WorldWideScience

Sample records for inferior frontal cortex

  1. Dyslexic children lack word selectivity gradients in occipito-temporal and inferior frontal cortex

    Directory of Open Access Journals (Sweden)

    O.A. Olulade

    2015-01-01

    Full Text Available fMRI studies using a region-of-interest approach have revealed that the ventral portion of the left occipito-temporal cortex, which is specialized for orthographic processing of visually presented words (and includes the so-called “visual word form area”, VWFA, is characterized by a posterior-to-anterior gradient of increasing selectivity for words in typically reading adults, adolescents, and children (e.g. Brem et al., 2006, 2009. Similarly, the left inferior frontal cortex (IFC has been shown to exhibit a medial-to-lateral gradient of print selectivity in typically reading adults (Vinckier et al., 2007. Functional brain imaging studies of dyslexia have reported relative underactivity in left hemisphere occipito-temporal and inferior frontal regions using whole-brain analyses during word processing tasks. Hence, the question arises whether gradient sensitivities in these regions are altered in dyslexia. Indeed, a region-of-interest analysis revealed the gradient-specific functional specialization in the occipito-temporal cortex to be disrupted in dyslexic children (van der Mark et al., 2009. Building on these studies, we here (1 investigate if a word-selective gradient exists in the inferior frontal cortex in addition to the occipito-temporal cortex in normally reading children, (2 compare typically reading with dyslexic children, and (3 examine functional connections between these regions in both groups. We replicated the previously reported anterior-to-posterior gradient of increasing selectivity for words in the left occipito-temporal cortex in typically reading children, and its absence in the dyslexic children. Our novel finding is the detection of a pattern of increasing selectivity for words along the medial-to-lateral axis of the left inferior frontal cortex in typically reading children and evidence of functional connectivity between the most lateral aspect of this area and the anterior aspects of the occipito-temporal cortex. We

  2. The role of inferior parietal and inferior frontal cortex in working memory.

    Science.gov (United States)

    Baldo, Juliana V; Dronkers, Nina F

    2006-09-01

    Verbal working memory involves two major components: a phonological store that holds auditory-verbal information very briefly and an articulatory rehearsal process that allows that information to be refreshed and thus held longer in short-term memory (A. Baddeley, 1996, 2000; A. Baddeley & G. Hitch, 1974). In the current study, the authors tested two groups of patients who were chosen on the basis of their relatively focal lesions in the inferior parietal (IP) cortex or inferior frontal (IF) cortex. Patients were tested on a series of tasks that have been previously shown to tap phonological storage (span, auditory rhyming, and repetition) and articulatory rehearsal (visual rhyming and a 2-back task). As predicted, IP patients were disproportionately impaired on the span, rhyming, and repetition tasks and thus demonstrated a phonological storage deficit. IF patients, however, did not show impairment on these storage tasks but did exhibit impairment on the visual rhyming task, which requires articulatory rehearsal. These findings lend further support to the working memory model and provide evidence of the roles of IP and IF cortex in separable working memory processes. ((c) 2006 APA, all rights reserved).

  3. Co-activation-based parcellation of the lateral prefrontal cortex delineates the inferior frontal junction area

    OpenAIRE

    Muhle-Karbe, Paul Simon; Derrfuss, Jan; Lynn, Maggie; Neubert, Franz Xaver; Fox, Peter; Brass, Marcel; Eickhoff, Simon

    2016-01-01

    The inferior frontal junction (IFJ) area, a small region in the posterior lateral prefrontal cortex (LPFC), has received increasing interest in recent years due to its central involvement in the control of action, attention, and memory. Yet, both its function and anatomy remain controversial. Here, we employed a meta-analytic parcellation of the left LPFC to show that the IFJ can be isolated based on its specific functional connections. A seed region, oriented along the left inferior frontal ...

  4. Aberrant network integrity of the inferior frontal cortex in women with anorexia nervosa

    Directory of Open Access Journals (Sweden)

    Stephanie Kullmann

    2014-01-01

    These results suggest that AN patients have reduced connectivity within the cognitive control system of the brain and increased connectivity within regions important for salience processing. Due to its fundamental role in inhibitory behavior, including motor response, altered integrity of the inferior frontal cortex could contribute to hyperactivity in AN.

  5. Right Inferior Frontal Gyrus Activation as a Neural Marker of Successful Lying

    Directory of Open Access Journals (Sweden)

    Oshin eVartanian

    2013-10-01

    Full Text Available There is evidence to suggest that successful lying necessitates cognitive effort. We tested this hypothesis by instructing participants to lie or tell the truth under conditions of high and low working memory (WM load. The task required participants to register a response on 80 trials of identical structure within a 2 (WM Load: high, low × 2 (Instruction: truth or lie repeated-measures design. Participants were less accurate and responded more slowly when WM load was high, and also when they lied. High WM load activated the fronto-parietal WM network including dorsolateral prefrontal cortex (PFC, middle frontal gyrus, precuneus, and intraparietal cortex. Lying activated areas previously shown to underlie deception, including middle and superior frontal gyrus and precuneus. Critically, successful lying in the high vs. low WM load condition was associated with longer response latency, and it activated the right inferior frontal gyrus—a key brain region regulating inhibition. The same pattern of activation in the inferior frontal gyrus was absent when participants told the truth. These findings demonstrate that lying under high cognitive load places a burden on inhibition, and that the right inferior frontal gyrus may provide a neural marker for successful lying.

  6. Right inferior frontal gyrus activation as a neural marker of successful lying.

    Science.gov (United States)

    Vartanian, Oshin; Kwantes, Peter J; Mandel, David R; Bouak, Fethi; Nakashima, Ann; Smith, Ingrid; Lam, Quan

    2013-01-01

    There is evidence to suggest that successful lying necessitates cognitive effort. We tested this hypothesis by instructing participants to lie or tell the truth under conditions of high and low working memory (WM) load. The task required participants to register a response on 80 trials of identical structure within a 2 (WM Load: high, low) × 2 (Instruction: truth or lie) repeated-measures design. Participants were less accurate and responded more slowly when WM load was high, and also when they lied. High WM load activated the fronto-parietal WM network including dorsolateral prefrontal cortex (PFC), middle frontal gyrus, precuneus, and intraparietal cortex. Lying activated areas previously shown to underlie deception, including middle and superior frontal gyrus and precuneus. Critically, successful lying in the high vs. low WM load condition was associated with longer response latency, and it activated the right inferior frontal gyrus-a key brain region regulating inhibition. The same pattern of activation in the inferior frontal gyrus was absent when participants told the truth. These findings demonstrate that lying under high cognitive load places a burden on inhibition, and that the right inferior frontal gyrus may provide a neural marker for successful lying.

  7. Conceptual control across modalities: graded specialisation for pictures and words in inferior frontal and posterior temporal cortex

    OpenAIRE

    Krieger-Redwood, Katya; Teige, Catarina; Davey, James; Hymers, Mark; Jefferies, Elizabeth

    2015-01-01

    Controlled semantic retrieval to words elicits co-activation of inferior frontal (IFG) and left posterior temporal cortex (pMTG), but research has not yet established (i) the distinct contributions of these regions or (ii) whether the same processes are recruited for non-verbal stimuli. Words have relatively flexible meanings – as a consequence, identifying the context that links two specific words is relatively demanding. In contrast, pictures are richer stimuli and their precise meaning is ...

  8. Occipital cortex of blind individuals is functionally coupled with executive control areas of frontal cortex.

    Science.gov (United States)

    Deen, Ben; Saxe, Rebecca; Bedny, Marina

    2015-08-01

    In congenital blindness, the occipital cortex responds to a range of nonvisual inputs, including tactile, auditory, and linguistic stimuli. Are these changes in functional responses to stimuli accompanied by altered interactions with nonvisual functional networks? To answer this question, we introduce a data-driven method that searches across cortex for functional connectivity differences across groups. Replicating prior work, we find increased fronto-occipital functional connectivity in congenitally blind relative to blindfolded sighted participants. We demonstrate that this heightened connectivity extends over most of occipital cortex but is specific to a subset of regions in the inferior, dorsal, and medial frontal lobe. To assess the functional profile of these frontal areas, we used an n-back working memory task and a sentence comprehension task. We find that, among prefrontal areas with overconnectivity to occipital cortex, one left inferior frontal region responds to language over music. By contrast, the majority of these regions responded to working memory load but not language. These results suggest that in blindness occipital cortex interacts more with working memory systems and raise new questions about the function and mechanism of occipital plasticity.

  9. Right inferior frontal cortex activity correlates with tolcapone responsivity in problem and pathological gamblers

    Directory of Open Access Journals (Sweden)

    Andrew S. Kayser

    2017-01-01

    Full Text Available Failures of self-regulation in problem and pathological gambling (PPG are thought to emerge from failures of top-down control, reflected neurophysiologically in a reduced capacity of prefrontal cortex to influence activity within subcortical structures. In patients with addictions, these impairments have been argued to alter evaluation of reward within dopaminergic neuromodulatory systems. Previously we demonstrated that augmenting dopamine tone in frontal cortex via use of tolcapone, an inhibitor of the dopamine-degrading enzyme catechol-O-methyltransferase (COMT, reduced delay discounting, a measure of impulsivity, in healthy subjects. To evaluate this potentially translational approach to augmenting prefrontal inhibitory control, here we hypothesized that increasing cortical dopamine tone would reduce delay discounting in PPG subjects in proportion to its ability to augment top-down control. To causally test this hypothesis, we administered the COMT inhibitor tolcapone in a randomized, double-blind, placebo-controlled, within-subject study of 17 PPG subjects who performed a delay discounting task while functional MRI images were obtained. In this subject population, we found that greater BOLD activity during the placebo condition within the right inferior frontal cortex (RIFC, a region thought to be important for inhibitory control, correlated with greater declines in impulsivity on tolcapone versus placebo. Intriguingly, connectivity between RIFC and the right striatum, and not the level of activity within RIFC itself, increased on tolcapone versus placebo. Together, these findings support the hypothesis that tolcapone-mediated increases in top-down control may reduce impulsivity in PPG subjects, a finding with potential translational relevance for gambling disorders, and for behavioral addictions in general.

  10. Rule-guided executive control of response inhibition: functional topography of the inferior frontal cortex.

    Directory of Open Access Journals (Sweden)

    Weidong Cai

    Full Text Available The human inferior frontal cortex (IFC is a large heterogeneous structure with distinct cytoarchitectonic subdivisions and fiber connections. It has been found involved in a wide range of executive control processes from target detection, rule retrieval to response control. Since these processes are often being studied separately, the functional organization of executive control processes within the IFC remains unclear.We conducted an fMRI study to examine the activities of the subdivisions of IFC during the presentation of a task cue (rule retrieval and during the performance of a stop-signal task (requiring response generation and inhibition in comparison to a not-stop task (requiring response generation but not inhibition. We utilized a mixed event-related and block design to separate brain activity in correspondence to transient control processes from rule-related and sustained control processes. We found differentiation in control processes within the IFC. Our findings reveal that the bilateral ventral-posterior IFC/anterior insula are more active on both successful and unsuccessful stop trials relative to not-stop trials, suggesting their potential role in the early stage of stopping such as triggering the stop process. Direct countermanding seems to be outside of the IFC. In contrast, the dorsal-posterior IFC/inferior frontal junction (IFJ showed transient activity in correspondence to the infrequent presentation of the stop signal in both tasks and the left anterior IFC showed differential activity in response to the task cues. The IFC subdivisions also exhibited similar but distinct patterns of functional connectivity during response control.Our findings suggest that executive control processes are distributed across the IFC and that the different subdivisions of IFC may support different control operations through parallel cortico-cortical and cortico-striatal circuits.

  11. The Role of Medial Frontal Cortex in Action Anticipation in Professional Badminton Players.

    Science.gov (United States)

    Xu, Huan; Wang, Pin; Ye, Zhuo'er; Di, Xin; Xu, Guiping; Mo, Lei; Lin, Huiyan; Rao, Hengyi; Jin, Hua

    2016-01-01

    , right inferior parietal lobule, left insula and particularly, and left medial frontal cortex.

  12. The Role of Medial Frontal Cortex in Action Anticipation in Professional Badminton Players

    Science.gov (United States)

    Xu, Huan; Wang, Pin; Ye, Zhuo’er; Di, Xin; Xu, Guiping; Mo, Lei; Lin, Huiyan; Rao, Hengyi; Jin, Hua

    2016-01-01

    , right inferior parietal lobule, left insula and particularly, and left medial frontal cortex. PMID:27909422

  13. Transcranial direct current stimulation over left inferior frontal cortex improves speech fluency in adults who stutter.

    Science.gov (United States)

    Chesters, Jennifer; Möttönen, Riikka; Watkins, Kate E

    2018-04-01

    See Crinion (doi:10.1093/brain/awy075) for a scientific commentary on this article.Stuttering is a neurodevelopmental condition affecting 5% of children, and persisting in 1% of adults. Promoting lasting fluency improvement in adults who stutter is a particular challenge. Novel interventions to improve outcomes are of value, therefore. Previous work in patients with acquired motor and language disorders reported enhanced benefits of behavioural therapies when paired with transcranial direct current stimulation. Here, we report the results of the first trial investigating whether transcranial direct current stimulation can improve speech fluency in adults who stutter. We predicted that applying anodal stimulation to the left inferior frontal cortex during speech production with temporary fluency inducers would result in longer-lasting fluency improvements. Thirty male adults who stutter completed a randomized, double-blind, controlled trial of anodal transcranial direct current stimulation over left inferior frontal cortex. Fifteen participants received 20 min of 1-mA stimulation on five consecutive days while speech fluency was temporarily induced using choral and metronome-timed speech. The other 15 participants received the same speech fluency intervention with sham stimulation. Speech fluency during reading and conversation was assessed at baseline, before and after the stimulation on each day of the 5-day intervention, and at 1 and 6 weeks after the end of the intervention. Anodal stimulation combined with speech fluency training significantly reduced the percentage of disfluent speech measured 1 week after the intervention compared with fluency intervention alone. At 6 weeks after the intervention, this improvement was maintained during reading but not during conversation. Outcome scores at both post-intervention time points on a clinical assessment tool (the Stuttering Severity Instrument, version 4) also showed significant improvement in the group receiving

  14. Inferior frontal gyrus activation predicts individual differences in perceptual learning of cochlear-implant simulations.

    Science.gov (United States)

    Eisner, Frank; McGettigan, Carolyn; Faulkner, Andrew; Rosen, Stuart; Scott, Sophie K

    2010-05-26

    This study investigated the neural plasticity associated with perceptual learning of a cochlear implant (CI) simulation. Normal-hearing listeners were trained with vocoded and spectrally shifted speech simulating a CI while cortical responses were measured with functional magnetic resonance imaging (fMRI). A condition in which the vocoded speech was spectrally inverted provided a control for learnability and adaptation. Behavioral measures showed considerable individual variability both in the ability to learn to understand the degraded speech, and in phonological working memory capacity. Neurally, left-lateralized regions in superior temporal sulcus and inferior frontal gyrus (IFG) were sensitive to the learnability of the simulations, but only the activity in prefrontal cortex correlated with interindividual variation in intelligibility scores and phonological working memory. A region in left angular gyrus (AG) showed an activation pattern that reflected learning over the course of the experiment, and covariation of activity in AG and IFG was modulated by the learnability of the stimuli. These results suggest that variation in listeners' ability to adjust to vocoded and spectrally shifted speech is partly reflected in differences in the recruitment of higher-level language processes in prefrontal cortex, and that this variability may further depend on functional links between the left inferior frontal gyrus and angular gyrus. Differences in the engagement of left inferior prefrontal cortex, and its covariation with posterior parietal areas, may thus underlie some of the variation in speech perception skills that have been observed in clinical populations of CI users.

  15. Effective Connectivity between Ventral Occipito-Temporal and Ventral Inferior Frontal Cortex during Lexico-Semantic Processing. A Dynamic Causal Modeling Study

    Directory of Open Access Journals (Sweden)

    Marcela Perrone-Bertolotti

    2017-06-01

    Full Text Available It has been suggested that dorsal and ventral pathways support distinct aspects of language processing. Yet, the full extent of their involvement and their inter-regional connectivity in visual word recognition is still unknown. Studies suggest that they might reflect the dual-route model of reading, with the dorsal pathway more involved in grapho-phonological conversion during phonological tasks, and the ventral pathway performing lexico-semantic access during semantic tasks. Furthermore, this subdivision is also suggested at the level of the inferior frontal cortex, involving ventral and dorsal parts for lexico-semantic and phonological processing, respectively. In the present study, we assessed inter-regional brain connectivity and task-induced modulations of brain activity during a phoneme detection and semantic categorization tasks, using fMRI in healthy subject. We used a dynamic causal modeling approach to assess inter-regional connectivity and task demand modulation within the dorsal and ventral pathways, including the following network components: the ventral occipito-temporal cortex (vOTC; dorsal and ventral, the superior temporal gyrus (STG; dorsal, the dorsal inferior frontal gyrus (dIFG; dorsal, and the ventral IFG (vIFG; ventral. We report three distinct inter-regional interactions supporting orthographic information transfer from vOTC to other language regions (vOTC -> STG, vOTC -> vIFG and vOTC -> dIFG regardless of task demands. Moreover, we found that (a during semantic processing (direct ventral pathway the vOTC -> vIFG connection strength specifically increased and (b a lack of modulation of the vOTC -> dIFG connection strength by the task that could suggest a more general involvement of the dorsal pathway during visual word recognition. Results are discussed in terms of anatomo-functional connectivity of visual word recognition network.

  16. Subliminal semantic priming changes the dynamic causal influence between the left frontal and temporal cortex.

    Science.gov (United States)

    Matsumoto, Atsushi; Kakigi, Ryusuke

    2014-01-01

    Recent neuroimaging experiments have revealed that subliminal priming of a target stimulus leads to the reduction of neural activity in specific regions concerned with processing the target. Such findings lead to questions about the degree to which the subliminal priming effect is based only on decreased activity in specific local brain regions, as opposed to the influence of neural mechanisms that regulate communication between brain regions. To address this question, this study recorded EEG during performance of a subliminal semantic priming task. We adopted an information-based approach that used independent component analysis and multivariate autoregressive modeling. Results indicated that subliminal semantic priming caused significant modulation of alpha band activity in the left inferior frontal cortex and modulation of gamma band activity in the left inferior temporal regions. The multivariate autoregressive approach confirmed significant increases in information flow from the inferior frontal cortex to inferior temporal regions in the early time window that was induced by subliminal priming. In the later time window, significant enhancement of bidirectional causal flow between these two regions underlying subliminal priming was observed. Results suggest that unconscious processing of words influences not only local activity of individual brain regions but also the dynamics of neural communication between those regions.

