WorldWideScience

Sample records for inflammation alters activity

  1. Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity.

    Directory of Open Access Journals (Sweden)

    Manikandan Subramanian

    Full Text Available Obesity-induced inflammation in visceral adipose tissue (VAT is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis.

  2. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice.

    Science.gov (United States)

    Bercik, Premysl; Verdu, Elena F; Foster, Jane A; Macri, Joseph; Potter, Murray; Huang, Xiaxing; Malinowski, Paul; Jackson, Wendy; Blennerhassett, Patricia; Neufeld, Karen A; Lu, Jun; Khan, Waliul I; Corthesy-Theulaz, Irene; Cherbut, Christine; Bergonzelli, Gabriela E; Collins, Stephen M

    2010-12-01

    Clinical and preclinical studies have associated gastrointestinal inflammation and infection with altered behavior. We investigated whether chronic gut inflammation alters behavior and brain biochemistry and examined underlying mechanisms. AKR mice were infected with the noninvasive parasite Trichuris muris and given etanercept, budesonide, or specific probiotics. Subdiaphragmatic vagotomy was performed in a subgroup of mice before infection. Gastrointestinal inflammation was assessed by histology and quantification of myeloperoxidase activity. Serum proteins were measured by proteomic analysis, circulating cytokines were measured by fluorescence activated cell sorting array, and serum tryptophan and kynurenine were measured by liquid chromatography. Behavior was assessed using light/dark preference and step-down tests. In situ hybridization was used to assess brain-derived neurotrophic factor (BDNF) expression in the brain. T muris caused mild to moderate colonic inflammation and anxiety-like behavior that was associated with decreased hippocampal BDNF messenger RNA (mRNA). Circulating tumor necrosis factor-α and interferon-γ, as well as the kynurenine and kynurenine/tryptophan ratio, were increased. Proteomic analysis showed altered levels of several proteins related to inflammation and neural function. Administration of etanercept, and to a lesser degree of budesonide, normalized behavior, reduced cytokine and kynurenine levels, but did not influence BDNF expression. The probiotic Bifidobacterium longum normalized behavior and BDNF mRNA but did not affect cytokine or kynurenine levels. Anxiety-like behavior was present in infected mice after vagotomy. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry, which can be normalized by inflammation-dependent and -independent mechanisms, neither of which requires the integrity of the vagus nerve. Copyright © 2010 AGA Institute. Published by Elsevier Inc

  3. Probiotics Improve Inflammation-Associated Sickness Behavior by Altering Communication between the Peripheral Immune System and the Brain.

    Science.gov (United States)

    D'Mello, Charlotte; Ronaghan, Natalie; Zaheer, Raza; Dicay, Michael; Le, Tai; MacNaughton, Wallace K; Surrette, Michael G; Swain, Mark G

    2015-07-29

    Patients with systemic inflammatory diseases (e.g., rheumatoid arthritis, inflammatory bowel disease, chronic liver disease) commonly develop debilitating symptoms (i.e., sickness behaviors) that arise from changes in brain function. The microbiota-gut-brain axis alters brain function and probiotic ingestion can influence behavior. However, how probiotics do this remains unclear. We have previously described a novel periphery-to-brain communication pathway in the setting of peripheral organ inflammation whereby monocytes are recruited to the brain in response to systemic TNF-α signaling, leading to microglial activation and subsequently driving sickness behavior development. Therefore, we investigated whether probiotic ingestion (i.e., probiotic mixture VSL#3) alters this periphery-to-brain communication pathway, thereby reducing subsequent sickness behavior development. Using a well characterized mouse model of liver inflammation, we now show that probiotic (VSL#3) treatment attenuates sickness behavior development in mice with liver inflammation without affecting disease severity, gut microbiota composition, or gut permeability. Attenuation of sickness behavior development was associated with reductions in microglial activation and cerebral monocyte infiltration. These events were paralleled by changes in markers of systemic immune activation, including decreased circulating TNF-α levels. Our observations highlight a novel pathway through which probiotics mediate cerebral changes and alter behavior. These findings allow for the potential development of novel therapeutic interventions targeted at the gut microbiome to treat inflammation-associated sickness behaviors in patients with systemic inflammatory diseases. This research shows that probiotics, when eaten, can improve the abnormal behaviors (including social withdrawal and immobility) that are commonly associated with inflammation. Probiotics are able to cause this effect within the body by changing how

  4. Periodontitis-activated monocytes/macrophages cause aortic inflammation

    Science.gov (United States)

    Miyajima, Shin-ichi; Naruse, Keiko; Kobayashi, Yasuko; Nakamura, Nobuhisa; Nishikawa, Toru; Adachi, Kei; Suzuki, Yuki; Kikuchi, Takeshi; Mitani, Akio; Mizutani, Makoto; Ohno, Norikazu; Noguchi, Toshihide; Matsubara, Tatsuaki

    2014-01-01

    A relationship between periodontal disease and atherosclerosis has been suggested by epidemiological studies. Ligature-induced experimental periodontitis is an adequate model for clinical periodontitis, which starts from plaque accumulation, followed by inflammation in the periodontal tissue. Here we have demonstrated using a ligature-induced periodontitis model that periodontitis activates monocytes/macrophages, which subsequently circulate in the blood and adhere to vascular endothelial cells without altering the serum TNF-α concentration. Adherent monocytes/macrophages induced NF-κB activation and VCAM-1 expression in the endothelium and increased the expression of the TNF-α signaling cascade in the aorta. Peripheral blood-derived mononuclear cells from rats with experimental periodontitis showed enhanced adhesion and increased NF-κB/VCAM-1 in cultured vascular endothelial cells. Our results suggest that periodontitis triggers the initial pathogenesis of atherosclerosis, inflammation of the vasculature, through activating monocytes/macrophages. PMID:24893991

  5. Acquisition of Genetic Aberrations by Activation-Induced Cytidine Deaminase (AID) during Inflammation-Associated Carcinogenesis

    International Nuclear Information System (INIS)

    Takai, Atsushi; Marusawa, Hiroyuki; Chiba, Tsutomu

    2011-01-01

    Genetic abnormalities such as nucleotide alterations and chromosomal disorders that accumulate in various tumor-related genes have an important role in cancer development. The precise mechanism of the acquisition of genetic aberrations, however, remains unclear. Activation-induced cytidine deaminase (AID), a nucleotide editing enzyme, is essential for the diversification of antibody production. AID is expressed only in activated B lymphocytes under physiologic conditions and induces somatic hypermutation and class switch recombination in immunoglobulin genes. Inflammation leads to aberrant AID expression in various gastrointestinal organs and increased AID expression contributes to cancer development by inducing genetic alterations in epithelial cells. Studies of how AID induces genetic disorders are expected to elucidate the mechanism of inflammation-associated carcinogenesis

  6. Age-related ventricular-vascular coupling during acute inflammation in humans: Effect of physical activity.

    Science.gov (United States)

    Lane, Abbi D; Kappus, Rebecca M; Bunsawat, Kanokwan; Ranadive, Sushant M; Yan, Huimin; Phillips, Shane; Baynard, Tracy; Woods, Jeffrey A; Motl, Robert; Fernhall, Bo

    2015-07-01

    Aging is commonly accompanied by increased arterial and ventricular stiffness (determined by arterial elastance (Ea) and ventricular elastance (Elv)), augmented ventricular-vascular coupling ratios (Ea/Elv) and systemic inflammation. Acute inflammation may impact ventricular-vascular coupling and predispose older adults to cardiovascular events. However, physically active older adults have more compliant large arteries and left ventricles and lower inflammation than sedentary older adults. We hypothesized that acute inflammation would alter Ea, Elv, and Ea/Elv more in older versus younger adults but that higher levels of physical activity would attenuate inflammation-induced changes. End-systolic and central blood pressures were obtained using applanation tonometry before and at 24 and 48 h post-influenza vaccination in 24 older and 38 younger adults. Ultrasonography was used to measure ventricular volumes and other indices of cardiac performance. Physical activity was measured with accelerometry. Ea and Ea/Elv were maintained (p > 0.05), but Elv was reduced (p  0.05) except in the most active group of seniors (p < 0.05). Aging did not affect the elastance responses but did affect central blood pressure and other ventricular systolic responses to acute inflammation. Aging, not physical activity, appears to modulate cardiovascular responses to acute inflammation, except in the most active older adults. © The European Society of Cardiology 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Microbiome, inflammation, epigenetic alterations, and mental diseases.

    Science.gov (United States)

    Alam, Reza; Abdolmaleky, Hamid M; Zhou, Jin-Rong

    2017-09-01

    Major mental diseases such as autism, bipolar disorder, schizophrenia, and major depressive disorder are debilitating illnesses with complex etiologies. Recent findings show that the onset and development of these illnesses cannot be well described by the one-gene; one-disease approach. Instead, their clinical presentation is thought to result from the regulative interplay of a large number of genes. Even though the involvement of many genes are likely, up regulating and activation or down regulation and silencing of these genes by the environmental factors play a crucial role in contributing to their pathogenesis. Much of this interplay may be moderated by epigenetic changes. Similar to genetic mutations, epigenetic modifications such as DNA methylation, histone modifications, and RNA interference can influence gene expression and therefore may cause behavioral and neuronal changes observed in mental disorders. Environmental factors such as diet, gut microbiota, and infections have significant role in these epigenetic modifications. Studies show that bioactive nutrients and gut microbiota can alter either DNA methylation and histone signatures through a variety of mechanisms. Indeed, microbes within the human gut may play a significant role in the regulation of various elements of "gut-brain axis," via their influence on inflammatory cytokines and production of antimicrobial peptides that affect the epigenome through their involvement in generating short chain fatty acids, vitamin synthesis, and nutrient absorption. In addition, they may participate in-gut production of many common neurotransmitters. In this review we will consider the potential interactions of diet, gastrointestinal microbiome, inflammation, and epigenetic alterations in psychiatric disorders. © 2017 Wiley Periodicals, Inc.

  8. Mandatory role of proteinase-activated receptor 1 in experimental bladder inflammation

    Directory of Open Access Journals (Sweden)

    Davis Carole A

    2007-03-01

    Full Text Available Abstract Background In general, inflammation plays a role in most bladder pathologies and represents a defense reaction to injury that often times is two edged. In particular, bladder neurogenic inflammation involves the participation of mast cells and sensory nerves. Increased mast cell numbers and tryptase release represent one of the prevalent etiologic theories for interstitial cystitis and other urinary bladder inflammatory conditions. The activity of mast cell-derived tryptase as well as thrombin is significantly increased during inflammation. Those enzymes activate specific G-protein coupled proteinase-activated receptors (PARs. Four PARs have been cloned so far, and not only are all four receptors highly expressed in different cell types of the mouse urinary bladder, but their expression is altered during experimental bladder inflammation. We hypothesize that PARs may link mast cell-derived proteases to bladder inflammation and, therefore, play a fundamental role in the pathogenesis of cystitis. Results Here, we demonstrate that in addition to the mouse urinary bladder, all four PA receptors are also expressed in the J82 human urothelial cell line. Intravesical administration of PAR-activating peptides in mice leads to an inflammatory reaction characterized by edema and granulocyte infiltration. Moreover, the inflammatory response to intravesical instillation of known pro-inflammatory stimuli such as E. coli lipopolysaccharide (LPS, substance P, and antigen was strongly attenuated by PAR1-, and to a lesser extent, by PAR2-deficiency. Conclusion Our results reveal an overriding participation of PAR1 in bladder inflammation, provide a working model for the involvement of downstream signaling, and evoke testable hypotheses regarding the role of PARs in bladder inflammation. It remains to be determined whether or not mechanisms targeting PAR1 gene silencing or PAR1 blockade will ameliorate the clinical manifestations of cystitis.

  9. Altered mucosal DNA methylation in parallel with highly active Helicobacter pylori-related gastritis.

    Science.gov (United States)

    Yoshida, Takeichi; Kato, Jun; Maekita, Takao; Yamashita, Satoshi; Enomoto, Shotaro; Ando, Takayuki; Niwa, Tohru; Deguchi, Hisanobu; Ueda, Kazuki; Inoue, Izumi; Iguchi, Mikitaka; Tamai, Hideyuki; Ushijima, Toshikazu; Ichinose, Masao

    2013-10-01

    Chronic inflammation triggered by Helicobacter pylori causes altered DNA methylation in stomach mucosae, which is deeply involved in gastric carcinogenesis. This study aimed to elucidate the correlation between altered mucosal DNA methylation levels and activity of H. pylori-related gastritis, because inflammatory activity shows particular correlations with the development of diffuse-type cancer. Methylation levels in stomach mucosae of 78 healthy volunteers were determined by real-time methylation-specific PCR or bisulfite pyrosequencing. Examined loci were the promoter CpG islands of six genes (FLNc, HAND1, THBD, p41ARC, HRASLS, and LOX) and the CpG sites of non-coding repetitive elements (Alu and Satα) that are reportedly altered by H. pylori infection. Activity of H. pylori-related gastritis was evaluated using two serum markers: H. pylori antibody titer and pepsinogen II. Methylation levels of the six CpG islands were consistently increased, and those of the two repetitive elements were consistently decreased in a stepwise manner with the activity of gastric inflammation as represented by serum marker levels. Each serum marker level was well correlated with the overall DNA methylation status of stomach mucosa, and these two serologic markers were additive in the detection of the mucosa with severely altered DNA methylation. Alteration in mucosal DNA methylation level was closely correlated with activity of H. pylori-related gastritis as evaluated by serum markers. The observed correlation between altered DNA methylation levels and activity of H. pylori-related gastritis appears to be one of the relevant molecular mechanisms underlying the development of diffuse-type cancer.

  10. Role of Smooth Muscle in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Stephen M Collins

    1996-01-01

    Full Text Available The notion that smooth muscle function is altered in inflammation is prompted by clinical observations of altered motility in patients with inflammatory bowel disease (IBD. While altered motility may reflect inflammation-induced changes in intrinsic or extrinsic nerves to the gut, changes in gut hormone release and changes in muscle function, recent studies have provided in vitro evidence of altered muscle contractility in muscle resected from patients with ulcerative colitis or Crohn’s disease. In addition, the observation that smooth muscle cells are more numerous and prominent in the strictured bowel of IBD patients compared with controls suggests that inflammation may alter the growth of intestinal smooth muscle. Thus, inflammation is associated with changes in smooth muscle growth and contractility that, in turn, contribute to important symptoms of IBD including diarrhea (from altered motility and pain (via either altered motility or stricture formation. The involvement of smooth muscle in this context may be as an innocent bystander, where cells and products of the inflammatory process induce alterations in muscle contractility and growth. However, it is likely that intestinal muscle cells play a more active role in the inflammatory process via the elaboration of mediators and trophic factors, including cytokines, and via the production of collagen. The concept of muscle cells as active participants in the intestinal inflammatory process is a new concept that is under intense study. This report summarizes current knowledge as it relates to these two aspects of altered muscle function (growth and contractility in the inflamed intestine, and will focus on mechanisms underlying these changes, based on data obtained from animal models of intestinal inflammation.

  11. Odor Signals of Immune Activation and CNS Inflammation

    Science.gov (United States)

    2014-12-01

    inflammation results in detectable alteration of body odor and that traumatic brain injury (TBI) might similarly produce volatile metabolites specific to...Because both LPS and TBI elicit inflammatory processes and LPS-induced inflammation induces body odor changes, we hypothesized that (1) TBI would...induce a distinct change in body odor and (2) this change would resemble the change induced by LPS. Mice receiving surgery and lateral fluid percussion

  12. Histologic and biochemical alterations predict pulmonary mechanical dysfunction in aging mice with chronic lung inflammation.

    Directory of Open Access Journals (Sweden)

    Christopher B Massa

    2017-08-01

    Full Text Available Both aging and chronic inflammation produce complex structural and biochemical alterations to the lung known to impact work of breathing. Mice deficient in surfactant protein D (Sftpd develop progressive age-related lung pathology characterized by tissue destruction/remodeling, accumulation of foamy macrophages and alteration in surfactant composition. This study proposes to relate changes in tissue structure seen in normal aging and in chronic inflammation to altered lung mechanics using a computational model. Alterations in lung function in aging and Sftpd -/- mice have been inferred from fitting simple mechanical models to respiratory impedance data (Zrs, however interpretation has been confounded by the simultaneous presence of multiple coexisting pathophysiologic processes. In contrast to the inverse modeling approach, this study uses simulation from experimental measurements to recapitulate how aging and inflammation alter Zrs. Histologic and mechanical measurements were made in C57BL6/J mice and congenic Sftpd-/- mice at 8, 27 and 80 weeks of age (n = 8/group. An anatomic computational model based on published airway morphometry was developed and Zrs was simulated between 0.5 and 20 Hz. End expiratory pressure dependent changes in airway caliber and recruitment were estimated from mechanical measurements. Tissue elements were simulated using the constant phase model of viscoelasticity. Baseline elastance distribution was estimated in 8-week-old wild type mice, and stochastically varied for each condition based on experimentally measured alteration in elastic fiber composition, alveolar geometry and surfactant composition. Weighing reduction in model error against increasing model complexity allowed for identification of essential features underlying mechanical pathology and their contribution to Zrs. Using a maximum likelihood approach, alteration in lung recruitment and diminished elastic fiber density were shown predictive of mechanical

  13. Histologic and biochemical alterations predict pulmonary mechanical dysfunction in aging mice with chronic lung inflammation.

    Science.gov (United States)

    Massa, Christopher B; Groves, Angela M; Jaggernauth, Smita U; Laskin, Debra L; Gow, Andrew J

    2017-08-01

    Both aging and chronic inflammation produce complex structural and biochemical alterations to the lung known to impact work of breathing. Mice deficient in surfactant protein D (Sftpd) develop progressive age-related lung pathology characterized by tissue destruction/remodeling, accumulation of foamy macrophages and alteration in surfactant composition. This study proposes to relate changes in tissue structure seen in normal aging and in chronic inflammation to altered lung mechanics using a computational model. Alterations in lung function in aging and Sftpd -/- mice have been inferred from fitting simple mechanical models to respiratory impedance data (Zrs), however interpretation has been confounded by the simultaneous presence of multiple coexisting pathophysiologic processes. In contrast to the inverse modeling approach, this study uses simulation from experimental measurements to recapitulate how aging and inflammation alter Zrs. Histologic and mechanical measurements were made in C57BL6/J mice and congenic Sftpd-/- mice at 8, 27 and 80 weeks of age (n = 8/group). An anatomic computational model based on published airway morphometry was developed and Zrs was simulated between 0.5 and 20 Hz. End expiratory pressure dependent changes in airway caliber and recruitment were estimated from mechanical measurements. Tissue elements were simulated using the constant phase model of viscoelasticity. Baseline elastance distribution was estimated in 8-week-old wild type mice, and stochastically varied for each condition based on experimentally measured alteration in elastic fiber composition, alveolar geometry and surfactant composition. Weighing reduction in model error against increasing model complexity allowed for identification of essential features underlying mechanical pathology and their contribution to Zrs. Using a maximum likelihood approach, alteration in lung recruitment and diminished elastic fiber density were shown predictive of mechanical alteration at

  14. Acute chlorine gas exposure produces transient inflammation and a progressive alteration in surfactant composition with accompanying mechanical dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Christopher B.; Scott, Pamela; Abramova, Elena; Gardner, Carol; Laskin, Debra L.; Gow, Andrew J., E-mail: Gow@rci.rutgers.edu

    2014-07-01

    Acute Cl{sub 2} exposure following industrial accidents or military/terrorist activity causes pulmonary injury and severe acute respiratory distress. Prior studies suggest that antioxidant depletion is important in producing dysfunction, however a pathophysiologic mechanism has not been elucidated. We propose that acute Cl{sub 2} inhalation leads to oxidative modification of lung lining fluid, producing surfactant inactivation, inflammation and mechanical respiratory dysfunction at the organ level. C57BL/6J mice underwent whole-body exposure to an effective 60 ppm-hour Cl{sub 2} dose, and were euthanized 3, 24 and 48 h later. Whereas pulmonary architecture and endothelial barrier function were preserved, transient neutrophilia, peaking at 24 h, was noted. Increased expression of ARG1, CCL2, RETLNA, IL-1b, and PTGS2 genes was observed in bronchoalveolar lavage (BAL) cells with peak change in all genes at 24 h. Cl{sub 2} exposure had no effect on NOS2 mRNA or iNOS protein expression, nor on BAL NO{sub 3}{sup −} or NO{sub 2}{sup −}. Expression of the alternative macrophage activation markers, Relm-α and mannose receptor was increased in alveolar macrophages and pulmonary epithelium. Capillary surfactometry demonstrated impaired surfactant function, and altered BAL phospholipid and surfactant protein content following exposure. Organ level respiratory function was assessed by forced oscillation technique at 5 end expiratory pressures. Cl{sub 2} exposure had no significant effect on either airway or tissue resistance. Pulmonary elastance was elevated with time following exposure and demonstrated PEEP refractory derecruitment at 48 h, despite waning inflammation. These data support a role for surfactant inactivation as a physiologic mechanism underlying respiratory dysfunction following Cl{sub 2} inhalation. - Highlights: • Effect of 60 ppm*hr Cl{sub 2} gas on lung inflammation and mechanical function examined. • Pulmonary inflammation is transient and minor.

  15. Lingonberries alter the gut microbiota and prevent low-grade inflammation in high-fat diet fed mice

    Directory of Open Access Journals (Sweden)

    Lovisa Heyman-Lindén

    2016-04-01

    Full Text Available Background: The gut microbiota plays an important role in the development of obesity and obesity-associated impairments such as low-grade inflammation. Lingonberries have been shown to prevent diet-induced obesity and low-grade inflammation. However, it is not known whether the effect of lingonberry supplementation is related to modifications of the gut microbiota. The aim of the present study was to describe whether consumption of different batches of lingonberries alters the composition of the gut microbiota, which could be relevant for the protective effect against high fat (HF-induced metabolic alterations. Methods: Three groups of C57BL/6J mice were fed HF diet with or without a supplement of 20% lingonberries from two different batches (Lingon1 and Lingon2 during 11 weeks. The composition and functionality of the cecal microbiota were assessed by 16S rRNA sequencing and PICRUSt. In addition, parameters related to obesity, insulin sensitivity, hepatic steatosis, inflammation and gut barrier function were examined. Results: HF-induced obesity was only prevented by the Lingon1 diet, whereas both batches of lingonberries reduced plasma levels of markers of inflammation and endotoxemia (SAA and LBP as well as modified the composition and functionality of the gut microbiota, compared to the HF control group. The relative abundance of Akkermansia and Faecalibacterium, genera associated with healthy gut mucosa and anti-inflammation, was found to increase in response to lingonberry intake. Conclusions: Our results show that supplementation with lingonberries to an HF diet prevents low-grade inflammation and is associated with significant changes of the microbiota composition. Notably, the anti-inflammatory properties of lingonberries seem to be independent of effects on body weight gain.

  16. Cognitive and emotional alterations are related to hippocampal inflammation in a mouse model of metabolic syndrome.

    Science.gov (United States)

    Dinel, Anne-Laure; André, Caroline; Aubert, Agnès; Ferreira, Guillaume; Layé, Sophie; Castanon, Nathalie

    2011-01-01

    Converging clinical data suggest that peripheral inflammation is likely involved in the pathogenesis of the neuropsychiatric symptoms associated with metabolic syndrome (MetS). However, the question arises as to whether the increased prevalence of behavioral alterations in MetS is also associated with central inflammation, i.e. cytokine activation, in brain areas particularly involved in controlling behavior. To answer this question, we measured in a mouse model of MetS, namely the diabetic and obese db/db mice, and in their healthy db/+ littermates emotional behaviors and memory performances, as well as plasma levels and brain expression (hippocampus; hypothalamus) of inflammatory cytokines. Our results shows that db/db mice displayed increased anxiety-like behaviors in the open-field and the elevated plus-maze (i.e. reduced percent of time spent in anxiogenic areas of each device), but not depressive-like behaviors as assessed by immobility time in the forced swim and tail suspension tests. Moreover, db/db mice displayed impaired spatial recognition memory (hippocampus-dependent task), but unaltered object recognition memory (hippocampus-independent task). In agreement with the well-established role of the hippocampus in anxiety-like behavior and spatial memory, behavioral alterations of db/db mice were associated with increased inflammatory cytokines (interleukin-1β, tumor necrosis factor-α and interleukin-6) and reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus but not the hypothalamus. These results strongly point to interactions between cytokines and central processes involving the hippocampus as important contributing factor to the behavioral alterations of db/db mice. These findings may prove valuable for introducing novel approaches to treat neuropsychiatric complications associated with MetS.

  17. Cognitive and emotional alterations are related to hippocampal inflammation in a mouse model of metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Anne-Laure Dinel

    Full Text Available Converging clinical data suggest that peripheral inflammation is likely involved in the pathogenesis of the neuropsychiatric symptoms associated with metabolic syndrome (MetS. However, the question arises as to whether the increased prevalence of behavioral alterations in MetS is also associated with central inflammation, i.e. cytokine activation, in brain areas particularly involved in controlling behavior. To answer this question, we measured in a mouse model of MetS, namely the diabetic and obese db/db mice, and in their healthy db/+ littermates emotional behaviors and memory performances, as well as plasma levels and brain expression (hippocampus; hypothalamus of inflammatory cytokines. Our results shows that db/db mice displayed increased anxiety-like behaviors in the open-field and the elevated plus-maze (i.e. reduced percent of time spent in anxiogenic areas of each device, but not depressive-like behaviors as assessed by immobility time in the forced swim and tail suspension tests. Moreover, db/db mice displayed impaired spatial recognition memory (hippocampus-dependent task, but unaltered object recognition memory (hippocampus-independent task. In agreement with the well-established role of the hippocampus in anxiety-like behavior and spatial memory, behavioral alterations of db/db mice were associated with increased inflammatory cytokines (interleukin-1β, tumor necrosis factor-α and interleukin-6 and reduced expression of brain-derived neurotrophic factor (BDNF in the hippocampus but not the hypothalamus. These results strongly point to interactions between cytokines and central processes involving the hippocampus as important contributing factor to the behavioral alterations of db/db mice. These findings may prove valuable for introducing novel approaches to treat neuropsychiatric complications associated with MetS.

  18. Inflammation in adult women with a history of child maltreatment: The involvement of mitochondrial alterations and oxidative stress.

    Science.gov (United States)

    Boeck, Christina; Koenig, Alexandra Maria; Schury, Katharina; Geiger, Martha Leonie; Karabatsiakis, Alexander; Wilker, Sarah; Waller, Christiane; Gündel, Harald; Fegert, Jörg Michael; Calzia, Enrico; Kolassa, Iris-Tatjana

    2016-09-01

    The experience of maltreatment during childhood is associated with chronic low-grade inflammation in adulthood. However, the molecular mechanisms underlying this pro-inflammatory phenotype remain unclear. Mitochondria were recently found to principally coordinate inflammatory processes via both inflammasome activation and inflammasome-independent pathways. To this end, we hypothesized that alterations in immune cell mitochondrial functioning and oxidative stress might be at the interface between the association of maltreatment experiences during childhood and inflammation. We analyzed pro-inflammatory biomarkers (levels of C-reactive protein, cytokine secretion by peripheral blood mononuclear cells (PBMC) in vitro, PBMC composition, lysophosphatidylcholine levels), serum oxidative stress levels (arginine:citrulline ratio, l-carnitine and acetylcarnitine levels) and mitochondrial functioning (respiratory activity and density of mitochondria in PBMC) in peripheral blood samples collected from 30 women (aged 22-44years) with varying degrees of maltreatment experiences in form of abuse and neglect during childhood. Exposure to maltreatment during childhood was associated with an increased ROS production, higher levels of oxidative stress and an increased mitochondrial activity in a dose-response relationship. Moreover, the increase in mitochondrial activity and ROS production were positively associated with the release of pro-inflammatory cytokines by PBMC. Decreased serum levels of lysophosphatidylcholines suggested higher inflammasome activation with increasing severity of child maltreatment experiences. Together these findings offer preliminary evidence for the association of alterations in immune cell mitochondrial functioning, oxidative stress and the pro-inflammatory phenotype observed in individuals with a history of maltreatment during childhood. The results emphasize that the early prevention of child abuse and neglect warrants more attention, as the

  19. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2.

    Directory of Open Access Journals (Sweden)

    Deepti Chugh

    Full Text Available Synapsins are pre-synaptic vesicle-associated proteins linked to the pathogenesis of epilepsy through genetic association studies in humans. Deletion of synapsins causes an excitatory/inhibitory imbalance, exemplified by the epileptic phenotype of synapsin knockout mice. These mice develop handling-induced tonic-clonic seizures starting at the age of about 3 months. Hence, they provide an opportunity to study epileptogenic alterations in a temporally controlled manner. Here, we evaluated brain inflammation, synaptic protein expression, and adult hippocampal neurogenesis in the epileptogenic (1 and 2 months of age and tonic-clonic (3.5-4 months phase of synapsin 2 knockout mice using immunohistochemical and biochemical assays. In the epileptogenic phase, region-specific microglial activation was evident, accompanied by an increase in the chemokine receptor CX3CR1, interleukin-6, and tumor necrosis factor-α, and a decrease in chemokine keratinocyte chemoattractant/ growth-related oncogene. Both post-synaptic density-95 and gephyrin, scaffolding proteins at excitatory and inhibitory synapses, respectively, showed a significant up-regulation primarily in the cortex. Furthermore, we observed an increase in the inhibitory adhesion molecules neuroligin-2 and neurofascin and potassium chloride co-transporter KCC2. Decreased expression of γ-aminobutyric acid receptor-δ subunit and cholecystokinin was also evident. Surprisingly, hippocampal neurogenesis was reduced in the epileptogenic phase. Taken together, we report molecular alterations in brain inflammation and excitatory/inhibitory balance that could serve as potential targets for therapeutics and diagnostic biomarkers. In addition, the regional differences in brain inflammation and synaptic protein expression indicate an epileptogenic zone from where the generalized seizures in synapsin 2 knockout mice may be initiated or spread.

  20. Eosinophilic airway inflammation in asthmatic patients is associated with an altered airway microbiome

    DEFF Research Database (Denmark)

    Sverrild, Asger; Kiilerich, Pia; Brejnrod, Asker Daniel

    2017-01-01

    BACKGROUND: Asthmatic patients have higher microbiome diversity and an altered composition, with more Proteobacteria and less Bacteroidetes compared with healthy control subjects. Studies comparing airway inflammation and the airway microbiome are sparse, especially in subjects not receiving anti......-inflammatory treatment. OBJECTIVE: We sought to describe the relationship between the airway microbiome and patterns of airway inflammation in steroid-free patients with asthma and healthy control subjects. METHODS: Bronchoalveolar lavage fluid was collected from 23 steroid-free nonsmoking patients with asthma and 10...... and AHR to mannitol but not airway neutrophilia. The overall composition of the airway microbiome of asthmatic patients with the lowest levels of eosinophils but not asthmatic patients with the highest levels of eosinophils deviated significantly from that of healthy subjects. Asthmatic patients...

  1. T-cell activation promotes tumorigenesis in inflammation-associated cancer

    Directory of Open Access Journals (Sweden)

    Lairmore Michael

    2009-12-01

    Full Text Available Abstract Chronic inflammation has long been associated with a wide range of malignancies, is now widely accepted as a risk factor for development of cancer, and has been implicated as a promoter of a variety of cancers including hematopoietic malignancies. We have described a mouse model uniquely suited to examine the link between inflammation and lymphoma in which the Tax oncogene, expressed in activated T and NK cells, perpetuates chronic inflammation that begins as microscopic intraepithelial lesions and develops into inflammatory nodules, subcutaneous tumors, and large granular lymphocytic leukemia. The use of bioluminescent imaging in these mice has expanded our ability to interrogate aspects of inflammation and tumorigenesis non-invasively. Here we demonstrate that bioluminescence induction in these mice correlated with inflammation resulting from wounding, T cell activation, and exposure to chemical agents. In experiments in which long-term effects of inflammation on disease outcome were monitored, the development of lymphoma was promoted by an inflammatory stimulus. Finally we demonstrated that activation of T-cells in T-cell receptor (TCR transgenic TAX-LUC animals dramatically exacerbated the development of subcutaneous TCR- CD16+ LGL tumors. The role of activated T-cells and acquired immunity in inflammation-associated cancers is broadly applicable to hematopoietic malignancies, and we propose these mice will be of use in dissecting mechanisms by which activated T-cells promote lymphomagenesis in vivo.

  2. Role of inflammation in cardiopulmonary health effects of PM

    International Nuclear Information System (INIS)

    Donaldson, Ken; Mills, Nicholas; MacNee, William; Robinson, Simon; Newby, David

    2005-01-01

    The relationship between increased exposure to PM and adverse cardiovascular effects is well documented in epidemiological studies. Inflammation in the lungs, caused by deposited particles, can be seen as a key process that could mediate adverse effects on the cardiovascular system. There are at least three potential pathways that could lead from pulmonary inflammation to adverse cardiovascular effects. Firstly, inflammation in the lung could lead to systemic inflammation, which is well known to be linked to sudden death from cardiovascular causes. Systemic inflammation can lead to destabilization by activation of inflammatory processes in atheromatous plaques. Secondly, inflammation can cause an imbalance in coagulation factors that favor propagation of thrombi if thrombosis is initiated. Thirdly, inflammation could affect the autonomic nervous system activity in ways that could lead to alterations in the control of heart rhythm which could culminate in fatal dysrhythmia

  3. Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation.

    Science.gov (United States)

    Irwin, Michael R; Wang, Minge; Campomayor, Capella O; Collado-Hidalgo, Alicia; Cole, Steve

    2006-09-18

    Inflammation is associated with increased risk of cardiovascular disorders, arthritis, diabetes mellitus, and mortality. The effects of sleep loss on the cellular and genomic mechanisms that contribute to inflammatory cytokine activity are not known. In 30 healthy adults, monocyte intracellular proinflammatory cytokine production was repeatedly assessed during the day across 3 baseline periods and after partial sleep deprivation (awake from 11 pm to 3 am). We analyzed the impact of sleep loss on transcription of proinflammatory cytokine genes and used DNA microarray analyses to characterize candidate transcription-control pathways that might mediate the effects of sleep loss on leukocyte gene expression. In the morning after a night of sleep loss, monocyte production of interleukin 6 and tumor necrosis factor alpha was significantly greater compared with morning levels following uninterrupted sleep. In addition, sleep loss induced a more than 3-fold increase in transcription of interleukin 6 messenger RNA and a 2-fold increase in tumor necrosis factor alpha messenger RNA. Bioinformatics analyses suggested that the inflammatory response was mediated by the nuclear factor kappaB inflammatory signaling system as well as through classic hormone and growth factor response pathways. Sleep loss induces a functional alteration of the monocyte proinflammatory cytokine response. A modest amount of sleep loss also alters molecular processes that drive cellular immune activation and induce inflammatory cytokines; mapping the dynamics of sleep loss on molecular signaling pathways has implications for understanding the role of sleep in altering immune cell physiologic characteristics. Interventions that target sleep might constitute new strategies to constrain inflammation with effects on inflammatory disease risk.

  4. Reactive Oxygen Species-Induced TXNIP Drives Fructose-Mediated Hepatic Inflammation and Lipid Accumulation Through NLRP3 Inflammasome Activation

    Science.gov (United States)

    Zhang, Xian; Zhang, Jian-Hua; Chen, Xu-Yang; Hu, Qing-Hua; Wang, Ming-Xing; Jin, Rui; Zhang, Qing-Yu; Wang, Wei; Wang, Rong; Kang, Lin-Lin; Li, Jin-Sheng; Li, Meng

    2015-01-01

    Abstract Aims: Increased fructose consumption predisposes the liver to nonalcoholic fatty liver disease (NAFLD), but the mechanisms are elusive. Thioredoxin-interacting protein (TXNIP) links oxidative stress to NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation and this signaling axis may be involved in fructose-induced NAFLD. Here, we explore the role of reactive oxygen species (ROS)-induced TXNIP overexpression in fructose-mediated hepatic NLRP3 inflammasome activation, inflammation, and lipid accumulation. Results: Rats were fed a 10% fructose diet for 8 weeks and treated with allopurinol and quercetin during the last 4 weeks. Five millimolars of fructose-exposed hepatocytes (primary rat hepatocytes, rat hepatic parenchymal cells [RHPCs], HLO2, HepG2) were co-incubated with antioxidants or caspase-1 inhibitor or subjected to TXNIP or NLRP3 siRNA interference. Fructose induced NLRP3 inflammasome activation and pro-inflammatory cytokine secretion, janus-activated kinase 2/signal transducers and activators of transcription 3-mediated inflammatory signaling, and expression alteration of lipid metabolism-related genes in cultured hepatocytes and rat livers. NLRP3 silencing and caspase-1 suppression blocked these effects in primary rat hepatocytes and RHPCs, confirming that inflammasome activation alters hepatocyte lipid metabolism. Hepatocellular ROS and TXNIP were increased in animal and cell models. TXNIP silencing blocked NLRP3 inflammasome activation, inflammation, and lipid metabolism perturbations but not ROS induction in fructose-exposed hepatocytes, whereas antioxidants addition abrogated TXNIP induction and diminished the detrimental effects in fructose-exposed hepatocytes and rat livers. Innovation and Conclusions: This study provides a novel mechanism for fructose-induced NAFLD pathogenesis by which the ROS-TXNIP pathway mediates hepatocellular NLRP3 inflammasome activation, inflammation and lipid accumulation. Antioxidant

  5. Indicators of inflammation and cellular damage in chronic asymptomatic or oligosymptomatic alcoholics: correlation with alteration of bilirubin and hepatic and pancreatic enzymes

    Directory of Open Access Journals (Sweden)

    Borini Paulo

    1999-01-01

    Full Text Available Biochemical and hematimetric indicators of inflammation and cell damage were correlated with bilirubin and hepatic and pancreatic enzymes in 30 chronic male alcoholics admitted into psychiatric hospital for detoxification and treatment of alcoholism. Aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltransferase, alkaline phosphatase, and total bilirubin were altered, respectively, in 90%, 63%, 87%, 23% and 23% of the cases. None of the indicators of inflammation (lactic dehydrogenase, altered in 16% of the cases; alpha-1 globulin, 24%; alpha-2 globulin, 88%; leucocyte counts, 28% was correlated with alterations of bilirubin or liver enzymes. Lactic dehydrogenase was poorly sensitive for detection of hepatocytic or muscular damage. Alterations of alpha-globulins seemed to have been due more to alcohol metabolism-induced increase of lipoproteins than to inflammation. Among indicators of cell damage, serum iron, increased in 40% of the cases, seemed to be related to liver damage while creatine phosphokinase, increased in 84% of the cases, related to muscle damage. Hyperamylasemia was found in 20% of the cases and significantly correlated with levels of bilirubin, alkaline phosphatase and gamma-glutamyltransferase. It was indicated that injuries of liver, pancreas, salivary glands, and muscle occurred in asymptomatic or oligosymptomatic chronic alcoholics.

  6. Activation of angiotensin-converting enzyme 2 (ACE2) attenuates allergic airway inflammation in rat asthma model

    International Nuclear Information System (INIS)

    Dhawale, Vaibhav Shrirang; Amara, Venkateswara Rao; Karpe, Pinakin Arun; Malek, Vajir; Patel, Deep; Tikoo, Kulbhushan

    2016-01-01

    Angiotensin-I converting enzyme (ACE) is positively correlated to asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS) and is highly expressed in lungs. ACE2, the counteracting enzyme of ACE, was proven to be protective in pulmonary, cardiovascular diseases. In the present study we checked the effect of ACE2 activation in animal model of asthma. Asthma was induced in male wistar rats by sensitization and challenge with ovalbumin and then treated with ACE2 activator, diminazene aceturate (DIZE) for 2 weeks. 48 h after last allergen challenge, animals were anesthetized, blood, BALF, femoral bone marrow lavage were collected for leucocyte count; trachea for measuring airway responsiveness to carbachol; lungs and heart were isolated for histological studies and western blotting. In our animal model, the characteristic features of asthma such as altered airway responsiveness to carbachol, eosinophilia and neutrophilia were observed. Western blotting revealed the increased pulmonary expression of ACE1, IL-1β, IL-4, NF-κB, BCL2, p-AKT, p-p38 and decreased expression of ACE2 and IκB. DIZE treatment prevented these alterations. Intraalveolar interstitial thickening, inflammatory cell infiltration, interstitial fibrosis, oxidative stress and right ventricular hypertrophy in asthma control animals were also reversed by DIZE treatment. Activation of ACE2 by DIZE conferred protection against asthma as evident from biochemical, functional, histological and molecular parameters. To the best of our knowledge, we report for the first time that activation of ACE2 by DIZE prevents asthma progression by altering AKT, p38, NF-κB and other inflammatory markers. - Highlights: • Diminazene aceturate (DIZE), an ACE2 activator prevents ovalbumin-induced asthma. • DIZE acted by upregulating ACE2, downregulating ACE1, MAPKs, markers of inflammation, apoptosis. • DIZE reduced airway inflammation, fibrosis, right ventricular hypertrophy and

  7. Activation of angiotensin-converting enzyme 2 (ACE2) attenuates allergic airway inflammation in rat asthma model

    Energy Technology Data Exchange (ETDEWEB)

    Dhawale, Vaibhav Shrirang; Amara, Venkateswara Rao; Karpe, Pinakin Arun; Malek, Vajir; Patel, Deep; Tikoo, Kulbhushan, E-mail: tikoo.k@gmail.com

    2016-09-01

    Angiotensin-I converting enzyme (ACE) is positively correlated to asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS) and is highly expressed in lungs. ACE2, the counteracting enzyme of ACE, was proven to be protective in pulmonary, cardiovascular diseases. In the present study we checked the effect of ACE2 activation in animal model of asthma. Asthma was induced in male wistar rats by sensitization and challenge with ovalbumin and then treated with ACE2 activator, diminazene aceturate (DIZE) for 2 weeks. 48 h after last allergen challenge, animals were anesthetized, blood, BALF, femoral bone marrow lavage were collected for leucocyte count; trachea for measuring airway responsiveness to carbachol; lungs and heart were isolated for histological studies and western blotting. In our animal model, the characteristic features of asthma such as altered airway responsiveness to carbachol, eosinophilia and neutrophilia were observed. Western blotting revealed the increased pulmonary expression of ACE1, IL-1β, IL-4, NF-κB, BCL2, p-AKT, p-p38 and decreased expression of ACE2 and IκB. DIZE treatment prevented these alterations. Intraalveolar interstitial thickening, inflammatory cell infiltration, interstitial fibrosis, oxidative stress and right ventricular hypertrophy in asthma control animals were also reversed by DIZE treatment. Activation of ACE2 by DIZE conferred protection against asthma as evident from biochemical, functional, histological and molecular parameters. To the best of our knowledge, we report for the first time that activation of ACE2 by DIZE prevents asthma progression by altering AKT, p38, NF-κB and other inflammatory markers. - Highlights: • Diminazene aceturate (DIZE), an ACE2 activator prevents ovalbumin-induced asthma. • DIZE acted by upregulating ACE2, downregulating ACE1, MAPKs, markers of inflammation, apoptosis. • DIZE reduced airway inflammation, fibrosis, right ventricular hypertrophy and

  8. Dietary Quercetin Attenuates Adipose Tissue Expansion and Inflammation and Alters Adipocyte Morphology in a Tissue-Specific Manner

    Science.gov (United States)

    Forney, Laura A.; Lenard, Natalie R.; Stewart, Laura K.

    2018-01-01

    Chronic inflammation in adipose tissue may contribute to depot-specific adipose tissue expansion, leading to obesity and insulin resistance. Dietary supplementation with quercetin or botanical extracts containing quercetin attenuates high fat diet (HFD)-induced obesity and insulin resistance and decreases inflammation. Here, we determined the effects of quercetin and red onion extract (ROE) containing quercetin on subcutaneous (inguinal, IWAT) vs. visceral (epididymal, EWAT) white adipose tissue morphology and inflammation in mice fed low fat, high fat, high fat plus 50 μg/day quercetin or high fat plus ROE containing 50 μg/day quercetin equivalents for 9 weeks. Quercetin and ROE similarly ameliorated HFD-induced increases in adipocyte size and decreases in adipocyte number in IWAT and EWAT. Furthermore, quercetin and ROE induced alterations in adipocyte morphology in IWAT. Quercetin and ROE similarly decreased HFD-induced IWAT inflammation. However, quercetin and red onion differentially affected HFD-induced EWAT inflammation, with quercetin decreasing and REO increasing inflammatory marker gene expression. Quercetin and REO also differentially regulated circulating adipokine levels. These results show that quercetin or botanical extracts containing quercetin induce white adipose tissue remodeling which may occur through inflammatory-related mechanisms. PMID:29562620

  9. Dietary Quercetin Attenuates Adipose Tissue Expansion and Inflammation and Alters Adipocyte Morphology in a Tissue-Specific Manner

    Directory of Open Access Journals (Sweden)

    Laura A. Forney

    2018-03-01

    Full Text Available Chronic inflammation in adipose tissue may contribute to depot-specific adipose tissue expansion, leading to obesity and insulin resistance. Dietary supplementation with quercetin or botanical extracts containing quercetin attenuates high fat diet (HFD-induced obesity and insulin resistance and decreases inflammation. Here, we determined the effects of quercetin and red onion extract (ROE containing quercetin on subcutaneous (inguinal, IWAT vs. visceral (epididymal, EWAT white adipose tissue morphology and inflammation in mice fed low fat, high fat, high fat plus 50 μg/day quercetin or high fat plus ROE containing 50 μg/day quercetin equivalents for 9 weeks. Quercetin and ROE similarly ameliorated HFD-induced increases in adipocyte size and decreases in adipocyte number in IWAT and EWAT. Furthermore, quercetin and ROE induced alterations in adipocyte morphology in IWAT. Quercetin and ROE similarly decreased HFD-induced IWAT inflammation. However, quercetin and red onion differentially affected HFD-induced EWAT inflammation, with quercetin decreasing and REO increasing inflammatory marker gene expression. Quercetin and REO also differentially regulated circulating adipokine levels. These results show that quercetin or botanical extracts containing quercetin induce white adipose tissue remodeling which may occur through inflammatory-related mechanisms.

  10. A biological pathway linking inflammation and depression: activation of indoleamine 2,3-dioxygenase

    Directory of Open Access Journals (Sweden)

    Christmas DM

    2011-07-01

    Full Text Available David M Christmas, JP Potokar, Simon JC DaviesAcademic Unit of Psychiatry, School of Social and Community Medicine, University of Bristol, Bristol, UK A presentation relating to this manuscript was made by Dr David Christmas at the 9th International Meeting on Clinical Pharmacology in Psychiatry (9th IMCPP in Copenhagen, Denmark in September 2010Abstract: This article highlights the evidence linking depression to increased inflammatory drive and explores putative mechanisms for the association by reviewing both preclinical and clinical literature. The enzyme indoleamine 2,3-dioxygenase is induced by proinflammatory cytokines and may form a link between immune functioning and altered neurotransmission, which results in depression. Increased indoleamine 2,3-dioxygenase activity may cause both tryptophan depletion and increased neurotoxic metabolites of the kynurenine pathway, two alterations which have been hypothesized to cause depression. The tryptophan-kynurenine pathway is comprehensively described with a focus on the evidence linking metabolite alterations to depression. The use of immune-activated groups at high risk of depression have been used to explore these hypotheses; we focus on the studies involving chronic hepatitis C patients receiving interferon-alpha, an immune activating cytokine. Findings from this work have led to novel strategies for the future development of antidepressants including inhibition of indoleamine 2,3-dioxygenase, moderating the cytokines which activate it, or addressing other targets in the kynurenine pathway.Keywords: depression, inflammation, indoleamine 2,3-dioxygenase, kynurenine, serotonin, tryptophan

  11. Inflammation in dry eye.

    Science.gov (United States)

    Stern, Michael E; Pflugfelder, Stephen C

    2004-04-01

    Dry eye is a condition of altered tear composition that results from a diseased or dysfunctional lacrimal functional unit. Evidence suggests that inflammation causes structural alterations and/or functional paralysis of the tear-secreting glands. Changes in tear composition resulting from lacrimal dysfunction, increased evaporation and/or poor clearance have pro-inflammatory effects on the ocular surface. This inflammation is responsible in part for the irritation symptoms, ocular surface epithelial disease, and altered corneal epithelial barrier function in dry eye. Anti-inflammatory therapies for dry eye target one or more of the inflammatory mediators/pathways that have been identified in dry eye.

  12. [Alteration of intestinal permeability: the missing link between gut microbiota modifications and inflammation in obesity?].

    Science.gov (United States)

    Genser, Laurent; Poitou, Christine; Brot-Laroche, Édith; Rousset, Monique; Vaillant, Jean-Christophe; Clément, Karine; Thenet, Sophie; Leturque, Armelle

    2016-05-01

    The increasing incidence of obesity and associated metabolic complications is a worldwide public health issue. The role of the gut in the pathophysiology of obesity, with an important part for microbiota, is becoming obvious. In rodent models of diet-induced obesity, the modifications of gut microbiota are associated with an alteration of the intestinal permeability increasing the passage of food or bacterial antigens, which contribute to low-grade inflammation and insulin resistance. In human obesity, intestinal permeability modification, and its role in the crosstalk between gut microbiota changes and inflammation at systemic and tissular levels, are still poorly documented. Hence, further characterization of the triggering mechanisms of such inflammatory responses in obese subjects could enable the development of personalized intervention strategies that will help to reduce the risk of obesity-associated diseases. © 2016 médecine/sciences – Inserm.

  13. Inflammation activates the interferon signaling pathways in taste bud cells.

    Science.gov (United States)

    Wang, Hong; Zhou, Minliang; Brand, Joseph; Huang, Liquan

    2007-10-03

    Patients with viral and bacterial infections or other inflammatory illnesses often experience taste dysfunctions. The agents responsible for these taste disorders are thought to be related to infection-induced inflammation, but the mechanisms are not known. As a first step in characterizing the possible role of inflammation in taste disorders, we report here evidence for the presence of interferon (IFN)-mediated signaling pathways in taste bud cells. IFN receptors, particularly the IFN-gamma receptor IFNGR1, are coexpressed with the taste cell-type markers neuronal cell adhesion molecule and alpha-gustducin, suggesting that both the taste receptor cells and synapse-forming cells in the taste bud can be stimulated by IFN. Incubation of taste bud-containing lingual epithelia with recombinant IFN-alpha and IFN-gamma triggered the IFN-mediated signaling cascades, resulting in the phosphorylation of the downstream STAT1 (signal transducer and activator of transcription protein 1) transcription factor. Intraperitoneal injection of lipopolysaccharide or polyinosinic:polycytidylic acid into mice, mimicking bacterial and viral infections, respectively, altered gene expression patterns in taste bud cells. Furthermore, the systemic administration of either IFN-alpha or IFN-gamma significantly increased the number of taste bud cells undergoing programmed cell death. These findings suggest that bacterial and viral infection-induced IFNs can act directly on taste bud cells, affecting their cellular function in taste transduction, and that IFN-induced apoptosis in taste buds may cause abnormal cell turnover and skew the representation of different taste bud cell types, leading to the development of taste disorders. To our knowledge, this is the first study providing direct evidence that inflammation can affect taste buds through cytokine signaling pathways.

  14. Indicators of inflammation and cellular damage in chronic asymptomatic or oligosymptomatic alcoholics: correlation with alteration of bilirubin and hepatic and pancreatic enzymes

    OpenAIRE

    Borini, Paulo; Guimarães, Romeu Cardoso

    1999-01-01

    Biochemical and hematimetric indicators of inflammation and cell damage were correlated with bilirubin and hepatic and pancreatic enzymes in 30 chronic male alcoholics admitted into psychiatric hospital for detoxification and treatment of alcoholism. Aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltransferase, alkaline phosphatase, and total bilirubin were altered, respectively, in 90%, 63%, 87%, 23% and 23% of the cases. None of the indicators of inflammation (lactic dehy...

  15. Creatine kinase activity in dogs with experimentally induced acute inflammation

    Directory of Open Access Journals (Sweden)

    Dimitrinka Zapryanova

    2013-01-01

    Full Text Available The main purpose of this study was to investigate the effect of acute inflammation on total creatine kinase (CK activity in dogs. In these animals, CK is an enzyme found predominantly in skeletal muscle and significantly elevated serum activity is largely associated with muscle damage. Plasma increases in dogs are associated with cell membrane leakage and will therefore be seen in any condition associated with muscular inflammation. The study was induced in 15 mongrel male dogs (n=9 in experimental group and n=6 in control group at the age of two years and body weight 12-15 kg. The inflammation was reproduced by inoculation of 2 ml turpentine oil subcutaneously in lumbar region. The plasma activity of creatine kinase was evaluated at 0, 6, 24, 48, 72 hours after inoculation and on days 7, 14 and 21 by a kit from Hospitex Diagnostics. In the experimental group, the plasma concentrations of the CK-activity were increased at the 48th hour (97.48±6.92 U/L and remained significantly higher (p<0.05 at the 72 hour (97.43±2.93 U/L compared to the control group (77.08±5.27 U/L. The results of this study suggest that the evaluation of creatine kinase in dogs with experimentally induced acute inflammation has a limited diagnostic value. It was observed that the creatine kinase activity is slightly affected by the experimentally induced acute inflammation in dogs.

  16. Neonatal systemic inflammation in rats alters retinal vessel development and simulates pathologic features of retinopathy of prematurity.

    Science.gov (United States)

    Hong, Hye Kyoung; Lee, Hyun Ju; Ko, Jung Hwa; Park, Ji Hyun; Park, Ji Yeon; Choi, Chang Won; Yoon, Chang-Hwan; Ahn, Seong Joon; Park, Kyu Hyung; Woo, Se Joon; Oh, Joo Youn

    2014-05-15

    Alteration of retinal angiogenesis during development leads to retinopathy of prematurity (ROP) in preterm infants, which is a leading cause of visual impairment in children. A number of clinical studies have reported higher rates of ROP in infants who had perinatal infections or inflammation, suggesting that exposure of the developing retina to inflammation may disturb retinal vessel development. Thus, we investigated the effects of systemic inflammation on retinal vessel development and retinal inflammation in neonatal rats. To induce systemic inflammation, we intraperitoneally injected 100 μl lipopolysaccharide (LPS, 0.25 mg/ml) or the same volume of normal saline in rat pups on postnatal days 1, 3, and 5. The retinas were extracted on postnatal days 7 and 14, and subjected to assays for retinal vessels, inflammatory cells and molecules, and apoptosis. We found that intraperitoneal injection of LPS impaired retinal vessel development by decreasing vessel extension, reducing capillary density, and inducing localized overgrowth of abnormal retinal vessels and dilated peripheral vascular ridge, all of which are characteristic findings of ROP. Also, a large number of CD11c+ inflammatory cells and astrocytes were localized in the lesion of abnormal vessels. Further analysis revealed that the number of major histocompatibility complex (MHC) class IIloCD68loCD11bloCD11chi cells in the retina was higher in LPS-treated rats compared to controls. Similarly, the levels of TNF-α, IL-1β, and IL-12a were increased in LPS-treated retina. Also, apoptosis was increased in the inner retinal layer where retinal vessels are located. Our data demonstrate that systemic LPS-induced inflammation elicits retinal inflammation and impairs retinal angiogenesis in neonatal rats, implicating perinatal inflammation in the pathogenesis of ROP.

  17. Bacterial lipopolysaccharide-induced systemic inflammation alters perfusion of white matter-rich regions without altering flow in brain-irrigating arteries: Relationship to blood-brain barrier breakdown?

    Science.gov (United States)

    Dhaya, Ibtihel; Griton, Marion; Raffard, Gérard; Amri, Mohamed; Hiba, Bassem; Konsman, Jan Pieter

    2018-01-15

    To better understand brain dysfunction during sepsis, cerebral arterial blood flow was assessed with Phase Contrast Magnetic Resonance Imaging, perfusion with Arterial Spin Labeling and structure with diffusion-weighted Magnetic Resonance Imaging in rats after intraperitoneal administration of bacterial lipopolysaccharides. Although cerebral arterial flow was not altered, perfusion of the corpus callosum region and diffusion parallel to its fibers were higher after lipopolysaccharide administration as compared to saline injection. In parallel, lipopolysaccharide induced perivascular immunoglobulin-immunoreactivity in white matter. These findings indicate that systemic inflammation can result in increased perfusion, blood-brain barrier breakdown and altered water diffusion in white matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Maternal Inflammation Contributes to Brain Overgrowth and Autism-Associated Behaviors through Altered Redox Signaling in Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Janel E. Le Belle

    2014-11-01

    Full Text Available A period of mild brain overgrowth with an unknown etiology has been identified as one of the most common phenotypes in autism. Here, we test the hypothesis that maternal inflammation during critical periods of embryonic development can cause brain overgrowth and autism-associated behaviors as a result of altered neural stem cell function. Pregnant mice treated with low-dose lipopolysaccharide at embryonic day 9 had offspring with brain overgrowth, with a more pronounced effect in PTEN heterozygotes. Exposure to maternal inflammation also enhanced NADPH oxidase (NOX-PI3K pathway signaling, stimulated the hyperproliferation of neural stem and progenitor cells, increased forebrain microglia, and produced abnormal autism-associated behaviors in affected pups. Our evidence supports the idea that a prenatal neuroinflammatory dysregulation in neural stem cell redox signaling can act in concert with underlying genetic susceptibilities to affect cellular responses to environmentally altered cellular levels of reactive oxygen species.

  19. iNOS Activity Modulates Inflammation, Angiogenesis, and Tissue Fibrosis in Polyether-Polyurethane Synthetic Implants.

    Science.gov (United States)

    Cassini-Vieira, Puebla; Araújo, Fernanda Assis; da Costa Dias, Filipi Leles; Russo, Remo Castro; Andrade, Silvia Passos; Teixeira, Mauro Martins; Barcelos, Luciola Silva

    2015-01-01

    There is considerable interest in implantation techniques and scaffolds for tissue engineering and, for safety and biocompatibility reasons, inflammation, angiogenesis, and fibrosis need to be determined. The contribution of inducible nitric oxide synthase (iNOS) in the regulation of the foreign body reaction induced by subcutaneous implantation of a synthetic matrix was never investigated. Here, we examined the role of iNOS in angiogenesis, inflammation, and collagen deposition induced by polyether-polyurethane synthetic implants, using mice with targeted disruption of the iNOS gene (iNOS(-/-)) and wild-type (WT) mice. The hemoglobin content and number of vessels were decreased in the implants of iNOS(-/-) mice compared to WT mice 14 days after implantation. VEGF levels were also reduced in the implants of iNOS(-/-) mice. In contrast, the iNOS(-/-) implants exhibited an increased neutrophil and macrophage infiltration. However, no alterations were observed in levels of CXCL1 and CCL2, chemokines related to neutrophil and macrophage migration, respectively. Furthermore, the implants of iNOS(-/-) mice showed boosted collagen deposition. These data suggest that iNOS activity controls inflammation, angiogenesis, and fibrogenesis in polyether-polyurethane synthetic implants and that lack of iNOS expression increases foreign body reaction to implants in mice.

  20. iNOS Activity Modulates Inflammation, Angiogenesis, and Tissue Fibrosis in Polyether-Polyurethane Synthetic Implants

    Science.gov (United States)

    Cassini-Vieira, Puebla; Araújo, Fernanda Assis; da Costa Dias, Filipi Leles; Russo, Remo Castro; Andrade, Silvia Passos; Teixeira, Mauro Martins; Barcelos, Luciola Silva

    2015-01-01

    There is considerable interest in implantation techniques and scaffolds for tissue engineering and, for safety and biocompatibility reasons, inflammation, angiogenesis, and fibrosis need to be determined. The contribution of inducible nitric oxide synthase (iNOS) in the regulation of the foreign body reaction induced by subcutaneous implantation of a synthetic matrix was never investigated. Here, we examined the role of iNOS in angiogenesis, inflammation, and collagen deposition induced by polyether-polyurethane synthetic implants, using mice with targeted disruption of the iNOS gene (iNOS−/−) and wild-type (WT) mice. The hemoglobin content and number of vessels were decreased in the implants of iNOS−/− mice compared to WT mice 14 days after implantation. VEGF levels were also reduced in the implants of iNOS−/− mice. In contrast, the iNOS−/− implants exhibited an increased neutrophil and macrophage infiltration. However, no alterations were observed in levels of CXCL1 and CCL2, chemokines related to neutrophil and macrophage migration, respectively. Furthermore, the implants of iNOS−/− mice showed boosted collagen deposition. These data suggest that iNOS activity controls inflammation, angiogenesis, and fibrogenesis in polyether-polyurethane synthetic implants and that lack of iNOS expression increases foreign body reaction to implants in mice. PMID:26106257

  1. Obesity-induced vascular inflammation involves elevated arginase activity.

    Science.gov (United States)

    Yao, Lin; Bhatta, Anil; Xu, Zhimin; Chen, Jijun; Toque, Haroldo A; Chen, Yongjun; Xu, Yimin; Bagi, Zsolt; Lucas, Rudolf; Huo, Yuqing; Caldwell, Ruth B; Caldwell, R William

    2017-11-01

    Obesity-induced vascular dysfunction involves pathological remodeling of the visceral adipose tissue (VAT) and increased inflammation. Our previous studies showed that arginase 1 (A1) in endothelial cells (ECs) is critically involved in obesity-induced vascular dysfunction. We tested the hypothesis that EC-A1 activity also drives obesity-related VAT remodeling and inflammation. Our studies utilized wild-type and EC-A1 knockout (KO) mice made obese by high-fat/high-sucrose (HFHS) diet. HFHS diet induced increases in body weight, fasting blood glucose, and VAT expansion. This was accompanied by increased arginase activity and A1 expression in vascular ECs and increased expression of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin-10 (IL-10), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) mRNA and protein in both VAT and ECs. HFHS also markedly increased circulating inflammatory monocytes and VAT infiltration by inflammatory macrophages, while reducing reparative macrophages. Additionally, adipocyte size and fibrosis increased and capillary density decreased in VAT. These effects of HFHS, except for weight gain and hyperglycemia, were prevented or reduced in mice lacking EC-A1 or treated with the arginase inhibitor 2-( S )-amino-6-boronohexanoic acid (ABH). In mouse aortic ECs, exposure to high glucose (25 mM) and Na palmitate (200 μM) reduced nitric oxide production and increased A1, TNF-α, VCAM-1, ICAM-1, and MCP-1 mRNA, and monocyte adhesion. Knockout of EC-A1 or ABH prevented these effects. HFHS diet-induced VAT inflammation is mediated by EC-A1 expression/activity. Limiting arginase activity is a possible therapeutic means of controlling obesity-induced vascular and VAT inflammation.

  2. Neuropsychiatry phenotype in asthma: Psychological stress-induced alterations of the neuroendocrine-immune system in allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Isao Ohno

    2017-09-01

    Full Text Available Since the recognition of asthma as a syndrome with complex pathophysiological signs and symptoms, recent research has sought to classify asthma phenotypes based on its clinical and molecular pathological features. Psychological stress was first recognized as a potential immune system modulator of asthma at the end of the 19th century. The activation of the central nervous system (CNS upon exposure to psychological stress is integral for the initiation of signal transduction processes. The stress hormones, including glucocorticoids, epinephrine, and norepinephrine, which are secreted following CNS activation, are involved in the immunological alterations involved in psychological stress-induced asthma exacerbation. The mechanisms underlying this process may involve a pathological series of events from the brain to the lungs, which is attracting attention as a conceptually advanced phenotype in asthma pathogenesis. This review presents insights into the critical role of psychological stress in the development and exacerbation of allergic asthma, with a special focus on our own data that emphasizes on the continuity from the central sensing of psychological stress to enhanced eosinophilic airway inflammation.

  3. Platelet activation, adhesion, inflammation, and aggregation potential are altered in the presence of electronic cigarette extracts of variable nicotine concentrations.

    Science.gov (United States)

    Hom, Sarah; Chen, Li; Wang, Tony; Ghebrehiwet, Berhane; Yin, Wei; Rubenstein, David A

    2016-11-01

    Tobacco smoke extracts prepared from both mainstream and sidestream smoking have been associated with heightened platelet activation, aggregation, adhesion, and inflammation. Conversely, it has been shown that pure nicotine inhibits similar platelet functions. In this work, we 1) evaluated the effects of e-cigarette extracts on platelet activities and 2) elucidated the differences between the nicotine-dependent and non-nicotine dependent (e.g. fine particulate matter or toxic compounds) effects of tobacco and e-cigarette products on platelet activities. To accomplish these goals, platelets from healthy volunteers (n = 50) were exposed to tobacco smoke extracts, e-cigarette vapor extracts, and pure nicotine and changes in platelet activation, adhesion, aggregation, and inflammation were evaluated, using optical aggregation, flow cytometry, and ELISA methods. Interestingly, the exposure of platelets to e-vapor extracts induced a significant up-regulation in the expression of the pro-inflammatory gC1qR and cC1qR and induced a marked increase in the deposition of C3b as compared with traditional tobacco smoke extracts. Similarly, platelet activation, as measured by a prothrombinase based assay, and platelet aggregation were also significantly enhanced after exposure to e-vapor extracts. Finally, platelet adhesion potential toward fibrinogen, von Willebrand factor, and other platelets was also enhanced after exposure to e-cigarette vapor extracts. In the presence of pure nicotine, platelet functions were observed to be inhibited, which further suggests that other constituents of tobacco smoke and electronic vapor can antagonize platelet functions, however, the presence of nicotine in extracts somewhat perpetuated the platelet functional changes in a dose-dependent manner.

  4. Experimental inflammation following dural application of complete Freund's adjuvant or inflammatory soup does not alter brain and trigeminal microvascular passage.

    Science.gov (United States)

    Lundblad, Cornelia; Haanes, Kristian A; Grände, Gustaf; Edvinsson, Lars

    2015-01-01

    Migraine is a paroxysmal, disabling primary headache that affects 16 % of the adult population. In spite of decades of intense research, the origin and the pathophysiology mechanisms involved are still not fully known. Although triptans and gepants provide effective relief from acute migraine for many patients, their site of action remains unidentified. It has been suggested that during migraine attacks the leakiness of the blood-brain barrier (BBB) is altered, increasing the passage of anti-migraine drugs. This study aimed to investigate the effect of experimental inflammation, following dural application of complete Freund's adjuvant (CFA) or inflammatory soup (IS) on brain and trigeminal microvascular passage. In order to address this issue, we induced local inflammation in male Sprague-Dawley-rats dura mater by the addition of CFA or IS directly on the dural surface. Following 2, 24 or 48 h of inflammation we calculated permeability-surface area product (PS) for [(51)Cr]-EDTA in the trigeminal ganglion (TG), spinal trigeminal nucleus, cortex, periaqueductal grey and cerebellum. We observed that [(51)Cr]-EDTA did not pass into the central nervous system (CNS) in a major way. However, [(51)Cr]-EDTA readily passed the TG by >30 times compared to the CNS. Application of CFA or IS did not show altered transfer constants. With these experiments we show that dural IS/CFA triggered TG inflammation, did not increase the BBB passage, and that the TG is readily exposed to circulating molecules. The TG could provide a site of anti-migraine drug interaction with effect on the trigeminal system.

  5. Diagnostic performance of PET/MR in the evaluation of active inflammation in Crohn disease.

    Science.gov (United States)

    Catalano, Onofrio Antonio; Wu, Vincent; Mahmood, Umar; Signore, Alberto; Vangel, Mark; Soricelli, Andrea; Salvatore, Marco; Gervais, Debra; Rosen, Bruce R

    2018-01-01

    This study investigates the performance of PET/MR versus each sub-modality alone in the assessment of active inflammation in patients with Crohn disease, when compared to surgery as standard of reference. Sensitivity for detecting active inflammation was 91.5% for PET, 80% for MR, and 88% for PET/MR. Specificity for active inflammation was 74% for PET, 87% for MR, and 93% for PET/MR. Diagnostic accuracy was 84% for PET, 83% for MR, and 91% for PET/MR. In conclusion, PET/MR is significantly more accurate than either sub-modality alone and more specific than PET alone in the detection of active inflammation in patients with Crohn disease.

  6. Thrombin selectively engages LIM kinase 1 and slingshot-1L phosphatase to regulate NF-κB activation and endothelial cell inflammation.

    Science.gov (United States)

    Leonard, Antony; Marando, Catherine; Rahman, Arshad; Fazal, Fabeha

    2013-11-01

    Endothelial cell (EC) inflammation is a central event in the pathogenesis of many pulmonary diseases such as acute lung injury and its more severe form acute respiratory distress syndrome. Alterations in actin cytoskeleton are shown to be crucial for NF-κB regulation and EC inflammation. Previously, we have described a role of actin binding protein cofilin in mediating cytoskeletal alterations essential for NF-κB activation and EC inflammation. The present study describes a dynamic mechanism in which LIM kinase 1 (LIMK1), a cofilin kinase, and slingshot-1Long (SSH-1L), a cofilin phosphatase, are engaged by procoagulant and proinflammatory mediator thrombin to regulate these responses. Our data show that knockdown of LIMK1 destabilizes whereas knockdown of SSH-1L stabilizes the actin filaments through modulation of cofilin phosphorylation; however, in either case thrombin-induced NF-κB activity and expression of its target genes (ICAM-1 and VCAM-1) is inhibited. Further mechanistic analyses reveal that knockdown of LIMK1 or SSH-1L each attenuates nuclear translocation and thereby DNA binding of RelA/p65. In addition, LIMK1 or SSH-1L depletion inhibited RelA/p65 phosphorylation at Ser(536), a critical event conferring transcriptional competency to the bound NF-κB. However, unlike SSH-1L, LIMK1 knockdown also impairs the release of RelA/p65 by blocking IKKβ-dependent phosphorylation/degradation of IκBα. Interestingly, LIMK1 or SSH-1L depletion failed to inhibit TNF-α-induced RelA/p65 nuclear translocation and proinflammatory gene expression. Thus this study provides evidence for a novel role of LIMK1 and SSH-1L in selectively regulating EC inflammation associated with intravascular coagulation.

  7. Bifidobacterium breve alters immune function and ameliorates DSS-induced inflammation in weanling rats.

    Science.gov (United States)

    Izumi, Hirohisa; Minegishi, Mario; Sato, Yohei; Shimizu, Takashi; Sekine, Kazunori; Takase, Mitsunori

    2015-10-01

    Bifidobacterium breve M-16V (M16V) is a probiotic bacterial strain with a long tradition of use in neonatal intensive care units in some countries. Previous study showed that the effects of M16V administration on gene expression were greater during the weaning period than in the neonatal period and were greater in the colon than in the small intestine and spleen, suggesting that M16V has anti-inflammatory effects. In this study, we evaluated the effects of inflammation during the weaning period and the effects of M16V on normal and inflammatory conditions. From postnatal day (PD) 21 to 34, weanling rats were administered of 2.5 × 10(9) of M16V daily, and colitis was induced by administration of 2% dextran sulfate sodium from PD28 to 35. Colitis severity, immune function, and microbiota were investigated. Colitis caused a reduction in body weight gain, colon shortening, poor nutritional status, anemia, changes in blood and spleen lymphocyte populations, spleen T-cell malfunctions, and alterations in colon microbiota. M16V administration improved some but not all of the changes induced by colitis. M16V could suppress inflammation and, therefore, can be considered a safe strain to use not only during the neonatal period but also the weaning period.

  8. Clinical laboratory markers of inflammation as determinants of chronic graft-versus-host disease activity and NIH global severity.

    Science.gov (United States)

    Grkovic, L; Baird, K; Steinberg, S M; Williams, K M; Pulanic, D; Cowen, E W; Mitchell, S A; Hakim, F T; Martires, K J; Avila, D N; Taylor, T N; Salit, R B; Rowley, S D; Zhang, D; Fowler, D H; Bishop, M R; Gress, R E; Pavletic, S Z

    2012-04-01

    Chronic graft-versus-host disease (cGVHD) remains a major cause of non-relapse morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Currently there are no accepted measures of cGVHD activity to aid in clinical management and disease staging. We analyzed clinical markers of inflammation in the sera of patients with established cGVHD and correlated those with definitions of disease activity. In all, 189 adults with cGVHD (33% moderate and 66% severe according to National Institutes of Health (NIH) global scoring) were consecutively enrolled onto a cross-sectional prospective cGVHD natural history study. At the time of evaluation, 80% were receiving systemic immunosuppression and failed a median of four prior systemic therapies (PST) for their cGVHD. Lower albumin (P<0.0001), higher C-reactive protein (P = 0.043), higher platelets (P = 0.030) and higher number of PST (P<0.0001) were associated with active disease defined as clinician's intention to intensify or alter systemic therapy due to the lack of response. Higher platelet count (P = 0.021) and higher number of PST (P<0.0001) were associated with more severe diseased defined by NIH global score. This study identified common laboratory indicators of inflammation that can serve as markers of cGVHD activity and severity.

  9. Ficolins do not alter host immune responses to lipopolysaccharide-induced inflammation in vivo

    DEFF Research Database (Denmark)

    Genster, Ninette; Østrup, Olga; Schjalm, Camilla

    2017-01-01

    . Yet, the contribution of ficolins to inflammatory disease processes remains elusive. To address this, we investigated ficolin deficient mice during a lipopolysaccharide (LPS)-induced model of systemic inflammation. Although murine serum ficolin was shown to bind LPS in vitro, there was no difference...... an unaltered spleen transcriptome profile in ficolin deficient mice compared to wildtype mice. Collectively, results from this study demonstrate that ficolins are not involved in host response to LPS-induced systemic inflammation.......Ficolins are a family of pattern recognition molecules that are capable of activating the lectin pathway of complement. A limited number of reports have demonstrated a protective role of ficolins in animal models of infection. In addition, an immune modulatory role of ficolins has been suggested...

  10. Microbiota alterations in acute and chronic gastrointestinal inflammation of cats and dogs

    Science.gov (United States)

    Honneffer, Julia B; Minamoto, Yasushi; Suchodolski, Jan S

    2014-01-01

    The intestinal microbiota is the collection of the living microorganisms (bacteria, fungi, protozoa, and viruses) inhabiting the gastrointestinal tract. Novel bacterial identification approaches have revealed that the gastrointestinal microbiota of dogs and cats is, similarly to humans, a highly complex ecosystem. Studies in dogs and cats have demonstrated that acute and chronic gastrointestinal diseases, including inflammatory bowel disease (IBD), are associated with alterations in the small intestinal and fecal microbial communities. Of interest is that these alterations are generally similar to the dysbiosis observed in humans with IBD or animal models of intestinal inflammation, suggesting that microbial responses to inflammatory conditions of the gut are conserved across mammalian host types. Studies have also revealed possible underlying susceptibilities in the innate immune system of dogs and cats with IBD, which further demonstrate the intricate relationship between gut microbiota and host health. Commonly identified microbiome changes in IBD are decreases in bacterial groups within the phyla Firmicutes and Bacteroidetes, and increases within Proteobacteia. Furthermore, a reduction in the diversity of Clostridium clusters XIVa and IV (i.e., Lachnospiraceae and Clostridium coccoides subgroups) are associated with IBD, suggesting that these bacterial groups may play an important role in maintenance of gastrointestinal health. Future studies are warranted to evaluate the functional changes associated with intestinal dysbiosis in dogs and cats. PMID:25469017

  11. Self-reported parenting style is associated with children's inflammation and immune activation.

    Science.gov (United States)

    Byrne, Michelle L; Badcock, Paul B; Simmons, Julian G; Whittle, Sarah; Pettitt, Adam; Olsson, Craig A; Mundy, Lisa K; Patton, George C; Allen, Nicholas B

    2017-04-01

    Family environments and parenting have been associated with inflammation and immune activation in children and adolescents; however, it remains unclear which specific aspects of parenting drive this association. In this study, we cross-sectionally examined the association between 5 discrete parenting styles and inflammation and immune activation in late childhood. Data were drawn from 102 families (55 with female children, mean age 9.50 years, SD = 0.34) participating in the Imaging Brain Development in the Childhood to Adolescence Transition Study. Children provided saliva samples from which inflammation (C-reactive protein) and immune competence/activation (secretory immunoglobulin A) were measured. Parents completed the Alabama Parenting Questionnaire, which measures 5 aspects of parenting style-positive parental involvement, positive disciplinary techniques, consistency in disciplinary techniques, corporal punishment, and monitoring and supervision. Results showed that higher scores on the poor parental monitoring scale were associated with higher levels of both inflammation and immune activation in children. This study highlights parental monitoring and supervision as a specific aspect of parenting behavior that may be important for children's physical and mental health. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. Intestinal handling-induced mast cell activation and inflammation in human postoperative ileus

    NARCIS (Netherlands)

    The, F. O.; Bennink, R. J.; Ankum, W. M.; Buist, M. R.; Busch, O. R. C.; Gouma, D. J.; van der Heide, S.; van den Wijngaard, R. M.; de Jonge, W. J.; Boeckxstaens, G. E.

    2008-01-01

    Background: Murine postoperative ileus results from intestinal inflammation triggered by manipulation-induced mast cell activation. As its extent depends on the degree of handling and subsequent inflammation, it is hypothesised that the faster recovery after minimal invasive surgery results from

  13. Intestinal handling-induced mast cell activation and inflammation in human postoperative ileus

    NARCIS (Netherlands)

    The, F. O.; Bennink, R. J.; Ankum, W. M.; Buist, M. R.; Busch, O. R. C.; Gouma, D. J.; Van der Heide, S.; van den Wijngaard, R. M.; Boeckxstaens, G. E.; de Jonge, Wouter J.

    Background: Murine postoperative ileus results from intestinal inflammation triggered by manipulation-induced mast cell activation. As its extent depends on the degree of handling and subsequent inflammation, it is hypothesised that the faster recovery after minimal invasive surgery results from

  14. Olive oil bioactives protect pigs against experimentally-induced chronic inflammation independently of alterations in gut microbiota.

    Directory of Open Access Journals (Sweden)

    Martin Liehr

    Full Text Available Subclinical chronic inflammation (SCI is associated with impaired animal growth. Previous work has demonstrated that olive-derived plant bioactives exhibit anti-inflammatory properties that could possibly counteract the growth-depressing effects of SCI. To test this hypothesis and define the underlying mechanism, we conducted a 30-day study in which piglets fed an olive-oil bioactive extract (OBE and their control counterparts (C+ were injected repeatedly during the last 10 days of the study with increasing doses of Escherichia coli lipopolysaccharides (LPS to induce SCI. A third group of piglets remained untreated throughout the study and served as a negative control (C-. In C+ pigs, SCI increased the circulating concentration of interleukin 1 beta (p < 0.001 and decreased feed ingestion (p < 0.05 and weight gain (p < 0.05. These responses were not observed in OBE animals. Although intestinal inflammation and colonic microbial ecology was not altered by treatments, OBE enhanced ileal mRNA abundance of tight and adherens junctional proteins (p < 0.05 and plasma recovery of mannitol (p < 0.05 compared with C+ and C-. In line with these findings, OBE improved transepithelial electrical resistance (p < 0.01 in TNF-α-challenged Caco-2/TC-7 cells, and repressed the production of inflammatory cytokines (p < 0.05 in LPS-stimulated macrophages. In summary, this work demonstrates that OBE attenuates the suppressing effect of SCI on animal growth through a mechanism that appears to involve improvements in intestinal integrity unrelated to alterations in gut microbial ecology and function.

  15. Reducing Peripheral Inflammation with Infliximab Reduces Neuroinflammation and Improves Cognition in Rats with Hepatic Encephalopathy

    Science.gov (United States)

    Dadsetan, Sherry; Balzano, Tiziano; Forteza, Jerónimo; Cabrera-Pastor, Andrea; Taoro-Gonzalez, Lucas; Hernandez-Rabaza, Vicente; Gil-Perotín, Sara; Cubas-Núñez, Laura; García-Verdugo, José-Manuel; Agusti, Ana; Llansola, Marta; Felipo, Vicente

    2016-01-01

    Inflammation contributes to cognitive impairment in patients with hepatic encephalopathy (HE). However, the process by which peripheral inflammation results in cognitive impairment remains unclear. In animal models, neuroinflammation and altered neurotransmission mediate cognitive impairment. Taking into account these data, we hypothesized that in rats with HE: (1) peripheral inflammation is a main contributor to neuroinflammation; (2) neuroinflammation in hippocampus impairs spatial learning by altering AMPA and/or NMDA receptors membrane expression; (3) reducing peripheral inflammation with infliximab (anti-TNF-a) would improve spatial learning; (4) this would be associated with reduced neuroinflammation and normalization of the membrane expression of glutamate receptors. The aims of this work were to assess these hypotheses. We analyzed in rats with portacaval shunt (PCS) and control rats, treated or not with infliximab: (a) peripheral inflammation by measuring prostaglandin E2, IL10, IL-17, and IL-6; (b) neuroinflammation in hippocampus by analyzing microglial activation and the content of TNF-a and IL-1b; (c) AMPA and NMDA receptors membrane expression in hippocampus; and (d) spatial learning in the Radial and Morris water mazes. We assessed the effects of treatment with infliximab on peripheral inflammation, on neuroinflammation and AMPA and NMDA receptors membrane expression in hippocampus and on spatial learning and memory. PCS rats show increased serum prostaglandin E2, IL-17, and IL-6 and reduced IL-10 levels, indicating increased peripheral inflammation. PCS rats also show microglial activation and increased nuclear NF-kB and expression of TNF-a and IL-1b in hippocampus. This was associated with altered AMPA and NMDA receptors membrane expression in hippocampus and impaired spatial learning and memory in the radial and Morris water maze. Treatment with infliximab reduces peripheral inflammation in PCS rats, normalizing prostaglandin E2, IL-17, IL-6, and

  16. Increased hypothalamic serotonin turnover in inflammation-induced anorexia.

    Science.gov (United States)

    Dwarkasing, J T; Witkamp, R F; Boekschoten, M V; Ter Laak, M C; Heins, M S; van Norren, K

    2016-05-20

    Anorexia can occur as a serious complication of disease. Increasing evidence suggests that inflammation plays a major role, along with a hypothalamic dysregulation characterized by locally elevated serotonin levels. The present study was undertaken to further explore the connections between peripheral inflammation, anorexia and hypothalamic serotonin metabolism and signaling pathways. First, we investigated the response of two hypothalamic neuronal cell lines to TNFα, IL-6 and LPS. Next, we studied transcriptomic changes and serotonergic activity in the hypothalamus of mice after intraperitoneal injection with TNFα, IL-6 or a combination of TNFα and IL-6. In vitro, we showed that hypothalamic neurons responded to inflammatory mediators by releasing cytokines. This inflammatory response was associated with an increased serotonin release. Mice injected with TNFα and IL-6 showed decreased food intake, associated with altered expression of inflammation-related genes in the hypothalamus. In addition, hypothalamic serotonin turnover showed to be elevated in treated mice. Overall, our results underline that peripheral inflammation reaches the hypothalamus where it affects hypothalamic serotoninergic metabolism. These hypothalamic changes in serotonin pathways are associated with decreased food intake, providing evidence for a role of serotonin in inflammation-induced anorexia.

  17. Molecular Analysis of a Multistep Lung Cancer Model Induced by Chronic Inflammation Reveals Epigenetic Regulation of p16, Activation of the DNA Damage Response Pathway

    Directory of Open Access Journals (Sweden)

    David Blanco

    2007-10-01

    Full Text Available The molecular hallmarks of inflammation-mediated lung carcinogenesis have not been fully clarified, mainly due to the scarcity of appropriate animal models. We have used a silica-induced multistep lung carcinogenesis model driven by chronic inflammation to study the evolution of molecular markers, genetic alterations. We analyzed markers of DNA damage response (DDR, proliferative stress, telomeric stress: δ-H2AX, p16, p53, TERT. Lung cancer-related epigenetic, genetic alterations, including promoter hypermethylation status of p16(CDKN2A, APC, CDH13, Rassf1, Nore1A, as well as mutations of Tp53, epidermal growth factor receptor, K-ras, N-ras, c-H-ras, have been also studied. Our results showed DDR pathway activation in preneoplastic lesions, in association with inducible nitric oxide synthase, p53 induction. p16 was also induced in early tumorigenic progression, was inactivated in bronchiolar dysplasias, tumors. Remarkably, lack of mutations of Ras, epidermal growth factor receptor, a very low frequency of Tp53 mutations suggest that they are not required for tumorigenesis in this model. In contrast, epigenetic alterations in p16(CDKN2A, CDH13, APC, but not in Rassf1, Nore1A, were clearly observed. These data suggest the existence of a specific molecular signature of inflammation-driven lung carcinogenesis that shares some, but not all, of the molecular landmarks of chemically induced lung cancer.

  18. Intraperitoneal inflammation decreases endometriosis in a mouse model

    OpenAIRE

    Nowak, N.M.; Fischer, O.M.; Gust, T.C.; Fuhrmann, U.; Habenicht, U.-F.; Schmidt, A.

    2008-01-01

    BACKGROUND The role of the immune system in the pathogenesis of endometriosis remains elusive. It has been shown that patients have an altered peritoneal environment with increased levels of inflammatory cytokines, activated macrophages and reduced clearance of retrogradely transported endometrial fragments. However, it is not known if this unique inflammatory situation is cause or consequence of endometriosis. This study investigates the impact of a pre-existing peritoneal inflammation on en...

  19. Caspase Activation in Fetal Rat Brain Following Experimental Intrauterine Inflammation

    Science.gov (United States)

    Sharangpani, Aditi; Takanohashi, Asako; Bell, Michael J.

    2009-01-01

    Intrauterine inflammation has been implicated in developmental brain injuries, including the development of periventricular leukomalacia (PVL) and cerebral palsy (CP). Previous studies in our rat model of intrauterine inflammation demonstrated apoptotic cell death in fetal brains within the first 5 days after lipopolysaccharide (LPS) administration to mothers and eventual dysmyelination. Cysteine-containing, aspartate-specific proteases, or caspases, are proteins involved with apoptosis through both intracellular (intrinsic pathway) and extracellular (extrinsic pathway) mechanisms. We hypothesized that cell death in our model would occur mainly via activation of the extrinsic pathway. We further hypothesized that Fas, a member of the tumor necrosis factor receptor (TNFR) superfamily, would be increased and the death inducing signaling complex (DISC) would be detectable. Pregnant rats were injected intracervically with LPS at E15 and immunoblotting, immunohistochemical and immunoprecipitation analyses were performed. The presence of the activated form of the effector caspase (caspase-3) was observed 24 h after LPS administration. Caspase activity assays demonstrated rapid increases in (i) caspases-9 and -10 within 1 h, (ii) caspase-8 at 2 h and (iii) caspase-3 at 4 h. At 24 h after LPS, activated caspase-3+/Fas+ cells were observed within the developing white matter. Lastly, the DISC complex (caspase-8, Fas and Fas-associated Death Domain (FADD)) was observed within 30 min by immunoprecipitation. Apoptosis in our model occurs via both extrinsic and intrinsic pathways, and activation of Fas may play a role. Understanding the mechanisms of cell death in models of intrauterine inflammation may affect development of future strategies to mitigate these injuries in children. PMID:18289516

  20. Homeostasis-altering molecular processes as mechanisms of inflammasome activation.

    Science.gov (United States)

    Liston, Adrian; Masters, Seth L

    2017-03-01

    The innate immune system uses a distinct set of germline-encoded pattern recognition receptors (PRRs) to initiate downstream inflammatory cascades. This recognition system is in stark contrast to the adaptive immune system, which relies on highly variable, randomly generated antigen receptors. A key limitation of the innate immune system's reliance on fixed PRRs is its inflexibility in responding to rapidly evolving pathogens. Recent advances in our understanding of inflammasome activation suggest that the innate immune system also has sophisticated mechanisms for responding to pathogens for which there is no fixed PRR. This includes the recognition of debris from dying cells, known as danger-associated molecular patterns (DAMPs), which can directly activate PRRs in a similar manner to pathogen-associated molecular patterns (PAMPs). Distinct from this, emerging data for the inflammasome components NLRP3 (NOD-, LRR- and pyrin domain-containing 3) and pyrin suggest that they do not directly detect molecular patterns, but instead act as signal integrators that are capable of detecting perturbations in cytoplasmic homeostasis, for example, as initiated by infection. Monitoring these perturbations, which we term 'homeostasis-altering molecular processes' (HAMPs), provides potent flexibility in the capacity of the innate immune system to detect evolutionarily novel infections; however, HAMP sensing may also underlie the sterile inflammation that drives chronic inflammatory diseases.

  1. Alterations of nitric-oxide synthase and xanthine-oxidase activities of human keratinocytes by ultraviolet-B radiation -potential role for peroxynitrite in skin inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Deliconstantinos, G.; Villiotou, V.; Stavrides, J.C. [Athens Univ. (Greece). School of Medicine

    1996-06-28

    In the present study, we demonstrated that NO synthase (cNOS) and xanthine oxidase (XO) of human keratinocytes can be activated to release NO, superoxide (O-2(-)) and peroxynitrite (ONOO-) following exposure to ultraviolet B (UVB) radiation. We defined that this photo induced response may be involved in the pathogenesis of sunburn erythema and inflammation. Treatment of human keratinocytes with UVB (290-320 nm) radiation (up to 200 mJ/cm(2)) resulted in a dose-dependent increase in NO and ONOO-release that was inhibited by N-monomethyl-L-arginine (L-NMMA). NO and ONOO- release from keratinocytes was accompanied by an increase in intracellular cGMP levels. Treatment of human keratinocyte cytosol with various doses of UVB (up to 100 mJ/cm(2)) resulted in an increase in XO activity that was inhibited by oxypurinol. In in vivo experiments, when experimental animals were subjected to UVB radiation, a protection factor (PF) of 6.5 {+-} 1.8 was calculated when an emulsified cream formulation containing nitro-L-arginine (L-NA) (2%) and L-NMMA (2%) was applied to their skin. The present study indicates that UVB radiation acts as a potent stimulator of cNOS and XO activities in human keratinocytes. NO and ONOO- may exert cytotoxic effects in keratinocytes themselves, as well as in their neighbouring endothelial and smooth muscle cells. This may be a major part of the integrated response leading to erythema production and the inflammation process. (UK).

