WorldWideScience

Sample records for influence brain activity

  1. Does Aerobic Exercise Influence Intrinsic Brain Activity?

    DEFF Research Database (Denmark)

    Flodin, Pär; Jonasson, Lars S; Riklund, Katrin

    2017-01-01

    exercise group or an active control group. Both groups recieved supervised training, 3 days a week for 6 months. Multimodal brain imaging data was acquired before and after the intervention, including 10 min of resting state brain functional magnetic resonance imaging (rs-fMRI) and arterial spin labeling......Previous studies have indicated that aerobic exercise could reduce age related decline in cognition and brain functioning. Here we investigated the effects of aerobic exercise on intrinsic brain activity. Sixty sedentary healthy males and females (64-78 years) were randomized into either an aerobic...... group improved more. Contrary to our hypothesis, we did not observe any significant group by time interactions with regard to any measure of intrinsic activity. To further probe putative relationships between fitness and brain activity, we performed post hoc analyses disregarding group belongings...

  2. Task Context Influences Brain Activation during Music Listening

    Directory of Open Access Journals (Sweden)

    Andjela Markovic

    2017-06-01

    Full Text Available In this paper, we examined brain activation in subjects during two music listening conditions: listening while simultaneously rating the musical piece being played [Listening and Rating (LR] and listening to the musical pieces unconstrained [Listening (L]. Using these two conditions, we tested whether the sequence in which the two conditions were fulfilled influenced the brain activation observable during the L condition (LR → L or L → LR. We recorded high-density EEG during the playing of four well-known positively experienced soundtracks in two subject groups. One group started with the L condition and continued with the LR condition (L → LR; the second group performed this experiment in reversed order (LR → L. We computed from the recorded EEG the power for different frequency bands (theta, lower alpha, upper alpha, lower beta, and upper beta. Statistical analysis revealed that the power in all examined frequency bands increased during the L condition but only when the subjects had not had previous experience with the LR condition (i.e., L → LR. For the subjects who began with the LR condition, there were no power increases during the L condition. Thus, the previous experience with the LR condition prevented subjects from developing the particular mental state associated with the typical power increase in all frequency bands. The subjects without previous experience of the LR condition listened to the musical pieces in an unconstrained and undisturbed manner and showed a general power increase in all frequency bands. We interpret the fact that unconstrained music listening was associated with increased power in all examined frequency bands as a neural indicator of a mental state that can best be described as a mind-wandering state during which the subjects are “drawn into” the music.

  3. Available processing resources influence encoding-related brain activity before an event.

    Science.gov (United States)

    Galli, Giulia; Gebert, A Dorothea; Otten, Leun J

    2013-09-01

    Effective cognitive functioning not only relies on brain activity elicited by an event, but also on activity that precedes it. This has been demonstrated in a number of cognitive domains, including memory. Here, we show that brain activity that precedes the effective encoding of a word into long-term memory depends on the availability of sufficient processing resources. We recorded electrical brain activity from the scalps of healthy adult men and women while they memorized intermixed visual and auditory words for later recall. Each word was preceded by a cue that indicated the modality of the upcoming word. The degree to which processing resources were available before word onset was manipulated by asking participants to make an easy or difficult perceptual discrimination on the cue. Brain activity before word onset predicted later recall of the word, but only in the easy discrimination condition. These findings indicate that anticipatory influences on long-term memory are limited in capacity and sensitive to the degree to which attention is divided between tasks. Prestimulus activity that affects later encoding can only be engaged when the necessary cognitive resources can be allocated to the encoding process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Does Aerobic Exercise Influence Intrinsic Brain Activity? An Aerobic Exercise Intervention among Healthy Old Adults

    Directory of Open Access Journals (Sweden)

    Pär Flodin

    2017-08-01

    and intrinsic brain activity. Moreover, fitness-predicted changes in functional connectivity did not relate to changes in cognition, which is likely due to absent cross-sectional or longitudinal relationships between VO2-peak and cognition. We conclude that the aerobic exercise intervention had limited influence on patterns of intrinsic brain activity, although post hoc analyses indicated that individual changes in aerobic capacity preferentially influenced mid-temporal brain areas.

  5. Light Stimulation Properties to Influence Brain Activity: A Brain-CoMputer Interface application

    NARCIS (Netherlands)

    Bieger, J.; Garcia Molina, G.

    2010-01-01

    Brain-Computer Interfaces (BCIs) enable people to control appliances without involving the normal output pathways of peripheral nervesand muscles. A particularly promising type of BCI is based on the Steady-State Visual Evoked Potential (SSVEP). Users can selectcommands by focusing their attention

  6. The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study

    NARCIS (Netherlands)

    Bosma, I.; Stam, C. J.; Douw, L.; Bartolomei, F.; Heimans, J. J.; van Dijk, B. W.; Postma, T. J.; Klein, M.; Reijneveld, J. C.

    2008-01-01

    In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain activity

  7. Perspective and agency during video gaming influences spatial presence experience and brain activation patterns

    Directory of Open Access Journals (Sweden)

    Havranek Michael

    2012-07-01

    Full Text Available Abstract Background The experience of spatial presence (SP, i.e., the sense of being present in a virtual environment, emerges if an individual perceives himself as 1 if he were actually located (self-location and 2 able to act in the virtual environment (possible actions. In this study, two main media factors (perspective and agency were investigated while participants played a commercially available video game. Methods The differences in SP experience and associated brain activation were compared between the conditions of game play in first person perspective (1PP and third person perspective (3PP as well as between agency, i.e., active navigation of the video game character (active, and non-agency, i.e., mere passive observation (passive. SP was assessed using standard questionnaires, and brain activation was measured using electroencephalography (EEG and sLORETA source localisation (standard low-resolution brain electromagnetic tomography. Results Higher SP ratings were obtained in the 1PP compared with the 3PP condition and in the active compared with the passive condition. On a neural level, we observed in the 1PP compared with the 3PP condition significantly less alpha band power in the parietal, the occipital and the limbic cortex. In the active compared with the passive condition, we uncovered significantly more theta band power in frontal brain regions. Conclusion We propose that manipulating the factors perspective and agency influences SP formation by either directly or indirectly modulating the ego-centric visual processing in a fronto-parietal network. The neuroscientific results are discussed in terms of the theoretical concepts of SP.

  8. Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism.

    Science.gov (United States)

    Dienel, Gerald A; Cruz, Nancy F

    2016-07-01

    Aerobic glycolysis occurs during brain activation and is characterized by preferential up-regulation of glucose utilization compared with oxygen consumption even though oxygen level and delivery are adequate. Aerobic glycolysis is a widespread phenomenon that underlies energetics of diverse brain activities, such as alerting, sensory processing, cognition, memory, and pathophysiological conditions, but specific cellular functions fulfilled by aerobic glycolysis are poorly understood. Evaluation of evidence derived from different disciplines reveals that aerobic glycolysis is a complex, regulated phenomenon that is prevented by propranolol, a non-specific β-adrenoceptor antagonist. The metabolic pathways that contribute to excess utilization of glucose compared with oxygen include glycolysis, the pentose phosphate shunt pathway, the malate-aspartate shuttle, and astrocytic glycogen turnover. Increased lactate production by unidentified cells, and lactate dispersal from activated cells and lactate release from the brain, both facilitated by astrocytes, are major factors underlying aerobic glycolysis in subjects with low blood lactate levels. Astrocyte-neuron lactate shuttling with local oxidation is minor. Blockade of aerobic glycolysis by propranolol implicates adrenergic regulatory processes including adrenal release of epinephrine, signaling to brain via the vagus nerve, and increased norepinephrine release from the locus coeruleus. Norepinephrine has a powerful influence on astrocytic metabolism and glycogen turnover that can stimulate carbohydrate utilization more than oxygen consumption, whereas β-receptor blockade 're-balances' the stoichiometry of oxygen-glucose or -carbohydrate metabolism by suppressing glucose and glycogen utilization more than oxygen consumption. This conceptual framework may be helpful for design of future studies to elucidate functional roles of preferential non-oxidative glucose utilization and glycogen turnover during brain

  9. The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study

    NARCIS (Netherlands)

    Bosma, I.; Stam, C.; Douw, L.; Bartolomei, F.; Heimans, J.; Dijk, van B.; Postma, T.; Klein, M.; Reijneveld, J.

    2008-01-01

    Purpose: In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain

  10. Available processing resources influence encoding-related brain activity before an event

    OpenAIRE

    Galli, Giulia; Gebert, A. Dorothea; Otten, Leun J.

    2013-01-01

    Effective cognitive functioning not only relies on brain activity elicited by an event, but also on activity that precedes it. This has been demonstrated in a number of cognitive domains, including memory. Here, we show that brain activity that precedes the effective encoding of a word into long-term memory depends on the availability of sufficient processing resources. We recorded electrical brain activity from the scalps of healthy adult men and women while they memorized intermixed visual ...

  11. Perceived difficulties using everyday technology after acquired brain injury: influence on activity and participation.

    Science.gov (United States)

    Lindén, Anita; Lexell, Jan; Lund, Maria Larsson

    2010-12-01

    Using everyday technology (ET) is a prerequisite for activities and participation at home and in the community. It is well known that persons with an acquired brain injury (ABI) can have limitations in activities of daily living but our knowledge of their difficulties using ET is not known. Thirty-six persons (27 men and 9 women, mean age 44 years, age range 26-60) with an ABI (2-10 years post injury) were interviewed, using the Everyday Technology Use Questionnaire (ETUQ), about their perceived difficulties using ET and how these difficulties influenced their everyday activities and their possibilities to participate at home and in the community. A majority (78%) of the persons reported difficulties using ET. The most common difficulties were related to the use of telecommunication and computers. Despite these difficulties, a majority still used most objects and services independently. Twenty-six participants (72%) perceived that their difficulties using ET influenced their everyday activities and their possibility to participate at home and in the community. The results indicate that rehabilitation following an ABI should consider whether clients' use of ET influences their activity and participation and adopt interventions accordingly. The results also indicate that difficulties using ET need to be considered in the design of community services to prevent societal barriers.

  12. Motor programme activating therapy influences adaptive brain functions in multiple sclerosis: clinical and MRI study.

    Science.gov (United States)

    Rasova, Kamila; Prochazkova, Marie; Tintera, Jaroslav; Ibrahim, Ibrahim; Zimova, Denisa; Stetkarova, Ivana

    2015-03-01

    There is still little scientific evidence for the efficacy of neurofacilitation approaches and their possible influence on brain plasticity and adaptability. In this study, the outcome of a new kind of neurofacilitation approach, motor programme activating therapy (MPAT), was evaluated on the basis of a set of clinical functions and with MRI. Eighteen patients were examined four times with standardized clinical tests and diffusion tensor imaging to monitor changes without therapy, immediately after therapy and 1 month after therapy. Moreover, the strength of effective connectivity was analysed before and after therapy. Patients underwent a 1-h session of MPAT twice a week for 2 months. The data were analysed by nonparametric tests of association and were subsequently statistically evaluated. The therapy led to significant improvement in clinical functions, significant increment of fractional anisotropy and significant decrement of mean diffusivity, and decrement of effective connectivity at supplementary motor areas was observed immediately after the therapy. Changes in clinical functions and diffusion tensor images persisted 1 month after completing the programme. No statistically significant changes in clinical functions and no differences in MRI-diffusion tensor images were observed without physiotherapy. Positive immediate and long-term effects of MPAT on clinical and brain functions, as well as brain microstructure, were confirmed.

  13. Modulation of brain activity during action observation: influence of perspective, transitivity and meaningfulness.

    Directory of Open Access Journals (Sweden)

    Sébastien Hétu

    Full Text Available The coupling process between observed and performed actions is thought to be performed by a fronto-parietal perception-action system including regions of the inferior frontal gyrus and the inferior parietal lobule. When investigating the influence of the movements' characteristics on this process, most research on action observation has focused on only one particular variable even though the type of movements we observe can vary on several levels. By manipulating the visual perspective, transitivity and meaningfulness of observed movements in a functional magnetic resonance imaging study we aimed at investigating how the type of movements and the visual perspective can modulate brain activity during action observation in healthy individuals. Importantly, we used an active observation task where participants had to subsequently execute or imagine the observed movements. Our results show that the fronto-parietal regions of the perception action system were mostly recruited during the observation of meaningless actions while visual perspective had little influence on the activity within the perception-action system. Simultaneous investigation of several sources of modulation during active action observation is probably an approach that could lead to a greater ecological comprehension of this important sensorimotor process.

  14. Co-speech gestures influence neural activity in brain regions associated with processing semantic information.

    Science.gov (United States)

    Dick, Anthony Steven; Goldin-Meadow, Susan; Hasson, Uri; Skipper, Jeremy I; Small, Steven L

    2009-11-01

    Everyday communication is accompanied by visual information from several sources, including co-speech gestures, which provide semantic information listeners use to help disambiguate the speaker's message. Using fMRI, we examined how gestures influence neural activity in brain regions associated with processing semantic information. The BOLD response was recorded while participants listened to stories under three audiovisual conditions and one auditory-only (speech alone) condition. In the first audiovisual condition, the storyteller produced gestures that naturally accompany speech. In the second, the storyteller made semantically unrelated hand movements. In the third, the storyteller kept her hands still. In addition to inferior parietal and posterior superior and middle temporal regions, bilateral posterior superior temporal sulcus and left anterior inferior frontal gyrus responded more strongly to speech when it was further accompanied by gesture, regardless of the semantic relation to speech. However, the right inferior frontal gyrus was sensitive to the semantic import of the hand movements, demonstrating more activity when hand movements were semantically unrelated to the accompanying speech. These findings show that perceiving hand movements during speech modulates the distributed pattern of neural activation involved in both biological motion perception and discourse comprehension, suggesting listeners attempt to find meaning, not only in the words speakers produce, but also in the hand movements that accompany speech.

  15. Brain State Is a Major Factor in Preseizure Hippocampal Network Activity and Influences Success of Seizure Intervention

    Science.gov (United States)

    Ewell, Laura A.; Liang, Liang; Armstrong, Caren; Soltész, Ivan; Leutgeb, Stefan

    2015-01-01

    Neural dynamics preceding seizures are of interest because they may shed light on mechanisms of seizure generation and could be predictive. In healthy animals, hippocampal network activity is shaped by behavioral brain state and, in epilepsy, seizures selectively emerge during specific brain states. To determine the degree to which changes in network dynamics before seizure are pathological or reflect ongoing fluctuations in brain state, dorsal hippocampal neurons were recorded during spontaneous seizures in a rat model of temporal lobe epilepsy. Seizures emerged from all brain states, but with a greater likelihood after REM sleep, potentially due to an observed increase in baseline excitability during periods of REM compared with other brains states also characterized by sustained theta oscillations. When comparing the firing patterns of the same neurons across brain states associated with and without seizures, activity dynamics before seizures followed patterns typical of the ongoing brain state, or brain state transitions, and did not differ until the onset of the electrographic seizure. Next, we tested whether disparate activity patterns during distinct brain states would influence the effectiveness of optogenetic curtailment of hippocampal seizures in a mouse model of temporal lobe epilepsy. Optogenetic curtailment was significantly more effective for seizures preceded by non-theta states compared with seizures that emerged from theta states. Our results indicate that consideration of behavioral brain state preceding a seizure is important for the appropriate interpretation of network dynamics leading up to a seizure and for designing effective seizure intervention. SIGNIFICANCE STATEMENT Hippocampal single-unit activity is strongly shaped by behavioral brain state, yet this relationship has been largely ignored when studying activity dynamics before spontaneous seizures in medial temporal lobe epilepsy. In light of the increased attention on using single

  16. Physiological Aging Influence on Brain Hemodynamic Activity during Task-Switching: A fNIRS Study.

    Science.gov (United States)

    Vasta, Roberta; Cutini, Simone; Cerasa, Antonio; Gramigna, Vera; Olivadese, Giuseppe; Arabia, Gennarina; Quattrone, Aldo

    2017-01-01

    Task-switching (TS) paradigm is a well-known validated tool useful for exploring the neural substrates of cognitive control, in particular the activity of the lateral and medial prefrontal cortex. This work is aimed at investigating how physiological aging influences hemodynamic response during the execution of a color-shape TS paradigm. A multi-channel near infrared spectroscopy (fNIRS) was used to measure hemodynamic activity in 27 young (30.00 ± 7.90 years) and 11 elderly participants (57.18 ± 9.29 years) healthy volunteers (55% male, age range: (19-69) years) during the execution of a TS paradigm. Two holders were placed symmetrically over the left/right hemispheres to record cortical activity [oxy-(HbO) and deoxy-hemoglobin (HbR) concentration] of the dorso-lateral prefrontal cortex (DLPFC), the dorsal premotor cortex (PMC), and the dorso-medial part of the superior frontal gyrus (sFG). TS paradigm requires participants to repeat the same task over a variable number of trials, and then to switch to a different task during the trial sequence. A two-sample t -test was carried out to detect differences in cortical responses between groups. Multiple linear regression analysis was used to evaluate the impact of age on the prefrontal neural activity. Elderly participants were significantly slower than young participants in both color- ( p aging. Multivariate regression analysis revealed that the HbO mean concentration of switching task in the PMC ( p = 0.01, β = -0.321) and of shape single-task in the sFG ( p = 0.003, β = 0.342) were the best predictors of age effects. Our findings demonstrated that TS might be a reliable instrument to gather a measure of cognitive resources in older people. Moreover, the fNIRS-related brain activity extracted from frontoparietal cortex might become a useful indicator of aging effects.

  17. Mutual Influence of Reward Anticipation and Emotion on Brain Activity during Memory Retrieval.

    Science.gov (United States)

    Yan, Chunping; Liu, Fang; Li, Yunyun; Zhang, Qin; Cui, Lixia

    2017-01-01

    Previous studies on the joint effect of reward motivation and emotion on memory retrieval have obtained inconsistent results. Furthermore, whether and how any such joint effect might vary over time remains unclear too. Accordingly, using the event-related potential (ERP) measurement of high temporal resolution, our study investigates the cognitive and brain mechanisms of monetary reward and emotion affecting the retrieval processes of episodic memory. Twenty undergraduate and graduate students participated in the research, and our study's behavioral results indicated that reward (relative to no reward) and negative emotion (relative to positive and neutral emotion) significantly improved recognition performance. The ERP results showed that there were significant interactions between monetary reward and emotion on memory retrieval, and the reward effects of positive, neutral, and negative memory occurred at varied intervals in mean amplitude. The reward effect of positive memory appeared relatively early, at 260-330 ms after the stimulus onset in the frontal-frontocentral area, at 260-500 ms in the centroparietal-parietal area and at 500-700 ms in the frontocentral area. However, the reward effects of neutral and negative memory occurred relatively later, and that of negative memory appeared at 500-700 ms in the frontocentral and centroparietal area and that of neutral memory was at 500-700 ms in the frontocentral and centroparietal-parietal area. Meanwhile, significant FN400 old/new effects were observed in the negative and rewarded positive items, and the old/new effects of negative items appeared earlier at FN400 than positive items. Also, significant late positive component (LPC) old/new effects were found in the positive, negative, and rewarded neutral items. These results suggest that, monetary reward and negative emotion significantly improved recognition performance, and there was a mutual influence between reward and emotion on brain activity during memory

  18. Mutual Influence of Reward Anticipation and Emotion on Brain Activity during Memory Retrieval

    Directory of Open Access Journals (Sweden)

    Chunping Yan

    2017-10-01

    Full Text Available Previous studies on the joint effect of reward motivation and emotion on memory retrieval have obtained inconsistent results. Furthermore, whether and how any such joint effect might vary over time remains unclear too. Accordingly, using the event-related potential (ERP measurement of high temporal resolution, our study investigates the cognitive and brain mechanisms of monetary reward and emotion affecting the retrieval processes of episodic memory. Twenty undergraduate and graduate students participated in the research, and our study’s behavioral results indicated that reward (relative to no reward and negative emotion (relative to positive and neutral emotion significantly improved recognition performance. The ERP results showed that there were significant interactions between monetary reward and emotion on memory retrieval, and the reward effects of positive, neutral, and negative memory occurred at varied intervals in mean amplitude. The reward effect of positive memory appeared relatively early, at 260–330 ms after the stimulus onset in the frontal-frontocentral area, at 260–500 ms in the centroparietal-parietal area and at 500–700 ms in the frontocentral area. However, the reward effects of neutral and negative memory occurred relatively later, and that of negative memory appeared at 500–700 ms in the frontocentral and centroparietal area and that of neutral memory was at 500–700 ms in the frontocentral and centroparietal-parietal area. Meanwhile, significant FN400 old/new effects were observed in the negative and rewarded positive items, and the old/new effects of negative items appeared earlier at FN400 than positive items. Also, significant late positive component (LPC old/new effects were found in the positive, negative, and rewarded neutral items. These results suggest that, monetary reward and negative emotion significantly improved recognition performance, and there was a mutual influence between reward and emotion on

  19. Physiological Aging Influence on Brain Hemodynamic Activity during Task-Switching: A fNIRS Study

    Directory of Open Access Journals (Sweden)

    Roberta Vasta

    2018-01-01

    Full Text Available Task-switching (TS paradigm is a well-known validated tool useful for exploring the neural substrates of cognitive control, in particular the activity of the lateral and medial prefrontal cortex. This work is aimed at investigating how physiological aging influences hemodynamic response during the execution of a color-shape TS paradigm. A multi-channel near infrared spectroscopy (fNIRS was used to measure hemodynamic activity in 27 young (30.00 ± 7.90 years and 11 elderly participants (57.18 ± 9.29 years healthy volunteers (55% male, age range: (19–69 years during the execution of a TS paradigm. Two holders were placed symmetrically over the left/right hemispheres to record cortical activity [oxy-(HbO and deoxy-hemoglobin (HbR concentration] of the dorso-lateral prefrontal cortex (DLPFC, the dorsal premotor cortex (PMC, and the dorso-medial part of the superior frontal gyrus (sFG. TS paradigm requires participants to repeat the same task over a variable number of trials, and then to switch to a different task during the trial sequence. A two-sample t-test was carried out to detect differences in cortical responses between groups. Multiple linear regression analysis was used to evaluate the impact of age on the prefrontal neural activity. Elderly participants were significantly slower than young participants in both color- (p < 0.01, t = −3.67 and shape-single tasks (p = 0.026, t = −2.54 as well as switching (p = 0.026, t = −2.41 and repetition trials (p = 0.012, t = −2.80. Differences in cortical activation between groups were revealed for HbO mean concentration of switching task in the PMC (p = 0.048, t = 2.94. In the whole group, significant increases of behavioral performance were detected in switching trials, which positively correlated with aging. Multivariate regression analysis revealed that the HbO mean concentration of switching task in the PMC (p = 0.01, β = −0.321 and of shape single-task in the sFG (p = 0.003, β = 0

  20. Co-occurring anxiety influences patterns of brain activity in depression.

    Science.gov (United States)

    Engels, Anna S; Heller, Wendy; Spielberg, Jeffrey M; Warren, Stacie L; Sutton, Bradley P; Banich, Marie T; Miller, Gregory A

    2010-03-01

    Brain activation associated with anhedonic depression and co-occurring anxious arousal and anxious apprehension was measured by fMRI during performance of an emotion word Stroop task. Consistent with EEG findings, depression was associated with rightward frontal lateralization in the dorsolateral prefrontal cortex (DLPFC), but only when anxious arousal was elevated and anxious apprehension was low. Activity in the right inferior frontal gyrus (IFG) was also reduced for depression under the same conditions. In contrast, depression was associated with more activity in the anterior cingulate cortex (dorsal ACC and rostral ACC) and the bilateral amygdala. Results imply that depression, particularly when accompanied by anxious arousal, may result in a failure to implement top-down processing by appropriate brain regions (left DLPFC, right IFG) due to increased activation in regions associated with responding to emotionally salient information (right DLPFC, amygdala).

  1. Age-related influences of prior sleep on brain activation during verbal encoding

    Directory of Open Access Journals (Sweden)

    Michelle B Jonelis

    2012-04-01

    Full Text Available Disrupted sleep is more common in older adults (OA than younger adults (YA, often co-morbid with other conditions. How these sleep disturbances affect cognitive performance is an area of active study. We examined whether brain activation during verbal encoding correlates with sleep quantity and quality the night before testing in a group of healthy OA and YA. Twenty-seven OA (ages 59-82 and twenty-seven YA (ages 19-36 underwent one night of standard polysomnography. Twelve hours post-awakening, subjects performed a verbal encoding task while undergoing functional MRI. Analyses examined the group (OA vs. YA by prior sleep quantity (Total Sleep Time (TST or quality (Sleep Efficiency (SE interaction on cerebral activation, controlling for performance. Longer TST promoted higher levels of activation in the bilateral anterior parahippocampi in OA and lower activation levels in the left anterior parahippocampus in YA. Greater SE promoted higher activation levels in the left posterior parahippocampus and right inferior frontal gyrus in YA, but not in OA. The roles of these brain regions in verbal encoding suggest, in OA, longer sleep duration may facilitate functional compensation during cognitive challenges. By contrast, in YA, shorter sleep duration may necessitate functional compensation to maintain cognitive performance, similar to what is seen following acute sleep deprivation. Additionally, in YA, better sleep quality may improve semantic retrieval processes, thereby aiding encoding.

  2. The influence of antioxidants on the disturbance of the brain activity induced by low-level ionizing radiation

    International Nuclear Information System (INIS)

    Godukhin, O.V.; Arkhipov, V.I.; Shipakina, T.G.; Kalemenev, S.V.; Burlakova, E.B.

    1995-01-01

    The effects of daily intraperitoneal injections of α-tocopherol (30 mg/kg per day) and synthetic antioxidant IHFAN-30 (30 mg/day) in rats were compared during low-level ionizing radiation (10 days, dose rate 5 mGy/h, total dose 1.2 Gy). There were analysed: (1) amplitude of population spike of hippocampal slices; (2) endogenous phosphorilation in vitro of hippocamplal synaptic proteins in the presense of cAMP; (3) formation, manifestation and reduction of food-procuring reflex. The findings showed that antioxidants made some correction of the functional state of pippocampal slices and cAMP-dependent phosphorylation system activity in brain cells from irradiated animals. No influence on training and memory functions was detected. 12 refs.; 3 figs

  3. The influence of expertise on brain activation of the action observation network during anticipation of tennis and volleyball serves

    Science.gov (United States)

    Balser, Nils; Lorey, Britta; Pilgramm, Sebastian; Naumann, Tim; Kindermann, Stefan; Stark, Rudolf; Zentgraf, Karen; Williams, A. Mark; Munzert, Jörn

    2014-01-01

    In many daily activities, and especially in sport, it is necessary to predict the effects of others' actions in order to initiate appropriate responses. Recently, researchers have suggested that the action–observation network (AON) including the cerebellum plays an essential role during such anticipation, particularly in sport expert performers. In the present study, we examined the influence of task-specific expertise on the AON by investigating differences between two expert groups trained in different sports while anticipating action effects. Altogether, 15 tennis and 16 volleyball experts anticipated the direction of observed tennis and volleyball serves while undergoing functional magnetic resonance imaging (fMRI). The expert group in each sport acted as novice controls in the other sport with which they had only little experience. When contrasting anticipation in both expertise conditions with the corresponding untrained sport, a stronger activation of AON areas (SPL, SMA), and particularly of cerebellar structures, was observed. Furthermore, the neural activation within the cerebellum and the SPL was linearly correlated with participant's anticipation performance, irrespective of the specific expertise. For the SPL, this relationship also holds when an expert performs a domain-specific anticipation task. Notably, the stronger activation of the cerebellum as well as of the SMA and the SPL in the expertise conditions suggests that experts rely on their more fine-tuned perceptual-motor representations that have improved during years of training when anticipating the effects of others' actions in their preferred sport. The association of activation within the SPL and the cerebellum with the task achievement suggests that these areas are the predominant brain sites involved in fast motor predictions. The SPL reflects the processing of domain-specific contextual information and the cerebellum the usage of a predictive internal model to solve the anticipation

  4. The influence of expertise on brain activation of the action observation network during anticipation of tennis and volleyball serves.

    Science.gov (United States)

    Balser, Nils; Lorey, Britta; Pilgramm, Sebastian; Naumann, Tim; Kindermann, Stefan; Stark, Rudolf; Zentgraf, Karen; Williams, A Mark; Munzert, Jörn

    2014-01-01

    In many daily activities, and especially in sport, it is necessary to predict the effects of others' actions in order to initiate appropriate responses. Recently, researchers have suggested that the action-observation network (AON) including the cerebellum plays an essential role during such anticipation, particularly in sport expert performers. In the present study, we examined the influence of task-specific expertise on the AON by investigating differences between two expert groups trained in different sports while anticipating action effects. Altogether, 15 tennis and 16 volleyball experts anticipated the direction of observed tennis and volleyball serves while undergoing functional magnetic resonance imaging (fMRI). The expert group in each sport acted as novice controls in the other sport with which they had only little experience. When contrasting anticipation in both expertise conditions with the corresponding untrained sport, a stronger activation of AON areas (SPL, SMA), and particularly of cerebellar structures, was observed. Furthermore, the neural activation within the cerebellum and the SPL was linearly correlated with participant's anticipation performance, irrespective of the specific expertise. For the SPL, this relationship also holds when an expert performs a domain-specific anticipation task. Notably, the stronger activation of the cerebellum as well as of the SMA and the SPL in the expertise conditions suggests that experts rely on their more fine-tuned perceptual-motor representations that have improved during years of training when anticipating the effects of others' actions in their preferred sport. The association of activation within the SPL and the cerebellum with the task achievement suggests that these areas are the predominant brain sites involved in fast motor predictions. The SPL reflects the processing of domain-specific contextual information and the cerebellum the usage of a predictive internal model to solve the anticipation task.

  5. The influence of expertise on brain activation of the Action Observation Network during anticipation of tennis and volleyball serves

    Directory of Open Access Journals (Sweden)

    Nils eBalser

    2014-08-01

    Full Text Available In many daily activities, and especially in sport, it is necessary to predict the effects of others’ actions in order to initiate appropriate responses. Recently, researchers have suggested that the action–observation network (AON including the cerebellum plays an essential role during such anticipation, particularly in sport expert performers. In the present study, we examined the influence of task-specific expertise on the AON by investigating differences between two expert groups trained in different sports while anticipating action effects. Altogether, 15 tennis and 16 volleyball experts anticipated the direction of observed tennis and volleyball serves while undergoing functional magnetic resonance imaging (fMRI. The expert group in each sport acted as novice controls in the other sport with which they had only little experience. When contrasting anticipation in both expertise conditions with the corresponding untrained sport, a stronger activation of AON areas (SPL, SMA, and particularly of cerebellar structures, was observed. Furthermore, the neural activation within the cerebellum and the SPL was linearly correlated with participant’s anticipation performance, irrespective of the specific expertise. For the SPL, this relationship also holds when an expert performs a domain-specific anticipation task. Notably, the stronger activation of the cerebellum as well as of the SMA and the SPL in the expertise conditions suggests that experts rely on their more fine-tuned perceptual-motor representations that have improved during years of training when anticipating the effects of others’ actions in their preferred sport. The association of activation within the SPL and the cerebellum with the task achievement suggests that these areas are the predominant brain sites involved in fast motor predictions. The SPL reflects the processing of domain-specific contextual information and the cerebellum the usage of a predictive internal model to

  6. It's in the eye of the beholder: selective attention to drink properties during tasting influences brain activation in gustatory and reward regions.

    Science.gov (United States)

    van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M

    2018-04-01

    Statements regarding pleasantness, taste intensity or caloric content on a food label may influence the attention consumers pay to such characteristics during consumption. There is little research on the effects of selective attention on taste perception and associated brain activation in regular drinks. The aim of this study was to investigate the effect of selective attention on hedonics, intensity and caloric content on brain responses during tasting drinks. Using functional MRI brain responses of 27 women were measured while they paid attention to the intensity, pleasantness or caloric content of fruit juice, tomato juice and water. Brain activation during tasting largely overlapped between the three selective attention conditions and was found in the rolandic operculum, insula and overlying frontal operculum, striatum, amygdala, thalamus, anterior cingulate cortex and middle orbitofrontal cortex (OFC). Brain activation was higher during selective attention to taste intensity compared to calories in the right middle OFC and during selective attention to pleasantness compared to intensity in the right putamen, right ACC and bilateral middle insula. Intensity ratings correlated with brain activation during selective attention to taste intensity in the anterior insula and lateral OFC. Our data suggest that not only the anterior insula but also the middle and lateral OFC are involved in evaluating taste intensity. Furthermore, selective attention to pleasantness engaged regions associated with food reward. Overall, our results indicate that selective attention to food properties can alter the activation of gustatory and reward regions. This may underlie effects of food labels on the consumption experience of consumers.

  7. Influence of posterior dental arch length on brain activity during chewing in patients with mandibular distal extension removable partial dentures.

    Science.gov (United States)

    Shoi, K; Fueki, K; Usui, N; Taira, M; Wakabayashi, N

    2014-07-01

    It is well known that shortened dental arch decreases masticatory function. However, its potential to change brain activity during mastication is unknown. The present study investigates the effect of a shortened posterior dental arch with mandibular removable partial dentures (RPDs) on brain activity during gum chewing. Eleven subjects with missing mandibular molars (mean age, 66.1 years) on both sides received experimental RPDs with interchangeable artificial molars in a crossover trial design. Brain activity during gum chewing with RPDs containing (full dental arch) and lacking artificial molars (shortened dental arch) was measured using functional magnetic resonance imaging. Additionally, masticatory function was evaluated for each dental arch type. Food comminuting and mixing ability and the perceived chewing ability were significantly lower in subjects with a shortened dental arch than those with a full dental arch (P chewing with the full dental arch occurred in the middle frontal gyrus, primary sensorimotor cortex extending to the pre-central gyrus, supplementary motor area, putamen, insula and cerebellum. However, middle frontal gyrus activation was not observed during gum chewing with the shortened dental arch. These results suggest that shortened dental arch affects human brain activity in the middle frontal gyrus during gum chewing, and the decreased middle frontal gyrus activation may be associated with decreased masticatory function. © 2014 John Wiley & Sons Ltd.

  8. Influence of Anodal Transcranial Direct Current Stimulation (tDCS) over the Right Angular Gyrus on Brain Activity during Rest

    Science.gov (United States)

    Clemens, Benjamin; Jung, Stefanie; Mingoia, Gianluca; Weyer, David; Domahs, Frank; Willmes, Klaus

    2014-01-01

    Although numerous studies examined resting-state networks (RSN) in the human brain, so far little is known about how activity within RSN might be modulated by non-invasive brain stimulation applied over parietal cortex. Investigating changes in RSN in response to parietal cortex stimulation might tell us more about how non-invasive techniques such as transcranial direct current stimulation (tDCS) modulate intrinsic brain activity, and further elaborate our understanding of how the resting brain responds to external stimulation. Here we examined how activity within the canonical RSN changed in response to anodal tDCS applied over the right angular gyrus (AG). We hypothesized that changes in resting-state activity can be induced by a single tDCS session and detected with functional magnetic resonance imaging (fMRI). Significant differences between two fMRI sessions (pre-tDCS and post-tDCS) were found in several RSN, including the cerebellar, medial visual, sensorimotor, right frontoparietal, and executive control RSN as well as the default mode and the task positive network. The present results revealed decreased and increased RSN activity following tDCS. Decreased RSN activity following tDCS was found in bilateral primary and secondary visual areas, and in the right putamen. Increased RSN activity following tDCS was widely distributed across the brain, covering thalamic, frontal, parietal and occipital regions. From these exploratory results we conclude that a single session of anodal tDCS over the right AG is sufficient to induce large-scale changes in resting-state activity. These changes were localized in sensory and cognitive areas, covering regions close to and distant from the stimulation site. PMID:24760013

  9. Influence of anodal transcranial direct current stimulation (tDCS) over the right angular gyrus on brain activity during rest.

    Science.gov (United States)

    Clemens, Benjamin; Jung, Stefanie; Mingoia, Gianluca; Weyer, David; Domahs, Frank; Willmes, Klaus

    2014-01-01

    Although numerous studies examined resting-state networks (RSN) in the human brain, so far little is known about how activity within RSN might be modulated by non-invasive brain stimulation applied over parietal cortex. Investigating changes in RSN in response to parietal cortex stimulation might tell us more about how non-invasive techniques such as transcranial direct current stimulation (tDCS) modulate intrinsic brain activity, and further elaborate our understanding of how the resting brain responds to external stimulation. Here we examined how activity within the canonical RSN changed in response to anodal tDCS applied over the right angular gyrus (AG). We hypothesized that changes in resting-state activity can be induced by a single tDCS session and detected with functional magnetic resonance imaging (fMRI). Significant differences between two fMRI sessions (pre-tDCS and post-tDCS) were found in several RSN, including the cerebellar, medial visual, sensorimotor, right frontoparietal, and executive control RSN as well as the default mode and the task positive network. The present results revealed decreased and increased RSN activity following tDCS. Decreased RSN activity following tDCS was found in bilateral primary and secondary visual areas, and in the right putamen. Increased RSN activity following tDCS was widely distributed across the brain, covering thalamic, frontal, parietal and occipital regions. From these exploratory results we conclude that a single session of anodal tDCS over the right AG is sufficient to induce large-scale changes in resting-state activity. These changes were localized in sensory and cognitive areas, covering regions close to and distant from the stimulation site.

  10. When pain and hunger collide; psychological influences on differences in brain activity during physiological and non-physiological gastric distension.

    Science.gov (United States)

    Coen, S J

    2011-06-01

    Functional neuroimaging has been used extensively in conjunction with gastric balloon distension in an attempt to unravel the relationship between the brain, regulation of hunger, satiety, and food intake tolerance. A number of researchers have also adopted a more physiological approach using intra-gastric administration of a liquid meal which has revealed different brain responses to gastric balloon distension. These differences are important as they question the utility and relevance of non-physiological models such as gastric balloon distension, especially when investigating mechanisms of feeding behavior such as satiety. However, an assessment of the relevance of physiological versus non-physiological gastric distension has been problematic due to differences in distension volumes between studies. In this issue of Neurogastroenterology and Motility, Geeraerts et al. compare brain activity during volume matched nutrient gastric distension and balloon distension in healthy volunteers. Gastric balloon distension activated the 'visceral pain neuromatrix'. This network of brain regions was deactivated during nutrient infusion, supporting the notion that brain activity during physiological versus non-physiological distension is indeed different. The authors suggest deactivation of the pain neuromatrix during nutrient infusion serves as a prerequisite for tolerance of normal meal volumes in health. © 2011 Blackwell Publishing Ltd.

  11. The influence of high-intensity radiation on the functional status of monkey brain. Postirradiation changes in the bioelectric activity of the brain

    International Nuclear Information System (INIS)

    Legeza, V.I.; Turlakov, Yu.S.

    1991-01-01

    In experiments with Macaca fascicularis it has found that changes in the total bioelectric activity of the brain within the EEG range that occur during the first 60 min following whole-bofy irradiation with a dose of 45 Gy (6.6 Gy/s) are interrelated with the dynamica of nervous and psychic activity of the exposed animals, exhibit a definite stereotype of their development (disorganization of rhythms: generalized synchronization of biopotentials; and development of synchronous processes), and coincide in time with the main stages of the development of the clinical picture of the acute postirradiation period (noncoordinated stimulation, sopor or coma, and partial recovery)

  12. [Physical activity: positive impact on brain plasticity].

    Science.gov (United States)

    Achiron, Anat; Kalron, Alon

    2008-03-01

    The central nervous system has a unique capability of plasticity that enables a single neuron or a group of neurons to undergo functional and constructional changes that are important to learning processes and for compensation of brain damage. The current review aims to summarize recent data related to the effects of physical activity on brain plasticity. In the last decade it was reported that physical activity can affect and manipulate neuronal connections, synaptic activity and adaptation to new neuronal environment following brain injury. One of the most significant neurotrophic factors that is critical for synaptic re-organization and is influenced by physical activity is brain-derived neurotrophic factor (BDNF). The frequency of physical activity and the intensity of exercises are of importance to brain remodeling, support neuronal survival and positively affect rehabilitation therapy. Physical activity should be employed as a tool to improve neural function in healthy subjects and in patients suffering from neurological damage.

  13. Risk-Taking Behavior in a Computerized Driving Task: Brain Activation Correlates of Decision-Making, Outcome, and Peer Influence in Male Adolescents.

    Science.gov (United States)

    Vorobyev, Victor; Kwon, Myoung Soo; Moe, Dagfinn; Parkkola, Riitta; Hämäläinen, Heikki

    2015-01-01

    Increased propensity for risky behavior in adolescents, particularly in peer groups, is thought to reflect maturational imbalance between reward processing and cognitive control systems that affect decision-making. We used functional magnetic resonance imaging (fMRI) to investigate brain functional correlates of risk-taking behavior and effects of peer influence in 18-19-year-old male adolescents. The subjects were divided into low and high risk-taking groups using either personality tests or risk-taking rates in a simulated driving task. The fMRI data were analyzed for decision-making (whether to take a risk at intersections) and outcome (pass or crash) phases, and for the influence of peer competition. Personality test-based groups showed no difference in the amount of risk-taking (similarly increased during peer competition) and brain activation. When groups were defined by actual task performance, risk-taking activated two areas in the left medial prefrontal cortex (PFC) significantly more in low than in high risk-takers. In the entire sample, risky decision-specific activation was found in the anterior and dorsal cingulate, superior parietal cortex, basal ganglia (including the nucleus accumbens), midbrain, thalamus, and hypothalamus. Peer competition increased outcome-related activation in the right caudate head and cerebellar vermis in the entire sample. Our results suggest that the activation of the medial (rather than lateral) PFC and striatum is most specific to risk-taking behavior of male adolescents in a simulated driving situation, and reflect a stronger conflict and thus increased cognitive effort to take risks in low risk-takers, and reward anticipation for risky decisions, respectively. The activation of the caudate nucleus, particularly for the positive outcome (pass) during peer competition, further suggests enhanced reward processing of risk-taking under peer influence.

  14. Risk-Taking Behavior in a Computerized Driving Task: Brain Activation Correlates of Decision-Making, Outcome, and Peer Influence in Male Adolescents.

    Directory of Open Access Journals (Sweden)

    Victor Vorobyev

    Full Text Available Increased propensity for risky behavior in adolescents, particularly in peer groups, is thought to reflect maturational imbalance between reward processing and cognitive control systems that affect decision-making. We used functional magnetic resonance imaging (fMRI to investigate brain functional correlates of risk-taking behavior and effects of peer influence in 18-19-year-old male adolescents. The subjects were divided into low and high risk-taking groups using either personality tests or risk-taking rates in a simulated driving task. The fMRI data were analyzed for decision-making (whether to take a risk at intersections and outcome (pass or crash phases, and for the influence of peer competition. Personality test-based groups showed no difference in the amount of risk-taking (similarly increased during peer competition and brain activation. When groups were defined by actual task performance, risk-taking activated two areas in the left medial prefrontal cortex (PFC significantly more in low than in high risk-takers. In the entire sample, risky decision-specific activation was found in the anterior and dorsal cingulate, superior parietal cortex, basal ganglia (including the nucleus accumbens, midbrain, thalamus, and hypothalamus. Peer competition increased outcome-related activation in the right caudate head and cerebellar vermis in the entire sample. Our results suggest that the activation of the medial (rather than lateral PFC and striatum is most specific to risk-taking behavior of male adolescents in a simulated driving situation, and reflect a stronger conflict and thus increased cognitive effort to take risks in low risk-takers, and reward anticipation for risky decisions, respectively. The activation of the caudate nucleus, particularly for the positive outcome (pass during peer competition, further suggests enhanced reward processing of risk-taking under peer influence.

  15. Brain Activities and Educational Technology

    Science.gov (United States)

    Riza, Emel

    2002-01-01

    There are close relationships between brain activities and educational technology. Brain is very important and so complicated part in our bodies. From long time scientists pay attention to that part and did many experiments, but they just reached little information like a drop in the sea. However from time to time they gave us some light to…

  16. Influence of radiation on the developing brain

    International Nuclear Information System (INIS)

    Gao Weimin; Zhou Xiangyan

    1997-01-01

    An outline of current status in study on the influence of radiation on the developing brain was given based on data from both human and animals. Analysis was made in 5 aspects, such as the behaviour of nervous, changes on cellular and molecular levels, apoptosis of cells, and the adaptive reaction, which could be helpful for further understanding the influences of prenatal exposure on the developing brain

  17. Fueling and Imaging Brain Activation

    Directory of Open Access Journals (Sweden)

    Gerald A Dienel

    2012-05-01

    Full Text Available Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models.

  18. Fueling and imaging brain activation

    Science.gov (United States)

    Dienel, Gerald A

    2012-01-01

    Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models. PMID:22612861

  19. The influence of prenatal X-irradiation on the activity of SRNA-aminoacyl synthetases in the developing rabbit brain

    International Nuclear Information System (INIS)

    Wender, M.; Zgorzalewicz, B.

    1976-01-01

    The activities of sRNA-aminoacyl synthetases were investigated in the cerebral white and grey matter of rabbits subjected during their prenatal life to a single x-ray dose of 150 rad. The results of investigations have shown that ionizing radiation acting during intrauterine development of the experimental animal brings about a distinct depression of all sRNA-aminoacyl synthetase activities in the newborn irradiated litter. During the postnatal development of these animals the activities of some of the synthetases further decreased and even at adulthood, where they are normally very low, their activities were below the control values. The activities of some other synthetases, after the initial depression, showed no further decrease and at adulthood had values comparable to controls. The results indicate clearly that prenatal exposure to ionizing radiation also affects the steps of protein biosynthesis which depend on the activity of sRNA-aminoacyl synthetases. (author)

  20. Linking neuronal brain activity to the glucose metabolism

    OpenAIRE

    Göbel, Britta; Oltmanns, Kerstin M; Chung, Matthias

    2013-01-01

    Background Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regul...

  1. Right Brain Activities to Improve Analytical Thinking.

    Science.gov (United States)

    Lynch, Marion E.

    Schools tend to have a built-in bias toward left brain activities (tasks that are linear and sequential in nature), so the introduction of right brain activities (functions related to music, rhythm, images, color, imagination, daydreaming, dimensions) brings a balance into the classroom and helps those students who may be right brain oriented. To…

  2. Short-term mechanisms influencing volumetric brain dynamics

    NARCIS (Netherlands)

    Dieleman, Nikki; Koek, Huiberdina L.; Hendrikse, Jeroen

    2017-01-01

    With the use of magnetic resonance imaging (MRI) and brain analysis tools, it has become possible to measure brain volume changes up to around 0.5%. Besides long-term brain changes caused by atrophy in aging or neurodegenerative disease, short-term mechanisms that influence brain volume may exist.

  3. Artifact suppression and analysis of brain activities with electroencephalography signals.

    Science.gov (United States)

    Rashed-Al-Mahfuz, Md; Islam, Md Rabiul; Hirose, Keikichi; Molla, Md Khademul Islam

    2013-06-05

    Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component.

  4. Food-Related Odors Activate Dopaminergic Brain Areas

    OpenAIRE

    Agnieszka Sorokowska; Agnieszka Sorokowska; Katherina Schoen; Cornelia Hummel; Pengfei Han; Jonathan Warr; Thomas Hummel

    2017-01-01

    Food-associated cues of different sensory categories have often been shown to be a potent elicitor of cerebral activity in brain reward circuits. Smells influence and modify the hedonic qualities of eating experience, and in contrast to smells not associated with food, perception of food-associated odors may activate dopaminergic brain areas. In this study, we aimed to verify previous findings related to the rewarding value of food-associated odors by means of an fMRI design involving careful...

  5. Brain Activity and Human Unilateral Chewing

    Science.gov (United States)

    Quintero, A.; Ichesco, E.; Myers, C.; Schutt, R.; Gerstner, G.E.

    2012-01-01

    Brain mechanisms underlying mastication have been studied in non-human mammals but less so in humans. We used functional magnetic resonance imaging (fMRI) to evaluate brain activity in humans during gum chewing. Chewing was associated with activations in the cerebellum, motor cortex and caudate, cingulate, and brainstem. We also divided the 25-second chew-blocks into 5 segments of equal 5-second durations and evaluated activations within and between each of the 5 segments. This analysis revealed activation clusters unique to the initial segment, which may indicate brain regions involved with initiating chewing. Several clusters were uniquely activated during the last segment as well, which may represent brain regions involved with anticipatory or motor events associated with the end of the chew-block. In conclusion, this study provided evidence for specific brain areas associated with chewing in humans and demonstrated that brain activation patterns may dynamically change over the course of chewing sequences. PMID:23103631

  6. Influence of infection by Toxoplasma gondii on purine levels and E-ADA activity in the brain of mice experimentally infected mice.

    Science.gov (United States)

    Tonin, Alexandre A; Da Silva, Aleksandro S; Casali, Emerson A; Silveira, Stephanie S; Moritz, Cesar E J; Camillo, Giovana; Flores, Mariana M; Fighera, Rafael; Thomé, Gustavo R; Morsch, Vera M; Schetinger, Maria Rosa C; Rue, Mario De La; Vogel, Fernanda S F; Lopes, Sonia T A

    2014-07-01

    The aim of this study was to assess the purine levels and E-ADA activity in the brain of mice (BALB/c) experimentally infected with Toxoplasma gondii. In experiment I (n=24) the mice were infected with RH strain of T. gondii, while in experiment II (n=36) they were infected with strain ME-49 of T. gondii. Our results showed that, for RH strain (acute phase), an increase in both periods in the levels of ATP, ADP, AMP, adenosine, hypoxanthine, xanthine (only on day 6 PI) and uric acid (only on day 6 PI). By the other hand, the RH strain led, on days 4 and 6 PI, to a reduction in the concentration of inosine. ME-49, a cystogenic strain, showed some differences in acute and chronic phase, since on day 6 PI the levels of ATP and ADP were increased, while on day 30 these same nucleotides were reduced. On day 60 PI, ME-49 induced a reduction in the levels of ATP, ADP, AMP, adenosine, inosine and xanthine, while uric acid was increased. A decrease of E-ADA activity was observed in brain on days 4 and 6 PI (RH), and 30 PI (ME-49); however on day 60 PI E-ADA activity was increased for infection by ME-49 strain. Therefore, it was possible to conclude that infection with T. gondii changes the purine levels and the activity of E-ADA in brain, which may be associated with neurological signs commonly observed in this disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. The ketogenic diet: metabolic influences on brain excitability and epilepsy

    Science.gov (United States)

    Lutas, Andrew; Yellen, Gary

    2012-01-01

    A dietary therapy for pediatric epilepsy known as the ketogenic diet has seen a revival in its clinical use in the past decade. Though the diet’s underlying mechanism remains unknown, modern scientific approaches like genetic disruption of glucose metabolism are allowing for more detailed questions to be addressed. Recent work indicates that several mechanisms may exist for the ketogenic diet including disruption of glutamatergic synaptic transmission, inhibition of glycolysis, and activation of ATP-sensitive potassium channels. Here we describe on-going work in these areas that is providing a better understanding of metabolic influences on brain excitability and epilepsy. PMID:23228828

  8. Acupuncture at Waiguan (SJ5) and sham points influences activation of functional brain areas of ischemic stroke patients: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Qi, Ji; Chen, Junqi; Huang, Yong; Lai, Xinsheng; Tang, Chunzhi; Yang, Junjun; Chen, Hua; Qu, Shanshan

    2014-02-01

    Most studies addressing the specificity of meridians and acupuncture points have focused mainly on the different neural effects of acupuncture at different points in healthy individuals. This study examined the effects of acupuncture on brain function in a pathological context. Sixteen patients with ischemic stroke were randomly assigned to true point group (true acupuncture at right Waiguan (SJ5)) and sham point group (sham acupuncture). Results of functional magnetic resonance imaging revealed activation in right parietal lobe (Brodmann areas 7 and 19), the right temporal lobe (Brodmann area 39), the right limbic lobe (Brodmann area 23) and bilateral occipital lobes (Brodmann area 18). Furthermore, inhibition of bilateral frontal lobes (Brodmann area 4, 6, and 45), right parietal lobe (Brodmann areas 1 and 5) and left temporal lobe (Brodmann area 21) were observed in the true point group. Activation in the precuneus of right parietal lobe (Brodmann area 7) and inhibition of the left superior frontal gyrus (Brodmann area 10) was observed in the sham group. Compared with sham acupuncture, acupuncture at Waiguan in stroke patients inhibited Brodmann area 5 on the healthy side. Results indicated that the altered specificity of sensation-associated cortex (Brodmann area 5) is possibly associated with a central mechanism of acupuncture at Waiguan for stroke patients.

  9. Linking neuronal brain activity to the glucose metabolism.

    Science.gov (United States)

    Göbel, Britta; Oltmanns, Kerstin M; Chung, Matthias

    2013-08-29

    Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regulatory elements of the human brain in the whole body energy homeostasis. First, we introduce a general mathematical model describing the human whole body energy metabolism. It takes into account the two central roles of the brain in terms of energy metabolism. The brain is considered as energy consumer as well as regulatory instance. Secondly, we validate our mathematical model by experimental data. Cerebral high-energy phosphate content and peripheral glucose metabolism are measured in healthy men upon neuronal activation induced by transcranial direct current stimulation versus sham stimulation. By parameter estimation we identify model parameters that provide insight into underlying neurophysiological processes. Identified parameters reveal effects of neuronal activity on regulatory mechanisms of systemic glucose metabolism. Our examinations support the view that the brain increases its glucose supply upon neuronal activation. The results indicate that the brain supplies itself with energy according to its needs, and preeminence of cerebral energy supply is reflected. This mechanism ensures balanced cerebral energy homeostasis. The hypothesis of the central role of the brain in whole body energy homeostasis as active controller is supported.

  10. Whole-brain activity mapping onto a zebrafish brain atlas

    Science.gov (United States)

    Randlett, Owen; Wee, Caroline L.; Naumann, Eva A.; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E.; Portugues, Ruben; Lacoste, Alix M.B.; Riegler, Clemens; Engert, Florian; Schier, Alexander F.

    2015-01-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open source atlas containing molecular labels and anatomical region definitions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated-Extracellular signal-regulated kinase (ERK/MAPK) as a readout of neural activity, we have developed a system to create and contextualize whole brain maps of stimulus- and behavior-dependent neural activity. This MAP-Mapping (Mitogen Activated Protein kinase – Mapping) assay is technically simple, fast, inexpensive, and data analysis is completely automated. Since MAP-Mapping is performed on fish that are freely swimming, it is applicable to nearly any stimulus or behavior. We demonstrate the utility of our high-throughput approach using hunting/feeding, pharmacological, visual and noxious stimuli. The resultant maps outline hundreds of areas associated with behaviors. PMID:26778924

  11. Whole-brain activity mapping onto a zebrafish brain atlas.

    Science.gov (United States)

    Randlett, Owen; Wee, Caroline L; Naumann, Eva A; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E; Portugues, Ruben; Lacoste, Alix M B; Riegler, Clemens; Engert, Florian; Schier, Alexander F

    2015-11-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open-source atlas containing molecular labels and definitions of anatomical regions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated extracellular signal–regulated kinase (ERK) as a readout of neural activity, we have developed a system to create and contextualize whole-brain maps of stimulus- and behavior-dependent neural activity. This mitogen-activated protein kinase (MAP)-mapping assay is technically simple, and data analysis is completely automated. Because MAP-mapping is performed on freely swimming fish, it is applicable to studies of nearly any stimulus or behavior. Here we demonstrate our high-throughput approach using pharmacological, visual and noxious stimuli, as well as hunting and feeding. The resultant maps outline hundreds of areas associated with behaviors.

  12. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, D.P.; Stein, J.L.; Renteria, M.E.; Arias-Vasquez, A.; Desrivières, S.; Jahanshad, N.; Toro, R.; Wittfeld, K.; Abramovic, L.; Andersson, M.; Aribisala, B.S.; Armstrong, N.J.; Bernard, M.; Bohlken, M.M.; Biks, M.P.; Bralten, J.; Brown, A.A.; Chakravarty, M.M.; Chen, Q.; Ching, C.R.K.; Cuellar-Partida, G.; den Braber, A.; Giddaluru, S.; Goldman, A.L.; Grimm, O.; Guadalupe, T.; Hass, J.; Woldehawariat, G.; Holmes, A.J.; Hoogman, M.; Janowitz, D.; Jia, T.; Kim, S.; Klein, M.; Kraemer, B.; Lee, P.H.; Olde Loohuis, L.M.; Luciano, M.; Macare, C.; Mather, K.A.; Mattheisen, M.; Milaneschi, Y.; Nho, K.; Papmeyer, M.; Ramasamy, A.; Risacher, S.L.; Roiz-Santiañez, R.; Rose, E.J.; Salami, A.; Sämann, P.G.; Schmaal, L.; Schork, A.J.; Shin, J.; Strike, L.T.; Teumer, A.; Donkelaar, M.M.J.; van Eijk, K.R.; Walters, R.K.; Westlye, L.T.; Welan, C.D.; Winkler, A.M.; Zwiers, M.P.; Alhusaini, S.; Athanasiu, L.; Ehrlich, S.; Hakobjan, M.M.H.; Hartberg, C.B.; Haukvik, U.K.; Heister, A.J.G.A.M.; Hoehn, D.; Kasperaviciute, D.; Liewald, D.C.M.; Lopez, L.M.; Makkinje, R.R.; Matarin, M.; Naber, M.A.M.; Reese McKay, D.; Needham, M.; Nugent, A.C.; Pütz, B.; Royle, N.A.; Shen, L.; Sprooten, E.; Trabzuni, D.; van der Marel, S.S.L.; van Hulzen, K.J.E.; Walton, E.; Wolf, C.; Almasy, L.; Ames, D.; Arepalli, S.; Assareh, A.A.; Bastin, M.E.; Brodaty, H.; Bulayeva, K.B.; Carless, M.A.; Cichon, S.; Corvin, A.; Curran, J.E.; Czisch, M.; de Zubicaray, G.I.; Dillman, A.; Duggirala, R.; Dyer, T.D.; Erk, S.; Fedko, I.O.; Ferrucci, L.; Foroud, T.M.; Fox, P.T.; Fukunaga, M.; Gibbs, J.R.; Göring, H.H.H.; Green, R.C.; Guelfi, S.; Hansell, N.K.; Hartman, C.A.; Hegenscheid, K.; Heinz, A.; Hernandez, D.G.; Heslenfeld, D.J.; Hoekstra, P.J.; Holsboer, F.; Homuth, G.; Hottenga, J.J.; Ikeda, M.; Jack, C.R., Jr.; Jenkinson, M.; Johnson, R.; Kanai, R.; Keil, M.; Kent, J.W. Jr.; Kochunov, P.; Kwok, J.B.; Lawrie, S.M.; Liu, X.; Longo, D.L.; McMahon, K.L.; Meisenzahl, E.; Melle, I.; Mohnke, S.; Montgomery, G.W.; Mostert, J.C.; Mühleisen, T.W.; Nalls, M.A.; Nichols, T.E.; Nilsson, L.G.; Nöthen, M.M.; Ohi, K.; Olvera, R.L.; Perez-Iglesias, R.; Pike, G.B.; Potkin, S.G.; Reinvang, I.; Reppermund, S.; Rietschel, M.; Romanczuk-Seiferth, N.; Rosen, G.D.; Rujescu, D.; Schnell, K.; Schofield, P.R.; Smith, C.; Steen, V.M.; Sussmann, J.E.; Thalamuthu, A.; Toga, A.W.; Traynor, B.J.; Troncoso, J.; Turner, J.A.; Valdés Hernández, M.C.; van t Ent, D.; van der Brug, M.; van der Wee, N.J.A.; van Tol, M.J.; Veltman, D.J.; Wassink, T.H.; Westmann, E.; Zielke, R.H.; Zonderman, A.B.; Ashbrook, D.G.; Hager, R.; Lu, L.; McMahon, F.J.; Morris, D.W.; Williams, R.W.; Brunner, H.G.; Buckner, R.L.; Buitelaar, J.K.; Cahn, W.; Calhoun, V.D.; Cavalleri, G.L.; Crespo-Facorro, B.; Dale, A.M.; Davies, G.E.; Delanty, N.; Depondt, C.; Djurovic, S.; Drevets, W.C.; Espeseth, T.; Gollub, R.L.; Ho, B.C.; Hoffmann, W.; Hosten, N.; Kahn, R.S.; Le Hellard, S.; Meyer-Lindenberg, A.; Müller-Myhsok, B.; Nauck, M.; Nyberg, L.; Pandolfo, M.; Penninx, B.W.J.H.; Roffman, J.L.; Sisodiya, SM; Smoller, J.W.; van Bokhoven, H.; van Haren, N.E.M.; Völzke, H.; Walter, H.; Weiner, M.W.; Wen, W.; White, T.; Agartz, I.; Andreassen, O.A.; Blangero, J.; Boomsma, D.I.; Brouwer, R.M.; Cannon, D.M.; Cookson, M.R.; de Geus, E.J.C.; Deary, I.J.; Donohoe, G.; Fernandez, G.; Fisher, S.E.; Francks, C.; Glahn, D.C.; Grabe, H.J.; Gruber, O.; Hardy, J.; Hashimoto, R.; Hulshoff Pol, H.E.; Jönsson, E.G.; Kloszewska, I.; Lovestone, S.; Mattay, V.S.; Mecocci, P.; McDonald, C.; McIntosh, A.M.; Ophoff, R.A.; Paus, T.; Pausova, Z.; Ryten, M.; Sachdev, P.S.; Saykin, A.J.; Simmons, A.; Singleton, A.; Soininen, H.; Wardlaw, J.M.; Weale, M.E.; Weinberger, D.R.; Adams, H.H.H.; Launer, L.J.; Seiler, S.; Schmidt, R.; Chauhan, G.; Satizabal, C.L.; Becker, J.T.; Yanek, L.; van der Lee, S.J.; Ebling, M.; Fischl, B.; Longstreth, Jr. W.T.; Greve, D.; Schmidt, H.; Nyquist, P.; Vinke, L.N.; van Duijn, C.M.; Xue, L.; Mazoyer, B.; Bis, J.C.; Gudnason, V.; Seshadri, S.; Arfan Ikram, M.; Martin, N.G.; Wright, M.J.; Schumann, G.; Franke, B.; Thompson, P.M.; Medland, S.E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common

  13. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); J.L. Stein; M.E. Rentería (Miguel); A. Arias-Vásquez (Alejandro); S. Desrivières (Sylvane); N. Jahanshad (Neda); R. Toro (Roberto); K. Wittfeld (Katharina); L. Abramovic (Lucija); M. Andersson (Micael); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); M. Bernard (Manon); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.A. Brown (Andrew); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); G. Cuellar-Partida (Gabriel); A. den Braber (Anouk); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); O. Grimm (Oliver); T. Guadalupe (Tulio); J. Hass (Johanna); G. Woldehawariat (Girma); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil H.); L.M. Olde Loohuis (Loes M.); M. Luciano (Michelle); C. MacAre (Christine); R. Mather; M. Mattheisen (Manuel); Y. Milaneschi (Yuri); K. Nho (Kwangsik); M. Papmeyer (Martina); A. Ramasamy (Adaikalavan); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); E.J. Rose (Emma); A. Salami (Alireza); P.G. Sämann (Philipp); L. Schmaal (Lianne); N.J. Schork (Nicholas); J. Shin (Jean); L.T. Strike (Lachlan); A. Teumer (Alexander); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); R.K. Walters (Raymond); L.T. Westlye (Lars); C.D. Whelan (Christopher); A.M. Winkler (Anderson); M.P. Zwiers (Marcel); S. Alhusaini (Saud); L. Athanasiu (Lavinia); S.M. Ehrlich (Stefan); M. Hakobjan (Marina); C.B. Hartberg (Cecilie B.); U.K. Haukvik (Unn); A.J.G.A.M. Heister (Angelien J. G. A. M.); D. Hoehn (David); D. Kasperaviciute (Dalia); D.C. Liewald (David C.); L.M. Lopez (Lorna); R.R.R. Makkinje (Remco R. R.); M. Matarin (Mar); M.A.M. Naber (Marlies A. M.); D. Reese McKay; M. Needham (Margaret); A.C. Nugent (Allison); B. Pütz (Benno); N.A. Royle (Natalie); L. Shen (Li); R. Sprooten (Roy); D. Trabzuni (Danyah); S.S.L. Van Der Marel (Saskia S. L.); K.J.E. Van Hulzen (Kimm J. E.); E. Walton (Esther); A. Björnsson (Asgeir); L. Almasy (Laura); D.J. Ames (David); S. Arepalli (Sampath); A.A. Assareh; M.E. Bastin (Mark); H. Brodaty (Henry); K. Bulayeva (Kazima); M.A. Carless (Melanie); S. Cichon (Sven); A. Corvin (Aiden); J.E. Curran (Joanne); M. Czisch (Michael); G.I. de Zubicaray (Greig); A. Dillman (Allissa); A. Duggirala (Aparna); M.D. Dyer (Matthew); S. Erk; I. Fedko (Iryna); L. Ferrucci (Luigi); T. Foroud (Tatiana); P.T. Fox (Peter); M. Fukunaga (Masaki); J. Raphael Gibbs; H.H.H. Göring (Harald H.); R.C. Green (Robert C.); S. Guelfi (Sebastian); N.K. Hansell (Narelle); C.A. Hartman (Catharina); K. Hegenscheid (Katrin); J. Heinz (Judith); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); P.J. Hoekstra (Pieter); F. Holsboer; G. Homuth (Georg); J.J. Hottenga (Jouke Jan); M. Ikeda (Masashi); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); R. Johnson (Robert); R. Kanai (Ryota); M. Keil (Maria); J.W. Kent (Jack W.); P. Kochunov (Peter); J.B. Kwok (John B.); S. Lawrie (Stephen); X. Liu (Xinmin); D.L. Longo (Dan L.); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); S. Mohnke (Sebastian); G.W. Montgomery (Grant); J.C. Mostert (Jeanette C.); T.W. Mühleisen (Thomas); M.A. Nalls (Michael); T.E. Nichols (Thomas); L.G. Nilsson; M.M. Nöthen (Markus); K. Ohi (Kazutaka); R.L. Olvera (Rene); R. Perez-Iglesias (Rocio); G. Bruce Pike; S.G. Potkin (Steven); I. Reinvang (Ivar); S. Reppermund; M. Rietschel (Marcella); N. Seiferth (Nina); G.D. Rosen (Glenn D.); D. Rujescu (Dan); K. Schnell (Kerry); C.J. Schofield (Christopher); C. Smith (Colin); V.M. Steen (Vidar); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); J. Turner (Jessica); M.C. Valdés Hernández (Maria); D. van 't Ent (Dennis); M.P. van der Brug (Marcel); N.J. van der Wee (Nic); M.J.D. van Tol (Marie-José); D.J. Veltman (Dick); A.M.J. Wassink (Annemarie); E. Westman (Eric); R.H. Zielke (Ronald H.); A.B. Zonderman (Alan B.); D.G. Ashbrook (David G.); R. Hager (Reinmar); L. Lu (Lu); F.J. Mcmahon (Francis J); D.W. Morris (Derek W); R.W. Williams (Robert W.); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan K.); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); G. Cavalleri (Gianpiero); B. Crespo-Facorro (Benedicto); A.M. Dale (Anders); G.E. Davies (Gareth); N. Delanty; C. Depondt (Chantal); S. Djurovic (Srdjan); D.A. Drevets (Douglas); T. Espeseth (Thomas); R.L. Gollub (Randy); B.C. Ho (Beng ); W. Hoffmann (Wolfgang); N. Hosten (Norbert); R. Kahn (René); S. Le Hellard (Stephanie); A. Meyer-Lindenberg; B. Müller-Myhsok (B.); M. Nauck (Matthias); L. Nyberg (Lars); M. Pandolfo (Massimo); B.W.J.H. Penninx (Brenda); J.L. Roffman (Joshua); S.M. Sisodiya (Sanjay); J.W. Smoller; H. van Bokhoven (Hans); N.E.M. van Haren (Neeltje E.); H. Völzke (Henry); H.J. Walter (Henrik); M.W. Weiner (Michael); W. Wen (Wei); T.J.H. White (Tonya); I. Agartz (Ingrid); O.A. Andreassen (Ole); J. Blangero (John); D.I. Boomsma (Dorret); R.M. Brouwer (Rachel); D.M. Cannon (Dara); M.R. Cookson (Mark); E.J.C. de Geus (Eco); I.J. Deary (Ian J.); D.J. Donohoe (Dennis); G. Fernandez (Guillén); S.E. Fisher (Simon); C. Francks (Clyde); D.C. Glahn (David); H.J. Grabe (Hans Jörgen); O. Gruber (Oliver); J. Hardy (John); R. Hashimoto (Ryota); H.E. Hulshoff Pol (Hilleke); E.G. Jönsson (Erik); I. Kloszewska (Iwona); S. Lovestone (Simon); V.S. Mattay (Venkata S.); P. Mecocci (Patrizia); C. McDonald (Colm); A.M. McIntosh (Andrew); R.A. Ophoff (Roel); T. Paus (Tomas); Z. Pausova (Zdenka); M. Ryten (Mina); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); A. Simmons (Andrew); A. Singleton (Andrew); H. Soininen (H.); J.M. Wardlaw (J.); M.E. Weale (Michael); D.R. Weinberger (Daniel); H.H.H. Adams (Hieab); L.J. Launer (Lenore); S. Seiler (Stephan); R. Schmidt (Reinhold); G. Chauhan (Ganesh); C.L. Satizabal (Claudia L.); J.T. Becker (James); L.R. Yanek (Lisa); S.J. van der Lee (Sven); M. Ebling (Maritza); B. Fischl (Bruce); W.T. Longstreth Jr; D. Greve (Douglas); R. Schmidt (Reinhold); P. Nyquist (Paul); L.N. Vinke (Louis N.); C.M. van Duijn (Cornelia); L. Xue (Luting); B. Mazoyer (Bernard); J.C. Bis (Joshua); V. Gudnason (Vilmundur); S. Seshadri (Sudha); M.A. Ikram (Arfan); N.G. Martin (Nicholas); M.J. Wright (Margaret); G. Schumann (Gunter); B. Franke (Barbara); P.M. Thompson (Paul); S.E. Medland (Sarah Elizabeth)

    2015-01-01

    textabstractThe highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate

  14. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rose, Emma J.; Salami, Alireza; Saemann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Puetz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Goering, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzah, Eva; Melle, Ingrid; Mahnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Muehleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Noethen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdes Hernandez, Maria C.; van't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffman, Wolfgang; Hosten, Norbert; Kahn, Rene S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Mueller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Voelzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernandez, Guillen; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Pol, Hilleke E. Hulshoff; Joensson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To

  15. Control channels in the brain and their influence on brain executive functions

    Science.gov (United States)

    Meng, Qinglei; Choa, Fow-Sen; Hong, Elliot; Wang, Zhiguang; Islam, Mohammad

    2014-05-01

    In a computer network there are distinct data channels and control channels where massive amount of visual information are transported through data channels but the information streams are routed and controlled by intelligent algorithm through "control channels". Recent studies on cognition and consciousness have shown that the brain control channels are closely related to the brainwave beta (14-40 Hz) and alpha (7-13 Hz) oscillations. The high-beta wave is used by brain to synchronize local neural activities and the alpha oscillation is for desynchronization. When two sensory inputs are simultaneously presented to a person, the high-beta is used to select one of the inputs and the alpha is used to deselect the other so that only one input will get the attention. In this work we demonstrated that we can scan a person's brain using binaural beats technique and identify the individual's preferred control channels. The identified control channels can then be used to influence the subject's brain executive functions. In the experiment, an EEG measurement system was used to record and identify a subject's control channels. After these channels were identified, the subject was asked to do Stroop tests. Binaural beats was again used to produce these control-channel frequencies on the subject's brain when we recorded the completion time of each test. We found that the high-beta signal indeed speeded up the subject's executive function performance and reduced the time to complete incongruent tests, while the alpha signal didn't seem to be able to slow down the executive function performance.

