n = 3 and to the following reaction: Nb2O5 + 3S2O7 --> 2NbO(SO4)3, which is consistent with the Raman spectra of the molten mixtures. Nb2O5 could be dissolved much easier when K2SO4 was present in an equimolar (1:1) SO4/Nb ratio; the incremental presence of K2SO4 in Nb2O5-K2S2O7...

  13. Photocatalytic decomposition of N{sub 2}O over TiO{sub 2}/g-C{sub 3}N{sub 4} photocatalysts heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Kočí, K., E-mail: kamila.koci@vsb.cz [Institute of Environmental technologies, VŠB Technical University of Ostrava 17. listopadu 15/2172, 708 00 Ostrava (Czech Republic); Reli, M.; Troppová, I.; Šihor, M. [Institute of Environmental technologies, VŠB Technical University of Ostrava 17. listopadu 15/2172, 708 00 Ostrava (Czech Republic); Kupková, J. [Nanotechnology center, VŠB Technical University of Ostrava 17. listopadu 15/2172, 708 00 Ostrava (Czech Republic); Kustrowski, P. [Faculty of Chemistry, Jagiellonian University in Kraków, ul. Ingardena 3, 30-060 Kraków (Poland); Praus, P. [Institute of Environmental technologies, VŠB Technical University of Ostrava 17. listopadu 15/2172, 708 00 Ostrava (Czech Republic); Department of Chemistry, VŠB Technical University of Ostrava 17. listopadu 15/2172, 708 00 Ostrava (Czech Republic)

    2017-02-28

    Highlights: • TiO{sub 2}/g-C{sub 3}N{sub 4} photocatalysts with the various TiO{sub 2}/g-C{sub 3}N{sub 4} weight ratios. • N{sub 2}O photocatalytic decomposition under UVC and UVA irradiation. • Heterojunction on the TiO{sub 2}/g-C{sub 3}N{sub 4} interface play an important role. • Optimal ratio of TiO{sub 2}:g-C{sub 3}N{sub 4} was 1:2 for the highest activity at UVA irradiation. - Abstract: TiO{sub 2}/g-C{sub 3}N{sub 4} photocatalysts with the various TiO{sub 2}/g-C{sub 3}N{sub 4} weight ratios from 1:2 to 1:6 were fabricated by mechanical mixing in water suspension followed by calcination. Pure TiO{sub 2} was prepared by thermal hydrolysis and pure g-C{sub 3}N{sub 4} was prepared from commercial melamine by thermal annealing at 620 °C. All the nanocomposites were characterized by X-ray powder diffraction, UV–vis diffuse reflectance spectroscopy, Raman spectroscopy, infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, photoelectrochemical measurements and nitrogen physisorption. The prepared mixtures along with pure TiO{sub 2} and g-C{sub 3}N{sub 4} were tested for the photocatalytic decomposition of nitrous oxide under UVC (λ = 254 nm), UVA (λ = 365 nm) and Vis (λ > 400 nm) irradiation. The TiO{sub 2}/g-C{sub 3}N{sub 4} nanocomposites showed moderate improvement compared to pure g-C{sub 3}N{sub 4} but pure TiO{sub 2} proved to be a better photocatalyst under UVC irradiation. However, under UVA irradiation conditions, the photocatalytic activity of TiO{sub 2}/g-C{sub 3}N{sub 4} (1:2) nanocomposite exhibited an increase compared to pure TiO{sub 2}. Nevertheless, further increase of g-C{sub 3}N{sub 4} amount leads/led to a decrease in reactivity. These results are suggesting the nanocomposite with the optimal weight ratio of TiO{sub 2} and g-C{sub 3}N{sub 4} have shifted absorption edge energy towards longer wavelengths and decreased the recombination rate of charge carriers compared to pure g-C{sub 3}N{sub 4}. This is

  14. Infrared laser system

    International Nuclear Information System (INIS)

    Cantrell, C.D.; Carbone, R.J.