  17. [Neuroanatomy of Frontal Association Cortex].

    Science.gov (United States)

    Takada, Masahiko

    2016-11-01

    The frontal association cortex is composed of the prefrontal cortex and the motor-related areas except the primary motor cortex (i.e., the so-called higher motor areas), and is well-developed in primates, including humans. The prefrontal cortex receives and integrates large bits of diverse information from the parietal, temporal, and occipital association cortical areas (termed the posterior association cortex), and paralimbic association cortical areas. This information is then transmitted to the primary motor cortex via multiple motor-related areas. Given these facts, it is likely that the prefrontal cortex exerts executive functions for behavioral control. The functional input pathways from the posterior and paralimbic association cortical areas to the prefrontal cortex are classified primarily into six groups. Cognitive signals derived from the prefrontal cortex are conveyed to the rostral motor-related areas to transform them into motor signals, which finally enter the primary motor cortex via the caudal motor-related areas. Furthermore, it has been shown that, similar to the primary motor cortex, areas of the frontal association cortex form individual networks (known as "loop circuits") with the basal ganglia and cerebellum via the thalamus, and hence are extensively involved in the expression and control of behavioral actions.

  18. Transcranial Magnetic Stimulation over Left Inferior Frontal and Posterior Temporal Cortex Disrupts Gesture-Speech Integration.

    Science.gov (United States)

    Zhao, Wanying; Riggs, Kevin; Schindler, Igor; Holle, Henning

    2018-02-21

    Language and action naturally occur together in the form of cospeech gestures, and there is now convincing evidence that listeners display a strong tendency to integrate semantic information from both domains during comprehension. A contentious question, however, has been which brain areas are causally involved in this integration process. In previous neuroimaging studies, left inferior frontal gyrus (IFG) and posterior middle temporal gyrus (pMTG) have emerged as candidate areas; however, it is currently not clear whether these areas are causally or merely epiphenomenally involved in gesture-speech integration. In the present series of experiments, we directly tested for a potential critical role of IFG and pMTG by observing the effect of disrupting activity in these areas using transcranial magnetic stimulation in a mixed gender sample of healthy human volunteers. The outcome measure was performance on a Stroop-like gesture task (Kelly et al., 2010a), which provides a behavioral index of gesture-speech integration. Our results provide clear evidence that disrupting activity in IFG and pMTG selectively impairs gesture-speech integration, suggesting that both areas are causally involved in the process. These findings are consistent with the idea that these areas play a joint role in gesture-speech integration, with IFG regulating strategic semantic access via top-down signals acting upon temporal storage areas. SIGNIFICANCE STATEMENT Previous neuroimaging studies suggest an involvement of inferior frontal gyrus and posterior middle temporal gyrus in gesture-speech integration, but findings have been mixed and due to methodological constraints did not allow inferences of causality. By adopting a virtual lesion approach involving transcranial magnetic stimulation, the present study provides clear evidence that both areas are causally involved in combining semantic information arising from gesture and speech. These findings support the view that, rather than being

  19. Distortion of time interval reproduction in an epileptic patient with a focal lesion in the right anterior insular/inferior frontal cortices.

    Science.gov (United States)

    Monfort, Vincent; Pfeuty, Micha; Klein, Madelyne; Collé, Steffie; Brissart, Hélène; Jonas, Jacques; Maillard, Louis

    2014-11-01

    This case report on an epileptic patient suffering from a focal lesion at the junction of the right anterior insular cortex (AIC) and the adjacent inferior frontal cortex (IFC) provides the first evidence that damage to this brain region impairs temporal performance in a visual time reproduction task in which participants had to reproduce the presentation duration (3, 5 and 7s) of emotionally-neutral and -negative pictures. Strikingly, as compared to a group of healthy subjects, the AIC/IFC case considerably overestimated reproduction times despite normal variability. The effect was obtained in all duration and emotion conditions. Such a distortion in time reproduction was not observed in four other epileptic patients without insular or inferior frontal damage. Importantly, the absolute extent of temporal over-reproduction increased in proportion to the magnitude of the target durations, which concurs with the scalar property of interval timing, and points to an impairment of time-specific rather than of non temporal (such as motor) mechanisms. Our data suggest that the disability in temporal reproduction of the AIC/IFC case would result from a distorted memory representation of the encoded duration, occurring during the process of storage and/or of recovery from memory and leading to a deviation of the temporal judgment during the reproduction task. These findings support the recent proposal that the anterior insular/inferior frontal cortices would be involved in time interval representation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Decoding rule search domain in the left inferior frontal gyrus

    Science.gov (United States)

    Babcock, Laura; Vallesi, Antonino

    2018-01-01

    Traditionally, the left hemisphere has been thought to extract mainly verbal patterns of information, but recent evidence has shown that the left Inferior Frontal Gyrus (IFG) is active during inductive reasoning in both the verbal and spatial domains. We aimed to understand whether the left IFG supports inductive reasoning in a domain-specific or domain-general fashion. To do this we used Multi-Voxel Pattern Analysis to decode the representation of domain during a rule search task. Thirteen participants were asked to extract the rule underlying streams of letters presented in different spatial locations. Each rule was either verbal (letters forming words) or spatial (positions forming geometric figures). Our results show that domain was decodable in the left prefrontal cortex, suggesting that this region represents domain-specific information, rather than processes common to the two domains. A replication study with the same participants tested two years later confirmed these findings, though the individual representations changed, providing evidence for the flexible nature of representations. This study extends our knowledge on the neural basis of goal-directed behaviors and on how information relevant for rule extraction is flexibly mapped in the prefrontal cortex. PMID:29547623

  1. Better without (lateral) frontal cortex? Insight problems solved by frontal patients.

    Science.gov (United States)

    Reverberi, Carlo; Toraldo, Alessio; D'Agostini, Serena; Skrap, Miran

    2005-12-01

    A recently proposed theory on frontal lobe functions claims that the prefrontal cortex, particularly its dorso-lateral aspect, is crucial in defining a set of responses suitable for a particular task, and biasing these for selection. This activity is carried out for virtually any kind of non-routine tasks, without distinction of content. The aim of this study is to test the prediction of Frith's 'sculpting the response space' hypothesis by means of an 'insight' problem-solving task, namely the matchstick arithmetic task. Starting from Knoblich et al.'s interpretation for the failure of healthy controls to solve the matchstick problem, and Frith's theory on the role of dorsolateral frontal cortex, we derived the counterintuitive prediction that patients with focal damage to the lateral frontal cortex should perform better than a group of healthy participants on this rather difficult task. We administered the matchstick task to 35 patients (aged 26-65 years) with a single focal brain lesion as determined by a CT or an MRI scan, and to 23 healthy participants (aged 34-62 years). The findings seemed in line with theoretical predictions. While only 43% of healthy participants could solve the most difficult matchstick problems ('type C'), 82% of lateral frontal patients did so (Fisher's exact test, P < 0.05). In conclusion, the combination of Frith's and Knoblich et al.'s theories was corroborated.

  2. A simultaneous modulation of reactive and proactive inhibition processes by anodal tDCS on the right inferior frontal cortex.

    Directory of Open Access Journals (Sweden)

    Toni Cunillera

    Full Text Available Proactive and reactive inhibitory processes are a fundamental part of executive functions, allowing a person to stop inappropriate responses when necessary and to adjust performance in in a long term in accordance to the goals of a task. In the current study, we manipulate, in a single task, both reactive and proactive inhibition mechanisms, and we investigate the within-subjects effect of increasing, by means of anodal transcranial direct current stimulation (tDCS, the involvement of the right inferior frontal cortex (rIFC. Our results show a simultaneous enhancement of these two cognitive mechanisms when modulating the neural activity of rIFC. Thus, the application of anodal tDCS increased reaction times on Go trials, indicating a possible increase in proactive inhibition. Concurrently, the stop-signal reaction time, as a covert index of the inhibitory process, was reduced, demonstrating an improvement in reactive inhibition. In summary, the current pattern of results validates the engagement of the rIFC in these two forms of inhibitory processes, proactive and reactive inhibition and it provides evidence that both processes can operate concurrently in the brain.

  3. Differentiated parietal connectivity of frontal regions for "what" and "where" memory.

    Science.gov (United States)

    Rottschy, C; Caspers, S; Roski, C; Reetz, K; Dogan, I; Schulz, J B; Zilles, K; Laird, A R; Fox, P T; Eickhoff, S B

    2013-11-01

    In a previous meta-analysis across almost 200 neuroimaging experiments, working memory for object location showed significantly stronger convergence on the posterior superior frontal gyrus, whereas working memory for identity showed stronger convergence on the posterior inferior frontal gyrus (dorsal to, but overlapping with Brodmann's area BA 44). As similar locations have been discussed as part of a dorsal frontal-superior parietal reach system and an inferior frontal grasp system, the aim of the present study was to test whether the regions of working-memory related "what" and "where" processing show a similar distinction in parietal connectivity. The regions that were found in the previous meta-analysis were used as seeds for functional connectivity analyses using task-based meta-analytic connectivity modelling and task-independent resting state correlations. While the ventral seed showed significantly stronger connectivity with the bilateral intraparietal sulcus (IPS), the dorsal seed showed stronger connectivity with the bilateral posterior inferior parietal and the medial superior parietal lobule. The observed connections of regions involved in memory for object location and identity thus clearly demonstrate a distinction into separate pathways that resemble the parietal connectivity patterns of the dorsal and ventral premotor cortex in non-human primates and humans. It may hence be speculated that memory for a particular location and reaching towards it as well as object memory and finger positioning for manipulation may rely on shared neural systems. Moreover, the ensuing regions, in turn, featured differential connectivity with the bilateral ventral and dorsal extrastriate cortex, suggesting largely segregated bilateral connectivity pathways from the dorsal visual cortex via the superior and inferior parietal lobules to the dorsal posterior frontal cortex and from the ventral visual cortex via the IPS to the ventral posterior frontal cortex that may

  4. Task-dependent and distinct roles of the temporoparietal junction and inferior frontal cortex in the control of imitation.

    Science.gov (United States)

    Hogeveen, Jeremy; Obhi, Sukhvinder S; Banissy, Michael J; Santiesteban, Idalmis; Press, Clare; Catmur, Caroline; Bird, Geoffrey

    2015-07-01

    The control of neurological networks supporting social cognition is crucially important for social interaction. In particular, the control of imitation is directly linked to interaction quality, with impairments associated with disorders characterized by social difficulties. Previous work suggests inferior frontal cortex (IFC) and the temporoparietal junction (TPJ) are involved in controlling imitation, but the functional roles of these areas remain unclear. Here, transcranial direct current stimulation (tDCS) was used to enhance cortical excitability at IFC and the TPJ prior to the completion of three tasks: (i) a naturalistic social interaction during which increased imitation is known to improve rapport, (ii) a choice reaction time task in which imitation needs to be inhibited for successful performance and (iii) a non-imitative control task. Relative to sham stimulation, stimulating IFC improved the context-dependent control of imitation-participants imitated more during the social interaction and less during the imitation inhibition task. In contrast, stimulating the TPJ reduced imitation in the inhibition task without affecting imitation during social interaction. Neither stimulation site affected the non-imitative control task. These data support a model in which IFC modulates imitation directly according to task demands, whereas TPJ controls task-appropriate shifts in attention toward representation of the self or the other, indirectly impacting upon imitation. © The Author (2014). Published by Oxford University Press.

  5. Medial frontal cortex and response conflict: Evidence from human intracranial EEG and medial frontal cortex lesion

    NARCIS (Netherlands)

    Cohen, M.X.; Ridderinkhof, K.R.; Haupt, S.; Elger, C.E.; Fell, J.

    2008-01-01

    The medial frontal cortex (MFC) has been implicated in the monitoring and selection of actions in the face of competing alternatives, but much remains unknown about its functional properties, including electrophysiological oscillations, during response conflict tasks. Here, we recorded intracranial

  6. Effective Connectivity Hierarchically Links Temporoparietal and Frontal Areas of the Auditory Dorsal Stream with the Motor Cortex Lip Area during Speech Perception

    Science.gov (United States)

    Murakami, Takenobu; Restle, Julia; Ziemann, Ulf

    2012-01-01

    A left-hemispheric cortico-cortical network involving areas of the temporoparietal junction (Tpj) and the posterior inferior frontal gyrus (pIFG) is thought to support sensorimotor integration of speech perception into articulatory motor activation, but how this network links with the lip area of the primary motor cortex (M1) during speech…

  7. Inferior Frontal Gyrus Activity Triggers Anterior Insula Response to Emotional Facial Expressions

    NARCIS (Netherlands)

    Jabbi, Mbemba; Keysers, Christian

    2008-01-01

    The observation of movies of facial expressions of others has been shown to recruit similar areas involved in experiencing one's own emotions: the inferior frontal gyrus (IFG). the anterior insula and adjacent frontal operculum (IFO). The Causal link bet between activity in these 2 regions,

  8. Gender differences in the activation of inferior frontal cortex during emotional speech perception.

    Science.gov (United States)

    Schirmer, Annett; Zysset, Stefan; Kotz, Sonja A; Yves von Cramon, D

    2004-03-01

    We investigated the brain regions that mediate the processing of emotional speech in men and women by presenting positive and negative words that were spoken with happy or angry prosody. Hence, emotional prosody and word valence were either congruous or incongruous. We assumed that an fRMI contrast between congruous and incongruous presentations would reveal the structures that mediate the interaction of emotional prosody and word valence. The left inferior frontal gyrus (IFG) was more strongly activated in incongruous as compared to congruous trials. This difference in IFG activity was significantly larger in women than in men. Moreover, the congruence effect was significant in women whereas it only appeared as a tendency in men. As the left IFG has been repeatedly implicated in semantic processing, these findings are taken as evidence that semantic processing in women is more susceptible to influences from emotional prosody than is semantic processing in men. Moreover, the present data suggest that the left IFG mediates increased semantic processing demands imposed by an incongruence between emotional prosody and word valence.

  9. Prominence vs. aboutness in sequencing: a functional distinction within the left inferior frontal gyrus.

    Science.gov (United States)

    Bornkessel-Schlesewsky, Ina; Grewe, Tanja; Schlesewsky, Matthias

    2012-02-01

    Prior research on the neural bases of syntactic comprehension suggests that activation in the left inferior frontal gyrus (lIFG) correlates with the processing of word order variations. However, there are inconsistencies with respect to the specific subregion within the IFG that is implicated by these findings: the pars opercularis or the pars triangularis. Here, we examined the hypothesis that the dissociation between pars opercularis and pars triangularis activation may reflect functional differences between clause-medial and clause-initial word order permutations, respectively. To this end, we directly compared clause-medial and clause-initial object-before-subject orders in German in a within-participants, event-related fMRI design. Our results showed increased activation for object-initial sentences in a bilateral network of frontal, temporal and subcortical regions. Within the lIFG, posterior and inferior subregions showed only a main effect of word order, whereas more anterior and superior subregions showed effects of word order and sentence type, with higher activation for sentences with an argument in the clause-initial position. These findings are interpreted as evidence for a functional gradation of sequence processing within the left IFG: posterior subportions correlate with argument prominence-based (local) aspects of sequencing, while anterior subportions correlate with aboutness-based aspects of sequencing, which are crucial in linking the current sentence to the wider discourse. This proposal appears compatible with more general hypotheses about information processing gradients in prefrontal cortex (Koechlin & Summerfield, 2007). Copyright © 2010 Elsevier Inc. All rights reserved.

  10. The morphology of midcingulate cortex predicts frontal-midline theta neurofeedback success

    Directory of Open Access Journals (Sweden)

    Stefanie eEnriquez-Geppert

    2013-08-01

    Full Text Available Humans differ in their ability to learn how to control their own brain activity by neurofeedback. However, neural mechanisms underlying these inter-individual differences, which may determine training success and associated cognitive enhancement, are not well understood. Here, it is asked whether neurofeedback success of frontal-midline (fm theta, an oscillation related to higher cognitive functions, could be predicted by the morphology of brain structures known to be critically involved in fm-theta generation. Nineteen young, right-handed participants underwent magnetic resonance imaging of T1-weighted brain images, and took part in an individualized, eight-session neurofeedback training in order to learn how to enhance activity in their fm-theta frequency band. Initial training success, measured at the second training session, was correlated with the final outcome measure. We found that the inferior, superior and middle frontal cortices were not associated with training success. However, volume of the midcingulate cortex as well as volume and concentration of the underlying white matter structures act as predictor variables for the general responsiveness to training. These findings suggest a neuroanatomical foundation for the ability to learn to control one’s own brain activity.

  11. Short-Term Memory for Space and Time Flexibly Recruit Complementary Sensory-Biased Frontal Lobe Attention Networks.

    Science.gov (United States)

    Michalka, Samantha W; Kong, Lingqiang; Rosen, Maya L; Shinn-Cunningham, Barbara G; Somers, David C

    2015-08-19

    The frontal lobes control wide-ranging cognitive functions; however, functional subdivisions of human frontal cortex are only coarsely mapped. Here, functional magnetic resonance imaging reveals two distinct visual-biased attention regions in lateral frontal cortex, superior precentral sulcus (sPCS) and inferior precentral sulcus (iPCS), anatomically interdigitated with two auditory-biased attention regions, transverse gyrus intersecting precentral sulcus (tgPCS) and caudal inferior frontal sulcus (cIFS). Intrinsic functional connectivity analysis demonstrates that sPCS and iPCS fall within a broad visual-attention network, while tgPCS and cIFS fall within a broad auditory-attention network. Interestingly, we observe that spatial and temporal short-term memory (STM), respectively, recruit visual and auditory attention networks in the frontal lobe, independent of sensory modality. These findings not only demonstrate that both sensory modality and information domain influence frontal lobe functional organization, they also demonstrate that spatial processing co-localizes with visual processing and that temporal processing co-localizes with auditory processing in lateral frontal cortex. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Short-term memory for space and time flexibly recruit complementary sensory-biased frontal lobe attention networks

    Science.gov (United States)

    Michalka, Samantha W.; Kong, Lingqiang; Rosen, Maya L.; Shinn-Cunningham, Barbara G.; Somers, David C.