  16. Individual Variability in Brain Activity: A Nuisance or an Opportunity?

    Science.gov (United States)

    Van Horn, John Darrell; Grafton, Scott T; Miller, Michael B

    2008-12-01

    Functional imaging research has been heavily influenced by results based on population-level inference. However, group average results may belie the unique patterns of activity present in the individual that ordinarily are considered random noise. Recent advances in the evolution of MRI hardware have led to significant improvements in the stability and reproducibility of blood oxygen level dependent (BOLD) measurements. These enhancements provide a unique opportunity for closer examination of individual patterns of brain activity. Three objectives can be accomplished by considering brain scans at the individual level; (1) Mapping functional anatomy at a fine grained analysis; (2) Determining if an individual scan is normative with respect to a reference population; and (3) Understanding the sources of intersubject variability in brain activity. In this review, we detail these objectives, briefly discuss their histories and present recent trends in the analyses of individual variability. Finally, we emphasize the unique opportunities and challenges for understanding individual differences through international collaboration among Pacific Rim investigators.

  17. Adeprene influence on the turnover rate of brain noradrenaline

    International Nuclear Information System (INIS)

    Tyutyulkova, N.I.; Gorancheva, J.I.; Ankov, V.K.

    1978-01-01

    The influence of Adeprene - Bulgarian antidepressant - on the content and the turnover rate of the rat brain noradrenaline was studied. The animals were injected intraperitoneally during 5 days with 20 mg/kg Adeprene. One hour after the last administration of Adeprene, Tyrosine, labelled with 14 C was injected. The animals were sacrified on the 1st, 2nd and 4th hours after the injection of 14 C-Tyrosine. The tyrosine and noradrenaline concentration were determined spectrofluorimetrically the concentration of the compounds labelled with 14 C by means of a liquid scintillator. The turnover rate constant of noradrenaline was calculated on the basis of the obtained results and the respective formula. It was established that under the influence of Adeprene, the noradrenaline concentration in the brain rises from 0,5 g/g in the control animals to 0,6 in treated mice. The turnover rate constant of noradrenaline, however, drops to 0,9 g/g/hour as compared to 0,15 g/g/hours in the controls. The determination of the turnover rate provides an idea about the intensity of utilization and synthesis of the mediator and is considered consequently as a more radiosensitive index for the neuronal activity then the total amine content. (A.B.)

  18. Short-term mechanisms influencing volumetric brain dynamics

    Directory of Open Access Journals (Sweden)

    Nikki Dieleman

    2017-01-01

    Full Text Available With the use of magnetic resonance imaging (MRI and brain analysis tools, it has become possible to measure brain volume changes up to around 0.5%. Besides long-term brain changes caused by atrophy in aging or neurodegenerative disease, short-term mechanisms that influence brain volume may exist. When we focus on short-term changes of the brain, changes may be either physiological or pathological. As such determining the cause of volumetric dynamics of the brain is essential. Additionally for an accurate interpretation of longitudinal brain volume measures by means of neurodegeneration, knowledge about the short-term changes is needed. Therefore, in this review, we discuss the possible mechanisms influencing brain volumes on a short-term basis and set-out a framework of MRI techniques to be used for volumetric changes as well as the used analysis tools. 3D T1-weighted images are the images of choice when it comes to MRI of brain volume. These images are excellent to determine brain volume and can be used together with an analysis tool to determine the degree of volume change. Mechanisms that decrease global brain volume are: fluid restriction, evening MRI measurements, corticosteroids, antipsychotics and short-term effects of pathological processes like Alzheimer's disease, hypertension and Diabetes mellitus type II. Mechanisms increasing the brain volume include fluid intake, morning MRI measurements, surgical revascularization and probably medications like anti-inflammatory drugs and anti-hypertensive medication. Exercise was found to have no effect on brain volume on a short-term basis, which may imply that dehydration caused by exercise differs from dehydration by fluid restriction. In the upcoming years, attention should be directed towards studies investigating physiological short-term changes within the light of long-term pathological changes. Ultimately this may lead to a better understanding of the physiological short-term effects of

  19. Asymmetric Frontal Brain Activity and Parental Rejection

    NARCIS (Netherlands)

    Huffmeijer, R.; Alink, L.R.A.; Tops, M.; Bakermans-Kranenburg, M.J.; van IJzendoorn, M.H.

    2013-01-01

    Asymmetric frontal brain activity has been widely implicated in reactions to emotional stimuli and is thought to reflect individual differences in approach-withdrawal motivation. Here, we investigate whether asymmetric frontal activity, as a measure of approach-withdrawal motivation, also predicts

  20. Evaluation of factors influencing 18F-FET uptake in the brain

    Directory of Open Access Journals (Sweden)

    Antoine Verger

    2018-01-01

    Full Text Available PET using the amino-acid O-(2-18F-fluoroethyl-l-tyrosine (18F-FET is gaining increasing interest for brain tumour management. Semi-quantitative analysis of tracer uptake in brain tumours is based on the standardized uptake value (SUV and the tumour-to-brain ratio (TBR. The aim of this study was to explore physiological factors that might influence the relationship of SUV of 18F-FET uptake in various brain areas, and thus affect quantification of 18F-FET uptake in brain tumours. Negative 18F-FET PET scans of 107 subjects, showing an inconspicuous brain distribution of 18F-FET, were evaluated retrospectively. Whole-brain quantitative analysis with Statistical Parametric Mapping (SPM using parametric SUV PET images, and volumes of interest (VOIs analysis with fronto-parietal, temporal, occipital, and cerebellar SUV background areas were performed to study the effect of age, gender, height, weight, injected activity, body mass index (BMI, and body surface area (BSA. After multivariate analysis, female gender and high BMI were found to be two independent factors associated with increased SUV of 18F-FET uptake in the brain. In women, SUVmean of 18F-FET uptake in the brain was 23% higher than in men (p < 0.01. SUVmean of 18F-FET uptake in the brain was positively correlated with BMI (r = 0.29; p < 0.01. The influence of these factors on SUV of 18F-FET was similar in all brain areas. In conclusion, SUV of 18F-FET in the normal brain is influenced by gender and weakly by BMI, but changes are similar in all brain areas.

  1. Common genetic variants influence human subcortical brain structures.

    Science.gov (United States)

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-09

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  2. Common genetic variants influence human subcortical brain structures

    Science.gov (United States)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  3. Mapping how local perturbations influence systems-level brain dynamics.

    Science.gov (United States)

    Gollo, Leonardo L; Roberts, James A; Cocchi, Luca

    2017-10-15

    The human brain exhibits a distinct spatiotemporal organization that supports brain function and can be manipulated via local brain stimulation. Such perturbations to local cortical dynamics are globally integrated by distinct neural systems. However, it remains unclear how local changes in neural activity affect large-scale system dynamics. Here, we briefly review empirical and computational studies addressing how localized perturbations affect brain activity. We then systematically analyze a model of large-scale brain dynamics, assessing how localized changes in brain activity at the different sites affect whole-brain dynamics. We find that local stimulation induces changes in brain activity that can be summarized by relatively smooth tuning curves, which relate a region's effectiveness as a stimulation site to its position within the cortical hierarchy. Our results also support the notion that brain hubs, operating in a slower regime, are more resilient to focal perturbations and critically contribute to maintain stability in global brain dynamics. In contrast, perturbations of peripheral regions, characterized by faster activity, have greater impact on functional connectivity. As a parallel with this region-level result, we also find that peripheral systems such as the visual and sensorimotor networks were more affected by local perturbations than high-level systems such as the cingulo-opercular network. Our findings highlight the importance of a periphery-to-core hierarchy to determine the effect of local stimulation on the brain network. This study also provides novel resources to orient empirical work aiming at manipulating functional connectivity using non-invasive brain stimulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Personality influences temporal discounting preferences: behavioral and brain evidence.

    Science.gov (United States)

    Manning, Joshua; Hedden, Trey; Wickens, Nina; Whitfield-Gabrieli, Susan; Prelec, Drazen; Gabrieli, John D E

    2014-09-01

    Personality traits are stable predictors of many life outcomes that are associated with important decisions that involve tradeoffs over time. Therefore, a fundamental question is how tradeoffs over time vary from person to person in relation to stable personality traits. We investigated the influence of personality, as measured by the Five-Factor Model, on time preferences and on neural activity engaged by intertemporal choice. During functional magnetic resonance imaging (fMRI), participants made choices between smaller-sooner and larger-later monetary rewards. For each participant, we estimated a constant-sensitivity discount function that dissociates impatience (devaluation of future consequences) from time sensitivity (consistency with rational, exponential discounting). Overall, higher neuroticism was associated with a relatively greater preference for immediate rewards and higher conscientiousness with a relatively greater preference for delayed rewards. Specifically, higher conscientiousness correlated positively with lower short-term impatience and more exponential time preferences, whereas higher neuroticism (lower emotional stability) correlated positively with higher short-term impatience and less exponential time preferences. Cognitive-control and reward brain regions were more activated when higher conscientiousness participants selected a smaller-sooner reward and, conversely, when higher neuroticism participants selected a larger-later reward. The greater activations that occurred when choosing rewards that contradicted personality predispositions may reflect the greater recruitment of mental resources needed to override those predispositions. These findings reveal that stable personality traits fundamentally influence how rewards are chosen over time. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Changes in the spectral composition of animal-brain electrical activity under the influence of nonthermal millimeter-wave radiation on acupuncture points

    Energy Technology Data Exchange (ETDEWEB)

    Khramov, R.N.; Vorob`ev, V.V.

    1994-07-01

    The frequency spectra (0-26 Hz) of electrograms (EG) of the preoptic region of the hypothalamus were studied in chronic experiments on nine awake rabbits under the influence of nonthermal millimeter-bank (55-75 GHz) electromagnetic fields on various acupuncture points: (I) the auricular {open_quotes}heart{close_quotes} point (after F. G. Portnov); (II) the cranial acupoint (TR-20; the {open_quotes}hypothalamus{close_quotes} point after R. Voll); and (III) the {open_quotes}longevity{close_quotes} acupoint (E-36). Irradiation of point I was accompanied by significant suppression of hypothalamic electrical activity at 5 and 16 Hz and enhancement at 7-8, 12, and 26 Hz. Irradiation of point II, and III were, respectively, 31%, 21%, and 5% (p < 0.05, U-criterion). These results suggest that acupuncture points I and II are more sensitive to millimeter-band radiation than is point III. The presence of individual characteristics of the effects and their change after stress to sign inversion were shown in rat experiments in which the acupuncture points were irradiated.

  6. Acupuncture at Waiguan (SJ5) and sham points influences activation of functional brain areas of ischemic stroke patients: a functional magnetic resonance imaging study

    OpenAIRE

    Qi, Ji; Chen, Junqi; Huang, Yong; Lai, Xinsheng; Tang, Chunzhi; Yang, Junjun; Chen, Hua; Qu, Shanshan

    2014-01-01

    Most studies addressing the specificity of meridians and acupuncture points have focused mainly on the different neural effects of acupuncture at different points in healthy individuals. This study examined the effects of acupuncture on brain function in a pathological context. Sixteen patients with ischemic stroke were randomly assigned to true point group (true acupuncture at right Waiguan (SJ5)) and sham point group (sham acupuncture). Results of functional magnetic resonance imaging revea...

  7. Modulation of Brain Activity during Phonological Familiarization

    Science.gov (United States)

    Majerus, S.; Van der Linden, M.; Collette, F.; Laureys, S.; Poncelet, M.; Degueldre, C.; Delfiore, G.; Luxen, A.; Salmon, E.

    2005-01-01

    We measured brain activity in 12 adults for the repetition of auditorily presented words and nonwords, before and after repeated exposure to their phonological form. The nonword phoneme combinations were either of high (HF) or low (LF) phonotactic frequency. After familiarization, we observed, for both word and nonword conditions, decreased…

  8. Particularities of brain bioelectric activity, psychoemotion, cytokines and biogen amine system under long time influence of all factors in 'Ukrytie' shelter

    International Nuclear Information System (INIS)

    Tabachnikov, S.I.; Shtengelov, V.V.; Danilov, V.M.; Senyuk, O.F.; Os'kina, V.N.

    2002-01-01

    Psychological, neuropsychological and biochemical characteristics of adaptation process formation were studied at 'Ukrytie' shelter staff. They reflect influence of working factors on professional selection criteria and health condition monitoring

  9. Differentiating the Influences of Aging and Adiposity on Brain Weights, Levels of Serum and Brain Cytokines, Gastrointestinal Hormones, and Amyloid Precursor Protein.

    Science.gov (United States)

    Banks, William A; Abrass, Christine K; Hansen, Kim M

    2016-01-01

    Aging and obesity exert important effects on disease. Differentiating these effects is difficult, however, because weight gain often accompanies aging. Here, we used a nested design of aged, calorically restricted, and refed rats to measure changes in brain and blood levels of cytokines and gastrointestinal hormones, brain amyloid precursor protein levels, and brain and body weights. By comparing groups and using path analysis, we found divergent influences of chronological aging versus body weight, our main findings being (i) changes in whole brain weight and serum macrophage colony-stimulating factor levels correlated better with body weight than with chronological aging, (ii) a decrease in brain cytokines and brain plasminogen activator inhibitor levels correlated better with chronological aging than with body weight, (iii) serum erythropoietin levels were influenced by both body weight and aging, (iv) serum plasminogen activator inhibitor, serum cytokines, and brain tumor necrosis factor were not influenced by aging or body weight, and (v) brain amyloid precursor protein more closely related to body weight and serum levels of gastrointestinal hormones than to brain weight, chronological aging, or cytokines. These findings show that although aging and body weight interact, their influences are distinct not only among various cytokines and hormones but also between the central nervous system and the peripheral tissue compartments. Published by Oxford University Press on behalf of the Gerontological Society of America 2014.

  10. Physiological and psychological individual differences influence resting brain function measured by ASL perfusion.

    Science.gov (United States)

    Kano, M; Coen, S J; Farmer, A D; Aziz, Q; Williams, S C R; Alsop, D C; Fukudo, S; O'Gorman, R L

    2014-09-01

    Effects of physiological and/or psychological inter-individual differences on the resting brain state have not been fully established. The present study investigated the effects of individual differences in basal autonomic tone and positive and negative personality dimensions on resting brain activity. Whole-brain resting cerebral perfusion images were acquired from 32 healthy subjects (16 males) using arterial spin labeling perfusion MRI. Neuroticism and extraversion were assessed with the Eysenck Personality Questionnaire-Revised. Resting autonomic activity was assessed using a validated measure of baseline cardiac vagal tone (CVT) in each individual. Potential associations between the perfusion data and individual CVT (27 subjects) and personality score (28 subjects) were tested at the level of voxel clusters by fitting a multiple regression model at each intracerebral voxel. Greater baseline perfusion in the dorsal anterior cingulate cortex (ACC) and cerebellum was associated with lower CVT. At a corrected significance threshold of p individual autonomic tone and psychological variability influence resting brain activity in brain regions, previously shown to be associated with autonomic arousal (dorsal ACC) and personality traits (amygdala, caudate, etc.) during active task processing. The resting brain state may therefore need to be taken into account when interpreting the neurobiology of individual differences in structural and functional brain activity.

  11. Food-Related Odors Activate Dopaminergic Brain Areas

    Directory of Open Access Journals (Sweden)

    Agnieszka Sorokowska

    2017-12-01

    Full Text Available Food-associated cues of different sensory categories have often been shown to be a potent elicitor of cerebral activity in brain reward circuits. Smells influence and modify the hedonic qualities of eating experience, and in contrast to smells not associated with food, perception of food-associated odors may activate dopaminergic brain areas. In this study, we aimed to verify previous findings related to the rewarding value of food-associated odors by means of an fMRI design involving carefully preselected odors of edible and non-edible substances. We compared activations generated by three food and three non-food odorants matching in terms of intensity, pleasantness and trigeminal qualities. We observed that for our mixed sample of 30 hungry and satiated participants, food odors generated significantly higher activation in the anterior cingulate cortex (right and left, insula (right, and putamen (right than non-food odors. Among hungry subjects, regardless of the odor type, we found significant activation in the ventral tegmental area in response to olfactory stimulation. As our stimuli were matched in terms of various perceptual qualities, this result suggests that edibility of an odor source indeed generates specific activation in dopaminergic brain areas.

  12. Use of brain electrical activity for the identification of hematomas in mild traumatic brain injury.

    Science.gov (United States)

    Hanley, Daniel F; Chabot, Robert; Mould, W Andrew; Morgan, Timothy; Naunheim, Rosanne; Sheth, Kevin N; Chiang, William; Prichep, Leslie S

    2013-12-15

    This study investigates the potential clinical utility in the emergency department (ED) of an index of brain electrical activity to identify intracranial hematomas. The relationship between this index and depth, size, and type of hematoma was explored. Ten minutes of brain electrical activity was recorded from a limited montage in 38 adult patients with traumatic hematomas (CT scan positive) and 38 mild head injured controls (CT scan negative) in the ED. The volume of blood and distance from recording electrodes were measured by blinded independent experts. Brain electrical activity data were submitted to a classification algorithm independently developed traumatic brain injury (TBI) index to identify the probability of a CT+traumatic event. There was no significant relationship between the TBI-Index and type of hematoma, or distance of the bleed from recording sites. A significant correlation was found between TBI-Index and blood volume. The sensitivity to hematomas was 100%, positive predictive value was 74.5%, and positive likelihood ratio was 2.92. The TBI-Index, derived from brain electrical activity, demonstrates high accuracy for identification of traumatic hematomas. Further, this was not influenced by distance of the bleed from the recording electrodes, blood volume, or type of hematoma. Distance and volume limitations noted with other methods, (such as that based on near-infrared spectroscopy) were not found, thus suggesting the TBI-Index to be a potentially important adjunct to acute assessment of head injury. Because of the life-threatening risk of undetected hematomas (false negatives), specificity was permitted to be lower, 66%, in exchange for extremely high sensitivity.

  13. Association Between Brain Activation and Functional Connectivity.

    Science.gov (United States)

    Tomasi, Dardo; Volkow, Nora D

    2018-04-13

    The origin of the "resting-state" brain activity recorded with functional magnetic resonance imaging (fMRI) is still uncertain. Here we provide evidence for the neurovascular origins of the amplitude of the low-frequency fluctuations (ALFF) and the local functional connectivity density (lFCD) by comparing them with task-induced blood-oxygen level dependent (BOLD) responses, which are considered a proxy for neuronal activation. Using fMRI data for 2 different tasks (Relational and Social) collected by the Human Connectome Project in 426 healthy adults, we show that ALFF and lFCD have linear associations with the BOLD response. This association was significantly attenuated by a novel task signal regression (TSR) procedure, indicating that task performance enhances lFCD and ALFF in activated regions. We also show that lFCD predicts BOLD activation patterns, as was recently shown for other functional connectivity metrics, which corroborates that resting functional connectivity architecture impacts brain activation responses. Thus, our findings indicate a common source for BOLD responses, ALFF and lFCD, which is consistent with the neurovascular origin of local hemodynamic synchrony presumably reflecting coordinated fluctuations in neuronal activity. This study also supports the development of task-evoked functional connectivity density mapping.

  14. The influence of accelerated electrons and γ-quanta (60Co) on activity of oxidative and hydrolytic enzymes of rat brain

    International Nuclear Information System (INIS)

    Lyshov, V.F.; Vasin, M.V.; Chernov, Yu.N.

    1992-01-01

    In experiments with 112 male Wistar rats it was shown that accelerated electrons (85 Gy) caused a significant increase in activities of by 15.8 % and (LDG) by 17.0 %, and a decrease in activities of AP and MAO by 10.6 and 7.8 % respectively within the sensorimotor region of the cerebral cortex immediately after irradiation. Activity of SDG and MAO decreased (by 16.4 % and 7.8 % respectively) in the caudate nucleus over the same period of time. An increase in the accelerated electron dose from 85 to 500 Gy did not change the direction and the rate of the radiation response of the enzymes. Exposure of rats to 60 Co-γ-quanta (75 Gy) increased SDG and LDG activity (by 21.4 and 17.3 % respectively) within the sensorimotor cortex as late as 10 min after irradiation. A repeated significant increase in SDG and LDG activity was observed 2 hr after irradiation

  15. Using Brain Electrical Activity Mapping to Diagnose Learning Disabilities.

    Science.gov (United States)

    Torello, Michael, W.; Duffy, Frank H.

    1985-01-01

    Cognitive neuroscience assumes that measurement of brain electrical activity should relate to cognition. Brain Electrical Activity Mapping (BEAM), a non-invasive technique, is used to record changes in activity from one brain area to another and is 80 to 90 percent successful in classifying subjects as dyslexic or normal. (MT)

  16. Brain Activation During Singing: "Clef de Sol Activation" Is the "Concert" of the Human Brain.

    Science.gov (United States)

    Mavridis, Ioannis N; Pyrgelis, Efstratios-Stylianos

    2016-03-01

    Humans are the most complex singers in nature, and the human voice is thought by many to be the most beautiful musical instrument. Aside from spoken language, singing represents a second mode of acoustic communication in humans. The purpose of this review article is to explore the functional anatomy of the "singing" brain. Methodologically, the existing literature regarding activation of the human brain during singing was carefully reviewed, with emphasis on the anatomic localization of such activation. Relevant human studies are mainly neuroimaging studies, namely functional magnetic resonance imaging and positron emission tomography studies. Singing necessitates activation of several cortical, subcortical, cerebellar, and brainstem areas, served and coordinated by multiple neural networks. Functionally vital cortical areas of the frontal, parietal, and temporal lobes bilaterally participate in the brain's activation process during singing, confirming the latter's role in human communication. Perisylvian cortical activity of the right hemisphere seems to be the most crucial component of this activation. This also explains why aphasic patients due to left hemispheric lesions are able to sing but not speak the same words. The term clef de sol activation is proposed for this crucial perisylvian cortical activation due to the clef de sol shape of the topographical distribution of these cortical areas around the sylvian fissure. Further research is needed to explore the connectivity and sequence of how the human brain activates to sing.

  17. Influence of histidine on zinc transport into rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Atsushi; Suzuki, Mai; Okada, Shoji; Oku, Naoto [Shizuoka Univ. (Japan). School of Pharmaceutical Sciences

    2000-06-01

    The brain of rats injected intravenously with {sup 65}Zn-His or {sup 65}ZnCl{sub 2} was subjected to autoradiography to study the role of histidine on zinc transport into the brain. One hour after injection, the radioactivity from {sup 65}Zn-His was largely concentrated in the choroid plexus in the ventricles. Six days after injection, the radioactivity from {sup 65}Zn-His was relatively concentrated in the hippocampal CA3 and dentate gyrus and the amygdala. The relative distribution of {sup 65}Zn-His in the brain was similar to that of {sup 65}ZnCl{sub 2} group at both 1 h and 6 days, suggesting that histidine may participate in zinc uptake in the brain. On the other hand, the clearance of the {sup 65}Zn-His group from the blood was higher than that of the {sup 65}ZnCl{sub 2} group. Brain uptake of the former was lower than that of the latter both 1 h and 6 days after injection. These results suggest that zinc uptake in the brain is influenced by histidine levels in the bloodstream. (author)

  18. Influence of histidine on zinc transport into rat brain

    International Nuclear Information System (INIS)

    Takeda, Atsushi; Suzuki, Mai; Okada, Shoji; Oku, Naoto

    2000-01-01

    The brain of rats injected intravenously with 65 Zn-His or 65 ZnCl 2 was subjected to autoradiography to study the role of histidine on zinc transport into the brain. One hour after injection, the radioactivity from 65 Zn-His was largely concentrated in the choroid plexus in the ventricles. Six days after injection, the radioactivity from 65 Zn-His was relatively concentrated in the hippocampal CA3 and dentate gyrus and the amygdala. The relative distribution of 65 Zn-His in the brain was similar to that of 65 ZnCl 2 group at both 1 h and 6 days, suggesting that histidine may participate in zinc uptake in the brain. On the other hand, the clearance of the 65 Zn-His group from the blood was higher than that of the 65 ZnCl 2 group. Brain uptake of the former was lower than that of the latter both 1 h and 6 days after injection. These results suggest that zinc uptake in the brain is influenced by histidine levels in the bloodstream. (author)

  19. Neonatal immune activation during early and late postnatal brain development differently influences depression-related behaviors in adolescent and adult C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Jafar Majidi-Zolbanin

    2014-06-01

    Full Text Available Aim: Immune challenge during early and late neonatal periods can induce robust alterations in physiological and behavioral functions, resulting in greater risk for the development of neuropsychiatric disorders, such as anxiety and depression, later in life. In addition, previous studies concluded that increasing age correlates with increased depression behaviors in humans and rodents. This study aimed to investigate for the first time whether immune challenge with a viral mimic, synthetic double-stranded ribonucleic acid (Poly I: C during different neonatal periods can differently affect depression-related behaviors in adolescent and adult mice. Methods: Male C57BL/6 mice were treated with either saline or Poly I:C (1 mg/kg and 4 mg/kg on postnatal days (PND 3-5 (early neonatal phase or PND 14-16 (late neonatal phase, and then subjected to behavioral tests, including tail suspension test and forced swimming test, during adolescence (PND 35 or 40 and adulthood (PND 85 or 90. Results: The results demonstrated that early neonatal immune activation increases depression-related behaviors in both adolescent and adult mice, but late neonatal immune activation only increases depression in adult mice. In other words, these findings indicated that the nature of the offspring's neuropathology can depend on the severity of the insult, the pup's age at the time of the insult, and offspring age at the time of behavioral testing. Conclusion: These findings suggest that dose and timing of neonatal insult and offspring age may be important factors for evaluating neuropsychiatric disorders in adults who experienced early life infection.

  20. Regulation of brain aromatase activity in rats

    International Nuclear Information System (INIS)

    Roselli, C.E.; Ellinwood, W.E.; Resko, J.A.

    1984-01-01

    The distribution and regulation of aromatase activity in the adult rat brain with a sensitive in vitro assay that measures the amount of 3 H 2 O formed during the conversion of [1 beta- 3 H]androstenedione to estrone. The rate of aromatase activity in the hypothalamus-preoptic area (HPOA) was linear with time up to 1 h, and with tissue concentrations up to 5 mgeq/200 microliters incubation mixture. The enzyme demonstrated a pH optimum of 7.4 and an apparent Michaelis-Menten constant (Km) of 0.04 microns. The greatest amount of aromatase activity was found in amygdala and HPOA from intact male rats. The hippocampus, midbrain tegmentum, cerebral cortex, cerebellum, and anterior pituitary all contained negligible enzymatic activity. Castration produced a significant decrease in aromatase activity in the HPOA, but not in the amygdala or cerebral cortex. The HPOAs of male rats contained significantly greater aromatase activity than the HPOAs of female rats. In females, this enzyme activity did not change during the estrous cycle or after ovariectomy. Administration of testosterone to gonadectomized male and female rats significantly enhanced HPOA aromatase activities to levels approximating those found in HPOA from intact males. Therefore, the results suggest that testosterone, or one of its metabolites, is a major steroidal regulator of HPOA aromatase activity in rats

  1. Contributions of Glycogen to Astrocytic Energetics during Brain Activation

    Science.gov (United States)

    Dienel, Gerald A.; Cruz, Nancy F.

    2014-01-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 mol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K+ level, oxidative stress management, and memory consolidation; it is a multi-functional compound. PMID:24515302

  2. Contributions of glycogen to astrocytic energetics during brain activation.

    Science.gov (United States)

    Dienel, Gerald A; Cruz, Nancy F

    2015-02-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 μmol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K(+) level, oxidative stress management, and memory consolidation; it is a multi-functional compound.

  3. Relationship between catalase activity and uptake of elemental mercury by rat brain

    International Nuclear Information System (INIS)

    Eide, I.; Syversen, T.L.M.

    1983-01-01

    Uptake of mercury by brain after intravenous injection of elemental mercury was investigated in the rat. Catalase activity was inhibited by aminotriazole either by intraperitoneal affecting catalase in most tissues of the animal or by intraventricular injections affecting catalase in the brain selectively. Uptake of elemental mercury by rat brain was not influenced by intraperitoneal administration of aminotriazole resulting in 50% inhibition of brain catalase. However, when the inhibitor was injected intraventricularly in concentrations to give a 50% inhibition of brain catalase, it was shown that the mercury uptake by brain was significantly decreased. In the latter case when only brain catalase was inhibited and the supply of elemtal mercury to brain was maintained, mercury uptake by brain was proportional to the activity of catalase in brain tissue and to the injected amount of elemental mercury. Contrary to the intraventricular injection of aminotriazole, in animals recieving aminotriazole intraperitoneally prior to elemental mercury injection, we suggest that the lower activity of brain catalse is compensated by an increased supply of elemtal mercury caused by the generally lower oxidation rate in the animal. This view is supported by the finding that mercury uptake by liver increased due to aminotriazole intraperitoneally although activity of catalase was depressed. (author)

  4. Brain activation associated with pride and shame.

    Science.gov (United States)

    Roth, Lilian; Kaffenberger, Tina; Herwig, Uwe; Brühl, Annette B

    2014-01-01

    Self-referential emotions such as shame/guilt and pride provide evaluative information about persons themselves. In addition to emotional aspects, social and self-referential processes play a role in self-referential emotions. Prior studies have rather focused on comparing self-referential and other-referential processes of one valence, triggered mostly by external stimuli. In the current study, we aimed at investigating the valence-specific neural correlates of shame/guilt and pride, evoked by the remembrance of a corresponding autobiographical event during functional magnetic resonance imaging. A total of 25 healthy volunteers were studied. The task comprised a negative (shame/guilt), a positive (pride) and a neutral condition (expecting the distractor). Each condition was initiated by a simple cue, followed by the remembrance and finished by a distracting picture. Pride and shame/guilt conditions both activated typical emotion-processing circuits including the amygdala, insula and ventral striatum, as well as self-referential brain regions such as the bilateral dorsomedial prefrontal cortex. Comparing the two emotional conditions, emotion-processing circuits were more activated by pride than by shame, possibly due to either hedonic experiences or stronger involvement of the participants in positive self-referential emotions due to a self-positivity bias. However, the ventral striatum was similarly activated by pride and shame/guilt. In the whole-brain analysis, both self-referential emotion conditions activated medial prefrontal and posterior cingulate regions, corresponding to the self-referential aspect and the autobiographical evocation of the respective emotions. Autobiographically evoked self-referential emotions activated basic emotional as well as self-referential circuits. Except for the ventral striatum, emotional circuits were more active with pride than with shame.

  5. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    JTEkanem

    effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as ..... on the brain and nervous system of humans as handlers and ... environment may be at higher health risk in that their internal ...

  6. Temperament, character and serotonin activity in the human brain

    DEFF Research Database (Denmark)

    Tuominen, L; Salo, J; Hirvonen, J

    2013-01-01

    The psychobiological model of personality by Cloninger and colleagues originally hypothesized that interindividual variability in the temperament dimension 'harm avoidance' (HA) is explained by differences in the activity of the brain serotonin system. We assessed brain serotonin transporter (5-HTT...

  7. The influence of puberty on subcortical brain development.

    Science.gov (United States)

    Goddings, Anne-Lise; Mills, Kathryn L; Clasen, Liv S; Giedd, Jay N; Viner, Russell M; Blakemore, Sarah-Jayne

    2014-03-01

    Puberty is characterized by hormonal, physical and psychological transformation. The human brain undergoes significant changes between childhood and adulthood, but little is known about how puberty influences its structural development. Using a longitudinal sample of 711 magnetic resonance imaging scans from 275 individuals aged 7-20years, we examined how subcortical brain regions change in relation to puberty. Our regions of interest included the amygdala, hippocampus and corpus striatum including the nucleus accumbens (NA), caudate, putamen and globus pallidus (GP). Pubertal development was significantly related to structural volume in all six regions in both sexes. Pubertal development and age had both independent and interactive influences on volume for the amygdala, hippocampus and putamen in both sexes, and the caudate in females. There was an interactive puberty-by-age effect on volume for the NA and GP in both sexes, and the caudate in males. These findings suggest a significant role for puberty in structural brain development. © 2013. Published by Elsevier Inc. All rights reserved.

  8. Brain Activity Associated with Emoticons: An fMRI Study

    Science.gov (United States)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe that brain activities associated with emoticons by using fMRI. In communication over a computer network, we use abstract faces such as computer graphics (CG) avatars and emoticons. These faces convey users' emotions and enrich their communications. However, the manner in which these faces influence the mental process is as yet unknown. The human brain may perceive the abstract face in an entirely different manner, depending on its level of reality. We conducted an experiment using fMRI in order to investigate the effects of emoticons. The results show that right inferior frontal gyrus, which associated with nonverbal communication, is activated by emoticons. Since the emoticons were created to reflect the real human facial expressions as accurately as possible, we believed that they would activate the right fusiform gyrus. However, this region was not found to be activated during the experiment. This finding is useful in understanding how abstract faces affect our behaviors and decision-making in communication over a computer network.

  9. Functional magnetic resonance imaging of higher brain activity

    International Nuclear Information System (INIS)

    Cui He; Wang Yunjiu; Chen Runsheng; Tang Xiaowei.

    1996-01-01

    Functional magnetic resonance images (fMRIs) exhibit small differences in the magnetic resonance signal intensity in positions corresponding to focal areas of brain activation. These signal are caused by variation in the oxygenation state of the venous vasculature. Using this non-invasive and dynamic method, it is possible to localize functional brain activation, in vivo, in normal individuals, with an accuracy of millimeters and a temporal resolution of seconds. Though a series of technical difficulties remain, fMRI is increasingly becoming a key method for visualizing the working brain, and uncovering the topographical organization of the human brain, and understanding the relationship between brain and the mind

  10. Lagged and instantaneous dynamical influences related to brain structural connectivity

    Directory of Open Access Journals (Sweden)

    Carmen eAlonso Montes

    2015-07-01

    Full Text Available Contemporary neuroimaging methods can shed light on the basis of human neural and cognitive specializations, with important implications for neuroscience and medicine. Indeed, different MRI acquisitions provide different brain networks at the macroscale; whilst diffusion-weighted MRI (dMRI provides a structural connectivity (SC coincident with the bundles of parallel fibers between brain areas, functional MRI (fMRI accounts for the variations in the blood-oxygenation-level-dependent T2* signal, providing functional connectivity (FC. Understanding the precise relation between FC and SC, that is, between brain dynamics and structure, is still a challenge for neuroscience.To investigate this problem, we acquired data at rest and built the corresponding SC (with matrix elements corresponding to the fiber number between brain areas to be compared with FC connectivity matrices obtained by three different methods: directed dependencies by an exploratory version of structural equation modeling (eSEM, linear correlations (C and partial correlations (PC. We also considered the possibility of using lagged correlations in time series; in particular, we compared a lagged version of eSEM and Granger causality (GC. Our results were two-fold: firstly, eSEM performance in correlating with SC was comparable to those obtained from C and PC, but eSEM (not C, nor PC provides information about directionality of the functional interactions. Second, interactions on a time scale much smaller than the sampling time, captured by instantaneous connectivity methods, are much more related to SC than slow directed influences captured by the lagged analysis. Indeed the performance in correlating with SC was much worse for GC and for the lagged version of eSEM. We expect these results to supply further insights to the interplay between SC and functional patterns, an important issue in the study of brain physiology and function.

  11. Loss of T cells influences sex differences in behavior and brain structure.

    Science.gov (United States)

    Rilett, Kelly C; Friedel, Miriam; Ellegood, Jacob; MacKenzie, Robyn N; Lerch, Jason P; Foster, Jane A

    2015-05-01

    Clinical and animal studies demonstrate that immune-brain communication influences behavior and brain function. Mice lacking T cell receptor β and δ chains were tested in the elevated plus maze, open field, and light-dark test and showed reduced anxiety-like behavior compared to wild type. Interestingly sex differences were observed in the behavioural phenotype of TCRβ-/-δ- mice. Specifically, female TCRβ-/-δ- mice spent more time in the light chamber compared to wild type females, whereas male TCRβ-/-δ- spent more time in the center of the open field compared to wild type males. In addition, TCRβ-/-δ- mice did not show sex differences in activity-related behaviors observed in WT mice. Ex vivo brain imaging (7 Tesla MRI) revealed volume changes in hippocampus, hypothalamus, amygdala, periaqueductal gray, and dorsal raphe and other brain regions between wild type and T cell receptor knockout mice. There was also a loss of sexual dimorphism in brain volume in the bed nucleus of the stria terminalis, normally the most sexually dimorphic region in the brain, in immune compromised mice. These data demonstrate the presence of T cells is important in the development of sex differences in CNS circuitry and behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Finer discrimination of brain activation with local multivariate distance

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The organization of human brain function is diverse on different spatial scales.Various cognitive states are alwavs represented as distinct activity patterns across the specific brain region on fine scales.Conventional univariate analysis of functional MRI data seeks to determine how a particular cognitive state is encoded in brain activity by analyzing each voxel separately without considering the fine-scale patterns information contained in the local brain regions.In this paper,a local multivariate distance mapping(LMDM)technique is proposed to detect the brain activation and to map the fine-scale brain activity patterns.LMDM directly represents the local brain activity with the patterns across multiple voxels rather than individual voxels,and it employs the multivariate distance between different patterns to discriminate the brain state on fine scales.Experiments with simulated and real fMRI data demonstrate that LMDM technique can dramatically increase the sensitivity of the detection for the fine-scale brain activity pettems which contain the subtle information of the experimental conditions.

  13. Time delay between cardiac and brain activity during sleep transitions

    NARCIS (Netherlands)

    Long, X.; Arends, J.B.A.M.; Aarts, R.M.; Haakma, R.; Fonseca, P.; Rolink, J.

    2015-01-01

    Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by

  14. Brain activity and fatigue during prolonged exercise in the heat

    DEFF Research Database (Denmark)

    Nielsen, Bodil; Hyldig, Tino; Bidstrup, F.

    2001-01-01

    We hypothesized that fatigue due to hyperthermia during prolonged exercise in the heat is in part related to alterations in frontal cortical brain activity. The electroencephalographic activity (EEG) of the frontal cortex of the brain was measured in seven cyclists [maximal O2 uptake (VO2max) 4...... min of exercise; P

  15. Potential Moderators of Physical Activity on Brain Health

    Directory of Open Access Journals (Sweden)

    Regina L. Leckie

    2012-01-01

    Full Text Available Age-related cognitive decline is linked to numerous molecular, structural, and functional changes in the brain. However, physical activity is a promising method of reducing unfavorable age-related changes. Physical activity exerts its effects on the brain through many molecular pathways, some of which are regulated by genetic variants in humans. In this paper, we highlight genes including apolipoprotein E (APOE, brain derived neurotrophic factor (BDNF, and catechol-O-methyltransferase (COMT along with dietary omega-3 fatty acid, docosahexaenoic acid (DHA, as potential moderators of the effect of physical activity on brain health. There are a growing number of studies indicating that physical activity might mitigate the genetic risks for disease and brain dysfunction and that the combination of greater amounts of DHA intake with physical activity might promote better brain function than either treatment alone. Understanding whether genes or other lifestyles moderate the effects of physical activity on neurocognitive health is necessary for delineating the pathways by which brain health can be enhanced and for grasping the individual variation in the effectiveness of physical activity interventions on the brain and cognition. There is a need for future research to continue to assess the factors that moderate the effects of physical activity on neurocognitive function.

  16. Network-dependent modulation of brain activity during sleep.

    Science.gov (United States)

    Watanabe, Takamitsu; Kan, Shigeyuki; Koike, Takahiko; Misaki, Masaya; Konishi, Seiki; Miyauchi, Satoru; Miyahsita, Yasushi; Masuda, Naoki

    2014-09-01

    Brain activity dynamically changes even during sleep. A line of neuroimaging studies has reported changes in functional connectivity and regional activity across different sleep stages such as slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. However, it remains unclear whether and how the large-scale network activity of human brains changes within a given sleep stage. Here, we investigated modulation of network activity within sleep stages by applying the pairwise maximum entropy model to brain activity obtained by functional magnetic resonance imaging from sleeping healthy subjects. We found that the brain activity of individual brain regions and functional interactions between pairs of regions significantly increased in the default-mode network during SWS and decreased during REM sleep. In contrast, the network activity of the fronto-parietal and sensory-motor networks showed the opposite pattern. Furthermore, in the three networks, the amount of the activity changes throughout REM sleep was negatively correlated with that throughout SWS. The present findings suggest that the brain activity is dynamically modulated even in a sleep stage and that the pattern of modulation depends on the type of the large-scale brain networks. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Exploring the motivational brain: effects of implicit power motivation on brain activation in response to facial expressions of emotion

    OpenAIRE

    Schultheiss, Oliver C.; Wirth, Michelle M.; Waugh, Christian E.; Stanton, Steven J.; Meier, Elizabeth A.; Reuter-Lorenz, Patricia

    2008-01-01

    This study tested the hypothesis that implicit power motivation (nPower), in interaction with power incentives, influences activation of brain systems mediating motivation. Twelve individuals low (lowest quartile) and 12 individuals high (highest quartile) in nPower, as assessed per content coding of picture stories, were selected from a larger initial participant pool and participated in a functional magnetic resonance imaging study during which they viewed high-dominance (angry faces), low-...

  18. Brain activity and cognitive transition during childhood: A longitudinal event-related brain potential study.

    NARCIS (Netherlands)

    Stauder, J.E.A.; Molenaar, P.C.M.; van der Molen, M.W.

    1998-01-01

    Examined the relation between brain activation and cognitive development using event-related brain potentials (ERPs) and a longitudinal design. 5 yr old females performed a visual recognition ('oddball') task and an experimental analogue of the Piagetian conservation of liquid quantity task At three

  19. Brain substrates of unhealthy versus healthy food choices: influence of homeostatic status and body mass index.

    Science.gov (United States)

    Harding, I H; Andrews, Z B; Mata, F; Orlandea, S; Martínez-Zalacaín, I; Soriano-Mas, C; Stice, E; Verdejo-Garcia, A

    2018-03-01

    Unhealthy dietary choices are a major contributor to harmful weight gain and obesity. This study interrogated the brain substrates of unhealthy versus healthy food choices in vivo, and evaluated the influence of hunger state and body mass index (BMI) on brain activation and connectivity. Thirty adults (BMI: 18-38 kg m -2 ) performed a food-choice task involving preference-based selection between beverage pairs consisting of high-calorie (unhealthy) or low-calorie (healthy) options, concurrent with functional magnetic resonance imaging (fMRI). Selected food stimuli were delivered to participants using an MRI-compatible gustometer. fMRI scans were performed both after 10-h fasting and when sated. Brain activation and hypothalamic functional connectivity were assessed when selecting between unhealthy-healthy beverage pairings, relative to unhealthy-unhealthy and healthy-healthy options. Results were considered significant at cluster-based family-wise error corrected Pfoods elicited significant activation in the hypothalamus, the medial and dorsolateral prefrontal cortices, the anterior insula and the posterior cingulate. Hunger was associated with higher activation within the ventromedial and dorsolateral prefrontal cortices, as well as lower connectivity between the hypothalamus and both the ventromedial prefrontal cortex and dorsal striatum. Critically, people with higher BMI showed lower activation of the hypothalamus-regardless of hunger state-and higher activation of the ventromedial prefrontal cortex when hungry. People who are overweight and obese have weaker activation of brain regions involved in energy regulation and greater activation of reward valuation regions while making choices between unhealthy and healthy foods. These results provide evidence for a shift towards hedonic-based, and away from energy-based, food selection in obesity.

  20. Interaction Effects of BDNF and COMT Genes on Resting-State Brain Activity and Working Memory

    Science.gov (United States)

    Chen, Wen; Chen, Chunhui; Xia, Mingrui; Wu, Karen; Chen, Chuansheng; He, Qinghua; Xue, Gui; Wang, Wenjing; He, Yong; Dong, Qi

    2016-01-01

    Catechol-O-methyltransferase (COMT) and brain-derived neurotrophic factor (BDNF) genes have been found to interactively influence working memory (WM) as well as brain activation during WM tasks. However, whether the two genes have interactive effects on resting-state activities of the brain and whether these spontaneous activations correlate with WM are still unknown. This study included behavioral data from WM tasks and genetic data (COMT rs4680 and BDNF Val66Met) from 417 healthy Chinese adults and resting-state fMRI data from 298 of them. Significant interactive effects of BDNF and COMT were found for WM performance as well as for resting-state regional homogeneity (ReHo) in WM-related brain areas, including the left medial frontal gyrus (lMeFG), left superior frontal gyrus (lSFG), right superior and medial frontal gyrus (rSMFG), right medial orbitofrontal gyrus (rMOFG), right middle frontal gyrus (rMFG), precuneus, bilateral superior temporal gyrus, left superior occipital gyrus, right middle occipital gyrus, and right inferior parietal lobule. Simple effects analyses showed that compared to other genotypes, subjects with COMT-VV/BDNF-VV had higher WM and lower ReHo in all five frontal brain areas. The results supported the hypothesis that COMT and BDNF polymorphisms influence WM performance and spontaneous brain activity (i.e., ReHo). PMID:27853425

  1. 抽动障碍患儿432例血铅水平对脑电图活动的影响%Influence of Blood Lead Level on Electrical Activity of Brain in 432 Children with Tic Disorder

    Institute of Scientific and Technical Information of China (English)

    田广燕; 梁向荣; 高在芬; 刘勇

    2011-01-01

    目的 探讨抽动障碍患儿血铅水平变化对脑电活动的影响及其发病机制的研究,对比不同血铅水平患儿脑电图变化的特点.方法 对本院2005年1月- 2011年4月临床确诊的432例抽动障碍患儿进行血铅水平及脑电图检测.采用原子吸收光谱分析法测定其血铅水平,并进行t检验.将432例抽动障碍患儿分为3组,Ⅰ组:血铅水平<50μg·L-1;Ⅱ组:血铅水平50 ~ 100μg·L-1;Ⅲ组:血铅水平> 100 μg·L-1.结果 1.Ⅰ组患儿脑电图异常发生率为7.14%(2/28例),Ⅱ组患儿脑电图异常发生率为14.23%(40/281例),Ⅲ组患儿脑电图异常发生率为46.34%(57/123例).Ⅰ组与Ⅱ组脑电图异常发生率比较差异无统计学意义(P>0.05),Ⅰ组与Ⅲ组脑电图异常发生率比较差异有统计学意义(P<0.01),Ⅱ组与Ⅲ组脑电图异常发生率比较差异有统计学意义(P<0.01).2.除年龄≤4岁患儿外,脑电图异常患儿较脑电图正常患儿血铅水平明显升高(P<0.01,0.05).结论 血铅水平升高会加重抽动障碍患儿的脑功能损伤.及早进行驱铅治疗可能对抽动障碍患儿脑功能损伤的恢复有重要意义.%Objective To study the influence and pathogenesis of blood lead level on electrical activity of brain in children with tic disorder, and to research the characteristics of electroencephalogram (EEG) in children with different concentrations of blood lead. Methods The level of blood lead and EEG were assessed in 432 children with tic disorder from Jan. 2005 to Apr. 2011. The level of blood lead were examined by atomic absorption spectrophotometry method. Statistical analysis were performed by t - test. According to the blood lead level, the children were divided into 3 groups, group Ⅰ :blood lead 100 μg · L-1. Results 1. The EEG abnormal statistics results showed abnormal rate in group Ⅰ ,group Ⅱ and group Ⅲ were 7. 14% (2/28 cases) , 14.23% (40/ 281 cases) and 46. 34% (57/123 cases

  2. Scalp and skull influence on near infrared photon propagation in the Colin27 brain template.

    Science.gov (United States)

    Strangman, Gary E; Zhang, Quan; Li, Zhi

    2014-01-15

    Near-infrared neuromonitoring (NIN) is based on near-infrared spectroscopy (NIRS) measurements performed through the intact scalp and skull. Despite the important effects of overlying tissue layers on the measurement of brain hemodynamics, the influence of scalp and skull on NIN sensitivity are not well characterized. Using 3555 Monte Carlo simulations, we estimated the sensitivity of individual continuous-wave NIRS measurements to brain activity over the entire adult human head by introducing a small absorption perturbation to brain gray matter and quantifying the influence of scalp and skull thickness on this sensitivity. After segmenting the Colin27 template into five tissue types (scalp, skull, cerebrospinal fluid, gray matter and white matter), the average scalp thickness was 6.9 ± 3.6 mm (range: 3.6-11.2mm), while the average skull thickness was 6.0 ± 1.9 mm (range: 2.5-10.5mm). Mean NIN sensitivity - defined as the partial path length through gray matter divided by the total photon path length - ranged from 0.06 (i.e., 6% of total path length) at a 20mm source-detector separation, to over 0.19 at 50mm separations. NIN sensitivity varied substantially around the head, with occipital pole exhibiting the highest NIRS sensitivity to gray matter, whereas inferior frontal regions had the lowest sensitivity. Increased scalp and skull thickness were strongly associated with decreased sensitivity to brain tissue. Scalp thickness always exhibited a slightly larger effect on sensitivity than skull thickness, but the effect of both varied with SD separation. We quantitatively characterize sensitivity around the head as well as the effects of scalp and skull, which can be used to interpret NIN brain activation studies as well as guide the design, development and optimization of NIRS devices and sensors. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Radioprotector modifying influence upon the ion transport ATPase activities

    International Nuclear Information System (INIS)

    Dvoretsky, A.I.; Egorova, E.G.; Ananieva, T.V.; Kulikova, I.A.

    1993-01-01

    The effects of aminothiol and biogenic amine radioprotectors (β-mercaptoethylamine, AET, serotonin, dopamine, histamine) on the basic ion transport enzymes, such as Na, K-ATP ase and Mg, Ca-ATPase activities were investigated in the tissues of numerous organs, with different radiosensitivity in the wistar rats. Experimental results showed that intraperitoneal injection of the used radioprotectors caused preliminary inhibition of the Na, K-ATPase activity in tissues from organs with different radioresistance, but had no influence on the Mg, Ca-ATPase activity in membranes of erythrocytes and rat brain cells. (2 tabs.)

  4. Methylmercury Induced Neurotoxicity and the Influence of Selenium in the Brains of Adult Zebrafish (Danio rerio

    Directory of Open Access Journals (Sweden)

    Josef Daniel Rasinger

    2017-03-01

    Full Text Available The neurotoxicity of methylmercury (MeHg is well characterised, and the ameliorating effects of selenium have been described. However, little is known about the molecular mechanisms behind this contaminant-nutrient interaction. We investigated the influence of selenium (as selenomethionine, SeMet and MeHg on mercury accumulation and protein expression in the brain of adult zebrafish (Danio rerio. Fish were fed diets containing elevated levels of MeHg and/or SeMet in a 2 × 2 full factorial design for eight weeks. Mercury concentrations were highest in the brain tissue of MeHg-exposed fish compared to the controls, whereas lower levels of mercury were found in the brain of zebrafish fed both MeHg and SeMet compared with the fish fed MeHg alone. The expression levels of proteins associated with gap junction signalling, oxidative phosphorylation, and mitochondrial dysfunction were significantly (p < 0.05 altered in the brain of zebrafish after exposure to MeHg and SeMet alone or in combination. Analysis of upstream regulators indicated that these changes were linked to the mammalian target of rapamycin (mTOR pathways, which were activated by MeHg and inhibited by SeMet, possibly through a reactive oxygen species mediated differential activation of RICTOR, the rapamycin-insensitive binding partner of mTOR.

  5. At least eighty percent of brain grey matter is modifiable by physical activity: A review study.

    Science.gov (United States)

    Batouli, Seyed Amir Hossein; Saba, Valiallah

    2017-08-14

    The human brain is plastic, i.e. it can show structural changes in response to the altered environment. Physical activity (PA) is a lifestyle factor which has significant associations with the structural and functional aspects of the human brain, as well as with the mind and body health. Many studies have reported regional/global brain volume increments due to exercising; however, a map which shows the overall extent of the influences of PAs on brain structure is not available. In this study, we collected all the reports on brain structural alterations in association with PA in healthy humans, and next, a brain map of the extent of these effects is provided. The results of this study showed that a large network of brain areas, equal to 82% of the total grey matter volume, were associated with PA. This finding has important implications in utilizing PA as a mediator factor for educational purposes in children, rehabilitation applications in patients, improving the cognitive abilities of the human brain such as in learning or memory, and preventing age-related brain deteriorations. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Acupuncture inhibits cue-induced heroin craving and brain activation.

    Science.gov (United States)

    Cai, Xinghui; Song, Xiaoge; Li, Chuanfu; Xu, Chunsheng; Li, Xiliang; Lu, Qi

    2012-11-25

    Previous research using functional MRI has shown that specific brain regions associated with drug dependence and cue-elicited heroin craving are activated by environmental cues. Craving is an important trigger of heroin relapse, and acupuncture may inhibit craving. In this study, we performed functional MRI in heroin addicts and control subjects. We compared differences in brain activation between the two groups during heroin cue exposure, heroin cue exposure plus acupuncture at the Zusanli point (ST36) without twirling of the needle, and heroin cue exposure plus acupuncture at the Zusanli point with twirling of the needle. Heroin cue exposure elicited significant activation in craving-related brain regions mainly in the frontal lobes and callosal gyri. Acupuncture without twirling did not significantly affect the range of brain activation induced by heroin cue exposure, but significantly changed the extent of the activation in the heroin addicts group. Acupuncture at the Zusanli point with twirling of the needle significantly decreased both the range and extent of activation induced by heroin cue exposure compared with heroin cue exposure plus acupuncture without twirling of the needle. These experimental findings indicate that presentation of heroin cues can induce activation in craving-related brain regions, which are involved in reward, learning and memory, cognition and emotion. Acupuncture at the Zusanli point can rapidly suppress the activation of specific brain regions related to craving, supporting its potential as an intervention for drug craving.

  7. Assessing brain activations associated with emotional regulation during virtual reality mood induction procedures

    NARCIS (Netherlands)

    Rodriguez, A.; Rey, B.; Clemente, M.; Wrzesien, M.; Alcañiz, M.

    2015-01-01

    Emotional regulation strategies are used by people to influence their emotional responses to external or internal emotional stimuli. The aim of this study is to evaluate the brain activations that are associated with the application of two different emotional regulation strategies (cognitive

  8. Spatial heterogeneity analysis of brain activation in fMRI

    Directory of Open Access Journals (Sweden)

    Lalit Gupta

    2014-01-01

    Full Text Available In many brain diseases it can be qualitatively observed that spatial patterns in blood oxygenation level dependent (BOLD activation maps appear more (diffusively distributed than in healthy controls. However, measures that can quantitatively characterize this spatial distributiveness in individual subjects are lacking. In this study, we propose a number of spatial heterogeneity measures to characterize brain activation maps. The proposed methods focus on different aspects of heterogeneity, including the shape (compactness, complexity in the distribution of activated regions (fractal dimension and co-occurrence matrix, and gappiness between activated regions (lacunarity. To this end, functional MRI derived activation maps of a language and a motor task were obtained in language impaired children with (Rolandic epilepsy and compared to age-matched healthy controls. Group analysis of the activation maps revealed no significant differences between patients and controls for both tasks. However, for the language task the activation maps in patients appeared more heterogeneous than in controls. Lacunarity was the best measure to discriminate activation patterns of patients from controls (sensitivity 74%, specificity 70% and illustrates the increased irregularity of gaps between activated regions in patients. The combination of heterogeneity measures and a support vector machine approach yielded further increase in sensitivity and specificity to 78% and 80%, respectively. This illustrates that activation distributions in impaired brains can be complex and more heterogeneous than in normal brains and cannot be captured fully by a single quantity. In conclusion, heterogeneity analysis has potential to robustly characterize the increased distributiveness of brain activation in individual patients.

  9. Family environment influences emotion recognition following paediatric traumatic brain injury.

    Science.gov (United States)

    Schmidt, Adam T; Orsten, Kimberley D; Hanten, Gerri R; Li, Xiaoqi; Levin, Harvey S

    2010-01-01

    This study investigated the relationship between family functioning and performance on two tasks of emotion recognition (emotional prosody and face emotion recognition) and a cognitive control procedure (the Flanker task) following paediatric traumatic brain injury (TBI) or orthopaedic injury (OI). A total of 142 children (75 TBI, 67 OI) were assessed on three occasions: baseline, 3 months and 1 year post-injury on the two emotion recognition tasks and the Flanker task. Caregivers also completed the Life Stressors and Resources Scale (LISRES) on each occasion. Growth curve analysis was used to analyse the data. Results indicated that family functioning influenced performance on the emotional prosody and Flanker tasks but not on the face emotion recognition task. Findings on both the emotional prosody and Flanker tasks were generally similar across groups. However, financial resources emerged as significantly related to emotional prosody performance in the TBI group only (p = 0.0123). Findings suggest family functioning variables--especially financial resources--can influence performance on an emotional processing task following TBI in children.

  10. Brain activation during human male ejaculation

    NARCIS (Netherlands)

    Holstege, Ger; Georgiadis, Janniko R.; Paans, Anne M.J.; Meiners, Linda C.; Graaf, Ferdinand H.C.E. van der; Reinders, A.A.T.Simone

    2003-01-01

    Brain mechanisms that control human sexual behavior in general, and ejaculation in particular, are poorly understood. We used positron emission tomography to measure increases in regional cerebral blood flow (rCBF) during ejaculation compared with sexual stimulation in heterosexual male volunteers.

  11. INFLUENCE INTERHEMISPHERIC FUNCTIONAL ASYMMETRY BRAIN ON HUMAN PERCEPTUAL PROCESSES

    Directory of Open Access Journals (Sweden)

    Eugene Gtnnadyevna Surovyatkina

    2017-11-01

    Full Text Available The goals of the work was to determine linkage between the dominant hemisphere of the brain and the occurrence of perceptual processes of the personality of students of the University of the Ministry of internal Affairs of Russia. Researching of relationship between characteristics of the nature of perceptual processes and lateralization of brain functions supplements the information about professional suitability and reliability of employees of enforcement structure within the individually-typological approach. The experimental psychological research of determination of motor and sensory asymmetries in the measurement system "hand-foot-ear-eye" (was performed by Homskay E.D., the leading channel of the auditory perception for the people with the left-hemispheric dominance, and kinesthetic channel for the people with right-hemispheric dominance were revealed. Features of functioning of system "FMPA-perception" in groups with different type of hemispheric dominance is recommended to consider in academic and professional activities of the cadets, and at the stage of professional selection.

  12. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.

    Science.gov (United States)

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D

    2015-06-12

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function. Copyright © 2015, American Association for the Advancement of Science.

  13. Shaping of neuronal activity through a Brain Computer Interface

    OpenAIRE

    Valero-Aguayo, Luis; Silva-Sauer, Leandro; Velasco-Alvarez, Ricardo; Ron-Angevin, Ricardo

    2014-01-01

    Neuronal responses are human actions which can be measured by an EEG, and which imply changes in waves when neurons are synchronized. This activity could be changed by principles of behaviour analysis. This research tests the efficacy of the behaviour shaping procedure to progressively change neuronal activity, so that those brain responses are adapted according to the differential reinforcement of visual feedback. The Brain Computer Interface (BCI) enables us to record the EEG in real ti...

  14. The influence of sex hormones on brain lateralisation

    NARCIS (Netherlands)

    Beking, Tess; Geuze, Reint; Groothuis, Antonius

    2015-01-01

    Brain lateralization is the phenomenon that both hemispheres of the brain are specialised in different functions. Lateralization differs in strength and direction between individuals and among tasks within individuals, potentially affecting cognitive performance. There is debate to what extent

  15. Brain Plasticity, Intelligence and Schizophrenia: influence of genes and environment

    NARCIS (Netherlands)

    Hedman, A.M.

    2013-01-01

    This thesis shows that the adult human brain has plastic properties. These plastic properties are at least in part heritable and have functional significance. Identifying genes and environmental factors implicated in brain plasticity is an important next step to optimize brain development in health

  16. Personality Influences Temporal Discounting Preferences: Behavioral and Brain Evidence

    OpenAIRE

    Manning, Joshua; Hedden, Trey; Wickens, Nina; Whitfield-Gabrieli, Susan; Prelec, Drazen; Gabrieli, John D. E.