  2. Alterations of nitric-oxide synthase and xanthine-oxidase activities of human keratinocytes by ultraviolet-B radiation -potential role for peroxynitrite in skin inflammation

    International Nuclear Information System (INIS)

    Deliconstantinos, G.; Villiotou, V.; Stavrides, J.C.

    1996-01-01

    In the present study, we demonstrated that NO synthase (cNOS) and xanthine oxidase (XO) of human keratinocytes can be activated to release NO, superoxide (O-2(-)) and peroxynitrite (ONOO-) following exposure to ultraviolet B (UVB) radiation. We defined that this photo induced response may be involved in the pathogenesis of sunburn erythema and inflammation. Treatment of human keratinocytes with UVB (290-320 nm) radiation (up to 200 mJ/cm(2)) resulted in a dose-dependent increase in NO and ONOO-release that was inhibited by N-monomethyl-L-arginine (L-NMMA). NO and ONOO- release from keratinocytes was accompanied by an increase in intracellular cGMP levels. Treatment of human keratinocyte cytosol with various doses of UVB (up to 100 mJ/cm(2)) resulted in an increase in XO activity that was inhibited by oxypurinol. In in vivo experiments, when experimental animals were subjected to UVB radiation, a protection factor (PF) of 6.5 ± 1.8 was calculated when an emulsified cream formulation containing nitro-L-arginine (L-NA) (2%) and L-NMMA (2%) was applied to their skin. The present study indicates that UVB radiation acts as a potent stimulator of cNOS and XO activities in human keratinocytes. NO and ONOO- may exert cytotoxic effects in keratinocytes themselves, as well as in their neighbouring endothelial and smooth muscle cells. This may be a major part of the integrated response leading to erythema production and the inflammation process. (UK)

  3. Allergic Inflammation Leads to Neuropathic Pain via Glial Cell Activation.

    Science.gov (United States)

    Yamasaki, Ryo; Fujii, Takayuki; Wang, Bing; Masaki, Katsuhisa; Kido, Mizuho A; Yoshida, Mari; Matsushita, Takuya; Kira, Jun-Ichi

    2016-11-23

    Allergic and atopic disorders have increased over the past few decades and have been associated with neuropsychiatric conditions, such as autism spectrum disorder and asthmatic amyotrophy. Myelitis presenting with neuropathic pain can occur in patients with atopic disorder; however, the relationship between allergic inflammation and neuropathic pain, and the underlying mechanism, remains to be established. We studied whether allergic inflammation affects the spinal nociceptive system. We found that mice with asthma, atopic dermatitis, or atopic diathesis had widespread and significantly more activated microglia and astroglia in the spinal cord than those without atopy, and displayed tactile allodynia. Microarray analysis of isolated microglia revealed a dysregulated phenotype showing upregulation of M1 macrophage markers and downregulation of M2 markers in atopic mice. Among the cell surface protein genes, endothelin receptor type B (EDNRB) was most upregulated. Immunohistochemical analysis revealed that EDNRB expression was enhanced in microglia and astroglia, whereas endothelin-1, an EDNRB ligand, was increased in serum, lungs, and epidermis of atopic mice. No EDNRA expression was found in the spinal cord. Expression of FBJ murine osteosarcoma viral oncogene homolog B was significantly higher in the dorsal horn neurons of asthma mice than nonatopic mice. The EDNRB antagonist BQ788 abolished glial and neural activation and allodynia. We found increased serum endothelin-1 in atopic patients with myelitis and neuropathic pain, and activation of spinal microglia and astroglia with EDNRB upregulation in an autopsied case. These results suggest that allergic inflammation induces diffuse glial activation, influencing the nociceptive system via the EDNRB pathway. The prevalence of allergic disorders has markedly increased over the past few decades. Allergic disorders are associated with neuropsychiatric conditions; however, the relationship between allergic inflammation

  4. Platelet activation and inflammation markers as emerging risk ...

    African Journals Online (AJOL)

    Platelet activation and inflammation markers were assessed by measuring plasma levels of sP-selectin, platelet factor 4 (PF4), IL-6 and tumor necrosis factor alpha (TNF-α). Results: HIV infected patients had higher levels of sP- selectin, PF4 and IL-6 than uninfected controls (p<0.001). ART naïve subjects had higher levels ...

  5. Hippocampal structure and function are maintained despite severe innate peripheral inflammation.

    Science.gov (United States)

    Süß, Patrick; Kalinichenko, Liubov; Baum, Wolfgang; Reichel, Martin; Kornhuber, Johannes; Loskarn, Sandra; Ettle, Benjamin; Distler, Jörg H W; Schett, Georg; Winkler, Jürgen; Müller, Christian P; Schlachetzki, Johannes C M

    2015-10-01

    Chronic peripheral inflammation mediated by cytokines such as TNFα, IL-1β, and IL-6 is associated with psychiatric disorders like depression and anxiety. However, it remains elusive which distinct type of peripheral inflammation triggers neuroinflammation and affects hippocampal plasticity resulting in depressive-like behavior. We hypothesized that chronic peripheral inflammation in the human TNF-α transgenic (TNFtg) mouse model of rheumatoid arthritis spreads into the central nervous system and induces depressive state manifested in specific behavioral pattern and impaired adult hippocampal neurogenesis. TNFtg mice showed severe erosive arthritis with increased IL-1β and IL-6 expression in tarsal joints with highly elevated human TNF-α levels in the serum. Intriguingly, IL-1β and IL-6 mRNA levels were not altered in the hippocampus of TNFtg mice. In contrast to the pronounced monocytosis in joints and spleen of TNFtg mice, signs of hippocampal microgliosis or astrocytosis were lacking. Furthermore, locomotion was impaired, but there was no locomotion-independent depressive behavior in TNFtg mice. Proliferation and maturation of hippocampal neural precursor cells as well as survival of newly generated neurons were preserved in the dentate gyrus of TNFtg mice despite reduced motor activity and peripheral inflammatory signature. We conclude that peripheral inflammation in TNFtg mice is mediated by chronic activation of the innate immune system. However, severe peripheral inflammation, though impairing locomotor activity, does not elicit depressive-like behavior. These structural and functional findings indicate the maintenance of hippocampal immunity, cellular plasticity, and behavior despite peripheral innate inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. So depression is an inflammatory disease, but where does the inflammation come from?

    Science.gov (United States)

    Berk, Michael; Williams, Lana J; Jacka, Felice N; O'Neil, Adrienne; Pasco, Julie A; Moylan, Steven; Allen, Nicholas B; Stuart, Amanda L; Hayley, Amie C; Byrne, Michelle L; Maes, Michael

    2013-09-12

    We now know that depression is associated with a chronic, low-grade inflammatory response and activation of cell-mediated immunity, as well as activation of the compensatory anti-inflammatory reflex system. It is similarly accompanied by increased oxidative and nitrosative stress (O&NS), which contribute to neuroprogression in the disorder. The obvious question this poses is 'what is the source of this chronic low-grade inflammation?' This review explores the role of inflammation and oxidative and nitrosative stress as possible mediators of known environmental risk factors in depression, and discusses potential implications of these findings. A range of factors appear to increase the risk for the development of depression, and seem to be associated with systemic inflammation; these include psychosocial stressors, poor diet, physical inactivity, obesity, smoking, altered gut permeability, atopy, dental cares, sleep and vitamin D deficiency. The identification of known sources of inflammation provides support for inflammation as a mediating pathway to both risk and neuroprogression in depression. Critically, most of these factors are plastic, and potentially amenable to therapeutic and preventative interventions. Most, but not all, of the above mentioned sources of inflammation may play a role in other psychiatric disorders, such as bipolar disorder, schizophrenia, autism and post-traumatic stress disorder.

  7. Brain Region–Specific Alterations in the Gene Expression of Cytokines, Immune Cell Markers and Cholinergic System Components during Peripheral Endotoxin–Induced Inflammation

    Science.gov (United States)

    Silverman, Harold A; Dancho, Meghan; Regnier-Golanov, Angelique; Nasim, Mansoor; Ochani, Mahendar; Olofsson, Peder S; Ahmed, Mohamed; Miller, Edmund J; Chavan, Sangeeta S; Golanov, Eugene; Metz, Christine N; Tracey, Kevin J; Pavlov, Valentin A

    2014-01-01

    Inflammatory conditions characterized by excessive peripheral immune responses are associated with diverse alterations in brain function, and brain-derived neural pathways regulate peripheral inflammation. Important aspects of this bidirectional peripheral immune–brain communication, including the impact of peripheral inflammation on brain region–specific cytokine responses, and brain cholinergic signaling (which plays a role in controlling peripheral cytokine levels), remain unclear. To provide insight, we studied gene expression of cytokines, immune cell markers and brain cholinergic system components in the cortex, cerebellum, brainstem, hippocampus, hypothalamus, striatum and thalamus in mice after an intraperitoneal lipopolysaccharide injection. Endotoxemia was accompanied by elevated serum levels of interleukin (IL)-1β, IL-6 and other cytokines and brain region–specific increases in Il1b (the highest increase, relative to basal level, was in cortex; the lowest increase was in cerebellum) and Il6 (highest increase in cerebellum; lowest increase in striatum) mRNA expression. Gene expression of brain Gfap (astrocyte marker) was also differentially increased. However, Iba1 (microglia marker) mRNA expression was decreased in the cortex, hippocampus and other brain regions in parallel with morphological changes, indicating microglia activation. Brain choline acetyltransferase (Chat ) mRNA expression was decreased in the striatum, acetylcholinesterase (Ache) mRNA expression was decreased in the cortex and increased in the hippocampus, and M1 muscarinic acetylcholine receptor (Chrm1) mRNA expression was decreased in the cortex and the brainstem. These results reveal a previously unrecognized regional specificity in brain immunoregulatory and cholinergic system gene expression in the context of peripheral inflammation and are of interest for designing future antiinflammatory approaches. PMID:25299421

  8. Altered Ca2+ homeostasis induces Calpain-Cathepsin axis activation in sporadic Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Llorens, Franc; Thüne, Katrin; Sikorska, Beata; Schmitz, Matthias; Tahir, Waqas; Fernández-Borges, Natalia; Cramm, Maria; Gotzmann, Nadine; Carmona, Margarita; Streichenberger, Nathalie; Michel, Uwe; Zafar, Saima; Schuetz, Anna-Lena; Rajput, Ashish; Andréoletti, Olivier; Bonn, Stefan; Fischer, Andre; Liberski, Pawel P; Torres, Juan Maria; Ferrer, Isidre; Zerr, Inga

    2017-04-27

    Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent form of human prion disease and it is characterized by the presence of neuronal loss, spongiform degeneration, chronic inflammation and the accumulation of misfolded and pathogenic prion protein (PrP Sc ). The molecular mechanisms underlying these alterations are largely unknown, but the presence of intracellular neuronal calcium (Ca 2+ ) overload, a general feature in models of prion diseases, is suggested to play a key role in prion pathogenesis.Here we describe the presence of massive regulation of Ca 2+ responsive genes in sCJD brain tissue, accompanied by two Ca 2+ -dependent processes: endoplasmic reticulum stress and the activation of the cysteine proteases Calpains 1/2. Pathogenic Calpain proteins activation in sCJD is linked to the cleavage of their cellular substrates, impaired autophagy and lysosomal damage, which is partially reversed by Calpain inhibition in a cellular prion model. Additionally, Calpain 1 treatment enhances seeding activity of PrP Sc in a prion conversion assay. Neuronal lysosomal impairment caused by Calpain over activation leads to the release of the lysosomal protease Cathepsin S that in sCJD mainly localises in axons, although massive Cathepsin S overexpression is detected in microglial cells. Alterations in Ca 2+ homeostasis and activation of Calpain-Cathepsin axis already occur at pre-clinical stages of the disease as detected in a humanized sCJD mouse model.Altogether our work indicates that unbalanced Calpain-Cathepsin activation is a relevant contributor to the pathogenesis of sCJD at multiple molecular levels and a potential target for therapeutic intervention.

  9. Seminal Fluid-Mediated Inflammation in Physiology and Pathology of the Female Reproductive Tract

    Directory of Open Access Journals (Sweden)

    Anthonio O. Adefuye

    2016-01-01

    Full Text Available Inflammation is a multifaceted process involving a host of resident and recruited immune cells that eliminate the insult or injury and initiate tissue repair. In the female reproductive tract (FMRT, inflammation-mediated alterations in epithelial, vascular, and immune functions are important components of complex physiological processes and many local and systemic pathologies. It is well established that intracoital and postcoital function of seminal fluid (SF goes beyond nutritive support for the spermatozoa cells. SF, in particular, the inflammatory bioactive lipids, and prostaglandins present in vast quantities in SF, have a role in localized immune modulation and regulation of pathways that can exacerbate inflammation in the FMRT. In sexually active women SF-mediated inflammation has been implicated in physiologic processes such as ovulation, implantation, and parturition while also enhancing tumorigenesis and susceptibility to infection. This review highlights the molecular mechanism by which SF regulates inflammatory pathways in the FMRT and how alterations in these pathways contribute to physiology and pathology of the female reproductive function. In addition, based on findings from TaqMan® 96-Well Plate Arrays, on neoplastic cervical cells treated with SF, we discuss new findings on the role of SF as a potent driver of inflammatory and tumorigenic pathways in the cervix.

  10. Microglia Dictate the Impact of Saturated Fat Consumption on Hypothalamic Inflammation and Neuronal Function

    Directory of Open Access Journals (Sweden)

    Martin Valdearcos

    2014-12-01

    Full Text Available Diets rich in saturated fat produce inflammation, gliosis, and neuronal stress in the mediobasal hypothalamus (MBH. Here, we show that microglia mediate this process and its functional impact. Although microglia and astrocytes accumulate in the MBH of mice fed a diet rich in saturated fatty acids (SFAs, only the microglia undergo inflammatory activation, along with a buildup of hypothalamic SFAs. Enteric gavage specifically with SFAs reproduces microglial activation and neuronal stress in the MBH, and SFA treatment activates murine microglia, but not astrocytes, in culture. Moreover, depleting microglia abrogates SFA-induced inflammation in hypothalamic slices. Remarkably, depleting microglia from the MBH of mice abolishes inflammation and neuronal stress induced by excess SFA consumption, and in this context, microglial depletion enhances leptin signaling and reduces food intake. We thus show that microglia sense SFAs and orchestrate an inflammatory process in the MBH that alters neuronal function when SFA consumption is high.

  11. Inflammation Activation Contributes to Adipokine Imbalance in Patients with Acute Coronary Syndrome.

    Directory of Open Access Journals (Sweden)

    Rong Li

    Full Text Available Inflammation can be activated as a defensive response by the attack of acute coronary syndrome (ACS for ischemic tissue injury. The aim of the present study was to investigate the impact of ACS-activated inflammation on adipokine imbalance and the effects of statins on the crosstalk between inflammation and adipokine imbalance during ACS. In this study, 586 subjects were categorized into: (1 control group; (2 SA (stable angina group; and (3 ACS group. Circulating levels of hs-CRP, adiponectin and resistin were measured by ELISA. Furthermore, forty C57BL/6 mice were randomized into: sham, AMI, low-statin (atorvastatin, 2 mg/kg/day and high-statin (atorvastatin, 20 mg/kg/day group. After 3 weeks, AMI models were established by surgical coronary artery ligation. Circulating levels and adipose expressions of adiponectin and resistin were assessed in animals. Besides, we investigate the effects of atorvastatin on ox-LDL-induced adipokine imbalance in vitro. As a result, we found that ACS patients had higher hs-CRP and resistin levels and lower adiponectin levels. Our correlation analysis demonstrated hs-CRP concentrations were positively correlated with resistin but negatively with adiponectin levels in humans. Our animal findings indicated higher circulating hs-CRP and resistin levels and lower adiponectin levels in AMI mice. Atorvastatin pre-treatment dose-dependently decreased hs-CRP and resistin levels but increased adiponectin levels in mice. The consistent findings were observed about the adipose expressions of resistin and adiponectin in mice. In study in vitro, ox-LDL increased cellular resistin expressions and otherwise for adiponectin expressions, which dose-dependently reversed by the addition of atorvastatin. Therefore, our study indicates that the ACS attack activates inflammation leading to adipokine imbalance that can be ameliorated by anti-inflammation of atorvastatin.

  12. Evidence of early alterations in adipose tissue biology and function and its association with obesity-related inflammation and insulin resistance in children.

    Science.gov (United States)

    Landgraf, Kathrin; Rockstroh, Denise; Wagner, Isabel V; Weise, Sebastian; Tauscher, Roy; Schwartze, Julian T; Löffler, Dennis; Bühligen, Ulf; Wojan, Magdalena; Till, Holger; Kratzsch, Jürgen; Kiess, Wieland; Blüher, Matthias; Körner, Antje

    2015-04-01

    Accumulation of fat mass in obesity may result from hypertrophy and/or hyperplasia and is frequently associated with adipose tissue (AT) dysfunction in adults. Here we assessed early alterations in AT biology and function by comprehensive experimental and clinical characterization of 171 AT samples from lean and obese children aged 0 to 18 years. We show an increase in adipocyte size and number in obese compared with lean children beginning in early childhood. These alterations in AT composition in obese children were accompanied by decreased basal lipolytic activity and significantly enhanced stromal vascular cell proliferation in vitro, potentially underlying the hypertrophy and hyperplasia seen in obese children, respectively. Furthermore, macrophage infiltration, including the formation of crown-like structures, was increased in AT of obese children from 6 years on and was associated with higher hs-CRP serum levels. Clinically, adipocyte hypertrophy was not only associated with leptin serum levels but was highly and independently correlated with HOMA-IR as a marker of insulin resistance in children. In summary, we show that adipocyte hypertrophy is linked to increased inflammation in AT in obese children, thereby providing evidence that obesity-associated AT dysfunction develops in early childhood and is related to insulin resistance. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  13. Persistent Inflammation and Endothelial Activation in HIV-1 Infected Patients after 12 Years of Antiretroviral Therapy

    DEFF Research Database (Denmark)

    Rönsholt, Frederikke F; Ullum, Henrik; Katzenstein, Terese L

    2013-01-01

    The study investigated markers of inflammation and endothelial activation in HIV infected patients after 12 years of successful combination antiretroviral treatment (cART).......The study investigated markers of inflammation and endothelial activation in HIV infected patients after 12 years of successful combination antiretroviral treatment (cART)....

  14. Effect of dietary advanced glycation end products on postprandial appetite, inflammation, and endothelial activation in healthy overweight individuals

    DEFF Research Database (Denmark)

    Poulsen, Malene Wibe; Bak, Monika Judyta; Andersen, Jeanette Marker

    2014-01-01

    Advanced glycation end products (AGEs) formed in food during high-heat cooking may induce overeating and inflammation. We investigated whether AGE contents in a single meal affect postprandial appetite and markers of inflammation, endothelial activation, and oxidative stress.......Advanced glycation end products (AGEs) formed in food during high-heat cooking may induce overeating and inflammation. We investigated whether AGE contents in a single meal affect postprandial appetite and markers of inflammation, endothelial activation, and oxidative stress....

  15. Vitamin E improves biochemical indices associated with symptoms of atopic dermatitis-like inflammation in NC/Nga mice.

    Science.gov (United States)

    Hayashi, Daisuke; Sugaya, Hotaka; Ohkoshi, Takayuki; Sekizawa, Kaori; Takatsu, Hirokatsu; Shinkai, Tadashi; Urano, Shiro

    2012-01-01

    We aimed to define whether vitamin E improves biochemical indices associated with symptoms of atopic dermatitis-like inflammation in NC/Nga mice. After picryl chloride (PC) application to their backs, changes in the content of thiobarbituric acid reactive substances (TBARS) and vitamin E, as well as the activity of antioxidant enzymes (superoxide dismutase (SOD), glutathione peroxidase (GSHPx) and catalase) were analyzed in the serum and skin of NC/Nga mice during a symptomatic cycle. The levels of inflammatory factors were also assessed, including IgE, cyclooxigenase-2 (COX-2), tumor necrosis factor (TNF-α) and nuclear factor-κB (NF-κB). When allergic dermatitis was induced by the application of PC to the skin of the mice, skin inflammation appeared 2 wk after PC application, with the peak severity of inflammation observed 5 wk after PC application. Subsequently, the animals recovered from the inflammation by 9 wk after PC application. The TBARS content in the skin and serum increased markedly when the symptoms were the most severe, and decreased to levels near those in control mice by 9 wk after PC application. The activities of SOD and GSHPx in the skin and serum were also positively correlated with symptomatic changes; however, no change in catalase activity was observed 5 wk after PC application. Conversely, vitamin E content decreased at the stage of peak severity. The levels of all inflammatory factors analyzed in this study were altered in a manner similar to other indices. Additionally, vitamin E treatment markedly inhibited these PC-induced alterations. On the basis of these results, it is expected that the observed alterations in biochemical indices, which reflect the symptomatic cycle, may be applicable to objective diagnosis and treatment for atopic dermatitis, and that vitamin E may improve the symptoms of AD.

  16. "TRP inflammation" relationship in cardiovascular system.

    Science.gov (United States)

    Numata, Tomohiro; Takahashi, Kiriko; Inoue, Ryuji

    2016-05-01

    Despite considerable advances in the research and treatment, the precise relationship between inflammation and cardiovascular (CV) disease remains incompletely understood. Therefore, understanding the immunoinflammatory processes underlying the initiation, progression, and exacerbation of many cardiovascular diseases is of prime importance. The innate immune system has an ancient origin and is well conserved across species. Its activation occurs in response to pathogens or tissue injury. Recent studies suggest that altered ionic balance, and production of noxious gaseous mediators link to immune and inflammatory responses with altered ion channel expression and function. Among plausible candidates for this are transient receptor potential (TRP) channels that function as polymodal sensors and scaffolding proteins involved in many physiological and pathological processes. In this review, we will first focus on the relevance of TRP channel to both exogenous and endogenous factors related to innate immune response and transcription factors related to sustained inflammatory status. The emerging role of inflammasome to regulate innate immunity and its possible connection to TRP channels will also be discussed. Secondly, we will discuss about the linkage of TRP channels to inflammatory CV diseases, from a viewpoint of inflammation in a general sense which is not restricted to the innate immunity. These knowledge may serve to provide new insights into the pathogenesis of various inflammatory CV diseases and their novel therapeutic strategies.

  17. Visceral adipose inflammation in obesity is associated with critical alterations in tregulatory cell numbers.

    Directory of Open Access Journals (Sweden)

    Jeffrey Deiuliis

    2011-01-01

    Full Text Available The development of insulin resistance (IR in mouse models of obesity and type 2 diabetes mellitus (DM is characterized by progressive accumulation of inflammatory macrophages and subpopulations of T cells in the visceral adipose. Regulatory T cells (Tregs may play a critical role in modulating tissue inflammation via their interactions with both adaptive and innate immune mechanisms. We hypothesized that an imbalance in Tregs is a critical determinant of adipose inflammation and investigated the role of Tregs in IR/obesity through coordinated studies in mice and humans.Foxp3-green fluorescent protein (GFP "knock-in" mice were randomized to a high-fat diet intervention for a duration of 12 weeks to induce DIO/IR. Morbidly obese humans without overt type 2 DM (n = 13 and lean controls (n = 7 were recruited prospectively for assessment of visceral adipose inflammation. DIO resulted in increased CD3(+CD4(+, and CD3(+CD8(+ cells in visceral adipose with a striking decrease in visceral adipose Tregs. Treg numbers in visceral adipose inversely correlated with CD11b(+CD11c(+ adipose tissue macrophages (ATMs. Splenic Treg numbers were increased with up-regulation of homing receptors CXCR3 and CCR7 and marker of activation CD44. In-vitro differentiation assays showed an inhibition of Treg differentiation in response to conditioned media from inflammatory macrophages. Human visceral adipose in morbid obesity was characterized by an increase in CD11c(+ ATMs and a decrease in foxp3 expression.Our experiments indicate that obesity in mice and humans results in adipose Treg depletion. These changes appear to occur via reduced local differentiation rather than impaired homing. Our findings implicate a role for Tregs as determinants of adipose inflammation.

  18. Moderate glucose supply reduces hemolysis during systemic inflammation

    Directory of Open Access Journals (Sweden)

    Jägers J

    2018-03-01

    Full Text Available Johannes Jägers,1 Stephan Brauckmann,2 Michael Kirsch,1 Katharina Effenberger-Neidnicht1,3 1Institute of Physiological Chemistry, University Hospital Essen, Essen, Germany; 2Clinic for Anesthesiology and Intensive Care, University Hospital Essen, Essen, Germany; 3Institute of Physiological Chemistry, University Hospital Essen, Essen, Germany Background: Systemic inflammation alters energy metabolism. A sufficient glucose level, however, is most important for erythrocytes, since erythrocytes rely on glucose as sole source of energy. Damage to erythrocytes leads to hemolysis. Both disorders of glucose metabolism and hemolysis are associated with an increased risk of death. The objective of the study was to investigate the impact of intravenous glucose on hemolysis during systemic inflammation.Materials and methods: Systemic inflammation was accomplished in male Wistar rats by continuous lipopolysaccharide (LPS infusion (1 mg LPS/kg and h, 300 min. Sham control group rats received Ringer’s solution. Glucose was supplied moderately (70 mg glucose/kg and h or excessively (210 mg glucose/kg and h during systemic inflammation. Vital parameters (eg, systemic blood pressure as well as blood and plasma parameters (eg, concentrations of glucose, lactate and cell-free hemoglobin, and activity of lactate dehydrogenase were measured hourly. Clot formation was analyzed by thromboelastometry.Results: Continuous infusion of LPS led to a so-called post-aggression syndrome with disturbed electrolyte homeostasis (hypocalcemia, hyperkalemia, and hypernatremia, changes in hemodynamics (tachycardia and hypertension, and a catabolic metabolism (early hyperglycemia, late hypoglycemia, and lactate formation. It induced severe tissue injury (significant increases in plasma concentrations of transaminases and lactate dehydrogenase, alterations in blood coagulation (disturbed clot formation, and massive hemolysis. Both moderate and excessive glucose supply reduced LPS

  19. Uric Acid Induces Renal Inflammation via Activating Tubular NF-κB Signaling Pathway

    Science.gov (United States)

    Zhou, Yang; Fang, Li; Jiang, Lei; Wen, Ping; Cao, Hongdi; He, Weichun; Dai, Chunsun; Yang, Junwei

    2012-01-01

    Inflammation is a pathologic feature of hyperuricemia in clinical settings. However, the underlying mechanism remains unknown. Here, infiltration of T cells and macrophages were significantly increased in hyperuricemia mice kidneys. This infiltration of inflammatory cells was accompanied by an up-regulation of TNF-α, MCP-1 and RANTES expression. Further, infiltration was largely located in tubular interstitial spaces, suggesting a role for tubular cells in hyperuricemia-induced inflammation. In cultured tubular epithelial cells (NRK-52E), uric acid, probably transported via urate transporter, induced TNF-α, MCP-1 and RANTES mRNA as well as RANTES protein expression. Culture media of NRK-52E cells incubated with uric acid showed a chemo-attractive ability to recruit macrophage. Moreover uric acid activated NF-κB signaling. The uric acid-induced up-regulation of RANTES was blocked by SN 50, a specific NF-κB inhibitor. Activation of NF-κB signaling was also observed in tubule of hyperuricemia mice. These results suggest that uric acid induces renal inflammation via activation of NF-κB signaling. PMID:22761883

  20. Teuvincenone F Suppresses LPS-Induced Inflammation and NLRP3 Inflammasome Activation by Attenuating NEMO Ubiquitination

    OpenAIRE

    Xibao Zhao; Xibao Zhao; Debing Pu; Debing Pu; Zizhao Zhao; Huihui Zhu; Hongrui Li; Hongrui Li; Yaping Shen; Xingjie Zhang; Ruihan Zhang; Jianzhong Shen; Weilie Xiao; Weilie Xiao; Weilin Chen

    2017-01-01

    Inflammation causes many diseases that are serious threats to human health. However, the molecular mechanisms underlying regulation of inflammation and inflammasome activation are not fully understood which has delayed the discovery of new anti-inflammatory drugs of urgent clinic need. Here, we found that the natural compound Teuvincenone F, which was isolated and purified from the stems and leaves of Premna szemaoensis, could significantly inhibit lipopolysaccharide (LPS)–induced pro-inflamm...

  1. Teuvincenone F Suppresses LPS-Induced Inflammation and NLRP3 Inflammasome Activation by Attenuating NEMO Ubiquitination

    OpenAIRE

    Zhao, Xibao; Pu, Debing; Zhao, Zizhao; Zhu, Huihui; Li, Hongrui; Shen, Yaping; Zhang, Xingjie; Zhang, Ruihan; Shen, Jianzhong; Xiao, Weilie; Chen, Weilin

    2017-01-01

    Inflammation causes many diseases that are serious threats to human health. However, the molecular mechanisms underlying regulation of inflammation and inflammasome activation are not fully understood which has delayed the discovery of new anti-inflammatory drugs of urgent clinic need. Here, we found that the natural compound Teuvincenone F, which was isolated and purified from the stems and leaves of Premna szemaoensis, could significantly inhibit lipopolysaccharide (LPS)?induced pro-inflamm...

  2. Abscisic Acid Regulates Inflammation via Ligand-binding Domain-independent Activation of Peroxisome Proliferator-activated Receptor γ*

    Science.gov (United States)

    Bassaganya-Riera, Josep; Guri, Amir J.; Lu, Pinyi; Climent, Montse; Carbo, Adria; Sobral, Bruno W.; Horne, William T.; Lewis, Stephanie N.; Bevan, David R.; Hontecillas, Raquel

    2011-01-01

    Abscisic acid (ABA) has shown efficacy in the treatment of diabetes and inflammation; however, its molecular targets and the mechanisms of action underlying its immunomodulatory effects remain unclear. This study investigates the role of peroxisome proliferator-activated receptor γ (PPAR γ) and lanthionine synthetase C-like 2 (LANCL2) as molecular targets for ABA. We demonstrate that ABA increases PPAR γ reporter activity in RAW 264.7 macrophages and increases ppar γ expression in vivo, although it does not bind to the ligand-binding domain of PPAR γ. LANCL2 knockdown studies provide evidence that ABA-mediated activation of macrophage PPAR γ is dependent on lancl2 expression. Consistent with the association of LANCL2 with G proteins, we provide evidence that ABA increases cAMP accumulation in immune cells. ABA suppresses LPS-induced prostaglandin E2 and MCP-1 production via a PPAR γ-dependent mechanism possibly involving activation of PPAR γ and suppression of NF-κB and nuclear factor of activated T cells. LPS challenge studies in PPAR γ-expressing and immune cell-specific PPAR γ null mice demonstrate that ABA down-regulates toll-like receptor 4 expression in macrophages and T cells in vivo through a PPAR γ-dependent mechanism. Global transcriptomic profiling and confirmatory quantitative RT-PCR suggest novel candidate targets and demonstrate that ABA treatment mitigates the effect of LPS on the expression of genes involved in inflammation, metabolism, and cell signaling, in part, through PPAR γ. In conclusion, ABA decreases LPS-mediated inflammation and regulates innate immune responses through a bifurcating pathway involving LANCL2 and an alternative, ligand-binding domain-independent mechanism of PPAR γ activation. PMID:21088297

  3. Abscisic acid regulates inflammation via ligand-binding domain-independent activation of peroxisome proliferator-activated receptor gamma.

    Science.gov (United States)

    Bassaganya-Riera, Josep; Guri, Amir J; Lu, Pinyi; Climent, Montse; Carbo, Adria; Sobral, Bruno W; Horne, William T; Lewis, Stephanie N; Bevan, David R; Hontecillas, Raquel

    2011-01-28

    Abscisic acid (ABA) has shown efficacy in the treatment of diabetes and inflammation; however, its molecular targets and the mechanisms of action underlying its immunomodulatory effects remain unclear. This study investigates the role of peroxisome proliferator-activated receptor γ (PPAR γ) and lanthionine synthetase C-like 2 (LANCL2) as molecular targets for ABA. We demonstrate that ABA increases PPAR γ reporter activity in RAW 264.7 macrophages and increases ppar γ expression in vivo, although it does not bind to the ligand-binding domain of PPAR γ. LANCL2 knockdown studies provide evidence that ABA-mediated activation of macrophage PPAR γ is dependent on lancl2 expression. Consistent with the association of LANCL2 with G proteins, we provide evidence that ABA increases cAMP accumulation in immune cells. ABA suppresses LPS-induced prostaglandin E(2) and MCP-1 production via a PPAR γ-dependent mechanism possibly involving activation of PPAR γ and suppression of NF-κB and nuclear factor of activated T cells. LPS challenge studies in PPAR γ-expressing and immune cell-specific PPAR γ null mice demonstrate that ABA down-regulates toll-like receptor 4 expression in macrophages and T cells in vivo through a PPAR γ-dependent mechanism. Global transcriptomic profiling and confirmatory quantitative RT-PCR suggest novel candidate targets and demonstrate that ABA treatment mitigates the effect of LPS on the expression of genes involved in inflammation, metabolism, and cell signaling, in part, through PPAR γ. In conclusion, ABA decreases LPS-mediated inflammation and regulates innate immune responses through a bifurcating pathway involving LANCL2 and an alternative, ligand-binding domain-independent mechanism of PPAR γ activation.

  4. Portal inflammation during NAFLD is frequent and associated with the early phases of putative hepatic progenitor cell activation.

    Science.gov (United States)

    Carotti, Simone; Vespasiani-Gentilucci, Umberto; Perrone, Giuseppe; Picardi, Antonio; Morini, Sergio

    2015-11-01

    We investigated whether portal tract inflammation observed in non-alcoholic fatty liver disease (NAFLD) is associated with hepatic progenitor cell compartment activation, as thoroughly evaluated with different markers of the staminal lineage. Fifty-two patients with NAFLD were studied. NAFLD activity score, fibrosis and portal inflammation were histologically evaluated. Putative hepatic progenitor cells, intermediate hepatobiliary cells and bile ductules/interlobular bile ducts were evaluated by immunohistochemistry for cytokeratin (CK)-7, CK-19 and epithelial cell adhesion molecule (EpCAM), and a hepatic progenitor cell compartment score was derived. Hepatic stellate cell and myofibroblast activity was determined by immunohistochemistry for α-smooth muscle actin. Portal inflammation was absent in a minority of patients, mild in 40% of cases and more than mild in about half of patients, showing a strong correlation with fibrosis (r=0.76, pcells (r=0.48, pcells (r=0.6, pcell compartment activation were associated with portal inflammation by univariate analysis. In the multivariate model, the only variable independently associated with portal inflammation was hepatic progenitor cell compartment activation (OR 3.7, 95% CI 1.1 to 12.6). Portal inflammation is frequent during NAFLD and strongly associated with activation of putative hepatic progenitor cells since the first steps of their differentiation, portal myofibroblast activity and fibrosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Mast cell activation and neutrophil recruitment promotes early and robust inflammation in the meninges in EAE.

    Science.gov (United States)

    Christy, Alison L; Walker, Margaret E; Hessner, Martin J; Brown, Melissa A

    2013-05-01

    The meninges are often considered inert tissues that house the CSF and provide protection for the brain and spinal cord. Yet emerging data demonstrates that they are also active sites of immune responses. Furthermore, the blood-CSF barrier surrounding meningeal blood vessels, together with the blood-brain barrier (BBB), is postulated to serve as a gateway for the pathological infiltration of immune cells into the CNS in multiple sclerosis (MS). Our previous studies using mast cell-deficient (Kit(W/Wv)) mice demonstrated that mast cells resident in the dura mater and pia mater exacerbate experimental autoimmune encephalomyelitis (EAE), a rodent model of MS, by facilitating CNS inflammatory cell influx. Here we examined the underlying mechanisms that mediate these effects. We demonstrate that there are dramatic alterations in immune associated gene expression in the meninges in pre-clinical disease, including those associated with mast cell and neutrophil function. Meningeal mast cells are activated within 24 h of disease induction, but do not directly compromise CNS vascular integrity. Rather, through production of TNF, mast cells elicit an early influx of neutrophils, cells known to alter vascular permeability, into the meninges. These data add to the growing evidence that inflammation in the meninges precedes CNS immune cell infiltration and establish that mast cells are among the earliest participants in these disease-initiating events. We hypothesize that mast cell-dependent neutrophil recruitment and activation in the meninges promotes early breakdown of the local BBB and CSF-blood barrier allowing initial immune cell access to the CNS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Altered expression of signalling lymphocyte activation molecule receptors in T-cells from lupus nephritis patients-a potential biomarker of disease activity.

    Science.gov (United States)

    Stratigou, Victoria; Doyle, Anne F; Carlucci, Francesco; Stephens, Lauren; Foschi, Valentina; Castelli, Marco; McKenna, Nicola; Cook, H Terence; Lightstone, Liz; Cairns, Thomas D; Pickering, Matthew C; Botto, Marina

    2017-07-01

    The aim was to investigate whether the signalling lymphocyte activation molecule (SLAM) signalling pathways contribute to LN and whether SLAM receptors could be valuable biomarkers of disease activity. Peripheral blood mononuclear cells from 30National Research Ethics Service SLE patients with biopsy-proven LN were analysed by flow cytometry. Clinical measures of disease activity were assessed. The expression of the SLAM family receptors on T-cell subpopulations [CD4, CD8 and double negative (DN) T cells] was measured and compared between lupus patients with active renal disease and those in remission. The frequency of CD8 T cells expressing SLAMF3, SLAMF5 and SLAMF7 was significantly lower in LN patients who were in remission. In contrast, these subsets were similar in patients with active renal disease and in healthy individuals. Patients with active nephritis had an increased percentage of circulating monocytes, consistent with a potential role played by these cells in glomerular inflammation. Changes in the frequency of DN T cells positive for SLAMF2, SLAMF4 and SLAMF7 were observed in lupus patients irrespective of the disease activity. We detected alterations in the cellular expression of the SLAM family receptors, but these changes were less obvious and did not reveal any specific pattern. The percentage of DN T cells expressing SLAMF6 could predict the clinical response to B-cell depletion in patients with LN. Our study demonstrates altered expression of the SLAM family receptors in SLE T lymphocytes. This is consistent with the importance of the SLAM-associated pathways in lupus pathogenesis. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology.

  7. Hirsutine, an indole alkaloid of Uncaria rhynchophylla, inhibits inflammation-mediated neurotoxicity and microglial activation.

    Science.gov (United States)

    Jung, Hwan Yong; Nam, Kyong Nyon; Woo, Byung-Choel; Kim, Kyoo-Pil; Kim, Sung-Ok; Lee, Eunjoo H

    2013-01-01

    Chronic microglial activation endangers neuronal survival through the release of various pro-inflammatory and neurotoxic factors. As such, negative regulators of microglial activation have been considered as potential therapeutic candidates to reduce the risk of neurodegeneration associated with inflammation. Uncaria rhynchophylla (U. rhynchophylla) is a traditional oriental herb that has been used for treatment of disorders of the cardiovascular and central nervous systems. Hirsutine (HS), one of the major indole alkaloids of U. rhynchophylla, has demonstrated neuroprotective potential. The aim of the present study was to examine the efficacy of HS in the repression of inflammation-induced neurotoxicity and microglial cell activation. In organotypic hippocampal slice cultures, HS blocked lipopolysaccharide (LPS)-related hippocampal cell death and production of nitric oxide (NO), prostaglandin (PG) E2 and interleukin-1β. HS was demonstrated to effectively inhibit LPS-induced NO release from cultured rat brain microglia. The compound reduced the LPS-stimulated production of PGE2 and intracellular reactive oxygen species. HS significantly decreased LPS-induced phosphorylation of the mitogen-activated protein kinases and Akt signaling proteins. In conclusion, HS reduces the production of various neurotoxic factors in activated microglial cells and possesses neuroprotective activity in a model of inflammation-induced neurotoxicity.

  8. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States)

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  9. Assembly of inflammation-related genes for pathway-focused genetic analysis.

    Directory of Open Access Journals (Sweden)

    Matthew J Loza

    2007-10-01

    Full Text Available Recent identifications of associations between novel variants in inflammation-related genes and several common diseases emphasize the need for systematic evaluations of these genes in disease susceptibility. Considering that many genes are involved in the complex inflammation responses and many genetic variants in these genes have the potential to alter the functions and expression of these genes, we assembled a list of key inflammation-related genes to facilitate the identification of genetic associations of diseases with an inflammation-related etiology. We first reviewed various phases of inflammation responses, including the development of immune cells, sensing of danger, influx of cells to sites of insult, activation and functional responses of immune and non-immune cells, and resolution of the immune response. Assisted by the Ingenuity Pathway Analysis, we then identified 17 functional sub-pathways that are involved in one or multiple phases. This organization would greatly increase the chance of detecting gene-gene interactions by hierarchical clustering of genes with their functional closeness in a pathway. Finally, as an example application, we have developed tagging single nucleotide polymorphism (tSNP arrays for populations of European and African descent to capture all the common variants of these key inflammation-related genes. Assays of these tSNPs have been designed and assembled into two Affymetrix ParAllele customized chips, one each for European (12,011 SNPs and African (21,542 SNPs populations. These tSNPs have greater coverage for these inflammation-related genes compared to the existing genome-wide arrays, particularly in the African population. These tSNP arrays can facilitate systematic evaluation of inflammation pathways in disease susceptibility. For additional applications, other genotyping platforms could also be employed. For existing genome-wide association data, this list of key inflammation-related genes and

  10. The Role of Dopamine in Inflammation-Associated Depression: Mechanisms and Therapeutic Implications.

    Science.gov (United States)

    Felger, Jennifer C

    Studies investigating the impact of a variety of inflammatory stimuli on the brain and behavior have consistently reported evidence that inflammatory cytokines affect the basal ganglia and dopamine to mediate depressive symptoms related to motivation and motor activity. Findings have included inflammation-associated reductions in ventral striatal responses to hedonic reward, decreased dopamine and dopamine metabolites in cerebrospinal fluid, and decreased availability of striatal dopamine, all of which correlate with symptoms of anhedonia, fatigue, and psychomotor retardation. Similar relationships between alterations in dopamine-relevant corticostriatal reward circuitry and symptoms of anhedonia and psychomotor slowing have also been observed in patients with major depression who exhibit increased peripheral cytokines and other inflammatory markers, such as C-reactive protein. Of note, these inflammation-associated depressive symptoms are often difficult to treat in patients with medical illnesses or major depression. Furthermore, a wealth of literature suggests that inflammation can decrease dopamine synthesis, packaging, and release, thus sabotaging or circumventing the efficacy of standard antidepressant treatments. Herein, the mechanisms by which inflammation and cytokines affect dopamine neurotransmission are discussed, which may provide novel insights into treatment of inflammation-related behavioral symptoms that contribute to an inflammatory malaise.

  11. Humoral Dysregulation Associated with Increased Systemic Inflammation among Injection Heroin Users.

    Directory of Open Access Journals (Sweden)

    Michael S Piepenbrink

    Full Text Available Injection drug use is a growing major public health concern. Injection drug users (IDUs have a higher incidence of co-morbidities including HIV, Hepatitis, and other infections. An effective humoral response is critical for optimal homeostasis and protection from infection; however, the impact of injection heroin use on humoral immunity is poorly understood. We hypothesized that IDUs have altered B cell and antibody profiles.A comprehensive systems biology-based cross-sectional assessment of 130 peripheral blood B cell flow cytometry- and plasma- based features was performed on HIV-/Hepatitis C-, active heroin IDUs who participated in a syringe exchange program (n = 19 and healthy control subjects (n = 19. The IDU group had substantial polydrug use, with 89% reporting cocaine injection within the preceding month. IDUs exhibited a significant, 2-fold increase in total B cells compared to healthy subjects, which was associated with increased activated B cell subsets. Although plasma total IgG titers were similar between groups, IDUs had significantly higher IgG3 and IgG4, suggestive of chronic B cell activation. Total IgM was also increased in IDUs, as well as HIV Envelope-specific IgM, suggestive of increased HIV exposure. IDUs exhibited numerous features suggestive of systemic inflammation, including significantly increased plasma sCD40L, TNF-α, TGF-α, IL-8, and ceramide metabolites. Machine learning multivariate analysis distilled a set of 10 features that classified samples based on group with absolute accuracy.These results demonstrate broad alterations in the steady-state humoral profile of IDUs that are associated with increased systemic inflammation. Such dysregulation may impact the ability of IDUs to generate optimal responses to vaccination and infection, or lead to increased risk for inflammation-related co-morbidities, and should be considered when developing immune-based interventions for this growing population.

  12. Histones trigger sterile inflammation by activating the NLRP3 inflammasome.

    Science.gov (United States)

    Allam, Ramanjaneyulu; Darisipudi, Murthy Narayana; Tschopp, Jurg; Anders, Hans-Joachim

    2013-12-01

    Sterile cell death mediated inflammation is linked to several pathological disorders and involves danger recognition of intracellular molecules released by necrotic cells that activate different groups of innate pattern recognition receptors. Toll-like receptors directly interact with their extrinsic or intrinsic agonists and induce multiple proinflammatory mediators. In contrast, the NLRP3 inflammasome is rather thought to represent a downstream element integrating various indirect stimuli into proteolytic cleavage of interleukin (IL)-1β and IL-18. Here, we report that histones released from necrotic cells induce IL-1β secretion in an NLRP3-ASC-caspase-1-dependent manner. Genetic deletion of NLRP3 in mice significantly attenuated histone-induced IL-1β production and neutrophil recruitment. Furthermore, necrotic cells induced neutrophil recruitment, which was significantly reduced by histone-neutralizing antibodies or depleting extracellular histones via enzymatic degradation. These results identify cytosolic uptake of necrotic cell-derived histones as a triggering mechanism of sterile inflammation, which involves NLRP3 inflammasome activation and IL-1β secretion via oxidative stress. © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Plasminogen activators in inflammation and sepsis.

    Science.gov (United States)

    Pechlaner, Ch

    2002-01-01

    Mortality of severe sepsis remains at 40% to 50%. Intensive efforts over the past two decades have only marginally improved outcome. Improving outcome in sepsis depends on understanding its pathophysiology, which involves triggers, responses of the organism, and dysfunction. Stress, injury, or infection trigger host responses, including local and systemic orchestrated mechanisms. Dysfunction and outcome depend on both trigger and response. Blood coagulation, inflammation, immunity, and fibrinolysis are critical components of the organism's responses. Understanding their role in sepsis pathophysiology is the key to effective treatment. Relevant studies were identified by a systematic literature search, complemented by manual search of individual citations. Using PubMed, 'sepsis' yields more than 62,000 references, 'plasminogen activators' more than 21,000. The selection of citations was guided by preference for reviews that expand important threads of argumentation. Single original studies were included when relevant to critical points. This analytical review describes the essential elements of pathophysiology and the current status of sepsis treatment. Based on this context, an emerging therapeutic option will be discussed: plasminogen activators.

  14. Altered colonic mucosal Polyunsaturated Fatty Acid (PUFA derived lipid mediators in ulcerative colitis: new insight into relationship with disease activity and pathophysiology.

    Directory of Open Access Journals (Sweden)

    Mojgan Masoodi

    Full Text Available Ulcerative colitis (UC is a relapsing inflammatory disorder of unconfirmed aetiology, variable severity and clinical course, characterised by progressive histological inflammation and with elevation of eicosanoids which have a known pathophysiological role in inflammation. Therapeutic interventions targetting eicosanoids (5-aminosalicylates (ASA are effective first line and adjunctive treatments in mild-moderate UC for achieving and sustaining clinical remission. However, the variable clinical response to 5-ASA and frequent deterioration in response to cyclo-oxygenase (COX inhibitors, has prompted an in depth simultaneous evaluation of multiple lipid mediators (including eicosanoids within the inflammatory milieu in UC. We hypothesised that severity of inflammation is associated with alteration of lipid mediators, in relapsing UC.Study was case-control design. Mucosal lipid mediators were determined by LC-MS/MS lipidomics analysis on mucosal biopsies taken from patients attending outpatients with relapsing UC. Univariate and multivariate statistical analyses were used to investigate the association of mucosal lipid mediators, with the disease state and severity graded histologically.Levels of PGE2, PGD2, TXB2, 5-HETE, 11-HETE, 12-HETE and 15-HETE are significantly elevated in inflamed mucosa and correlate with severity of inflammation, determined using validated histological scoring systems.Our approach of capturing inflammatory mediator signature at different stages of UC by combining comprehensive lipidomics analysis and computational modelling could be used to classify and predict mild-moderate inflammation; however, predictive index is diminished in severe inflammation. This new technical approach could be developed to tailor drug treatments to patients with active UC, based on the mucosal lipid mediator profile.

  15. The macrophage system in the intestinal muscularis externa during inflammation: an immunohistochemical and quantitative study of osteopetrotic mice

    DEFF Research Database (Denmark)

    Mikkelsen, Hanne Birte; Larsen, Jytte Overgaard; Hadberg, Hanne

    2008-01-01

    Intestinal inflammation results in disturbed intestinal motility in humans as well as in animal models. This altered function of smooth muscle cells and/or the enteric nervous system may be caused by activation of macrophages in muscularis externa and a thereby following release of cytokines and ...

  16. Disease-specific and inflammation-independent stromal alterations in spondylarthritis synovitis

    NARCIS (Netherlands)

    Yeremenko, Nataliya; Noordenbos, Troy; Cantaert, Tineke; van Tok, Melissa; van de Sande, Marleen; Cañete, Juan D.; Tak, Paul P.; Baeten, Dominique

    2013-01-01

    The molecular processes driving the distinct patterns of synovial inflammation and tissue remodeling in spondylarthritis (SpA) as compared to rheumatoid arthritis (RA) remain largely unknown. Therefore, we aimed to identify novel and unsuspected disease-specific pathways in SpA by a systematic and

  17. Inflammation alters AMPA-stimulated calcium responses in dorsal striatal D2 but not D1 spiny projection neurons.

    Science.gov (United States)

    Winland, Carissa D; Welsh, Nora; Sepulveda-Rodriguez, Alberto; Vicini, Stefano; Maguire-Zeiss, Kathleen A

    2017-11-01

    Neuroinflammation precedes neuronal loss in striatal neurodegenerative diseases and can be exacerbated by the release of proinflammatory molecules by microglia. These molecules can affect trafficking of AMPARs. The preferential trafficking of calcium-permeable versus impermeable AMPARs can result in disruptions of [Ca 2+ ] i and alter cellular functions. In striatal neurodegenerative diseases, changes in [Ca 2+ ] i and L-type voltage-gated calcium channels (VGCCs) have been reported. Therefore, this study sought to determine whether a proinflammatory environment alters AMPA-stimulated [Ca 2+ ] i through calcium-permeable AMPARs and/or L-type VGCCs in dopamine-2- and dopamine-1-expressing striatal spiny projection neurons (D2 and D1 SPNs) in the dorsal striatum. Mice expressing the calcium indicator protein, GCaMP in D2 or D1 SPNs, were utilized for calcium imaging. Microglial activation was assessed by morphology analyses. To induce inflammation, acute mouse striatal slices were incubated with lipopolysaccharide (LPS). Here we report that LPS treatment potentiated AMPA responses only in D2 SPNs. When a nonspecific VGCC blocker was included, we observed a decrease of AMPA-stimulated calcium fluorescence in D2 but not D1 SPNs. The remaining agonist-induced [Ca 2+ ] i was mediated by calcium-permeable AMPARs because the responses were completely blocked by a selective calcium-permeable AMPAR antagonist. We used isradipine, the highly selective L-type VGCC antagonist to determine the role of L-type VGCCs in SPNs treated with LPS. Isradipine decreased AMPA-stimulated responses selectively in D2 SPNs after LPS treatment. Our findings suggest that dorsal striatal D2 SPNs are specifically targeted in proinflammatory conditions and that L-type VGCCs and calcium-permeable AMPARs are important mediators of this effect. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Decreased salivary sulphotransferase activity correlated with inflammation and autoimmunity parameters in Sjogren's syndrome patients

    DEFF Research Database (Denmark)

    Castro, Isabel; Aguilera, Sergio; Brockhausen, Inka

    2012-01-01

    To determine the expression and enzymatic activities of sulphotransferases involved in mucin hyposulphation in labial salivary glands (LSGs) from SS patients and to correlate sulphotransferase activity with clinical parameters such as secretion, inflammation and serology....

  19. Helminths as governors of immune-mediated inflammation.

    Science.gov (United States)

    Elliott, David E; Summers, Robert W; Weinstock, Joel V

    2007-04-01

    Immune-mediated diseases (e.g. inflammatory bowel disease, asthma, multiple sclerosis and autoimmune diabetes) are increasing in prevalence and emerge as populations adopt meticulously hygienic lifestyles. This change in lifestyles precludes exposure to helminths (parasitic worms). Loss of natural helminth exposure removes a previously universal Th2 and regulatory immune biasing imparted by these organisms. Helminths protect animals from developing immune-mediated diseases (colitis, reactive airway disease, encephalitis and diabetes). Clinical trials show that exposure to helminths can reduce disease activity in patients with ulcerative colitis or Crohn's disease. This paper summarises work by multiple groups demonstrating that colonization with helminths alters immune reactivity and protects against disease from dysregulated inflammation.

  20. Inhibition of systemic inflammation by central action of the neuropeptide alpha-melanocyte- stimulating hormone.

    Science.gov (United States)

    Delgado Hernàndez, R; Demitri, M T; Carlin, A; Meazza, C; Villa, P; Ghezzi, P; Lipton, J M; Catania, A

    1999-01-01

    The neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH) reduces fever and acute inflammation in the skin when administered centrally. The aim of the present research was to determine whether central alpha-MSH can also reduce signs of systemic inflammation in mice with endotoxemia. Increases in serum tumor necrosis factor-alpha and nitric oxide, induced by intraperitoneal administration of endotoxin, were modulated by central injection of a small concentration of alpha-MSH. Inducible nitric oxide synthase (iNOS) activity and iNOS mRNA in lungs and liver were likewise modulated by central alpha-MSH. Lung myeloperoxidase activity, a marker of neutrophil infiltration, was increased in endotoxemic mice; the increase was significantly less in lungs of mice treated with central alpha-MSH. Intraperitoneal administration of the small dose of alpha-MSH that was effective centrally did not alter any of the markers of inflammation. In experiments using immunoneutralization of central alpha-MSH, we tested the idea that endogenous peptide induced within the brain during systemic inflammation modulates host responses to endotoxic challenge in peripheral tissues. The data showed that proinflammatory agents induced by endotoxin in the circulation, lungs, and liver were significantly greater after blockade of central alpha-MSH. The results suggest that anti-inflammatory influences of neural origin that are triggered by alpha-MSH could be used to treat systemic inflammation.

  1. Childhood malnutrition: toward an understanding of infections, inflammation, and antimicrobials.

    Science.gov (United States)

    Jones, Kelsey D; Thitiri, Johnstone; Ngari, Moses; Berkley, James A

    2014-06-01

    Undernutrition in childhood is estimated to cause 3.1 million child deaths annually through a potentiating effect on common infectious diseases, such as pneumonia and diarrhea. In turn, overt and subclinical infections, and inflammation, especially in the gut, alter nutrient intake, absorption, secretion, diversion, catabolism, and expenditure. A narrative overview of the current understanding of infections, inflammation, and antimicrobials in relation to childhood malnutrition. Searches for pivotal papers were conducted using PUBMED 1966-January 2013; hand searches of the references of retrieved literature; discussions with experts; and personal experience from the field. Although the epidemiological evidence for increased susceptibility to life-threatening infections associated with malnutrition is strong, we are only just beginning to understand some of the mechanisms involved. Nutritional status and growth are strongly influenced by environmental enteric dysfunction (EED), which is common among children in developing countries, and by alterations in the gut microbiome. As yet, there are no proven interventions against EED. Antibiotics have long been used as growth promoters in animals. Trials of antibiotics have shown striking efficacy on mortality and on growth in children with uncomplicated severe acute malnutrition (SAM) or HIV infection. Antibiotics act directly by preventing infections and may act indirectly by reducing subclinical infections and inflammation. We describe an ongoing multicenter, randomized, placebo-controlled trial of daily cotrimoxazole prophylaxis to prevent death in children recovering from complicated SAM. Secondary outcomes include growth, frequency and etiology of infections, immune activation and function, the gut microbiome, and antimicrobial resistance. The trial is expected to be reported in mid-2014. As well as improving nutritional intake, new case management strategies need to address infection, inflammation, and microbiota

  2. Persistent inflammation and endothelial activation in HIV-1 infected patients after 12 years of antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Frederikke F Rönsholt

    Full Text Available The study investigated markers of inflammation and endothelial activation in HIV infected patients after 12 years of successful combination antiretroviral treatment (cART.Inflammation and endothelial activation were assessed by measuring levels of immunoglobulins, β2-microglobulin, interleukin (IL 8, tumor necrosis factor α (TNFα, vascular cell adhesion molecule-1 (sVCAM-1, intercellular adhesion molecule-1 (sICAM-1, sE-Selectin, and sP-Selectin.HIV infected patients had higher levels of β2-microglobulin, IL-8, TNFα, and sICAM-1 than uninfected controls, and HIV infected patients lacked correlation between platelet counts and sP-Selectin levels found in uninfected controls.Discrete signs of systemic and vascular inflammation persist even after very long term cART.

  3. Gut microbiota, low-grade inflammation, and metabolic syndrome.

    Science.gov (United States)

    Chassaing, Benoit; Gewirtz, Andrew T

    2014-01-01

    The intestinal tract is inhabited by a large diverse community of bacteria collectively referred to as the gut microbiota. Alterations in gut microbiota composition are associated with a variety of disease states including obesity, diabetes, and inflammatory bowel disease (IBD). Transplant of microbiota from diseased persons (or mice) to germfree mice transfers some aspects of disease phenotype, indicating that altered microbiota plays a role in disease establishment and manifestation. There are myriad potential mechanisms by which alterations in gut microbiota might promote disease, including increasing energy harvest, production of toxic metabolites, and molecular mimicry of host proteins. However, our research indicates that an overarching mechanism by which an aberrant microbiota negatively impacts health is by driving chronic inflammation. More specifically, we hypothesize that the histopathologically evident gut inflammation that defines IBD is a severe but relatively rare outcome of an altered host-microbiota relationship, while a much more common consequence of such disturbances is "low-grade" inflammation characterized by elevated proinflammatory gene expression that associates with, and may promote, metabolic syndrome. In this context, a variety of chronic inflammatory diseases may stem from inability of the mucosal immune system to properly manage a stable healthy relationship with the gut microbiota. While one's ability to manage their gut microbiota is dictated in part by genetics, it can be markedly influenced by the composition of the microbiota one inherits from their early environment. Moreover, the host-microbiota relationship can be perturbed by instigator bacteria or dietary components, which may prove to play a role in promoting chronic inflammatory disease states.

  4. Voluntary exercise prevents colonic inflammation in high-fat diet-induced obese mice by up-regulating PPAR-γ activity

    International Nuclear Information System (INIS)

    Liu, Wei-Xin; Wang, Ting; Zhou, Feng; Wang, Ying; Xing, Jun-Wei; Zhang, Shen; Gu, Shou-Zhi; Sang, Li-Xuan; Dai, Cong; Wang, Hai-Lan

    2015-01-01

    Obesity is associated with increased colonic inflammation, which elevates the risk of colon cancer. Although exercise exerts anti-inflammatory actions in multiple chronic diseases associated with inflammation, it is unknown whether this strategy prevents colonic inflammation in obesity. We hypothesized that voluntary exercise would suppress colonic inflammation in high-fat diet (HFD)-induced obesity by modulation of peroxisome proliferator-activated receptor (PPAR)-γ. Male C57Bl/6J mice fed either a control diet (6.5% fat, CON) or a high-fat diet (24% fat, HFD) were divided into sedentary, voluntary exercise or voluntary exercise with PPAR-γ antagonist GW9662 (10 mg/kg/day). All interventions took place for 12 weeks. Compared with CON-sedentary group, HFD-sedentary mice gained significantly more body weight and exhibited metabolic disorders. Molecular studies revealed that HFD-sedentary mice had increased expression of inflammatory mediators and activation of nuclear factor (NF)-κB in the colons, which were associated with decreased expression and activity of PPAR-γ. Voluntary exercise markedly attenuated body weight gain, improved metabolic disorders, and normalized the expression of inflammatory mediators and activation of NF-κB in the colons in HFD-mice while having no effects in CON-animals. Moreover, voluntary exercise significantly increased expression and activity of PPAR-γ in the colons in both HFD- and CON-animals. However, all of these beneficial effects induced by voluntary exercise were abolished by GW9662, which inhibited expression and activity of PPAR-γ. The results suggest that decreased PPAR-γ activity in the colon of HFD-induced obesity may facilitate the inflammatory response and colon carcinogenesis. Voluntary exercise prevents colonic inflammation in HFD-induced obesity by up-regulating PPAR-γ activity. - Highlights: • Obesity down-regulates PPAR-γ in the colon. • Down-regulated colonic PPAR-γ may facilitate inflammatory

  5. Voluntary exercise prevents colonic inflammation in high-fat diet-induced obese mice by up-regulating PPAR-γ activity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei-Xin, E-mail: weixinliu@yahoo.com [Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning (China); Wang, Ting; Zhou, Feng; Wang, Ying; Xing, Jun-Wei; Zhang, Shen [Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning (China); Gu, Shou-Zhi [Department of Anatomy, Seirei Christopher College, Hamamatsu 433-8558 (Japan); Sang, Li-Xuan [Department of Cadre Ward II, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning (China); Dai, Cong [Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning (China); Wang, Hai-Lan [Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, Guangdong (China)

    2015-04-10

    Obesity is associated with increased colonic inflammation, which elevates the risk of colon cancer. Although exercise exerts anti-inflammatory actions in multiple chronic diseases associated with inflammation, it is unknown whether this strategy prevents colonic inflammation in obesity. We hypothesized that voluntary exercise would suppress colonic inflammation in high-fat diet (HFD)-induced obesity by modulation of peroxisome proliferator-activated receptor (PPAR)-γ. Male C57Bl/6J mice fed either a control diet (6.5% fat, CON) or a high-fat diet (24% fat, HFD) were divided into sedentary, voluntary exercise or voluntary exercise with PPAR-γ antagonist GW9662 (10 mg/kg/day). All interventions took place for 12 weeks. Compared with CON-sedentary group, HFD-sedentary mice gained significantly more body weight and exhibited metabolic disorders. Molecular studies revealed that HFD-sedentary mice had increased expression of inflammatory mediators and activation of nuclear factor (NF)-κB in the colons, which were associated with decreased expression and activity of PPAR-γ. Voluntary exercise markedly attenuated body weight gain, improved metabolic disorders, and normalized the expression of inflammatory mediators and activation of NF-κB in the colons in HFD-mice while having no effects in CON-animals. Moreover, voluntary exercise significantly increased expression and activity of PPAR-γ in the colons in both HFD- and CON-animals. However, all of these beneficial effects induced by voluntary exercise were abolished by GW9662, which inhibited expression and activity of PPAR-γ. The results suggest that decreased PPAR-γ activity in the colon of HFD-induced obesity may facilitate the inflammatory response and colon carcinogenesis. Voluntary exercise prevents colonic inflammation in HFD-induced obesity by up-regulating PPAR-γ activity. - Highlights: • Obesity down-regulates PPAR-γ in the colon. • Down-regulated colonic PPAR-γ may facilitate inflammatory

  6. Impact of antiretroviral therapy (ART) timing on chronic immune activation/inflammation and end-organ damage.

    Science.gov (United States)

    Rajasuriar, Reena; Wright, Edwina; Lewin, Sharon R

    2015-01-01

    The purpose of this review was to summarize recent studies on the effect of early antiretroviral therapy (ART) in HIV-infected patients on markers of immune activation/inflammation, viral persistence and serious non-AIDS events. Early ART, initiated within days to months of HIV infection, was associated with marked reduction in T-cell activation often reaching levels observed in HIV-uninfected individuals. However, the impact of early ART on markers of innate immune activation, microbial translocation and inflammation/coagulation was less clear. Early ART has also been associated with a significant reduction in the frequency of latently infected cells, which was greater if ART was initiated within days to weeks rather than months following infection. However, few studies have evaluated the relationship between immune activation and viral reservoirs, specifically following early ART. Early ART may potentially reduce serious non-AIDS events and associated mortality, but most of these studies have extrapolated from changes in surrogate markers, such as CD4 : CD8 ratio. Early ART was associated with beneficial effects on multiple markers of immune activation, inflammation and viral persistence. Longer term prospective studies are still needed to determine whether early ART translates to a significant reduction in serious non-AIDS events and mortality.

  7. Loss of p120 catenin and links to mitotic alterations, inflammation, and skin cancer

    DEFF Research Database (Denmark)

    Perez-Moreno, Mirna; Song, Weimin; Pasolli, H Amalia

    2008-01-01

    Tumor formation involves epigenetic modifications and microenvironmental changes as well as cumulative genetic alterations encompassing somatic mutations, loss of heterozygosity, and aneuploidy. Here, we show that conditional targeting of p120 catenin in mice leads to progressive development...... of skin neoplasias associated with intrinsic NF-kappaB activation. We find that, similarly, squamous cell carcinomas in humans display altered p120 and activated NF-kappaB. We show that epidermal hyperproliferation arising from p120 loss can be abrogated by IkappaB kinase 2 inhibitors. Although...... this underscores the importance of this pathway, the role of NF-kappaB in hyperproliferation appears rooted in its impact on epidermal microenvironment because as p120-null keratinocytes display a growth-arrested phenotype in culture. We trace this to a mitotic defect, resulting in unstable, binucleated cells...

  8. Vessel Wall Inflammation of Takayasu Arteritis Detected by Contrast-Enhanced Magnetic Resonance Imaging: Association with Disease Distribution and Activity.

    Directory of Open Access Journals (Sweden)

    Yoko Kato

    Full Text Available The assessment of the distribution and activity of vessel wall inflammation is clinically important in patients with Takayasu arteritis. Magnetic resonance imaging (MRI is a useful tool, but the clinical utility of late gadolinium enhancement (LGE in Takayasu arteritis has yet to be determined. The aim of the present study was to evaluate the utility of LGE in assessing vessel wall inflammation and disease activity in Takayasu arteritis.We enrolled 49 patients with Takayasu arteritis who had undergone 1.5 T MRI. Patients were divided into Active (n = 19 and Inactive disease (n = 30 groups. The distribution of vessel wall inflammation using angiography and LGE was assessed by qualitative analysis. In 79% and 63% of patients in Active and Inactive groups, respectively, greater distribution of vessel wall inflammation was observed with LGE than with conventional angiography. MRI values of pre- and post-contrast signal-to-noise ratios (SNR, SNR increment (post-SNR minus pre-SNR, pre- and post-contrast contrast-to-noise ratios (CNR, and CNR increment (post-CNR minus pre-CNR were evaluated at arterial wall sites with the highest signal intensity using quantitative analysis of post-contrast LGE images. No statistically significant differences in MRI parameters were observed between Active and Inactive groups. Contrast-enhanced MRI was unable to accurately detect active disease.Contrast-enhanced MRI has utility in detecting the distribution of vessel wall inflammation but has less utility in assessing disease activity in Takayasu arteritis.

  9. The Role of Interferons in Inflammation and Inflammasome Activation.

    Science.gov (United States)

    Kopitar-Jerala, Nataša

    2017-01-01

    Inflammation is an essential physiological process, which enables survival during infection and maintains tissue homeostasis. Interferons (IFNs) and pro- and anti-inflammatory cytokines are crucial for appropriate response to pathogens, damaged cells, or irritants in inflammatory response. The inflammasom is multiprotein complex, which initiates cleavage of pro-inflammatory cytokines IL-1β and IL-18 into active forms. In addition, inflammasomes initiate pyroptotic cell death. In the present review, I summarize and analyze recent findings regarding the cross talk of IFNs and inflammasomes.

  10. Proteomic profiling identifies markers for inflammation-related tumor-fibroblast interaction.

    Science.gov (United States)

    Drev, Daniel; Bileck, Andrea; Erdem, Zeynep N; Mohr, Thomas; Timelthaler, Gerald; Beer, Andrea; Gerner, Christopher; Marian, Brigitte

    2017-01-01

    Cancer associated fibroblasts are activated in the tumor microenvironment and contribute to tumor progression, angiogenesis, extracellular matrix remodeling, and inflammation. To identify proteins characteristic for fibroblasts in colorectal cancer we used liquid chromatography-tandem mass spectrometry to derive protein abundance from whole-tissue homogenates of human colorectal cancer/normal mucosa pairs. Alterations of protein levels were determined by two-sided t test with greater than threefold difference and an FDR of matrix organization, TGFβ receptor signaling and angiogenesis mainly originating from the stroma. Most prominent were increased abundance of SerpinB5 in the parenchyme and latent transforming growth factor β-binding protein, thrombospondin-B2, and secreted protein acidic-and-cysteine-rich in the stroma. Extracellular matrix remodeling involved collagens type VIII, XII, XIV, and VI as well as lysyl-oxidase-2. In silico analysis of mRNA levels demonstrated altered expression in the tumor and the adjacent normal tissue as compared to mucosa of healthy individuals indicating that inflammatory activation affected the surrounding tissue. Immunohistochemistry of 26 tumor specimen confirmed upregulation of SerpinB5, thrombospondin B2 and secreted protein acidic-and-cysteine-rich. This study demonstrates the feasibility of detecting tumor- and compartment-specific protein-signatures that are functionally meaningful by proteomic profiling of whole-tissue extracts together with mining of RNA expression datasets. The results provide the basis for further exploration of inflammation-related stromal markers in larger patient cohorts and experimental models.

  11. Growth-hormone-induced signal transducer and activator of transcription 5 signaling causes gigantism, inflammation, and premature death but protects mice from aggressive liver cancer.

    Science.gov (United States)

    Friedbichler, Katrin; Themanns, Madeleine; Mueller, Kristina M; Schlederer, Michaela; Kornfeld, Jan-Wilhelm; Terracciano, Luigi M; Kozlov, Andrey V; Haindl, Susanne; Kenner, Lukas; Kolbe, Thomas; Mueller, Mathias; Snibson, Kenneth J; Heim, Markus H; Moriggl, Richard

    2012-03-01

    Persistently high levels of growth hormone (GH) can cause liver cancer. GH activates multiple signal-transduction pathways, among them janus kinase (JAK) 2-signal transducer and activator of transcription (STAT) 5 (signal transducer and activator of transcription 5). Both hyperactivation and deletion of STAT5 in hepatocytes have been implicated in the development of hepatocellular carcinoma (HCC); nevertheless, the role of STAT5 in the development of HCC as a result of high GH levels remains enigmatic. Thus, we crossed a mouse model of gigantism and inflammatory liver cancer caused by hyperactivated GH signaling (GH(tg) ) to mice with hepatic deletion of STAT5 (STAT5(Δhep) ). Unlike GH(tg) mice, GH(tg) STAT5(Δhep) animals did not display gigantism. Moreover, the premature mortality, which was associated with chronic inflammation, as well as the pathologic alterations of hepatocytes observed in GH(tg) mice, were not observed in GH(tg) animals lacking STAT5. Strikingly, loss of hepatic STAT5 proteins led to enhanced HCC development in GH(tg) mice. Despite reduced chronic inflammation, GH(tg) STAT5(Δhep) mice displayed earlier and more advanced HCC than GH(tg) animals. This may be attributed to the combination of increased peripheral lipolysis, hepatic lipid synthesis, loss of hepatoprotective mediators accompanied by aberrant activation of tumor-promoting c-JUN and STAT3 signaling cascades, and accumulation of DNA damage secondary to loss of cell-cycle control. Thus, HCC was never observed in STAT5(Δhep) mice. As a result of their hepatoprotective functions, STAT5 proteins prevent progressive fatty liver disease and the formation of aggressive HCC in the setting of hyperactivated GH signaling. At the same time, they play a key role in controlling systemic inflammation and regulating organ and body size. Copyright © 2011 American Association for the Study of Liver Diseases.

  12. Association between serum levels of high sensitive C-reactive protein and inflammation activity in chronic gastritis patients.

    Science.gov (United States)

    Rahmani, Asghar; Moradkhani, Atefeh; Hafezi Ahmadi, Mohammad Reza; Jafari Heirdarlo, Ali; Abangah, Ghobad; Asadollahi, Khairollah; Sayehmiri, Kourosh

    2016-01-01

    Gastritis is an important premalignant lesion and recent studies suggested a production of inflammatory cytokine-like C-reactive protein during gastritis. This study aimed to determine any relationship between high sensitive C-reactive protein (hs-CRP) and inflammation activity among patients with gastritis. Demographic and clinical variables of participants were collected by a validated questionnaire. Using histology of the gastric mucosa, Helicobacter pylori status was investigated and serum concentrations of hs-CRP were measured among dyspeptic patients. Correlation between hs-CRP serum levels and inflammation activities was evaluated by logistic regression analysis. The relation between active inflammation and other variables was evaluated by logic link function model. Totally 239 patients (56.6% female) were analysed. The prevalence of mild, moderate and severe inflammation activities was 66.5%, 23.8% and 9.6% respectively. Mean ± SD of hs-CRP among men and women were 2.85 ± 2.84 mg/dl and 2.80 ± 4.80 mg/dl (p = 0.047) respectively. Mean ± SD of hs-CRP among patients with H. pylori infection, gland atrophy, metaplasia and dysplasia were 2.83 ± 3.80 mg/dl, 3.52 ± 5.1 mg/dl, 2.22 ± 2.3 mg/dl and 5.3 ± 5.04 mg/dl respectively. Relationship between hs-CRP and inflammation activities (p gastritis, elevated hs-CRP levels may be considered as a predictive marker of changes in gastric mucosa and a promising therapeutic target for patients with gastritis.

  13. Low-Cytotoxic Synthetic Bromorutaecarpine Exhibits Anti-Inflammation and Activation of Transient Receptor Potential Vanilloid Type 1 Activities

    Directory of Open Access Journals (Sweden)

    Chi-Ming Lee

    2013-01-01

    Full Text Available Rutaecarpine (RUT, the major bioactive ingredient isolated from the Chinese herb Evodia rutaecarpa, possesses a wide spectrum of biological activities, including anti-inflammation and preventing cardiovascular diseases. However, its high cytotoxicity hampers pharmaceutical development. We designed and synthesized a derivative of RUT, bromo-dimethoxyrutaecarpine (Br-RUT, which showed no cytotoxicity at 20 μM. Br-RUT suppressed nitric oxide (NO production and tumor necrosis factor-α release in concentration-dependent (0~20 μM manners in lipopolysaccharide (LPS-treated RAW 264.7 macrophages; protein levels of inducible NO synthase (iNOS and cyclooxygenase-2 induced by LPS were downregulated. Br-RUT inhibited cell migration and invasion of ovarian carcinoma A2780 cells with 0~48 h of treatment. Furthermore, Br-RUT enhanced the expression of transient receptor potential vanilloid type 1 and activated endothelial NOS in human aortic endothelial cells. These results suggest that the synthetic Br-RUT possesses very low cytotoxicity but retains its activities against inflammation and vasodilation that could be beneficial for cardiovascular disease therapeutics.

  14. The impact of inflammation and immune activation on B cell differentiation during HIV-1 infection

    Directory of Open Access Journals (Sweden)

    Nicolas eRuffin

    2012-01-01

    Full Text Available HIV-1 infection is characterized by continuous antigenic stimulation, chronic immune activation and impaired survival of T and B cells. A decline of resting memory B cells has previously been reported to occur in both children and adults infected with HIV-1; these cells are responsible for mounting and maintaining an adequate serological response to antigens previously encountered in life through natural infection or vaccination. Further understanding of the mechanisms leading to impaired B cell differentiation and germinal center reaction might be essential to design new HIV vaccines and therapies that could improve humoral immune responses in HIV-1 infected individuals. In the present article we summarize the literature and present our view on critical mechanisms of B cell development which are impaired during HIV-1 infection. We also discuss the impact of microbial translocation, a driving force for persistent inflammation during HIV-1 infection, on survival of terminally differentiated B cells and how the altered expression of cytokines/chemokines pivotal for communication between T and B cells in lymphoid tissues may impair formation of memory B cells.

  15. Inflammation and neuronal plasticity: a link between childhood trauma and depression pathogenesis.

    Science.gov (United States)

    Cattaneo, Annamaria; Macchi, Flavia; Plazzotta, Giona; Veronica, Begni; Bocchio-Chiavetto, Luisella; Riva, Marco Andrea; Pariante, Carmine Maria

    2015-01-01

    During the past two decades, there has been increasing interest in understanding and characterizing the role of inflammation in major depressive disorder (MDD). Indeed, several are the evidences linking alterations in the inflammatory system to Major Depression, including the presence of elevated levels of pro-inflammatory cytokines, together with other mediators of inflammation. However, it is still not clear whether inflammation represents a cause or whether other factors related to depression result in these immunological effects. Regardless, exposure to early life stressful events, which represent a vulnerability factor for the development of psychiatric disorders, act through the modulation of inflammatory responses, but also of neuroplastic mechanisms over the entire life span. Indeed, early life stressful events can cause, possibly through epigenetic changes that persist over time, up to adulthood. Such alterations may concur to increase the vulnerability to develop psychopathologies. In this review we will discuss the role of inflammation and neuronal plasticity as relevant processes underlying depression development. Moreover, we will discuss the role of epigenetics in inducing alterations in inflammation-immune systems as well as dysfunction in neuronal plasticity, thus contributing to the long-lasting negative effects of stressful life events early in life and the consequent enhanced risk for depression. Finally we will provide an overview on the potential role of inflammatory system to aid diagnosis, predict treatment response, enhance treatment matching, and prevent the onset or relapse of Major Depression.

  16. The Role of Interferons in Inflammation and Inflammasome Activation

    Directory of Open Access Journals (Sweden)

    Nataša Kopitar-Jerala

    2017-07-01

    Full Text Available Inflammation is an essential physiological process, which enables survival during infection and maintains tissue homeostasis. Interferons (IFNs and pro- and anti-inflammatory cytokines are crucial for appropriate response to pathogens, damaged cells, or irritants in inflammatory response. The inflammasom is multiprotein complex, which initiates cleavage of pro-inflammatory cytokines IL-1β and IL-18 into active forms. In addition, inflammasomes initiate pyroptotic cell death. In the present review, I summarize and analyze recent findings regarding the cross talk of IFNs and inflammasomes.

  17. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats.

    Science.gov (United States)

    Cao, Zhengwang; Fang, Yiliang; Lu, Yonghui; Qian, Fenghua; Ma, Qinglong; He, Mingdi; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2016-01-01

    With recent advances in the manufacture and application of nickel oxide nanoparticles (NiONPs), concerns about their adverse effects on the respiratory system are increasing. However, the underlying cellular and molecular mechanisms of NiONP-induced pulmonary toxicity remain unclear. In this study, we focused on the impacts of NiONPs on pulmonary inflammation and investigated whether the NLRP3 inflammasome is involved in NiONP-induced pulmonary inflammation and injury. NiONP suspensions were administered by single intratracheal instillation to rats, and inflammatory responses were evaluated at 3 days, 7 days, or 28 days after treatment. NiONP exposure resulted in sustained pulmonary inflammation accompanied by inflammatory cell infiltration, alveolar proteinosis, and cytokine secretion. Expression of Nlrp3 was markedly upregulated by the NiONPs, which was accompanied by overexpression of the active form of caspase-1 (p20) and interleukin (IL)-1β secretion in vivo. NiONP-induced IL-1β secretion was partially prevented by co-treatment with a caspase-1 inhibitor in macrophages. Moreover, siRNA-mediated Nlrp3 knockdown completely attenuated NiONP-induced cytokine release and caspase-1 activity in macrophages in vitro. In addition, NiONP-induced NLRP3 inflammasome activation requires particle uptake and reactive oxygen species production. Collectively, our findings suggest that the NLRP3 inflammasome participates in NiONP-induced pulmonary inflammation and offer new strategies to combat the pulmonary toxicity induced by NiONPs.

  18. Long-term dietary supplementation with low-dose nobiletin ameliorates hepatic steatosis, insulin resistance, and inflammation without altering fat mass in diet-induced obesity.

    Science.gov (United States)

    Kim, Young-Je; Choi, Myung-Sook; Woo, Je Tae; Jeong, Mi Ji; Kim, Sang Ryong; Jung, Un Ju

    2017-08-01

    We evaluated the long-term effect of low-dose nobiletin (NOB), a polymethoxylated flavone, on diet-induced obesity and related metabolic disturbances. C57BL/6J mice were fed a high-fat diet (HFD, 45 kcal% fat) with or without NOB (0.02%, w/w) for 16 weeks. NOB did not alter food intake or body weight. Despite increases in fatty acid oxidation-related genes expression and enzymes activity in adipose tissue, NOB did not affect adipose tissue weight due to simultaneous increases in lipogenic genes expression and fatty acid synthase activity. However, NOB significantly decreased not only pro-inflammatory genes expression in adipose tissue but also proinflammatory cytokine levels in plasma. NOB-supplemented mice also showed improved glucose tolerance and insulin resistance, along with decreased levels of plasma insulin, free fatty acids, total cholesterol, non-HDL-cholesterol, and apolipoprotein B. In addition, NOB caused significant decreases in hepatic lipid droplet accumulation and triglyceride content by activating hepatic fatty acid oxidation-related enzymes. Hepatic proinflammatory TNF-α mRNA expression, collagen accumulation, and plasma levels of aminotransferases, liver damage indicators, were also significantly lower in NOB-supplemented mice. These findings suggest that long-term supplementation with low-dose NOB can protect against HFD-induced inflammation, insulin resistance, dyslipidemia, and nonalcoholic fatty liver disease, without ameliorating adiposity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Dietary Anthocyanins against Obesity and Inflammation.

    Science.gov (United States)

    Lee, Yoon-Mi; Yoon, Young; Yoon, Haelim; Park, Hyun-Min; Song, Sooji; Yeum, Kyung-Jin

    2017-10-01

    Chronic low-grade inflammation plays a pivotal role in the pathogenesis of obesity, due to its associated chronic diseases such as type II diabetes, cardiovascular diseases, pulmonary diseases and cancer. Thus, targeting inflammation is an attractive strategy to counter the burden of obesity-induced health problems. Recently, food-derived bioactive compounds have been spotlighted as a regulator against various chronic diseases due to their low toxicity, as opposed to drugs that induce severe side effects. Here we describe the beneficial effects of dietary anthocyanins on obesity-induced metabolic disorders and inflammation. Red cabbage microgreen, blueberry, blackcurrant, mulberry, cherry, black elderberry, black soybean, chokeberry and jaboticaba peel contain a variety of anthocyanins including cyanidins, delphinidins, malvidins, pelargonidins, peonidins and petunidins, and have been reported to alter both metabolic markers and inflammatory markers in cells, animals, and humans. This review discusses the interplay between inflammation and obesity, and their subsequent regulation via the use of dietary anthocyanins, suggesting an alternative dietary strategy to ameliorate obesity and obesity associated chronic diseases.

  20. Activation of AMPK improves inflammation and insulin resistance in adipose tissue and skeletal muscle from pregnant women.

    Science.gov (United States)

    Liong, Stella; Lappas, Martha

    2015-12-01

    Gestational diabetes mellitus (GDM) is characterised by maternal peripheral insulin resistance and inflammation. Sterile inflammation and bacterial infection are key mediators of this enhanced inflammatory response. Adenosine monophosphate (AMP)-activated kinase (AMPK), which is decreased in insulin resistant states, possesses potent pro-inflammatory actions. There are, however, no studies on the role of AMPK in pregnancies complicated by GDM. Thus, the aims of this study were (i) to compare the expression of AMPK in adipose tissue and skeletal muscle from women with GDM and normal glucose-tolerant (NGT) pregnant women; and (ii) to investigate the effect of AMPK activation on inflammation and insulin resistance induced by the bacterial endotoxin lipopolysaccharide (LPS) and the pro-inflammatory cytokine IL-1β. When compared to NGT pregnant women, AMPKα activity was significantly lower in women with GDM as evidenced by a decrease in threonine phosphorylation of AMPKα. Activation of AMPK, using two pharmacologically distinct compounds, AICAR or phenformin, significantly suppressed LPS- or IL-1β-induced gene expression and secretion of pro-inflammatory cytokine IL-6, the chemokines IL-8 and MCP-1, and COX-2 and subsequent prostaglandin release from adipose tissue and skeletal muscle. In addition, activators of AMPK decreased skeletal muscle insulin resistance induced by LPS or IL-1β as evidenced by increased insulin-stimulated phosphorylation of IRS-1, GLUT-4 expression and glucose uptake. These findings suggest that AMPK may play an important role in inflammation and insulin resistance.

  1. Adaptive immunity alters distinct host feeding pathways during nematode induced inflammation, a novel mechanism in parasite expulsion.

    Directory of Open Access Journals (Sweden)

    John J Worthington

    2013-01-01

    Full Text Available Gastrointestinal infection is often associated with hypophagia and weight loss; however, the precise mechanisms governing these responses remain poorly defined. Furthermore, the possibility that alterations in feeding during infection may be beneficial to the host requires further study. We used the nematode Trichinella spiralis, which transiently inhabits the small intestine before migrating to skeletal muscle, as a biphasic model of infection to determine the cellular and molecular pathways controlling feeding during enteric and peripheral inflammation. Through the infection of genetically modified mice lacking cholecystokinin, Tumor necrosis factor α receptors and T and B-cells, we observed a biphasic hypophagic response to infection resulting from two separate immune-driven mechanisms. The enteroendocrine I-cell derived hormone cholecystokinin is an essential mediator of initial hypophagia and is induced by CD4+ T-cells during enteritis. In contrast, the second hypophagic response is extra-intestinal and due to the anorectic effects of TNFα during peripheral infection of the muscle. Moreover, via maintaining naive levels of the adipose secreted hormone leptin throughout infection we demonstrate a novel feedback loop in the immunoendocrine axis. Immune driven I-cell hyperplasia and resultant weight loss leads to a reduction in the inflammatory adipokine leptin, which in turn heightens protective immunity during infection. These results characterize specific immune mediated mechanisms which reduce feeding during intestinal or peripheral inflammation. Importantly, the molecular mediators of each phase are entirely separate. The data also introduce the first evidence that I-cell hyperplasia is an adaptively driven immune response that directly impinges on the outcome to infection.

  2. Fisetin inhibits UVB-induced cutaneous inflammation and activation of PI3K/AKT/NFκB signaling pathways in SKH-1 hairless mice†

    Science.gov (United States)

    Pal, Harish Chandra; Athar, Mohammad; Elmets, Craig A.; Afaq, Farrukh

    2014-01-01

    Solar ultraviolet B (UVB) radiation has been shown to induce inflammation, DNA damage, p53 mutations, and alterations in signaling pathways eventually leading to skin cancer. In the present study, we investigated whether fisetin reduces inflammatory responses and modulates PI3K/AKT/NFκB cell survival signaling pathways in UVB exposed SKH-1 hairless mouse skin. Mice were exposed to 180 mJ/cm2 of UVB radiation on alternate days for a total of seven exposures, and fisetin (250 and 500 nmol) was applied topically after 15 min of each UVB exposure. Fisetin treatment to UVB exposed mice resulted in decreased hyperplasia and reduced infiltration of inflammatory cells. Fisetin treatment also reduced inflammatory mediators such as COX-2, PGE2 as well as its receptors (EP1- EP4), and MPO activity. Furthermore, fisetin reduced the level of inflammatory cytokines TNFα, IL-1β and IL-6 in UVB exposed skin. Fisetin treatment also reduced cell proliferation markers as well as DNA damage as evidenced by increased expression of p53 and p21 proteins. Further studies revealed that fisetin inhibited UVB-induced expression of PI3K, phosphorylation of AKT, and activation of the NFκB signaling pathway in mouse skin. Overall, these data suggest that fisetin may be useful against UVB-induced cutaneous inflammation and DNA damage. PMID:25169110

  3. Fisetin inhibits UVB-induced cutaneous inflammation and activation of PI3K/AKT/NFκB signaling pathways in SKH-1 hairless mice.

    Science.gov (United States)

    Pal, Harish Chandra; Athar, Mohammad; Elmets, Craig A; Afaq, Farrukh

    2015-01-01

    Solar ultraviolet B (UVB) radiation has been shown to induce inflammation, DNA damage, p53 mutations and alterations in signaling pathways eventually leading to skin cancer. In this study, we investigated whether fisetin reduces inflammatory responses and modulates PI3K/AKT/NFκB cell survival signaling pathways in UVB-exposed SKH-1 hairless mouse skin. Mice were exposed to 180 mJ cm(-2) of UVB radiation on alternate days for a total of seven exposures, and fisetin (250 and 500 nmol) was applied topically after 15 min of each UVB exposure. Fisetin treatment to UVB-exposed mice resulted in decreased hyperplasia and reduced infiltration of inflammatory cells. Fisetin treatment also reduced inflammatory mediators such as COX-2, PGE2 as well as its receptors (EP1-EP4) and MPO activity. Furthermore, fisetin reduced the level of inflammatory cytokines TNFα, IL-1β and IL-6 in UVB-exposed skin. Fisetin treatment also reduced cell proliferation markers as well as DNA damage as evidenced by increased expression of p53 and p21 proteins. Further studies revealed that fisetin inhibited UVB-induced expression of PI3K, phosphorylation of AKT and activation of the NFκB signaling pathway in mouse skin. Overall, these data suggest that fisetin may be useful against UVB-induced cutaneous inflammation and DNA damage. © 2014 The American Society of Photobiology.