    2015-01-01

    Summary The frontal lobes control wide-ranging cognitive functions; however, functional subdivisions of human frontal cortex are only coarsely mapped. Here, functional magnetic resonance imaging reveals two distinct visual-biased attention regions in lateral frontal cortex, superior precentral sulcus (sPCS) and inferior precentral sulcus (iPCS), anatomically interdigitated with two auditory-biased attention regions, transverse gyrus intersecting precentral sulcus (tgPCS) and caudal inferior frontal sulcus (cIFS). Intrinsic functional connectivity analysis demonstrates that sPCS and iPCS fall within a broad visual-attention network, while tgPCS and cIFS fall within a broad auditory-attention network. Interestingly, we observe that spatial and temporal short-term memory (STM), respectively, recruit visual and auditory attention networks in the frontal lobe, independent of sensory modality. These findings not only demonstrate that both sensory modality and information domain influence frontal lobe functional organization, they also demonstrate that spatial processing co-localizes with visual processing and that temporal processing co-localizes with auditory processing in lateral frontal cortex. PMID:26291168

  13. Reduced frontal cortex thickness and cortical volume associated with pathological narcissism.

    Science.gov (United States)

    Mao, Yu; Sang, Na; Wang, Yongchao; Hou, Xin; Huang, Hui; Wei, Dongtao; Zhang, Jinfu; Qiu, Jiang

    2016-07-22

    Pathological narcissism is often characterized by arrogant behavior, a lack of empathy, and willingness to exploit other individuals. Generally, individuals with high levels of narcissism are more likely to suffer mental disorders. However, the brain structural basis of individual pathological narcissism trait among healthy people has not yet been investigated with surface-based morphometry. Thus, in this study, we investigated the relationship between cortical thickness (CT), cortical volume (CV), and individual pathological narcissism in a large healthy sample of 176 college students. Multiple regression was used to analyze the correlation between regional CT, CV, and the total Pathological Narcissism Inventory (PNI) score, adjusting for age, sex, and total intracranial volume. The results showed that the PNI score was significantly negatively associated with CT and CV in the right dorsolateral prefrontal cortex (DLPFC, key region of the central executive network, CEN), which might be associated with impaired emotion regulation processes. Furthermore, the PNI score showed significant negative associations with CV in the right postcentral gyrus, left medial prefrontal cortex (MPFC), and the CT in the right inferior frontal cortex (IFG, overlap with social brain network), which may be related to impairments in social cognition. Together, these findings suggest a unique structural basis for individual differences in pathological narcissism, distributed across different gray matter regions of the social brain network and CEN. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. "It's Not What You Say, But How You Say it": A Reciprocal Temporo-frontal Network for Affective Prosody.

    Science.gov (United States)

    Leitman, David I; Wolf, Daniel H; Ragland, J Daniel; Laukka, Petri; Loughead, James; Valdez, Jeffrey N; Javitt, Daniel C; Turetsky, Bruce I; Gur, Ruben C

    2010-01-01

    Humans communicate emotion vocally by modulating acoustic cues such as pitch, intensity and voice quality. Research has documented how the relative presence or absence of such cues alters the likelihood of perceiving an emotion, but the neural underpinnings of acoustic cue-dependent emotion perception remain obscure. Using functional magnetic resonance imaging in 20 subjects we examined a reciprocal circuit consisting of superior temporal cortex, amygdala and inferior frontal gyrus that may underlie affective prosodic comprehension. Results showed that increased saliency of emotion-specific acoustic cues was associated with increased activation in superior temporal cortex [planum temporale (PT), posterior superior temporal gyrus (pSTG), and posterior superior middle gyrus (pMTG)] and amygdala, whereas decreased saliency of acoustic cues was associated with increased inferior frontal activity and temporo-frontal connectivity. These results suggest that sensory-integrative processing is facilitated when the acoustic signal is rich in affective information, yielding increased activation in temporal cortex and amygdala. Conversely, when the acoustic signal is ambiguous, greater evaluative processes are recruited, increasing activation in inferior frontal gyrus (IFG) and IFG STG connectivity. Auditory regions may thus integrate acoustic information with amygdala input to form emotion-specific representations, which are evaluated within inferior frontal regions.

  15. Conceptual control across modalities: graded specialisation for pictures and words in inferior frontal and posterior temporal cortex.

    Science.gov (United States)

    Krieger-Redwood, Katya; Teige, Catarina; Davey, James; Hymers, Mark; Jefferies, Elizabeth

    2015-09-01

    Controlled semantic retrieval to words elicits co-activation of inferior frontal (IFG) and left posterior temporal cortex (pMTG), but research has not yet established (i) the distinct contributions of these regions or (ii) whether the same processes are recruited for non-verbal stimuli. Words have relatively flexible meanings - as a consequence, identifying the context that links two specific words is relatively demanding. In contrast, pictures are richer stimuli and their precise meaning is better specified by their visible features - however, not all of these features will be relevant to uncovering a given association, tapping selection/inhibition processes. To explore potential differences across modalities, we took a commonly-used manipulation of controlled retrieval demands, namely the identification of weak vs. strong associations, and compared word and picture versions. There were 4 key findings: (1) Regions of interest (ROIs) in posterior IFG (BA44) showed graded effects of modality (e.g., words>pictures in left BA44; pictures>words in right BA44). (2) An equivalent response was observed in left mid-IFG (BA45) across modalities, consistent with the multimodal semantic control deficits that typically follow LIFG lesions. (3) The anterior IFG (BA47) ROI showed a stronger response to verbal than pictorial associations, potentially reflecting a role for this region in establishing a meaningful context that can be used to direct semantic retrieval. (4) The left pMTG ROI also responded to difficulty across modalities yet showed a stronger response overall to verbal stimuli, helping to reconcile two distinct literatures that have implicated this site in semantic control and lexical-semantic access respectively. We propose that left anterior IFG and pMTG work together to maintain a meaningful context that shapes ongoing semantic processing, and that this process is more strongly taxed by word than picture associations. Copyright © 2015 The Authors. Published by

  16. Deceptive but Not Honest Manipulative Actions Are Associated with Increased Interaction between Middle and Inferior Frontal gyri

    Directory of Open Access Journals (Sweden)

    Maxim Kireev

    2017-08-01

    Full Text Available The prefrontal cortex is believed to be responsible for execution of deceptive behavior and its involvement is associated with greater cognitive efforts. It is also generally assumed that deception is associated with the inhibition of default honest actions. However, the precise neurophysiological mechanisms underlying this process remain largely unknown. The present study was aimed to use functional magnetic resonance imaging to reveal the underlying functional integration within the prefrontal cortex during the task which requires that subjects to deliberately mislead an opponent through the sequential execution of deceptive and honest claims. To address this issue, we performed psychophysiological interaction (PPI analysis, which allows for statistical assessment of changes in functional relationships between active brain areas in changing psychological contexts. As a result the whole brain PPI-analysis established that both manipulative honest and deceptive claiming were associated with an increase in connectivity between the left middle frontal gyrus and right temporo-parietal junction (rTPJ. Taking into account the role played by rTPJ in processes associated with the theory of mind the revealed data can reflect possible influence of socio-cognitive context on the process of selecting manipulative claiming regardless their honest or deceptive nature. Direct comparison between deceptive and honest claims revealed pattern enhancement of coupling between the left middle frontal gyrus and the left inferior frontal gyrus. This finding provided evidence that the execution of deception relies to a greater extent on higher-order hierarchically-organized brain mechanisms of executive control required to select between two competing deceptive or honest task sets.

  17. Top-down modulation from inferior frontal junction to FEFs and intraparietal sulcus during short-term memory for visual features.

    Science.gov (United States)

    Sneve, Markus H; Magnussen, Svein; Alnæs, Dag; Endestad, Tor; D'Esposito, Mark

    2013-11-01

    Visual STM of simple features is achieved through interactions between retinotopic visual cortex and a set of frontal and parietal regions. In the present fMRI study, we investigated effective connectivity between central nodes in this network during the different task epochs of a modified delayed orientation discrimination task. Our univariate analyses demonstrate that the inferior frontal junction (IFJ) is preferentially involved in memory encoding, whereas activity in the putative FEFs and anterior intraparietal sulcus (aIPS) remains elevated throughout periods of memory maintenance. We have earlier reported, using the same task, that areas in visual cortex sustain information about task-relevant stimulus properties during delay intervals [Sneve, M. H., Alnæs, D., Endestad, T., Greenlee, M. W., & Magnussen, S. Visual short-term memory: Activity supporting encoding and maintenance in retinotopic visual cortex. Neuroimage, 63, 166-178, 2012]. To elucidate the temporal dynamics of the IFJ-FEF-aIPS-visual cortex network during memory operations, we estimated Granger causality effects between these regions with fMRI data representing memory encoding/maintenance as well as during memory retrieval. We also investigated a set of control conditions involving active processing of stimuli not associated with a memory task and passive viewing. In line with the developing understanding of IFJ as a region critical for control processes with a possible initiating role in visual STM operations, we observed influence from IFJ to FEF and aIPS during memory encoding. Furthermore, FEF predicted activity in a set of higher-order visual areas during memory retrieval, a finding consistent with its suggested role in top-down biasing of sensory cortex.

  18. Auditory attention enhances processing of positive and negative words in inferior and superior prefrontal cortex.

    Science.gov (United States)

    Wegrzyn, Martin; Herbert, Cornelia; Ethofer, Thomas; Flaisch, Tobias; Kissler, Johanna

    2017-11-01

    Visually presented emotional words are processed preferentially and effects of emotional content are similar to those of explicit attention deployment in that both amplify visual processing. However, auditory processing of emotional words is less well characterized and interactions between emotional content and task-induced attention have not been fully understood. Here, we investigate auditory processing of emotional words, focussing on how auditory attention to positive and negative words impacts their cerebral processing. A Functional magnetic resonance imaging (fMRI) study manipulating word valence and attention allocation was performed. Participants heard negative, positive and neutral words to which they either listened passively or attended by counting negative or positive words, respectively. Regardless of valence, active processing compared to passive listening increased activity in primary auditory cortex, left intraparietal sulcus, and right superior frontal gyrus (SFG). The attended valence elicited stronger activity in left inferior frontal gyrus (IFG) and left SFG, in line with these regions' role in semantic retrieval and evaluative processing. No evidence for valence-specific attentional modulation in auditory regions or distinct valence-specific regional activations (i.e., negative > positive or positive > negative) was obtained. Thus, allocation of auditory attention to positive and negative words can substantially increase their processing in higher-order language and evaluative brain areas without modulating early stages of auditory processing. Inferior and superior frontal brain structures mediate interactions between emotional content, attention, and working memory when prosodically neutral speech is processed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Reduced Inferior and Orbital Frontal Thickness in Adolescent Bulimia Nervosa Persists Over Two-Year Follow-Up.

    Science.gov (United States)

    Cyr, Marilyn; Kopala-Sibley, Daniel C; Lee, Seonjoo; Chen, Chen; Stefan, Mihaela; Fontaine, Martine; Terranova, Kate; Berner, Laura A; Marsh, Rachel

    2017-10-01

    Cross-sectional data suggest functional and anatomical disturbances in inferior and orbital frontal regions in bulimia nervosa (BN). Using longitudinal data, we investigated whether reduced cortical thickness (CT) in these regions arises early and persists over adolescence in BN, independent of symptom remission, and whether CT reductions are markers of BN symptoms. A total of 33 adolescent females with BN symptoms (BN or other specified feeding or eating disorder) and 28 healthy adolescents participated in this study. Anatomical magnetic resonance imaging and clinical data were acquired at 3 time points within 2-year intervals over adolescence, with 31% average attrition between assessments. Using a region-of-interest approach, we assessed group differences in CT at baseline and over time, and tested whether between- and within-subject variations in CT were associated with the frequency of BN symptoms. Reduced CT in the right inferior frontal gyrus persisted over adolescence in BN compared to healthy adolescents, even in those who achieved full or partial remission. Within the BN group, between-subject variations in CT in the inferior and orbital frontal regions were inversely associated with specific BN symptoms, suggesting, on average over time, greater CT reductions in individuals with more frequent BN symptoms. Reduced CT in inferior frontal regions may contribute to illness persistence into adulthood. Reductions in the thickness of the inferior and orbital frontal regions may be markers of specific BN symptoms. Because our sample size precluded correcting for multiple comparisons, these findings should be replicated in a larger sample. Future study of functional changes in associated fronto-striatal circuits could identify potential circuit-based intervention targets. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Responses of primate frontal cortex neurons during natural vocal communication.

    Science.gov (United States)

    Miller, Cory T; Thomas, A Wren; Nummela, Samuel U; de la Mothe, Lisa A

    2015-08-01

    The role of primate frontal cortex in vocal communication and its significance in language evolution have a controversial history. While evidence indicates that vocalization processing occurs in ventrolateral prefrontal cortex neurons, vocal-motor activity has been conjectured to be primarily subcortical and suggestive of a distinctly different neural architecture from humans. Direct evidence of neural activity during natural vocal communication is limited, as previous studies were performed in chair-restrained animals. Here we recorded the activity of single neurons across multiple regions of prefrontal and premotor cortex while freely moving marmosets engaged in a natural vocal behavior known as antiphonal calling. Our aim was to test whether neurons in marmoset frontal cortex exhibited responses during vocal-signal processing and/or vocal-motor production in the context of active, natural communication. We observed motor-related changes in single neuron activity during vocal production, but relatively weak sensory responses for vocalization processing during this natural behavior. Vocal-motor responses occurred both prior to and during call production and were typically coupled to the timing of each vocalization pulse. Despite the relatively weak sensory responses a population classifier was able to distinguish between neural activity that occurred during presentations of vocalization stimuli that elicited an antiphonal response and those that did not. These findings are suggestive of the role that nonhuman primate frontal cortex neurons play in natural communication and provide an important foundation for more explicit tests of the functional contributions of these neocortical areas during vocal behaviors. Copyright © 2015 the American Physiological Society.

  1. Lateral frontal cortex volume reduction in Tourette syndrome revealed by VBM

    Directory of Open Access Journals (Sweden)

    Wittfoth Matthias

    2012-02-01

    Full Text Available Abstract Background Structural changes have been found predominantly in the frontal cortex and in the striatum in children and adolescents with Gilles de la Tourette syndrome (GTS. The influence of comorbid symptomatology is unclear. Here we sought to address the question of gray matter abnormalities in GTS patients with co-morbid obsessive-compulsive disorder (OCD and/or attention deficit hyperactivity disorder (ADHD using voxel-based morphometry (VBM in twenty-nine adult actually unmedicated GTS patients and twenty-five healthy control subjects. Results In GTS we detected a cluster of decreased gray matter volume in the left inferior frontal gyrus (IFG, but no regions demonstrating volume increases. By comparing subgroups of GTS with comorbid ADHD to the subgroup with comorbid OCD, we found a left-sided amygdalar volume increase. Conclusions From our results it is suggested that the left IFG may constitute a common underlying structural correlate of GTS with co-morbid OCD/ADHD. A volume reduction in this brain region that has been previously identified as a key region in OCD and was associated with the active inhibition of attentional processes may reflect the failure to control behavior. Amygdala volume increase is discussed on the background of a linkage of this structure with ADHD symptomatology. Correlations with clinical data revealed gray matter volume changes in specific brain areas that have been described in these conditions each.

  2. DOES THE INFERIOR FRONTAL SULCUS PLAY A FUNCTIONAL ROLE IN DECEPTION? A NEURONAVIGATED THETA-BURST TRANSCRANIAL MAGNETIC STIMULATION STUDY

    Directory of Open Access Journals (Sweden)

    Bruno eVerschuere

    2012-10-01

    Full Text Available Background. By definition, lying involves withholding the truth. Response inhibition may therefore be the cognitive function at the heart of deception. Neuroimaging research has shown that the same brain region that is activated during response inhibition tasks, namely the inferior frontal region, is also activated during deception paradigms. This led to the hypothesis that the inferior frontal region is the neural substrate critically involved in withholding the truth. Objective. We critically examine the functional necessity of the inferior frontal region in withholding the truth during deception. Method. We experimentally manipulated the neural activity level in right inferior frontal sulcus (IFS by means of neuronavigated continuous theta burst stimulation (cTBS. Individual structural magnetic resonance brain images (MRI were used to allow precise stimulation in each participant. Twenty-six participants answered autobiographical questions truthfully or deceptively before and after sham and real cTBS. Results. Deception was reliably associated with more errors, longer and more variable response times than truth telling. Despite the potential role of IFS in deception as suggested by neuroimaging data, the cTBS-induced disruption of right IFS did not affect response times or error rates, when compared to sham stimulation. Conclusions. The present findings do not support the hypothesis that the right inferior frontal sulcus is critically involved in deception.

  3. Memory of music: roles of right hippocampus and left inferior frontal gyrus.

    Science.gov (United States)

    Watanabe, Takamitsu; Yagishita, Sho; Kikyo, Hideyuki

    2008-01-01

    We investigated neural correlates of retrieval success for music memory using event-related functional magnetic resonance imaging. To minimize the interference from MRI scan noise, we used sparse temporal sampling technique. Newly composed music materials were employed as stimuli, which enabled us to detect regions in absence of effects of experience with the music stimuli in this study. Whole brain analyses demonstrated significant retrieval success activities in the right hippocampus, bilateral lateral temporal regions, left inferior frontal gyrus and left precuneus. Anatomically defined region-of-interests analyses showed that the activity of the right hippocampus was stronger than that of the left, while the activities of the inferior frontal gyri showed the reverse pattern. Furthermore, performance-based analyses demonstrated that the retrieval success activity of the right hippocampus was positively correlated with the corrected recognition rate, suggesting that the right hippocampus contributes to the accuracy of music retrieval outcome.

  4. Fetal frontal cortex transplant (14C) 2-deoxyglucose uptake and histology: survival in cavities of host rat brain motor cortex

    International Nuclear Information System (INIS)

    Sharp, F.R.; Gonzalez, M.F.