    2014-01-01

    Personality traits are stable predictors of many life outcomes that are associated with important decisions that involve tradeoffs over time. Therefore, a fundamental question is how tradeoffs over time vary from person to person in relation to stable personality traits. We investigated the influence of personality, as measured by the Five-Factor Model, on time preferences and on neural activity engaged by intertemporal choice. During functional magnetic resonance imaging (fMRI), participants...

  17. Food choice in hyperthyroidism: potential influence of the autonomic nervous system and brain serotonin precursor availability.

    Science.gov (United States)

    Pijl, H; de Meijer, P H; Langius, J; Coenegracht, C I; van den Berk, A H; Chandie Shaw, P K; Boom, H; Schoemaker, R C; Cohen, A F; Burggraaf, J; Meinders, A E

    2001-12-01

    We explored energy and macronutrient intake in patients with Graves' hyperthyroidism. We specifically hypothesized that hyperthyroidism is associated with increased appetite for carbohydrates, because of enhanced sympathetic tone and diminished serotonin mediated neurotransmission in the brain. To test this hypothesis, we measured food intake by dietary history and food selected for lunch in the laboratory in 14 patients with Graves' hyperthyroidism. Twenty-four-hour catecholamine excretion was used as a measure of activity of the sympathetic nervous system (SNS) and the plasma [Trp]/[NAA] ratio was measured to estimate (rate limiting) precursor availability for brain 5-hydroxytryptamine synthesis. All measurements were repeated after the subjects had been treated to establish euthyroidism. In addition, the effects of nonselective beta-adrenoceptor blockade upon these parameters were studied to evaluate the influence of beta-adrenergic hyperactivity on food intake. Hyperthyroidism was marked by increased SNS activity and reduced plasma [Trp]/[NAA] ratio. Accordingly, energy intake was considerably and significantly increased in hyper vs. euthyroidism, which was fully attributable to enhanced carbohydrate consumption, as protein and fat intake were not affected. These results suggest that hyperthyroidism alters the neurophysiology of food intake regulation. Increased SNS activity and reduced Trp precursor availability for 5-hydroxytryptamine synthesis in the brain may drive the marked hyperphagia and craving for carbohydrates that appears to characterize hyperthyroid patients. Because propranolol did not affect food intake in hyperthyroidism, the potential effect of catecholamines on food intake might be mediated by alpha-adrenoceptors.

  18. Exploring the motivational brain: effects of implicit power motivation on brain activation in response to facial expressions of emotion.

    Science.gov (United States)

    Schultheiss, Oliver C; Wirth, Michelle M; Waugh, Christian E; Stanton, Steven J; Meier, Elizabeth A; Reuter-Lorenz, Patricia

    2008-12-01

    This study tested the hypothesis that implicit power motivation (nPower), in interaction with power incentives, influences activation of brain systems mediating motivation. Twelve individuals low (lowest quartile) and 12 individuals high (highest quartile) in nPower, as assessed per content coding of picture stories, were selected from a larger initial participant pool and participated in a functional magnetic resonance imaging study during which they viewed high-dominance (angry faces), low-dominance (surprised faces) and control stimuli (neutral faces, gray squares) under oddball-task conditions. Consistent with hypotheses, high-power participants showed stronger activation in response to emotional faces in brain structures involved in emotion and motivation (insula, dorsal striatum, orbitofrontal cortex) than low-power participants.

  19. Brain activity patterns uniquely supporting visual feature integration after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anjali eRaja Beharelle

    2011-12-01

    Full Text Available Traumatic brain injury (TBI patients typically respond more slowly and with more variability than controls during tasks of attention requiring speeded reaction time. These behavioral changes are attributable, at least in part, to diffuse axonal injury (DAI, which affects integrated processing in distributed systems. Here we use a multivariate method sensitive to distributed neural activity to compare brain activity patterns of patients with chronic phase moderate-to-severe TBI to those of controls during performance on a visual feature-integration task assessing complex attentional processes that has previously shown sensitivity to TBI. The TBI patients were carefully screened to be free of large focal lesions that can affect performance and brain activation independently of DAI. The task required subjects to hold either one or three features of a target in mind while suppressing responses to distracting information. In controls, the multi-feature condition activated a distributed network including limbic, prefrontal, and medial temporal structures. TBI patients engaged this same network in the single-feature and baseline conditions. In multi-feature presentations, TBI patients alone activated additional frontal, parietal, and occipital regions. These results are consistent with neuroimaging studies using tasks assessing different cognitive domains, where increased spread of brain activity changes was associated with TBI. Our results also extend previous findings that brain activity for relatively moderate task demands in TBI patients is similar to that associated with of high task demands in controls.

  20. Interleukin 6 modulates acetylcholinesterase activity of brain neurons

    International Nuclear Information System (INIS)

    Clarencon, D.; Multon, E.; Galonnier, M.; Estrade, M.; Fournier, C.; Mathieu, J.; Mestries, J.C.; Testylier, G.; Fatome, M.

    1995-01-01

    Classically, radiation injuries results in a peripheral inflammatory process, and we have previously observed an early systemic interleukin 6 (IL-6) release following whole-body irradiation. Besides, we have demonstrated an early decrease of rat or primate brain acetylcholinesterase (AChE) activity a gamma exposure. The object of the present study is to find possible IL-6 systemic effects on the brain AChE activity. We show that, though intravenous (i.v.) or intra-cerebro-ventricular (ICV) injection of IL-6 can induce a drop in rat brain AChE activity, this cytokine induces only a slight decrease of the AChE release in cultured brain cells. (author)

  1. The effects of physical activity on brain structure

    Directory of Open Access Journals (Sweden)

    Adam eThomas

    2012-03-01

    Full Text Available Aerobic activity is a powerful stimulus for improving mental health and for generating structural changes in the brain. We review the literature documenting these structural changes and explore exactly where in the brain these changes occur as well as the underlying substrates of the changes including neural, glial, and vasculature components. Aerobic activity has been shown to produce different types of changes in the brain. The presence of novel experiences or learning is an especially important component in how these changes are manifest. We also discuss the distinct time courses of structural brain changes with both aerobic activity and learning as well as how these effects might differ in diseased and elderly groups.

  2. Voluntary breath holding affects spontaneous brain activity measured by magnetoencephalography

    NARCIS (Netherlands)

    Schellart, N. A.; Reits, D.

    1999-01-01

    Spontaneous brain activity was measured by multichannel magnetoencephalography (MEG) during voluntary breath holds. Significant changes in the activity are limited to the alpha rhythm: 0.25 Hz frequency increase and narrowing of the peak. The area of alpha activity shifts slightly toward (fronto-)

  3. Functional and Structural Correlates of Social Influence in the Human Brain

    DEFF Research Database (Denmark)

    Campbell-Meiklejohn, Daniel; Bach, Dominik; Kanai, Ryota

    2012-01-01

    brain GM) in the volumetric based morphology (VBM) contrast of GM in OFC. OFCGM found to correlate (FWE corrected, P >.05) with Binf, was used as a regressor in the group fMRI contrasts of (a) and (b) to investigate the relationship between structure and activity during conformity.......; b) functional responses reflecting social influence on object value; and c) grey matter volume (GM) the orbitofrontal cortex (OFC) – an area not available to functional analysis in our study but clearly involved in social conduct and value learning. Methods: Prior to testing, 28 healthy subjects...

  4. Influence of image reconstruction methods on statistical parametric mapping of brain PET images

    International Nuclear Information System (INIS)

    Yin Dayi; Chen Yingmao; Yao Shulin; Shao Mingzhe; Yin Ling; Tian Jiahe; Cui Hongyan

    2007-01-01

    Objective: Statistic parametric mapping (SPM) was widely recognized as an useful tool in brain function study. The aim of this study was to investigate if imaging reconstruction algorithm of PET images could influence SPM of brain. Methods: PET imaging of whole brain was performed in six normal volunteers. Each volunteer had two scans with true and false acupuncturing. The PET scans were reconstructed using ordered subsets expectation maximization (OSEM) and filtered back projection (FBP) with 3 varied parameters respectively. The images were realigned, normalized and smoothed using SPM program. The difference between true and false acupuncture scans was tested using a matched pair t test at every voxel. Results: (1) SPM corrected multiple comparison (P corrected uncorrected <0.001): SPM derived from the images with different reconstruction method were different. The largest difference, in number and position of the activated voxels, was noticed between FBP and OSEM re- construction algorithm. Conclusions: The method of PET image reconstruction could influence the results of SPM uncorrected multiple comparison. Attention should be paid when the conclusion was drawn using SPM uncorrected multiple comparison. (authors)

  5. Understanding the broad influence of sex hormones and sex differences in the brain.

    Science.gov (United States)

    McEwen, Bruce S; Milner, Teresa A

    2017-01-02

    Sex hormones act throughout the entire brain of both males and females via both genomic and nongenomic receptors. Sex hormones can act through many cellular and molecular processes that alter structure and function of neural systems and influence behavior as well as providing neuroprotection. Within neurons, sex hormone receptors are found in nuclei and are also located near membranes, where they are associated with presynaptic terminals, mitochondria, spine apparatus, and postsynaptic densities. Sex hormone receptors also are found in glial cells. Hormonal regulation of a variety of signaling pathways as well as direct and indirect effects on gene expression induce spine synapses, up- or downregulate and alter the distribution of neurotransmitter receptors, and regulate neuropeptide expression and cholinergic and GABAergic activity as well as calcium sequestration and oxidative stress. Many neural and behavioral functions are affected, including mood, cognitive function, blood pressure regulation, motor coordination, pain, and opioid sensitivity. Subtle sex differences exist for many of these functions that are developmentally programmed by hormones and by not yet precisely defined genetic factors, including the mitochondrial genome. These sex differences and responses to sex hormones in brain regions, which influence functions not previously regarded as subject to such differences, indicate that we are entering a new era of our ability to understand and appreciate the diversity of gender-related behaviors and brain functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Volatile anesthetics influence blood-brain barrier integrity by modulation of tight junction protein expression in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Serge C Thal

    Full Text Available Disruption of the blood-brain barrier (BBB results in cerebral edema formation, which is a major cause for high mortality after traumatic brain injury (TBI. As anesthetic care is mandatory in patients suffering from severe TBI it may be important to elucidate the effect of different anesthetics on cerebral edema formation. Tight junction proteins (TJ such as zonula occludens-1 (ZO-1 and claudin-5 (cl5 play a central role for BBB stability. First, the influence of the volatile anesthetics sevoflurane and isoflurane on in-vitro BBB integrity was investigated by quantification of the electrical resistance (TEER in murine brain endothelial monolayers and neurovascular co-cultures of the BBB. Secondly brain edema and TJ expression of ZO-1 and cl5 were measured in-vivo after exposure towards volatile anesthetics in native mice and after controlled cortical impact (CCI. In in-vitro endothelial monocultures, both anesthetics significantly reduced TEER within 24 hours after exposure. In BBB co-cultures mimicking the neurovascular unit (NVU volatile anesthetics had no impact on TEER. In healthy mice, anesthesia did not influence brain water content and TJ expression, while 24 hours after CCI brain water content increased significantly stronger with isoflurane compared to sevoflurane. In line with the brain edema data, ZO-1 expression was significantly higher in sevoflurane compared to isoflurane exposed CCI animals. Immunohistochemical analyses revealed disruption of ZO-1 at the cerebrovascular level, while cl5 was less affected in the pericontusional area. The study demonstrates that anesthetics influence brain edema formation after experimental TBI. This effect may be attributed to modulation of BBB permeability by differential TJ protein expression. Therefore, selection of anesthetics may influence the barrier function and introduce a strong bias in experimental research on pathophysiology of BBB dysfunction. Future research is required to investigate

  7. Pacing and awareness: brain regulation of physical activity.

    Science.gov (United States)

    Edwards, A M; Polman, R C J

    2013-11-01

    The aim of this current opinion article is to provide a contemporary perspective on the role of brain regulatory control of paced performances in response to exercise challenges. There has been considerable recent conjecture as to the role of the brain during exercise, and it is now broadly accepted that fatigue does not occur without brain involvement and that all voluntary activity is likely to be paced at some level by the brain according to individualised priorities and knowledge of personal capabilities. This article examines the role of pacing in managing and distributing effort to successfully accomplish physical tasks, while extending existing theories on the role of the brain as a central controller of performance. The opinion proposed in this article is that a central regulator operates to control exercise performance but achieves this without the requirement of an intelligent central governor located in the subconscious brain. It seems likely that brain regulation operates at different levels of awareness, such that minor homeostatic challenges are addressed automatically without conscious awareness, while larger metabolic disturbances attract conscious awareness and evoke a behavioural response. This supports the view that the brain regulates exercise performance but that the interpretation of the mechanisms underlying this effect have not yet been fully elucidated.

  8. Visual short term memory related brain activity predicts mathematical abilities.

    Science.gov (United States)

    Boulet-Craig, Aubrée; Robaey, Philippe; Lacourse, Karine; Jerbi, Karim; Oswald, Victor; Krajinovic, Maja; Laverdière, Caroline; Sinnett, Daniel; Jolicoeur, Pierre; Lippé, Sarah

    2017-07-01

    Previous research suggests visual short-term memory (VSTM) capacity and mathematical abilities are significantly related. Moreover, both processes activate similar brain regions within the parietal cortex, in particular, the intraparietal sulcus; however, it is still unclear whether the neuronal underpinnings of VSTM directly correlate with mathematical operation and reasoning abilities. The main objective was to investigate the association between parieto-occipital brain activity during the retention period of a VSTM task and performance in mathematics. The authors measured mathematical abilities and VSTM capacity as well as brain activity during memory maintenance using magnetoencephalography (MEG) in 19 healthy adult participants. Event-related magnetic fields (ERFs) were computed on the MEG data. Linear regressions were used to estimate the strength of the relation between VSTM related brain activity and mathematical abilities. The amplitude of parieto-occipital cerebral activity during the retention of visual information was related to performance in 2 standardized mathematical tasks: mathematical reasoning and calculation fluency. The findings show that brain activity during retention period of a VSTM task is associated with mathematical abilities. Contributions of VSTM processes to numerical cognition should be considered in cognitive interventions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Principal tools for exploring the brain and mapping its activity

    International Nuclear Information System (INIS)

    Mazoyer, B.; Mashaal, M.

    1996-01-01

    The electro-encephalography (EEG), magneto-encephalography (MEG), scanner, positron computed tomography, single photon emission computed tomography (SPECT) and NMR imaging are the main methods used to explore human brain and to do a mapping of its activity. These methods are described into details (principle, visualization, uses, advantages, disadvantages). They can be useful to detect the possible anomalies of the human brain. (O.M.)

  10. Brain modularity controls the critical behavior of spontaneous activity.

    Science.gov (United States)

    Russo, R; Herrmann, H J; de Arcangelis, L

    2014-03-13

    The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.

  11. Using perturbations to identify the brain circuits underlying active vision.

    Science.gov (United States)

    Wurtz, Robert H

    2015-09-19

    The visual and oculomotor systems in the brain have been studied extensively in the primate. Together, they can be regarded as a single brain system that underlies active vision--the normal vision that begins with visual processing in the retina and extends through the brain to the generation of eye movement by the brainstem. The system is probably one of the most thoroughly studied brain systems in the primate, and it offers an ideal opportunity to evaluate the advantages and disadvantages of the series of perturbation techniques that have been used to study it. The perturbations have been critical in moving from correlations between neuronal activity and behaviour closer to a causal relation between neuronal activity and behaviour. The same perturbation techniques have also been used to tease out neuronal circuits that are related to active vision that in turn are driving behaviour. The evolution of perturbation techniques includes ablation of both cortical and subcortical targets, punctate chemical lesions, reversible inactivations, electrical stimulation, and finally the expanding optogenetic techniques. The evolution of perturbation techniques has supported progressively stronger conclusions about what neuronal circuits in the brain underlie active vision and how the circuits themselves might be organized.

  12. Uncovering intrinsic modular organization of spontaneous brain activity in humans.

    Directory of Open Access Journals (Sweden)

    Yong He

    Full Text Available The characterization of topological architecture of complex brain networks is one of the most challenging issues in neuroscience. Slow (<0.1 Hz, spontaneous fluctuations of the blood oxygen level dependent (BOLD signal in functional magnetic resonance imaging are thought to be potentially important for the reflection of spontaneous neuronal activity. Many studies have shown that these fluctuations are highly coherent within anatomically or functionally linked areas of the brain. However, the underlying topological mechanisms responsible for these coherent intrinsic or spontaneous fluctuations are still poorly understood. Here, we apply modern network analysis techniques to investigate how spontaneous neuronal activities in the human brain derived from the resting-state BOLD signals are topologically organized at both the temporal and spatial scales. We first show that the spontaneous brain functional networks have an intrinsically cohesive modular structure in which the connections between regions are much denser within modules than between them. These identified modules are found to be closely associated with several well known functionally interconnected subsystems such as the somatosensory/motor, auditory, attention, visual, subcortical, and the "default" system. Specifically, we demonstrate that the module-specific topological features can not be captured by means of computing the corresponding global network parameters, suggesting a unique organization within each module. Finally, we identify several pivotal network connectors and paths (predominantly associated with the association and limbic/paralimbic cortex regions that are vital for the global coordination of information flow over the whole network, and we find that their lesions (deletions critically affect the stability and robustness of the brain functional system. Together, our results demonstrate the highly organized modular architecture and associated topological properties in

  13. Analysis of Time-Dependent Brain Network on Active and MI Tasks for Chronic Stroke Patients.

    Directory of Open Access Journals (Sweden)

    Da-Hye Kim

    Full Text Available Several researchers have analyzed brain activities by investigating brain networks. However, there is a lack of the research on the temporal characteristics of the brain network during a stroke by EEG and the comparative studies between motor execution and imagery, which became known to have similar motor functions and pathways. In this study, we proposed the possibility of temporal characteristics on the brain networks of a stroke. We analyzed the temporal properties of the brain networks for nine chronic stroke patients by the active and motor imagery tasks by EEG. High beta band has a specific role in the brain network during motor tasks. In the high beta band, for the active task, there were significant characteristics of centrality and small-worldness on bilateral primary motor cortices at the initial motor execution. The degree centrality significantly increased on the contralateral primary motor cortex, and local efficiency increased on the ipsilateral primary motor cortex. These results indicate that the ipsilateral primary motor cortex constructed a powerful subnetwork by influencing the linked channels as compensatory effect, although the contralateral primary motor cortex organized an inefficient network by using the connected channels due to lesions. For the MI task, degree centrality and local efficiency significantly decreased on the somatosensory area at the initial motor imagery. Then, there were significant correlations between the properties of brain networks and motor function on the contralateral primary motor cortex and somatosensory area for each motor execution/imagery task. Our results represented that the active and MI tasks have different mechanisms of motor acts. Based on these results, we indicated the possibility of customized rehabilitation according to different motor tasks. We expect these results to help in the construction of the customized rehabilitation system depending on motor tasks by understanding temporal

  14. The Influence of the Brain on Overpopulation, Ageing and Dependency.

    Science.gov (United States)

    Cape, Ronald D. T.

    1989-01-01

    With time, an increasing number in the world population is becoming old, and changes in the aging brain mean that a significant proportion of the aged are likely to be dependent on others. The devotion of resources to research into the aging brain could bring benefits far outweighing the investment. (Author/CW)

  15. Brain Plasticity and Intellectual Ability Are Influenced by Shared Genes

    NARCIS (Netherlands)

    Brans, R.G.H.; Kahn, R.S.; Schnack, H.G.; van Baal, G.C.M.; Posthuma, D.; van Haren, N.E.M.; Lepage, C.; Lerch, J.P.; Collins, D.L.; Evans, A.C.; Boomsma, D.I.; Hulshoff Pol, H.E.

    2010-01-01

    Although the adult brain is considered to be fully developed and stable until senescence when its size steadily decreases, such stability seems at odds with continued human (intellectual) development throughout life. Moreover, although variation in human brain size is highly heritable, we do not

  16. Listening to humans walking together activates the social brain circuitry.

    Science.gov (United States)

    Saarela, Miiamaaria V; Hari, Riitta

    2008-01-01

    Human footsteps carry a vast amount of social information, which is often unconsciously noted. Using functional magnetic resonance imaging, we analyzed brain networks activated by footstep sounds of one or two persons walking. Listening to two persons walking together activated brain areas previously associated with affective states and social interaction, such as the subcallosal gyrus bilaterally, the right temporal pole, and the right amygdala. These areas seem to be involved in the analysis of persons' identity and complex social stimuli on the basis of auditory cues. Single footsteps activated only the biological motion area in the posterior STS region. Thus, hearing two persons walking together involved a more widespread brain network than did hearing footsteps from a single person.

  17. Spontaneous brain activity predicts learning ability of foreign sounds.

    Science.gov (United States)

    Ventura-Campos, Noelia; Sanjuán, Ana; González, Julio; Palomar-García, María-Ángeles; Rodríguez-Pujadas, Aina; Sebastián-Gallés, Núria; Deco, Gustavo; Ávila, César

    2013-05-29

    Can learning capacity of the human brain be predicted from initial spontaneous functional connectivity (FC) between brain areas involved in a task? We combined task-related functional magnetic resonance imaging (fMRI) and resting-state fMRI (rs-fMRI) before and after training with a Hindi dental-retroflex nonnative contrast. Previous fMRI results were replicated, demonstrating that this learning recruited the left insula/frontal operculum and the left superior parietal lobe, among other areas of the brain. Crucially, resting-state FC (rs-FC) between these two areas at pretraining predicted individual differences in learning outcomes after distributed (Experiment 1) and intensive training (Experiment 2). Furthermore, this rs-FC was reduced at posttraining, a change that may also account for learning. Finally, resting-state network analyses showed that the mechanism underlying this reduction of rs-FC was mainly a transfer in intrinsic activity of the left frontal operculum/anterior insula from the left frontoparietal network to the salience network. Thus, rs-FC may contribute to predict learning ability and to understand how learning modifies the functioning of the brain. The discovery of this correspondence between initial spontaneous brain activity in task-related areas and posttraining performance opens new avenues to find predictors of learning capacities in the brain using task-related fMRI and rs-fMRI combined.

  18. A little more conversation - The influence of communicative context on syntactic priming in brain and behavior

    Directory of Open Access Journals (Sweden)

    Lotte eSchoot

    2014-03-01

    Full Text Available We report on an fMRI syntactic priming experiment in which we measure brain activity for participants who communicate with another participant outside the scanner. We investigated whether syntactic processing during overt language production and comprehension is influenced by having a (shared goal to communicate. Although theory suggests this is true, the nature of this influence remains unclear. Two hypotheses are tested: i. syntactic priming effects (fMRI and RT are stronger for participants in the communicative context than for participants doing the same experiment in a non-communicative context, and ii. syntactic priming magnitude (RT is correlated with the syntactic priming magnitude of the speaker’s communicative partner. Results showed that across conditions, participants were faster to produce sentences with repeated syntax, relative to novel syntax. This behavioral result converged with the fMRI data: we found repetition suppression effects in the left insula extending into left inferior frontal gyrus (BA 47/45, left middle temporal gyrus (BA 21, left inferior parietal cortex (BA 40, left precentral gyrus (BA 6, bilateral precuneus (BA 7, bilateral supplementary motor cortex (BA 32/8 and right insula (BA 47. We did not find support for the first hypothesis: having a communicative intention does not increase the magnitude of syntactic priming effects (either in the brain or in behavior per se. We did find support for the second hypothesis: if speaker A is strongly/weakly primed by speaker B, then speaker B is primed by speaker A to a similar extent. We conclude that syntactic processing is influenced by being in a communicative context, and that the nature of this influence is bi-directional: speakers are influenced by each other.

  19. On a Mathematical Model of Brain Activities

    International Nuclear Information System (INIS)

    Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.

    2007-01-01

    The procedure of recognition can be described as follows: There is a set of complex signals stored in the memory. Choosing one of these signals may be interpreted as generating a hypothesis concerning an 'expexted view of the world'. Then the brain compares a signal arising from our senses with the signal chosen from the memory leading to a change of the state of both signals. Furthermore, measurements of that procedure like EEG or MEG are based on the fact that recognition of signals causes a certain loss of excited neurons, i.e. the neurons change their state from 'excited' to 'nonexcited'. For that reason a statistical model of the recognition process should reflect both--the change of the signals and the loss of excited neurons. A first attempt to explain the process of recognition in terms of quantum statistics was given. In the present note it is not possible to present this approach in detail. In lieu we will sketch roughly a few of the basic ideas and structures of the proposed model of the recognition process (Section). Further, we introduce the basic spaces and justify the choice of spaces used in this approach. A more elaborate presentation including all proofs will be given in a series of some forthcoming papers. In this series also the procedures of creation of signals from the memory, amplification, accumulation and transformation of input signals, and measurements like EEG and MEG will be treated in detail

  20. Brain activation associated with deep brain stimulation causing dissociation in a patient with Tourette's syndrome.

    Science.gov (United States)

    Goethals, Ingeborg; Jacobs, Filip; Van der Linden, Chris; Caemaert, Jacques; Audenaert, Kurt

    2008-01-01

    Dissociation involves a disruption in the integrated functions of consciousness, memory, identity, or perception of the environment. Attempts at localizing dissociative responses have yielded contradictory results regarding brain activation, laterality, and regional involvement. Here, we used a single-day split-dose activation paradigm with single photon emission computed tomography and 99m-Tc ethylcysteinatedimer as a brain perfusion tracer in a patient with Tourette's syndrome undergoing bilateral high-frequency thalamic stimulation for the treatment of tics who developed an alternate personality state during right thalamic stimulation. We documented increased regional cerebral blood flow in bilateral prefrontal and left temporal brain areas during the alternate identity state. We conclude that our findings support the temporal lobe as well as the frontolimbic disconnection hypotheses of dissociation.

  1. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice.

    Directory of Open Access Journals (Sweden)

    Ralph Timaru-Kast

    Full Text Available After traumatic brain injury (TBI elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months and old (21 months male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2% compared to young (0%. This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral

  2. Using sex differences in the developing brain to identify nodes of influence for seizure susceptibility and epileptogenesis.

    Science.gov (United States)

    Kight, Katherine E; McCarthy, Margaret M

    2014-12-01

    Sexual differentiation of the developing brain organizes the neural architecture differently between males and females, and the main influence on this process is exposure to gonadal steroids during sensitive periods of prenatal and early postnatal development. Many molecular and cellular processes are influenced by steroid hormones in the developing brain, including gene expression, cell birth and death, neurite outgrowth and synaptogenesis, and synaptic activity. Perturbations in these processes can alter neuronal excitability and circuit activity, leading to increased seizure susceptibility and the promotion of pathological processes that constitute epileptogenesis. In this review, we will provide a general overview of sex differences in the early developing brain that may be relevant for altered seizure susceptibility in early life, focusing on limbic areas of the brain. Sex differences that have the potential to alter the progress of epileptogenesis are evident at molecular and cellular levels in the developing brain, and include differences in neuronal excitability, response to environmental insult, and epigenetic control of gene expression. Knowing how these processes differ between the sexes can help us understand fundamental mechanisms underlying gender differences in seizure susceptibility and epileptogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance

    Directory of Open Access Journals (Sweden)

    Dor Vadas

    2017-09-01

    Full Text Available Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, <10% of the brain is active at any given time, it utilizes almost all the oxygen delivered. In order to perform complex tasks or more than one task (multitasking, the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities.Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking. Participants were randomized to perform the tasks in two environments: (a normobaric air (1 ATA 21% oxygen (b HBO (2 ATA 100% oxygen. Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance.Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment (p < 0.001 for both. Multitasking performance was also significantly enhanced in HBO environment (p = 0.006 for the cognitive part and p = 0.02 for the motor part.Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance.

  4. Genetic and environmental influences on focal brain density in bipolar disorder

    NARCIS (Netherlands)

    van der Schot, Astrid C.; Vonk, Ronald; Brouwer, Rachel M.; van Baal, G. Caroline M.; Brans, Rachel G. H.; van Haren, Neeltje E. M.; Schnack, Hugo G.; Boomsma, Dorret I.; Nolen, Willem A.; Pol, Hilleke E. Hulshoff; Kahn, Rene S.

    2010-01-01

    Structural neuroimaging studies suggest the presence of subtle abnormalities in the brains of patients with bipolar disorder. The influence of genetic and/or environmental factors on these brain abnormalities is unknown. To investigate the contribution of genetic and environmental factors on grey

  5. Familial and environmental influences on brain volumes in twins with schizophrenia.

    Science.gov (United States)

    Picchioni, Marco M; Rijsdijk, Fruhling; Toulopoulou, Timothea; Chaddock, Christopher; Cole, James H; Ettinger, Ulrich; Oses, Ana; Metcalfe, Hugo; Murray, Robin M; McGuire, Philip

    2017-03-01

    Reductions in whole brain and grey matter volumes are robust features of schizophrenia, yet their etiological influences are unclear. We investigated the association between the genetic and environmental risk for schizophrenia and brain volumes. Whole brain, grey matter and white matter volumes were established from structural MRIs from twins varying in their zygosity and concordance for schizophrenia. Hippocampal volumes were measured manually. We conducted between-group testing and full genetic modelling. We included 168 twins in our study. Whole brain, grey matter, white matter and right hippocampal volumes were smaller in twins with schizophrenia. Twin correlations were larger for whole brain, grey matter and white matter volumes in monozygotic than dizygotic twins and were significantly heritable, whereas hippocampal volume was the most environmentally sensitive. There was a significant phenotypic correlation between schizophrenia and reductions in all the brain volumes except for that of the left hippocampus. For whole brain, grey matter and the right hippocampus the etiological links with schizophrenia were principally associated with the shared familial environment. Lower birth weight and perinatal hypoxia were both associated with lower whole brain volume and with lower white matter and grey matter volumes, respectively. Scan data were collected across 2 sites, and some groups were modest in size. Whole brain, grey matter and right hippocampal volume reductions are linked to schizophrenia through correlated familial risk (i.e., the shared familial environment). The degree of influence of etiological factors varies between brain structures, leading to the possibility of a neuroanatomically specific etiological imprint.

  6. Managing Brain Extracellular K(+) during Neuronal Activity

    DEFF Research Database (Denmark)

    Larsen, Brian Roland; Stoica, Anca; MacAulay, Nanna

    2016-01-01

    characteristics required to fulfill their distinct physiological roles in clearance of K(+) from the extracellular space in the face of neuronal activity. Understanding the nature, impact and effects of the various Na(+)/K(+)-ATPase isoform combinations in K(+) management in the central nervous system might...... understanding of the pathological events occurring during disease....

  7. Brain activation during micturition in women

    NARCIS (Netherlands)

    Blok, Bertil F.M.; Sturms, Leontien M.; Holstege, Gert

    1998-01-01

    Experiments in the cat have led to a concept of how the CNS controls micturition. In a previous study this concept was tested in a PET study in male volunteers, It was demonstrated that specific brainstem and forebrain areas are activated during micturition, It was unfortunate that this study did

  8. Brain activation studies with PET and functional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Yonekura, Yoshiharu [Fukui Medical Univ., Matsuoka (Japan). Biomedical Imaging Research Center; Sadato, Norihiro [Okazaki National Research Inst., Aichi (Japan). National Inst. for Physiological Sciences

    2002-01-01

    Application of PET and functional MRI in brain activation studies is reviewed. 3D-PET images obtained repeatedly after intravenous injection of about 370 MBq of H{sub 2}{sup 15}O can detect a faint blood flow change in the brain. Functional MRI can also detect the blood flow change in the brain due to blood oxygen level-dependent effect. Echo-planar imaging is popular in MRI with 1.5 or 3 T. Images are analyzed by statistical parametric mapping with correction of cerebral regions, anatomical normalization and statistics. PET data give the blood flow change by the H{sub 2}{sup 15}O incorporation into the brain and MRI data, by the scarce tissue oxygen consumption despite the change. Actual images during the cognition task-performance and of frequent artifacts are given. PET is suitable for studies of brain functions like sensibility and emotion and functional MRI, like cortex functions and clinical practices in identification of functional regions prior to surgery and evaluation of functional recovery of damaged brain. (K.H.)

  9. Brain activation studies with PET and functional MRI

    International Nuclear Information System (INIS)

    Yonekura, Yoshiharu; Sadato, Norihiro

    2002-01-01

    Application of PET and functional MRI in brain activation studies is reviewed. 3D-PET images obtained repeatedly after intravenous injection of about 370 MBq of H 2 15 O can detect a faint blood flow change in the brain. Functional MRI can also detect the blood flow change in the brain due to blood oxygen level-dependent effect. Echo-planar imaging is popular in MRI with 1.5 or 3 T. Images are analyzed by statistical parametric mapping with correction of cerebral regions, anatomical normalization and statistics. PET data give the blood flow change by the H 2 15 O incorporation into the brain and MRI data, by the scarce tissue oxygen consumption despite the change. Actual images during the cognition task-performance and of frequent artifacts are given. PET is suitable for studies of brain functions like sensibility and emotion and functional MRI, like cortex functions and clinical practices in identification of functional regions prior to surgery and evaluation of functional recovery of damaged brain. (K.H.)

  10. Electric field encephalography for brain activity monitoring.

    Science.gov (United States)

    Versek, Craig William; Frasca, Tyler; Zhou, Jianlin; Chowdhury, Kaushik; Sridhar, Srinivas

    2018-05-11

    Objective - We describe an early-stage prototype of a new wireless electrophysiological sensor system, called NeuroDot, which can measure neuroelectric potentials and fields at the scalp in a new modality called Electric Field Encephalography (EFEG). We aim to establish the physical validity of the EFEG modality, and examine some of its properties and relative merits compared to EEG. Approach - We designed a wireless neuroelectric measurement device based on the Texas Instrument ADS1299 Analog Front End platform and a sensor montage, using custom electrodes, to simultaneously measure EFEG and spatially averaged EEG over a localized patch of the scalp (2cm x 2cm). The signal properties of each modality were compared across tests of noise floor, Berger effect, steady-state Visually Evoked Potential (ssVEP), signal-to-noise ratio (SNR), and others. In order to compare EFEG to EEG modalities in the frequency domain, we use a novel technique to compute spectral power densities and derive narrow-band SNR estimates for ssVEP signals. A simple binary choice brain-computer-interface (BCI) concept based on ssVEP is evaluated. Also, we present examples of high quality recording of transient Visually Evoked Potentials and Fields (tVEPF) that could be used for neurological studies. Main results - We demonstrate the capability of the NeuroDot system to record high quality EEG signals comparable to some recent clinical and research grade systems on the market. We show that the locally-referenced EFEG metric is resistant to certain types of movement artifacts. In some ssVEP based measurements, the EFEG modality shows promising results, demonstrating superior signal to noise ratios than the same recording processed as an analogous EEG signal. We show that by using EFEG based ssVEP SNR estimates to perform a binary classification in a model BCI, the optimal information transfer rate (ITR) can be raised from 15 to 30 bits per minute - though these preliminary results are likely

  11. Comparison of brain activation to purposefully activate a tool in healthy subjects and brain tumor patients using fMRI

    International Nuclear Information System (INIS)

    Nishimura, Masahiko; Yoshii, Yoshihiko; Hyodo, Akio; Sugimoto, Koichi; Tsuchida, Yukihiro; Yonaha, Hirokatsu; Ito, Koichi

    2007-01-01

    The purpose of this study was to determine the functional organization of the human brain involved in tool-manipulation. Blood Oxygen Level Dependent was measured by functional magnetic resonance imaging in seventeen right-handed healthy volunteers and two brain tumor patients during two tool-manipulation tasks: simulated tightening a bolt with a screwdriver (Simulation), and tightening a bolt with a screwdriver (Real). Subjects performed the experiment without watching the tasks. Bilateral pre-supplementary motor areas, bilateral cerebellar posterior lobes, right ventral premotor area, right calcarine sulcus, and cerebellar vermis were activated during Real but not during Simulation tasks in healthy volunteers. In addition, brain tumor patients activated the prefrontal areas. Our results suggest that the human brain mechanisms for tool-manipulation have a neural-network comprised of presupplementary motor area, ventral premotor area, and bilateral cerebellar posterior lobes. In the patients with brain dusfurction diee to tumors, activation at the prefrontal area provided function compensation without motor paralysis. (author)

  12. Towards a fourth spatial dimension of brain activity.

    Science.gov (United States)

    Tozzi, Arturo; Peters, James F

    2016-06-01

    Current advances in neurosciences deal with the functional architecture of the central nervous system, paving the way for general theories that improve our understanding of brain activity. From topology, a strong concept comes into play in understanding brain functions, namely, the 4D space of a "hypersphere's torus", undetectable by observers living in a 3D world. The torus may be compared with a video game with biplanes in aerial combat: when a biplane flies off one edge of gaming display, it does not crash but rather it comes back from the opposite edge of the screen. Our thoughts exhibit similar behaviour, i.e. the unique ability to connect past, present and future events in a single, coherent picture as if we were allowed to watch the three screens of past-present-future "glued" together in a mental kaleidoscope. Here we hypothesize that brain functions are embedded in a imperceptible fourth spatial dimension and propose a method to empirically assess its presence. Neuroimaging fMRI series can be evaluated, looking for the topological hallmark of the presence of a fourth dimension. Indeed, there is a typical feature which reveal the existence of a functional hypersphere: the simultaneous activation of areas opposite each other on the 3D cortical surface. Our suggestion-substantiated by recent findings-that brain activity takes place on a closed, donut-like trajectory helps to solve long-standing mysteries concerning our psychological activities, such as mind-wandering, memory retrieval, consciousness and dreaming state.

  13. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    The present study was envisaged to investigate the possible role of oxidative stress in permethrin neurotoxicity and to evaluate the protective effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as thiobarbituric acid reacting substances (TBARS) was found to ...

  14. Effect of visual feedback on brain activation during motor tasks: an FMRI study.

    Science.gov (United States)

    Noble, Jeremy W; Eng, Janice J; Boyd, Lara A

    2013-07-01

    This study examined the effect of visual feedback and force level on the neural mechanisms responsible for the performance of a motor task. We used a voxel-wise fMRI approach to determine the effect of visual feedback (with and without) during a grip force task at 35% and 70% of maximum voluntary contraction. Two areas (contralateral rostral premotor cortex and putamen) displayed an interaction between force and feedback conditions. When the main effect of feedback condition was analyzed, higher activation when visual feedback was available was found in 22 of the 24 active brain areas, while the two other regions (contralateral lingual gyrus and ipsilateral precuneus) showed greater levels of activity when no visual feedback was available. The results suggest that there is a potentially confounding influence of visual feedback on brain activation during a motor task, and for some regions, this is dependent on the level of force applied.

  15. Influence of ketamine on regional brain glucose use

    International Nuclear Information System (INIS)

    Davis, D.W.; Mans, A.M.; Biebuyck, J.F.; Hawkins, R.A.

    1988-01-01

    The purpose of this study was to determine the effect of different doses of ketamine on cerebral function at the level of individual brain structures as reflected by glucose use. Rats received either 5 or 30 mg/kg ketamine intravenously as a loading dose, followed by an infusion to maintain a steady-state level of the drug. An additional group received 30 mg/kg as a single injection only, and was studied 20 min later, by which time they were recovering consciousness (withdrawal group). Regional brain energy metabolism was evaluated with [6- 14 C]glucose and quantitative autoradiography during a 5-min experimental period. A subhypnotic, steady-state dose (5 mg/kg) of ketamine caused a stimulation of glucose use in most brain areas, with an average increase of 20%. At the larger steady-state dose (30 mg/kg, which is sufficient to cause anesthesia), there was no significant effect on most brain regions; some sensory nuclei were depressed (inferior colliculus, -29%; cerebellar dentate nucleus, -18%; vestibular nucleus, -16%), but glucose use in the ventral posterior hippocampus was increased by 33%. In contrast, during withdrawal from a 30-mg/kg bolus, there was a stimulation of glucose use throughout the brain (21-78%), at a time when plasma ketamine levels were similar to the levels in the 5 mg/kg group. At each steady-state dose, as well as during withdrawal, ketamine caused a notable stimulation of glucose use by the hippocampus

  16. Participation in leisure activities during brain injury rehabilitation.

    Science.gov (United States)

    Fleming, Jennifer; Braithwaite, Helen; Gustafsson, Louise; Griffin, Janelle; Collier, Ann Maree; Fletcher, Stephanie

    2011-01-01

    To describe and compare pre- and post-injury leisure activities of individuals receiving brain injury rehabilitation and explore levels of leisure participation and satisfaction. Cross-sectional descriptive study incorporating a survey of current and past leisure activities. Questionnaires were completed by 40 individuals with an acquired brain injury receiving inpatient or outpatient rehabilitation. Shortened Version of the Nottingham Leisure Questionnaire and Changes in Leisure Questionnaire (developed for this study). Leisure participation declined following injury, particularly in social leisure activities. Pre-injury activities with high rates of discontinued or decreased participation were driving, going to pubs and parties, do-it-yourself activities and attending sports events. Inpatient participants generally attributed decreased participation to the hospital environment, whereas outpatient participants reported this predominantly as a result of disability. Post-injury levels of perceived leisure satisfaction were significantly lower for the inpatient group compared to pre-injury, but not for the outpatient group. Uptake of some new leisure activities was reported post-injury, however not at the rate to which participation declined. Leisure participation decreases during brain injury rehabilitation compared to pre-injury levels. Re-engagement in relevant, age-appropriate leisure activities needs to be addressed during rehabilitation to improve participation in this domain.

  17. Brain activation during anticipation of sound sequences.

    Science.gov (United States)

    Leaver, Amber M; Van Lare, Jennifer; Zielinski, Brandon; Halpern, Andrea R; Rauschecker, Josef P

    2009-02-25

    Music consists of sound sequences that require integration over time. As we become familiar with music, associations between notes, melodies, and entire symphonic movements become stronger and more complex. These associations can become so tight that, for example, hearing the end of one album track can elicit a robust image of the upcoming track while anticipating it in total silence. Here, we study this predictive "anticipatory imagery" at various stages throughout learning and investigate activity changes in corresponding neural structures using functional magnetic resonance imaging. Anticipatory imagery (in silence) for highly familiar naturalistic music was accompanied by pronounced activity in rostral prefrontal cortex (PFC) and premotor areas. Examining changes in the neural bases of anticipatory imagery during two stages of learning conditional associations between simple melodies, however, demonstrates the importance of fronto-striatal connections, consistent with a role of the basal ganglia in "training" frontal cortex (Pasupathy and Miller, 2005). Another striking change in neural resources during learning was a shift between caudal PFC earlier to rostral PFC later in learning. Our findings regarding musical anticipation and sound sequence learning are highly compatible with studies of motor sequence learning, suggesting common predictive mechanisms in both domains.

  18. Laterality of Brain Activation for Risk Factors of Addiction.

    Science.gov (United States)

    Gordon, Harold W

    2016-01-01

    Laterality of brain activation is reported for tests of risk factors of addiction- impulsivity and craving-but authors rarely address the potential significance of those asymmetries. The purpose of this study is to demonstrate this laterality and discuss its relevance to cognitive and neurophysiological asymmetries associated with drug abuse vulnerability in order to provide new insights for future research in drug abuse. From published reports, brain areas of activation for two tests of response inhibition or craving for drugs of abuse were compiled from fMRI activation peaks and were tabulated for eight sections (octants) in each hemisphere. Percent asymmetries were calculated (R-L/R+L) across studies for each area. For impulsivity, most activation peaks favored the right hemisphere. Overall, the percent difference was 32% (Χ2 = 16.026; p laterality into consideration is a missed opportunity in designing studies and gaining insight into the etiology of drug abuse and pathways for treatment.

  19. Microglial Inflammasome Activation in Penetrating Ballistic-Like Brain Injury.

    Science.gov (United States)

    Lee, Stephanie W; Gajavelli, Shyam; Spurlock, Markus S; Andreoni, Cody; de Rivero Vaccari, Juan Pablo; Bullock, M Ross; Keane, Robert W; Dietrich, W Dalton

    2018-04-02

    Penetrating traumatic brain injury (PTBI) is a significant cause of death and disability in the United States. Inflammasomes are one of the key regulators of the interleukin (IL)-1β mediated inflammatory responses after traumatic brain injury. However, the contribution of inflammasome signaling after PTBI has not been determined. In this study, adult male Sprague-Dawley rats were subjected to sham procedures or penetrating ballistic-like brain injury (PBBI) and sacrificed at various time-points. Tissues were assessed by immunoblot analysis for expression of IL-1β, IL-18, and components of the inflammasome: apoptosis-associated speck-like protein containing a caspase-activation and recruitment domain (ASC), caspase-1, X-linked inhibitor of apoptosis protein (XIAP), nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3), and gasdermin-D (GSDMD). Specific cell types expressing inflammasome proteins also were evaluated immunohistochemically and assessed quantitatively. After PBBI, expression of IL-1β, IL-18, caspase-1, ASC, XIAP, and NLRP3 peaked around 48 h. Brain protein lysates from PTBI animals showed pyroptosome formation evidenced by ASC laddering, and also contained increased expression of GSDMD at 48 h after injury. ASC-positive immunoreactive neurons within the perilesional cortex were observed at 24 h. At 48 h, ASC expression was concentrated in morphologically activated cortical microglia. This expression of ASC in activated microglia persisted until 12 weeks following PBBI. This is the first report of inflammasome activation after PBBI. Our results demonstrate cell-specific patterns of inflammasome activation and pyroptosis predominantly in microglia, suggesting a sustained pro-inflammatory state following PBBI, thus offering a therapeutic target for this type of brain injury.

  20. Genetic influences on schizophrenia and subcortical brain volumes

    DEFF Research Database (Denmark)

    Franke, Barbara; Stein, Jason L; Ripke, Stephan

    2016-01-01

    and subcortical volume measures either at the level of common variant genetic architecture or for single genetic markers. These results provide a proof of concept (albeit based on a limited set of structural brain measures) and define a roadmap for future studies investigating the genetic covariance between...... genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap between schizophrenia risk...

  1. The influence of stress on neuroinflammation and alterations in brain structure and function in major depressive disorder.

    Science.gov (United States)

    Kim, Yong-Ku; Won, Eunsoo

    2017-06-30

    Major depressive disorder (MDD) is a condition which has often been associated with chronic stress. The sympathetic nervous system is continuously activated without the normal counteraction of the parasympathetic nervous system under the influence of chronic stress. As a result, epinephrine and norepinephrine levels are increased, and acetylcholine levels are decreased, which in turn can increase the levels of pro-inflammatory cytokines. Peripheral inflammatory responses can access the brain, with neuroinflammation contributing to the increase in neurotoxic kynurenine pathway metabolites such as 3-hydroxykynurenine, 3-hydroxyanthranilic acid and quinolinic acid, and decrease in neuroprotective metabolites such as kynurenic acid. Pro-inflammatory cytokines can also exert direct neurotoxic effects on specific brain regions. Previous imaging studies have reported associations between pro-inflammatory states and alterations in brain regions involved in emotional regulation, including the hippocampus, amygdala and anterior cingulate cortex. Alterations in structure and function of such brain areas due to the neurotoxic effects of increased inflammation may be associated with the pathophysiology of depression. This review focuses the influence of stress on neuroinflammation which may cause alterations in brain structure and function in MDD. Copyright © 2017. Published by Elsevier B.V.

  2. Brain activities associated with gaming urge of online gaming addiction.

    Science.gov (United States)

    Ko, Chih-Hung; Liu, Gin-Chung; Hsiao, Sigmund; Yen, Ju-Yu; Yang, Ming-Jen; Lin, Wei-Chen; Yen, Cheng-Fang; Chen, Cheng-Sheng

    2009-04-01

    The aim of this study was to identify the neural substrates of online gaming addiction through evaluation of the brain areas associated with the cue-induced gaming urge. Ten participants with online gaming addiction and 10 control subjects without online gaming addiction were tested. They were presented with gaming pictures and the paired mosaic pictures while undergoing functional magnetic resonance imaging (fMRI) scanning. The contrast in blood-oxygen-level dependent (BOLD) signals when viewing gaming pictures and when viewing mosaic pictures was calculated with the SPM2 software to evaluate the brain activations. Right orbitofrontal cortex, right nucleus accumbens, bilateral anterior cingulate and medial frontal cortex, right dorsolateral prefrontal cortex, and right caudate nucleus were activated in the addicted group in contrast to the control group. The activation of the region-of-interest (ROI) defined by the above brain areas was positively correlated with self-reported gaming urge and recalling of gaming experience provoked by the WOW pictures. The results demonstrate that the neural substrate of cue-induced gaming urge/craving in online gaming addiction is similar to that of the cue-induced craving in substance dependence. The above-mentioned brain regions have been reported to contribute to the craving in substance dependence, and here we show that the same areas were involved in online gaming urge/craving. Thus, the results suggest that the gaming urge/craving in online gaming addiction and craving in substance dependence might share the same neurobiological mechanism.

  3. Trying to trust: Brain activity during interpersonal social attitude change.

    Science.gov (United States)

    Filkowski, Megan M; Anderson, Ian W; Haas, Brian W

    2016-04-01

    Interpersonal trust and distrust are important components of human social interaction. Although several studies have shown that brain function is associated with either trusting or distrusting others, very little is known regarding brain function during the control of social attitudes, including trust and distrust. This study was designed to investigate the neural mechanisms involved when people attempt to control their attitudes of trust or distrust toward another person. We used a novel control-of-attitudes fMRI task, which involved explicit instructions to control attitudes of interpersonal trust and distrust. Control of trust or distrust was operationally defined as changes in trustworthiness evaluations of neutral faces before and after the control-of-attitudes fMRI task. Overall, participants (n = 60) evaluated faces paired with the distrust instruction as being less trustworthy than faces paired with the trust instruction following the control-of-distrust task. Within the brain, both the control-of-trust and control-of-distrust conditions were associated with increased temporoparietal junction, precuneus (PrC), inferior frontal gyrus (IFG), and medial prefrontal cortex activity. Individual differences in the control of trust were associated with PrC activity, and individual differences in the control of distrust were associated with IFG activity. Together, these findings identify a brain network involved in the explicit control of distrust and trust and indicate that the PrC and IFG may serve to consolidate interpersonal social attitudes.

  4. Time course of brain activation elicited by basic emotions.

    Science.gov (United States)

    Hot, Pascal; Sequeira, Henrique

    2013-11-13

    Whereas facial emotion recognition protocols have shown that each discrete emotion has a specific time course of brain activation, there is no electrophysiological evidence to support these findings for emotional induction by complex pictures. Our objective was to specify the differences between the time courses of brain activation elicited by feelings of happiness and, with unpleasant pictures, by feelings of disgust and sadness. We compared event-related potentials (ERPs) elicited by the watching of high-arousing pictures from the International Affective Picture System, selected to induce specific emotions. In addition to a classical arousal effect on late positive components, we found specific ERP patterns for each emotion in early temporal windows (emotion to be associated with different brain processing after 140 ms, whereas happiness and sadness differed in ERPs elicited at the frontal and central sites after 160 ms. Our findings highlight the limits of the classical averaging of ERPs elicited by different emotions inside the same valence and suggest that each emotion could elicit a specific temporal pattern of brain activation, similar to those observed with emotional face recognition.

  5. Can earth's magnetic micropulsations induce brain activities modifications?

    International Nuclear Information System (INIS)

    Assis, Altair Souza de

    2008-01-01

    Full text: We present in this paper preliminary study on which level earth's magnetic micro pulsations might interact with human brain activities. Magnetic micro pulsations are magnetospheric plasma wave Eigenmodes that are generated at the earth's magnetosphere and, via magnetospheric-ionospheric coupling induce ionospheric currents, and this ionospheric current pattern creates surface geomagnetic perturbations, which induce earth's surface electrical currents, and they are easily detected by earth's based magnetometers. These Eigenmodes are basically of Alfven type, and can be generated, for instance, by magnetic storms, situation where they are more intense and, in principle, might be felt by a more sensible human brain. Here, we also show how the modes are generated and present theirs basic physical properties. Finally, we compare the magnetic field level at the brain with the micro pulsation magnetic intensity. (author)

  6. Acetylcholine turnover in mouse brain: influence of cholinesterase inhibitors

    International Nuclear Information System (INIS)

    Karlen, B.; Holmstedt, B.; Lundgren, G.; Lundin, J.

    1986-01-01

    The authors determine whether the irreversible cholinesterase inhibitors soman, sarin or FX, which are thought to increase brain ACh concentration by a mechanism different to that of the muscarinic receptor agonist oxotremorine, also would decrease the turnover rate of brain ACh. Male albino mice were used in the study. N-(2-hydroxyethyl-N,N,N-tri-( 2 H 3 )methylammonium iodide and N-(2-acetoxyethyl)-N,N,N-tri-( 2 H 3 )methylammonium iodide were used as internal standards. N-(2-acetoxyethyl)-N,N,N,-tri-( 2 H 3 ), ( 1 H)methylammonium iodide was used for calibration purposes. The concentrations of Ch, ACh and their deuterated variants found in whole brain and striatum after pretreatment with saline, soman, sarin and FX are shown. In whole brain the endogeneous concentration of Ach was not affected by sarin and only to a slight but significant extent by Fs, while soman increased the level to about 30 nmol/g. All three substances increased the ch level in comparison to controls

  7. Influences of brain development and ageing on cortical interactive networks.

    Science.gov (United States)

    Zhu, Chengyu; Guo, Xiaoli; Jin, Zheng; Sun, Junfeng; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao

    2011-02-01

    To study the effect of brain development and ageing on the pattern of cortical interactive networks. By causality analysis of multichannel electroencephalograph (EEG) with partial directed coherence (PDC), we investigated the different neural networks involved in the whole cortex as well as the anterior and posterior areas in three age groups, i.e., children (0-10 years), mid-aged adults (26-38 years) and the elderly (56-80 years). By comparing the cortical interactive networks in different age groups, the following findings were concluded: (1) the cortical interactive network in the right hemisphere develops earlier than its left counterpart in the development stage; (2) the cortical interactive network of anterior cortex, especially at C3 and F3, is demonstrated to undergo far more extensive changes, compared with the posterior area during brain development and ageing; (3) the asymmetry of the cortical interactive networks declines during ageing with more loss of connectivity in the left frontal and central areas. The age-related variation of cortical interactive networks from resting EEG provides new insights into brain development and ageing. Our findings demonstrated that the PDC analysis of EEG is a powerful approach for characterizing the cortical functional connectivity during brain development and ageing. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. The influence of sex hormones on brain lateralization : Research Programme

    NARCIS (Netherlands)

    Beking, Tess; Geuze, Reint; Groothuis, Antonius

    2015-01-01

    Between and within sexes individuals differ in lateralization of brain and behaviour that might affect cognitive performance. There is long standing debate to what extent variation in lateralization is due to variation in early or late exposure to sex hormones. We will use two unique data sets to

  9. The influence of meteorological and geomagnetic factors on acute myocardial infarction and brain stroke in Moscow, Russia.

    Science.gov (United States)

    Shaposhnikov, Dmitry; Revich, Boris; Gurfinkel, Yuri; Naumova, Elena

    2014-07-01

    Evidence of the impact of air temperature and pressure on cardiovascular morbidity is still quite limited and controversial, and even less is known about the potential influence of geomagnetic activity. The objective of this study was to assess impacts of air temperature, barometric pressure and geomagnetic activity on hospitalizations with myocardial infarctions and brain strokes. We studied 2,833 myocardial infarctions and 1,096 brain strokes registered in two Moscow hospitals between 1992 and 2005. Daily event rates were linked with meteorological and geomagnetic conditions, using generalized linear model with controls for day of the week, seasonal and long-term trends. The number of myocardial infarctions decreased with temperature, displayed a U-shaped relationship with pressure and variations in pressure, and increased with geomagnetic activity. The number of strokes increased with temperature, daily temperature range and geomagnetic activity. Detrimental effects on strokes of low pressure and falling pressure were observed. Relative risks of infarctions and strokes during geomagnetic storms were 1.29 (95% CI 1.19-1.40) and 1.25 (1.10-1.42), respectively. The number of strokes doubled during cold spells. The influence of barometric pressure on hospitalizations was relatively greater than the influence of geomagnetic activity, and the influence of temperature was greater than the influence of pressure. Brain strokes were more sensitive to inclement weather than myocardial infarctions. This paper provides quantitative estimates of the expected increases in hospital admissions on the worst days and can help to develop preventive health plans for cardiovascular diseases.

  10. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance.

    Science.gov (United States)

    Vadas, Dor; Kalichman, Leonid; Hadanny, Amir; Efrati, Shai

    2017-01-01

    Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, multitasking), the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO) environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities. Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking). Participants were randomized to perform the tasks in two environments: (a) normobaric air (1 ATA 21% oxygen) (b) HBO (2 ATA 100% oxygen). Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance. Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment ( p Multitasking performance was also significantly enhanced in HBO environment ( p = 0.006 for the cognitive part and p = 0.02 for the motor part). Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance.

  11. Adolescent binge drinking linked to abnormal spatial working memory brain activation: differential gender effects.

    Science.gov (United States)

    Squeglia, Lindsay M; Schweinsburg, Alecia Dager; Pulido, Carmen; Tapert, Susan F

    2011-10-01

    Binge drinking is prevalent during adolescence, and its effect on neurocognitive development is of concern. In adult and adolescent populations, heavy substance use has been associated with decrements in cognitive functioning, particularly on tasks of spatial working memory (SWM). Characterizing the gender-specific influences of heavy episodic drinking on SWM may help elucidate the early functional consequences of drinking on adolescent brain functioning. Forty binge drinkers (13 females, 27 males) and 55 controls (24 females, 31 males), aged 16 to 19 years, completed neuropsychological testing, substance use interviews, and an SWM task during functional magnetic resonance imaging. Significant binge drinking status × gender interactions were found (p working memory performances (p performance (p gender-specific differences in frontal, temporal, and cerebellar brain activation during an SWM task, which in turn relate to cognitive performance. Activation correlates with neuropsychological performance, strengthening the argument that blood oxygen level-dependent activation is affected by alcohol use and is an important indicator of behavioral functioning. Females may be more vulnerable to the neurotoxic effects of heavy alcohol use during adolescence, while males may be more resilient to the deleterious effects of binge drinking. Future longitudinal research will examine the significance of SWM brain activation as an early neurocognitive marker of alcohol impact to the brain on future behaviors, such as driving safety, academic performance, and neuropsychological performance. Copyright © 2011 by the Research Society on Alcoholism.

  12. Highly Crumpled All-Carbon Transistors for Brain Activity Recording.

    Science.gov (United States)

    Yang, Long; Zhao, Yan; Xu, Wenjing; Shi, Enzheng; Wei, Wenjing; Li, Xinming; Cao, Anyuan; Cao, Yanping; Fang, Ying

    2017-01-11

    Neural probes based on graphene field-effect transistors have been demonstrated. Yet, the minimum detectable signal of graphene transistor-based probes is inversely proportional to the square root of the active graphene area. This fundamentally limits the scaling of graphene transistor-based neural probes for improved spatial resolution in brain activity recording. Here, we address this challenge using highly crumpled all-carbon transistors formed by compressing down to 16% of its initial area. All-carbon transistors, chemically synthesized by seamless integration of graphene channels and hybrid graphene/carbon nanotube electrodes, maintained structural integrity and stable electronic properties under large mechanical deformation, whereas stress-induced cracking and junction failure occurred in conventional graphene/metal transistors. Flexible, highly crumpled all-carbon transistors were further verified for in vivo recording of brain activity in rats. These results highlight the importance of advanced material and device design concepts to make improvements in neuroelectronics.

  13. Mapping brain activity with flexible graphene micro-transistors

    Science.gov (United States)

    Blaschke, Benno M.; Tort-Colet, Núria; Guimerà-Brunet, Anton; Weinert, Julia; Rousseau, Lionel; Heimann, Axel; Drieschner, Simon; Kempski, Oliver; Villa, Rosa; Sanchez-Vives, Maria V.; Garrido, Jose A.

    2017-06-01

    Establishing a reliable communication interface between the brain and electronic devices is of paramount importance for exploiting the full potential of neural prostheses. Current microelectrode technologies for recording electrical activity, however, evidence important shortcomings, e.g. challenging high density integration. Solution-gated field-effect transistors (SGFETs), on the other hand, could overcome these shortcomings if a suitable transistor material were available. Graphene is particularly attractive due to its biocompatibility, chemical stability, flexibility, low intrinsic electronic noise and high charge carrier mobilities. Here, we report on the use of an array of flexible graphene SGFETs for recording spontaneous slow waves, as well as visually evoked and also pre-epileptic activity in vivo in rats. The flexible array of graphene SGFETs allows mapping brain electrical activity with excellent signal-to-noise ratio (SNR), suggesting that this technology could lay the foundation for a future generation of in vivo recording implants.

  14. A single dose of lysergic acid diethylamide influences gene expression patterns within the mammalian brain.

    Science.gov (United States)

    Nichols, Charles D; Sanders-Bush, Elaine

    2002-05-01

    Hallucinogenic drugs such as lysergic acid diethylamide (LSD) have profound effects on humans including hallucinations and detachment from reality. These remarkable behavioral effects have many similarities to the debilitating symptoms of neuropsychiatric disorders such as schizophrenia. The effects of hallucinogens are thought to be mediated by serotonin receptor activation; however, how these drugs elicit the unusual behavioral effects remains largely a mystery, despite much research. We have undertaken the first comprehensive analysis of gene expression influenced by acute LSD administration in the mammalian brain. These studies represent a novel approach to elucidate the mechanism of action of this class of drugs. We have identified a number of genes that are predicted to be involved in the processes of synaptic plasticity, glutamatergic signaling and cytoskeletal architecture. Understanding these molecular events will lead to new insights into the etiology of disorders whose behavioral symptoms resemble the temporary effects of hallucinogenic drugs, and also may ultimately result in new therapies.

  15. Rapid Modulation of Aromatase Activity in the Vertebrate Brain

    Directory of Open Access Journals (Sweden)

    Thierry D. Charlier

    2013-01-01

    Full Text Available Numerous steroid hormones, including 17β-estradiol (E2, activate rapid and transient cellular, physiological, and behavioral changes in addition to their well-described genomic effects. Aromatase is the key-limiting enzyme in the production of estrogens, and the rapid modulation of this enzymatic activity could produce rapid changes in local E2 concentrations. The mechanisms that might mediate such rapid enzymatic changes are not fully understood but are currently under intense scrutiny. Recent studies in our laboratory indicate that brain aromatase activity is rapidly inhibited by an increase in intracellular calcium concentration resulting from potassium-induced depolarization or from the activation of glutamatergic receptors. Phosphorylating conditions also reduce aromatase activity within minutes, and this inhibition is blocked by the addition of multiple protein kinase inhibitors. This rapid modulation of aromatase activity by phosphorylating conditions is a general mechanism observed in different cell types and tissues derived from a variety of species, including human aromatase expressed in various cell lines. Phosphorylation processes affect aromatase itself and do not involve changes in aromatase protein concentration. The control of aromatase activity by multiple kinases suggests that several amino acids must be concomitantly phosphorylated to modify enzymatic activity but site-directed mutagenesis of several amino acids alone or in combination has not to date revealed the identity of the targeted residue(s. Altogether, the phosphorylation processes affecting aromatase activity provide a new general mechanism by which the concentration of estrogens can be rapidly altered in the brain.

  16. Xanthine oxidase activity regulates human embryonic brain cells growth

    Directory of Open Access Journals (Sweden)

    Kevorkian G. A.

    2011-10-01

    Full Text Available Aim. Involvement of Xanthine Oxidase (XO; EC1.1.3.22 in cellular proliferation and differentiation has been suggested by the numerous investigations. We have proposed that XO might have undoubtedly important role during the development, maturation as well as the death of human embryos brain cells. Methods. Human abortion material was utilized for the cultivation of brain cells (E90. XO activity was measured by the formation of uric acid in tissue. Cell death was detected by the utility of Trypan Blue dye. Results. Allopurinol suppressed the XO activity in the brain tissue (0.12 ± 0.02; 0.20 ± 0.03 resp., p < 0.05. On day 12th the number of cells in the culture treated with the Allopurinol at the early stage of development was higher in comparison with the Control (2350.1 ± 199.0 vs 2123 ± 96 and higher in comparison with the late period of treatment (1479.6 ± 103.8, p < < 0.05. In all groups, the number of the dead cells was less than in Control, indicating the protective nature of Allopurinol as an inhibitor of XO. Conclusions. Allopurinol initiates cells proliferation in case of the early treatment of the human brain derived cell culture whereas at the late stages it has an opposite effect.

  17. Spontaneous brain network activity: Analysis of its temporal complexity

    Directory of Open Access Journals (Sweden)

    Mangor Pedersen

    2017-06-01

    Full Text Available The brain operates in a complex way. The temporal complexity underlying macroscopic and spontaneous brain network activity is still to be understood. In this study, we explored the brain’s complexity by combining functional connectivity, graph theory, and entropy analyses in 25 healthy people using task-free functional magnetic resonance imaging. We calculated the pairwise instantaneous phase synchrony between 8,192 brain nodes for a total of 200 time points. This resulted in graphs for which time series of clustering coefficients (the “cliquiness” of a node and participation coefficients (the between-module connectivity of a node were estimated. For these two network metrics, sample entropy was calculated. The procedure produced a number of results: (1 Entropy is higher for the participation coefficient than for the clustering coefficient. (2 The average clustering coefficient is negatively related to its associated entropy, whereas the average participation coefficient is positively related to its associated entropy. (3 The level of entropy is network-specific to the participation coefficient, but not to the clustering coefficient. High entropy for the participation coefficient was observed in the default-mode, visual, and motor networks. These results were further validated using an independent replication dataset. Our work confirms that brain networks are temporally complex. Entropy is a good candidate metric to explore temporal network alterations in diseases with paroxysmal brain disruptions, including schizophrenia and epilepsy. In recent years, connectomics has provided significant insights into the topological complexity of brain networks. However, the temporal complexity of brain networks still remains somewhat poorly understood. In this study we used entropy analysis to demonstrate that the properties of network segregation (the clustering coefficient and integration (the participation coefficient are temporally complex

  18. Cocaine is pharmacologically active in the nonhuman primate fetal brain

    DEFF Research Database (Denmark)

    Benveniste, Helene; Fowler, Joanna S; Rooney, William D

    2010-01-01

    Cocaine use during pregnancy is deleterious to the newborn child, in part via its disruption of placental blood flow. However, the extent to which cocaine can affect the function of the fetal primate brain is still an unresolved question. Here we used PET and MRI and show that in third-trimester ......Cocaine use during pregnancy is deleterious to the newborn child, in part via its disruption of placental blood flow. However, the extent to which cocaine can affect the function of the fetal primate brain is still an unresolved question. Here we used PET and MRI and show that in third...... are influenced by the state of pregnancy. Our findings have clinical implications because they imply that the adverse effects of prenatal cocaine exposure to the newborn child include not only cocaine's deleterious effects to the placental circulation, but also cocaine's direct pharmacological effect...