  4. Presenilin/γ-secretase and inflammation

    Directory of Open Access Journals (Sweden)

    Carlos A Saura

    2010-05-01

    Full Text Available Presenilins (PS are the catalytic components of γ-secretase, an aspartyl protease that regulates through proteolytic processing the function of multiple signaling proteins. Specially relevant is the γ-secretase-dependent cleavage of the β-amyloid precursor protein (APP since generates the β-amyloid (Aβ peptides that aggregate and accumulate in the brain of Alzheimer´s disease (AD patients. Abnormal processing and/or accumulation of Aβ disrupt synaptic and metabolic processes leading to neuron dysfunction and neurodegeneration. Studies in presenilin conditional knockout mice have revealed that presenilin-1 is essential for age-dependent Aβ accumulation and inflammation. By contrast, mutations in the presenilin genes reponsible for early onset familial AD cause rapid disease progression and accentuate clinical and pathological features including inflammation. In addition, a number of loss of function mutations in presenilin-1 have been recently associated to non-Alzheimer's dementias including frontotemporal dementia and dementia with Lewy bodies. In agreement, total loss of presenilin function in the brain results in striking neurodegeneration and inflammation, which includes activation of glial cells and induction of proinflammatory genes, besides altered inflammatory responses in the periphery. Interestingly, some non-steroidal anti-inflammatory drugs (NSAIDs that slow cognitive decline and reduce the risk of AD, decrease amyloidogenic Aβ42 levels by modulating allosterically PS/γ-secretase. In this review, I present current evidence supporting a role of presenilin/γ-secretase signaling on gliogenesis and gliosis in normal and pathological conditions. Understanding the cellular mechanisms regulated by presenilin/γ-secretase during chronic inflammatory processes may provide new approaches for the development of effective therapeutic strategies for AD.

  5. Bile acid metabolism and signaling in cholestasis, inflammation and cancer

    Science.gov (United States)

    Apte, Udayan

    2015-01-01

    Bile acids are synthesized from cholesterol in the liver. Some cytochrome P450 (CYP) enzymes play key roles in bile acid synthesis. Bile acids are physiological detergent molecules, so are highly cytotoxic. They undergo enterohepatic circulation and play important roles in generating bile flow and facilitating biliary secretion of endogenous metabolites and xenobiotics and intestinal absorption of dietary fats and lipid soluble vitamins. Bile acid synthesis, transport and pool size are therefore tightly regulated under physiological conditions. In cholestasis, impaired bile flow leads to accumulation of bile acids in the liver, causing hepatocyte and biliary injury and inflammation. Chronic cholestasis is associated with fibrosis, cirrhosis and eventually liver failure. Chronic cholestasis also increases the risk of developing hepatocellular or cholangiocellular carcinomas. Extensive research in the last two decades has shown that bile acids act as signaling molecules that regulate various cellular processes. The bile acid-activated nuclear receptors are ligand-activated transcriptional factors that play critical roles in the regulation of bile acid, drug and xenobiotic metabolism. In cholestasis, these bile acid-activated receptors regulate a network of genes involved in bile acid synthesis, conjugation, transport and metabolism to alleviate bile acid-induced inflammation and injury. Additionally, bile acids are known to regulate cell growth and proliferation, and altered bile acid levels in diseased conditions have been implicated in liver injury/regeneration and tumorigenesis. We will cover the mechanisms that regulate bile acid homeostasis and detoxification during cholestasis, and the roles of bile acids in the initiation and regulation of hepatic inflammation, regeneration and carcinogenesis. PMID:26233910

  6. The novel cytokine interleukin-33 activates acinar cell proinflammatory pathways and induces acute pancreatic inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Duraisamy Kempuraj

    Full Text Available Acute pancreatitis is potentially fatal but treatment options are limited as disease pathogenesis is poorly understood. IL-33, a novel IL-1 cytokine family member, plays a role in various inflammatory conditions but its role in acute pancreatitis is not well understood. Specifically, whether pancreatic acinar cells produce IL-33 when stressed or respond to IL-33 stimulation, and whether IL-33 exacerbates acute pancreatic inflammation is unknown.In duct ligation-induced acute pancreatitis in mice and rats, we found that (a IL-33 concentration was increased in the pancreas; (b mast cells, which secrete and also respond to IL-33, showed degranulation in the pancreas and lung; (c plasma histamine and pancreatic substance P concentrations were increased; and (d pancreatic and pulmonary proinflammatory cytokine concentrations were increased. In isolated mouse pancreatic acinar cells, TNF-α stimulation increased IL-33 release while IL-33 stimulation increased proinflammatory cytokine release, both involving the ERK MAP kinase pathway; the flavonoid luteolin inhibited IL-33-stimulated IL-6 and CCL2/MCP-1 release. In mice without duct ligation, exogenous IL-33 administration induced pancreatic inflammation without mast cell degranulation or jejunal inflammation; pancreatic changes included multifocal edema and perivascular infiltration by neutrophils and some macrophages. ERK MAP kinase (but not p38 or JNK and NF-kB subunit p65 were activated in the pancreas of mice receiving exogenous IL-33, and acinar cells isolated from the pancreas of these mice showed increased spontaneous cytokine release (IL-6, CXCL2/MIP-2α. Also, IL-33 activated ERK in human pancreatic tissue.As exogenous IL-33 does not induce jejunal inflammation in the same mice in which it induces pancreatic inflammation, we have discovered a potential role for an IL-33/acinar cell axis in the recruitment of neutrophils and macrophages and the exacerbation of acute pancreatic inflammation

  7. Magnesium deficiency and metabolic syndrome: stress and inflammation may reflect calcium activation.

    Science.gov (United States)

    Rayssiguier, Yves; Libako, Patrycja; Nowacki, Wojciech; Rock, Edmond

    2010-06-01

    Magnesium (Mg) intake is inadequate in the western diet and metabolic syndrome is highly prevalent in populations around the world. Epidemiological studies suggest that high Mg intake may reduce the risk but the possibility of confounding factors exists, given the strong association between Mg and other beneficial nutriments (vegetables, fibers, cereals). The concept that metabolic syndrome is an inflammatory condition may explain the role of Mg.Mg deficiency results in a stress effect and increased susceptibility to physiological damage produced by stress. Stress activates the hypothalamic-pituitary-adrenal axis (HPA) axis and the sympathetic nervous system. The activation of the renin-angiotensin-aldosterone system is a factor in the development of insulin resistance by increasing oxidative stress. In both humans and rats, aldosteronism results in an immunostimulatory state and leads to an inflammatory phenotype. Stress response induces the release of large quantities of excitatory amino acids and activates the nuclear factor NFkappaB, promoting translation of molecules involved in cell regulation, metabolism and apoptosis. The rise in neuropeptides is also well documented. Stress-induced HPA activation has been identified to play an important role in the preferential body fat accumulation but evidence that Mg is involved in body weight regulation is lacking. One of the earliest events in the acute response to stress is endothelial dysfunction. Endothelial cells actively contribute to inflammation by elaborating cytokines, synthesizing chemical mediators and expressing adhesion molecules. Experimental Mg deficiency in rats induces a clinical inflammatory syndrome characterized by leukocyte and macrophage activation, synthesis of inflammatory cytokines and acute phase proteins, extensive production of free radicals. An increase in extracellular Mg concentration decreases inflammatory effects, while reduction in extracellular Mg results in cell activation. The

  8. Octulosonic acid derivatives from Roman chamomile (Chamaemelum nobile) with activities against inflammation and metabolic disorder.

    Science.gov (United States)

    Zhao, Jianping; Khan, Shabana I; Wang, Mei; Vasquez, Yelkaira; Yang, Min Hye; Avula, Bharathi; Wang, Yan-Hong; Avonto, Cristina; Smillie, Troy J; Khan, Ikhlas A

    2014-03-28

    Six new octulosonic acid derivatives (1-6) were isolated from the flower heads of Roman chamomile (Chamaemelum nobile). Their structures were elucidated by means of spectroscopic interpretation. The biological activity of the isolated compounds was evaluated toward multiple targets related to inflammation and metabolic disorder such as NAG-1, NF-κB, iNOS, ROS, PPARα, PPARγ, and LXR. Similar to the action of NSAIDs, all the six compounds (1-6) increased NAG-1 activity 2-3-fold. They also decreased cellular oxidative stress by inhibiting ROS generation. Compounds 3, 5, and 6 activated PPARγ 1.6-2.1-fold, while PPARα was activated 1.4-fold by compounds 5 and 6 only. None of the compounds showed significant activity against iNOS or NF-κB. This is the first report of biological activity of octulosonic acid derivatives toward multiple pathways related to inflammation and metabolic disorder. The reported anti-inflammatory, hypoglycemic, antiedemic, and antioxidant activities of Roman chamomile could be partly explained as due to the presence of these constituents.

  9. Cobalt Alloy Implant Debris Induces Inflammation and Bone Loss Primarily through Danger Signaling, Not TLR4 Activation: Implications for DAMP-ening Implant Related Inflammation

    Science.gov (United States)

    Samelko, Lauryn; Landgraeber, Stefan; McAllister, Kyron; Jacobs, Joshua; Hallab, Nadim James

    2016-01-01

    Cobalt alloy debris has been implicated as causative in the early failure of some designs of current total joint implants. The ability of implant debris to cause excessive inflammation via danger signaling (NLRP3 inflammasome) vs. pathogen associated pattern recognition receptors (e.g. Toll-like receptors; TLRs) remains controversial. Recently, specific non-conserved histidines on human TLR4 have been shown activated by cobalt and nickel ions in solution. However, whether this TLR activation is directly or indirectly an effect of metals or secondary endogenous alarmins (danger-associated molecular patterns, DAMPs) elicited by danger signaling, remains unknown and contentious. Our study indicates that in both a human macrophage cell line (THP-1) and primary human macrophages, as well as an in vivo murine model of inflammatory osteolysis, that Cobalt-alloy particle induced NLRP3 inflammasome danger signaling inflammatory responses were highly dominant relative to TLR4 activation, as measured respectively by IL-1β or TNF-α, IL-6, IL-10, tissue histology and quantitative bone loss measurement. Despite the lack of metal binding histidines H456 and H458 in murine TLR4, murine calvaria challenge with Cobalt alloy particles induced significant macrophage driven in vivo inflammation and bone loss inflammatory osteolysis, whereas LPS calvaria challenge alone did not. Additionally, no significant increase (p500pg/mL). Therefore, not only do the results of this investigation support Cobalt alloy danger signaling induced inflammation, but under normal homeostasis low levels of hematogenous PAMPs (<2pg/mL) from Gram-negative bacteria, seem to have negligible contribution to the danger signaling responses elicited by Cobalt alloy metal implant debris. This suggests the unique nature of Cobalt alloy particle bioreactivity is strong enough to illicit danger signaling that secondarily activate concomitant TLR activation, and may in part explain Cobalt particulate associated

  10. LPS-induced systemic inflammation is more severe in P2Y12 null mice.

    Science.gov (United States)

    Liverani, Elisabetta; Rico, Mario C; Yaratha, Laxmikausthubha; Tsygankov, Alexander Y; Kilpatrick, Laurie E; Kunapuli, Satya P

    2014-02-01

    Thienopyridines are a class of antiplatelet drugs that are metabolized in the liver to several metabolites, of which only one active metabolite can irreversibly antagonize the platelet P2Y12 receptor. Possible effects of these drugs and the role of activated platelets in inflammatory responses have also been investigated in a variety of animal models, demonstrating that thienopyridines could alter inflammation. However, it is not clear whether it is caused only by the P2Y12 antagonism or whether off-target effects of other metabolites also intervene. To address this question, we investigated P2Y12 KO mice during a LPS-induced model of systemic inflammation, and we treated these KO mice with a thienopyridine drug (clopidogrel). Contrary to the reported effects of clopidogrel, numbers of circulating WBCs and plasma levels of cytokines were increased in LPS-exposed KO mice compared with WT in this inflammation model. Moreover, both spleen and bone marrow show an increase in cell content, suggesting a role for P2Y12 in regulation of bone marrow and spleen cellular composition. Finally, the injury was more severe in the lungs of KO mice compared with WT. Interestingly, clopidogrel treatments also exerted protective effects in KO mice, suggesting off-target effects for this drug. In conclusion, the P2Y12 receptor plays an important role during LPS-induced inflammation, and this signaling pathway may be involved in regulating cell content in spleen and bone marrow during LPS systemic inflammation. Furthermore, clopidogrel may have effects that are independent of P2Y12 receptor blockade.

  11. PPARs, Obesity, and Inflammation

    Directory of Open Access Journals (Sweden)

    Rinke Stienstra

    2007-01-01

    Full Text Available The worldwide prevalence of obesity and related metabolic disorders is rising rapidly, increasing the burden on our healthcare system. Obesity is often accompanied by excess fat storage in tissues other than adipose tissue, including liver and skeletal muscle, which may lead to local insulin resistance and may stimulate inflammation, as in steatohepatitis. In addition, obesity changes the morphology and composition of adipose tissue, leading to changes in protein production and secretion. Some of these secreted proteins, including several proinflammatory mediators, may be produced by macrophages resident in the adipose tissue. The changes in inflammatory status of adipose tissue and liver with obesity feed a growing recognition that obesity represents a state of chronic low-level inflammation. Various molecular mechanisms have been implicated in obesity-induced inflammation, some of which are modulated by the peroxisome proliferator-activated receptors (PPARs. PPARs are ligand-activated transcription factors involved in the regulation of numerous biological processes, including lipid and glucose metabolism, and overall energy homeostasis. Importantly, PPARs also modulate the inflammatory response, which makes them an interesting therapeutic target to mitigate obesity-induced inflammation and its consequences. This review will address the role of PPARs in obesity-induced inflammation specifically in adipose tissue, liver, and the vascular wall.

  12. Modulation of inflammation and autophagy pathways by trehalose containing eye drop formulation in corneal epithelial cells: implications for dry eye disease

    Directory of Open Access Journals (Sweden)

    Trailokyanath Panigrahi

    2017-10-01

    Full Text Available Ocular surface inflammation is an immunological perturbation activated in response to various adverse conditions and is a key biomarker to understand the disease pathology and its underlying immunological landscape [1]. The molecular link between Inflammation and autophagy, often implicated in disease conditions, is poorly understood. The aim of this study is to understand the regulation of inflammation signaling pathways by using a well-established modulator of autophagy, trehalose (TRE, on desiccation stress-induced inflammation in SV40 immortalized human corneal epithelial cells. To mimic the dry eye condition, HCE cells were exposed to desiccation stress at 80% confluency in a six well tissue culture plate. The medium was completely aspirated and cells were kept for drying at room temperature for 10 min. Fresh medium with TRE was added and incubated for 6 hrs. The regulation of induced inflammatory and autophagic gene expression and protein activation by TRE formulation (1.2% was studied. Optimal drug treatment concentrations were determined by dose escalation cytotoxicity studies. Gene expression was evaluated by quantitative PCR, while protein expression and functions were tested by immunoblotting and fluorescence imaging (Cyto-ID, Lysotracker Red. TRE formulation was able to rescue the morphological changes due to desiccation stress. Live to dead cell ratio increased upon TRE treatment. TRE treatment reduced inflammation induced gene expression of IL-6 (2%, MCP-1 (33.31%, IL-8 (9.56%, MMP-9 (18.96%, and TNFα (58.16% in HCE. Active form of p38, p44/42, and p65 protein levels were altered significantly by TRE treatment. LAMP1 and LC3 autophagy protein markers were also altered with desiccation stress and TRE treatment. The data demonstrate that TRE formulation is effective in reducing desiccation stress induced inflammation in HCE. Further increased phosphorylation of p38, p44/42 and elevated levels of LC3 and LAMP1 suggest that induction

  13. Associations between the degree of early lactation inflammation and performance, metabolism, and immune function in dairy cows.

    Science.gov (United States)

    McCarthy, M M; Yasui, T; Felippe, M J B; Overton, T R

    2016-01-01

    The objective of the current study was to determine associations between the severity of systemic inflammation during the early postpartum period and performance, energy metabolism, and immune function in dairy cows. Cows were assigned to categorical quartiles (Q; Q1=0.18-0.59, Q2=0.60-1.14, Q3=1.15-2.05, and Q4=2.06-2.50 g of haptoglobin/L) based on the highest plasma haptoglobin (Hp) concentration measured during wk 1 postpartum. Although cows were assigned to different categories of inflammation during the postpartum period, we detected a quadratic relationship of inflammation on prepartum dry matter intake (DMI) and body weight (BW) such that cows in Q2 had lower prepartum DMI and cows in Q2 and Q3 had lower prepartum BW compared with cows in the other quartiles. We also detected a quadratic association of inflammation with postpartum DMI and BW such that cows in Q2 and Q3 also had generally lower postpartum DMI and BW compared with cows in Q1. There was a tendency for a Q × time interaction for milk yield and Q × time interactions for 3.5% fat-corrected milk and energy-corrected milk yields; quadratic relationships suggested decreased milk yield for Q2 and Q3 cows. We also found Q × parity and Q × time interactions for plasma glucose and insulin concentrations, suggesting alterations with differing degrees of inflammation. There was also a Q × time interaction for plasma nonesterified fatty acids concentration. In addition, alterations in liver triglyceride and glycogen contents for cows with inflammation as well as alterations in [1-(14)C]propionate oxidation in vitro were observed. Although we observed limited effects of inflammation on neutrophil and monocyte phagocytosis at d 7 postpartum, inflammation appeared to alter neutrophil and monocyte oxidative burst. Overall, cows with any degree of elevated haptoglobin in the first week after calving had alterations in both pre- and postpartum intake and postpartum metabolism. Copyright © 2016 American

  14. Immune activation by histones: plusses and minuses in inflammation.

    Science.gov (United States)

    Pisetsky, David S

    2013-12-01

    Histones are highly cationic proteins that are essential components of the cell nucleus, interacting with DNA to form the nucleosome and regulating transcription. Histones, however, can transit from the cell nucleus during cell death and, once in an extracellular location, can serve as danger signals and activate immune cells. An article in this issue of the European Journal of Immunology [Eur. J. Immunol. 2013. 43: 3336-3342] reports that histones can activate monocyte-derived DCs via the NRLP3 inflammasome to induce the production of IL-1β. As such, histones, which can also stimulate TLRs, may drive events in the immunopathogenesis of a wide range of acute and chronic diseases marked by sterile inflammation. While the mechanism of this stimulation is not known, the positive charge of histones may provide a structural element to promote interaction with cells and activation of downstream signaling systems. © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Can Skin Exposure to Sunlight Prevent Liver Inflammation?

    Directory of Open Access Journals (Sweden)

    Shelley Gorman

    2015-05-01

    Full Text Available Liver inflammation contributes towards the pathology of non-alcoholic fatty liver disease (NAFLD. Here we discuss how skin exposure to sunlight may suppress liver inflammation and the severity of NAFLD. Following exposure to sunlight-derived ultraviolet radiation (UVR, the skin releases anti-inflammatory mediators such as vitamin D and nitric oxide. Animal modeling studies suggest that exposure to UVR can prevent the development of NAFLD. Association studies also support a negative link between circulating 25-hydroxyvitamin D and NAFLD incidence or severity. Clinical trials are in their infancy and are yet to demonstrate a clear beneficial effect of vitamin D supplementation. There are a number of potentially interdependent mechanisms whereby vitamin D could dampen liver inflammation, by inhibiting hepatocyte apoptosis and liver fibrosis, modulating the gut microbiome and through altered production and transport of bile acids. While there has been a focus on vitamin D, other mediators induced by sun exposure, such as nitric oxide may also play important roles in curtailing liver inflammation.

  16. Inflammatory cytokines and neurological and neurocognitive alterations in the course of schizophrenia

    Science.gov (United States)

    Fineberg, Anna M.; Ellman, Lauren M.

    2013-01-01

    A growing body of evidence suggests that immune alterations, especially those related to inflammation, are associated with increased risk of schizophrenia and schizophrenia-related brain alterations. Much of this work has focused on the prenatal period, since infections during pregnancy have been repeatedly (albeit inconsistently) linked to risk of schizophrenia. Given that most infections do not cross the placenta, cytokines associated with inflammation (proinflammatory cytokines) have been targeted as potential mediators of the damaging effects of infection on the fetal brain in prenatal studies. Moreover, additional evidence from both human and animal studies suggests links between increased levels of proinflammatory cytokines, immune-related genes, and schizophrenia, as well as brain alterations associated with the disorder. Additional support for the role of altered immune factors in the etiology of schizophrenia comes from neuroimaging studies, which have linked proinflammatory cytokine gene polymorphisms with some of the structural and functional abnormalities repeatedly found in schizophrenia. These findings are reviewed and discussed using a life course perspective, examining the contribution of inflammation from the fetal period to disorder presentation. Unexplored areas and future directions, such as the interplay between inflammation, genes, and individual-level environmental factors (e.g., stress, sleep, and nutrition), are also discussed. PMID:23414821

  17. Sleep deprivation and divergent toll-like receptor-4 activation of cellular inflammation in aging.

    Science.gov (United States)

    Carroll, Judith E; Carrillo, Carmen; Olmstead, Richard; Witarama, Tuff; Breen, Elizabeth C; Yokomizo, Megumi; Seeman, Teresa; Irwin, Michael R

    2015-02-01

    Sleep disturbance and aging are associated with increases in inflammation, as well as increased risk of infectious disease. However, there is limited understanding of the role of sleep loss on age-related differences in immune responses. This study examines the effects of sleep deprivation on toll-like receptor activation of monocytic inflammation in younger compared to older adults. Community-dwelling adults (n = 70) who were categorized as younger (25-39 y old, n = 21) and older (60-84 y old, n = 49) participants, underwent a sleep laboratory-based experimental partial sleep deprivation (PSD) protocol including adaptation, an uninterrupted night of sleep, sleep deprivation (sleep restricted to 03:00-07:00), and recovery. Blood samples were obtained each morning to measure toll-like receptor-4 activation of monocyte intracellular production of the inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Partial sleep deprivation induced a significant increase in the production of IL-6 and/or TNF-α that persisted after a night of recovery sleep (F(2,121.2) = 3.8, P sleep loss, such that younger adults had an increase in inflammatory cytokine production that was not present in older adults (F(2,121.2) = 4.0, P sleep loss. Whereas sleep loss increases cellular inflammation in younger adults and may contribute to inflammatory disorders, blunted toll-like receptor activation in older adults may increase the risk of infectious disease seen with aging. © 2015 Associated Professional Sleep Societies, LLC.

  18. Neutrophil activation and nucleosomes as markers of systemic inflammation in paroxysmal nocturnal hemoglobinuria: effects of eculizumab

    NARCIS (Netherlands)

    Bijnen, S.T. van; Wouters, D.; Mierlo, G.J. van; Muus, P.; Zeerleder, S.

    2015-01-01

    BACKGROUND: Paroxysmal nocturnal hemoglobinuria (PNH) is characterized by complement-mediated hemolysis and a high risk of life-threatening venous and arterial thrombosis. Uncontrolled complement activation and the release of cell-free heme may result in systemic inflammation, neutrophil activation,

  19. Neutrophil activation and nucleosomes as markers of systemic inflammation in paroxysmal nocturnal hemoglobinuria: effects of eculizumab

    NARCIS (Netherlands)

    van Bijnen, S. T. A.; Wouters, D.; van Mierlo, G. J.; Muus, P.; Zeerleder, S.

    2015-01-01

    Paroxysmal nocturnal hemoglobinuria (PNH) is characterized by complement-mediated hemolysis and a high risk of life-threatening venous and arterial thrombosis. Uncontrolled complement activation and the release of cell-free heme may result in systemic inflammation, neutrophil activation, and the

  20. On heart rate variability and autonomic activity in homeostasis and in systemic inflammation.

    Science.gov (United States)

    Scheff, Jeremy D; Griffel, Benjamin; Corbett, Siobhan A; Calvano, Steve E; Androulakis, Ioannis P

    2014-06-01

    Analysis of heart rate variability (HRV) is a promising diagnostic technique due to the noninvasive nature of the measurements involved and established correlations with disease severity, particularly in inflammation-linked disorders. However, the complexities underlying the interpretation of HRV complicate understanding the mechanisms that cause variability. Despite this, such interpretations are often found in literature. In this paper we explored mathematical modeling of the relationship between the autonomic nervous system and the heart, incorporating basic mechanisms such as perturbing mean values of oscillating autonomic activities and saturating signal transduction pathways to explore their impacts on HRV. We focused our analysis on human endotoxemia, a well-established, controlled experimental model of systemic inflammation that provokes changes in HRV representative of acute stress. By contrasting modeling results with published experimental data and analyses, we found that even a simple model linking the autonomic nervous system and the heart confound the interpretation of HRV changes in human endotoxemia. Multiple plausible alternative hypotheses, encoded in a model-based framework, equally reconciled experimental results. In total, our work illustrates how conventional assumptions about the relationships between autonomic activity and frequency-domain HRV metrics break down, even in a simple model. This underscores the need for further experimental work towards unraveling the underlying mechanisms of autonomic dysfunction and HRV changes in systemic inflammation. Understanding the extent of information encoded in HRV signals is critical in appropriately analyzing prior and future studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Relationship between Inflammation markers, Coagulation Activation and Impaired Insulin Sensitivity in Obese Healthy Women

    International Nuclear Information System (INIS)

    Soliman, S.Et; Shousha, M.A.

    2011-01-01

    Obesity, insulin resistance syndrome, and atherosclerosis are closely linked phenomena, often connected with a chronic low grade inflammatory state and pro thrombotic hypo fibrinolytic condition. This study investigated the relationship between impaired insulin sensitivity and selected markers of inflammation and thrombin generation in obese healthy women. The study included 36 healthy obese women (body mass index ≥ 30), with normal insulin sensitivity (NIS, n = 18) or impaired insulin sensitivity (IIS, n 18), and 10 non obese women (body mass index < 25).Impaired insulin sensitivity patients had significantly higher levels of high sensitivity C-reactive protein (hs-CRP), transforming growth factor -β1(TGF-β1), plasminogen activator inhibitor-1 (PAI-1), activated factor VII (VIIa), and prothrombin fragments 1 + 2 (F1 + 2) compared with either control subjects or normal insulin sensitivity patients. On the other hand, NIS patients had higher hs-CRP, TGF-β1, PAI-1, and factor VIIa, but not F1 + 2, levels than controls. Significant inverse correlations were observed between the insulin sensitivity index and TGF-β1, hs-CRP, PAI-1; factor VIIa, and F1 + 2 levels. Moreover, significant direct correlations were noted between TGF-β1 and CRP, PAI-1, factor VIIa, and F1 + 2 concentrations. Finally, multiple regressions revealed that TGF-β1 and the insulin sensitivity index were independently related to F1 + 2. These results document an in vivo relationship between insulin sensitivity and coagulation activation in obesity. Here we report that obesity is associated with higher TGF-β, PAI-1, prothrombin fragments 1 and 2 (F1 + 2), and activated factor VII (VIIa) plasma levels, and that insulin resistance exacerbates these alterations. The elevated TGF-β1 levels detected in the obese population may provide a biochemical link between insulin resistance and an increased risk for cardiovascular disease

  2. Neuronal and epithelial cell rescue resolves chronic systemic inflammation in the lipid storage disorder Niemann-Pick C.

    Science.gov (United States)

    Lopez, Manuel E; Klein, Andrés D; Hong, Jennifer; Dimbil, Ubah J; Scott, Matthew P

    2012-07-01

    Chronic systemic inflammation is thought to be a major contributor to metabolic and neurodegenerative diseases. Since inflammatory components are shared among different disorders, targeting inflammation is an attractive option for mitigating disease. To test the significance of inflammation in the lipid storage disorder (LSD) Niemann-Pick C (NPC), we deleted the macrophage inflammatory gene Mip1a/Ccl3 from NPC diseased mice. Deletion of Ccl3 had been reported to delay neuronal loss in Sandhoff LSD mice by inhibiting macrophage infiltration. For NPC mice, in contrast, deleting Ccl3 did not retard neurodegeneration and worsened the clinical outcome. Depletion of visceral tissue macrophages also did not alter central nervous system (CNS) pathology and instead increased liver injury, suggesting a limited macrophage infiltration response into the CNS and a beneficial role of macrophage activity in visceral tissue. Prevention of neuron loss or liver injury, even at late stages in the disease, was achieved through specific rescue of NPC disease in neurons or in liver epithelial cells, respectively. Local epithelial cell correction was also sufficient to reduce the macrophage-associated pathology in lung tissue. These results demonstrate that elevated inflammation and macrophage activity does not necessarily contribute to neurodegeneration and tissue injury, and LSD defects in immune cells may not preclude an appropriate inflammatory response. We conclude that inflammation remains secondary to neuronal and epithelial cell dysfunction and does not irreversibly contribute to the pathogenic cascade in NPC disease. Without further exploration of possible beneficial roles of inflammatory mediators, targeting inflammation may not be therapeutically effective at ameliorating disease severity.

  3. The purinergic 2X7 receptor participates in renal inflammation and injury induced by high-fat diet: possible role of NLRP3 inflammasome activation.

    Science.gov (United States)

    Solini, Anna; Menini, Stefano; Rossi, Chiara; Ricci, Carlo; Santini, Eleonora; Blasetti Fantauzzi, Claudia; Iacobini, Carla; Pugliese, Giuseppe

    2013-11-01

    Renal disease associated with type 2 diabetes and the metabolic syndrome is characterized by a distinct inflammatory phenotype. The purinergic 2X7 receptor (P2X7 R) and the nucleotide-binding and oligomerization domain-like receptor containing a pyrin domain 3 (NLRP3) inflammasome have been separately shown to play a role in two models of non-metabolic chronic kidney disease. Moreover, the NLRP3 inflammasome has been implicated in chronic low-grade sterile inflammation characterizing metabolic disorders, though the mechanism(s) involved in inflammasome activation under these conditions are still unknown. We investigated the role of P2X7 R (through activation of the NLRP3 inflammasome) in renal inflammation and injury induced by a high-fat diet, an established model of the metabolic syndrome. On a high-fat diet, mice lacking P2X7 R developed attenuated renal functional and structural alterations as well as reduced inflammation, fibrosis, and oxidative/carbonyl stress, as compared with wild-type animals, in the absence of significant differences in metabolic parameters. This was associated with blunted up-regulation of the NLRP3 inflammasome components NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), pro-caspase 1, pro-interleukin (IL)-1β, and pro-IL-18, as well as reduced inflammasome activation, as evidenced by decreased formation of mature caspase 1, whereas mature IL-1β and IL-18 were not detected. Up-regulated expression of NLRP3 and pro-caspase 1, post-translational processing of pro-caspase-1, and release of IL-18 in response to lipopolysaccharide + 2'(3')-O-(4-benzoylbenzoyl)ATP were attenuated by P2X7 R silencing in cultured mouse podocytes. Protein and mRNA expression of P2X7 R, NLRP3, and ASC were also increased in kidneys from subjects with type 2 diabetes and the metabolic syndrome, showing histologically documented renal disease. These data provide evidence of a major role for the purinergic system, at

  4. Do depression, stress, sleep disruption, and inflammation alter hippocampal apoptosis and neurogenesis?

    NARCIS (Netherlands)

    Lucassen, P.J.; Meerlo, P.; Naylor, A.S.; van Dam, A.M.; Dayer, A.G.; Czeh, B.; Oomen, C.A.; Pariante, C.M.

    2009-01-01

    We discuss the regulation of cellular plasticity, focusing on neurogenesis and apoptosis in the adult hippocampus, by stress, sleep, inflammation, and depression. This is the fourth of five chapters in this book that present not only clinical data but also experimental evidence from animal models

  5. Interplay between Inflammation and Stemness in Cancer Cells: The Role of Toll-Like Receptor Signaling

    Directory of Open Access Journals (Sweden)

    Da-Wei Yeh

    2016-01-01

    Full Text Available Cancer stem cells (CSCs are a small population of cancer cells that exhibit stemness. These cells contribute to cancer metastasis, treatment resistance, and relapse following therapy; therefore, they may cause malignancy and reduce the success of cancer treatment. Nuclear factor kappa B- (NF-κB- mediated inflammatory responses increase stemness in cancer cells, and CSCs constitutively exhibit higher NF-κB activation, which in turn increases their stemness. These opposite effects form a positive feedback loop that further amplifies inflammation and stemness in cancer cells, thereby expanding CSC populations in the tumor. Toll-like receptors (TLRs activate NF-κB-mediated inflammatory responses when stimulated by carcinogenic microbes and endogenous molecules released from cells killed during cancer treatment. NF-κB activation by extrinsic TLR ligands increases stemness in cancer cells. Moreover, it was recently shown that increased NF-κB activity and inflammatory responses in CSCs may be caused by altered TLR signaling during the enrichment of stemness in cancer cells. Thus, the activation of TLR signaling by extrinsic and intrinsic factors drives a positive interplay between inflammation and stemness in cancer cells.

  6. [Inhibition of glycogen synthase kinase 3b activity regulates Toll-like receptor 4-mediated liver inflammation].

    Science.gov (United States)

    Ren, Feng; Zhang, Hai-yan; Piao, Zheng-fu; Zheng, Su-jun; Chen, Yu; Chen, De-xi; Duan, Zhong-ping

    2012-09-01

    To determine the mechanism underlying the therapeutic activities of glycogen synthase kinase 3b (GSK3b) against hepatic ischemia-reperfusion (H-IR) injury by investigating the inhibitive effects of GSK3b on inflammation mediated by Toll-like receptor 4 (TLR4). C57BL/6 male mice were subjected to 90 min of warm liver cephalad lobe ischemia, followed by reperfusion for various lengths of time. The mice were divided into three groups: the H-IR untreated model (control group), and the H-IR inflammation-induced models that received an intraperitoneal injection of purified lipopolysaccharide (LPS) endotoxin alone (inflammation group) or with pretreatment of the SB216763 GSK3b-specific inhibitor (intervention group). To create a parallel isolated cell system for detailed investigations of macrophages, marrow-derived stem cells were isolated from femurs of the H-IR control group of mice and used to derive primary macrophages. The cells were then divided into the same three groups as the whole mouse system: control, LPS-induced inflammation model, and inflammation model with SB216763 intervention. Differential expressions of inflammation-related proteins and genes were detected by Western blotting and real-time quantitative PCR, respectively. The phosphorylation levels of ERK, JNK and p38 MAPK were induced in liver at 1 h after reperfusion, but then steadily decreased and returned to baseline levels by 4 h after reperfusion. In addition, the phosphorylation levels of ERK and JNK were induced in macrophages at 15 min after LPS stimulation, while the phosphorylation level of p38 MAPK was induced at 1 h; SB216763 pretreatment suppressed the LPS-stimulated ERK, JNK and p38 phosphorylation in macrophages. In the mouse model, GSK3b activity was found to promote the gene expression of anti-inflammatory cytokine IL-10 (control: 0.21 ± 0.08, inflammation: 0.83 ± 0.21, intervention: 1.76 ± 0.67; F = 3.16, P = 0.027) but to significantly inhibit the gene expression of pro

  7. Microbial Induction of Immunity, Inflammation And Cancer

    Directory of Open Access Journals (Sweden)

    Stephen John O'Keefe

    2011-01-01

    Full Text Available The human microbiota presents a highly active metabolic that influences the state of health of our gastrointestinal tracts as well as our susceptibility to disease. Although much of our initial microbiota is adopted from our mothers, its final composition and diversity is determined by environmental factors. Westernization has significantly altered our microbial function. Extensive experimental and clinical evidence indicates that the westernized diet, rich in animal products and low in complex carbohydrates, plus the overuse of antibiotics and underuse of breastfeeding, leads to a heightened inflammatory potential of the microbiota. Chronic inflammation leads to the expression of certain diseases in genetically predisposed individuals. Antibiotics and a ‘clean’ environment, termed the ‘hygiene hypothesis’, has been linked to the rise in allergy and inflammatory bowel disease, due to impaired beneficial bacterial exposure and education of the gut immune system, which comprises the largest immune organ within the body. The elevated risk of colon cancer is associated with the suppression of microbial fermentation and butyrate production, as butyrate provides fuel for the mucosa and is anti-inflammatory and anti-proliferative. This article will summarize the work to date highlighting the complicated and dynamic relationship between the gut microbiota and immunity, inflammation and carcinogenesis.

  8. Cobalt Alloy Implant Debris Induces Inflammation and Bone Loss Primarily through Danger Signaling, Not TLR4 Activation: Implications for DAMP-ening Implant Related Inflammation.

    Directory of Open Access Journals (Sweden)

    Lauryn Samelko

    Full Text Available Cobalt alloy debris has been implicated as causative in the early failure of some designs of current total joint implants. The ability of implant debris to cause excessive inflammation via danger signaling (NLRP3 inflammasome vs. pathogen associated pattern recognition receptors (e.g. Toll-like receptors; TLRs remains controversial. Recently, specific non-conserved histidines on human TLR4 have been shown activated by cobalt and nickel ions in solution. However, whether this TLR activation is directly or indirectly an effect of metals or secondary endogenous alarmins (danger-associated molecular patterns, DAMPs elicited by danger signaling, remains unknown and contentious. Our study indicates that in both a human macrophage cell line (THP-1 and primary human macrophages, as well as an in vivo murine model of inflammatory osteolysis, that Cobalt-alloy particle induced NLRP3 inflammasome danger signaling inflammatory responses were highly dominant relative to TLR4 activation, as measured respectively by IL-1β or TNF-α, IL-6, IL-10, tissue histology and quantitative bone loss measurement. Despite the lack of metal binding histidines H456 and H458 in murine TLR4, murine calvaria challenge with Cobalt alloy particles induced significant macrophage driven in vivo inflammation and bone loss inflammatory osteolysis, whereas LPS calvaria challenge alone did not. Additionally, no significant increase (p500pg/mL. Therefore, not only do the results of this investigation support Cobalt alloy danger signaling induced inflammation, but under normal homeostasis low levels of hematogenous PAMPs (<2pg/mL from Gram-negative bacteria, seem to have negligible contribution to the danger signaling responses elicited by Cobalt alloy metal implant debris. This suggests the unique nature of Cobalt alloy particle bioreactivity is strong enough to illicit danger signaling that secondarily activate concomitant TLR activation, and may in part explain Cobalt particulate

  9. Winter to summer change in vitamin D status reduces systemic inflammation and bioenergetic activity of human peripheral blood mononuclear cells

    Directory of Open Access Journals (Sweden)

    Emily K. Calton

    2017-08-01

    Full Text Available Background: Vitamin D status [25(OHD] has recently been reported to be associated with altered cellular bioenergetic profiles of peripheral blood mononuclear cells (PBMCs. No study has tracked the seasonal variation of 25(OHD and its putative influence on whole body energy metabolism, cellular bioenergetic profiles, inflammatory markers and clinical chemistry. Material and methods: Whole body energy metabolism and substrate utilisation were measured by indirect calorimetry. PBMCs obtained from the same subjects were isolated from whole blood, counted and freshly seeded. Bioenergetic analysis (mitochondrial stress test and glycolysis stress test was performed using the Seahorse XFe96 flux analyser. 25(OHD was assessed using the Architect immunoassay method. Results: 25(OHD increased by a median (IQR of 14.40 (20.13 nmol/L (p75 nmol/L. The absolute change in 25(OHD was not associated with altered bioenergetics. Conclusion: Seasonal improvements in 25(OHD was associated with reduced systemic inflammation, PBMC bioenergetic profiles and whole body energy metabolism. These observational changes in PBMC bioenergetics were most pronounced in those who had insufficient 25(OHD in winter. The data warrants confirmation through cause and effect study designs. Keywords: Peripheral blood mononuclear cells, Bioenergetics, Vitamin D, Season, Inflammation, Insulin sensitivity

  10. Ferulic acid ameliorates radiation induced duodenal inflammation

    International Nuclear Information System (INIS)

    Das, Ujjal; Manna, Krishnendu; Sengupta, Aaveri; Biswas, Sushobhan; Chakrabarty, Arpita; Dey, Sanjit

    2016-01-01

    Ionizing radiation creates oxidative stress followed by inflammation through reactive oxygen species (ROS) and altering the status of redox sensitive enzymes. In the current study we aimed to evaluate the effect of ferulic acid (FA) on increasing doses of ionizing radiation mediated oxidative stress and inflammation using in vivo murine duodenum. To delineate the hypothesis we exposed mice with 2.5, 5 and 10 Gy gamma radiation doses in presence and absence of the (FA). FA was administered orally at a fixed dose of 50mg/ kg bw for 5 days before radiation exposure. Different techniques such as biochemical assays, immune blot, and microscopic analysis for histopathology, flow cytometry and scanning electron microscopy were employed to achieve the goal

  11. Cobalt Alloy Implant Debris Induces Inflammation and Bone Loss Primarily through Danger Signaling, Not TLR4 Activation: Implications for DAMP-ening Implant Related Inflammation

    OpenAIRE

    Samelko, Lauryn; Landgraeber, Stefan; McAllister, Kyron; Jacobs, Joshua; Hallab, Nadim James

    2016-01-01

    Cobalt alloy debris has been implicated as causative in the early failure of some designs of current total joint implants. The ability of implant debris to cause excessive inflammation via danger signaling (NLRP3 inflammasome) vs. pathogen associated pattern recognition receptors (e.g. Toll-like receptors; TLRs) remains controversial. Recently, specific non-conserved histidines on human TLR4 have been shown activated by cobalt and nickel ions in solution. However, whether this TLR activation ...

  12. Autophagy Facilitates IFN-γ-induced Jak2-STAT1 Activation and Cellular Inflammation*

    Science.gov (United States)

    Chang, Yu-Ping; Tsai, Cheng-Chieh; Huang, Wei-Ching; Wang, Chi-Yun; Chen, Chia-Ling; Lin, Yee-Shin; Kai, Jui-In; Hsieh, Chia-Yuan; Cheng, Yi-Lin; Choi, Pui-Ching; Chen, Shun-Hua; Chang, Shih-Ping; Liu, Hsiao-Sheng; Lin, Chiou-Feng

    2010-01-01

    Autophagy is regulated for IFN-γ-mediated antimicrobial efficacy; however, its molecular effects for IFN-γ signaling are largely unknown. Here, we show that autophagy facilitates IFN-γ-activated Jak2-STAT1. IFN-γ induces autophagy in wild-type but not in autophagy protein 5 (Atg5−/−)-deficient mouse embryonic fibroblasts (MEFs), and, autophagy-dependently, IFN-γ induces IFN regulatory factor 1 and cellular inflammatory responses. Pharmacologically inhibiting autophagy using 3-methyladenine, a known inhibitor of class III phosphatidylinositol 3-kinase, confirms these effects. Either Atg5−/− or Atg7−/− MEFs are, independent of changes in IFN-γ receptor expression, resistant to IFN-γ-activated Jak2-STAT1, which suggests that autophagy is important for IFN-γ signal transduction. Lentivirus-based short hairpin RNA for Atg5 knockdown confirmed the importance of autophagy for IFN-γ-activated STAT1. Without autophagy, reactive oxygen species increase and cause SHP2 (Src homology-2 domain-containing phosphatase 2)-regulated STAT1 inactivation. Inhibiting SHP2 reversed both cellular inflammation and the IFN-γ-induced activation of STAT1 in Atg5−/− MEFs. Our study provides evidence that there is a link between autophagy and both IFN-γ signaling and cellular inflammation and that autophagy, because it inhibits the expression of reactive oxygen species and SHP2, is pivotal for Jak2-STAT1 activation. PMID:20592027

  13. Consequences of age on ischemic wound healing in rats: altered antioxidant activity and delayed wound closure.

    Science.gov (United States)

    Moor, Andrea N; Tummel, Evan; Prather, Jamie L; Jung, Michelle; Lopez, Jonathan J; Connors, Sarah; Gould, Lisa J

    2014-04-01

    Advertisements targeted at the elderly population suggest that antioxidant therapy will reduce free radicals and promote wound healing, yet few scientific studies substantiate these claims. To better understand the potential utility of supplemental antioxidant therapy for wound healing, we tested the hypothesis that age and tissue ischemia alter the balance of endogenous antioxidant enzymes. Using a bipedicled skin flap model, ischemic and non-ischemic wounds were created on young and aged rats. Wound closure and the balance of the critical antioxidants superoxide dismutase and glutathione in the wound bed were determined. Ischemia delayed wound closure significantly more in aged rats. Lower superoxide dismutase 2 and glutathione in non-ischemic wounds of aged rats indicate a basal deficit due to age alone. Ischemic wounds from aged rats had lower superoxide dismutase 2 protein and activity initially, coupled with decreased ratios of reduced/oxidized glutathione and lower glutathione peroxidase activity. De novo glutathione synthesis, to restore redox balance in aged ischemic wounds, was initiated as evidenced by increased glutamate cysteine ligase. Results demonstrate deficiencies in two antioxidant pathways in aged rats that become exaggerated in ischemic tissue, culminating in profoundly impaired wound healing and prolonged inflammation.

  14. Dietary Iron Supplementation Alters Hepatic Inflammation in a Rat Model of Nonalcoholic Steatohepatitis

    Directory of Open Access Journals (Sweden)

    Machi Atarashi

    2018-02-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is now the most common liver disease in the world. NAFLD can progress to nonalcoholic steatohepatitis (NASH, cirrhosis and eventually hepatocellular carcinoma. Acquired hepatic iron overload is seen in a number of patients with NAFLD; however, its significance in the pathology of NAFLD is still debated. Here, we investigated the role of dietary iron supplementation in experimental steatohepatitis in rats. Rats were fed a control, high-fat (HF, high-fat high-iron (HFHI and high-iron (HI diet for 30 weeks. Blood biochemical, histopathological and gut microbiota analyses were performed. Rats in HF and HFHI groups showed an ALT-dominant elevation of serum transaminases, hepatic steatosis, hepatic inflammation, and upregulation of proinflammatory cytokines. The number of large inflammatory foci, corresponding to lobular inflammation in NASH patients, was significantly higher in HFHI than in HF group; within the lesion, macrophages with intense iron staining were observed. Hepatic expression of TNFα was higher in HFHI than that in HF group. There was no significant change in hepatic oxidative stress, gut microbiota or serum endotoxin levels between HF and HFHI groups. These results suggested that dietary iron supplementation enhances experimental steatohepatitis induced by long-term high-fat diet feeding in rats. Iron-laden macrophages can play an important role in the enhancement of hepatic inflammation.

  15. Dysregulated Intrahepatic CD4+ T-Cell Activation Drives Liver Inflammation in Ileitis-Prone SAMP1/YitFc MiceSummary

    Directory of Open Access Journals (Sweden)

    Sara Omenetti

    2015-07-01

    Full Text Available Background & Aims: Liver inflammation is a common extraintestinal manifestation of inflammatory bowel disease (IBD, but whether liver involvement is a consequence of a primary intestinal defect or results from alternative pathogenic processes remains unclear. Therefore, we sought to determine the potential pathogenic mechanism(s of concomitant liver inflammation in an established murine model of IBD. Methods: Liver inflammation and immune cell subsets were characterized in ileitis-prone SAMP1/YitFc (SAMP and AKR/J (AKR control mice, lymphocyte-depleted SAMP (SAMPxRag-1−/−, and immunodeficient SCID recipient mice receiving SAMP or AKR donor CD4+ T cells. Proliferation and suppressive capacity of CD4+ T-effector (Teff and T-regulatory (Treg cells from gut-associated lymphoid tissue (GALT and livers of SAMP and AKR mice were measured. Results: Surprisingly, prominent inflammation was detected in 4-week-old SAMP livers before histologic evidence of ileitis, whereas both disease phenotypes were absent in age-matched AKR mice. SAMP liver disease was characterized by abundant infiltration of lymphocytes, required for hepatic inflammation to occur, a TH1-skewed environment, and phenotypically activated CD4+ T cells. SAMP intrahepatic CD4+ T cells also had the ability to induce liver and ileal inflammation when adoptively transferred into SCID recipients, whereas GALT-derived CD4+ T cells produced milder ileitis but not liver inflammation. Interestingly, SAMP intrahepatic CD4+ Teff cells showed increased proliferation compared with both SAMP GALT- and AKR liver-derived CD4+ Teff cells, and SAMP intrahepatic Tregs were decreased among CD4+ T cells and impaired in in vitro suppressive function compared with AKR. Conclusions: Activated intrahepatic CD4+ T cells induce liver inflammation and contribute to experimental ileitis via locally impaired hepatic immunosuppressive function. Keywords: Hepatic CD4+ T Cells, IBD-Associated Liver

  16. Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior.

    Science.gov (United States)

    Haroon, Ebrahim; Raison, Charles L; Miller, Andrew H

    2012-01-01

    The potential contribution of chronic inflammation to the development of neuropsychiatric disorders such as major depression has received increasing attention. Elevated biomarkers of inflammation, including inflammatory cytokines and acute-phase proteins, have been found in depressed patients, and administration of inflammatory stimuli has been associated with the development of depressive symptoms. Data also have demonstrated that inflammatory cytokines can interact with multiple pathways known to be involved in the development of depression, including monoamine metabolism, neuroendocrine function, synaptic plasticity, and neurocircuits relevant to mood regulation. Further understanding of mechanisms by which cytokines alter behavior have revealed a host of pharmacologic targets that may be unique to the impact of inflammation on behavior and may be especially relevant to the treatment and prevention of depression in patients with evidence of increased inflammation. Such targets include the inflammatory signaling pathways cyclooxygenase, p38 mitogen-activated protein kinase, and nuclear factor-κB, as well as the metabolic enzyme, indoleamine-2,3-dioxygenase, which breaks down tryptophan into kynurenine. Other targets include the cytokines themselves in addition to chemokines, which attract inflammatory cells from the periphery to the brain. Psychosocial stress, diet, obesity, a leaky gut, and an imbalance between regulatory and pro-inflammatory T cells also contribute to inflammation and may serve as a focus for preventative strategies relevant to both the development of depression and its recurrence. Taken together, identification of mechanisms by which cytokines influence behavior may reveal a panoply of personalized treatment options that target the unique contributions of the immune system to depression.

  17. Neurogenic inflammation in human and rodent skin

    DEFF Research Database (Denmark)

    Schmelz, M; Petersen, Lars Jelstrup

    2001-01-01

    The combination of vasodilation and protein extravasation following activation of nociceptors has been termed "neurogenic inflammation." In contrast to rodents, no neurogenic protein extravasation can be elicited in healthy human skin. Dermal microdialysis has considerably increased our knowledge...... about neurogenic inflammation in human skin, including the involvement of mast cells.......The combination of vasodilation and protein extravasation following activation of nociceptors has been termed "neurogenic inflammation." In contrast to rodents, no neurogenic protein extravasation can be elicited in healthy human skin. Dermal microdialysis has considerably increased our knowledge...

  18. Loss of the co-repressor GPS2 sensitizes macrophage activation upon metabolic stress induced by obesity and type 2 diabetes.

    Science.gov (United States)

    Fan, Rongrong; Toubal, Amine; Goñi, Saioa; Drareni, Karima; Huang, Zhiqiang; Alzaid, Fawaz; Ballaire, Raphaelle; Ancel, Patricia; Liang, Ning; Damdimopoulos, Anastasios; Hainault, Isabelle; Soprani, Antoine; Aron-Wisnewsky, Judith; Foufelle, Fabienne; Lawrence, Toby; Gautier, Jean-Francois; Venteclef, Nicolas; Treuter, Eckardt

    2016-07-01

    Humans with obesity differ in their susceptibility to developing insulin resistance and type 2 diabetes (T2D). This variation may relate to the extent of adipose tissue (AT) inflammation that develops as their obesity progresses. The state of macrophage activation has a central role in determining the degree of AT inflammation and thus its dysfunction, and these states are driven by epigenomic alterations linked to gene expression. The underlying mechanisms that regulate these alterations, however, are poorly defined. Here we demonstrate that a co-repressor complex containing G protein pathway suppressor 2 (GPS2) crucially controls the macrophage epigenome during activation by metabolic stress. The study of AT from humans with and without obesity revealed correlations between reduced GPS2 expression in macrophages, elevated systemic and AT inflammation, and diabetic status. The causality of this relationship was confirmed by using macrophage-specific Gps2-knockout (KO) mice, in which inappropriate co-repressor complex function caused enhancer activation, pro-inflammatory gene expression and hypersensitivity toward metabolic-stress signals. By contrast, transplantation of GPS2-overexpressing bone marrow into two mouse models of obesity (ob/ob and diet-induced obesity) reduced inflammation and improved insulin sensitivity. Thus, our data reveal a potentially reversible disease mechanism that links co-repressor-dependent epigenomic alterations in macrophages to AT inflammation and the development of T2D.

  19. Dietary Modulation of Inflammation-Induced Colorectal Cancer through PPARγ

    Directory of Open Access Journals (Sweden)

    Ashlee B. Carter

    2009-01-01

    Full Text Available Mounting evidence suggests that the risk of developing colorectal cancer (CRC is dramatically increased for patients with chronic inflammatory diseases. For instance, patients with Crohn's Disease (CD or Ulcerative Colitis (UC have a 12–20% increased risk for developing CRC. Preventive strategies utilizing nontoxic natural compounds that modulate immune responses could be successful in the suppression of inflammation-driven colorectal cancer in high-risk groups. The increase of peroxisome proliferator-activated receptor-γ (PPAR-γ expression and its transcriptional activity has been identified as a target for anti-inflammatory efforts, and the suppression of inflammation-driven colon cancer. PPARγ down-modulates inflammation and elicits antiproliferative and proapoptotic actions in epithelial cells. All of which may decrease the risk for inflammation-induced CRC. This review will focus on the use of orally active, naturally occurring chemopreventive approaches against inflammation-induced CRC that target PPARγ and therefore down-modulate inflammation.

  20. Topical anti-inflammatory activity of Polygonum cuspidatum extract in the TPA model of mouse ear inflammation

    Directory of Open Access Journals (Sweden)

    Wicker Louise

    2008-02-01

    Full Text Available Abstract Background This study tested the ability of a characterized extract of Polygonum cuspidatum (PCE to inhibit mouse ear inflammation in response to topical application of 12-O-tetradecanoylphorbol-13-acetate (TPA. Methods A 50% (wt:vol ethanolic solution of commercial 200:1 PCE was applied to both ears of female Swiss mice (n = 8 at 0.075, 0.15, 0.3, 1.25 and 2.5 mg/ear 30 min after TPA administration (2 μg/ear. For comparison, 3 other groups were treated with TPA and either 1 the vehicle (50% ethanol alone, 2 indomethacin (0.5 mg/ear, or 3 trans-resveratrol (0.62 mg/ear. Ear thickness was measured before TPA and at 4 and 24 h post-TPA administration to assess ear edema. Ear punch biopsies were collected at 24 h and weighed as a second index of edema. Myeloperoxidase activity was measured in each ear punch biopsy to assess neutrophil infiltration. Results PCE treatment at all doses significantly reduced ear edema compared to the TPA control. The PCE response was dose-dependent and 2.5 mg PCE significantly inhibited all markers of inflammation to a greater extent than indomethacin (0.5 mg. MPO activity was inhibited at PCE doses ≥ 1.25 mg/ear. Trans-resveratrol inhibited inflammation at comparable doses. Conclusion PCE inhibits development of edema and neutrophil infiltration in the TPA-treated mouse ear model of topical inflammation.

  1. Nemosis, a novel way of fibroblast activation, in inflammation and cancer

    Energy Technology Data Exchange (ETDEWEB)

    Vaheri, Antti, E-mail: antti.vaheri@helsinki.fi [Haartman Institute, POB 21, FI-00014 University of Helsinki (Finland); Enzerink, Anna; Raesaenen, Kati; Salmenperae, Pertteli [Haartman Institute, POB 21, FI-00014 University of Helsinki (Finland)

    2009-06-10

    Malignant cells when grown in suspension, as a rule, proliferate and can form spheroids that have been used as a model of tumor nodules, micrometastases and avascular tumors. In contrast, normal adherent cells cannot be stimulated to grow as multicellular aggregates. Now, recent results show that normal fibroblasts if forced to cluster (spheroid formation) do not grow but undergo a new pathway of cell activation (nemosis) leading to a massive proinflammatory, proteolytic and growth factor response. The clustering and activation are initiated by fibronectin-integrin interaction. The activated fibroblasts are able to modulate the behavior of cancer cells and, furthermore malignant cells boost this activation even further. In this model, the activation of fibroblasts terminates in programmed necrosis-like cell death. Activation of the tumor stroma, especially of fibroblasts, is of critical importance for tumor progression, although mechanisms leading to their activation are still largely uncharacterized. In summary, our results suggest that this kind of fibroblast activation (nemosis) may be involved in pathological conditions such as inflammation and cancer.

  2. Nemosis, a novel way of fibroblast activation, in inflammation and cancer

    International Nuclear Information System (INIS)

    Vaheri, Antti; Enzerink, Anna; Raesaenen, Kati; Salmenperae, Pertteli

    2009-01-01

    Malignant cells when grown in suspension, as a rule, proliferate and can form spheroids that have been used as a model of tumor nodules, micrometastases and avascular tumors. In contrast, normal adherent cells cannot be stimulated to grow as multicellular aggregates. Now, recent results show that normal fibroblasts if forced to cluster (spheroid formation) do not grow but undergo a new pathway of cell activation (nemosis) leading to a massive proinflammatory, proteolytic and growth factor response. The clustering and activation are initiated by fibronectin-integrin interaction. The activated fibroblasts are able to modulate the behavior of cancer cells and, furthermore malignant cells boost this activation even further. In this model, the activation of fibroblasts terminates in programmed necrosis-like cell death. Activation of the tumor stroma, especially of fibroblasts, is of critical importance for tumor progression, although mechanisms leading to their activation are still largely uncharacterized. In summary, our results suggest that this kind of fibroblast activation (nemosis) may be involved in pathological conditions such as inflammation and cancer.

  3. Preliminary clinical results: an analyzing tool for 2D optical imaging in detection of active inflammation in rheumatoid arthritis

    Science.gov (United States)

    Adi Aizudin Bin Radin Nasirudin, Radin; Meier, Reinhard; Ahari, Carmen; Sievert, Matti; Fiebich, Martin; Rummeny, Ernst J.; No"l, Peter B.

    2011-03-01

    Optical imaging (OI) is a relatively new method in detecting active inflammation of hand joints of patients suffering from rheumatoid arthritis (RA). With the high number of people affected by this disease especially in western countries, the availability of OI as an early diagnostic imaging method is clinically highly relevant. In this paper, we present a newly in-house developed OI analyzing tool and a clinical evaluation study. Our analyzing tool extends the capability of existing OI tools. We include many features in the tool, such as region-based image analysis, hyper perfusion curve analysis, and multi-modality image fusion to aid clinicians in localizing and determining the intensity of inflammation in joints. Additionally, image data management options, such as the full integration of PACS/RIS, are included. In our clinical study we demonstrate how OI facilitates the detection of active inflammation in rheumatoid arthritis. The preliminary clinical results indicate a sensitivity of 43.5%, a specificity of 80.3%, an accuracy of 65.7%, a positive predictive value of 76.6%, and a negative predictive value of 64.9% in relation to clinical results from MRI. The accuracy of inflammation detection serves as evidence to the potential of OI as a useful imaging modality for early detection of active inflammation in patients with rheumatoid arthritis. With our in-house developed tool we extend the usefulness of OI imaging in the clinical arena. Overall, we show that OI is a fast, inexpensive, non-invasive and nonionizing yet highly sensitive and accurate imaging modality.-

  4. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability.

    Science.gov (United States)

    Colotta, Francesco; Allavena, Paola; Sica, Antonio; Garlanda, Cecilia; Mantovani, Alberto

    2009-07-01

    Inflammatory conditions in selected organs increase the risk of cancer. An inflammatory component is present also in the microenvironment of tumors that are not epidemiologically related to inflammation. Recent studies have begun to unravel molecular pathways linking inflammation and cancer. In the tumor microenvironment, smoldering inflammation contributes to proliferation and survival of malignant cells, angiogenesis, metastasis, subversion of adaptive immunity, reduced response to hormones and chemotherapeutic agents. Recent data suggest that an additional mechanism involved in cancer-related inflammation (CRI) is induction of genetic instability by inflammatory mediators, leading to accumulation of random genetic alterations in cancer cells. In a seminal contribution, Hanahan and Weinberg [(2000) Cell, 100, 57-70] identified the six hallmarks of cancer. We surmise that CRI represents the seventh hallmark.

  5. Compounds from silicones alter enzyme activity in curing barnacle glue and model enzymes.

    Science.gov (United States)

    Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H

    2011-02-17

    Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management.

  6. LFG-500, a newly synthesized flavonoid, attenuates lipopolysaccharide-induced acute lung injury and inflammation in mice.

    Science.gov (United States)

    Li, Chenglin; Yang, Dan; Cao, Xin; Wang, Fan; Jiang, Haijing; Guo, Hao; Du, Lei; Guo, Qinglong; Yin, Xiaoxing

    2016-08-01

    Acute lung injury (ALI) often causes significant morbidity and mortality worldwide. Improved treatment and effective strategies are still required for ALI patients. Our previous studies demonstrated that LFG-500, a novel synthesized flavonoid, has potent anti-cancer activities, while its anti-inflammatory effect has not been revealed. In the present study, the in vivo protective effect of LFG-500 on the amelioration of lipopolysaccharide (LPS)-induced ALI and inflammation was detected. LFG-500 attenuated LPS-induced histological alterations, suppressed the infiltration of inflammatory cells in lung tissues and bronchoalveolar lavage fluid, as well as inhibited the secretion of several inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 in lung tissues after LPS challenge. In addition, the in vitro effects and mechanisms were studied in LPS stimulated RAW 264.7 cells and THP-1 cells. LFG-500 significantly decreased the secretion and expression of TNF-α, IL-1β, and IL-6 through inhibiting the transcriptional activation of NF-κB. Moreover, overexpression of NF-κB p65 reversed the inhibitory effect of LFG-500 on LPS-induced NF-κB activation and inflammatory cytokine secretion. Further elucidation of the mechanism revealed that p38 and JNK MAPK pathways were involved in the anti-inflammation effect of LFG-500, through which LFG-500 inhibited the classical IKK-dependent pathway and led to inactivation of NF-κB. More importantly, LFG-500 suppressed the expression and nuclear localization of NF-κB in LPS-induced ALI mice. Taken together, these results demonstrated that LFG-500 could attenuate LPS-induced ALI and inflammation by suppressing NF-κB activation, which provides new evidence for the anti-inflammation activity of LFG-500. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Erythropoietin-derived nonerythropoietic peptide ameliorates experimental autoimmune neuritis by inflammation suppression and tissue protection.

    Directory of Open Access Journals (Sweden)

    Yuqi Liu

    Full Text Available Experimental autoimmune neuritis (EAN is an autoantigen-specific T-cell-mediated disease model for human demyelinating inflammatory disease of the peripheral nervous system. Erythropoietin (EPO has been known to promote EAN recovery but its haematopoiesis stimulating effects may limit its clinic application. Here we investigated the effects and potential mechanisms of an EPO-derived nonerythropoietic peptide, ARA 290, in EAN. Exogenous ARA 290 intervention greatly improved EAN recovery, improved nerve regeneration and remyelination, and suppressed nerve inflammation. Furthermore, haematopoiesis was not induced by ARA 290 during EAN treatment. ARA 290 intervention suppressed lymphocyte proliferation and altered helper T cell differentiation by inducing increase of Foxp3+/CD4+ regulatory T cells and IL-4+/CD4+ Th2 cells and decrease of IFN-γ+/CD4+ Th1 cells in EAN. In addition, ARA 290 inhibited inflammatory macrophage activation and promoted its phagocytic activity. In vitro, ARA 290 was shown to promote Schwann cell proliferation and inhibit its inflammatory activation. In summary, our data demonstrated that ARA 290 could effectively suppress EAN by attenuating inflammation and exerting direct cell protection, indicating that ARA 290 could be a potent candidate for treatment of autoimmune neuropathies.

  8. Winter to summer change in vitamin D status reduces systemic inflammation and bioenergetic activity of human peripheral blood mononuclear cells.

    Science.gov (United States)

    Calton, Emily K; Keane, Kevin N; Raizel, Raquel; Rowlands, Jordan; Soares, Mario J; Newsholme, Philip

    2017-08-01

    Vitamin D status [25(OH)D] has recently been reported to be associated with altered cellular bioenergetic profiles of peripheral blood mononuclear cells (PBMCs). No study has tracked the seasonal variation of 25(OH)D and its putative influence on whole body energy metabolism, cellular bioenergetic profiles, inflammatory markers and clinical chemistry. Whole body energy metabolism and substrate utilisation were measured by indirect calorimetry. PBMCs obtained from the same subjects were isolated from whole blood, counted and freshly seeded. Bioenergetic analysis (mitochondrial stress test and glycolysis stress test) was performed using the Seahorse XF e 96 flux analyser. 25(OH)D was assessed using the Architect immunoassay method. 25(OH)D increased by a median (IQR) of 14.40 (20.13)nmol/L (pwinter to summer and was accompanied by significant improvements in indices of insulin sensitivity, McAuley's index (p=0.019) and quantitative insulin sensitivity check index (p=0.028). PBMC mitochondrial parameters basal respiration, non-mitochondrial respiration, ATP production, proton leak, and maximal respiration decreased in summer compared to winter. Similarly, PBMC glycolytic parameters glycolytic activity, glucose response, and glycolytic capacity were all reduced in summer compared to winter. There was also a trend for absolute resting metabolic rate (RMR) to decrease (p=0.066). Markers of systemic inflammation MCP-1, IL-6, IL-8, IL-10, and IL-12p70 decreased significantly in summer compared to winter. Participants who entered winter with a low 25(OH)D (winter 25(OH)D concentrations of 50-75nmol/L or >75nmol/L. The absolute change in 25(OH)D was not associated with altered bioenergetics. Seasonal improvements in 25(OH)D was associated with reduced systemic inflammation, PBMC bioenergetic profiles and whole body energy metabolism. These observational changes in PBMC bioenergetics were most pronounced in those who had insufficient 25(OH)D in winter. The data warrants

  9. JAK/STAT-1 Signaling Is Required for Reserve Intestinal Stem Cell Activation during Intestinal Regeneration Following Acute Inflammation

    Directory of Open Access Journals (Sweden)

    Camilla A. Richmond

    2018-01-01

    Full Text Available The intestinal epithelium serves as an essential barrier to the outside world and is maintained by functionally distinct populations of rapidly cycling intestinal stem cells (CBC ISCs and slowly cycling, reserve ISCs (r-ISCs. Because disruptions in the epithelial barrier can result from pathological activation of the immune system, we sought to investigate the impact of inflammation on ISC behavior during the regenerative response. In a murine model of αCD3 antibody-induced small-intestinal inflammation, r-ISCs proved highly resistant to injury, while CBC ISCs underwent apoptosis. Moreover, r-ISCs were induced to proliferate and functionally contribute to intestinal regeneration. Further analysis revealed that the inflammatory cytokines interferon gamma and tumor necrosis factor alpha led to r-ISC activation in enteroid culture, which could be blocked by the JAK/STAT inhibitor, tofacitinib. These results highlight an important role for r-ISCs in response to acute intestinal inflammation and show that JAK/STAT-1 signaling is required for the r-ISC regenerative response.

  10. High density lipoproteins improve insulin sensitivity in high-fat diet-fed mice by suppressing hepatic inflammation[S

    Science.gov (United States)

    McGrath, Kristine C.; Li, Xiao Hong; Whitworth, Phillippa T.; Kasz, Robert; Tan, Joanne T.; McLennan, Susan V.; Celermajer, David S.; Barter, Philip J.; Rye, Kerry-Anne; Heather, Alison K.

    2014-01-01

    Obesity-induced liver inflammation can drive insulin resistance. HDL has anti-inflammatory properties, so we hypothesized that low levels of HDL would perpetuate inflammatory responses in the liver and that HDL treatment would suppress liver inflammation and insulin resistance. The aim of this study was to investigate the effects of lipid-free apoAI on hepatic inflammation and insulin resistance in mice. We also investigated apoAI as a component of reconstituted HDLs (rHDLs) in hepatocytes to confirm results we observed in vivo. To test our hypothesis, C57BL/6 mice were fed a high-fat diet (HFD) for 16 weeks and administered either saline or lipid-free apoAI. Injections of lipid-free apoAI twice a week for 2 or 4 weeks with lipid-free apoAI resulted in: i) improved insulin sensitivity associated with decreased systemic and hepatic inflammation; ii) suppression of hepatic mRNA expression for key transcriptional regulators of lipogenic gene expression; and iii) suppression of nuclear factor κB (NF-κB) activation. Human hepatoma HuH-7 cells exposed to rHDLs showed suppressed TNFα-induced NF-κB activation, correlating with decreased NF-κB target gene expression. We conclude that apoAI suppresses liver inflammation in HFD mice and improves insulin resistance via a mechanism that involves a downregulation of NF-κB activation. PMID:24347528

  11. Silychristin: Skeletal Alterations and Biological Activities

    Czech Academy of Sciences Publication Activity Database

    Biedermann, David; Buchta, M.; Holečková, Veronika; Sedlák, David; Valentová, Kateřina; Cvačka, Josef; Bednárová, Lucie; Křenková, Alena; Kuzma, Marek; Škuta, Ctibor; Peikerová, Žaneta; Bartůněk, Petr; Křen, Vladimír

    2016-01-01

    Roč. 79, č. 12 (2016), s. 3086-3092 ISSN 0163-3864 R&D Projects: GA ČR(CZ) GA15-03037S; GA MZd(CZ) NV16-27317A; GA MŠk LO1220; GA MŠk LM2015063; GA MŠk(CZ) LD15081 Institutional support: RVO:61388971 ; RVO:68378050 ; RVO:61388963 Keywords : Silychristin * skeletal alterations * biological activities Subject RIV: CC - Organic Chemistry Impact factor: 3.281, year: 2016

  12. Effect of Acetylcholinesterase and Butyrylcholinesterase on Intrauterine Insemination, Contribution to Inflammations, Oxidative Stress and Antioxidant Status; A Preliminary Report

    Science.gov (United States)

    Haghnazari, Lida; Vaisi-Raygani, Asad; Keshvarzi, Farahnaz; Ferdowsi, Farivar; Goodarzi, Massoud; Rahimi, Zohreh; Baniamerian, Hossin; Tavilani, Haidar; Vaisi-Raygani, Hadis; Vaisi-Raygani, Hessam; Pourmotabbed, Tayehbeh

    2016-01-01

    Background: Oxidative stress affects women fertility and influences on the sperm quality by alterating activities of cholinesterases, a molecular marker of stress-related infertility. The aim of the present study was to investigate the role of acetyl-cholinesterase (AChE), butyrylcholinesterase (BuChE) activities and phenotypes in patients with unexplained infertility (idiopathic). It’s possible association with inflammation marker C-reactive protein (CRP) and other oxidative stress markers, i.e. before and after intra uterine insemination (IUI). Methods: In this study, blood samples of 60 patients with unexplained infertility were collected the day before and 24 hr after IUI (between 8 AM and 9 AM after the overnight fasting) and activities of BuChE, AChE, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GpX) and serum levels of thiol proteins (TP), C-reactive protein (CRP), total antioxidant capacity (TAC) were measured. Statistical significance was assumed at poxidative stress and inflammation and reduction in fertility rates by IUI. PMID:27478769

  13. Torilin Inhibits Inflammation by Limiting TAK1-Mediated MAP Kinase and NF-κB Activation

    Directory of Open Access Journals (Sweden)

    Mehari Endale

    2017-01-01

    Full Text Available Torilin, a sesquiterpene isolated from the fruits of Torilis japonica, has shown antimicrobial, anticancer, and anti-inflammatory properties. However, data on the mechanism of torilin action against inflammation is limited. This study aimed at determining the anti-inflammatory property of torilin in LPS-induced inflammation using in vitro model of inflammation. We examined torilin’s effect on expression levels of inflammatory mediators and cytokines in LPS-stimulated RAW 264.7 macrophages. The involvement of NF-kB and AP-1, MAP kinases, and adaptor proteins were assessed. Torilin strongly inhibited LPS-induced NO release, iNOS, PGE2, COX-2, NF-α, IL-1β, IL-6, and GM-CSF gene and protein expressions. In addition, MAPKs were also suppressed by torilin pretreatment. Involvement of ERK1/2, P38MAPK, and JNK1/2 was further confirmed by PD98059, SB203580, and SP600125 mediated suppression of iNOS and COX-2 proteins. Furthermore, torilin attenuated NF-kB and AP-1 translocation, DNA binding, and reporter gene transcription. Interestingly, torilin inhibited TAK1 kinase activation with the subsequent suppression of MAPK-mediated JNK, p38, ERK1/2, and AP-1 (ATF-2 and c-jun activation and IKK-mediated I-κBα degradation, p65/p50 activation, and translocation. Together, the results revealed the suppression of NF-κB and AP-1 regulated inflammatory mediator and cytokine expressions, suggesting the test compound’s potential as a candidate anti-inflammatory agent.

  14. [ENT inflammation and importance of fenspiride].

    Science.gov (United States)

    Jankowski, R

    2002-09-01

    PERSISTENT INFLAMMATION: Inflammation may persist despite the eviction of the aggressive agent because of the disruption of the regulator mechanisms. In such patients, drugs such as fenspiride can be effective at several levels, from onset of inflammation, in an attempt to control its progression. INHIBITION OF NEUROPHIL MIGRATION: Could be a very interesting propriety for controlling inflammation of the human respiratory mucosa. CONTROL OF FREE RADICALS: In certain cases, clearance of free oxygen radicals by cells implicated in the inflammatory process may be overrun. Fenespiride can limit the production of free radicals, probably at the level of the producing cells. ACTION ON THE ARACHIDONIC ACID CASCADE: The mechanism and site of action of fenspiride remains to be clarified. It does not act like conventional antiinflammatory drugs by inhibiting cyclo-oxygenase. ANTIHISTAMINE ACTIVITY: Fenspiride has a certain antihistamine activity, basically by blocking H1 receptors. This action should be tested in subjects with nonspecific nasal hyperreactivity. OTHER PROPERTIES: Fenspiride also has an alpha-1-adrenolytic activity and an inhibitor effect on cyclic AMP, two properties which could have an impact on inflammatory diseases of the upper airways.

  15. Activity of matrix metalloproteinases during antimycobacterial therapy in mice with simulated tuberculous inflammation.

    Science.gov (United States)

    Sumenkova, D V; Russkikh, G S; Poteryaeva, O N; Polyakov, L M; Panin, L E

    2013-05-01

    Matrix metalloproteinases are shown to be involved in the pathogenesis of tuberculosis inflammation. In the early stages of BCG-granuloma formation in mouse liver and lungs, the serum levels of matrix metalloproteinases 2 and 7 increased by 4.5 times and remained unchanged while the pathology developed. Antimycobacterial therapy with isoniazid reduced enzyme activity almost to the level of intact control. The decrease in activity of matrix metalloproteinases 2 and 7 that play the most prominent role in the development of destructive forms of tuberculosis is of great therapeutic importance.

  16. Rac1 signaling regulates cigarette smoke-induced inflammation in the lung via the Erk1/2 MAPK and STAT3 pathways.

    Science.gov (United States)

    Jiang, Jun-Xia; Zhang, Shui-Juan; Shen, Hui-Juan; Guan, Yan; Liu, Qi; Zhao, Wei; Jia, Yong-Liang; Shen, Jian; Yan, Xiao-Feng; Xie, Qiang-Min

    2017-07-01

    Cigarette smoke (CS) is a major risk factor for the development of chronic obstructive pulmonary disease (COPD). Our previous studies have indicated that Rac1 is involved in lipopolysaccharide-induced pulmonary injury and CS-mediated epithelial-mesenchymal transition. However, the contribution of Rac1 activity to CS-induced lung inflammation remains not fully clear. In this study, we investigated the regulation of Rac1 in CS-induced pulmonary inflammation. Mice or 16HBE cells were exposed to CS or cigarette smoke extract (CSE) to induce acute inflammation. The lungs of mice exposed to CS showed an increase in the release of interleukin-6 (IL-6) and keratinocyte-derived chemokine (KC), as well as an accumulation of inflammatory cells, indicating high Rac1 activity. The exposure of 16HBE cells to CSE resulted in elevated Rac1 levels, as well as increased release of IL-6 and interleukin-8 (IL-8). Selective inhibition of Rac1 ameliorated the release of IL-6 and KC as well as inflammation in the lungs of CS-exposed mice. Histological assessment showed that treatment with a Rac1 inhibitor, NSC23766, led to a decrease in CD68 and CD11b positive cells and the infiltration of neutrophils and macrophages into the alveolar spaces. Selective inhibition or knockdown of Rac1 decreased IL-6 and IL-8 release in 16HBE cells induced by CSE, which correlated with CSE-induced Rac1-regulated Erk1/2 mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription-3 (STAT3) signaling. Our data suggest an important role for Rac1 in the pathological alterations associated with CS-mediated inflammation. Rac1 may be a promising therapeutic target for the treatment of CS-induced pulmonary inflammation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Distinct alterations in motor & reward seeking behavior are dependent on the gestational age of exposure to LPS-induced maternal immune activation.

    Science.gov (United States)

    Straley, Megan E; Van Oeffelen, Wesley; Theze, Sarah; Sullivan, Aideen M; O'Mahony, Siobhain M; Cryan, John F; O'Keeffe, Gerard W

    2017-07-01

    The dopaminergic system is involved in motivation, reward and the associated motor activities. Mesodiencephalic dopaminergic neurons in the ventral tegmental area (VTA) regulate motivation and reward, whereas those in the substantia nigra (SN) are essential for motor control. Defective VTA dopaminergic transmission has been implicated in schizophrenia, drug addiction and depression whereas dopaminergic neurons in the SN are lost in Parkinson's disease. Maternal immune activation (MIA) leading to in utero inflammation has been proposed to be a risk factor for these disorders, yet it is unclear how this stimulus can lead to the diverse disturbances in dopaminergic-driven behaviors that emerge at different stages of life in affected offspring. Here we report that gestational age is a critical determinant of the subsequent alterations in dopaminergic-driven behavior in rat offspring exposed to lipopolysaccharide (LPS)-induced MIA. Behavioral analysis revealed that MIA on gestational day 16 but not gestational day 12 resulted in biphasic impairments in motor behavior. Specifically, motor impairments were evident in early life, which were resolved by adolescence, but subsequently re-emerged in adulthood. In contrast, reward seeking behaviors were altered in offspring exposed MIA on gestational day 12. These changes were not due to a loss of dopaminergic neurons per se in the postnatal period, suggesting that they reflect functional changes in dopaminergic systems. This highlights that gestational age may be a key determinant of how MIA leads to distinct alterations in dopaminergic-driven behavior across the lifespan of affected offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Clostridium difficile suppresses colonic vasoactive intestinal peptide associated with altered motility

    Directory of Open Access Journals (Sweden)

    A. Nassif

    1995-01-01

    Full Text Available We investigated whether Clostridium difficile toxin alters colonic tissue levels of vasoactive intestinal peptide (VIP at the expense of changes in colonic motility in the isolated perfused rabbit left colon. Colonic inflammation was induced by the intracolonic administration of 10−8 M C. difflcile toxin. Strain gauge transducers were sewn onto the serosal surface of the colon to evaluate colonic motility. C. difflcile administration produced histologic changes consistent with epithelial damage. This was associated with an increased production of prostaglandin E2 and thromboxane B2. Tissue levels of VIP but not substance P were significantly reduced. This was associated with an increased number of contractions per minute and an average force of each colonic contraction. These results suggest that tissue levels of VIP are suppressed by C. difflcile and may participate in colonic dysmotility during active inflammation.

  19. Placental Growth Factor Contributes to Liver Inflammation, Angiogenesis, Fibrosis in Mice by Promoting Hepatic Macrophage Recruitment and Activation

    Directory of Open Access Journals (Sweden)

    Xi Li

    2017-07-01

    Full Text Available Placental growth factor (PlGF, a member of the vascular endothelial growth factor (VEGF family, mediates wound healing and inflammatory responses, exerting an effect on liver fibrosis and angiogenesis; however, the precise mechanism remains unclear. The aims of this study are to identify the role of PlGF in liver inflammation and fibrosis induced by bile duct ligation (BDL in mice and to reveal the underlying molecular mechanism. PlGF small interfering RNA (siRNA or non-targeting control siRNA was injected by tail vein starting 2 days after BDL. Liver inflammation, fibrosis, angiogenesis, macrophage infiltration, and hepatic stellate cells (HSCs activation were examined. Our results showed that PlGF was highly expressed in fibrotic livers and mainly distributed in activated HSCs and macrophages. Furthermore, PlGF silencing strongly reduced the severity of liver inflammation and fibrosis, and inhibited the activation of HSCs. Remarkably, PlGF silencing also attenuated BDL-induced hepatic angiogenesis, as evidenced by attenuated liver endothelial cell markers CD31 and von Willebrand factor immunostaining and genes or protein expression. Interestingly, these pathological ameliorations by PlGF silencing were due to a marked reduction in the numbers of intrahepatic F4/80+, CD68+, and Ly6C+ cell populations, which were reflected by a lower expression of these macrophage marker molecules in fibrotic livers. In addition, knockdown of PlGF by siRNA inhibited macrophages activation and substantially suppressed the expression of pro-inflammatory cytokines and chemokines in fibrotic livers. Mechanistically, evaluation of cultured RAW 264.7 cells revealed that VEGF receptor 1 (VEGFR1 mainly involved in mediating the role of PlGF in macrophages recruitment and activation, since using VEGFR1 neutralizing antibody blocking PlGF/VEGFR1 signaling axis significantly inhibited macrophages migration and inflammatory responses. Together, these findings indicate

  20. Orbital flourine-18-fluorodeoxyglucose positron emission tomography in patients with Graves' disease for evaluation of active inflammation.

    Science.gov (United States)

    Uslu-Beşli, Lebriz; Kabasakal, Levent; Sağer, Sait; Cicik, Erdoğan; Asa, Sertaç; Sönmezoğlu, Kerim

    2017-11-01

    Prediction and early diagnosis of orbitopathy is needed in patients with Graves' disease, especially when radioiodine therapy is planned. Positron emission tomography/computerized tomography (PET/CT) using flourine-18-fluorodeoxyglucose (FDG) is an effective imaging modality in detection of inflammation, however, its ability to detect orbital inflammation has not been well studied. The aim of our study is to determine the ability of FDG PET/CT to detect orbital inflammation related with Graves' disease, identify active orbitopathy, predict the radioiodine-triggered orbitopathy, and find out the effects of radioiodine on orbital inflammation. Total 31 Graves' disease patients and 17 controls were included. All Graves' disease patients underwent cranial FDG PET/CT imaging prior therapy. Radioiodine therapy and post-treatment PET/CT study was applied to 21 patients. PET/CT images of all examinees were evaluated, measuring extraocular muscle maximum standard uptake value (SUVmax) and muscle thickness. FDG uptake was increased in the majority of extraocular muscles in Graves' disease patients in comparison to controls and this increase was found to be irrelevant from muscle thickness. Extraocular muscle SUVmax values did not increase in Graves' orbitopathy patients who received radioiodine under corticosteroid prophylaxis. SUVmax level of all orbital rectus muscles were increased after radioiodine therapy in nonsmokers, whereas no increase was detected in smokers. FDG PET/CT may be helpful in detection of extraocular muscle inflammation and it may show ongoing orbitopathy in early stages of inflammation before anatomical changes occur.

  1. Inhalation of activated protein C inhibits endotoxin-induced pulmonary inflammation in mice independent of neutrophil recruitment

    NARCIS (Netherlands)

    Slofstra, S. H.; Groot, A. P.; Maris, N. A.; Reitsma, P. H.; Cate, H. Ten; Spek, C. A.

    2006-01-01

    BACKGROUND AND PURPOSE: Intravenous administration of recombinant human activated protein C (rhAPC) is known to reduce lipopolysaccharide (LPS)-induced pulmonary inflammation by attenuating neutrophil chemotaxis towards the alveolar compartment. Ideally, one would administer rhAPC in pulmonary

  2. Low-grade inflammation decreases emotion recognition - Evidence from the vaccination model of inflammation.

    Science.gov (United States)

    Balter, Leonie J T; Hulsken, Sasha; Aldred, Sarah; Drayson, Mark T; Higgs, Suzanne; Veldhuijzen van Zanten, Jet J C S; Raymond, Jane E; Bosch, Jos A

    2018-05-06

    The ability to adequately interpret the mental state of another person is key to complex human social interaction. Recent evidence suggests that this ability, considered a hallmark of 'theory of mind' (ToM), becomes impaired by inflammation. However, extant supportive empirical evidence is based on experiments that induce not only inflammation but also induce discomfort and sickness, factors that could also account for temporary social impairment. Hence, an experimental inflammation manipulation was applied that avoided this confound, isolating effects of inflammation and social interaction. Forty healthy male participants (mean age = 25, SD = 5 years) participated in this double-blind placebo-controlled crossover trial. Inflammation was induced using Salmonella Typhi vaccination (0.025 mg; Typhim Vi, Sanofi Pasteur, UK); saline-injection was used as a control. About 6 h 30 m after injection in each condition, participants completed the Reading the Mind in the Eyes Test (RMET), a validated test for assessing how well the mental states of others can be inferred through observation of the eyes region of the face. Vaccination induced systemic inflammation, elevating IL-6 by +419% (p  .21). Importantly, compared to placebo, vaccination significantly reduced RMET accuracy (p valence (positive, negative, neutral) provided no evidence of a selective impact of treatment. By utilizing an inflammation-induction procedure that avoided concurrent sicknesses or symptoms in a double-blinded design, the present study provides further support for the hypothesis that immune activation impairs ToM. Such impairment may provide a mechanistic link explaining social-cognitive deficits in psychopathologies that exhibit low-grade inflammation, such as major depression. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Effects of inflammation on stem cells: together they strive?

    Science.gov (United States)

    Kizil, Caghan; Kyritsis, Nikos; Brand, Michael

    2015-04-01

    Inflammation entails a complex set of defense mechanisms acting in concert to restore the homeostatic balance in organisms after damage or pathogen invasion. This immune response consists of the activity of various immune cells in a highly complex manner. Inflammation is a double-edged sword as it is reported to have both detrimental and beneficial consequences. In this review, we discuss the effects of inflammation on stem cell activity, focusing primarily on neural stem/progenitor cells in mammals and zebrafish. We also give a brief overview of the effects of inflammation on other stem cell compartments, exemplifying the positive and negative role of inflammation on stemness. The majority of the chronic diseases involve an unremitting phase of inflammation due to improper resolution of the initial pro-inflammatory response that impinges on the stem cell behavior. Thus, understanding the mechanisms of crosstalk between the inflammatory milieu and tissue-resident stem cells is an important basis for clinical efforts. Not only is it important to understand the effect of inflammation on stem cell activity for further defining the etiology of the diseases, but also better mechanistic understanding is essential to design regenerative therapies that aim at micromanipulating the inflammatory milieu to offset the negative effects and maximize the beneficial outcomes. © 2015 The Authors.

  4. Inducible Bronchus-Associated Lymphoid Tissue: Taming Inflammation in the Lung.

    Science.gov (United States)

    Hwang, Ji Young; Randall, Troy D; Silva-Sanchez, Aaron

    2016-01-01

    Following pulmonary inflammation, leukocytes that infiltrate the lung often assemble into structures known as inducible Bronchus-Associated Lymphoid Tissue (iBALT). Like conventional lymphoid organs, areas of iBALT have segregated B and T cell areas, specialized stromal cells, high endothelial venules, and lymphatic vessels. After inflammation is resolved, iBALT is maintained for months, independently of inflammation. Once iBALT is formed, it participates in immune responses to pulmonary antigens, including those that are unrelated to the iBALT-initiating antigen, and often alters the clinical course of disease. However, the mechanisms that govern immune responses in iBALT and determine how iBALT impacts local and systemic immunity are poorly understood. Here, we review our current understanding of iBALT formation and discuss how iBALT participates in pulmonary immunity.

  5. Radioisotopic Imaging of Neuro-inflammation

    International Nuclear Information System (INIS)

    Winkeler, A.; Boisgard, R.; Martin, M.; Tavitian, B.

    2010-01-01

    Inflammatory responses are closely associated with many neurologic disorders and influence their outcome. In vivo imaging can document events accompanying neuro-inflammation, such as changes in blood flow, vascular permeability, tightness of the blood-to-brain barrier, local metabolic activity, and expression of specific molecular targets. Here, we briefly review current methods for imaging neuro-inflammation, with special emphasis on nuclear imaging techniques. (authors)

  6. Lipoxin A4 and platelet activating factor are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice.

    Directory of Open Access Journals (Sweden)

    Haiya Wu

    Full Text Available CFTR (cystic fibrosis transmembrane conductance regulator is expressed by both neutrophils and platelets. Lack of functional CFTR could lead to severe lung infection and inflammation. Here, we found that mutation of CFTR (F508del or inhibition of CFTR in mice led to more severe thrombocytopenia, alveolar neutrocytosis and bacteriosis, and lower lipoxin A4/MIP-2 (macrophage inhibitory protein-2 or lipoxin A4/neutrophil ratios in the BAL (bronchoalveolar lavage during acute E. coli pneumonia. In vitro, inhibition of CFTR promotes MIP-2 production in LPS-stimulated neutrophils; however, lipoxin A4 could dose-dependently suppress this effect. In LPS-induced acute lung inflammation, blockade of PSGL-1 (P-selectin glycoprotein ligand-1 or P-selectin, antagonism of PAF by WEB2086, or correction of mutated CFTR trafficking by KM11060 could significantly increase plasma lipoxin A4 levels in F508del relevant to wildtype mice. Concurrently, F508del mice had higher plasma platelet activating factor (PAF levels and PAF-AH activity compared to wildtype under LPS challenge. Inhibiting hydrolysis of PAF by a specific PAF-AH (PAF-acetylhydrolase inhibitor, MAFP, could worsen LPS-induced lung inflammation in F508del mice compared to vehicle treated F508del group. Particularly, depletion of platelets in F508del mice could significantly decrease plasma lipoxin A4 and PAF-AH activity and deteriorate LPS-induced lung inflammation compared to control F508del mice. Taken together, lipoxin A4 and PAF are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice, suggesting that lipoxin A4 and PAF might be therapeutic targets for ameliorating CFTR-deficiency deteriorated lung inflammation.