    1977-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture

  15. Rapid infrared and optical variability in the bright quasar 3C273

    International Nuclear Information System (INIS)

    Courvoisier, T.J.-L.; Robson, E.I.; Hughes, D.H.; Bouchet, P.; Schwarz, H.E.; Krisciunas, K.

    1988-01-01

    We have observed variations by a factor of two in the infrared flux from the bright quasar 3C273 on a timescale as short as one day. In February 1988, the behaviour of the source changed from having a stable infrared flux and slow optical variations to a state characterized by recurrent infrared and optical flaring. The optical variations were of several per cent per day, changing from increase to decrease approximately every week. The amplitude of the repeated optical flares was 30-40%. The data are consistent with re-injection/acceleration of electrons followed by rapid cooling. The inferred magnetic field is 0.7 gauss and the data are marginally consistent with no relativistic beaming. (author)

  16. Development of the qualitative techniques for monitoring of the power cables condition using infrared analysis

    International Nuclear Information System (INIS)

    Puiu, D.; Gyongyosi, T.; Dinu, E.; Cristi, P.

    2015-01-01

    The specimens analysed have been sampled from CYY 3 x 25 mm type cable sections. These sections were 3.5 mm long and have been accelerated thermal aged (by Joule Lenz effect), the thermal ageing time equivalent for NPP operation being of 10, 20, 30, 40 and 50 years. This technique is using the fact that, the polymers are degrading, the structure changes taking place leads on development of some new cross-linking having different absorption characteristics than the initial un-aged material linking. The dominant oxidation mechanisms for the aged polymers in air are producing bunch of carbonyl O=C<. In the infrared (IR) spectrum, the carbonyl bunch shows a vibration of the characteristic valence at reciprocal characteristic wave band about 1720 cm-1.The absorbance at 1720 cm-1 trends to grow related to increasing of degradation. The results are useful to identify, model and manage the power cable material ageing phenomenon in the NPP. (authors)

  17. On the differences between 1.5oC and 2oC of global warming

    Science.gov (United States)

    King, A.

    2017-12-01

    The Paris Agreement of 2015 has resulted in a drive to limit global warming to 2oC with an aim for a lower 1.5oC target. It is therefore vital that we understand some of the differences we would expect between these two levels of global warming. My research uses coupled climate model projections to investigate where and for what variables we can differentiate between worlds of 1.5oC and 2oC global warming. I place a particular focus on climate extremes and population exposure to those extremes. I have found that there are perceptible benefits in limiting global warming to 1.5oC as opposed to 2oC through reduced frequency and intensity of heat extremes, both over land and in ocean areas where thermal stress on coral has resulted in bleaching. Differences in high and low precipitation extremes between the 1.5oC and 2oC global warming levels are projected for some regions. I have also examined how "scalable" changes from the 1.5oC to 2oC level are. In areas of the world such as Eastern China I find that changes in anthropogenic aerosol concentrations will influence the level of change projected at 1.5oC and 2oC, such that past warming is likely to be a poor indicator of future changes. Overall, my research finds clear benefits to limiting global warming to 1.5oC relative to higher levels.

  18. Nuclear resonance vibrational spectroscopy applied to [Fe(OEP)(NO)]: the vibrational assignments of five-coordinate ferrous heme-nitrosyls and implications for electronic structure.

    Science.gov (United States)

    Lehnert, Nicolai; Galinato, Mary Grace I; Paulat, Florian; Richter-Addo, George B; Sturhahn, Wolfgang; Xu, Nan; Zhao, Jiyong