    1984-01-01

    Fetal frontal neocortex from 18-day-old rat embryonic brain was transplanted into cavities in 30-day-old host motor cortex. Sixty days after transplantation, 5 of 15 transplanted rats had surviving fetal transplants. The fetal cortex transplants were physically attached to the host brain, completely filled the original cavity, and had numerous surviving cells including pyramidal neurons. Cell lamination within the fetal transplant was abnormal. The ( 14 C) 2-deoxyglucose uptake of all five of the fetal neocortex transplants was less than adjacent cortex and contralateral host motor-sensory cortex, but more than adjacent corpus callosum white matter. The results indicate that fetal frontal neocortex can be transplanted into damaged rat motor cortex. The metabolic rate of the transplants suggests they could be partially functional

  5. Functional and anatomical connectivity abnormalities in left inferior frontal gyrus in schizophrenia.

    Science.gov (United States)

    Jeong, Bumseok; Wible, Cynthia G; Hashimoto, Ryu-ichiro; Kubicki, Marek

    2009-12-01

    Functional studies in schizophrenia demonstrate prominent abnormalities within the left inferior frontal gyrus (IFG) and also suggest the functional connectivity abnormalities in language network including left IFG and superior temporal gyrus during semantic processing. White matter connections between regions involved in the semantic network have also been indicated in schizophrenia. However, an association between functional and anatomical connectivity disruptions within the semantic network in schizophrenia has not been established. Functional (using levels of processing paradigm) as well as diffusion tensor imaging data from 10 controls and 10 chronic schizophrenics were acquired and analyzed. First, semantic encoding specific activation was estimated, showing decreased activation within the left IFG in schizophrenia. Second, functional time series were extracted from this area, and left IFG specific functional connectivity maps were produced for each subject. In an independent analysis, tract-based spatial statistics (TBSS) was used to compare fractional anisotropy (FA) values between groups, and to correlate these values with functional connectivity maps. Schizophrenia patients showed weaker functional connectivity within the language network that includes left IFG and left superior temporal sulcus/middle temporal gyrus. FA was reduced in several white matter regions including left inferior frontal and left internal capsule. Finally, left inferior frontal white matter FA was positively correlated with connectivity measures of the semantic network in schizophrenics, but not in controls. Our results indicate an association between anatomical and functional connectivity abnormalities within the semantic network in schizophrenia, suggesting further that the functional abnormalities observed in this disorder might be directly related to white matter disruptions. 2009 Wiley-Liss, Inc.

  6. Learning a New Selection Rule in Visual and Frontal Cortex.

    Science.gov (United States)

    van der Togt, Chris; Stănişor, Liviu; Pooresmaeili, Arezoo; Albantakis, Larissa; Deco, Gustavo; Roelfsema, Pieter R

    2016-08-01

    How do you make a decision if you do not know the rules of the game? Models of sensory decision-making suggest that choices are slow if evidence is weak, but they may only apply if the subject knows the task rules. Here, we asked how the learning of a new rule influences neuronal activity in the visual (area V1) and frontal cortex (area FEF) of monkeys. We devised a new icon-selection task. On each day, the monkeys saw 2 new icons (small pictures) and learned which one was relevant. We rewarded eye movements to a saccade target connected to the relevant icon with a curve. Neurons in visual and frontal cortex coded the monkey's choice, because the representation of the selected curve was enhanced. Learning delayed the neuronal selection signals and we uncovered the cause of this delay in V1, where learning to select the relevant icon caused an early suppression of surrounding image elements. These results demonstrate that the learning of a new rule causes a transition from fast and random decisions to a more considerate strategy that takes additional time and they reveal the contribution of visual and frontal cortex to the learning process. © The Author 2016. Published by Oxford University Press.

  7. Effects of childhood trauma on left inferior frontal gyrus function during response inhibition across psychotic disorders.

    Science.gov (United States)

    Quidé, Y; O'Reilly, N; Watkeys, O J; Carr, V J; Green, M J

    2018-07-01

    Childhood trauma is a risk factor for psychosis. Deficits in response inhibition are common to psychosis and trauma-exposed populations, and associated brain functions may be affected by trauma exposure in psychotic disorders. We aimed to identify the influence of trauma-exposure on brain activation and functional connectivity during a response inhibition task. We used functional magnetic resonance imaging to examine brain function within regions-of-interest [left and right inferior frontal gyrus (IFG), right dorsolateral prefrontal cortex, right supplementary motor area, right inferior parietal lobule and dorsal anterior cingulate cortex], during the performance of a Go/No-Go Flanker task, in 112 clinical cases with psychotic disorders and 53 healthy controls (HCs). Among the participants, 71 clinical cases and 21 HCs reported significant levels of childhood trauma exposure, while 41 clinical cases and 32 HCs did not. In the absence of effects on response inhibition performance, childhood trauma exposure was associated with increased activation in the left IFG, and increased connectivity between the left IFG seed region and the cerebellum and calcarine sulcus, in both cases and healthy individuals. There was no main effect of psychosis, and no trauma-by-psychosis interaction for any other region-of-interest. Within the clinical sample, the effects of trauma-exposure on the left IFG activation were mediated by symptom severity. Trauma-related increases in activation of the left IFG were not associated with performance differences, or dependent on clinical diagnostic status; increased IFG functionality may represent a compensatory (overactivation) mechanism required to exert adequate inhibitory control of the motor response.

  8. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey

    International Nuclear Information System (INIS)

    Petrides, M.; Pandya, D.N.

    1988-01-01

    The projections to the frontal cortex that originate from the various areas of the superior temporal region of the rhesus monkey were investigated with the autoradiographic technique. The results demonstrated that the rostral part of the superior temporal gyrus (areas Pro, Ts1, and Ts2) projects to the proisocortical areas of the orbital and medial frontal cortex, as well as to the nearby orbital areas 13, 12, and 11, and to medial areas 9, 10, and 14. These fibers travel to the frontal lobe as part of the uncinate fascicle. The middle part of the superior temporal gyrus (areas Ts3 and paAlt) projects predominantly to the lateral frontal cortex (areas 12, upper 46, and 9) and to the dorsal aspect of the medial frontal lobe (areas 9 and 10). Only a small number of these fibers terminated within the orbitofrontal cortex. The temporofrontal fibers originating from the middle part of the superior temporal gyrus occupy the lower portion of the extreme capsule and lie just dorsal to the fibers of the uncinate fascicle. The posterior part of the superior temporal gyrus projects to the lateral frontal cortex (area 46, dorsal area 8, and the rostralmost part of dorsal area 6). Some of the fibers from the posterior superior temporal gyrus run initially through the extreme capsule and then cross the claustrum as they ascend to enter the external capsule before continuing their course to the frontal lobe. A larger group of fibers curves round the caudalmost Sylvian fissure and travels to the frontal cortex occupying a position just above and medial to the upper branch of the circular sulcus. This latter pathway constitutes a part of the classically described arcuate fasciculus

  9. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey.

    Science.gov (United States)

    Petrides, M; Pandya, D N

    1988-07-01

    The projections to the frontal cortex that originate from the various areas of the superior temporal region of the rhesus monkey were investigated with the autoradiographic technique. The results demonstrated that the rostral part of the superior temporal gyrus (areas Pro, Ts1, and Ts2) projects to the proisocortical areas of the orbital and medial frontal cortex, as well as to the nearby orbital areas 13, 12, and 11, and to medial areas 9, 10, and 14. These fibers travel to the frontal lobe as part of the uncinate fascicle. The middle part of the superior temporal gyrus (areas Ts3 and paAlt) projects predominantly to the lateral frontal cortex (areas 12, upper 46, and 9) and to the dorsal aspect of the medial frontal lobe (areas 9 and 10). Only a small number of these fibers terminated within the orbitofrontal cortex. The temporofrontal fibers originating from the middle part of the superior temporal gyrus occupy the lower portion of the extreme capsule and lie just dorsal to the fibers of the uncinate fascicle. The posterior part of the superior temporal gyrus projects to the lateral frontal cortex (area 46, dorsal area 8, and the rostralmost part of dorsal area 6). Some of the fibers from the posterior superior temporal gyrus run initially through the extreme capsule and then cross the claustrum as they ascend to enter the external capsule before continuing their course to the frontal lobe. A larger group of fibers curves round the caudalmost Sylvian fissure and travels to the frontal cortex occupying a position just above and medial to the upper branch of the circular sulcus. This latter pathway constitutes a part of the classically described arcuate fasciculus.

  10. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey

    Energy Technology Data Exchange (ETDEWEB)

    Petrides, M.; Pandya, D.N.

    1988-07-01

    The projections to the frontal cortex that originate from the various areas of the superior temporal region of the rhesus monkey were investigated with the autoradiographic technique. The results demonstrated that the rostral part of the superior temporal gyrus (areas Pro, Ts1, and Ts2) projects to the proisocortical areas of the orbital and medial frontal cortex, as well as to the nearby orbital areas 13, 12, and 11, and to medial areas 9, 10, and 14. These fibers travel to the frontal lobe as part of the uncinate fascicle. The middle part of the superior temporal gyrus (areas Ts3 and paAlt) projects predominantly to the lateral frontal cortex (areas 12, upper 46, and 9) and to the dorsal aspect of the medial frontal lobe (areas 9 and 10). Only a small number of these fibers terminated within the orbitofrontal cortex. The temporofrontal fibers originating from the middle part of the superior temporal gyrus occupy the lower portion of the extreme capsule and lie just dorsal to the fibers of the uncinate fascicle. The posterior part of the superior temporal gyrus projects to the lateral frontal cortex (area 46, dorsal area 8, and the rostralmost part of dorsal area 6). Some of the fibers from the posterior superior temporal gyrus run initially through the extreme capsule and then cross the claustrum as they ascend to enter the external capsule before continuing their course to the frontal lobe. A larger group of fibers curves round the caudalmost Sylvian fissure and travels to the frontal cortex occupying a position just above and medial to the upper branch of the circular sulcus. This latter pathway constitutes a part of the classically described arcuate fasciculus.

  11. Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism.

    Science.gov (United States)

    Villalobos, Michele E; Mizuno, Akiko; Dahl, Branelle C; Kemmotsu, Nobuko; Müller, Ralph-Axel

    2005-04-15

    Some recent evidence has suggested abnormalities of the dorsal stream and possibly the mirror neuron system in autism, which may be responsible for impairments of joint attention, imitation, and secondarily for language delays. The current study investigates functional connectivity along the dorsal stream in autism, examining interregional blood oxygenation level dependent (BOLD) signal cross-correlation during visuomotor coordination. Eight high-functioning autistic men and eight handedness and age-matched controls were included. Visually prompted button presses were performed with the preferred hand. For each subject, functional connectivity was computed in terms of BOLD signal correlation with the mean time series in bilateral visual area 17. Our hypothesis of reduced dorsal stream connectivity in autism was only in part confirmed. Functional connectivity with superior parietal areas was not significantly reduced. However, the autism group showed significantly reduced connectivity with bilateral inferior frontal area 44, which is compatible with the hypothesis of mirror neuron defects in autism. More generally, our findings suggest that dorsal stream connectivity in autism may not be fully functional.

  12. Connectivity between Right Inferior Frontal Gyrus and Supplementary Motor Area Predicts After-Effects of Right Frontal Cathodal tDCS on Picture Naming Speed

    DEFF Research Database (Denmark)

    Rosso, Charlotte; Valabregue, R.; Arbizy, C.

    2014-01-01

    Background: Cathodal transcranial direct current stimulation (tDCS) of the right frontal cortex improves language abilities in post-stroke aphasic patients. Yet little is known about the effects of right frontal cathodal tDCS on normal language function. Objective/hypothesis: To explore the catho...

  13. On the functional relevance of frontal cortex for passive and voluntarily controlled bistable vision.

    Science.gov (United States)

    de Graaf, Tom A; de Jong, Maartje C; Goebel, Rainer; van Ee, Raymond; Sack, Alexander T

    2011-10-01

    In bistable vision, one constant ambiguous stimulus leads to 2 alternating conscious percepts. This perceptual switching occurs spontaneously but can also be influenced through voluntary control. Neuroimaging studies have reported that frontal regions are activated during spontaneous perceptual switches, leading some researchers to suggest that frontal regions causally induce perceptual switches. But the opposite also seems possible: frontal activations may themselves be caused by spontaneous switches. Classically implicated in attentional processes, these same regions are also candidates for the origins of voluntary control over bistable vision. Here too, it remains unknown whether frontal cortex is actually functionally relevant. It is even possible that spontaneous perceptual switches and voluntarily induced switches are mediated by the same top-down mechanisms. To directly address these issues, we here induced "virtual lesions," with transcranial magnetic stimulation, in frontal, parietal, and 2 lower level visual cortices using an established ambiguous structure-from-motion stimulus. We found that dorsolateral prefrontal cortex was causally relevant for voluntary control over perceptual switches. In contrast, we failed to find any evidence for an active role of frontal cortex in passive bistable vision. Thus, it seems the same pathway used for willed top-down modulation of bistable vision is not used during passive bistable viewing.

  14. Modeling Conflict and Error in the Medial Frontal Cortex

    Science.gov (United States)

    Mayer, Andrew R.; Teshiba, Terri M.; Franco, Alexandre R.; Ling, Josef; Shane, Matthew S.; Stephen, Julia M.; Jung, Rex E.

    2014-01-01

    Despite intensive study, the role of the dorsal medial frontal cortex (dMFC) in error monitoring and conflict processing remains actively debated. The current experiment manipulated conflict type (stimulus conflict only or stimulus and response selection conflict) and utilized a novel modeling approach to isolate error and conflict variance during a multimodal numeric Stroop task. Specifically, hemodynamic response functions resulting from two statistical models that either included or isolated variance arising from relatively few error trials were directly contrasted. Twenty-four participants completed the task while undergoing event-related functional magnetic resonance imaging on a 1.5-Tesla scanner. Response times monotonically increased based on the presence of pure stimulus or stimulus and response selection conflict. Functional results indicated that dMFC activity was present during trials requiring response selection and inhibition of competing motor responses, but absent during trials involving pure stimulus conflict. A comparison of the different statistical models suggested that relatively few error trials contributed to a disproportionate amount of variance (i.e., activity) throughout the dMFC, but particularly within the rostral anterior cingulate gyrus (rACC). Finally, functional connectivity analyses indicated that an empirically derived seed in the dorsal ACC/pre-SMA exhibited strong connectivity (i.e., positive correlation) with prefrontal and inferior parietal cortex but was anticorrelated with the default-mode network. An empirically derived seed from the rACC exhibited the opposite pattern, suggesting that sub-regions of the dMFC exhibit different connectivity patterns with other large scale networks implicated in internal mentations such as daydreaming (default-mode) versus the execution of top-down attentional control (fronto-parietal). PMID:21976411

  15. Modeling conflict and error in the medial frontal cortex.

    Science.gov (United States)

    Mayer, Andrew R; Teshiba, Terri M; Franco, Alexandre R; Ling, Josef; Shane, Matthew S; Stephen, Julia M; Jung, Rex E

    2012-12-01

    Despite intensive study, the role of the dorsal medial frontal cortex (dMFC) in error monitoring and conflict processing remains actively debated. The current experiment manipulated conflict type (stimulus conflict only or stimulus and response selection conflict) and utilized a novel modeling approach to isolate error and conflict variance during a multimodal numeric Stroop task. Specifically, hemodynamic response functions resulting from two statistical models that either included or isolated variance arising from relatively few error trials were directly contrasted. Twenty-four participants completed the task while undergoing event-related functional magnetic resonance imaging on a 1.5-Tesla scanner. Response times monotonically increased based on the presence of pure stimulus or stimulus and response selection conflict. Functional results indicated that dMFC activity was present during trials requiring response selection and inhibition of competing motor responses, but absent during trials involving pure stimulus conflict. A comparison of the different statistical models suggested that relatively few error trials contributed to a disproportionate amount of variance (i.e., activity) throughout the dMFC, but particularly within the rostral anterior cingulate gyrus (rACC). Finally, functional connectivity analyses indicated that an empirically derived seed in the dorsal ACC/pre-SMA exhibited strong connectivity (i.e., positive correlation) with prefrontal and inferior parietal cortex but was anti-correlated with the default-mode network. An empirically derived seed from the rACC exhibited the opposite pattern, suggesting that sub-regions of the dMFC exhibit different connectivity patterns with other large scale networks implicated in internal mentations such as daydreaming (default-mode) versus the execution of top-down attentional control (fronto-parietal). Copyright © 2011 Wiley Periodicals, Inc.

  16. Modulating phonemic fluency performance in healthy subjects with transcranial magnetic stimulation over the left or right lateral frontal cortex.

    Science.gov (United States)

    Smirni, Daniela; Turriziani, Patrizia; Mangano, Giuseppa Renata; Bracco, Martina; Oliveri, Massimiliano; Cipolotti, Lisa

    2017-07-28

    A growing body of evidence have suggested that non-invasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), can improve the performance of aphasic patients in language tasks. For example, application of inhibitory rTMS or tDCs over the right frontal lobe of dysphasic patients resulted in improved naming abilities. Several studies have also reported that in healthy controls (HC) tDCS application over the left prefrontal cortex (PFC) improve performance in naming and semantic fluency tasks. The aim of this study was to investigate in HC, for the first time, the effects of inhibitory repetitive TMS (rTMS) over left and right lateral frontal cortex (BA 47) on two phonemic fluency tasks (FAS or FPL). 44 right-handed HCs were administered rTMS or sham over the left or right lateral frontal cortex in two separate testing sessions, with a 24h interval, followed by the two phonemic fluency tasks. To account for possible practice effects, an additional 22 HCs were tested on only the phonemic fluency task across two sessions with no stimulation. We found that rTMS-inhibition over the left lateral frontal cortex significantly worsened phonemic fluency performance when compared to sham. In contrast, rTMS-inhibition over the right lateral frontal cortex significantly improved phonemic fluency performance when compared to sham. These results were not accounted for practice effects. We speculated that rTMS over the right lateral frontal cortex may induce plastic neural changes to the left lateral frontal cortex by suppressing interhemispheric inhibitory interactions. This resulted in an increased excitability (disinhibition) of the contralateral unstimulated left lateral frontal cortex, consequently enhancing phonemic fluency performance. Conversely, application of rTMS over the left lateral frontal cortex may induce a temporary, virtual lesion, with effects similar to those reported in left frontal

  17. Influence of motivation on control hierarchy in the human frontal cortex.

    Science.gov (United States)

    Bahlmann, Jörg; Aarts, Esther; D'Esposito, Mark

    2015-02-18

    The frontal cortex mediates cognitive control and motivation to shape human behavior. It is generally observed that medial frontal areas are involved in motivational aspects of behavior, whereas lateral frontal regions are involved in cognitive control. Recent models of cognitive control suggest a rostro-caudal gradient in lateral frontal regions, such that progressively more rostral (anterior) regions process more complex aspects of cognitive control. How motivation influences such a control hierarchy is still under debate. Although some researchers argue that both systems work in parallel, others argue in favor of an interaction between motivation and cognitive control. In the latter case it is yet unclear how motivation would affect the different levels of the control hierarchy. This was investigated in the present functional MRI study applying different levels of cognitive control under different motivational states (low vs high reward anticipation). Three levels of cognitive control were tested by varying rule complexity: stimulus-response mapping (low-level), flexible task updating (mid-level), and sustained cue-task associations (high-level). We found an interaction between levels of cognitive control and motivation in medial and lateral frontal subregions. Specifically, flexible updating (mid-level of control) showed the strongest beneficial effect of reward and only this level exhibited functional coupling between dopamine-rich midbrain regions and the lateral frontal cortex. These findings suggest that motivation differentially affects the levels of a control hierarchy, influencing recruitment of frontal cortical control regions depending on specific task demands. Copyright © 2015 the authors 0270-6474/15/353207-11$15.00/0.