  7. Prophylactic effects of sulforaphane on depression-like behavior and dendritic changes in mice after inflammation.

    Science.gov (United States)

    Zhang, Ji-Chun; Yao, Wei; Dong, Chao; Yang, Chun; Ren, Qian; Ma, Min; Han, Mei; Wu, Jin; Ushida, Yusuke; Suganuma, Hiroyuki; Hashimoto, Kenji

    2017-01-01

    Inflammation plays a role in the pathophysiology of depression. Sulforaphane (SFN), an isothiocyanate compound derived from broccoli, is a potent activator of the NF-E2-related factor-2 (Nrf2), which plays a role in inflammation. In this study, we examined whether the prevention effects of SFN in lipopolysaccharide (LPS) induced depression-like behavior in mice. Pretreatment with SFN significantly blocked an increase in the serum tumor necrosis factor-α (TNF-α) level and an increase in microglial activation of brain regions after a single administration of LPS (0.5 mg/kg). Furthermore, SFN significantly potentiated increased serum levels of IL-10 after LPS administration. In the tail-suspension test and forced swimming test, SFN significantly attenuated an increase of the immobility time after LPS administration. In addition, SFN significantly recovered to control levels for LPS-induced alterations in the proteins such as brain-derived neurotrophic factor, postsynaptic density protein 95 and AMPA receptor 1 (GluA1) and dendritic spine density in the brain regions. Finally, dietary intake of 0.1% glucoraphanin (a glucosinolate precursor of SFN) food during the juvenile and adolescence could prevent the onset of LPS-induced depression-like behaviors and dendritic spine changes in the brain regions at adulthood. In conclusion, these findings suggest that dietary intake of SFN-rich broccoli sprout has prophylactic effects on inflammation-related depressive symptoms. Therefore, supplementation of SFN-rich broccoli sprout could be prophylactic vegetable to prevent or minimize the relapse by inflammation in the remission state of depressed patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Chronic Inflammation and Neutrophil Activation as Possible Causes of Joint Diseases in Ballet Dancers

    Directory of Open Access Journals (Sweden)

    Leandro da Silva Borges

    2014-01-01

    Full Text Available Herein, we investigated the effects of a ballet class on the kinetic profiles of creatine kinase (CK and lactate dehydrogenase (LDH activities, cytokines, complement component 3 (C3, and the concentrations of immunoglobulin (Ig, IgA and IgM, in ballerinas. We also verified neutrophil death and ROS release. Blood samples were taken from 13 dancers before, immediately after, and 18 hours after a ballet class. The ballet class increased the plasma activities of CK-total (2.0-fold immediately after class, while the activities of CK-cardiac muscle (1.0-fold and LDH (3.0-fold were observed to increase 18 hours after the class. Levels of the TNF-α, IL-1β, IgG, and IgA were not affected under the study conditions. The exercise was found to induce neutrophil apoptosis (6.0-fold 18 hours after the ballet class. Additionally, immediately after the ballet class, the neutrophils from the ballerinas were found to be less responsive to PMA stimulus. Conclusion. Ballet class was found to result in inflammation in dancers. The inflammation caused by the ballet class remained for 18 hours after the exercise. These findings are important in preventing the development of chronic lesions that are commonly observed in dancers, such as those with arthritis and synovitis.

  9. Chronic inflammation and neutrophil activation as possible causes of joint diseases in ballet dancers.

    Science.gov (United States)

    Borges, Leandro da Silva; Bortolon, José Ricardo; Santos, Vinicius Coneglian; de Moura, Nivaldo Ribeiro; Dermargos, Alexandre; Cury-Boaventura, Maria Fernanda; Gorjão, Renata; Pithon-Curi, Tania Cristina; Hatanaka, Elaine

    2014-01-01

    Herein, we investigated the effects of a ballet class on the kinetic profiles of creatine kinase (CK) and lactate dehydrogenase (LDH) activities, cytokines, complement component 3 (C3), and the concentrations of immunoglobulin (Ig), IgA and IgM, in ballerinas. We also verified neutrophil death and ROS release. Blood samples were taken from 13 dancers before, immediately after, and 18 hours after a ballet class. The ballet class increased the plasma activities of CK-total (2.0-fold) immediately after class, while the activities of CK-cardiac muscle (1.0-fold) and LDH (3.0-fold) were observed to increase 18 hours after the class. Levels of the TNF-α , IL-1β, IgG, and IgA were not affected under the study conditions. The exercise was found to induce neutrophil apoptosis (6.0-fold) 18 hours after the ballet class. Additionally, immediately after the ballet class, the neutrophils from the ballerinas were found to be less responsive to PMA stimulus. Ballet class was found to result in inflammation in dancers. The inflammation caused by the ballet class remained for 18 hours after the exercise. These findings are important in preventing the development of chronic lesions that are commonly observed in dancers, such as those with arthritis and synovitis.

  10. SOCS3 Expression Correlates with Severity of Inflammation, Expression of Proinflammatory Cytokines, and Activation of STAT3 and p38 MAPK in LPS-Induced Inflammation In Vivo

    Directory of Open Access Journals (Sweden)

    João Antônio Chaves de Souza

    2013-01-01

    Full Text Available SOCS3 is an inducible endogenous negative regulator of JAK/STAT pathway, which is relevant in inflammatory conditions. We used a model of LPS-induced periodontal disease in rats to correlate SOCS3 expression with the inflammatory status. In vitro we used a murine macrophage cell line to assess the physical interaction between SOCS3 and STAT3 by coimmunoprecipitation. 30 ug of LPS from Escherichia coli were injected in the gingival tissues on the palatal aspect of first molars of the animals 3x/week for up to 4 weeks. Control animals were injected with the vehicle (PBS. The rats were sacrificed at 7, 15, and 30 days. Inflammation and gene expression were assessed by stereometric analysis, immunohistochemistry, RT-qPCR, and western blot. LPS injections increased inflammation, paralleled by an upregulation of SOCS3, of the proinflammatory cytokines IL-1β, IL-6, and TNF-α and increased phosphorylation of STAT3 and p38 MAPK. SOCS3 expression accompanied the severity of inflammation and the expression of proinflammatory cytokines, as well as the activation status of STAT3 and p38 MAPK. LPS stimulation in a macrophage cell line in vitro induced transient STAT3 activation, which was inversely correlated with a dynamic physical interaction with SOCS3, suggesting that this may be a mechanism for SOCS3 regulatory function.

  11. [Orbital inflammation].

    Science.gov (United States)

    Mouriaux, F; Coffin-Pichonnet, S; Robert, P-Y; Abad, S; Martin-Silva, N

    2014-12-01

    Orbital inflammation is a generic term encompassing inflammatory pathologies affecting all structures within the orbit : anterior (involvement up to the posterior aspect of the globe), diffuse (involvement of intra- and/or extraconal fat), apical (involvement of the posterior orbit), myositis (involvement of only the extraocular muscles), dacryoadenitis (involvement of the lacrimal gland). We distinguish between specific inflammation and non-specific inflammation, commonly referred to as idiopathic inflammation. Specific orbital inflammation corresponds to a secondary localization of a "generalized" disease (systemic or auto-immune). Idiopathic orbital inflammation corresponds to uniquely orbital inflammation without generalized disease, and thus an unknown etiology. At the top of the differential diagnosis for specific or idiopathic orbital inflammation are malignant tumors, represented most commonly in the adult by lympho-proliferative syndromes and metastases. Treatment of specific orbital inflammation begins with treatment of the underlying disease. For idiopathic orbital inflammation, treatment (most often corticosteroids) is indicated above all in cases of visual loss due to optic neuropathy, in the presence of pain or oculomotor palsy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Mustard vesicants alter expression of the endocannabinoid system in mouse skin

    International Nuclear Information System (INIS)

    Wohlman, Irene M.; Composto, Gabriella M.; Heck, Diane E.; Heindel, Ned D.; Lacey, C. Jeffrey; Guillon, Christophe D.; Casillas, Robert P.; Croutch, Claire R.; Gerecke, Donald R.; Laskin, Debra L.; Joseph, Laurie B.; Laskin, Jeffrey D.

    2016-01-01

    Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants. - Highlights: • Sulfur mustard and nitrogen mustard are potent skin vesicants. • The endocannabinoid system regulates keratinocyte growth and differentiation. • Vesicants are potent inducers of the endocannabinoid system in mouse skin. • Endocannabinoid proteins upregulated are FAAH, CB1, CB2 and PPARα. • FAAH inhibitors suppress vesicant-induced inflammation in mouse skin.

  13. Mustard vesicants alter expression of the endocannabinoid system in mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Wohlman, Irene M.; Composto, Gabriella M. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Environmental Health Science, New York Medical College, Valhalla, NY (United States); Heindel, Ned D.; Lacey, C. Jeffrey; Guillon, Christophe D. [Department of Chemistry, Lehigh University, Bethlehem, PA (United States); Casillas, Robert P.; Croutch, Claire R. [MRIGlobal, Kansas City, MO (United States); Gerecke, Donald R.; Laskin, Debra L.; Joseph, Laurie B. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ (United States)

    2016-07-15

    Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants. - Highlights: • Sulfur mustard and nitrogen mustard are potent skin vesicants. • The endocannabinoid system regulates keratinocyte growth and differentiation. • Vesicants are potent inducers of the endocannabinoid system in mouse skin. • Endocannabinoid proteins upregulated are FAAH, CB1, CB2 and PPARα. • FAAH inhibitors suppress vesicant-induced inflammation in mouse skin.

  14. Reduced immune responses in chimeric mice engrafted with bone marrow cells from mice with airways inflammation.

    Science.gov (United States)

    Scott, Naomi M; Ng, Royce L X; McGonigle, Terence A; Gorman, Shelley; Hart, Prue H

    2015-11-01

    During respiratory inflammation, it is generally assumed that dendritic cells differentiating from the bone marrow are immunogenic rather than immunoregulatory. Using chimeric mice, the outcomes of airways inflammation on bone marrow progenitor cells were studied. Immune responses were analyzed in chimeric mice engrafted for >16 weeks with bone marrow cells from mice with experimental allergic airways disease (EAAD). Responses to sensitization and challenge with the allergen causing inflammation in the bone marrow-donor mice were significantly reduced in the chimeric mice engrafted with bone marrow cells from mice with EAAD (EAAD-chimeric). Responses to intranasal LPS and topical fluorescein isothiocyanate (non-specific challenges) were significantly attenuated. Fewer activated dendritic cells from the airways and skin of the EAAD-chimeric mice could be tracked to the draining lymph nodes, and may contribute to the significantly reduced antigen/chemical-induced hypertrophy in the draining nodes, and the reduced immune responses to sensitizing allergens. Dendritic cells differentiating in vitro from the bone marrow of >16 weeks reconstituted EAAD-chimeric mice retained an ability to poorly prime immune responses when transferred into naïve mice. Dendritic cells developing from bone marrow progenitors during airways inflammation are altered such that daughter cells have reduced antigen priming capabilities.

  15. Fas activity mediates airway inflammation during mouse adenovirus type 1 respiratory infection.

    Science.gov (United States)

    Adkins, Laura J; Molloy, Caitlyn T; Weinberg, Jason B

    2018-06-13

    CD8 T cells play a key role in clearance of mouse adenovirus type 1 (MAV-1) from the lung and contribute to virus-induced airway inflammation. We tested the hypothesis that interactions between Fas ligand (FasL) and Fas mediate the antiviral and proinflammatory effects of CD8 T cells. FasL and Fas expression were increased in the lungs of C57BL/6 (B6) mice during MAV-1 respiratory infection. Viral replication and weight loss were similar in B6 and Fas-deficient (lpr) mice. Histological evidence of pulmonary inflammation was similar in B6 and lpr mice, but lung mRNA levels and airway proinflammatory cytokine concentrations were lower in MAV-1-infected lpr mice compared to infected B6 mice. Virus-induced apoptosis in lungs was not affected by Fas deficiency. Our results suggest that the proinflammatory effects of CD8 T cells during MAV-1 infection are mediated in part by Fas activation and are distinct from CD8 T cell antiviral functions. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Anti-atherosclerotic activities of flavonoids from the flowers of Helichrysum arenarium L. MOENCH through the pathway of anti-inflammation.

    Science.gov (United States)

    Mao, Zhonghua; Gan, Chunli; Zhu, Jiuxin; Ma, Nan; Wu, Lijun; Wang, Libo; Wang, Xiaobo

    2017-06-15

    We have successfully established AS model using thoracic aortas vascular ring which evaluated by the morphological changes of blood vessels, the proliferation of VSMC, and the expression of inflammation factors VEGF, CRP, JNK2 and p38. This AS model has the advantages of low cost, convenient and short period of established time. Moreover, we investigated the anti-AS activities of 7 flavonoids Narirutin (1), Naringin (2), Eriodictyol (3), Luteolin (4), Galuteolin (5), Astragalin (6), Kaempferol (7) from flowers of Helichrysum arenarium L. MOENCH by examining the vascular morphology, the inhibition on the expression of inflammation factors CRP, VEGF, JNK2, p38. In addition, we investigated the anti-AS activities of these 7 flavonoids by examining NO secretion of RAW264.7 cells in response to LPS. All above inflammation factors have been proved to be involved in the formation of AS. After comprehensive analysis of all results to discuss the structure-activity relationship, we summarized the conclusions at follow: compounds 1-7 could inhibit the expression of VEGF, CRP, JNK2, p38 and NO at different level, and we evaluated that flavonol aglycone have more significant anti-inflammation than it's glycoside, and the anti-AS activity of flavonols were stronger than flavanones and flavones, which means that 3-group might be the effective group. Eventually, we supposed the main anti-inflammatory mechanism of these compounds was to reduce the expression of CRP, inhibit the kinases activity of JNK2 and p38, and then the MAPK pathway was suppressed, which resulted in the decrease of NO synthesis, VEGF expression and endothelial adhesion factor expression. And eventually, the scar tissue and vascular stenosis formations were prevented. This conclusion suggested flavonoids have the potential of preventing AS formation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway.

    Science.gov (United States)

    Bai, Juli; Cervantes, Christopher; Liu, Juan; He, Sijia; Zhou, Haiyan; Zhang, Bilin; Cai, Huan; Yin, Dongqing; Hu, Derong; Li, Zhi; Chen, Hongzhi; Gao, Xiaoli; Wang, Fang; O'Connor, Jason C; Xu, Yong; Liu, Meilian; Dong, Lily Q; Liu, Feng

    2017-11-14

    Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the DNA-sensing cGAS-cGAMP-STING pathway. Fat-specific knockout of disulfide-bond A oxidoreductase-like protein (DsbA-L), a chaperone-like protein originally identified in the mitochondrial matrix, impaired mitochondrial function and promoted mtDNA release, leading to activation of the cGAS-cGAMP-STING pathway and inflammatory responses. Conversely, fat-specific overexpression of DsbA-L protected mice against high-fat diet-induced activation of the cGAS-cGAMP-STING pathway and inflammation. Taken together, we identify DsbA-L as a key molecule that maintains mitochondrial integrity. DsbA-L deficiency promotes inflammation and insulin resistance by activating the cGAS-cGAMP-STING pathway. Our study also reveals that, in addition to its well-characterized roles in innate immune surveillance, the cGAS-cGAMP-STING pathway plays an important role in mediating obesity-induced metabolic dysfunction.

  18. Where Does Inflammation Fit?

    Science.gov (United States)

    Biasucci, Luigi M; La Rosa, Giulio; Pedicino, Daniela; D'Aiello, Alessia; Galli, Mattia; Liuzzo, Giovanna

    2017-09-01

    This review focuses on the complex relationship between inflammation and the onset of acute coronary syndrome and heart failure. In the last few years, two important lines of research brought new and essential information to light in the pathogenesis of acute coronary syndrome: a) the understanding of the immune mediate mechanisms of inflammation in Ischemic Heart Disease (IHD) and b) evidence that the inflammatory mechanisms associated with atherosclerosis and its complications can be modulated by anti-inflammatory molecules. A large amount of data also suggests that inflammation is a major component in the development and exacerbation of heart failure (HF), in a symbiotic relationship. In particular, recent evidence underlies peculiar aspects of the phenomenon: oxidative stress and autophagy; DAMPS and TLR-4 signaling activation; different macrophages lineage and the contribution of NLRP-3 inflammasome; adaptive immune system. A possible explanation that could unify the pathogenic mechanism of these different conditions is the rising evidence that increased bowel permeability may allow translation of gut microbioma product into the circulation. These findings clearly establish the role of inflammation as the great trigger for two of the major cardiovascular causes of death and morbidity. Further studies are needed, to better clarify the issue and to define more targeted approaches to reduce pathological inflammation while preserving the physiological one.

  19. Impact of lipopolysaccharide-induced acute inflammation on baroreflex-controlled sympathetic arterial pressure regulation.

    Directory of Open Access Journals (Sweden)

    Takeshi Tohyama

    Full Text Available Lipopolysaccharide (LPS induces acute inflammation, activates sympathetic nerve activity (SNA and alters hemodynamics. Since the arterial baroreflex is a negative feedback system to stabilize arterial pressure (AP, examining the arterial baroreflex function is a prerequisite to understanding complex hemodynamics under LPS challenge. We investigated the impact of LPS-induced acute inflammation on SNA and AP regulation by performing baroreflex open-loop analysis.Ten anesthetized Sprague-Dawley rats were used. Acute inflammation was induced by an intravenous injection of LPS (60 μg/kg. We isolated the carotid sinuses from the systemic circulation and controlled carotid sinus pressure (CSP by a servo-controlled piston pump. We matched CSP to AP to establish the baroreflex closed-loop condition, whereas we decoupled CSP from AP to establish the baroreflex open-loop condition and changed CSP stepwise to evaluate the baroreflex open-loop function. We recorded splanchnic SNA and hemodynamic parameters under baroreflex open- and closed-loop conditions at baseline and at 60 and 120 min after LPS injection.In the baroreflex closed-loop condition, SNA continued to increase after LPS injection, reaching three-fold the baseline value at 120 min (baseline: 94.7 ± 3.6 vs. 120 min: 283.9 ± 31.9 a.u.. In contrast, AP increased initially (until 75 min, then declined to the baseline level. In the baroreflex open-loop condition, LPS reset the neural arc (CSP-SNA relationship upward to higher SNA, while shifted the peripheral arc (SNA-AP relationship downward at 120 min after the injection. As a result, the operating point determined by the intersection between function curves of neural arc and peripheral arc showed marked sympatho-excitation without substantial changes in AP.LPS-induced acute inflammation markedly increased SNA via resetting of the baroreflex neural arc, and suppressed the peripheral arc. The balance between the augmented neural arc and

  20. Impact of lipopolysaccharide-induced acute inflammation on baroreflex-controlled sympathetic arterial pressure regulation.

    Science.gov (United States)

    Tohyama, Takeshi; Saku, Keita; Kawada, Toru; Kishi, Takuya; Yoshida, Keimei; Nishikawa, Takuya; Mannoji, Hiroshi; Kamada, Kazuhiro; Sunagawa, Kenji; Tsutsui, Hiroyuki

    2018-01-01

    Lipopolysaccharide (LPS) induces acute inflammation, activates sympathetic nerve activity (SNA) and alters hemodynamics. Since the arterial baroreflex is a negative feedback system to stabilize arterial pressure (AP), examining the arterial baroreflex function is a prerequisite to understanding complex hemodynamics under LPS challenge. We investigated the impact of LPS-induced acute inflammation on SNA and AP regulation by performing baroreflex open-loop analysis. Ten anesthetized Sprague-Dawley rats were used. Acute inflammation was induced by an intravenous injection of LPS (60 μg/kg). We isolated the carotid sinuses from the systemic circulation and controlled carotid sinus pressure (CSP) by a servo-controlled piston pump. We matched CSP to AP to establish the baroreflex closed-loop condition, whereas we decoupled CSP from AP to establish the baroreflex open-loop condition and changed CSP stepwise to evaluate the baroreflex open-loop function. We recorded splanchnic SNA and hemodynamic parameters under baroreflex open- and closed-loop conditions at baseline and at 60 and 120 min after LPS injection. In the baroreflex closed-loop condition, SNA continued to increase after LPS injection, reaching three-fold the baseline value at 120 min (baseline: 94.7 ± 3.6 vs. 120 min: 283.9 ± 31.9 a.u.). In contrast, AP increased initially (until 75 min), then declined to the baseline level. In the baroreflex open-loop condition, LPS reset the neural arc (CSP-SNA relationship) upward to higher SNA, while shifted the peripheral arc (SNA-AP relationship) downward at 120 min after the injection. As a result, the operating point determined by the intersection between function curves of neural arc and peripheral arc showed marked sympatho-excitation without substantial changes in AP. LPS-induced acute inflammation markedly increased SNA via resetting of the baroreflex neural arc, and suppressed the peripheral arc. The balance between the augmented neural arc and suppressed

  1. Evidence of endothelial inflammation, T cell activation, and T cell reallocation in uncomplicated Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Elhassan, I M; Hviid, L; Satti, G

    1994-01-01

    endothelium. We measured plasma levels of soluble markers of endothelial inflammation and T cell activation in 32 patients suffering from acute, uncomplication P. falciparum malaria, as well as in 10 healthy, aparasitemic control donors. All donors were residents of a malaria-endemic area of Eastern State...... Sudan. In addition, we measured the T cell surface expression of the interleukin-2 receptor (CD25) and the lymphocyte function-associated antigen (LFA-1; CD11a/CD18). We found that the plasma levels of all inflammation and activation markers were significantly increased in the malaria patients compared...... with the control donors. In addition, we found a disease-induced depletion of T cells with high expression of the LFA-1 antigen, particularly in the CD4+ subset. The results obtained provide further support for the hypothesis of T cell reallocation to inflamed endothelium in acute P. falciparum malaria....

  2. Peroxisome Proliferator-Activated Receptor-alpha Gene Level Differently Affects Lipid Metabolism and Inflammation in Apolipoprotein E2 Knock-In Mice

    NARCIS (Netherlands)

    Lalloyer, Fanny; Wouters, Kristiaan; Baron, Morgane; Caron, Sandrine; Vallez, Emmanuelle; Vanhoutte, Jonathan; Bauge, Eric; Shiri-Sverdlov, Ronit; Hofker, Marten; Staels, Bart; Tailleux, Anne

    Objective-Peroxisome proliferator-activated receptor-alpha (PPAR alpha) is a ligand-activated transcription factor that controls lipid metabolism and inflammation. PPAR alpha is activated by fibrates, hypolipidemic drugs used in the treatment of dyslipidemia. Previous studies assessing the influence

  3. Inflammation Activates the Interferon Signaling Pathways in Taste Bud Cells

    OpenAIRE

    Wang, Hong; Zhou, Minliang; Brand, Joseph; Huang, Liquan

    2007-01-01

    Patients with viral and bacterial infections or other inflammatory illnesses often experience taste dysfunctions. The agents responsible for these taste disorders are thought to be related to infection-induced inflammation, but the mechanisms are not known. As a first step in characterizing the possible role of inflammation in taste disorders, we report here evidence for the presence of interferon (IFN)-mediated signaling pathways in taste bud cells. IFN receptors, particularly the IFN-γ rece...

  4. RIPK3 Mediates Necroptosis during Embryonic Development and Postnatal Inflammation in Fadd-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Qun Zhao

    2017-04-01

    Full Text Available RIPK3 mediates cell death and regulates inflammatory responses. Although genetic studies have suggested that RIPK3-MLKL-mediated necroptosis leads to embryonic lethality in Fadd or Caspase-8-deficient mice, the exact mechanisms are not fully understood. Here, we generated Ripk3 mutant mice by altering the RIPK3 kinase domain (Ripk3Δ/Δ mice, thus abolishing its kinase activity. Ripk3Δ/Δ cells were resistant to necroptosis stimulation in vitro, and Ripk3Δ/Δ mice were protected from necroptotic diseases. Although the Ripk3Δ/Δ mutation rescued embryonic lethality in Fadd−/− embryos, Fadd−/− Ripk3Δ/Δ mice died within 1 day after birth due to massive inflammation. These results indicate that Ripk3 ablation rescues embryonic lethality in Fadd-deficient mice by suppressing two RIPK3-mediating processes: necroptosis during embryogenesis and inflammation during postnatal development in Fadd−/− mice.

  5. Stromal fibroblasts derived from mammary gland of bovine with mastitis display inflammation-specific changes.

    Science.gov (United States)

    Chen, Qing; He, Guiliang; Zhang, Wenyao; Xu, Tong; Qi, Hongliang; Li, Jing; Zhang, Yong; Gao, Ming-Qing

    2016-06-07

    Fibroblasts are predominant components of mammary stromal cells and play crucial roles in the development and involution of bovine mammary gland; however, whether these cells contribute to mastitis has not been demonstrated. Thus, we have undertaken biological and molecular characterization of inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis and normal fibroblasts (NFs) from slaughtered dairy cows because of fractured legs during lactation. The functional contributions of INFs to normal epithelial cells were also investigated by using an in vitro co-culture model. We present evidence that the INFs were activated fibroblasts and showed inflammation-related features. Moreover, INFs significantly inhibited the proliferation and β-casein secretion of epithelial cells, as well as upregulated the expression of tumor necrosis factor-α and interleukin-8 in epithelial cells. These findings indicate that functional alterations can occur in stromal fibroblasts within the bovine mammary gland during mastitis, demonstrating the importance of stromal fibroblasts in bovine mastitis and its treatment.

  6. The secretory phospholipase A2 group IIA: a missing link between inflammation, activated renin-angiotensin system, and atherogenesis?

    Directory of Open Access Journals (Sweden)

    Dimitar Divchev

    2008-06-01

    Full Text Available Dimitar Divchev, Bernhard SchiefferDepartment of Cardiology and Angiology, Medizinische Hochschule Hannover, GermanyAbstract: Inflammation, lipid peroxidation and chronic activation of the renin–angiotensin system (RAS are hallmarks of the development of atherosclerosis. Recent studies have suggested the involvement of the pro-inflammatory secretory phospholipase A2 (sPLA2-IIA in atherogenesis. This enzyme is produced by different cell types through stimulation by proinflammatory cytokines. It is detectable in the intima and in media smooth muscle cells, not only in atherosclerotic lesions but also in the very early stages of atherogenesis. sPLA2-IIA can hydrolyse the phospholipid monolayers of low density lipoproteins (LDL. Such modified LDL show increased affinity to proteoglycans. The modified particles have a greater tendency to aggregate and an enhanced ability to insert cholesterol into cells. This modification may promote macrophage LDL uptake leading to the formation of foam cells. Furthermore, sPLA2-IIA is not only a mediator for localized inflammation but may be also used as an independent predictor of adverse outcomes in patients with stable coronary artery disease or acute coronary syndromes. An interaction between activated RAS and phospholipases has been indicated by observations showing that inhibitors of sPLA2 decrease angiotensin (Ang II-induced macrophage lipid peroxidation. Meanwhile, various interactions between Ang II and oxLDL have been demonstrated suggesting a central role of sPLA2-IIA in these processes and offering a possible target for treatment. The role of sPLA2-IIA in the perpetuation of atherosclerosis appears to be the missing link between inflammation, activated RAS and lipidperoxidation.Keywords: secretory phospholipase A2, lipoproteins, renin-angiotensin system, inflammation, atherosclerosis

  7. A combined marker of inflammation in individuals with mania.

    Directory of Open Access Journals (Sweden)

    Faith Dickerson

    Full Text Available BACKGROUND: Markers of immune activation have been associated with mania but have not been examined in combination. We studied the association between mania and an inflammation score based on four immune markers. METHODS: A total of 57 individuals with mania were assessed at up to three time points: the day of hospital admission, evaluation several days later, and six-month follow-up. Also assessed were 207 non-psychiatric controls and 330 individuals with recent onset psychosis, multi-episode schizophrenia, or bipolar disorder depression. A combined inflammation score was calculated by factor analysis of the levels of class-specific antibodies to the NR peptide of the NMDA receptor; gliadin; Mason-Pfizer monkey virus protein 24; and Toxoplasma gondii. Inflammation scores among groups were compared by multivariate analyses. The inflammation score of the mania group at evaluation was studied as a predictor of re-hospitalization in the follow-up period. RESULTS: The combined inflammation score of the mania group at hospital admission and at evaluation differed significantly from that of the non-psychiatric controls (t=3.95, 4.10, p<.001. The inflammation score was significantly decreased at six month follow-up (F=5.85, p=0.004. There were not any significant differences in the inflammation scores of any of the other psychiatric groups and that of the controls. Within the mania group, an elevated inflammation score at evaluation predicted re-hospitalization (Hazard ratio=7.12, p=.005. CONCLUSIONS: Hospitalization for mania is associated with immune activation. The level of this activation is predictive of subsequent re-hospitalization. Interventions for the modulation of inflammation should be evaluated for the therapy of individuals with mania.

  8. Neutrophil-Derived Proteases Escalate Inflammation through Activation of IL-36 Family Cytokines

    Directory of Open Access Journals (Sweden)

    Conor M. Henry

    2016-02-01

    Full Text Available Recent evidence has strongly implicated the IL-1 family cytokines IL-36α, IL-36β, and IL-36γ as key initiators of skin inflammation. Similar to the other members of the IL-1 family, IL-36 cytokines are expressed as inactive precursors and require proteolytic processing for activation; however, the responsible proteases are unknown. Here, we show that IL-36α, IL-36β, and IL-36γ are activated differentially by the neutrophil granule-derived proteases cathepsin G, elastase, and proteinase-3, increasing their biological activity ∼500-fold. Active IL-36 promoted a strong pro-inflammatory signature in primary keratinocytes and was sufficient to perturb skin differentiation in a reconstituted 3D human skin model, producing features resembling psoriasis. Furthermore, skin eluates from psoriasis patients displayed significantly elevated cathepsin G-like activity that was sufficient to activate IL-36β. These data identify neutrophil granule proteases as potent IL-36-activating enzymes, adding to our understanding of how neutrophils escalate inflammatory reactions. Inhibition of neutrophil-derived proteases may therefore have therapeutic benefits in psoriasis.

  9. Altered Methylation Profile of Lymphocytes Is Concordant with Perturbation of Lipids Metabolism and Inflammatory Response in Obesity

    Directory of Open Access Journals (Sweden)

    Mette J. Jacobsen

    2016-01-01

    Full Text Available Obesity is associated with immunological perturbations that contribute to insulin resistance. Epigenetic mechanisms can control immune functions and have been linked to metabolic complications, although their contribution to insulin resistance still remains unclear. In this study, we investigated the link between metabolic dysfunction and immune alterations with the epigenetic signature in leukocytes in a porcine model of obesity. Global DNA methylation of circulating leukocytes, adipose tissue leukocyte trafficking, and macrophage polarisation were established by flow cytometry. Adipose tissue inflammation and metabolic function were further characterised by quantification of metabolites and expression levels of genes associated with obesity and inflammation. Here we show that obese pigs showed bigger visceral fat pads, higher levels of circulating LDL cholesterol, and impaired glucose tolerance. These changes coincided with impaired metabolism, sustained macrophages infiltration, and increased inflammation in the adipose tissue. Those immune alterations were linked to global DNA hypermethylation in both B-cells and T-cells. Our results provide novel insight into the possible contribution of immune cell epigenetics into the immunological disturbances observed in obesity. The dramatic changes in the transcriptomic and epigenetic signature of circulating lymphocytes reinforce the concept that epigenetic processes participate in the increased immune cell activation and impaired metabolic functions in obesity.

  10. Chronic Oxidative Stress, Mitochondrial Dysfunction, Nrf2 Activation and Inflammation in the Hippocampus Accompany Heightened Systemic Inflammation and Oxidative Stress in an Animal Model of Gulf War Illness

    Science.gov (United States)

    Shetty, Geetha A.; Hattiangady, Bharathi; Upadhya, Dinesh; Bates, Adrian; Attaluri, Sahithi; Shuai, Bing; Kodali, Maheedhar; Shetty, Ashok K.

    2017-01-01

    Memory and mood dysfunction are the key symptoms of Gulf war illness (GWI), a lingering multi-symptom ailment afflicting >200,000 veterans who served in the Persian Gulf War-1. Research probing the source of the disease has demonstrated that concomitant exposures to anti-nerve gas agent pyridostigmine bromide (PB), pesticides, and war-related stress are among the chief causes of GWI. Indeed, exposures to GWI-related chemicals (GWIR-Cs) and mild stress in animal models cause memory and mood impairments alongside reduced neurogenesis and chronic low-level inflammation in the hippocampus. In the current study, we examined whether exposure to GWIR-Cs and stress causes chronic changes in the expression of genes related to increased oxidative stress, mitochondrial dysfunction, and inflammation in the hippocampus. We also investigated whether GWI is linked with chronically increased activation of Nrf2 (a master regulator of antioxidant response) in the hippocampus, and inflammation and enhanced oxidative stress at the systemic level. Adult male rats were exposed daily to low-doses of PB and pesticides (DEET and permethrin), in combination with 5 min of restraint stress for 4 weeks. Analysis of the hippocampus performed 6 months after the exposure revealed increased expression of many genes related to oxidative stress response and/or antioxidant activity (Hmox1, Sepp1, and Srxn1), reactive oxygen species metabolism (Fmo2, Sod2, and Ucp2) and oxygen transport (Ift172 and Slc38a1). Furthermore, multiple genes relevant to mitochondrial respiration (Atp6a1, Cox6a1, Cox7a2L, Ndufs7, Ndufv1, Lhpp, Slc25a10, and Ucp1) and neuroinflammation (Nfkb1, Bcl6, Csf2, IL6, Mapk1, Mapk3, Ngf, N-pac, and Prkaca) were up-regulated, alongside 73–88% reduction in the expression of anti-inflammatory genes IL4 and IL10, and nuclear translocation and increased expression of Nrf2 protein. These hippocampal changes were associated with elevated levels of pro-inflammatory cytokines and chemokines

  11. Chronic Oxidative Stress, Mitochondrial Dysfunction, Nrf2 Activation and Inflammation in the Hippocampus Accompany Heightened Systemic Inflammation and Oxidative Stress in an Animal Model of Gulf War Illness.

    Science.gov (United States)

    Shetty, Geetha A; Hattiangady, Bharathi; Upadhya, Dinesh; Bates, Adrian; Attaluri, Sahithi; Shuai, Bing; Kodali, Maheedhar; Shetty, Ashok K

    2017-01-01

    Memory and mood dysfunction are the key symptoms of Gulf war illness (GWI), a lingering multi-symptom ailment afflicting >200,000 veterans who served in the Persian Gulf War-1. Research probing the source of the disease has demonstrated that concomitant exposures to anti-nerve gas agent pyridostigmine bromide (PB), pesticides, and war-related stress are among the chief causes of GWI. Indeed, exposures to GWI-related chemicals (GWIR-Cs) and mild stress in animal models cause memory and mood impairments alongside reduced neurogenesis and chronic low-level inflammation in the hippocampus. In the current study, we examined whether exposure to GWIR-Cs and stress causes chronic changes in the expression of genes related to increased oxidative stress, mitochondrial dysfunction, and inflammation in the hippocampus. We also investigated whether GWI is linked with chronically increased activation of Nrf2 (a master regulator of antioxidant response) in the hippocampus, and inflammation and enhanced oxidative stress at the systemic level. Adult male rats were exposed daily to low-doses of PB and pesticides (DEET and permethrin), in combination with 5 min of restraint stress for 4 weeks. Analysis of the hippocampus performed 6 months after the exposure revealed increased expression of many genes related to oxidative stress response and/or antioxidant activity ( Hmox1, Sepp1 , and Srxn1 ), reactive oxygen species metabolism ( Fmo2, Sod2 , and Ucp2 ) and oxygen transport ( Ift172 and Slc38a1 ). Furthermore, multiple genes relevant to mitochondrial respiration ( Atp6a1, Cox6a1, Cox7a2L, Ndufs7, Ndufv1, Lhpp, Slc25a10 , and Ucp1 ) and neuroinflammation ( Nfkb1, Bcl6, Csf2, IL6, Mapk1, Mapk3, Ngf, N-pac , and Prkaca ) were up-regulated, alongside 73-88% reduction in the expression of anti-inflammatory genes IL4 and IL10 , and nuclear translocation and increased expression of Nrf2 protein. These hippocampal changes were associated with elevated levels of pro-inflammatory cytokines

  12. MicroRNAs in inflammation and response to injuries induced by environmental pollution

    International Nuclear Information System (INIS)

    Sonkoly, Enikö; Pivarcsi, Andor

    2011-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that regulate basic biological processes by posttranscriptional suppression of their target genes. Altered miRNA expression may lead to widespread gene expression changes and has been implicated in pathophysiological processes such as cancer and inflammation. In this review, we summarize the present knowledge about the role of miRNAs in inflammation and in the response to environmental agents and pollutants, such as cigarette smoke, ethanol, carcinogenic chemicals such as benzo(a)pyrene (BaP) and dioxin, and UV radiation.

  13. MicroRNAs in inflammation and response to injuries induced by environmental pollution

    Energy Technology Data Exchange (ETDEWEB)

    Sonkoly, Enikoe [Molecular Dermatology Research Group, Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institute, Stockholm (Sweden); Department of Dermatology and Allergology, University of Szeged, Szeged (Hungary); Pivarcsi, Andor, E-mail: andor.pivarcsi@ki.se [Molecular Dermatology Research Group, Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institute, Stockholm (Sweden); Department of Dermatology and Allergology, University of Szeged, Szeged (Hungary)

    2011-12-01

    MicroRNAs (miRNAs) are small noncoding RNAs that regulate basic biological processes by posttranscriptional suppression of their target genes. Altered miRNA expression may lead to widespread gene expression changes and has been implicated in pathophysiological processes such as cancer and inflammation. In this review, we summarize the present knowledge about the role of miRNAs in inflammation and in the response to environmental agents and pollutants, such as cigarette smoke, ethanol, carcinogenic chemicals such as benzo(a)pyrene (BaP) and dioxin, and UV radiation.

  14. Allergen-Induced Dermatitis Causes Alterations in Cutaneous Retinoid-Mediated Signaling in Mice

    Science.gov (United States)

    Gericke, Janine; Ittensohn, Jan; Mihály, Johanna; Dubrac, Sandrine; Rühl, Ralph

    2013-01-01

    Nuclear receptor-mediated signaling via RARs and PPARδ is involved in the regulation of skin homeostasis. Moreover, activation of both RAR and PPARδ was shown to alter skin inflammation. Endogenous all-trans retinoic acid (ATRA) can activate both receptors depending on specific transport proteins: Fabp5 initiates PPARδ signaling whereas Crabp2 promotes RAR signaling. Repetitive topical applications of ovalbumin (OVA) in combination with intraperitoneal injections of OVA or only intraperitoneal OVA applications were used to induce allergic dermatitis. In our mouse model, expression of IL-4, and Hbegf increased whereas expression of involucrin, Abca12 and Spink5 decreased in inflamed skin, demonstrating altered immune response and epidermal barrier homeostasis. Comprehensive gene expression analysis showed alterations of the cutaneous retinoid metabolism and retinoid-mediated signaling in allergic skin immune response. Notably, ATRA synthesis was increased as indicated by the elevated expression of retinaldehyde dehydrogenases and increased levels of ATRA. Consequently, the expression pattern of genes downstream to RAR was altered. Furthermore, the increased ratio of Fabp5 vs. Crabp2 may indicate an up-regulation of the PPARδ pathway in allergen-induced dermatitis in addition to the altered RAR signaling. Thus, our findings suggest that ATRA levels, RAR-mediated signaling and signaling involved in PPARδ pathways are mainly increased in allergen-induced dermatitis and may contribute to the development and/or maintenance of allergic skin diseases. PMID:23977003

  15. Anti-inflammatory salicylate treatment alters the metabolic adaptations to lactation in dairy cattle

    Science.gov (United States)

    Farney, Jaymelynn K.; Mamedova, Laman K.; Coetzee, Johann F.; KuKanich, Butch; Sordillo, Lorraine M.; Stoakes, Sara K.; Minton, J. Ernest; Hollis, Larry C.

    2013-01-01

    Adapting to the lactating state requires metabolic adjustments in multiple tissues, especially in the dairy cow, which must meet glucose demands that can exceed 5 kg/day in the face of negligible gastrointestinal glucose absorption. These challenges are met through the process of homeorhesis, the alteration of metabolic setpoints to adapt to a shift in physiological state. To investigate the role of inflammation-associated pathways in these homeorhetic adaptations, we treated cows with the nonsteroidal anti-inflammatory drug sodium salicylate (SS) for the first 7 days of lactation. Administration of SS decreased liver TNF-α mRNA and marginally decreased plasma TNF-α concentration, but plasma eicosanoids and liver NF-κB activity were unaltered during treatment. Despite the mild impact on these inflammatory markers, SS clearly altered metabolic function. Plasma glucose concentration was decreased by SS, but this was not explained by a shift in hepatic gluconeogenic gene expression or by altered milk lactose secretion. Insulin concentrations decreased in SS-treated cows on day 7 compared with controls, which was consistent with the decline in plasma glucose concentration. The revised quantitative insulin sensitivity check index (RQUICKI) was then used to assess whether altered insulin sensitivity may have influenced glucose utilization rate with SS. The RQUICKI estimate of insulin sensitivity was significantly elevated by SS on day 7, coincident with the decline in plasma glucose concentration. Salicylate prevented postpartum insulin resistance, likely causing excessive glucose utilization in peripheral tissues and hypoglycemia. These results represent the first evidence that inflammation-associated pathways are involved in homeorhetic adaptations to lactation. PMID:23678026

  16. Pancreatic β-cells activate a JunB/ATF3-dependent survival pathway during inflammation

    DEFF Research Database (Denmark)

    Gurzov, E N; Barthson, J; Marhfour, I

    2012-01-01

    Destruction of insulin-producing pancreatic β-cells by local autoimmune inflammation is a hallmark of type 1 diabetes. Histochemical analysis of pancreases from non-obese diabetic mice indicated activation of the transcription factor JunB/AP-1 (activator protein-1) after autoimmune infiltration......-cells and human islet cells against pro-inflammatory mediators. These results were confirmed in genetically modified islets derived from Ubi-JunB transgenic mice. Our findings identify ATF3 as a novel downstream target of JunB in the survival mechanism of β-cells under inflammatory stress....

  17. DIABETES ASSOCIATED OXIDATIVE STRESS AND INFLAMMATION ALTERS THE PROTECTIVE EFFECT OF OBESITY ON SURVIVAL IN CHD PATIENTS

    Directory of Open Access Journals (Sweden)

    Serpil M. Deger

    2012-06-01

    Full Text Available In contrast to the adverse outcomes of obesity in general population, increased body mass index (BMI is associated with improved survival in hemodialysis (CHD patients. The aim of this retrospective study was to evaluate the association between obesity and mortality by diabetic status among 98 maintenance CHD patients. The median follow up was 33 (19, 56 months. Mean age was 49±13 years, 66% were male and 48 % had obesity. 45% of obese subjects were diabetic. Among the subgroups of study population, survival of diabetic obese patients was significantly lower compared to non-diabetic obese subjects (p=0.007 (Figure 1. The subgroup comparisons showed that diabetic obese patients tend to have higher truncal fat percentage (p<0.001 and lower lean body mass standardized by body surface area compared to nondiabetic counterparts although difference was not statistically significance. Diabetic obese patients had higher leptin (p=0.001 and high sensitivity C-reactive protein levels (0.005. Additionally, protein thiols (P-SH were significantly decreased in diabetic obese participants (p=0.03. Although, elevated body fatness appears to be protective for CHD population, presence of overt diabetes alters this advantage by increasing inflammation and oxidative stress.fx1

  18. Role of Inflammation in Diabetic Retinopathy

    Science.gov (United States)

    Rübsam, Anne; Parikh, Sonia; Fort, Patrice E.

    2018-01-01

    Diabetic retinopathy is a common complication of diabetes and remains the leading cause of blindness among the working-age population. For decades, diabetic retinopathy was considered only a microvascular complication, but the retinal microvasculature is intimately associated with and governed by neurons and glia, which are affected even prior to clinically detectable vascular lesions. While progress has been made to improve the vascular alterations, there is still no treatment to counteract the early neuro-glial perturbations in diabetic retinopathy. Diabetes is a complex metabolic disorder, characterized by chronic hyperglycemia along with dyslipidemia, hypoinsulinemia and hypertension. Increasing evidence points to inflammation as one key player in diabetes-associated retinal perturbations, however, the exact underlying molecular mechanisms are not yet fully understood. Interlinked molecular pathways, such as oxidative stress, formation of advanced glycation end-products and increased expression of vascular endothelial growth factor have received a lot of attention as they all contribute to the inflammatory response. In the current review, we focus on the involvement of inflammation in the pathophysiology of diabetic retinopathy with special emphasis on the functional relationships between glial cells and neurons. Finally, we summarize recent advances using novel targets to inhibit inflammation in diabetic retinopathy. PMID:29565290

  19. Role of Inflammation in Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Anne Rübsam

    2018-03-01

    Full Text Available Diabetic retinopathy is a common complication of diabetes and remains the leading cause of blindness among the working-age population. For decades, diabetic retinopathy was considered only a microvascular complication, but the retinal microvasculature is intimately associated with and governed by neurons and glia, which are affected even prior to clinically detectable vascular lesions. While progress has been made to improve the vascular alterations, there is still no treatment to counteract the early neuro-glial perturbations in diabetic retinopathy. Diabetes is a complex metabolic disorder, characterized by chronic hyperglycemia along with dyslipidemia, hypoinsulinemia and hypertension. Increasing evidence points to inflammation as one key player in diabetes-associated retinal perturbations, however, the exact underlying molecular mechanisms are not yet fully understood. Interlinked molecular pathways, such as oxidative stress, formation of advanced glycation end-products and increased expression of vascular endothelial growth factor have received a lot of attention as they all contribute to the inflammatory response. In the current review, we focus on the involvement of inflammation in the pathophysiology of diabetic retinopathy with special emphasis on the functional relationships between glial cells and neurons. Finally, we summarize recent advances using novel targets to inhibit inflammation in diabetic retinopathy.

  20. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway

    Science.gov (United States)

    Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the...

  1. [Bronchial inflammation during chronic bronchitis, importance of fenspiride].

    Science.gov (United States)

    Melloni, B

    2002-09-01

    PATHOPHYSIOLOGY OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD): Chronic inflammation of the upper airways, pulmonary parenchyma and pulmonary vasculature is the characteristic feature of COPD. Two mechanisms besides inflammation are also involved: oxidative stress and imbalance between proteinases and antiproteinases. Cellular infiltration of the upper airways involved neutrophils, macrophages, T lymphocytes and eosinophils. Inflammatory mediators appear to play a crucial role in the interaction between inflammation and obstruction. PROPERTIES OF FENSPIRIDE: A nonsteroidal drug, fenspiride, exhibits interesting properties documented in vitro: anti-bronchoconstriction activity, anti-secretory activity, and anti-inflammatory activity (reduction in the activity of phospholipase A2 and release of proinflammatory leukotriens). Two french clinical trials have studied the efficacy of fenspiride in patients with acute excerbation or stable COPD and have demonstrated an improvement in the group treated with fenspiride compared with the placebo group.

  2. Low Level Laser Therapy Reduces the Development of Lung Inflammation Induced by Formaldehyde Exposure.

    Directory of Open Access Journals (Sweden)

    Cristiane Miranda da Silva

    Full Text Available Lung diseases constitute an important public health problem and its growing level of concern has led to efforts for the development of new therapies, particularly for the control of lung inflammation. Low Level Laser Therapy (LLLT has been highlighted as a non-invasive therapy with few side effects, but its mechanisms need to be better understood and explored. Considering that pollution causes several harmful effects on human health, including lung inflammation, in this study, we have used formaldehyde (FA, an environmental and occupational pollutant, for the induction of neutrophilic lung inflammation. Our objective was to investigate the local and systemic effects of LLLT after FA exposure. Male Wistar rats were exposed to FA (1% or vehicle (distillated water during 3 consecutive days and treated or not with LLLT (1 and 5 hours after each FA exposure. Non-manipulated rats were used as control. 24 h after the last FA exposure, we analyzed the local and systemic effects of LLLT. The treatment with LLLT reduced the development of neutrophilic lung inflammation induced by FA, as observed by the reduced number of leukocytes, mast cells degranulated, and a decreased myeloperoxidase activity in the lung. Moreover, LLLT also reduced the microvascular lung permeability in the parenchyma and the intrapulmonary bronchi. Alterations on the profile of inflammatory cytokines were evidenced by the reduced levels of IL-6 and TNF-α and the elevated levels of IL-10 in the lung. Together, our results showed that LLLT abolishes FA-induced neutrophilic lung inflammation by a reduction of the inflammatory cytokines and mast cell degranulation. This study may provide important information about the mechanisms of LLLT in lung inflammation induced by a pollutant.

  3. Chitotriosidase enzyme activity: is this a possible chronic inflammation marker in children with common variable immunodeficiency and early atherosclerosis?

    Science.gov (United States)

    Azarsız, Elif; Karaca, Neslihan; Levent, Erturk; Kutukculer, Necil; Sozmen, Eser

    2017-11-01

    Background Common variable immunodeficiency is a rare clinically symptomatic primary immunodeficiency disorder which manifests a wide variability of symptoms, complications. Atherosclerosis in common variable immunodeficiency patients has not been investigated yet contrary to other severe clinical complications. We aimed to investigate the chitotriosidase enzyme's role as an inflammation and atherosclerosis marker in paediatric common variable immunodeficiency patients. Methods Common variable immunodeficiency patients (n = 24) and healthy controls (n = 23) evaluated for chitotriosidase activity with other inflammation markers (hsCRP, myeloperoxidase, serum amyloid A, ferritin), lipid profile and echocardiographic findings (carotid artery intima media thickness - cIMT, brachial artery flow-mediated vazodilatation - FMD%). Results In patients, the mean chitotriosidase activity (8.98 ± 6.28) was significantly higher than the controls (5.17 ± 3.42) ( P = 0.014). Chitotriosidase showed positive relation with hs-CRP ( P = 0.011) and SAA ( P = 0.011) but had no relation with ferritin ( P = 0.155), HDL ( P = 0.152) or LDL-cholesterol ( P = 0.380). Mean cIMT increased in patients compared with the controls ( P variable immunodeficiency patients demonstrated in vivo the presence of activated macrophages indicating ongoing inflammation. Echocardiographic diastolic functional deficiency, increased cIMT and decreased FMD% may be accepted as early atherosclerotic findings, but none of them showed relationship with chitotriosidase activities.

  4. Medical Management of Endometriosis: Emerging Evidence Linking Inflammation to Disease Pathophysiology

    Science.gov (United States)

    Bruner-Tran, Kaylon L.; Herington, Jennifer L.; Duleba, Antoni J.; Taylor, Hugh S.; Osteen, Kevin G.

    2013-01-01

    Progesterone action normally mediates the balance between anti-inflammatory and pro-inflammatory processes throughout the female reproductive tract. However, in women with endometriosis, endometrial progesterone resistance, characterized by alterations in progesterone responsive gene and protein expression, is now considered a central element in disease pathophysiology. Recent studies additionally suggest that the peritoneal microenvironment of endometriosis patients exhibits altered physiological characteristics that may further promote inflammation-driven disease development and progression. Within this review, we summarize our current understanding of the pathogenesis of endometriosis with an emphasis on the role that inflammation plays in generating not only the progesterone-resistant eutopic endometrium but also a peritoneal microenvironment that may contribute significantly to disease establishment. Viewing endometriosis from the emerging perspective that a progesterone resistant endometrium and an immunologically compromised peritoneal microenvironment are biologically linked risk factors for disease development provides a novel mechanistic framework to identify new therapeutic targets for appropriate medical management. PMID:23598784

  5. Inflammation and premature aging in advanced chronic kidney disease.

    Science.gov (United States)

    Kooman, Jeroen P; Dekker, Marijke J; Usvyat, Len A; Kotanko, Peter; van der Sande, Frank M; Schalkwijk, Casper G; Shiels, Paul G; Stenvinkel, Peter

    2017-10-01

    Systemic inflammation in end-stage renal disease is an established risk factor for mortality and a catalyst for other complications, which are related to a premature aging phenotype, including muscle wasting, vascular calcification, and other forms of premature vascular disease, depression, osteoporosis, and frailty. Uremic inflammation is also mechanistically related to mechanisms involved in the aging process, such as telomere shortening, mitochondrial dysfunction, and altered nutrient sensing, which can have a direct effect on cellular and tissue function. In addition to uremia-specific causes, such as abnormalities in the phosphate-Klotho axis, there are remarkable similarities between the pathophysiology of uremic inflammation and so-called "inflammaging" in the general population. Potentially relevant, but still somewhat unexplored in this respect, are abnormal or misplaced protein structures, as well as abnormalities in tissue homeostasis, which evoke danger signals through damage-associated molecular patterns, as well as the senescence-associated secretory phenotype. Systemic inflammation, in combination with the loss of kidney function, can impair the resilience of the body to external and internal stressors by reduced functional and structural tissue reserves, and by impairing normal organ crosstalk, thus providing an explanation for the greatly increased risk of homeostatic breakdown in this population. In this review, the relationship between uremic inflammation and a premature aging phenotype, as well as potential causes and consequences, are discussed. Copyright © 2017 the American Physiological Society.

  6. Imaging techniques for myocardial inflammation

    International Nuclear Information System (INIS)

    O'Connell, J.B.; Henkin, R.E.; Robinson, J.A.

    1986-01-01

    Dilated cardiomyopathy (DC) represents a heterogeneous group of disorders which results in morbidity and mortality in young individuals. Recent evidence suggests that a subset of these patients have histologic evidence of myocarditis which is potentially treatable with immunosuppression. The identification of myocardial inflammation may therefore lead to development of therapeutic regimens designed to treat the cause rather than the effect of the myocardial disease. Ultimately, this may result in improvement in the abysmal prognosis of DC. The currently accepted technique for identification of active myocardial inflammation is endomyocardial biopsy. This technique is not perfect, however, since pathologic standards for the diagnosis of myocarditis have not been established. Furthermore, focal inflammation may give rise to sampling error. The inflammation-avid radioisotope gallium-67 citrate has been used as an adjunct to biopsy improving the yield of myocarditis from 7 percent to 36 percent. Serial imaging correlates well to biopsy results. Future studies are designed to study the applicability of lymphocyte labelling techniques to myocardial inflammatory disease

  7. Altered Neural Activity Associated with Mindfulness during Nociception: A Systematic Review of Functional MRI

    Directory of Open Access Journals (Sweden)

    Elena Bilevicius

    2016-04-01

    Full Text Available Objective: To assess the neural activity associated with mindfulness-based alterations of pain perception. Methods: The Cochrane Central, EMBASE, Ovid Medline, PsycINFO, Scopus, and Web of Science databases were searched on 2 February 2016. Titles, abstracts, and full-text articles were independently screened by two reviewers. Data were independently extracted from records that included topics of functional neuroimaging, pain, and mindfulness interventions. Results: The literature search produced 946 total records, of which five met the inclusion criteria. Records reported pain in terms of anticipation (n = 2, unpleasantness (n = 5, and intensity (n = 5, and how mindfulness conditions altered the neural activity during noxious stimulation accordingly. Conclusions: Although the studies were inconsistent in relating pain components to neural activity, in general, mindfulness was able to reduce pain anticipation and unpleasantness ratings, as well as alter the corresponding neural activity. The major neural underpinnings of mindfulness-based pain reduction consisted of altered activity in the anterior cingulate cortex, insula, and dorsolateral prefrontal cortex.

  8. Altered Neural Activity Associated with Mindfulness during Nociception: A Systematic Review of Functional MRI.

    Science.gov (United States)

    Bilevicius, Elena; Kolesar, Tiffany A; Kornelsen, Jennifer

    2016-04-19

    To assess the neural activity associated with mindfulness-based alterations of pain perception. The Cochrane Central, EMBASE, Ovid Medline, PsycINFO, Scopus, and Web of Science databases were searched on 2 February 2016. Titles, abstracts, and full-text articles were independently screened by two reviewers. Data were independently extracted from records that included topics of functional neuroimaging, pain, and mindfulness interventions. The literature search produced 946 total records, of which five met the inclusion criteria. Records reported pain in terms of anticipation (n = 2), unpleasantness (n = 5), and intensity (n = 5), and how mindfulness conditions altered the neural activity during noxious stimulation accordingly. Although the studies were inconsistent in relating pain components to neural activity, in general, mindfulness was able to reduce pain anticipation and unpleasantness ratings, as well as alter the corresponding neural activity. The major neural underpinnings of mindfulness-based pain reduction consisted of altered activity in the anterior cingulate cortex, insula, and dorsolateral prefrontal cortex.

  9. Inflammation and Oxidative Stress in Obesity-Related Glomerulopathy

    OpenAIRE

    Tang, Jinhua; Yan, Haidong; Zhuang, Shougang

    2012-01-01

    Obesity-related glomerulopathy is an increasing cause of end-stage renal disease. Obesity has been considered a state of chronic low-grade systemic inflammation and chronic oxidative stress. Augmented inflammation in adipose and kidney tissues promotes the progression of kidney damage in obesity. Adipose tissue, which is accumulated in obesity, is a key endocrine organ that produces multiple biologically active molecules, including leptin, adiponectin, resistin, that affect inflammation, and ...

  10. A defect in the inflammation-primed macrophage-activation cascade in osteopetrotic rats.

    Science.gov (United States)

    Yamamoto, N; Lindsay, D D; Naraparaju, V R; Ireland, R A; Popoff, S N

    1994-05-15

    Macrophages were activated by administration of lysophosphatidylcholine (lyso-Pc) or dodecylglycerol (DDG) to wild-type rats but not in osteopetrotic (op) mutant rats. In vitro treatment of wild-type rat peritoneal cells with lyso-Pc or DDG efficiently activated macrophages whereas treatment of op mutant rat peritoneal cells with lyso-Pc or DDG did not activate macrophages. The inflammation-primed macrophage activation cascade in rats requires participation of B lymphocytes and vitamin D binding protein (DBP). Lyso-Pc-inducible beta-galactosidase of wild-type rat B lymphocytes can convert DBP to the macrophage-activating factor (MAF), whereas B lymphocytes of the op mutant rats were shown to be deficient in lyso-Pc-inducible beta-galactosidase. DBP is conserved among mammalian species. Treatment of human DBP (Gc1 protein) with commercial glycosidases yields an extremely high titrated MAF as assayed on mouse and rat macrophages. Because the enzymatically generated MAF (GcMAF) bypasses the role of lymphocytes in macrophage activation, the op mutant rat macrophages were efficiently activated by administration of a small quantity (100 pg/rat) of GcMAF. Likewise, in vitro treatment of op rat peritoneal cells with as little as 40 pg GcMAF/ml activated macrophages.

  11. EICOSANOIDS AND INFLAMMATION

    Directory of Open Access Journals (Sweden)

    A. E. Karateev

    2016-01-01

    Full Text Available Inflammation is the most important element in the pathogenesis of major human diseases. It determines the fundamental value of anti-inflammatory therapy in the modern concept of targeted pathogenetic treatment. The rational choice of anti-inflammatory drugs and the design of new promising agents are inconceivable without clear knowledge of the characteristics of development of an inflammatory response. Eicosanoids, the metabolites of polyunsaturated fatty acids, play a key role in the process of inflammation. These substances have diverse and frequently antagonistic biological effects, which is determined by their chemical structure and specific features of receptors with which they interact. Some of them (prostaglandins, leukotrienes, auxins, and hepoxilins are potential mediators of inflammation and pain; others (lipoxins, epoxyeicosatrienoic acid derivatives, resolvins, protectins, maresins, and endocannabinoids have anti-inflammatory and cytoprotective activities, contributing to the resolution of the inflammatory response. This review describes considers the main classes of eicosanoids, their metabolism, effects, and clinical significance, as well as the possibilities of pharmacological interventions in their synthesis or interaction with receptors. 

  12. Neurobiology of inflammation-associated anorexia

    Directory of Open Access Journals (Sweden)

    Laurent Gautron

    2010-01-01

    Full Text Available Compelling data demonstrate that inflammation-associated anorexia directly results from the action of pro-inflammatory factors, primarily cytokines and prostaglandins E2, on the nervous system. For instance, the aforementioned pro-inflammatory factors can stimulate the activity of peripheral sensory neurons, and induce their own de novo synthesis and release into the brain parenchyma and cerebrospinal fluid. Ultimately, it results in the mobilization of a specific neural circuit that shuts down appetite. The present article describes the different cell groups and neurotransmitters involved in inflammation-associated anorexia and examines how they interact with neural systems regulating feeding such as the melanocortin system. A better understanding of the neurobiological mechanisms underlying inflammation-associated anorexia will help to develop appetite stimulants for cancer and AIDS patients.

  13. Cerebrospinal fluid metabolomics reveals altered waste clearance and accelerated aging in HIV patients with neurocognitive impairment

    Science.gov (United States)

    Cassol, Edana; Misra, Vikas; Dutta, Anupriya; Morgello, Susan; Gabuzda, Dana

    2014-01-01

    Objective(s): HIV-associated neurocognitive disorders (HAND) remain prevalent in HIV-infected patients on antiretroviral therapy (ART), but the underlying mechanisms are unclear. Some features of HAND resemble those of age-associated cognitive decline in the absence of HIV, suggesting that overlapping mechanisms may contribute to neurocognitive impairment. Design: Cross-sectional analysis of cerebrospinal fluid (CSF) from 100 individuals (46 HIV-positive patients and 54 HIV-negative controls). Methods: Untargeted CSF metabolite profiling was performed using liquid/gas chromatography followed by mass spectrometry. Cytokine profiling was performed by Bioplex. Bioinformatic analyses were performed in Metaboanalyst and R. Results: Alterations in the CSF metabolome of HIV patients on ART mapped to pathways associated with neurotransmitter production, mitochondrial function, oxidative stress, and metabolic waste. Many CSF metabolites altered in HIV overlapped with those altered with advanced age in HIV-negative controls, suggesting a pattern indicative of accelerated aging. Machine learning models identified neurotransmitters (glutamate, N-acetylaspartate), markers of glial activation (myo-inositol), and ketone bodies (beta-hydroxybutyric acid, 1,2-propanediol) as top-ranked classifiers of HAND. These CSF metabolites correlated with worse neurocognitive test scores, plasma inflammatory biomarkers [interferon (IFN)-α, IFN-γ, interleukin (IL)-8, IL-1β, IL-6, IL-2Ra], and intrathecal IFN responses (IFN-γ and kynurenine : tryptophan ratio), suggesting inter-relationships between systemic and intrathecal inflammation and metabolic alterations in CSF. Conclusions: Alterations in the CSF metabolome of HIV patients on ART suggest that persistent inflammation, glial responses, glutamate neurotoxicity, and altered brain waste disposal systems contribute to mechanisms involved in HAND that may be augmented with aging. PMID:24752083

  14. Alterations in HIV-1 LTR promoter activity during AIDS progression

    International Nuclear Information System (INIS)

    Hiebenthal-Millow, Kirsten; Greenough, Thomas C.; Bretttler, Doreen B.; Schindler, Michael; Wildum, Steffen; Sullivan, John L.; Kirchhoff, Frank

    2003-01-01

    HIV-1 variants evolving in AIDS patients frequently show increased replicative capacity compared to those present during early asymptomatic infection. It is known that late stage HIV-1 variants often show an expanded coreceptor tropism and altered Nef function. In the present study we investigated whether enhanced HIV-1 LTR promoter activity might also evolve during disease progression. Our results demonstrate increased LTR promoter activity after AIDS progression in 3 of 12 HIV-1-infected individuals studied. Further analysis revealed that multiple alterations in the U3 core-enhancer and in the transactivation-response (TAR) region seem to be responsible for the enhanced functional activity. Our findings show that in a subset of HIV-1-infected individuals enhanced LTR transcription contributes to the increased replicative potential of late stage virus isolates and might accelerate disease progression

  15. Effect of uremia on HDL composition, vascular inflammation, and atherosclerosis in wild-type mice

    DEFF Research Database (Denmark)

    Bang, Christian A; Bro, Susanne; Bartels, Emil D

    2007-01-01

    Wild-type mice normally do not develop atherosclerosis, unless fed cholic acid. Uremia is proinflammatory and increases atherosclerosis 6- to 10-fold in apolipoprotein E-deficient mice. This study examined the effect of uremia on lipoproteins, vascular inflammation, and atherosclerosis in wild...... in cholic acid-fed sham mice. The results suggest that moderate uremia neither induces aortic inflammation nor atherosclerosis in C57BL/6J mice despite increased LDL/HDL cholesterol ratio and altered HDL composition....

  16. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Nosratola D Vaziri

    Full Text Available Inflammation is a major mediator of CKD progression and is partly driven by altered gut microbiome and intestinal barrier disruption, events which are caused by: urea influx in the intestine resulting in dominance of urease-possessing bacteria; disruption of epithelial barrier by urea-derived ammonia leading to endotoxemia and bacterial translocation; and restriction of potassium-rich fruits and vegetables which are common sources of fermentable fiber. Restriction of these foods leads to depletion of bacteria that convert indigestible carbohydrates to short chain fatty acids which are important nutrients for colonocytes and regulatory T lymphocytes. We hypothesized that a high resistant starch diet attenuates CKD progression. Male Sprague Dawley rats were fed a chow containing 0.7% adenine for 2 weeks to induce CKD. Rats were then fed diets supplemented with amylopectin (low-fiber control or high fermentable fiber (amylose maize resistant starch, HAM-RS2 for 3 weeks. CKD rats consuming low fiber diet exhibited reduced creatinine clearance, interstitial fibrosis, inflammation, tubular damage, activation of NFkB, upregulation of pro-inflammatory, pro-oxidant, and pro-fibrotic molecules; impaired Nrf2 activity, down-regulation of antioxidant enzymes, and disruption of colonic epithelial tight junction. The high resistant starch diet significantly attenuated these abnormalities. Thus high resistant starch diet retards CKD progression and attenuates oxidative stress and inflammation in rats. Future studies are needed to explore the impact of HAM-RS2 in CKD patients.

  17. Inhibition of coagulation and inflammation by activated protein C or antithrombin reduces intestinal ischemia/reperfusion injury in rats

    NARCIS (Netherlands)

    Schoots, Ivo G.; Levi, Marcel; van Vliet, Arlène K.; Maas, Adrie M.; Roossink, E. H. Paulina; van Gulik, Thomas M.

    2004-01-01

    Objective: To examine whether administration of activated protein C or antithrombin reduces local splanchnic derangement of coagulation and inflammation and attenuates intestinal dysfunction and injury following intestinal ischemia/reperfusion. Design: Randomized prospective animal study. Setting:

  18. Genomic biomarkers of prenatal intrauterine inflammation in umbilical cord tissue predict later life neurological outcomes.

    Directory of Open Access Journals (Sweden)

    Sloane K Tilley

    Full Text Available Preterm birth is a major risk factor for neurodevelopmental delays and disorders. This study aimed to identify genomic biomarkers of intrauterine inflammation in umbilical cord tissue in preterm neonates that predict cognitive impairment at 10 years of age.Genome-wide messenger RNA (mRNA levels from umbilical cord tissue were obtained from 43 neonates born before 28 weeks of gestation. Genes that were differentially expressed across four indicators of intrauterine inflammation were identified and their functions examined. Exact logistic regression was used to test whether expression levels in umbilical cord tissue predicted neurocognitive function at 10 years of age.Placental indicators of inflammation were associated with changes in the mRNA expression of 445 genes in umbilical cord tissue. Transcripts with decreased expression showed significant enrichment for biological signaling processes related to neuronal development and growth. The altered expression of six genes was found to predict neurocognitive impairment when children were 10 years old These genes include two that encode for proteins involved in neuronal development.Prenatal intrauterine inflammation is associated with altered gene expression in umbilical cord tissue. A set of six of the differentially expressed genes predict cognitive impairment later in life, suggesting that the fetal environment is associated with significant adverse effects on neurodevelopment that persist into later childhood.

  19. Neutrophil-Derived Proteases Escalate Inflammation through Activation of IL-36 Family Cytokines.

    Science.gov (United States)

    Henry, Conor M; Sullivan, Graeme P; Clancy, Danielle M; Afonina, Inna S; Kulms, Dagmar; Martin, Seamus J

    2016-02-02

    Recent evidence has strongly implicated the IL-1 family cytokines IL-36α, IL-36β, and IL-36γ as key initiators of skin inflammation. Similar to the other members of the IL-1 family, IL-36 cytokines are expressed as inactive precursors and require proteolytic processing for activation; however, the responsible proteases are unknown. Here, we show that IL-36α, IL-36β, and IL-36γ are activated differentially by the neutrophil granule-derived proteases cathepsin G, elastase, and proteinase-3, increasing their biological activity ~500-fold. Active IL-36 promoted a strong pro-inflammatory signature in primary keratinocytes and was sufficient to perturb skin differentiation in a reconstituted 3D human skin model, producing features resembling psoriasis. Furthermore, skin eluates from psoriasis patients displayed significantly elevated cathepsin G-like activity that was sufficient to activate IL-36β. These data identify neutrophil granule proteases as potent IL-36-activating enzymes, adding to our understanding of how neutrophils escalate inflammatory reactions. Inhibition of neutrophil-derived proteases may therefore have therapeutic benefits in psoriasis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Omics-Based Approach Reveals Complement-Mediated Inflammation in Chronic Lymphocytic Inflammation With Pontine Perivascular Enhancement Responsive to Steroids (CLIPPERS

    Directory of Open Access Journals (Sweden)

    Morten Blaabjerg

    2018-04-01

    CSF could distinguish CLIPPERS from HS. The quantitative array confirmed elevated concentration of IL-8/CXCL8 and eotaxin/CCL11 compared to HS (p < 0.05, respectively besides increased levels of ICAM-1 (p < 0.05 and VCAM-1 (p < 0.001. The increased concentration of VCAM-1 were able to differentiate CLIPPERS from RMS (p < 0.01, and a trend of elevated levels of ICAM-1 and IL-8/CXCL8 compared to RMS was also observed (p = 0.06, respectively.ConclusionComplement activation, IgG deposition, and alterations of the extracellular matrix may contribute to inflammation in CLIPPERS. VCAM1, ICAM1, and IL-8 in the CSF may differentiate CLIPPERS from RMS.

  1. Regulating inflammation through the anti-inflammatory enzyme platelet-activating factor-acetylhydrolase

    Directory of Open Access Journals (Sweden)

    Hugo C Castro Faria Neto

    2005-03-01

    Full Text Available Platelet-activating factor (PAF is one of the most potent lipid mediators involved in inflammatory events. The acetyl group at the sn-2 position of its glycerol backbone is essential for its biological activity. Deacetylation induces the formation of the inactive metabolite lyso-PAF. This deacetylation reaction is catalyzed by PAF-acetylhydrolase (PAF-AH, a calcium independent phospholipase A2 that also degrades a family of PAF-like oxidized phospholipids with short sn-2 residues. Biochemical and enzymological evaluations revealed that at least three types of PAF-AH exist in mammals, namely the intracellular types I and II and a plasma type. Many observations indicate that plasma PAF AH terminates signals by PAF and oxidized PAF-like lipids and thereby regulates inflammatory responses. In this review, we will focus on the potential of PAF-AH as a modulator of diseases of dysregulated inflammation.

  2. Ozone-Induced Pulmonary Injury and Inflammation are Modulated by Adrenal-Derived Stress Hormones

    Science.gov (United States)

    Ozone exposure promotes pulmonary injury and inflammation. Previously we have characterized systemic changes that occur immediately after acute ozone exposure and are mediated by neuro-hormonal stress response pathway. Both HPA axis and sympathetic tone alterations induce the rel...

  3. Inflammation and fertility in the mare

    DEFF Research Database (Denmark)

    Christoffersen, Mette; Troedsson, Mats H.T.

    2017-01-01

    -inflammatory factors is required for resolving the breeding-induced inflammation within 24–36 hr in the reproductively healthy mare, whereas a subpopulation of mares is susceptible to development of a persistent infection that can interfere with fertility. The aetiology of persistent endometritis can be either...... bacterial or semen-induced and both scenarios can threaten the establishment of pregnancy. Several factors associated with susceptibility to persistent endometritis have been identified including altered innate immune response in the early inflammatory process, reduced myometrial contractions and impaired......) and bacterial endometritis in the mare....

  4. The effect of refurbishing a UK steel plant on PM10 metal composition and ability to induce inflammation

    Directory of Open Access Journals (Sweden)

    Maynard Robert L

    2005-05-01

    Full Text Available Abstract Background In the year 2000 Corus closed its steel plant operations in Redcar, NE of England temporarily for refurbishment of its blast furnace. This study investigates the impact of the closure on the chemical composition and biological activity of PM10 collected in the vicinity of the steel plant. Methods The metal content of PM10 samples collected before during and after the closure was measured by ICP-MS in order to ascertain whether there was any significant alteration in PM10 composition during the steel plant closure. Biological activity was assessed by instillation of 24 hr PM10 samples into male Wistar rats for 18 hr (n = 6. Inflammation was identified by the cellular and biochemical profile of the bronchoalveolar lavage fluid. Metal chelation of PM10 samples was conducted using Chelex beads prior to treatment of macrophage cell line, J774, in vitro and assessment of pro-inflammatory cytokine expression. Results The total metal content of PM10 collected before and during the closure period were similar, but on reopening of the steel plant there was a significant 3-fold increase (p 10 collected during the reopened period, as well as significant increases in albumin (p 10 from the pre-closure and closure periods did not induce any significant alterations in inflammation or lung damage. The soluble and insoluble extractable PM10 components washed from the reopened period both induced a significant increase in neutrophil cell number (p 10 from the re-opened period stimulated J774 macrophages to generate TNF-α protein and this was significantly prevented by chelating the metal content of the PM10 prior to addition to the cells. Conclusion PM10-induced inflammation in the rat lung was related to the concentration of metals in the PM10 samples tested, and activity was found in both the soluble and insoluble fractions of the particulate pollutant.

  5. Ketogenic diet alters dopaminergic activity in the mouse cortex.

    Science.gov (United States)

    Church, William H; Adams, Ryan E; Wyss, Livia S

    2014-06-13

    The present study was conducted to determine if the ketogenic diet altered basal levels of monoamine neurotransmitters in mice. The catecholamines dopamine (DA) and norephinephrine (NE) and the indolamine serotonin (5HT) were quantified postmortem in six different brain regions of adult mice fed a ketogenic diet for 3 weeks. The dopamine metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) and the serotonin metabolite 5-hydroxyindole acetic acid (5HIAA) were also measured. Tissue punches were collected bilaterally from the motor cortex, somatosensory cortex, nucleus accumbens, anterior caudate-putamen, posterior caudate-putamen and the midbrain. Dopaminergic activity, as measured by the dopamine metabolites to dopamine content ratio - ([DOPAC]+[HVA])/[DA] - was significantly increased in the motor and somatosensory cortex regions of mice fed the ketogenic diet when compared to those same areas in brains of mice fed a normal diet. These results indicate that the ketogenic diet alters the activity of the meso-cortical dopaminergic system, which may contribute to the diet's therapeutic effect in reducing epileptic seizure activity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Quantification of atherosclerotic plaque activity and vascular inflammation using [18-F] fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT).

    Science.gov (United States)

    Mehta, Nehal N; Torigian, Drew A; Gelfand, Joel M; Saboury, Babak; Alavi, Abass

    2012-05-02

    Conventional non-invasive imaging modalities of atherosclerosis such as coronary artery calcium (CAC) and carotid intimal medial thickness (C-IMT) provide information about the burden of disease. However, despite multiple validation studies of CAC, and C-IMT, these modalities do not accurately assess plaque characteristics, and the composition and inflammatory state of the plaque determine its stability and, therefore, the risk of clinical events. [(18)F]-2-fluoro-2-deoxy-D-glucose (FDG) imaging using positron-emission tomography (PET)/computed tomography (CT) has been extensively studied in oncologic metabolism. Studies using animal models and immunohistochemistry in humans show that FDG-PET/CT is exquisitely sensitive for detecting macrophage activity, an important source of cellular inflammation in vessel walls. More recently, we and others have shown that FDG-PET/CT enables highly precise, novel measurements of inflammatory activity of activity of atherosclerotic plaques in large and medium-sized arteries. FDG-PET/CT studies have many advantages over other imaging modalities: 1) high contrast resolution; 2) quantification of plaque volume and metabolic activity allowing for multi-modal atherosclerotic plaque quantification; 3) dynamic, real-time, in vivo imaging; 4) minimal operator dependence. Finally, vascular inflammation detected by FDG-PET/CT has been shown to predict cardiovascular (CV) events independent of traditional risk factors and is also highly associated with overall burden of atherosclerosis. Plaque activity by FDG-PET/CT is modulated by known beneficial CV interventions such as short term (12 week) statin therapy as well as longer term therapeutic lifestyle changes (16 months). The current methodology for quantification of FDG uptake in atherosclerotic plaque involves measurement of the standardized uptake value (SUV) of an artery of interest and of the venous blood pool in order to calculate a target to background ratio (TBR), which is

  7. Liver immunology and its role in inflammation and homeostasis.

    Science.gov (United States)

    Robinson, Mark W; Harmon, Cathal; O'Farrelly, Cliona

    2016-05-01

    The human liver is usually perceived as a non-immunological organ engaged primarily in metabolic, nutrient storage and detoxification activities. However, we now know that the healthy liver is also a site of complex immunological activity mediated by a diverse immune cell repertoire as well as non-hematopoietic cell populations. In the non-diseased liver, metabolic and tissue remodeling functions require elements of inflammation. This inflammation, in combination with regular exposure to dietary and microbial products, creates the potential for excessive immune activation. In this complex microenvironment, the hepatic immune system tolerates harmless molecules while at the same time remaining alert to possible infectious agents, malignant cells or tissue damage. Upon appropriate immune activation to challenge by pathogens or tissue damage, mechanisms to resolve inflammation are essential to maintain liver homeostasis. Failure to clear 'dangerous' stimuli or regulate appropriately activated immune mechanisms leads to pathological inflammation and disrupted tissue homeostasis characterized by the progressive development of fibrosis, cirrhosis and eventual liver failure. Hepatic inflammatory mechanisms therefore have a spectrum of roles in the healthy adult liver; they are essential to maintain tissue and organ homeostasis and, when dysregulated, are key drivers of the liver pathology associated with chronic infection, autoimmunity and malignancy. In this review, we explore the changing perception of inflammation and inflammatory mediators in normal liver homeostasis and propose targeting of liver-specific immune regulation pathways as a therapeutic approach to treat liver disease.

  8. Inflammation in Parkinson’s disease: Role of glucocorticoids

    Directory of Open Access Journals (Sweden)

    Maria Trinidad eHerrero

    2015-04-01

    Full Text Available Chronic inflammation is a major characteristic feature of Parkinson’s disease (PD. Studies in PDpatients show evidence of augmented levels of potent pro-inflammatory molecules e.g. TNF-α, iNOS,IL-1β whereas in experimental Parkinsonism it has been consistently demonstrated that dopaminergicneurons are particularly vulnerable to activated glia releasing these toxic factors. Recent geneticstudies point to the role of immune system in the etiology of PD, thus in combination withenvironmental factors, both peripheral and CNS-mediated immune responses could play importantroles in onset and progression of PD. Whereas microglia, astrocytes and infiltrating T cells are knownto mediate chronic inflammation, the roles of other immune-competent cells are less well understood.Inflammation is a tightly controlled process. One major effector system of regulation is HPA axis.Glucocorticoids released from adrenal glands upon stimulation of HPA axis, in response to either cellinjury or presence of pathogen, activate their receptor, GR. GR regulates inflammation both throughdirect transcriptional action on target genes and by indirectly inhibiting transcriptional activities oftranscriptional factors such as NF-kB, AP-1 or interferon regulatory factors. In PD patients, the HPAaxis is unbalanced and the cortisol levels are significantly increased, implying a deregulation of GRfunction in immune cells. In experimental Parkinsonism, the activation of microglial GR has a crucialeffect in diminishing microglial cell activation and reducing dopaminergic degeneration. Moreover,glucocorticoids are also known to regulate human brain vasculature as well as blood brain barrierpermeability, any dysfunction in their actions may influence infiltration of cytotoxic moleculesresulting in increased vulnerability of dopamine neurons in PD. Overall, deregulation ofGR actions is likely important in dopamine neuron degeneration throughestablishment of chronic inflammation.

  9. INFLAMMATION AND NEURONAL PLASTICITY: A LINK BETWEEN CHILDHOOD TRAUMA AND DEPRESSION PATHOGENESIS

    Directory of Open Access Journals (Sweden)

    Annamaria eCattaneo

    2015-03-01

    Full Text Available During the past two decades, there has been increasing interest in understanding and characterizing the role of inflammation in major depressive disorder. Several evidences linked inflammation to major depression, including the presence of elevated levels of pro-inflammatory cytokines, together with other mediators of inflammation both in the blood and in the brain of depressed patients.However, whether depression itself acts in an immunomodulatory fashion or whether other factors related to depression result in these immunological effects remains an open question. Regardless, major depression is often the result of the exposure to stressful events early in life, which may also act through the modulation of inflammatory responses. Indeed, subjects with a history of childhood trauma show high levels of pro-inflammatory cytokines and an increased risk to develop psychopathologies later in life. Moreover, depressed patients with a history of childhood trauma are also less responsive to antidepressant therapies, suggesting that increased inflammation or altered activation of the immune system may also be relevant for the response to antidepressant therapies. This review will provide an overview on the potential role of the inflammatory/immune system and stress related biomarkers to aid diagnosis, predict treatment response, enhance treatment matching, and prevent the onset or relapse of major depression. We will also discuss the role of early life adverse events in increasing the vulnerability to depression development by acting on the inflammatory and stress-related system. Finally, we will discuss the putative biological mechanisms underlying the transmission, from one generation to the next, of the stress signatures and thus, of the increased vulnerability for psychopathologies induced by childhood trauma events.

  10. Role of Brain Inflammation in Epileptogenesis

    OpenAIRE

    Choi, Jieun; Koh, Sookyong

    2008-01-01

    Inflammation is known to participate in the mediation of a growing number of acute and chronic neurological disorders. Even so, the involvement of inflammation in the pathogenesis of epilepsy and seizure-induced brain damage has only recently been appreciated. Inflammatory processes, including activation of microglia and astrocytes and production of proinflammatory cytokines and related molecules, have been described in human epilepsy patients as well as in experimental models of epilepsy. Fo...

  11. Stress, food, and inflammation: psychoneuroimmunology and nutrition at the cutting edge.

    Science.gov (United States)

    Kiecolt-Glaser, Janice K

    2010-05-01

    Inflammation is the common link among the leading causes of death. Mechanistic studies have shown how various dietary components can modulate key pathways to inflammation, including sympathetic activity, oxidative stress, transcription factor nuclear factor-kappaB activation, and proinflammatory cytokine production. Behavioral studies have demonstrated that stressful events and depression can also influence inflammation through these same processes. If the joint contributions of diet and behavior to inflammation were simply additive, they would be important. However, several far more intriguing interactive possibilities are discussed: stress influences food choices; stress can enhance maladaptive metabolic responses to unhealthy meals; and diet can affect mood as well as proinflammatory responses to stressors. Furthermore, because the vagus nerve innervates tissues involved in the digestion, absorption, and metabolism of nutrients, vagal activation can directly and profoundly influence metabolic responses to food, as well as inflammation; in turn, both depression and stress have well-documented negative effects on vagal activation, contributing to the lively interplay between the brain and the gut. As one example, omega-3 fatty acid intake can boost mood and vagal tone, dampen nuclear factor-kappaB activation and responses to endotoxin, and modulate the magnitude of inflammatory responses to stressors. A better understanding of how stressors, negative emotions, and unhealthy meals work together to enhance inflammation will benefit behavioral and nutritional research, as well as the broader biomedical community.

  12. ALTERATION RELATED TO HYDROTHERMAL ACTIVITY OF THE NEVADO DEL RUIZ VOLCANO (NRV), COLOMBIA

    OpenAIRE

    Forero, Jhon; Zuluaga, Carlos; Mojica, Jaime

    2011-01-01

    The hydrothermal activity in the NRV generates alteration characterized by mineral associations depending on a number of physic-chemical factors of the hydrothermal system. Petrography of unaltered rocks was used to establish the mineral assemblage prior to rock-fluid interaction. XRD was used in altered rocks, where it was not possible to recognize the alteration products. The observed mineral assemblages indicate advanced and intermediate argillic alterations, this and the observation of ve...

  13. Watermelon consumption improves inflammation and antioxidant capacity in rats fed an atherogenic diet.

    Science.gov (United States)

    Hong, Mee Young; Hartig, Nicole; Kaufman, Katy; Hooshmand, Shirin; Figueroa, Arturo; Kern, Mark

    2015-03-01

    Cardiovascular disease (CVD) is the leading cause of death in the United States. Watermelon, rich in antioxidants and other bioactive components, may be a viable method to improve CVD risk factors through reduced oxidative stress. The purpose of the study was to determine the effects of watermelon powder consumption on lipid profiles, antioxidant capacity, and inflammation in dextran sodium sulfate (DSS)-treated rats fed an atherogenic diet. We hypothesized that watermelon would increase antioxidant capacity and reduce blood lipids and inflammation through modulation of related gene expression. Forty male-weanling (21 days old) Sprague-Dawley rats were divided into 4 groups (10 per group, total N = 40) in a 2 diets (control or 0.33% watermelon) × 2 treatments (with or without DSS) factorial design using an atherogenic diet. Watermelon-fed groups exhibited significantly lower serum triglycerides, total cholesterol, and low-density lipoprotein cholesterol (Pwatermelon-fed rats than the control (P= .001). In addition, oxidative stress as measured by thiobarbituric acid reactive substances was significantly lower in watermelon groups (P= .001). Total antioxidant capacity, superoxide dismutase, and catalase activities were greater in watermelon groups (Pwatermelon was consumed (Pwatermelon group without DSS (Pwatermelon improves risk factors for CVD in rats through better lipid profiles, lower inflammation, and greater antioxidant capacity by altering gene expression for lipid metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Brain inflammation enhances 1-methyl-4-phenylpyridinium-evoked neurotoxicity in rats

    International Nuclear Information System (INIS)

    Goralski, Kerry B.; Renton, Kenneth W.

    2004-01-01

    Experimental Parkinson's disease and Parkinson's disease in humans include a CNS inflammatory component that may contribute to the pathogenesis of the disease. CNS inflammation produces a loss in cytochrome P450 metabolism and may impair the brain's protection against neurotoxins. We have examined if preexisting inflammation in the brain could increase the toxicity of the dopaminergic toxin 1-methyl-4-phenylpyridinium (MPP + ). Lipopolysaccharide (LPS, 25 μg) or saline (control) was injected into the left lateral cerebral ventricle. A single injection of MPP + into the median forebrain bundle followed 48 h later and produced a reduction in striatal dopamine content that was dose and time dependant. Two-days after 5 μg of MPP + was administered, a 90% decrease in striatal dopamine content was observed in saline- and LPS-pretreated rats. However, 4 and 7 days after 5 μg MPP + treatment, striatal dopamine recovered up to 70-80% of control values in saline-pretreated rats but remained depressed (80-90%) in rats treated with LPS. These results suggested that CNS inflammation might create an increased risk factor for drug-induced CNS toxicity or chemically mediated Parkinson's disease. The prolonged toxicity of MPP + may be due to a decrease in brain cytochrome P450 metabolism that occurs during inflammation. As a second objective for the study, we examined if the CNS lesion produced by MPP + altered cytochrome P450 metabolic activity in the liver, kidney, and lung. We have demonstrated a novel mechanism whereby the brain pathology produced by MPP + treatment contributes to a reduction in cytochrome P450 metabolism in the kidney but not the liver or lung. Therefore, a chemically evoked CNS disorder with a chronic inflammatory component might have major effects on the renal metabolism of drugs or endogenous substrates

  15. Bone formation rather than inflammation reflects ankylosing spondylitis activity on PET-CT: a pilot study.

    Science.gov (United States)

    Bruijnen, Stefan T G; van der Weijden, Mignon A C; Klein, Joannes P; Hoekstra, Otto S; Boellaard, Ronald; van Denderen, J Christiaan; Dijkmans, Ben A C; Voskuyl, Alexandre E; van der Horst-Bruinsma, Irene E; van der Laken, Conny J

    2012-04-02

    Positron Emission Tomography - Computer Tomography (PET-CT) is an interesting imaging technique to visualize Ankylosing Spondylitis (AS) activity using specific PET tracers. Previous studies have shown that the PET tracers [18F]FDG and [11C](R)PK11195 can target inflammation (synovitis) in rheumatoid arthritis (RA) and may therefore be useful in AS. Another interesting tracer for AS is [18F]Fluoride, which targets bone formation. In a pilot setting, the potential of PET-CT in imaging AS activity was tested using different tracers, with Magnetic Resonance Imaging (MRI) and conventional radiographs as reference. In a stepwise approach different PET tracers were investigated. First, whole body [18F]FDG and [11C](R)PK11195 PET-CT scans were obtained of ten AS patients fulfilling the modified New York criteria. According to the BASDAI five of these patients had low and five had high disease activity. Secondly, an extra PET-CT scan using [18F]Fluoride was made of two additional AS patients with high disease activity. MRI scans of the total spine and sacroiliac joints were performed, and conventional radiographs of the total spine and sacroiliac joints were available for all patients. Scans and radiographs were visually scored by two observers blinded for clinical data. No increased [18F]FDG and [11C](R)PK11195 uptake was noticed on PET-CT scans of the first 10 patients. In contrast, MRI demonstrated a total of five bone edema lesions in three out of 10 patients. In the two additional AS patients scanned with [18F]Fluoride PET-CT, [18F]Fluoride depicted 17 regions with increased uptake in both vertebral column and sacroiliac joints. In contrast, [18F]FDG depicted only three lesions, with an uptake of five times lower compared to [18F]Fluoride, and again no [11C](R)PK11195 positive lesions were found. In these two patients, MRI detected nine lesions and six out of nine matched with the anatomical position of [18F]Fluoride uptake. Conventional radiographs showed structural

  16. Detection of systemic inflammation in severely impaired chronic pain patients, and effects of a CBT-ACT-based multi-modal pain rehabilitation program.