    2010-05-03

    This study presents Nuclear Resonance Vibrational Spectroscopy (NRVS) data on the five-coordinate (5C) ferrous heme-nitrosyl complex [Fe(OEP)(NO)] (1, OEP(2-) = octaethylporphyrinato dianion) and the corresponding (15)N(18)O labeled complex. The obtained spectra identify two isotope sensitive features at 522 and 388 cm(-1), which shift to 508 and 381 cm(-1), respectively, upon isotope labeling. These features are assigned to the Fe-NO stretch nu(Fe-NO) and the in-plane Fe-N-O bending mode delta(ip)(Fe-N-O), the latter has been unambiguously assigned for the first time for 1. The obtained NRVS data were simulated using our quantum chemistry centered normal coordinate analysis (QCC-NCA). Since complex 1 can potentially exist in 12 different conformations involving the FeNO and peripheral ethyl orientations, extended density functional theory (DFT) calculations and QCC-NCA simulations were performed to determine how these conformations affect the NRVS properties of [Fe(OEP)NO]. These results show that the properties and force constants of the FeNO unit are hardly affected by the conformational changes involving the ethyl substituents. On the other hand, the NRVS-active porphyrin-based vibrations around 340-360, 300-320, and 250-270 cm(-1) are sensitive to the conformational changes. The spectroscopic changes observed in these regions are due to selective mechanical couplings of one component of E(u)-type (in ideal D(4h) symmetry) porphyrin-based vibrations with the in-plane Fe-N-O bending mode. This leads to the observed variations in Fe(OEP) core mode energies and NRVS intensities without affecting the properties of the FeNO unit. The QCC-NCA simulated NRVS spectra of 1 show excellent agreement with experiment, and indicate that conformer F is likely present in the samples of this complex investigated here. The observed porphyrin-based vibrations in the NRVS spectra of 1 are also assigned based on the QCC-NCA results. The obtained force constants of the Fe-NO and N-O

  19. Following dynamic nuclear wave packets in N2,O2, and CO with few-cycle infrared pulses

    International Nuclear Information System (INIS)

    De, S.; Magrakvelidze, M.; Bocharova, I. A.; Ray, D.; Cao, W.; Li, H.; Wang, Z.; Laurent, G.; Thumm, U.; Ben-Itzhak, I.; Cocke, C. L.; Znakovskaya, I.; Kling, M. F.; Litvinyuk, I. V.

    2011-01-01

    We study the evolution of nuclear wave packets launched in molecular nitrogen, oxygen, and carbon monoxide by intense 8-fs infrared pulses. We use velocity map imaging to measure the momentum of the ion fragments when these wave packets are interrogated by a second such pulse after a variable time delay. Both quasibound and dissociative wave packets are observed. For the former, measurements of bound-state oscillations are used to identify the participating states and, in some cases, extract properties of the relevant potential-energy surfaces. Vibrational structure is resolved in both energy and oscillation frequencies for the cations of oxygen and carbon monoxide, displaying the same quantum wave-packet motion in both energy and time domains. In addition, vibrational structure is seen in the dication of carbon monoxide in a situation where the energy resolution by itself is inadequate to resolve the structure.

  20. Following dynamic nuclear wave packets in N2,O2, and CO with few-cycle infrared pulses

    Science.gov (United States)

    de, S.; Magrakvelidze, M.; Bocharova, I. A.; Ray, D.; Cao, W.; Znakovskaya, I.; Li, H.; Wang, Z.; Laurent, G.; Thumm, U.; Kling, M. F.; Litvinyuk, I. V.; Ben-Itzhak, I.; Cocke, C. L.

    2011-10-01

    We study the evolution of nuclear wave packets launched in molecular nitrogen, oxygen, and carbon monoxide by intense 8-fs infrared pulses. We use velocity map imaging to measure the momentum of the ion fragments when these wave packets are interrogated by a second such pulse after a variable time delay. Both quasibound and dissociative wave packets are observed. For the former, measurements of bound-state oscillations are used to identify the participating states and, in some cases, extract properties of the relevant potential-energy surfaces. Vibrational structure is resolved in both energy and oscillation frequencies for the cations of oxygen and carbon monoxide, displaying the same quantum wave-packet motion in both energy and time domains. In addition, vibrational structure is seen in the dication of carbon monoxide in a situation where the energy resolution by itself is inadequate to resolve the structure.