  18. A frontal cortex event-related potential driven by the basal forebrain

    Science.gov (United States)

    Nguyen, David P; Lin, Shih-Chieh

    2014-01-01

    Event-related potentials (ERPs) are widely used in both healthy and neuropsychiatric conditions as physiological indices of cognitive functions. Contrary to the common belief that cognitive ERPs are generated by local activity within the cerebral cortex, here we show that an attention-related ERP in the frontal cortex is correlated with, and likely generated by, subcortical inputs from the basal forebrain (BF). In rats performing an auditory oddball task, both the amplitude and timing of the frontal ERP were coupled with BF neuronal activity in single trials. The local field potentials (LFPs) associated with the frontal ERP, concentrated in deep cortical layers corresponding to the zone of BF input, were similarly coupled with BF activity and consistently triggered by BF electrical stimulation within 5–10 msec. These results highlight the important and previously unrecognized role of long-range subcortical inputs from the BF in the generation of cognitive ERPs. DOI: http://dx.doi.org/10.7554/eLife.02148.001 PMID:24714497

  19. Subcomponents and connectivity of the inferior fronto-occipital fasciculus revealed by diffusion spectrum imaging fiber tracking

    Directory of Open Access Journals (Sweden)

    Yupeng Wu

    2016-09-01

    Full Text Available The definitive structure and functional role of the inferior fronto-occipital fasciculus (IFOF are still controversial. In this study, we aimed to investigate the connectivity, asymmetry and segmentation patterns of this bundle. High angular diffusion spectrum imaging (DSI analysis was performed on ten healthy adults and a 90-subject DSI template (NTU-90 Atlas. In addition, a new tractography approach based on the anatomic subregions and two regions of interest (ROI was evaluated for the fiber reconstructions. More widespread anterior-posterior connections than previous standard definition of the IFOF were found. This distinct pathway demonstrated a greater inter-subjects connective variability with a maximum of 40% overlap in its central part. The statistical results revealed no asymmetry between the left and right hemispheres and no significant differences existed in distributions of the IFOF according to sex. In addition, five subcomponents within the IFOF were identified according to the frontal areas of originations. As the subcomponents passed through the anterior floor of the external capsule, the fibers radiated to the posterior terminations. The most common connection patterns of the subcomponents were as follows: IFOF-I, from frontal polar cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe and pericalcarine; IFOF-II, from orbito-frontal cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe and pericalcarine; IFOF-III, from inferior frontal gyrus to inferior occipital lobe, middle occipital lobe, superior occipital lobe, occipital pole and pericalcarine; IFOF-IV, from middle frontal gyrus to occipital pole and inferior occipital lobe; IFOF-V, from superior frontal gyrus to occipital pole, inferior occipital lobe and middle occipital lobe. Our work demonstrates the feasibility of high resolution diffusion tensor tractography with sufficient

  20. Subcomponents and Connectivity of the Inferior Fronto-Occipital Fasciculus Revealed by Diffusion Spectrum Imaging Fiber Tracking

    Science.gov (United States)

    Wu, Yupeng; Sun, Dandan; Wang, Yong; Wang, Yibao

    2016-01-01

    The definitive structure and functional role of the inferior fronto-occipital fasciculus (IFOF) are still controversial. In this study, we aimed to investigate the connectivity, asymmetry, and segmentation patterns of this bundle. High angular diffusion spectrum imaging (DSI) analysis was performed on 10 healthy adults and a 90-subject DSI template (NTU-90 Atlas). In addition, a new tractography approach based on the anatomic subregions and two regions of interest (ROI) was evaluated for the fiber reconstructions. More widespread anterior-posterior connections than previous “standard” definition of the IFOF were found. This distinct pathway demonstrated a greater inter-subjects connective variability with a maximum of 40% overlap in its central part. The statistical results revealed no asymmetry between the left and right hemispheres and no significant differences existed in distributions of the IFOF according to sex. In addition, five subcomponents within the IFOF were identified according to the frontal areas of originations. As the subcomponents passed through the anterior floor of the external capsule, the fibers radiated to the posterior terminations. The most common connection patterns of the subcomponents were as follows: IFOF-I, from frontal polar cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe, and pericalcarine; IFOF-II, from orbito-frontal cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe, and pericalcarine; IFOF-III, from inferior frontal gyrus to inferior occipital lobe, middle occipital lobe, superior occipital lobe, occipital pole, and pericalcarine; IFOF-IV, from middle frontal gyrus to occipital pole, and inferior occipital lobe; IFOF-V, from superior frontal gyrus to occipital pole, inferior occipital lobe, and middle occipital lobe. Our work demonstrates the feasibility of high resolution diffusion tensor tractography with sufficient sensitivity

  1. Subcomponents and Connectivity of the Inferior Fronto-Occipital Fasciculus Revealed by Diffusion Spectrum Imaging Fiber Tracking.

    Science.gov (United States)

    Wu, Yupeng; Sun, Dandan; Wang, Yong; Wang, Yibao

    2016-01-01

    The definitive structure and functional role of the inferior fronto-occipital fasciculus (IFOF) are still controversial. In this study, we aimed to investigate the connectivity, asymmetry, and segmentation patterns of this bundle. High angular diffusion spectrum imaging (DSI) analysis was performed on 10 healthy adults and a 90-subject DSI template (NTU-90 Atlas). In addition, a new tractography approach based on the anatomic subregions and two regions of interest (ROI) was evaluated for the fiber reconstructions. More widespread anterior-posterior connections than previous "standard" definition of the IFOF were found. This distinct pathway demonstrated a greater inter-subjects connective variability with a maximum of 40% overlap in its central part. The statistical results revealed no asymmetry between the left and right hemispheres and no significant differences existed in distributions of the IFOF according to sex. In addition, five subcomponents within the IFOF were identified according to the frontal areas of originations. As the subcomponents passed through the anterior floor of the external capsule, the fibers radiated to the posterior terminations. The most common connection patterns of the subcomponents were as follows: IFOF-I, from frontal polar cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe, and pericalcarine; IFOF-II, from orbito-frontal cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe, and pericalcarine; IFOF-III, from inferior frontal gyrus to inferior occipital lobe, middle occipital lobe, superior occipital lobe, occipital pole, and pericalcarine; IFOF-IV, from middle frontal gyrus to occipital pole, and inferior occipital lobe; IFOF-V, from superior frontal gyrus to occipital pole, inferior occipital lobe, and middle occipital lobe. Our work demonstrates the feasibility of high resolution diffusion tensor tractography with sufficient sensitivity to

  2. Inferior Frontal Sensitivity to Common Speech Sounds Is Amplified by Increasing Word Intelligibility

    Science.gov (United States)

    Vaden, Kenneth I., Jr.; Kuchinsky, Stefanie E.; Keren, Noam I.; Harris, Kelly C.; Ahlstrom, Jayne B.; Dubno, Judy R.; Eckert, Mark A.

    2011-01-01

    The left inferior frontal gyrus (LIFG) exhibits increased responsiveness when people listen to words composed of speech sounds that frequently co-occur in the English language (Vaden, Piquado, & Hickok, 2011), termed high phonotactic frequency (Vitevitch & Luce, 1998). The current experiment aimed to further characterize the relation of…

  3. One-way traffic: The inferior frontal gyrus controls brain activation in the middle temporal gyrus and inferior parietal lobule during divergent thinking.

    Science.gov (United States)

    Vartanian, Oshin; Beatty, Erin L; Smith, Ingrid; Blackler, Kristen; Lam, Quan; Forbes, Sarah

    2018-02-23

    Contrary to earlier approaches that focused on the contributions of isolated brain regions to the emergence of creativity, there is now growing consensus that creative thought emerges from the interaction of multiple brain regions, often embedded within larger brain networks. Specifically, recent evidence from studies of divergent thinking suggests that kernel ideas emerge in posterior brain regions residing within the semantic system and/or the default mode network (DMN), and that the prefrontal cortex (PFC) regions within the executive control network (ECN) constrain those ideas for generating outputs that meet task demands. However, despite knowing that regions within these networks exhibit interaction, to date the direction of the relationship has not been tested directly. By applying Dynamic Causal Modeling (DCM) to fMRI data collected during a divergent thinking task, we tested the hypothesis that the PFC exerts unidirectional control over the middle temporal gyrus (MTG) and the inferior parietal lobule (IPL), vs. the hypothesis that these two sets of regions exert bidirectional control over each other (in the form of feedback loops). The data were consistent with the former model by demonstrating that the right inferior frontal gyrus (IFG) exerts unidirectional control over MTG and IPL, although the evidence was somewhat stronger in the case of the MTG than the IPL. Our findings highlight potential causal pathways that could underlie the neural bases of divergent thinking. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  4. Autobiographical memory of the recent past following frontal cortex or temporal lobe excisions.

    Science.gov (United States)

    Thaiss, Laila; Petrides, Michael

    2008-08-01

    Previous research has raised questions regarding the necessity of the frontal cortex in autobiographical memory and the role that it plays in actively retrieving contextual information associated with personally relevant events. Autobiographical memory was studied in patients with unilateral excisions restricted to the frontal cortex or temporal lobe involving the amygdalo-hippocampal region and in normal controls using an event-sampling method. We examined accuracy of free recall, use of strategies during retrieval and memory for specific aspects of the autobiographical events, including temporal order. Patients with temporal lobe excisions were impaired in autobiographical recall. By contrast, patients with frontal cortical excisions exhibited normal autobiographical recall but were less likely to use temporal order spontaneously to organize event retrieval. Instruction to organize retrieval by temporal order failed to improve recall in temporal lobe patients and increased the incidence of plausible intrusion errors in left temporal patients. In contrast, patients with frontal cortical excisions now surpassed control subjects in recall of autobiographical events. Furthermore, the retrieval accuracy for the temporal order of diary events was not impaired in these patients. In a subsequent cued recall test, temporal lobe patients were impaired in their memory for the details of the diary events and their context. In conclusion, a basic impairment in autobiographical memory (including memory for temporal context) results from damage to the temporal lobe and not the frontal cortex. Patients with frontal excisions fail to use organizational strategies spontaneously to aid retrieval but can use these effectively if instructed to do so.

  5. The threshold for conscious report: Signal loss and response bias in visual and frontal cortex.

    Science.gov (United States)

    van Vugt, Bram; Dagnino, Bruno; Vartak, Devavrat; Safaai, Houman; Panzeri, Stefano; Dehaene, Stanislas; Roelfsema, Pieter R

    2018-05-04

    Why are some visual stimuli consciously detected, whereas others remain subliminal? We investigated the fate of weak visual stimuli in the visual and frontal cortex of awake monkeys trained to report stimulus presence. Reported stimuli were associated with strong sustained activity in the frontal cortex, and frontal activity was weaker and quickly decayed for unreported stimuli. Information about weak stimuli could be lost at successive stages en route from the visual to the frontal cortex, and these propagation failures were confirmed through microstimulation of area V1. Fluctuations in response bias and sensitivity during perception of identical stimuli were traced back to prestimulus brain-state markers. A model in which stimuli become consciously reportable when they elicit a nonlinear ignition process in higher cortical areas explained our results. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. The role of medial frontal gyrus in action anticipation in professional badminton players

    Directory of Open Access Journals (Sweden)

    Huan Xu

    2016-11-01

    cortex, right fusiform gyrus, right inferior parietal lobule, left insula and particularly, and left medial frontal cortex.

  7. OBscure but not OBsolete: Perturbations of the frontal cortex in common between rodent olfactory bulbectomy model and major depression.

    Science.gov (United States)

    Rajkumar, Ramamoorthy; Dawe, Gavin S

    2018-04-07

    Olfactory bulbectomy (OBX) has been used as a model of depression over several decades. This model presupposes a mechanism that is still not proven in clinical depression. A wealth of clinical literature has focused on the derangements in frontal cortex (prefrontal, orbitofrontal and anterior cingulate cortices) associated with depression. In this comprehensive review, anatomical, electrophysiological and molecular sequelae of bulbectomy in the rodent frontal cortex are explored and compared with findings on brains of humans with major depression. Certain commonalities in neurobiological features of the perturbed frontal cortex in the bulbectomised rodent and the depressed human brain are evident. Also, meta-analysis reports on clinical studies on depressed patients provide prima facie evidence that perturbations in the frontal cortex are associated with major depression. Analysing the pattern of perturbations in the chemical neuroanatomy of the frontal cortex will contribute to understanding of the neurobiology of depression. Revisiting the OBX model of depression to examine these neurobiological changes in frontal cortex with contemporary imaging, proteomics, lipidomics, metabolomics and epigenomics technologies is proposed as an approach to enhance the translational value of this animal model to facilitate identification of targets and biomarkers for clinical depression. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Lateral prefrontal cortex subregions make dissociable contributions during fluid reasoning.

    Science.gov (United States)

    Hampshire, Adam; Thompson, Russell; Duncan, John; Owen, Adrian M

    2011-01-01

    Reasoning is a key component of adaptable "executive" behavior and is known to depend on a network of frontal and parietal brain regions. However, the mechanisms by which this network supports reasoning and adaptable behavior remain poorly defined. Here, we examine the relationship between reasoning, executive control, and frontoparietal function in a series of nonverbal reasoning experiments. Our results demonstrate that, in accordance with previous studies, a network of frontal and parietal brain regions is recruited during reasoning. Our results also reveal that this network can be fractionated according to how different subregions respond when distinct reasoning demands are manipulated. While increased rule complexity modulates activity within a right lateralized network including the middle frontal gyrus and the superior parietal cortex, analogical reasoning demand-or the requirement to remap rules on to novel features-recruits the left inferior rostrolateral prefrontal cortex and the lateral occipital complex. In contrast, the posterior extent of the inferior frontal gyrus, associated with simpler executive demands, is not differentially sensitive to rule complexity or analogical demand. These findings accord well with the hypothesis that different reasoning demands are supported by different frontal and parietal subregions.

  9. Lateral Prefrontal Cortex Subregions Make Dissociable Contributions during Fluid Reasoning

    Science.gov (United States)

    Thompson, Russell; Duncan, John; Owen, Adrian M.

    2011-01-01

    Reasoning is a key component of adaptable “executive” behavior and is known to depend on a network of frontal and parietal brain regions. However, the mechanisms by which this network supports reasoning and adaptable behavior remain poorly defined. Here, we examine the relationship between reasoning, executive control, and frontoparietal function in a series of nonverbal reasoning experiments. Our results demonstrate that, in accordance with previous studies, a network of frontal and parietal brain regions is recruited during reasoning. Our results also reveal that this network can be fractionated according to how different subregions respond when distinct reasoning demands are manipulated. While increased rule complexity modulates activity within a right lateralized network including the middle frontal gyrus and the superior parietal cortex, analogical reasoning demand—or the requirement to remap rules on to novel features—recruits the left inferior rostrolateral prefrontal cortex and the lateral occipital complex. In contrast, the posterior extent of the inferior frontal gyrus, associated with simpler executive demands, is not differentially sensitive to rule complexity or analogical demand. These findings accord well with the hypothesis that different reasoning demands are supported by different frontal and parietal subregions. PMID:20483908

  10. Neural representations of social status hierarchy in human inferior parietal cortex.

    Science.gov (United States)

    Chiao, Joan Y; Harada, Tokiko; Oby, Emily R; Li, Zhang; Parrish, Todd; Bridge, Donna J

    2009-01-01

    Mental representations of social status hierarchy share properties with that of numbers. Previous neuroimaging studies have shown that the neural representation of numerical magnitude lies within a network of regions within inferior parietal cortex. However the neural basis of social status hierarchy remains unknown. Using fMRI, we studied subjects while they compared social status magnitude of people, objects and symbols, as well as numerical magnitude. Both social status and number comparisons recruited bilateral intraparietal sulci. We also observed a semantic distance effect whereby neural activity within bilateral intraparietal sulci increased for semantically close relative to far numerical and social status comparisons. These results demonstrate that social status and number comparisons recruit distinct and overlapping neuronal representations within human inferior parietal cortex.