    Science.gov (United States)

    Hysing, E-B; Smith, L; Thulin, M; Karlsten, R; Gordh, T

    2017-12-29

    Aims A few previous studies indicate an ongoing of low-grade systemic inflammation in chronic pain patients (CPP) [1, 2]. In the present study we investigated the plasma inflammatory profile in severely impaired chronic pain patients. In addition we studied if there were any alterations in inflammation patterns at one-year follow up, after the patients had taken part in a CBT-ACT based 4 weeks in-hospital pain rehabilitation program (PRP). Methods Blood samples were collected from 52 well characterized chronic pain patients. Plasma from matched healthy blood donors were used as controls. At one year after the treatment program, 28 of the patients were available for follow up. Instead of only analyzing single inflammation-related substances, we used a new multiplex panel enabling the simultaneous analysis of 92 inflammation-related proteins, mainly cytokines and chemokines (Proseek Inflammation, Olink, Uppsala, Sweden). Multivariate statistics were used for analysis. Results Clear signs of increased inflammatory activity were detected in the pain patients. Accepting a false discovery rate (FDR) of 5%, there were significant differences in 43 of the 92 inflammatory biomarkers. The expression of 8 biomarkers were 4 times higher in patients compared to controls. Three biomarkers, CXCL5, SIRT2, AXIN1 were more than 8 times higher. The conventional marker for inflammation, CRP, did not differ. Of the 28 patients available for follow up one year after the intervention, all showed lower levels of the inflammatory biomarker initially raised. Conclusions The results indicate that CPP suffer from a low grade of chronic systemic inflammation, not detectable by CRP analysis. This may have implications for the general pain hypersensitivity, and other symptoms, often described in this group of patients. We conclude that inflammatory plasma proteins may be measureable molecular markers to distinguishes CPP from pain free controls, and that a CBT-ACT pain rehab program seem to

  17. A comparative study between infectious and systemic inflammation

    Directory of Open Access Journals (Sweden)

    Anindhya Sundar Das

    2017-10-01

    Full Text Available Activation of innate immune system may occur as a result of either external (mostly infection-mediated inflammation or internal factors (systemic inflammation. Distinct stimuli act on the immune cells to induce diverse pathways leading to characteristic gene expressions in these cases. Bacterial inflammation, caused primarily by its lipopolysaccharides (LPS, conceives an array of diseases including intestinal bowel disease (IBD, ulcerative colitis and sepsis. In contrast, release of pro-inflammatory cytokines such as IL-6 or TNF-α leads to chronic inflammatory diseases, for example, rheumatoid arthritis (RA, juvenile idiopathic arthritis, Castleman’s disease, etc. It is important to understand the signatures of infectious and systemic gene expression for better designing of treatment regime against inflammatory diseases. To understand the distinctive pattern of gene expression between infectious inflammation and systemic inflammation, THP-1 macrophages were treated individually with LPS (100 ng/mL, IL-6 (50 ng/mL or TNF-α (10 ng/mL and global transcriptomic analysis was performed using Agilent’s human 8x15K array. The common set of differentially expressed genes in IL-6 and TNF-α-treated cohorts were compared with LPS-treated cohorts. Our analysis revealed that 2743 and 150 genes contributed to LPS-mediated inflammation and systemic inflammation with respect to untreated samples, respectively (fold change ≥ 1.5. 868 commonly expressed genes contributed to systemic inflammation with respect to LPS-mediated inflammation. Among these commonly expressed genes, only 68 genes were observed to contribute to both types of inflammation, suggesting their importance in activation of diverse pathways in LPS-mediated and systemic inflammation. A detailed functional annotation of these genes revealed that EGR1, JUN, NF-kB, REL, STAT-1 and BCL-3 are important transcription factors (TFs for distinctive signatures between these two types of inflammation

  18. Endogenous Receptor Agonists: Resolving Inflammation

    Directory of Open Access Journals (Sweden)

    Gerhard Bannenberg

    2007-01-01

    Full Text Available Controlled resolution or the physiologic resolution of a well-orchestrated inflammatory response at the tissue level is essential to return to homeostasis. A comprehensive understanding of the cellular and molecular events that control the termination of acute inflammation is needed in molecular terms given the widely held view that aberrant inflammation underlies many common diseases. This review focuses on recent advances in the understanding of the role of arachidonic acid and ω-3 polyunsaturated fatty acids (PUFA–derived lipid mediators in regulating the resolution of inflammation. Using a functional lipidomic approach employing LC-MS-MS–based informatics, recent studies, reviewed herein, uncovered new families of local-acting chemical mediators actively biosynthesized during the resolution phase from the essential fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. These new families of local chemical mediators are generated endogenously in exudates collected during the resolution phase, and were coined resolvins and protectins because specific members of these novel chemical families control both the duration and magnitude of inflammation in animal models of complex diseases. Recent advances on the biosynthesis, receptors, and actions of these novel anti-inflammatory and proresolving lipid mediators are reviewed with the aim to bring to attention the important role of specific lipid mediators as endogenous agonists in inflammation resolution.

  19. Shikonin ameliorates isoproterenol (ISO)-induced myocardial damage through suppressing fibrosis, inflammation, apoptosis and ER stress.

    Science.gov (United States)

    Yang, Jun; Wang, Zhao; Chen, Dong-Lin

    2017-09-01

    Shikonin, isolated from the roots of herbal plant Lithospermum erythrorhizon, is a naphthoquinone. It has been reported to exert beneficial anti-inflammatory effects and anti-oxidant properties in various diseases. Isoproterenol (ISO) has been widely used to establish cardiac injury in vivo and in vitro. However, shikonin function in ISO-induced cardiac injury remains uncertain. In our study, we attempted to investigate the efficiency and possible molecular mechanism of shikonin in cardiac injury treatment induced by ISO. In vivo, C57BL6 mice were subcutaneously injected with 5mg/kg ISO to induce heart failure. And mice were given a gavage of shikonin (2 or 4mg/kg/d, for four weeks). Cardiac function, fibrosis indices, inflammation response, apoptosis and endoplasmic reticulum (ER) stress were calculated. Pathological alterations, fibrosis-, inflammation-, apoptosis- and ER stress-related molecules were examined. In ISO-induced cardiac injury, shikonin significantly ameliorated heart function, decreased myocardial fibrosis, suppressed inflammation, attenuated apoptosis and ER stress through impeding collagen accumulation, Toll like receptor 4/nuclear transcription factor κB (TLR4/NF-κB), Caspase-3 and glucose-regulated protein 78 (GRP78) signaling pathways activity, relieving heart failure in vivo. Also, in vitro, shikonin attenuated ISO-induced cardiac muscle cells by reducing fibrosis, inflammation, apoptosis and ER stress. Our findings indicated that shikonin treatment attenuated ISO-induced heart injury, providing an effective therapeutic strategy for heart failure treatment for future. Copyright © 2017. Published by Elsevier Masson SAS.

  20. Prunella vulgaris Suppresses HG-Induced Vascular Inflammation via Nrf2/HO-1/eNOS Activation

    Directory of Open Access Journals (Sweden)

    Ho Sub Lee

    2012-01-01

    Full Text Available Vascular inflammation is an important factor which can promote diabetic complications. In this study, the inhibitory effects of aqueous extract from Prunella vulgaris (APV on high glucose (HG-induced expression of cell adhesion molecules in human umbilical vein endothelial cells (HUVEC are reported. APV decreased HG-induced expression of intercellular adhesion molecule-1 (ICAM-1, vascular cell adhesion molecule-1 (VCAM-1, and E-selectin. APV also dose-dependently inhibited HG-induced adhesion of HL-60 monocytic cells. APV suppressed p65 NF-κB activation in HG-treated cells. APV significantly inhibited the formation of intracellular reactive oxygen species (ROS. HG-stimulated HUVEC secreted gelatinases, however, APV inhibited it. APV induced Akt phosphorylation as well as activation of heme oxygenase-1 (HO-1, eNOS, and nuclear factor E2-related factor 2 (Nrf2, which may protect vascular inflammation caused by HG. In conclusion, APV exerts anti-inflammatory effect via inhibition of ROS/NF-κB pathway by inducing HO-1 and eNOS expression mediated by Nrf2, thereby suggesting that Prunella vulgaris may be a possible therapeutic approach to the inhibition of diabetic vascular diseases.

  1. Neuroprotective Effect of Curcumin Against Cerebral Ischemia-Reperfusion Via Mediating Autophagy and Inflammation.

    Science.gov (United States)

    Huang, Lifa; Chen, Chengwei; Zhang, Xin; Li, Xu; Chen, Zupeng; Yang, Chao; Liang, Xiaolong; Zhu, Guochong; Xu, Zhen

    2018-01-01

    Curcumin, a polyphenolic compound extracted from Curcuma longa, has drawn attention for its effective bioactivities against ischemia-induced injury. This study aimed to evaluate the neuroprotective effect of curcumin and investigate the underlying mechanism that mediates autophagy and inflammation in an animal model of middle cerebral artery occlusion (MCAO) in rats. Curcumin was delivered to Sprague Dawley male rats at a dose of 200 mg/kg curcumin by intraperitoneal injection 30 min after ischemia-reperfusion (I/R). LY294002, a specific inhibitor of the PI3K/Akt/mTOR pathway, as well as anisomycin, an activator of TLR4/p38/MAPK, was administered by ventricle injection 30 min before MCAO. The same volume of saline was given as a control. Brain infarction and neurological function were determined 24 h post-MCAO. Immunoblotting and immunofluorescence were used to detect alterations in autophagy-relevant proteins Akt, p-Akt, mTOR, p-mTOR, LC3-II, and LC3-I, and inflammation-related proteins TLR4, p-38, p-p38, and IL-1 in the ipsilateral hemisphere. Cerebral I/R injury resulted in significant alterations of LC3-II/LC3-I, IL-1, TLR4, and p-p38. Curcumin in MCAO rats significantly improved brain damage and neurological function by upregulating p-Akt and p-mTOR and downregulating LC3-II/LC3-I, IL-1, TLR4, p-38, and p-p38. However, these protective effects against ischemia could be suppressed when LY294002 or anisomycin was included. Curcumin exerts neuroprotective effects by attenuating autophagic activities through mediating the PI3K/Akt/mTOR pathway, while also suppressing an inflammatory reaction by regulating the TLR4/p38/MAPK pathway. Furthermore, this study indicates that curcumin could be an effective therapy for patients afflicted with ischemia.

  2. Cytoplasmic chromatin triggers inflammation in senescence and cancer.

    Science.gov (United States)

    Dou, Zhixun; Ghosh, Kanad; Vizioli, Maria Grazia; Zhu, Jiajun; Sen, Payel; Wangensteen, Kirk J; Simithy, Johayra; Lan, Yemin; Lin, Yanping; Zhou, Zhuo; Capell, Brian C; Xu, Caiyue; Xu, Mingang; Kieckhaefer, Julia E; Jiang, Tianying; Shoshkes-Carmel, Michal; Tanim, K M Ahasan Al; Barber, Glen N; Seykora, John T; Millar, Sarah E; Kaestner, Klaus H; Garcia, Benjamin A; Adams, Peter D; Berger, Shelley L

    2017-10-19

    Chromatin is traditionally viewed as a nuclear entity that regulates gene expression and silencing. However, we recently discovered the presence of cytoplasmic chromatin fragments that pinch off from intact nuclei of primary cells during senescence, a form of terminal cell-cycle arrest associated with pro-inflammatory responses. The functional significance of chromatin in the cytoplasm is unclear. Here we show that cytoplasmic chromatin activates the innate immunity cytosolic DNA-sensing cGAS-STING (cyclic GMP-AMP synthase linked to stimulator of interferon genes) pathway, leading both to short-term inflammation to restrain activated oncogenes and to chronic inflammation that associates with tissue destruction and cancer. The cytoplasmic chromatin-cGAS-STING pathway promotes the senescence-associated secretory phenotype in primary human cells and in mice. Mice deficient in STING show impaired immuno-surveillance of oncogenic RAS and reduced tissue inflammation upon ionizing radiation. Furthermore, this pathway is activated in cancer cells, and correlates with pro-inflammatory gene expression in human cancers. Overall, our findings indicate that genomic DNA serves as a reservoir to initiate a pro-inflammatory pathway in the cytoplasm in senescence and cancer. Targeting the cytoplasmic chromatin-mediated pathway may hold promise in treating inflammation-related disorders.

  3. Pulmonary oxidative stress, inflammation and dysregulated iron homeostatis in rat models of cardiovascular disease

    Science.gov (United States)

    Underlying cardiovascular disease (CVD) is considered a risk factor for the exacerbation of air pollution health effects. Therefore, rodent models of CVD are increasingly used to examine mechanisms ofvariation in susceptibility. Pulmonary oxidative stress, inflammation and altere...

  4. Purinergic Receptors in Ocular Inflammation

    Directory of Open Access Journals (Sweden)

    Ana Guzman-Aranguez

    2014-01-01

    Full Text Available Inflammation is a complex process that implies the interaction between cells and molecular mediators, which, when not properly “tuned,” can lead to disease. When inflammation affects the eye, it can produce severe disorders affecting the superficial and internal parts of the visual organ. The nucleoside adenosine and nucleotides including adenine mononucleotides like ADP and ATP and dinucleotides such as P1,P4-diadenosine tetraphosphate (Ap4A, and P1,P5-diadenosine pentaphosphate (Ap5A are present in different ocular locations and therefore they may contribute/modulate inflammatory processes. Adenosine receptors, in particular A2A adenosine receptors, present anti-inflammatory action in acute and chronic retinal inflammation. Regarding the A3 receptor, selective agonists like N6-(3-iodobenzyl-5′-N-methylcarboxamidoadenosine (CF101 have been used for the treatment of inflammatory ophthalmic diseases such as dry eye and uveoretinitis. Sideways, diverse stimuli (sensory stimulation, large intraocular pressure increases can produce a release of ATP from ocular sensory innervation or after injury to ocular tissues. Then, ATP will activate purinergic P2 receptors present in sensory nerve endings, the iris, the ciliary body, or other tissues surrounding the anterior chamber of the eye to produce uveitis/endophthalmitis. In summary, adenosine and nucleotides can activate receptors in ocular structures susceptible to suffer from inflammatory processes. This involvement suggests the possible use of purinergic agonists and antagonists as therapeutic targets for ocular inflammation.

  5. Quercetin, Inflammation and Immunity

    Directory of Open Access Journals (Sweden)

    Yao Li

    2016-03-01

    Full Text Available In vitro and some animal models have shown that quercetin, a polyphenol derived from plants, has a wide range of biological actions including anti-carcinogenic, anti-inflammatory and antiviral activities; as well as attenuating lipid peroxidation, platelet aggregation and capillary permeability. This review focuses on the physicochemical properties, dietary sources, absorption, bioavailability and metabolism of quercetin, especially main effects of quercetin on inflammation and immune function. According to the results obtained both in vitro and in vivo, good perspectives have been opened for quercetin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of quercetin on inflammation and immunity.

  6. Resolution of Sterile Inflammation: Role for Vitamin C

    Directory of Open Access Journals (Sweden)

    Bassem M. Mohammed

    2014-01-01

    Full Text Available Introduction. Macrophage reprogramming is vital for resolution of acute inflammation. Parenteral vitamin C (VitC attenuates proinflammatory states in murine and human sepsis. However information about the mechanism by which VitC regulates resolution of inflammation is limited. Methods. To examine whether physiological levels of VitC modulate resolution of inflammation, we used transgenic mice lacking L-gulono-γ-lactone oxidase. VitC sufficient/deficient mice were subjected to a thioglycollate-elicited peritonitis model of sterile inflammation. Some VitC deficient mice received daily parenteral VitC (200 mg/kg for 3 or 5 days following thioglycollate infusion. Peritoneal macrophages harvested on day 3 or day 5 were examined for intracellular VitC levels, pro- and anti-inflammatory protein and lipid mediators, mitochondrial function, and response to lipopolysaccharide (LPS. The THP-1 cell line was used to determine the modulatory activities of VitC in activated human macrophages. Results. VitC deficiency significantly delayed resolution of inflammation and generated an exaggerated proinflammatory response to in vitro LPS stimulation. VitC sufficiency and in vivo VitC supplementation restored macrophage phenotype and function in VitC deficient mice. VitC loading of THP-1 macrophages attenuated LPS-induced proinflammatory responses. Conclusion. VitC sufficiency favorably modulates macrophage function. In vivo or in vitro VitC supplementation restores macrophage phenotype and function leading to timely resolution of inflammation.

  7. Distinct lipid a moieties contribute to pathogen-induced site-specific vascular inflammation.

    Directory of Open Access Journals (Sweden)

    Connie Slocum

    2014-07-01

    Full Text Available Several successful pathogens have evolved mechanisms to evade host defense, resulting in the establishment of persistent and chronic infections. One such pathogen, Porphyromonas gingivalis, induces chronic low-grade inflammation associated with local inflammatory bone loss and systemic inflammation manifested as atherosclerosis. P. gingivalis expresses an atypical lipopolysaccharide (LPS structure containing heterogeneous lipid A species, that exhibit Toll-like receptor-4 (TLR4 agonist or antagonist activity, or are non-activating at TLR4. In this study, we utilized a series of P. gingivalis lipid A mutants to demonstrate that antagonistic lipid A structures enable the pathogen to evade TLR4-mediated bactericidal activity in macrophages resulting in systemic inflammation. Production of antagonistic lipid A was associated with the induction of low levels of TLR4-dependent proinflammatory mediators, failed activation of the inflammasome and increased bacterial survival in macrophages. Oral infection of ApoE(-/- mice with the P. gingivalis strain expressing antagonistic lipid A resulted in vascular inflammation, macrophage accumulation and atherosclerosis progression. In contrast, a P. gingivalis strain producing exclusively agonistic lipid A augmented levels of proinflammatory mediators and activated the inflammasome in a caspase-11-dependent manner, resulting in host cell lysis and decreased bacterial survival. ApoE(-/- mice infected with this strain exhibited diminished vascular inflammation, macrophage accumulation, and atherosclerosis progression. Notably, the ability of P. gingivalis to induce local inflammatory bone loss was independent of lipid A expression, indicative of distinct mechanisms for induction of local versus systemic inflammation by this pathogen. Collectively, our results point to a pivotal role for activation of the non-canonical inflammasome in P. gingivalis infection and demonstrate that P. gingivalis evades immune

  8. Anti-Inflammation Activities of Mycosporine-Like Amino Acids (MAAs in Response to UV Radiation Suggest Potential Anti-Skin Aging Activity

    Directory of Open Access Journals (Sweden)

    Sung-Suk Suh

    2014-10-01

    Full Text Available Certain photosynthetic marine organisms have evolved mechanisms to counteract UV-radiation by synthesizing UV-absorbing compounds, such as mycosporine-like amino acids (MAAs. In this study, MAAs were separated from the extracts of marine green alga Chlamydomonas hedleyi using HPLC and were identified as porphyra-334, shinorine, and mycosporine-glycine (mycosporine-Gly, based on their retention times and maximum absorption wavelengths. Furthermore, their structures were confirmed by triple quadrupole MS/MS. Their roles as UV-absorbing compounds were investigated in the human fibroblast cell line HaCaT by analyzing the expression levels of genes associated with antioxidant activity, inflammation, and skin aging in response to UV irradiation. The mycosporine-Gly extract, but not the other MAAs, had strong antioxidant activity in the 2,2-diphenyl-1-picryhydrazyl (DPPH assay. Furthermore, treatment with mycosporine-Gly resulted in a significant decrease in COX-2 mRNA levels, which are typically increased in response to inflammation in the skin, in a concentration-dependent manner. Additionally, in the presence of MAAs, the UV-suppressed genes, procollagen C proteinase enhancer (PCOLCE and elastin, which are related to skin aging, had increased expression levels equal to those in UV-mock treated cells. Interestingly, the increased expression of involucrin after UV exposure was suppressed by treatment with the MAAs mycosporine-Gly and shinorine, but not porphyra-334. This is the first report investigating the biological activities of microalgae-derived MAAs in human cells.

  9. Anti-Inflammation Activities of Mycosporine-Like Amino Acids (MAAs) in Response to UV Radiation Suggest Potential Anti-Skin Aging Activity

    Science.gov (United States)

    Suh, Sung-Suk; Hwang, Jinik; Park, Mirye; Seo, Hyo Hyun; Kim, Hyoung-Shik; Lee, Jeong Hun; Moh, Sang Hyun; Lee, Taek-Kyun

    2014-01-01

    Certain photosynthetic marine organisms have evolved mechanisms to counteract UV-radiation by synthesizing UV-absorbing compounds, such as mycosporine-like amino acids (MAAs). In this study, MAAs were separated from the extracts of marine green alga Chlamydomonas hedleyi using HPLC and were identified as porphyra-334, shinorine, and mycosporine-glycine (mycosporine-Gly), based on their retention times and maximum absorption wavelengths. Furthermore, their structures were confirmed by triple quadrupole MS/MS. Their roles as UV-absorbing compounds were investigated in the human fibroblast cell line HaCaT by analyzing the expression levels of genes associated with antioxidant activity, inflammation, and skin aging in response to UV irradiation. The mycosporine-Gly extract, but not the other MAAs, had strong antioxidant activity in the 2,2-diphenyl-1-picryhydrazyl (DPPH) assay. Furthermore, treatment with mycosporine-Gly resulted in a significant decrease in COX-2 mRNA levels, which are typically increased in response to inflammation in the skin, in a concentration-dependent manner. Additionally, in the presence of MAAs, the UV-suppressed genes, procollagen C proteinase enhancer (PCOLCE) and elastin, which are related to skin aging, had increased expression levels equal to those in UV-mock treated cells. Interestingly, the increased expression of involucrin after UV exposure was suppressed by treatment with the MAAs mycosporine-Gly and shinorine, but not porphyra-334. This is the first report investigating the biological activities of microalgae-derived MAAs in human cells. PMID:25317535

  10. The Flavonoid Quercetin Ameliorates Liver Inflammation and Fibrosis by Regulating Hepatic Macrophages Activation and Polarization in Mice

    Directory of Open Access Journals (Sweden)

    Xi Li

    2018-02-01

    Full Text Available At present, there are no effective antifibrotic drugs for patients with chronic liver disease; hence, the development of antifibrotic therapies is urgently needed. Here, we performed an experimental and translational study to investigate the potential and underlying mechanism of quercetin treatment in liver fibrosis, mainly focusing on the impact of quercetin on macrophages activation and polarization. BALB/c mice were induced liver fibrosis by carbon tetrachloride (CCl4 for 8 weeks and concomitantly treated with quercetin (50 mg/kg or vehicle by daily gavage. Liver inflammation, fibrosis, and hepatic stellate cells (HSCs activation were examined. Moreover, massive macrophages accumulation, M1 macrophages and their related markers, such as tumor necrosis factor (TNF-α, interleukin (IL-1β, IL-6, and monocyte chemotactic protein-1 (MCP-1 in livers were analyzed. In vitro, we used Raw 264.7 cells to examine the effect of quercetin on M1-polarized macrophages activation. Our results showed that quercetin dramatically ameliorated liver inflammation, fibrosis, and inhibited HSCs activation. These results were attributed to the reductive recruitment of macrophages (F4/80+ and CD68+ into the liver in quercetin-treated fibrotic mice confirmed by immunostaining and expression levels of marker molecules. Importantly, quercetin strongly inhibited M1 polarization and M1-related inflammatory cytokines in fibrotic livers when compared with vehicle-treated mice. In vitro, studies further revealed that quercetin efficiently inhibited macrophages activation and M1 polarization, as well as decreased the mRNA expression of M1 macrophage markers such as TNF-α, IL-1β, IL-6, and nitric oxide synthase 2. Mechanistically, the inhibition of M1 macrophages by quercetin was associated with the decreased levels of Notch1 expression on macrophages both in vivo and in vitro. Taken together, our data indicated that quercetin attenuated CCl4-induced liver inflammation and

  11. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells

    International Nuclear Information System (INIS)

    Takeda-Watanabe, Ai; Kitada, Munehiro; Kanasaki, Keizo; Koya, Daisuke

    2012-01-01

    Highlights: ► SIRT1 inactivation decreases autophagy in THP-1 cell. ► Inhibition of autophagy induces inflammation. ► SIRT1 inactivation induces inflammation through NF-κB activation. ► The p62/Sqstm1 accumulation by impairment of autophagy is related to NF-κB activation. ► SIRT1 inactivation is involved in the activation of mTOR and decreased AMPK activation. -- Abstract: Inflammation plays a crucial role in atherosclerosis. Monocytes/macrophages are some of the cells involved in the inflammatory process in atherogenesis. Autophagy exerts a protective effect against cellular stresses like inflammation, and it is regulated by nutrient-sensing pathways. The nutrient-sensing pathway includes SIRT1, a NAD + -dependent histone deacetylase, which is implicated in the regulation of a variety of cellular processes including inflammation and autophagy. The mechanism through which the dysfunction of SIRT1 contributes to the regulation of inflammation in relation to autophagy in monocytes/macrophages is unclear. In the present study, we demonstrate that treatment with 2-[(2-Hydroxynaphthalen-1-ylmethylene)amino]-N-(1-phenethyl)benzamide (Sirtinol), a chemical inhibitor of SIRT1, induces the overexpression of inflammation-related genes such as tumor necrosis factor (TNF)-α and interleukin (IL)-6 through nuclear factor (NF)-κB signaling activation, which is associated with autophagy dysfunction, as shown through p62/Sqstm1 accumulation and decreased expression of light chain (LC) 3 II in THP-1 cells. The autophagy inhibitor, 3-methyladenine, also induces inflammation-related NF-κB activation. In p62/Sqstm1 knockdown cells, Sirtinol-induced inflammation through NF-κB activation is blocked. In addition, inhibition of SIRT1 is involved in the activation of the mammalian target of rapamycin (mTOR) pathway and is implicated in decreased 5′-AMP activated kinase (AMPK) activation, leading to the impairment of autophagy. The mTOR inhibitor, rapamycin, abolishes

  12. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Takeda-Watanabe, Ai; Kitada, Munehiro; Kanasaki, Keizo [Diabetology and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa (Japan); Koya, Daisuke, E-mail: koya0516@kanazawa-med.ac.jp [Diabetology and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa (Japan)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer SIRT1 inactivation decreases autophagy in THP-1 cell. Black-Right-Pointing-Pointer Inhibition of autophagy induces inflammation. Black-Right-Pointing-Pointer SIRT1 inactivation induces inflammation through NF-{kappa}B activation. Black-Right-Pointing-Pointer The p62/Sqstm1 accumulation by impairment of autophagy is related to NF-{kappa}B activation. Black-Right-Pointing-Pointer SIRT1 inactivation is involved in the activation of mTOR and decreased AMPK activation. -- Abstract: Inflammation plays a crucial role in atherosclerosis. Monocytes/macrophages are some of the cells involved in the inflammatory process in atherogenesis. Autophagy exerts a protective effect against cellular stresses like inflammation, and it is regulated by nutrient-sensing pathways. The nutrient-sensing pathway includes SIRT1, a NAD{sup +}-dependent histone deacetylase, which is implicated in the regulation of a variety of cellular processes including inflammation and autophagy. The mechanism through which the dysfunction of SIRT1 contributes to the regulation of inflammation in relation to autophagy in monocytes/macrophages is unclear. In the present study, we demonstrate that treatment with 2-[(2-Hydroxynaphthalen-1-ylmethylene)amino]-N-(1-phenethyl)benzamide (Sirtinol), a chemical inhibitor of SIRT1, induces the overexpression of inflammation-related genes such as tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-6 through nuclear factor (NF)-{kappa}B signaling activation, which is associated with autophagy dysfunction, as shown through p62/Sqstm1 accumulation and decreased expression of light chain (LC) 3 II in THP-1 cells. The autophagy inhibitor, 3-methyladenine, also induces inflammation-related NF-{kappa}B activation. In p62/Sqstm1 knockdown cells, Sirtinol-induced inflammation through NF-{kappa}B activation is blocked. In addition, inhibition of SIRT1 is involved in the activation of the mammalian target of rapamycin (mTOR) pathway and

  13. Altering the activation mechanism in Thermomyces lanuginosus lipase

    DEFF Research Database (Denmark)

    Skjold-Jørgensen, Jakob; Vind, Jesper; Svendsen, Allan

    2014-01-01

    It is shown by rational site-directed mutagenesis of the lid region in Thermomyces lanuginosus lipase that it is possible to generate lipase variants with attractive features, e.g., high lipase activity, fast activation at the lipid interface, ability to act on water-soluble substrates......, and enhanced calcium independence. The rational design was based on the lid residue composition in Aspergillus niger ferulic acid esterase (FAEA). Five constructs included lipase variants containing the full FAEA lid, a FAEA-like lid, an intermediate lid of FAEA and TlL character, and the entire lid region...... from Aspergillus terreus lipase (AtL). To investigate an altered activation mechanism for each variant compared to that of TlL, a combination of activity- and spectroscopic-based measurements were applied. The engineered variant with a lid from AtL displayed interfacial activation comparable...

  14. Epigenetic regulation in dental pulp inflammation

    Science.gov (United States)

    Hui, T; Wang, C; Chen, D; Zheng, L; Huang, D; Ye, L

    2016-01-01

    Dental caries, trauma, and other possible factors could lead to injury of the dental pulp. Dental infection could result in immune and inflammatory responses mediated by molecular and cellular events and tissue breakdown. The inflammatory response of dental pulp could be regulated by genetic and epigenetic events. Epigenetic modifications play a fundamental role in gene expression. The epigenetic events might play critical roles in the inflammatory process of dental pulp injury. Major epigenetic events include methylation and acetylation of histones and regulatory factors, DNA methylation, and small non-coding RNAs. Infections and other environmental factors have profound effects on epigenetic modifications and trigger diseases. Despite growing evidences of literatures addressing the role of epigenetics in the field of medicine and biology, very little is known about the epigenetic pathways involved in dental pulp inflammation. This review summarized the current knowledge about epigenetic mechanisms during dental pulp inflammation. Progress in studies of epigenetic alterations during inflammatory response would provide opportunities for the development of efficient medications of epigenetic therapy for pulpitis. PMID:26901577

  15. Temporomandibular joint inflammation activates glial and immune cells in both the trigeminal ganglia and in the spinal trigeminal nucleus

    Directory of Open Access Journals (Sweden)

    Jasmin Luc

    2010-12-01

    Full Text Available Abstract Background Glial cells have been shown to directly participate to the genesis and maintenance of chronic pain in both the sensory ganglia and the central nervous system (CNS. Indeed, glial cell activation has been reported in both the dorsal root ganglia and the spinal cord following injury or inflammation of the sciatic nerve, but no data are currently available in animal models of trigeminal sensitization. Therefore, in the present study, we evaluated glial cell activation in the trigeminal-spinal system following injection of the Complete Freund's Adjuvant (CFA into the temporomandibular joint, which generates inflammatory pain and trigeminal hypersensitivity. Results CFA-injected animals showed ipsilateral mechanical allodynia and temporomandibular joint edema, accompanied in the trigeminal ganglion by a strong increase in the number of GFAP-positive satellite glial cells encircling neurons and by the activation of resident macrophages. Seventy-two hours after CFA injection, activated microglial cells were observed in the ipsilateral trigeminal subnucleus caudalis and in the cervical dorsal horn, with a significant up-regulation of Iba1 immunoreactivity, but no signs of reactive astrogliosis were detected in the same areas. Since the purinergic system has been implicated in the activation of microglial cells during neuropathic pain, we have also evaluated the expression of the microglial-specific P2Y12 receptor subtype. No upregulation of this receptor was detected following induction of TMJ inflammation, suggesting that any possible role of P2Y12 in this paradigm of inflammatory pain does not involve changes in receptor expression. Conclusions Our data indicate that specific glial cell populations become activated in both the trigeminal ganglia and the CNS following induction of temporomandibular joint inflammation, and suggest that they might represent innovative targets for controlling pain during trigeminal nerve sensitization.

  16. Langerhans cell homeostasis and activation is altered in hyperplastic human papillomavirus type 16 E7 expressing epidermis.

    Directory of Open Access Journals (Sweden)

    Nor Malia Abd Warif

    Full Text Available It has previously been shown that expression of human papillomavirus type 16 (HPV E7 in epidermis causes hyperplasia and chronic inflammation, characteristics of pre-malignant lesions. Importantly, E7-expressing epidermis is strongly immune suppressed and is not rejected when transplanted onto immune competent mice. Professional antigen presenting cells are considered essential for initiation of the adaptive immune response that results in graft rejection. Langerhans cells (LC are the only antigen presenting cells located in normal epidermis and altered phenotype and function of these cells may contribute to the immune suppressive microenvironment. Here, we show that LC are atypically activated as a direct result of E7 expression in the epidermis, and independent of the presence of lymphocytes. The number of LC was significantly increased and the LC are functionally impaired, both in migration and in antigen uptake. However when the LC were extracted from K14E7 skin and matured in vitro they were functionally competent to present and cross-present antigen, and to activate T cells. The ability of the LC to present and cross-present antigen following maturation supports retention of full functional capacity when removed from the hyperplastic skin microenvironment. As such, opportunities are afforded for the development of therapies to restore normal LC function in hyperplastic skin.

  17. Toll-Like Receptors, Inflammation, and Calcific Aortic Valve Disease

    Directory of Open Access Journals (Sweden)

    Carmen García-Rodríguez

    2018-03-01

    Full Text Available Inflammation, the primary response of innate immunity, is essential to initiate the calcification process underlying calcific aortic valve disease (CAVD, the most prevalent valvulopathy in Western countries. The pathogenesis of CAVD is multifactorial and includes inflammation, hemodynamic factors, fibrosis, and active calcification. In the development of CAVD, both innate and adaptive immune responses are activated, and accumulating evidences show the central role of inflammation in the initiation and propagation phases of the disease, being the function of Toll-like receptors (TLR particularly relevant. These receptors act as sentinels of the innate immune system by recognizing pattern molecules from both pathogens and host-derived molecules released after tissue damage. TLR mediate inflammation via NF-κB routes within and beyond the immune system, and play a crucial role in the control of infection and the maintenance of tissue homeostasis. This review outlines the current notions about the association between TLR signaling and the ensuing development of inflammation and fibrocalcific remodeling in the pathogenesis of CAVD. Recent data provide new insights into the inflammatory and osteogenic responses underlying the disease and further support the hypothesis that inflammation plays a mechanistic role in the initiation and progression of CAVD. These findings make TLR signaling a potential target for therapeutic intervention in CAVD.

  18. Ebselen suppresses inflammation induced by Helicobacter pylori lipopolysaccharide via the p38 mitogen-activated protein kinase signaling pathway.

    Science.gov (United States)

    Xu, Ling; Gong, Changguo; Li, Guangming; Wei, Jue; Wang, Ting; Meng, Wenying; Shi, Min; Wang, Yugang

    2018-05-01

    Ebselen is a seleno-organic compound that has been demonstrated to have antioxidant and anti-inflammatory properties. A previous study determined that ebselen inhibits airway inflammation induced by inhalational lipopolysaccharide (LPS), however, the underlying molecular mechanism remains to be elucidated. The present study investigated the effect of ebselen on the glutathione peroxidase (GPX)‑reactive oxygen species (ROS) pathway and interleukin‑8 (IL‑8) expression induced by Helicobacter pylori LPS in gastric cancer (GC) cells. Cells were treated with 200 ng/ml H. pylori‑LPS in the presence or absence of ebselen for various durations and concentrations (µmol/l). The expression of toll‑like receptor 4 (TLR4), GPX2, GPX4, p38 mitogen‑activated protein kinase (p38 MAPK), phosphorylated‑p38 MAPK, ROS production and IL‑8 expression were detected with western blotting or ELISA. The present study revealed that TLR4 expression was upregulated; however, GPX2 and GPX4 expression was reduced following treatment with H. pylori LPS, which led to increased ROS production, subsequently altering the IL‑8 expression level in GC cells. Additionally, it was determined that ebselen prevented the reduction in GPX2/4 levels induced by H. pylori LPS, however, TLR4 expression was not affected. Ebselen may also block the expression of IL‑8 by inhibiting phosphorylation of p38 MAPK. These data suggest ebselen may inhibit ROS production triggered by H. pylori LPS treatment via GPX2/4 instead of TLR4 signaling and reduce phosphorylation of p38 MAPK, resulting in altered production of IL‑8. Ebselen may, therefore, be a potential therapeutic agent to mediate H. pylori LPS-induced cell damage.

  19. Alcohol Exposure Alters Mouse Lung Inflammation in Response to Inhaled Dust

    Directory of Open Access Journals (Sweden)

    Jill A. Poole

    2012-07-01

    Full Text Available Alcohol exposure is associated with increased lung infections and decreased mucociliary clearance. Occupational workers exposed to dusts from concentrated animal feeding operations (CAFOs are at risk for developing chronic inflammatory lung diseases. Agricultural worker co-exposure to alcohol and organic dust has been established, although little research has been conducted on the combination effects of alcohol and organic dusts on the lung. Previously, we have shown in a mouse model that exposure to hog dust extract (HDE collected from a CAFO results in the activation of protein kinase C (PKC, elevated lavage fluid cytokines/chemokines including interleukin-6 (IL-6, and the development of significant lung pathology. Because alcohol blocks airway epithelial cell release of IL-6 in vitro, we hypothesized that alcohol exposure would alter mouse lung inflammatory responses to HDE. To test this hypothesis, C57BL/6 mice were fed 20% alcohol or water ad libitum for 6 weeks and treated with 12.5% HDE by intranasal inhalation method daily during the final three weeks. Bronchoalveolar lavage fluid (BALF, tracheas and lungs were collected. HDE stimulated a 2–4 fold increase in lung and tracheal PKCε (epsilon activity in mice, but no such increase in PKCε activity was observed in dust-exposed mice fed alcohol. Similarly, alcohol-fed mice demonstrated significantly less IL-6 in lung lavage in response to dust than that observed in control mice instilled with HDE. TNFα levels were also inhibited in the alcohol and HDE-exposed mouse lung tissue as compared to the HDE only exposed group. HDE-induced lung inflammatory aggregates clearly present in the tissue from HDE only exposed animals were not visually detectable in the HDE/alcohol co-exposure group. Statistically significant weight reductions and 20% mortality were also observed in the mice co-exposed to HDE and alcohol. These data suggest that alcohol exposure depresses the ability

  20. Unacylated ghrelin does not alter mitochondrial function, redox state and triglyceride content in rat liver in vivo

    Directory of Open Access Journals (Sweden)

    Gianluca Gortan Cappellari

    2015-12-01

    Full Text Available Changes in liver mitochondrial function with more oxidized redox state and enhanced inflammation may contribute to the onset of obesity- and insulin resistance-associated hepatic complications, including non-alcoholic fatty liver disease and steato-hepatitis. Unacylated ghrelin (UnAG is a gastric hormone reported to be associated with lower oxidative stress in different cell types, but its potential effects on liver mitochondrial function, redox state and inflammation in vivo remains undetermined. We investigated the impact of chronic UnAG overexpression (Tg Myh6/Ghrl leading to systemic upregulation of circulating hormone on mitochondrial ATP production, redox state (oxidized-to-total glutathione and inflammation markers in lean mice. Compared to wild-type animals (wt, Tg Myh6/Ghrl had superimposable liver weight, triglyceride content and plasma lipid profile. Liver mitochondrial enzyme activities and ATP production as well as oxidized-to-total glutathione were also similar in the two groups. In addition, no differences were observed in tissue inflammation marker TNF-alpha between wild-type and Tg Myh6/Ghrl animals. Thus, chronic systemic UnAG upregulation does not alter liver triglyceride content, mitochondrial function, redox state and inflammation markers in lean mice. These findings do not support a major role of UnAG as a physiological modulator of in vivo liver oxidative-lipid metabolism and inflammation.

  1. Neutrophils alter the inflammatory milieu by signal-dependent translation of constitutive messenger RNAs

    Science.gov (United States)

    Lindemann, Stephan W.; Yost, Christian C.; Denis, Melvin M.; McIntyre, Thomas M.; Weyrich, Andrew S.; Zimmerman, Guy A.

    2004-05-01

    The mechanisms by which neutrophils, key effector cells of the innate immune system, express new gene products in inflammation are largely uncharacterized. We found that they rapidly translate constitutive mRNAs when activated, a previously unrecognized response. One of the proteins synthesized without a requirement for transcription is the soluble IL-6 receptor , which translocates to endothelial cells and induces a temporal switch to mononuclear leukocyte recruitment. Its synthesis is regulated by a specialized translational control pathway that is inhibited by rapamycin, a bacterial macrolide with therapeutic efficacy in transplantation, inflammatory syndromes, and neoplasia. Signal-dependent translation in activated neutrophils may be a critical mechanism for alteration of the inflammatory milieu and a therapeutic target.

  2. Alterations in Resting-State Activity Relate to Performance in a Verbal Recognition Task

    Science.gov (United States)

    López Zunini, Rocío A.; Thivierge, Jean-Philippe; Kousaie, Shanna; Sheppard, Christine; Taler, Vanessa

    2013-01-01

    In the brain, resting-state activity refers to non-random patterns of intrinsic activity occurring when participants are not actively engaged in a task. We monitored resting-state activity using electroencephalogram (EEG) both before and after a verbal recognition task. We show a strong positive correlation between accuracy in verbal recognition and pre-task resting-state alpha power at posterior sites. We further characterized this effect by examining resting-state post-task activity. We found marked alterations in resting-state alpha power when comparing pre- and post-task periods, with more pronounced alterations in participants that attained higher task accuracy. These findings support a dynamical view of cognitive processes where patterns of ongoing brain activity can facilitate –or interfere– with optimal task performance. PMID:23785436

  3. Environmental enteric dysfunction is associated with altered bile acid metabolism

    Science.gov (United States)

    Environmental enteric dysfunction (EED), a clinically asymptomatic condition characterized by inflammation of the small bowel mucosa, villous atrophy, and increased gut permeability, is common among children in developing countries. Because of abnormal gut mucosa and altered gut microbiome, EED coul...

  4. Moderate activation of IKK2-NF-kB in unstressed adult mouse liver induces cytoprotective genes and lipogenesis without apparent signs of inflammation or fibrosis.

    Science.gov (United States)

    Lu, Hong; Lei, Xiaohong; Zhang, Qinghao

    2015-07-30

    The NF-kB signaling, regulated by IKK1-p52/RelB and IKK2-p65, is activated by various stresses to protect or damage the liver, in context-specific manners. Two previous studies of liver-specific expression of constitutive active IKK2 (IKK2ca) showed that strong activation of IKK2-NF-kB in mouse livers caused inflammation, insulin resistance, and/or fibrosis. The purpose of this study was to understand how moderate activation of IKK2-NF-kB in adult mouse livers alters hepatic gene expression and pathophysiology. We generated mice with adult hepatocyte-specific activation of Ikk2 (Liv-Ikk2ca) using Alb-cre mice and Ikk2ca Rosa26 knockin mice in which a moderate expression of Ikk2ca transgene was driven by the endogenous Rosa26 promoter. Surprisingly, compared to wild-type mice, adult male Liv-Ikk2ca mice had higher hepatic mRNA expression of Ikk2 and classical NF-kB targets (e.g. Lcn2 and A20), as well as IKK1, NIK, and RelB, but no changes in markers of inflammation or fibrosis. Blood levels of IL-6 and MCP-1 remained unchanged, and histology analysis showed a lack of injury or infiltration of inflammatory cells in livers of Liv-Ikk2ca mice. Moreover, Liv-Ikk2ca mice had lower mRNA expression of prooxidative enzymes Cyp2e1 and Cyp4a14, higher expression of antioxidative enzymes Sod2, Gpx1, and Nqo1, without changes in key enzymes for fatty acid oxidation, glucose utilization, or gluconeogenesis. In parallel, Liv-Ikk2ca mice and wild-type mice had similar levels of hepatic reduced glutathione, endogenous reactive oxygen species, and lipid peroxidation. Additionally, Liv-Ikk2ca mice had higher Cyp3a11 without down-regulation of most drug processing genes. Regarding nuclear proteins of NF-kB subunits, Liv-Ikk2ca mice had moderately higher p65 and p50 but much higher RelB. Results of ChIP-qPCR showed that the binding of p50 to multiple NF-kB-target genes was markedly increased in Liv-Ikk2ca mice. Additionally, Liv-Ikk2ca mice had moderate increase in triglycerides in

  5. Sea cucumber saponin liposomes ameliorate obesity-induced inflammation and insulin resistance in high-fat-diet-fed mice.

    Science.gov (United States)

    Chen, Cheng; Han, Xiuqing; Dong, Ping; Li, Zhaojie; Yanagita, Teruyoshi; Xue, Changhu; Zhang, Tiantian; Wang, Yuming

    2018-02-21

    Obesity has become a worldwide concern in recent years, which may cause many diseases. Much attention has been paid to food components that are considered to be beneficial in preventing chronic metabolic diseases. The present study was conducted to investigate the effects of sea cucumber saponin liposomes on certain metabolic markers associated with obesity. C57/BL6 mice fed with high-fat diet were treated with different forms of sea cucumber saponins for eight weeks. The results showed that liposomes exhibited better effects on anti-obesity and anti-hyperlipidemia activities than the common form of sea cucumber saponins. Sea cucumber saponin liposomes could also effectively alleviate adipose tissue inflammation by reducing pro-inflammatory cytokine releases and macrophage infiltration. Moreover, sea cucumber saponin liposomes improved insulin resistance by altering the uptake and utilization of glucose. Taken together, our results indicated that the intake of sea cucumber saponin liposomes might be able to ameliorate obesity-induced inflammation and insulin resistance.

  6. TGF-β1 induces an age-dependent inflammation of nerve ganglia and fibroplasia in the prostate gland stroma of a novel transgenic mouse.

    Directory of Open Access Journals (Sweden)

    David A Barron

    2010-10-01

    Full Text Available TGF-β1 is overexpressed in wound repair and in most proliferative disorders including benign prostatic hyperplasia and prostate cancer. The stromal microenvironment at these sites is reactive and typified by altered phenotype, matrix deposition, inflammatory responses, and alterations in nerve density and biology. TGF-β1 is known to modulate several stromal responses; however there are few transgenic models to study its integrated biology. To address the actions of TGF-β1 in prostate disorders, we targeted expression of an epitope tagged and constitutively active TGF-β1 via the enhanced probasin promoter to the murine prostate gland epithelium. Transgenic mice developed age-dependent lesions leading to severe, yet focal attenuation of epithelium, and a discontinuous basal lamina. These changes were associated with elevated fibroplasia and frequency of collagenous micronodules in collapsed acini, along with an induced inflammation in nerve ganglia and small vessels. Elevated recruitment of CD115+ myeloid cells but not mature macrophages was observed in nerve ganglia, also in an age-dependent manner. Similar phenotypic changes were observed using a human prostate epithelium tissue recombination xenograft model, where epithelial cells engineered to overexpress TGF-β1 induced fibrosis and altered matrix deposition concurrent with inflammation in the stromal compartment. Together, these data suggest that elevated TGF-β1 expression induces a fibroplasia stromal response associated with breach of epithelial wall structure and inflammatory involvement of nerve ganglia and vessels. The novel findings of ganglia and vessel inflammation associated with formation of collagenous micronodules in collapsed acini is important as each of these are observed in human prostate carcinoma and may play a role in disease progression.

  7. Sleep and inflammatory bowel disease: exploring the relationship between sleep disturbances and inflammation.

    Science.gov (United States)

    Kinnucan, Jami A; Rubin, David T; Ali, Tauseef

    2013-11-01

    Sleep disturbances are associated with a greater risk of serious adverse health events, economic consequences, and, most importantly, increased all-cause mortality. Several studies support the associations among sleep, immune function, and inflammation. The relationship between sleep disturbances and inflammatory conditions is complex and not completely understood. Sleep deprivation can lead to increased levels of inflammatory cytokines, including interleukin (IL)-1β IL-6, tumor necrosis factor-α and C-reactive protein, which can lead to further activation of the inflammatory cascade. The relevance of sleep in inflammatory bowel disease (IBD), a chronic immune-mediated inflammatory disease of the gastrointestinal tract, has recently received more attention. Several studies have shown that patients with both inactive and active IBD have self-reported sleep disturbances. Here, we present a concise review of sleep and its association with the immune system and the process of inflammation. We discuss the studies that have evaluated sleep in patients with IBD as well as possible treatment options for those patients with sleep disturbances. An algorithm for evaluating sleep disturbances in the IBD population is also proposed. Further research is still needed to better characterize sleep disturbances in the IBD population as well as to assess the effects of various therapeutic interventions to improve sleep quality. It is possible that the diagnosis and treatment of sleep disturbances in this population may provide an opportunity to alter disease outcomes.

  8. Intraocular Inflammation Associated with Ocular Toxoplasmosis : Relationships at Initial Examination

    NARCIS (Netherlands)

    Dodds, Emilio M.; Holland, Gary N.; Stanford, Miles R.; Yu, Fei; Siu, Willie O.; Shah, Kayur H.; Loon, Ninette Ten Dam-Van; Muccioli, Cristina; Hovakimyan, Anna; Barisani-Asenbauer, Talin

    2008-01-01

    PURPOSE: To describe characteristics of intraocular inflammation in eyes with active ocular toxoplasmosis and to identify relationships between signs of inflammation, complications (including elevated intraocular pressure [IOP]), other disease features, and host characteristics. DESIGN: Multicenter,

  9. Maternal Obesity, Inflammation, and Developmental Programming

    Directory of Open Access Journals (Sweden)

    Stephanie A. Segovia

    2014-01-01

    Full Text Available The prevalence of obesity, especially in women of child-bearing age, is a global health concern. In addition to increasing the immediate risk of gestational complications, there is accumulating evidence that maternal obesity also has long-term consequences for the offspring. The concept of developmental programming describes the process in which an environmental stimulus, including altered nutrition, during critical periods of development can program alterations in organogenesis, tissue development, and metabolism, predisposing offspring to obesity and metabolic and cardiovascular disorders in later life. Although the mechanisms underpinning programming of metabolic disorders remain poorly defined, it has become increasingly clear that low-grade inflammation is associated with obesity and its comorbidities. This review will discuss maternal metainflammation as a mediator of programming in insulin sensitive tissues in offspring. Use of nutritional anti-inflammatories in pregnancy including omega 3 fatty acids, resveratrol, curcumin, and taurine may provide beneficial intervention strategies to ameliorate maternal obesity-induced programming.

  10. Aging exacerbates obesity-induced oxidative stress and inflammation in perivascular adipose tissue in mice: a paracrine mechanism contributing to vascular redox dysregulation and inflammation.

    Science.gov (United States)

    Bailey-Downs, Lora C; Tucsek, Zsuzsanna; Toth, Peter; Sosnowska, Danuta; Gautam, Tripti; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2013-07-01

    Obesity in the elderly individuals is increasing at alarming rates and there is evidence suggesting that elderly individuals are more vulnerable to the deleterious cardiovascular effects of obesity than younger individuals. However, the specific mechanisms through which aging and obesity interact to promote the development of cardiovascular disease remain unclear. The present study was designed to test the hypothesis that aging exacerbates obesity-induced inflammation in perivascular adipose tissue, which contributes to increased vascular oxidative stress and inflammation in a paracrine manner. To test this hypothesis, we assessed changes in the secretome, reactive oxygen species production, and macrophage infiltration in periaortic adipose tissue of young (7 month old) and aged (24 month old) high-fat diet-fed obese C57BL/6 mice. High-fat diet-induced vascular reactive oxygen species generation significantly increased in aged mice, which was associated with exacerbation of endothelial dysfunction and vascular inflammation. In young animals, high-fat diet-induced obesity promoted oxidative stress in the perivascular adipose tissue, which was associated with a marked proinflammatory shift in the profile of secreted cytokines and chemokines. Aging exacerbated obesity-induced oxidative stress and inflammation and significantly increased macrophage infiltration in periaortic adipose tissue. Using cultured arteries isolated from young control mice, we found that inflammatory factors secreted from the perivascular fat tissue of obese aged mice promote significant prooxidative and proinflammatory phenotypic alterations in the vascular wall, mimicking the aging phenotype. Overall, our findings support an important role for localized perivascular adipose tissue inflammation in exacerbation of vascular oxidative stress and inflammation in aging, an effect that likely enhances the risk for development of cardiovascular diseases from obesity in the elderly individuals.

  11. Inflammation arising from obesity reduces taste bud abundance and inhibits renewal.

    Science.gov (United States)

    Kaufman, Andrew; Choo, Ezen; Koh, Anna; Dando, Robin

    2018-03-01

    Despite evidence that the ability to taste is weakened by obesity and can be rescued with weight loss intervention, few studies have investigated the molecular effects of obesity on the taste system. Taste bud cells undergo continual turnover even in adulthood, exhibiting an average life span of only a few weeks, tightly controlled by a balance of proliferation and cell death. Recent data reveal that an acute inflammation event can alter this balance. We demonstrate that chronic low-grade inflammation brought on by obesity reduces the number of taste buds in gustatory tissues of mice-and is likely the cause of taste dysfunction seen in obese populations-by upsetting this balance of renewal and cell death.

  12. The effects of exogenous surfactant administration on ventilation-induced inflammation in mouse models of lung injury.

    Science.gov (United States)

    Puntorieri, Valeria; Hiansen, Josh Qua; McCaig, Lynda A; Yao, Li-Juan; Veldhuizen, Ruud A W; Lewis, James F

    2013-11-20

    Mechanical ventilation (MV) is an essential supportive therapy for acute lung injury (ALI); however it can also contribute to systemic inflammation. Since pulmonary surfactant has anti-inflammatory properties, the aim of the study was to investigate the effect of exogenous surfactant administration on ventilation-induced systemic inflammation. Mice were randomized to receive an intra-tracheal instillation of a natural exogenous surfactant preparation (bLES, 50 mg/kg) or no treatment as a control. MV was then performed using the isolated and perfused mouse lung (IPML) set up. This model allowed for lung perfusion during MV. In experiment 1, mice were exposed to mechanical ventilation only (tidal volume =20 mL/kg, 2 hours). In experiment 2, hydrochloric acid or air was instilled intra-tracheally four hours before applying exogenous surfactant and ventilation (tidal volume =5 mL/kg, 2 hours). For both experiments, exogenous surfactant administration led to increased total and functional surfactant in the treated groups compared to the controls. Exogenous surfactant administration in mice exposed to MV only did not affect peak inspiratory pressure (PIP), lung IL-6 levels and the development of perfusate inflammation compared to non-treated controls. Acid injured mice exposed to conventional MV showed elevated PIP, lung IL-6 and protein levels and greater perfusate inflammation compared to air instilled controls. Instillation of exogenous surfactant did not influence the development of lung injury. Moreover, exogenous surfactant was not effective in reducing the concentration of inflammatory cytokines in the perfusate. The data indicates that exogenous surfactant did not mitigate ventilation-induced systemic inflammation in our models. Future studies will focus on altering surfactant composition to improve its immuno-modulating activity.

  13. Inflammation and intracranial aneurysms: mechanisms of initiation, growth, and rupture

    Directory of Open Access Journals (Sweden)

    Peter S Amenta

    2015-06-01

    Full Text Available Outcomes following aneurysmal subarachnoid hemorrhage remain poor in many patients, despite advances in microsurgical and endovascular management. Consequently, considerable effort has been placed in determining the mechanisms of aneurysm formation, growth, and rupture. Various environmental and genetic factors are implicated as key components in the aneurysm pathogenesis. Currently, sufficient evidence exists to incriminate the inflammatory response as the common pathway leading to aneurysm generation and rupture. Central to this model is the interaction between the vessel wall and inflammatory cells. Dysfunction of the endothelium and vascular smooth muscle cells (VSMCs promotes a chronic pathological inflammatory response that progressively weakens the vessel wall. We review the literature pertaining to the cellular and chemical mechanisms of inflammation that contribute to aneurysm development. Hemodynamic stress and alterations in blood flow are discussed regarding their role in promoting chronic inflammation. Endothelial cell and VSMC dysfunction are examined concerning vascular remodeling. The contribution of inflammatory cytokines, especially tumor necrosis factor-α is illustrated. Inflammatory cell infiltration, particularly macrophage-mediated deterioration of vascular integrity, is reviewed. We discuss the inflammation as a means to determine aneurysms at greatest risk of rupture. Finally, future therapeutic implications of pharmacologic modulation of the inflammation are discussed.

  14. Maternal inflammation induces immune activation of fetal microglia and leads to disrupted microglia immune responses, behavior, and learning performance in adulthood.

    Science.gov (United States)

    Schaafsma, Wandert; Basterra, Laura Bozal; Jacobs, Sabrina; Brouwer, Nieske; Meerlo, Peter; Schaafsma, Anne; Boddeke, Erik W G M; Eggen, Bart J L

    2017-10-01

    Maternal inflammation during pregnancy can have detrimental effects on embryonic development that persist during adulthood. However, the underlying mechanisms and insights in the responsible cell types are still largely unknown. Here we report the effect of maternal inflammation on fetal microglia, the innate immune cells of the central nervous system (CNS). In mice, a challenge with LPS during late gestation stages (days 15-16-17) induced a pro-inflammatory response in fetal microglia. Adult whole brain microglia of mice that were exposed to LPS during embryonic development displayed a persistent reduction in pro-inflammatory activation in response to a re-challenge with LPS. In contrast, hippocampal microglia of these mice displayed an increased inflammatory response to an LPS re-challenge. In addition, a reduced expression of brain-derived neurotrophic factor (BDNF) was observed in hippocampal microglia of LPS-offspring. Microglia-derived BDNF has been shown to be important for learning and memory processes. In line with these observations, behavioral- and learning tasks with mice that were exposed to maternal inflammation revealed reduced home cage activity, reduced anxiety and reduced learning performance in a T-maze. These data show that exposure to maternal inflammation during late gestation results in long term changes in microglia responsiveness during adulthood, which is different in nature in hippocampus compared to total brain microglia. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Macrophages in synovial inflammation

    Directory of Open Access Journals (Sweden)

    Aisling eKennedy

    2011-10-01

    Full Text Available AbstractSynovial macrophages are one of the resident cell types in synovial tissue and while they remain relatively quiescent in the healthy joint, they become activated in the inflamed joint and, along with infiltrating monocytes/macrophages, regulate secretion of pro-inflammatory cytokines and enzymes involved in driving the inflammatory response and joint destruction. Synovial macrophages are positioned throughout the sub-lining layer and lining layer at the cartilage-pannus junction and mediate articular destruction. Sub-lining macrophages are now also considered as the most reliable biomarker for disease severity and response to therapy in rheumatoid arthritis (RA. There is a growing understanding of the molecular drivers of inflammation and an appreciation that the resolution of inflammation is an active process rather than a passive return to homeostasis, and this has implications for our understanding of the role of macrophages in inflammation. Macrophage phenotype determines the cytokine secretion profile and tissue destruction capabilities of these cells. Whereas inflammatory synovial macrophages have not yet been classified into one phenotype or another it is widely known that TNFα and IL-l, characteristically released by M1 macrophages, are abundant in RA while IL-10 activity, characteristic of M2 macrophages, is somewhat diminished.Here we will briefly review our current understanding of macrophages and macrophage polarisation in RA as well as the elements implicated in controlling polarisation, such as cytokines and transcription factors like NFκB, IRFs and NR4A, and pro-resolving factors, such as LXA4 and other lipid mediators which may promote a non-inflammatory, pro-resolving phenotype and may represent a novel therapeutic paradigm.

  16. Alterations in vasodilator-stimulated phosphoprotein (VASP) phosphorylation: associations with asthmatic phenotype, airway inflammation and β2-agonist use

    Science.gov (United States)

    Hastie, Annette T; Wu, Min; Foster, Gayle C; Hawkins, Gregory A; Batra, Vikas; Rybinski, Katherine A; Cirelli, Rosemary; Zangrilli, James G; Peters, Stephen P

    2006-01-01

    Background Vasodilator-stimulated phosphoprotein (VASP) mediates focal adhesion, actin filament binding and polymerization in a variety of cells, thereby inhibiting cell movement. Phosphorylation of VASP via cAMP and cGMP dependent protein kinases releases this "brake" on cell motility. Thus, phosphorylation of VASP may be necessary for epithelial cell repair of damage from allergen-induced inflammation. Two hypotheses were examined: (1) injury from segmental allergen challenge increases VASP phosphorylation in airway epithelium in asthmatic but not nonasthmatic normal subjects, (2) regular in vivo β2-agonist use increases VASP phosphorylation in asthmatic epithelium, altering cell adhesion. Methods Bronchial epithelium was obtained from asthmatic and non-asthmatic normal subjects before and after segmental allergen challenge, and after regularly inhaled albuterol, in three separate protocols. VASP phosphorylation was examined in Western blots of epithelial samples. DNA was obtained for β2-adrenergic receptor haplotype determination. Results Although VASP phosphorylation increased, it was not significantly greater after allergen challenge in asthmatics or normals. However, VASP phosphorylation in epithelium of nonasthmatic normal subjects was double that observed in asthmatic subjects, both at baseline and after challenge. Regularly inhaled albuterol significantly increased VASP phosphorylation in asthmatic subjects in both unchallenged and antigen challenged lung segment epithelium. There was also a significant increase in epithelial cells in the bronchoalveolar lavage of the unchallenged lung segment after regular inhalation of albuterol but not of placebo. The haplotypes of the β2-adrenergic receptor did not appear to associate with increased or decreased phosphorylation of VASP. Conclusion Decreased VASP phosphorylation was observed in epithelial cells of asthmatics compared to nonasthmatic normals, despite response to β-agonist. The decreased

  17. Alterations in vasodilator-stimulated phosphoprotein (VASP phosphorylation: associations with asthmatic phenotype, airway inflammation and β2-agonist use

    Directory of Open Access Journals (Sweden)

    Cirelli Rosemary

    2006-02-01

    Full Text Available Abstract Background Vasodilator-stimulated phosphoprotein (VASP mediates focal adhesion, actin filament binding and polymerization in a variety of cells, thereby inhibiting cell movement. Phosphorylation of VASP via cAMP and cGMP dependent protein kinases releases this "brake" on cell motility. Thus, phosphorylation of VASP may be necessary for epithelial cell repair of damage from allergen-induced inflammation. Two hypotheses were examined: (1 injury from segmental allergen challenge increases VASP phosphorylation in airway epithelium in asthmatic but not nonasthmatic normal subjects, (2 regular in vivo β2-agonist use increases VASP phosphorylation in asthmatic epithelium, altering cell adhesion. Methods Bronchial epithelium was obtained from asthmatic and non-asthmatic normal subjects before and after segmental allergen challenge, and after regularly inhaled albuterol, in three separate protocols. VASP phosphorylation was examined in Western blots of epithelial samples. DNA was obtained for β2-adrenergic receptor haplotype determination. Results Although VASP phosphorylation increased, it was not significantly greater after allergen challenge in asthmatics or normals. However, VASP phosphorylation in epithelium of nonasthmatic normal subjects was double that observed in asthmatic subjects, both at baseline and after challenge. Regularly inhaled albuterol significantly increased VASP phosphorylation in asthmatic subjects in both unchallenged and antigen challenged lung segment epithelium. There was also a significant increase in epithelial cells in the bronchoalveolar lavage of the unchallenged lung segment after regular inhalation of albuterol but not of placebo. The haplotypes of the β2-adrenergic receptor did not appear to associate with increased or decreased phosphorylation of VASP. Conclusion Decreased VASP phosphorylation was observed in epithelial cells of asthmatics compared to nonasthmatic normals, despite response to

  18. Nonspecific bowel activity in imaging inflammation with Tc-99m labelled monoclonal anti-NCA-90 Fab' fragment MN3

    International Nuclear Information System (INIS)

    Ivancevic, V.; Wolter, A.; Munz, D.L.

    2001-01-01

    Since the Tc-99m labelled monoclonal anti-NCA 90 granulocyte antibody Fab' fragment MN3 (MN3 Fab') might be of interest for imaging abdominal inflammation which could be hampered by nonspecific bowel activity, we prospectively investigated the appearance of bowel activity in MN3 Fab' imaging. Methods: Eighty consecutive patients (age range 12-85 years) referred for suspected nonabdominal, mostly musculoskeletal infection, were included. Abdominal inflammation was excluded clinically and there were no signs of inflammatory bowel disease in the patients' histories. One, 5, and 24 hours after introvenous injection of up to 1.1 GBq of MN3 Fab' planar images of the abdomen were performed. Bowel activity was graded visually using a 5-point scale. Results: The one (N = 80), 5 (N = 79), and 24 (N = 52) hour images revealed 46 (10%), 162 (34%), and 173 (55%) accumulating bowel segments, respectively, in 37 (46%), 69 (87%), and 52 (100%) patients. The mean intensity score per accumulating segment was 1.1, 1.8 and 2.7 (p = 0), respectively. Relative frequencies of appearance of the small intestine were 38%, 57%, and 21%, ileocaecal region 6%, 53%, and 48%, ascending colon 5%, 67%, and 89%, transverse colon 1%, 9%, and 69%, descending colon 8%, 15%, and 67%, and rectosigmoid 0%, 4%, and 38%, respectively. Follow-up investigations in 13 patients revealed diverging uptake patterns. Conclusion: Nonspecific bowel activity is often present in the early and almost always and more intense, in the delayed images. Early imaging at one hour after administration seems feasible, but a loss in sensitivity has to be considered. Thus, nonspecific bowel activity can be anticipated to be a pitfall in imaging abdominal inflammation with MN3 Fab'. (orig.) [de

  19. inflammation and iron metabolism

    Directory of Open Access Journals (Sweden)

    A Dzedzej

    2016-08-01

    Full Text Available Following acute physical activity, blood hepcidin concentration appears to increase in response to exercise-induced inflammation, but the long-term impact of exercise on hepcidin remains unclear. Here we investigated changes in hepcidin and the inflammation marker interleukin-6 to evaluate professional basketball players’ response to a season of training and games. The analysis also included vitamin D (25(OHD3 assessment, owing to its anti-inflammatory effects. Blood samples were collected for 14 players and 10 control non-athletes prior to and after the 8-month competitive season. Athletes’ performance was assessed with the NBA efficiency score. At the baseline hepcidin correlated with blood ferritin (r=0.61; 90% CL ±0.31, but at the end of the season this correlation was absent. Compared with the control subjects, athletes experienced clear large increases in hepcidin (50%; 90% CI 15-96% and interleukin-6 (77%; 90% CI 35-131% and a clear small decrease in vitamin D (-12%; 90% CI -20 to -3% at the season completion. Correlations between change scores of these variables were unclear (r = -0.21 to 0.24, 90% CL ±0.5, but their uncertainty generally excluded strong relationships. Athletes were hence concluded to have experienced acute inflammation at the beginning but chronic inflammation at the end of the competitive season. At the same time, the moderate correlation between changes in vitamin D and players’ performance (r=0.43 was suggestive of its beneficial influence. Maintaining the appropriative concentration of vitamin D is thus necessary for basketball players’ performance and efficiency. The assessment of hepcidin has proven to be useful in diagnosing inflammation in response to chronic exercise.

  20. Aloe arborescens aqueous gel extract alters the activities of key ...

    African Journals Online (AJOL)

    Mogale

    2011-05-16

    May 16, 2011 ... glucose uptake by fat and muscle cells; 3) altering the activity of some ... aqueous A. arborescens leaf gel extract on fasting blood glucose levels, insulin ..... weight loss of treated diabetic rats as compared to untreated alloxan ...

  1. Marine Natural Product Honaucin A Attenuates Inflammation by Activating the Nrf2-ARE Pathway.

    Science.gov (United States)

    Mascuch, Samantha J; Boudreau, Paul D; Carland, Tristan M; Pierce, N Tessa; Olson, Joshua; Hensler, Mary E; Choi, Hyukjae; Campanale, Joseph; Hamdoun, Amro; Nizet, Victor; Gerwick, William H; Gaasterland, Teresa; Gerwick, Lena

    2018-03-23

    The cyanobacterial marine natural product honaucin A inhibits mammalian innate inflammation in vitro and in vivo. To decipher its mechanism of action, RNA sequencing was used to evaluate differences in gene expression of cultured macrophages following honaucin A treatment. This analysis led to the hypothesis that honaucin A exerts its anti-inflammatory activity through activation of the cytoprotective nuclear erythroid 2-related factor 2 (Nrf2)-antioxidant response element/electrophile response element (ARE/EpRE) signaling pathway. Activation of this pathway by honaucin A in cultured human MCF7 cells was confirmed using an Nrf2 luciferase reporter assay. In vitro alkylation experiments with the natural product and N-acetyl-l-cysteine suggest that honaucin A activates this pathway through covalent interaction with the sulfhydryl residues of the cytosolic repressor protein Keap1. Honaucin A presents a potential therapeutic lead for diseases with an inflammatory component modulated by Nrf2-ARE.

  2. PI3-kinase γ promotes Rap1a-mediated activation of myeloid cell integrin α4β1, leading to tumor inflammation and growth.

    Directory of Open Access Journals (Sweden)

    Michael C Schmid

    Full Text Available Tumor inflammation, the recruitment of myeloid lineage cells into the tumor microenvironment, promotes angiogenesis, immunosuppression and metastasis. CD11b+Gr1lo monocytic lineage cells and CD11b+Gr1hi granulocytic lineage cells are recruited from the circulation by tumor-derived chemoattractants, which stimulate PI3-kinase γ (PI3Kγ-mediated integrin α4 activation and extravasation. We show here that PI3Kγ activates PLCγ, leading to RasGrp/CalDAG-GEF-I&II mediated, Rap1a-dependent activation of integrin α4β1, extravasation of monocytes and granulocytes, and inflammation-associated tumor progression. Genetic depletion of PLCγ, CalDAG-GEFI or II, Rap1a, or the Rap1 effector RIAM was sufficient to prevent integrin α4 activation by chemoattractants or activated PI3Kγ (p110γCAAX, while activated Rap (RapV12 promoted constitutive integrin activation and cell adhesion that could only be blocked by inhibition of RIAM or integrin α4β1. Similar to blockade of PI3Kγ or integrin α4β1, blockade of Rap1a suppressed both the recruitment of monocytes and granulocytes to tumors and tumor progression. These results demonstrate critical roles for a PI3Kγ-Rap1a-dependent pathway in integrin activation during tumor inflammation and suggest novel avenues for cancer therapy.

  3. Infection, inflammation and exercise in cystic fibrosis

    Science.gov (United States)

    2013-01-01

    Regular exercise is positively associated with health. It has also been suggested to exert anti-inflammatory effects. In healthy subjects, a single exercise session results in immune cell activation, which is characterized by production of immune modulatory peptides (e.g. IL-6, IL-8), a leukocytosis and enhanced immune cell functions. Upon cessation of exercise, immune activation is followed by a tolerizing phase, characterized by a reduced responsiveness of immune cells. Regular exercise of moderate intensity and duration has been shown to exert anti-inflammatory effects and is associated with a reduced disease incidence and viral infection susceptibility. Specific exercise programs may therefore be used to modify the course of chronic inflammatory and infectious diseases such as cystic fibrosis (CF). Patients with CF suffer from severe and chronic pulmonary infections and inflammation, leading to obstructive and restrictive pulmonary disease, exercise intolerance and muscle cachexia. Inflammation is characterized by a hyper-inflammatory phenotype. Patients are encouraged to engage in exercise programs to maintain physical fitness, quality of life, pulmonary function and health. In this review, we present an overview of available literature describing the association between regular exercise, inflammation and infection susceptibility and discuss the implications of these observations for prevention and treatment of inflammation and infection susceptibility in patients with CF. PMID:23497303

  4. TRPC3 Overexpression Promotes the Progression of Inflammation-Induced Preterm Labor and Inhibits T Cell Activation.

    Science.gov (United States)

    Jing, Chen; Dongming, Zheng; Hong, Cui; Quan, Na; Sishi, Liu; Caixia, Liu

    2018-01-01

    To detect the expression of the TRPC3 channel protein in the tissues of women experiencing preterm labor and investigate its interaction with T lymphocytes, providing a theoretical basis for the clinical prevention of threatened preterm labor and the development of drug-targeted therapy. Forty-seven women experiencing preterm labor and 47 women experiencing normal full-term labor were included in this study. All included women underwent delivery via cesarean section; uterine samples were obtained at delivery. The expression of TRPC3 in uterine tissue was detected by immunohistochemistry, real-time quantitative reverse transcription-PCR, and western blot assay. Activation of T lymphocytes in peripheral blood and uterine tissue were detected by flow cytometry. A TRPC3-/- mouse model of inflammation-induced preterm labor was established; expression of TRPC3, Cav3.1, and Cav3.2 were analyzed in mouse uterine tissue. Activation of T lymphocytes in female mouse and human peripheral blood samples was determined using flow cytometry. In women experiencing preterm labor, expression of TRPC3 and the Cav3.1 and Cav3.2 proteins was significantly increased; in addition, the percentage of CD3+, CD4+, and CD8+ T cells in peripheral blood was significantly decreased. TRPC3 knockout significantly delayed the occurrence of preterm labor in mice. The muscle tension of ex vivo uterine strips was lower, Cav3.1 and Cav3.2 protein expression was lower, and the percentage of CD8+ T lymphocytes was significantly increased in wild-type mice subjected to an inflammation-induced preterm labor than in wild-type mice experiencing normal full-term labor. TRPC3 is closely related to the initiation of labor. TRPC3 relies on Cav3.1 and Cav3.2 proteins to inhibit inflammation-induced preterm labor by inhibiting the activation of T cells, in particular CD8+ T lymphocytes. © 2018 The Author(s). Published by S. Karger AG, Basel.

  5. Curcumin, Inflammation, and Chronic Diseases: How Are They Linked?

    Directory of Open Access Journals (Sweden)

    Yan He

    2015-05-01

    Full Text Available It is extensively verified that continued oxidative stress and oxidative damage may lead to chronic inflammation, which in turn can mediate most chronic diseases including cancer, diabetes, cardiovascular, neurological, inflammatory bowel disease and pulmonary diseases. Curcumin, a yellow coloring agent extracted from turmeric, shows strong anti-oxidative and anti-inflammatory activities when used as a remedy for the prevention and treatment of chronic diseases. How oxidative stress activates inflammatory pathways leading to the progression of chronic diseases is the focus of this review. Thus, research to date suggests that chronic inflammation, oxidative stress, and most chronic diseases are closely linked, and the antioxidant properties of curcumin can play a key role in the prevention and treatment of chronic inflammation diseases.

  6. The Potential Role of the NLRP3 Inflammasome as a Link between Mitochondrial Complex I Dysfunction and Inflammation in Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Helena Kyunghee Kim

    2015-01-01

    Full Text Available Mitochondrial dysfunction and activation of the inflammatory system are two of the most consistently reported findings in bipolar disorder (BD. More specifically, altered levels of inflammatory cytokines and decreased levels of mitochondrial complex I subunits have been found in the brain and periphery of patients with BD, which could lead to increased production of mitochondrial reactive oxygen species (ROS. Recent studies have shown that mitochondrial production of ROS and inflammation may be closely linked through a redox sensor known as nod-like receptor pyrin domain-containing 3 (NLRP3. Upon sensing mitochondrial release of ROS, NLRP3 assembles the NLRP3 inflammasome, which releases caspase 1 to begin the inflammatory cascade. In this review, we discuss the potential role of the NLRP3 inflammasome as a link between complex I dysfunction and inflammation in BD and its therapeutic implications.

  7. Non-viral causes of liver cancer: does obesity led inflammation play a role?

    Science.gov (United States)

    Alzahrani, Badr; Iseli, Tristan J; Hebbard, Lionel W

    2014-04-10

    Liver cancer is the fifth most common cancer worldwide and the third most common cause of cancer mortality. Hepatocellular carcinoma (HCC) accounts for around 90% of primary liver cancers. Chronic infection with hepatitis B and hepatitis C viruses are two of most common causes of liver cancer. However, there are non-viral factors that are associated with liver cancer development. Numerous population studies have revealed strong links between obesity and the development of liver cancer. Obesity can alter hepatic pathology, metabolism and promote inflammation, leading to nonalcoholic fatty liver disease (NAFLD) and the progression to the more severe form, non-alcoholic steatohepatitis (NASH). NASH is characterised by prominent steatosis and inflammation, and can lead to HCC. Here, we discuss the role of obesity in inflammation and the principal signalling mechanisms involved in HCC formation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity.

    Science.gov (United States)

    Gil-Cardoso, Katherine; Ginés, Iris; Pinent, Montserrat; Ardévol, Anna; Blay, Mayte; Terra, Ximena

    2016-12-01

    Diet-induced obesity is associated with low-grade inflammation, which, in most cases, leads to the development of metabolic disorders, primarily insulin resistance and type 2 diabetes. Although prior studies have implicated the adipose tissue as being primarily responsible for obesity-associated inflammation, the latest discoveries have correlated impairments in intestinal immune homeostasis and the mucosal barrier with increased activation of the inflammatory pathways and the development of insulin resistance. Therefore, it is essential to define the mechanisms underlying the obesity-associated gut alterations to develop therapies to prevent and treat obesity and its associated diseases. Flavonoids appear to be promising candidates among the natural preventive treatments that have been identified to date. They have been shown to protect against several diseases, including CVD and various cancers. Furthermore, they have clear anti-inflammatory properties, which have primarily been evaluated in non-intestinal models. At present, a growing body of evidence suggests that flavonoids could exert a protective role against obesity-associated pathologies by modulating inflammatory-related cellular events in the intestine and/or the composition of the microbiota populations. The present paper will review the literature to date that has described the protective effects of flavonoids on intestinal inflammation, barrier integrity and gut microbiota in studies conducted using in vivo and in vitro models.

  9. Interplay between coagulation and vascular inflammation in sickle cell disease

    Science.gov (United States)

    Sparkenbaugh, Erica; Pawlinski, Rafal

    2013-01-01

    Sickle cell disease is the most common inherited hematologic disorder that leads to the irreversible damage of multiple organs. Although sickling of red blood cells and vaso-occlusion are central to the pathophysiology of sickle cell disease the importance of hemolytic anemia and vasculopathy has been recently recognized. Hypercoagulation state is another prominent feature of sickle cell disease and is mediated by activation of both intrinsic and extrinsic coagulation pathways. Growing evidence demonstrates that coagulation may not only contribute to the thrombotic complications, but also to vascular inflammation associated with this disease. This article summarizes the role of vascular inflammation and coagulation activation, discusses potential mechanisms responsible for activation of coagulation and reviews recent data demonstrating the crosstalk between coagulation and vascular inflammation in sickle cell disease. PMID:23593937

  10. Bone formation rather than inflammation reflects Ankylosing Spondylitis activity on PET-CT: a pilot study

    OpenAIRE

    Bruijnen, Stefan TG; van der Weijden, Mignon AC; Klein, Joannes P; Hoekstra, Otto S; Boellaard, Ronald; van Denderen, J Christiaan; Dijkmans, Ben AC; Voskuyl, Alexandre E; van der Horst-Bruinsma, Irene E; van der Laken, Conny J

    2012-01-01

    Introduction Positron Emission Tomography - Computer Tomography (PET-CT) is an interesting imaging technique to visualize Ankylosing Spondylitis (AS) activity using specific PET tracers. Previous studies have shown that the PET tracers [18F]FDG and [11C](R)PK11195 can target inflammation (synovitis) in rheumatoid arthritis (RA) and may therefore be useful in AS. Another interesting tracer for AS is [18F]Fluoride, which targets bone formation. In a pilot setting, the potential of PET-CT in ima...

  11. Liver stiffness measurement-based scoring system for significant inflammation related to chronic hepatitis B.

    Directory of Open Access Journals (Sweden)

    Mei-Zhu Hong

    Full Text Available Liver biopsy is indispensable because liver stiffness measurement alone cannot provide information on intrahepatic inflammation. However, the presence of fibrosis highly correlates with inflammation. We constructed a noninvasive model to determine significant inflammation in chronic hepatitis B patients by using liver stiffness measurement and serum markers.The training set included chronic hepatitis B patients (n = 327, and the validation set included 106 patients; liver biopsies were performed, liver histology was scored, and serum markers were investigated. All patients underwent liver stiffness measurement.An inflammation activity scoring system for significant inflammation was constructed. In the training set, the area under the curve, sensitivity, and specificity of the fibrosis-based activity score were 0.964, 91.9%, and 90.8% in the HBeAg(+ patients and 0.978, 85.0%, and 94.0% in the HBeAg(- patients, respectively. In the validation set, the area under the curve, sensitivity, and specificity of the fibrosis-based activity score were 0.971, 90.5%, and 92.5% in the HBeAg(+ patients and 0.977, 95.2%, and 95.8% in the HBeAg(- patients. The liver stiffness measurement-based activity score was comparable to that of the fibrosis-based activity score in both HBeAg(+ and HBeAg(- patients for recognizing significant inflammation (G ≥3.Significant inflammation can be accurately predicted by this novel method. The liver stiffness measurement-based scoring system can be used without the aid of computers and provides a noninvasive alternative for the prediction of chronic hepatitis B-related significant inflammation.

  12. Vagotomy decreases the neuronal activities of medulla oblongata and alleviates neurogenic inflammation of airways induced by repeated intra-esophageal instillation of HCl in guinea pigs.

    Science.gov (United States)

    Chen, Zhe; Chen, Hui; Chen, Fagui; Gu, Dachuan; Sun, Lejia; Zhang, Weitao; Fan, Linfeng; Lin, Yong; Dong, Rong; Lai, Kefang

    2017-12-20

    Neuronal activity in the medulla oblongata and neurogenic inflammation of airways were investigated in a guinea pig model induced by repeated intra-esophageal instillation of hydrochloric acid (HCl) after vagotomy. Unilateral vagotomy was performed in the vagotomy group, while a sham-operation was performed in the sham group. Operation was not conducted in sham control group. Airway inflammation was observed with hematoxylin and eosin (HE) staining. C-fos protein was measured by immunohistochemistry (IHC) and Western blot (WB). Substance P was examined by IHC and enzyme-linked immuno sorbent assay (ELISA). Airway microvascular permeability was detected by evans blue dye (EBD) fluorescence. Inflammation of airway was observed in the trachea and bronchi after chronic HCl perfusion into the lower esophagus, and was alleviated after unilateral vagotomy. C-fos expression in the medulla oblongata was lower in the vagotomy group compared to the sham control and sham groups. Substance P-like immunoreactivity (SP-li), concentration and microvascular leakage in airway were lower in the vagotomy group than that in the other groups. Our results suggest that vagotomy improved neurogenic inflammation of airways and decreased neuronal activities, the afferent nerves and neurons in medulla oblongata may be involved in neurogenic inflammation of airways mediated by esophageal-bronchial reflex.

  13. Exercise protects against high-fat diet-induced hypothalamic inflammation.

    Science.gov (United States)

    Yi, Chun-Xia; Al-Massadi, Omar; Donelan, Elizabeth; Lehti, Maarit; Weber, Jon; Ress, Chandler; Trivedi, Chitrang; Müller, Timo D; Woods, Stephen C; Hofmann, Susanna M

    2012-06-25

    Hypothalamic inflammation is a potentially important process in the pathogenesis of high-fat diet-induced metabolic disorders that has recently received significant attention. Microglia are macrophage-like cells of the central nervous system which are activated by pro-inflammatory signals causing local production of specific interleukins and cytokines, and these in turn may further promote systemic metabolic disease. Whether or how this microglial activation can be averted or reversed is unknown. Since running exercise improves systemic metabolic health and has been found to promote neuronal survival as well as the recovery of brain functions after injury, we hypothesized that regular treadmill running may blunt the effect of western diet on hypothalamic inflammation. Using low-density lipoprotein receptor deficient (l dlr-/-) mice to better reflect human lipid metabolism, we first confirmed that microglial activation in the hypothalamus is severely increased upon exposure to a high-fat, or "western", diet. Moderate, but regular, treadmill running exercise markedly decreased hypothalamic inflammation in these mice. Furthermore, the observed decline in microglial activation was associated with an improvement of glucose tolerance. Our findings support the hypothesis that hypothalamic inflammation can be reversed by exercise and suggest that interventions to avert or reverse neuronal damage may offer relevant potential in obesity treatment and prevention. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Occlusion of retinal capillaries caused by glial cell proliferation in chronic ocular inflammation.

    Science.gov (United States)

    Bianchi, E; Ripandelli, G; Feher, J; Plateroti, A M; Plateroti, R; Kovacs, I; Plateroti, P; Taurone, S; Artico, M

    2015-01-01

    The inner blood-retinal barrier is a gliovascular unit in which glial cells surround capillary endothelial cells and regulate retinal capillaries by paracrine interactions. During chronic ocular inflammation, microvascular complications can give rise to vascular proliferative lesions, which compromise visual acuity. This pathologic remodelling caused by proliferating Müller cells determines occlusion of retinal capillaries. The aim of the present study was to identify qualitative and quantitative alterations in the retinal capillaries in patients with post-traumatic chronic ocular inflammation or post-thrombotic vascular glaucoma. Moreover, we investigated the potential role of vascular endothelial growth factor (VEGF) and pro-inflammatory cytokines in retinal inflammation. Our electron microscopy findings demonstrated that during chronic ocular inflammation, thickening of the basement membrane, loss of pericytes and endothelial cells and proliferation of Müller cells occur with irreversible occlusion of retinal capillaries. Angiogenesis takes place as part of a regenerative reaction that results in fibrosis. We believe that VEGF and pro-inflammatory cytokines may be potential therapeutic targets in the treatment of this disease although further studies are required to confirm these findings.

  15. Suppression of Inflammation and Arthritis by Orally Administrated Cardiotoxin from Naja naja atra

    Directory of Open Access Journals (Sweden)

    Cao-Xin Chen

    2015-01-01

    Full Text Available Cardiotoxin (CTX from Naja naja atra venom (NNAV reportedly had analgesic effect in animal models but its role in inflammation and arthritis was unknown. In this study, we investigated the analgesic, anti-inflammatory, and antiarthritic actions of orally administered CTX-IV isolated from NNAV on rodent models of inflammation and adjuvant arthritis. CTX had significant anti-inflammatory effects in models of egg white induced nonspecific inflammation, filter paper induced rat granuloma formation, and capillary osmosis tests. CTX significantly reduced the swelling of paw induced by egg white, the inflammatory exudation, and the formation of granulomas. CTX reduced the swelling of paw, the AA clinical scores, and pathological alterations of joint. CTX significantly decreased the number of the CD4 T cells and inhibited the expression of relevant proinflammatory cytokines IL-17 and IL-6. CTX significantly inhibited the secretion of proinflammatory cytokine IL-6 and reduced the level of p-STAT3 in FLS. These results suggest that CTX inhibits inflammation and inflammatory pain and adjuvant-induced arthritis. CTX may be a novel therapeutic drug for treatment of arthritis.

  16. Parainflammation, chronic inflammation and age-related macular degeneration

    Science.gov (United States)

    Chen, Mei; Xu, Heping

    2016-01-01

    Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune privileged tissue due to its unique anatomical and physiological properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate immune system, particularly microglia and the complement system, undergo low levels of activation (para-inflammation). In many cases, this para-inflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration (AMD), this para-inflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal para-inflammation include genetic predisposition, environmental risk factors and old age. Dysregulated para-inflammation (chronic inflammation) in AMD damages the blood retina barrier (BRB), resulting in the breach of retinal immune privilege leading to the development of retinal lesions. This review discusses the basic principles of retinal innate immune responses to endogenous chronic insults in normal aging and in AMD, and explores the difference between beneficial para-inflammation and the detrimental chronic inflammation in the context of AMD. PMID:26292978

  17. Skeletal muscle inflammation and insulin resistance in obesity

    Science.gov (United States)

    Wu, Huaizhu; Ballantyne, Christie M.