  1. Infrared Thermography Characterization of Defects in Seamless Pipes Using an Infrared Reflector

    International Nuclear Information System (INIS)

    Park, Hee Sang; Choi, Man Yong; Park, Jeong Hak; Lee, Jae Jung; Kim, Won Tae; Lee, Bo Young

    2012-01-01

    Infrared thermography uses infrared energy radiated from any objects above absolute zero temperature, and the range of its application has been constantly broadened. As one of the active test techniques detecting radiant energy generated when energy is applied to an object, ultrasound infrared thermography is a method of detecting defects through hot spots occurring at a defect area when 15-100 kHz of ultrasound is excited to an object. This technique is effective in detecting a wide range affected by ultrasound and vibration in real time. Especially, it is really effective when a defect area is minute. Therefore, this study conducted thermography through lock-in signal processing when an actual defect exists inside the austenite STS304 seamless pipe, which simulates thermal fatigue cracks in a nuclear power plant pipe. With ultrasound excited, this study could detect defects on the rear of a pipe by using an aluminium reflector. Besides, by regulating the angle of the aluminium reflector, this study could detect both front and rear defects as a single infrared thermography image.

  2. Electronic structure and vibrational properties of KRbAl{sub 2}B{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, V.V. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Adichtchev, S.V. [Laboratory of Condensed Matter Spectroscopy, Institute of Automation and Electrometry, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Bazarov, B.G.; Bazarova, Zh.G. [Laboratory of Oxide Systems, Baikal Institute of Nature Management, SB RAS, Ulan-Ude 47, 670047 (Russian Federation); Gavrilova, T.A. [Laboratory of Nanodiagnostics and Nanolithography, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Grossman, V.G. [Laboratory of Oxide Systems, Baikal Institute of Nature Management, SB RAS, Ulan-Ude 47, 670047 (Russian Federation); Kesler, V.G. [Laboratory of Physical Principles for Integrated Microelectronics, Institute of Semiconductor Physics, Novosibirsk, 630090 (Russian Federation); Meng, G.S. [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Lin, Z.S., E-mail: zslin@mail.ipc.ac.cn [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Surovtsev, N.V. [Laboratory of Condensed Matter Spectroscopy, Institute of Automation and Electrometry, SB RAS, Novosibirsk 90, 630090 (Russian Federation)

    2013-03-15

    Graphical abstract: With the KRbAl{sub 2}B{sub 2}O{sub 7} powder formed by solid state synthesis (left), Raman spectrum (right upper) and XPS valence electronic states (right lower) were measured, agreed with the first-principles results. Highlights: ► KRbAl{sub 2}B{sub 2}O{sub 7} powder was obtained by solid state synthesis. ► Vibrational properties of KRbAl{sub 2}B{sub 2}O{sub 7} were determined by unpolarized Raman spectrum. ► Electronic structures of KRbAl{sub 2}B{sub 2}O{sub 7} were measured by XPS. ► Experimental electronic structure is consistent with the first-principles result. ► KRbAl{sub 2}B{sub 2}O{sub 7} has a noticeable refractive indices increase and small NLO effects decrease compared to K{sub 2}Al{sub 2}B{sub 2}O{sub 7}. - Abstract: The physical properties of KRbAl{sub 2}B{sub 2}O{sub 7} have been considered in comparison with those of K{sub 2}Al{sub 2}B{sub 2}O{sub 7} and Rb{sub 2}Al{sub 2}B{sub 2}O{sub 7}. The vibrational parameters of KRbAl{sub 2}B{sub 2}O{sub 7} have been measured by Raman spectroscopy as very similar to those of K{sub 2}Al{sub 2}B{sub 2}O{sub 7}. The electronic structures of KRbAl{sub 2}B{sub 2}O{sub 7} have been evaluated by X-ray photoelectron spectroscopy and ab initio computations using CASTEP package. A noticeable refractive indices increase and small decrease of nonlinear optical properties have been found in KRbAl{sub 2}B{sub 2}O{sub 7} in reference to optical parameters of K{sub 2}Al{sub 2}B{sub 2}O{sub 7}.