  19. Whole brain radiotherapy for brain metastases: The technique of irradiation influences the dose to parotid glands

    International Nuclear Information System (INIS)

    Loos, G.; Paulon, R.; Verrelle, P.; Lapeyre, M.

    2012-01-01

    In the treatment of brain metastases, whole brain radiotherapy can be carried out according two distinct methods: one using multi-leaf collimator for field shaping and protection of organs at risk, and a second one is to make a rotation of the field to avoid the eyes. The aim of the study was to compare for 10 patients the dose distributions at organs at risk for each method. Patients received 30 Gy in 10 fractions. Except for parotid glands, the dose received by organs at risk and the planning target volume was the same with each method. For whole brain radiotherapy, excluding the cisterna cerebellomedullaris, the mean parotid dose was 9.63 Gy using the multi-leaf collimator versus 12.32 Gy using the field rotation (P = 0.04). For whole brain radiotherapy including the cisterna cerebellomedullaris, the mean parotid dose was 11.12 Gy using the multi-leaf collimator versus 20.06 Gy using field rotation (P < 0.001). Using the multi-leaf collimator seems recommended for whole brain radiotherapy, to reduce the dose to the parotids. (authors)

  20. Distinct Patterns of Brain Activity Characterise Lexical Activation and Competition in Spoken Word Production

    NARCIS (Netherlands)

    Piai, V.; Roelofs, A.P.A.; Jensen, O.; Schoffelen, J.M.; Bonnefond, M.

    2014-01-01

    According to a prominent theory of language production, concepts activate multiple associated words in memory, which enter into competition for selection. However, only a few electrophysiological studies have identified brain responses reflecting competition. Here, we report a magnetoencephalography

  1. Influence of Aging on Plasma Renin Activity

    International Nuclear Information System (INIS)

    Cho, K. W.; Kim, S. H.; Kang, S. K.; Choi, H. Y.

    1982-01-01

    Influence of aging on plasma renin activity was evaluated in healthy normotensive subjects(age range 21-63 years, 413 males) devoid of cardiorenal or endocrinological problems. The age-related decrease of plasma renin activity in the subjects between 21-28 years group and 36-42 years group was slight, but over the 43 years groups was significantly different. The age-related suppression of plasma renin activity was much more smooth and continuous all over the age ranges evaluated. The sexual difference in plasma renin activity was noticed between the subjects of 22 years old group (34 males) and 19 years group (34 females) (p<0.003). The data suggest that the age-related suppression of plasma renin activity appeared in healthy normotensive subjects should be considered in the case of evaluation of low renin essential hypertension.

  2. Relationship between changes of N-methyl-D-aspartate receptor activity and brain edema after brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the relationship between the changes of N-methyl-D-aspartate (NMDA) receptor activity and brain edema after injury in rats.   Methods: The brain injury models were made by using a free-falling body. The treatment model was induced by means of injecting AP5 into lateral ventricle before brain injury; water contents in brain cortex were measured with dry-wet method; and NMDA receptor activity was detected with a radio ligand binding assay.   Results: The water contents began to increase at 30 minutes and reached the peak at 6 hours after brain injury. The maximal binding (Bmax) of NMDA receptor increased significantly at 15 minutes and reached the peak at 30 minutes, then decreased gradually and had the lowest value 6 hours after brain injury. Followed the treatment with AP5, NMDA receptor activity in the injured brain showed a normal value; and the water contents were lower than that of AP5-free injury group 24 hours after brain injury.   Conclusions: It suggests that excessive activation of NMDA receptor may be one of the most important factors to induce the secondary cerebral impairments, and AP5 may protect the brain from edema after brain injury.

  3. The polygenic risk for bipolar disorder influences brain regional function relating to visual and default state processing of emotional information.

    Science.gov (United States)

    Dima, Danai; de Jong, Simone; Breen, Gerome; Frangou, Sophia

    2016-01-01

    Genome-wise association studies have identified a number of common single-nucleotide polymorphisms (SNPs), each of small effect, associated with risk to bipolar disorder (BD). Several risk-conferring SNPs have been individually shown to influence regional brain activation thus linking genetic risk for BD to altered brain function. The current study examined whether the polygenic risk score method, which models the cumulative load of all known risk-conferring SNPs, may be useful in the identification of brain regions whose function may be related to the polygenic architecture of BD. We calculated the individual polygenic risk score for BD (PGR-BD) in forty-one patients with the disorder, twenty-five unaffected first-degree relatives and forty-six unrelated healthy controls using the most recent Psychiatric Genomics Consortium data. Functional magnetic resonance imaging was used to define task-related brain activation patterns in response to facial affect and working memory processing. We found significant effects of the PGR-BD score on task-related activation irrespective of diagnostic group. There was a negative association between the PGR-BD score and activation in the visual association cortex during facial affect processing. In contrast, the PGR-BD score was associated with failure to deactivate the ventromedial prefrontal region of the default mode network during working memory processing. These results are consistent with the threshold-liability model of BD, and demonstrate the usefulness of the PGR-BD score in identifying brain functional alternations associated with vulnerability to BD. Additionally, our findings suggest that the polygenic architecture of BD is not regionally confined but impacts on the task-dependent recruitment of multiple brain regions.

  4. [Influence of mastication on the amount of hemoglobin in human brain tissue].

    Science.gov (United States)

    Sasaki, A

    2001-03-01

    The purpose of this study was to investigate the influence of mastication on the amount of hemoglobin in human brain tissue. Nine healthy volunteers (6 males and 3 females) participated in this study. They underwent two tasks: 1) at rest, 2) gum-chewing. In seven of the nine (4 males and 3 females), experimental occlusal interference was applied to the first molar of the mandibule on the habitual masticatory side. They underwent the gum-chewing task. To evaluate the amount of hemoglobin, both the hemoglobin oxygenation state and blood volume during gum-chewing were measured in the frontal region, using near-infrared spectroscopy. The amount of total-hemoglobin (blood volume) and oxyhemoglobin of subjects significantly increased during gum-chewing (p experimental occlusal interference was imposed on the subject, the amount of them significantly decreased compared with subjects without experimental occlusal interference (p < 0.05). The results suggested that increases of cerebral blood flow in the frontal region were not due to the mandibular movement, and that human brain activity caused by mastication was not only in the cortical masticatory area but also in the frontal region.

  5. Time delay between cardiac and brain activity during sleep transitions

    Science.gov (United States)

    Long, Xi; Arends, Johan B.; Aarts, Ronald M.; Haakma, Reinder; Fonseca, Pedro; Rolink, Jérôme

    2015-04-01

    Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by electroencephalographic (EEG) mean frequency and the cardiac parameters included heart rate, standard deviation of heartbeat intervals, and their low- and high-frequency spectral powers. Using a cross-correlation analysis, we found that the cardiac variations during wake-sleep and NREM sleep transitions preceded the EEG changes by 1-3 min but this was not the case for REM sleep transitions. These important findings can be further used to predict the onset and ending of some sleep stages in an early manner.

  6. [The Influence of the Functional State of Brain Regulatory Structures on the Programming, Selective Regulation and Control of Cognitive Activity in Children. Report I: Neuropsychological and EEG Analysis of Age-Related Changes in Brain Regulatory Functions in Children Aged 9-12 Years].

    Science.gov (United States)

    Semenova, A; Machinskaya, R I; Lomakin, D I

    2015-01-01

    Age-related changes in brain regulatory functions in children aged from 9 to 12 years with typical development were studied by means of neuropsychological and EEG analysis. The participants of the study were 107 children without learning difficulties and behavior deviations; they were devided into three groups (9-10, 10-11 and 11-12 years). The neuropsychological tests revealed nonlinear age-related changes in different executive brain functions. The group of 10-11-year-old children showed better results in programming, in- hibition of impulsive reactions and in the perception of socially relevant information than the group of 9-10- year-old children. At the same time, these children had more difficulties with selective activity regulation as compared with the younger group. The difficulties were mainly caused by switching from one element of the program to another and by retention of learned sequence of actions. These children also showed a lower level of motivation for task performance. The children aged 11-12 years had less difficulties with selective activity regulation; however, impulsive behavior was more frequent; these children also had a higher level of task performance motivation than in children aged 10-11 years. The analysis of resting state EEG revealed age-related differences in deviated EEG patterns associated with non-optimal functioning of fronto-thalamic system and hypothalamic structures. The incidence of these two types of EEG patterns was significantly higher in children aged 10-11 years as compared with children aged 9-10 years. The EEG of the groups of 10-11 and 11-12-years-old children did not show any significant differences.

  7. How hormones influence composition and physiological function of the brain-blood barrier.

    Science.gov (United States)

    Hampl, R; Bičíková, M; Sosvorová, L

    2015-01-01

    Hormones exert many actions in the brain. Their access and effects in the brain are regulated by the blood-brain barrier (BBB). Hormones as other substances may enter the brain and vice versa either by paracellular way requiring breaching tight junctions stitching the endothelial cells composing the BBB, or by passage through the cells (transcellular way). Hormones influence both ways through their receptors, both membrane and intracellular, present on/in the BBB. In the review the main examples are outlined how hormones influence the expression and function of proteins forming the tight junctions, as well as how they regulate expression and function of major protein transporters mediating transport of various substances including hormone themselves.

  8. Intra-cranial recordings of brain activity during language production

    Directory of Open Access Journals (Sweden)

    Anais eLlorens

    2011-12-01

    Full Text Available Recent findings in the neurophysiology of language production have provided a detailed description of the brain network underlying this behavior, as well as some indications about the timing of operations. Despite their invaluable utility, these data generally suffer from limitations either in terms of temporal resolution, or in terms of spatial localization. In addition, studying the neural basis of speech is complicated by the presence of articulation artifacts such as electro-myographic activity that interferes with the neural signal. These difficulties are virtually absent in a powerful albeit much less frequent methodology, namely the recording of intra-cranial brain activity (iEEG. Such recordings are only possible under very specific clinical circumstances requiring functional mapping before brain surgery, most notably patients that suffer for pharmaco-resistant epilepsy. Here we review the research conducted with this methodology in the field of language production, with explicit consideration of its advantages and drawbacks. The available evidence is shown to be diverse, both in terms of the tasks and cognitive processes tested and in terms of the brain localizations being studied. Still, the review provides valuable information for characterizing the dynamics of the neural events occurring in the language production network. Following modality specific activities (in auditory or visual cortices, there is a convergence of activity in superior temporal sulcus, which is a plausible neural correlate of phonological encoding processes. Later, between 500 and 800 ms, inferior frontal gyrus (around Broca's area is involved. Peri-rolandic areas are recruited in the two modalities relatively early (200-500 ms window, suggesting a very early involvement of (pre- motor processes. We discuss how some of these findings may be at odds with conclusions drawn from available meta-analysis of language production.

  9. Effects of scanner acoustic noise on intrinsic brain activity during auditory stimulation.

    Science.gov (United States)

    Yakunina, Natalia; Kang, Eun Kyoung; Kim, Tae Su; Min, Ji-Hoon; Kim, Sam Soo; Nam, Eui-Cheol

    2015-10-01

    Although the effects of scanner background noise (SBN) during functional magnetic resonance imaging (fMRI) have been extensively investigated for the brain regions involved in auditory processing, its impact on other types of intrinsic brain activity has largely been neglected. The present study evaluated the influence of SBN on a number of intrinsic connectivity networks (ICNs) during auditory stimulation by comparing the results obtained using sparse temporal acquisition (STA) with those using continuous acquisition (CA). Fourteen healthy subjects were presented with classical music pieces in a block paradigm during two sessions of STA and CA. A volume-matched CA dataset (CAm) was generated by subsampling the CA dataset to temporally match it with the STA data. Independent component analysis was performed on the concatenated STA-CAm datasets, and voxel data, time courses, power spectra, and functional connectivity were compared. The ICA revealed 19 ICNs; the auditory, default mode, salience, and frontoparietal networks showed greater activity in the STA. The spectral peaks in 17 networks corresponded to the stimulation cycles in the STA, while only five networks displayed this correspondence in the CA. The dorsal default mode and salience networks exhibited stronger correlations with the stimulus waveform in the STA. SBN appeared to influence not only the areas of auditory response but also the majority of other ICNs, including attention and sensory networks. Therefore, SBN should be regarded as a serious nuisance factor during fMRI studies investigating intrinsic brain activity under external stimulation or task loads.

  10. Effects of scanner acoustic noise on intrinsic brain activity during auditory stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Yakunina, Natalia [Kangwon National University, Institute of Medical Science, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University Hospital, Neuroscience Research Institute, Chuncheon (Korea, Republic of); Kang, Eun Kyoung [Kangwon National University Hospital, Department of Rehabilitation Medicine, Chuncheon (Korea, Republic of); Kim, Tae Su [Kangwon National University Hospital, Department of Otolaryngology, Chuncheon (Korea, Republic of); Kangwon National University, School of Medicine, Department of Otolaryngology, Chuncheon (Korea, Republic of); Min, Ji-Hoon [University of Michigan, Department of Biopsychology, Cognition, and Neuroscience, Ann Arbor, MI (United States); Kim, Sam Soo [Kangwon National University Hospital, Neuroscience Research Institute, Chuncheon (Korea, Republic of); Kangwon National University, School of Medicine, Department of Radiology, Chuncheon (Korea, Republic of); Nam, Eui-Cheol [Kangwon National University Hospital, Neuroscience Research Institute, Chuncheon (Korea, Republic of); Kangwon National University, School of Medicine, Department of Otolaryngology, Chuncheon (Korea, Republic of)

    2015-10-15

    Although the effects of scanner background noise (SBN) during functional magnetic resonance imaging (fMRI) have been extensively investigated for the brain regions involved in auditory processing, its impact on other types of intrinsic brain activity has largely been neglected. The present study evaluated the influence of SBN on a number of intrinsic connectivity networks (ICNs) during auditory stimulation by comparing the results obtained using sparse temporal acquisition (STA) with those using continuous acquisition (CA). Fourteen healthy subjects were presented with classical music pieces in a block paradigm during two sessions of STA and CA. A volume-matched CA dataset (CAm) was generated by subsampling the CA dataset to temporally match it with the STA data. Independent component analysis was performed on the concatenated STA-CAm datasets, and voxel data, time courses, power spectra, and functional connectivity were compared. The ICA revealed 19 ICNs; the auditory, default mode, salience, and frontoparietal networks showed greater activity in the STA. The spectral peaks in 17 networks corresponded to the stimulation cycles in the STA, while only five networks displayed this correspondence in the CA. The dorsal default mode and salience networks exhibited stronger correlations with the stimulus waveform in the STA. SBN appeared to influence not only the areas of auditory response but also the majority of other ICNs, including attention and sensory networks. Therefore, SBN should be regarded as a serious nuisance factor during fMRI studies investigating intrinsic brain activity under external stimulation or task loads. (orig.)

  11. Getting the beat: entrainment of brain activity by musical rhythm and pleasantness.

    Science.gov (United States)

    Trost, Wiebke; Frühholz, Sascha; Schön, Daniele; Labbé, Carolina; Pichon, Swann; Grandjean, Didier; Vuilleumier, Patrik

    2014-12-01

    Rhythmic entrainment is an important component of emotion induction by music, but brain circuits recruited during spontaneous entrainment of attention by music and the influence of the subjective emotional feelings evoked by music remain still largely unresolved. In this study we used fMRI to test whether the metric structure of music entrains brain activity and how music pleasantness influences such entrainment. Participants listened to piano music while performing a speeded visuomotor detection task in which targets appeared time-locked to either strong or weak beats. Each musical piece was presented in both a consonant/pleasant and dissonant/unpleasant version. Consonant music facilitated target detection and targets presented synchronously with strong beats were detected faster. FMRI showed increased activation of bilateral caudate nucleus when responding on strong beats, whereas consonance enhanced activity in attentional networks. Meter and consonance selectively interacted in the caudate nucleus, with greater meter effects during dissonant than consonant music. These results reveal that the basal ganglia, involved both in emotion and rhythm processing, critically contribute to rhythmic entrainment of subcortical brain circuits by music. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Effects of scanner acoustic noise on intrinsic brain activity during auditory stimulation

    International Nuclear Information System (INIS)

    Yakunina, Natalia; Kang, Eun Kyoung; Kim, Tae Su; Min, Ji-Hoon; Kim, Sam Soo; Nam, Eui-Cheol

    2015-01-01

    Although the effects of scanner background noise (SBN) during functional magnetic resonance imaging (fMRI) have been extensively investigated for the brain regions involved in auditory processing, its impact on other types of intrinsic brain activity has largely been neglected. The present study evaluated the influence of SBN on a number of intrinsic connectivity networks (ICNs) during auditory stimulation by comparing the results obtained using sparse temporal acquisition (STA) with those using continuous acquisition (CA). Fourteen healthy subjects were presented with classical music pieces in a block paradigm during two sessions of STA and CA. A volume-matched CA dataset (CAm) was generated by subsampling the CA dataset to temporally match it with the STA data. Independent component analysis was performed on the concatenated STA-CAm datasets, and voxel data, time courses, power spectra, and functional connectivity were compared. The ICA revealed 19 ICNs; the auditory, default mode, salience, and frontoparietal networks showed greater activity in the STA. The spectral peaks in 17 networks corresponded to the stimulation cycles in the STA, while only five networks displayed this correspondence in the CA. The dorsal default mode and salience networks exhibited stronger correlations with the stimulus waveform in the STA. SBN appeared to influence not only the areas of auditory response but also the majority of other ICNs, including attention and sensory networks. Therefore, SBN should be regarded as a serious nuisance factor during fMRI studies investigating intrinsic brain activity under external stimulation or task loads. (orig.)

  13. The influence of brain abnormalities on psychosocial development, criminal history and paraphilias in sexual murderers.

    Science.gov (United States)

    Briken, Peer; Habermann, Niels; Berner, Wolfgang; Hill, Andreas

    2005-09-01

    The aim of this study was to investigate the number and type of brain abnormalities and their influence on psychosocial development, criminal history and paraphilias in sexual murderers. We analyzed psychiatric court reports of 166 sexual murderers and compared a group with notable signs of brain abnormalities (N = 50) with those without any signs (N = 116). Sexual murderers with brain abnormalities suffered more from early behavior problems. They were less likely to cohabitate with the victim at the time of the homicide and had more victims at the age of six years or younger. Psychiatric diagnoses revealed a higher total number of paraphilias: Transvestic fetishism and paraphilias not otherwise specified were more frequent in offenders with brain abnormalities. A binary logistic regression identified five predictors that accounted for 46.8% of the variance explaining the presence of brain abnormalities. Our results suggest the importance of a comprehensive neurological and psychological examination of this special offender group.

  14. Physical activity, fitness, glucose homeostasis, and brain morphology in twins.

    Science.gov (United States)

    Rottensteiner, Mirva; Leskinen, Tuija; Niskanen, Eini; Aaltonen, Sari; Mutikainen, Sara; Wikgren, Jan; Heikkilä, Kauko; Kovanen, Vuokko; Kainulainen, Heikki; Kaprio, Jaakko; Tarkka, Ina M; Kujala, Urho M

    2015-03-01

    The main aim of the present study (FITFATTWIN) was to investigate how physical activity level is associated with body composition, glucose homeostasis, and brain morphology in young adult male monozygotic twin pairs discordant for physical activity. From a population-based twin cohort, we systematically selected 10 young adult male monozygotic twin pairs (age range, 32-36 yr) discordant for leisure time physical activity during the past 3 yr. On the basis of interviews, we calculated a mean sum index for leisure time and commuting activity during the past 3 yr (3-yr LTMET index expressed as MET-hours per day). We conducted extensive measurements on body composition (including fat percentage measured by dual-energy x-ray absorptiometry), glucose homeostasis including homeostatic model assessment index and insulin sensitivity index (Matsuda index, calculated from glucose and insulin values from an oral glucose tolerance test), and whole brain magnetic resonance imaging for regional volumetric analyses. According to pairwise analysis, the active twins had lower body fat percentage (P = 0.029) and homeostatic model assessment index (P = 0.031) and higher Matsuda index (P = 0.021) compared with their inactive co-twins. Striatal and prefrontal cortex (subgyral and inferior frontal gyrus) brain gray matter volumes were larger in the nondominant hemisphere in active twins compared with those in inactive co-twins, with a statistical threshold of P physical activity is associated with improved glucose homeostasis and modulation of striatum and prefrontal cortex gray matter volume, independent of genetic background. The findings may contribute to later reduced risk of type 2 diabetes and mobility limitations.

  15. Brain activation to cocaine cues and motivation/treatment status.

    Science.gov (United States)

    Prisciandaro, James J; McRae-Clark, Aimee L; Myrick, Hugh; Henderson, Scott; Brady, Kathleen T

    2014-03-01

    Motivation to change is believed to be a key factor in therapeutic success in substance use disorders; however, the neurobiological mechanisms through which motivation to change impacts decreased substance use remain unclear. Existing research is conflicting, with some investigations supporting decreased and others reporting increased frontal activation to drug cues in individuals seeking treatment for substance use disorders. The present study investigated the relationship between motivation to change cocaine use and cue-elicited brain activity in cocaine-dependent individuals using two conceptualizations of 'motivation to change': (1) current treatment status (i.e. currently receiving versus not receiving outpatient treatment for cocaine dependence) and (2) self-reported motivation to change substance use, using the Stages of Change Readiness and Treatment Eagerness Scale. Thirty-eight cocaine-dependent individuals (14 currently in treatment) completed a diagnostic assessment and an fMRI cocaine cue-reactivity task. Whole-brain analyses demonstrated that both treatment-seeking and motivated participants had lower activation to cocaine cues in a wide variety of brain regions in the frontal, occipital, temporal and cingulate cortices relative to non-treatment-seeking and less motivated participants. Future research is needed to explain the mechanism by which treatment and/or motivation impacts neural cue reactivity, as such work could potentially aid in the development of more effective therapeutic techniques for substance-dependent patients. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  16. Child gender influences paternal behavior, language, and brain function.

    Science.gov (United States)

    Mascaro, Jennifer S; Rentscher, Kelly E; Hackett, Patrick D; Mehl, Matthias R; Rilling, James K

    2017-06-01

    Multiple lines of research indicate that fathers often treat boys and girls differently in ways that impact child outcomes. The complex picture that has emerged, however, is obscured by methodological challenges inherent to the study of parental caregiving, and no studies to date have examined the possibility that gender differences in observed real-world paternal behavior are related to differential paternal brain responses to male and female children. Here we compare fathers of daughters and fathers of sons in terms of naturalistically observed everyday caregiving behavior and neural responses to child picture stimuli. Compared with fathers of sons, fathers of daughters were more attentively engaged with their daughters, sang more to their daughters, used more analytical language and language related to sadness and the body with their daughters, and had a stronger neural response to their daughter's happy facial expressions in areas of the brain important for reward and emotion regulation (medial and lateral orbitofrontal cortex [OFC]). In contrast, fathers of sons engaged in more rough and tumble play (RTP), used more achievement language with their sons, and had a stronger neural response to their son's neutral facial expressions in the medial OFC (mOFC). Whereas the mOFC response to happy faces was negatively related to RTP, the mOFC response to neutral faces was positively related to RTP, specifically for fathers of boys. These results indicate that real-world paternal behavior and brain function differ as a function of child gender. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. The 28-day exposure to fenpropathrin decreases locomotor activity and reduces activity of antioxidant enzymes in mice brains.

    Science.gov (United States)

    Nieradko-Iwanicka, Barbara; Borzęcki, Andrzej

    2016-04-01

    Fenpropathrin (Fen) is a pyrethroid (Pyr) insecticide. Pyrs are used in veterinary medicine, in agriculture and for domestic purposes. As their use increases, new questions about their side effects and mode of action in non-target organisms arise. The objective of this work was to characterize dose-response relationship for in vivo motor function and memory in mice exposed to Fen for 28 days and to assess its influence on activity of antioxidant enzymes in mice brains. The experiment was performed using 64 female mice. Fen at the dose of 11.9mg/kg of body mass, 5.95mg/kg or 2.38mg/kg was administered ip to the mice for 28 consecutive days. Motor function and spatial working memory were tested on days 7, 14 and 28. On day 29, the animals were sacrificed and brains were used to determine activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Fen significantly decreased locomotor activity in mice receiving the highest dose at every stage of the experiment. Lower doses reduced locomotion on days 7 and 14. Fen did not produce memory impairment. A decrease in activities of SOD and GPx was recorded in mice brains. The decrease of SOD activity in mice brains results from direct inhibition of the enzyme by Fen and/or increased utilization due to excessive free radical formation in conditions of Fen-induced oxidative stress. The reduction in GPx activity is probably due to limited glutathione availability. The reduced locomotor activity is a behavioral demonstration of Fen-induced damage in the dopaminergic system. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  18. Influence of radiation-induced apoptosis on development brain in molecular regulation

    International Nuclear Information System (INIS)

    Gu Guixiong

    2000-01-01

    An outline of current status on the influence of radiation on the development brain was given. Some genes as immediate early gene, Bcl-2 family, p53, heat shock protein and AT gene play an important regulation role in ionizing radiation-induced development brain cells apoptosis. And such biological factor as nerve growth factor, interleukin-1, tumor necrosis factor, basic fibroblast growth factor, transforming growth factor and so on have a vital protection function against ionizing radiation-induced cells apoptosis

  19. Using human brain activity to guide machine learning.

    Science.gov (United States)

    Fong, Ruth C; Scheirer, Walter J; Cox, David D

    2018-03-29

    Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for machine learning, little effort has been made to directly use data collected from working brains as a guide for machine learning algorithms. Here we demonstrate a new paradigm of "neurally-weighted" machine learning, which takes fMRI measurements of human brain activity from subjects viewing images, and infuses these data into the training process of an object recognition learning algorithm to make it more consistent with the human brain. After training, these neurally-weighted classifiers are able to classify images without requiring any additional neural data. We show that our neural-weighting approach can lead to large performance gains when used with traditional machine vision features, as well as to significant improvements with already high-performing convolutional neural network features. The effectiveness of this approach points to a path forward for a new class of hybrid machine learning algorithms which take both inspiration and direct constraints from neuronal data.

  20. Consciousness as a global property of brain dynamic activity

    Science.gov (United States)

    Mateos, D. M.; Wennberg, R.; Guevara, R.; Perez Velazquez, J. L.

    2017-12-01

    We seek general principles of the structure of the cellular collective activity associated with conscious awareness. Can we obtain evidence for features of the optimal brain organization that allows for adequate processing of stimuli and that may guide the emergence of cognition and consciousness? Analyzing brain recordings in conscious and unconscious states, we followed initially the classic approach in physics when it comes to understanding collective behaviours of systems composed of a myriad of units: the assessment of the number of possible configurations (microstates) that the system can adopt, for which we use a global entropic measure associated with the number of connected brain regions. Having found maximal entropy in conscious states, we then inspected the microscopic nature of the configurations of connections using an adequate complexity measure and found higher complexity in states characterized not only by conscious awareness but also by subconscious cognitive processing, such as sleep stages. Our observations indicate that conscious awareness is associated with maximal global (macroscopic) entropy and with the short time scale (microscopic) complexity of the configurations of connected brain networks in pathological unconscious states (seizures and coma), but the microscopic view captures the high complexity in physiological unconscious states (sleep) where there is information processing. As such, our results support the global nature of conscious awareness, as advocated by several theories of cognition. We thus hope that our studies represent preliminary steps to reveal aspects of the structure of cognition that leads to conscious awareness.

  1. Insulin and the Brain

    Directory of Open Access Journals (Sweden)

    Grosu Cristina

    2017-12-01

    Full Text Available The brain represents an important site for the action of insulin. Besides the traditionally known importance in glucoregulation, insulin has significant neurotrophic properties and influences the brain activity: insulin influences eating behavior, regulates the storage of energy and several aspects concerning memory and knowledge. Insulin resistance and hyperinsulinism could be associated with brain aging, vascular and metabolic pathologies. Elucidating the pathways and metabolism of brain insulin could have a major impact on future targeted therapies.

  2. Intellectual function, activities of daily living and computerized tomography of the brain in geriatric demented patients

    Energy Technology Data Exchange (ETDEWEB)

    Omura, Fumiaki; Ogura, Chikara; Kishimoto, Akira; Okubo, Masayo; Imamoto, Atsushi [Tottori Univ., Yonago (Japan). School of Medicine; Tsuchie, Harutaka; Sugihara, Kanichiro; Fujii, Shozo

    1984-09-01

    Thirty eight patients of geriatric dementia (mean age 74.9 years) were examined by computerized tomography (CT) and their intellectual functions and activities of daily living (ADL) were evaluated. CT was evaluated by both visual assessment method and direct measuring method. Intellectual function was evaluated by Jikei University dementia rating scale. ADL was evaluated by both Hasegawa's rating scale and Sengoku's rating scale. Results were as follows: significant influence by age was observed in intellectual functions and ADL of subjects above 75 years old. There were good correlations between the higher intellectual function, the better grooming and hygiene, and less needs of nursing care. The severe brain atrophy evaluated by the visual assessment method was correlated with the depressed level of intellectual function. When brain atrophy is mild despite high degree of dementia, reexamination should be made to explore somatic diseases inducing depression of mental activity. It also should be noted that sex and age difference is important in studying geriatric patients.

  3. Dopaminergic modulation of the spectral characteristics in the rat brain oscillatory activity

    International Nuclear Information System (INIS)

    Valencia, Miguel; López-Azcárate, Jon; Nicolás, María Jesús; Alegre, Manuel; Artieda, Julio

    2012-01-01

    Highlights: ► The oscillatory activity recorded at different locations of the rat brain present a power law characteristic (PLC). ► Dopaminergic drugs are able to modify the power law spectral characteristic of the oscillatory activity. ► Drugs with opposite effects over the dopaminergic system (agonists/antagonists), induce opposite changes in the PLC. ► There is a fulcrum point for the modulation of the PLC around 20 Hz. ► The brain operates in a state of self-organized criticality (SOC) sensitive to dopaminergic modulation. - Abstract: Oscillatory activity can be widely recorded in the brain. It has been demonstrated to play an important role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of a variety of diseases. In frequency domain, neurophysiological recordings show a power spectrum (PSD) following a log (PSD) ∝ log (f) −β , that reveals an intrinsic feature of many complex systems in nature: the presence of a scale-free dynamics characterized by a power-law component (PLC). Here we analyzed the influence of dopaminergic drugs over the PLC of the oscillatory activity recorded from different locations of the rat brain. Dopamine (DA) is a neurotransmitter that is required for a number of physiological functions like normal feeding, locomotion, posturing, grooming and reaction time. Alterations in the dopaminergic system cause vast effects in the dynamics of the brain activity, that may be crucial in the pathophysiology of neurological (like Parkinson’s disease) or psychiatric (like schizophrenia) diseases. Our results show that drugs with opposite effects over the dopaminergic system, induce opposite changes in the characteristics of the PLC: DA agonists/antagonists cause the PLC to swing around a fulcrum point in the range of 20 Hz. Changes in the harmonic component of the spectrum were also detected. However, differences between recordings are better explained by the modulation of the PLC

  4. Spatiotemporal dynamics of large-scale brain activity

    Science.gov (United States)

    Neuman, Jeremy

    Understanding the dynamics of large-scale brain activity is a tough challenge. One reason for this is the presence of an incredible amount of complexity arising from having roughly 100 billion neurons connected via 100 trillion synapses. Because of the extremely high number of degrees of freedom in the nervous system, the question of how the brain manages to properly function and remain stable, yet also be adaptable, must be posed. Neuroscientists have identified many ways the nervous system makes this possible, of which synaptic plasticity is possibly the most notable one. On the other hand, it is vital to understand how the nervous system also loses stability, resulting in neuropathological diseases such as epilepsy, a disease which affects 1% of the population. In the following work, we seek to answer some of these questions from two different perspectives. The first uses mean-field theory applied to neuronal populations, where the variables of interest are the percentages of active excitatory and inhibitory neurons in a network, to consider how the nervous system responds to external stimuli, self-organizes and generates epileptiform activity. The second method uses statistical field theory, in the framework of single neurons on a lattice, to study the concept of criticality, an idea borrowed from physics which posits that in some regime the brain operates in a collectively stable or marginally stable manner. This will be examined in two different neuronal networks with self-organized criticality serving as the overarching theme for the union of both perspectives. One of the biggest problems in neuroscience is the question of to what extent certain details are significant to the functioning of the brain. These details give rise to various spatiotemporal properties that at the smallest of scales explain the interaction of single neurons and synapses and at the largest of scales describe, for example, behaviors and sensations. In what follows, we will shed some

  5. Effects of post mortem interval and gender in DNA base excision repair activities in rat brains

    Energy Technology Data Exchange (ETDEWEB)

    Soltys, Daniela Tathiana; Pereira, Carolina Parga Martins; Ishibe, Gabriela Naomi; Souza-Pinto, Nadja Cristhina de, E-mail: nadja@iq.usp.br

    2015-06-15

    Most human tissues used in research are of post mortem origin. This is the case for all brain samples, and due to the difficulty in obtaining a good number of samples, especially in the case of neurodegenerative diseases, male and female samples are often included in the same experimental group. However, the effects of post mortem interval (PMI) and gender differences in the endpoints being analyzed are not always fully understood, as is the case for DNA repair activities. To investigate these effects, in a controlled genetic background, base excision repair (BER) activities were measured in protein extracts obtained from Wistar rat brains from different genders and defined PMI up to 24 hours, using a novel fluorescent-based in vitro incision assay. Uracil and AP-site incision activity in nuclear and mitochondrial extracts were similar in all groups included in this study. Our results show that gender and PMI up to 24 hours have no influence in the activities of the BER proteins UDG and APE1 in rat brains. These findings demonstrate that these variables do not interfere on the BER activities included in these study, and provide a security window to work with UDG and APE1 proteins in samples of post mortem origin.

  6. Effects of post mortem interval and gender in DNA base excision repair activities in rat brains

    International Nuclear Information System (INIS)

    Soltys, Daniela Tathiana; Pereira, Carolina Parga Martins; Ishibe, Gabriela Naomi; Souza-Pinto, Nadja Cristhina de

    2015-01-01

    Most human tissues used in research are of post mortem origin. This is the case for all brain samples, and due to the difficulty in obtaining a good number of samples, especially in the case of neurodegenerative diseases, male and female samples are often included in the same experimental group. However, the effects of post mortem interval (PMI) and gender differences in the endpoints being analyzed are not always fully understood, as is the case for DNA repair activities. To investigate these effects, in a controlled genetic background, base excision repair (BER) activities were measured in protein extracts obtained from Wistar rat brains from different genders and defined PMI up to 24 hours, using a novel fluorescent-based in vitro incision assay. Uracil and AP-site incision activity in nuclear and mitochondrial extracts were similar in all groups included in this study. Our results show that gender and PMI up to 24 hours have no influence in the activities of the BER proteins UDG and APE1 in rat brains. These findings demonstrate that these variables do not interfere on the BER activities included in these study, and provide a security window to work with UDG and APE1 proteins in samples of post mortem origin

  7. Activated and deactivated functional brain areas in the Deqi state

    OpenAIRE

    Huang, Yong; Zeng, Tongjun; Zhang, Guifeng; Li, Ganlong; Lu, Na; Lai, Xinsheng; Lu, Yangjia; Chen, Jiarong

    2012-01-01

    We compared the activities of functional regions of the brain in the Deqi versus non-Deqi state, as reported by physicians and subjects during acupuncture. Twelve healthy volunteers received sham and true needling at the Waiguan (TE5) acupoint. Real-time cerebral functional MRI showed that compared with non-sensation after sham needling, true needling activated Brodmann areas 3, 6, 8, 9, 10, 11, 13, 20, 21, 37, 39, 40, 43, and 47, the head of the caudate nucleus, the parahippocampal gyrus, th...

  8. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions

    DEFF Research Database (Denmark)

    Thut, Gregor; Bergmann, Til Ole; Fröhlich, Flavio

    2017-01-01

    of NTBS with respect to the ongoing brain activity. Temporal patterns of ongoing neuronal activity, in particular brain oscillations and their fluctuations, can be traced with electro- or magnetoencephalography (EEG/MEG), to guide the timing as well as the stimulation settings of NTBS. These novel, online...... and offline EEG/MEG-guided NTBS-approaches are tailored to specifically interact with the underlying brain activity. Online EEG/MEG has been used to guide the timing of NTBS (i.e., when to stimulate): by taking into account instantaneous phase or power of oscillatory brain activity, NTBS can be aligned......Non-invasive transcranial brain stimulation (NTBS) techniques have a wide range of applications but also suffer from a number of limitations mainly related to poor specificity of intervention and variable effect size. These limitations motivated recent efforts to focus on the temporal dimension...

  9. Influence of Fragrances on Human Psychophysiological Activity: With Special Reference to Human Electroencephalographic Response

    Directory of Open Access Journals (Sweden)

    Kandhasamy Sowndhararajan

    2016-11-01

    Full Text Available The influence of fragrances such as perfumes and room fresheners on the psychophysiological activities of humans has been known for a long time, and its significance is gradually increasing in the medicinal and cosmetic industries. A fragrance consists of volatile chemicals with a molecular weight of less than 300 Da that humans perceive through the olfactory system. In humans, about 300 active olfactory receptor genes are devoted to detecting thousands of different fragrance molecules through a large family of olfactory receptors of a diverse protein sequence. The sense of smell plays an important role in the physiological effects of mood, stress, and working capacity. Electrophysiological studies have revealed that various fragrances affected spontaneous brain activities and cognitive functions, which are measured by an electroencephalograph (EEG. The EEG is a good temporal measure of responses in the central nervous system and it provides information about the physiological state of the brain both in health and disease. The EEG power spectrum is classified into different frequency bands such as delta (0.5–4 Hz, theta (4–8 Hz, alpha (8–13 Hz, beta (13–30 Hz and gamma (30–50 Hz, and each band is correlated with different features of brain states. A quantitative EEG uses computer software to provide the topographic mapping of the brain activity in frontal, temporal, parietal and occipital brain regions. It is well known that decreases of alpha and beta activities and increases of delta and theta activities are associated with brain pathology and general cognitive decline. In the last few decades, many scientific studies were conducted to investigate the effect of inhalation of aroma on human brain functions. The studies have suggested a significant role for olfactory stimulation in the alteration of cognition, mood, and social behavior. This review aims to evaluate the available literature regarding the influence of fragrances on the

  10. Influence of Fragrances on Human Psychophysiological Activity: With Special Reference to Human Electroencephalographic Response

    Science.gov (United States)

    Sowndhararajan, Kandhasamy; Kim, Songmun

    2016-01-01

    The influence of fragrances such as perfumes and room fresheners on the psychophysiological activities of humans has been known for a long time, and its significance is gradually increasing in the medicinal and cosmetic industries. A fragrance consists of volatile chemicals with a molecular weight of less than 300 Da that humans perceive through the olfactory system. In humans, about 300 active olfactory receptor genes are devoted to detecting thousands of different fragrance molecules through a large family of olfactory receptors of a diverse protein sequence. The sense of smell plays an important role in the physiological effects of mood, stress, and working capacity. Electrophysiological studies have revealed that various fragrances affected spontaneous brain activities and cognitive functions, which are measured by an electroencephalograph (EEG). The EEG is a good temporal measure of responses in the central nervous system and it provides information about the physiological state of the brain both in health and disease. The EEG power spectrum is classified into different frequency bands such as delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–50 Hz), and each band is correlated with different features of brain states. A quantitative EEG uses computer software to provide the topographic mapping of the brain activity in frontal, temporal, parietal and occipital brain regions. It is well known that decreases of alpha and beta activities and increases of delta and theta activities are associated with brain pathology and general cognitive decline. In the last few decades, many scientific studies were conducted to investigate the effect of inhalation of aroma on human brain functions. The studies have suggested a significant role for olfactory stimulation in the alteration of cognition, mood, and social behavior. This review aims to evaluate the available literature regarding the influence of fragrances on the

  11. Effect of menstrual cycle phase on corticolimbic brain activation by visual food cues.

    Science.gov (United States)

    Frank, Tamar C; Kim, Ginah L; Krzemien, Alicja; Van Vugt, Dean A

    2010-12-02

    Food intake is decreased during the late follicular phase and increased in the luteal phase of the menstrual cycle. While a changing ovarian steroid milieu is believed to be responsible for this behavior, the specific mechanisms involved are poorly understood. Brain activity in response to visual food stimuli was compared during the estrogen dominant peri-ovulatory phase and the progesterone dominant luteal phase of the menstrual cycle. Twelve women underwent functional magnetic resonance imaging during the peri-ovulatory and luteal phases of the menstrual cycle in a counterbalanced fashion. Whole brain T2* images were collected while subjects viewed pictures of high calorie (HC) foods, low calorie (LC) foods, and control (C) pictures presented in a block design. Blood oxygen level dependent (BOLD) signal in the late follicular phase and luteal phase was determined for the contrasts HC-C, LC-C, HC-LC, and LC-HC. Both HC and LC stimuli activated numerous corticolimbic brain regions in the follicular phase, whereas only HC stimuli were effective in the luteal phase. Activation of the nucleus accumbens (NAc), amygdala, and hippocampus in response to the HC-C contrast and the hippocampus in response to the LC-C contrast was significantly increased in the late follicular phase compared to the luteal phase. Activation of the orbitofrontal cortex and mid cingulum in response to the HC-LC contrast was greater during the luteal phase. These results demonstrate for the first time that brain responses to visual food cues are influenced by menstrual cycle phase. We postulate that ovarian steroid modulation of the corticolimbic brain contributes to changes in ingestive behavior during the menstrual cycle. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Neurofeedback Tunes Scale-Free Dynamics in Spontaneous Brain Activity.

    Science.gov (United States)

    Ros, T; Frewen, P; Théberge, J; Michela, A; Kluetsch, R; Mueller, A; Candrian, G; Jetly, R; Vuilleumier, P; Lanius, R A

    2017-10-01

    Brain oscillations exhibit long-range temporal correlations (LRTCs), which reflect the regularity of their fluctuations: low values representing more random (decorrelated) while high values more persistent (correlated) dynamics. LRTCs constitute supporting evidence that the brain operates near criticality, a state where neuronal activities are balanced between order and randomness. Here, healthy adults used closed-loop brain training (neurofeedback, NFB) to reduce the amplitude of alpha oscillations, producing a significant increase in spontaneous LRTCs post-training. This effect was reproduced in patients with post-traumatic stress disorder, where abnormally random dynamics were reversed by NFB, correlating with significant improvements in hyperarousal. Notably, regions manifesting abnormally low LRTCs (i.e., excessive randomness) normalized toward healthy population levels, consistent with theoretical predictions about self-organized criticality. Hence, when exposed to appropriate training, spontaneous cortical activity reveals a residual capacity for "self-tuning" its own temporal complexity, despite manifesting the abnormal dynamics seen in individuals with psychiatric disorder. Lastly, we observed an inverse-U relationship between strength of LRTC and oscillation amplitude, suggesting a breakdown of long-range dependence at high/low synchronization extremes, in line with recent computational models. Together, our findings offer a broader mechanistic framework for motivating research and clinical applications of NFB, encompassing disorders with perturbed LRTCs. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Perceptual incongruence influences bistability and cortical activation.

    Directory of Open Access Journals (Sweden)

    Gijs Joost Brouwer

    Full Text Available We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability resulted from incongruence between binocular disparity and monocular perspective cues that specify different slants (slant rivalry. Psychophysical results revealed that perceptual alternation rates were positively correlated with the degree of perceived incongruence. Functional imaging revealed systematic increases in activity that paralleled the psychophysical results within anterior intraparietal sulcus, prior to the onset of perceptual alternations. We suggest that this cortical activity predicts the frequency of subsequent alternations, implying a putative causal role for these areas in initiating bistable perception. In contrast, areas implicated in form and depth processing (LOC and V3A were sensitive to the degree of slant, but failed to show increases in activity when these cues were in conflict.

  14. Changes in spontaneous brain activity in early Parkinson's disease.

    Science.gov (United States)

    Yang, Hong; Zhou, Xiaohong Joe; Zhang, Min-Ming; Zheng, Xu-Ning; Zhao, Yi-Lei; Wang, Jue

    2013-08-09

    Resting state brain activity can provide valuable insights into the pathophysiology of Parkinson's disease (PD). The purpose of the present study was (a) to investigate abnormal spontaneous neuronal activity in early PD patients using resting-state functional MRI (fMRI) with a regional homogeneity (ReHo) method and (b) to demonstrate the potential of using changes in abnormal spontaneous neuronal activity for monitoring the progression of PD during its early stages. Seventeen early PD patients were assessed with the Unified Parkinson's Disease Rating Scale (UPDRS), the Hoehn and Yahr disability scale and the Mini-mental State Examination (MMSE) were compared with seventeen gender- and age-matched healthy controls. All subjects underwent MRI scans using a 1.5T General Electric Signa Excite II scanner. The MRI scan protocol included whole-brain volumetric imaging using a 3D inversion recovery prepared (IR-Prep) fast spoiled gradient-echo pulse sequence and 2D multi-slice (22 axial slices covering the whole brain) resting-state fMRI using an echo planar imaging (EPI) sequence. Images were analyzed in SPM5 together with a ReHo algorithm using the in-house software program REST. A corrected threshold of pbrain regions, including the left cerebellum, left parietal lobe, right middle temporal lobe, right sub-thalamic nucleus areas, right superior frontal gyrus, middle frontal gyrus (MFG), right inferior parietal lobe (IPL), right precuneus lobe, left MFG and left IPL. Additionally, significantly reduced ReHo was also observed in the early PD patients in the following brain regions: the left putamen, left inferior frontal gyrus, right hippocampus, right anterior cingulum, and bilateral lingual gyrus. Moreover, in PD patients, ReHo in the left putamen was negatively correlated with the UPDRS scores (r=-0.69). These results indicate that the abnormal resting state spontaneous brain activity associated with patients with early PD can be revealed by Reho analysis. Copyright

  15. Localizing Brain Activity from Multiple Distinct Sources via EEG

    Directory of Open Access Journals (Sweden)

    George Dassios

    2014-01-01

    Full Text Available An important question arousing in the framework of electroencephalography (EEG is the possibility to recognize, by means of a recorded surface potential, the number of activated areas in the brain. In the present paper, employing a homogeneous spherical conductor serving as an approximation of the brain, we provide a criterion which determines whether the measured surface potential is evoked by a single or multiple localized neuronal excitations. We show that the uniqueness of the inverse problem for a single dipole is closely connected with attaining certain relations connecting the measured data. Further, we present the necessary and sufficient conditions which decide whether the collected data originates from a single dipole or from numerous dipoles. In the case where the EEG data arouses from multiple parallel dipoles, an isolation of the source is, in general, not possible.

  16. Resting-state brain activity in adult males who stutter.

    Directory of Open Access Journals (Sweden)

    Yun Xuan

    Full Text Available Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI, few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF, region of interest (ROI-based functional connectivity (FC and independent component analysis (ICA-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN and in the connections between them.

  17. Resting-State Brain Activity in Adult Males Who Stutter

    Science.gov (United States)

    Zhu, Chaozhe; Wang, Liang; Yan, Qian; Lin, Chunlan; Yu, Chunshui

    2012-01-01

    Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI), few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF), region of interest (ROI)-based functional connectivity (FC) and independent component analysis (ICA)-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN) in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN) and in the connections between them. PMID:22276215

  18. Parental Influence on Young Children's Physical Activity

    Directory of Open Access Journals (Sweden)

    Cheryl A. Zecevic

    2010-01-01

    Full Text Available Parents influence on their young children's physical activity (PA behaviours was examined in a sample of 102 preschool-aged children (54 boys. Questionnaires regarding family sociodemographics and physical activity habits were completed. Results showed that children who received greater parental support for activity (B=.78, P<.10 and had parents who rated PA as highly enjoyable (B=.69, P<.05 were significantly more likely to engage in one hour or more of daily PA. Being an older child (B=−.08, P<.01, having older parents (B=−.26, P<.01, and watching more than one hour of television/videos per day (B=1.55, P<.01 reduced the likelihood that a child would be rated as highly active. Children who received greater parental support for PA were 6.3 times more likely to be highly active than inactive (B=1.44, P<.05. Thus, parents can promote PA among their preschoolers, not only by limiting TV time but also by being highly supportive of their children's active pursuits.

  19. Seizures, refractory status epilepticus, and depolarization block as endogenous brain activities

    Science.gov (United States)

    El Houssaini, Kenza; Ivanov, Anton I.; Bernard, Christophe; Jirsa, Viktor K.

    2015-01-01

    Epilepsy, refractory status epilepticus, and depolarization block are pathological brain activities whose mechanisms are poorly understood. Using a generic mathematical model of seizure activity, we show that these activities coexist under certain conditions spanning the range of possible brain activities. We perform a detailed bifurcation analysis and predict strategies to escape from some of the pathological states. Experimental results using rodent data provide support of the model, highlighting the concept that these pathological activities belong to the endogenous repertoire of brain activities.

  20. Amplitude-modulated stimuli reveal auditory-visual interactions in brain activity and brain connectivity.

    Science.gov (United States)

    Laing, Mark; Rees, Adrian; Vuong, Quoc C

    2015-01-01

    The temporal congruence between auditory and visual signals coming from the same source can be a powerful means by which the brain integrates information from different senses. To investigate how the brain uses temporal information to integrate auditory and visual information from continuous yet unfamiliar stimuli, we used amplitude-modulated tones and size-modulated shapes with which we could manipulate the temporal congruence between the sensory signals. These signals were independently modulated at a slow or a fast rate. Participants were presented with auditory-only, visual-only, or auditory-visual (AV) trials in the fMRI scanner. On AV trials, the auditory and visual signal could have the same (AV congruent) or different modulation rates (AV incongruent). Using psychophysiological interaction analyses, we found that auditory regions showed increased functional connectivity predominantly with frontal regions for AV incongruent relative to AV congruent stimuli. We further found that superior temporal regions, shown previously to integrate auditory and visual signals, showed increased connectivity with frontal and parietal regions for the same contrast. Our findings provide evidence that both activity in a network of brain regions and their connectivity are important for AV integration, and help to bridge the gap between transient and familiar AV stimuli used in previous studies.

  1. Amplitude-modulated stimuli reveal auditory-visual interactions in brain activity and brain connectivity

    Directory of Open Access Journals (Sweden)

    Mark eLaing

    2015-10-01

    Full Text Available The temporal congruence between auditory and visual signals coming from the same source can be a powerful means by which the brain integrates information from different senses. To investigate how the brain uses temporal information to integrate auditory and visual information from continuous yet unfamiliar stimuli, we use amplitude-modulated tones and size-modulated shapes with which we could manipulate the temporal congruence between the sensory signals. These signals were independently modulated at a slow or a fast rate. Participants were presented with auditory-only, visual-only or auditory-visual (AV trials in the scanner. On AV trials, the auditory and visual signal could have the same (AV congruent or different modulation rates (AV incongruent. Using psychophysiological interaction analyses, we found that auditory regions showed increased functional connectivity predominantly with frontal regions for AV incongruent relative to AV congruent stimuli. We further found that superior temporal regions, shown previously to integrate auditory and visual signals, showed increased connectivity with frontal and parietal regions for the same contrast. Our findings provide evidence that both activity in a network of brain regions and their connectivity are important for auditory-visual integration, and help to bridge the gap between transient and familiar AV stimuli used in previous studies.

  2. Brain activation to facial expressions in youth with PTSD symptoms.

    Science.gov (United States)

    Garrett, Amy S; Carrion, Victor; Kletter, Hilit; Karchemskiy, Asya; Weems, Carl F; Reiss, Allan

    2012-05-01

    This study examined activation to facial expressions in youth with a history of interpersonal trauma and current posttraumatic stress symptoms (PTSS) compared to healthy controls (HC). Twenty-three medication-naive youth with PTSS and 23 age- and gender-matched HC underwent functional magnetic resonance imaging (fMRI) while viewing fearful, angry, sad, happy, and neutral faces. Data were analyzed for group differences in location of activation, as well as timing of activation during the early versus late phase of the block. Using SPM5, significant activation (P effect of group was identified. Activation from selected clusters was extracted to SPSS software for further analysis of specific facial expressions and temporal patterns of activation. The PTSS group showed significantly greater activation than controls in several regions, including the amygdala/hippocampus, medial prefrontal cortex, insula, and ventrolateral prefrontal cortex, and less activation than controls in the dorsolateral prefrontal cortex (DLPFC). These group differences in activation were greatest during angry, happy, and neutral faces, and predominantly during the early phase of the block. Post hoc analyses showed significant Group × Phase interactions in the right amygdala and left hippocampus. Traumatic stress may impact development of brain regions important for emotion processing. Timing of activation may be altered in youth with PTSS. © 2012 Wiley Periodicals, Inc.

  3. Extrinsic and Intrinsic Brain Network Connectivity Maintains Cognition across the Lifespan Despite Accelerated Decay of Regional Brain Activation.

    Science.gov (United States)

    Tsvetanov, Kamen A; Henson, Richard N A; Tyler, Lorraine K; Razi, Adeel; Geerligs, Linda; Ham, Timothy E; Rowe, James B

    2016-03-16

    The maintenance of wellbeing across the lifespan depends on the preservation of cognitive function. We propose that successful cognitive aging is determined by interactions both within and between large-scale functional brain networks. Such connectivity can be estimated from task-free functional magnetic resonance imaging (fMRI), also known as resting-state fMRI (rs-fMRI). However, common correlational methods are confounded by age-related changes in the neurovascular signaling. To estimate network interactions at the neuronal rather than vascular level, we used generative models that specified both the neural interactions and a flexible neurovascular forward model. The networks' parameters were optimized to explain the spectral dynamics of rs-fMRI data in 602 healthy human adults from population-based cohorts who were approximately uniformly distributed between 18 and 88 years (www.cam-can.com). We assessed directed connectivity within and between three key large-scale networks: the salience network, dorsal attention network, and default mode network. We found that age influences connectivity both within and between these networks, over and above the effects on neurovascular coupling. Canonical correlation analysis revealed that the relationship between network connectivity and cognitive function was age-dependent: cognitive performance relied on neural dynamics more strongly in older adults. These effects were driven partly by reduced stability of neural activity within all networks, as expressed by an accelerated decay of neural information. Our findings suggest that the balance of excitatory connectivity between networks, and the stability of intrinsic neural representations within networks, changes with age. The cognitive function of older adults becomes increasingly dependent on these factors. Maintaining cognitive function is critical to successful aging. To study the neural basis of cognitive function across the lifespan, we studied a large population

  4. Brain activity associated with selective attention, divided attention and distraction.

    Science.gov (United States)

    Salo, Emma; Salmela, Viljami; Salmi, Juha; Numminen, Jussi; Alho, Kimmo

    2017-06-01

    Top-down controlled selective or divided attention to sounds and visual objects, as well as bottom-up triggered attention to auditory and visual distractors, has been widely investigated. However, no study has systematically compared brain activations related to all these types of attention. To this end, we used functional magnetic resonance imaging (fMRI) to measure brain activity in participants performing a tone pitch or a foveal grating orientation discrimination task, or both, distracted by novel sounds not sharing frequencies with the tones or by extrafoveal visual textures. To force focusing of attention to tones or gratings, or both, task difficulty was kept constantly high with an adaptive staircase method. A whole brain analysis of variance (ANOVA) revealed fronto-parietal attention networks for both selective auditory and visual attention. A subsequent conjunction analysis indicated partial overlaps of these networks. However, like some previous studies, the present results also suggest segregation of prefrontal areas involved in the control of auditory and visual attention. The ANOVA also suggested, and another conjunction analysis confirmed, an additional activity enhancement in the left middle frontal gyrus related to divided attention supporting the role of this area in top-down integration of dual task performance. Distractors expectedly disrupted task performance. However, contrary to our expectations, activations specifically related to the distractors were found only in the auditory and visual cortices. This suggests gating of the distractors from further processing perhaps due to strictly focused attention in the current demanding discrimination tasks. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Classification of types of stuttering symptoms based on brain activity.

    Directory of Open Access Journals (Sweden)

    Jing Jiang

    Full Text Available Among the non-fluencies seen in speech, some are more typical (MT of stuttering speakers, whereas others are less typical (LT and are common to both stuttering and fluent speakers. No neuroimaging work has evaluated the neural basis for grouping these symptom types. Another long-debated issue is which type (LT, MT whole-word repetitions (WWR should be placed in. In this study, a sentence completion task was performed by twenty stuttering patients who were scanned using an event-related design. This task elicited stuttering in these patients. Each stuttered trial from each patient was sorted into the MT or LT types with WWR put aside. Pattern classification was employed to train a patient-specific single trial model to automatically classify each trial as MT or LT using the corresponding fMRI data. This model was then validated by using test data that were independent of the training data. In a subsequent analysis, the classification model, just established, was used to determine which type the WWR should be placed in. The results showed that the LT and the MT could be separated with high accuracy based on their brain activity. The brain regions that made most contribution to the separation of the types were: the left inferior frontal cortex and bilateral precuneus, both of which showed higher activity in the MT than in the LT; and the left putamen and right cerebellum which showed the opposite activity pattern. The results also showed that the brain activity for WWR was more similar to that of the LT and fluent speech than to that of the MT. These findings provide a neurological basis for separating the MT and the LT types, and support the widely-used MT/LT symptom grouping scheme. In addition, WWR play a similar role as the LT, and thus should be placed in the LT type.

  6. Classification of Types of Stuttering Symptoms Based on Brain Activity

    Science.gov (United States)

    Jiang, Jing; Lu, Chunming; Peng, Danling; Zhu, Chaozhe; Howell, Peter

    2012-01-01

    Among the non-fluencies seen in speech, some are more typical (MT) of stuttering speakers, whereas others are less typical (LT) and are common to both stuttering and fluent speakers. No neuroimaging work has evaluated the neural basis for grouping these symptom types. Another long-debated issue is which type (LT, MT) whole-word repetitions (WWR) should be placed in. In this study, a sentence completion task was performed by twenty stuttering patients who were scanned using an event-related design. This task elicited stuttering in these patients. Each stuttered trial from each patient was sorted into the MT or LT types with WWR put aside. Pattern classification was employed to train a patient-specific single trial model to automatically classify each trial as MT or LT using the corresponding fMRI data. This model was then validated by using test data that were independent of the training data. In a subsequent analysis, the classification model, just established, was used to determine which type the WWR should be placed in. The results showed that the LT and the MT could be separated with high accuracy based on their brain activity. The brain regions that made most contribution to the separation of the types were: the left inferior frontal cortex and bilateral precuneus, both of which showed higher activity in the MT than in the LT; and the left putamen and right cerebellum which showed the opposite activity pattern. The results also showed that the brain activity for WWR was more similar to that of the LT and fluent speech than to that of the MT. These findings provide a neurological basis for separating the MT and the LT types, and support the widely-used MT/LT symptom grouping scheme. In addition, WWR play a similar role as the LT, and thus should be placed in the LT type. PMID:22761887

  7. The sequential structure of brain activation predicts skill.

    Science.gov (United States)

    Anderson, John R; Bothell, Daniel; Fincham, Jon M; Moon, Jungaa

    2016-01-29

    In an fMRI study, participants were trained to play a complex video game. They were scanned early and then again after substantial practice. While better players showed greater activation in one region (right dorsal striatum) their relative skill was better diagnosed by considering the sequential structure of whole brain activation. Using a cognitive model that played this game, we extracted a characterization of the mental states that are involved in playing a game and the statistical structure of the transitions among these states. There was a strong correspondence between this measure of sequential structure and the skill of different players. Using multi-voxel pattern analysis, it was possible to recognize, with relatively high accuracy, the cognitive states participants were in during particular scans. We used the sequential structure of these activation-recognized states to predict the skill of individual players. These findings indicate that important features about information-processing strategies can be identified from a model-based analysis of the sequential structure of brain activation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Distributed patterns of brain activity that lead to forgetting

    Directory of Open Access Journals (Sweden)

    Ilke eOztekin

    2011-08-01

    Full Text Available Proactive interference (PI, in which irrelevant information from prior learning disrupts memory performance, is widely viewed as a major cause of forgetting. However, the hypothesized spontaneous recovery (i.e. automatic retrieval of interfering information presumed to be at the base of PI remains to be demonstrated directly. Moreover, it remains unclear at what point during learning and/or retrieval interference impacts memory performance. In order to resolve these open questions, we employed a machine-learning algorithm to identify distributed patterns of brain activity associated with retrieval of interfering information that engenders PI and causes forgetting. Participants were scanned using functional magnetic resonance imaging during an item recognition task. We induced PI by constructing sets of three consecutive study lists from the same semantic category. The classifier quantified the magnitude of category-related activity at encoding and retrieval. Category-specific activity during retrieval increased across lists, consistent with the category information becoming increasingly available and producing interference. Critically, this increase was correlated with individual differences in forgetting and the deployment of frontal lobe mechanisms that resolve interference. Collectively, these findings suggest that distributed patterns of brain activity pertaining to the interfering information during retrieval contribute to forgetting. The prefrontal cortex mediates the relationship between the spontaneous recovery of interfering information at retrieval and individual differences in memory performance.

  9. Dynamic changes in brain activity during prism adaptation.

    Science.gov (United States)

    Luauté, Jacques; Schwartz, Sophie; Rossetti, Yves; Spiridon, Mona; Rode, Gilles; Boisson, Dominique; Vuilleumier, Patrik

    2009-01-07

    Prism adaptation does not only induce short-term sensorimotor plasticity, but also longer-term reorganization in the neural representation of space. We used event-related fMRI to study dynamic changes in brain activity during both early and prolonged exposure to visual prisms. Participants performed a pointing task before, during, and after prism exposure. Measures of trial-by-trial pointing errors and corrections allowed parametric analyses of brain activity as a function of performance. We show that during the earliest phase of prism exposure, anterior intraparietal sulcus was primarily implicated in error detection, whereas parieto-occipital sulcus was implicated in error correction. Cerebellum activity showed progressive increases during prism exposure, in accordance with a key role for spatial realignment. This time course further suggests that the cerebellum might promote neural changes in superior temporal cortex, which was selectively activated during the later phase of prism exposure and could mediate the effects of prism adaptation on cognitive spatial representations.

  10. Intrinsic resting-state activity predicts working memory brain activation and behavioral performance.

    Science.gov (United States)

    Zou, Qihong; Ross, Thomas J; Gu, Hong; Geng, Xiujuan; Zuo, Xi-Nian; Hong, L Elliot; Gao, Jia-Hong; Stein, Elliot A; Zang, Yu-Feng; Yang, Yihong

    2013-12-01

    Although resting-state brain activity has been demonstrated to correspond with task-evoked brain activation, the relationship between intrinsic and evoked brain activity has not been fully characterized. For example, it is unclear whether intrinsic activity can also predict task-evoked deactivation and whether the rest-task relationship is dependent on task load. In this study, we addressed these issues on 40 healthy control subjects using resting-state and task-driven [N-back working memory (WM) task] functional magnetic resonance imaging data collected in the same session. Using amplitude of low-frequency fluctuation (ALFF) as an index of intrinsic resting-state activity, we found that ALFF in the middle frontal gyrus and inferior/superior parietal lobules was positively correlated with WM task-evoked activation, while ALFF in the medial prefrontal cortex, posterior cingulate cortex, superior frontal gyrus, superior temporal gyrus, and fusiform gyrus was negatively correlated with WM task-evoked deactivation. Further, the relationship between the intrinsic resting-state activity and task-evoked activation in lateral/superior frontal gyri, inferior/superior parietal lobules, superior temporal gyrus, and midline regions was stronger at higher WM task loads. In addition, both resting-state activity and the task-evoked activation in the superior parietal lobule/precuneus were significantly correlated with the WM task behavioral performance, explaining similar portions of intersubject performance variance. Together, these findings suggest that intrinsic resting-state activity facilitates or is permissive of specific brain circuit engagement to perform a cognitive task, and that resting activity can predict subsequent task-evoked brain responses and behavioral performance. Copyright © 2012 Wiley Periodicals, Inc.

  11. Source-based neurofeedback methods using EEG recordings: training altered brain activity in a functional brain source derived from blind source separation

    Science.gov (United States)

    White, David J.; Congedo, Marco; Ciorciari, Joseph

    2014-01-01

    A developing literature explores the use of neurofeedback in the treatment of a range of clinical conditions, particularly ADHD and epilepsy, whilst neurofeedback also provides an experimental tool for studying the functional significance of endogenous brain activity. A critical component of any neurofeedback method is the underlying physiological signal which forms the basis for the feedback. While the past decade has seen the emergence of fMRI-based protocols training spatially confined BOLD activity, traditional neurofeedback has utilized a small number of electrode sites on the scalp. As scalp EEG at a given electrode site reflects a linear mixture of activity from multiple brain sources and artifacts, efforts to successfully acquire some level of control over the signal may be confounded by these extraneous sources. Further, in the event of successful training, these traditional neurofeedback methods are likely influencing multiple brain regions and processes. The present work describes the use of source-based signal processing methods in EEG neurofeedback. The feasibility and potential utility of such methods were explored in an experiment training increased theta oscillatory activity in a source derived from Blind Source Separation (BSS) of EEG data obtained during completion of a complex cognitive task (spatial navigation). Learned increases in theta activity were observed in two of the four participants to complete 20 sessions of neurofeedback targeting this individually defined functional brain source. Source-based EEG neurofeedback methods using BSS may offer important advantages over traditional neurofeedback, by targeting the desired physiological signal in a more functionally and spatially specific manner. Having provided preliminary evidence of the feasibility of these methods, future work may study a range of clinically and experimentally relevant brain processes where individual brain sources may be targeted by source-based EEG neurofeedback. PMID

  12. Comparison of Trazodone, Diazepame and Dibenzepine Influences on Rat Brain Beta-Endorphins Content

    Directory of Open Access Journals (Sweden)

    Radivoj Jadrić

    2007-08-01

    Full Text Available The aim of our study was to establish the extent of influence of different psychotropic drugs to brain β-endorphins in experimental animals. The study was performed on albino Wistar rats (weight 250 g, treated with different psychoactive drugs. RIA technique was employed for quantification of brain β-endorphins. Brain β-endorphins were higher in experiment group treated with trazodone (929 pg/g ± 44,43; X±SD, and dibenzepine (906,63 pg/g ± 74,06, yet with lower brain content in rats treated with diazepame (841,55 pg/g ± 68,47, compared to brain β-endorphins content of control group treated with saline solution (0,95% NaCl (873,5 pg/g ± 44,89. Significant differences were obtained comparing brain β-endorphins of trazodone vs. diaze-pame treated animals, with diazepame group having lower values (p<0,02. This study showed differences in changes of rat brain β-endorphins contents when different psy-choactive drugs are used. Therefore, we consider that β-endorphins could be used for evaluation of effects of psychoactive drugs, as a useful parameter in therapy with these psycho pharmaceuticals.