    2017-01-01

    Obesity is associated with chronic inflammation, which contributes to insulin resistance and type 2 diabetes mellitus. Under normal conditions, skeletal muscle is responsible for the majority of insulin-stimulated whole-body glucose disposal; thus, dysregulation of skeletal muscle metabolism can strongly influence whole-body glucose homeostasis and insulin sensitivity. Increasing evidence suggests that inflammation occurs in skeletal muscle in obesity and is mainly manifested by increased immune cell infiltration and proinflammatory activation in intermyocellular and perimuscular adipose tissue. By secreting proinflammatory molecules, immune cells may induce myocyte inflammation, adversely regulate myocyte metabolism, and contribute to insulin resistance via paracrine effects. Increased influx of fatty acids and inflammatory molecules from other tissues, particularly visceral adipose tissue, can also induce muscle inflammation and negatively regulate myocyte metabolism, leading to insulin resistance. PMID:28045398

  18. Reduced butyrylcholinesterase activity is an early indicator of trauma-induced acute systemic inflammatory response

    Directory of Open Access Journals (Sweden)

    Zivkovic AR

    2016-11-01

    Full Text Available Aleksandar R Zivkovic, Jochen Bender, Thorsten Brenner, Stefan Hofer,* Karsten Schmidt* Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany *These authors contributed equally to this work Purpose: Early diagnosis of systemic inflammatory response syndrome is fundamentally important for an effective and a goal-directed therapy. Various inflammation biomarkers have been used in clinical and experimental practice. However, a definitive diagnostic tool for an early detection of systemic inflammation remains to be identified. Acetylcholine (Ach has been shown to play an important role in the inflammatory response. Serum cholinesterase (butyrylcholinesterase [BChE] is the major Ach hydrolyzing enzyme in blood. The role of this enzyme during inflammation has not yet been fully understood. This study tests whether a reduction in the BChE activity could indicate the onset of the systemic inflammatory response upon traumatic injury. Patients and methods: This observational study measured BChE activity in patients with traumatic injury admitted to the emergency room by using point-of-care-test system (POCT. In addition, the levels of routine inflammation biomarkers during the initial treatment period were measured. Injury Severity Score was used to assess the trauma severity. Results: Altered BChE activity was correlated with trauma severity, resulting in systemic inflammation. Reduction in the BChE activity was detected significantly earlier compared to those of routinely measured inflammatory biomarkers. Conclusion: This study suggests that the BChE activity reduction might serve as an early indicator of acute systemic inflammation. Furthermore, BChE activity, measured using a POCT system, might play an important role in the early diagnosis of the trauma-induced systemic inflammation. Keywords: trauma, injury, early diagnostics, cholinergic, pseudocholinesterase, SIRS

  19. Expression of inflammation-related genes is altered in gastric tissue of patients with advanced stages of NAFLD.

    Science.gov (United States)

    Mehta, Rohini; Birerdinc, Aybike; Neupane, Arpan; Shamsaddini, Amirhossein; Afendy, Arian; Elariny, Hazem; Chandhoke, Vikas; Baranova, Ancha; Younossi, Zobair M

    2013-01-01

    Obesity is associated with chronic low-grade inflammation perpetuated by visceral adipose. Other organs, particularly stomach and intestine, may also overproduce proinflammatory molecules. We examined the gene expression patterns in gastric tissue of morbidly obese patients with nonalcoholic fatty liver disease (NAFLD) and compared the changes in gene expression in different histological forms of NAFLD. Stomach tissue samples from 20 morbidly obese NAFLD patients who were undergoing sleeve gastrectomy were profiled using qPCR for 84 genes encoding inflammatory cytokines, chemokines, their receptors, and other components of inflammatory cascades. Interleukin 8 receptor-beta (IL8RB) gene overexpression in gastric tissue was correlated with the presence of hepatic steatosis, hepatic fibrosis, and histologic diagnosis of nonalcoholic steatohepatitis (NASH). Expression levels of soluble interleukin 1 receptor antagonist (IL1RN) were correlated with the presence of NASH and hepatic fibrosis. mRNA levels of interleukin 8 (IL8), chemokine (C-C motif) ligand 4 (CCL4), and its receptor chemokine (C-C motif) receptor type 5 (CCR5) showed a significant increase in patients with advanced hepatic inflammation and were correlated with the severity of the hepatic inflammation. The results of our study suggest that changes in expression patterns for inflammatory molecule encoding genes within gastric tissue may contribute to the pathogenesis of obesity-related NAFLD.

  20. Innate lymphoid cells in the initiation, regulation and resolution of inflammation

    Science.gov (United States)

    Sonnenberg, Gregory F.; Artis, David

    2016-01-01

    A previously unappreciated cell type of the innate immune system, termed innate lymphoid cells (ILCs), has been characterized in mice and humans, and found to profoundly influence the induction, regulation and resolution of inflammation. ILCs play an important role in these processes in murine models of infection, inflammatory disease and tissue repair. Further, disease association studies in defined patient populations have identified significant alterations in ILC responses, suggesting a potential role for these cell populations in human health and disease. In this review, we discuss the emerging family of ILCs, the role of ILCs in inflammation, and how current or novel therapeutic strategies could be employed to selectively modulate ILC responses and limit chronic inflammatory diseases in patients. PMID:26121198

  1. Gut microbiota and sirtuins in obesity-related inflammation and bowel dysfunction

    Directory of Open Access Journals (Sweden)

    Lakhan Shaheen E

    2011-11-01

    Full Text Available Abstract Obesity is a chronic disease characterized by persistent low-grade inflammation with alterations in gut motility. Motor abnormalities suggest that obesity has effects on the enteric nervous system (ENS, which controls virtually all gut functions. Recent studies have revealed that the gut microbiota can affect obesity and increase inflammatory tone by modulating mucosal barrier function. Furthermore, the observation that inflammatory conditions influence the excitability of enteric neurons may add to the gut dysfunction in obesity. In this article, we discuss recent advances in understanding the role of gut microbiota and inflammation in the pathogenesis of obesity and obesity-related gastrointestinal dysfunction. The potential contribution of sirtuins in protecting or regulating the circuitry of the ENS under inflamed states is also considered.

  2. PET-scan shows peripherally increased neurokinin 1 receptor availability in chronic tennis elbow: visualizing neurogenic inflammation?

    Directory of Open Access Journals (Sweden)

    Magnus Peterson

    Full Text Available In response to pain, neurokinin 1 (NK1 receptor availability is altered in the central nervous system. The NK1 receptor and its primary agonist, substance P, also play a crucial role in peripheral tissue in response to pain, as part of neurogenic inflammation. However, little is known about alterations in NK1 receptor availability in peripheral tissue in chronic pain conditions and very few studies have been performed on human beings. Ten subjects with chronic tennis elbow were therefore examined by positron emission tomography (PET with the NK1 specific radioligand [(11C]GR205171 before and after treatment with graded exercise. The radioligand signal intensity was higher in the affected arm as compared with the unaffected arm, measured as differences between the arms in volume of voxels and signal intensity of this volume above a reference threshold set as 2.5 SD above mean signal intensity of the unaffected arm before treatment. In the eight subjects examined after treatment, pain ratings decreased in all subjects but signal intensity decreased in five and increased in three. In conclusion, NK1 receptors may be activated, or up-regulated in the peripheral, painful tissue of a chronic pain condition. This up-regulation does, however, have moderate correlation to pain ratings. The increased NK1 receptor availability is interpreted as part of ongoing neurogenic inflammation and may have correlation to the pathogenesis of chronic tennis elbow.ClinicalTrials.gov NCT00888225 http://clinicaltrials.gov/

  3. Systemic inflammation, endothelial dysfunction, and activation in clinically healthy children exposed to air pollutants.

    Science.gov (United States)

    Calderón-Garcidueñas, L; Villarreal-Calderon, R; Valencia-Salazar, G; Henríquez-Roldán, C; Gutiérrez-Castrellón, P; Torres-Jardón, R; Osnaya-Brizuela, N; Romero, L; Torres-Jardón, R; Solt, A; Reed, W

    2008-03-01

    Mexico City children are chronically exposed to significant concentrations of air pollutants and exhibit chronic respiratory-tract inflammation. Epidemiological, controlled human exposures, laboratory-based animal models, and in vitro/in vivo studies have shown that inflammatory, endothelial dysfunction, and endothelial damage mediators are upregulated upon exposure to particulate matter (PM). Endothelial dysfunction is a critical event in cardiovascular disease. The focus of this work was to investigate whether exposure to ambient air pollution including PM(2.5) produces systemic inflammation and endothelial injury in healthy children. We measured markers of endothelial activation, and inflammatory mediators in 52 children age 8.6+/-0.1 yr, residents of Mexico City (n: 28) or of Polotitlán (n: 24), a city with low levels of pollutants. Mexico City children had significant increases in inflammatory mediators and vasoconstrictors, including tumor necrosis factor (TNF)alpha, prostaglandin (PG) E2, C-reactive protein, interleukin-1beta, and endothelin-1. There was a significant anti-inflammatory response, and a downregulation of vascular adhesion molecule-1, intercellular adhesion molecule-1 and -2, and selectins sE and sL. Results from linear regression found TNF a positively associated with 24- and 48-h cumulative levels of PM(2.5), while the 7-d PM(2.5) value was negatively associated with the numbers of white blood cells in peripheral blood in highly exposed children. Systemic subclinical inflammation, increased endothelin- 1, and significant downregulation of soluble adhesion molecules are seen in Mexico City children. Children chronically exposed to fine PM above the standard could be at risk of developing cardiovascular diseases, atherosclerosis, stroke, and other systemic effects later in life.

  4. Silibinin attenuates allergic airway inflammation in mice

    International Nuclear Information System (INIS)

    Choi, Yun Ho; Jin, Guang Yu; Guo, Hui Shu; Piao, Hong Mei; Li, Liang chang; Li, Guang Zhao; Lin, Zhen Hua; Yan, Guang Hai

    2012-01-01

    Highlights: ► Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. ► Silibinin reduces the levels of various cytokines into the lung of allergic mice. ► Silibinin prevents the development of airway hyperresponsiveness in allergic mice. ► Silibinin suppresses NF-κB transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-κB) pathway. Because NF-κB activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-κB activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-κB activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  5. Astragalus membranaceus Extract Attenuates Inflammation and Oxidative Stress in Intestinal Epithelial Cells via NF-κB Activation and Nrf2 Response

    Directory of Open Access Journals (Sweden)

    Simona Adesso

    2018-03-01

    Full Text Available Astragalus membranaceus, dried root extract, also known as Astragali radix, is used in traditional Chinese medicine as a tonic remedy. Moreover, it has been reported that Astragalus membranaceus could attenuate intestinal inflammation; however, the underlying mechanism for its anti-inflammatory activity in intestinal epithelial cells (IECs remains unclear. In this study, we evaluated Astragalus membranaceus extract (5–100 µg/mL in a model of inflammation and oxidative stress for IECs. We showed that Astragalus membranaceus extract reduced the inflammatory response induced by lipopolysaccharide from E. coli (LPS plus interferon-γ (IFN, decreasing tumor necrosis factor-α (TNF-α release, cycloxygenase-2 (COX-2 and inducible nitric oxide synthase (iNOS expression, nitrotyrosine formation, nuclear factor-κB (NF-κB activation, and reactive oxygen species (ROS release in the non-tumorigenic intestinal epithelial cell line (IEC-6. The antioxidant potential of Astragalus membranaceus extract was also evaluated in a model of hydrogen peroxide (H2O2-induced oxidative stress in IEC-6, indicating that this extract reduced ROS release and increased nuclear factor (erythroid-derived 2-like 2 (Nrf2 activation and the expression of antioxidant cytoprotective factors in these cells. The results contributed to clarify the mechanisms involved in Astragalus membranaceus extract-reduced inflammation and highlighted the potential use of this extract as an anti-inflammatory and antioxidant remedy for intestinal diseases.

  6. Role of Peroxisome Proliferator-Activated Receptors in Inflammation Control

    Directory of Open Access Journals (Sweden)

    Jihan Youssef

    2004-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs were discovered over a decade ago, and were classified as orphan members of the nuclear receptor superfamily. To date, three PPAR subtypes have been discovered and characterized (PPARα, β/δ, γ. Different PPAR subtypes have been shown to play crucial roles in important diseases and conditions such as obesity, diabetes, atherosclerosis, cancer, and fertility. Among the most studied roles of PPARs is their involvement in inflammatory processes. Numerous studies have revealed that agonists of PPARα and PPARγ exert anti-inflammatory effects both in vitro and in vivo. Using the carrageenan-induced paw edema model of inflammation, a recent study in our laboratories showed that these agonists hinder the initiation phase, but not the late phase of the inflammatory process. Furthermore, in the same experimental model, we recently also observed that activation of PPARδ exerted an anti-inflammatory effect. Despite the fact that exclusive dependence of these effects on PPARs has been questioned, the bulk of evidence suggests that all three PPAR subtypes, PPARα,δ,γ, play a significant role in controlling inflammatory responses. Whether these subtypes act via a common mechanism or are independent of each other remains to be elucidated. However, due to the intensity of research efforts in this area, it is anticipated that these efforts will result in the development of PPAR ligands as therapeutic agents for the treatment of inflammatory diseases.

  7. Image-Guided Analyses Reveal that Non-CD4 Splenocytes Contribute to CD4+ T Cell–Mediated Inflammation Leading to Islet Destruction by Altering Their Local Function and Not Systemic Trafficking Patterns

    Directory of Open Access Journals (Sweden)

    Mi-Heon Lee

    2007-11-01

    Full Text Available Recruitment of CD4+ T cells into islets is a critical component of islet inflammation (insulitis leading to type 1 diabetes; therefore, determining if conditions used to treat diabetes change their trafficking patterns is relevant to the outcome. Cotransfer of CD4+BDC2.5 (BDC cells with non-CD4 splenocytes obtained from newly diabetic NOD mice, but not when they are transferred alone, induces accelerated diabetes. It is unclear whether these splenocytes affect diabetes development by altering the systemic and/or local trafficking and proliferation patterns of BDC cells in target and nontarget tissues. To address these questions, we developed an animal model to visualize BDC cell trafficking and proliferation using whole-body in vivo bioluminescence imaging and used the images to direct tissue sampling for further analyses of the cell distribution within tissues. The whole-body, or macroscopic, trafficking patterns were not dramatically altered in both groups of recipient mice. However, the local patterns of cell distribution were distinct, which led to invasive insulitis only in cotransferred mice with an increased number of islet-infiltrating CD11b+ and CD11c+ cells. Taken together, the non-CD4 splenocytes act locally by promoting invasive insulitis without altering the systemic trafficking patterns or proliferation of BDC cells and thus contributing to diabetes by altering the localization within the tissue.

  8. Chronic tooth pulp inflammation induces persistent expression of phosphorylated ERK (pERK) and phosphorylated p38 (pp38) in trigeminal subnucleus caudalis

    Science.gov (United States)

    Worsley, M.A.; Allen, C.E.; Billinton, A.; King, A.E.; Boissonade, F.M.

    2014-01-01

    Background Extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase are transiently phosphorylated (activated) in the spinal cord and trigeminal nucleus by acute noxious stimuli. Acute stimulation of dental pulp induces short-lived ERK activation in trigeminal subnucleus caudalis (Vc), and p38 inhibition attenuates short-term sensitization in Vc induced by acute pulpal stimulation. We have developed a model to study central changes following chronic inflammation of dental pulp that induces long-term sensitization. Here, we examine the effects of chronic inflammation and acute stimulation on the expression of phosphorylated ERK (pERK), phosphorylated p38 (pp38) and Fos in Vc. Results Chronic inflammation alone induced bilateral expression of pERK and pp38 in Vc, but did not induce Fos expression. Stimulation of both non-inflamed and inflamed pulps significantly increased pERK and pp38 bilaterally; expression was greatest in inflamed, stimulated animals, and was similar following 10-min and 60-min stimulation. Stimulation for 60 min, but not 10 min, induced Fos in ipsilateral Vc; Fos expression was significantly greater in inflamed, stimulated animals. pERK was present in both neurons and astrocytes; pp38 was present in neurons and other non-neuronal, non-astrocytic cell types. Conclusions This study provides the first demonstration that chronic inflammation of tooth pulp induces persistent bilateral activation of ERK and p38 within Vc, and that this activation is further increased by acute stimulation. This altered activity in intracellular signaling is likely to be linked to the sensitization that is seen in our animal model and in patients with pulpitis. Our data indicate that pERK and pp38 are more accurate markers of central change than Fos expression. In our model, localization of pERK and pp38 within specific cell types differs from that seen following acute stimulation. This may indicate specific roles for different cell types in

  9. Amyloid-β Homeostasis Bridges Inflammation, Synaptic Plasticity Deficits and Cognitive Dysfunction in Multiple Sclerosis.

    Science.gov (United States)

    Stampanoni Bassi, Mario; Garofalo, Sara; Marfia, Girolama A; Gilio, Luana; Simonelli, Ilaria; Finardi, Annamaria; Furlan, Roberto; Sancesario, Giulia M; Di Giandomenico, Jonny; Storto, Marianna; Mori, Francesco; Centonze, Diego; Iezzi, Ennio

    2017-01-01

    Cognitive deficits are frequently observed in multiple sclerosis (MS), mainly involving processing speed and episodic memory. Both demyelination and gray matter atrophy can contribute to cognitive deficits in MS. In recent years, neuroinflammation is emerging as a new factor influencing clinical course in MS. Inflammatory cytokines induce synaptic dysfunction in MS. Synaptic plasticity occurring within hippocampal structures is considered as one of the basic physiological mechanisms of learning and memory. In experimental models of MS, hippocampal plasticity is profoundly altered by proinflammatory cytokines. Although mechanisms of inflammation-induced hippocampal pathology in MS are not completely understood, alteration of Amyloid-β (Aβ) metabolism is emerging as a key factor linking together inflammation, synaptic plasticity and neurodegeneration in different neurological diseases. We explored the correlation between concentrations of Aβ 1-42 and the levels of some proinflammatory and anti-inflammatory cytokines (interleukin-1β (IL-1β), IL1-ra, IL-8, IL-10, IL-12, tumor necrosis factor α (TNFα), interferon γ (IFNγ)) in the cerebrospinal fluid (CSF) of 103 remitting MS patients. CSF levels of Aβ 1-42 were negatively correlated with the proinflammatory cytokine IL-8 and positively correlated with the anti-inflammatory molecules IL-10 and interleukin-1 receptor antagonist (IL-1ra). Other correlations, although noticeable, were either borderline or not significant. Our data show that an imbalance between proinflammatory and anti-inflammatory cytokines may lead to altered Aβ homeostasis, representing a key factor linking together inflammation, synaptic plasticity and cognitive dysfunction in MS. This could be relevant to identify novel therapeutic approaches to hinder the progression of cognitive dysfunction in MS.

  10. Amyloid-β Homeostasis Bridges Inflammation, Synaptic Plasticity Deficits and Cognitive Dysfunction in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Mario Stampanoni Bassi

    2017-11-01

    Full Text Available Cognitive deficits are frequently observed in multiple sclerosis (MS, mainly involving processing speed and episodic memory. Both demyelination and gray matter atrophy can contribute to cognitive deficits in MS. In recent years, neuroinflammation is emerging as a new factor influencing clinical course in MS. Inflammatory cytokines induce synaptic dysfunction in MS. Synaptic plasticity occurring within hippocampal structures is considered as one of the basic physiological mechanisms of learning and memory. In experimental models of MS, hippocampal plasticity is profoundly altered by proinflammatory cytokines. Although mechanisms of inflammation-induced hippocampal pathology in MS are not completely understood, alteration of Amyloid-β (Aβ metabolism is emerging as a key factor linking together inflammation, synaptic plasticity and neurodegeneration in different neurological diseases. We explored the correlation between concentrations of Aβ1–42 and the levels of some proinflammatory and anti-inflammatory cytokines (interleukin-1β (IL-1β, IL1-ra, IL-8, IL-10, IL-12, tumor necrosis factor α (TNFα, interferon γ (IFNγ in the cerebrospinal fluid (CSF of 103 remitting MS patients. CSF levels of Aβ1–42 were negatively correlated with the proinflammatory cytokine IL-8 and positively correlated with the anti-inflammatory molecules IL-10 and interleukin-1 receptor antagonist (IL-1ra. Other correlations, although noticeable, were either borderline or not significant. Our data show that an imbalance between proinflammatory and anti-inflammatory cytokines may lead to altered Aβ homeostasis, representing a key factor linking together inflammation, synaptic plasticity and cognitive dysfunction in MS. This could be relevant to identify novel therapeutic approaches to hinder the progression of cognitive dysfunction in MS.

  11. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease

    Science.gov (United States)

    Inflammation is a major mediator of CKD progression and is partly driven by altered gut microbiome and intestinal barrier disruption, events which are caused by: urea influx in the intestine resulting in dominance of urease-possessing bacteria; disruption of epithelial barrier by urea-derived ammoni...

  12. Abnormal Complement Activation and Inflammation in the Pathogenesis of Retinopathy of Prematurity

    Directory of Open Access Journals (Sweden)

    Sonika Rathi

    2017-12-01

    Full Text Available Retinopathy of prematurity (ROP is a neurovascular complication in preterm babies, leading to severe visual impairment, but the underlying mechanisms are yet unclear. The present study aimed at unraveling the molecular mechanisms underlying the pathogenesis of ROP. A comprehensive screening of candidate genes in preterms with ROP (n = 189 and no-ROP (n = 167 was undertaken to identify variants conferring disease susceptibility. Allele and genotype frequencies, linkage disequilibrium and haplotypes were analyzed to identify the ROP-associated variants. Variants in CFH (p = 2.94 × 10−7, CFB (p = 1.71 × 10−5, FBLN5 (p = 9.2 × 10−4, CETP (p = 2.99 × 10−5, and CXCR4 (p = 1.32 × 10−8 genes exhibited significant associations with ROP. Further, a quantitative assessment of 27 candidate proteins and cytokines in the vitreous and tear samples of babies with severe ROP (n = 30 and congenital cataract (n = 30 was undertaken by multiplex bead arrays and further validated by western blotting and zymography. Significant elevation and activation of MMP9 (p = 0.038, CFH (p = 2.24 × 10−5, C3 (p = 0.05, C4 (p = 0.001, IL-1ra (p = 0.0019, vascular endothelial growth factor (VEGF (p = 0.0027, and G-CSF (p = 0.0099 proteins were observed in the vitreous of ROP babies suggesting an increased inflammation under hypoxic condition. Along with inflammatory markers, activated macrophage/microglia were also detected in the vitreous of ROP babies that secreted complement component C3, VEGF, IL-1ra, and MMP-9 under hypoxic stress in a cell culture model. Increased expression of the inflammatory markers like the IL-1ra (p = 0.014, MMP2 (p = 0.0085, and MMP-9 (p = 0.03 in the tears of babies at different stages of ROP further demonstrated their potential role in disease progression. Based on these findings, we conclude that increased complement activation in the

  13. Curcumin and salsalate suppresses colonic inflammation and procarcinogenic signaling in high-fat-fed, azoxymethane-treated mice

    Science.gov (United States)

    High-fat diets (HFDs) and excess adiposity increase proinflammatory cytokines in the colon, altering gene expression in a manner that promotes the development of colorectal cancer (CRC). Thus, compounds that reduce this biochemical inflammation are potential chemopreventive agents. Curcumin (CUR), a...

  14. Unraveling the Complex Relationship Triad between Lipids, Obesity, and Inflammation

    Directory of Open Access Journals (Sweden)

    Shahida A. Khan

    2014-01-01

    Full Text Available Obesity today stands at the intersection between inflammation and metabolic disorders causing an aberration of immune activity, and resulting in increased risk for diabetes, atherosclerosis, fatty liver, and pulmonary inflammation to name a few. Increases in mortality and morbidity in obesity related inflammation have initiated studies to explore different lipid mediated molecular pathways of attempting resolution that uncover newer therapeutic opportunities of anti-inflammatory components. Majorly the thromboxanes, prostaglandins, leukotrienes, lipoxins, and so forth form the group of lipid mediators influencing inflammation. Of special mention are the omega-6 and omega-3 fatty acids that regulate inflammatory mediators of interest in hepatocytes and adipocytes via the cyclooxygenase and lipoxygenase pathways. They also exhibit profound effects on eicosanoid production. The inflammatory cyclooxygenase pathway arising from arachidonic acid is a critical step in the progression of inflammatory responses. New oxygenated products of omega-3 metabolism, namely, resolvins and protectins, behave as endogenous mediators exhibiting powerful anti-inflammatory and immune-regulatory actions via the peroxisome proliferator-activated receptors (PPARs and G protein coupled receptors (GPCRs. In this review we attempt to discuss the complex pathways and links between obesity and inflammation particularly in relation to different lipid mediators.

  15. Potentially pathogenic airway bacteria and neutrophilic inflammation in treatment resistant severe asthma.

    Science.gov (United States)

    Green, Benjamin J; Wiriyachaiporn, Surasa; Grainge, Christopher; Rogers, Geraint B; Kehagia, Valia; Lau, Laurie; Carroll, Mary P; Bruce, Kenneth D; Howarth, Peter H

    2014-01-01

    Molecular microbiological analysis of airway samples in asthma has demonstrated an altered microbiome in comparison to healthy controls. Such changes may have relevance to treatment-resistant severe asthma, particularly those with neutrophilic airway inflammation, as bacteria might be anticipated to activate the innate immune response, a process that is poorly steroid responsive. An understanding of the relationship between airway bacterial presence and dominance in severe asthma may help direct alternative treatment approaches. We aimed to use a culture independent analysis strategy to describe the presence, dominance and abundance of bacterial taxa in induced sputum from treatment resistant severe asthmatics and correlate findings with clinical characteristics and airway inflammatory markers. Induced sputum was obtained from 28 stable treatment-resistant severe asthmatics. The samples were divided for supernatant IL-8 measurement, cytospin preparation for differential cell count and Terminal Restriction Fragment Length Polymorphism (T-RFLP) profiling for bacterial community analysis. In 17/28 patients, the dominant species within the airway bacterial community was Moraxella catarrhalis or a member of the Haemophilus or Streptococcus genera. Colonisation with these species was associated with longer asthma disease duration (mean (SD) 31.8 years (16.7) vs 15.6 years (8.0), p = 0.008), worse post-bronchodilator percent predicted FEV1 (68.0% (24.0) vs 85.5% (19.7), p = 0.025) and higher sputum neutrophil differential cell counts (median (IQR) 80% (67-83) vs 43% (29-67), p = 0.001). Total abundance of these organisms significantly and positively correlated with sputum IL-8 concentration and neutrophil count. Airway colonisation with potentially pathogenic micro-organisms in asthma is associated with more severe airways obstruction and neutrophilic airway inflammation. This altered colonisation may have a role in the development of an asthma phenotype that

  16. STING Signaling Promotes Inflammation in Experimental Acute Pancreatitis.

    Science.gov (United States)

    Zhao, Qinglan; Wei, Yi; Pandol, Stephen J; Li, Lingyin; Habtezion, Aida

    2018-05-01

    Acute pancreatitis (AP) is characterized by severe inflammation and acinar cell death. Transmembrane protein 173 (TMEM173 or STING) is a DNA sensor adaptor protein on immune cells that recognizes cytosolic nucleic acids and transmits signals that activate production of interferons and the innate immune response. We investigated whether leukocyte STING signaling mediates inflammation in mice with AP. We induced AP in C57BL/6J mice (control) and C57BL/6J-Tmem173gt/J mice (STING-knockout mice) by injection of cerulein or placement on choline-deficient DL-ethionine supplemented diet. In some mice, STING signaling was induced by administration of a pharmacologic agonist. AP was also induced in C57BL/6J mice with bone marrow transplants from control or STING-knockout mice and in mice with disruption of the cyclic GMP-AMP synthase (Cgas) gene. Pancreata were collected, analyzed by histology, and acini were isolated and analyzed by flow cytometry, quantitative polymerase chain reaction, immunoblots, and enzyme-linked immunosorbent assay. Bone-marrow-derived macrophages were collected from mice and tested for their ability to detect DNA from dying acinar cells in the presence and absence of deoxyribonuclease (DNaseI). STING signaling was activated in pancreata from mice with AP but not mice without AP. STING-knockout mice developed less severe AP (less edema, inflammation, and markers of pancreatic injury) than control mice, whereas mice given a STING agonist developed more severe AP than controls. In immune cells collected from pancreata, STING was expressed predominantly in macrophages. Levels of cGAS were increased in mice with vs without AP, and cGAS-knockout mice had decreased edema, inflammation, and other markers of pancreatic injury upon induction of AP than control mice. Wild-type mice given bone marrow transplants from STING-knockout mice had less pancreatic injury and lower serum levels of lipase and pancreatic trypsin activity following induction of AP than

  17. A hepatic protein, fetuin-A, occupies a protective role in lethal systemic inflammation.

    Directory of Open Access Journals (Sweden)

    Wei Li

    2011-02-01

    Full Text Available A liver-derived protein, fetuin-A, was first purified from calf fetal serum in 1944, but its potential role in lethal systemic inflammation was previously unknown. This study aims to delineate the molecular mechanisms underlying the regulation of hepatic fetuin-A expression during lethal systemic inflammation (LSI, and investigated whether alterations of fetuin-A levels affect animal survival, and influence systemic accumulation of a late mediator, HMGB1.LSI was induced by endotoxemia or cecal ligation and puncture (CLP in fetuin-A knock-out or wild-type mice, and animal survival rates were compared. Murine peritoneal macrophages were challenged with exogenous (endotoxin or endogenous (IFN-γ stimuli in the absence or presence of fetuin-A, and HMGB1 expression and release was assessed. Circulating fetuin-A levels were decreased in a time-dependent manner, starting between 26 h, reaching a nadir around 24-48 h, and returning towards base-line approximately 72 h post onset of endotoxemia or sepsis. These dynamic changes were mirrored by an early cytokine IFN-γ-mediated inhibition (up to 50-70% of hepatic fetuin-A expression. Disruption of fetuin-A expression rendered animals more susceptible to LSI, whereas supplementation of fetuin-A (20-100 mg/kg dose-dependently increased animal survival rates. The protection was associated with a significant reduction in systemic HMGB1 accumulation in vivo, and parallel inhibition of IFN-γ- or LPS-induced HMGB1 release in vitro.These experimental data suggest that fetuin-A is protective against lethal systemic inflammation partly by inhibiting active HMGB1 release.

  18. Anti-inflammation activity of fruit essential oil from Cinnamomum insularimontanum Hayata.

    Science.gov (United States)

    Lin, Chien-Tsong; Chen, Chi-Jung; Lin, Ting-Yu; Tung, Judia Chen; Wang, Sheng-Yang

    2008-12-01

    In this study, the fruit essential oil of Cinnamomum insularimontanum was prepared by using water distillation. Followed by GC-MS analysis, the composition of fruit essential oil was characterized. The main constituents of essential oil were alpha-pinene (9.45%), camphene (1.70%), beta-pinene (4.30%), limonene (1.76%), citronellal (24.64%), citronellol (16.78%), and citral (35.89%). According to the results obtained from nitric oxide (NO) inhibitory activity assay, crude essential oil and its dominant compound (citral) presented the significant NO production inhibitory activity, IC(50) of crude essential oil and citral were 18.68 and 13.18microg/mL, respectively. Moreover, based on the results obtained from the protein expression assay, the expression of IKK, iNOS, and nuclear NF-kappaB was decreased and IkappaBalpha was increased in dose-dependent manners, it proved that the anti-inflammatory mechanism of citral was blocked via the NF-kappaB pathway, but it could not efficiently suppress the activity on COX-2. In addition, citral exhibited a potent anti-inflammatory activity in the assay of croton oil-induced mice ear edema, when the dosage was 0.1 and 0.3mg per ear, the inflammation would reduce to 22% and 83%, respectively. The results presented that the fruit essential oil of C. insularimontanum and/or citral may have a great potential to develop the anti-inflammatory medicine in the future.

  19. Physical activity attenuates age-related biomarker alterations in preclinical AD.

    Science.gov (United States)

    Okonkwo, Ozioma C; Schultz, Stephanie A; Oh, Jennifer M; Larson, Jordan; Edwards, Dorothy; Cook, Dane; Koscik, Rebecca; Gallagher, Catherine L; Dowling, N M; Carlsson, Cynthia M; Bendlin, Barbara B; LaRue, Asenath; Rowley, Howard A; Christian, Brad T; Asthana, Sanjay; Hermann, Bruce P; Johnson, Sterling C; Sager, Mark A

    2014-11-04

    To examine whether engagement in physical activity might favorably alter the age-dependent evolution of Alzheimer disease (AD)-related brain and cognitive changes in a cohort of at-risk, late-middle-aged adults. Three hundred seventeen enrollees in the Wisconsin Registry for Alzheimer's Prevention underwent T1 MRI; a subset also underwent (11)C-Pittsburgh compound B-PET (n = 186) and (18)F-fluorodeoxyglucose-PET (n = 152) imaging. Participants' responses on a self-report measure of current physical activity were used to classify them as either physically active or physically inactive based on American Heart Association guidelines. They also completed a comprehensive neuropsychological battery. Covariate-adjusted regression analyses were used to test whether the adverse effect of age on imaging and cognitive biomarkers was modified by physical activity. There were significant age × physical activity interactions for β-amyloid burden (p = 0.014), glucose metabolism (p = 0.015), and hippocampal volume (p = 0.025) such that, with advancing age, physically active individuals exhibited a lesser degree of biomarker alterations compared with the physically inactive. Similar age × physical activity interactions were also observed on cognitive domains of Immediate Memory (p = 0.042) and Visuospatial Ability (p = 0.016). In addition, the physically active group had higher scores on Speed and Flexibility (p = 0.002) compared with the inactive group. In a middle-aged, at-risk cohort, a physically active lifestyle is associated with an attenuation of the deleterious influence of age on key biomarkers of AD pathophysiology. However, because our observational, cross-sectional design cannot establish causality, randomized controlled trials/longitudinal studies will be necessary for determining whether midlife participation in structured physical exercise forestalls the development of AD and related disorders in later life. © 2014 American Academy of Neurology.

  20. Expression of Inflammation-Related Genes Is Altered in Gastric Tissue of Patients with Advanced Stages of NAFLD

    Directory of Open Access Journals (Sweden)

    Rohini Mehta

    2013-01-01

    Full Text Available Obesity is associated with chronic low-grade inflammation perpetuated by visceral adipose. Other organs, particularly stomach and intestine, may also overproduce proinflammatory molecules. We examined the gene expression patterns in gastric tissue of morbidly obese patients with nonalcoholic fatty liver disease (NAFLD and compared the changes in gene expression in different histological forms of NAFLD. Stomach tissue samples from 20 morbidly obese NAFLD patients who were undergoing sleeve gastrectomy were profiled using qPCR for 84 genes encoding inflammatory cytokines, chemokines, their receptors, and other components of inflammatory cascades. Interleukin 8 receptor-beta (IL8RB gene overexpression in gastric tissue was correlated with the presence of hepatic steatosis, hepatic fibrosis, and histologic diagnosis of nonalcoholic steatohepatitis (NASH. Expression levels of soluble interleukin 1 receptor antagonist (IL1RN were correlated with the presence of NASH and hepatic fibrosis. mRNA levels of interleukin 8 (IL8, chemokine (C-C motif ligand 4 (CCL4, and its receptor chemokine (C-C motif receptor type 5 (CCR5 showed a significant increase in patients with advanced hepatic inflammation and were correlated with the severity of the hepatic inflammation. The results of our study suggest that changes in expression patterns for inflammatory molecule encoding genes within gastric tissue may contribute to the pathogenesis of obesity-related NAFLD.

  1. The 2009 stock conference report: inflammation, obesity and metabolic disease.

    Science.gov (United States)

    Hevener, A L; Febbraio, M A

    2010-09-01

    Obesity is linked with many deleterious health consequences and is associated with increased risk of chronic disease including type 2 diabetes, atherosclerosis and certain forms of cancer. Recent work has highlighted the impact of obesity to activate inflammatory gene networks and suggests a causal function of inflammation in the pathogenesis of the metabolic syndrome. Since 2005, when Dr Gokhan Hotamisligil chaired the fourth Stock Conference in Istanbul, Turkey, entitled 'Obesity and Inflammation', there has been an explosion of studies investigating the relationship between obesity, inflammation and substrate metabolism. The exuberance surrounding this field of research is exemplified by the body of work that has been published in these past 4 years, including over 1400 publications. During this time, several novel mechanisms relating to cellular inflammation have been uncovered including the role of the hematopoietic system, toll-like receptor activation, endoplasmic reticulum stress and very recently T-cell activation in obesity-induced insulin resistance. These discoveries have led us to rethink cellular nutrient sensing and its role in inflammation and metabolic disease. Despite burgeoning investigation in this field, there still remain a number of unanswered questions. This review that evolved from the 2009 Stock Conference summarizes current research and identifies the deficiencies in our understanding of this topic. The overall goal of this Stock Conference was to bring together leading investigators in the field of inflammation and obesity research in the hope of fostering new ideas, thus advancing the pursuit of novel therapeutic strategies to reduce disease risk and or better treat chronic disease including type 2 diabetes, cardiovascular disease and cancer. © 2009 The Authors. obesity reviews © 2009 International Association for the Study of Obesity.

  2. Alteration of fecal microbiota profiles in juvenile idiopathic arthritis. Associations with HLA-B27 allele and disease status.

    Directory of Open Access Journals (Sweden)

    Monica Di Paola

    2016-10-01

    Full Text Available Alteration of gut microbiota is involved in several chronic inflammatory and autoimmune diseases, including rheumatoid arthritis, and gut microbial pro-arthritogenic profiles have been hypothesized. Intestinal inflammation may be involved in spondyloarthropathies and in a subset of patients affected by Juvenile Idiopathic Arthritis (JIA, the most common chronic rheumatic disease of childhood. We compared the fecal microbiota composition of JIA patients with healthy subjects (HS, evaluating differences in microbial profiles between sub-categories of JIA, such as enthesitis-related arthritis (JIA-ERA, in which inflammation of entheses occurs, and polyarticular JIA, non-enthesitis related arthritis (JIA-nERA. Through taxon-level analysis, we discovered alteration of fecal microbiota components that could be involved in subclinical gut inflammation, and promotion of joint inflammation. We observed abundance in Ruminococcaceae in both JIA categories, reduction in Clostridiaceae and Peptostreptococcaceae in JIA-ERA, and increase in Veillonellaceae in JIA-nERA, respectively compared with HS. Among the more relevant genera, we found an increase in Clostridium cluster XIVb, involved in colitis and arthritis, in JIA-ERA patients compared with HS, and a trend of decrease in Faecalibacterium, known for anti-inflammatory properties, in JIA-nERA compared with JIA-ERA and HS. Differential abundant taxa identified JIA patients for the HLA-B27 allele, including Bilophila, Clostridium cluster XIVb, Oscillibacter and Parvimonas. Prediction analysis of metabolic functions showed that JIA-ERA metagenome was differentially enriched in bacterial functions related to cell motility and chemotaxis, suggesting selection of potential virulence traits. We also discovered differential microbial profiles and intra-group variability among active disease and remission, suggesting instability of microbial ecosystem in autoimmune diseases with respect to healthy status. Similarly

  3. Hesperidin protects against cyclophosphamide-induced hepatotoxicity by upregulation of PPARγ and abrogation of oxidative stress and inflammation.

    Science.gov (United States)

    Mahmoud, Ayman M

    2014-09-01

    The most important reason for the non-approval and withdrawal of drugs by the Food and Drug Administration is hepatotoxicity. Therefore, this study was undertaken to evaluate the protective effects of hesperidin against cyclophosphamide (CYP)-induced hepatotoxicity in Wistar rats. The rats received a single intraperitoneal dose of CYP of 200 mg/kg body mass, followed by treatment with hesperidin, orally, at doses of 25 and 50 mg/kg for 11 consecutive days. CYP induced hepatic damage, as evidenced by the significantly elevated levels of serum pro-inflammatory cytokines, serum transaminases, liver lipid peroxidation, and nitric oxide. As a consequence, there was reduced glutathione content, and the activities of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, were markedly reduced. In addition, CYP administration induced a considerable downregulation of peroxisome proliferator activated receptor gamma (PPARγ) and upregulation of nuclear factor-kappa B (NF-κB) and inducible nitric oxide synthase (iNOS) mRNA expression. Hesperidin, in a dose-dependent manner, rejuvenated the altered markers to an almost normal state. In conclusion, hesperidin showed a potent protective effect against CYP-induced oxidative stress and inflammation leading to hepatotoxicity. The study suggests that hesperidin exerts its protective effect against CYP-induced hepatotoxicity through upregulation of hepatic PPARγ expression and abrogation of inflammation and oxidative stress.

  4. When inflammation and depression go together: The longitudinal effects of parent-child relationships.

    Science.gov (United States)

    Beach, Steven R H; Lei, Man Kit; Simons, Ronald L; Barr, Ashley B; Simons, Leslie G; Ehrlich, Katherine; Brody, Gene H; Philibert, Robert A

    2017-12-01

    Parent-child relationships have long-term effects on health, particularly later inflammation and depression. We hypothesized that these effects would be mediated by later romantic partner relationships and elevated stressors in young adulthood, helping promote chronic, low grade, inflammation as well as depressive symptoms, and driving their covariation. It has been proposed recently that youth experiencing harsher parenting may also develop a stronger association between inflammation and depressive symptoms in adulthood and altered effects of stressors on outcomes. In the current investigation, we test these ideas using an 18-year longitudinal study of N = 413 African American youth that provides assessment of the parent-child relationship (at age 10), pro-inflammatory cytokine profile and depressive symptoms (at age 28), and potential mediators in early young adulthood (assessed at ages 21 and 24). As predicted, the effect of harsher parent-child relationships (age 10) on pro-inflammatory state and increased depressive symptoms at age 28 were fully mediated through young adult stress and romantic partner relationships. In addition, beyond these mediated effects, parent-child relationships at age 10 moderated the concurrent association between inflammation and depressive symptoms, as well as the prospective association between romantic partner relationships and inflammation, and resulted in substantially different patterns of indirect effects from young adult mediators to outcomes. The results support theorizing that the association of depression and inflammation in young adulthood is conditional on earlier parenting, and suggest incorporating this perspective into models predicting long-term health outcomes.

  5. Apple peel polyphenols and their beneficial actions on oxidative stress and inflammation.

    Directory of Open Access Journals (Sweden)

    Marie Claude Denis

    Full Text Available UNLABELLED: Since gastrointestinal mucosa is constantly exposed to reactive oxygen species from various sources, the presence of antioxidants may contribute to the body's natural defenses against inflammatory diseases. HYPOTHESIS: To define the polyphenols extracted from dried apple peels (DAPP and determine their antioxidant and anti-inflammatory potential in the intestine. Caco-2/15 cells were used to study the role of DAPP preventive actions against oxidative stress (OxS and inflammation induced by iron-ascorbate (Fe/Asc and lipopolysaccharide (LPS, respectively. RESULTS: The combination of HPLC with fluorescence detection, HPLC-ESI-MS TOF and UPLC-ESI-MS/MS QQQ allowed us to characterize the phenolic compounds present in the DAPP (phenolic acids, flavonol glycosides, flavan-3-ols, procyanidins. The addition of Fe/Asc to Caco-2/15 cells induced OxS as demonstrated by the rise in malondialdehyde, depletion of n-3 polyunsaturated fatty acids, and alterations in the activity of endogenous antioxidants (SOD, GPx, G-Red. However, preincubation with DAPP prevented Fe/Asc-mediated lipid peroxidation and counteracted LPS-mediated inflammation as evidenced by the down-regulation of cytokines (TNF-α and IL-6, and prostaglandin E2. The mechanisms of action triggered by DAPP induced also a down-regulation of cyclooxygenase-2 and nuclear factor-κB, respectively. These actions were accompanied by the induction of Nrf2 (orchestrating cellular antioxidant defenses and maintaining redox homeostasis, and PGC-1α (the "master controller" of mitochondrial biogenesis. CONCLUSION: Our findings provide evidence of the capacity of DAPP to reduce OxS and inflammation, two pivotal processes involved in inflammatory bowel diseases.

  6. Obesity and Inflammation: Epidemiology, Risk Factors, and Markers of Inflammation

    Directory of Open Access Journals (Sweden)

    Heriberto Rodríguez-Hernández

    2013-01-01

    Full Text Available Obesity is a public health problem that has reached epidemic proportions with an increasing worldwide prevalence. The global emergence of obesity increases the risk of developing chronic metabolic disorders. Thus, it is an economic issue that increased the costs of the comorbidities associated. Moreover, in recent years, it has been demonstrated that obesity is associated with chronic systemic inflammation, this status is conditioned by the innate immune system activation in adipose tissue that promotes an increase in the production and release of pro-inflammatory cytokines that contribute to the triggering of the systemic acute-phase response which is characterized by elevation of acute-phase protein levels. On this regard, low-grade chronic inflammation is a characteristic of various chronic diseases such as metabolic syndrome, cardiovascular disease, diabetes, hypertension, non-alcoholic fatty liver disease, and some cancers, among others, which are also characterized by obesity condition. Thus, a growing body of evidence supports the important role that is played by the inflammatory response in obesity condition and the pathogenesis of chronic diseases related.

  7. Altered Striatocerebellar Metabolism and Systemic Inflammation in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Chiun-Chieh Yu

    2016-01-01

    Full Text Available Parkinson’s disease (PD is the most second common neurodegenerative movement disorder. Neuroinflammation due to systemic inflammation and elevated oxidative stress is considered a major factor promoting the pathogenesis of PD, but the relationship of structural brain imaging parameters to clinical inflammatory markers has not been well studied. Our aim was to evaluate the association of magnetic resonance spectroscopy (MRS measures with inflammatory markers. Blood samples were collected from 33 patients with newly diagnosed PD and 30 healthy volunteers. MRS data including levels of N-acetylaspartate (NAA, creatine (Cre, and choline (Cho were measured in the bilateral basal ganglia and cerebellum. Inflammatory markers included plasma nuclear DNA, plasma mitochondrial DNA, and apoptotic leukocyte levels. The Cho/Cre ratio in the dominant basal ganglion, the dominant basal ganglia to cerebellum ratios of two MRS parameters NAA/Cre and Cho/Cre, and levels of nuclear DNA, mitochondrial DNA, and apoptotic leukocytes were significantly different between PD patients and normal healthy volunteers. Significant positive correlations were noted between MRS measures and inflammatory marker levels. In conclusion, patients with PD seem to have abnormal levels of inflammatory markers in the peripheral circulation and deficits in MRS measures in the dominant basal ganglion and cerebellum.

  8. Silibinin attenuates allergic airway inflammation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yun Ho [Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Jin, Guang Yu [Department of Radiology, Yanbian University Hospital, YanJi 133002 (China); Guo, Hui Shu [Centralab, The First Affiliated Hospital of Dalian Medical University, Dalian 116011 (China); Piao, Hong Mei [Department of Respiratory Medicine, Yanbian University Hospital, YanJi 133000 (China); Li, Liang chang; Li, Guang Zhao [Department of Anatomy and Histology and Embryology, Yanbian University School of Basic Medical Sciences, 977 Gongyuan Road, YanJi 133002, Jilin (China); Lin, Zhen Hua [Department of Pathology, Yanbian University School of Basic Medical Sciences, YanJi 133000 (China); Yan, Guang Hai, E-mail: ghyan@ybu.edu.cn [Department of Anatomy and Histology and Embryology, Yanbian University School of Basic Medical Sciences, 977 Gongyuan Road, YanJi 133002, Jilin (China)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  9. Age-Related Macular Degeneration in the Aspect of Chronic Low-Grade Inflammation (Pathophysiological ParaInflammation

    Directory of Open Access Journals (Sweden)

    Małgorzata Nita

    2014-01-01

    Full Text Available The products of oxidative stress trigger chronic low-grade inflammation (pathophysiological parainflammation process in AMD patients. In early AMD, soft drusen contain many mediators of chronic low-grade inflammation such as C-reactive protein, adducts of the carboxyethylpyrrole protein, immunoglobulins, and acute phase molecules, as well as the complement-related proteins C3a, C5a, C5, C5b-9, CFH, CD35, and CD46. The complement system, mainly alternative pathway, mediates chronic autologous pathophysiological parainflammation in dry and exudative AMD, especially in the Y402H gene polymorphism, which causes hypofunction/lack of the protective complement factor H (CFH and facilitates chronic inflammation mediated by C-reactive protein (CRP. Microglial activation induces photoreceptor cells injury and leads to the development of dry AMD. Many autoantibodies (antibodies against alpha beta crystallin, alpha-actinin, amyloid, C1q, chondroitin, collagen I, collagen III, collagen IV, elastin, fibronectin, heparan sulfate, histone H2A, histone H2B, hyaluronic acid, laminin, proteoglycan, vimentin, vitronectin, and aldolase C and pyruvate kinase M2 and overexpression of Fcc receptors play role in immune-mediated inflammation in AMD patients and in animal model. Macrophages infiltration of retinal/choroidal interface acts as protective factor in early AMD (M2 phenotype macrophages; however it acts as proinflammatory and proangiogenic factor in advanced AMD (M1 and M2 phenotype macrophages.

  10. Salmon and human thrombin differentially regulate radicular pain, glial-induced inflammation and spinal neuronal excitability through protease-activated receptor-1.

    Directory of Open Access Journals (Sweden)

    Jenell R Smith

    Full Text Available Chronic neck pain is a major problem with common causes including disc herniation and spondylosis that compress the spinal nerve roots. Cervical nerve root compression in the rat produces sustained behavioral hypersensitivity, due in part to the early upregulation of pro-inflammatory cytokines, the sustained hyperexcitability of neurons in the spinal cord and degeneration in the injured nerve root. Through its activation of the protease-activated receptor-1 (PAR1, mammalian thrombin can enhance pain and inflammation; yet at lower concentrations it is also capable of transiently attenuating pain which suggests that PAR1 activation rate may affect pain maintenance. Interestingly, salmon-derived fibrin, which contains salmon thrombin, attenuates nerve root-induced pain and inflammation, but the mechanisms of action leading to its analgesia are unknown. This study evaluates the effects of salmon thrombin on nerve root-mediated pain, axonal degeneration in the root, spinal neuronal hyperexcitability and inflammation compared to its human counterpart in the context of their enzymatic capabilities towards coagulation substrates and PAR1. Salmon thrombin significantly reduces behavioral sensitivity, preserves neuronal myelination, reduces macrophage infiltration in the injured nerve root and significantly decreases spinal neuronal hyperexcitability after painful root compression in the rat; whereas human thrombin has no effect. Unlike salmon thrombin, human thrombin upregulates the transcription of IL-1β and TNF-α and the secretion of IL-6 by cortical cultures. Salmon and human thrombins cleave human fibrinogen-derived peptides and form clots with fibrinogen with similar enzymatic activities, but salmon thrombin retains a higher enzymatic activity towards coagulation substrates in the presence of antithrombin III and hirudin compared to human thrombin. Conversely, salmon thrombin activates a PAR1-derived peptide more weakly than human thrombin. These

  11. Chikusetsu saponin IVa ameliorates high fat diet-induced inflammation in adipose tissue of mice through inhibition of NLRP3 inflammasome activation and NF-κB signaling.

    Science.gov (United States)

    Yuan, Chengfu; Liu, Chaoqi; Wang, Ting; He, Yumin; Zhou, Zhiyong; Dun, Yaoyan; Zhao, Haixia; Ren, Dongming; Wang, Junjie; Zhang, Changcheng; Yuan, Ding

    2017-05-09

    Chronic metabolic inflammation in adipose tissue plays an important role in the development of obesity-associated diseases. Our previous study indicated that total saponins of Panax japonicus (SPJ) rhizoma and Chikusetsu saponin V, one main component of SPJ, could exert the anti-oxidative and anti-inflammatory effects. The present study aimed to investigate the in vivo and Ex vivo anti-inflammatory activities of another main component of SPJ, namely Chikusetsu saponin IVa (CS). CS could significantly inhibited HFD-induced lipid homeostasis, and inhibited inflammation in adipose tissue, as reflected by the decreased mRNA expression levels of inflammation-related genes and secretion of the chemokines/cytokines, inhibited the accumulation of adipose tissue macrophages (ATMs) and shifted their polarization from M1 to M2, suppressed HFD-induced expression of NLRP3 inflammasome component genes and decreased IL-1β and Caspase-1 production in mice. Moreover, CS treatment also inhibited the activation of NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs). Meanwhile, CS treatment inhibited an NLRP3-induced ASC pyroptosome formation and lipopolysaccharide (LPS)-induced pyroptosis. Furthermore, CS treatment suppressed HFD-induced NF-κB signaling in vivo and LPS-induced NF-κB activation as reflected by the fact that their phosphorylated forms and the ratios of pNF-κB/NF-κB, pIKK/IKK, and pIκB/IκB were all decreased in EAT from HFD-fed mice treated with CS as compared with those of HFD mice. Taking together, this study has revealed that CS effectively inhibits HFD-induced inflammation in adipose tissue of mice through inhibiting both NLRP3 inflammasome activation and NF-κB signaling. Thus, CS can serve as a potential therapeutic drug in the prevention and treatment of inflammation-associated diseases.

  12. Inflamm-aging and arachadonic acid metabolite differences with stage of tendon disease.

    Directory of Open Access Journals (Sweden)

    Stephanie Georgina Dakin

    Full Text Available The contribution of inflammation to the pathogenesis of tendinopathy and high prevalence of re-injury is not well established, although recent evidence suggests involvement of prostaglandins. We investigated the roles of prostaglandins and inflammation-resolving mediators in naturally occurring equine tendon injury with disease stage and age. Levels of prostaglandins E(2 (PGE(2, F(2α (PGF(2α, lipoxin A(4 (LXA(4 and its receptor FPR2/ALX were analysed in extracts of normal, sub-acute and chronic injured tendons. To assess whether potential changes were associated with altered PGE(2 metabolism, microsomal prostaglandin E synthase-1 (mPGES-1, prostaglandin dehydrogenase (PGDH, COX-2 and EP(4 receptor expression were investigated. The ability of tendons to resolve inflammation was determined by assessing FPR2/ALX expression in natural injury and IL-1β stimulated tendon explants.Alterations in the profile of lipid mediators during sub-acute injury included low PGE(2 and elevated LXA(4 levels compared to normal and chronic injuries. In contrast, PGF(2α levels remained unchanged and were three-fold lower than PGE(2. The synthetic capacity of PGE(2 as measured by the ratio of mPGES-1:PGDH was elevated in sub-acute injury, suggesting aberrations in tendon prostaglandin metabolism, whilst COX-2 and EP(4 receptor were unchanged. Paradoxically low tendon PGE(2 levels in early injury may be attributed to increased local clearance via PGDH or the class switching of lipid mediators from the prostaglandin to the lipoxin axis. PGE(2 is therefore implicated in the development of tendon inflammation and its ensuing resolution. Whilst there was no relationship between age and tendon LXA(4 levels, there was an age-associated decline in FPR2/ALX receptor expression with concurrent increased PGE(2 levels in injury. Furthermore, uninjured tendon explants from younger (<10 years but not older horses (≥10 years treated with IL-1β responded by increasing FPR2/ALX

  13. Exercise alleviates depression related systemic inflammation in ...

    African Journals Online (AJOL)

    Exercise alleviates depression related systemic inflammation in chronic obstructive pulmonary disease patients. ... African Health Sciences ... Currently, physical activity is an important lifestyle factor that has the potential to modify inflammatory ...

  14. Genetic and metabolic signals during acute enteric bacterial infection alter the microbiota and drive progression to chronic inflammatory disease

    Energy Technology Data Exchange (ETDEWEB)

    Kamdar, Karishma; Khakpour, Samira; Chen, Jingyu; Leone, Vanessa; Brulc, Jennifer; Mangatu, Thomas; Antonopoulos, Dionysios A.; Chang, Eugene B; Kahn, Stacy A.; Kirschner, Barbara S; Young, Glenn; DePaolo, R. William

    2016-01-13

    Chronic inflammatory disorders are thought to arise due to an interplay between predisposing host genetics and environmental factors. For example, the onset of inflammatory bowel disease is associated with enteric proteobacterial infection, yet the mechanistic basis for this association is unclear. We have shown previously that genetic defiency in TLR1 promotes acute enteric infection by the proteobacteria Yersinia enterocolitica. Examining that model further, we uncovered an altered cellular immune response that promotes the recruitment of neutrophils which in turn increases metabolism of the respiratory electron acceptor tetrathionate by Yersinia. These events drive permanent alterations in anti-commensal immunity, microbiota composition, and chronic inflammation, which persist long after Yersinia clearence. Deletion of the bacterial genes involved in tetrathionate respiration or treatment using targeted probiotics could prevent microbiota alterations and inflammation. Thus, acute infection can drive long term immune and microbiota alterations leading to chronic inflammatory disease in genetically predisposed individuals.

  15. Novel protective role of kallistatin in obesity by limiting adipose tissue low grade inflammation and oxidative stress.

    Science.gov (United States)

    Frühbeck, Gema; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Ramírez, Beatriz; Valentí, Víctor; Moncada, Rafael; Becerril, Sara; Unamuno, Xabier; Silva, Camilo; Salvador, Javier; Catalán, Victoria

    2018-04-18

    Kallistatin plays an important role in the inhibition of inflammation, oxidative stress, fibrosis and angiogenesis. We aimed to determine the impact of kallistatin on obesity and its associated metabolic alterations as well as its role in adipocyte inflammation and oxidative stress. Samples obtained from 95 subjects were used in a case-control study. Circulating concentrations and expression levels of kallistatin as well as key inflammation, oxidative stress and extracellular matrix remodelling-related genes were analyzed. Circulating kallistatin concentrations were measured before and after weight loss achieved by Roux-en-Y gastric bypass (RYGB). The impact of kallistatin on lipopolysaccharide (LPS)- and tumour necrosis factor (TNF)-α-mediated inflammatory as well as oxidative stress signalling pathways was evaluated. We show that the reduced (P role of kallistatin in obesity and its associated comorbidities by limiting adipose tissue inflammation and oxidative stress. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. High-protein diet improves sensitivity to cholecystokinin and shifts the cecal microbiome without altering brain inflammation in diet-induced obesity in rats.

    Science.gov (United States)

    Wang, Lixin; Jacobs, Jonathan P; Lagishetty, Venu; Yuan, Pu-Qing; Wu, Shuping V; Million, Mulugeta; Reeve, Joseph R; Pisegna, Joseph R; Taché, Yvette

    2017-10-01

    High-protein diet (HPD) curtails obesity and/or fat mass, but it is unknown whether it reverses neuroinflammation or alters glucose levels, CCK sensitivity, and gut microbiome in rats fed a Western diet (WD)-induced obesity (DIO). Male rats fed a WD (high fat and sugar) for 12 wk were switched to a HPD for 6 wk. Body composition, food intake, meal pattern, sensitivity to intraperitoneal CCK-8S, blood glucose, brain signaling, and cecal microbiota were assessed. When compared with a normal diet, WD increased body weight (9.3%) and fat mass (73.4%). CCK-8S (1.8 or 5.2 nmol/kg) did not alter food intake and meal pattern in DIO rats. Switching to a HPD for 6 wk reduced fat mass (15.7%) with a nonsignificantly reduced body weight gain, normalized blood glucose, and decreased feeding after CCK-8S. DIO rats on the WD or switched to a HPD showed comparable microbial diversity. However, in HPD versus WD rats, there was enrichment of 114 operational taxonomic units (OTUs) and depletion of 188 OTUs. Of those, Akkermansia muciniphila (enriched on a HPD), an unclassified Clostridiales, a member of the RF39 order, and a Phascolarctobacterium were significantly associated with fat mass. The WD increased cytokine expression in the hypothalamus and dorsal medulla that was unchanged by switching to HPD. These data indicate that HPD reduces body fat and restores glucose homeostasis and CCK sensitivity, while not modifying brain inflammation. In addition, expansion of cecal Akkermansia muciniphila correlated to fat mass loss may represent a potential peripheral mechanism of HPD beneficial effects.

  17. Effects of Inflammation on Multiscale Biomechanical Properties of Cartilaginous Cells and Tissues.

    Science.gov (United States)

    Nguyen, Q T; Jacobsen, T D; Chahine, N O

    2017-11-13

    Cells within cartilaginous tissues are mechanosensitive and thus require mechanical loading for regulation of tissue homeostasis and metabolism. Mechanical loading plays critical roles in cell differentiation, proliferation, biosynthesis, and homeostasis. Inflammation is an important event occurring during multiple processes, such as aging, injury, and disease. Inflammation has significant effects on biological processes as well as mechanical function of cells and tissues. These effects are highly dependent on cell/tissue type, timing, and magnitude. In this review, we summarize key findings pertaining to effects of inflammation on multiscale mechanical properties at subcellular, cellular, and tissue level in cartilaginous tissues, including alterations in mechanotransduction and mechanosensitivity. The emphasis is on articular cartilage and the intervertebral disc, which are impacted by inflammatory insults during degenerative conditions such as osteoarthritis, joint pain, and back pain. To recapitulate the pro-inflammatory cascades that occur in vivo, different inflammatory stimuli have been used for in vitro and in situ studies, including tumor necrosis factor (TNF), various interleukins (IL), and lipopolysaccharide (LPS). Therefore, this review will focus on the effects of these stimuli because they are the best studied pro-inflammatory cytokines in cartilaginous tissues. Understanding the current state of the field of inflammation and cell/tissue biomechanics may potentially identify future directions for novel and translational therapeutics with multiscale biomechanical considerations.

  18. Increased autoimmune activity against 5-HT: a key component of depression that is associated with inflammation and activation of cell-mediated immunity, and with severity and staging of depression.

    Science.gov (United States)

    Maes, Michael; Ringel, Karl; Kubera, Marta; Berk, Michael; Rybakowski, Janusz

    2012-02-01

    Depression is characterized by inflammation and cell-mediated immune (CMI) activation and autoimmune reactions directed against a multitude of self-epitopes. There is evidence that the inflammatory response in depression causes dysfunctions in the metabolism of 5-HT, e.g. lowering the 5-HT precursor tryptophan, and upregulating 5-HT receptor mRNA. This study has been undertaken to examine autoimmune activity directed against 5-HT in relation to CMI activation and inflammation. 5-HT antibodies were examined in major depressed patients (n=109) versus normal controls (n=35) in relation to serum neopterin and lysozyme, and plasma pro-inflammatory cytokines (PIC), i.e. interleukin-1 (IL-1) and tumor necrosis factor-α (TNFα). Severity of depression was assessed with the Hamilton Depression Rating Scale (HDRS) and severity of fatigue and somatic symptoms with the Fibromyalgia and Chronic Fatigue Syndrome (FF) Rating Scale. The incidence of anti-5-HT antibody activity was significantly higher in depressed patients (54.1%), and in particular in those with melancholia (82.9%), than in controls (5.7%). Patients with positive 5-HT antibodies showed increased serum neopterin and lysozyme, and plasma TNFα and IL-1; higher scores on the HDRS and FF scales, and more somatic symptoms, including malaise and neurocognitive dysfunctions. There was a significant association between autoimmune activity to 5-HT and the number of previous depressive episodes. The autoimmune reactions directed against 5-HT might play a role in the pathophysiology of depression and the onset of severe depression. The strong association between autoimmune activity against 5-HT and inflammation/CMI activation is explained by multiple, reciprocal pathways between these factors. Exposure to previous depressive episodes increases the incidence of autoimmune activity directed against 5-HT, which in turn may increase the likelihood to develop new depressive episodes. These findings suggest that sensitization

  19. Cigarette smoking and schizophrenia independently and reversibly altered intrinsic brain activity.

    Science.gov (United States)

    Liu, Huan; Luo, Qi; Du, Wanyi; Li, Xingbao; Zhang, Zhiwei; Yu, Renqiang; Chen, Xiaolu; Meng, Huaqing; Du, Lian

    2018-01-03

    Schizophrenia patients are at high risk for cigarette smoking, but the neurobiological mechanisms of this comorbid association are relatively unknown. Long-term nicotine intake may impact brain that are independently and additively associated with schizophrenia. We investigated whether altered intrinsic brain activity (iBA) related to schizophrenia pathology is also associated with nicotine addiction. Forty-two schizophrenia patients (21 smokers and 21 nonsmokers) and 21 sex- and age-matched healthy nonsmokers underwent task-free functional MRI. Whole brain iBA was measured by the amplitude of spontaneous low frequency fluctuation. Furthermore, correlation analyses between iBA, symptom severity and nicotine addiction severity were performed. We found that prefrontal cortex, right caudate, and right postcentral gyrus were related to both disease and nicotine addiction effects. More importantly, schizophrenia smokers, compared to schizophrenia nonsmokers showed reversed iBA in the above brain regions. In addition, schizophrenia smokers, relative to nonsmokers, altered iBA in the left striatal and motor cortices. The iBA of the right caudate was negatively correlated with symptom severity. The iBA of the right postcentral gyrus negatively correlated with nicotine addiction severity. The striatal and motor cortices could potentially increase the vulnerability of smoking in schizophrenia. More importantly, smoking reversed iBA in the right striatal and prefrontal cortices, consistent with the self-medication theory in schizophrenia. Smoking altered left striatal and motor cortices activity, suggesting that the nicotine addiction effect was independent of disease. These results provide a local property of intrinsic brain activity mechanism that contributes to cigarette smoking and schizophrenia.

  20. Alveolar inflammation in cystic fibrosis

    DEFF Research Database (Denmark)

    Ulrich, Martina; Worlitzsch, Dieter; Viglio, Simona

    2010-01-01

    and ceramide accumulation. We sought to investigate CF lung inflammation in the alveoli. METHODS: Lung tissue from 14 CF patients and four healthy individuals was analyzed for numbers of effector cells, elastin and collagen concentrations, inflammatory markers and density of Pseudomonas aeruginosa....... Additionally, desmosine and isodesmosine concentrations were determined in 52 urine specimens from CF patients to estimate the burden of elastase activities in respiratory secretions. RESULTS: Elastin concentration was significantly decreased and collagen significantly increased in CF alveolar tissues...... as compared to age-matched, healthy individuals. Elastin split products were significantly increased in urine samples from patients with CF and correlated inversely with age, indicating local tissue remodelling due to elastin degradation by unopposed proteolytic enzymes. Alveolar inflammation was also...

  1. The podoplanin-CLEC-2 axis inhibits inflammation in sepsis.

    Science.gov (United States)

    Rayes, Julie; Lax, Siân; Wichaiyo, Surasak; Watson, Stephanie K; Di, Ying; Lombard, Stephanie; Grygielska, Beata; Smith, Stuart W; Skordilis, Kassiani; Watson, Steve P

    2017-12-21

    Platelets play a critical role in vascular inflammation through the podoplanin and collagen/fibrin receptors, C-type-lectin-like-2 (CLEC-2) and glycoprotein VI (GPVI), respectively. Both receptors regulate endothelial permeability and prevent peri-vascular bleeding in inflammation. Here we show that platelet-specific deletion of CLEC-2 but not GPVI leads to enhanced systemic inflammation and accelerated organ injury in two mouse models of sepsis-intra-peritoneal lipopolysaccharide and cecal ligation and puncture. CLEC-2 deficiency is associated with reduced numbers of podoplanin-expressing macrophages despite increased cytokine and chemokine levels in the infected peritoneum. Pharmacological inhibition of the interaction between CLEC-2 and podoplanin regulates immune cell infiltration and the inflammatory reaction during sepsis, suggesting that activation of podoplanin underlies the anti-inflammatory action of platelet CLEC-2. We suggest podoplanin-CLEC-2 as a novel anti-inflammatory axis regulating immune cell recruitment and activation in sepsis.

  2. Radiation, Inflammation, and Immune Responses in Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Multhoff, Gabriele [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Helmholtz Zentrum München, Clinical Cooperation Group Innate Immunity in Tumor Biology, Munich (Germany); Radons, Jürgen, E-mail: raj10062@web.de [multimmune GmbH, Munich (Germany)

    2012-06-04

    Chronic inflammation has emerged as one of the hallmarks of cancer. Inflammation also plays a pivotal role in modulating radiation responsiveness of tumors. As discussed in this review, ionizing radiation (IR) leads to activation of several transcription factors modulating the expression of numerous mediators in tumor cells and cells of the microenvironment promoting cancer development. Novel therapeutic approaches thus aim to interfere with the activity or expression of these factors, either in single-agent or combinatorial treatment or as supplements of the existing therapeutic concepts. Among them, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. A great variety of classical or novel drugs including nutraceuticals such as plant phytochemicals have the capacity to interfere with the inflammatory network in cancer and are considered as putative radiosensitizers. Thus, targeting the inflammatory signaling pathways induced by IR offers the opportunity to improve the clinical outcome of radiation therapy by enhancing radiosensitivity and decreasing putative metabolic effects. Since inflammation and sex steroids also impact tumorigenesis, a therapeutic approach targeting glucocorticoid receptors and radiation-induced production of tumorigenic factors might be effective in sensitizing certain tumors to IR.

  3. Radiation, Inflammation, and Immune Responses in Cancer

    International Nuclear Information System (INIS)

    Multhoff, Gabriele; Radons, Jürgen

    2012-01-01

    Chronic inflammation has emerged as one of the hallmarks of cancer. Inflammation also plays a pivotal role in modulating radiation responsiveness of tumors. As discussed in this review, ionizing radiation (IR) leads to activation of several transcription factors modulating the expression of numerous mediators in tumor cells and cells of the microenvironment promoting cancer development. Novel therapeutic approaches thus aim to interfere with the activity or expression of these factors, either in single-agent or combinatorial treatment or as supplements of the existing therapeutic concepts. Among them, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. A great variety of classical or novel drugs including nutraceuticals such as plant phytochemicals have the capacity to interfere with the inflammatory network in cancer and are considered as putative radiosensitizers. Thus, targeting the inflammatory signaling pathways induced by IR offers the opportunity to improve the clinical outcome of radiation therapy by enhancing radiosensitivity and decreasing putative metabolic effects. Since inflammation and sex steroids also impact tumorigenesis, a therapeutic approach targeting glucocorticoid receptors and radiation-induced production of tumorigenic factors might be effective in sensitizing certain tumors to IR.

  4. Chronic Inflammation and  T Cells

    Directory of Open Access Journals (Sweden)

    Nathan S Fay

    2016-05-01

    Full Text Available The epithelial tissues of the skin, lungs, reproductive tract, and intestines are the largest physical barriers the body has to protect against infection. Epithelial tissues are woven with a matrix of immune cells programmed to mobilize the host innate and adaptive immune responses. Included among these immune cells are  T cells that are unique in their TCR usage, location, and functions in the body. Stress reception by  T cells as a result of traumatic epithelial injury, malignancy, and/or infection induces  T cell activation. Once activated,  T cells function to repair tissue, induce inflammation, recruit leukocytes, and lyse cells. Many of these functions are mediated via the production of cytokines and growth factors upon  T cell activation. Pathogenesis of many chronic inflammatory diseases involve  T cells; some of which are exacerbated by their presence, while others are improved.  T cells require a delicate balance between their need for acute inflammatory mediators to function normally and the detrimental impact imparted by chronic inflammation. This review will focus on the recent progress made in understanding how epithelial  T cells influence the pathogenesis of chronic inflammatory diseases and how a balance between acute and chronic inflammation impacts  T cell function. Future studies will be important to understand how this balance is achieved.

  5. Anthropogenic noise alters bat activity levels and echolocation calls

    Directory of Open Access Journals (Sweden)

    Jessie P. Bunkley

    2015-01-01

    Full Text Available Negative impacts from anthropogenic noise are well documented for many wildlife taxa. Investigations of the effects of noise on bats however, have not been conducted outside of the laboratory. Bats that hunt arthropods rely on auditory information to forage. Part of this acoustic information can fall within the spectrum of anthropogenic noise, which can potentially interfere with signal reception and processing. Compressor stations associated with natural gas extraction produce broadband noise 24 hours a day, 365 days a year. With over half a million producing gas wells in the U.S. this infrastructure is a major source of noise pollution across the landscape. We conducted a ‘natural experiment’ in the second largest gas extraction field in the U.S. to investigate the potential effects of gas compressor station noise on the activity levels of the local bat assemblage. We used acoustic monitoring to compare the activity level (number of minutes in a night with a bat call of the bat assemblage at sites with compressor stations to sites lacking this infrastructure. We found that activity levels for the Brazilian free-tailed bat (Tadarida brasiliensis were 40% lower at loud compressor sites compared to quieter well pads, whereas the activity levels of four other species (Myotis californicus, M. cillolabrum, M. lucifugus, Parastrellus hesperus were not affected by noise. Furthermore, our results reveal that the assemblage of bat species emitting low frequency (35 kHz echolocation did not exhibit altered activity levels in noise. Lower activity levels of Brazilian free-tailed bats at loud sites indicate a potential reduction in habitat for this species. Additionally, a comparison of echolocation search calls produced by free-tailed bats at sites with and without compressor stations reveal that this species modifies its echolocation search calls in noise—producing longer calls with a narrower bandwidth. Call alterations might affect prey

  6. Complement drives glucosylceramide accumulation and tissue inflammation in Gaucher disease.

    Science.gov (United States)

    Pandey, Manoj K; Burrow, Thomas A; Rani, Reena; Martin, Lisa J; Witte, David; Setchell, Kenneth D; Mckay, Mary A; Magnusen, Albert F; Zhang, Wujuan; Liou, Benjamin; Köhl, Jörg; Grabowski, Gregory A

    2017-03-02

    Gaucher disease is caused by mutations in GBA1, which encodes the lysosomal enzyme glucocerebrosidase (GCase). GBA1 mutations drive extensive accumulation of glucosylceramide (GC) in multiple innate and adaptive immune cells in the spleen, liver, lung and bone marrow, often leading to chronic inflammation. The mechanisms that connect excess GC to tissue inflammation remain unknown. Here we show that activation of complement C5a and C5a receptor 1 (C5aR1) controls GC accumulation and the inflammatory response in experimental and clinical Gaucher disease. Marked local and systemic complement activation occurred in GCase-deficient mice or after pharmacological inhibition of GCase and was associated with GC storage, tissue inflammation and proinflammatory cytokine production. Whereas all GCase-inhibited mice died within 4-5 weeks, mice deficient in both GCase and C5aR1, and wild-type mice in which GCase and C5aR were pharmacologically inhibited, were protected from these adverse effects and consequently survived. In mice and humans, GCase deficiency was associated with strong formation of complement-activating GC-specific IgG autoantibodies, leading to complement activation and C5a generation. Subsequent C5aR1 activation controlled UDP-glucose ceramide glucosyltransferase production, thereby tipping the balance between GC formation and degradation. Thus, extensive GC storage induces complement-activating IgG autoantibodies that drive a pathway of C5a generation and C5aR1 activation that fuels a cycle of cellular GC accumulation, innate and adaptive immune cell recruitment and activation in Gaucher disease. As enzyme replacement and substrate reduction therapies are expensive and still associated with inflammation, increased risk of cancer and Parkinson disease, targeting C5aR1 may serve as a treatment option for patients with Gaucher disease and, possibly, other lysosomal storage diseases.

  7. Activated nuclear transcription factor κB in patients with myocarditis and dilated cardiomyopathy-relation to inflammation and cardiac function

    International Nuclear Information System (INIS)

    Alter, Peter; Rupp, Heinz; Maisch, Bernhard

    2006-01-01

    Objectives and background: Myocarditis is caused by various agents and autoimmune processes. It is unknown whether viral genome persistence represents inactive remnants of previous infections or whether it is attributed to ongoing adverse processes. The latter also applies to the course of autoimmune myocarditis. One principal candidate for an adverse remodeling is nuclear factor-κB (NFκB). Methods: A total of 93 patients with suspected myocarditis/cardiomyopathy was examined. Hemodynamics were assessed by echocardiography as well as right and left heart catheterization. Endomyocardial biopsies were taken from the left ventricle. Biopsies were examined by immunohistochemistry and PCR for viral genomes. Selective immunostaining of activated NFκB was performed. Results: NFκB was increased in patients with myocarditis when compared with controls (11.1 ± 7.1% vs. 5.0 ± 5.3%, P 2 = 0.72, P 2 = 0.43, P < 0.02). Increased activated NFκB was found in adenovirus persistence when compared with controls (P = 0.001). Only a trend of increased NFκB activation was seen in cytomegalovirus persistence. Parvovirus B19 persistence did not affect NFκB activation. Conclusions: Increased activation of NFκB is related to inflammatory processes in myocarditis. Since activated NFκB correlates with left ventricular function, it could be assumed that NFκB activation occurs at early stages of inflammation. Potentially, NFκB could inhibit loss of cardiomyocytes by apoptosis and protect from cardiac dilation. Since NFκB is a crucial key transcription factor of inflammation, its prognostic and future therapeutic relevance should be addressed

  8. Early markers of airways inflammation and occupational asthma: rationale, study design and follow-up rates among bakery, pastry and hairdressing apprentices.

    Science.gov (United States)

    Tossa, Paul; Bohadana, Abraham; Demange, Valérie; Wild, Pascal; Michaely, Jean-Pierre; Hannhart, Bernard; Paris, Christophe; Zmirou-Navier, Denis

    2009-04-23

    Occupational asthma is a common type of asthma caused by a specific agent in the workplace. The basic alteration of occupational asthma is airways inflammation. Although most patients with occupational asthma are mature adults, there is evidence that airways inflammation starts soon after inception of exposure, including during apprenticeship. Airways hyper responsiveness to methacholine is a valid surrogate marker of airways inflammation, which has proved useful in occupational epidemiology. But it is time-consuming, requires active subject's cooperation and is not readily feasible. Other non-invasive and potentially more useful tests include the forced oscillation technique, measurement of fraction exhaled nitric oxide, and eosinophils count in nasal lavage fluid. This study aims to investigate early development of airways inflammation and asthma-like symptoms in apprentice bakers, pastry-makers and hairdressers, three populations at risk of occupational asthma whose work-related exposures involve agents of different nature. The objectives are to (i) examine the performance of the non-invasive tests cited above in detecting early airways inflammation that might eventually develop into occupational asthma; and (ii) evaluate whether, and how, constitutional (e.g. atopy) and behavioural (e.g. smoking) risk factors for occupational asthma modulate the effects of allergenic and/or irritative substances involved in these occupations. This paper presents the study rationale and detailed protocol. Among 441 volunteers included at the first visit, 354 attended the fourth one. Drop outs were investigated and showed unrelated to the study outcome. Sample size and follow-up participation rates suggest that the data collected in this study will allow it to meet its objectives.

  9. Rheumatoid arthritis-associated interstitial lung disease: lung inflammation evaluated with high resolution computed tomography scan is correlated to rheumatoid arthritis disease activity.

    Science.gov (United States)

    Pérez-Dórame, Renzo; Mejía, Mayra; Mateos-Toledo, Heidegger; Rojas-Serrano, Jorge

    2015-01-01

    To describe the association between rheumatoid arthritis disease activity (RA) and interstitial lung damage (inflammation and fibrosis), in a group of patients with rheumatoid arthritis-associated interstitial lung disease (RA-ILD). A retrospective study of RA patients with interstitial lung disease (restrictive pattern in lung function tests and evidence of interstitial lung disease in high resolution computed tomography (HRCT)). Patients were evaluated to exclude other causes of pulmonary disease. RA disease activity was measured with the CDAI index. Interstitial lung inflammation and fibrosis were determined by Kazerooni scale. We compared Kazerooni ground-glass score with the nearest CDAI score to HRCT date scan of the first medical evaluation at our institution. In nine patients, we compared the first ground-glass score with a second one after treatment with DMARDs and corticosteroids. Spearman's rank correlation coefficient was used to evaluate association between RA disease activity and the Kazerooni ground-glass and fibrosis scores. Thirty-four patients were included. A positive correlation between CDAI and ground-glass scores was found (rs=0.3767, P<0.028). Fibrosis and CDAI scores were not associated (rs=-0.0747, P<0.6745). After treatment, a downward tendency in the ground-glass score was observed (median [IQR]): (2.33 [2,3] vs. 2 [1.33-2.16]), P<0.056, along with a lesser CDAI score (27 [8-43] vs. 9 [5-12]), P<0.063. There is a correlation between RA disease activity and ground-glass appearance in the HRCT of RA-ILD patients. These results suggest a positive association between RA disease activity and lung inflammation in RA-ILD. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  10. Cerebrospinal fluid IL-12p40, CXCL13 and IL-8 as a combinatorial biomarker of active intrathecal inflammation.

    Directory of Open Access Journals (Sweden)

    Bibiana Bielekova

    Full Text Available Diagnosis and management of the neuroinflammatory diseases of the central nervous system (CNS are hindered by the lack of reliable biomarkers of active intrathecal inflammation. We hypothesized that measuring several putative inflammatory biomarkers simultaneously will augment specificity and sensitivity of the biomarker to the clinically useful range. Based on our pilot experiment in which we measured 18 inflammatory biomarkers in 10-fold concentrated cerebrospinal fluid (CSF derived from 16 untreated patients with highly active multiple sclerosis (MS we selected a combination of three CSF biomarkers, IL-12p40, CXCL13 and IL-8, for further validation.Concentrations of IL-12p40, CXCL13 and IL-8 were determined in a blinded fashion in CSF samples from an initial cohort (n = 72 and a confirmatory cohort (n = 167 of prospectively collected, untreated subjects presenting for a diagnostic work-up of possible neuroimmunological disorder. Diagnostic conclusion was based on a thorough clinical workup, which included laboratory assessment of the blood and CSF, neuroimaging and longitudinal follow-up. Receiver operating characteristic (ROC curve analysis in conjunction with principal component analysis (PCA, which was used to combine information from all three biomarkers, assessed the diagnostic value of measured biomarkers.Each of the three biomarkers was significantly increased in MS and other inflammatory neurological disease (OIND in comparison to non-inflammatory neurological disorder patients (NIND at least in one cohort. However, considering all three biomarkers together improved accuracy of predicting the presence of intrathecal inflammation to the consistently good to excellent range (area under the ROC curve = 0.868-0.924.Future clinical studies will determine if a combinatorial biomarker consisting of CSF IL-12p40, CXCL13 and IL-8 provides utility in determining the presence of active intrathecal inflammation in diagnostically

  11. Interleukin 6 downregulates p53 expression and activity by stimulating ribosome biogenesis: a new pathway connecting inflammation to cancer

    Science.gov (United States)

    Brighenti, E; Calabrese, C; Liguori, G; Giannone, F A; Trerè, D; Montanaro, L; Derenzini, M

    2014-01-01

    Chronic inflammation is an established risk factor for the onset of cancer, and the inflammatory cytokine IL-6 has a role in tumorigenesis by enhancing proliferation and hindering apoptosis. As factors stimulating proliferation also downregulate p53 expression by enhancing ribosome biogenesis, we hypothesized that IL-6 may cause similar changes in inflamed tissues, thus activating a mechanism that favors neoplastic transformation. Here, we showed that IL-6 downregulated the expression and activity of p53 in transformed and untransformed human cell lines. This was the consequence of IL-6-dependent stimulation of c-MYC mRNA translation, which was responsible for the upregulation of rRNA transcription. The enhanced rRNA transcription stimulated the MDM2-mediated proteasomal degradation of p53, by reducing the availability of ribosome proteins for MDM2 binding. The p53 downregulation induced the acquisition of cellular phenotypic changes characteristic of epithelial–mesenchymal transition, such as a reduced level of E-cadherin expression, increased cell invasiveness and a decreased response to cytotoxic stresses. We found that these changes also occurred in colon epithelial cells of patients with ulcerative colitis, a very representative example of chronic inflammation at high risk for tumor development. Histochemical and immunohistochemical analysis of colon biopsy samples showed an upregulation of ribosome biogenesis, a reduced expression of p53, together with a focal reduction or absence of E-cadherin expression in chronic colitis in comparison with normal mucosa samples. These changes disappeared after treatment with anti-inflammatory drugs. Taken together, the present results highlight a new mechanism that may link chronic inflammation to cancer, based on p53 downregulation, which is activated by the enhancement of rRNA transcription upon IL-6 exposure. PMID:24531714

  12. A geranyl acetophenone targeting cysteinyl leukotriene synthesis prevents allergic airway inflammation in ovalbumin-sensitized mice

    International Nuclear Information System (INIS)

    Ismail, Norazren; Jambari, Nuzul Nurahya; Zareen, Seema; Akhtar, Mohamad Nadeem; Shaari, Khozirah; Zamri-Saad, Mohamad; Tham, Chau Ling; Sulaiman, Mohd Roslan; Lajis, Nordin Hj; Israf, Daud Ahmad

    2012-01-01

    Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The current use of corticosteroids in the management of asthma has recently raised issues regarding safety and lack of responsiveness in 5–10% of asthmatic individuals. The aim of the present study was to investigate the therapeutic effect of a non-steroidal small molecule that has cysteinyl leukotriene (cysLT) inhibitory activity, upon attenuation of allergic lung inflammation in an acute murine model. Mice were sensitized with ovalbumin (OVA) and treated with several intraperitoneal doses (100, 20, 2 and 0.2 mg/kg) of 2,4,6,-trihydroxy-3-geranylacetophenone (tHGA). Bronchoalveolar lavage was performed, blood and lung samples were obtained and respiratory function was measured. OVA sensitization increased pulmonary inflammation and pulmonary allergic inflammation was significantly reduced at doses of 100, 20 and 2 mg/kg with no effect at the lowest dose of 0.2 mg/kg. The beneficial effects in the lung were associated with reduced eosinophilic infiltration and reduced secretion of Th2 cytokines and cysLTs. Peripheral blood reduction of total IgE was also a prominent feature. Treatment with tHGA significantly attenuated altered airway hyperresponsiveness as measured by the enhanced pause (Penh) response to incremental doses of methacholine. These data demonstrate that tHGA, a synthetic non-steroidal small molecule, can prevent acute allergic inflammation. This proof of concept opens further avenues of research and development of tHGA as an additional option to the current armamentarium of anti-asthma therapeutics. -- Highlights: ► Safer and effective anti-asthmatic drugs are in great demand. ► tHGA is a new 5-LO/cysLT inhibitor that inhibits allergic asthma in mice. ► tHGA is a natural compound that can be synthesized. ► Doses as low as 2 mg/kg alleviate lung pathology in experimental asthma. ► tHGA is a potential drug lead for the treatment of allergic asthma.

  13. miR-203a is involved in HBx-induced inflammation by targeting Rap1a

    Energy Technology Data Exchange (ETDEWEB)

    Wu, AiRong [Department of gastroenterology, The First affiliated Hospital of Soochow University, Suzhou 215006 (China); Chen, Huo [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123 (China); Xu, ChunFang [Department of gastroenterology, The First affiliated Hospital of Soochow University, Suzhou 215006 (China); Zhou, Ji; Chen, Si [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123 (China); Shi, YuQi [Department of gastroenterology, The First affiliated Hospital of Soochow University, Suzhou 215006 (China); Xu, Jie [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123 (China); Gan, JianHe, E-mail: j_pzhang@suda.edu.cn [Department of gastroenterology, The First affiliated Hospital of Soochow University, Suzhou 215006 (China); Zhang, JinPing, E-mail: ganjianhe@aliyun.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123 (China)

    2016-11-15

    Hepatitis B virus (HBV) causes acute and chronic hepatitis, and is one of the major causes of cirrhosis and hepatocellular carcinoma. Accumulating evidence suggests that inflammation is the key factor for liver cirrhosis and hepatocellular carcinoma. MicroRNAs play important roles in many biological processes. Here, we aim to explore the function of microRNAs in the HBX-induced inflammation. First, microarray experiment showed that HBV{sup +} liver samples expressed higher level of miR-203a compared to HBV{sup -} liver samples. To verify these alterations, HBx-coding plasmid was transfected into HepG2 cells to overexpress HBx protein. The real-time PCR results suggested that over-expression of HBx could induce up-regulation of miR-203a. To define how up-regulation of miR-203a can induce liver cells inflammation, we over-expressed miR-203a in HepG2 cells. Annexin V staining and BrdU staining suggested that overexpression of miR-203a significantly increased the cell apoptosis and proliferation, meanwhile, over-expression of miR-203a could lead to a decrease in G0/G1 phase cells and an increase in G2/M phase cells. Some cytokines production including IL-6 and IL-8 were significantly increased, but TGFβ and IFNγ were decreased in miR-203a over-expressed HepG2 cells. Luciferase reporter assay experiments, protein mass-spectrum assay and real-time PCR all together demonstrated that Rap1a was the target gene of miR-203a. Further experiments showed that these alterations were modulated through PI3K/ERK/p38/NFκB pathways. These data suggested that HBV-infection could up-regulate the expression of miR-203a, thus down regulated the expression of Rap1a and affected the PI3K/ERK/p38/NFκB pathways, finally induced the hepatitis inflammation. - Highlights: • HBX induces the over-expression of miR-203a in HepG2 cells. • miR-203a targets Rap1a to induce the inflammation in HepG2 cells. • miR-203a regulates the apoptosis and cell cycles of HepG2 cells. • miR-203a alters

  14. Altered serum copper homeostasis suggests higher oxidative stress and lower antioxidant capability in patients with chronic hepatitis B.

    Science.gov (United States)

    Huang, Yansong; Zhang, Yuan; Lin, Zhexuan; Han, Ming; Cheng, Hongqiu

    2018-06-01

    Copper homeostasis can be altered by inflammation. This study aimed to investigate the alteration of serum copper homeostasis and to explore its clinical significance in patients with chronic hepatitis B (CHB).Thirty-two patients with CHB and 10 aged- and sex-matched healthy controls were recruited. Analyses included serum levels of total copper (TCu), copper ions (Cu), small molecule copper (SMC), ceruloplasmin (CP), Cu/Zn superoxide dismutase 1 (SOD1), urinary copper, and the activities of serum CP and SOD1.The serum TCu and urinary copper levels in patients with CHB were significantly higher than the controls (P = .04 and .003), while the serum Cu was lower than the controls (P = .0002). CP and SOD1 activities in the serum were significantly lower in patients with CHB compared to controls (P = .005) despite higher serum concentrations. In addition, serum alanine aminotransferase inversely correlated with serum CP activity (P = .0318, r = -0.4065).Serum copper homeostasis was altered in this cohort of patients with CHB. The results suggest increased oxidative stress and impaired antioxidant capability in patients with CHB, in addition to necroinflammation. These results may provide novel insights into the diagnosis and treatment of patients with CHB.