  11. Neural Tuning to Low-Level Features of Speech throughout the Perisylvian Cortex.

    Science.gov (United States)

    Berezutskaya, Julia; Freudenburg, Zachary V; Güçlü, Umut; van Gerven, Marcel A J; Ramsey, Nick F

    2017-08-16

    Despite a large body of research, we continue to lack a detailed account of how auditory processing of continuous speech unfolds in the human brain. Previous research showed the propagation of low-level acoustic features of speech from posterior superior temporal gyrus toward anterior superior temporal gyrus in the human brain (Hullett et al., 2016). In this study, we investigate what happens to these neural representations past the superior temporal gyrus and how they engage higher-level language processing areas such as inferior frontal gyrus. We used low-level sound features to model neural responses to speech outside of the primary auditory cortex. Two complementary imaging techniques were used with human participants (both males and females): electrocorticography (ECoG) and fMRI. Both imaging techniques showed tuning of the perisylvian cortex to low-level speech features. With ECoG, we found evidence of propagation of the temporal features of speech sounds along the ventral pathway of language processing in the brain toward inferior frontal gyrus. Increasingly coarse temporal features of speech spreading from posterior superior temporal cortex toward inferior frontal gyrus were associated with linguistic features such as voice onset time, duration of the formant transitions, and phoneme, syllable, and word boundaries. The present findings provide the groundwork for a comprehensive bottom-up account of speech comprehension in the human brain. SIGNIFICANCE STATEMENT We know that, during natural speech comprehension, a broad network of perisylvian cortical regions is involved in sound and language processing. Here, we investigated the tuning to low-level sound features within these regions using neural responses to a short feature film. We also looked at whether the tuning organization along these brain regions showed any parallel to the hierarchy of language structures in continuous speech. Our results show that low-level speech features propagate throughout the

  12. Inferior parietal and right frontal contributions to trial-by-trial adaptations of attention to memory.

    Science.gov (United States)

    Kizilirmak, Jasmin M; Rösler, Frank; Bien, Siegfried; Khader, Patrick H

    2015-07-21

    The attention to memory theory (AtoM) proposes that the same brain regions might be involved in selective processing of perceived stimuli (selective attention) and memory representations (selective retrieval). Although this idea is compelling, given consistently found neural overlap between perceiving and remembering stimuli, recent comparisons brought evidence for overlap as well as considerable differences. Here, we present a paradigm that enables the investigation of the AtoM hypothesis from a novel perspective to gain further insight into the neural resources involved in AtoM. Selective attention in perception is often investigated as a control process that shows lingering effects on immediately following trials. Here, we employed a paradigm capable of modulating selective retrieval in a similarly dynamic manner as in such selective-attention paradigms by inducing trial-to-trial shifts between relevant and irrelevant memory representations as well as changes of the width of the internal focus on memory. We found evidence for an involvement of bilateral inferior parietal lobe and right inferior frontal gyrus in reorienting the attentional focus on previously accessed memory representations. Moreover, we could dissociate the right inferior from the parietal activation in separate contrasts, suggesting that the right inferior frontal gyrus plays a role in facilitating attentional reorienting to memory representations when competing representations have been activated in the preceding trial, potentially by resolving this competition. Our results support the AtoM theory, i.e. that ventral frontal and parietal regions are involved in automatic attentional reorienting in memory, and highlight the importance of further investigations of the overlap and differences between regions involved in internal (memory) and external (perceptual) attentional selection. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Bilateral lesions of the medial frontal cortex disrupt recognition of social hierarchy during antiphonal communication in naked mole-rats (Heterocephalus glaber).

    Science.gov (United States)

    Yosida, Shigeto; Okanoya, Kazuo

    2012-02-01

    Generation of the motor patterns of emotional sounds in mammals occurs in the periaqueductal gray matter of the midbrain and is not directly controlled by the cortex. The medial frontal cortex indirectly controls vocalizations, based on the recognition of social context. We examined whether the medial frontal cortex was responsible for antiphonal vocalization, or turn-taking, in naked mole-rats. In normal turn-taking, naked mole-rats vocalize more frequently to dominant individuals than to subordinate ones. Bilateral lesions of the medial frontal cortex disrupted differentiation of call rates to the stimulus animals, which had varied social relationships to the subject. However, medial frontal cortex lesions did not affect either the acoustic properties of the vocalizations or the timing of the vocal exchanges. This suggests that the medial frontal cortex may be involved in social cognition or decision making during turn-taking, while other regions of the brain regulate when animals vocalize and the vocalizations themselves.

  14. Enhanced activation of the left inferior frontal gyrus in deaf and dyslexic adults during rhyming.

    Science.gov (United States)

    MacSweeney, Mairéad; Brammer, Michael J; Waters, Dafydd; Goswami, Usha

    2009-07-01

    Hearing developmental dyslexics and profoundly deaf individuals both have difficulties processing the internal structure of words (phonological processing) and learning to read. In hearing non-impaired readers, the development of phonological representations depends on audition. In hearing dyslexics, many argue, auditory processes may be impaired. In congenitally profoundly deaf individuals, auditory speech processing is essentially absent. Two separate literatures have previously reported enhanced activation in the left inferior frontal gyrus in both deaf and dyslexic adults when contrasted with hearing non-dyslexics during reading or phonological tasks. Here, we used a rhyme judgement task to compare adults from these two special populations to a hearing non-dyslexic control group. All groups were matched on non-verbal intelligence quotient, reading age and rhyme performance. Picture stimuli were used since this requires participants to generate their own phonological representations, rather than have them partially provided via text. By testing well-matched groups of participants on the same task, we aimed to establish whether previous literatures reporting differences between individuals with and without phonological processing difficulties have identified the same regions of differential activation in these two distinct populations. The data indicate greater activation in the deaf and dyslexic groups than in the hearing non-dyslexic group across a large portion of the left inferior frontal gyrus. This includes the pars triangularis, extending superiorly into the middle frontal gyrus and posteriorly to include the pars opercularis, and the junction with the ventral precentral gyrus. Within the left inferior frontal gyrus, there was variability between the two groups with phonological processing difficulties. The superior posterior tip of the left pars opercularis, extending into the precentral gyrus, was activated to a greater extent by deaf than dyslexic

  15. The rat frontal cortex serotonin receptors. Influence of supraletal irradiation

    International Nuclear Information System (INIS)

    Chanez, P.O.; Timmermans, R.; Gerber, G.B.

    1984-01-01

    The density of the frontal cortex serotonin-2 receptors was determined after a supralethal irradiation (20 Gy) in Wistar rat. Using spiperone as ligand, we observed an important decrease in the density of serotonin-2 receptor and an increase in the dissociation constant receptor-ligand, 3 days after exposure [fr

  16. Functional connectivity profile of the human inferior frontal junction: involvement in a cognitive control network

    Directory of Open Access Journals (Sweden)

    Sundermann Benedikt

    2012-10-01

    Full Text Available Abstract Background The human inferior frontal junction area (IFJ is critically involved in three main component processes of cognitive control (working memory, task switching and inhibitory control. As it overlaps with several areas in established anatomical labeling schemes, it is considered to be underreported as a functionally distinct location in the neuroimaging literature. While recent studies explicitly focused on the IFJ's anatomical organization and functional role as a single brain area, it is usually not explicitly denominated in studies on cognitive networks. However based on few analyses in small datasets constrained by specific a priori assumptions on its functional specialization, the IFJ has been postulated to be part of a cognitive control network. Goal of this meta-analysis was to establish the IFJ’s connectivity profile on a high formal level of evidence by aggregating published implicit knowledge about its co-activations. We applied meta-analytical connectivity modeling (MACM based on the activation likelihood estimation (ALE method without specific assumptions regarding functional specialization on 180 (reporting left IFJ activity and 131 (right IFJ published functional neuroimaging experiments derived from the BrainMap database. This method is based on coordinates in stereotaxic space, not on anatomical descriptors. Results The IFJ is significantly co-activated with areas in the dorsolateral and ventrolateral prefrontal cortex, anterior insula, medial frontal gyrus / pre-SMA, posterior parietal cortex, occipitotemporal junction / cerebellum, thalamus and putamen as well as language and motor areas. Results are corroborated by an independent resting-state fMRI analysis. Conclusions These results support the assumption that the IFJ is part of a previously described cognitive control network. They also highlight the involvement of subcortical structures in this system. A direct line is drawn from works on the functional

  17. Local-circuit phenotypes of layer 5 neurons in motor-frontal cortex of YFP-H mice

    Directory of Open Access Journals (Sweden)

    Jianing Yu

    2008-12-01

    Full Text Available Layer 5 pyramidal neurons comprise an important but heterogeneous group of cortical projection neurons. In motor-frontal cortex, these neurons are centrally involved in the cortical control of movement. Recent studies indicate that local excitatory networks in mouse motor-frontal cortex are dominated by descending pathways from layer 2/3 to 5. However, those pathways were identified in experiments involving unlabeled neurons in wild type mice. Here, to explore the possibility of class-specific connectivity in this descending pathway, we mapped the local sources of excitatory synaptic input to a genetically labeled population of cortical neurons: YFP-positive layer 5 neurons of YFP-H mice. We found, first, that in motor cortex, YFP-positive neurons were distributed in a double blade, consistent with the idea of layer 5B having greater thickness in frontal neocortex. Second, whereas unlabeled neurons in upper layer 5 received their strongest inputs from layer 2, YFP-positive neurons in the upper blade received prominent layer 3 inputs. Third, YFP-positive neurons exhibited distinct electrophysiological properties, including low spike frequency adaptation, as reported previously. Our results with this genetically labeled neuronal population indicate the presence of distinct local-circuit phenotypes among layer 5 pyramidal neurons in mouse motor-frontal cortex, and present a paradigm for investigating local circuit organization in other genetically labeled populations of cortical neurons.

  18. Transcortical mixed aphasia due to cerebral infarction in left inferior frontal lobe and temporo-parietal lobe

    International Nuclear Information System (INIS)

    Maeshima, S.; Matsumoto, T.; Ueyoshi, A.; Toshiro, H.; Sekiguchi, E.; Okita, R.; Yamaga, H.; Ozaki, F.; Moriwaki, H.; Roger, P.

    2002-01-01

    We present a case of transcortical mixed aphasia caused by a cerebral embolism. A 77-year-old right-handed man was admitted to our hospital with speech disturbance and a right hemianopia. His spontaneous speech was remarkably reduced, and object naming, word fluency, comprehension, reading and writing were all severely disturbed. However, repetition of phonemes and sentences and reading aloud were fully preserved. Although magnetic resonance imaging (MRI) showed cerebral infarcts in the left frontal and parieto-occipital lobe which included the inferior frontal gyrus and angular gyrus, single photon emission CT revealed a wider area of low perfusion over the entire left hemisphere except for part of the left perisylvian language areas. The amytal (Wada) test, which was performed via the left internal carotid artery, revealed that the left hemisphere was dominant for language. Hence, it appears that transcortical mixed aphasia may be caused by the isolation of perisylvian speech areas, even if there is a lesion in the inferior frontal gyrus, due to disconnection from surrounding areas. (orig.)

  19. Transcortical mixed aphasia due to cerebral infarction in left inferior frontal lobe and temporo-parietal lobe

    Energy Technology Data Exchange (ETDEWEB)

    Maeshima, S.; Matsumoto, T.; Ueyoshi, A. [Department of Physical Medicine and Rehabilitation, Wakayama Medical University, Wakayama (Japan); Toshiro, H.; Sekiguchi, E.; Okita, R.; Yamaga, H.; Ozaki, F.; Moriwaki, H. [Department of Neurological Surgery, Hidaka General Hospital, Wakayama (Japan); Roger, P. [School of Communication Sciences and Disorders, University of Sydney, Sydney, NSW (Australia)

    2002-02-01

    We present a case of transcortical mixed aphasia caused by a cerebral embolism. A 77-year-old right-handed man was admitted to our hospital with speech disturbance and a right hemianopia. His spontaneous speech was remarkably reduced, and object naming, word fluency, comprehension, reading and writing were all severely disturbed. However, repetition of phonemes and sentences and reading aloud were fully preserved. Although magnetic resonance imaging (MRI) showed cerebral infarcts in the left frontal and parieto-occipital lobe which included the inferior frontal gyrus and angular gyrus, single photon emission CT revealed a wider area of low perfusion over the entire left hemisphere except for part of the left perisylvian language areas. The amytal (Wada) test, which was performed via the left internal carotid artery, revealed that the left hemisphere was dominant for language. Hence, it appears that transcortical mixed aphasia may be caused by the isolation of perisylvian speech areas, even if there is a lesion in the inferior frontal gyrus, due to disconnection from surrounding areas. (orig.)

  20. Grammatical distinctions in the left frontal cortex.

    Science.gov (United States)

    Shapiro, K A; Pascual-Leone, A; Mottaghy, F M; Gangitano, M; Caramazza, A

    2001-08-15

    Selective deficits in producing verbs relative to nouns in speech are well documented in neuropsychology and have been associated with left hemisphere frontal cortical lesions resulting from stroke and other neurological disorders. The basis for these impairments is unresolved: Do they arise because of differences in the way grammatical categories of words are organized in the brain, or because of differences in the neural representation of actions and objects? We used repetitive transcranial magnetic stimulation (rTMS) to suppress the excitability of a portion of left prefrontal cortex and to assess its role in producing nouns and verbs. In one experiment subjects generated real words; in a second, they produced pseudowords as nouns or verbs. In both experiments, response latencies increased for verbs but were unaffected for nouns following rTMS. These results demonstrate that grammatical categories have a neuroanatomical basis and that the left prefrontal cortex is selectively engaged in processing verbs as grammatical objects.

  1. Role of Frontal Cortex in Attentional Capture by Singleton Distractors

    Science.gov (United States)

    de Fockert, Jan W.; Theeuwes, Jan

    2012-01-01

    The role of frontal cortex in selective attention to visual distractors was examined in an attentional capture task in which participants searched for a unique shape in the presence or absence of an additional colour singleton distractor. The presence of the additional singleton was associated with slower behavioural responses to the shape target,…

  2. No Effects of Bilateral tDCS over Inferior Frontal Gyrus on Response Inhibition and Aggression.

    Directory of Open Access Journals (Sweden)

    Franziska Dambacher

    Full Text Available Response inhibition is defined as the capacity to adequately withdraw pre-planned responses. It has been shown that individuals with deficits in inhibiting pre-planned responses tend to display more aggressive behaviour. The prefrontal cortex is involved in both, response inhibition and aggression. While response inhibition is mostly associated with predominantly right prefrontal activity, the neural components underlying aggression seem to be left-lateralized. These differences in hemispheric dominance are conceptualized in cortical asymmetry theories on motivational direction, which assign avoidance motivation (relevant to inhibit responses to the right and approach motivation (relevant for aggressive actions to the left prefrontal cortex. The current study aimed to directly address the inverse relationship between response inhibition and aggression by assessing them within one experiment. Sixty-nine healthy participants underwent bilateral transcranial Direct Current Stimulation (tDCS to the inferior frontal cortex. In one group we induced right-hemispheric fronto-cortical dominance by means of a combined right prefrontal anodal and left prefrontal cathodal tDCS montage. In a second group we induced left-hemispheric fronto-cortical dominance by means of a combined left prefrontal anodal and right prefrontal cathodal tDCS montage. A control group received sham stimulation. Response inhibition was assessed with a go/no-go task (GNGT and aggression with the Taylor Aggression Paradigm (TAP. We revealed that participants with poorer performance in the GNGT displayed more aggression during the TAP. No effects of bilateral prefrontal tDCS on either response inhibition or aggression were observed. This is at odds with previous brain stimulation studies applying unilateral protocols. Our results failed to provide evidence in support of the prefrontal cortical asymmetry model in the domain of response inhibition and aggression. The absence of t

  3. Preconditioning of Spatial and Auditory Cues: Roles of the Hippocampus, Frontal Cortex, and Cue-Directed Attention

    Directory of Open Access Journals (Sweden)

    Andrew C. Talk

    2016-12-01

    Full Text Available Loss of function of the hippocampus or frontal cortex is associated with reduced performance on memory tasks, in which subjects are incidentally exposed to cues at specific places in the environment and are subsequently asked to recollect the location at which the cue was experienced. Here, we examined the roles of the rodent hippocampus and frontal cortex in cue-directed attention during encoding of memory for the location of a single incidentally experienced cue. During a spatial sensory preconditioning task, rats explored an elevated platform while an auditory cue was incidentally presented at one corner. The opposite corner acted as an unpaired control location. The rats demonstrated recollection of location by avoiding the paired corner after the auditory cue was in turn paired with shock. Damage to either the dorsal hippocampus or the frontal cortex impaired this memory ability. However, we also found that hippocampal lesions enhanced attention directed towards the cue during the encoding phase, while frontal cortical lesions reduced cue-directed attention. These results suggest that the deficit in spatial sensory preconditioning caused by frontal cortical damage may be mediated by inattention to the location of cues during the latent encoding phase, while deficits following hippocampal damage must be related to other mechanisms such as generation of neural plasticity.

  4. Preconditioning of Spatial and Auditory Cues: Roles of the Hippocampus, Frontal Cortex, and Cue-Directed Attention

    Science.gov (United States)

    Talk, Andrew C.; Grasby, Katrina L.; Rawson, Tim; Ebejer, Jane L.

    2016-01-01

    Loss of function of the hippocampus or frontal cortex is associated with reduced performance on memory tasks, in which subjects are incidentally exposed to cues at specific places in the environment and are subsequently asked to recollect the location at which the cue was experienced. Here, we examined the roles of the rodent hippocampus and frontal cortex in cue-directed attention during encoding of memory for the location of a single incidentally experienced cue. During a spatial sensory preconditioning task, rats explored an elevated platform while an auditory cue was incidentally presented at one corner. The opposite corner acted as an unpaired control location. The rats demonstrated recollection of location by avoiding the paired corner after the auditory cue was in turn paired with shock. Damage to either the dorsal hippocampus or the frontal cortex impaired this memory ability. However, we also found that hippocampal lesions enhanced attention directed towards the cue during the encoding phase, while frontal cortical lesions reduced cue-directed attention. These results suggest that the deficit in spatial sensory preconditioning caused by frontal cortical damage may be mediated by inattention to the location of cues during the latent encoding phase, while deficits following hippocampal damage must be related to other mechanisms such as generation of neural plasticity. PMID:27999366

  5. Dissociating frontal regions that co-lateralize with different ventral occipitotemporal regions during word processing☆

    Science.gov (United States)

    Seghier, Mohamed L.; Price, Cathy J.