  13. The Sum of Its Parts—Effects of Gastric Distention, Nutrient Content and Sensory Stimulation on Brain Activation

    Science.gov (United States)

    Spetter, Maartje S.; de Graaf, Cees; Mars, Monica; Viergever, Max A.; Smeets, Paul A. M.

    2014-01-01

    During food consumption the brain integrates multiple interrelated neural and hormonal signals involved in the regulation of food intake. Factors influencing the decision to stop eating include the foods' sensory properties, macronutrient content, and volume, which in turn affect gastric distention and appetite hormone responses. So far, the contributions of gastric distention and oral stimulation by food on brain activation have not been studied. The primary objective of this study was to assess the effect of gastric distention with an intra-gastric load and the additional effect of oral stimulation on brain activity after food administration. Our secondary objective was to study the correlations between hormone responses and appetite-related ratings and brain activation. Fourteen men completed three functional magnetic resonance imaging sessions during which they either received a naso-gastric infusion of water (stomach distention), naso-gastric infusion of chocolate milk (stomach distention + nutrients), or ingested chocolate-milk (stomach distention + nutrients + oral exposure). Appetite ratings and blood parameters were measured at several time points. During gastric infusion, brain activation was observed in the midbrain, amygdala, hypothalamus, and hippocampus for both chocolate milk and water, i.e., irrespective of nutrient content. The thalamus, amygdala, putamen and precuneus were activated more after ingestion than after gastric infusion of chocolate milk, whereas infusion evoked greater activation in the hippocampus and anterior cingulate. Moreover, areas involved in gustation and reward were activated more after oral stimulation. Only insulin responses following naso-gastric infusion of chocolate milk correlated with brain activation, namely in the putamen and insula. In conclusion, we show that normal (oral) food ingestion evokes greater activation than gastric infusion in stomach distention and food intake-related brain areas. This provides neural

  14. The sum of its parts--effects of gastric distention, nutrient content and sensory stimulation on brain activation.

    Science.gov (United States)

    Spetter, Maartje S; de Graaf, Cees; Mars, Monica; Viergever, Max A; Smeets, Paul A M

    2014-01-01

    During food consumption the brain integrates multiple interrelated neural and hormonal signals involved in the regulation of food intake. Factors influencing the decision to stop eating include the foods' sensory properties, macronutrient content, and volume, which in turn affect gastric distention and appetite hormone responses. So far, the contributions of gastric distention and oral stimulation by food on brain activation have not been studied. The primary objective of this study was to assess the effect of gastric distention with an intra-gastric load and the additional effect of oral stimulation on brain activity after food administration. Our secondary objective was to study the correlations between hormone responses and appetite-related ratings and brain activation. Fourteen men completed three functional magnetic resonance imaging sessions during which they either received a naso-gastric infusion of water (stomach distention), naso-gastric infusion of chocolate milk (stomach distention + nutrients), or ingested chocolate-milk (stomach distention + nutrients + oral exposure). Appetite ratings and blood parameters were measured at several time points. During gastric infusion, brain activation was observed in the midbrain, amygdala, hypothalamus, and hippocampus for both chocolate milk and water, i.e., irrespective of nutrient content. The thalamus, amygdala, putamen and precuneus were activated more after ingestion than after gastric infusion of chocolate milk, whereas infusion evoked greater activation in the hippocampus and anterior cingulate. Moreover, areas involved in gustation and reward were activated more after oral stimulation. Only insulin responses following naso-gastric infusion of chocolate milk correlated with brain activation, namely in the putamen and insula. In conclusion, we show that normal (oral) food ingestion evokes greater activation than gastric infusion in stomach distention and food intake-related brain areas. This provides neural

  15. The sum of its parts--effects of gastric distention, nutrient content and sensory stimulation on brain activation.

    Directory of Open Access Journals (Sweden)

    Maartje S Spetter

    Full Text Available During food consumption the brain integrates multiple interrelated neural and hormonal signals involved in the regulation of food intake. Factors influencing the decision to stop eating include the foods' sensory properties, macronutrient content, and volume, which in turn affect gastric distention and appetite hormone responses. So far, the contributions of gastric distention and oral stimulation by food on brain activation have not been studied. The primary objective of this study was to assess the effect of gastric distention with an intra-gastric load and the additional effect of oral stimulation on brain activity after food administration. Our secondary objective was to study the correlations between hormone responses and appetite-related ratings and brain activation. Fourteen men completed three functional magnetic resonance imaging sessions during which they either received a naso-gastric infusion of water (stomach distention, naso-gastric infusion of chocolate milk (stomach distention + nutrients, or ingested chocolate-milk (stomach distention + nutrients + oral exposure. Appetite ratings and blood parameters were measured at several time points. During gastric infusion, brain activation was observed in the midbrain, amygdala, hypothalamus, and hippocampus for both chocolate milk and water, i.e., irrespective of nutrient content. The thalamus, amygdala, putamen and precuneus were activated more after ingestion than after gastric infusion of chocolate milk, whereas infusion evoked greater activation in the hippocampus and anterior cingulate. Moreover, areas involved in gustation and reward were activated more after oral stimulation. Only insulin responses following naso-gastric infusion of chocolate milk correlated with brain activation, namely in the putamen and insula. In conclusion, we show that normal (oral food ingestion evokes greater activation than gastric infusion in stomach distention and food intake-related brain areas. This

  16. Visual attention modulates brain activation to angry voices.

    Science.gov (United States)

    Mothes-Lasch, Martin; Mentzel, Hans-Joachim; Miltner, Wolfgang H R; Straube, Thomas

    2011-06-29

    In accordance with influential models proposing prioritized processing of threat, previous studies have shown automatic brain responses to angry prosody in the amygdala and the auditory cortex under auditory distraction conditions. However, it is unknown whether the automatic processing of angry prosody is also observed during cross-modal distraction. The current fMRI study investigated brain responses to angry versus neutral prosodic stimuli during visual distraction. During scanning, participants were exposed to angry or neutral prosodic stimuli while visual symbols were displayed simultaneously. By means of task requirements, participants either attended to the voices or to the visual stimuli. While the auditory task revealed pronounced activation in the auditory cortex and amygdala to angry versus neutral prosody, this effect was absent during the visual task. Thus, our results show a limitation of the automaticity of the activation of the amygdala and auditory cortex to angry prosody. The activation of these areas to threat-related voices depends on modality-specific attention.

  17. Patterns recognition of electric brain activity using artificial neural networks

    Science.gov (United States)

    Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.

    2017-04-01

    An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.

  18. Evaluation of the factors influencing brain language laterality in presurgical planning.

    Science.gov (United States)

    Batouli, Seyed Amir Hossein; Hasani, Nafiseh; Gheisari, Sara; Behzad, Ebrahim; Oghabian, Mohammad Ali

    2016-10-01

    Brain lesions cause functional deficits, and one treatment for this condition is lesion resection. In most cases, presurgical planning (PSP) and the information from laterality indices are necessary for maximum preservation of the critical functions after surgery. Language laterality index (LI) is reliably estimated using functional magnetic resonance imaging (fMRI); however, this measure is under the influence of some external factors. In this study, we investigated the influence of a number of factors on language LI, using data from 120 patients (mean age=35.65 (±13.4) years) who underwent fMRI for PSP. Using two proposed language tasks from our previous works, brain left hemisphere was showed to be dominant for the language function, although a higher LI was obtained using the "Word Generation" task, compared to the "Reverse Word Reading". In addition, decline of LIs with age, and lower LI when the lesion invaded brain language area were observed. Meanwhile, gender, lesion side (affected hemisphere), LI calculation strategy, and fMRI analysis Z-values did not statistically show any influences on the LIs. Although fMRI is widely used to estimate language LI, it is shown here that in order to present a reliable language LI and to correctly select the dominant hemisphere of the brain, the influence of external factors should be carefully considered. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. EP 35. Influence of gender on personality-brain structure relationships

    NARCIS (Netherlands)

    Nostro, A.; Müller, V.I.; Reid, A.T.; Eickhoff, S.B.

    2016-01-01

    Previous studies have shown that males and females differ in personality. In particular, gender differences have been reported for neuroticism and agreeableness (Costa et al., 2001), with women scoring higher on these two traits than men. Although gender has also been shown to influence brain

  20. The influence of heroin abuse on glutathione-dependent enzymes in human brain.

    Science.gov (United States)

    Gutowicz, Marzena; Kaźmierczak, Beata; Barańczyk-Kuźma, Anna

    2011-01-01

    Heroin is an illicit narcotic abused by millions of people worldwide. In our earlier studies we have shown that heroin intoxication changes the antioxidant status in human brain. In the present work we continued our studies by estimating the effect of heroin abuse on reduced glutathione (GSH) and enzymes related to this cofactor, such as glutathione S-transferase detoxifying electrophilics (GST) and organic peroxides (as Se-independent glutathione peroxidase-GSHPx), and Se-dependent glutathione peroxidase (Se-GSHPx) specific mainly for hydrogen peroxide. Studies were conducted on human brains obtained from autopsy of 9 heroin abusers and 8 controls. The level of GSH and the activity of glutathione-related enzymes were determined spectrophotometrically. The expression of GST pi on mRNA and protein level was studied by RT-PCR and Western blotting, respectively. The results indicated significant increase of GST and GSHPx activities, unchanged Se-GSHPx activity, and decreased level of GSH in frontal, temporal, parietal and occipital cortex, brain stem, hippocampus, and white matter of heroin abusers. GST pi expression was increased on both mRNA and protein levels, however the increase was lower in brain stem than in other regions. Heroin affects all regions of human brain, and especially brain stem. Its intoxication leads to an increase of organic rather then inorganic peroxides in various brain regions. Glutathione S-transferase plays an important role during heroin intoxication, however its protective effect is lower in brain stem than in brain cortex or hippocampus. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Brain activity and desire for internet video game play

    Science.gov (United States)

    Han, Doug Hyun; Bolo, Nicolas; Daniels, Melissa A.; Arenella, Lynn; Lyoo, In Kyoon; Renshaw, Perry F.

    2010-01-01

    Objective Recent studies have suggested that the brain circuitry mediating cue induced desire for video games is similar to that elicited by cues related to drugs and alcohol. We hypothesized that desire for internet video games during cue presentation would activate similar brain regions to those which have been linked with craving for drugs or pathological gambling. Methods This study involved the acquisition of diagnostic MRI and fMRI data from 19 healthy male adults (ages 18–23 years) following training and a standardized 10-day period of game play with a specified novel internet video game, “War Rock” (K-network®). Using segments of videotape consisting of five contiguous 90-second segments of alternating resting, matched control and video game-related scenes, desire to play the game was assessed using a seven point visual analogue scale before and after presentation of the videotape. Results In responding to internet video game stimuli, compared to neutral control stimuli, significantly greater activity was identified in left inferior frontal gyrus, left parahippocampal gyrus, right and left parietal lobe, right and left thalamus, and right cerebellum (FDR video game (MIGP) cohort showed significantly greater activity in right medial frontal lobe, right and left frontal pre-central gyrus, right parietal post-central gyrus, right parahippocampal gyrus, and left parietal precuneus gyrus. Controlling for total game time, reported desire for the internet video game in the MIGP cohort was positively correlated with activation in right medial frontal lobe and right parahippocampal gyrus. Discussion The present findings suggest that cue-induced activation to internet video game stimuli may be similar to that observed during cue presentation in persons with substance dependence or pathological gambling. In particular, cues appear to commonly elicit activity in the dorsolateral prefrontal, orbitofrontal cortex, parahippocampal gyrus, and thalamus. PMID:21220070

  2. Brain activity and desire for Internet video game play.

    Science.gov (United States)

    Han, Doug Hyun; Bolo, Nicolas; Daniels, Melissa A; Arenella, Lynn; Lyoo, In Kyoon; Renshaw, Perry F

    2011-01-01

    Recent studies have suggested that the brain circuitry mediating cue-induced desire for video games is similar to that elicited by cues related to drugs and alcohol. We hypothesized that desire for Internet video games during cue presentation would activate similar brain regions to those that have been linked with craving for drugs or pathologic gambling. This study involved the acquisition of diagnostic magnetic resonance imaging and functional magnetic resonance imaging data from 19 healthy male adults (age, 18-23 years) following training and a standardized 10-day period of game play with a specified novel Internet video game, "War Rock" (K2 Network, Irvine, CA). Using segments of videotape consisting of 5 contiguous 90-second segments of alternating resting, matched control, and video game-related scenes, desire to play the game was assessed using a 7-point visual analogue scale before and after presentation of the videotape. In responding to Internet video game stimuli, compared with neutral control stimuli, significantly greater activity was identified in left inferior frontal gyrus, left parahippocampal gyrus, right and left parietal lobe, right and left thalamus, and right cerebellum (false discovery rate Internet video game showed significantly greater activity in right medial frontal lobe, right and left frontal precentral gyrus, right parietal postcentral gyrus, right parahippocampal gyrus, and left parietal precuneus gyrus. Controlling for total game time, reported desire for the Internet video game in the subjects who played more Internet video game was positively correlated with activation in right medial frontal lobe and right parahippocampal gyrus. The present findings suggest that cue-induced activation to Internet video game stimuli may be similar to that observed during cue presentation in persons with substance dependence or pathologic gambling. In particular, cues appear to commonly elicit activity in the dorsolateral prefrontal, orbitofrontal

  3. Evoked bioelectrical brain activity following exposure to ionizing radiation.

    Science.gov (United States)

    Loganovsky, K; Kuts, K

    2017-12-01

    The article provides an overview of modern physiological evidence to support the hypothesis on cortico limbic sys tem dysfunction due to the hippocampal neurogenesis impairment as a basis of the brain interhemispheric asym metry and neurocognitive deficit after radiation exposure. The importance of the research of both evoked poten tials and fields as a highly sensitive and informative method is emphasized.Particular attention is paid to cerebral sensor systems dysfunction as a typical effect of ionizing radiation. Changes in functioning of the central parts of sensory analyzers of different modalities as well as the violation of brain integrative information processes under the influence of small doses of ionizing radiation can be critical when determining the radiation risks of space flight. The possible long term prospects for manned flights into space, including to Mars, given the effects identified are discussed. Potential risks to the central nervous system during space travel comprise cognitive functions impairment, including the volume of short term memory short ening, impaired motor functions, behavioral changes that could affect human performance and health. The remote risks for CNS are considered to be the following possible neuropsychiatric disorders: accelerated brain aging, Alzheimer's disease and other types of dementia. The new radiocerebral dose dependent effect, when applied cog nitive auditory evoked potentials P300 technique with a possible threshold dose of 0.05 Gy, manifesting in a form of disruption of information processing in the Wernicke's area is under discussion. In order to identify neurophys iological biological markers of ionizing radiation further international researches with adequate dosimetry support are necessary. K. Loganovsky, K. Kuts.

  4. Expression and activity of the urokinase plasminogen activator system in canine primary brain tumors

    Directory of Open Access Journals (Sweden)

    Rossmeisl JH

    2017-04-01

    Full Text Available John H Rossmeisl,1–3 Kelli Hall-Manning,4 John L Robertson,1,3,5 Jamie N King,1,2 Rafael V Davalos,3,5 Waldemar Debinski,3 Subbiah Elankumaran6,† 1Veterinary and Comparative Neuro-Oncology Laboratory, 2Department of Small Animal Clinical Sciences, 3The Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC, 4Virginia Tech Animal Laboratory Services, Virginia-Maryland College of Veterinary Medicine, 5Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, 6Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA†The authors regret to advise of the passing of Dr Subbiah Elankumaran prior to publicationBackground: The expression of the urokinase plasminogen activator receptor (uPAR, a glycosylphosphatidylinositol-anchored protein family member, and the activity of its ligand, urokinase-type plasminogen activator (uPA, have been associated with the invasive and metastatic potentials of a variety of human brain tumors through their regulation of extracellular matrix degradation. Domesticated dogs develop naturally occurring brain tumors that share many clinical, phenotypic, molecular, and genetic features with their human counterparts, which has prompted the use of the dogs with spontaneous brain tumors as models to expedite the translation of novel brain tumor therapeutics to humans. There is currently little known regarding the role of the uPA system in canine brain tumorigenesis. The objective of this study was to characterize the expression of uPAR and the activity of uPA in canine brain tumors as justification for the development of uPAR-targeted brain tumor therapeutics in dogs.Methods: We investigated the expression of uPAR in 37 primary canine brain tumors using immunohistochemistry, Western blotting, real

  5. Influence of Musical Enculturation on Brain Responses to Metric Deviants

    Directory of Open Access Journals (Sweden)

    Niels T. Haumann

    2018-04-01

    Full Text Available The ability to recognize metric accents is fundamental in both music and language perception. It has been suggested that music listeners prefer rhythms that follow simple binary meters, which are common in Western music. This means that listeners expect odd-numbered beats to be strong and even-numbered beats to be weak. In support of this, studies have shown that listeners exposed to Western music show stronger novelty and incongruity related P3 and irregularity detection related mismatch negativity (MMN brain responses to attenuated odd- than attenuated even-numbered metric positions. Furthermore, behavioral evidence suggests that music listeners' preferences can be changed by long-term exposure to non-Western rhythms and meters, e.g., by listening to African or Balkan music. In our study, we investigated whether it might be possible to measure effects of music enculturation on neural responses to attenuated tones on specific metric positions. We compared the magnetic mismatch negativity (MMNm to attenuated beats in a “Western group” of listeners (n = 12 mainly exposed to Western music and a “Bicultural group” of listeners (n = 13 exposed for at least 1 year to both Sub-Saharan African music in addition to Western music. We found that in the “Western group” the MMNm was higher in amplitude to deviant tones on odd compared to even metric positions, but not in the “Bicultural group.” In support of this finding, there was also a trend of the “Western group” to rate omitted beats as more surprising on odd than even metric positions, whereas the “Bicultural group” seemed to discriminate less between metric positions in terms of surprise ratings. Also, we observed that the overall latency of the MMNm was significantly shorter in the Bicultural group compared to the Western group. These effects were not biased by possible differences in rhythm perception ability or music training, measured with the Musical Ear Test (MET

  6. Influence of Musical Enculturation on Brain Responses to Metric Deviants.

    Science.gov (United States)

    Haumann, Niels T; Vuust, Peter; Bertelsen, Freja; Garza-Villarreal, Eduardo A

    2018-01-01

    The ability to recognize metric accents is fundamental in both music and language perception. It has been suggested that music listeners prefer rhythms that follow simple binary meters, which are common in Western music. This means that listeners expect odd-numbered beats to be strong and even-numbered beats to be weak. In support of this, studies have shown that listeners exposed to Western music show stronger novelty and incongruity related P3 and irregularity detection related mismatch negativity (MMN) brain responses to attenuated odd- than attenuated even-numbered metric positions. Furthermore, behavioral evidence suggests that music listeners' preferences can be changed by long-term exposure to non-Western rhythms and meters, e.g., by listening to African or Balkan music. In our study, we investigated whether it might be possible to measure effects of music enculturation on neural responses to attenuated tones on specific metric positions. We compared the magnetic mismatch negativity (MMNm) to attenuated beats in a "Western group" of listeners ( n = 12) mainly exposed to Western music and a "Bicultural group" of listeners ( n = 13) exposed for at least 1 year to both Sub-Saharan African music in addition to Western music. We found that in the "Western group" the MMNm was higher in amplitude to deviant tones on odd compared to even metric positions, but not in the "Bicultural group." In support of this finding, there was also a trend of the "Western group" to rate omitted beats as more surprising on odd than even metric positions, whereas the "Bicultural group" seemed to discriminate less between metric positions in terms of surprise ratings. Also, we observed that the overall latency of the MMNm was significantly shorter in the Bicultural group compared to the Western group. These effects were not biased by possible differences in rhythm perception ability or music training, measured with the Musical Ear Test (MET). Furthermore, source localization analyses

  7. Somatic transposition in the brain has the potential to influence the biosynthesis of metabolites involved in Parkinson’s disease and schizophrenia

    Directory of Open Access Journals (Sweden)

    Abrusán György

    2012-11-01

    Full Text Available Abstract It has been recently discovered that transposable elements show high activity in the brain of mammals, however, the magnitude of their influence on its functioning is unclear so far. In this paper, I use flux balance analysis to examine the influence of somatic retrotransposition on brain metabolism, and the biosynthesis of its key metabolites, including neurotransmitters. The analysis shows that somatic transposition in the human brain can influence the biosynthesis of more than 250 metabolites, including dopamine, serotonin and glutamate, shows large inter-individual variability in metabolic effects, and may contribute to the development of Parkinson’s disease and schizophrenia. Reviewers This article was reviewed by Dr Kenji Kojima (nominated by Dr Jerzy Jurka and Dr Eugene Koonin.

  8. Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors.

    Science.gov (United States)

    Wang, Lei; de Kloet, Annette D; Pati, Dipanwita; Hiller, Helmut; Smith, Justin A; Pioquinto, David J; Ludin, Jacob A; Oh, S Paul; Katovich, Michael J; Frazier, Charles J; Raizada, Mohan K; Krause, Eric G

    2016-06-01

    Over-activation of the brain renin-angiotensin system (RAS) has been implicated in the etiology of anxiety disorders. Angiotensin converting enzyme 2 (ACE2) inhibits RAS activity by converting angiotensin-II, the effector peptide of RAS, to angiotensin-(1-7), which activates the Mas receptor (MasR). Whether increasing brain ACE2 activity reduces anxiety by stimulating central MasR is unknown. To test the hypothesis that increasing brain ACE2 activity reduces anxiety-like behavior via central MasR stimulation, we generated male mice overexpressing ACE2 (ACE2 KI mice) and wild type littermate controls (WT). ACE2 KI mice explored the open arms of the elevated plus maze (EPM) significantly more than WT, suggesting increasing ACE2 activity is anxiolytic. Central delivery of diminazene aceturate, an ACE2 activator, to C57BL/6 mice also reduced anxiety-like behavior in the EPM, but centrally administering ACE2 KI mice A-779, a MasR antagonist, abolished their anxiolytic phenotype, suggesting that ACE2 reduces anxiety-like behavior by activating central MasR. To identify the brain circuits mediating these effects, we measured Fos, a marker of neuronal activation, subsequent to EPM exposure and found that ACE2 KI mice had decreased Fos in the bed nucleus of stria terminalis but had increased Fos in the basolateral amygdala (BLA). Within the BLA, we determined that ∼62% of GABAergic neurons contained MasR mRNA and expression of MasR mRNA was upregulated by ACE2 overexpression, suggesting that ACE2 may influence GABA neurotransmission within the BLA via MasR activation. Indeed, ACE2 overexpression was associated with increased frequency of spontaneous inhibitory postsynaptic currents (indicative of presynaptic release of GABA) onto BLA pyramidal neurons and central infusion of A-779 eliminated this effect. Collectively, these results suggest that ACE2 may reduce anxiety-like behavior by activating central MasR that facilitate GABA release onto pyramidal neurons within the

  9. Caspase Activation in Fetal Rat Brain Following Experimental Intrauterine Inflammation

    Science.gov (United States)

    Sharangpani, Aditi; Takanohashi, Asako; Bell, Michael J.

    2009-01-01

    Intrauterine inflammation has been implicated in developmental brain injuries, including the development of periventricular leukomalacia (PVL) and cerebral palsy (CP). Previous studies in our rat model of intrauterine inflammation demonstrated apoptotic cell death in fetal brains within the first 5 days after lipopolysaccharide (LPS) administration to mothers and eventual dysmyelination. Cysteine-containing, aspartate-specific proteases, or caspases, are proteins involved with apoptosis through both intracellular (intrinsic pathway) and extracellular (extrinsic pathway) mechanisms. We hypothesized that cell death in our model would occur mainly via activation of the extrinsic pathway. We further hypothesized that Fas, a member of the tumor necrosis factor receptor (TNFR) superfamily, would be increased and the death inducing signaling complex (DISC) would be detectable. Pregnant rats were injected intracervically with LPS at E15 and immunoblotting, immunohistochemical and immunoprecipitation analyses were performed. The presence of the activated form of the effector caspase (caspase-3) was observed 24 h after LPS administration. Caspase activity assays demonstrated rapid increases in (i) caspases-9 and -10 within 1 h, (ii) caspase-8 at 2 h and (iii) caspase-3 at 4 h. At 24 h after LPS, activated caspase-3+/Fas+ cells were observed within the developing white matter. Lastly, the DISC complex (caspase-8, Fas and Fas-associated Death Domain (FADD)) was observed within 30 min by immunoprecipitation. Apoptosis in our model occurs via both extrinsic and intrinsic pathways, and activation of Fas may play a role. Understanding the mechanisms of cell death in models of intrauterine inflammation may affect development of future strategies to mitigate these injuries in children. PMID:18289516

  10. Musical training influences linguistic abilities in 8-year-old children: more evidence for brain plasticity.

    Science.gov (United States)

    Moreno, Sylvain; Marques, Carlos; Santos, Andreia; Santos, Manuela; Castro, São Luís; Besson, Mireille

    2009-03-01

    We conducted a longitudinal study with 32 nonmusician children over 9 months to determine 1) whether functional differences between musician and nonmusician children reflect specific predispositions for music or result from musical training and 2) whether musical training improves nonmusical brain functions such as reading and linguistic pitch processing. Event-related brain potentials were recorded while 8-year-old children performed tasks designed to test the hypothesis that musical training improves pitch processing not only in music but also in speech. Following the first testing sessions nonmusician children were pseudorandomly assigned to music or to painting training for 6 months and were tested again after training using the same tests. After musical (but not painting) training, children showed enhanced reading and pitch discrimination abilities in speech. Remarkably, 6 months of musical training thus suffices to significantly improve behavior and to influence the development of neural processes as reflected in specific pattern of brain waves. These results reveal positive transfer from music to speech and highlight the influence of musical training. Finally, they demonstrate brain plasticity in showing that relatively short periods of training have strong consequences on the functional organization of the children's brain.

  11. Changing patterns of brain activation during maze learning.

    Science.gov (United States)

    Van Horn, J D; Gold, J M; Esposito, G; Ostrem, J L; Mattay, V; Weinberger, D R; Berman, K F

    1998-05-18

    Recent research has found that patterns of brain activation involving the frontal cortex during novel task performance change dramatically following practice and repeat performance. Evidence for differential left vs. right frontal lobe activation, respectively, during episodic memory encoding and retrieval has also been reported. To examine these potentially related issues regional cerebral blood flow (rCBF) was measured in 15 normal volunteers using positron emission tomography (PET) during the naive and practiced performance of a maze task paradigm. SPM analysis indicated a largely right-sided, frontal lobe activation during naive performance. Following training and practice, performance of the same maze task elicited a more posterior pattern of rCBF activation involving posterior cingulate and precuneus. The change in the pattern of rCBF activation between novel and practiced task conditions agrees with results found in previous studies using repeat task methodology, and indicates that the neural circuitry required for encoding novel task information differs from that required when the same task has become familiar and information is being recalled. The right-sided preponderance of activation during naive performance may relate to task novelty and the spatially-based nature of the stimuli, whereas posterior areas activated during repeat performance are those previously found to be associated with visuospatial memory recall. Activation of these areas, however, does not agree with previously reported findings of left-sided activation during verbal episodic memory encoding and right-sided activation during retrieval, suggesting different neural substrates for verbal and visuospatial processing within memory. Copyright 1998 Elsevier Science B.V.

  12. Fenbendazole treatment may influence lipopolysaccharide effects in rat brain.

    Science.gov (United States)

    Hunter, Randy L; Choi, Dong-Young; Kincer, Jeanie F; Cass, Wayne A; Bing, Guoying; Gash, Don M

    2007-10-01

    In evaluating discrepant results between experiments in our laboratory, we collected data that challenge the notion that anthelminthic drugs like FBZ do not alter inflammatory responses. We found that FBZ significantly modulates inflammation in F344 rats intrastriatally injected with LPS. FBZ treatment of LPS-injected rats significantly increased weight loss, microglial activation, and dopamine loss; in addition, FBZ attenuated the LPS-induced loss of astrocytes. Therefore, FBZ treatment altered the effects of LPS injection. Caution should be used in interpreting data collected from rats treated with LPS and FBZ.

  13. A balancing act of the brain: activations and deactivations driven by cognitive load

    OpenAIRE

    Arsalidou, Marie; Pascual-Leone, Juan; Johnson, Janice; Morris, Drew; Taylor, Margot J

    2013-01-01

    The majority of neuroimaging studies focus on brain activity during performance of cognitive tasks; however, some studies focus on brain areas that activate in the absence of a task. Despite the surge of research comparing these contrasted areas of brain function, their interrelation is not well understood. We systematically manipulated cognitive load in a working memory task to examine concurrently the relation between activity elicited by the task versus activity during control conditions. ...

  14. Influences of climacteric in female sexual activity

    Directory of Open Access Journals (Sweden)

    Anthonio Alisancharles Batista de Almeida

    2016-01-01

    Full Text Available Objective: to identify complaints of sexual function related to climacteric symptoms among women in climacteric age. Methods: this is an descritive study. A sample of 330 women aged from 35 to 65 years old, with three previous Pap tests. We used a semi-structured questionnaire developed by the researchers. A descriptive statistical analysis was performed having the central tendency of proportion and measure the average as a parameter. Results: it was evidenced that 50.0% were between 35-45 years, 73.0% were sexually active, 59.4% had decreased libido, and 58.5% reported dyspareunia. Conclusion: it is necessary that the health services and professionals are aware of the influence of climacteric on women’s health to develop strategies aimed at quality of life.

  15. Shared Reading Quality and Brain Activation during Story Listening in Preschool-Age Children.

    Science.gov (United States)

    Hutton, John S; Phelan, Kieran; Horowitz-Kraus, Tzipi; Dudley, Jonathan; Altaye, Mekibib; DeWitt, Tom; Holland, Scott K

    2017-12-01

    To explore the relationship between maternal shared reading quality (verbal interactivity and engagement) and brain function during story listening in at-risk, preschool-age children, in the context of behavioral evidence and American Academy of Pediatrics, recommendations. In this cross-sectional study, 22 healthy, 4-year-old girls from low socioeconomic status households completed functional magnetic resonance imaging using an established story listening task, followed by videotaped observation of uncoached mother-daughter reading of the same, age-appropriate picture book. Shared reading quality was independently scored applying dialogic reading and other evidence-based criteria reflecting interactivity and engagement, and applied as a predictor of neural activation during the functional magnetic resonance imaging task, controlling for income and maternal education. Shared reading quality scores were generally low and negatively correlated with maternal distraction by smartphones (P reading quality is positively correlated with brain activation supporting complex language, executive function, and social-emotional processing in at-risk, preschool-age children. These findings represent novel neural biomarkers of how this modifiable aspect of home reading environment may influence foundational emergent literacy skills, reinforce behavioral evidence and American Academy of Pediatrics, recommendations, and underscore the potential of dialogic reading interventions to promote healthy brain development, especially in at-risk households. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effects of early life adverse experiences on brain activity: Implications from maternal separation models in rodents

    Directory of Open Access Journals (Sweden)

    Mayumi eNishi

    2014-06-01

    Full Text Available During postnatal development, adverse early life experiences can affect the formation of neuronal circuits and exert long-lasting influences on neural function. Many studies have shown that daily repeated MS, an animal model of early life stress, can modulate the hypothalamic-pituitary-adrenal axis (HPA axis and can affect subsequent brain function and emotional behavior during adulthood. However, the molecular basis of the long-lasting effects of early life stress on brain function has not been completely elucidated. In this review, we introduce various cases of MS in rodents and illustrate the alterations in HPA axis activity by focusing on corticosterone (CORT, an end product of the HPA axis in rodents. We then present a characterization of the brain regions affected by various patterns of MS, including repeated MS and single time MS at various stages before weaning, by investigating c-Fos expression, a biological marker of neuronal activity. These CORT and c-Fos studies suggest that repeated early life stress may affect neuronal function in region- and temporal-specific manners, indicating a critical period for habituation to early life stress. Next, we discuss how early life stress can impact behavior, namely by inducing depression, anxiety or eating disorders. Furthermore, alterations in gene expression in adult mice exposed to MS, especially epigenetic changes of DNA methylation, are discussed.

  17. Brain Activity and Functional Connectivity Associated with Hypnosis.

    Science.gov (United States)

    Jiang, Heidi; White, Matthew P; Greicius, Michael D; Waelde, Lynn C; Spiegel, David

    2017-08-01

    Hypnosis has proven clinical utility, yet changes in brain activity underlying the hypnotic state have not yet been fully identified. Previous research suggests that hypnosis is associated with decreased default mode network (DMN) activity and that high hypnotizability is associated with greater functional connectivity between the executive control network (ECN) and the salience network (SN). We used functional magnetic resonance imaging to investigate activity and functional connectivity among these three networks in hypnosis. We selected 57 of 545 healthy subjects with very high or low hypnotizability using two hypnotizability scales. All subjects underwent four conditions in the scanner: rest, memory retrieval, and two different hypnosis experiences guided by standard pre-recorded instructions in counterbalanced order. Seeds for the ECN, SN, and DMN were left and right dorsolateral prefrontal cortex, dorsal anterior cingulate cortex (dACC), and posterior cingulate cortex (PCC), respectively. During hypnosis there was reduced activity in the dACC, increased functional connectivity between the dorsolateral prefrontal cortex (DLPFC;ECN) and the insula in the SN, and reduced connectivity between the ECN (DLPFC) and the DMN (PCC). These changes in neural activity underlie the focused attention, enhanced somatic and emotional control, and lack of self-consciousness that characterizes hypnosis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Gender differences in brain activation on a mental rotation task.

    Science.gov (United States)

    Semrud-Clikeman, Margaret; Fine, Jodene Goldenring; Bledsoe, Jesse; Zhu, David C

    2012-10-01

    Few neuroimaging studies have explored gender differences on mental rotation tasks. Most studies have utilized samples with both genders, samples mainly consisting of men, or samples with six or fewer females. Graduate students in science fields or liberal arts programs (20 males, 20 females) completed a mental rotation task during functional magnetic resonance imaging (fMRI). When a pair of cube figures was shown, the participant made a keypad response based on whether the pair is the same/similar or different. Regardless of gender, the bilateral middle frontal gyrus, bilateral intraparietal sulcus (IPS), and the left precuneus were activated when a subject tried to solve the mental rotation task. Increased activation in the right inferior frontal gyrus/middle frontal gyrus, the left precuneus/posterior cingulate cortex/cuneus region, and the left middle occipital gyrus was found for men as compared to women. Better accuracy and shorter response times were correlated with an increased activation in the bilateral intraparietal sulcus. No significant brain activity differences related to mental rotation were found between academic majors. These findings suggest that networks involved in visual attention appear to be more strongly activated in the mental rotation tasks in men as compared to women. It also suggests that men use a more automatic process when analyzing complex visual reasoning tasks while women use a more top-down process.

  19. Brain-specific transcriptional regulator T-brain-1 controls brain wiring and neuronal activity in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Tzyy-Nan eHuang

    2015-11-01

    Full Text Available T-brain-1 (TBR1 is a brain-specific T-box transcription factor. In 1995, Tbr1 was first identified from a subtractive hybridization that compared mouse embryonic and adult telencephalons. Previous studies of Tbr1–/– mice have indicated critical roles for TBR1 in the development of the cerebral cortex, amygdala and olfactory bulb. Neuronal migration and axonal projection are two important developmental features controlled by TBR1. Recently, recurrent de novo disruptive mutations in the TBR1 gene have been found in patients with autism spectrum disorders (ASDs. Human genetic studies have identified TBR1 as a high-confidence risk factor for ASDs. Because only one allele of the TBR1 gene is mutated in these patients, Tbr1+/– mice serve as a good genetic mouse model to explore the mechanism by which de novo TBR1 mutation leads to ASDs. Although neuronal migration and axonal projection defects of cerebral cortex are the most prominent phenotypes in Tbr1–/– mice, these features are not found in Tbr1+/– mice. Instead, inter- and intra-amygdalar axonal projections and NMDAR expression and activity in amygdala are particularly susceptible to Tbr1 haploinsufficiency. The studies indicated that both abnormal brain wiring (abnormal amygdalar connections and excitation/inhibition imbalance (NMDAR hypoactivity, two prominent models for ASD etiology, are present in Tbr1+/– mice. Moreover, calcium/calmodulin-dependent serine protein kinase (CASK was found to interact with TBR1. The CASK-TBR1 complex had been shown to directly bind the promoter of the Grin2b gene, which is also known as Nmdar2b, and upregulate Grin2b expression. This molecular function of TBR1 provides an explanation for NMDAR hypoactivity in Tbr1+/– mice. In addition to Grin2b, cell adhesion molecules-including Ntng1, Cdh8 and Cntn2-are also regulated by TBR1 to control axonal projections of amygdala. Taken together, the studies of Tbr1 provide an integrated picture of ASD

  20. Normal saline influences coagulation and endothelial function after traumatic brain injury and hemorrhagic shock in pigs

    DEFF Research Database (Denmark)

    Dekker, Simone E; Sillesen, Martin; Bambakidis, Ted

    2014-01-01

    ), colloids (Hextend [HEX]), and fresh frozen plasma (FFP) resuscitation are associated with differential effects on coagulation and endothelial systems. METHODS: We subjected 15 Yorkshire swine to TBI and HS (40% blood volume), and kept in HS for 2 hours before resuscitation with NS, HEX, or FFP. Markers......BACKGROUND: Traumatic brain injury (TBI) and hemorrhagic shock (HS) are the leading causes of trauma-related deaths. These insults disrupt coagulation and endothelial systems. This study investigated whether previously reported differences in lesion size and brain swelling during normal saline (NS...... of endothelial activation (E-selectin, Intercellular adhesion molecule [ICAM]-1), coagulation activation (prothrombin fragment 1 + 2), and natural anticoagulation (activated protein C [aPC]) were determined in serum and brain whole cell lysates. RESULTS: Serum levels of aPC were greater in the NS group (203 ± 30...

  1. Deep Brain Stimulation of the Pedunculopontine Tegmental Nucleus (PPN Influences Visual Contrast Sensitivity in Human Observers.

    Directory of Open Access Journals (Sweden)

    Hendrik Strumpf

    Full Text Available The parapontine nucleus of the thalamus (PPN is a neuromodulatory midbrain structure with widespread connectivity to cortical and subcortical motor structures, as well as the spinal cord. The PPN also projects to the thalamus, including visual relay nuclei like the LGN and the pulvinar. Moreover, there is intense connectivity with sensory structures of the tegmentum in particular with the superior colliculus (SC. Given the existence and abundance of projections to visual sensory structures, it is likely that activity in the PPN has some modulatory influence on visual sensory selection. Here we address this possibility by measuring the visual discrimination performance (luminance contrast thresholds in a group of patients with Parkinson's Disease (PD treated with deep-brain stimulation (DBS of the PPN to control gait and postural motor deficits. In each patient we measured the luminance-contrast threshold of being able to discriminate an orientation-target (Gabor-grating as a function of stimulation frequency (high 60Hz, low 8/10, no stimulation. Thresholds were determined using a standard staircase-protocol that is based on parameter estimation by sequential testing (PEST. We observed that under low frequency stimulation thresholds increased relative to no and high frequency stimulation in five out of six patients, suggesting that DBS of the PPN has a frequency-dependent impact on visual selection processes at a rather elementary perceptual level.

  2. Males and females differ in brain activation during cognitive tasks.

    Science.gov (United States)

    Bell, Emily C; Willson, Morgan C; Wilman, Alan H; Dave, Sanjay; Silverstone, Peter H

    2006-04-01

    To examine the effect of gender on regional brain activity, we utilized functional magnetic resonance imaging (fMRI) during a motor task and three cognitive tasks; a word generation task, a spatial attention task, and a working memory task in healthy male (n = 23) and female (n = 10) volunteers. Functional data were examined for group differences both in the number of pixels activated, and the blood-oxygen-level-dependent (BOLD) magnitude during each task. Males had a significantly greater mean activation than females in the working memory task with a greater number of pixels being activated in the right superior parietal gyrus and right inferior occipital gyrus, and a greater BOLD magnitude occurring in the left inferior parietal lobe. However, despite these fMRI changes, there were no significant differences between males and females on cognitive performance of the task. In contrast, in the spatial attention task, men performed better at this task than women, but there were no significant functional differences between the two groups. In the word generation task, there were no external measures of performance, but in the functional measurements, males had a significantly greater mean activation than females, where males had a significantly greater BOLD signal magnitude in the left and right dorsolateral prefrontal cortex, the right inferior parietal lobe, and the cingulate. In neither of the motor tasks (right or left hand) did males and females perform differently. Our fMRI findings during the motor tasks were a greater mean BOLD signal magnitude in males in the right hand motor task, compared to females where males had an increased BOLD signal magnitude in the right inferior parietal gyrus and in the left inferior frontal gyrus. In conclusion, these results demonstrate differential patterns of activation in males and females during a variety of cognitive tasks, even though performance in these tasks may not vary, and also that variability in performance may not

  3. Tasting calories differentially affects brain activation during hunger and satiety.

    Science.gov (United States)

    van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M

    2015-02-15

    An important function of eating is ingesting energy. Our objectives were to assess whether oral exposure to caloric and non-caloric stimuli elicits discriminable responses in the brain and to determine in how far these responses are modulated by hunger state and sweetness. Thirty women tasted three stimuli in two motivational states (hunger and satiety) while their brain responses were measured using functional magnetic resonance imaging in a randomized crossover design. Stimuli were solutions of sucralose (sweet, no energy), maltodextrin (non-sweet, energy) and sucralose+maltodextrin (sweet, energy). We found no main effect of energy content and no interaction between energy content and sweetness. However, there was an interaction between hunger state and energy content in the median cingulate (bilaterally), ventrolateral prefrontal cortex, anterior insula and thalamus. This indicates that the anterior insula and thalamus, areas in which hunger state and taste of a stimulus are integrated, also integrate hunger state with caloric content of a taste stimulus. Furthermore, in the median cingulate and ventrolateral prefrontal cortex, tasting energy resulted in more activation during satiety compared to hunger. This finding indicates that these areas, which are known to be involved in processes that require approach and avoidance, are also involved in guiding ingestive behavior. In conclusion, our results suggest that energy sensing is a hunger state dependent process, in which the median cingulate, ventrolateral prefrontal cortex, anterior insula and thalamus play a central role by integrating hunger state with stimulus relevance. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The Influence of Medical Evaluation Board Status on Symptom Reporting Among Service Members with Traumatic Brain Injury

    Science.gov (United States)

    2017-04-21

    MDW/SGVU SUBJECT: Professional Presentation Approvai 11APR 20 17 1. Your paper, entitled The Influence of Medical Evaluation Board Status on... influence o f medical evaluation board status on symptom reporting among service members w ith traumatic brain injury 7. FUNDING RECEIVED FOR THIS STUDY? D...Page 3 of 3 Pages Title: The influence of medical evaluation board status on symptom reporting among service members with traumatic brain injury

  5. Baseline and cognition activated brain SPECT imaging in depression

    International Nuclear Information System (INIS)

    Zhao Jinhua; Lin Xiangtong; Jiang Kaida; Liu Yongchang; Xu Lianqin

    1998-01-01

    Purpose: To evaluate the regional cerebral blood flow (rCBF) abnormalities through the semiquantitative analysis of the baseline and cognition activated rCBF imaging in unmedicated depressed patients. Methods: 27 depressed patients unmedicated by anti-depressants were enrolled. The diagnosis (depression of moderate degree with somatization) was confirmed by the ICD-10 criteria. 15 age matched normal controls were studied under identical conditions. Baseline and cognition activated 99m Tc-ECD SPECT were performed on 21 of the 27 patients with depression and 13 of the 15 normal controls. Baseline 99m Tc-ECD SPECT alone were performed on the rest 6 patients with depression and 2 normal controls. The cognitive activation is achieved by Wisconsin Card Sorting Test (WCST). 1110 MBq of 99m Tc-ECD was administered by intravenous bolus injection 5 minutes after the onset of the WCST. Semi-quantitative analysis was conducted with the 7th, 8th, 9th, 10th, 11th slices of the transaxial imaging. rCBF ratios of every ROI were calculated using the average tissue activity in the region divided by the maximum activity in the cerebellum. Results: 1) The baseline rCBF of left frontal (0.720) and left temporal lobe (0.720) were decreased significantly in depressed patients comparing with those of the control subjects. 2) The activated rCBF of left frontal lobe (0.719) and left temporal lobe (0.690), left parietal lobe (0.701) were decreased evidently than those of the controls. Conclusions: 1) Hypoperfusions of left frontal and left temporal cortexes were identified in patients with depression. 2) The hypoperfusion of left frontal and left temporal cortexes may be the cause of cognition disorder and depressed mood in patients with depression. 3) Cognition activated brain perfusion imaging is helpful for making a more accurate diagnosis of depression

  6. PTSD Psychotherapy Outcome Predicted by Brain Activation During Emotional Reactivity and Regulation.

    Science.gov (United States)

    Fonzo, Gregory A; Goodkind, Madeleine S; Oathes, Desmond J; Zaiko, Yevgeniya V; Harvey, Meredith; Peng, Kathy K; Weiss, M Elizabeth; Thompson, Allison L; Zack, Sanno E; Lindley, Steven E; Arnow, Bruce A; Jo, Booil; Gross, James J; Rothbaum, Barbara O; Etkin, Amit

    2017-12-01

    Exposure therapy is an effective treatment for posttraumatic stress disorder (PTSD), but many patients do not respond. Brain functions governing treatment outcome are not well characterized. The authors examined brain systems relevant to emotional reactivity and regulation, constructs that are thought to be central to PTSD and exposure therapy effects, to identify the functional traits of individuals most likely to benefit from treatment. Individuals with PTSD underwent functional MRI (fMRI) while completing three tasks assessing emotional reactivity and regulation. Participants were then randomly assigned to immediate prolonged exposure treatment (N=36) or a waiting list condition (N=30). A random subset of the prolonged exposure group (N=17) underwent single-pulse transcranial magnetic stimulation (TMS) concurrent with fMRI to examine whether predictive activation patterns reflect causal influence within circuits. Linear mixed-effects modeling in line with the intent-to-treat principle was used to examine how baseline brain function moderated the effect of treatment on PTSD symptoms. At baseline, individuals with larger treatment-related symptom reductions (compared with the waiting list condition) demonstrated 1) greater dorsal prefrontal activation and 2) less left amygdala activation, both during emotion reactivity; 3) better inhibition of the left amygdala induced by single TMS pulses to the right dorsolateral prefrontal cortex; and 4) greater ventromedial prefrontal/ventral striatal activation during emotional conflict regulation. Reappraisal-related activation was not a significant moderator of the treatment effect. Capacity to benefit from prolonged exposure in PTSD is gated by the degree to which prefrontal resources are spontaneously engaged when superficially processing threat and adaptively mitigating emotional interference, but not when deliberately reducing negative emotionality.

  7. Magnetic field effects on brain monoamine oxidase activity

    Energy Technology Data Exchange (ETDEWEB)

    Borets, V.M.; Ostrovskiy, V.Yu.; Bankovskiy, A.A.; Dudinskaya, T.F.

    1985-03-01

    In view of the increasing use of magnetotherapy, studies were conducted on the effects of 35 mTesla magnetic fields on monoamine oxidase activity in the rat brain. Under in vitro conditions a constant magnetic field in the continuous mode was most effective in inhibiting deamination of dopamine following 1 min exposure, while in vivo studies with 8 min or 10 day exposures showed that inhibition was obtained only with a variable field in the continuous mode. However, inhibition of dopamine deamination was only evident within the first 24 h after exposure was terminated. In addition, in none of the cases was norepinephrine deamination inhibited. The effects of the magnetic fields were, therefore, transient and selective with the CNS as the target system. 9 references.

  8. Role of synchronized oscillatory brain activity for human pain perception.

    Science.gov (United States)

    Hauck, Michael; Lorenz, Jürgen; Engel, Andreas K

    2008-01-01

    The understanding of cortical pain processing in humans has significantly improved since the development of modern neuroimaging techniques. Non-invasive electrophysiological approaches such as electro- and magnetoencephalography have proven to be helpful tools for the real-time investigation of neuronal signals and synchronous communication between cortical areas. In particular, time-frequency decomposition of signals recorded with these techniques seems to be a promising approach because different pain-related oscillatory changes can be observed within different frequency bands, which are likely to be linked to specific sensory and motor functions. In this review we discuss the latest evidence on pain-induced time-frequency signals and propose that changes in oscillatory activity reflect an essential communication mechanism in the brain that is modulated during pain processing. The importance of synchronization processes for normal and pathological pain processing, such as chronic pain states, is discussed.

  9. Decrease in fMRI brain activation during working memory performed after sleeping under 10 lux light.

    Science.gov (United States)

    Kang, Seung-Gul; Yoon, Ho-Kyoung; Cho, Chul-Hyun; Kwon, Soonwook; Kang, June; Park, Young-Min; Lee, Eunil; Kim, Leen; Lee, Heon-Jeong

    2016-11-09

    The aim of this study was to investigate the effect of exposure to dim light at night (dLAN) when sleeping on functional brain activation during a working-memory tasks. We conducted the brain functional magnetic resonance imaging (fMRI) analysis on 20 healthy male subjects. All participants slept in a polysomnography laboratory without light exposure on the first and second nights and under a dim-light condition of either 5 or 10 lux on the third night. The fMRI scanning was conducted during n-back tasks after second and third nights. Statistical parametric maps revealed less activation in the right inferior frontal gyrus (IFG) after exposure to 10-lux light. The brain activity in the right and left IFG areas decreased more during the 2-back task than during the 1- or 0-back task in the 10-lux group. The exposure to 5-lux light had no significant effect on brain activities. The exposure to dLAN might influence the brain function which is related to the cognition.

  10. Hypertension induces brain β-amyloid accumulation, cognitive impairment, and memory deterioration through activation of receptor for advanced glycation end products in brain vasculature.

    Science.gov (United States)

    Carnevale, Daniela; Mascio, Giada; D'Andrea, Ivana; Fardella, Valentina; Bell, Robert D; Branchi, Igor; Pallante, Fabio; Zlokovic, Berislav; Yan, Shirley Shidu; Lembo, Giuseppe

    2012-07-01

    Although epidemiological data associate hypertension with a strong predisposition to develop Alzheimer disease, no mechanistic explanation exists so far. We developed a model of hypertension, obtained by transverse aortic constriction, leading to alterations typical of Alzheimer disease, such as amyloid plaques, neuroinflammation, blood-brain barrier dysfunction, and cognitive impairment, shown here for the first time. The aim of this work was to investigate the mechanisms involved in Alzheimer disease of hypertensive mice. We focused on receptor for advanced glycation end products (RAGE) that critically regulates Aβ transport at the blood-brain barrier and could be influenced by vascular factors. The hypertensive challenge had an early and sustained effect on RAGE upregulation in brain vessels of the cortex and hippocampus. Interestingly, RAGE inhibition protected from hypertension-induced Alzheimer pathology, as showed by rescue from cognitive impairment and parenchymal Aβ deposition. The increased RAGE expression in transverse aortic coarctation mice was induced by increased circulating advanced glycation end products and sustained by their later deposition in brain vessels. Interestingly, a daily treatment with an advanced glycation end product inhibitor or antioxidant prevented the development of Alzheimer traits. So far, Alzheimer pathology in experimental animal models has been recognized using only transgenic mice overexpressing amyloid precursor. This is the first study demonstrating that a chronic vascular insult can activate brain vascular RAGE, favoring parenchymal Aβ deposition and the onset of cognitive deterioration. Overall we demonstrate that RAGE activation in brain vessels is a crucial pathogenetic event in hypertension-induced Alzheimer disease, suggesting that inhibiting this target can limit the onset of vascular-related Alzheimer disease.

  11. Brain activity patterns induced by interrupting the cognitive processes with online advertising.

    Science.gov (United States)

    Rejer, Izabela; Jankowski, Jarosław

    2017-11-01

    As a result of the increasing role of online advertising and strong competition among advertisers, intrusive techniques are commonly used to attract web users' attention. Moreover, since marketing content is usually delivered to the target audience when they are performing typical online tasks, like searching for information or reading online content, its delivery interrupts the web user's current cognitive process. The question posed by many researchers in the field of online advertising is: how should we measure the influence of interruption of cognitive processes on human behavior and emotional state? Much research has been conducted in this field; however, most of this research has focused on monitoring activity in the simulated environment, or processing declarative responses given by users in prepared questionnaires. In this paper, a more direct real-time approach is taken, and the effect of the interruption on a web user is analyzed directly by studying the activity of his brain. This paper presents the results of an experiment that was conducted to find the brain activity patterns associated with interruptions of the cognitive process by showing internet advertisements during a text-reading task. Three specific aspects were addressed in the experiment: individual patterns, the consistency of these patterns across trials, and the intra-subject correlation of the individual patterns. Two main effects were observed for most subjects: a drop in activity in the frontal and prefrontal cortical areas across all frequency bands, and significant changes in the frontal/prefrontal asymmetry index.

  12. No Effect of Commercial Cognitive Training on Brain Activity, Choice Behavior, or Cognitive Performance.

    Science.gov (United States)

    Kable, Joseph W; Caulfield, M Kathleen; Falcone, Mary; McConnell, Mairead; Bernardo, Leah; Parthasarathi, Trishala; Cooper, Nicole; Ashare, Rebecca; Audrain-McGovern, Janet; Hornik, Robert; Diefenbach, Paul; Lee, Frank J; Lerman, Caryn

    2017-08-02

    Increased preference for immediate over delayed rewards and for risky over certain rewards has been associated with unhealthy behavioral choices. Motivated by evidence that enhanced cognitive control can shift choice behavior away from immediate and risky rewards, we tested whether training executive cognitive function could influence choice behavior and brain responses. In this randomized controlled trial, 128 young adults (71 male, 57 female) participated in 10 weeks of training with either a commercial web-based cognitive training program or web-based video games that do not specifically target executive function or adapt the level of difficulty throughout training. Pretraining and post-training, participants completed cognitive assessments and functional magnetic resonance imaging during performance of the following validated decision-making tasks: delay discounting (choices between smaller rewards now vs larger rewards in the future) and risk sensitivity (choices between larger riskier rewards vs smaller certain rewards). Contrary to our hypothesis, we found no evidence that cognitive training influences neural activity during decision-making; nor did we find effects of cognitive training on measures of delay discounting or risk sensitivity. Participants in the commercial training condition improved with practice on the specific tasks they performed during training, but participants in both conditions showed similar improvement on standardized cognitive measures over time. Moreover, the degree of improvement was comparable to that observed in individuals who were reassessed without any training whatsoever. Commercial adaptive cognitive training appears to have no benefits in healthy young adults above those of standard video games for measures of brain activity, choice behavior, or cognitive performance. SIGNIFICANCE STATEMENT Engagement of neural regions and circuits important in executive cognitive function can bias behavioral choices away from immediate

  13. Culture modulates brain activity during empathy with anger.

    Science.gov (United States)

    de Greck, Moritz; Shi, Zhenhao; Wang, Gang; Zuo, Xiangyu; Yang, Xuedong; Wang, Xiaoying; Northoff, Georg; Han, Shihui

    2012-02-01

    Interdependent cultures (such as the Chinese) and independent cultures (such as the German) differ in their attitude towards harmony that is more valued in interdependent cultures. Interdependent and independent cultures also differ in their appreciation of anger--an emotion that implies the disruption of harmony. The present study investigated if interdependent and independent cultures foster distinct brain activity associated with empathic processing of familiar angry, familiar neutral, and unfamiliar neutral faces. Using functional MRI, we scanned Chinese and German healthy subjects during an intentional empathy task, a control task (the evaluation of skin color), and a baseline condition. The subject groups were matched with regard to age, gender, and education. Behaviorally, Chinese subjects described themselves as significantly more interdependent compared to German subjects. The contrast 'intentional empathy for familiar angry'>'baseline' revealed several regions, including the left inferior frontal cortex, the left supplementary motor area, and the left insula, that showed comparable hemodynamic responses in both groups. However, the left dorsolateral prefrontal cortex had stronger hemodynamic responses in Chinese subjects in the contrast 'intentional empathy for familiar angry'>'baseline'. Germans, in contrast, showed stronger hemodynamic responses in the right temporo-parietal junction, right inferior and superior temporal gyrus, and left middle insula for the same contrast. Hemodynamic responses in the latter three brain regions correlated with interdependences scores over all subjects. Our results suggest that enhanced emotion regulation during empathy with anger in the interdependent lifestyle is mediated by the left dorsolateral prefrontal cortex. Increased tolerance towards the expression of anger in the independent lifestyle, in contrast, is associated with increased activity of the right inferior and superior temporal gyrus and the left middle

  14. A putative Alzheimer's disease risk allele in PCK1 influences brain atrophy in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Zongqi Xia

    2010-11-01

    Full Text Available Brain atrophy and cognitive dysfunction are neurodegenerative features of Multiple Sclerosis (MS. We used a candidate gene approach to address whether genetic variants implicated in susceptibility to late onset Alzheimer's Disease (AD influence brain volume and cognition in MS patients.MS subjects were genotyped for five single nucleotide polymorphisms (snps associated with susceptibility to AD: PICALM, CR1, CLU, PCK1, and ZNF224. We assessed brain volume using Brain Parenchymal Fraction (BPF measurements obtained from Magnetic Resonance Imaging (MRI data and cognitive function using the Symbol Digit Modalities Test (SDMT. Genotypes were correlated with cross-sectional BPF and SDMT scores using linear regression after adjusting for sex, age at symptom onset, and disease duration. 722 MS patients with a mean (±SD age at enrollment of 41 (±10 years were followed for 44 (±28 months. The AD risk-associated allele of a non-synonymous SNP in the PCK1 locus (rs8192708G is associated with a smaller average brain volume (P=0.0047 at the baseline MRI, but it does not impact our baseline estimate of cognition. PCK1 is additionally associated with higher baseline T2-hyperintense lesion volume (P=0.0088. Finally, we provide technical validation of our observation in a subset of 641 subjects that have more than one MRI study, demonstrating the same association between PCK1 and smaller average brain volume (P=0.0089 at the last MRI visit.Our study provides suggestive evidence for greater brain atrophy in MS patients bearing the PCK1 allele associated with AD-susceptibility, yielding new insights into potentially shared neurodegenerative process between MS and late onset AD.

  15. The influences of silent cerebral infarction and hypertension on brain atrophy in normal adults

    International Nuclear Information System (INIS)

    Zhefeng, Quan; Bokura, Hirokazu; Iijima, Kenichi; Oguro, Hiroaki; Yamaguchi, Shuhei

    2008-01-01

    We studied the influences of silent brain infarction (SBI) and hypertension on brain atrophy and its longitudinal progression in healthy adults. MRI scans were performed on 109 neurologically normal adults (mean age, 58.6±5.8 years), with follow-up at an average of 4.9 years later. Patient histories of hypertension, smoking habits, and alcohol consumption were examined. We evaluated brain atrophy using the brain atrophy index (BAI; the ratio of the brain area to the intracranial area) and the ventricular atrophy index (VAI; the ratio of the ventricular area to the brain area) on MRI T1-weighted images at the levels of the basal ganglia and lateral ventricle in horizontal sections. There were no differences in age, sex, dyslipidemia, body mass index (BMI), smoking habit, and alcohol consumption between the normal group and the SBI or hypertension group. The BAI was significantly lower at entry for the SBI (+) group than for the SBI (-) group at both the basal ganglia and lateral ventricle levels (basal ganglia level, p=0.02; and lateral ventricle level, p=0.05). Moreover, the VAI was significantly higher at entry for the SBI (+) group than for the SBI (-) group at the lateral ventricle level (p=0.03). Furthermore, the BAI was significantly lower at entry for the hypertensive group than for the non-hypertensive group at the basal ganglia level (p=0.007). There were no significant differences in the annual variations of the BAI and VAI between the normal group and the SBI (+) or hypertensive group. The present results suggest that the SBI and hypertension are accelerating factors for brain atrophy and ventricular dilatation. (author)

  16. The influences of silent cerebral infarction and hypertension on brain atrophy in normal adults

    Energy Technology Data Exchange (ETDEWEB)

    Zhefeng, Quan; Bokura, Hirokazu; Iijima, Kenichi; Oguro, Hiroaki; Yamaguchi, Shuhei [Shimane Univ., Faculty of Medicine, Izumo, Shimane (Japan)

    2008-03-15

    We studied the influences of silent brain infarction (SBI) and hypertension on brain atrophy and its longitudinal progression in healthy adults. MRI scans were performed on 109 neurologically normal adults (mean age, 58.6{+-}5.8 years), with follow-up at an average of 4.9 years later. Patient histories of hypertension, smoking habits, and alcohol consumption were examined. We evaluated brain atrophy using the brain atrophy index (BAI; the ratio of the brain area to the intracranial area) and the ventricular atrophy index (VAI; the ratio of the ventricular area to the brain area) on MRI T1-weighted images at the levels of the basal ganglia and lateral ventricle in horizontal sections. There were no differences in age, sex, dyslipidemia, body mass index (BMI), smoking habit, and alcohol consumption between the normal group and the SBI or hypertension group. The BAI was significantly lower at entry for the SBI (+) group than for the SBI (-) group at both the basal ganglia and lateral ventricle levels (basal ganglia level, p=0.02; and lateral ventricle level, p=0.05). Moreover, the VAI was significantly higher at entry for the SBI (+) group than for the SBI (-) group at the lateral ventricle level (p=0.03). Furthermore, the BAI was significantly lower at entry for the hypertensive group than for the non-hypertensive group at the basal ganglia level (p=0.007). There were no significant differences in the annual variations of the BAI and VAI between the normal group and the SBI (+) or hypertensive group. The present results suggest that the SBI and hypertension are accelerating factors for brain atrophy and ventricular dilatation. (author)

  17. Mapping of brain activity by automated volume analysis of immediate early genes

    Science.gov (United States)

    Renier, Nicolas; Adams, Eliza L.; Kirst, Christoph; Wu, Zhuhao; Azevedo, Ricardo; Kohl, Johannes; Autry, Anita E.; Kadiri, Lolahon; Venkataraju, Kannan Umadevi; Zhou, Yu; Wang, Victoria X.; Tang, Cheuk Y.; Olsen, Olav; Dulac, Catherine; Osten, Pavel; Tessier-Lavigne, Marc

    2016-01-01

    Summary Understanding how neural information is processed in physiological and pathological states would benefit from precise detection, localization and quantification of the activity of all neurons across the entire brain, which has not to date been achieved in the mammalian brain. We introduce a pipeline for high speed acquisition of brain activity at cellular resolution through profiling immediate early gene expression using immunostaining and light-sheet fluorescence imaging, followed by automated mapping and analysis of activity by an open-source software program we term ClearMap. We validate the pipeline first by analysis of brain regions activated in response to Haloperidol. Next, we report new cortical regions downstream of whisker-evoked sensory processing during active exploration. Lastly, we combine activity mapping with axon tracing to uncover new brain regions differentially activated during parenting behavior. This pipeline is widely applicable to different experimental paradigms, including animal species for which transgenic activity reporters are not readily available. PMID:27238021

  18. Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD.

    Science.gov (United States)

    Atasoy, Selen; Roseman, Leor; Kaelen, Mendel; Kringelbach, Morten L; Deco, Gustavo; Carhart-Harris, Robin L

    2017-12-15

    Recent studies have started to elucidate the effects of lysergic acid diethylamide (LSD) on the human brain but the underlying dynamics are not yet fully understood. Here we used 'connectome-harmonic decomposition', a novel method to investigate the dynamical changes in brain states. We found that LSD alters the energy and the power of individual harmonic brain states in a frequency-selective manner. Remarkably, this leads to an expansion of the repertoire of active brain states, suggestive of a general re-organization of brain dynamics given the non-random increase in co-activation across frequencies. Interestingly, the frequency distribution of the active repertoire of brain states under LSD closely follows power-laws indicating a re-organization of the dynamics at the edge of criticality. Beyond the present findings, these methods open up for a better understanding of the complex brain dynamics in health and disease.