  15. A resistant starch fiber diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease (CKD)

    Science.gov (United States)

    Inflammation is a constant feature and a major mediator of CKD progression. It is, in part, driven by altered gut microbiome and disruption of intestinal epithelial barrier, events which are primarily caused by: 1- urea influx in the intestine resulting in dominance of urease-possessing bacteria; 2-...

  16. Inflammation and Heart Disease

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More Inflammation and Heart Disease Updated:Jun 13,2017 Understand the risks of ... inflammation causes cardiovascular disease, inflammation is common for heart disease and stroke patients and is thought to be ...

  17. Altered neural activity and emotions following right middle cerebral artery stroke.

    Science.gov (United States)

    Paradiso, Sergio; Anderson, Beth M; Boles Ponto, Laura L; Tranel, Daniel; Robinson, Robert G

    2011-01-01

    Stroke of the right MCA is common. Such strokes often have consequences for emotional experience, but these can be subtle. In such cases diagnosis is difficult because emotional awareness (limiting reporting of emotional changes) may be affected. The present study sought to clarify the mechanisms of altered emotion experience after right MCA stroke. It was predicted that after right MCA stroke the anterior cingulate cortex (ACC), a brain region concerned with emotional awareness, would show reduced neural activity. Brain activity during presentation of emotional stimuli was measured in 6 patients with stable stroke, and in 12 age- and sex-matched nonlesion comparisons using positron emission tomography and the [(15)O]H(2)O autoradiographic method. MCA stroke was associated with weaker pleasant experience and decreased activity ipsilaterally in the ACC. Other regions involved in emotional processing including thalamus, dorsal and medial prefrontal cortex showed reduced activity ipsilaterally. Dorsal and medial prefrontal cortex, association visual cortex and cerebellum showed reduced activity contralaterally. Experience from unpleasant stimuli was unaltered and was associated with decreased activity only in the left midbrain. Right MCA stroke may reduce experience of pleasant emotions by altering brain activity in limbic and paralimbic regions distant from the area of direct damage, in addition to changes due to direct tissue damage to insula and basal ganglia. The knowledge acquired in this study begins to explain the mechanisms underlying emotional changes following right MCA stroke. Recognizing these changes may improve diagnoses, management and rehabilitation of right MCA stroke victims. Copyright © 2011 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  18. Altered movement patterns and muscular activity during single and double leg squats in individuals with anterior cruciate ligament injury.

    Science.gov (United States)

    Trulsson, Anna; Miller, Michael; Hansson, Gert-Åke; Gummesson, Christina; Garwicz, Martin

    2015-02-13

    Individuals with Anterior Cruciate Ligament (ACL) injury often show altered movement patterns, suggested to be partly due to impaired sensorimotor control. Here, we therefore aimed to assess muscular activity during movements often used in ACL-rehabilitation and to characterize associations between deviations in muscular activity and specific altered movement patterns, using and further exploring the previously developed Test for substitution Patterns (TSP). Sixteen participants (10 women) with unilateral ACL rupture performed Single and Double Leg Squats (SLS; DLS). Altered movement patterns were scored according to TSP, and Surface Electromyography (SEMG) was recorded bilaterally in six hip, thigh and shank muscles. To quantify deviations in muscular activity, SEMG ratios were calculated between homonymous muscles on injured and non-injured sides, and between antagonistic muscles on the same side. Correlations between deviations of injured/non-injured side SEMG ratios and specific altered movement patterns were calculated. Injured/non-injured ratios were low at transition from knee flexion to extension in quadriceps in SLS, and in quadriceps and hamstrings in DLS. On injured side, the quadriceps/hamstrings ratio prior to the beginning of DLS and end of DLS and SLS, and tibialis/gastrocnemius ratio at end of DLS were lower than on non-injured side. Correlations were found between specific altered movement patterns and deviating muscular activity at transition from knee flexion to extension in SLS, indicating that the more deviating the muscular activity on injured side, the more pronounced the altered movement pattern. "Knee medial to supporting foot" correlated to lower injured/non-injured ratios in gluteus medius (rs = -0.73, p = 0.001), "lateral displacement of hip-pelvis-region" to lower injured/non-injured ratios in quadriceps (rs = -0.54, p = 0.03) and "displacement of trunk" to higher injured/non-injured ratios in gluteus medius (rs = 0.62, p = 0

  19. Purinergic Receptors: Key Mediators of HIV-1 infection and inflammation

    Directory of Open Access Journals (Sweden)

    Talia H Swartz

    2015-11-01

    Full Text Available Human immunodeficiency virus (HIV-1 causes a chronic infection that afflicts more than 38 million individuals worldwide. While the infection can be suppressed with potent anti-retroviral therapies, individuals infected with HIV have elevated levels of inflammation as indicated by increased T cell activation, soluble biomarkers, and associated morbidity and mortality. A single mechanism linking HIV pathogenesis to this inflammation has yet to be identified. Purinergic receptors are known to mediate inflammation and have been shown to be required for HIV-1 infection at the level of HIV-1 membrane fusion. Here we review the literature on the role of purinergic receptors in HIV-1 infection and associated inflammation and describe a role for these receptors as potential therapeutic targets.

  20. Mechanistic Perspectives of Maslinic Acid in Targeting Inflammation

    Directory of Open Access Journals (Sweden)

    Wei Hsum Yap

    2015-01-01

    Full Text Available Chronic inflammation drives the development of various pathological diseases such as rheumatoid arthritis, atherosclerosis, multiple sclerosis, and cancer. The arachidonic acid pathway represents one of the major mechanisms for inflammation. Prostaglandins (PGs are lipid products generated from arachidonic acid by the action of cyclooxygenase (COX enzymes and their activity is blocked by nonsteroidal anti-inflammatory drugs (NSAIDS. The use of natural compounds in regulation of COX activity/prostaglandins production is receiving increasing attention. In Mediterranean diet, olive oil and table olives contain significant dietary sources of maslinic acid. Maslinic acid is arising as a safe and novel natural pentacyclic triterpene which has protective effects against chronic inflammatory diseases in various in vivo and in vitro experimental models. Understanding the anti-inflammatory mechanism of maslinic acid is crucial for its development as a potential dietary nutraceutical. This review focuses on the mechanistic action of maslinic acid in regulating the inflammation pathways through modulation of the arachidonic acid metabolism including the nuclear factor-kappa B (NF-κB/COX-2 expression, upstream protein kinase signaling, and phospholipase A2 enzyme activity. Further investigations may provide insight into the mechanism of maslinic acid in regulating the molecular targets and their associated pathways in response to specific inflammatory stimuli.

  1. Inflammation Modulates Murine Venous Thrombosis Resolution In Vivo: Assessment by Multimodal Fluorescence Molecular Imaging

    Science.gov (United States)

    Ripplinger, Crystal M.; Kessinger, Chase W.; Li, Chunqiang; Kim, Jin Won; McCarthy, Jason R.; Weissleder, Ralph; Henke, Peter K.; Lin, Charles P.; Jaffer, Farouc A.

    2012-01-01

    Objective Assessment of thrombus inflammation in vivo could provide new insights into deep vein thrombosis (DVT) resolution. Here we develop and evaluate two integrated fluorescence molecular-structural imaging strategies to quantify DVT-related inflammation and architecture, and to assess the effect of thrombus inflammation on subsequent DVT resolution in vivo. Methods and Results Murine DVT were created with topical 5% FeCl3 application to thigh or jugular veins (n=35). On day 3, mice received macrophage and matrix metalloproteinase (MMP) activity fluorescence imaging agents. On day 4, integrated assessment of DVT inflammation and architecture was performed using confocal fluorescence intravital microscopy (IVM). Day 4 analyses showed robust relationships among in vivo thrombus macrophages, MMP activity, and FITC-dextran deposition (r>0.70, pthrombus inflammation at day 4 predicted the magnitude of DVT resolution at day 6 (pthrombus resolution. PMID:22995524

  2. Inflammation-Related Effects of Diesel Engine Exhaust Particles: Studies on Lung Cells In Vitro

    Science.gov (United States)

    Schwarze, P. E.; Totlandsdal, A. I.; Låg, M.; Refsnes, M.; Holme, J. A.; Øvrevik, J.

    2013-01-01

    Diesel exhaust and its particles (DEP) have been under scrutiny for health effects in humans. In the development of these effects inflammation is regarded as a key process. Overall, in vitro studies report similar DEP-induced changes in markers of inflammation, including cytokines and chemokines, as studies in vivo. In vitro studies suggest that soluble extracts of DEP have the greatest impact on the expression and release of proinflammatory markers. Main DEP mediators of effects have still not been identified and are difficult to find, as fuel and engine technology developments lead to continuously altered characteristics of emissions. Involved mechanisms remain somewhat unclear. DEP extracts appear to comprise components that are able to activate various membrane and cytosolic receptors. Through interactions with receptors, ion channels, and phosphorylation enzymes, molecules in the particle extract will trigger various cell signaling pathways that may lead to the release of inflammatory markers directly or indirectly by causing cell death. In vitro studies represent a fast and convenient system which may have implications for technology development. Furthermore, knowledge regarding how particles elicit their effects may contribute to understanding of DEP-induced health effects in vivo, with possible implications for identifying susceptible groups of people and effect biomarkers. PMID:23509760

  3. Marijuana exposure and pulmonary alterations in primates.

    Science.gov (United States)

    Fligiel, S E; Beals, T F; Tashkin, D P; Paule, M G; Scallet, A C; Ali, S F; Bailey, J R; Slikker, W

    1991-11-01

    As part of a large multidisciplinary study, we examined lungs from 24 periadolescent male rhesus monkeys that were sacrificed seven months after daily marijuana smoke inhalation of 12 months duration. Animals were divided into four exposure groups: A) high-dose (one marijuana cigarette 7 days/week), B) low-dose (one marijuana cigarette 2 days/week and sham smoke 5 days/week), C) placebo (one extracted marijuana cigarette 7 days/week), and D) sham (sham smoke 7 days/week). Lungs, removed intact, were formalin inflated, sectioned and examined. Several pathological alterations, including alveolitis, alveolar cell hyperplasia and granulomatous inflammation, were found with higher frequency in all cigarette-smoking groups. Other alterations, such as bronchiolitis, bronchiolar squamous metaplasia and interstitial fibrosis, were found most frequently in the marijuana-smoking groups. Alveolar cell hyperplasia with focal atypia was seen only in the marijuana-smoking animals. These changes represent mostly early alterations of small airways. Additional follow-up studies are needed to determine their long-term prognostic significance.

  4. PPARgamma activation attenuates T-lymphocyte-dependent inflammation of adipose tissue and development of insulin resistance in obese mice

    Directory of Open Access Journals (Sweden)

    Unger Thomas

    2010-10-01

    Full Text Available Abstract Background Inflammation of adipose tissue (AT has been recently accepted as a first step towards obesity-mediated insulin resistance. We could previously show that mice fed with high fat diet (HFD develop systemic insulin resistance (IR and glucose intolerance (GI associated with CD4-positive T-lymphocyte infiltration into visceral AT. These T-lymphocytes, when enriched in AT, participate in the development of fat tissue inflammation and subsequent recruitment of proinflammatory macrophages. The aim of this work was to elucidate the action of the insulin sensitizing PPARgamma on T-lymphocyte infiltration during development of IR, and comparison of the PPARgamma-mediated anti-inflammatory effects of rosiglitazone and telmisartan in diet-induced obesity model (DIO-model in mice. Methods In order to investigate the molecular mechanisms underlying early development of systemic insulin resistance and glucose intolerance male C57BL/6J mice were fed with high fat diet (HFD for 10-weeks in parallel to the pharmacological intervention with rosiglitazone, telmisartan, or vehicle. Results Both rosiglitazone and telmisartan were able to reduce T-lymphocyte infiltration into AT analyzed by quantitative analysis of the T-cell marker CD3gamma and the chemokine SDF1alpha. Subsequently, both PPARgamma agonists were able to attenuate macrophage infiltration into AT, measured by the reduction of MCP1 and F4/80 expression. In parallel to the reduction of AT-inflammation, ligand-activated PPARgamma improved diet-induced IR and GI. Conclusion Together the present study demonstrates a close connection between PPARgamma-mediated anti-inflammation in AT and systemic improvement of glucose metabolism identifying T-lymphocytes as one cellular mediator of PPARgamma´s action.

  5. Familial idiopathic pulmonary fibrosis. Evidence of lung inflammation in unaffected family members

    International Nuclear Information System (INIS)

    Bitterman, P.B.; Rennard, S.I.; Keogh, B.A.; Wewers, M.D.; Adelberg, S.; Crystal, R.G.

    1986-01-01

    We evaluated 17 clinically unaffected members of three families with an autosomal dominant form of idiopathic pulmonary fibrosis for evidence of alveolar inflammation. Each person in the study was examined by gallium-67 scanning for a general estimate of pulmonary inflammation, and by bronchoalveolar lavage for characterization of the types of recovered cells and their state of activation. Eight of the 17 subjects had evidence of alveolar inflammation on the lavage studies. Supporting data included increased numbers of neutrophils and activated macrophages that released one or more neutrophil chemoattractants, and growth factors for lung fibroblasts--findings similar to those observed in patients with overt idiopathic pulmonary fibrosis. Four of these eight also had a positive gallium scan; in all the other clinically unaffected subjects the scan was normal. During a follow-up of two to four years in seven of the eight subjects who had evidence of inflammation, no clinical evidence of pulmonary fibrosis has appeared. These results indicate that alveolar inflammation occurs in approximately half the clinically unaffected family members at risk of inheriting autosomal dominant idiopathic pulmonary fibrosis. Whether these persons with evidence of pulmonary inflammation but no fibrosis will proceed to have clinically evident pulmonary fibrosis is not yet known

  6. Alterations in Neuronal Activity in Basal Ganglia-Thalamocortical Circuits in the Parkinsonian State

    Directory of Open Access Journals (Sweden)

    Adriana eGalvan

    2015-02-01

    Full Text Available In patients with Parkinson’s disease and in animal models of this disorder, neurons in the basal ganglia and related regions in thalamus and cortex show changes that can be recorded by using electrophysiologic single-cell recording techniques, including altered firing rates and patterns, pathologic oscillatory activity and increased inter-neuronal synchronization. In addition, changes in synaptic potentials or in the joint spiking activities of populations of neurons can be monitored as alterations in local field potentials, electroencephalograms or electrocorticograms. Most of the mentioned electrophysiologic changes are probably related to the degeneration of diencephalic dopaminergic neurons, leading to dopamine loss in the striatum and other basal ganglia nuclei, although degeneration of non-dopaminergic cell groups may also have a role. The altered electrical activity of the basal ganglia and associated nuclei may contribute to some of the motor signs of the disease. We here review the current knowledge of the electrophysiologic changes at the single cell level, the level of local populations of neural elements, and the level of the entire basal ganglia-thalamocortical network in parkinsonism, and discuss the possible use of this information to optimize treatment approaches to Parkinson’s disease, such as deep brain stimulation therapy.

  7. Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state

    Science.gov (United States)

    Galvan, Adriana; Devergnas, Annaelle; Wichmann, Thomas

    2015-01-01

    In patients with Parkinson’s disease and in animal models of this disorder, neurons in the basal ganglia and related regions in thalamus and cortex show changes that can be recorded by using electrophysiologic single-cell recording techniques, including altered firing rates and patterns, pathologic oscillatory activity and increased inter-neuronal synchronization. In addition, changes in synaptic potentials or in the joint spiking activities of populations of neurons can be monitored as alterations in local field potentials (LFPs), electroencephalograms (EEGs) or electrocorticograms (ECoGs). Most of the mentioned electrophysiologic changes are probably related to the degeneration of diencephalic dopaminergic neurons, leading to dopamine loss in the striatum and other basal ganglia nuclei, although degeneration of non-dopaminergic cell groups may also have a role. The altered electrical activity of the basal ganglia and associated nuclei may contribute to some of the motor signs of the disease. We here review the current knowledge of the electrophysiologic changes at the single cell level, the level of local populations of neural elements, and the level of the entire basal ganglia-thalamocortical network in parkinsonism, and discuss the possible use of this information to optimize treatment approaches to Parkinson’s disease, such as deep brain stimulation (DBS) therapy. PMID:25698937

  8. Sex influences in behavior and brain inflammatory and oxidative alterations in mice submitted to lipopolysaccharide-induced inflammatory model of depression.

    Science.gov (United States)

    Mello, Bruna Stefânia Ferreira; Chaves Filho, Adriano José Maia; Custódio, Charllyany Sabino; Cordeiro, Rafaela Carneiro; Miyajima, Fabio; de Sousa, Francisca Cléa Florenço; Vasconcelos, Silvânia Maria Mendes; de Lucena, David Freitas; Macedo, Danielle

    2018-07-15

    Peripheral inflammation induced by lipopolysaccharide (LPS) causes a behavioral syndrome with translational relevance for depression. This mental disorder is twice more frequent among women. Despite this, the majority of experimental studies investigating the neurobiological effects of inflammatory models of depression have been performed in males. Here, we sought to determine sex influences in behavioral and oxidative changes in brain regions implicated in the pathophysiology of mood disorders (hypothalamus, hippocampus and prefrontal cortex - PFC) in adult mice 24 h post LPS challenge. Myeloperoxidase (MPO) activity and interleukin (IL)-1β levels were measured as parameters of active inflammation, while reduced glutathione (GSH) and lipid peroxidation as parameters of oxidative imbalance. We observed that male mice presented behavioral despair, while females anxiety-like alterations. Both sexes were vulnerable to LPS-induced anhedonia. Both sexes presented increased MPO activity in the PFC, while male only in the hippocampus. IL-1β increased in the PFC and hypothalamus of animals of both sexes, while in the hippocampus a relative increase of this cytokine in males compared to females was detected. GSH levels were decreased in all brain areas investigated in animals of both sexes, while increased lipid peroxidation was observed in the hypothalamus of females and in the hippocampus of males after LPS exposure. Therefore, the present study gives additional evidence of sex influence in LPS-induced behavioral alterations and, for the first time, in the oxidative changes in brain areas relevant for mood regulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Altered brain activation and connectivity during anticipation of uncertain threat in trait anxiety.

    Science.gov (United States)

    Geng, Haiyang; Wang, Yi; Gu, Ruolei; Luo, Yue-Jia; Xu, Pengfei; Huang, Yuxia; Li, Xuebing

    2018-06-08

    In the research field of anxiety, previous studies generally focus on emotional responses following threat. A recent model of anxiety proposes that altered anticipation prior to uncertain threat is related with the development of anxiety. Behavioral findings have built the relationship between anxiety and distinct anticipatory processes including attention, estimation of threat, and emotional responses. However, few studies have characterized the brain organization underlying anticipation of uncertain threat and its role in anxiety. In the present study, we used an emotional anticipation paradigm with functional magnetic resonance imaging (fMRI) to examine the aforementioned topics by employing brain activation and general psychophysiological interactions (gPPI) analysis. In the activation analysis, we found that high trait anxious individuals showed significantly increased activation in the thalamus, middle temporal gyrus (MTG), and dorsomedial prefrontal cortex (dmPFC), as well as decreased activation in the precuneus, during anticipation of uncertain threat compared to the certain condition. In the gPPI analysis, the key regions including the amygdala, dmPFC, and precuneus showed altered connections with distributed brain areas including the ventromedial prefrontal cortex (vmPFC), dorsolateral prefrontal cortex (dlPFC), inferior parietal sulcus (IPS), insula, para-hippocampus gyrus (PHA), thalamus, and MTG involved in anticipation of uncertain threat in anxious individuals. Taken together, our findings indicate that during the anticipation of uncertain threat, anxious individuals showed altered activations and functional connectivity in widely distributed brain areas, which may be critical for abnormal perception, estimation, and emotion reactions during the anticipation of uncertain threat. © 2018 Wiley Periodicals, Inc.

  10. Mediators of Inflammation in Polycystic Ovary Syndrome in Relation to Adiposity

    Directory of Open Access Journals (Sweden)

    Thozhukat Sathyapalan

    2010-01-01

    Full Text Available Polycystic ovary syndrome (PCOS is a common endocrine disorder in women of reproductive age group and is associated with a higher cardiovascular risk. Obesity, mainly visceral adiposity, is prevalent in patients with PCOS. Obesity is associated with low-grade inflammation and raised inflammatory cytokines, both of which are also described in patients with PCOS. In this paper, the potential relationships between fat distribution, adipocyte dysfunction and, altered inflammatory markers in patients with PCOS have been discussed.

  11. PPARγ and the Innate Immune System Mediate the Resolution of Inflammation

    Directory of Open Access Journals (Sweden)

    Amanda Croasdell

    2015-01-01

    Full Text Available The resolution of inflammation is an active and dynamic process, mediated in large part by the innate immune system. Resolution represents not only an increase in anti-inflammatory actions, but also a paradigm shift in immune cell function to restore homeostasis. PPARγ, a ligand activated transcription factor, has long been studied for its anti-inflammatory actions, but an emerging body of literature is investigating the role of PPARγ and its ligands (including thiazolidinediones, prostaglandins, and oleanolic acids in all phases of resolution. PPARγ can shift production from pro- to anti-inflammatory mediators by neutrophils, platelets, and macrophages. PPARγ and its ligands further modulate platelet and neutrophil function, decreasing trafficking, promoting neutrophil apoptosis, and preventing platelet-leukocyte interactions. PPARγ alters macrophage trafficking, increases efferocytosis and phagocytosis, and promotes alternative M2 macrophage activation. There are also roles for this receptor in the adaptive immune response, particularly regarding B cells. These effects contribute towards the attenuation of multiple disease states, including COPD, colitis, Alzheimer’s disease, and obesity in animal models. Finally, novel specialized proresolving mediators—eicosanoids with critical roles in resolution—may act through PPARγ modulation to promote resolution, providing another exciting area of therapeutic potential for this receptor.

  12. Evolutionary medicine and bone loss in chronic inflammatory diseases--A theory of inflammation-related osteopenia.

    Science.gov (United States)

    Straub, Rainer H; Cutolo, Maurizio; Pacifici, Roberto

    2015-10-01

    Bone loss is typical in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, pemphigus vulgaris, and others. It is also typical in transplantation-related inflammation and during the process of aging. While we recognized that bone loss is tightly linked to immune system activation or inflamm-aging in the form of acute, chronic active, or chronic smoldering inflammation, bone loss is typically discussed to be an "accident of inflammation." Extensive literature search in PubMed central. Using elements of evolutionary medicine, energy regulation, and neuroendocrine regulation of homeostasis and immune function, we work out that bone waste is an adaptive, evolutionarily positively selected program that is absolutely necessary during acute inflammation. However, when acute inflammation enters a chronic state due to the inability to terminate inflammation (e.g., in autoimmunity or in continuous immunity against microbes), the acute program of bone loss is a misguided adaptive program. The article highlights the complexity of interwoven pathways of osteopenia. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Decreased MORF leads to prolonged endoplasmic reticulum stress in periodontitis-associated chronic inflammation.

    Science.gov (United States)

    Xue, Peng; Li, Bei; An, Ying; Sun, Jin; He, Xiaoning; Hou, Rui; Dong, Guangying; Fei, Dongdong; Jin, Fang; Wang, Qintao; Jin, Yan

    2016-11-01

    The association between inflammation and endoplasmic reticulum (ER) stress has been described in many diseases. However, if and how chronic inflammation governs the unfolded protein response (UPR) and promotes ER homeostasis of chronic inflammatory disease remains elusive. In this study, chronic inflammation resulted in ER stress in mesenchymal stem cells in the setting of periodontitis. Long-term proinflammatory cytokines induced prolonged ER stress and decreased the osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Interestingly, we showed that chronic inflammation decreases the expression of lysine acetyltransferase 6B (KAT6B, also called MORF), a histone acetyltransferase, and causes the upregulation of a key UPR sensor, PERK, which lead to the persistent activation of the UPR in PDLSCs. Furthermore, we found that the activation of UPR mediated by MORF in chronic inflammation contributes to the PERK-related deterioration of the osteogenic differentiation of PDLSCs both in vivo and in vitro. Taken together, our results suggest that chronic inflammation compromises UPR function through MORF-mediated-PERK transcription, which is a previously unrecognized mechanism that contributes to impaired ER function, prolonged ER stress and defective osteogenic differentiation of PDLSCs in periodontitis.

  14. Obesity and cognitive decline: role of inflammation and vascular changes

    Directory of Open Access Journals (Sweden)

    Jason C.D. Nguyen

    2014-11-01

    Full Text Available The incidence of obesity in middle age is increasing markedly, and in parallel the prevalence of metabolic disorders including cardiovascular disease and type II diabetes is also rising. Numerous studies have demonstrated that both obesity and metabolic disorders are associated with poorer cognitive performance, cognitive decline, and dementia. In this review we discuss the effects of obesity on cognitive performance, including both clinical and preclinical observations, and discuss some of the potential mechanisms involved, namely inflammation and vascular and metabolic alterations.

  15. Inflammation, Self-Regulation, and Health: An Immunologic Model of Self-Regulatory Failure.

    Science.gov (United States)

    Shields, Grant S; Moons, Wesley G; Slavich, George M

    2017-07-01

    Self-regulation is a fundamental human process that refers to multiple complex methods by which individuals pursue goals in the face of distractions. Whereas superior self-regulation predicts better academic achievement, relationship quality, financial and career success, and lifespan health, poor self-regulation increases a person's risk for negative outcomes in each of these domains and can ultimately presage early mortality. Given its centrality to understanding the human condition, a large body of research has examined cognitive, emotional, and behavioral aspects of self-regulation. In contrast, relatively little attention has been paid to specific biologic processes that may underlie self-regulation. We address this latter issue in the present review by examining the growing body of research showing that components of the immune system involved in inflammation can alter neural, cognitive, and motivational processes that lead to impaired self-regulation and poor health. Based on these findings, we propose an integrated, multilevel model that describes how inflammation may cause widespread biobehavioral alterations that promote self-regulatory failure. This immunologic model of self-regulatory failure has implications for understanding how biological and behavioral factors interact to influence self-regulation. The model also suggests new ways of reducing disease risk and enhancing human potential by targeting inflammatory processes that affect self-regulation.

  16. Intestinal exposure to PCB 153 induces inflammation via the ATM/NEMO pathway.

    Science.gov (United States)

    Phillips, Matthew C; Dheer, Rishu; Santaolalla, Rebeca; Davies, Julie M; Burgueño, Juan; Lang, Jessica K; Toborek, Michal; Abreu, Maria T

    2018-01-15

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants that adversely affect human health. PCBs bio-accumulate in organisms important for human consumption. PCBs accumulation in the body leads to activation of the transcription factor NF-κB, a major driver of inflammation. Despite dietary exposure being one of the main routes of exposure to PCBs, the gut has been widely ignored when studying the effects of PCBs. We investigated the effects of PCB 153 on the intestine and addressed whether PCB 153 affected intestinal permeability or inflammation and the mechanism by which this occurred. Mice were orally exposed to PCB 153 and gut permeability was assessed. Intestinal epithelial cells (IECs) were collected and evaluated for evidence of genotoxicity and inflammation. A human IEC line (SW480) was used to examine the direct effects of PCB 153 on epithelial function. NF-кB activation was measured using a reporter assay, DNA damage was assessed, and cytokine expression was ascertained with real-time PCR. Mice orally exposed to PCB 153 had an increase in intestinal permeability and inflammatory cytokine expression in their IECs; inhibition of NF-кB ameliorated both these effects. This inflammation was associated with genotoxic damage and NF-кB activation. Exposure of SW480 cells to PCB 153 led to similar effects as seen in vivo. We found that activation of the ATM/NEMO pathway by genotoxic stress was upstream of NF-kB activation. These results demonstrate that oral exposure to PCB 153 is genotoxic to IECs and induces downstream inflammation and barrier dysfunction in the intestinal epithelium. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. 111In-oxine labelled leukocyte scintigraphy in the detection and localization of active inflammation and sepsis

    International Nuclear Information System (INIS)

    Kelly, M.J.; Kalff, V.; Hicks, R.J.; Spicer, W.J.; Spelman, D.W.

    1990-01-01

    Indium-111-oxine labelled leukocyte scintigraphy is a diagnostic technique which has recently become available for clinic evaluation within Australia. The technique was used to assess patients with suspected sepsis of inflammation after other commonly used investigations had failed to confirm a diagnosis. Four patient subgroups were evaluated: fever of unknown origin suspected abdominal or postoperative sepsis; suspected active inflammatory bowel disease; and suspected sepsis or inflammation of bones or joints. The course of all patients was followed for at least three months to establish the accuracy of the technique. The leukocyte labelling procedure took 90 min and imaging was carried out typically 3-6, 24 and occasionally 48 h after reinjection of the labelled leukocytes. Only in one patient labelling of leukocytes was unsuccessful. In the remaining 99 studies, the overall sensitivity of leukocyte scintigraphy was 88% (36 of 41 patients with a proved inflammatory or infective disease focus had positive scan findings);and the specificity was 95% (55 of 58 cases with no proved disease focus had normal scan findings). These results support the use of this method in nuclear medicine for the evaluation of suspected acute sepsis (symptoms less than four weeks' duration), of inflammatory bowel disease and of suspected infections involving appendicular bones which contain no active bone marrow. It is also a useful secondary scintigraphic procedure, after gallium-67-citrate scintigraphy, in patients with suspected infective disorders of more than four weeks' duration. 27 refs., 2 tabs., 5 figs

  18. Improvement of Lipid Profile Is Accompanied by Atheroprotective Alterations in High-Density Lipoprotein Composition Upon Tumor Necrosis Factor Blockade A Prospective Cohort Study in Ankylosing Spondylitis

    NARCIS (Netherlands)

    Eijk, van I.C.; Vries, de M.K.; Levels, J.H.M.; Peters, M.J.L.; Huizer, E.E.; Dijkmans, B.A.C.; Horst - Bruinsma, van der I.E.; Hazenberg, B.P.C.; Stadt, van de R.J.; Wolbink, G.; Nurmohamed, M.T.

    2009-01-01

    Objective. Cardiovascular mortality is increased in ankylosing spondylitis (AS), and inflammation plays an important role. Inflammation deteriorates the lipid profile and alters high-density lipoprotein cholesterol (HDL-c) composition, reflected by increased concentrations of serum amyloid A (SAA)

  19. The resolution of inflammation: Principles and challenges.

    Science.gov (United States)

    Headland, Sarah E; Norling, Lucy V

    2015-05-01

    The concept that chemokines, cytokines and pro-inflammatory mediators act in a co-ordinated fashion to drive the initiation of the inflammatory reaction is well understood. The significance of such networks acting during the resolution of inflammation however is poorly appreciated. In recent years, specific pro-resolving mediators were discovered which activate resolution pathways to return tissues to homeostasis. These mediators are diverse in nature, and include specialized lipid mediators (lipoxins, resolvins, protectins and maresins) proteins (annexin A1, galectins) and peptides, gaseous mediators including hydrogen sulphide, a purine (adenosine), as well as neuromodulator release under the control of the vagus nerve. Functionally, they can act to limit further leukocyte recruitment, induce neutrophil apoptosis and enhance efferocytosis by macrophages. They can also switch macrophages from classical to alternatively activated cells, promote the return of non-apoptotic cells to the lymphatics and help initiate tissue repair mechanisms and healing. Within this review we highlight the essential cellular aspects required for successful tissue resolution, briefly discuss the pro-resolution mediators that drive these processes and consider potential challenges faced by researchers in the quest to discover how inflammation resolves and why chronic inflammation persists. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Evidence for microbial activity at the glass-alteration interface in oceanic basalts

    Science.gov (United States)

    Torsvik, Terje; Furnes, Harald; Muehlenbachs, Karlis; Thorseth, Ingunn H.; Tumyr, Ole

    1998-10-01

    A detailed microbiological and geochemical study related to the alteration of basaltic glass of pillow lavas from the oceanic crust recovered from Hole 896A on the Costa Rica Rift (penetrating 290 m into the volcanic basement) has been carried out. A number of independent observations, pointing to the influence of microbes, may be summarized as follows: (1) Alteration textures are reminiscent of microbes in terms of form and shape. (2) Altered material contains appreciable amounts of C, N and K, and the N/C ratios are comparable to those of nitrogen-starved bacteria. (3) Samples stained with a dye (DAPI) that binds specifically to nucleic acids show the presence of DNA in the altered glass. Further, staining with fluorescent labeled oligonucleotide probes that hybridize specifically to 16S-ribosomal RNA of bacteria and archaea demonstrate their presence in the altered part of the glass. (4) Disseminated carbonate in the glassy margin of the majority of pillows shows δ 13C values, significantly lower than that of fresh basalt, also suggests biological activity. The majority of the samples have δ 18O values indicating temperatures of 20-100°C, which is in the range of mesophilic and thermophilic micro-organisms.

  1. Modulation of ambient temperature promotes inflammation and initiates atherosclerosis in wild type C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Daniel A. Giles

    2016-11-01

    Full Text Available Objectives: Obesity and obesity-associated inflammation is central to a variety of end-organ sequelae including atherosclerosis, a leading cause of death worldwide. Although mouse models have provided important insights into the immunopathogenesis of various diseases, modeling atherosclerosis in mice has proven difficult. Specifically, wild-type (WT mice are resistant to developing atherosclerosis, while commonly used genetically modified mouse models of atherosclerosis are poor mimics of human disease. The lack of a physiologically relevant experimental model of atherosclerosis has hindered the understanding of mechanisms regulating disease development and progression as well as the development of translational therapies. Recent evidence suggests that housing mice within their thermoneutral zone profoundly alters murine physiology, including both metabolic and immune processes. We hypothesized that thermoneutral housing would allow for augmentation of atherosclerosis induction and progression in mice. Methods: ApoE−/− and WT mice were housed at either standard (TS or thermoneutral (TN temperatures and fed either a chow or obesogenic “Western” diet. Analysis included quantification of (i obesity and obesity-associated downstream sequelae, (ii the development and progression of atherosclerosis, and (iii inflammatory gene expression pathways related to atherosclerosis. Results: Housing mice at TN, in combination with an obesogenic “Western” diet, profoundly augmented obesity development, exacerbated atherosclerosis in ApoE−/− mice, and initiated atherosclerosis development in WT mice. This increased disease burden was associated with altered lipid profiles, including cholesterol levels and fractions, and increased aortic plaque size. In addition to the mild induction of atherosclerosis, we similarly observed increased levels of aortic and white adipose tissue inflammation and increased circulating immune cell expression of pathways

  2. Allergic rhinitis and asthma: inflammation in a one-airway condition

    Directory of Open Access Journals (Sweden)

    Haahtela Tari

    2006-11-01

    Full Text Available Abstract Background Allergic rhinitis and asthma are conditions of airway inflammation that often coexist. Discussion In susceptible individuals, exposure of the nose and lungs to allergen elicits early phase and late phase responses. Contact with antigen by mast cells results in their degranulation, the release of selected mediators, and the subsequent recruitment of other inflammatory cell phenotypes. Additional proinflammatory mediators are released, including histamine, prostaglandins, cysteinyl leukotrienes, proteases, and a variety of cytokines, chemokines, and growth factors. Nasal biopsies in allergic rhinitis demonstrate accumulations of mast cells, eosinophils, and basophils in the epithelium and accumulations of eosinophils in the deeper subepithelium (that is, lamina propria. Examination of bronchial tissue, even in mild asthma, shows lymphocytic inflammation enriched by eosinophils. In severe asthma, the predominant pattern of inflammation changes, with increases in the numbers of neutrophils and, in many, an extension of the changes to involve smaller airways (that is, bronchioli. Structural alterations (that is, remodeling of bronchi in mild asthma include epithelial fragility and thickening of its reticular basement membrane. With increasing severity of asthma there may be increases in airway smooth muscle mass, vascularity, interstitial collagen, and mucus-secreting glands. Remodeling in the nose is less extensive than that of the lower airways, but the epithelial reticular basement membrane may be slightly but significantly thickened. Conclusion Inflammation is a key feature of both allergic rhinitis and asthma. There are therefore potential benefits for application of anti-inflammatory strategies that target both these anatomic sites.

  3. Fatty Acids and NLRP3 Inflammasome-Mediated Inflammation in Metabolic Tissues.

    Science.gov (United States)

    Ralston, Jessica C; Lyons, Claire L; Kennedy, Elaine B; Kirwan, Anna M; Roche, Helen M

    2017-08-21

    Worldwide obesity rates have reached epidemic proportions and significantly contribute to the growing prevalence of metabolic diseases. Chronic low-grade inflammation, a hallmark of obesity, involves immune cell infiltration into expanding adipose tissue. In turn, obesity-associated inflammation can lead to complications in other metabolic tissues (e.g., liver, skeletal muscle, pancreas) through lipotoxicity and inflammatory signaling networks. Importantly, although numerous signaling pathways are known to integrate metabolic and inflammatory processes, the nucleotide-binding and oligomerization domain-like receptor, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome is now noted to be a key regulator of metabolic inflammation. The NLRP3 inflammasome can be influenced by various metabolites, including fatty acids. Specifically, although saturated fatty acids may promote NLRP3 inflammasome activation, monounsaturated fatty acids and polyunsaturated fatty acids have recently been shown to impede NLRP3 activity. Therefore, the NLRP3 inflammasome and associated metabolic inflammation have key roles in the relationships among fatty acids, metabolites, and metabolic disease. This review focuses on the ability of fatty acids to influence inflammation and the NLRP3 inflammasome across numerous metabolic tissues in the body. In addition, we explore some perspectives for the future, wherein recent work in the immunology field clearly demonstrates that metabolic reprogramming defines immune cell functionality. Although there is a paucity of information about how diet and fatty acids modulate this process, it is possible that this will open up a new avenue of research relating to nutrient-sensitive metabolic inflammation.

  4. Review on liver inflammation and antiinflammatory activity of Andrographis paniculata for hepatoprotection.

    Science.gov (United States)

    Chua, Lee Suan

    2014-11-01

    Till to date, the advancement of medical science and technology is still unable to provide inclusive treatment to liver inflammation caused by neither microbial invasion nor antibiotics nor environmental toxins. Therefore, this article provides the basic knowledge of liver inflammation up to the cellular level and its current medical treatment for inflammatory symptom suppression. Because of the adverse effects of drug treatment, people start looking for comprehensive alternative nowadays. Herbal medicine is believed to be the best of choice because it is being practiced until now for centuries. Although numerous herbal plants have been reported for their efficacies in liver protection, Andrographis paniculata is the most widely used herb for hepatoprotection, particularly in Ayurveda and traditional Chinese medicine. This review covers the significant observation on the biochemical responses due to the experimental induction of liver damage in vitro and in vivo using the marker compound of the herb, namely andrographolide and its derivatives. The standardized extract of A. paniculata with the right phytochemical composition of diterpenic labdanes is likely to have tremendous potential for the development of hepatoprotective medicine. This standardized herbal medicine may not provide immediate remedy, but it can be considered as a comprehensive therapy for liver inflammation. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Crosstalk between inflammation, iron metabolism and endothelial function in Behçet's disease.

    Science.gov (United States)

    Oliveira, Rita; Napoleão, Patricia; Banha, João; Paixão, Eleonora; Bettencourt, Andreia; da Silva, Berta Martins; Pereira, Dina; Barcelos, Filipe; Teixeira, Ana; Patto, José Vaz; Viegas-Crespo, Ana Maria; Costa, Luciana

    2014-01-01

    Behçet's disease (BD) is a rare chronic vasculitis of unclear etiology. It has been suggested that inflammatory response has an important role in BD pathophysiology. Herein, we aimed to study the interplay between inflammation, iron metabolism and endothelial function in BD and search for its putative association with disease activity. Twenty five patients clinically diagnosed with BD were selected and twenty four healthy age-sex matched individuals participated as controls. Results showed an increase of total number of circulating white blood cells and neutrophils, serum transferrin, total iron binding capacity, mieloperoxidase (MPO), ceruloplasmin (Cp), C reactive protein, β2 microglobulin and Cp surface expression in peripheral blood monocytes in BD patients comparatively to healthy individuals (p < 0,05). Of notice, the alterations observed were associated to disease activity status. No significant differences between the two groups were found in serum nitric oxide concentration. The results obtained suggest an important contribution from innate immunity in the pathogenesis of this disease. In particular, surface expression of leukocyte-derived Cp may constitute a new and relevant biomarker to understand BD etiology.

  6. Camel Milk Beneficial Effects on Treating Gentamicin Induced Alterations in Rats

    Directory of Open Access Journals (Sweden)

    Abdulrahman K. Al-Asmari

    2014-01-01

    Full Text Available The potential effect of camel milk (CM against gentamicin (GM induced biochemical changes in the rat serum was evaluated. Four groups of six albino rats were used for control, CM fed, injected with GM(i.p., and then fed and injected with GM. The results showed that the administration of GM significantly altered the levels of aspartate aminotransferase (AST, alanine aminotransferase (ALT, alkaline phosphatase (ALP, and lactate dehydrogenase (LDH activity in rat serum. CM restored these parameters to almost their normal range in group IV. Additionally, the present study showed that injection of rats with gentamicin caused an increase in malondialdehyde (MDA and myeloperoxidase (MPO activity while the antioxidant enzymes like superoxide dismutase (SOD and glutathione s-transferase (GST activity decreased significantly (P≤0.05. Administration of CM significantly (P≤0.05 inhibited the formation of MDA and activity of MPO and upregulated the antioxidant enzymes (SOD and GST activity. The overall findings of this study demonstrated that pretreatment with CM gave protection against GM induced hepatic damage possibly by inhibiting oxidative stress and inflammation, and hence camel milk can be identified as a new therapeutic agent.

  7. Oxygen free radical altered immunoglobin G in the etiopathogenesis of rheumatoid arthritis

    NARCIS (Netherlands)

    H.A. Kleinveld (Henk)

    1990-01-01

    textabstractThe particular association of RA with anti-lgG antibodies suggests an important role of lgG in the etiology and pathology of RA. One of the suggested mechanisms by which lgG could be altered is exposure to oxygen free radicals. During inflammation large amounts of oxygen free radicals

  8. Early markers of airways inflammation and occupational asthma: Rationale, study design and follow-up rates among bakery, pastry and hairdressing apprentices

    Directory of Open Access Journals (Sweden)

    Hannhart Bernard

    2009-04-01

    Full Text Available Abstract Background Occupational asthma is a common type of asthma caused by a specific agent in the workplace. The basic alteration of occupational asthma is airways inflammation. Although most patients with occupational asthma are mature adults, there is evidence that airways inflammation starts soon after inception of exposure, including during apprenticeship. Airways hyper responsiveness to methacholine is a valid surrogate marker of airways inflammation, which has proved useful in occupational epidemiology. But it is time-consuming, requires active subject's cooperation and is not readily feasible. Other non-invasive and potentially more useful tests include the forced oscillation technique, measurement of fraction exhaled nitric oxide, and eosinophils count in nasal lavage fluid. Methods and design This study aims to investigate early development of airways inflammation and asthma-like symptoms in apprentice bakers, pastry-makers and hairdressers, three populations at risk of occupational asthma whose work-related exposures involve agents of different nature. The objectives are to (i examine the performance of the non-invasive tests cited above in detecting early airways inflammation that might eventually develop into occupational asthma; and (ii evaluate whether, and how, constitutional (e.g. atopy and behavioural (e.g. smoking risk factors for occupational asthma modulate the effects of allergenic and/or irritative substances involved in these occupations. This paper presents the study rationale and detailed protocol. Discussion Among 441 volunteers included at the first visit, 354 attended the fourth one. Drop outs were investigated and showed unrelated to the study outcome. Sample size and follow-up participation rates suggest that the data collected in this study will allow it to meet its objectives.

  9. Whole blood gene expression in adolescent chronic fatigue syndrome: an exploratory cross-sectional study suggesting altered B cell differentiation and survival.

    Science.gov (United States)

    Nguyen, Chinh Bkrong; Alsøe, Lene; Lindvall, Jessica M; Sulheim, Dag; Fagermoen, Even; Winger, Anette; Kaarbø, Mari; Nilsen, Hilde; Wyller, Vegard Bruun

    2017-05-11

    Chronic fatigue syndrome (CFS) is a prevalent and disabling condition affecting adolescents. The pathophysiology is poorly understood, but immune alterations might be an important component. This study compared whole blood gene expression in adolescent CFS patients and healthy controls, and explored associations between gene expression and neuroendocrine markers, immune markers and clinical markers within the CFS group. CFS patients (12-18 years old) were recruited nation-wide to a single referral center as part of the NorCAPITAL project. A broad case definition of CFS was applied, requiring 3 months of unexplained, disabling chronic/relapsing fatigue of new onset, whereas no accompanying symptoms were necessary. Healthy controls having comparable distribution of gender and age were recruited from local schools. Whole blood samples were subjected to RNA sequencing. Immune markers were blood leukocyte counts, plasma cytokines, serum C-reactive protein and immunoglobulins. Neuroendocrine markers encompassed plasma and urine levels of catecholamines and cortisol, as well as heart rate variability indices. Clinical markers consisted of questionnaire scores for symptoms of post-exertional malaise, inflammation, fatigue, depression and trait anxiety, as well as activity recordings. A total of 29 CFS patients and 18 healthy controls were included. We identified 176 genes as differentially expressed in patients compared to controls, adjusting for age and gender factors. Gene set enrichment analyses suggested impairment of B cell differentiation and survival, as well as enhancement of innate antiviral responses and inflammation in the CFS group. A pattern of co-expression could be identified, and this pattern, as well as single gene transcripts, was significantly associated with indices of autonomic nervous activity, plasma cortisol, and blood monocyte and eosinophil counts. Also, an association with symptoms of post-exertional malaise was demonstrated. Adolescent CFS is

  10. Prescribing Optimal Nutrition and Physical Activity as “First-Line” Interventions for Best Practice Management of Chronic Low-Grade Inflammation Associated with Osteoarthritis: Evidence Synthesis

    Directory of Open Access Journals (Sweden)

    Elizabeth Dean

    2012-01-01

    Full Text Available Low-grade inflammation and oxidative stress underlie chronic osteoarthritis. Although best-practice guidelines for osteoarthritis emphasize self-management including weight control and exercise, the role of lifestyle behavior change to address chronic low-grade inflammation has not been a focus of first-line management. This paper synthesizes the literature that supports the idea in which the Western diet and inactivity are proinflammatory, whereas a plant-based diet and activity are anti-inflammatory, and that low-grade inflammation and oxidative stress underlying osteoarthritis often coexist with lifestyle-related risk factors and conditions. We provide evidence-informed recommendations on how lifestyle behavior change can be integrated into “first-line” osteoarthritis management through teamwork and targeted evidence-based interventions. Healthy living can be exploited to reduce inflammation, oxidative stress, and related pain and disability and improve patients’ overall health. This approach aligns with evidence-based best practice and holds the promise of eliminating or reducing chronic low-grade inflammation, attenuating disease progression, reducing weight, maximizing health by minimizing a patient’s risk or manifestations of other lifestyle-related conditions hallmarked by chronic low-grade inflammation, and reducing the need for medications and surgery. This approach provides an informed cost effective basis for prevention, potential reversal, and management of signs and symptoms of chronic osteoarthritis and has implications for research paradigms in osteoarthritis.

  11. Depressed gut? The microbiota-diet-inflammation trialogue in depression.

    Science.gov (United States)

    Koopman, Margreet; El Aidy, Sahar

    2017-09-01

    According to the WHO reports, around 350 million people worldwide suffer from depression. Despite its high prevalence, the complex interaction of multiple mechanisms underlying depression still needs to be elucidated. Over the course of the last few years, several neurobiological alterations have been linked to the development and maintenance of depression. One basic process that seems to link many of these findings is inflammation. Chronic inflammation has been associated with both biological factors such as excessive neurotransmitter concentrations as well as psychological processes such as adult stress reactivity and a history of childhood trauma. As a balanced microbial community, modulated by diet, is a key regulator of the host physiology, it seems likely that gut microbiota plays a role in depression. The review summarizes the existent literature on this emerging research field and provides a comprehensive overview of the multifaceted links between the microbiota, diet, and depression. Several pathways linking early life trauma, pharmacological treatment effects, and nutrition to the microbiome in depression are described aiming to foster the psychotherapeutic treatment of depressed patients by interventions targeting the microbiota.

  12. Neurogenic inflammation: a study of rat trigeminal ganglion

    DEFF Research Database (Denmark)

    Kristiansen, Kim Anker; Edvinsson, Lars

    2010-01-01

    Calcitonin gene-related peptide (CGRP) is linked to neurogenic inflammation and to migraine. Activation of the trigeminovascular system plays a prominent role during migraine attacks with the release of CGRP. The trigeminal ganglion (TG) contains three main cell types: neurons, satellite glial...... cells (SGC) and Schwann cells; the first two have before been studied in vitro separately. Culture of rat TG provides a method to induce inflammation and the possibility to evaluate the different cell types in the TG simultaneously. We investigated expression levels of various inflammatory cytokines...

  13. Clinical Causes of Inflammation in Peritoneal Dialysis Patients

    Directory of Open Access Journals (Sweden)

    Yeoungjee Cho

    2014-01-01

    Full Text Available Inflammation at both systemic and local intraperitoneal levels commonly affects peritoneal dialysis (PD patients. Interest in inflammatory markers as targets of therapeutic intervention has been considerable as they are recognised as predictors of poor clinical outcomes. However, prior to embarking on strategies to reduce inflammatory burden, it is of paramount importance to define the underlying processes that drive the chronic active inflammatory status. The present review aims to comprehensively describe clinical causes of inflammation in PD patients to which potential future strategies may be targeted.

  14. Inflammation and hypoxia in the kidney: friends or foes?

    Science.gov (United States)

    Haase, Volker H

    2015-08-01

    Hypoxic injury is commonly associated with inflammatory-cell infiltration, and inflammation frequently leads to the activation of cellular hypoxia response pathways. The molecular mechanisms underlying this cross-talk during kidney injury are incompletely understood. Yamaguchi and colleagues identify CCAAT/enhancer-binding protein δ as a cytokine- and hypoxia-regulated transcription factor that fine-tunes hypoxia-inducible factor-1 signaling in renal epithelial cells and thus provide a novel molecular link between hypoxia and inflammation in kidney injury.

  15. Soyasaponins can blunt inflammation by inhibiting the reactive oxygen species-mediated activation of PI3K/Akt/NF-kB pathway.

    Science.gov (United States)

    Zha, Longying; Chen, Jiading; Sun, Suxia; Mao, Limei; Chu, Xinwei; Deng, Hong; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Cao, Wenhong

    2014-01-01

    We and others have recently shown that soyasaponins abundant in soybeans can decrease inflammation by suppressing the nuclear factor kappa B (NF-kB)-mediated inflammation. However, the exact molecular mechanisms by which soyasaponins inhibit the NF-kB pathway have not been established. In this study in macrophages, soyasaponins (A1, A2 and I) inhibited the lipopolysaccharide (LPS)-induced release of inflammatory marker prostaglandin E2 (PGE2) to a similar extent as the NF-kB inhibitor (BAY117082). Soyasaponins (A1, A2 and I) also suppressed the LPS-induced expression of cyclooxygenase 2 (COX-2), another inflammatory marker, in a dose-dependent manner by inhibiting NF-kB activation. In defining the associated mechanisms, we found that soyasaponins (A1, A2 and I) blunted the LPS-induced IKKα/β phosphorylation, IkB phosphorylation and degradation, and NF-kB p65 phosphorylation and nuclear translocation. In studying the upstream targets of soyasaponins on the NF-kB pathway, we found that soyasaponins (A1, A2 and I) suppressed the LPS-induced activation of PI3K/Akt similarly as the PI3K inhibitor LY294002, which alone blocked the LPS-induced activation of NF-kB. Additionally, soyasaponins (A1, A2 and I) reduced the LPS-induced production of reactive oxygen species (ROS) to the same extent as the anti-oxidant N-acetyl-L-cysteine, which alone inhibited the LPS-induced phosphorylation of Akt, IKKα/β, IkBα, and p65, transactivity of NF-kB, PGE2 production, and malondialdehyde production. Finally, our results show that soyasaponins (A1, A2 and I) elevated SOD activity and the GSH/GSSG ratio. Together, these results show that soyasaponins (A1, A2 and I) can blunt inflammation by inhibiting the ROS-mediated activation of the PI3K/Akt/NF-kB pathway.

  16. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    International Nuclear Information System (INIS)

    Permana, Paska A.; Menge, Christopher; Reaven, Peter D.

    2006-01-01

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-κB) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-κB inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity

  17. Motivation alters response bias and neural activation patterns in a perceptual decision-making task.

    Science.gov (United States)

    Reckless, G E; Bolstad, I; Nakstad, P H; Andreassen, O A; Jensen, J

    2013-05-15

    Motivation has been demonstrated to affect individuals' response strategies in economic decision-making, however, little is known about how motivation influences perceptual decision-making behavior or its related neural activity. Given the important role motivation plays in shaping our behavior, a better understanding of this relationship is needed. A block-design, continuous performance, perceptual decision-making task where participants were asked to detect a picture of an animal among distractors was used during functional magnetic resonance imaging (fMRI). The effect of positive and negative motivation on sustained activity within regions of the brain thought to underlie decision-making was examined by altering the monetary contingency associated with the task. In addition, signal detection theory was used to investigate the effect of motivation on detection sensitivity, response bias and response time. While both positive and negative motivation resulted in increased sustained activation in the ventral striatum, fusiform gyrus, left dorsolateral prefrontal cortex (DLPFC) and ventromedial prefrontal cortex, only negative motivation resulted in the adoption of a more liberal, closer to optimal response bias. This shift toward a liberal response bias correlated with increased activation in the left DLPFC, but did not result in improved task performance. The present findings suggest that motivation alters aspects of the way perceptual decisions are made. Further, this altered response behavior is reflected in a change in left DLPFC activation, a region involved in the computation of perceptual decisions. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Plasma endocannabinoid levels in lean, overweight and obese humans: relationships with intestinal permeability markers, inflammation and incretin secretion.

    Science.gov (United States)

    Little, Tanya J; Cvijanovic, Nada; DiPatrizio, Nicholas V; Argueta, Donovan A; Rayner, Christopher K; Feinle-Bisset, Christine; Young, Richard L

    2018-02-13

    Intestinal production of endocannabinoid and oleoylethanolamide (OEA) is impaired in high-fat diet/obese rodents, leading to reduced satiety. Such diets also alter the intestinal microbiome in association with enhanced intestinal permeability and inflammation, however little is known of these effects in humans. This study aimed to: (i) evaluate effects of lipid on plasma anandamide (AEA), 2-arachidonyl-sn-glycerol (2-AG) and OEA in humans, and (ii) examine relationships with intestinal permeability, inflammation markers and incretin hormone secretion. 20 lean, 18 overweight and 19 obese participants underwent intraduodenal Intralipid® infusion (2 kcal/min) with collection of endoscopic duodenal biopsies and blood. Plasma AEA, 2-AG, and OEA (HPLC/tandem mass spectrometry), tumour necrosis factor-α (TNF-α), glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) (multiplex), and duodenal expression of occludin, zona-occludin-1 (ZO-1), intestinal-alkaline-phosphatase (IAP), and toll-like receptor-4 (TLR4) (RT-PCR), were assessed. Fasting plasma AEA was increased in obese, compared with lean and overweight (Plean (Plean and overweight. The relationships between plasma AEA with duodenal ZO-1 and IAP, and GIP, suggest that altered endocannabinoid signalling may contribute to changes in intestinal permeability, inflammation and incretin release in human obesity.

  19. Regulation of Laminin γ2 Expression by CDX2 in Colonic Epithelial Cells Is Impaired During Active Inflammation

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Soendergaard, Christoffer; Jørgensen, Steffen

    2017-01-01

    and to assess the influence of inflammation. Transcriptional regulation of LAMC2 was examined by reporter gene assays, overexpression, and shRNA-mediated knock-down of CDX2. CDX2-DNA interactions were assessed by chromatin immunoprecipitation on Caco-2 cells without or with TNF-α, as well as in purified colonic......The expression of Caudal-related homeobox transcription factor 2 (CDX2) is impaired by tumor necrosis factor-α (TNF-α)-mediated activation of nuclear factor-κB (NF-κB) in ulcerative colitis (UC). Laminin subunit γ2 (LAMC2) is an epithelial basement membrane protein implicated in cell migration......, proliferation, differentiation, as well as tumor invasion and intestinal inflammation, and its expression is enhanced by TNF-α in a NF-κB-dependent regulation of the recently identified LAMC2 enhancer. The aim was to determine whether CDX2 is involved in the basal regulation of LAMC2 in epithelial cells...

  20. Memory Deficits Induced by Inflammation Are Regulated by α5-Subunit-Containing GABAA Receptors

    Directory of Open Access Journals (Sweden)

    Dian-Shi Wang

    2012-09-01

    Full Text Available Systemic inflammation causes learning and memory deficits through mechanisms that remain poorly understood. Here, we studied the pathogenesis of memory loss associated with inflammation and found that we could reverse memory deficits by pharmacologically inhibiting α5-subunit-containing γ-aminobutyric acid type A (α5GABAA receptors and deleting the gene associated with the α5 subunit. Acute inflammation reduces long-term potentiation, a synaptic correlate of memory, in hippocampal slices from wild-type mice, and this reduction was reversed by inhibition of α5GABAA receptor function. A tonic inhibitory current generated by α5GABAA receptors in hippocampal neurons was increased by the key proinflammatory cytokine interleukin-1β through a p38 mitogen-activated protein kinase signaling pathway. Interleukin-1β also increased the surface expression of α5GABAA receptors in the hippocampus. Collectively, these results show that α5GABAA receptor activity increases during inflammation and that this increase is critical for inflammation-induced memory deficits.

  1. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1β-induced chronic inflammation.

    Science.gov (United States)

    Liang, Wen; Lindeman, Jan H; Menke, Aswin L; Koonen, Debby P; Morrison, Martine; Havekes, Louis M; van den Hoek, Anita M; Kleemann, Robert

    2014-05-01

    The nature of the chronic inflammatory component that drives the development of non-alcoholic steatohepatitis (NASH) is unclear and possible inflammatory triggers have not been investigated systematically. We examined the effect of non-metabolic triggers (lipopolysaccharide (LPS), interleukin-1β (IL-1β), administered by slow-release minipumps) and metabolic dietary triggers (carbohydrate, cholesterol) of inflammation on the progression of bland liver steatosis (BS) to NASH. Transgenic APOE3*Leiden.huCETP (APOE3L.CETP) mice fed a high-fat diet (HFD) developed BS after 10 weeks. Then, inflammatory triggers were superimposed or not (control) for six more weeks. Mouse livers were analyzed with particular emphasis on hallmarks of inflammation which were defined in human liver biopsies with and without NASH. Livers of HFD-treated control mice remained steatotic and did not progress to NASH. All four inflammatory triggers activated hepatic nuclear factor-κB (NF-κB) significantly and comparably (≥5-fold). However, HFD+LPS or HFD+IL-1β did not induce a NASH-like phenotype and caused intrahepatic accumulation of almost exclusively mononuclear cells. By contrast, mice treated with metabolic triggers developed NASH, characterized by enhanced steatosis, hepatocellular hypertrophy, and formation of mixed-type inflammatory foci containing myeloperoxidase-positive granulocytes (neutrophils) as well as mononuclear cells, essentially as observed in human NASH. Specific for the metabolic inducers was an activation of the proinflammatory transcription factor activator protein-1 (AP-1), neutrophil infiltration, and induction of risk factors associated with human NASH, that is, dyslipidemia (by cholesterol) and insulin resistance (by carbohydrate). In conclusion, HFD feeding followed by NF-κB activation per se (LPS, IL-1β) does not promote the transition from BS to NASH. HFD feeding followed by metabolically evoked inflammation induces additional inflammatory components

  2. Expression of scavenger receptor‐AI promotes alternative activation of murine macrophages to limit hepatic inflammation and fibrosis

    Science.gov (United States)

    Labonte, Adam C.; Sung, Sun‐Sang J.; Jennelle, Lucas T.; Dandekar, Aditya P.

    2016-01-01

    The liver maintains an immunologically tolerant environment as a result of continuous exposure to food and bacterial constituents from the digestive tract. Hepatotropic pathogens can take advantage of this niche and establish lifelong chronic infections causing hepatic fibrosis and hepatocellular carcinoma. Macrophages (Mϕ) play a critical role in regulation of immune responses to hepatic infection and regeneration of tissue. However, the factors crucial for Mϕ in limiting hepatic inflammation or resolving liver damage have not been fully understood. In this report, we demonstrate that expression of C‐type lectin receptor scavenger receptor‐AI (SR‐AI) is crucial for promoting M2‐like Mϕ activation and polarization during hepatic inflammation. Liver Mϕ uniquely up‐regulated SR‐AI during hepatotropic viral infection and displayed increased expression of alternative Mϕ activation markers, such as YM‐1, arginase‐1, and interleukin‐10 by activation of mer receptor tyrosine kinase associated with inhibition of mammalian target of rapamycin. Expression of these molecules was reduced on Mϕ obtained from livers of infected mice deficient for the gene encoding SR‐AI (msr1). Furthermore, in vitro studies using an SR‐AI‐deficient Mϕ cell line revealed impeded M2 polarization and decreased phagocytic capacity. Direct stimulation with virus was sufficient to activate M2 gene expression in the wild‐type (WT) cell line, but not in the knockdown cell line. Importantly, tissue damage and fibrosis were exacerbated in SR‐AI–/– mice following hepatic infection and adoptive transfer of WT bone‐marrow–derived Mϕ conferred protection against fibrosis in these mice. Conclusion: SR‐AI expression on liver Mϕ promotes recovery from infection‐induced tissue damage by mediating a switch to a proresolving Mϕ polarization state. (Hepatology 2017;65:32‐43). PMID:27770558

  3. Inflammation and Tissue Remodeling in the Bladder and Urethra in Feline Interstitial Cystitis

    Directory of Open Access Journals (Sweden)

    F. Aura Kullmann

    2018-04-01

    Full Text Available Interstitial cystitis/bladder pain syndrome (IC/BPS is a debilitating chronic disease of unknown etiology. A naturally occurring disease termed feline interstitial cystitis (FIC reproduces many features of IC/BPS patients. To gain insights into mechanisms underlying IC/BPS, we investigated pathological changes in the lamina propria (LP of the bladder and proximal urethra in cats with FIC, using histological and molecular methods. Compared to control cat tissue, we found an increased number of de-granulated mast cells, accumulation of leukocytes, increased cyclooxygenase (COX-1 expression in the bladder LP, and increased COX-2 expression in the urethra LP from cats with FIC. We also found increased suburothelial proliferation, evidenced by mucosal von Brunn’s nests, neovascularization and alterations in elastin content. Scanning electron microscopy revealed normal appearance of the superficial urethral epithelium, including the neuroendocrine cells (termed paraneurons, in FIC urethrae. Together, these histological findings suggest the presence of chronic inflammation of unknown origin leading to tissue remodeling. Since the mucosa functions as part of a “sensory network” and urothelial cells, nerves and other cells in the LP are influenced by the composition of the underlying tissues including the vasculature, the changes observed in the present study may alter the communication of sensory information between different cellular components. This type of mucosal signaling can also extend to the urethra, where recent evidence has revealed that the urethral epithelium is likely to be part of a signaling system involving paraneurons and sensory nerves. Taken together, our data suggest a more prominent role for chronic inflammation and tissue remodeling than previously thought, which may result in alterations in mucosal signaling within the urinary bladder and proximal urethra that may contribute to altered sensations and pain in cats and humans

  4. The exploitation of inflammation in photodynamic therapy of pleural cancer (Conference Presentation)

    Science.gov (United States)

    Davis, Richard W.; Miller, Joann; Houser, Cassandra L.; Klampatsa, Astero; Jenkins, Tim; Cengel, Keith A.; Albelda, Steven M.; Busch, Theresa M.

    2017-02-01

    The onset of inflammation is a well-known physiology in tumors treated with photodynamic therapy (PDT). After PDT, the release of danger signals causes an influx of neutrophils, activation of dendritic cells, and an eventual initiation of the adaptive immune response. However, inflammation also lies at a crucial fulcrum for treatment outcome, as it can stimulate the expression of resistance factors. Therefore, effective treatment with PDT requires an understanding of the holistic contribution of inflammation. Within, we outline two means of studying tumor inflammation in the setting of PDT. Experiments are conducted in murine models of mesothelioma, including those that incorporate surgery prior to PDT or pleural propagation of the disease. First, we use a chemiluminescent agent, luminol, to detect the influx of neutrophils by in vivo molecular imaging. This longitudinal approach allows for the repeated non-invasive monitoring of PDT-induced neutrophil influx. Data clearly identify protocol-specific differences in tumor-associated neutrophil activity. Second, we describe the application of cone-beam CT to detect the fibrosis associated with murine orthotropic mesothelioma models. This approach incorporates novel methods in image segmentation to accurately identify diffuse disease in the thoracic cavity. These studies lay the foundation for future research to correlate long-term response with local PDT-induced inflammation. Such methods in monitoring of inflammation or tumor burden will enable characterization of the consequences of combinatorial therapy (e.g., intraoperative PDT). Resulting data will guide the selection of pharmacological agents or molecular imaging techniques that respectively exploit inflammation for therapeutic or monitoring purposes.

  5. Aerobic Training Improved Low-Grade Inflammation in Obese Women with Intellectual Disability

    Science.gov (United States)

    Ordonez, F. J.; Rosety, M. A.; Camacho, A.; Rosety, I.; Diaz, A. J.; Fornieles, G.; Garcia, N.; Rosety-Rodriguez, M.

    2014-01-01

    Background: Obesity is a major health problem in people with intellectual disabilities. It is also widely accepted that low-grade systemic inflammation associated to obesity plays a key role in the pathogenic mechanism of several disorders. Fortunately, physical activity has shown to improve inflammation in people with metabolic syndrome and type…

  6. Combined laryngeal inflammation and trauma mediate long-lasting immunoreactivity response in the brainstem sensory nuclei in the rat

    Directory of Open Access Journals (Sweden)

    Kristina eSimonyan

    2012-11-01

    Full Text Available Somatosensory feedback from the larynx plays a critical role in regulation of normal upper airway functions, such as breathing, deglutition and voice production, while altered laryngeal sensory feedback is known to elicit a variety of pathological reflex responses, including persistent coughing, dysphonia and laryngospasm. Despite its clinical impact, the central mechanisms underlying the development of pathological laryngeal responses remain poorly understood. We examined the effects of persistent vocal fold (VF inflammation and trauma, as frequent causes of long-lasting modulation of laryngeal sensory feedback, on brainstem immunoreactivity in the rat. Combined VF inflammation and trauma were induced by injection of lipopolysaccharide (LPS solution and compared to VF trauma alone from injection of vehicle solution and to controls without any VF manipulations. Using a c-fos marker, we found significantly increased Fos-like immunoreactivity (FLI in the bilateral intermediate/parvicellular reticular formation (IRF/PCRF with a trend in the left solitary tract nucleus (NTS only in animals with LPS-induced VF inflammation and trauma. Further, FLI in the right NTS was significantly correlated with the severity of LPS-induced VF changes. However, increased brainstem FLI response was not associated with FLI changes in the first-order neurons of the laryngeal afferents located in the nodose and jugular ganglia in either group. Our data indicate that complex VF alterations (i.e., inflammation/trauma vs. trauma alone may cause prolonged excitability of the brainstem nuclei receiving a direct sensory input from the larynx, which, in turn, may lead to (malplastic changes within the laryngeal central sensory control.

  7. Human ecstasy (MDMA) polydrug users have altered brain activation during semantic processing.

    Science.gov (United States)

    Watkins, Tristan J; Raj, Vidya; Lee, Junghee; Dietrich, Mary S; Cao, Aize; Blackford, Jennifer U; Salomon, Ronald M; Park, Sohee; Benningfield, Margaret M; Di Iorio, Christina R; Cowan, Ronald L

    2013-05-01

    Ecstasy (3,4-methylenedioxymethamphetamine [MDMA]) polydrug users have verbal memory performance that is statistically significantly lower than that of control subjects. Studies have correlated long-term MDMA use with altered brain activation in regions that play a role in verbal memory. The aim of our study was to examine the association of lifetime ecstasy use with semantic memory performance and brain activation in ecstasy polydrug users. A total of 23 abstinent ecstasy polydrug users (age = 24.57 years) and 11 controls (age = 22.36 years) performed a two-part functional magnetic resonance imaging (fMRI) semantic encoding and recognition task. To isolate brain regions activated during each semantic task, we created statistical activation maps in which brain activation was greater for word stimuli than for non-word stimuli (corrected p ecstasy polydrug users had greater activation during semantic encoding bilaterally in language processing regions, including Brodmann areas 7, 39, and 40. Of this bilateral activation, signal intensity with a peak T in the right superior parietal lobe was correlated with lifetime ecstasy use (r s = 0.43, p = 0.042). Behavioral performance did not differ between groups. These findings demonstrate that ecstasy polydrug users have increased brain activation during semantic processing. This increase in brain activation in the absence of behavioral deficits suggests that ecstasy polydrug users have reduced cortical efficiency during semantic encoding, possibly secondary to MDMA-induced 5-HT neurotoxicity. Although pre-existing differences cannot be ruled out, this suggests the possibility of a compensatory mechanism allowing ecstasy polydrug users to perform equivalently to controls, providing additional support for an association of altered cerebral neurophysiology with MDMA exposure.

  8. Regulation of NO synthesis, local inflammation, and innate immunity to pathogens by BET family proteins.

    Science.gov (United States)

    Wienerroither, Sebastian; Rauch, Isabella; Rosebrock, Felix; Jamieson, Amanda M; Bradner, James; Muhar, Matthias; Zuber, Johannes; Müller, Mathias; Decker, Thomas

    2014-02-01

    Transcriptional activation of the Nos2 gene, encoding inducible nitric oxide synthase (iNOS), during infection or inflammation requires coordinate assembly of an initiation complex by the transcription factors NF-κB and type I interferon-activated ISGF3. Here we show that infection of macrophages with the intracellular bacterial pathogen Listeria monocytogenes caused binding of the BET proteins Brd2, Brd3, and, most prominently, Brd4 to the Nos2 promoter and that a profound reduction of Nos2 expression occurred in the presence of the BET inhibitor JQ1. RNA polymerase activity at the Nos2 gene was regulated through Brd-mediated C-terminal domain (CTD) phosphorylation at serine 5. Underscoring the critical importance of Brd for the regulation of immune responses, application of JQ1 reduced NO production in mice infected with L. monocytogenes, as well as innate resistance to L. monocytogenes and influenza virus. In a murine model of inflammatory disease, JQ1 treatment increased the colitogenic activity of dextran sodium sulfate (DSS). The data presented in our study suggest that BET protein inhibition in a clinical setting poses the risk of altering the innate immune response to infectious or inflammatory challenge.

  9. Mechanisms underlying ectopic persistent tooth-pulp pain following pulpal inflammation.

    Directory of Open Access Journals (Sweden)

    Shingo Matsuura

    Full Text Available In order to clarify the peripheral mechanisms of ectopic persistent pain in a tooth pulp following pulpal inflammation of an adjacent tooth, masseter muscle activity, phosphorylated extracellular signal-regulated protein kinase (pERK and TRPV1 immunohistochemistries and satellite cell activation using glial fibrillary acidic protein (GFAP immunohistochemistry in the trigeminal ganglion (TG were studied in the rats with molar tooth-pulp inflammation. And, Fluorogold (FG and DiI were also used in a neuronal tracing study to analyze if some TG neurons innervate more than one tooth pulp. Complete Freund's adjuvant (CFA or saline was applied into the upper first molar tooth pulp (M1 in pentobarbital-anesthetized rats, and capsaicin was applied into the upper second molar tooth pulp (M2 on day 3 after the CFA or saline application. Mean EMG activity elicited in the masseter muscle by capsaicin application to M2 was significantly larger in M1 CFA-applied rats compared with M1 vehicle-applied rats. The mean number of pERK-immunoreactive (IR TG cells was significantly larger in M1 CFA-applied rats compared with M1 vehicle-applied rats. Application of the satellite cell inhibitor fluorocitrate (FC into TG caused a significant depression of capsaicin-induced masseter muscle activity and a significant reduction of satellite cell activation. The number of TRPV1-IR TG cells innervating M2 was significantly larger in M1 CFA-applied rats compared with M1 vehicle-applied rats, and that was decreased following FC injection into TG. Furthermore, 6% of TG neurons innervating M1 and/or M2 innervated both M1 and M2. These findings suggest that satellite cell activation following tooth pulp inflammation and innervation of multiple tooth pulps by single TG neurons may be involved in the enhancement of the activity of TG neurons innervating adjacent non-inflamed teeth that also show enhancement of TRPV1 expression in TG neurons, resulting in the ectopic persistent tooth

  10. Effect of physical activity level on biomarkers of inflammation and insulin resistance over 5 years in outpatients with coronary heart disease (from the Heart and Soul Study).

    Science.gov (United States)

    Jarvie, Jennifer L; Whooley, Mary A; Regan, Mathilda C; Sin, Nancy L; Cohen, Beth E

    2014-10-15

    Higher levels of physical activity are associated with lower rates of coronary heart disease (CHD). Previous studies have suggested that this is due partly to lower levels of inflammation and insulin resistance. The aim of this study was to determine whether physical activity level was associated with inflammation or insulin resistance during a 5-year period in outpatients with known CHD. A total of 656 participants from the Heart and Soul Study, a prospective cohort study of outpatients with documented CHD, were evaluated. Self-reported physical activity frequency was assessed at baseline and after 5 years of follow-up. Participants were classified as low versus high activity at each visit, yielding 4 physical activity groups: stable low activity, decreasing activity (high at baseline to low at year 5), increasing activity (low at baseline to high at year 5), and stable high activity. Year 5 markers of inflammation (C-reactive protein [CRP], interleukin-6, and fibrinogen) and insulin resistance (insulin, glucose, and glycated hemoglobin) were compared across the 4 activity groups. After 5 years of follow-up, higher activity was associated with lower mean levels of all biomarkers. In the fully adjusted regression models, CRP, interleukin-6, and glucose remained independently associated with physical activity frequency (log CRP, p for trend across activity groups = 0.03; log interleukin-6, p for trend = 0.01; log glucose, p for trend = 0.003). Subjects with stable high activity typically had the lowest levels of biomarkers. In conclusion, in this novel population of outpatients with known CHD followed for 5 years, higher physical activity frequency was independently associated with lower levels of CRP, interleukin-6, and glucose. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Neonatal GLP1R activation limits adult adiposity by durably altering hypothalamic architecture

    Directory of Open Access Journals (Sweden)

    Andrea V. Rozo

    2017-07-01

    Conclusion: These observations suggest that the acute activation of GLP1R in neonates durably alters hypothalamic architecture to limit adult weight gain and adiposity, identifying GLP1R as a therapeutic target for obesity prevention.

  12. Persisting Inflammation and Chronic Immune Activation but Intact Cognitive Function in HIV-Infected Patients After Long-Term Treatment With Combination Antiretroviral Therapy

    DEFF Research Database (Denmark)

    Pedersen, Karin K; Pedersen, Maria; Gaardbo, Julie C

    2013-01-01

    Impaired cognitive function in HIV-infected patients has been suggested. Treatment with combination antiretroviral therapy (cART) restores CD4⁺ cell counts and suppresses viral replication, but immune activation and inflammation may persist. The aim of the study was to examine if cognitive function...

  13. Transient infection of the zebrafish notochord with E. coli induces chronic inflammation

    Directory of Open Access Journals (Sweden)

    Mai Nguyen-Chi

    2014-07-01

    Full Text Available Zebrafish embryos and larvae are now well-established models in which to study infectious diseases. Infections with non-pathogenic Gram-negative Escherichia coli induce a strong and reproducible inflammatory response. Here, we study the cellular response of zebrafish larvae when E. coli bacteria are injected into the notochord and describe the effects. First, we provide direct evidence that the notochord is a unique organ that is inaccessible to leukocytes (macrophages and neutrophils during the early stages of inflammation. Second, we show that notochord infection induces a host response that is characterised by rapid clearance of the bacteria, strong leukocyte recruitment around the notochord and prolonged inflammation that lasts several days after bacteria clearance. During this inflammatory response, il1b is first expressed in macrophages and subsequently at high levels in neutrophils. Moreover, knock down of il1b alters the recruitment of neutrophils to the notochord, demonstrating the important role of this cytokine in the maintenance of inflammation in the notochord. Eventually, infection of the notochord induces severe defects of the notochord that correlate with neutrophil degranulation occurring around this tissue. This is the first in vivo evidence that neutrophils can degranulate in the absence of a direct encounter with a pathogen. Persistent inflammation, neutrophil infiltration and restructuring of the extracellular matrix are defects that resemble those seen in bone infection and in some chondropathies. As the notochord is a transient embryonic structure that is closely related to cartilage and bone and that contributes to vertebral column formation, we propose infection of the notochord in zebrafish larvae as a new model to study the cellular and molecular mechanisms underlying cartilage and bone inflammation.

  14. The Pla Protease of Yersinia pestis Degrades Fas Ligand to Manipulate Host Cell Death and Inflammation

    Science.gov (United States)

    Caulfield, Adam J.; Walker, Margaret E.; Gielda, Lindsay M.; Lathem, Wyndham W.

    2014-01-01

    SUMMARY Pneumonic plague is a deadly respiratory disease caused by Yersinia pestis. The bacterial protease Pla contributes to disease progression and manipulation of host immunity, but the mechanisms by which this occurs are largely unknown. Here we show that Pla degrades the apoptotic signaling molecule Fas ligand (FasL) to prevent host cell apoptosis and inflammation. Wild-type Y. pestis, but not a Pla mutant (Δpla), degrades FasL, which results in decreased downstream caspase-3/7 activation and reduced apoptosis. Similarly, lungs of mice challenged with wild-type Y. pestis show reduced levels of FasL and activated caspase-3/7 compared to Δpla infection. Consistent with a role for FasL in regulating immune responses, Δpla infection results in aberrant pro-inflammatory cytokine levels. The loss of FasL or inhibition of caspase activity alters host inflammatory responses and enables enhanced Y. pestis outgrowth in the lungs. Thus, by degrading FasL, Y. pestis manipulates host cell death pathways to facilitate infection. PMID:24721571

  15. TRIF Differentially Regulates Hepatic Steatosis and Inflammation/Fibrosis in MiceSummary

    Directory of Open Access Journals (Sweden)

    Ling Yang

    2017-05-01

    Full Text Available Background & Aims: Toll-like receptor 4 (TLR4 signaling is activated through 2 adaptor proteins: MyD88 and TIR-domain containing adaptor-inducing interferon-β (TRIF. TLR4 and MyD88 are crucial in nonalcoholic steatohepatitis (NASH and fibrosis. However, the role of TRIF in TLR4-mediated NASH and fibrosis has been elusive. This study investigated the differential roles of TRIF in hepatic steatosis and inflammation/fibrosis. Methods: A choline-deficient amino acid defined (CDAA diet was used for the mouse NASH model. On this diet, the mice develop hepatic steatosis, inflammation, and fibrosis. TLR4 wild-type and TLR4-/- bone marrow chimeric mice and TRIF-/- mice were fed CDAA or a control diet for 22 weeks. Hepatic steatosis, inflammation, and fibrosis were examined. Results: In the CDAA diet–induced NASH, the mice with wild-type bone marrow had higher alanine aminotransferase and hepatic tumor necrosis factor levels than the mice with TLR4-/- bone marrow. The nonalcoholic fatty liver disease activity score showed that both wild-type and TLR4-/- bone marrow chimeras had reduced hepatic steatosis, and that both types of chimeras had similar levels of inflammation and hepatocyte ballooning to whole-body wild-type mice. Notably, wild-type recipients showed more liver fibrosis than TLR4-/- recipients. Although TRIF-/- mice showed reduced hepatic steatosis, these mice showed more liver injury, inflammation, and fibrosis than wild-type mice. TRIF-/- stellate cells and hepatocytes produced more C-X-C motif chemokine ligand 1 (CXCL1 and C-C motif chemokine ligand than wild-type cells in response to lipopolysaccharide. Consistently, TRIF-/- mice showed increased CXCL1 and CCL3 expression along with neutrophil and macrophage infiltration, which promotes liver inflammation and injury. Conclusions: In TLR4-mediated NASH, different liver cells have distinct roles in hepatic steatosis, inflammation, and fibrosis. TRIF promotes hepatic

  16. Prolonged Intake of Dietary Lipids Alters Membrane Structure and T Cell Responses in LDLr-/- Mice.

    Science.gov (United States)

    Pollock, Abigail H; Tedla, Nicodemus; Hancock, Sarah E; Cornely, Rhea; Mitchell, Todd W; Yang, Zhengmin; Kockx, Maaike; Parton, Robert G; Rossy, Jérémie; Gaus, Katharina

    2016-05-15

    Although it is recognized that lipids and membrane organization in T cells affect signaling and T cell activation, to what extent dietary lipids alter T cell responsiveness in the absence of obesity and inflammation is not known. In this study, we fed low-density lipoprotein receptor knockout mice a Western high-fat diet for 1 or 9 wk and examined T cell responses in vivo along with T cell lipid composition, membrane order, and activation ex vivo. Our data showed that high levels of circulating lipids for a prolonged period elevated CD4(+) and CD8(+) T cell proliferation and resulted in an increased proportion of CD4(+) central-memory T cells within the draining lymph nodes following induction of contact hypersensitivity. In addition, the 9-wk Western high-fat diet elevated the total phospholipid content and monounsaturated fatty acid level, but decreased saturated phosphatidylcholine and sphingomyelin within the T cells. The altered lipid composition in the circulation, and of T cells, was also reflected by enhanced membrane order at the activation site of ex vivo activated T cells that corresponded to increased IL-2 mRNA levels. In conclusion, dietary lipids can modulate T cell lipid composition and responses in lipoprotein receptor knockout mice even in the absence of excess weight gain and a proinflammatory environment. Copyright © 2016 by The American Association of Immunologists, Inc.

  17. Short-term effect of acute and repeated urinary bladder inflammation on thigmotactic behaviour in the laboratory rat [v1; ref status: indexed, http://f1000r.es/56e

    Directory of Open Access Journals (Sweden)

    Rosemary H Morland

    2015-05-01

    Full Text Available Understanding the non-sensory components of the pain experience is crucial to developing effective treatments for pain conditions. Chronic pain is associated with increased incidence of anxio-depressive disorders, and patients often report feelings of vulnerability which can decrease quality of life. In animal models of pain, observation of behaviours such as thigmotaxis can be used to detect such affective disturbances by exploiting the influence of nociceptive stimuli on the innate behavioural conflict between exploration of a novel space and predator avoidance behaviour. This study investigates whether acute and repeated bladder inflammation in adult female Wistar rats increases thigmotactic behaviour in the open field paradigm, and aims to determine whether this correlates with activation in the central amygdala, as measured by c-Fos immunoreactivity. Additionally, up-regulation of inflammatory mediators in the urinary bladder was measured using RT-qPCR array featuring 92 transcripts to examine how local mediators change under experimental conditions. We found acute but not repeated turpentine inflammation of the bladder increased thigmotactic behaviour (decreased frequency of entry to the inner zone in the open field paradigm, a result that was also observed in the catheter-only instrumentation group. Decreases in locomotor activity were also observed in both models in turpentine and instrumentation groups. No differences were observed in c-Fos activation, although a general increased in activation along the rostro-caudal axis was seen. Inflammatory mediator up-regulation was greatest following acute inflammation, with CCL12, CCL7, and IL-1β significantly up-regulated in both conditions when compared to naïve tissue. These results suggest that acute catheterisation, with or without turpentine inflammation, induces affective alterations detectable in the open field paradigm accompanied by up-regulation of multiple inflammatory mediators.

  18. Increasing Maternal Body Mass Index Is Associated with Systemic Inflammation in the Mother and the Activation of Distinct Placental Inflammatory Pathways1

    Science.gov (United States)

    Aye, Irving L.M.H.; Lager, Susanne; Ramirez, Vanessa I.; Gaccioli, Francesca; Dudley, Donald J.; Jansson, Thomas; Powell, Theresa L.

    2014-01-01

    ABSTRACT Obese pregnant women have increased levels of proinflammatory cytokines in maternal circulation and placental tissues. However, the pathways contributing to placental inflammation in obesity are largely unknown. We tested the hypothesis that maternal body mass index (BMI) was associated with elevated proinflammatory cytokines in maternal and fetal circulations and increased activation of placental inflammatory pathways. A total of 60 women of varying pre-/early pregnancy BMI, undergoing delivery by Cesarean section at term, were studied. Maternal and fetal (cord) plasma were collected for analysis of insulin, leptin, IL-1beta, IL-6, IL-8, monocyte chemoattractant protein (MCP) 1, and TNFalpha by multiplex ELISA. Activation of the inflammatory pathways in the placenta was investigated by measuring the phosphorylated and total protein expression of p38-mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinase (JNK)-MAPK, signal transducer-activated transcription factor (STAT) 3, caspase-1, IL-1beta, IkappaB-alpha protein, and p65 DNA-binding activity. To determine the link between activated placental inflammatory pathways and elevated maternal cytokines, cultured primary human trophoblast (PHT) cells were treated with physiological concentrations of insulin, MCP-1, and TNFalpha, and inflammatory signaling analyzed by Western blot. Maternal BMI was positively correlated with maternal insulin, leptin, MCP-1, and TNFalpha, whereas only fetal leptin was increased with BMI. Placental phosphorylation of p38-MAPK and STAT3, and the expression of IL-1beta protein, were increased with maternal BMI; phosphorylation of p38-MAPK was also correlated with birth weight. In contrast, placental NFkappaB, JNK and caspase-1 signaling, and fetal cytokine levels were unaffected by maternal BMI. In PHT cells, p38-MAPK was activated by MCP-1 and TNFalpha, whereas STAT3 phosphorylation was increased following TNFalpha treatment. Maternal BMI is associated with elevated

  19. Oral Supplementation of Melatonin Protects against Fibromyalgia-Related Skeletal Muscle Alterations in Reserpine-Induced Myalgia Rats.

    Science.gov (United States)

    Favero, Gaia; Trapletti, Valentina; Bonomini, Francesca; Stacchiotti, Alessandra; Lavazza, Antonio; Rodella, Luigi Fabrizio; Rezzani, Rita

    2017-06-29

    Fibromyalgia is a chronic syndrome characterized by widespread musculoskeletal pain and an extensive array of other symptoms including disordered sleep, fatigue, depression and anxiety. Important factors involved in the pathogenic process of fibromyalgia are inflammation and oxidative stress, suggesting that ant-inflammatory and/or antioxidant supplementation might be effective in the management and modulation of this syndrome. Recent evidence suggests that melatonin may be suitable for this purpose due to its well known ant-inflammatory, antioxidant and analgesic effects. Thus, in the current study, the effects of the oral supplementation of melatonin against fibromyalgia-related skeletal muscle alterations were evaluated. In detail, 90 Sprague Dawley rats were randomly treated with reserpine, to reproduce the pathogenic process of fibromyalgia and thereafter they received melatonin. The animals treated with reserpine showed moderate alterations at hind limb skeletal muscles level and had difficulty in moving, together with significant morphological and ultrastructural alterations and expression of inflammatory and oxidative stress markers in the gastrocnemius muscle. Interestingly, melatonin, dose and/or time dependently, reduced the difficulties in spontaneous motor activity and the musculoskeletal morphostructural, inflammatory, and oxidative stress alterations. This study suggests that melatonin in vivo may be an effective tool in the management of fibromyalgia-related musculoskeletal morphofunctional damage.

  20. Neurodevelopment: The Impact of Nutrition and Inflammation During Early to Middle Childhood in Low-Resource Settings.

    Science.gov (United States)

    John, Chandy C; Black, Maureen M; Nelson, Charles A

    2017-04-01

    The early to middle childhood years are a critical period for child neurodevelopment. Nutritional deficiencies, infection, and inflammation are major contributors to impaired child neurodevelopment in these years, particularly in low-resource settings. This review identifies global research priorities relating to nutrition, infection, and inflammation in early to middle childhood neurodevelopment. The research priority areas identified include: (1) assessment of how nutrition, infection, or inflammation in the preconception, prenatal, and infancy periods (or interventions in these periods) affect function in early to middle childhood; (2) assessment of whether effects of nutritional interventions vary by poverty or inflammation; (3) determination of the feasibility of preschool- and school-based integrated nutritional interventions; (4) improved assessment of the epidemiology of infection- and inflammation-related neurodevelopmental impairment (NDI); (5) identification of mechanisms through which infection causes NDI; (6) identification of noninfectious causes of inflammation-related NDI and interventions for causes already identified (eg, environmental factors); and (7) studies on the effects of interactions between nutritional, infectious, and inflammatory factors on neurodevelopment in early to middle childhood. Areas of emerging importance that require additional study include the effects of maternal Zika virus infection, childhood environmental enteropathy, and alterations in the child's microbiome on neurodevelopment in early to middle childhood. Research in these key areas will be critical to the development of interventions to optimize the neurodevelopmental potential of children worldwide in the early to middle childhood years. Copyright © 2017 by the American Academy of Pediatrics.