  3. The influence of nickel coating on the interface of pressureless infiltrated with vibration Al-SiC composites

    Science.gov (United States)

    Elahinejad, Setare; Sharifi, Hassan; Tayebi, Morteza; Rajaee, Ali

    2017-11-01

    The aim of this study was to investigate the effect of nickel coatings on infiltration and interface of SiC reinforced Al-Mg composite. To this end, the pressureless infiltration procedure with vibration applied to produce composites with uncoated and nickel coated reinforcements at two temperatures of 650 °C and 850 °C. The microstructure of the infiltrated cross section was investigated by optical microscopy, scanning electron microscopy, linear and point analyses. Results indicated that coated ceramic preforms improved infiltration and strong interfaces in both temperatures were achieved. Also uncoated preform infiltrated at a temperature of 650 °C, was not proved to be appropriate and it did not form any interface. In this condition a small gap was found between aluminum matrix and ceramic reinforcement, and no bonding was established between the reinforcement and matrix, however the composite prepared in 850 °C had an acceptable interface and the presence of MgAl2O4 at the interface caused improvement in interface bonding. In addition, in the composite sample with coated reinforcement, the existence of Ni as coating prevented the SiC dissolution in the alloy and there was no sign of carbide formation at the interface. At the interface of produced composite, Al3Ni and Al3Ni2 compounds were formed in the matrix around the reinforcement.

  4. Vibrational spectra and normal co-ordinate analysis of 2-aminopyridine and 2-amino picoline.

    Science.gov (United States)

    Jose, Sujin P; Mohan, S

    2006-05-01

    The Fourier transform infrared (FT-IR) and Raman (FT-R) spectra of 2-aminopyridine and 2-amino picoline were recorded and the observed frequencies were assigned to various modes of vibration in terms of fundamentals by assuming Cs point group symmetry. A normal co-ordinate analysis was also carried out for the proper assignment of the vibrational frequencies using simple valence force field. A complete vibrational analysis is presented here for the molecules and the results are briefly discussed.

  5. Studies on structural, optical, thermal and vibrational properties of thienyl chalcone derivative: 1-(4-Nitrophenyl)-3-(2-thienyl)prop-2-en-1-one

    Science.gov (United States)

    de Toledo, T. A.; da Costa, R. C.; Bento, R. R. F.; Al-Maqtari, H. M.; Jamalis, J.; Pizani, P. S.

    2018-03-01

    The structural, optical, thermal and vibrational properties of thienyl chalcone derivative 1-(4-Nitrophenyl)-3-(2-thienyl)prop-2-en-1-one, C13H9NO3S were investigated combining nuclear magnetic resonance (1H and 13C NMR), X-ray diffraction (XRD), Fourier transform infrared (FTIR), UV-vis spectroscopy at room temperature assisted by density functional theory (DFT) calculations and Raman scattering at the temperature range 303-463 K. The electronic properties, including excitation energies, oscillator strengths, HOMO and LUMO energies were calculated by time-dependent DFT (TD-DFT) to complement the experimental findings. The B3LYP/6-311G (d,p) (B3LYP/cc-pVTZ) calculations led to the identification of 'two minima on the molecules' potential energy surfaces. From these calculations, it was predicted that the most stable conformer for C13H9NO3S in the gas phase is founded at 0 K relationship to dihedral angle C8sbnd C9sbnd C10sbnd S1, in agreement with XRD results. The molecular plot showed that the electrical charge mobility in the molecule occurs from thiophene to benzene ring. The optical band gap energy calculated from the difference between HOMO and LUMO orbitals was founded to be ∼3.87 (3.82) eV, in close agreement with the experimental value of 2.94 eV. The comparison between experimental and theoretical vibrational spectra gives a precise knowledge of the fundamental vibrational modes and leads to a better interpretation of the experimental Raman and infrared spectra. As temperature increases from room temperature to 443 K, it was observed the current phonon anharmonicity effects associated to changes in the Raman line intensities, line-widths and red-shift, in special in the external modes region, whereas the internal modes region remains almost unchanged due its strong chemical bonds. Furthermore, C13H9NO3S goes to phase transition in the temperature range 453-463 K. This thermal phenomenon was attributed to the disappearance of the lattice (∼10-200 cm-1