  19. Influence of Landmarks on Wayfinding and Brain Connectivity in Immersive Virtual Reality Environment

    Directory of Open Access Journals (Sweden)

    Greeshma Sharma

    2017-07-01

    Full Text Available Spatial navigation is influenced by landmarks, which are prominent visual features in the environment. Although previous research has focused on finding advantages of landmarks on wayfinding via experimentation; however, less attention has been given to identifying the key attributes of landmarks that facilitate wayfinding, including the study of neural correlates (involving electroencephalogram, EEG analyses. In this paper, we combine behavioral measures, virtual environment, and EEG signal-processing to provide a holistic investigation about the influence of landmarks on performance during navigation in a maze-like environment. In an experiment, participants were randomly divided into two conditions, Landmark-enriched (LM+; N = 17 and Landmark-devoid (LM-; N = 18, and asked to navigate from an initial location to a goal location in a maze. In the LM+ condition, there were landmarks placed at certain locations, which participants could use for wayfinding in the maze. However, in the LM- condition, such landmarks were not present. Beyond behavioral analyses of data, analyses were carried out of the EEG data collected using a 64-channel device. Results revealed that participants took less time and committed fewer errors in navigating the maze in the LM+ condition compared to the LM- condition. EEG analyses of the data revealed that the left-hemispheric activation was more prominent in the LM+ condition compared to the LM- condition. The event-related desynchronization/synchronization (ERD/ERS of the theta frequency band, revealed activation in the left posterior inferior and superior regions in the LM+ condition compared to the LM- condition, suggesting an occurrence of an object-location binding in the LM+ condition along with spatial transformation between representations. Moreover, directed transfer function method, which measures information flow between two regions, showed a higher number of active channels in the LM- condition compared to

  20. Own-gender imitation activates the brain's reward circuitry

    Science.gov (United States)

    Iacoboni, Macro; Martin, Alia; Dapretto, Mirella

    2012-01-01

    Imitation is an important component of human social learning throughout life. Theoretical models and empirical data from anthropology and psychology suggest that people tend to imitate self-similar individuals, and that such imitation biases increase the adaptive value (e.g., self-relevance) of learned information. It is unclear, however, what neural mechanisms underlie people's tendency to imitate those similar to themselves. We focused on the own-gender imitation bias, a pervasive bias thought to be important for gender identity development. While undergoing fMRI, participants imitated own- and other-gender actors performing novel, meaningless hand signs; as control conditions, they also simply observed such actions and viewed still portraits of the same actors. Only the ventral and dorsal striatum, orbitofrontal cortex and amygdala were more active when imitating own- compared to other-gender individuals. A Bayesian analysis of the BrainMap neuroimaging database demonstrated that the striatal region preferentially activated by own-gender imitation is selectively activated by classical reward tasks in the literature. Taken together, these findings reveal a neurobiological mechanism associated with the own-gender imitation bias and demonstrate a novel role of reward-processing neural structures in social behavior. PMID:22383803

  1. Platelet activating factor induces transient blood-brain barrier opening to facilitate edaravone penetration into the brain.

    Science.gov (United States)

    Fang, Weirong; Zhang, Rui; Sha, Lan; Lv, Peng; Shang, Erxin; Han, Dan; Wei, Jie; Geng, Xiaohan; Yang, Qichuan; Li, Yunman

    2014-03-01

    The blood-brain barrier (BBB) greatly limits the efficacy of many neuroprotective drugs' delivery to the brain, so improving drug penetration through the BBB has been an important focus of research. Here we report that platelet activating factor (PAF) transiently opened BBB and facilitated neuroprotectant edaravone penetration into the brain. Intravenous infusion with PAF induced a transient BBB opening in rats, reflected by increased Evans blue leakage and mild edema formation, which ceased within 6 h. Furthermore, rat regional cerebral blood flow (rCBF) declined acutely during PAF infusion, but recovered slowly. More importantly, this transient BBB opening significantly increased the penetration of edaravone into the brain, evidenced by increased edaravone concentrations in tissue interstitial fluid collected by microdialysis and analyzed by Ultra-performance liquid chromatograph combined with a hybrid quadrupole time-of-flight mass spectrometer (UPLC-MS/MS). Similarly, incubation of rat brain microvessel endothelial cells monolayer with 1 μM PAF for 1 h significantly increased monolayer permeability to (125)I-albumin, which recovered 1 h after PAF elimination. However, PAF incubation with rat brain microvessel endothelial cells for 1 h did not cause detectable cytotoxicity, and did not regulate intercellular adhesion molecule-1, matrix-metalloproteinase-9 and P-glycoprotein expression. In conclusion, PAF could induce transient and reversible BBB opening through abrupt rCBF decline, which significantly improved edaravone penetration into the brain. Platelet activating factor (PAF) transiently induces BBB dysfunction and increases BBB permeability, which may be due to vessel contraction and a temporary decline of regional cerebral blood flow (rCBF) triggered by PAF. More importantly, the PAF induced transient BBB opening facilitates neuroprotectant edaravone penetration into brain. The results of this study may provide a new approach to improve drug delivery into

  2. Legal Standards for Brain Death and Undue Influence in Euthanasia Laws.

    Science.gov (United States)

    Pope, Thaddeus Mason; Okninski, Michaela E

    2016-06-01

    A major appellate court decision from the United States seriously questions the legal sufficiency of prevailing medical criteria for the determination of death by neurological criteria. There may be a mismatch between legal and medical standards for brain death, requiring the amendment of either or both. In South Australia, a Bill seeks to establish a legal right for a defined category of persons suffering unbearably to request voluntary euthanasia. However, an essential criterion of a voluntary decision is that it is not tainted by undue influence, and this Bill falls short of providing adequate guidance to assess for undue influence.

  3. Multichannel brain recordings in behaving Drosophila reveal oscillatory activity and local coherence in response to sensory stimulation and circuit activation.

    Science.gov (United States)

    Paulk, Angelique C; Zhou, Yanqiong; Stratton, Peter; Liu, Li; van Swinderen, Bruno

    2013-10-01

    Neural networks in vertebrates exhibit endogenous oscillations that have been associated with functions ranging from sensory processing to locomotion. It remains unclear whether oscillations may play a similar role in the insect brain. We describe a novel "whole brain" readout for Drosophila melanogaster using a simple multichannel recording preparation to study electrical activity across the brain of flies exposed to different sensory stimuli. We recorded local field potential (LFP) activity from >2,000 registered recording sites across the fly brain in >200 wild-type and transgenic animals to uncover specific LFP frequency bands that correlate with: 1) brain region; 2) sensory modality (olfactory, visual, or mechanosensory); and 3) activity in specific neural circuits. We found endogenous and stimulus-specific oscillations throughout the fly brain. Central (higher-order) brain regions exhibited sensory modality-specific increases in power within narrow frequency bands. Conversely, in sensory brain regions such as the optic or antennal lobes, LFP coherence, rather than power, best defined sensory responses across modalities. By transiently activating specific circuits via expression of TrpA1, we found that several circuits in the fly brain modulate LFP power and coherence across brain regions and frequency domains. However, activation of a neuromodulatory octopaminergic circuit specifically increased neuronal coherence in the optic lobes during visual stimulation while decreasing coherence in central brain regions. Our multichannel recording and brain registration approach provides an effective way to track activity simultaneously across the fly brain in vivo, allowing investigation of functional roles for oscillations in processing sensory stimuli and modulating behavior.

  4. The Influence of Sentence Novelty and Figurativeness on Brain Activity

    Science.gov (United States)

    Diaz, Michele T.; Barrett, Kyle T.; Hogstrom, Larson J.

    2011-01-01

    The predominance of the left hemisphere in language comprehension and production is well established. More recently, the right hemisphere's contribution to language has been examined. Clinical, behavioral, and neuroimaging research support the right hemisphere's involvement in metaphor processing. But, there is disagreement about whether…

  5. Activity of respiratory system during laser irradiation of brain structures

    Science.gov (United States)

    Merkulova, N. A.; Sergeyeva, L. I.

    1984-06-01

    The performance of one of the principal links of the respiratory system, the respiratory center, was studied as a function of the exposure of the medulla oblongata and the sensomotor zone of the cerebral hemisphere cortex to low level laser irradiation in the red wavelength of the spectrum. Experiments were done on white rats under barbital anesthesia. Under such conditions a substantial effect was observed on the activity of the respiratory center. Laser light may display activating or inhibitory influences, in some cases the bilateral symmetry of the activity of the respiratory center is affected indicating deep changes in the integrative mechanism of the functioning of the right and left sides of the hemispheres. The laser beam effect depends on many factors: specific light properties, duration of the exposure, repetition of exposures, initial functional state of the CNS, etc.

  6. Multistability in Large Scale Models of Brain Activity.

    Directory of Open Access Journals (Sweden)

    Mathieu Golos

    2015-12-01

    Full Text Available Noise driven exploration of a brain network's dynamic repertoire has been hypothesized to be causally involved in cognitive function, aging and neurodegeneration. The dynamic repertoire crucially depends on the network's capacity to store patterns, as well as their stability. Here we systematically explore the capacity of networks derived from human connectomes to store attractor states, as well as various network mechanisms to control the brain's dynamic repertoire. Using a deterministic graded response Hopfield model with connectome-based interactions, we reconstruct the system's attractor space through a uniform sampling of the initial conditions. Large fixed-point attractor sets are obtained in the low temperature condition, with a bigger number of attractors than ever reported so far. Different variants of the initial model, including (i a uniform activation threshold or (ii a global negative feedback, produce a similarly robust multistability in a limited parameter range. A numerical analysis of the distribution of the attractors identifies spatially-segregated components, with a centro-medial core and several well-delineated regional patches. Those different modes share similarity with the fMRI independent components observed in the "resting state" condition. We demonstrate non-stationary behavior in noise-driven generalizations of the models, with different meta-stable attractors visited along the same time course. Only the model with a global dynamic density control is found to display robust and long-lasting non-stationarity with no tendency toward either overactivity or extinction. The best fit with empirical signals is observed at the edge of multistability, a parameter region that also corresponds to the highest entropy of the attractors.

  7. New Perspectives on Spontaneous Brain Activity: Dynamic Networks and Energy Matter.

    Science.gov (United States)

    Tozzi, Arturo; Zare, Marzieh; Benasich, April A

    2016-01-01

    Spontaneous brain activity has received increasing attention as demonstrated by the exponential rise in the number of published article on this topic over the last 30 years. Such "intrinsic" brain activity, generated in the absence of an explicit task, is frequently associated with resting-state or default-mode networks (DMN)s. The focus on characterizing spontaneous brain activity promises to shed new light on questions concerning the structural and functional architecture of the brain and how they are related to "mind". However, many critical questions have yet to be addressed. In this review, we focus on a scarcely explored area, specifically the energetic requirements and constraints of spontaneous activity, taking into account both thermodynamical and informational perspectives. We argue that the "classical" definitions of spontaneous activity do not take into account an important feature, that is, the critical thermodynamic energetic differences between spontaneous and evoked brain activity. Spontaneous brain activity is associated with slower oscillations compared with evoked, task-related activity, hence it exhibits lower levels of enthalpy and "free-energy" (i.e., the energy that can be converted to do work), thus supporting noteworthy thermodynamic energetic differences between spontaneous and evoked brain activity. Increased spike frequency during evoked activity has a significant metabolic cost, consequently, brain functions traditionally associated with spontaneous activity, such as mind wandering, require less energy that other nervous activities. We also review recent empirical observations in neuroscience, in order to capture how spontaneous brain dynamics and mental function can be embedded in a non-linear dynamical framework, which considers nervous activity in terms of phase spaces, particle trajectories, random walks, attractors and/or paths at the edge of the chaos. This takes us from the thermodynamic free-energy, to the realm of "variational

  8. Mapping social behavior-induced brain activation at cellular resolution in the mouse

    Science.gov (United States)

    Kim, Yongsoo; Venkataraju, Kannan Umadevi; Pradhan, Kith; Mende, Carolin; Taranda, Julian; Turaga, Srinivas C.; Arganda-Carreras, Ignacio; Ng, Lydia; Hawrylycz, Michael J.; Rockland, Kathleen; Seung, H. Sebastian; Osten, Pavel

    2014-01-01

    Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate early gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP-positive neurons are computationally detected, their distribution is registered to a reference brain and a brain atlas, and their numbers are analyzed by statistical tests. Our results reveal distinct and shared female and male interaction-evoked patterns of male brain activation representing sex discrimination and social recognition. We also identify brain regions whose degree of activity correlates to specific features of social behaviors and estimate the total numbers and the densities of activated neurons per brain areas. Our study opens the door to automated screening of behavior-evoked brain activation in the mouse. PMID:25558063

  9. Changes in reward-induced brain activation in opiate addicts.

    Science.gov (United States)

    Martin-Soelch, C; Chevalley, A F; Künig, G; Missimer, J; Magyar, S; Mino, A; Schultz, W; Leenders, K L

    2001-10-01

    Many studies indicate a role of the cerebral dopaminergic reward system in addiction. Motivated by these findings, we examined in opiate addicts whether brain regions involved in the reward circuitry also react to human prototypical rewards. We measured regional cerebral blood flow (rCBF) with H(2)(15)O positron emission tomography (PET) during a visuo-spatial recognition task with delayed response in control subjects and in opiate addicts participating in a methadone program. Three conditions were defined by the types of feedback: nonsense feedback; nonmonetary reinforcement; or monetary reward, received by the subjects for a correct response. We found in the control subjects rCBF increases in regions associated with the meso-striatal and meso-corticolimbic circuits in response to both monetary reward and nonmonetary reinforcement. In opiate addicts, these regions were activated only in response to monetary reward. Furthermore, nonmonetary reinforcement elicited rCBF increases in limbic regions of the opiate addicts that were not activated in the control subjects. Because psychoactive drugs serve as rewards and directly affect regions of the dopaminergic system like the striatum, we conclude that the differences in rCBF increases between controls and addicts can be attributed to an adaptive consequence of the addiction process.

  10. Brain activation patterns during memory of cognitive agency.

    Science.gov (United States)

    Vinogradov, Sophia; Luks, Tracy L; Simpson, Gregory V; Schulman, Brian J; Glenn, Shenly; Wong, Amy E

    2006-06-01

    Agency is the awareness that one's own self is the agent or author of an action, a thought, or a feeling. The implicit memory that one's self was the originator of a cognitive event - the sense of cognitive agency - has not yet been fully explored in terms of relevant neural systems. In this functional magnetic resonance imaging (fMRI) study, we examined brain activation patterns differentiating memory for the source of previously self-generated vs. experimenter-presented word items from a sentence completion paradigm designed to be emotionally neutral and semantically constrained in content. Accurate memory for the source of self-generated vs. externally-presented word items resulted in activation of dorsal medial prefrontal cortex (mPFC) bilaterally, supporting an emerging body of work that indicates a key role for this region in self-referential processing. Our data extend the function of mPFC into the domain of memory and the accurate retrieval of the sense of cognitive agency under conditions where agency was encoded implicitly.

  11. Enhancing Physical Activity and Brain Reorganization after Stroke

    Directory of Open Access Journals (Sweden)

    Janet H. Carr

    2011-01-01

    Full Text Available It is becoming increasingly clear that, if reorganization of brain function is to be optimal after stroke, there needs to be a reorganisation of the methods used in physical rehabilitation and the time spent in specific task practice, strength and endurance training, and aerobic exercise. Frequency and intensity of rehabilitation need to be increased so that patients can gain the energy levels and vigour necessary for participation in physical activity both during rehabilitation and after discharge. It is evident that many patients are discharged from inpatient rehabilitation severely deconditioned, meaning that their energy levels are too low for active participation in daily life. Physicians, therapists, and nursing staff responsible for rehabilitation practice should address this issue not only during inpatient rehabilitation but also after discharge by promoting and supporting community-based exercise opportunities. During inpatient rehabilitation, group sessions should be frequent and need to include specific aerobic training. Physiotherapy must take advantage of the training aids available, including exercise equipment such as treadmills, and of new developments in computerised feedback systems, robotics, and electromechanical trainers. For illustrative purposes, this paper focuses on the role of physiotherapists, but the necessary changes in practice and in attitude will require cooperation from many others.

  12. Brain Activity while Reading Sentences with Kanji Characters Expressing Emotions

    Science.gov (United States)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe the brain activity associated with kanji characters expressing emotion, which are places at the end of a sentence. Japanese people use a special kanji character in brackets at the end of sentences in text messages such as those sent through e-mail and messenger tools. Such kanji characters plays a role to expresses the sender's emotion (such as fun, laughter, sadness, tears), like emoticons. It is a very simple and effective way to convey the senders' emotions and his/her thoughts to the receiver. In this research, we investigate the effects of emotional kanji characters by using an fMRI study. The experimental results show that both the right and left inferior frontal gyrus, which have been implicated on verbal and nonverbal information, were activated. We found that we detect a sentence with an emotional kanji character as the verbal and nonverval information, and a sentence with emotional kanji characters enrich communication between the sender and the reciever.

  13. Does my brain want what my eyes like? - How food liking and choice influence spatio-temporal brain dynamics of food viewing.

    Science.gov (United States)

    Bielser, Marie-Laure; Crézé, Camille; Murray, Micah M; Toepel, Ulrike

    2016-12-01

    How food valuation and decision-making influence the perception of food is of major interest to better understand food intake behavior and, by extension, body weight management. Our study investigated behavioral responses and spatio-temporal brain dynamics by means of visual evoked potentials (VEPs) in twenty-two normal-weight participants when viewing pairs of food photographs. Participants rated how much they liked each food item (valuation) and subsequently chose between the two alternative food images. Unsurprisingly, strongly liked foods were also chosen most often. Foods were rated faster as strongly liked than as mildly liked or disliked irrespective of whether they were subsequently chosen over an alternative. Moreover, strongly liked foods were subsequently also chosen faster than the less liked alternatives. Response times during valuation and choice were positively correlated, but only when foods were liked; the faster participants rated foods as strongly liked, the faster they were in choosing the food item over an alternative. VEP modulations by the level of liking attributed as well as the subsequent choice were found as early as 135-180ms after food image onset. Analyses of neural source activity patterns over this time interval revealed an interaction between liking and the subsequent choice within the insula, dorsal frontal and superior parietal regions. The neural responses to food viewing were found to be modulated by the attributed level of liking only when foods were chosen, not when they were dismissed for an alternative. Therein, the responses to disliked foods were generally greater than those to foods that were liked more. Moreover, the responses to disliked but chosen foods were greater than responses to disliked foods which were subsequently dismissed for an alternative offer. Our findings show that the spatio-temporal brain dynamics to food viewing are immediately influenced both by how much foods are liked and by choices taken on them

  14. Discovery and replication of gene influences on brain structure using LASSO regression

    Directory of Open Access Journals (Sweden)

    Omid eKohannim

    2012-08-01

    Full Text Available We implemented LASSO (least absolute shrinkage and selection operator regression to evaluate gene effects in genome-wide association studies (GWAS of brain images, using an MRI-derived temporal lobe volume measure from 729 subjects scanned as part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI. Sparse groups of SNPs in individual genes were selected by LASSO, which identifies efficient sets of variants influencing the data. These SNPs were considered jointly when assessing their association with neuroimaging measures. We discovered 22 genes that passed genome-wide significance for influencing temporal lobe volume. This was a substantially greater number of significant genes compared to those found with standard, univariate GWAS. These top genes are all expressed in the brain and include genes previously related to brain function or neuropsychiatric disorders such as MACROD2, SORCS2, GRIN2B, MAGI2, NPAS3, CLSTN2, GABRG3, NRXN3, PRKAG2, GAS7, RBFOX1, ADARB2, CHD4 and CDH13. The top genes we identified with this method also displayed significant and widespread post-hoc effects on voxelwise, tensor-based morphometry (TBM maps of the temporal lobes. The most significantly associated gene was an autism susceptibility gene known as MACROD2. We were able to successfully replicate the effect of the MACROD2 gene in an independent cohort of 564 young, Australian healthy adult twins and siblings scanned with MRI (mean age: 23.8±2.2 SD years. In exploratory analyses, three selected SNPs in the MACROD2 gene were also significantly associated with performance intelligence quotient (PIQ. Our approach powerfully complements univariate techniques in detecting influences of genes on the living brain.

  15. [11C]befloxatone brain kinetics is not influenced by Bcrp function at the blood-brain barrier: A PET study using Bcrp TGEM knockout rats

    International Nuclear Information System (INIS)

    Hosten, Benoit; Jacob, Aude; Saubamea, Bruno; Scherrmann, Jean-Michel; Boisgard, Raphael; Goutal, Sebastien; Dolle, Frederic; Tournier, Nicolas; Cisternino, Salvatore

    2013-01-01

    Knockout (KO) animals are useful tools with which to assess the interplay between P-glycoprotein (P-gp; Abcb1) and the breast cancer resistance protein (Bcrp, Abcg2), two major ABC-transporters expressed at the blood-brain barrier (BBB). However, one major drawback of such deficient models is the possible involvement of compensation between transporters. In the present study, P-gp and Bcrp distribution in the brain as well as P-gp expression levels at the BBB were compared between the Bcrp TGEM KO rat model and the wild-type (WT) strain. Therefore, we used confocal microscopy of brain slices and western blot analysis of the isolated brain microvessels forming the BBB. This deficient rat model was used to assess the influence of Bcrp on the brain and peripheral kinetics of its substrate [ 11 C]befloxatone using positron emission tomography (PET). The influence of additional P-gp inhibition was tested using elacridar (GF120918) 2 mg/kg in Bcrp KO rats. The distribution pattern of P-gp in the brain as well as P-gp expression levels at the BBB was similar in Bcrp-deficient and WT rats. Brain and peripheral kinetics of [ 11 C]befloxatone were not influenced by the lack of Bcrp. Neither was the brain uptake of [ 11 C]befloxatone in Bcrp-deficient rats influenced by the inhibition of P-gp. In conclusion, the Bcrp-deficient rat strain, in which we detected no compensatory mechanism or modification of P-gp expression as compared to WT rats, is a suitable model to study Bcrp function separately from that of P-gp at the BBB. However, although selectively transported by BCRP in vitro, our results suggest that [ 11 C]befloxatone PET imaging might not be biased by impaired function of this transporter in vivo. (authors)

  16. Visual image reconstruction from human brain activity: A modular decoding approach

    International Nuclear Information System (INIS)

    Miyawaki, Yoichi; Uchida, Hajime; Yamashita, Okito; Sato, Masa-aki; Kamitani, Yukiyasu; Morito, Yusuke; Tanabe, Hiroki C; Sadato, Norihiro

    2009-01-01

    Brain activity represents our perceptual experience. But the potential for reading out perceptual contents from human brain activity has not been fully explored. In this study, we demonstrate constraint-free reconstruction of visual images perceived by a subject, from the brain activity pattern. We reconstructed visual images by combining local image bases with multiple scales, whose contrasts were independently decoded from fMRI activity by automatically selecting relevant voxels and exploiting their correlated patterns. Binary-contrast, 10 x 10-patch images (2 100 possible states), were accurately reconstructed without any image prior by measuring brain activity only for several hundred random images. The results suggest that our approach provides an effective means to read out complex perceptual states from brain activity while discovering information representation in multi-voxel patterns.

  17. On brain activity mapping: insights and lessons from Brain Decoding Project to map memory patterns in the hippocampus.

    Science.gov (United States)

    Tsien, Joe Z; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longnian; Wang, Phillip Lei; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui

    2013-09-01

    The BRAIN project recently announced by the president Obama is the reflection of unrelenting human quest for cracking the brain code, the patterns of neuronal activity that define who we are and what we are. While the Brain Activity Mapping proposal has rightly emphasized on the need to develop new technologies for measuring every spike from every neuron, it might be helpful to consider both the theoretical and experimental aspects that would accelerate our search for the organizing principles of the brain code. Here we share several insights and lessons from the similar proposal, namely, Brain Decoding Project that we initiated since 2007. We provide a specific example in our initial mapping of real-time memory traces from one part of the memory circuit, namely, the CA1 region of the mouse hippocampus. We show how innovative behavioral tasks and appropriate mathematical analyses of large datasets can play equally, if not more, important roles in uncovering the specific-to-general feature-coding cell assembly mechanism by which episodic memory, semantic knowledge, and imagination are generated and organized. Our own experiences suggest that the bottleneck of the Brain Project is not only at merely developing additional new technologies, but also the lack of efficient avenues to disseminate cutting edge platforms and decoding expertise to neuroscience community. Therefore, we propose that in order to harness unique insights and extensive knowledge from various investigators working in diverse neuroscience subfields, ranging from perception and emotion to memory and social behaviors, the BRAIN project should create a set of International and National Brain Decoding Centers at which cutting-edge recording technologies and expertise on analyzing large datasets analyses can be made readily available to the entire community of neuroscientists who can apply and schedule to perform cutting-edge research.

  18. Resting-state brain activity in the motor cortex reflects task-induced activity: A multi-voxel pattern analysis.

    Science.gov (United States)

    Kusano, Toshiki; Kurashige, Hiroki; Nambu, Isao; Moriguchi, Yoshiya; Hanakawa, Takashi; Wada, Yasuhiro; Osu, Rieko

    2015-08-01

    It has been suggested that resting-state brain activity reflects task-induced brain activity patterns. In this study, we examined whether neural representations of specific movements can be observed in the resting-state brain activity patterns of motor areas. First, we defined two regions of interest (ROIs) to examine brain activity associated with two different behavioral tasks. Using multi-voxel pattern analysis with regularized logistic regression, we designed a decoder to detect voxel-level neural representations corresponding to the tasks in each ROI. Next, we applied the decoder to resting-state brain activity. We found that the decoder discriminated resting-state neural activity with accuracy comparable to that associated with task-induced neural activity. The distribution of learned weighted parameters for each ROI was similar for resting-state and task-induced activities. Large weighted parameters were mainly located on conjunctive areas. Moreover, the accuracy of detection was higher than that for a decoder whose weights were randomly shuffled, indicating that the resting-state brain activity includes multi-voxel patterns similar to the neural representation for the tasks. Therefore, these results suggest that the neural representation of resting-state brain activity is more finely organized and more complex than conventionally considered.

  19. Multichannel brain recordings in behaving Drosophila reveal oscillatory activity and local coherence in response to sensory stimulation and circuit activation

    Science.gov (United States)

    Paulk, Angelique C.; Zhou, Yanqiong; Stratton, Peter; Liu, Li

    2013-01-01

    Neural networks in vertebrates exhibit endogenous oscillations that have been associated with functions ranging from sensory processing to locomotion. It remains unclear whether oscillations may play a similar role in the insect brain. We describe a novel “whole brain” readout for Drosophila melanogaster using a simple multichannel recording preparation to study electrical activity across the brain of flies exposed to different sensory stimuli. We recorded local field potential (LFP) activity from >2,000 registered recording sites across the fly brain in >200 wild-type and transgenic animals to uncover specific LFP frequency bands that correlate with: 1) brain region; 2) sensory modality (olfactory, visual, or mechanosensory); and 3) activity in specific neural circuits. We found endogenous and stimulus-specific oscillations throughout the fly brain. Central (higher-order) brain regions exhibited sensory modality-specific increases in power within narrow frequency bands. Conversely, in sensory brain regions such as the optic or antennal lobes, LFP coherence, rather than power, best defined sensory responses across modalities. By transiently activating specific circuits via expression of TrpA1, we found that several circuits in the fly brain modulate LFP power and coherence across brain regions and frequency domains. However, activation of a neuromodulatory octopaminergic circuit specifically increased neuronal coherence in the optic lobes during visual stimulation while decreasing coherence in central brain regions. Our multichannel recording and brain registration approach provides an effective way to track activity simultaneously across the fly brain in vivo, allowing investigation of functional roles for oscillations in processing sensory stimuli and modulating behavior. PMID:23864378

  20. Brain mechanisms of social comparison and their influence on the reward system.

    Science.gov (United States)

    Kedia, Gayannée; Mussweiler, Thomas; Linden, David E J

    2014-11-12

    Whenever we interact with others, we judge them and whenever we make such judgments, we compare them with ourselves, other people, or internalized standards. Countless social psychological experiments have shown that comparative thinking plays a ubiquitous role in person perception and social cognition as a whole. The topic of social comparison has recently aroused the interest of social neuroscientists, who have begun to investigate its neural underpinnings. The present article provides an overview of these neuroimaging and electrophysiological studies. We discuss recent findings on the consequences of social comparison on the brain processing of outcomes and highlight the role of the brain's reward system. Moreover, we analyze the relationship between the brain networks involved in social comparisons and those active during other forms of cognitive and perceptual comparison. Finally, we discuss potential future questions that research on the neural correlates of social comparison could address.

  1. Regional brain activation and affective response to physical activity among healthy adolescents

    OpenAIRE

    Schneider, Margaret; Graham, Dan; Grant, Arthur; King, Pamela; Cooper, Dan

    2009-01-01

    Research has shown that frontal brain activation, assessed via electroencephalographic (EEG) asymmetry, predicts the post-exercise affective response to exercise among adults. Building on this evidence, the present study investigates the utility of resting cortical asymmetry for explaining variance in the affective response both during and after exercise at two different intensities among healthy adolescents. Resting EEG was obtained from 98 adolescents (55% male), who also completed two 30-m...

  2. Aging and sex influence the permeability of the blood-brain barrier in the rat

    International Nuclear Information System (INIS)

    Saija, A.; Princi, P.; D'Amico, N.; De Pasquale, R.; Costa, G.

    1990-01-01

    The aim of the present study was to investigate the existence of aging- and sex-related alterations in the permeability of the blood-brain barrier (BBB) in the rat, by calculating a unidirectional blood-to-brain transfer constant (Ki) for the circulating tracer [ 14 C]-α-aminoisobutyric acid. The authors observed that: (a) the permeability of the BBB significantly increased within the frontal and temporo-parietal cortex, hypothalamus and cerebellum in 28-30 week old rats, in comparison with younger animals; (b) in several brain areas of female intact rats higher Ki values (even though not significantly different) were calculated at oestrus than at proestrus; (c) in 1-week ovariectomized rats there was a marked increase of Ki values at the level of the frontal, temporo-parietal and occipital cortex, cerebellum and brain-stem. One can speculate that aging and sex-related alterations in thee permeability of the BBB reflect respectively changes in brain neurochemical system activity and in plasma steroid hormone levels

  3. Influence of meditation on anti-correlated networks in the brain

    Directory of Open Access Journals (Sweden)

    Zoran eJosipovic

    2012-01-01

    Full Text Available Human experience can be broadly divided into those that are external and related to interaction with the environment, and experiences that are internal and self-related. The cerebral cortex appears to be divided into two corresponding systems: an extrinsic system composed of brain areas that respond more to external stimuli and tasks and an intrinsic system composed of brain areas that respond less to external stimuli and tasks. These two broad brain systems seem to compete with each other, such that their activity levels over time is usually anti-correlated, even when subjects are at rest and not performing any task. This study used meditation as an experimental manipulation to test whether this competition (anti-correlation can be modulated by cognitive strategy. Participants either fixated without meditation (fixation, or engaged in nondual awareness (NDA or focused attention (FA meditations. We computed inter-area correlations (functional connectivity between pairs of brain regions within each system, and between the entire extrinsic and intrinsic systems. Anti-correlation between extrinsic vs. intrinsic systems was stronger during FA meditation and weaker during NDA meditation in comparison to fixation (without mediation. However, correlation between areas within each system did not change across conditions. These results suggest that the anti-correlation found between extrinsic and intrinsic systems is not an immutable property of brain organization and that practicing different forms of meditation can modulate this gross functional organization in profoundly different ways.

  4. Influence of meditation on anti-correlated networks in the brain.

    Science.gov (United States)

    Josipovic, Zoran; Dinstein, Ilan; Weber, Jochen; Heeger, David J

    2011-01-01

    Human experiences can be broadly divided into those that are external and related to interaction with the environment, and experiences that are internal and self-related. The cerebral cortex appears to be divided into two corresponding systems: an "extrinsic" system composed of brain areas that respond more to external stimuli and tasks and an "intrinsic" system composed of brain areas that respond less to external stimuli and tasks. These two broad brain systems seem to compete with each other, such that their activity levels over time is usually anti-correlated, even when subjects are "at rest" and not performing any task. This study used meditation as an experimental manipulation to test whether this competition (anti-correlation) can be modulated by cognitive strategy. Participants either fixated without meditation (fixation), or engaged in non-dual awareness (NDA) or focused attention (FA) meditations. We computed inter-area correlations ("functional connectivity") between pairs of brain regions within each system, and between the entire extrinsic and intrinsic systems. Anti-correlation between extrinsic vs. intrinsic systems was stronger during FA meditation and weaker during NDA meditation in comparison to fixation (without mediation). However, correlation between areas within each system did not change across conditions. These results suggest that the anti-correlation found between extrinsic and intrinsic systems is not an immutable property of brain organization and that practicing different forms of meditation can modulate this gross functional organization in profoundly different ways.

  5. Food image-induced brain activation is not diminished by insulin infusion.

    Science.gov (United States)

    Belfort-DeAguiar, R; Seo, D; Naik, S; Hwang, J; Lacadie, C; Schmidt, C; Constable, R T; Sinha, R; Sherwin, R

    2016-11-01

    The obesity epidemic appears to be driven in large part by our modern environment inundated by food cues, which may influence our desire to eat. Although insulin decreases food intake in both animals and humans, the effect of insulin on motivation for food in the presence of food cues is not known. Therefore, the aim of this study was to evaluate the effect of an intravenous insulin infusion on the brain response to visual food cues, hunger and food craving in non-obese human subjects. Thirty-four right-handed healthy non-obese subjects (19F/15M, age: 29±8 years.; BMI: 23.1±2.1 kg m -2 ) were divided in two groups matched by age and BMI; the insulin group (18 subjects) underwent a hyperinsulinemic-euglycemic-clamp, and the control group (16 subjects) received an intravenous saline infusion, while viewing high and low-calorie food and non-food pictures during a functional MRI scan. Motivation for food was determined via analog scales for hunger, wanting and liking ratings. Food images induced brain responses in the hypothalamus, striatum, amygdala, insula, ventromedial prefrontal cortex (PFC), dorsolateral PFC and occipital lobe (whole brain correction, Pinsulin and saline infusion groups. Hunger ratings increased throughout the MRI scan and correlated with preference for high-calorie food pictures (r=0.70; Pbrain activity nor food cravings were affected by hyperinsulinemia or hormonal status (leptin and ghrelin levels) (P=NS). Our data demonstrate that visual food cues induce a strong response in motivation/reward and cognitive-executive control brain regions in non-obese subjects, but that these responses are not diminished by hyperinsulinemia per se. These findings suggest that our modern food cue saturated environment may be sufficient to overpower homeostatic hormonal signals, and thus contribute to the current obesity epidemic.

  6. Aerobic Exercise Intervention, Cognitive Performance, and Brain Structure: Results from the Physical Influences on Brain in Aging (PHIBRA) Study.

    Science.gov (United States)

    Jonasson, Lars S; Nyberg, Lars; Kramer, Arthur F; Lundquist, Anders; Riklund, Katrine; Boraxbekk, Carl-Johan

    2016-01-01

    Studies have shown that aerobic exercise has the potential to improve cognition and reduce brain atrophy in older adults. However, the literature is equivocal with regards to the specificity or generality of these effects. To this end, we report results on cognitive function and brain structure from a 6-month training intervention with 60 sedentary adults (64-78 years) randomized to either aerobic training or stretching and toning control training. Cognitive functions were assessed with a neuropsychological test battery in which cognitive constructs were measured using several different tests. Freesurfer was used to estimate cortical thickness in frontal regions and hippocampus volume. Results showed that aerobic exercisers, compared to controls, exhibited a broad, rather than specific, improvement in cognition as indexed by a higher "Cognitive score," a composite including episodic memory, processing speed, updating, and executive function tasks ( p = 0.01). There were no group differences in cortical thickness, but additional analyses revealed that aerobic fitness at baseline was specifically related to larger thickness in dorsolateral prefrontal cortex (dlPFC), and hippocampus volume was positively associated with increased aerobic fitness over time. Moreover, "Cognitive score" was related to dlPFC thickness at baseline, but changes in "Cognitive score" and dlPFC thickness were associated over time in the aerobic group only. However, aerobic fitness did not predict dlPFC change, despite the improvement in "Cognitive score" in aerobic exercisers. Our interpretation of these observations is that potential exercise-induced changes in thickness are slow, and may be undetectable within 6-months, in contrast to change in hippocampus volume which in fact was predicted by the change in aerobic fitness. To conclude, our results add to a growing literature suggesting that aerobic exercise has a broad influence on cognitive functioning, which may aid in explaining why

  7. Brain structure across the lifespan: the influence of stress and mood

    Directory of Open Access Journals (Sweden)

    Jose Miguel Soares

    2014-11-01

    Full Text Available Normal brain aging is an inevitable and heterogeneous process characterized by a selective pattern of structural changes. Such heterogeneity arises as a consequence of cumulative effects over the lifespan, including stress and mood effects, which drive different micro- and macro-structural alterations in the brain. Investigating these differences in healthy age-related changes is a major challenge for the comprehension of the cognitive status. Herein we addressed the impact of normal aging, stress, mood and their interplay in the brain gray and white matter structure. We showed the critical impact of age in the white matter volume and how stress and mood influence brain volumetry across the lifespan. Moreover, we found a more profound effect of the interaction of aging/stress/mood on structures located in the left hemisphere. These findings help to clarify some divergent results associated with the aging decline and to enlighten the association between abnormal volumetric alterations and several states that may lead to psychiatric disorders.

  8. Influence of the extracellular matrix on endogenous and transplanted stem cells after brain damage

    Directory of Open Access Journals (Sweden)

    Lars eRoll

    2014-08-01

    Full Text Available The limited regeneration capacity of the adult central nervous system requires strategies to improve recovery of patients. In this context, the interaction of endogenous as well as transplanted stem cells with their environment is crucial. An understanding of the molecular mechanisms could help to improve regeneration by targeted manipulation.In the course of reactive gliosis, astrocytes upregulate Glial fibrillary acidic protein (GFAP and start, in many cases, to proliferate. Beside GFAP, subpopulations of these astroglial cells coexpress neural progenitor markers like Nestin. Although cells express these markers, the proportion of cells that eventually give rise to neurons is limited in many cases in vivo compared to the situation in vitro. In the first section, we present the characteristics of endogenous progenitor-like cells and discuss the differences in their neurogenic potential in vitro and in vivo.As the environment plays an important role for survival, proliferation, migration, and other processes, the second section of the review describes changes in the extracellular matrix (ECM, a complex network that contains numerous signaling molecules. It appears that signals in the damaged central nervous system lead to an activation and de-differentiation of astrocytes, but do not effectively promote neuronal differentiation of these cells. Factors that influence stem cells during development are upregulated in the damaged brain as part of an environment resembling a stem cell niche. We give a general description of the ECM composition, with focus on stem cell-associated factors like the glycoprotein Tenascin-C.Stem cell transplantation is considered as potential treatment strategy. Interaction of transplanted stem cells with the host environment is critical for the outcome of stem cell-based therapies. Possible mechanisms involving the ECM by which transplanted stem cells might improve recovery are discussed in the last section.

  9. Bilateral theta-burst magnetic stimulation influence on event-related brain potentials.

    Science.gov (United States)

    Pinto, Nuno; Duarte, Marta; Gonçalves, Helena; Silva, Ricardo; Gama, Jorge; Pato, Maria Vaz

    2018-01-01

    Theta-burst stimulation (TBS) can be a non-invasive technique to modulate cognitive functions, with promising therapeutic potential, but with some contradictory results. Event related potentials are used as a marker of brain deterioration and can be used to evaluate TBS-related cognitive performance, but its use remains scant. This study aimed to study bilateral inhibitory and excitatory TBS effects upon neurocognitive performance of young healthy volunteers, using the auditory P300' results. Using a double-blind sham-controlled study, 51 healthy volunteers were randomly assigned to five different groups, two submitted to either excitatory (iTBS) or inhibitory (cTBS) stimulation over the left dorsolateral pre-frontal cortex (DLPFC), two other actively stimulated the right DLPFC and finally a sham stimulation group. An oddball based auditory P300 was performed just before a single session of iTBS, cTBS or sham stimulation and repeated immediately after. P300 mean latency comparison between the pre- and post-TBS stimulation stages revealed significantly faster post stimulation latencies only when iTBS was performed on the left hemisphere (p = 0.003). Right and left hemisphere cTBS significantly delayed P300 latency (right p = 0.026; left p = 0.000). Multiple comparisons for N200 showed slower latencies after iTBS over the right hemisphere. No significant difference was found in amplitude variation. TBS appears to effectively influence neural networking involved in P300 formation, but effects seem distinct for iTBS vs cTBS and for the right or the left hemisphere. P300 evoked potentials can be an effective and practical tool to evaluate transcranial magnetic stimulation related outcomes.

  10. Effects of sevoflurane on adenylate cyclase and phosphodiesterases activity in brain of rats

    International Nuclear Information System (INIS)

    Feng Changdong; Yang Jianping; Dai Tijun

    2009-01-01

    Objective: To investigate the effects of sevoflurane on c adenylate cyclase (AC) and phosphodiesterases (PDE) activity in the cerebrocortex, hippocampus and brain stem of rats, and to examine the role of cAMP in sevoflurane anesthesia. Methods: Fourty SD rats were delaminately designed and allocated randomly to 5 groups inhaling 1.5% sevoflurane i.e., no recovery (recovery group, n=8) and one hour after righting reflexrecovery (aware group, n=8). The brain tissues were rapidly dissected into cerebrocortex and hippocampus and brain stem.Then the adenylate cyclase and phosphodiesterases activity were assessed. Results: So far as the activity of AC is concerned, compared with the control group, the activity of AC in the cerebrocortex, hippocampus and brain stem brain stem of induction group and anesthesia group, the cerebrocortex, and hippocampus in the recovery group were significantly increased; compared with those in the anesthesia group, the activity of AC in the cerebrocortex, hippocampus and brain stem of aware group were significantly decreased (P<0.05); For the activity of PDE, compared with the control group, the activity of PDE in the cerebrocortex, hippocampus and brain stem in the induction group and anesthesia group was significantly decreased, compared with that in anesthesia group, the activity of PDE in the cerebrocortex, hippocampus and brain stem of recovery group and aware group was significantly increased (P<0.05). Conclusion: cAMP may play an important role in sevoflurane anesthesia. (authors)

  11. Sex Differences in Brain Activity Related to General and Emotional Intelligence

    Science.gov (United States)

    Jausovec, Norbert; Jausovec, Ksenija

    2005-01-01

    The study investigated gender differences in resting EEG (in three individually determined narrow [alpha] frequency bands) related to the level of general and emotional intelligence. Brain activity of males decreased with the level of general intelligence, whereas an opposite pattern of brain activity was observed in females. This difference was…

  12. The Influence of Adipose Tissue on Brain Development, Cognition, and Risk of Neurodegenerative Disorders.

    Science.gov (United States)

    Letra, Liliana; Santana, Isabel

    2017-01-01

    The brain is a highly metabolic organ and thus especially vulnerable to changes in peripheral metabolism, including those induced by obesity-associated adipose tissue dysfunction. In this context, it is likely that the development and maturation of neurocognitive circuits may also be affected and modulated by metabolic environmental factors, beginning in utero. It is currently recognized that maternal obesity, either pre-gestational or gestational, negatively influences fetal brain development and elevates the risk of cognitive impairment and neuropsychiatric disorders in the offspring. During infancy and adolescence, obesity remains a limiting factor for healthy neurodevelopment, especially affecting executive functions but also attention, visuospatial ability, and motor skills. In middle age, obesity seems to induce an accelerated brain aging and thus may increase the risk of age-related neurodegenerative diseases such as Alzheimer's disease. In this chapter we review and discuss experimental and clinical evidence focusing on the influence of adipose tissue dysfunction on neurodevelopment and cognition across lifespan, as well as some possible mechanistic links, namely the role of the most well studied adipokines.

  13. Perceptual incongruence influences bistability and cortical activation

    NARCIS (Netherlands)

    Brouwer, G.J.; Tong, F.; Hagoort, P.; van Ee, R.

    2009-01-01

    We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability

  14. Acute and chronic changes in brain activity with deep brain stimulation for refractory depression.

    Science.gov (United States)

    Conen, Silke; Matthews, Julian C; Patel, Nikunj K; Anton-Rodriguez, José; Talbot, Peter S

    2018-04-01

    Deep brain stimulation is a potential option for patients with treatment-refractory depression. Deep brain stimulation benefits have been reported when targeting either the subgenual cingulate or ventral anterior capsule/nucleus accumbens. However, not all patients respond and optimum stimulation-site is uncertain. We compared deep brain stimulation of the subgenual cingulate and ventral anterior capsule/nucleus accumbens separately and combined in the same seven treatment-refractory depression patients, and investigated regional cerebral blood flow changes associated with acute and chronic deep brain stimulation. Deep brain stimulation-response was defined as reduction in Montgomery-Asberg Depression Rating Scale score from baseline of ≥50%, and remission as a Montgomery-Asberg Depression Rating Scale score ≤8. Changes in regional cerebral blood flow were assessed using [ 15 O]water positron emission tomography. Remitters had higher relative regional cerebral blood flow in the prefrontal cortex at baseline and all subsequent time-points compared to non-remitters and non-responders, with prefrontal cortex regional cerebral blood flow generally increasing with chronic deep brain stimulation. These effects were consistent regardless of stimulation-site. Overall, no significant regional cerebral blood flow changes were apparent when deep brain stimulation was acutely interrupted. Deep brain stimulation improved treatment-refractory depression severity in the majority of patients, with consistent changes in local and distant brain regions regardless of target stimulation. Remission of depression was reached in patients with higher baseline prefrontal regional cerebral blood flow. Because of the small sample size these results are preliminary and further evaluation is necessary to determine whether prefrontal cortex regional cerebral blood flow could be a predictive biomarker of treatment response.

  15. Cocaine is pharmacologically active in the nonhuman primate fetal brain

    DEFF Research Database (Denmark)

    Benveniste, Helene; Fowler, Joanna S; Rooney, William D

    2010-01-01

    Cocaine use during pregnancy is deleterious to the newborn child, in part via its disruption of placental blood flow. However, the extent to which cocaine can affect the function of the fetal primate brain is still an unresolved question. Here we used PET and MRI and show that in third-trimester ......Cocaine use during pregnancy is deleterious to the newborn child, in part via its disruption of placental blood flow. However, the extent to which cocaine can affect the function of the fetal primate brain is still an unresolved question. Here we used PET and MRI and show that in third......-trimester pregnant nonhuman primates, cocaine at doses typically used by drug abusers significantly increased brain glucose metabolism to the same extent in the mother as in the fetus (approximately 100%). Inasmuch as brain glucose metabolism is a sensitive marker of brain function, the current findings provide...

  16. Sustained Treatment with Insulin Detemir in Mice Alters Brain Activity and Locomotion.

    Directory of Open Access Journals (Sweden)

    Tina Sartorius

    Full Text Available Recent studies have identified unique brain effects of insulin detemir (Levemir®. Due to its pharmacologic properties, insulin detemir may reach higher concentrations in the brain than regular insulin. This might explain the observed increased brain stimulation after acute insulin detemir application but it remained unclear whether chronic insulin detemir treatment causes alterations in brain activity as a consequence of overstimulation.In mice, we examined insulin detemir's prolonged brain exposure by continuous subcutaneous (s.c. application using either micro-osmotic pumps or daily s.c. injections and performed continuous radiotelemetric electrocorticography and locomotion recordings.Acute intracerebroventricular injection of insulin detemir activated cortical and locomotor activity significantly more than regular insulin in equimolar doses (0.94 and 5.63 mU in total, suggesting an enhanced acute impact on brain networks. However, given continuously s.c., insulin detemir significantly reduced cortical activity (theta: 21.3±6.1% vs. 73.0±8.1%, P<0.001 and failed to maintain locomotion, while regular insulin resulted in an increase of both parameters.The data suggest that permanently-increased insulin detemir levels in the brain convert its hyperstimulatory effects and finally mediate impairments in brain activity and locomotion. This observation might be considered when human studies with insulin detemir are designed to target the brain in order to optimize treatment regimens.

  17. Predator cat odors activate sexual arousal pathways in brains of Toxoplasma gondii infected rats.

    Directory of Open Access Journals (Sweden)

    Patrick K House

    Full Text Available Cat odors induce rapid, innate and stereotyped defensive behaviors in rats at first exposure, a presumed response to the evolutionary pressures of predation. Bizarrely, rats infected with the brain parasite Toxoplasma gondii approach the cat odors they typically avoid. Since the protozoan Toxoplasma requires the cat to sexually reproduce, this change in host behavior is thought to be a remarkable example of a parasite manipulating a mammalian host for its own benefit. Toxoplasma does not influence host response to non-feline predator odor nor does it alter behavior on olfactory, social, fear or anxiety tests, arguing for specific manipulation in the processing of cat odor. We report that Toxoplasma infection alters neural activity in limbic brain areas necessary for innate defensive behavior in response to cat odor. Moreover, Toxoplasma increases activity in nearby limbic regions of sexual attraction when the rat is exposed to cat urine, compelling evidence that Toxoplasma overwhelms the innate fear response by causing, in its stead, a type of sexual attraction to the normally aversive cat odor.

  18. Intellectual function, activities of daily living and computerized tomography of the brain in geriatric demented patients

    International Nuclear Information System (INIS)

    Omura, Fumiaki; Ogura, Chikara; Kishimoto, Akira; Okubo, Masayo; Imamoto, Atsushi; Tsuchie, Harutaka; Sugihara, Kanichiro; Fujii, Shozo.

    1984-01-01

    Thirty eight patients of geriatric dementia (mean age 74.9 years) were examined by computerized tomography (CT) and their intellectual functions and activities of daily living (ADL) were evaluated. CT was evaluated by both visual assessment method and direct measuring method. Intellectual function was evaluated by Jikei University dementia rating scale. ADL was evaluated by both Hasegawa's rating scale and Sengoku's rating scale. Results were as follows: significant influence by age was observed in intellectual functions and ADL of subjects above 75 years old. There were good correlations between the higher intellectual function, the better grooming and hygiene, and less needs of nursing care. The severe brain atrophy evaluated by the visual assessment method was correlated with the depressed level of intellectual function. When brain atrophy is mild despite high degree of dementia, reexamination should be made to explore somatic diseases inducing depression of mental activity. It also should be noted that sex and age difference is important in studying geriatric patients. (author)

  19. Predator cat odors activate sexual arousal pathways in brains of Toxoplasma gondii infected rats.

    Science.gov (United States)

    House, Patrick K; Vyas, Ajai; Sapolsky, Robert

    2011-01-01

    Cat odors induce rapid, innate and stereotyped defensive behaviors in rats at first exposure, a presumed response to the evolutionary pressures of predation. Bizarrely, rats infected with the brain parasite Toxoplasma gondii approach the cat odors they typically avoid. Since the protozoan Toxoplasma requires the cat to sexually reproduce, this change in host behavior is thought to be a remarkable example of a parasite manipulating a mammalian host for its own benefit. Toxoplasma does not influence host response to non-feline predator odor nor does it alter behavior on olfactory, social, fear or anxiety tests, arguing for specific manipulation in the processing of cat odor. We report that Toxoplasma infection alters neural activity in limbic brain areas necessary for innate defensive behavior in response to cat odor. Moreover, Toxoplasma increases activity in nearby limbic regions of sexual attraction when the rat is exposed to cat urine, compelling evidence that Toxoplasma overwhelms the innate fear response by causing, in its stead, a type of sexual attraction to the normally aversive cat odor.

  20. Characterizing Motif Dynamics of Electric Brain Activity Using Symbolic Analysis

    Directory of Open Access Journals (Sweden)

    Massimiliano Zanin

    2014-10-01

    Full Text Available Motifs are small recurring circuits of interactions which constitute the backbone of networked systems. Characterizing motif dynamics is therefore key to understanding the functioning of such systems. Here we propose a method to define and quantify the temporal variability and time scales of electroencephalogram (EEG motifs of resting brain activity. Given a triplet of EEG sensors, links between them are calculated by means of linear correlation; each pattern of links (i.e., each motif is then associated to a symbol, and its appearance frequency is analyzed by means of Shannon entropy. Our results show that each motif becomes observable with different coupling thresholds and evolves at its own time scale, with fronto-temporal sensors emerging at high thresholds and changing at fast time scales, and parietal ones at low thresholds and changing at slower rates. Finally, while motif dynamics differed across individuals, for each subject, it showed robustness across experimental conditions, indicating that it could represent an individual dynamical signature.

  1. Housing conditions influence motor functions and exploratory behavior following focal damage of the rat brain.

    Science.gov (United States)

    Gornicka-Pawlak, Elzbieta; Jabłońska, Anna; Chyliński, Andrzej; Domańska-Janik, Krystyna

    2009-01-01

    The present study investigated influence of housing conditions on motor functions recovery and exploratory behavior following ouabain focal brain lesion in the rat. During 30 days post-surgery period rats were housed individually in standard cages (IS) or in groups in enriched environment (EE) and behaviorally tested. The EE lesioned rats showed enhanced recovery from motor impairments in walking beam task, comparing with IS animals. Contrarily, in the open field IS rats (both lesioned and control) traveled a longer distance, showed less habituation and spent less time resting at the home base than the EE animals. Unlike the EE lesioned animals, the lesioned IS rats, presented a tendency to hyperactivity in postinjury period. Turning tendency was significantly affected by unilateral brain lesion only in the EE rats. We can conclude that housing conditions distinctly affected the rat's behavior in classical laboratory tests.

  2. Influence of Physical Activities to Science Performance

    Directory of Open Access Journals (Sweden)

    RS Wilson DR. Constantino

    2017-11-01

    Full Text Available This study explored the physical activities of fifth and sixth graders that projected correlations to science performance and how these physical activities may be utilized for classroom purposes in the context of science-related play activities. Descriptive survey correlational design directed the data collection and analysis of the physical activities of purposively selected 133 fifth and sixth graders. Primarily, the study used a researcher-developed and validated instrument (Physical Activity Questionnaire [PAQ], and standard instruments: Philippine National Physical Activity Guide (PNPAG and General Physical Activity Questionnaire (GPAQ. The latter classified the physical activities into five domains which directed the interpretation of the participants‟ responses. The Pearson-r Moment of Correlation described the level of correlation of the frequency of engagement to physical activities (limited to local and localized activities and the science grade of the respondents. Results show that each of the physical activity domains showed specific correlations to science performance of the respondents. For further research, enrichment of the relationship of the physical activities and the science performance may focus on possible moderating variables like economic status, and time allotment for physical activities.

  3. Measurable benefits on brain activity from the practice of educational leisure

    OpenAIRE

    Requena, Carmen; López, Verónica

    2014-01-01

    Even if behavioral studies relate leisure practices to the preservation of memory in old persons, there is unsubstantial evidence of the import of leisure on brain activity. Aim: This study was to compare the brain activity of elderly retired people who engage in different types of leisure activities. Methods: Quasi-experimental study over a sample of 60 elderly, retired subjects distributed into three groups according to the leisure activities they practised: educational leisure (G1), ...

  4. Resting brain activity varies with dream recall frequency between subjects.

    Science.gov (United States)

    Eichenlaub, Jean-Baptiste; Nicolas, Alain; Daltrozzo, Jérôme; Redouté, Jérôme; Costes, Nicolas; Ruby, Perrine

    2014-06-01

    Dreaming is still poorly understood. Notably, its cerebral underpinning remains unclear. Neuropsychological studies have shown that lesions in the temporoparietal junction (TPJ) and/or the white matter of the medial prefrontal cortex (MPFC) lead to the global cessation of dream reports, suggesting that these regions of the default mode network have key roles in the dreaming process (forebrain 'dream-on' hypothesis). To test this hypothesis, we measured regional cerebral blood flow (rCBF) using [(15)O]H2O positron emission tomography in healthy subjects with high and low dream recall frequencies (DRFs) during wakefulness (rest) and sleep (rapid eye movement (REM) sleep, N2, and N3). Compared with Low recallers (0.5 ± 0.3 dream recall per week in average), High recallers (5.2 ± 1.4) showed higher rCBF in the TPJ during REM sleep, N3, and wakefulness, and in the MPFC during REM sleep and wakefulness. We demonstrate that the resting states of High recallers and Low recallers differ during sleep and wakefulness. It coheres with previous ERP results and confirms that a high/low DRF is associated with a specific functional organization of the brain. These results support the forebrain 'dream-on' hypothesis and suggest that TPJ and MPFC are not only involved in dream recall during wakefulness but also have a role in dreaming during sleep (production and/or encoding). Increased activity in the TPJ and MPFC might promote the mental imagery and/or memory encoding of dreams. Notably, increased activity in TPJ might facilitate attention orienting toward external stimuli and promote intrasleep wakefulness, facilitating the encoding of the dreams in memory.

  5. Maternal insulin sensitivity is associated with oral glucose-induced changes in fetal brain activity.

    Science.gov (United States)

    Linder, Katarzyna; Schleger, Franziska; Ketterer, Caroline; Fritsche, Louise; Kiefer-Schmidt, Isabelle; Hennige, Anita; Häring, Hans-Ulrich; Preissl, Hubert; Fritsche, Andreas

    2014-06-01

    Fetal programming plays an important role in the pathogenesis of type 2 diabetes. The aim of the present study was to investigate whether maternal metabolic changes during OGTT influence fetal brain activity. Thirteen healthy pregnant women underwent an OGTT (75 g). Insulin sensitivity was determined by glucose and insulin measurements at 0, 60 and 120 min. At each time point, fetal auditory evoked fields were recorded with a fetal magnetoencephalographic device and response latencies were determined. Maternal insulin increased from a fasting level of 67 ± 25 pmol/l (mean ± SD) to 918 ± 492 pmol/l 60 min after glucose ingestion and glucose levels increased from 4.4 ± 0.3 to 7.4 ± 1.1 mmol/l. Over the same time period, fetal response latencies decreased from 297 ± 99 to 235 ± 84 ms (p = 0.01) and then remained stable until 120 min (235 ± 84 vs 251 ± 91 ms, p = 0.39). There was a negative correlation between maternal insulin sensitivity and fetal response latencies 60 min after glucose ingestion (r = 0.68, p = 0.02). After a median split of the group based on maternal insulin sensitivity, fetuses of insulin-resistant mothers showed a slower response to auditory stimuli (283 ± 79 ms) than those of insulin-sensitive mothers (178 ± 46 ms, p = 0.03). Lower maternal insulin sensitivity is associated with slower fetal brain responses. These findings provide the first evidence of a direct effect of maternal metabolism on fetal brain activity and suggest that central insulin resistance may be programmed during fetal development.

  6. Docosahexaenoic Acid (DHA) Provides Neuroprotection in Traumatic Brain Injury Models via Activating Nrf2-ARE Signaling.

    Science.gov (United States)

    Zhu, Wei; Ding, Yuexia; Kong, Wei; Li, Tuo; Chen, Hongguang

    2018-04-16

    In this study, we explored the neuroprotective effects of docosahexaenoic acid (DHA) in traumatic brain injury (TBI) models. In this study, we first confirmed that DHA was neuroprotective against TBI via the NSS test and Morris water maze experiment. Western blot was conducted to identify the expression of Bax, caspase-3, and Bcl-2. And the cell apoptosis of the TBI models was validated by TUNEL staining. Relationships between nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) pathway-related genes and DHA were explored by RT-PCR and Western blot. Rats of the DHA group performed remarkably better than those of the TBI group in both NSS test and water maze experiment. DHA conspicuously promoted the expression of Bcl-2 and diminished that of cleaved caspase-3 and Bax, indicating the anti-apoptotic role of DHA. Superoxide dismutase (SOD) activity and cortical malondialdehyde content, glutathione peroxidase (GPx) activity were renovated in rats receiving DHA treatment, implying that the neuroprotective influence of DHA was derived from lightening the oxidative stress caused by TBI. Moreover, immunofluorescence and Western blot experiments revealed that DHA facilitated the translocation of Nrf2 to the nucleus. DHA administration also notably increased the expression of the downstream factors NAD(P)H:quinone oxidoreductase (NQO-1) and heme oxygenase 1(HO-1). DHA exerted neuroprotective influence on the TBI models, potentially through activating the Nrf2- ARE pathway.

  7. Microbial endocrinology: Host-microbiota neuroendocrine interactions influencing brain and behavior.

    Science.gov (United States)

    Lyte, Mark

    2014-01-01

    The ability of microorganisms, whether present as commensals within the microbiota or introduced as part of a therapeutic regimen, to influence behavior has been demonstrated by numerous laboratories over the last few years. Our understanding of the mechanisms that are responsible for microbiota-gut-brain interactions is, however, lacking. The complexity of the microbiota is, of course, a contributing factor. Nonetheless, while microbiologists approaching the issue of microbiota-gut-brain interactions in the behavior well recognize such complexity, what is often overlooked is the equal complexity of the host neurophysiological system, especially within the gut which is differentially innervated by the enteric nervous system. As such, in the search for common mechanisms by which the microbiota may influence behavior one may look for mechanisms which are shared by both host and microbiota. Such interkingdom signaling can be found in the shared production of neurochemical mediators that are found in both eukaryotes and prokaryotes. The study of the production and recognition of neurochemicals that are exactly the same in structure to those produced in the vertebrate organisms is known as microbial endocrinology. The examination of the microbiota from the vantage point of host-microbiota neuroendocrine interactions cannot only identify new microbial endocrinology-based mechanisms by which the microbiota can influence host behavior, but also lead to the design of interventions in which the composition of the microbiota may be modulated in order to achieve a specific microbial endocrinology-based profile beneficial to overall host behavior.

  8. The Brain and Learning: Examining the Connection between Brain Activity, Spatial Intelligence, and Learning Outcomes in Online Visual Instruction

    Science.gov (United States)

    Lee, Hyangsook

    2013-01-01

    The purpose of the study was to compare 2D and 3D visual presentation styles, both still frame and animation, on subjects' brain activity measured by the amplitude of EEG alpha wave and on their recall to see if alpha power and recall differ significantly by depth and movement of visual presentation style and by spatial intelligence. In addition,…

  9. What makes your brain suggestible? Hypnotizability is associated with differential brain activity during attention outside hypnosis.

    Science.gov (United States)

    Cojan, Yann; Piguet, Camille; Vuilleumier, Patrik

    2015-08-15

    Theoretical models of hypnosis have emphasized the importance of attentional processes in accounting for hypnotic phenomena but their exact nature and brain substrates remain unresolved. Individuals vary in their susceptibility to hypnosis, a variability often attributed to differences in attentional functioning such as greater ability to filter irrelevant information and inhibit prepotent responses. However, behavioral studies of attentional performance outside the hypnotic state have provided conflicting results. We used fMRI to investigate the recruitment of attentional networks during a modified flanker task in High and Low hypnotizable participants. The task was performed in a normal (no hypnotized) state. While behavioral performance did not reliably differ between groups, components of the fronto-parietal executive network implicated in monitoring (anterior cingulate cortex; ACC), adjustment (lateral prefrontal cortex; latPFC), and implementation of attentional control (intraparietal sulcus; IPS) were differently activated depending on the hypnotizability of the subjects: the right inferior frontal gyrus (rIFG) was more recruited, whereas IPS and ACC were less recruited by High susceptible individuals compared to Low. Our results demonstrate that susceptibility to hypnosis is associated with particular executive control capabilities allowing efficient attentional focusing, and point to specific neural substrates in right prefrontal cortex. We demonstrated that outside hypnosis, low hypnotizable subjects recruited more parietal cortex and anterior cingulate regions during selective attention conditions suggesting a better detection and implementation of conflict. However, outside hypnosis the right inferior frontal gyrus (rIFG) was more recruited by highly hypnotizable subjects during selective attention conditions suggesting a better control of conflict. Furthermore, in highly hypnotizable subjects this region was more connected to the default mode network

  10. Peer Influence Via Instagram: Effects on Brain and Behavior in Adolescence and Young Adulthood.

    Science.gov (United States)

    Sherman, Lauren E; Greenfield, Patricia M; Hernandez, Leanna M; Dapretto, Mirella

    2018-01-01

    Mobile social media often feature the ability to "Like" content posted by others. This study examined the effect of Likes on youths' neural and behavioral responses to photographs. High school and college students (N = 61, ages 13-21) viewed theirs and others' Instagram photographs while undergoing functional Magnetic Resonance Imaging (fMRI). Participants more often Liked photographs that appeared to have received many (vs. few) Likes. Popular photographs elicited greater activity in multiple brain regions, including the nucleus accumbens (NAcc), a hub of the brain's reward circuitry. NAcc responsivity increased with age for high school but not college students. When viewing images depicting risk-taking (vs. nonrisky photographs), high school students, but not college students, showed decreased activation of neural regions implicated in cognitive control. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  11. Removing the effect of response time on brain activity reveals developmental differences in conflict processing in the posterior medial prefrontal cortex.

    Science.gov (United States)

    Carp, Joshua; Fitzgerald, Kate Dimond; Taylor, Stephan F; Weissman, Daniel H

    2012-01-02

    In functional magnetic resonance imaging (fMRI) studies, researchers often attempt to ensure that group differences in brain activity are not confounded with group differences in mean reaction time (RT). However, even when groups are matched for performance, they may differ in terms of the RT-BOLD relationship: the degree to which brain activity varies with RT on a trial-by-trial basis. Group activation differences might therefore be influenced by group differences in the relationship between brain activity and time on task. Here, we investigated whether correcting for this potential confound alters group differences in brain activity. Specifically, we reanalyzed data from a functional MRI study of response conflict in children and adults, in which conventional analyses indicated that conflict-related activity did not differ between groups. We found that the RT-BOLD relationship was weaker in children than in adults. Consequently, after removing the effect of RT on brain activity, children exhibited greater conflict-related activity than adults in both the posterior medial prefrontal cortex and the right dorsolateral prefrontal cortex. These results identify the RT-BOLD relationship as an important potential confound in fMRI studies of group differences. They also suggest that the magnitude of the RT-BOLD relationship may be a useful biomarker of brain maturity. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors.

    Science.gov (United States)

    Liu, Hesheng; Stufflebeam, Steven M; Sepulcre, Jorge; Hedden, Trey; Buckner, Randy L

    2009-12-01

    Cerebral lateralization is a fundamental property of the human brain and a marker of successful development. Here we provide evidence that multiple mechanisms control asymmetry for distinct brain systems. Using intrinsic activity to measure asymmetry in 300 adults, we mapped the most strongly lateralized brain regions. Both men and women showed strong asymmetries with a significant, but small, group difference. Factor analysis on the asymmetric regions revealed 4 separate factors that each accounted for significant variation across subjects. The factors were associated with brain systems involved in vision, internal thought (the default network), attention, and language. An independent sample of right- and left-handed individuals showed that hand dominance affects brain asymmetry but differentially across the 4 factors supporting their independence. These findings show the feasibility of measuring brain asymmetry using intrinsic activity fluctuations and suggest that multiple genetic or environmental mechanisms control cerebral lateralization.