  1. Autophagy resolves early retinal inflammation in Igf1-deficient mice

    Directory of Open Access Journals (Sweden)

    Ana I. Arroba

    2016-09-01

    Full Text Available Insulin-like growth factor-1 (IGF-1 is a growth factor with differentiating, anti-apoptotic and metabolic functions in the periphery, and anti-inflammatory properties in the nervous system. Mice that have mutations in the Igf1 gene, rendering the gene product inactive (Igf1−/−, present with age-related visual loss accompanied by structural alterations in the first synapses of the retinal pathway. Recent advances have revealed a crucial role of autophagy in immunity and inflammation. Keeping in mind this close relationship, we aimed to decipher these processes in the context of the defects that occur during ageing in the retina of Igf1−/− mice. Tnfa and Il1b mRNAs, and phosphorylation of JNK and p38 MAPK were elevated in the retinas of 6- and 12-month old Igf1−/− mice compared to those in age-matched Igf1+/+ controls. In 6-month-old Igf1−/− retinas, increased mRNA levels of the autophagy mediators Becn1, Atg9, Atg5 and Atg4, decreased p62 (also known as SQSTM1 protein expression together with an increased LC3-II:LC3-I ratio reflected active autophagic flux. However, in retinas from 12-month-old Igf1−/− mice, Nlrp3 mRNA, processing of the IL1β pro-form and immunostaining of active caspase-1 were elevated compared to those in age-matched Igf1+/+ controls, suggesting activation of the inflammasome. This effect concurred with accumulation of autophagosomes and decreased autophagic flux in the retina. Microglia localization and status of activation in the retinas of 12-month-old Igf1+/+ and Igf1−/− mice, analyzed by immunostaining of Cd11b and Iba-1, showed a specific distribution pattern in the outer plexiform layer (OPL, inner plexiform layer (IPL and inner nuclear layer (INL, and revealed an increased number of activated microglia cells in the retina of 12-month-old blind Igf1−/− mice. Moreover, reactive gliosis was exclusively detected in the retinas from 12-month-old blind Igf1−/− mice. In conclusion, this study

  2. Physical Activity Protects the Human Brain against Metabolic Stress Induced by a Postprandial and Chronic Inflammation

    NARCIS (Netherlands)

    Pruimboom, Leo; Raison, Charles L.; Muskiet, Frits A. J.

    2015-01-01

    In recent years, it has become clear that chronic systemic low-grade inflammation is at the root of many, if not all, typically Western diseases associated with the metabolic syndrome. While much focus has been given to sedentary lifestyle as a cause of chronic inflammation, it is less often

  3. STING-IRF3 Triggers Endothelial Inflammation in Response to Free Fatty Acid-Induced Mitochondrial Damage in Diet-Induced Obesity

    Science.gov (United States)

    Mao, Yun; Luo, Wei; Zhang, Lin; Wu, Weiwei; Yuan, Liangshuai; Xu, Hao; Song, Juhee; Fujiwara, Keigi; Abe, Jun-ichi; LeMaire, Scott A.; Wang, Xing Li; Shen, Ying. H.

    2017-01-01

    Objective Metabolic stress in obesity induces endothelial inflammation and activation, which initiates adipose tissue inflammation, insulin resistance, and cardiovascular diseases. However, the mechanisms underlying endothelial inflammation induction are not completely understood. Stimulator of interferon genes (STING) is an important molecule in immunity and inflammation. In the present study, we sought to determine the role of STING in palmitic acid (PA)-induced endothelial activation/inflammation. Approach and Results In cultured endothelial cells, PA treatment activated STING, as indicated by its perinuclear translocation and binding to interferon regulatory factor 3 (IRF3), leading to IRF3 phosphorylation and nuclear translocation. The activated IRF3 bound to the promoter of intercellular adhesion molecule 1 (ICAM-1) and induced ICAM-1 expression and monocyte–endothelial cell adhesion. When analyzing the upstream signaling, we found that PA activated STING by inducing mitochondrial damage. PA treatment caused mitochondrial damage and leakage of mitochondrial DNA (mtDNA) into the cytosol. Through the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS), the mitochondrial damage and leaked cytosolic mtDNA activated the STING-IRF3 pathway and increased ICAM-1 expression. In mice with diet-induced obesity, the STING-IRF3 pathway was activated in adipose tissue. However, STING deficiency (Stinggt/gt) partially prevented diet-induced adipose tissue inflammation, obesity, insulin resistance, and glucose intolerance. Conclusions The mitochondrial damage-cGAS-STING-IRF3 pathway is critically involved in metabolic stress-induced endothelial inflammation. STING may be a potential therapeutic target for preventing cardiovascular diseases and insulin resistance in obese individuals. PMID:28302626

  4. Intermittent hypoxia simulating obstructive sleep apnea causes pulmonary inflammation and activates the Nrf2/HO-1 pathway.

    Science.gov (United States)

    Wang, Yeying; Chai, Yanling; He, Xiaojie; Ai, Li; Sun, Xia; Huang, Yiling; Li, Yongxia

    2017-10-01

    Obstructive sleep apnea (OSA) is a disorder with high morbidity in adults. OSA damages multiple organs and tissues, including the cardiovascular and cerebrovascular systems, the metabolism system, the lungs, liver and heart. OSA-induced damage is earliest and greatest to the pulmonary tissue. The present study established a rat OSA model of differing severity by inducing intermittent hypoxia with different concentrations of O 2 and it was determined that OSA caused a severe oxidative stress response and pulmonary inflammation in a dose-dependent manner. OSA increased serum levels of C-reactive protein and 8-isoprostane and elevated the expression of malondialdehyde, tumor necrosis factor α, interleukin (IL)-1β and IL-6 in the pulmonary tissue. Furthermore, the expression of two important antioxidants, superoxide dismutase and glutathione, was downregulated following intermittent hypoxia. By contrast, levels of cylooxygenase 2 and inducible nitric oxide synthase, which are crucial in the antioxidative response, increased. In addition, OSA activates the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase (OH)-1 antioxidative signaling pathway. Finally, all increases and decreases in levels of inflammatory and antioxidative substances were dependent on oxygen concentrations. Therefore, the present study demonstrated that OSA, simulated by intermittent hypoxia, caused an oxidative stress response and pulmonary inflammation, and activated the canonical antioxidative Nrf2/HO-1 signaling pathway in a dose-dependent manner. These results may facilitate the development of clinical therapies to treat pulmonary diseases caused by OSA.

  5. Topical anti-inflammatory activity of Calea prunifolia HBK (Asteraceae) in the TPA model of mouse ear inflammation

    International Nuclear Information System (INIS)

    Gomez, Milton; Gil, Juan F.

    2011-01-01

    Phytochemical study of Calea prunifolia HBK identified two compounds derived from p-hydroxyacetophenone, the 1-(2-hydroxy-5-(1-methoxyethyl)phenyl)-3-methylbut-2.en-1-one showed a satisfactory anti-inflammatory activity (58.33%), when considering that this is a natural product. Although the two derived compounds are structurally similar, the anti-inflammatory activity of 1-(2-hydroxy-5-methoxyphenyl)-3-methylbut-2-en-1-one was not significant (2.08%). The test was conducted in a model of inflammation induced by topical application of 12-O-tetradecanoylphorbol-13-acetate (TPA) in the ear of mice. The positive control was tested with indomethacin and the negative control was done only with vehicle. These results allow the identification of a pharmacophore group that through molecular modeling studies and organic synthesis can result in compounds with improved anti-inflammatory activity. (author)

  6. Topical anti-inflammatory activity of Calea prunifolia HBK (Asteraceae) in the TPA model of mouse ear inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Milton; Gil, Juan F., E-mail: miltongoba@uniquindio.edu.co [Grupo de Busqueda de Principios Bioactivos, Programa de Quimica, Universidad del Quindio, Armenia (Colombia)

    2011-09-15

    Phytochemical study of Calea prunifolia HBK identified two compounds derived from p-hydroxyacetophenone, the 1-(2-hydroxy-5-(1-methoxyethyl)phenyl)-3-methylbut-2.en-1-one showed a satisfactory anti-inflammatory activity (58.33%), when considering that this is a natural product. Although the two derived compounds are structurally similar, the anti-inflammatory activity of 1-(2-hydroxy-5-methoxyphenyl)-3-methylbut-2-en-1-one was not significant (2.08%). The test was conducted in a model of inflammation induced by topical application of 12-O-tetradecanoylphorbol-13-acetate (TPA) in the ear of mice. The positive control was tested with indomethacin and the negative control was done only with vehicle. These results allow the identification of a pharmacophore group that through molecular modeling studies and organic synthesis can result in compounds with improved anti-inflammatory activity. (author)

  7. The receptor RAGE: Bridging inflammation and cancer

    Directory of Open Access Journals (Sweden)

    Hess Jochen

    2009-05-01

    Full Text Available Abstract The receptor for advanced glycation end products (RAGE is a single transmembrane receptor of the immunoglobulin superfamily that is mainly expressed on immune cells, neurons, activated endothelial and vascular smooth muscle cells, bone forming cells, and a variety of cancer cells. RAGE is a multifunctional receptor that binds a broad repertoire of ligands and mediates responses to cell damage and stress conditions. It activates programs responsible for acute and chronic inflammation, and is implicated in a number of pathological diseases, including diabetic complications, stroke, atheriosclerosis, arthritis, and neurodegenerative disorders. The availability of Rage knockout mice has not only advanced our knowledge on signalling pathways within these pathophysiological conditions, but also on the functional importance of the receptor in processes of cancer. Here, we will summarize molecular mechanisms through which RAGE signalling contributes to the establishment of a pro-tumourigenic microenvironment. Moreover, we will review recent findings that provide genetic evidence for an important role of RAGE in bridging inflammation and cancer.

  8. Myeloperoxidase activity is increased in gingival crevicular fluid and whole saliva after fixed orthodontic appliance activation.

    Science.gov (United States)

    Marcaccini, Andrea M; Amato, Patricia A F; Leão, Fernanda V; Gerlach, Raquel F; Ferreira, Jose T L

    2010-11-01

    Orthodontic tooth movement uses mechanical forces that result in inflammation in the first days. Myeloperoxidase (MPO) is an enzyme found in polymorphonuclear neutrophil (PMN) granules, and it is used to estimate the number of PMN granules in tissues. So far, MPO has not been used to study the inflammatory alterations after the application of orthodontic tooth movement forces. The aim of this study was to determine MPO activity in the gingival crevicular fluid (GCF) and saliva (whole stimulated saliva) of orthodontic patients at different time points after fixed appliance activation. MPO was determined in the GCF and collected by means of periopaper from the saliva of 14 patients with orthodontic fixed appliances. GCF and saliva samples were collected at baseline, 2 hours, and 7 and 14 days after application of the orthodontic force. Mean MPO activity was increased in both the GCF and saliva of orthodontic patients at 2 hours after appliance activation (P orthodontic force probably results in the increased MPO level observed at this time point. MPO might be a good marker to assess inflammation in orthodontic movement; it deserves further studies in orthodontic therapy. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  9. Lychee (Litchi chinensis Sonn.) Pulp Phenolic Extract Provides Protection against Alcoholic Liver Injury in Mice by Alleviating Intestinal Microbiota Dysbiosis, Intestinal Barrier Dysfunction, and Liver Inflammation.

    Science.gov (United States)

    Xiao, Juan; Zhang, Ruifen; Zhou, Qiuyun; Liu, Lei; Huang, Fei; Deng, Yuanyuan; Ma, Yongxuan; Wei, Zhencheng; Tang, Xiaojun; Zhang, Mingwei

    2017-11-08

    Liver injury is the most common consequence of alcohol abuse, which is promoted by the inflammatory response triggered by gut-derived endotoxins produced as a consequence of intestinal microbiota dysbiosis and barrier dysfunction. The aim of this study was to investigate whether modulation of intestinal microbiota and barrier function, and liver inflammation contributes to the hepatoprotective effect of lychee pulp phenolic extract (LPPE) in alcohol-fed mice. Mice were treated with an ethanol-containing liquid diet alone or in combination with LPPE for 8 weeks. LPPE supplementation alleviated ethanol-induced liver injury and downregulated key markers of inflammation. Moreover, LPPE supplementation reversed the ethanol-induced alteration of intestinal microbiota composition and increased the expression of intestinal tight junction proteins, mucus protecting proteins, and antimicrobial proteins. Furthermore, in addition to decreasing serum endotoxin level, LPPE supplementation suppressed CD14 and toll-like receptor 4 expression, and repressed the activation of nuclear factor-κB p65 in the liver. These data suggest that intestinal microbiota dysbiosis, intestinal barrier dysfunction, and liver inflammation are improved by LPPE, and therefore, the intake of LPPE or Litchi pulp may be an effective strategy to alleviate the susceptibility to alcohol-induced hepatic diseases.

  10. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging.

    Science.gov (United States)

    Ghosh, Amiya K; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-09-07

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation.

  11. Inflammable materials stores

    International Nuclear Information System (INIS)

    Nandagopan, V.

    2017-01-01

    A new Inflammable Materials Stores has been constructed by A and SED, BARC near Gamma Field for storage of inflammable materials falling into Petroleum Class ‘A’ ‘B’ and “C” mainly comprising of oils and lubricants, Chemicals like Acetone, Petroleum Ether etc. which are regularly procured by Central Stores Unit (CSU) for issue to the various divisions of BARC. The design of the shed done by A and SED, BARC was duly got approved from Petroleum and Explosive Safety Organization (PESO) which is a mandatory requirement before commencement of the construction. The design had taken into account various safety factors which is ideally required for an inflammable materials stores

  12. Alternative complement pathway and factor B activities in rats with altered blood levels of thyroid hormone

    Energy Technology Data Exchange (ETDEWEB)

    Bitencourt, C.S. [Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Duarte, C.G.; Azzolini, A.E.C.S.; Assis-Pandochi, A.I. [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-03-02

    Evaluating the activity of the complement system under conditions of altered thyroid hormone levels might help elucidate the role of complement in triggering autoimmune processes. Here, we investigated alternative pathway (AP) activity in male Wistar rats (180 ± 10 g) after altering their thyroid hormone levels by treatment with triiodothyronine (T3), propylthiouracil (PTU) or thyroidectomy. T3 and thyroxine (T4) levels were determined by chemiluminescence assays. Hemolytic assays were performed to evaluate the lytic activity of the AP. Factor B activity was evaluated using factor B-deficient serum. An anti-human factor B antibody was used to measure factor B levels in serum by radial immunodiffusion. T3 measurements in thyroidectomized animals or animals treated with PTU demonstrated a significant reduction in hormone levels compared to control. The results showed a reduction in AP lytic activity in rats treated with increasing amounts of T3 (1, 10, or 50 µg). Factor B activity was also decreased in the sera of hyperthyroid rats treated with 1 to 50 µg T3. Additionally, treating rats with 25 µg T3 significantly increased factor B levels in their sera (P < 0.01). In contrast, increased factor B concentration and activity (32%) were observed in hypothyroid rats. We conclude that alterations in thyroid hormone levels affect the activity of the AP and factor B, which may in turn affect the roles of AP and factor B in antibody production.

  13. Alternative complement pathway and factor B activities in rats with altered blood levels of thyroid hormone

    International Nuclear Information System (INIS)

    Bitencourt, C.S.; Duarte, C.G.; Azzolini, A.E.C.S.; Assis-Pandochi, A.I.

    2012-01-01

    Evaluating the activity of the complement system under conditions of altered thyroid hormone levels might help elucidate the role of complement in triggering autoimmune processes. Here, we investigated alternative pathway (AP) activity in male Wistar rats (180 ± 10 g) after altering their thyroid hormone levels by treatment with triiodothyronine (T3), propylthiouracil (PTU) or thyroidectomy. T3 and thyroxine (T4) levels were determined by chemiluminescence assays. Hemolytic assays were performed to evaluate the lytic activity of the AP. Factor B activity was evaluated using factor B-deficient serum. An anti-human factor B antibody was used to measure factor B levels in serum by radial immunodiffusion. T3 measurements in thyroidectomized animals or animals treated with PTU demonstrated a significant reduction in hormone levels compared to control. The results showed a reduction in AP lytic activity in rats treated with increasing amounts of T3 (1, 10, or 50 µg). Factor B activity was also decreased in the sera of hyperthyroid rats treated with 1 to 50 µg T3. Additionally, treating rats with 25 µg T3 significantly increased factor B levels in their sera (P < 0.01). In contrast, increased factor B concentration and activity (32%) were observed in hypothyroid rats. We conclude that alterations in thyroid hormone levels affect the activity of the AP and factor B, which may in turn affect the roles of AP and factor B in antibody production

  14. Vaccination promotes TH1-like inflammation and survival in chronic Pseudomonas aeruginosa pneumonia in rats

    DEFF Research Database (Denmark)

    Johansen, H K; Hougen, H P; Cryz, S J

    1995-01-01

    In a rat model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis (CF) we studied whether the inflammatory response could be altered by vaccination. Rats were immunized with either a depolymerized alginate toxin A conjugate (D-ALG toxin A), purified alginate, an O-polysacc......In a rat model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis (CF) we studied whether the inflammatory response could be altered by vaccination. Rats were immunized with either a depolymerized alginate toxin A conjugate (D-ALG toxin A), purified alginate, an O......-polysaccharide toxin A conjugate, or sterile saline. After challenge none of the rats immunized with D-ALG toxin A died, in contrast to the other two vaccine groups combined (p = 0.03). A significant reduction in the severity of the macroscopic lung inflammation was seen in rats immunized with D-ALG toxin A, compared...... predominantly PMNs (TH2-like) to a chronic-type inflammation dominated by mononuclear leukocytes (TH1-like). In accordance, the antibody titers induced by the D-ALG toxin A vaccine were not different from those of the control rats after challenge. This study identifies a possible new way of modifying...

  15. Activation of mas-related G-protein-coupled receptors by the house dust mite cysteine protease Der p1 provides a new mechanism linking allergy and inflammation.

    Science.gov (United States)

    Reddy, Vemuri B; Lerner, Ethan A

    2017-10-20

    Cysteine and serine proteases function via protease-activated and mas-related G-protein-coupled receptors (Mrgprs) to contribute to allergy and inflammation. Der p1 is a cysteine protease and major allergen from the house dust mite and is associated with allergic rhinitis and allergic asthma. Der p1 activates protease-activated receptor 2 and induces the release of the pro-inflammatory cytokine IL-6 from cells. However, the possibility that Der p1 acts on Mrgprs has not been considered. We report here that ratiometric calcium imaging reveals that Der p1 activates the human receptor MRGPRX1 and the mouse homolog MrgprC11, implicated previously in itch. Der p1 cleavage of N-terminal receptor peptides followed by site-directed mutagenesis of the cleavage sites links receptor activation to specific amino acid residues. Der p1 also induced the release of IL-6 from heterologous cells expressing MRGPRX1. In summary, activation of Mrgprs by the allergen Der p1 may contribute to inflammation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Inflammation meets metabolic disease: Gut feeling mediated by GLP-1

    Directory of Open Access Journals (Sweden)

    Tamara eZietek

    2016-04-01

    Full Text Available Chronic diseases such as obesity and diabetes, cardiovascular and inflammatory bowel diseases (IBD share common features in their pathology. Metabolic disorders exhibit strong inflammatory underpinnings and vice versa, inflammation is associated with metabolic alterations. Next to cytokines and cellular stress pathways like the unfolded protein response (UPR, alterations in the enteroendocrine system are intersections of various pathologies. Enteroendocrine cells (EEC have been studied extensively for their ability to regulate gastrointestinal motility, secretion, and insulin release by release of peptide hormones. In particular the L cell-derived incretin hormone glucagon-like peptide 1 (GLP-1 has gained enormous attention due to its insulinotropic action and relevance in the treatment of type 2 diabetes (T2D. Yet, accumulating data indicates a critical role for EEC and in particular for GLP-1 in metabolic adaptation and in orchestrating immune responses beyond blood glucose control. EEC sense the lamina propria and luminal environment including the microbiota via receptors and transporters. Subsequently mediating signals by secreting hormones and cytokines, EEC can be considered as integrators of metabolic and inflammatory signaling.This review focuses on L cell and GLP-1 functions in the context of metabolic and inflammatory diseases. The effects of incretin-based therapies on metabolism and immune system are discussed and the interrelation and common features of metabolic and immune-mediated disorders are highlighted. Moreover, it presents data on the impact of inflammation, in particular of IBD on EEC and discusses the potential role of the microbiota as link between nutrients, metabolism, immunity and disease.

  17. Influence of Boiling, Steaming and Frying of Selected Leafy Vegetables on the In Vitro Anti-inflammation Associated Biological Activities

    Directory of Open Access Journals (Sweden)

    K. D. P. P. Gunathilake

    2018-03-01

    Full Text Available The aim of the present study was to evaluate the effect of cooking (boiling, steaming, and frying on anti-inflammation associated properties in vitro of six popularly consumed green leafy vegetables in Sri Lanka, namely: Centella asiatica, Cassia auriculata, Gymnema lactiferum, Olax zeylanica, Sesbania grnadiflora, and Passiflora edulis. The anti-inflammation associated properties of methanolic extracts of cooked leaves were evaluated using four in vitro biological assays, namely, hemolysis inhibition, proteinase inhibition, protein denaturation inhibition, and lipoxygenase inhibition. Results revealed that the frying of all the tested leafy vegetables had reduced the inhibition abilities of protein denaturation, hemolysis, proteinase, and lipoxygenase activities when compared with other food preparation methods. Steaming significantly increased the protein denaturation and hemolysis inhibition in O. zeylanica and P. edulis. Steaming of leaves increased inhibition activity of protein denaturation in G. lactiferum (by 44.8% and P. edulis (by 44%; hemolysis in C. asiatica, C. auriculata, and S. grandiflora; lipoxygenase inhibition ability in P. edulis (by 50%, C. asiatica (by 400%, and C. auriculata leaves (by 250%; proteinase inhibition in C. auriculata (100% when compared with that of raw leaves. In general, steaming and boiling in contrast to frying protect the health-promoting properties of the leafy vegetables.

  18. Systemic inflammation is linked to low arginine and high ADMA plasma levels resulting in an unfavourable NOS substrate-to-inhibitor ratio: the Hoorn Study

    NARCIS (Netherlands)

    van der Zwan, L.P.; Scheffer, P.G.; Dekker, J.M.; Stehouwer, C.D.A.; Heine, R.J.; Teerlink, T.

    2011-01-01

    Inflammation is associated with a reduced availability of NO in the vasculature. We investigated the possible involvement of altered levels of the substrate (arginine) and the inhibitor [ADMA (asymmetric ω-N

  19. Altering the spectrum of immunoglobulin V gene somatic hypermutation by modifying the active site of AID.

    Science.gov (United States)

    Wang, Meng; Rada, Cristina; Neuberger, Michael S

    2010-01-18

    High-affinity antibodies are generated by somatic hypermutation with nucleotide substitutions introduced into the IgV in a semirandom fashion, but with intrinsic mutational hotspots strategically located to optimize antibody affinity maturation. The process is dependent on activation-induced deaminase (AID), an enzyme that can deaminate deoxycytidine in DNA in vitro, where its activity is sensitive to the identity of the 5'-flanking nucleotide. As a critical test of whether such DNA deamination activity underpins antibody diversification and to gain insight into the extent to which the antibody mutation spectrum is dependent on the intrinsic substrate specificity of AID, we investigated whether it is possible to change the IgV mutation spectrum by altering AID's active site such that it prefers a pyrimidine (rather than a purine) flanking the targeted deoxycytidine. Consistent with the DNA deamination mechanism, B cells expressing the modified AID proteins yield altered IgV mutation spectra (exhibiting a purine-->pyrimidine shift in flanking nucleotide preference) and altered hotspots. However, AID-catalyzed deamination of IgV targets in vitro does not yield the same degree of hotspot dominance to that observed in vivo, indicating the importance of features beyond AID's active site and DNA local sequence environment in determining in vivo hotspot dominance.

  20. Neurobehavioral comorbidities of epilepsy: Role of inflammation.

    Science.gov (United States)

    Mazarati, Andrey M; Lewis, Megan L; Pittman, Quentin J

    2017-07-01

    Epilepsy is associated with a high incidence of comorbid neurologic and psychiatric disorders. This review focuses on the association of epilepsy with autism spectrum disorder (ASD) and depression. There is high concordance of these behavioral pathologies with epilepsy. We review data that unambiguously reveal that epilepsy, ASD, and depression are associated with elevated brain inflammatory markers and that these may interact with serotoninergic pathways. Interference with inflammatory pathways or actions can reduce the severity of seizures, depression, and ASD-like behavior. Inflammation in the brain can be induced by seizure activity as well as by behavioral, environmental, and physiologic stressors. Furthermore, induction of inflammation at an early time point during gestation and in early neonatal life can precipitate both an ASD-like phenotype as well as a more excitable brain. It appears likely that priming of the brain due to early inflammation could provide a means by which subsequent inflammatory processes associated with epilepsy, ASD, and depression may lead to comorbidity. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  1. Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling

    DEFF Research Database (Denmark)

    Caesar, Robert; Tremaroli, Valentina; Kovatcheva-Datchary, Petia

    2015-01-01

    Dietary lipids may influence the abundance of circulating inflammatory microbial factors. Hence, inflammation in white adipose tissue (WAT) induced by dietary lipids may be partly dependent on their interaction with the gut microbiota. Here, we show that mice fed lard for 11 weeks have increased...... Toll-like receptor (TLR) activation and WAT inflammation and reduced insulin sensitivity compared with mice fed fish oil and that phenotypic differences between the dietary groups can be partly attributed to differences in microbiota composition. Trif(-/-) and Myd88(-/-) mice are protected against lard......-induced WAT inflammation and impaired insulin sensitivity. Experiments in germ-free mice show that an interaction between gut microbiota and saturated lipids promotes WAT inflammation independent of adiposity. Finally, we demonstrate that the chemokine CCL2 contributes to microbiota-induced WAT inflammation...

  2. Acute hyperammonemia and systemic inflammation is associated with increased extracellular brain adenosine in rats

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Dale, Nicholas; Larsen, Fin Stolze

    2015-01-01

    ) and cerebral blood flow (CBF). We measured the adenosine concentration with biosensors in rat brain slices exposed to ammonia and in a rat model with hyperammonemia and systemic inflammation. Exposure to ammonia in concentrations from 0.15-10 mM led to increases in the cortical adenosine concentration up to 18......Acute liver failure (ALF) can lead to brain edema, cerebral hyperperfusion and intracranial hypertension. These complications are thought to be mediated by hyperammonemia and inflammation leading to altered brain metabolism. As increased levels of adenosine degradation products have been found...... in brain tissue of patients with ALF we investigated whether hyperammonemia could induce adenosine release in brain tissue. Since adenosine is a potent vasodilator and modulator of cerebral metabolism we furthermore studied the effect of adenosine receptor ligands on intracranial pressure (ICP...

  3. Pax6 interacts with Iba1 and shows age-associated alterations in brain of aging mice.

    Science.gov (United States)

    Maurya, Shashank Kumar; Mishra, Rajnikant

    2017-07-01

    The Pax6, a transcriptional regulator and multifunctional protein, has been found critical for neurogenesis, neuro-degeneration, mental retardation, neuroendocrine tumors, glioblastoma and astrocytomas. The age-associated alteration in the expression of Pax6 in neuron and glia has also been observed in the immunologically privileged brain. Therefore, it is presumed that Pax6 may modulate brain immunity by activation of microglia either directly interacting with genes or proteins of microglia or indirectly though inflammation associated with neurodegeneration. This report describes evaluation of expression, co-localization and interactions of Pax6 with Ionized binding protein1 (Iba1) in brain of aging mice by Immunohistochemistry, Chromatin Immuno-precipitation (ChIP) and Co-immunoprecipitation (Co-IP), respectively. The co-localization of Pax6 with Iba1 was observed in the cerebellum, cerebral cortex, hippocampus, midbrain and olfactory lobe. The Pax6 and Iba1 also interact physically. The age-dependent alteration in their expression and co-localization were also observed in mice. Results indicate Pax6-dependent activities of Iba1 in the remodelling of microglia during immunological surveillance of the brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A dynamical systems model of progesterone receptor interactions with inflammation in human parturition.

    Science.gov (United States)

    Brubaker, Douglas; Barbaro, Alethea; R Chance, Mark; Mesiano, Sam

    2016-08-19

    Progesterone promotes uterine relaxation and is essential for the maintenance of pregnancy. Withdrawal of progesterone activity and increased inflammation within the uterine tissues are key triggers for parturition. Progesterone actions in myometrial cells are mediated by two progesterone receptor (PR) isoforms, PR-A and PR-B, that function as ligand-activated transcription factors. PR-B mediates relaxatory actions of progesterone, in part, by decreasing myometrial cell responsiveness to pro-inflammatory stimuli. These same pro-inflammatory stimuli promote the expression of PR-A which inhibits the anti-inflammatory activity of PR-B. Competitive interaction between the progesterone receptors then augments myometrial responsiveness to pro-inflammatory stimuli. The interaction between PR-B transcriptional activity and inflammation in the pregnancy myometrium is examined using a dynamical systems model in which quiescence and labor are represented as phase-space equilibrium points. Our model shows that PR-B transcriptional activity and the inflammatory load determine the stability of the quiescent and laboring phenotypes. The model is tested using published transcriptome datasets describing the mRNA abundances in the myometrium before and after the onset of labor at term. Surrogate transcripts were selected to reflect PR-B transcriptional activity and inflammation status. The model coupling PR-B activity and inflammation predicts contractile status (i.e., laboring or quiescent) with high precision and recall and outperforms uncoupled single and two-gene classifiers. Linear stability analysis shows that phase space bifurcations exist in our model that may reflect the phenotypic states of the pregnancy uterus. The model describes a possible tipping point for the transition of the quiescent to the contractile laboring phenotype. Our model describes the functional interaction between the PR-A:PR-B hypothesis and tissue level inflammation in the pregnancy uterus and is a

  5. Finger millet arabinoxylan protects mice from high-fat diet induced lipid derangements, inflammation, endotoxemia and gut bacterial dysbiosis.

    Science.gov (United States)

    Sarma, Siddhartha Mahadeva; Singh, Dhirendra Pratap; Singh, Paramdeep; Khare, Pragyanshu; Mangal, Priyanka; Singh, Shashank; Bijalwan, Vandana; Kaur, Jaspreet; Mantri, Shrikant; Boparai, Ravneet Kaur; Mazumder, Koushik; Bishnoi, Mahendra; Bhutani, Kamlesh Kumar; Kondepudi, Kanthi Kiran

    2018-01-01

    Arabinoxylan (AX), a non-starch polysaccharide extracted from cereals such as wheat, rice and millets, is known to impart various health promoting effects. Our earlier study suggested that finger millet (FM) could ameliorate high fat diet (HFD)-induced metabolic derangements. The present study is aimed to evaluate the effect of FM-AX supplementation, a key bioactive from finger millet, on HFD-induced metabolic and gut bacterial derangements. Male Swiss albino mice were fed with normal chow diet (NPD) or HFD (60%kcal from fat) for 10 weeks. FM-AX was orally supplemented at doses of 0.5 and 1.0g/kg bodyweight on every alternate day for 10 weeks. Glucose tolerance, serum hormones, hepatic lipid accumulation and inflammation, white adipose tissue marker gene expression, adipocyte size and inflammation; metagenomic alterations in cecal bacteria; cecal short chain fatty acids and colonic tight junction gene expressions were studied. FM-AX supplementation prevented HFD-induced weight gain, alerted glucose tolerance and serum lipid profile, hepatic lipid accumulation and inflammation. Hepatic and white adipose tissue gene expressions were beneficially modulated. Further, AX supplementation prevented metagenomic alterations in cecum; improved ileal and colonic health and overall prevented metabolic endotoxemia. Present work suggests that AX from finger millet can be developed as a nutraceutical for the management of HFD- induced obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Probiotic yogurt and acidified milk similarly reduce postprandial inflammation and both alter the gut microbiota of healthy, young men.

    Science.gov (United States)

    Burton, Kathryn J; Rosikiewicz, Marta; Pimentel, Grégory; Bütikofer, Ueli; von Ah, Ueli; Voirol, Marie-Jeanne; Croxatto, Antony; Aeby, Sébastien; Drai, Jocelyne; McTernan, Philip G; Greub, Gilbert; Pralong, François P; Vergères, Guy; Vionnet, Nathalie

    2017-05-01

    Probiotic yogurt and milk supplemented with probiotics have been investigated for their role in 'low-grade' inflammation but evidence for their efficacy is inconclusive. This study explores the impact of probiotic yogurt on metabolic and inflammatory biomarkers, with a parallel study of gut microbiota dynamics. The randomised cross-over study was conducted in fourteen healthy, young men to test probiotic yogurt compared with milk acidified with 2 % d-(+)-glucono-δ-lactone during a 2-week intervention (400 g/d). Fasting assessments, a high-fat meal test (HFM) and microbiota analyses were used to assess the intervention effects. Baseline assessments for the HFM were carried out after a run-in during which normal milk was provided. No significant differences in the inflammatory response to the HFM were observed after probiotic yogurt compared with acidified milk intake; however, both products were associated with significant reductions in the inflammatory response to the HFM compared with the baseline tests (assessed by IL6, TNFα and chemokine ligand 5) (Pyogurt intake (FC=-1·3, P adj=0·03), increased abundance of Bifidobacterium species after acidified milk intake (FC=1·4, P adj=0·04) and detection of Lactobacillus delbrueckii spp. bulgaricus (FC=7·0, P adjyogurt intake. Probiotic yogurt and acidified milk similarly reduce postprandial inflammation that is associated with a HFM while inducing distinct changes in the gut microbiota of healthy men. These observations could be relevant for dietary treatments that target 'low-grade' inflammation.

  7. Diabetes alters activation and repression of pro- and anti- inflammatory signalling pathways in the vasculature

    Directory of Open Access Journals (Sweden)

    Elyse eDi Marco

    2013-06-01

    Full Text Available A central mechanism driving vascular disease in diabetes is immune cell-mediated inflammation. In diabetes, enhanced oxidation and glycation of macromolecules, such as lipoproteins, insults the endothelium and activates both innate and adaptive arms of the immune system by generating new antigens for presentation to adaptive immune cells. Chronic inflammation of the endothelium in diabetes leads to continuous infiltration and accumulation of leukocytes at sites of endothelial cell injury. We will describe the central role of the macrophage as a source of signalling molecules and damaging by-products which activate infiltrating lymphocytes in the tissue and contribute to the pro-oxidant and pro-inflammatory micro-environment. An important aspect to be considered is the diabetes- associated defects in the immune system, such as fewer or dysfunctional athero-protective leukocyte subsets in the diabetic lesion compared to non-diabetic lesions. This review will discuss the key pro-inflammatory signalling pathways responsible for leukocyte recruitment and activation in the injured vessel, with particular focus on pro- and anti-inflammatory pathways aberrantly activated or repressed in diabetes. We aim to describe the interaction between advanced glycation end products (AGEs and their principle receptor RAGE, Angiotensin II (Ang II and the Ang II type 1 receptor (AT1R, in addition to reactive oxygen species (ROS production by NADPH oxidase (Nox enzymes that are relevant to vascular and immune cell function in the context of diabetic vasculopathy. Furthermore, we will touch on recent advances in epigenetic medicine that have revealed high glucose-mediated changes in the transcription of genes with known pro-inflammatory downstream targets. Finally, novel anti-atherosclerosis strategies that target the vascular immune interface will be explored; such as vaccination against modified LDL and pharmacological inhibition of ROS producing enzymes.

  8. Kinin B1 Receptor Promotes Neurogenic Hypertension Through Activation of Centrally Mediated Mechanisms.

    Science.gov (United States)

    Sriramula, Srinivas; Lazartigues, Eric

    2017-12-01

    Hypertension is associated with increased activity of the kallikrein-kinin system. Kinin B1 receptor (B1R) activation leads to vasoconstriction and inflammation. Despite evidence supporting a role for the B1R in blood pressure regulation, the mechanisms by which B1R could alter autonomic function and participate in the pathogenesis of hypertension remain unidentified. We sought to explore whether B1R-mediated inflammation contributes to hypertension and investigate the molecular mechanisms involved. In this study, we tested the hypothesis that activation of B1R in the brain is involved in the pathogenesis of hypertension, using the deoxycorticosterone acetate-salt model of neurogenic hypertension in wild-type and B1R knockout mice. Deoxycorticosterone acetate-salt treatment in wild-type mice led to significant increases in B1R mRNA and protein levels and bradykinin levels, enhanced gene expression of carboxypeptidase N supporting an increase in the B1R ligand, associated with enhanced blood pressure, inflammation, sympathoexcitation, autonomic dysfunction, and impaired baroreflex sensitivity, whereas these changes were blunted or prevented in B1R knockout mice. B1R stimulation was further shown to involve activation of the ASK1-JNK-ERK1/2 and NF-κB pathways in the brain. To dismiss potential developmental alterations in knockout mice, we further used B1R blockade selectively in the brain of wild-type mice. Supporting the central origin of this mechanism, intracerebroventricular infusion of a specific B1R antagonist, attenuated the deoxycorticosterone acetate-salt-induced increase in blood pressure in wild-type mice. Our data provide the first evidence of a central role for B1R-mediated inflammatory pathways in the pathogenesis of deoxycorticosterone acetate-salt hypertension and offer novel insights into possible B1R-targeted therapies for the treatment of neurogenic hypertension. © 2017 American Heart Association, Inc.

  9. Obstructive sleep apnea and inflammation.

    LENUS (Irish Health Repository)

    McNicholas, Walter T

    2012-02-01

    The pathogenesis of cardiovascular complications in obstructive sleep apnea syndrome (OSAS) is not fully understood but is likely multifactorial in origin. Inflammatory processes play an important role in the pathogenesis of atherosclerosis, and circulating levels of several markers of inflammation have been associated with future cardiovascular risk. These include cell adhesion molecules such as intercellular adhesion molecule-1 and selectins, cytokines such as tumour necrosis factor alpha and interleukin 6, chemokines such as interleukin 8, and C-reactive protein. There is also increasing evidence that inflammatory processes play an important role in the cardiovascular pathophysiology of OSAS and many of the inflammatory markers associated with cardiovascular risk have been reported as elevated in patients with OSAS. Furthermore, animal and cell culture studies have demonstrated preferential activation of inflammatory pathways by intermittent hypoxia, which is an integral feature of OSAS. The precise role of inflammation in the development of cardiovascular disease in OSAS requires further study, particularly the relationship with oxidative stress, metabolic dysfunction, and obesity.

  10. Effects of an Encapsulated Fruit and Vegetable Juice Concentrate on Obesity-Induced Systemic Inflammation: A Randomised Controlled Trial

    Directory of Open Access Journals (Sweden)

    Evan J. Williams

    2017-02-01

    Full Text Available Phytochemicals from fruit and vegetables reduce systemic inflammation. This study examined the effects of an encapsulated fruit and vegetable (F&V juice concentrate on systemic inflammation and other risk factors for chronic disease in overweight and obese adults. A double-blinded, parallel, randomized placebo-controlled trial was conducted in 56 adults aged ≥40 years with a body mass index (BMI ≥28 kg/m2. Before and after eight weeks daily treatment with six capsules of F&V juice concentrate or placebo, peripheral blood gene expression (microarray, quantitative polymerase chain reaction (qPCR, plasma tumour necrosis factor (TNFα (enzyme-linked immunosorbent assay (ELISA, body composition (Dual-energy X-ray absorptiometry (DEXA and lipid profiles were assessed. Following consumption of juice concentrate, total cholesterol, low-density lipoprotein (LDL cholesterol and plasma TNFα decreased and total lean mass increased, while there was no change in the placebo group. In subjects with high systemic inflammation at baseline (serum C-reactive protein (CRP ≥3.0 mg/mL who were supplemented with the F&V juice concentrate (n = 16, these effects were greater, with decreased total cholesterol, LDL cholesterol and plasma TNFα and increased total lean mass; plasma CRP was unchanged by the F&V juice concentrate following both analyses. The expression of several genes involved in lipogenesis, the nuclear factor-κB (NF-κB and 5′ adenosine monophosphate-activated protein kinase (AMPK signalling pathways was altered, including phosphomevalonate kinase (PMVK, zinc finger AN1-type containing 5 (ZFAND5 and calcium binding protein 39 (CAB39, respectively. Therefore, F&V juice concentrate improves the metabolic profile, by reducing systemic inflammation and blood lipid profiles and, thus, may be useful in reducing the risk of obesity-induced chronic disease.

  11. Anti-Inflammatory Activities of Pentaherbs Formula, Berberine, Gallic Acid and Chlorogenic Acid in Atopic Dermatitis-Like Skin Inflammation.

    Science.gov (United States)

    Tsang, Miranda S M; Jiao, Delong; Chan, Ben C L; Hon, Kam-Lun; Leung, Ping C; Lau, Clara B S; Wong, Eric C W; Cheng, Ling; Chan, Carmen K M; Lam, Christopher W K; Wong, Chun K

    2016-04-20

    Atopic dermatitis (AD) is a common allergic skin disease, characterized by dryness, itchiness, thickening and inflammation of the skin. Infiltration of eosinophils into the dermal layer and presence of edema are typical characteristics in the skin biopsy of AD patients. Previous in vitro and clinical studies showed that the Pentaherbs formula (PHF) consisting of five traditional Chinese herbal medicines, Flos Lonicerae, Herba Menthae, Cortex Phellodendri, Cortex Moutan and Rhizoma Atractylodis at w/w ratio of 2:1:2:2:2 exhibited therapeutic potential in treating AD. In this study, an in vivo murine model with oxazolone (OXA)-mediated dermatitis was used to elucidate the efficacy of PHF. Active ingredients of PHF water extract were also identified and quantified, and their in vitro anti-inflammatory activities on pruritogenic cytokine IL-31- and alarmin IL-33-activated human eosinophils and dermal fibroblasts were evaluated. Ear swelling, epidermis thickening and eosinophils infiltration in epidermal and dermal layers, and the release of serum IL-12 of the murine OXA-mediated dermatitis were significantly reduced upon oral or topical treatment with PHF (all p Gallic acid, chlorogenic acid and berberine contents (w/w) in PHF were found to be 0.479%, 1.201% and 0.022%, respectively. Gallic acid and chlorogenic acid could suppress the release of pro-inflammatory cytokine IL-6 and chemokine CCL7 and CXCL8, respectively, in IL-31- and IL-33-treated eosinophils-dermal fibroblasts co-culture; while berberine could suppress the release of IL-6, CXCL8, CCL2 and CCL7 in the eosinophil culture and eosinophils-dermal fibroblasts co-culture (all p < 0.05). These findings suggest that PHF can ameliorate allergic inflammation and attenuate the activation of eosinophils.

  12. Maternal obesity alters feto-placental Cytochrome P4501A1 activity

    Science.gov (United States)

    DuBois, Barent N.; O’Tierney, Perrie; Pearson, Jacob; Friedman, Jacob E.; Thornburg, Kent; Cherala, Ganesh

    2012-01-01

    Cytochrome P4501A1 (CYP1A1), an important drug metabolizing enzyme, is expressed in human placenta throughout gestation as well as in fetal liver. Obesity, a chronic inflammatory condition, is known to alter CYP enzyme expression in non-placental tissues. In the present study, we test the hypothesis that maternal obesity alters the distribution of CYP1A1 activity in feto-placental unit. Placentas were collected from non-obese (BMI30) women at term. Livers were collected from gestation day 130 fetuses of non-human primates fed either control diet or high-fat diet (HFD). Cytosol and microsomes were collected using differential centrifugation, and incubated with 7-Ethoxyresorufin. The CYP1A1 specific activity (pmoles of resorufin formed/min/mg of protein) was measured at excitation/emission wavelength of 530/590nm. Placentas of obese women had significantly reduced microsomal CYP1A1 activity compared to non-obese women (0.046 vs. 0.082; p<0.05); however no such effect was observed on cytosolic activity. Similarly, fetal liver from HFD fed mothers had significantly reduced microsomal CYP1A1 activity (0.44±0.04 vs. 0.20±0.10; p<0.05), with no significant difference in cytosolic CYP1A1 activity (control, 1.23±0.20; HFD, 0.80±0.40). Interestingly, multiple linear regression analyses of placental efficiency indicates cytosolic CYP1A1 activity is a main effect (5.67±2.32 (β±SEM); p=0.022) along with BMI (−0.57±0.26; p=0.037), fetal gender (1.07±0.26; p<0.001), and maternal age (0.07±0.03; p=0.011). In summary, while maternal obesity affects microsomal CYP1A1 activity alone, cytosolic activity along with maternal BMI is an important determinant of placental efficiency. Together, these data suggest that maternal lifestyle could have a significant impact on CYP1A1 activity, and hints at a possible role for CYP1A1 in feto-placental growth and thereby well-being of fetus. PMID:23046808

  13. Chlorpromazine-induced hepatotoxicity during inflammation is mediated by TIRAP-dependent signaling pathway in mice

    International Nuclear Information System (INIS)

    Gandhi, Adarsh; Guo, Tao; Shah, Pranav; Moorthy, Bhagavatula; Ghose, Romi

    2013-01-01

    Inflammation is a major component of idiosyncratic adverse drug reactions (IADRs). To understand the molecular mechanism of inflammation-mediated IADRs, we determined the role of the Toll-like receptor (TLR) signaling pathway in idiosyncratic hepatotoxicity of the anti-psychotic drug, chlorpromazine (CPZ). Activation of TLRs recruits the first adaptor protein, Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) to the TIR domain of TLRs leading to the activation of the downstream kinase, c-Jun-N-terminal kinase (JNK). Prolonged activation of JNK leads to cell-death. We hypothesized that activation of TLR2 by lipoteichoic acid (LTA) or TLR4 by lipopolysaccharide (LPS) will augment the hepatotoxicity of CPZ by TIRAP-dependent mechanism involving prolonged activation of JNK. Adult male C57BL/6, TIRAP +/+ and TIRAP −/− mice were pretreated with saline, LPS (2 mg/kg) or LTA (6 mg/kg) for 30 min or 16 h followed by CPZ (5 mg/kg) or saline (vehicle) up to 24 h. We found that treatment of mice with CPZ in presence of LPS or LTA leads to ∼ 3–4 fold increase in serum ALT levels, a marked reduction in hepatic glycogen content, significant induction of serum tumor necrosis factor (TNF) α and prolonged JNK activation, compared to LPS or LTA alone. Similar results were observed in TIRAP +/+ mice, whereas the effects of LPS or LTA on CPZ-induced hepatotoxicity were attenuated in TIRAP −/− mice. For the first time, we show that inflammation-mediated hepatotoxicity of CPZ is dependent on TIRAP, and involves prolonged JNK activation in vivo. Thus, TIRAP-dependent pathways may be targeted to predict and prevent inflammation-mediated IADRs. -- Highlights: ► Inflammation augments the toxicity of an idiosyncratic hepatotoxin chlorpromazine. ► Activation of Toll-like receptors by LPS or LTA induces chlorpromazine toxicity. ► Sustained stress kinase (JNK) activation is associated with chlorpromazine toxicity. ► These studies provide novel mechanistic

  14. Chlorpromazine-induced hepatotoxicity during inflammation is mediated by TIRAP-dependent signaling pathway in mice

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, Adarsh, E-mail: adarsh.gandhi@nih.gov [University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, 1441 Moursund Street, Room 517, Houston, TX 77030 (United States); Guo, Tao, E-mail: tguo4@jhu.edu [University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, 1441 Moursund Street, Room 517, Houston, TX 77030 (United States); Shah, Pranav [University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, 1441 Moursund Street, Room 517, Houston, TX 77030 (United States); Moorthy, Bhagavatula [Baylor College of Medicine, Department of Pediatrics, 1102 Bates Avenue, Suite 530, Houston, TX 77030 (United States); Ghose, Romi, E-mail: rghose@uh.edu [University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, 1441 Moursund Street, Room 517, Houston, TX 77030 (United States)

    2013-02-01

    Inflammation is a major component of idiosyncratic adverse drug reactions (IADRs). To understand the molecular mechanism of inflammation-mediated IADRs, we determined the role of the Toll-like receptor (TLR) signaling pathway in idiosyncratic hepatotoxicity of the anti-psychotic drug, chlorpromazine (CPZ). Activation of TLRs recruits the first adaptor protein, Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) to the TIR domain of TLRs leading to the activation of the downstream kinase, c-Jun-N-terminal kinase (JNK). Prolonged activation of JNK leads to cell-death. We hypothesized that activation of TLR2 by lipoteichoic acid (LTA) or TLR4 by lipopolysaccharide (LPS) will augment the hepatotoxicity of CPZ by TIRAP-dependent mechanism involving prolonged activation of JNK. Adult male C57BL/6, TIRAP{sup +/+} and TIRAP{sup −/−} mice were pretreated with saline, LPS (2 mg/kg) or LTA (6 mg/kg) for 30 min or 16 h followed by CPZ (5 mg/kg) or saline (vehicle) up to 24 h. We found that treatment of mice with CPZ in presence of LPS or LTA leads to ∼ 3–4 fold increase in serum ALT levels, a marked reduction in hepatic glycogen content, significant induction of serum tumor necrosis factor (TNF) α and prolonged JNK activation, compared to LPS or LTA alone. Similar results were observed in TIRAP{sup +/+} mice, whereas the effects of LPS or LTA on CPZ-induced hepatotoxicity were attenuated in TIRAP{sup −/−} mice. For the first time, we show that inflammation-mediated hepatotoxicity of CPZ is dependent on TIRAP, and involves prolonged JNK activation in vivo. Thus, TIRAP-dependent pathways may be targeted to predict and prevent inflammation-mediated IADRs. -- Highlights: ► Inflammation augments the toxicity of an idiosyncratic hepatotoxin chlorpromazine. ► Activation of Toll-like receptors by LPS or LTA induces chlorpromazine toxicity. ► Sustained stress kinase (JNK) activation is associated with chlorpromazine toxicity. ► These studies

  15. Modulation of hepatic inflammation and energy-sensing pathways in the rat liver by high-fructose diet and chronic stress.

    Science.gov (United States)

    Veličković, Nataša; Teofilović, Ana; Ilić, Dragana; Djordjevic, Ana; Vojnović Milutinović, Danijela; Petrović, Snježana; Preitner, Frederic; Tappy, Luc; Matić, Gordana

    2018-05-29

    High-fructose consumption and chronic stress are both associated with metabolic inflammation and insulin resistance. Recently, disturbed activity of energy sensor AMP-activated protein kinase (AMPK) was recognized as mediator between nutrient-induced stress and inflammation. Thus, we analyzed the effects of high-fructose diet, alone or in combination with chronic stress, on glucose homeostasis, inflammation and expression of energy sensing proteins in the rat liver. In male Wistar rats exposed to 9-week 20% fructose diet and/or 4-week chronic unpredictable stress we measured plasma and hepatic corticosterone level, indicators of glucose homeostasis and lipid metabolism, hepatic inflammation (pro- and anti-inflammatory cytokine levels, Toll-like receptor 4, NLRP3, activation of NFκB, JNK and ERK pathways) and levels of energy-sensing proteins AMPK, SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α). High-fructose diet led to glucose intolerance, activation of NFκB and JNK pathways and increased intrahepatic IL-1β, TNFα and inhibitory phosphorylation of insulin receptor substrate 1 on Ser 307 . It also decreased phospho-AMPK/AMPK ratio and increased SIRT1 expression. Stress alone increased plasma and hepatic corticosterone but did not influence glucose tolerance, nor hepatic inflammatory or energy-sensing proteins. After the combined treatment, hepatic corticosterone was increased, glucose tolerance remained preserved, while hepatic inflammation was partially prevented despite decreased AMPK activity. High-fructose diet resulted in glucose intolerance, hepatic inflammation, decreased AMPK activity and reduced insulin sensitivity. Chronic stress alone did not exert such effects, but when applied together with high-fructose diet it could partially prevent fructose-induced inflammation, presumably due to increased hepatic glucocorticoids.

  16. An ophthalmic solution of a peroxisome proliferator-activated receptor gamma agonist prevents corneal inflammation in a rat alkali burn model.

    Science.gov (United States)

    Uchiyama, Masaaki; Shimizu, Akira; Masuda, Yukinari; Nagasaka, Shinya; Fukuda, Yuh; Takahashi, Hiroshi

    2013-01-01

    We clarified the effects of an ophthalmic solution of a peroxisome proliferator-activated receptor gamma (PPARγ) agonist on corneal inflammation and wound healing after alkali burn injury in rats. After alkali exposure, either an ophthalmic solution with 0.1% pioglitazone hydrochloride (the PPARγ group) or vehicle (the vehicle group) was topically applied to the cornea until day 14. Histological, immunohistochemical, and real-time reverse transcription polymerase chain reaction analysis were performed. After alkali injury, PPARγ expression increased, with the infiltration of many inflammatory cells. The infiltration of neutrophils and macrophages started from the corneal limbus within 6 h, and developed in the corneal center by day 7, with associated neovascularization. The accumulation of α-smooth muscle actin-positive myofibroblasts and the deposition of type III collagen were noted on day 14. The histological changes were suppressed significantly by treatment with the ophthalmic solution of the PPARγ agonist. In addition, the number of infiltrating M2 macrophages in the cornea was increased by PPARγ agonist treatment. In real-time reverse transcription polymerase chain reaction analysis, the messenger ribonucleic acid expression levels of interleukin-1β (IL-1β), IL-6, IL-8, monocyte chemoattractant protein-1, tumor necrosis factor-α, transforming growth factor beta 1, and vascular endothelial growth factor-A were decreased in the PPARγ group compared to the vehicle group in the early periods of corneal inflammation. The ophthalmic solution of the PPARγ agonist inhibited inflammation, decreased the fibrotic reaction, and prevented neovascularization in the cornea from the early phase after alkali burn injury. The ophthalmic solution of the PPARγ agonist may provide a new treatment strategy with useful clinical applications for corneal inflammation and wound healing.

  17. Sulfatide-activated type II NKT cells prevent allergic airway inflammation by inhibiting type I NKT cell function in a mouse model of asthma.

    Science.gov (United States)

    Zhang, Guqin; Nie, Hanxiang; Yang, Jiong; Ding, Xuhong; Huang, Yi; Yu, Hongying; Li, Ruyou; Yuan, Zhuqing; Hu, Suping

    2011-12-01

    Asthma is a common chronic inflammatory disease involving many different cell types. Recently, type I natural killer T (NKT) cells have been demonstrated to play a crucial role in the development of asthma. However, the roles of type II NKT cells in asthma have not been investigated before. Interestingly, type I and type II NKT cells have been shown to have opposing roles in antitumor immunity, antiparasite immunity, and autoimmunity. We hypothesized that sulfatide-activated type II NKT cells could prevent allergic airway inflammation by inhibiting type I NKT cell function in asthma. Strikingly, in our mouse model, activation of type II NKT cells by sulfatide administration and adoptive transfer of sulfatide-activated type II NKT cells result in reduced-inflammation cell infiltration in the lung and bronchoalveolar lavage fluid, decreased levels of IL-4 and IL-5 in the BALF; and decreased serum levels of ovalbumin-specific IgE and IgG1. Furthermore, it is found that the activation of sulfatide-reactive type II NKT cells leads to the functional inactivation of type I NKT cells, including the proliferation and cytokine secretion. Our data reveal that type II NKT cells activated by glycolipids, such as sulfatide, may serve as a novel approach to treat allergic diseases and other disorders characterized by inappropriate type I NKT cell activation.

  18. Adipose Tissue Inflammation Induces B Cell Inflammation and Decreases B Cell Function in Aging

    Directory of Open Access Journals (Sweden)

    Daniela Frasca

    2017-08-01

    Full Text Available Aging is the greatest risk factor for developing chronic diseases. Inflamm-aging, the age-related increase in low-grade chronic inflammation, may be a common link in age-related diseases. This review summarizes recent published data on potential cellular and molecular mechanisms of the age-related increase in inflammation, and how these contribute to decreased humoral immune responses in aged mice and humans. Briefly, we cover how aging and related inflammation decrease antibody responses in mice and humans, and how obesity contributes to the mechanisms for aging through increased inflammation. We also report data in the literature showing adipose tissue infiltration with immune cells and how these cells are recruited and contribute to local and systemic inflammation. We show that several types of immune cells infiltrate the adipose tissue and these include macrophages, neutrophils, NK cells, innate lymphoid cells, eosinophils, T cells, B1, and B2 cells. Our main focus is how the adipose tissue affects immune responses, in particular B cell responses and antibody production. The role of leptin in generating inflammation and decreased B cell responses is also discussed. We report data published by us and by other groups showing that the adipose tissue generates pro-inflammatory B cell subsets which induce pro-inflammatory T cells, promote insulin resistance, and secrete pathogenic autoimmune antibodies.

  19. Squamosamide derivative FLZ protects dopaminergic neurons against inflammation-mediated neurodegeneration through the inhibition of NADPH oxidase activity

    Directory of Open Access Journals (Sweden)

    Wilson Belinda

    2008-05-01

    Full Text Available Abstract Background Inflammation plays an important role in the pathogenesis of Parkinson's disease (PD through over-activation of microglia, which consequently causes the excessive production of proinflammatory and neurotoxic factors, and impacts surrounding neurons and eventually induces neurodegeneration. Hence, prevention of microglial over-activation has been shown to be a prime target for the development of therapeutic agents for inflammation-mediated neurodegenerative diseases. Methods For in vitro studies, mesencephalic neuron-glia cultures and reconstituted cultures were used to investigate the molecular mechanism by which FLZ, a squamosamide derivative, mediates anti-inflammatory and neuroprotective effects in both lipopolysaccharide-(LPS- and 1-methyl-4-phenylpyridinium-(MPP+-mediated models of PD. For in vivo studies, a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-(MPTP- induced PD mouse model was used. Results FLZ showed potent efficacy in protecting dopaminergic (DA neurons against LPS-induced neurotoxicity, as shown in rat and mouse primary mesencephalic neuronal-glial cultures by DA uptake and tyrosine hydroxylase (TH immunohistochemical results. The neuroprotective effect of FLZ was attributed to a reduction in LPS-induced microglial production of proinflammatory factors such as superoxide, tumor necrosis factor-α (TNF-α, nitric oxide (NO and prostaglandin E2 (PGE2. Mechanistic studies revealed that the anti-inflammatory properties of FLZ were mediated through inhibition of NADPH oxidase (PHOX, the key microglial superoxide-producing enzyme. A critical role for PHOX in FLZ-elicited neuroprotection was further supported by the findings that 1 FLZ's protective effect was reduced in cultures from PHOX-/- mice, and 2 FLZ inhibited LPS-induced translocation of the cytosolic subunit of p47PHOX to the membrane and thus inhibited the activation of PHOX. The neuroprotective effect of FLZ demonstrated in primary neuronal

  20. Altered [99mTc]Tc-MDP biodistribution from neutron activation sourced 99Mo.

    Science.gov (United States)

    Demeter, Sandor; Szweda, Roman; Patterson, Judy; Grigoryan, Marine

    2018-01-01

    Given potential worldwide shortages of fission sourced 99 Mo/ 99m Tc medical isotopes there is increasing interest in alternate production strategies. A neutron activated 99 Mo source was utilized in a single center phase III open label study comparing 99m Tc, as 99m Tc Methylene Diphosphonate ([ 99m Tc]Tc-MDP), obtained from solvent generator separation of neutron activation produced 99 Mo, versus nuclear reactor produced 99 Mo (e.g., fission sourced) in oncology patients for which an [ 99m Tc]Tc-MDP bone scan would normally have been indicated. Despite the investigational [ 99m Tc]Tc-MDP passing all standard, and above standard of care, quality assurance tests, which would normally be sufficient to allow human administration, there was altered biodistribution which could lead to erroneous clinical interpretation. The cause of the altered biodistribution remains unknown and requires further research.

  1. Chronic skin inflammation accelerates macrophage cholesterol crystal formation and atherosclerosis

    Science.gov (United States)

    Ng, Qimin; Sanda, Gregory E.; Dey, Amit K.; Teague, Heather L.; Sorokin, Alexander V.; Dagur, Pradeep K.; Silverman, Joanna I.; Harrington, Charlotte L.; Rodante, Justin A.; Rose, Shawn M.; Varghese, Nevin J.; Belur, Agastya D.; Goyal, Aditya; Gelfand, Joel M.; Springer, Danielle A.; Bleck, Christopher K.E.; Thomas, Crystal L.; Yu, Zu-Xi; Winge, Mårten C.G.; Kruth, Howard S.; Marinkovich, M. Peter; Joshi, Aditya A.; Playford, Martin P.; Mehta, Nehal N.

    2018-01-01

    Inflammation is critical to atherogenesis. Psoriasis is a chronic inflammatory skin disease that accelerates atherosclerosis in humans and provides a compelling model to understand potential pathways linking these diseases. A murine model capturing the vascular and metabolic diseases in psoriasis would accelerate our understanding and provide a platform to test emerging therapies. We aimed to characterize a new murine model of skin inflammation (Rac1V12) from a cardiovascular standpoint to identify novel atherosclerotic signaling pathways modulated in chronic skin inflammation. The RacV12 psoriasis mouse resembled the human disease state, including presence of systemic inflammation, dyslipidemia, and cardiometabolic dysfunction. Psoriasis macrophages had a proatherosclerotic phenotype with increased lipid uptake and foam cell formation, and also showed a 6-fold increase in cholesterol crystal formation. We generated a triple-genetic K14-RacV12–/+/Srb1–/–/ApoER61H/H mouse and confirmed psoriasis accelerates atherogenesis (~7-fold increase). Finally, we noted a 60% reduction in superoxide dismutase 2 (SOD2) expression in human psoriasis macrophages. When SOD2 activity was restored in macrophages, their proatherogenic phenotype reversed. We demonstrate that the K14-RacV12 murine model captures the cardiometabolic dysfunction and accelerates vascular disease observed in chronic inflammation and that skin inflammation induces a proatherosclerotic macrophage phenotype with impaired SOD2 function, which associated with accelerated atherogenesis. PMID:29321372

  2. Increasing maternal body mass index is associated with systemic inflammation in the mother and the activation of distinct placental inflammatory pathways.

    Science.gov (United States)

    Aye, Irving L M H; Lager, Susanne; Ramirez, Vanessa I; Gaccioli, Francesca; Dudley, Donald J; Jansson, Thomas; Powell, Theresa L

    2014-06-01

    Obese pregnant women have increased levels of proinflammatory cytokines in maternal circulation and placental tissues. However, the pathways contributing to placental inflammation in obesity are largely unknown. We tested the hypothesis that maternal body mass index (BMI) was associated with elevated proinflammatory cytokines in maternal and fetal circulations and increased activation of placental inflammatory pathways. A total of 60 women of varying pre-/early pregnancy BMI, undergoing delivery by Cesarean section at term, were studied. Maternal and fetal (cord) plasma were collected for analysis of insulin, leptin, IL-1beta, IL-6, IL-8, monocyte chemoattractant protein (MCP) 1, and TNFalpha by multiplex ELISA. Activation of the inflammatory pathways in the placenta was investigated by measuring the phosphorylated and total protein expression of p38-mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinase (JNK)-MAPK, signal transducer-activated transcription factor (STAT) 3, caspase-1, IL-1beta, IkappaB-alpha protein, and p65 DNA-binding activity. To determine the link between activated placental inflammatory pathways and elevated maternal cytokines, cultured primary human trophoblast (PHT) cells were treated with physiological concentrations of insulin, MCP-1, and TNFalpha, and inflammatory signaling analyzed by Western blot. Maternal BMI was positively correlated with maternal insulin, leptin, MCP-1, and TNFalpha, whereas only fetal leptin was increased with BMI. Placental phosphorylation of p38-MAPK and STAT3, and the expression of IL-1beta protein, were increased with maternal BMI; phosphorylation of p38-MAPK was also correlated with birth weight. In contrast, placental NFkappaB, JNK and caspase-1 signaling, and fetal cytokine levels were unaffected by maternal BMI. In PHT cells, p38-MAPK was activated by MCP-1 and TNFalpha, whereas STAT3 phosphorylation was increased following TNFalpha treatment. Maternal BMI is associated with elevated maternal

  3. Urokinase-type plasminogen activator receptor plays a role in neutrophil migration during lipopolysaccharide-induced peritoneal inflammation but not during Escherichia coli-induced peritonitis

    NARCIS (Netherlands)

    Renckens, Rosemarijn; Roelofs, Joris J. T. H.; Florquin, Sandrine; van der Poll, Tom

    2006-01-01

    BACKGROUND: Urokinase-type plasminogen activator receptor (uPAR) is expressed on many different cells, including leukocytes. uPAR has been implicated to play a role in neutrophil migration to sites of inflammation. METHODS: To determine the role that uPAR plays in neutrophil recruitment in response

  4. Transient infection of the zebrafish notochord with E. coli induces chronic inflammation.

    Science.gov (United States)

    Nguyen-Chi, Mai; Phan, Quang Tien; Gonzalez, Catherine; Dubremetz, Jean-François; Levraud, Jean-Pierre; Lutfalla, Georges

    2014-07-01

    Zebrafish embryos and larvae are now well-established models in which to study infectious diseases. Infections with non-pathogenic Gram-negative Escherichia coli induce a strong and reproducible inflammatory response. Here, we study the cellular response of zebrafish larvae when E. coli bacteria are injected into the notochord and describe the effects. First, we provide direct evidence that the notochord is a unique organ that is inaccessible to leukocytes (macrophages and neutrophils) during the early stages of inflammation. Second, we show that notochord infection induces a host response that is characterised by rapid clearance of the bacteria, strong leukocyte recruitment around the notochord and prolonged inflammation that lasts several days after bacteria clearance. During this inflammatory response, il1b is first expressed in macrophages and subsequently at high levels in neutrophils. Moreover, knock down of il1b alters the recruitment of neutrophils to the notochord, demonstrating the important role of this cytokine in the maintenance of inflammation in the notochord. Eventually, infection of the notochord induces severe defects of the notochord that correlate with neutrophil degranulation occurring around this tissue. This is the first in vivo evidence that neutrophils can degranulate in the absence of a direct encounter with a pathogen. Persistent inflammation, neutrophil infiltration and restructuring of the extracellular matrix are defects that resemble those seen in bone infection and in some chondropathies. As the notochord is a transient embryonic structure that is closely related to cartilage and bone and that contributes to vertebral column formation, we propose infection of the notochord in zebrafish larvae as a new model to study the cellular and molecular mechanisms underlying cartilage and bone inflammation. © 2014. Published by The Company of Biologists Ltd.

  5. Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus.

    Science.gov (United States)

    Zhao, Xiao-Jie; Zhao, Zhan; Yang, Dan-Dan; Cao, Lu-Lu; Zhang, Ling; Ji, Juan; Gu, Jun; Huang, Ji-Ye; Sun, Xiu-Lan

    2017-04-01

    Stress-induced disturbance of the hypothalamic-pituitary-adrenal (HPA) axis is strongly implicated in incidence of mood disorders. A heightened neuroinflammatory response and oxidative stress play a fundamental role in the dysfunction of the HPA axis. We have previously demonstrated that iptakalim (Ipt), a new ATP-sensitive potassium (K-ATP) channel opener, could prevent oxidative injury and neuroinflammation against multiple stimuli-induced brain injury. The present study was to demonstrate the impacts of Ipt in stress-induced HPA axis disorder and depressive behavior. We employed 2 stress paradigms: 8 weeks of continuous restraint stress (chronic restraint stress, CRS) and 2h of restraint stress (acute restraint stress, ARS), to mimic both chronic stress and severe acute stress. Prolonged (4 weeks) and short-term (a single injection) Ipt treatment was administered 30min before each stress paradigm. We found that HPA axis was altered after stress, with different responses to CRS (lower ACTH and CORT, higher AVP, but normal CRH) and ARS (higher CRH, ACTH and CORT, but normal AVP). Both prolonged and short-term Ipt treatment normalized stress-induced HPA axis disorders and abnormal behaviors in mice. CRS and ARS up-regulated mRNA levels of inflammation-related molecules (TNFα, IL-1β, IL-6 and TLR4) and oxidative stress molecules (gp91phox, iNOS and Nrf2) in the mouse hypothalamus. Double immunofluorescence showed CRS and ARS increased microglia activation (CD11b and TNFα) and oxidative stress in neurons (NeuN and gp91phox), which were alleviated by Ipt. Therefore, the present study reveals that Ipt could prevent against stress-induced HPA axis disorders and depressive behavior by alleviating inflammation and oxidative stress in the hypothalamus. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Impact of Cocoa Consumption on Inflammation Processes—A Critical Review of Randomized Controlled Trials

    Science.gov (United States)

    Ellinger, Sabine; Stehle, Peter

    2016-01-01

    Background: Cocoa flavanols have strong anti-inflammatory properties in vitro. If these also occur in vivo, cocoa consumption may contribute to the prevention or treatment of diseases mediated by chronic inflammation. This critical review judged the evidence for such effects occurring after cocoa consumption. Methods: A literature search in Medline was performed for randomized controlled trials (RCTs) that investigated the effects of cocoa consumption on inflammatory biomarkers. Results: Thirty-three RCTs were included, along with 9 bolus and 24 regular consumption studies. Acute cocoa consumption decreased adhesion molecules and 4-series leukotrienes in serum, nuclear factor κB activation in leukocytes, and the expression of CD62P and CD11b on monocytes and neutrophils. In healthy subjects and in patients with cardiovascular diseases, most regular consumption trials did not find any changes except for a decreased number of endothelial microparticles, but several cellular and humoral inflammation markers decreased in patients suffering from type 2 diabetes and impaired fasting glucose. Conclusions: Little evidence exists that consumption of cocoa-rich food may reduce inflammation, probably by lowering the activation of monocytes and neutrophils. The efficacy seems to depend on the extent of the basal inflammatory burden. Further well-designed RCTs with inflammation as the primary outcome are needed, focusing on specific markers of leukocyte activation and considering endothelial microparticles as marker of vascular inflammation. PMID:27240397

  7. Impact of Cocoa Consumption on Inflammation Processes—A Critical Review of Randomized Controlled Trials

    Directory of Open Access Journals (Sweden)

    Sabine Ellinger

    2016-05-01

    Full Text Available Background: Cocoa flavanols have strong anti-inflammatory properties in vitro. If these also occur in vivo, cocoa consumption may contribute to the prevention or treatment of diseases mediated by chronic inflammation. This critical review judged the evidence for such effects occurring after cocoa consumption. Methods: A literature search in Medline was performed for randomized controlled trials (RCTs that investigated the effects of cocoa consumption on inflammatory biomarkers. Results: Thirty-three RCTs were included, along with 9 bolus and 24 regular consumption studies. Acute cocoa consumption decreased adhesion molecules and 4-series leukotrienes in serum, nuclear factor κB activation in leukocytes, and the expression of CD62P and CD11b on monocytes and neutrophils. In healthy subjects and in patients with cardiovascular diseases, most regular consumption trials did not find any changes except for a decreased number of endothelial microparticles, but several cellular and humoral inflammation markers decreased in patients suffering from type 2 diabetes and impaired fasting glucose. Conclusions: Little evidence exists that consumption of cocoa-rich food may reduce inflammation, probably by lowering the activation of monocytes and neutrophils. The efficacy seems to depend on the extent of the basal inflammatory burden. Further well-designed RCTs with inflammation as the primary outcome are needed, focusing on specific markers of leukocyte activation and considering endothelial microparticles as marker of vascular inflammation.

  8. Impact of Cocoa Consumption on Inflammation Processes-A Critical Review of Randomized Controlled Trials.

    Science.gov (United States)

    Ellinger, Sabine; Stehle, Peter

    2016-05-26

    Cocoa flavanols have strong anti-inflammatory properties in vitro. If these also occur in vivo, cocoa consumption may contribute to the prevention or treatment of diseases mediated by chronic inflammation. This critical review judged the evidence for such effects occurring after cocoa consumption. A literature search in Medline was performed for randomized controlled trials (RCTs) that investigated the effects of cocoa consumption on inflammatory biomarkers. Thirty-three RCTs were included, along with 9 bolus and 24 regular consumption studies. Acute cocoa consumption decreased adhesion molecules and 4-series leukotrienes in serum, nuclear factor κB activation in leukocytes, and the expression of CD62P and CD11b on monocytes and neutrophils. In healthy subjects and in patients with cardiovascular diseases, most regular consumption trials did not find any changes except for a decreased number of endothelial microparticles, but several cellular and humoral inflammation markers decreased in patients suffering from type 2 diabetes and impaired fasting glucose. Little evidence exists that consumption of cocoa-rich food may reduce inflammation, probably by lowering the activation of monocytes and neutrophils. The efficacy seems to depend on the extent of the basal inflammatory burden. Further well-designed RCTs with inflammation as the primary outcome are needed, focusing on specific markers of leukocyte activation and considering endothelial microparticles as marker of vascular inflammation.

  9. Alteration in Inflammation-related miR-146a Expression in NF-KB Signaling Pathway in Diabetic Rat Hippocampus.

    Science.gov (United States)

    Habibi, Fatemeh; Ghadiri Soufi, Farhad; Ghiasi, Rafighe; Khamaneh, Amir Mahdi; Alipour, Mohammad Reza

    2016-03-01

    The purpose of the present study is to evaluate the expression of miR-146a gene, its adaptor genes (TRAF6, NF-KB, and IRAK1), and possible changes in the cellular signaling pathway in diabetic hippocampus tissue. Male Sprague-Dawley rats are randomly selected and divided into control and diabetic (n=6) groups. Diabetes induced by the single-dose injection of nicotinamide [110 mg/kg, (i.p.)], 15 min before streptozotocin (50 mg/kg; i.p.) in 12-h fasted rats. The rats are kept at the laboratory for two months. After anaesthetization, hippocampus of the rats was removed in order to measure the expression of miR-146a, NFK-B, IRAK1, and TRAF6 genes using real-time PCR and activity of NF-KB as well as amount of apoptosis rate using ELISA. The results indicated a reduction in expression of miR-146a and an increase in expression of IRAK1, NF-KB, and TRAF6 genes in the hippocampus of diabetic rats compared to control. Also it reveals an increase in the activity of NF-KB and apoptosis rate in the hippocampus of diabetic rats. Our results report the probability that reduction of miR-146a expression in the negative feedback loop between miR-146a and NF-KB increases NF-kB expression and thus intensifies inflammation and apoptosis in hippocampus.

  10. Increased adiposity, dysregulated glucose metabolism and systemic inflammation in Galectin-3 KO mice.

    Directory of Open Access Journals (Sweden)

    Jingbo Pang

    Full Text Available Obesity and type 2 diabetes are associated with increased production of Galectin-3 (Gal-3, a protein that modulates inflammation and clearance of glucose adducts. We used Lean and Diet-induced Obese (DIO WT and Gal-3 KO mice to investigate the role of Gal-3 in modulation of adiposity, glucose metabolism and inflammation. Deficiency of Gal-3 lead to age-dependent development of excess adiposity and systemic inflammation, as indicated by elevated production of acute-phase proteins, number of circulating pro-inflammatory Ly6C(high monocytes and development of neutrophilia, microcytic anemia and thrombocytosis in 20-week-old Lean and DIO male Gal-3 KO mice. This was associated with impaired fasting glucose, heightened response to a glucose tolerance test and reduced adipose tissue expression of adiponectin, Gal-12, ATGL and PPARγ, in the presence of maintained insulin sensitivity and hepatic expression of gluconeogenic enzymes in 20-week-old Gal-3 KO mice compared to their diet-matched WT controls. Expression of PGC-1α and FGF-21 in the liver of Lean Gal-3 KO mice was comparable to that observed in DIO animals. Impaired fasting glucose and altered responsiveness to a glucose load preceded development of excess adiposity and systemic inflammation, as demonstrated in 12-week-old Gal-3 KO mice. Finally, a role for the microflora in mediating the fasting hyperglycemia, but not the excessive response to a glucose load, of 12-week-old Gal-3 KO mice was demonstrated by administration of antibiotics. In conclusion, Gal-3 is an important modulator of glucose metabolism, adiposity and inflammation.

  11. Aging, not age-associated inflammation, determines blood pressure and endothelial responses to acute inflammation.

    Science.gov (United States)

    Lane-Cordova, Abbi D; Ranadive, Sushant M; Kappus, Rebecca M; Cook, Marc D; Phillips, Shane A; Woods, Jeffrey A; Wilund, Kenneth R; Baynard, Tracy; Fernhall, Bo

    2016-12-01

    Aging is characterized by a state of chronic, low-grade inflammation that impairs vascular function. Acute inflammation causes additional decrements in vascular function, but these responses are not uniform in older compared with younger adults. We sought to determine if older adults with low levels of baseline inflammation respond to acute inflammation in a manner similar to younger adults. We hypothesized age-related differences in the vascular responses to acute inflammation, but that older adults with low baseline inflammation would respond similarly to younger adults. Inflammation was induced with an influenza vaccine in 96 participants [older = 67 total, 38 with baseline C-reactive protein (CRP) > 1.5 mg/l and 29 with CRP < 1.5 mg/l; younger = 29]; serum inflammatory markers IL-6 and CRP, blood pressure and flow-mediated dilation (FMD) were measured 24 and 48 h later. Younger adults increased IL-6 and CRP more than the collective older adult group and increased pulse pressure, whereas older adults decreased SBP and reduced pulse pressure. The entire cohort decreased FMD from 11.3 ± 0.8 to 8.3 ± 0.7 to 8.7 ± 0.7% in younger and from 5.8 ± 0.3 to 5.0 ± 0.4 to 4.7 ± 0.4% in older adults, P less than 0.05 for main effect. Older adult groups with differing baseline CRP had the same IL-6, blood pressure, and FMD response to acute inflammation, P less than 0.05 for all interactions, but the low-CRP group increased CRP at 24 and 48 h (from 0.5 ± 0.1 to 1.4 ± 0.2 to 1.7 ± 0.3 mg/l), whereas the high-CRP group did not (from 4.8 ± 0.5 to 5.4 ± 0.5 to 5.4 ± 0.6 mg/l), P less than 0.001 for interaction. Aging, not age-related chronic, low-grade inflammation, determines the vascular responses to acute inflammation.

  12. Spirulina Protects against Hepatic Inflammation in Aging: An Effect Related to the Modulation of the Gut Microbiota?

    Directory of Open Access Journals (Sweden)

    Audrey M. Neyrinck

    2017-06-01

    Full Text Available Aging predisposes to hepatic dysfunction and inflammation that can contribute to the development of non-alcoholic fatty liver disease. Spirulina, a cyanobacterium used as a food additive or food supplement, has been shown to impact immune function. We have tested the potential hepatoprotective effect of a Spirulina in aged mice and to determine whether these effects can be related to a modulation of the gut microbiota. Old mice have been fed a standard diet supplemented with or without 5% Spirulina for six weeks. Among several changes of gut microbiota composition, an increase in Roseburia and Lactobacillus proportions occurs upon Spirulina treatment. Interestingly, parameters related to the innate immunity are upregulated in the small intestine of Spirulina-treated mice. Furthermore, the supplementation with Spirulina reduces several hepatic inflammatory and oxidative stress markers that are upregulated in old mice versus young mice. We conclude that the oral administration of a Spirulina is able to modulate the gut microbiota and to activate the immune system in the gut, a mechanism that may be involved in the improvement of the hepatic inflammation in aged mice. Those data open the way to new therapeutic tools in the management of immune alterations in aging, based on gut microbe-host interactions.

  13. Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection

    Science.gov (United States)

    Hall, Alex; Troupin, Andrea; Londono-Renteria, Berlin; Colpitts, Tonya M.

    2017-01-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant global human disease and mortality. One approach to develop treatments for DENV infection and the prevention of severe disease is through investigation of natural medicines. Inflammation plays both beneficial and harmful roles during DENV infection. Studies have proposed that the oxidative stress response may be one mechanism responsible for triggering inflammation during DENV infection. Thus, blocking the oxidative stress response could reduce inflammation and the development of severe disease. Garlic has been shown to both reduce inflammation and affect the oxidative stress response. Here, we show that the garlic active compounds diallyl disulfide (DADS), diallyl sulfide (DAS) and alliin reduced inflammation during DENV infection and show that this reduction is due to the effects on the oxidative stress response. These results suggest that garlic could be used as an alternative treatment for DENV infection and for the prevention of severe disease development. PMID:28644404

  14. Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection.

    Science.gov (United States)

    Hall, Alex; Troupin, Andrea; Londono-Renteria, Berlin; Colpitts, Tonya M

    2017-06-23

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant global human disease and mortality. One approach to develop treatments for DENV infection and the prevention of severe disease is through investigation of natural medicines. Inflammation plays both beneficial and harmful roles during DENV infection. Studies have proposed that the oxidative stress response may be one mechanism responsible for triggering inflammation during DENV infection. Thus, blocking the oxidative stress response could reduce inflammation and the development of severe disease. Garlic has been shown to both reduce inflammation and affect the oxidative stress response. Here, we show that the garlic active compounds diallyl disulfide (DADS), diallyl sulfide (DAS) and alliin reduced inflammation during DENV infection and show that this reduction is due to the effects on the oxidative stress response. These results suggest that garlic could be used as an alternative treatment for DENV infection and for the prevention of severe disease development.

  15. Targeting Neutrophilic Inflammation Using Polymersome-Mediated Cellular Delivery.

    Science.gov (United States)

    Robertson, James D; Ward, Jon R; Avila-Olias, Milagros; Battaglia, Giuseppe; Renshaw, Stephen A

    2017-05-01

    Neutrophils are key effector cells in inflammation and play an important role in neutralizing invading pathogens. During inflammation resolution, neutrophils undergo apoptosis before they are removed by macrophages, but if apoptosis is delayed, neutrophils can cause extensive tissue damage and chronic disease. Promotion of neutrophil apoptosis is a potential therapeutic approach for treating persistent inflammation, yet neutrophils have proven difficult cells to manipulate experimentally. In this study, we deliver therapeutic compounds to neutrophils using biocompatible, nanometer-sized synthetic vesicles, or polymersomes, which are internalized by binding to scavenger receptors and subsequently escape the early endosome through a pH-triggered disassembly mechanism. This allows polymersomes to deliver molecules into the cell cytosol of neutrophils without causing cellular activation. After optimizing polymersome size, we show that polymersomes can deliver the cyclin-dependent kinase inhibitor (R)-roscovitine into human neutrophils to promote apoptosis in vitro. Finally, using a transgenic zebrafish model, we show that encapsulated (R)-roscovitine can speed up inflammation resolution in vivo more efficiently than the free drug. These results show that polymersomes are effective intracellular carriers for drug delivery into neutrophils. This has important consequences for the study of neutrophil biology and the development of neutrophil-targeted therapeutics. Copyright © 2017 The Authors.

  16. The LIM-only protein FHL2 attenuates lung inflammation during bleomycin-induced fibrosis.

    Directory of Open Access Journals (Sweden)

    Abdulaleem Alnajar

    Full Text Available Fibrogenesis is usually initiated when regenerative processes have failed and/or chronic inflammation occurs. It is characterised by the activation of tissue fibroblasts and dysregulated synthesis of extracellular matrix proteins. FHL2 (four-and-a-half LIM domain protein 2 is a scaffolding protein that interacts with numerous cellular proteins, regulating signalling cascades and gene transcription. It is involved in tissue remodelling and tumour progression. Recent data suggest that FHL2 might support fibrogenesis by maintaining the transcriptional expression of alpha smooth muscle actin and the excessive synthesis and assembly of matrix proteins in activated fibroblasts. Here, we present evidence that FHL2 does not promote bleomycin-induced lung fibrosis, but rather suppresses this process by attenuating lung inflammation. Loss of FHL2 results in increased expression of the pro-inflammatory matrix protein tenascin C and downregulation of the macrophage activating C-type lectin receptor DC-SIGN. Consequently, FHL2 knockout mice developed a severe and long-lasting lung pathology following bleomycin administration due to enhanced expression of tenascin C and impaired activation of inflammation-resolving macrophages.

  17. Spred-2 deficiency exacerbates lipopolysaccharide-induced acute lung inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Yang Xu

    Full Text Available BACKGROUND: Acute respiratory distress syndrome (ARDS is a severe and life-threatening acute lung injury (ALI that is caused by noxious stimuli and pathogens. ALI is characterized by marked acute inflammation with elevated alveolar cytokine levels. Mitogen-activated protein kinase (MAPK pathways are involved in cytokine production, but the mechanisms that regulate these pathways remain poorly characterized. Here, we focused on the role of Sprouty-related EVH1-domain-containing protein (Spred-2, a negative regulator of the Ras-Raf-extracellular signal-regulated kinase (ERK-MAPK pathway, in lipopolysaccharide (LPS-induced acute lung inflammation. METHODS: Wild-type (WT mice and Spred-2(-/- mice were exposed to intratracheal LPS (50 µg in 50 µL PBS to induce pulmonary inflammation. After LPS-injection, the lungs were harvested to assess leukocyte infiltration, cytokine and chemokine production, ERK-MAPK activation and immunopathology. For ex vivo experiments, alveolar macrophages were harvested from untreated WT and Spred-2(-/- mice and stimulated with LPS. In in vitro experiments, specific knock down of Spred-2 by siRNA or overexpression of Spred-2 by transfection with a plasmid encoding the Spred-2 sense sequence was introduced into murine RAW264.7 macrophage cells or MLE-12 lung epithelial cells. RESULTS: LPS-induced acute lung inflammation was significantly exacerbated in Spred-2(-/- mice compared with WT mice, as indicated by the numbers of infiltrating leukocytes, levels of alveolar TNF-α, CXCL2 and CCL2 in a later phase, and lung pathology. U0126, a selective MEK/ERK inhibitor, reduced the augmented LPS-induced inflammation in Spred-2(-/- mice. Specific knock down of Spred-2 augmented LPS-induced cytokine and chemokine responses in RAW264.7 cells and MLE-12 cells, whereas Spred-2 overexpression decreased this response in RAW264.7 cells. CONCLUSIONS: The ERK-MAPK pathway is involved in LPS-induced acute lung inflammation. Spred-2 controls

  18. An investigation of vago-regulatory and health-behavior accounts for increased inflammation in posttraumatic stress disorder.

    Science.gov (United States)

    Dennis, Paul A; Weinberg, J Brice; Calhoun, Patrick S; Watkins, Lana L; Sherwood, Andrew; Dennis, Michelle F; Beckham, Jean C

    2016-04-01

    Posttraumatic stress disorder (PTSD) has been linked to chronic inflammation, a condition that poses a risk for cardiovascular disease. Attenuated vagal activity has been proposed as a potential mediator of PTSD and inflammation, although associated behavioral health risks-namely cigarette smoking and alcohol dependence-might also account for that link. Inflammation was quantified by fasting serum concentrations of C-reactive protein (CRP), tumor necrosis factor (TNF)-α, interleukin (IL)-10, and thymus- and activation-regulated chemokine (TARC)/CCL17 collected from 85 participants with PTSD and 82 without PTSD. Latent variable modeling was used to assess the relationship between PTSD symptom severity and inflammation along with potential mediators vagal activity (respiratory sinus arrhythmia; RSA), smoking status, and lifetime alcohol dependence. PTSD symptom severity was associated with increased inflammation (β=.18, p=.02). However, this association was reduced in models that adjusted for RSA, smoking status, and lifetime alcohol dependence. Independent mediation effects were deemed significant via bootstrapping analyses. Together, RSA, smoking status, and lifetime alcohol dependence accounted for 95% of the effect of PTSD symptom severity on inflammation. Although RSA accounted for a modest proportion of the association between posttraumatic stress and pro-inflammatory responses, behavioral factors-specifically cigarette smoking and alcohol dependence-proved to be larger mediators. The benefits of PTSD treatment may be enhanced by additional interventions aimed at modifying these health behaviors. Published by Elsevier Inc.

  19. Context-Dependent Role of Oxidized Lipids and Lipoproteins in Inflammation.

    Science.gov (United States)

    Miller, Yury I; Shyy, John Y-J

    2017-02-01

    Oxidized low-density lipoprotein (OxLDL), which contains hundreds of different oxidized lipid molecules, is a hallmark of hyperlipidemia and atherosclerosis. The same oxidized lipids found in OxLDL are also formed in apoptotic cells, and are present in tissues as well as in the circulation under pathological conditions. In many disease contexts, oxidized lipids constitute damage signals, or patterns, that activate pattern-recognition receptors (PRRs) and significantly contribute to inflammation. Here, we review recent discoveries and emerging trends in the field of oxidized lipids and the regulation of inflammation, focusing on oxidation products of polyunsaturated fatty acids esterified into cholesteryl esters (CEs) and phospholipids (PLs). We also highlight context-dependent activation and biased agonism of Toll-like receptor-4 (TLR4) and the NLRP3 inflammasome, among other signaling pathways activated by oxidized lipids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A crucial role for CDC42 in senescence-associated inflammation and atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Takashi K Ito

    Full Text Available Risk factors for atherosclerosis accelerate the senescence of vascular endothelial cells and promote atherogenesis by inducing vascular inflammation. A hallmark of endothelial senescence is the persistent up-regulation of pro-inflammatory genes. We identified CDC42 signaling as a mediator of chronic inflammation associated with endothelial senescence. Inhibition of CDC42 or NF-κB signaling attenuated the sustained up-regulation of pro-inflammatory genes in senescent human endothelial cells. Endothelium-specific activation of the p53/p21 pathway, a key mediator of senescence, also resulted in up-regulation of pro-inflammatory molecules in mice, which was reversed by Cdc42 deletion in endothelial cells. Likewise, endothelial-specific deletion of Cdc42 significantly attenuated chronic inflammation and plaque formation in atherosclerotic mice. While inhibition of NF-κB suppressed the pro-inflammatory responses in acute inflammation, the influence of Cdc42 deletion was less marked. Knockdown of cdc-42 significantly down-regulated pro-inflammatory gene expression and restored the shortened lifespan to normal in mutant worms with enhanced inflammation. These findings indicate that the CDC42 pathway is critically involved in senescence-associated inflammation and could be a therapeutic target for chronic inflammation in patients with age-related diseases without compromising host defenses.