    2013-01-01

    The ventral occipitotemporal sulcus (vOT) sustains strong interactions with the inferior frontal cortex during word processing. Consequently, activation in both regions co-lateralize towards the same hemisphere in healthy subjects. Because the determinants of lateralisation differ across posterior, middle and anterior vOT subregions, we investigated whether lateralisation in different inferior frontal regions would co-vary with lateralisation in the three different vOT subregions. A whole brain analysis found that, during semantic decisions on written words, laterality covaried in (1) posterior vOT and the precentral gyrus; (2) middle vOT and the pars opercularis, pars triangularis, and supramarginal gyrus; and (3) anterior vOT and the pars orbitalis, middle frontal gyrus and thalamus. These findings increase the spatial resolution of our understanding of how vOT interacts with other brain areas during semantic categorisation on words. PMID:23728081

  6. Cerebellar modulation of frontal cortex dopamine efflux in mice: relevance to autism and schizophrenia.

    Science.gov (United States)

    Mittleman, Guy; Goldowitz, Daniel; Heck, Detlef H; Blaha, Charles D

    2008-07-01

    Cerebellar and frontal cortical pathologies have been commonly reported in schizophrenia, autism, and other developmental disorders. Whether there is a relationship between prefrontal and cerebellar pathologies is unknown. Using fixed potential amperometry, dopamine (DA) efflux evoked by cerebellar or, dentate nucleus electrical stimulation (50 Hz, 200 muA) was recorded in prefrontal cortex of urethane anesthetized lurcher (Lc/+) mice with 100% loss of cerebellar Purkinje cells and wildtype (+/+) control mice. Cerebellar stimulation with 25 and 100 pulses evoked prefrontal cortex DA efflux in +/+ mice that persisted for 12 and 25 s poststimulation, respectively. In contrast, 25 pulse cerebellar stimulation failed to evoke prefrontal cortex DA efflux in Lc/+ mice indicating a dependency on cerebellar Purkinje cell outputs. Dentate nucleus stimulation (25 pulses) evoked a comparable but briefer (baseline recovery within 7 s) increase in prefrontal cortex DA efflux compared to similar cerebellar stimulation in +/+ mice. However, in Lc/+ mice 25 pulse dentate nucleus evoked prefrontal cortex DA efflux was attenuated by 60% with baseline recovery within 4 s suggesting that dentate nucleus outputs to prefrontal cortex remain partially functional. DA reuptake blockade enhanced 100 pulse stimulation evoked prefrontal cortex responses, while serotonin or norepinephrine reuptake blockade were without effect indicating the specificity of the amperometric recordings to DA. Results provide neurochemical evidence that the cerebellum can modulate DA efflux in the prefrontal cortex. Together, these findings may explain why cerebellar and frontal cortical pathologies co-occur, and may provide a mechanism that accounts for the diversity of symptoms common to multiple developmental disorders.

  7. The role of the right inferior frontal gyrus in the pathogenesis of post-stroke psychosis.

    Science.gov (United States)

    Devine, Michael J; Bentley, Paul; Jones, Brynmor; Hotton, Gary; Greenwood, Richard J; Jenkins, I Harri; Joyce, Eileen M; Malhotra, Paresh A

    2014-03-01

    Psychotic symptoms have previously been reported following right hemisphere brain injury. We sought to identify the specific neuroanatomical basis of delusions following stroke by studying a series of patients with post-stroke psychosis. Lesion overlap analysis was conducted on three individuals with delusions following right hemisphere stroke. These cases were compared with a control group of patients with similar anatomical damage. The main outcome measures were presence of delusions and presence of behavioural susceptibility. The right inferior frontal gyrus and underlying white matter, including the superior longitudinal fasciculus and anterior corona radiata, were involved in all three cases. All three had a preexisting untreated psychiatric disorder. In contrast, only one of nine control cases with equivalent lesions had evidence of previous psychiatric disorder (p = 0.0182, Fisher's exact test), and this was being treated at the time of stroke. We provide clinical evidence from patients with structural brain lesions implicating damage to the right inferior frontal lobe in the generation of persistent psychosis following stroke. We suggest that preexisting psychiatric disease provided a behavioural susceptibility to develop delusions in these individuals.

  8. [Interaction between neurons of the frontal cortex and hippocampus during the realization of choice of food reinforcement quality in cats].

    Science.gov (United States)

    Merzhanova, G Kh; Dolbakian, E E; Khokhlova, V N

    2003-01-01

    Six cats were subjected to the procedure of appetitive instrumental conditioning (with light as a conditioned stimuls) by the method of the "active choice" of reinforcement quality. Short-delay conditioned bar-press responses were rewarded with bread-meat mixture, and the delayed responses were reinforced by meat. The animals differed in behavior strategy: four animals preferred the bar-pressing with a long delay (the so-called "self-control" group), and two cats preferred the bar-pressing with a short delay (the so-called "impulsive" group). Multiunit activity in the frontal cortex and hippocampus (CA3) was recorded via chronically implanted nichrome wire semimicroelectrodes. An interaction between the neighboring neurons in the frontal cortex and hippocampus (within local neural networks) and between the neurons of the frontal cortex and hippocampus (distributed neural networks in frontal-hippocampal and hippocampal-frontal directions) was evaluated by means of statistical crosscorrelation analysis of spike trains. Crosscorrelations between neuronal spike trains in the delay range of 0-100 ms were explored. It was shown that the number of crosscorrelations between the neuronal discharges both in the local and distributed networks was significantly higher in the "self-control" cats. It was suggested that the local and distributed neural networks of the frontal cortex and hippocampus are involved in the system of brain structures which determine the behavioral strategy of animals in the "self-control" group.

  9. Orbito-frontal cortex and thalamus volumes in the patients with obsessive-compulsive disorder before and after cognitive behavioral therapy.

    Science.gov (United States)

    Atmaca, Murad; Yildirim, Hanefi; Yilmaz, Seda; Caglar, Neslihan; Mermi, Osman; Korkmaz, Sevda; Akaslan, Unsal; Gurok, M Gurkan; Kekilli, Yasemin; Turkcapar, Hakan

    2018-07-01

    Background The effect of a variety of treatment modalities including psychopharmacological and cognitive behavioral therapy on the brain volumes and neurochemicals have not been investigated enough in the patients with obsessive-compulsive disorder. Therefore, in the present study, we aimed to investigate the effect of cognitive behavioral therapy on the volumes of the orbito-frontal cortex and thalamus regions which seem to be abnormal in the patients with obsessive-compulsive disorder. We hypothesized that there would be change in the volumes of the orbito-frontal cortex and thalamus. Methods Twelve patients with obsessive-compulsive disorder and same number of healthy controls were included into the study. At the beginning of the study, the volumes of the orbito-frontal cortex and thalamus were compared by using magnetic resonance imaging. In addition, volumes of these regions were measured before and after the cognitive behavioral therapy treatment in the patient group. Results The patients with obsessive-compulsive disorder had greater left and right thalamus volumes and smaller left and right orbito-frontal cortex volumes compared to those of healthy control subjects at the beginning of the study. When we compared baseline volumes of the patients with posttreatment ones, we detected that thalamus volumes significantly decreased throughout the period for both sides and that the orbito-frontal cortex volumes significantly increased throughout the period for only left side. Conclusions In summary, we found that cognitive behavioral therapy might volumetrically affect the key brain regions involved in the neuroanatomy of obsessive-compulsive disorder. However, future studies with larger sample are required.

  10. Dorso-Lateral Frontal Cortex of the Ferret Encodes Perceptual Difficulty during Visual Discrimination

    OpenAIRE

    Zhe Charles Zhou; Chunxiu Yu; Kristin K. Sellers; Flavio Fröhlich

    2016-01-01

    Visual discrimination requires sensory processing followed by a perceptual decision. Despite a growing understanding of visual areas in this behavior, it is unclear what role top-down signals from prefrontal cortex play, in particular as a function of perceptual difficulty. To address this gap, we investigated how neurons in dorso-lateral frontal cortex (dl-FC) of freely-moving ferrets encode task variables in a two-alternative forced choice visual discrimination task with high- and low-contr...

  11. Tritiated imipramine binding sites are decreased in the frontal cortex of suicides

    International Nuclear Information System (INIS)

    Stanley, M.; Virgilio, J.; Gershon, S.

    1982-01-01

    Binding characteristics of tritiated imipramine were determined in the frontal cortex of suicides and well-matched controls. Maximal binding was significantly lower in brains from the suicides. This finding is consistent with reports of decreased tritiated imipramine binding in the platelets of patients diagnosed as having a major affective disorder

  12. Selective visual attention to emotional words: Early parallel frontal and visual activations followed by interactive effects in visual cortex.

    Science.gov (United States)

    Schindler, Sebastian; Kissler, Johanna

    2016-10-01

    Human brains spontaneously differentiate between various emotional and neutral stimuli, including written words whose emotional quality is symbolic. In the electroencephalogram (EEG), emotional-neutral processing differences are typically reflected in the early posterior negativity (EPN, 200-300 ms) and the late positive potential (LPP, 400-700 ms). These components are also enlarged by task-driven visual attention, supporting the assumption that emotional content naturally drives attention. Still, the spatio-temporal dynamics of interactions between emotional stimulus content and task-driven attention remain to be specified. Here, we examine this issue in visual word processing. Participants attended to negative, neutral, or positive nouns while high-density EEG was recorded. Emotional content and top-down attention both amplified the EPN component in parallel. On the LPP, by contrast, emotion and attention interacted: Explicit attention to emotional words led to a substantially larger amplitude increase than did explicit attention to neutral words. Source analysis revealed early parallel effects of emotion and attention in bilateral visual cortex and a later interaction of both in right visual cortex. Distinct effects of attention were found in inferior, middle and superior frontal, paracentral, and parietal areas, as well as in the anterior cingulate cortex (ACC). Results specify separate and shared mechanisms of emotion and attention at distinct processing stages. Hum Brain Mapp 37:3575-3587, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Functional specialization of the primate frontal cortex during decision making.

    Science.gov (United States)

    Lee, Daeyeol; Rushworth, Matthew F S; Walton, Mark E; Watanabe, Masataka; Sakagami, Masamichi

    2007-08-01

    Economic theories of decision making are based on the principle of utility maximization, and reinforcement-learning theory provides computational algorithms that can be used to estimate the overall reward expected from alternative choices. These formal models not only account for a large range of behavioral observations in human and animal decision makers, but also provide useful tools for investigating the neural basis of decision making. Nevertheless, in reality, decision makers must combine different types of information about the costs and benefits associated with each available option, such as the quality and quantity of expected reward and required work. In this article, we put forward the hypothesis that different subdivisions of the primate frontal cortex may be specialized to focus on different aspects of dynamic decision-making processes. In this hypothesis, the lateral prefrontal cortex is primarily involved in maintaining the state representation necessary to identify optimal actions in a given environment. In contrast, the orbitofrontal cortex and the anterior cingulate cortex might be primarily involved in encoding and updating the utilities associated with different sensory stimuli and alternative actions, respectively. These cortical areas are also likely to contribute to decision making in a social context.

  14. Dysregulated left inferior parietal activity in schizophrenia and depression: functional connectivity and characterization

    Directory of Open Access Journals (Sweden)

    Veronika I. Müller

    2013-06-01

    Full Text Available The inferior parietal cortex (IPC is a heterogeneous region that is known to be involved in a multitude of diverse different tasks and processes, though its contribution to these often-complex functions is yet poorly understood. In a previous study we demonstrated that patients with depression failed to deactivate the left IPC during processing of congruent audiovisual information. We now found the same dysregulation (same region and condition in schizophrenia. By using task-independent (resting state and task-dependent (MACM analyses we aimed at characterizing this particular region with regard to its connectivity and function. Across both approaches, results revealed functional connectivity of the left inferior parietal seed region with bilateral IPC, precuneus and posterior cingulate cortex (PrC/PCC, medial orbitofrontal cortex (mOFC, left middle frontal (MFG as well as inferior frontal (IFG gyrus. Network-level functional characterization further revealed that on the one hand, all interconnected regions are part of a network involved in memory processes. On the other hand, sub-networks are formed when emotion, language, social cognition and reasoning processes are required. Thus, the IPC-region that is dysregulated in both depression and schizophrenia is functionally connected to a network of regions which, depending on task demands may form sub-networks. These results therefore indicate that dysregulation of left IPC in depression and schizophrenia might not only be connected to deficits in audiovisual integration, but is possibly also associated to impaired memory and deficits in emotion processing in these patient groups.

  15. Inactivation of Primate Prefrontal Cortex Impairs Auditory and Audiovisual Working Memory.

    Science.gov (United States)

    Plakke, Bethany; Hwang, Jaewon; Romanski, Lizabeth M

    2015-07-01

    The prefrontal cortex is associated with cognitive functions that include planning, reasoning, decision-making, working memory, and communication. Neurophysiology and neuropsychology studies have established that dorsolateral prefrontal cortex is essential in spatial working memory while the ventral frontal lobe processes language and communication signals. Single-unit recordings in nonhuman primates has shown that ventral prefrontal (VLPFC) neurons integrate face and vocal information and are active during audiovisual working memory. However, whether VLPFC is essential in remembering face and voice information is unknown. We therefore trained nonhuman primates in an audiovisual working memory paradigm using naturalistic face-vocalization movies as memoranda. We inactivated VLPFC, with reversible cortical cooling, and examined performance when faces, vocalizations or both faces and vocalization had to be remembered. We found that VLPFC inactivation impaired subjects' performance in audiovisual and auditory-alone versions of the task. In contrast, VLPFC inactivation did not disrupt visual working memory. Our studies demonstrate the importance of VLPFC in auditory and audiovisual working memory for social stimuli but suggest a different role for VLPFC in unimodal visual processing. The ventral frontal lobe, or inferior frontal gyrus, plays an important role in audiovisual communication in the human brain. Studies with nonhuman primates have found that neurons within ventral prefrontal cortex (VLPFC) encode both faces and vocalizations and that VLPFC is active when animals need to remember these social stimuli. In the present study, we temporarily inactivated VLPFC by cooling the cortex while nonhuman primates performed a working memory task. This impaired the ability of subjects to remember a face and vocalization pair or just the vocalization alone. Our work highlights the importance of the primate VLPFC in the processing of faces and vocalizations in a manner that

  16. Task-based and resting-state fMRI reveal compensatory network changes following damage to left inferior frontal gyrus.

    Science.gov (United States)

    Hallam, Glyn P; Thompson, Hannah E; Hymers, Mark; Millman, Rebecca E; Rodd, Jennifer M; Lambon Ralph, Matthew A; Smallwood, Jonathan; Jefferies, Elizabeth

    2018-02-01

    Damage to left inferior prefrontal cortex in stroke aphasia is associated with semantic deficits reflecting poor control over conceptual retrieval, as opposed to loss of knowledge. However, little is known about how functional recruitment within the semantic network changes in patients with executive-semantic deficits. The current study acquired functional magnetic resonance imaging (fMRI) data from 14 patients with semantic aphasia, who had difficulty with flexible semantic retrieval following left prefrontal damage, and 16 healthy age-matched controls, allowing us to examine activation and connectivity in the semantic network. We examined neural activity while participants listened to spoken sentences that varied in their levels of lexical ambiguity and during rest. We found group differences in two regions thought to be good candidates for functional compensation: ventral anterior temporal lobe (vATL), which is strongly implicated in comprehension, and posterior middle temporal gyrus (pMTG), which is hypothesized to work together with left inferior prefrontal cortex to support controlled aspects of semantic retrieval. The patients recruited both of these sites more than controls in response to meaningful sentences. Subsequent analysis identified that, in control participants, the recruitment of pMTG to ambiguous sentences was inversely related to functional coupling between pMTG and anterior superior temporal gyrus (aSTG) at rest, while the patients showed the opposite pattern. Moreover, stronger connectivity between pMTG and aSTG in patients was associated with better performance on a test of verbal semantic association, suggesting that this temporal lobe connection supports comprehension in the face of damage to left inferior prefrontal cortex. These results characterize network changes in patients with executive-semantic deficits and converge with studies of healthy participants in providing evidence for a distributed system underpinning semantic control that

  17. Chronic consumption of a western diet modifies the DNA methylation profile in the frontal cortex of mice.

    Science.gov (United States)

    Yokoyama, Amy S; Dunaway, Keith; Rutkowsky, Jennifer; Rutledge, John C; Milenkovic, Dragan

    2018-02-21

    In our previous work in mice, we have shown that chronic consumption of a Western diet (WD; 42% kcal fat, 0.2% total cholesterol and 34% sucrose) is correlated with impaired cognitive function. Cognitive decline has also been associated with alterations in DNA methylation. Additionally, although there have been many studies analyzing the effect of maternal consumption of a WD on DNA methylation in the offspring, few studies have analyzed how an individual's consumption of a WD can impact his/her DNA methylation. Since the frontal cortex is involved in the regulation of cognitive function and is often affected in cases of cognitive decline, this study aimed to examine how chronic consumption of a WD affects DNA methylation in the frontal cortex of mice. Eight-week-old male mice were fed either a control diet (CD) or a WD for 12 weeks, after which time alterations in DNA methylation were analyzed. Assessment of global DNA methylation in the frontal cortex using dot blot analysis revealed that there was a decrease in global DNA methylation in the WD-fed mice compared with the CD-fed mice. Bioinformatic analysis identified several networks and pathways containing genes displaying differential methylation, particularly those involved in metabolism, cell adhesion and cytoskeleton integrity, inflammation and neurological function. In conclusion, the results from this study suggest that consumption of a WD alters DNA methylation in the frontal cortex of mice and could provide one of the mechanisms by which consumption of a WD impairs cognitive function.

  18. Adrenergic receptors in frontal cortex in human brain.

    Science.gov (United States)

    Cash, R; Raisman, R; Ruberg, M; Agid, Y

    1985-02-05

    The binding of three adrenergic ligands ([3H]prazosin, [3H]clonidine, [3H]dihydroalprenolol) was studied in the frontal cortex of human brain. alpha 1-Receptors, labeled by [3H]prazosin, predominated. [3H]Clonidine bound to two classes of sites, one of high affinity and one of low affinity. Guanosine triphosphate appeared to lower the affinity of [3H]clonidine for its receptor. [3H]Dihydroalprenolol bound to three classes of sites: the beta 1-receptor, the beta 2-receptor and a receptor with low affinity which represented about 40% of the total binding, but which was probably a non-specific site; the beta 1/beta 2 ratio was 1/2.