  6. Terahertz-infrared spectroscopy of overdoped manganites La{sub 1−x}Ca{sub x}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kadyrov, Lenar S., E-mail: kadyrov@phystech.edu [Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny 141700 (Russian Federation); A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov Str., 38, Moscow 119991 (Russian Federation); Zhukova, Elena S. [Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny 141700 (Russian Federation); A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov Str., 38, Moscow 119991 (Russian Federation); 1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, Stuttgart 70550 (Germany); Torgashev, Victor I. [Faculty of Physics, Southern Federal University, Bolshaya Sadovaya 105/42, Rostov-on-Don 344090 (Russian Federation); Gorshunov, Boris P. [Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny 141700 (Russian Federation); A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov Str., 38, Moscow 119991 (Russian Federation); 1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, Stuttgart 70550 (Germany); Prokhorov, Anatoly S.; Motovilova, Elizaveta A. [Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny 141700 (Russian Federation); A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov Str., 38, Moscow 119991 (Russian Federation); Fischgrabe, Florian; Moshnyaga, Vasily [1. Physikalisches Institut, Georg-August-Universität Göttingen, Fredrich-Hund-Platz 1, Göttingen 37077 (Germany); Zhang, Tao [Key Laboratory of Material Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); and others

    2015-03-01

    Terahertz and infrared spectra of dielectric permittivity and optical conductivity of overdoped manganites La{sub 1−x}Ca{sub x}MnO{sub 3} (0.5≤x≤1) have been measured at frequencies ν from 4 cm{sup −1} to 700 cm{sup −1} and at temperatures T from 5 K to 300 K. The samples were prepared in the form of bulk polycrystals (ceramics) and epitaxial films (free-standing and on MgO substrates). Strongly asymmetric absorption bands have been found in the compounds which are in charge-ordered state (0.5vibrational states over the standard Debye contribution (~ν{sup 2}). In addition, Raman scattering measurements on ceramic samples have been conducted, which confirmed our assignment of the bands’ origin. We firmly identify contribution to the low energy spectra due to quasi-free charge carriers. In the paramagnetic phase all samples show a Drude-like response corresponding to the band type of charge transport. At low temperatures, for the range of dopings 0.5≤x<0.85, the conductivity spectra show signatures of variable-range hopping mechanisms of transport.

  7. Infrared and Raman spectroscopic study of BDA-TTP [2,5-bis(1,3-dithian-2-ylidene) 1,3,4,6-tetrathiapentalene] and its charge-transfer salts

    Science.gov (United States)

    Uruichi, Mikio; Nakano, Chikako; Tanaka, Masayuki; Yakushi, Kyuya; Kaihatsu, Takayuki; Yamada, Jun-ichi

    2008-09-01

    Infrared and Raman spectra in the frequency range of 1200-1600 cm -1 were observed using BDA-TTP and (BDA-TTP)CuCl 2 crystals. The C =C stretching and CH 2 bending modes in this frequency region were assigned based on quantum chemical calculation of the normal modes by the density functional theory (DFT) method. The three C =C stretching modes of BDA-TTP showed a significant low-frequency shift upon oxidation. One of the Raman-active C =C stretching modes is strongly coupled with the charge-transfer excited state. Vibrational analysis was applied to β-(BDA-TTP) 2I 3. The infrared-active C =C stretching mode strongly suggests that the insulating state of β-(BDA-TTP) 2I 3 is characterized as a dimer-Mott state below 150 K.