  13. Whole-Brain Mapping of Neuronal Activity in the Learned Helplessness Model of Depression.

    Science.gov (United States)

    Kim, Yongsoo; Perova, Zinaida; Mirrione, Martine M; Pradhan, Kith; Henn, Fritz A; Shea, Stephen; Osten, Pavel; Li, Bo

    2016-01-01

    Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP - a marker of neuronal activation - in c-fosGFP transgenic mice subjected to the learned helplessness (LH) procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing "helpless" behavior had an overall brain-wide reduction in the level of neuronal activation compared with mice showing "resilient" behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole-brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. Our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses to stress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses.

  14. Whole-brain mapping of neuronal activity in the learned helplessness model of depression

    Directory of Open Access Journals (Sweden)

    Yongsoo eKim

    2016-02-01

    Full Text Available Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP – a marker of neuronal activation – in c-fosGFP transgenic mice subjected to the learned helplessness (LH procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing helpless behavior had an overall brain-wide reduction in the level of neuronal activation compared with mice showing resilient behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. Our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses to stress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses.

  15. Influence of deep brain stimulation on postural stability in patients with Parkinson disease

    OpenAIRE

    Zelenková, Jana

    2012-01-01

    Parkinson's disease is a neurodegenerative disease of the basal ganglia. Its main symptoms are rigidity, tremor, bradykinesia, hypokinesia and postural instability. One possible way how to infuence diseases is neurosurgical treatment - deep brain stimulation. The principle is the implantation of electrodes in the basal ganglia and modulation of activity of the basal ganglia circuits due to electrical stimulation. Stimulation affects the motor symptoms of Parkinson's disease. This thesis deals...

  16. Same task, different strategies: How brain networks can be influenced by memory strategy

    OpenAIRE

    Sanfratello, Lori; Caprihan, Arvind; Stephen, Julia M.; Knoefel, Janice E.; Adair, John C.; Qualls, Clifford; Lundy, S. Laura; Aine, Cheryl J.

    2014-01-01

    Previous functional neuroimaging studies demonstrated that different neural networks underlie different types of cognitive processing by engaging participants in particular tasks, such as verbal or spatial working memory (WM) tasks. However, we report here that even when a working memory task is defined as verbal or spatial, different types of memory strategies may be employed to complete it, with concomitant variations in brain activity. We developed a questionnaire to characterize the type ...

  17. Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors

    OpenAIRE

    Liu, Hesheng; Stufflebeam, Steven M.; Sepulcre, Jorge; Hedden, Trey; Buckner, Randy L.

    2009-01-01

    Cerebral lateralization is a fundamental property of the human brain and a marker of successful development. Here we provide evidence that multiple mechanisms control asymmetry for distinct brain systems. Using intrinsic activity to measure asymmetry in 300 adults, we mapped the most strongly lateralized brain regions. Both men and women showed strong asymmetries with a significant, but small, group difference. Factor analysis on the asymmetric regions revealed 4 separate factors that each ac...

  18. Activity-based anorexia activates nesfatin-1 immunoreactive neurons in distinct brain nuclei of female rats.

    Science.gov (United States)

    Scharner, Sophie; Prinz, Philip; Goebel-Stengel, Miriam; Lommel, Reinhard; Kobelt, Peter; Hofmann, Tobias; Rose, Matthias; Stengel, Andreas

    2017-12-15

    Activity-based anorexia (ABA) is an established animal model for the eating disorder anorexia nervosa (AN). The pathophysiology of AN and the involvement of food intake-regulatory peptides is still poorly understood. Nesfatin-1, an anorexigenic peptide also involved in the mediation of stress, anxiety and depression might be a likely candidate involved in the pathogenesis of AN. Therefore, activation of nesfatin-1 immunoreactive (ir) brain nuclei was investigated under conditions of ABA. Female Sprague-Dawley rats were used and divided into four groups (n=6/group): activity-based anorexia (ABA), restricted feeding (RF), activity (AC) and ad libitum fed (AL). After the 21-day experimental period and development of ABA, brains were processed for c-Fos/nesfatin-1 double labeling immunohistochemistry. ABA increased the number of nesfatin-1 immunopositive neurons in the paraventricular nucleus, arcuate nucleus, dorsomedial hypothalamic nucleus, locus coeruleus and in the rostral part of the nucleus of the solitary tract compared to AL and AC groups (p0.05). Moreover, we observed significantly more c-Fos and nesfatin-1 ir double-labeled cells in ABA rats compared to RF, AL and AC in the supraoptic nucleus (p<0.05) and compared to AL and AC in the paraventricular nucleus, arcuate nucleus, dorsomedial hypothalamic nucleus, dorsal raphe nucleus and the rostral raphe pallidus (p<0.05). Since nesfatin-1 plays a role in the inhibition of food intake and the response to stress, we hypothesize that the observed changes of brain nesfatin-1 might play a role in the pathophysiology and symptomatology under conditions of ABA and potentially also in patients with AN. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Salivary lipase and a-amylase activities are higher in overweight than in normal weight subjects: Influences on dietary beharior

    NARCIS (Netherlands)

    Mennella, I.; Fogliano, V.; Vitaglione, P.

    2014-01-01

    Mounting evidence shows that hedonic eating, leading to overeating just for pleasure, can be driven by oro-sensory factors through the activation of reward processing and learning in the brain. Foods rich in sugars and fats are potent rewards and saliva composition influences oral taste, texture and

  20. Decisions during negatively-framed messages yield smaller risk-aversion-related brain activation in substance-dependent individuals.

    Science.gov (United States)

    Fukunaga, Rena; Bogg, Tim; Finn, Peter R; Brown, Joshua W

    2013-12-01

    A sizable segment of addiction research investigates the effects of persuasive message appeals on risky and deleterious behaviors. However, to date, little research has examined how various forms of message framing and corresponding behavioral choices might by mediated by risk-related brain regions. Using event-related functional MRI, we investigated brain regions hypothesized to mediate the influence of message appeals on decision making in substance-dependent (SD) compared with nonsubstance-dependent (non-SD) individuals. The Iowa Gambling Task (IGT) was modified to include positively-framed, negatively-framed, and control messages about long-term deck payoffs. In the positively-framed condition, the SD and non-SD groups showed improved decision-making performance that corresponded to higher risk-aversion-related brain activity in the anterior cingulate cortex (ACC) and anterior insula (AI). In contrast, in the negatively-framed condition, the SD group showed poorer performance that corresponded to lower risk-aversion-related brain activity in the AI region. In addition, only the non-SD group showed a positive association between decision quality and greater risk-related activity in the ACC, regardless of message type. The findings suggest substance-dependent individuals may have reduced neurocognitive sensitivity in the ACC and AI regions involved in risk perception and aversion during decision-making, especially in response to framed messages that emphasize reduced prospects for long-term gains. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  1. Decisions during Negatively-Framed Messages Yield Smaller Risk-Aversion-Related Brain Activation in Substance-Dependent Individuals

    Science.gov (United States)

    Fukunaga, Rena; Bogg, Tim; Finn, Peter R.; Brown, Joshua W.

    2012-01-01

    A sizable segment of addiction research investigates the effects of persuasive message appeals on risky and deleterious behaviors. However, to date, little research has examined how various forms of message framing and corresponding behavioral choices might by mediated by risk-related brain regions. Using event-related functional magnetic resonance imaging, we investigated brain regions hypothesized to mediate the influence of message appeals on decision making in substance-dependent (SD) compared to non-substance-dependent (non-SD) individuals. The Iowa Gambling Task (IGT) was modified to include positively-framed, negatively-framed, and control messages about long-term deck payoffs. In the positively-framed condition, the SD and non-SD groups showed improved decision-making performance that corresponded to higher risk-aversion-related brain activity in the anterior cingulate cortex (ACC) and anterior insula (AI). In contrast, in the negatively-framed condition, the SD group showed poorer performance that corresponded to lower risk-aversion-related brain activity in the AI region. In addition, only the non-SD group showed a positive association between decision quality and greater risk-related activity in the ACC, regardless of message type. The findings suggest substance-dependent individuals may have reduced neurocognitive sensitivity in the ACC and AI regions involved in risk perception and aversion during decision-making, especially in response to framed messages that emphasize reduced prospects for long-term gains. PMID:23148798

  2. Behavioral inhibition and activation systems in traumatic brain injury.

    Science.gov (United States)

    Wong, Christina G; Rapport, Lisa J; Meachen, Sarah-Jane; Hanks, Robin A; Lumley, Mark A

    2016-11-01

    Personality has been linked to cognitive appraisal and health outcomes; however, research specific to traumatic brain injury (TBI) has been sparse. Gray's theory of behavioral inhibition system and behavioral activation system (BIS/BAS) offers a neurobiologic view of personality that may be especially relevant to neurobehavioral change associated with TBI. The present study examined theoretical and psychometric issues of using the BIS/BAS scale among adults with TBI as well as BIS/BAS personality correlates of TBI. Research Method/Design: Eighty-one adults with complicated-mild to severe TBI and 76 of their significant others (SOs) participated. Measures included the BIS/BAS scale, Positive and Negative Affect Schedule, and Awareness Questionnaire. Among adults with TBI, BIS/BAS internal consistency reliabilities were similar to those found in normative samples of adults without TBI. The TBI group endorsed significantly higher BAS than did the SO group, and injury severity was positively correlated to BAS. The SO group showed expected patterns of correlation between personality and affect; positive affect was associated with BAS, and negative affect with BIS. In contrast, in the TBI group, BAS was positively correlated to both positive and negative affect. Impaired awareness of abilities moderated the intensity of relationships between BIS/BAS and affect. TBI was associated with relatively intensified BAS (approach behavior) but not BIS (avoidance behavior). The observed pattern is consistent with the neurobiology of TBI-related personality change and with theory regarding the independence of the BIS and BAS systems. The BIS/BAS scale shows promise as a personality measure in TBI. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. Global loss of acetylcholinesterase activity with mitochondrial complexes inhibition and inflammation in brain of hypercholesterolemic mice.

    Science.gov (United States)

    Paul, Rajib; Borah, Anupom

    2017-12-20

    There exists an intricate relationship between hypercholesterolemia (elevated plasma cholesterol) and brain functions. The present study aims to understand the impact of hypercholesterolemia on pathological consequences in mouse brain. A chronic mouse model of hypercholesterolemia was induced by giving high-cholesterol diet for 12 weeks. The hypercholesterolemic mice developed cognitive impairment as evident from object recognition memory test. Cholesterol accumulation was observed in four discrete brain regions, such as cortex, striatum, hippocampus and substantia nigra along with significantly damaged blood-brain barrier by hypercholesterolemia. The crucial finding is the loss of acetylcholinesterase activity with mitochondrial dysfunction globally in the brain of hypercholesterolemic mice, which is related to the levels of cholesterol. Moreover, the levels of hydroxyl radical were elevated in the regions of brain where the activity of mitochondrial complexes was found to be reduced. Intriguingly, elevations of inflammatory stress markers in the cholesterol-rich brain regions were observed. As cognitive impairment, diminished brain acetylcholinesterase activity, mitochondrial dysfunctions, and inflammation are the prima facie pathologies of neurodegenerative diseases, the findings impose hypercholesterolemia as potential risk factor towards brain dysfunction.

  4. Distinct patterns of brain activity characterise lexical activation and competition in spoken word production.

    Directory of Open Access Journals (Sweden)

    Vitória Piai

    Full Text Available According to a prominent theory of language production, concepts activate multiple associated words in memory, which enter into competition for selection. However, only a few electrophysiological studies have identified brain responses reflecting competition. Here, we report a magnetoencephalography study in which the activation of competing words was manipulated by presenting pictures (e.g., dog with distractor words. The distractor and picture name were semantically related (cat, unrelated (pin, or identical (dog. Related distractors are stronger competitors to the picture name because they receive additional activation from the picture relative to other distractors. Picture naming times were longer with related than unrelated and identical distractors. Phase-locked and non-phase-locked activity were distinct but temporally related. Phase-locked activity in left temporal cortex, peaking at 400 ms, was larger on unrelated than related and identical trials, suggesting differential activation of alternative words by the picture-word stimuli. Non-phase-locked activity between roughly 350-650 ms (4-10 Hz in left superior frontal gyrus was larger on related than unrelated and identical trials, suggesting differential resolution of the competition among the alternatives, as reflected in the naming times. These findings characterise distinct patterns of activity associated with lexical activation and competition, supporting the theory that words are selected by competition.

  5. Abnormal neural activities of directional brain networks in patients with long-term bilateral hearing loss.

    Science.gov (United States)

    Xu, Long-Chun; Zhang, Gang; Zou, Yue; Zhang, Min-Feng; Zhang, Dong-Sheng; Ma, Hua; Zhao, Wen-Bo; Zhang, Guang-Yu

    2017-10-13

    The objective of the study is to provide some implications for rehabilitation of hearing impairment by investigating changes of neural activities of directional brain networks in patients with long-term bilateral hearing loss. Firstly, we implemented neuropsychological tests of 21 subjects (11 patients with long-term bilateral hearing loss, and 10 subjects with normal hearing), and these tests revealed significant differences between the deaf group and the controls. Then we constructed the individual specific virtual brain based on functional magnetic resonance data of participants by utilizing effective connectivity and multivariate regression methods. We exerted the stimulating signal to the primary auditory cortices of the virtual brain and observed the brain region activations. We found that patients with long-term bilateral hearing loss presented weaker brain region activations in the auditory and language networks, but enhanced neural activities in the default mode network as compared with normally hearing subjects. Especially, the right cerebral hemisphere presented more changes than the left. Additionally, weaker neural activities in the primary auditor cortices were also strongly associated with poorer cognitive performance. Finally, causal analysis revealed several interactional circuits among activated brain regions, and these interregional causal interactions implied that abnormal neural activities of the directional brain networks in the deaf patients impacted cognitive function.

  6. Valence of physical stimuli, not housing conditions, affects behaviour and frontal cortical brain activity in sheep.

    Science.gov (United States)

    Vögeli, Sabine; Lutz, Janika; Wolf, Martin; Wechsler, Beat; Gygax, Lorenz

    2014-07-01

    Modulation of short-term emotions by long-term mood is little understood but relevant to understand the affective system and of importance in respect to animal welfare: a negative mood might taint experiences, whilst a positive mood might alleviate single negative events. To induce different mood states in sheep housing conditions were varied. Fourteen ewes were group-housed in an unpredictable, stimulus-poor and 15 ewes in a predictable, stimulus-rich environment. Sheep were tested individually for mood in a behavioural cognitive bias paradigm. Also, their reactions to three physical stimuli thought to differ in their perceived valence were observed (negative: pricking, intermediate: slight pressure, positive: kneading). General behaviour, activity, ear movements and positions, and haemodynamic changes in the cortical brain were recorded during stimulations. Generalised mixed-effects models and model probabilities based on the BIC (Bayesian information criterion) were used. Only weak evidence for mood difference was found. Sheep from the unpredictable, stimulus-poor housing condition had a somewhat more negative cognitive bias, showed slightly more aversive behaviour, were slightly more active and moved their ears somewhat more. Sheep most clearly differentiated the negative from the intermediate and positive stimulus in that they exhibited more aversive behaviour, less nibbling, were more active, showed more ear movements, more forward ear postures, fewer backward ear postures, and a stronger decrease in deoxyhaemoglobin when subjected to the negative stimulus. In conclusion, sheep reacted towards stimuli according to their presumed valence but their mood was not strongly influenced by housing conditions. Therefore, behavioural reactions and cortical brain activity towards the stimuli were hardly modulated by housing conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Language-specific dysgraphia in Korean patients with right brain stroke: influence of unilateral spatial neglect.

    Science.gov (United States)

    Jang, Dae-Hyun; Kim, Min-Wook; Park, Kyoung Ha; Lee, Jae Woo

    2015-03-01

    The purpose of the present study was to investigate the relationship between Korean language-specific dysgraphia and unilateral spatial neglect in 31 right brain stroke patients. All patients were tested for writing errors in spontaneous writing, dictation, and copying tests. The dysgraphia was classified into visuospatial omission, visuospatial destruction, syllabic tilting, stroke omission, stroke addition, and stroke tilting. Twenty-three (77.4%) of the 31 patients made dysgraphia and 18 (58.1%) demonstrated unilateral spatial neglect. The visuospatial omission was the most common dysgraphia followed by stroke addition and omission errors. The highest number of errors was made in the copying and the least was in the spontaneous writing test. Patients with unilateral spatial neglect made a significantly higher number of dysgraphia in the copying test than those without. We identified specific dysgraphia features such as a right side space omission and a vertical stroke addition in Korean right brain stroke patients. In conclusion, unilateral spatial neglect influences copy writing system of Korean language in patients with right brain stroke.

  8. Brain structural correlates of risk-taking behavior and effects of peer influence in adolescents.

    Directory of Open Access Journals (Sweden)

    Myoung Soo Kwon

    Full Text Available Adolescents are characterized by impulsive risky behavior, particularly in the presence of peers. We discriminated high and low risk-taking male adolescents aged 18-19 years by assessing their propensity for risky behavior and vulnerability to peer influence with personality tests, and compared structural differences in gray and white matter of the brain with voxel-based morphometry (VBM and diffusion tensor imaging (DTI, respectively. We also compared the brain structures according to the participants' actual risk-taking behavior in a simulated driving task with two different social conditions making up a peer competition situation. There was a discrepancy between the self-reported personality test results and risky driving behavior (running through an intersection with traffic lights turning yellow, chancing a collision with another vehicle. Comparison between high and low risk-taking adolescents according to personality test results revealed no significant difference in gray matter volume and white matter integrity. However, comparison according to actual risk-taking behavior during task performance revealed significantly higher white matter integrity in the high risk-taking group, suggesting that increased risky behavior during adolescence is not necessarily attributed to the immature brain as conventional wisdom says.

  9. Same task, different strategies: how brain networks can be influenced by memory strategy.

    Science.gov (United States)

    Sanfratello, Lori; Caprihan, Arvind; Stephen, Julia M; Knoefel, Janice E; Adair, John C; Qualls, Clifford; Lundy, S Laura; Aine, Cheryl J

    2014-10-01

    Previous functional neuroimaging studies demonstrated that different neural networks underlie different types of cognitive processing by engaging participants in particular tasks, such as verbal or spatial working memory (WM) tasks. However, we report here that even when a WM task is defined as verbal or spatial, different types of memory strategies may be used to complete it, with concomitant variations in brain activity. We developed a questionnaire to characterize the type of strategy used by individual members in a group of 28 young healthy participants (18-25 years) during a spatial WM task. A cluster analysis was performed to differentiate groups. We acquired functional magnetoencephalography and structural diffusion tensor imaging measures to characterize the brain networks associated with the use of different strategies. We found two types of strategies were used during the spatial WM task, a visuospatial and a verbal strategy, and brain regions and time courses of activation differed between participants who used each. Task performance also varied by type of strategy used with verbal strategies showing an advantage. In addition, performance on neuropsychological tests (indices from Wechsler Adult Intelligence Scale-IV, Rey Complex Figure Test) correlated significantly with fractional anisotropy measures for the visuospatial strategy group in white matter tracts implicated in other WM and attention studies. We conclude that differences in memory strategy can have a pronounced effect on the locations and timing of brain activation and that these differences need further investigation as a possible confounding factor for studies using group averaging as a means for summarizing results. Copyright © 2014 Wiley Periodicals, Inc.

  10. Monocyte Trafficking to the Brain with Stress and Inflammation: A Novel Axis of Immune-to-Brain Communication that Influences Mood and Behavior

    Directory of Open Access Journals (Sweden)

    Eric S Wohleb

    2015-01-01

    Full Text Available Psychological stressors cause physiological, immunological, and behavioral alterations in humans and rodents that can be maladaptive and negatively affect quality of life. Several lines of evidence indicate that psychological stress disrupts key functional interactions between the immune system and brain that ultimately affects mood and behavior. For example, activation of microglia, the resident innate immune cells of the brain, has been implicated as a key regulator of mood and behavior in the context of prolonged exposure to psychological stress. Emerging evidence implicates a novel neuroimmune circuit involving microglia activation and sympathetic outflow to the peripheral immune system that further reinforces stress-related behaviors by facilitating the recruitment of inflammatory monocytes to the brain. Evidence from various rodent models, including repeated social defeat (RSD, revealed that trafficking of monocytes to the brain promoted the establishment of anxiety-like behaviors following prolonged stress exposure. In addition, new evidence implicates monocyte trafficking from the spleen to the brain as key regulator of recurring anxiety following exposure to prolonged stress. The purpose of this review is to discuss mechanisms that cause stress-induced monocyte re-distribution in the brain and how dynamic interactions between microglia, endothelial cells, and brain macrophages lead to maladaptive behavioral responses.

  11. Transcriptomics and proteomics analyses of the PACAP38 influenced ischemic brain in permanent middle cerebral artery occlusion model mice

    Directory of Open Access Journals (Sweden)

    Hori Motohide

    2012-11-01

    Full Text Available Abstract Introduction The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP is considered to be a potential therapeutic agent for prevention of cerebral ischemia. Ischemia is a most common cause of death after heart attack and cancer causing major negative social and economic consequences. This study was designed to investigate the effect of PACAP38 injection intracerebroventrically in a mouse model of permanent middle cerebral artery occlusion (PMCAO along with corresponding SHAM control that used 0.9% saline injection. Methods Ischemic and non-ischemic brain tissues were sampled at 6 and 24 hours post-treatment. Following behavioral analyses to confirm whether the ischemia has occurred, we investigated the genome-wide changes in gene and protein expression using DNA microarray chip (4x44K, Agilent and two-dimensional gel electrophoresis (2-DGE coupled with matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS, respectively. Western blotting and immunofluorescent staining were also used to further examine the identified protein factor. Results Our results revealed numerous changes in the transcriptome of ischemic hemisphere (ipsilateral treated with PACAP38 compared to the saline-injected SHAM control hemisphere (contralateral. Previously known (such as the interleukin family and novel (Gabra6, Crtam genes were identified under PACAP influence. In parallel, 2-DGE analysis revealed a highly expressed protein spot in the ischemic hemisphere that was identified as dihydropyrimidinase-related protein 2 (DPYL2. The DPYL2, also known as Crmp2, is a marker for the axonal growth and nerve development. Interestingly, PACAP treatment slightly increased its abundance (by 2-DGE and immunostaining at 6 h but not at 24 h in the ischemic hemisphere, suggesting PACAP activates neuronal defense mechanism early on. Conclusions This study provides a detailed inventory of PACAP influenced gene expressions

  12. What Should Be the Roles of Conscious States and Brain States in Theories of Mental Activity?**

    Science.gov (United States)

    Dulany, Donelson E.

    2011-01-01

    Answers to the title’s question have been influenced by a history in which an early science of consciousness was rejected by behaviourists on the argument that this entails commitment to ontological dualism and “free will” in the sense of indeterminism. This is, however, a confusion of theoretical assertions with metaphysical assertions. Nevertheless, a legacy within computational and information-processing views of mind rejects or de-emphasises a role for consciousness. This paper sketches a mentalistic metatheory in which conscious states are the sole carriers of symbolic representations, and thus have a central role in the explanation of mental activity and action-while specifying determinism and materialism as useful working assumptions. A mentalistic theory of causal learning, experimentally examined with phenomenal reports, is followed by examination of these questions: Are there common roles for phenomenal reports and brain imaging? Is there defensible evidence for unconscious brain states carrying symbolic representations? Are there interesting dissociations within consciousness? PMID:21694964

  13. Brain Regions Influencing Implicit Violent Attitudes: A Lesion-Mapping Study.

    Science.gov (United States)

    Cristofori, Irene; Zhong, Wanting; Mandoske, Valerie; Chau, Aileen; Krueger, Frank; Strenziok, Maren; Grafman, Jordan

    2016-03-02

    Increased aggression is common after traumatic brain injuries and may persist after cognitive recovery. Maladaptive aggression and violence are associated with dysfunction in the prefrontal and temporal cortex, but such dysfunctional behaviors are typically measured by explicit scales and history. However, it is well known that answers on explicit scales on sensitive topics--such as aggressive thoughts and behaviors--may not reveal true tendencies. Here, we investigated the neural basis of implicit attitudes toward aggression in humans using a modified version of the Implicit Association Task (IAT) with a unique sample of 112 Vietnam War veterans who suffered penetrating brain injury and 33 healthy controls who also served in combat in Vietnam but had no history of brain injury. We hypothesized that dorsolateral prefrontal cortex (dlPFC) lesions, due to the crucial role of the dlPFC in response inhibition, could influence performance on the IAT. In addition, we investigated the causal contribution of specific brain areas to implicit attitudes toward violence. We found a more positive implicit attitude toward aggression among individuals with lesions to the dlPFC and inferior posterior temporal cortex (ipTC). Furthermore, executive functions were critically involved in regulating implicit attitudes toward violence and aggression. Our findings complement existing evidence on the neural basis of explicit aggression centered on the ventromedial prefrontal cortex. These findings highlight that dlPFC and ipTC play a causal role in modulating implicit attitudes about violence and are crucially involved in the pathogenesis of aggressive behavior. Maladaptive aggression and violence can lead to interpersonal conflict and criminal behavior. Surprisingly little is known about implicit attitudes toward violence and aggression. Here, we used a range of techniques, including voxel-based lesion-symptom mapping, to examine the causal role of brain structures underpinning implicit

  14. The relation of ongoing brain activity, evoked neural responses, and cognition

    Directory of Open Access Journals (Sweden)

    Sepideh Sadaghiani

    2010-06-01

    Full Text Available Ongoing brain activity has been observed since the earliest neurophysiological recordings and is found over a wide range of temporal and spatial scales. It is characterized by remarkably large spontaneous modulations. Here, we review evidence for the functional role of these ongoing activity fluctuations and argue that they constitute an essential property of the neural architecture underlying cognition. The role of spontaneous activity fluctuations is probably best understood when considering both their spatiotemporal structure and their functional impact on cognition. We first briefly argue against a ‘segregationist’ view on ongoing activity, both in time and space, countering this view with an emphasis on integration within a hierarchical spatiotemporal organization of intrinsic activity. We then highlight the flexibility and context-sensitivity of intrinsic functional connectivity that suggest its involvement in functionally relevant information processing. This role in information processing is pursued by reviewing how ongoing brain activity interacts with afferent and efferent information exchange of the brain with its environment. We focus on the relationship between the variability of ongoing and evoked brain activity, and review recent reports that tie ongoing brain activity fluctuations to variability in human perception and behavior. Finally, these observations are discussed within the framework of the free-energy principle which – applied to human brain function - provides a theoretical account for a non-random, coordinated interaction of ongoing and evoked activity in perception and behaviour.

  15. Physical activity, structural brain changes and cognitive decline. The SMART-MR study

    NARCIS (Netherlands)

    Kooistra, M.; Boss, H.M.; van der Graaf, Y.; Kappelle, L.J.; Biessels, G.J.; Geerlings, M.I.

    2014-01-01

    Objective: We aimed to examine the cross-sectional and prospective relationship between leisure time physical activity, brain MRI abnormalities and cognitive performance in patients with vascular disease. Methods: Within the SMART-MR study, 1.5T MRI of the brain and neuropsychological examinations

  16. Modeling the dynamics of human brain activity with recurrent neural networks

    NARCIS (Netherlands)

    Güçlü, U.; Gerven, M.A.J. van

    2017-01-01

    Encoding models are used for predicting brain activity in response to sensory stimuli with the objective of elucidating how sensory information is represented in the brain. Encoding models typically comprise a nonlinear transformation of stimuli to features (feature model) and a linear convolution

  17. Heritability of brain activity related to response inhibition: a longitudinal genetic study in adolescent twins

    Science.gov (United States)

    Anokhin, Andrey P.; Golosheykin, Simon; Grant, Julia D.; Heath, Andrew C.

    2017-01-01

    The ability to inhibit prepotent but context- or goal-inappropriate responses is essential for adaptive self-regulation of behavior. Deficits in response inhibition, a key component of impulsivity, have been implicated as a core dysfunction in a range of neuropsychiatric disorders such as ADHD and addictions. Identification of genetically transmitted variation in the neural underpinnings of response inhibition can help to elucidate etiological pathways to these disorders and establish the links between genes, brain, and behavior. However, little is known about genetic influences on the neural mechanisms of response inhibition during adolescence, a developmental period characterized by weak self-regulation of behavior. Here we investigated heritability of ERPs elicited in a Go/No-Go task in a large sample of adolescent twins assessed longitudinally at ages 12, 14, and 16. Genetic analyses showed significant heritability of inhibition-related frontal N2 and P3 components at all three ages, with 50 to 60% of inter-individual variability being attributable to genetic factors. These genetic influences included both common genetic factors active at different ages and novel genetic influences emerging during development. Finally, individual differences in the rate of developmental changes from age 12 to age 16 were significantly influenced by genetic factors. In conclusion, the present study provides the first evidence for genetic influences on neural correlates of response inhibition during adolescence and suggests that ERPs elicited in the Go/No-Go task can serve as intermediate neurophysiological phenotypes (endophenotypes) for the study of disinhibition and impulse control disorders. PMID:28300615

  18. Energy landscape and dynamics of brain activity during human bistable perception.

    Science.gov (United States)

    Watanabe, Takamitsu; Masuda, Naoki; Megumi, Fukuda; Kanai, Ryota; Rees, Geraint

    2014-08-28

    Individual differences in the structure of parietal and prefrontal cortex predict the stability of bistable visual perception. However, the mechanisms linking such individual differences in brain structures to behaviour remain elusive. Here we demonstrate a systematic relationship between the dynamics of brain activity, cortical structure and behaviour underpinning bistable perception. Using fMRI in humans, we find that the activity dynamics during bistable perception are well described as fluctuating between three spatially distributed energy minimums: visual-area-dominant, frontal-area-dominant and intermediate states. Transitions between these energy minimums predicted behaviour, with participants whose brain activity tend to reflect the visual-area-dominant state exhibiting more stable perception and those whose activity transits to frontal-area-dominant states reporting more frequent perceptual switches. Critically, these brain activity dynamics are correlated with individual differences in grey matter volume of the corresponding brain areas. Thus, individual differences in the large-scale dynamics of brain activity link focal brain structure with bistable perception.

  19. Regional cerebral blood flow in psychiatry: The resting and activated brains of schizophrenic patients

    International Nuclear Information System (INIS)

    Gur, R.E.

    1984-01-01

    The investigation of regional brain functioning in schizophrenia has been based on behavioral techniques. Although results are sometimes inconsistent, the behavioral observations suggest left hemispheric dysfunction and left hemispheric overreaction. Recent developments in neuroimaging technology make possible major refinements in assessing regional brain function. Both anatomical and physiological information now be used to study regional brain development in psychiatric disorders. This chapter describes the application of one method - the xenon-133 technique for measuring regional cerebral blood flow (rCBF) - in studying the resting and activated brains of schizoprenic patients

  20. Early and Later Life Stress Alter Brain Activity and Sleep in Rats

    Science.gov (United States)

    Mrdalj, Jelena; Pallesen, Ståle; Milde, Anne Marita; Jellestad, Finn Konow; Murison, Robert; Ursin, Reidun; Bjorvatn, Bjørn; Grønli, Janne

    2013-01-01

    Exposure to early life stress may profoundly influence the developing brain in lasting ways. Neuropsychiatric disorders associated with early life adversity may involve neural changes reflected in EEG power as a measure of brain activity and disturbed sleep. The main aim of the present study was for the first time to characterize possible changes in adult EEG power after postnatal maternal separation in rats. Furthermore, in the same animals, we investigated how EEG power and sleep architecture were affected after exposure to a chronic mild stress protocol. During postnatal day 2–14 male rats were exposed to either long maternal separation (180 min) or brief maternal separation (10 min). Long maternally separated offspring showed a sleep-wake nonspecific reduction in adult EEG power at the frontal EEG derivation compared to the brief maternally separated group. The quality of slow wave sleep differed as the long maternally separated group showed lower delta power in the frontal-frontal EEG and a slower reduction of the sleep pressure. Exposure to chronic mild stress led to a lower EEG power in both groups. Chronic exposure to mild stressors affected sleep differently in the two groups of maternal separation. Long maternally separated offspring showed more total sleep time, more episodes of rapid eye movement sleep and higher percentage of non-rapid eye movement episodes ending in rapid eye movement sleep compared to brief maternal separation. Chronic stress affected similarly other sleep parameters and flattened the sleep homeostasis curves in all offspring. The results confirm that early environmental conditions modulate the brain functioning in a long-lasting way. PMID:23922857

  1. Brain activity associated with translation from a visual to a symbolic representation in algebra and geometry.

    Science.gov (United States)

    Leikin, Mark; Waisman, Ilana; Shaul, Shelley; Leikin, Roza

    2014-03-01

    This paper presents a small part of a larger interdisciplinary study that investigates brain activity (using event related potential methodology) of male adolescents when solving mathematical problems of different types. The study design links mathematics education research with neurocognitive studies. In this paper we performed a comparative analysis of brain activity associated with the translation from visual to symbolic representations of mathematical objects in algebra and geometry. Algebraic tasks require translation from graphical to symbolic representation of a function, whereas tasks in geometry require translation from a drawing of a geometric figure to a symbolic representation of its property. The findings demonstrate that electrical activity associated with the performance of geometrical tasks is stronger than that associated with solving algebraic tasks. Additionally, we found different scalp topography of the brain activity associated with algebraic and geometric tasks. Based on these results, we argue that problem solving in algebra and geometry is associated with different patterns of brain activity.

  2. College Student Environmental Activism: How Experiences and Identities Influence Environmental Activism Approaches

    Science.gov (United States)

    King, Laura A. H.

    2016-01-01

    College student environmental activism is one way students civically engage in addressing social issues. This study explores the environmental activism of twelve college students and how their experiences outside of college and in college influenced their activism. In addition, how students' identities influenced their approach to activism was…

  3. N-3 fatty acids, neuronal activity and energy metabolism in the brain

    Directory of Open Access Journals (Sweden)

    Harbeby Emilie

    2012-07-01

    Full Text Available The content of docosahexaenoic acid (DHA in brain membranes is of crucial importance for the optimum development of brain functions. A lack of DHA accretion in the brain is accompanied by deficits in learning behavior linked to impairments in neurotransmission processes, which might result from alteration of brain fuel supply and hence energy metabolism. Experimental data we published support the hypothesis that n-3 fatty acids may modulate brain glucose utilization and metabolism. Indeed rats made deficient in DHA by severe depletion of total n-3 fatty acid intake have 1 a lower brain glucose utilization, 2 a decrease of the glucose transporter protein content GLUT1 both in endothelial cells and in astrocytes, 3 a repression of GLUT1 gene expression in basal state as well as upon neuronal activation. This could be due to the specific action of DHA on the regulation of GLUT1 expression since rat brain endothelial cells cultured with physiological doses of DHA had an increased GLUT1 protein content and glucose transport when compared to non-supplemented cells. These experimental data highlight the impact of n-3 fatty acids on the use of brain glucose, thereby constituting a key factor in the control of synaptic activity. This emerging role suggests that dietary intake of n-3 fatty acids can help to reduce the cognitive deficits in the elderly and possibly symptomatic cerebral metabolic alterations in Alzheimer disease by promoting brain glucose metabolism.

  4. INFLUENCE OF SELECTED PHARMACEUTICALS ON ACTIVATED SLUDGE DEHYDROGENASE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Agnieszka Tomska

    2016-06-01

    The aim of this work was to evaluate the effect of selected antibiotics - sulfanilamide and erythromycin on activated sludge dehydrogenase activity with use of trifenyltetrazolinum chloride (TTC test. Dehydrogenases activity is an indicator of biochemical activity of microorganisms present in activated sludge or the ability to degrade organic compounds in waste water. TTC test is particularly useful for the regularity of the course of treatment, in which the presence of inhibitors of biochemical reactions and toxic compounds are present. It was observed that the dehydrogenase activity decreases with the increase of a antibiotics concentration. The lowest value of the dehydrogenase activity equal to 32.4 μmol TF / gMLSS obtained at sulfanilamide concentration 150mg / l. For this sample, an inhibition of dehydrogenase activity was 31%.

  5. Brain dynamics of post-task resting state are influenced by expertise: Insights from baseball players.

    Science.gov (United States)

    Muraskin, Jordan; Dodhia, Sonam; Lieberman, Gregory; Garcia, Javier O; Verstynen, Timothy; Vettel, Jean M; Sherwin, Jason; Sajda, Paul

    2016-12-01

    Post-task resting state dynamics can be viewed as a task-driven state where behavioral performance is improved through endogenous, non-explicit learning. Tasks that have intrinsic value for individuals are hypothesized to produce post-task resting state dynamics that promote learning. We measured simultaneous fMRI/EEG and DTI in Division-1 collegiate baseball players and compared to a group of controls, examining differences in both functional and structural connectivity. Participants performed a surrogate baseball pitch Go/No-Go task before a resting state scan, and we compared post-task resting state connectivity using a seed-based analysis from the supplementary motor area (SMA), an area whose activity discriminated players and controls in our previous results using this task. Although both groups were equally trained on the task, the experts showed differential activity in their post-task resting state consistent with motor learning. Specifically, we found (1) differences in bilateral SMA-L Insula functional connectivity between experts and controls that may reflect group differences in motor learning, (2) differences in BOLD-alpha oscillation correlations between groups suggests variability in modulatory attention in the post-task state, and (3) group differences between BOLD-beta oscillations that may indicate cognitive processing of motor inhibition. Structural connectivity analysis identified group differences in portions of the functionally derived network, suggesting that functional differences may also partially arise from variability in the underlying white matter pathways. Generally, we find that brain dynamics in the post-task resting state differ as a function of subject expertise and potentially result from differences in both functional and structural connectivity. Hum Brain Mapp 37:4454-4471, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals

  6. Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data

    Science.gov (United States)

    Llinás, Rodolfo R.; Ustinin, Mikhail N.; Rykunov, Stanislav D.; Boyko, Anna I.; Sychev, Vyacheslav V.; Walton, Kerry D.; Rabello, Guilherme M.; Garcia, John

    2015-01-01

    A new method for the analysis and localization of brain activity has been developed, based on multichannel magnetic field recordings, over minutes, superimposed on the MRI of the individual. Here, a high resolution Fourier Transform is obtained over the entire recording period, leading to a detailed multi-frequency spectrum. Further analysis implements a total decomposition of the frequency components into functionally invariant entities, each having an invariant field pattern localizable in recording space. The method, addressed as functional tomography, makes it possible to find the distribution of magnetic field sources in space. Here, the method is applied to the analysis of simulated data, to oscillating signals activating a physical current dipoles phantom, and to recordings of spontaneous brain activity in 10 healthy adults. In the analysis of simulated data, 61 dipoles are localized with 0.7 mm precision. Concerning the physical phantom the method is able to localize three simultaneously activated current dipoles with 1 mm precision. Spatial resolution 3 mm was attained when localizing spontaneous alpha rhythm activity in 10 healthy adults, where the alpha peak was specified for each subject individually. Co-registration of the functional tomograms with each subject's head MRI localized alpha range activity to the occipital and/or posterior parietal brain region. This is the first application of this new functional tomography to human brain activity. The method successfully provides an overall view of brain electrical activity, a detailed spectral description and, combined with MRI, the localization of sources in anatomical brain space. PMID:26528119

  7. Active Play: Exploring the Influences on Children's School Playground Activities

    Science.gov (United States)

    Hyndman, Brendon; Benson, Amanda; Telford, Amanda

    2016-01-01

    Because children spend so much of their time in schools, their playgrounds offer a good setting for promoting active play in young lives. Teachers, instead of considering active play a taxing demand on their busy day, have begun to develop an informal curriculum for it. The authors review the research on children's active play and explores its…

  8. A reliability study on brain activation during active and passive arm movements supported by an MRI-compatible robot.

    Science.gov (United States)

    Estévez, Natalia; Yu, Ningbo; Brügger, Mike; Villiger, Michael; Hepp-Reymond, Marie-Claude; Riener, Robert; Kollias, Spyros

    2014-11-01

    In neurorehabilitation, longitudinal assessment of arm movement related brain function in patients with motor disability is challenging due to variability in task performance. MRI-compatible robots monitor and control task performance, yielding more reliable evaluation of brain function over time. The main goals of the present study were first to define the brain network activated while performing active and passive elbow movements with an MRI-compatible arm robot (MaRIA) in healthy subjects, and second to test the reproducibility of this activation over time. For the fMRI analysis two models were compared. In model 1 movement onset and duration were included, whereas in model 2 force and range of motion were added to the analysis. Reliability of brain activation was tested with several statistical approaches applied on individual and group activation maps and on summary statistics. The activated network included mainly the primary motor cortex, primary and secondary somatosensory cortex, superior and inferior parietal cortex, medial and lateral premotor regions, and subcortical structures. Reliability analyses revealed robust activation for active movements with both fMRI models and all the statistical methods used. Imposed passive movements also elicited mainly robust brain activation for individual and group activation maps, and reliability was improved by including additional force and range of motion using model 2. These findings demonstrate that the use of robotic devices, such as MaRIA, can be useful to reliably assess arm movement related brain activation in longitudinal studies and may contribute in studies evaluating therapies and brain plasticity following injury in the nervous system.

  9. Factors influencing survival in patients with brain tumors treated with surgery and radiotherapy

    International Nuclear Information System (INIS)

    Chi Ramirez, Daysi; Chon Rivas, Ivonne; Leon Gonzalez, Roberto; Diaz Martinez, Jose Ramon; Silva, Jose; Pestana, Elia; Portilla, Ivette

    2006-01-01

    Factors influencing survival (SV) in patients with brain tumors (BT) have a predictive value and are an angle of study in neuro-oncology and biomedical research. A retrospective study was carried out in 59 consecutive between 16 and 70 years old patients, with histological diagnoses of BT who received external fractioned radiotherapy (RT), from December 1997 to February 2002. The main diagnoses were characterized and a statistical analysis was employed to correlate SV (in week) with age, histology, localization, tumor resection percentage, time between surgery and RT, doses, technique and duration of RT, and Karnofsky Performance Score at the end of RT. Mean SV of BT was 94,3 wks (gliomas 97,9 wks; hypophysis adenomas 163,2 wks and medulloblatomas 104,2 wks). Low grade gliomas had higher SV (129,7 wks) than high grade gliomas (57,1 wks). Histology (p=0.0004) and age (the younger the better SV) (p=0.036) were variables influencing SV. Conclusion: SV in patients with BT alter RT was influenced by histology and age in this study, but tumor resection percentage, time between surgery and RT doses, technique and duration of RT and Karnofsky Performance Sore at the end of RT did not influence in SV for these patients. (The author)

  10. Oestrogens are Not Related to Emotional Processing : a Study of Regional Brain Activity in Female-to-Male Transsexuals Under Gonadal Suppression

    NARCIS (Netherlands)

    Soleman, Remi S; Staphorsius, A.S.; Cohen-Kettenis, Peggy T; Lambalk, Cornelis B; Veltman, Dick J; van Trotsenburg, M.A.A.; Hompes, Peter G A; Drent, M L; de Ronde, W P; Kreukels, Baudewijntje P C

    Although the prevailing opinion is that emotional processes are influenced by sex hormones, the literature is still inconclusive. The aim of the current study was to examine the effects of gonadal suppression on brain activity during affective picture processing. Twenty-one female-to-male (FtM)

  11. Measurable benefits on brain activity from the practice of educational leisure.

    Science.gov (United States)

    Requena, Carmen; López, Verónica

    2014-01-01

    Even if behavioral studies relate leisure practices to the preservation of memory in old persons, there is unsubstantial evidence of the import of leisure on brain activity. This study was to compare the brain activity of elderly retired people who engage in different types of leisure activities. Quasi-experimental study over a sample of 60 elderly, retired subjects distributed into three groups according to the leisure activities they practised: educational leisure (G1), memory games (G2), and card games (G3). Applied measures include the conceptual distinction between free time and leisure, the test of the organization of free time measuring 24 clock divisions, and EEG register during 12 word list memorizing. The results show that the type of leisure activity is associated with significant quantitative differences regarding the use of free time. G1 devotes more time to leisure activities than G2 (p = 0.007) and G3 (p = 0.034). G1 rests more actively than the other two groups (p = 0.001). The electrical localization of brain activity indicated a reverse tendency of activation according to the bands and groups. Engaging in educational leisure activities is a useful practice to protect healthy brain compensation strategies. Future longitudinal research may verify the causal relation between practicing educational leisure activities and functional brain aging.

  12. Measurable benefits on brain activity from the practice of educational leisure

    Directory of Open Access Journals (Sweden)

    Carmen eRequena

    2014-03-01

    Full Text Available Even if behavioural studies relate leisure practices to the preservation of memory in old persons, there is unsubstantial evidence of the import of leisure on brain activity. Aim of this study was to compare the brain activity of elderly retired people who engage in different types of leisure activities. Methods: quasi-experimental study over a sample of 60 elderly, retired subjects distributed into three groups according to the leisure activities they practised: educational leisure (G1, memory games (G2 and card games (G3. Applied measures include the conceptual distinction between free time and leisure, the Test of Organization of Free Time (TOFT measuring 24 clock divisions, and EEG register during 12 word list memorizing. The results show that the type of leisure activity is associated with significant quantitative differences regarding the use of free time. G1 devotes more time to leisure activities than G2 (p = 0.007 and G3 (p = 0.034. G1 rests more actively than the other two groups (p=0.001. The electrical localization of brain activity indicated a reverse tendency of activation according to the bands and groups. Discussion. Engaging in educational leisure activities is a useful practice to protect healthy brain compensation strategies. Future longitudinal research may verify the causal relation between practicing educational leisure activities and functional brain aging.

  13. The in vitro isolated whole guinea pig brain as a model to study epileptiform activity patterns.

    Science.gov (United States)

    de Curtis, Marco; Librizzi, Laura; Uva, Laura

    2016-02-15

    Research on ictogenesis is based on the study of activity between seizures and during seizures in animal models of epilepsy (chronic condition) or in in vitro slices obtained from naïve non-epileptic brains after treatment with pro-convulsive drugs, manipulations of the extracellular medium and specific stimulation protocols. The in vitro isolated guinea pig brain retains the functional connectivity between brain structures and maintains interactions between neuronal, glial and vascular compartments. It is a close-to-in vivo preparation that offers experimental advantages not achieved with the use of other experimental models. Neurophysiological and imaging techniques can be utilized in this preparation to study brain activity during and between seizures induced by pharmacological or functional manipulations. Cellular and network determinants of interictal and ictal discharges that reproduce abnormal patterns observed in human focal epilepsies and the associated changes in extracellular ion and blood-brain permeability can be identified and analyzed in the isolated guinea pig brain. Ictal and interictal patterns recorded in in vitro slices may show substantial differences from seizure activity recorded in vivo due to slicing procedure itself. The isolated guinea pig brain maintained in vitro by arterial perfusion combines the typical facilitated access of in vitro preparations, that are difficult to approach during in vivo experiments, with the preservation of larger neuronal networks. The in vitro whole isolated guinea pig brain preparation offers an unique experimental model to study systemic and neurovascular changes during ictogenesis. Published by Elsevier B.V.

  14. Overlapping patterns of brain activation to food and cocaine cues in cocaine abusers: association to striatal D2/D3 receptors

    OpenAIRE

    Tomasi, Dardo; Wang, Gene-Jack; Wang, Ruiliang; Caparelli, Elisabeth C.; Logan, Jean; Volkow, Nora D.

    2014-01-01

    Cocaine, through its activation of dopamine (DA) signaling, usurps pathways that process natural rewards. However, the extent to which there is overlap between the networks that process natural and drug rewards and whether DA signaling associated with cocaine abuse influences these networks have not been investigated in humans. We measured brain activation responses to food and cocaine cues with fMRI, and D2/D3 receptors in the striatum with [11C]raclopride and PET in 20 active cocaine abuser...

  15. Influence of mild traumatic brain injury during pediatric stage on short-term memory and hippocampal apoptosis in adult rats.

    Science.gov (United States)

    Park, Mi-Sook; Oh, Hyean-Ae; Ko, Il-Gyu; Kim, Sung-Eun; Kim, Sang-Hoon; Kim, Chang-Ju; Kim, Hyun-Bae; Kim, Hong

    2014-06-01

    Traumatic brain injury (TBI) is a leading cause of neurological deficit in the brain, which induces short- and long-term brain damage, cognitive impairment with/without structural alteration, motor deficits, emotional problems, and death both in children and adults. In the present study, we evaluated whether mild TBI in childhood causes persisting memory impairment until adulthood. Moreover, we investigated the influence of mild TBI on memory impairment in relation with hippocampal apoptosis. For this, step-down avoidance task, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, and immunohistochemistry for caspase-3 were performed. Male Sprague-Dawley rats were used in the experiments. The animals were randomly divided into two groups: sham-operation group and TBI-induction group. The mild TBI model was created with an electromagnetic contusion device activated at a velocity of 3.0 m/sec. The results showed that mild TBI during the pediatric stage significantly decreased memory retention. The numbers of TUNEL-positive and caspase-3-positive cells were increased in the TBI-induction group compared to those in the sham-operation group. Defective memory retention and apoptosis sustained up to the adult stage. The present results shows that mild TBI induces long-lasting cognitive impairment from pediatric to adult stages in rats through the high level of apoptosis. The finding of this study suggests that children with mild TBI may need intensive treatments for the reduction of long-lasting cognitive impairment by secondary neuronal damage.

  16. Photoacoustic imaging to detect rat brain activation after cocaine hydrochloride injection

    Science.gov (United States)

    Jo, Janggun; Yang, Xinmai

    2011-03-01

    Photoacoustic imaging (PAI) was employed to detect small animal brain activation after the administration of cocaine hydrochloride. Sprague Dawley rats were injected with different concentrations (2.5, 3.0, and 5.0 mg per kg body) of cocaine hydrochloride in saline solution through tail veins. The brain functional response to the injection was monitored by photoacoustic tomography (PAT) system with horizontal scanning of cerebral cortex of rat brain. Photoacoustic microscopy (PAM) was also used for coronal view images. The modified PAT system used multiple ultrasonic detectors to reduce the scanning time and maintain a good signal-to-noise ratio (SNR). The measured photoacoustic signal changes confirmed that cocaine hydrochloride injection excited high blood volume in brain. This result shows PAI can be used to monitor drug abuse-induced brain activation.

  17. Breastfeeding, Brain Activation to Own Infant Cry, and Maternal Sensitivity

    Science.gov (United States)

    Kim, Pilyoung; Feldman, Ruth; Mayes, Linda C.; Eicher, Virginia; Thompson, Nancy; Leckman, James F.; Swain, James E.

    2011-01-01

    Background: Research points to the importance of breastfeeding for promoting close mother-infant contact and social-emotional development. Recent functional magnetic resonance imaging (fMRI) studies have identified brain regions related to maternal behaviors. However, little research has addressed the neurobiological mechanisms underlying the…

  18. Changes in reward-induced brain activation in opiate addicts

    NARCIS (Netherlands)

    Martin-Soelch, C; Chevalley, AF; Kunig, G; Missimer, J; Magyar, S; Mino, A; Schultz, W; Leenders, KL

    2001-01-01

    Many studies indicate a role of the cerebral dopaminergic reward system in addiction. Motivated by these findings, we examined in opiate addicts whether brain regions involved in the reward circuitry also react to human prototypical rewards. We measured regional cerebral blood flow (rCBF) with

  19. Human brain activation during sexual stimulation of the penis

    NARCIS (Netherlands)

    Georgiadis, [No Value; Holstege, G; Georgiadis, Janniko R.

    2005-01-01

    Penile sensory information is essential for reproduction, but almost nothing is known about how sexually salient inputs from the penis are processed in the brain. We used positron emission tomography to measure regional cerebral blood flow (rCBF) during various stages of male sexual performance.

  20. Brain Activation Associated with Practiced Left Hand Mirror Writing

    Science.gov (United States)

    Kushnir, T.; Arzouan, Y.; Karni, A.; Manor, D.

    2013-01-01

    Mirror writing occurs in healthy children, in various pathologies and occasionally in healthy adults. There are only scant experimental data on the underlying brain processes. Eight, right-handed, healthy young adults were scanned (BOLD-fMRI) before and after practicing left-hand mirror-writing (lh-MW) over seven sessions. They wrote dictated…

  1. Steroid sulfatase and sulfuryl transferase activities in human brain tumors

    Czech Academy of Sciences Publication Activity Database

    Kříž, L.; Bičíková, M.; Mohapl, M.; Hill, M.; Černý, Ivan; Hampl, R.

    2008-01-01

    Roč. 109, č. 1 (2008), s. 31-39 ISSN 0960-0760 Institutional research plan: CEZ:AV0Z40550506 Keywords : dehydroepiandrosterone * steroid sulfatase * steroid sulfuryl transferase * brain Subject RIV: CC - Organic Chemistry Impact factor: 2.827, year: 2008

  2. Towards brain-activity-controlled information retrieval: Decoding image relevance from MEG signals.

    Science.gov (United States)

    Kauppi, Jukka-Pekka; Kandemir, Melih; Saarinen, Veli-Matti; Hirvenkari, Lotta; Parkkonen, Lauri; Klami, Arto; Hari, Riitta; Kaski, Samuel

    2015-05-15

    We hypothesize that brain activity can be used to control future information retrieval systems. To this end, we conducted a feasibility study on predicting the relevance of visual objects from brain activity. We analyze both magnetoencephalographic (MEG) and gaze signals from nine subjects who were viewing image collages, a subset of which was relevant to a predetermined task. We report three findings: i) the relevance of an image a subject looks at can be decoded from MEG signals with performance significantly better than chance, ii) fusion of gaze-based and MEG-based classifiers significantly improves the prediction performance compared to using either signal alone, and iii) non-linear classification of the MEG signals using Gaussian process classifiers outperforms linear classification. These findings break new ground for building brain-activity-based interactive image retrieval systems, as well as for systems utilizing feedback both from brain activity and eye movements. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Correlation of [14C]muscimol concentration in rat brain with anticonvulsant activity

    International Nuclear Information System (INIS)

    Matthews, W.D.; Intoccia, A.P.; Osborne, V.L.; McCafferty, G.P.

    1981-01-01

    Muscimol, an in vivo and in vitro GABA agonist, has anticonvulsant activity against bicuculline-induced seizures when given systemically to rats. To determine whether parent compound or a metabolite possessed the anticonvulsant activity, experiments were performed with [ 14 C]muscimol. Anticonvulsant activity was determined by the percent of animals protected against tonic forelimb extension induced by bicuculline. Brain and urine were analyzed for unchanged [ 14 C]muscimol by thin-layer chromatography. The time course of anticonvulsant activity and [ 14 C]muscimol concentration in brain after intravenous injection were similar. Peak brain concentration of [ 14 C]muscimol and maximal protection against bicuculline-induced seizures occurred simultaneously. These data suggest that intravenously administered [ 14 C]muscimol rapidly penetrates brain tissue and parent compound is responsible for antagonism of bicuculline-induced convulsions. (Auth.)

  4. Explorative investigation of biomarkers of brain damage and coagulation system activation in clinical stroke differentiation

    DEFF Research Database (Denmark)

    Undén, Johan; Strandberg, Karin; Malm, Jan

    2009-01-01

    INTRODUCTION: A simple and accurate method of differentiating ischemic stroke and intracerebral hemorrhage (ICH) is potentially useful to facilitate acute therapeutic management. Blood measurements of biomarkers of brain damage and activation of the coagulation system may potentially serve as nov...

  5. The influence of serotonin depletion on rat behavior in the Vogel test and brain 3H-zolpidem binding.

    Science.gov (United States)

    Nazar, M; Siemiatkowski, M; Bidziński, A; Członkowska, A; Sienkiewicz-Jarosz, H; Płaźnik, A

    1999-01-01

    The influence of p-chlorophenylalanine (p-CPA) and 5,7-dihydroxytryptamine (5,7-DHT)-induced serotonin depletion on rat behavior as well as on zolpidem's the behavioral effects and binding to some brain areas of zolpidem, was examined with the help of Vogel's punished drinking test and autoradiography, respectively. Moreover, changes in the serotonin levels and turnover rate were studied in the forebrain and brainstem of rats pretreated with various ligands at the benzodiazepine (BDZ) receptors (midazolam, bretazenil, abecarnil, zolpidem). These drugs were given at doses shown previously to significantly disinhibit animal behavior suppressed by punishment in the Vogel test (Nazar et al., 1997). It was found that serotonin decrease in the frontal cortex and hippocampus after p-CPA significantly and inversely correlated with rat behavior controlled by fear in the VT. p-CPA produced an anticonflict activity in the absence of effect on spontaneous drinking, pain threshold and motility of animals. All applied benzodiazepine receptor ligands decreased the 5-HT turnover rate in the frontal cortex and hippocampus, whereas in the brainstem only abecarnil and zolpidem diminished 5-hydroxyindoleacetic acid levels. This part of the study replicated earlier data with neurotoxins and indicated that the anxiolytic-like effect of 5-HT depletion in some models of anxiety did not depend on changes in animal appetitive behavior or stimulus control. Moreover, the fact that all nonselective and selective (zolpidem) agonists of the type 1 benzodiazepine receptors seemed to produce the same anticonflict effect and decreasing 5-HT turnover indicates that this subtype of benzodiazepine receptor may be important for the interaction between brain 5-HT and GABA/BDZ systems. Accordingly, it was found that serotonin decrease enhanced the anticonflict effect of zolpidem in the Vogel test and increased 3H-zolpidem binding to the occipital cortex and substantia nigra. Altogether, the present study

  6. The influence of general anesthesia on the brain in aged patients with previous ischemic cerebrovascular disease

    International Nuclear Information System (INIS)

    Kokubo, Yasuaki; Kayama, Takamasa; Kondo, Rei; Oki, Masato; Takaoka, Seiji

    2008-01-01

    Whenever we discuss the overall results of surgical treatment for unruptured cerebral aneurysms, especially in aged patients, we tend to consider advanced age or general anesthesia as causes for unfavorable results. There are no reports concerning ischemic stroke events following general anesthesia in aged patients with a prior history of cerebrovascular disease. The purpose of this study is to clarify the influence of general anesthesia on the brats in aged patients with a previous history of ischemic cerebrovascular disease. The subjects were 30 consecutive patients over 70 years of age with previous ischemic cerebrovascular disease who underwent various surgeries except brain and cardiac surgery under general anesthesia. The patients were 70 to 85 years old, with a mean age of 76. Twenty-three were men and 7 were women. Surgical procedures were 12 gastrointestinal, 6 orthopedic and 4 urogenital and others. The type of cerebrovascular disease evaluated by neuroradiologist and anesthesiologist based on MR imaging was devided as follows: 16 patients had minor stroke, 7 had transient ischemic attack/reversible ischemic neurological deficit (TIA/RIND) and 7 had asymptomatic cerebral infarction. MR angiography was also assessed to evaluate the main artery in the brain. Blood pressure and arterial blood gas (PaCO 2 ) during general anesthesia were analyzed, and the rate of systemic and neurological complications following general anesthesia were evaluated. MR angiography revealed no occlusion or severe stenosis of the main artery in the brain of any of the patients. The minimum systolic blood pressure showed less than 100 mmHg transiently for 5-20 minutes in 28 of 30 patients during general anesthesia. The minimum value was 65 mmHg maintained for 5 minutes. The minimum PaCO 2 during general anesthesia was as follows: 1 case 36 mmHg. There were no neurological complications following general anesthesia in this study. One of 30 patients (3.3%) had suffered from pneumonia

  7. Brain volumetry and self-regulation of brain activity relevant for neurofeedback.

    Science.gov (United States)

    Ninaus, M; Kober, S E; Witte, M; Koschutnig, K; Neuper, C; Wood, G

    2015-09-01

    Neurofeedback is a technique to learn to control brain signals by means of real time feedback. In the present study, the individual ability to learn two EEG neurofeedback protocols - sensorimotor rhythm and gamma rhythm - was related to structural properties of the brain. The volumes in the anterior insula bilaterally, left thalamus, right frontal operculum, right putamen, right middle frontal gyrus, and right lingual gyrus predicted the outcomes of sensorimotor rhythm training. Gray matter volumes in the supplementary motor area and left middle frontal gyrus predicted the outcomes of gamma rhythm training. These findings combined with further evidence from the literature are compatible with the existence of a more general self-control network, which through self-referential and self-control processes regulates neurofeedback learning. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. FROM BRAIN DRAIN TO BRAIN NETWORKING

    Directory of Open Access Journals (Sweden)

    Irina BONCEA

    2015-06-01

    Full Text Available Scientific networking is the most accessible way a country can turn the brain drain into brain gain. Diaspora’s members offer valuable information, advice or financial support from the destination country, without being necessary to return. This article aims to investigate Romania’s potential of turning brain drain into brain networking, using evidence from the medical sector. The main factors influencing the collaboration with the country of origin are investigated. The conclusions suggest that Romania could benefit from the diaspora option, through an active implication at institutional level and the implementation of a strategy in this area.

  9. Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity.

    Science.gov (United States)

    Banerjee, Soumyabrata; Poddar, Mrinal K

    2015-03-01

    Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5μg/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5μg/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5μg/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  10. Evaluation of Brain Activity Related to Speech and Handwriting Using NIRS

    Science.gov (United States)

    Asano, Hirotoshi; Suzuki, Hiroaki; Ide, Hideto

    The difference by the brain activity when writing it down speech the use of the near-infrared spectroscopy is examined in the present study. It is thought that it becomes a help of the communications between the nurse and people requiring long-term care if the identification of the information transmission means can be evaluated and be detected from the brain activity. Because the possibility of the evaluation of result, “Speech”, and “Writing” was shown, it reports.

  11. Influence Of Dilution Factor For Activity Measurement Of 60CO

    International Nuclear Information System (INIS)

    Hermawan-Candra; Nazaroh; Ermi-Juita

    2003-01-01

    Influence of dilution factor for activity measurement of 60 Co has been studied. The aim of this research is to determine influence between activity measurement result of 60 Co before and after diluted. Measurement were done by using ionization chamber detectors system and gamma spectrometry system with NaI(TI) detector. Discrepancy within three ionization chambers measurements were 0.2% - 2.1% and NaI(Tl) were 3.5% - 6%. (author)

  12. Sex influences in behavior and brain inflammatory and oxidative alterations in mice submitted to lipopolysaccharide-induced inflammatory model of depression.

    Science.gov (United States)

    Mello, Bruna Stefânia Ferreira; Chaves Filho, Adriano José Maia; Custódio, Charllyany Sabino; Cordeiro, Rafaela Carneiro; Miyajima, Fabio; de Sousa, Francisca Cléa Florenço; Vasconcelos, Silvânia Maria Mendes; de Lucena, David Freitas; Macedo, Danielle

    2018-07-15

    Peripheral inflammation induced by lipopolysaccharide (LPS) causes a behavioral syndrome with translational relevance for depression. This mental disorder is twice more frequent among women. Despite this, the majority of experimental studies investigating the neurobiological effects of inflammatory models of depression have been performed in males. Here, we sought to determine sex influences in behavioral and oxidative changes in brain regions implicated in the pathophysiology of mood disorders (hypothalamus, hippocampus and prefrontal cortex - PFC) in adult mice 24 h post LPS challenge. Myeloperoxidase (MPO) activity and interleukin (IL)-1β levels were measured as parameters of active inflammation, while reduced glutathione (GSH) and lipid peroxidation as parameters of oxidative imbalance. We observed that male mice presented behavioral despair, while females anxiety-like alterations. Both sexes were vulnerable to LPS-induced anhedonia. Both sexes presented increased MPO activity in the PFC, while male only in the hippocampus. IL-1β increased in the PFC and hypothalamus of animals of both sexes, while in the hippocampus a relative increase of this cytokine in males compared to females was detected. GSH levels were decreased in all brain areas investigated in animals of both sexes, while increased lipid peroxidation was observed in the hypothalamus of females and in the hippocampus of males after LPS exposure. Therefore, the present study gives additional evidence of sex influence in LPS-induced behavioral alterations and, for the first time, in the oxidative changes in brain areas relevant for mood regulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Long-range correlation properties in timing of skilled piano performance: the influence of auditory feedback and deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Maria eHerrojo Ruiz

    2014-09-01

    Full Text Available Unintentional timing deviations during musical performance can be conceived of as timing errors. However, recent research on humanizing computer-generated music has demonstrated that timing fluctuations that exhibit long-range temporal correlations (LRTC are preferred by human listeners. This preference can be accounted for by the ubiquitous presence of LRTC in human tapping and rhythmic performances. Interestingly, the manifestation of LRTC in tapping behavior seems to be driven in a subject-specific manner by the LRTC properties of resting-state background cortical oscillatory activity. In this framework, the current study aimed to investigate whether propagation of timing deviations during the skilled, memorized piano performance (without metronome of 17 professional pianists exhibits LRTC and whether the structure of the correlations is influenced by the presence or absence of auditory feedback.As an additional goal, we set out to investigate the influence of altering the dynamics along the cortico-basal-ganglia-thalamo-cortical network via deep brain stimulation (DBS on the LRTC properties of musical performance. Specifically, we investigated temporal deviations during the skilled piano performance of a non-professional pianist who was treated with subthalamic-deep brain stimulation (STN-DBS due to severe Parkinson's disease, with predominant tremor affecting his right upper extremity. In the tremor-affected right hand, the timing fluctuations of the performance exhibited random correlations with DBS OFF. By contrast, DBS restored long-range dependency in the temporal fluctuations, corresponding with the general motor improvement on DBS.Overall, the present investigations are the first to demonstrate the presence of LRTC in skilled piano performances, indicating that unintentional temporal deviations are correlated over a wide range of time scales. This phenomenon is stable after removal of the auditory feedback, but is altered by STN

  14. Sources of variation influencing concordance between functional MRI and direct cortical stimulation in brain tumor surgery

    Directory of Open Access Journals (Sweden)

    Melanie A Morrison

    2016-10-01

    Full Text Available Object: Preoperative functional magnetic resonance imaging (fMRI remains a promising method to aid in the surgical management of patients diagnosed with brain tumors. For patients that are candidates for awake craniotomies, surgical decisions can potentially be improved by fMRI but this depends on the level of concordance between preoperative brain maps and the maps provided by the gold standard intraoperative method, direct cortical stimulation (DCS. There have been numerous studies of the concordance between fMRI and DCS using sensitivity and specificity measures, however the results are variable across studies and the key factors influencing variability are not well understood. Thus, the present work addresses the influence of technical factors on fMRI and DCS concordance. Methods: Motor and language mapping data were collected for a group of glioma patients (n = 14 who underwent both preoperative fMRI and intraoperative DCS in an awake craniotomy procedure for tumor removal. Normative fMRI data were also acquired in a healthy control group (n = 12. The fMRI and DCS mapping data were co-registered; true positive (TP, true negative (TN, false positive (FP and false negative (FN occurrences were tabulated over the exposed brain surface. Sensitivity and specificity were measured for the total group, and the motor and language sub-groups. The influence of grid placement, fMRI statistical thresholding, and task standardization were assessed. Correlations between proportions of agreement and error were carefully scrutinized to evaluate concordance more in-depth. Results: Concordance was significantly better for motor versus language mapping. There was an inverse relationship between TP and TN with increasing statistical threshold, and FP dominated the total error. Sensitivity and specificity were reduced when tasks were not standardized across fMRI and DCS. Conclusions: Although the agreement between fMRI and DCS is good, variability is introduced

  15. Enriched environment influences hormonal status and hippocampal brain derived neurotrophic factor in a sex dependent manner.