  8. Crystal structure, quantum mechanical investigation, IR and NMR spectroscopy of two new organic salts: (C8H12NO)·[NO3] (I) and (C8H14N4)·[ClO4]2 (II)

    Science.gov (United States)

    Bayar, I.; Khedhiri, L.; Soudani, S.; Lefebvre, F.; Pereira da Silva, P. S.; Ben Nasr, C.

    2018-06-01

    Two new organic-inorganic hybrid materials, 4-methoxybenzylammonium nitrate, (C8H12NO)·[NO3] (I), and 2-(1-piperazinyl)pyrimidinium bis(perchlorate), (C8H14N4)·[ClO4]2(II), have been synthesized by an acid/base reaction at room temperature, their structures were determined by single crystal X-ray diffraction. Compound (I) crystallizes in the orthorhombic system and Pnma space group with a = 15.7908 (7), b = 6.8032 (3), c = 8.7091 (4) Å, V = 935.60 (7) Å3 with Z = 4. Full-matrix least-squares refinement converged at R = 0.038 and wR(F2) = 0.115. Compound (II) belongs to the monoclinic system, space group P21/c with the following parameters: a = 10.798(2), b = 7.330(1), c = 21.186(2) Å, β = 120.641 (4)°, V = 1442.7 (3) Å3and Z = 4. The structure was refined to R = 0.044, wR(F2) = 0.132. In the structures of (I) and (II), the anionic and cationic entities are interconnected by hydrogen bonding contacts forming three-dimensional networks. Intermolecular interactions were investigated by Hirshfeld surfaces and the contacts of the four different chloride atoms in (II) were compared. The Molecular Electrostatic Potential (MEP) maps and the HOMO and LUMO energy gaps of both compounds were computed. The vibrational absorption bands were identified by infrared spectroscopy. These compounds were also investigated by solid-state 13C, 35Cl and 15N NMR spectroscopy. DFT calculations allowed the attribution of the IR and NMR bands.

  9. Fourier Transform Spectroscopy of Carbonyl Sulfide from 4800 to 8000 cm -1and New Global Analysis of 16O 12C 32S

    Science.gov (United States)

    Rbaihi, E.; Belafhal, A.; Vander Auwera, J.; Naı̈m, S.; Fayt, A.

    1998-09-01

    We have measured the FT spectrum of natural OCS from 4800 to 8000 cm-1with a near Doppler resolution and a line-position accuracy between 2 and 8 × 10-4cm-1. For the normal isotopic species16O12C32S, 37 vibrational transitions have been analyzed for both frequencies and intensities. We also report six bands of16O12C34S, five bands of16O13C32S, two bands of16O12C33S, and two bands of18O12C32S. Important effective Herman-Wallis terms are explained by the anharmonic resonances between closely spaced states. As those results complete the study of the Fourier transform spectra of natural carbonyl sulfide from 1800 to 8000 cm-1, a new global rovibrational analysis of16O12C32S has been performed. We have determined a set of 148 molecular parameters, and a statistical agreement is obtained with all the available experimental data.

  10. Application of group theory to proper vibrations in an electric circuit

    OpenAIRE

    Hosoya, Masahiko; 細谷, 将彦

    2010-01-01

    Group-theoretical analysis is first presented to three-dimensional behavior of an electric circuit. All the modes of proper vibration are found and assigned to each irreducible representation of symmetrical group of the circuit without solving its circuit equations. In order that an electromagnetic radiation from the outside may induce each vibration, a selection rule which is similar to that in infrared absorption must be fulfilled. The circuit may be used as a directive antenna.