    Science.gov (United States)

    Bakos, J; Hlavacova, N; Rajman, M; Ondicova, K; Koros, C; Kitraki, E; Steinbusch, H W M; Jezova, D

    2009-12-01

    The present study is aimed at testing the hypothesis that an enriched environment (EE) induces sex-dependent changes in stress hormone release and in markers of increased brain plasticity. The focus was on hypothalamic-pituitary-adrenocortical (HPA) axis activity, plasma levels of stress hormones, gene expression of glutamate receptor subunits and concentrations of brain-derived neurotrophic factor (BDNF) in selected brain regions. Rats exposed to EE were housed in groups of 12 in large cages with various objects, which were frequently changed, for 6 weeks. Control animals were housed four per cage under standard conditions. In females the EE-induced rise in hippocampal BDNF, a neurotrophic factor associated with increased neural plasticity, was more pronounced than in males. Similar sex-specific changes were observed in BDNF concentrations in the hypothalamus. EE also significantly attenuated oxytocin and aldosterone levels only in female but not male rats. Plasma testosterone positively correlated with hippocampal BDNF in female but not male rats housed in EE. In male rats housing in EE led to enhanced levels of testosterone and adrenocorticotropic hormone (ACTH), this was not seen in females. Hippocampal glucocorticoid but not mineralocorticoid receptor levels decreased in rats housed in EE irrespective of sex. Housing conditions failed to modify mRNA levels of glutamate receptor type 1 (Glur1) and metabotropic glutamate receptor subtype 5 (mGlur5) subunits of glutamate receptors in the forebrain. Moreover, a negative association between corticosterone and BDNF was observed in both sexes. The results demonstrate that the association between hormones and changes in brain plasticity is sex related. In particular, testosterone seems to be involved in the regulatory processes related to neuroplasticity in females.

  16. A comparison of brain activity associated with language production in brain tumor patients with left and right sided language laterality.

    Science.gov (United States)

    Jansma, J M; Ramsey, N; Rutten, G J

    2015-12-01

    Language dominance is an important factor for clinical decision making in brain tumor surgery. Functional MRI can provide detailed information about the organization of language in the brain. One often used measure derived from fMRI data is the laterality index (LI). The LI is typically based on the ratio between left and right brain activity in a specific region associated with language. Nearly all fMRI language studies show language-related activity in both hemispheres, and as a result the LI shows a large range of values. The clinical significance of the variation in language laterality as measured with the LI is still under debate. In this study, we tested two hypotheses in relation to the LI, measured in Broca's region, and it's right hemisphere homologue: 1: the level of activity in Broca's and it's right hemisphere homologue is mirrored for subjects with an equal but opposite LI; 2: the whole brain language activation pattern differs between subjects with an equal but opposite LI. One hundred sixty-three glioma and meningioma patients performed a verb generation task as part of a standard clinical protocol. We calculated the LI in the pars orbitalis, pars triangularis and pars opercularis of the left inferior frontal gyrus, referred to as Broca's region from here on. In our database, 21 patients showed right lateralized activity, with a moderate average level (-0.32). A second group of 21 patients was selected from the remaining group, for equal but opposite LI (0.32). We compared the level and distribution of activity associated with language production in the left and right hemisphere in these two groups. Patients with left sided laterality showed a significantly higher level of activity in Broca's region than the patients with right sided laterality. However, both groups showed no difference in level of activity in Broca's homologue region in the right hemisphere. Also, we did not see any difference in the pattern of activity between patients with left

  17. Brain Activity in Fairness Consideration during Asset Distribution: Does the Initial Ownership Play a Role?

    Science.gov (United States)

    Wu, Yin; Hu, Jie; van Dijk, Eric; Leliveld, Marijke C.; Zhou, Xiaolin

    2012-01-01

    Previous behavioral studies have shown that initial ownership influences individuals’ fairness consideration and other-regarding behavior. However, it is not entirely clear whether initial ownership influences the brain activity when a recipient evaluates the fairness of asset distribution. In this study, we randomly assigned the bargaining property (monetary reward) to either the allocator or the recipient in the ultimatum game and let participants of the study, acting as recipients, receive either disadvantageous unequal, equal, or advantageous unequal offers from allocators while the event-related potentials (ERPs) were recorded. Behavioral results showed that participants were more likely to reject disadvantageous unequal and equal offers when they initially owned the property as compared to when they did not. The two types of unequal offers evoked more negative going ERPs (the MFN) than the equal offers in an early time window and the differences were not modulated by the initial ownership. In a late time window, however, the P300 responses to division schemes were affected not only by the type of unequal offers but also by whom the property was initially assigned to. These findings suggest that while the MFN may function as a general mechanism that evaluates whether the offer is consistent or inconsistent with the equity rule, the P300 is sensitive to top-down controlled processes, into which factors related to the allocation of attentional resources, including initial ownership and personal interests, come to play. PMID:22761850

  18. Spontaneous brain activity as a biomarker for schizophrenia

    DEFF Research Database (Denmark)

    Anhøj, Simon Jesper; Glenthøj, Birte Yding; Rostrup, Egill

    2014-01-01

    Background and aim: One of the most direct ways to get insight into the functional organization of the human brain is to measure the BOLD-signal with fMRI during rest. This signal is not a random signal but is highly organized in several functional networks (RSN's) believed to be a fundamental...... function of the brain. Very few studies have investigated RSN's in Antipsychotic Naïve First Episode patients (ANFE). In this study we wanted to investigate the potential of using the RSN’s as a biomarker for schizophrenia and for effect of treatment in ANFE patients. Especially, we wanted to test...... subjects were scanned and re-scanned with 10 min resting state fMRI. The analysis contains 50 patients and 50 controls at baseline and 35 patients and 35 controls at follow up. The methods used to measure the functional connectivity are Amplitude of Low Frequency Fluctuations (ALFF), a seed-based approach...

  19. Parameters influencing SPET regional brain uptake of technetium-99m hexamethylpropylene amine oxime measured by calibrated point sources as an external standard

    International Nuclear Information System (INIS)

    Dierckx, R.A.; Dobbeleir, A.; Maes, M.; Pickut, B.A.; Vervaet, A.; Deyn, P.P. de

    1994-01-01

    Using calibrated point sources as an external standard to convert SPET brain counts into absolute values of regional brain uptake (rBU) of technetium-99m hexamethylpropylene amine oxime (HMPAO), the relative contribution of different parameters to interindividual variability of cerebellar rBU was examined in 33 healthy volunteers. Stepwise regression analysis identified body surface as the most important factor underlying interindividual variability, when compared with brain volume. In the normal volunteer population presented, age decrement of rBU corrected for body surface and brain volume equalled 60.5-0.20xage. Based on the data of eight normal volunteers, including four test-retest studies with heart rate (HR) differences greater than 5 units and four test-stress studies with doubling of heart rate after bicycle exercise, influence of heart rate may be expressed by the equation ΔrBU = 0.35 ΔHR. Clinically, estimation of the relative influence of different factors allows normalization and extension of the applicability of the rBU quantification method used from longitudinal studies to group comparisons. Interestingly, results of the Daily Stress Inventory Scale and a subjective rating scale suggest the absence of a significant influence of minor stress on rBU. When using one vial per patient, chromatography may be omitted in clinical routine practice and lipophilicity may be estimated as 90% of the injected dose, if administered within 10 min after preparation. Finally, sensitivity of the quantification method was tested in eight volunteers using acetazolamide brain activation and showed a mean increase in cerebellar rBU of 30.2%, varying between 14.1% and 75.9%. (orig./MG)

  20. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases.

    Science.gov (United States)

    Preciados, Mark; Yoo, Changwon; Roy, Deodutta

    2016-12-13

    During the development of an individual from a single cell to prenatal stages to adolescence to adulthood and through the complete life span, humans are exposed to countless environmental and stochastic factors, including estrogenic endocrine disrupting chemicals. Brain cells and neural circuits are likely to be influenced by estrogenic endocrine disruptors (EEDs) because they strongly dependent on estrogens. In this review, we discuss both environmental, epidemiological, and experimental evidence on brain health with exposure to oral contraceptives, hormonal therapy, and EEDs such as bisphenol-A (BPA), polychlorinated biphenyls (PCBs), phthalates, and metalloestrogens, such as, arsenic, cadmium, and manganese. Also we discuss the brain health effects associated from exposure to EEDs including the promotion of neurodegeneration, protection against neurodegeneration, and involvement in various neurological deficits; changes in rearing behavior, locomotion, anxiety, learning difficulties, memory issues, and neuronal abnormalities. The effects of EEDs on the brain are varied during the entire life span and far-reaching with many different mechanisms. To understand endocrine disrupting chemicals mechanisms, we use bioinformatics, molecular, and epidemiologic approaches. Through those approaches, we learn how the effects of EEDs on the brain go beyond known mechanism to disrupt the circulatory and neural estrogen function and estrogen-mediated signaling. Effects on EEDs-modified estrogen and nuclear respiratory factor 1 (NRF1) signaling genes with exposure to natural estrogen, pharmacological estrogen-ethinyl estradiol, PCBs, phthalates, BPA, and metalloestrogens are presented here. Bioinformatics analysis of gene-EEDs interactions and brain disease associations identified hundreds of genes that were altered by exposure to estrogen, phthalate, PCBs, BPA or metalloestrogens. Many genes modified by EEDs are common targets of both 17 β-estradiol (E2) and NRF1. Some of

  1. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases

    Directory of Open Access Journals (Sweden)

    Mark Preciados

    2016-12-01

    Full Text Available During the development of an individual from a single cell to prenatal stages to adolescence to adulthood and through the complete life span, humans are exposed to countless environmental and stochastic factors, including estrogenic endocrine disrupting chemicals. Brain cells and neural circuits are likely to be influenced by estrogenic endocrine disruptors (EEDs because they strongly dependent on estrogens. In this review, we discuss both environmental, epidemiological, and experimental evidence on brain health with exposure to oral contraceptives, hormonal therapy, and EEDs such as bisphenol-A (BPA, polychlorinated biphenyls (PCBs, phthalates, and metalloestrogens, such as, arsenic, cadmium, and manganese. Also we discuss the brain health effects associated from exposure to EEDs including the promotion of neurodegeneration, protection against neurodegeneration, and involvement in various neurological deficits; changes in rearing behavior, locomotion, anxiety, learning difficulties, memory issues, and neuronal abnormalities. The effects of EEDs on the brain are varied during the entire life span and far-reaching with many different mechanisms. To understand endocrine disrupting chemicals mechanisms, we use bioinformatics, molecular, and epidemiologic approaches. Through those approaches, we learn how the effects of EEDs on the brain go beyond known mechanism to disrupt the circulatory and neural estrogen function and estrogen-mediated signaling. Effects on EEDs-modified estrogen and nuclear respiratory factor 1 (NRF1 signaling genes with exposure to natural estrogen, pharmacological estrogen-ethinyl estradiol, PCBs, phthalates, BPA, and metalloestrogens are presented here. Bioinformatics analysis of gene-EEDs interactions and brain disease associations identified hundreds of genes that were altered by exposure to estrogen, phthalate, PCBs, BPA or metalloestrogens. Many genes modified by EEDs are common targets of both 17 β-estradiol (E2 and

  2. LSD-induced entropic brain activity predicts subsequent personality change.

    Science.gov (United States)

    Lebedev, A V; Kaelen, M; Lövdén, M; Nilsson, J; Feilding, A; Nutt, D J; Carhart-Harris, R L

    2016-09-01

    Personality is known to be relatively stable throughout adulthood. Nevertheless, it has been shown that major life events with high personal significance, including experiences engendered by psychedelic drugs, can have an enduring impact on some core facets of personality. In the present, balanced-order, placebo-controlled study, we investigated biological predictors of post-lysergic acid diethylamide (LSD) changes in personality. Nineteen healthy adults underwent resting state functional MRI scans under LSD (75µg, I.V.) and placebo (saline I.V.). The Revised NEO Personality Inventory (NEO-PI-R) was completed at screening and 2 weeks after LSD/placebo. Scanning sessions consisted of three 7.5-min eyes-closed resting-state scans, one of which involved music listening. A standardized preprocessing pipeline was used to extract measures of sample entropy, which characterizes the predictability of an fMRI time-series. Mixed-effects models were used to evaluate drug-induced shifts in brain entropy and their relationship with the observed increases in the personality trait openness at the 2-week follow-up. Overall, LSD had a pronounced global effect on brain entropy, increasing it in both sensory and hierarchically higher networks across multiple time scales. These shifts predicted enduring increases in trait openness. Moreover, the predictive power of the entropy increases was greatest for the music-listening scans and when "ego-dissolution" was reported during the acute experience. These results shed new light on how LSD-induced shifts in brain dynamics and concomitant subjective experience can be predictive of lasting changes in personality. Hum Brain Mapp 37:3203-3213, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. MICROGLIA ACTIVATION AS A BIOMARKER FOR TRAUMATIC BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    Diana G Hernadez-Ontiveros

    2013-03-01

    Full Text Available Traumatic brain injury (TBI has become the signature wound of wars in Afghanistan and Iraq. Injury may result from a mechanical force, a rapid acceleration-deceleration movement, or a blast wave. A cascade of secondary cell death events ensues after the initial injury. In particular, multiple inflammatory responses accompany TBI. A series of inflammatory cytokines and chemokines spreads to normal brain areas juxtaposed to the core impacted tissue. Among the repertoire of immune cells involved, microglia is a key player in propagating inflammation to tissues neighboring the core site of injury. Neuroprotective drug trials in TBI have failed, likely due to their sole focus on abrogating neuronal cell death and ignoring the microglia response despite these inflammatory cells’ detrimental effects on the brain. Another relevant point to consider is the veracity of results of animal experiments due to deficiencies in experimental design, such as incomplete or inadequate method description, data misinterpretation and reporting may introduce bias and give false-positive results. Thus, scientific publications should follow strict guidelines that include randomization, blinding, sample-size estimation and accurate handling of all data (Landis et al., 2012. A prolonged state of inflammation after brain injury may linger for years and predispose patients to develop other neurological disorders, such as Alzheimer’s disease. TBI patients display progressive and long-lasting impairments in their physical, cognitive, behavioral, and social performance. Here, we discuss inflammatory mechanisms that accompany TBI in an effort to increase our understanding of the dynamic pathological condition as the disease evolves over time and begin to translate these findings for defining new and existing inflammation-based biomarkers and treatments for TBI.

  4. Effects of acrylamide and acrylic acid on creatine kinase activity in the rat brain

    International Nuclear Information System (INIS)

    Kohriyama, Kazuaki; Matsuoka, Masato; Igisu, Hideki

    1994-01-01

    In vitro, both acrylamide and acrylic acid inhibited creatine kinase (CK) activity in rat brain homogenates, and acrylic acid was more potent than acrylamide. In vivo, however, when given i.p. 50 mg/kg per day for 8 days to rats, only acrylamide inhibited CK activity in the brain and caused apparent neurological signs. 14 C in the brain 24 h after the injection of 14 C-labelled chemicals was more than 7 times greater with acrylamide than with acrylic acid. The inhibition of CK activity by acrylamide varied in eight regions of the brain; from 54% in hypothalamus to 27% in cerebellar vermis. The regional difference of CK inhibition, however, did not agree well with either 14 C distribution or with the distribution in regions which appear clinically or pathologically vulnerable to acrylamide. (orig.)

  5. Physiological basis and image processing in functional magnetic resonance imaging: Neuronal and motor activity in brain

    Directory of Open Access Journals (Sweden)

    Sharma Rakesh

    2004-05-01

    Full Text Available Abstract Functional magnetic resonance imaging (fMRI is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities.

  6. No need to talk, I know you: familiarity influences early multisensory integration in a songbird's brain

    Directory of Open Access Journals (Sweden)

    Isabelle GEORGE

    2011-01-01

    Full Text Available It is well known that visual information can affect auditory perception, as in the famous McGurk effect, but little is known concerning the processes involved. To address this issue, we used the best-developed animal model to study language-related processes in the brain: songbirds. European starlings were exposed to audiovisual compared to auditory-only playback of conspecific songs, while electrophysiological recordings were made in their primary auditory area (Field L. The results show that the audiovisual condition modulated the auditory responses. Enhancement and suppression were both observed, depending on the stimulus familiarity. Seeing a familiar bird led to suppressed auditory responses while seeing an unfamiliar bird led to response enhancement, suggesting that unisensory perception may be enough if the stimulus is familiar while redundancy may be required for unfamiliar items. This is to our knowledge the first evidence that multisensory integration may occur in a low-level, putatively unisensory area of a non-mammalian vertebrate brain, and also that familiarity of the stimuli may influence modulation of auditory responses by vision.

  7. Unmasking Language Lateralization in Human Brain Intrinsic Activity

    Science.gov (United States)

    McAvoy, Mark; Mitra, Anish; Coalson, Rebecca S.; d'Avossa, Giovanni; Keidel, James L.; Petersen, Steven E.; Raichle, Marcus E.

    2016-01-01

    Lateralization of function is a fundamental feature of the human brain as exemplified by the left hemisphere dominance of language. Despite the prominence of lateralization in the lesion, split-brain and task-based fMRI literature, surprisingly little asymmetry has been revealed in the increasingly popular functional imaging studies of spontaneous fluctuations in the fMRI BOLD signal (so-called resting-state fMRI). Here, we show the global signal, an often discarded component of the BOLD signal in resting-state studies, reveals a leftward asymmetry that maps onto regions preferential for semantic processing in left frontal and temporal cortex and the right cerebellum and a rightward asymmetry that maps onto putative attention-related regions in right frontal, temporoparietal, and parietal cortex. Hemispheric asymmetries in the global signal resulted from amplitude modulation of the spontaneous fluctuations. To confirm these findings obtained from normal, healthy, right-handed subjects in the resting-state, we had them perform 2 semantic processing tasks: synonym and numerical magnitude judgment and sentence comprehension. In addition to establishing a new technique for studying lateralization through functional imaging of the resting-state, our findings shed new light on the physiology of the global brain signal. PMID:25636911

  8. Applications of brain blood flow imaging in behavioral neurophysiology: cortical field activation hypothesis

    International Nuclear Information System (INIS)

    Roland, P.E.

    1985-01-01

    The 133 xenon intracarotid method for rCBF measurements has been a very useful method for functional mapping and functional dissection of the cerebral cortex in humans. With this method it has been shown that different types of cortical information treatment activate different cortical areas and furthermore that sensory and motor functions of the cerebral cortex could be dissected into anatomical and informational subcomponents by behavioral manipulations. The brain organizes its own activity. One of the principles of organization was that the brain could recruit in advance cortical fields that were expected to participate in a certain type of information operation. During brain work in awake human beings the cerebral cortex was activated in fields that, projected on the cerebral surface, most often had a size greater than 3 CM 2 . Such activated fields appeared no matter which type of information processing was going on in the brain: during planning and execution of voluntary movements, during preparation for sensory information processing, and during sensory information processing, as well as during cognitive brain work and retrieval of specific memories. Therefore, it was hypothesized that cortical field activation was the physiological manifestation of normal brain work in awake humans

  9. Applications of brain blood flow imaging in behavioral neurophysiology: cortical field activation hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Roland, P.E.

    1985-01-01

    The /sup 133/xenon intracarotid method for rCBF measurements has been a very useful method for functional mapping and functional dissection of the cerebral cortex in humans. With this method it has been shown that different types of cortical information treatment activate different cortical areas and furthermore that sensory and motor functions of the cerebral cortex could be dissected into anatomical and informational subcomponents by behavioral manipulations. The brain organizes its own activity. One of the principles of organization was that the brain could recruit in advance cortical fields that were expected to participate in a certain type of information operation. During brain work in awake human beings the cerebral cortex was activated in fields that, projected on the cerebral surface, most often had a size greater than 3 CM/sup 2/. Such activated fields appeared no matter which type of information processing was going on in the brain: during planning and execution of voluntary movements, during preparation for sensory information processing, and during sensory information processing, as well as during cognitive brain work and retrieval of specific memories. Therefore, it was hypothesized that cortical field activation was the physiological manifestation of normal brain work in awake humans.

  10. Studies on estradiol-2/4-hydroxylase activity in rat brain and liver

    International Nuclear Information System (INIS)

    Theron, C.N.

    1985-03-01

    A sensitive and specific radio-enzymatic assay was used to study estradiol-2/4-hydroxylase activity in rat liver microsomes and in microsomes obtained from 6 discrete brain areas of the rat. Kinetic parameters were determined for these enzyme activities. The effects of different P-450 inhibitors on estradiol-2/4-hydroxylase activity in brain and liver microsomes were also studied. In both organs these enzyme activities were found to be located mainly in the microsomal fraction and were inhibited by the 3 P-450 inhibitors tested. The hepatic estradiol-2/4-hydroxylase activity in adult male rats was significantly higher than that of females, but the enzyme activity in the brain did not exhibit a similar sex difference. Furthermore, estradiol-2/4-hydroxylase activity in rat liver was strongly induced by phenobarbitone treatment, but not in the brain. The phenobarbitone-induced activity in male and female rats exhibited significant kinetic differences. In female rats sexual maturation was associated with significant changes in the apparent Km of estradiol-2/4-hydroxylases in the liver and hypothalamus. Evidence was found that the in vitro estradiol-2/4-hydroxylase activity in rat brain and liver is due to more than one form of microsomal P-450. Kinetic studies showed important differences between the estradiol-2/4-hydroxylase activities in the hippocampus and hypothalamus. Significant differences in estradiol-2/4-hydroxylase activities were observed in the 6 brain areas studied, with the hippocampus showing the highest, and the hypothalamus the lowest activity at all developmental stages in both male and female rats

  11. Sex differences in the influence of body mass index on anatomical architecture of brain networks.

    Science.gov (United States)

    Gupta, A; Mayer, E A; Hamadani, K; Bhatt, R; Fling, C; Alaverdyan, M; Torgerson, C; Ashe-McNalley, C; Van Horn, J D; Naliboff, B; Tillisch, K; Sanmiguel, C P; Labus, J S

    2017-08-01

    The brain has a central role in regulating ingestive behavior in obesity. Analogous to addiction behaviors, an imbalance in the processing of rewarding and salient stimuli results in maladaptive eating behaviors that override homeostatic needs. We performed network analysis based on graph theory to examine the association between body mass index (BMI) and network measures of integrity, information flow and global communication (centrality) in reward, salience and sensorimotor regions and to identify sex-related differences in these parameters. Structural and diffusion tensor imaging were obtained in a sample of 124 individuals (61 males and 63 females). Graph theory was applied to calculate anatomical network properties (centrality) for regions of the reward, salience and sensorimotor networks. General linear models with linear contrasts were performed to test for BMI and sex-related differences in measures of centrality, while controlling for age. In both males and females, individuals with high BMI (obese and overweight) had greater anatomical centrality (greater connectivity) of reward (putamen) and salience (anterior insula) network regions. Sex differences were observed both in individuals with normal and elevated BMI. In individuals with high BMI, females compared to males showed greater centrality in reward (amygdala, hippocampus and nucleus accumbens) and salience (anterior mid-cingulate cortex) regions, while males compared to females had greater centrality in reward (putamen) and sensorimotor (posterior insula) regions. In individuals with increased BMI, reward, salience and sensorimotor network regions are susceptible to topological restructuring in a sex-related manner. These findings highlight the influence of these regions on integrative processing of food-related stimuli and increased ingestive behavior in obesity, or in the influence of hedonic ingestion on brain topological restructuring. The observed sex differences emphasize the importance of

  12. Mapping the regional influence of genetics on brain structure variability--a tensor-based morphometry study.

    Science.gov (United States)

    Brun, Caroline C; Leporé, Natasha; Pennec, Xavier; Lee, Agatha D; Barysheva, Marina; Madsen, Sarah K; Avedissian, Christina; Chou, Yi-Yu; de Zubicaray, Greig I; McMahon, Katie L; Wright, Margaret J; Toga, Arthur W; Thompson, Paul M

    2009-10-15

    Genetic and environmental factors influence brain structure and function profoundly. The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8+/-1.8 SD years). All 92 twins' 3D brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping approach to compute volumetric differences across subjects. A multi-template method was used to improve volume quantification. Vector fields driving each subject's anatomy onto the common template were analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a new structural equation modeling method, we computed the voxelwise proportion of variance in volumes attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong genetic control; local white matter volumes were mostly controlled by common environment. After adjusting for individual differences in overall brain scale, genetic influences were still relatively high in the corpus callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences were greater in frontal brain regions that have a more protracted maturational time-course.

  13. Influence of impact speed on head and brain injury outcome in vulnerable road user impacts to the car hood.

    Science.gov (United States)

    Fredriksson, Rikard; Zhang, Liying; Boström, Ola; Yang, King

    2007-10-01

    EuroNCAP and regulations in Europe and Japan evaluate the pedestrian protection performance of cars. The test methods are similar and they all have requirements for the passive protection of the hood area at a pedestrian to car impact speed of 40 km/h. In Europe, a proposal for a second phase of the regulation mandates a brake-assist system along with passive requirements. The system assists the driver in optimizing the braking performance during panic braking, resulting in activation only when the driver brakes sufficiently. In a European study this was estimated to occur in about 50% of pedestrian accidents. A future system for brake assistance will likely include automatic braking, in response to a pre-crash sensor, to avoid or mitigate injuries of vulnerable road users. An important question is whether these systems will provide sufficient protection, or if a parallel, passive pedestrian protection system will be necessary. This study investigated the influence of impact speed on head and brain injury risk, in impacts to the carhood. One car model was chosen and a rigid adjustable plate was mounted under the hood. Free-flying headform impacts were carried out at 20 and 30 km/h head impact velocities at different under-hood distances, 20 to 100 mm; and were compared to earlier tests at 40 km/h. The EEVC WG17 adult pedestrian headform was used for non-rotating tests and a Hybrid III adult 50th percentile head was used for rotational tests where linear and rotational acceleration was measured. Data from the rotational tests was used as input to a validated finite element model of the human head, the Wayne State University Head Injury Model (WSUHIM). The model was utilized to assess brain injury risk and potential injury mechanism in a pedestrian-hood impact. Although this study showed that it was not necessarily true that a lower HIC value reduced the risk for brain injury, it appeared, for the tested car model, under-hood distances of 60 mm in 20 km/h and 80 mm

  14. Glucose metabolism in different regions of the rat brain under hypokinetic stress influence

    Science.gov (United States)

    Konitzer, K.; Voigt, S.

    1980-01-01

    Glucose metabolism in rats kept under long term hypokinetic stress was studied in 7 brain regions. Determination was made of the regional levels of glucose, lactate, glutamate, glutamine, aspartate, gamma-aminobutyrate and the incorporation of C-14 from plasma glucose into these metabolites, in glycogen and protein. From the content and activity data the regional glucose flux was approximated quantitatively. Under normal conditions the activity gradient cortex and frontal pole cerebellum, thalamus and mesencephalon, hypothalamus and pons and medulla is identical with that of the regional blood supply (measured with I131 serum albumin as the blood marker). Within the first days of immobilization a functional hypoxia occurred in all brain regions and the utilization of cycle amino acids for protein synthesis was strongly diminished. After the first week of stress the capillary volumes of all regions increased, aerobic glucose metabolism was enhanced (factors 1.3 - 2.0) and the incorporation of glucose C-14 via cycle amino acids into protein was considerably potentiated. The metabolic parameters normalized between the 7th and 11th week of stress. Blood supply and metabolic rate increased most in the hypothalamus.

  15. Parental Influence on Physical Activity of Children with Disabilities

    Science.gov (United States)

    Siebert, Erin A.; Hamm, Jessica; Yun, Joonkoo

    2017-01-01

    The purpose of this study was to identify parental influences on physical activity behaviours of children with disabilities. One hundred and forty-eight parents of children with disabilities responded to a survey about factors related to parent and child physical activity, parental support and belief in their child's abilities regarding physical…

  16. The influence of encoding strategy on episodic memory and cortical activity in schizophrenia.

    Science.gov (United States)

    Bonner-Jackson, Aaron; Haut, Kristen; Csernansky, John G; Barch, Deanna M

    2005-07-01

    Recent work suggests that episodic memory deficits in schizophrenia may be related to disturbances of encoding or retrieval. Schizophrenia patients appear to benefit from instruction in episodic memory strategies. We tested the hypothesis that providing effective encoding strategies to schizophrenia patients enhances encoding-related brain activity and recognition performance. Seventeen schizophrenia patients and 26 healthy comparison subjects underwent functional magnetic resonance imaging scans while performing incidental encoding tasks of words and faces. Subjects were required to make either deep (abstract/concrete) or shallow (alphabetization) judgments for words and deep (gender) judgments for faces, followed by subsequent recognition tests. Schizophrenia and comparison subjects recognized significantly more words encoded deeply than shallowly, activated regions in inferior frontal cortex (Brodmann area 45/47) typically associated with deep and successful encoding of words, and showed greater left frontal activation for the processing of words compared with faces. However, during deep encoding and material-specific processing (words vs. faces), participants with schizophrenia activated regions not activated by control subjects, including several in prefrontal cortex. Our findings suggest that a deficit in use of effective strategies influences episodic memory performance in schizophrenia and that abnormalities in functional brain activation persist even when such strategies are applied.

  17. The influence of age and mild cognitive impairment on associative memory performance and underlying brain networks.

    Science.gov (United States)

    Oedekoven, Christiane S H; Jansen, Andreas; Keidel, James L; Kircher, Tilo; Leube, Dirk

    2015-12-01

    Associative memory is essential to everyday activities, such as the binding of faces and corresponding names to form single bits of information. However, this ability often becomes impaired with increasing age. The most important neural substrate of associative memory is the hippocampus, a structure crucially implicated in the pathogenesis of Alzheimer's disease (AD). The main aim of this study was to compare neural correlates of associative memory in healthy aging and mild cognitive impairment (MCI), an at-risk state for AD. We used fMRI to investigate differences in brain activation and connectivity between young controls (n = 20), elderly controls (n = 32) and MCI patients (n = 21) during associative memory retrieval. We observed lower hippocampal activation in MCI patients than control groups during a face-name recognition task, and the magnitude of this decrement was correlated with lower associative memory performance. Further, increased activation in precentral regions in all older adults indicated a stronger involvement of the task positive network (TPN) with age. Finally, functional connectivity analysis revealed a stronger link of hippocampal and striatal components in older adults in comparison to young controls, regardless of memory impairment. In elderly controls, this went hand-in-hand with a stronger activation of striatal areas. Increased TPN activation may be linked to greater reliance on cognitive control in both older groups, while increased functional connectivity between the hippocampus and the striatum may suggest dedifferentiation, especially in elderly controls.

  18. The sleeping brain's influence on verbal memory: boosting resistance to interference.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Ellenbogen

    Full Text Available Memories evolve. After learning something new, the brain initiates a complex set of post-learning processing that facilitates recall (i.e., consolidation. Evidence points to sleep as one of the determinants of that change. But whenever a behavioral study of episodic memory shows a benefit of sleep, critics assert that sleep only leads to a temporary shelter from the damaging effects of interference that would otherwise accrue during wakefulness. To evaluate the potentially active role of sleep for verbal memory, we compared memory recall after sleep, with and without interference before testing. We demonstrated that recall performance for verbal memory was greater after sleep than after wakefulness. And when using interference testing, that difference was even more pronounced. By introducing interference after sleep, this study confirms an experimental paradigm that demonstrates the active role of sleep in consolidating memory, and unmasks the large magnitude of that benefit.

  19. Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex.

    Science.gov (United States)

    Li, Qian; Ke, Ya; Chan, Danny C W; Qian, Zhong-Ming; Yung, Ken K L; Ko, Ho; Arbuthnott, Gordon W; Yung, Wing-Ho

    2012-12-06

    Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of deep brain stimulation, it had been assumed that its action is on the nucleus itself. By means of simultaneous recordings of the firing activities from populations of neurons and the local field potentials in the motor cortex of freely moving Parkinsonian rats, this study casts doubt on this assumption. Instead, we found evidence that the corrective action is upon the cortex, where stochastic antidromic spikes originating from the STN directly modify the firing probability of the corticofugal projection neurons, destroy the dominance of beta rhythm, and thus restore motor control to the subjects, be they patients or rodents. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis

    Science.gov (United States)

    Jenkins, Trisha A.; Nguyen, Jason C. D.; Polglaze, Kate E.; Bertrand, Paul P.

    2016-01-01

    The serotonergic system forms a diffuse network within the central nervous system and plays a significant role in the regulation of mood and cognition. Manipulation of tryptophan levels, acutely or chronically, by depletion or supplementation, is an experimental procedure for modifying peripheral and central serotonin levels. These studies have allowed us to establish the role of serotonin in higher order brain function in both preclinical and clinical situations and have precipitated the finding that low brain serotonin levels are associated with poor memory and depressed mood. The gut-brain axis is a bi-directional system between the brain and gastrointestinal tract, linking emotional and cognitive centres of the brain with peripheral functioning of the digestive tract. An influence of gut microbiota on behaviour is becoming increasingly evident, as is the extension to tryptophan and serotonin, producing a possibility that alterations in the gut may be important in the pathophysiology of human central nervous system disorders. In this review we will discuss the effect of manipulating tryptophan on mood and cognition, and discuss a possible influence of the gut-brain axis. PMID:26805875

  1. Human Brain Activity Patterns beyond the Isoelectric Line of Extreme Deep Coma

    Science.gov (United States)

    Kroeger, Daniel; Florea, Bogdan; Amzica, Florin

    2013-01-01

    The electroencephalogram (EEG) reflects brain electrical activity. A flat (isoelectric) EEG, which is usually recorded during very deep coma, is considered to be a turning point between a living brain and a deceased brain. Therefore the isoelectric EEG constitutes, together with evidence of irreversible structural brain damage, one of the criteria for the assessment of brain death. In this study we use EEG recordings for humans on the one hand, and on the other hand double simultaneous intracellular recordings in the cortex and hippocampus, combined with EEG, in cats. They serve to demonstrate that a novel brain phenomenon is observable in both humans and animals during coma that is deeper than the one reflected by the isoelectric EEG, and that this state is characterized by brain activity generated within the hippocampal formation. This new state was induced either by medication applied to postanoxic coma (in human) or by application of high doses of anesthesia (isoflurane in animals) leading to an EEG activity of quasi-rhythmic sharp waves which henceforth we propose to call ν-complexes (Nu-complexes). Using simultaneous intracellular recordings in vivo in the cortex and hippocampus (especially in the CA3 region) we demonstrate that ν-complexes arise in the hippocampus and are subsequently transmitted to the cortex. The genesis of a hippocampal ν-complex depends upon another hippocampal activity, known as ripple activity, which is not overtly detectable at the cortical level. Based on our observations, we propose a scenario of how self-oscillations in hippocampal neurons can lead to a whole brain phenomenon during coma. PMID:24058669

  2. Brain activation upon ideal-body media exposure and peer feedback in late adolescent girls.

    Science.gov (United States)

    van der Meulen, Mara; Veldhuis, Jolanda; Braams, Barbara R; Peters, Sabine; Konijn, Elly A; Crone, Eveline A

    2017-08-01

    Media's prevailing thin-body ideal plays a vital role in adolescent girls' body image development, but the co-occurring impact of peer feedback is understudied. The present study used functional magnetic resonance imaging (fMRI) to test media imagery and peer feedback combinations on neural activity related to thin-body ideals. Twenty-four healthy female late adolescents rated precategorized body sizes of bikini models (too thin or normal), directly followed by ostensible peer feedback (too thin or normal). Consistent with prior studies on social feedback processing, results showed increased brain activity in the dorsal medial prefrontal cortex (dmPFC)/anterior cingulate cortex (ACC) and bilateral insula in incongruent situations: when participants rated media models' body size as normal while peer feedback indicated the models as too thin (or vice versa). This effect was stronger for girls with lower self-esteem. A subsequent behavioral study (N = 34 female late adolescents, separate sample) demonstrated that participants changed behavior in the direction of the peer feedback: precategorized normal sized models were rated as too thin more often after receiving too thin peer feedback. This suggests that the neural responses upon peer feedback may influence subsequent choice. Our results show that media-by-peer interactions have pronounced effects on girls' body ideals.

  3. Brain Activation during Associative Short-Term Memory Maintenance is Not Predictive for Subsequent Retrieval

    Directory of Open Access Journals (Sweden)

    Heiko eBergmann

    2015-09-01

    Full Text Available Performance on working memory (WM tasks may partially be supported by long-term memory (LTM processing. Hence, brain activation recently being implicated in WM may actually have been driven by (incidental LTM formation. We examined which brain regions actually support successful WM processing, rather than being confounded by LTM processes, during the maintenance and probe phase of a WM task. We administered a four-pair (faces and houses associative delayed-match-to-sample (WM task using event-related fMRI and a subsequent associative recognition LTM task, using the same stimuli. This enabled us to analyze subsequent memory effects for both the WM and the LTM test by contrasting correctly recognized pairs with incorrect pairs for either task. Critically, with respect to the subsequent WM effect, we computed this analysis exclusively for trials that were forgotten in the subsequent LTM recognition task. Hence, brain activity associated with successful WM processing was less likely to be confounded by incidental LTM formation. The subsequent LTM effect, in contrast, was analyzed exclusively for pairs that previously had been correctly recognized in the WM task, disclosing brain regions involved in successful LTM formation after successful WM processing. Results for the subsequent WM effect showed no significantly activated brain areas for WM maintenance, possibly due to an insensitivity of fMRI to mechanisms underlying active WM maintenance. In contrast, a correct decision at WM probe was linked to activation in the retrieval success network (anterior and posterior midline brain structures. The subsequent LTM analyses revealed greater activation in left dorsolateral prefrontal cortex and posterior parietal cortex in the early phase of the maintenance stage. No supra-threshold activation was found during the WM probe. Together, we obtained clearer insights in which brain regions support successful WM and LTM without the potential confound of the

  4. Brain activation during associative short-term memory maintenance is not predictive for subsequent retrieval.

    Science.gov (United States)

    Bergmann, Heiko C; Daselaar, Sander M; Beul, Sarah F; Rijpkema, Mark; Fernández, Guillén; Kessels, Roy P C

    2015-01-01

    Performance on working memory (WM) tasks may partially be supported by long-term memory (LTM) processing. Hence, brain activation recently being implicated in WM may actually have been driven by (incidental) LTM formation. We examined which brain regions actually support successful WM processing, rather than being confounded by LTM processes, during the maintenance and probe phase of a WM task. We administered a four-pair (faces and houses) associative delayed-match-to-sample (WM) task using event-related functional MRI (fMRI) and a subsequent associative recognition LTM task, using the same stimuli. This enabled us to analyze subsequent memory effects for both the WM and the LTM test by contrasting correctly recognized pairs with incorrect pairs for either task. Critically, with respect to the subsequent WM effect, we computed this analysis exclusively for trials that were forgotten in the subsequent LTM recognition task. Hence, brain activity associated with successful WM processing was less likely to be confounded by incidental LTM formation. The subsequent LTM effect, in contrast, was analyzed exclusively for pairs that previously had been correctly recognized in the WM task, disclosing brain regions involved in successful LTM formation after successful WM processing. Results for the subsequent WM effect showed no significantly activated brain areas for WM maintenance, possibly due to an insensitivity of fMRI to mechanisms underlying active WM maintenance. In contrast, a correct decision at WM probe was linked to activation in the "retrieval success network" (anterior and posterior midline brain structures). The subsequent LTM analyses revealed greater activation in left dorsolateral prefrontal cortex and posterior parietal cortex in the early phase of the maintenance stage. No supra-threshold activation was found during the WM probe. Together, we obtained clearer insights in which brain regions support successful WM and LTM without the potential confound of

  5. Cellular localization of peptide hydrolases in chicken embryo tissues and influence of gamma irradiation on their activity

    Energy Technology Data Exchange (ETDEWEB)

    Khristov, D; Marinopolski, G

    1975-01-01

    Studied was the influence of chicken embryo irradiation at 600 R and 1000 R gamma rays on the activity of tissue peptide hydrolases in mitochondrial-lysosomal, microsomal and supernatant (cell hyaloplasm) cell fractions. The investigation was performed 50 to 168 hours post irradiation. The wole tissue (of the whole embryo) was examined following irradiation of 4-day-old embryos whose liver, muscle and brain tissues were post irradiation examined on day 12 and 16 of incubation. Prior to treatment, the tissues were threfold rinsed with sucrose solution to eliminate proeinase inhibitors. Lysosome membranes were destroyed by adding 0.5 % desoxycholate. It was found that: Peptide hydrolase activity of mitochondrial-lysosomal cell fractions of tissues of whole 6-day chicken embryos is 4-5 times as high as that of cell hyaloplasm. Peptide hydrolase activity of mitochondrial-lysosomal fractions of liver tissues decreases on day 18 and 19 post incubation, while the same fraction of muscle and brain tissues shows high activity. Peptide hydrolase activity of microsomal fraction and of cell hyaloplasm rises during embryonal development and exceeds the activity of liver tissue mitochondrial fraction. Peptide hydrolase activity of mitochondrial-lysosomal fraction of tissue of whole 6-day-old embryos 50 hours post irradiation is higher than the activity of non-irradiated embryos. Later the activity of this fraction diminishes and on the 168 hr post irradiation it drops below the normal. Microsomal fraction and cell hyaloplasm activity likewise show deviation from the norm. Peptide hydrolase activity of mitochondrial-lysosomal fraction of liver, muscle and brain tissue of 14 and 18-day-old embryos is higher than the control 50 hours post irradiation and then declines. The activity of mitochondrial-lysosomal fraction of embryo brain tissue changes most strikingly on irradiation, while other brain cell fractions change less compared with liver and muscle fractions.

  6. Cellular localization of peptide hydrolases in chicken embryo tissues and influence of gamma irradiation on their activity

    International Nuclear Information System (INIS)

    Khristov, D.; Marinopolski, G.

    1975-01-01

    Studied was the influence of chicken embryo irradiation at 600 R and 1000 R gamma rays on the activity of tissue peptide hydrolases in mitochondrial-lysosomal, microsomal and supernatant (cell hyaloplasm) cell fractions. The investigation was performed 50 to 168 hours post irradiation. The wole tissue (of the whole embryo) was examined following irradiation of 4-day-old embryos whose liver, muscle and brain tissues were post irradiation examined on day 12 and 16 of incubation. Prior to treatment, the tissues were threfold rinsed with sucrose solution to eliminate proeinase inhibitors. Lysosome membranes were destroyed by adding 0.5 % desoxycholate. It was found that: Peptide hydrolase activity of mitochondrial-lysosomal cell fractions of tissues of whole 6-day chicken embryos is 4-5 times as high as that of cell hyaloplasm. Peptide hydrolase activity of mitochondrial-lysosomal fractions of liver tissues decreases on day 18 and 19 post incubation, while the same fraction of muscle and brain tissues shows high activity. Peptide hydrolase activity of microsomal fraction and of cell hyaloplasm rises during embryonal development and exceeds the activity of liver tissue mitochondrial fraction. Peptide hydrolase activity of mitochondrial-lysosomal fraction of tissue of whole 6-day-old embryos 50 hours post irradiation is higher than the activity of non-irradiated embryos. Later the activity of this fraction diminishes and on the 168 hr post irradiation it drops below the normal. Microsomal fraction and cell hyaloplasm activity likewise show deviation from the norm. Peptide hydrolase activity of mitochondrial-lysosomal fraction of liver, muscle and brain tissue of 14 and 18-day-old embryos is higher than the control 50 hours post irradiation and then declines. The activity of mitochondrial-lysosomal fraction of embryo brain tissue changes most strikingly on irradiation, while other brain cell fractions change less compared with liver and muscle fractions

  7. Development of positron tracer for in vivo estimation of brain MAO-B activity

    International Nuclear Information System (INIS)

    Inoue, Osamu; Tominaga, Toshiyoshi; Fukuda, Nobuo; Suzuki, Kazutoshi; Yamasaki, Toshio

    1984-01-01

    Both the specificity and the measurable range of enzyme activity of this method were found to be much dependent upon the enzymatic properties of substrate-tracer. The measurable range of brain enzyme activity was found to be from zero to the maximum value which was dependent upon two factors; the elimination rate of substratetracer from the brain (Ksub(el)) and the Vsub(max)/Ksub(m) value of substrate. The detectable range of changes in enzyme activity can be made wider by using another substrate as a tracer which has a lower Vsub(max)/Ksub(m) value or larger Ksub(el) value. The specificity can be also favorably designed by selection of substrate with various enzymatic or physico-chemical properties as a tracer. N, N-dimethyl phenylethylamine (DMPEA) was selected as a substrate-tracer for the estimation of brain MAO-B activity. Very high accumulation of radioactivity into mouse brain at 1 min after intravenous injection of 11 C-DMPEA, and a long-term retention of radioactivity in the brain were observed. 11 C-DMPEA seemed to be metabolized to 11 C-dimethylamine by brain MAO, and be trapped by the blood-brain barrier. When various dosage of 1-deprenyl (a specific MAO-B inhibitor) were pretreated, brain radioactivity at 1 hr after injection of 11 C-DMPEA significantly decreased in a dosage (1-deprenyl)-dependent way, while pretreatment with clorgyline (a specific MAO-A inhibitor) had no effect. This decrease in radioactivity might be due to the decrease of the production rate of labeled metabolite ( 11 C-dimethylamine) in the brain. The relationship between the radioactivity remaining at 1 hr after injection and MAO-B activity remaining in the brain was quite paralle. 11 C-DMPEA seems to be a specific radiotracer for the external detection of alterations in MAO-B activity in the brain with a fair sensitivity. (J.P.N.)

  8. Fitness, but not physical activity, is related to functional integrity of brain networks associated with aging.

    Science.gov (United States)

    Voss, Michelle W; Weng, Timothy B; Burzynska, Agnieszka Z; Wong, Chelsea N; Cooke, Gillian E; Clark, Rachel; Fanning, Jason; Awick, Elizabeth; Gothe, Neha P; Olson, Erin A; McAuley, Edward; Kramer, Arthur F

    2016-05-01

    Greater physical activity and cardiorespiratory fitness are associated with reduced age-related cognitive decline and lower risk for dementia. However, significant gaps remain in the understanding of how physical activity and fitness protect the brain from adverse effects of brain aging. The primary goal of the current study was to empirically evaluate the independent relationships between physical activity and fitness with functional brain health among healthy older adults, as measured by the functional connectivity of cognitively and clinically relevant resting state networks. To build context for fitness and physical activity associations in older adults, we first demonstrate that young adults have greater within-network functional connectivity across a broad range of cortical association networks. Based on these results and previous research, we predicted that individual differences in fitness and physical activity would be most strongly associated with functional integrity of the networks most sensitive to aging. Consistent with this prediction, and extending on previous research, we showed that cardiorespiratory fitness has a positive relationship with functional connectivity of several cortical networks associated with age-related decline, and effects were strongest in the default mode network (DMN). Furthermore, our results suggest that the positive association of fitness with brain function can occur independent of habitual physical activity. Overall, our findings provide further support that cardiorespiratory fitness is an important factor in moderating the adverse effects of aging on cognitively and clinically relevant functional brain networks. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Fitness, but not physical activity, is related to functional integrity of brain networks associated with aging

    Science.gov (United States)

    Voss, Michelle W.; Weng, Timothy B.; Burzynska, Agnieszka Z.; Wong, Chelsea N.; Cooke, Gillian E.; Clark, Rachel; Fanning, Jason; Awick, Elizabeth; Gothe, Neha P.; Olson, Erin A.; McAuley, Edward; Kramer, Arthur F.

    2015-01-01

    Greater physical activity and cardiorespiratory fitness are associated with reduced age-related cognitive decline and lower risk for dementia. However, significant gaps remain in the understanding of how physical activity and fitness protect the brain from adverse effects of brain aging. The primary goal of the current study was to empirically evaluate the independent relationships between physical activity and fitness with functional brain health among healthy older adults, as measured by the functional connectivity of cognitively and clinically relevant resting state networks. To build context for fitness and physical activity associations in older adults, we first demonstrate that young adults have greater within-network functional connectivity across a broad range of cortical association networks. Based on these results and previous research, we predicted that individual differences in fitness and physical activity would be most strongly associated with functional integrity of the networks most sensitive to aging. Consistent with this prediction, and extending on previous research, we showed that cardiorespiratory fitness has a positive relationship with functional connectivity of several cortical networks associated with age-related decline, and effects were strongest in the Default Mode Network (DMN). Furthermore, our results suggest that the positive association of fitness with brain function can occur independent of habitual physical activity. Overall, our findings provide further support that cardiorespiratory fitness is an important factor in moderating the adverse effects of aging on cognitively and clinically relevant functional brain networks. PMID:26493108

  10. Laterality of brain activity during motor imagery is modulated by the provision of source level neurofeedback.

    Science.gov (United States)

    Boe, Shaun; Gionfriddo, Alicia; Kraeutner, Sarah; Tremblay, Antoine; Little, Graham; Bardouille, Timothy

    2014-11-01

    Motor imagery (MI) may be effective as an adjunct to physical practice for motor skill acquisition. For example, MI is emerging as an effective treatment in stroke neurorehabilitation. As in physical practice, the repetitive activation of neural pathways during MI can drive short- and long-term brain changes that underlie functional recovery. However, the lack of feedback about MI performance may be a factor limiting its effectiveness. The provision of feedback about MI-related brain activity may overcome this limitation by providing the opportunity for individuals to monitor their own performance of this endogenous process. We completed a controlled study to isolate neurofeedback as the factor driving changes in MI-related brain activity across repeated sessions. Eighteen healthy participants took part in 3 sessions comprised of both actual and imagined performance of a button press task. During MI, participants in the neurofeedback group received source level feedback based on activity from the left and right sensorimotor cortex obtained using magnetoencephalography. Participants in the control group received no neurofeedback. MI-related brain activity increased in the sensorimotor cortex contralateral to the imagined movement across sessions in the neurofeedback group, but not in controls. Task performance improved across sessions but did not differ between groups. Our results indicate that the provision of neurofeedback during MI allows healthy individuals to modulate regional brain activity. This finding has the potential to improve the effectiveness of MI as a tool in neurorehabilitation. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Exploring potential social influences on brain potentials during anticipation of tactile stimulation.

    Science.gov (United States)

    Shen, Guannan; Saby, Joni N; Drew, Ashley R; Marshall, Peter J

    2017-03-15

    This study explored interpersonal influences on electrophysiological responses during the anticipation of tactile stimulation. It is well-known that broad, negative-going potentials are present in the event-related potential (ERP) between a forewarning cue and a tactile stimulus. It has also been shown that the alpha-range mu rhythm shows a lateralized desynchronization over central electrode sites during anticipation of tactile stimulation of the hand. The current study used a tactile discrimination task in which a visual cue signaled that an upcoming stimulus would either be delivered 1500ms later to the participant's hand, to a task partner's hand, or to neither person. For the condition in which participants anticipated the tactile stimulation to their own hand, a negative potential (contingent negative variation, CNV) was observed in the ERP at central sites in the 1000ms prior to the tactile stimulus. Significant mu rhythm desynchronization was also present in the same time window. The magnitudes of the ERPs and of the mu desynchronization were greater in the contralateral than in the ipsilateral hemisphere prior to right hand stimulation. Similar ERP and EEG changes were not present when the visual cue indicated that stimulation would be delivered to the task partner or to neither person. The absence of social influences during anticipation of tactile stimulation, and the relationship between the two brain signatures of anticipatory attention (CNV and mu rhythm) are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Human ecstasy (MDMA) polydrug users have altered brain activation during semantic processing.

    Science.gov (United States)

    Watkins, Tristan J; Raj, Vidya; Lee, Junghee; Dietrich, Mary S; Cao, Aize; Blackford, Jennifer U; Salomon, Ronald M; Park, Sohee; Benningfield, Margaret M; Di Iorio, Christina R; Cowan, Ronald L

    2013-05-01

    Ecstasy (3,4-methylenedioxymethamphetamine [MDMA]) polydrug users have verbal memory performance that is statistically significantly lower than that of control subjects. Studies have correlated long-term MDMA use with altered brain activation in regions that play a role in verbal memory. The aim of our study was to examine the association of lifetime ecstasy use with semantic memory performance and brain activation in ecstasy polydrug users. A total of 23 abstinent ecstasy polydrug users (age = 24.57 years) and 11 controls (age = 22.36 years) performed a two-part functional magnetic resonance imaging (fMRI) semantic encoding and recognition task. To isolate brain regions activated during each semantic task, we created statistical activation maps in which brain activation was greater for word stimuli than for non-word stimuli (corrected p ecstasy polydrug users had greater activation during semantic encoding bilaterally in language processing regions, including Brodmann areas 7, 39, and 40. Of this bilateral activation, signal intensity with a peak T in the right superior parietal lobe was correlated with lifetime ecstasy use (r s = 0.43, p = 0.042). Behavioral performance did not differ between groups. These findings demonstrate that ecstasy polydrug users have increased brain activation during semantic processing. This increase in brain activation in the absence of behavioral deficits suggests that ecstasy polydrug users have reduced cortical efficiency during semantic encoding, possibly secondary to MDMA-induced 5-HT neurotoxicity. Although pre-existing differences cannot be ruled out, this suggests the possibility of a compensatory mechanism allowing ecstasy polydrug users to perform equivalently to controls, providing additional support for an association of altered cerebral neurophysiology with MDMA exposure.

  13. Evidence of gender differences in the ability to inhibit brain activation elicited by food stimulation

    OpenAIRE

    Wang, Gene-Jack; Volkow, Nora D.; Telang, Frank; Jayne, Millard; Ma, Yeming; Pradhan, Kith; Zhu, Wei; Wong, Christopher T.; Thanos, Panayotis K.; Geliebter, Allan; Biegon, Anat; Fowler, Joanna S.

    2009-01-01

    Although impaired inhibitory control is linked to a broad spectrum of health problems, including obesity, the brain mechanism(s) underlying voluntary control of hunger are not well understood. We assessed the brain circuits involved in voluntary inhibition of hunger during food stimulation in 23 fasted men and women using PET and 2-deoxy-2[18F]fluoro-D-glucose (18FDG). In men, but not in women, food stimulation with inhibition significantly decreased activation in amygdala, hippocampus, insul...

  14. Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response

    OpenAIRE

    Andreas Stengel; Yvette F. Taché; Yvette F. Taché

    2017-01-01

    Corticotropin-releasing factor (CRF) is the hallmark brain peptide triggering the response to stress and mediates—in addition to the stimulation of the hypothalamus-pituitary-adrenal (HPA) axis—other hormonal, behavioral, autonomic and visceral components. Earlier reports indicate that somatostatin-28 injected intracerebroventricularly counteracts the acute stress-induced ACTH and catecholamine release. Mounting evidence now supports that activation of brain somatostatin signaling exerts a br...

  15. Influence of friends on children's physical activity: a review.

    Science.gov (United States)

    Maturo, Claire C; Cunningham, Solveig A

    2013-07-01

    We examined evidence for friendship influences on children's physical activity (PA) through systematic searches of online databases in May 2012. We identified 106 studies (25 qualitative) published in English since 2000 that analyzed indicators of friendship influences (e.g., communication about PA, friends' PA, and PA with friends) among persons younger than 19 years. Children's PA was positively associated with encouragement from friends (43 of 55 studies indicating a positive relationship), friends' own PA (30/35), and engagement with friends in PA (9/10). These findings are consistent with friends influencing PA, but most studies did not isolate influence from other factors that could explain similarity. Understanding friendship influences in childhood can facilitate the promotion of lifelong healthy habits. PA with friends should be considered in health promotion programs.

  16. Analysis of individual brain activation maps using hierarchical description and multiscale detection

    International Nuclear Information System (INIS)

    Poline, J.B.; Mazoyer, B.M.

    1994-01-01

    The authors propose a new method for the analysis of brain activation images that aims at detecting activated volumes rather than pixels. The method is based on Poisson process modeling, hierarchical description, and multiscale detection (MSD). Its performances have been assessed using both Monte Carlo simulated images and experimental PET brain activation data. As compared to other methods, the MSD approach shows enhanced sensitivity with a controlled overall type I error, and has the ability to provide an estimate of the spatial limits of the detected signals. It is applicable to any kind of difference image for which the spatial autocorrelation function can be approximated by a stationary Gaussian function

  17. Active video gaming improves body coordination in survivors of childhood brain tumours

    DEFF Research Database (Denmark)

    Sabel, M.; Sjölund, A.; Broeren, J.

    2016-01-01

    Purpose: We investigated whether active video gaming (AVG) could bring about regular, enjoyable, physical exercise in children treated for brain tumours, what level of physical activity could be reached and if the children’s physical functioning improved. Methods: Thirteen children, aged 7–17 years...... compared to their healthy peers. Active video gaming (AVG), supported by Internet coaching, is a feasible home-based intervention in children treated for brain tumours, promoting enjoyable, regular physical exercise of moderate intensity. In this pilot study, AVG with Nintendo Wii improved Body...

  18. Rapid and Quantitative Assay of Amyloid-Seeding Activity in Human Brains Affected with Prion Diseases.

    Directory of Open Access Journals (Sweden)

    Hanae Takatsuki

    Full Text Available The infectious agents of the transmissible spongiform encephalopathies are composed of amyloidogenic prion protein, PrPSc. Real-time quaking-induced conversion can amplify very small amounts of PrPSc seeds in tissues/body fluids of patients or animals. Using this in vitro PrP-amyloid amplification assay, we quantitated the seeding activity of affected human brains. End-point assay using serially diluted brain homogenates of sporadic Creutzfeldt-Jakob disease patients demonstrated that 50% seeding dose (SD50 is reached approximately 10(10/g brain (values varies 10(8.79-10.63/g. A genetic case (GSS-P102L yielded a similar level of seeding activity in an autopsy brain sample. The range of PrPSc concentrations in the samples, determined by dot-blot assay, was 0.6-5.4 μg/g brain; therefore, we estimated that 1 SD50 unit was equivalent to 0.06-0.27 fg of PrPSc. The SD50 values of the affected brains dropped more than three orders of magnitude after autoclaving at 121°C. This new method for quantitation of human prion activity provides a new way to reduce the risk of iatrogenic prion transmission.

  19. Metabolic learning and memory formation by the brain influence systemic metabolic homeostasis.

    Science.gov (United States)

    Zhang, Yumin; Liu, Gang; Yan, Jingqi; Zhang, Yalin; Li, Bo; Cai, Dongsheng

    2015-04-07

    Metabolic homeostasis is regulated by the brain, but whether this regulation involves learning and memory of metabolic information remains unexplored. Here we use a calorie-based, taste-independent learning/memory paradigm to show that Drosophila form metabolic memories that help in balancing food choice with caloric intake; however, this metabolic learning or memory is lost under chronic high-calorie feeding. We show that loss of individual learning/memory-regulating genes causes a metabolic learning defect, leading to elevated trehalose and lipid levels. Importantly, this function of metabolic learning requires not only the mushroom body but also the hypothalamus-like pars intercerebralis, while NF-κB activation in the pars intercerebralis mimics chronic overnutrition in that it causes metabolic learning impairment and disorders. Finally, we evaluate this concept of metabolic learning/memory in mice, suggesting that the hypothalamus is involved in a form of nutritional learning and memory, which is critical for determining resistance or susceptibility to obesity. In conclusion, our data indicate that the brain, and potentially the hypothalamus, direct metabolic learning and the formation of memories, which contribute to the control of systemic metabolic homeostasis.

  20. Metabolic learning and memory formation by the brain influence systemic metabolic homeostasis

    Science.gov (United States)

    Zhang, Yumin; Liu, Gang; Yan, Jingqi; Zhang, Yalin; Li, Bo; Cai, Dongsheng

    2015-01-01

    Metabolic homeostasis is regulated by the brain, whether this regulation involves learning and memory of metabolic information remains unexplored. Here we use a calorie-based, taste-independent learning/memory paradigm to show that Drosophila form metabolic memories that help balancing food choice with caloric intake; however, this metabolic learning or memory is lost under chronic high-calorie feeding. We show that loss of individual learning/memory-regulating genes causes a metabolic learning defect, leading to elevated trehalose and lipids levels. Importantly, this function of metabolic learning requires not only the mushroom body but the hypothalamus-like pars intercerebralis, while NF-κB activation in the pars intercerebralis mimics chronic overnutrition in that it causes metabolic learning impairment and disorders. Finally, we evaluate this concept of metabolic learning/memory in mice, suggesting the hypothalamus is involved in a form of nutritional learning and memory, which is critical for determining resistance or susceptibility to obesity. In conclusion, our data indicate the brain, and potentially the hypothalamus, direct metabolic learning and the formation of memories, which contribute to the control of systemic metabolic homeostasis. PMID:25848677

  1. Environmental influences on food choice, physical activity and energy balance.

    Science.gov (United States)

    Popkin, Barry M; Duffey, Kiyah; Gordon-Larsen, Penny

    2005-12-15

    In this paper, the environment is defined as the macro- and community-level factors, including physical, legal and policy factors, that influence household and individual decisions. Thus, environment is conceived as the external context in which household and individual decisions are made. This paper reviews the literature on the ways the environment affects diet, physical activity, and obesity. Other key environmental factors discussed include economic, legal, and policy factors. Behind the major changes in diet and physical activity in the US and globally lie large shifts in food production, processing, and distribution systems as well as food shopping and eating options, resulting in the increase in availability of energy-dense foods. Similarly, the ways we move at home, work, leisure, and travel have shifted markedly, resulting in substantial reductions in energy expenditure. Many small area studies have linked environmental shifts with diet and activity changes. This paper begins with a review of environmental influences on diet and physical activity, and includes the discussion of two case studies on environmental influences on physical activity in a nationally representative sample of US adolescents. The case studies illustrate the important role of physical activity resources and the inequitable distribution of such activity-related facilities and resources, with high minority, low educated populations at strong disadvantage. Further, the research shows a significant association of such facilities with individual-level health behavior. The inequity in environmental supports for physical activity may underlie health disparities in the US population.

  2. High-throughput mapping of brain-wide activity in awake and drug-responsive vertebrates.

    Science.gov (United States)

    Lin, Xudong; Wang, Shiqi; Yu, Xudong; Liu, Zhuguo; Wang, Fei; Li, Wai Tsun; Cheng, Shuk Han; Dai, Qiuyun; Shi, Peng

    2015-02-07

    The reconstruction of neural activity across complete neural circuits, or brain activity mapping, has great potential in both fundamental and translational neuroscience research. Larval zebrafish, a vertebrate model, has recently been demonstrated to be amenable to whole brain activity mapping in behaving animals. Here we demonstrate a microfluidic array system ("Fish-Trap") that enables high-throughput mapping of brain-wide activity in awake larval zebrafish. Unlike the commonly practiced larva-processing methods using a rigid gel or a capillary tube, which are laborious and time-consuming, the hydrodynamic design of our microfluidic chip allows automatic, gel-free, and anesthetic-free processing of tens of larvae for microscopic imaging with single-cell resolution. Notably, this system provides the capability to directly couple pharmaceutical stimuli with real-time recording of neural activity in a large number of animals, and the local and global effects of pharmacoactive drugs on the nervous system can be directly visualized and evaluated by analyzing drug-induced functional perturbation within or across different brain regions. Using this technology, we tested a set of neurotoxin peptides and obtained new insights into how to exploit neurotoxin derivatives as therapeutic agents. The novel and versatile "Fish-Trap" technology can be readily unitized to study other stimulus (optical, acoustic, or physical) associated functional brain circuits using similar experimental strategies.

  3. Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data

    Directory of Open Access Journals (Sweden)

    Rodolfo R Llinas

    2015-10-01

    Full Text Available A new method for the analysis and localization of brain activity has been developed, based on multichannel magnetic field recordings, over minutes, superimposed on the MRI of the individual. Here, a high resolution Fourier Transform is obtained over the entire recording period, leading to a detailed multi-frequency spectrum. Further analysis implements a total decomposition of the frequency components into functionally invariant entities, each having an invariant field pattern localizable in recording space. The method, addressed as functional tomography, makes it possible to find the distribution of magnetic field sources in space. Here, the method is applied to the analysis of simulated data, to oscillating signals activating a physical current dipoles phantom, and to recordings of spontaneous brain activity in ten healthy adults. In the analysis of simulated data, 61 dipoles are localized with 0.7 mm precision. Concerning the physical phantom the method is able to localize three simultaneously activated current dipoles with 1 mm precision. Spatial resolution 3 mm was attained when localizing spontaneous alpha rhythm activity in ten healthy adults, where the alpha peak was specified for each subject individually. Co-registration of the functional tomograms with each subject’s head MRI localized alpha range activity to the occipital and/or posterior parietal brain region. This is the first application of this new functional tomography to human brain activity. The method successfully provides an overall vi