  11. Reaction dynamics of O({sup 1}D) + HCOOD/DCOOH investigated with time-resolved Fourier-transform infrared emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shang-Chen; Putikam, Raghunath; Lin, M. C., E-mail: chemmcl@emory.edu, E-mail: tsuchis@sepia.plala.or.jp, E-mail: yplee@mail.nctu.edu.tw; Tsuchiya, Soji, E-mail: chemmcl@emory.edu, E-mail: tsuchis@sepia.plala.or.jp, E-mail: yplee@mail.nctu.edu.tw [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Nghia, N. T. [School of Chemical Engineering - Hanoi University of Science and Technology, Hanoi (Viet Nam); Nguyen, Hue M. T. [Center for Computational Science and Faculty of Chemistry, Hanoi National University of Education, Hanoi (Viet Nam); Lee, Yuan-Pern, E-mail: chemmcl@emory.edu, E-mail: tsuchis@sepia.plala.or.jp, E-mail: yplee@mail.nctu.edu.tw [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China)

    2014-10-21

    We investigated the reaction dynamics of O({sup 1}D) towards hydrogen atoms of two types in HCOOH. The reaction was initiated on irradiation of a flowing mixture of O{sub 3} and HCOOD or DCOOH at 248 nm. The relative vibration-rotational populations of OH and OD (1 ≦ v ≦ 4, J ≤ 15) states were determined from time-resolved IR emission recorded with a step-scan Fourier-transform spectrometer. In the reaction of O({sup 1}D) + HCOOD, the rotational distribution of product OH is nearly Boltzmann, whereas that of OD is bimodal. The product ratio [OH]/[OD] is 0.16 ± 0.05. In the reaction of O({sup 1}D) + DCOOH, the rotational distribution of product OH is bimodal, but the observed OD lines are too weak to provide reliable intensities. The three observed OH/OD channels agree with three major channels of production predicted with quantum-chemical calculations. In the case of O({sup 1}D) + HCOOD, two intermediates HOC(O)OD and HC(O)OOD are produced in the initial C−H and O−D insertion, respectively. The former undergoes further decomposition of the newly formed OH or the original OD, whereas the latter produces OD via direct decomposition. Decomposition of HOC(O)OD produced OH and OD with similar vibrational excitation, indicating efficient intramolecular vibrational relaxation, IVR. Decomposition of HC(O)OOD produced OD with greater rotational excitation. The predicted [OH]/[OD] ratio is 0.20 for O({sup 1}D) + HCOOD and 4.08 for O({sup 1}D) + DCOOH; the former agrees satisfactorily with experiments. We also observed the v{sub 3} emission from the product CO{sub 2}. This emission band is deconvoluted into two components corresponding to internal energies E = 317 and 96 kJ mol{sup −1} of CO{sub 2}, predicted to be produced via direct dehydration of HOC(O)OH and secondary decomposition of HC(O)O that was produced via decomposition of HC(O)OOH, respectively.

  12. Impact of leach on lead vanado-iodoapatite [Pb5(VO4)3I]: An infrared and Raman spectroscopic study

    International Nuclear Information System (INIS)

    Zhang Ming; Maddrell, E.R.; Abraitis, P.K.; Salje, E.K.H.

    2007-01-01

    Structural changes in lead vanado-iodoapatite [Pb 5 (VO 4 ) 3 I], leached in KOH/KCO 3 H buffer solution at 90 deg. C, were investigated using infrared (IR) and Raman spectroscopy. The untreated material shows characteristic phonon bands in three wavenumber regions (50-250, 300-500 and 750-870 cm -1 ). In comparison with a natural apatite, the replacement of phosphate by vanadium in the apatite structure leads to stretching and bending vibrations of the structural tetrahedra shift to lower frequencies. The leached samples all show extra bands between 3000 and 3600 cm -1 , characterised by two features: a broad tail and two sharp absorption bands near 3490 and 3538 cm -1 . The former is attributed to the H 2 O species absorbed by the gains or located between grain boundaries, whereas the latter two bands, which have the similar frequencies as those of hydroxyls in fluorapatite, are assigned as OH species which substitutes iodine in the leached materials. The leached samples also show an extra Raman band near 1058 cm -1