  19. Functional impairment of the frontal lobe in methamphetamine dependent patients detected on FDG-PET and WCST

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yang Tae; Kwon, Do Hoon [Bugok National Hostipal, Changnyeong (Korea, Republic of); Lee, Sang Woo; Seo, Ji Hyoung; Kang, Seong Min; Lee, Jae Tae; Lee, Kyu Bo [Kyungpook National University Hospital, Daeug (Korea, Republic of)

    2007-07-01

    There are mounting evidences from neuropsychological and neuroimaging studies to support the view that patients with substance dependence have abnormalities in prefrontal cortex. However, functional deficits in prefrontal cortex has not been adequately studied in methamphetamine dependence. Therefore, the purpose of this study is to examine whether methamphetamine dependent patients have metabolic abnormalities and executive dysfunction. Twenty-one abstinent methamphetamine dependent patients who were hospitalized in Bugok National Hospital underwent resting FDG-PET, after which they completed computerized versions of the Wisconsin Card Sorting Test (WCST). Brain PET images were obtained 30 minutes after intravenous injection of 370 MBq of 18F-FDG. Significant differences of glucose metabolism were estimated for every voxel using t-statistics on SPM2 implemented in Matlab between methamphetamine dependent patients and age-matched normal controls. FDG-PET revealed significant hypometabolism in the left inferior frontal white matter (Talairach coordinates (x, y, z): -34, 7, 31) in methamphetamine dependent patients compared to the normal controls (uncorrect p<0.001, t>3.39). The nearest gray matter region was the left inferior frontal cortex (Brodmann area 9). Methamphetamine dependent patients completed significantly fewer categories (3.662.19) and made more perseveration errors (22.0411.94) and total errors (44.5719.70) on the WCST compared to the normal controls (p<0.01). These data suggest that patients with methamphetamine dependence have functional impairments in prefrontal cortex.

  20. Functional impairment of the frontal lobe in methamphetamine dependent patients detected on FDG-PET and WCST

    International Nuclear Information System (INIS)

    Kim, Yang Tae; Kwon, Do Hoon; Lee, Sang Woo; Seo, Ji Hyoung; Kang, Seong Min; Lee, Jae Tae; Lee, Kyu Bo

    2007-01-01

    There are mounting evidences from neuropsychological and neuroimaging studies to support the view that patients with substance dependence have abnormalities in prefrontal cortex. However, functional deficits in prefrontal cortex has not been adequately studied in methamphetamine dependence. Therefore, the purpose of this study is to examine whether methamphetamine dependent patients have metabolic abnormalities and executive dysfunction. Twenty-one abstinent methamphetamine dependent patients who were hospitalized in Bugok National Hospital underwent resting FDG-PET, after which they completed computerized versions of the Wisconsin Card Sorting Test (WCST). Brain PET images were obtained 30 minutes after intravenous injection of 370 MBq of 18F-FDG. Significant differences of glucose metabolism were estimated for every voxel using t-statistics on SPM2 implemented in Matlab between methamphetamine dependent patients and age-matched normal controls. FDG-PET revealed significant hypometabolism in the left inferior frontal white matter (Talairach coordinates (x, y, z): -34, 7, 31) in methamphetamine dependent patients compared to the normal controls (uncorrect p 3.39). The nearest gray matter region was the left inferior frontal cortex (Brodmann area 9). Methamphetamine dependent patients completed significantly fewer categories (3.662.19) and made more perseveration errors (22.0411.94) and total errors (44.5719.70) on the WCST compared to the normal controls (p<0.01). These data suggest that patients with methamphetamine dependence have functional impairments in prefrontal cortex

  1. Differential activity in left inferior frontal gyrus for pseudo and real words: an event-related functional MRI study on auditory lexical decision

    International Nuclear Information System (INIS)

    Xiao Zhuangwei; Xu Weixiong; Zhang Xuexin; Wang Xiaoyi; Weng Xuchu; Wu Renhua; Wu Xiaoping

    2006-01-01

    Objective: To study lexical processing of pseudo words and real words by using a fast event-related functional MRI (ER-fMRI) design. Methods: Participants did an auditory lexical decision task on a list of pseudo-randomly intermixed real and pseudo Chinese two-character (or two-syllable) words. Pseudo words were constructed by recombining constituent characters of the real words to control for sublexical codes properties. Results: The behavioral performance of fourteen participants indicated that response to pseudowords was significantly slower and less accurate than to real words (mean error rate: 9.9% versus 3.9%, mean reaction time: 1618 ms versus 1143 ms). Processing of pseudo words and real words activated a highly comparable network of brain regions, including bilateral inferior frontal gyrus, superior, middle temporal gyrus, calcarine and lingual gyrus, and left supramarginal gyrus. Mirroring a behavioral lexical effect, left inferior frontal gyrus (IFG) was significantly more activated for pseudo words than for real words. Conclusion: The results indicate that the processing of left inferior frontal gyrus in judging pseudo words and real words is not related to grapheme-to-phoneme conversion, but rather to making positive versus negative responses in decision making. (authors)

  2. Right inferior frontal gyrus activation is associated with memory improvement in patients with left frontal low-grade glioma resection.

    Directory of Open Access Journals (Sweden)

    Eliane C Miotto

    Full Text Available Patients with low-grade glioma (LGG have been studied as a model of functional brain reorganization due to their slow-growing nature. However, there is no information regarding which brain areas are involved during verbal memory encoding after extensive left frontal LGG resection. In addition, it remains unknown whether these patients can improve their memory performance after instructions to apply efficient strategies. The neural correlates of verbal memory encoding were investigated in patients who had undergone extensive left frontal lobe (LFL LGG resections and healthy controls using fMRI both before and after directed instructions were given for semantic organizational strategies. Participants were scanned during the encoding of word lists under three different conditions before and after a brief period of practice. The conditions included semantically unrelated (UR, related-non-structured (RNS, and related-structured words (RS, allowing for different levels of semantic organization. All participants improved on memory recall and semantic strategy application after the instructions for the RNS condition. Healthy subjects showed increased activation in the left inferior frontal gyrus (IFG and middle frontal gyrus (MFG during encoding for the RNS condition after the instructions. Patients with LFL excisions demonstrated increased activation in the right IFG for the RNS condition after instructions were given for the semantic strategies. Despite extensive damage in relevant areas that support verbal memory encoding and semantic strategy applications, patients that had undergone resections for LFL tumor could recruit the right-sided contralateral homologous areas after instructions were given and semantic strategies were practiced. These results provide insights into changes in brain activation areas typically implicated in verbal memory encoding and semantic processing.

  3. Right inferior frontal gyrus activation is associated with memory improvement in patients with left frontal low-grade glioma resection.

    Science.gov (United States)

    Miotto, Eliane C; Balardin, Joana B; Vieira, Gilson; Sato, Joao R; Martin, Maria da Graça M; Scaff, Milberto; Teixeira, Manoel J; Junior, Edson Amaro

    2014-01-01

    Patients with low-grade glioma (LGG) have been studied as a model of functional brain reorganization due to their slow-growing nature. However, there is no information regarding which brain areas are involved during verbal memory encoding after extensive left frontal LGG resection. In addition, it remains unknown whether these patients can improve their memory performance after instructions to apply efficient strategies. The neural correlates of verbal memory encoding were investigated in patients who had undergone extensive left frontal lobe (LFL) LGG resections and healthy controls using fMRI both before and after directed instructions were given for semantic organizational strategies. Participants were scanned during the encoding of word lists under three different conditions before and after a brief period of practice. The conditions included semantically unrelated (UR), related-non-structured (RNS), and related-structured words (RS), allowing for different levels of semantic organization. All participants improved on memory recall and semantic strategy application after the instructions for the RNS condition. Healthy subjects showed increased activation in the left inferior frontal gyrus (IFG) and middle frontal gyrus (MFG) during encoding for the RNS condition after the instructions. Patients with LFL excisions demonstrated increased activation in the right IFG for the RNS condition after instructions were given for the semantic strategies. Despite extensive damage in relevant areas that support verbal memory encoding and semantic strategy applications, patients that had undergone resections for LFL tumor could recruit the right-sided contralateral homologous areas after instructions were given and semantic strategies were practiced. These results provide insights into changes in brain activation areas typically implicated in verbal memory encoding and semantic processing.

  4. The toxic influence of dibromoacetic acid on the hippocampus and pre-frontal cortex of rat: involvement of neuroinflammation response and oxidative stress.

    Science.gov (United States)

    Jiang, Wenbo; Li, Bai; Chen, Yingying; Gao, Shuying

    2017-12-01

    Dibromoacetic acid (DBA) exsits in drinking water as a by-product of disinfection as a result of chlorination or ozonation processes. Hippocampus and pre-frontal cortex are the key structures in memory formation and weanling babies are more sensitive to environmental toxicant than adults, so this study was conducted to evaluate the potential neurotoxicity effects of DBA exposure when administered intragastrically for 4 weeks to weanling Sprague-Dawley rats, at concentration of 0, 20, 50, 125 mg/kg via the neurobehavioral and neurochemical effects. Results indicated that animals weight gain and food consumption were not significantly affected by DBA. However, morris water maze test showed varying degrees of changes between control and high-dose group. Additionally, the level of malondialdehyde (MDA) and generation of reactive oxygen species (ROS) in the hippocampus and pre-frontal cortex of rats increased significantly. The activities of total superoxide dismutase (SOD) and the glutathione (GSH) content in the hippocampus and pre-frontal cortex of rats decreased significantly after treatment with DBA. Treatment with DBA increased the protein and mRNA expression of Iba-1, NF-κB, TNF-α, IL-6, IL-1β and HO-1 in the hippocampus and pre-frontal cortex of rats. These data suggested that DBA had a toxic influence on the hippocampus and pre-frontal cortex of rats, and that the mechanism of toxicity might be associated with the neuroinflammation response and oxidative stress.

  5. Intracellular responses to frequency modulated tones in the dorsal cortex of the mouse inferior colliculus

    Directory of Open Access Journals (Sweden)

    Ruediger eGeis

    2013-01-01

    Full Text Available Frequency modulations occur in many natural sounds, including vocalizations. The neuronal response to frequency modulated (FM stimuli has been studied extensively in different brain areas, with an emphasis on the auditory cortex and the central nucleus of the inferior colliculus. Here, we measured the responses to FM sweeps in whole-cell recordings from neurons in the dorsal cortex of the mouse inferior colliculus. Both up- and downward logarithmic FM sweeps were presented at two different speeds to both the ipsi- and the contralateral ear. Based on the number of action potentials that were fired, between 10-24% of cells were selective for rate or direction of the FM sweeps. A somewhat lower percentage of cells, 6-21%, showed selectivity based on EPSP size. To study the mechanisms underlying the generation of FM selectivity, we compared FM responses with responses to simple tones in the same cells. We found that if pairs of neurons responded in a similar way to simple tones, they generally also responded in a similar way to FM sweeps. Further evidence that FM selectivity can be generated within the dorsal cortex was obtained by reconstructing FM sweeps from the response to simple tones using three different models. In about half of the direction selective neurons the selectivity was generated by spectrally asymmetric synaptic inhibition. In addition, evidence for direction selectivity based on the timing of excitatory responses was also obtained in some cells. No clear evidence for the local generation of rate selectivity was obtained. We conclude that FM direction selectivity can be generated within the dorsal cortex of the mouse inferior colliculus by multiple mechanisms.

  6. Frontal cortex gray matter volume alterations in pathological gambling occur independently from substance use disorder.

    Science.gov (United States)

    Zois, Evangelos; Kiefer, Falk; Lemenager, Tagrid; Vollstädt-Klein, Sabine; Mann, Karl; Fauth-Bühler, Mira

    2017-05-01

    Neuroimaging in pathological gambling (PG) allows studying brain structure independent of pharmacological/neurotoxic effects occurring in substance addiction. Because of high comorbidity of PG with substance use disorder (SUD), first results on structural deficits in PG are controversial. The current investigation is the first to examine gray matter (GM) volume alterations in PG controlling for the impact of SUD by comparing non-comorbid (PG PURE ) and two comorbid (PG ALCOHOL and PG POLY ) groups. Two hundred and five individuals were included in the analysis: 107 patients diagnosed with PG and 98 healthy controls (HCs). We employed voxel-based morphometry to look for GM volume differences between the groups controlling for age, smoking and depression. GM decreases in the superior medial and orbital frontal cortex occur independently of substance use in PG PURE compared with HCs. The frontal pattern of GM decrease was comparable with PG ALCOHOL group where additionally GM volume was decreased in the anterior cingulate but increased in the amygdala. Moreover, regions in PG ALCOHOL + POLY with reduced GM volume were the medial frontal, anterior cingulate and occipital lobe regions. PG ALCOHOL + POLY not only exhibited structural deficits in comparison with HCs but also relative to PG PURE in the precuneus and post-central gyrus. We demonstrated specific frontal cortex GM deficits in PG without SUD comorbidities. Whereas some target regions reported in earlier studies might result from comorbid substance abuse, there seems to be a core set of frontal alterations associated with addicted gambling behaviour independent of toxic substance effects. © 2016 Society for the Study of Addiction.

  7. Stimulating the Brain's Language Network: Syntactic Ambiguity Resolution after TMS to the Inferior Frontal Gyrus and Middle Temporal Gyrus

    NARCIS (Netherlands)

    Acheson, D.J.; Hagoort, P.

    2013-01-01

    The posterior middle temporal gyrus (MTG) and inferior frontal gyrus (IFG) are two critical nodes of the brain's language network. Previous neuroimaging evidence has supported a dissociation in language comprehension in which parts of the MTG are involved in the retrieval of lexical syntactic

  8. The right inferior frontal gyrus processes nested non-local dependencies in music.

    Science.gov (United States)

    Cheung, Vincent K M; Meyer, Lars; Friederici, Angela D; Koelsch, Stefan

    2018-02-28

    Complex auditory sequences known as music have often been described as hierarchically structured. This permits the existence of non-local dependencies, which relate elements of a sequence beyond their temporal sequential order. Previous studies in music have reported differential activity in the inferior frontal gyrus (IFG) when comparing regular and irregular chord-transitions based on theories in Western tonal harmony. However, it is unclear if the observed activity reflects the interpretation of hierarchical structure as the effects are confounded by local irregularity. Using functional magnetic resonance imaging (fMRI), we found that violations to non-local dependencies in nested sequences of three-tone musical motifs in musicians elicited increased activity in the right IFG. This is in contrast to similar studies in language which typically report the left IFG in processing grammatical syntax. Effects of increasing auditory working demands are moreover reflected by distributed activity in frontal and parietal regions. Our study therefore demonstrates the role of the right IFG in processing non-local dependencies in music, and suggests that hierarchical processing in different cognitive domains relies on similar mechanisms that are subserved by domain-selective neuronal subpopulations.

  9. Lower Activation in Frontal Cortex and Posterior Cingulate Cortex Observed during Sex Determination Test in Early-Stage Dementia of the Alzheimer Type.

    Science.gov (United States)

    Rajmohan, Ravi; Anderson, Ronald C; Fang, Dan; Meyer, Austin G; Laengvejkal, Pavis; Julayanont, Parunyou; Hannabas, Greg; Linton, Kitten; Culberson, John; Khan, Hafiz; De Toledo, John; Reddy, P Hemachandra; O'Boyle, Michael W

    2017-01-01

    Face-labeling refers to the ability to classify faces into social categories. This plays a critical role in human interaction as it serves to define concepts of socially acceptable interpersonal behavior. The purpose of the current study was to characterize, what, if any, impairments in face-labeling are detectable in participants with early-stage clinically diagnosed dementia of the Alzheimer type (CDDAT) through the use of the sex determination test (SDT). In the current study, four (1 female, 3 males) CDDAT and nine (4 females, 5 males) age-matched neurotypicals (NT) completed the SDT using chimeric faces while undergoing BOLD fMRI. It was expected that CDDAT participants would have poor verbal fluency, which would correspond to poor performance on the SDT. This could be explained by decreased activation and connectivity patterns within the fusiform face area (FFA) and anterior cingulate cortex (ACC). DTI was also performed to test the association of pathological deterioration of connectivity in the uncinate fasciculus (UF) and verbally-mediated performance. CDDAT showed lower verbal fluency test (VFT) performance, but VFT was not significantly correlated to SDT and no significant difference was seen between CDDAT and NT for SDT performance as half of the CDDAT performed substantially worse than NT while the other half performed similarly. BOLD fMRI of SDT displayed differences in the left superior frontal gyrus and posterior cingulate cortex (PCC), but not the FFA or ACC. Furthermore, although DTI showed deterioration of the right inferior and superior longitudinal fasciculi, as well as the PCC, it did not demonstrate significant deterioration of UF tracts. Taken together, early-stage CDDAT may represent a common emerging point for the loss of face labeling ability.

  10. Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory.

    Science.gov (United States)

    Bastos, André M; Loonis, Roman; Kornblith, Simon; Lundqvist, Mikael; Miller, Earl K

    2018-01-30

    All of the cerebral cortex has some degree of laminar organization. These different layers are composed of neurons with distinct connectivity patterns, embryonic origins, and molecular profiles. There are little data on the laminar specificity of cognitive functions in the frontal cortex, however. We recorded neuronal spiking/local field potentials (LFPs) using laminar probes in the frontal cortex (PMd, 8A, 8B, SMA/ACC, DLPFC, and VLPFC) of monkeys performing working memory (WM) tasks. LFP power in the gamma band (50-250 Hz) was strongest in superficial layers, and LFP power in the alpha/beta band (4-22 Hz) was strongest in deep layers. Memory delay activity, including spiking and stimulus-specific gamma bursting, was predominately in superficial layers. LFPs from superficial and deep layers were synchronized in the alpha/beta bands. This was primarily unidirectional, with alpha/beta bands in deep layers driving superficial layer activity. The phase of deep layer alpha/beta modulated superficial gamma bursting associated with WM encoding. Thus, alpha/beta rhythms in deep layers may regulate the superficial layer gamma bands and hence maintenance of the contents of WM. Copyright © 2018 the Author(s). Published by PNAS.

  11. Chronic restraint stress promotes learning and memory impairment due to enhanced neuronal endoplasmic reticulum stress in the frontal cortex and hippocampus in male mice.

    Science.gov (United States)

    Huang, Rong-Rong; Hu, Wen; Yin, Yan-Yan; Wang, Yu-Chan; Li, Wei-Ping; Li, Wei-Zu

    2015-02-01

    Chronic stress has been implicated in many types of neurodegenerative diseases, such as Alzheimer's disease (AD). In our previous study, we demonstrated that chronic restraint stress (CRS) induced reactive oxygen species (ROS) overproduction and oxidative damage in the frontal cortex and hippocampus in mice. In the present study, we investigated the effects of CRS (over a period of 8 weeks) on learning and memory impairment and endoplasmic reticulum (ER) stress in the frontal cortex and hippocampus in male mice. The Morris water maze was used to investigate the effects of CRS on learning and memory impairment. Immunohistochemistry and immunoblot analysis were also used to determine the expression levels of protein kinase C α (PKCα), 78 kDa glucose-regulated protein (GRP78), C/EBP-homologous protein (CHOP) and mesencephalic astrocyte-derived neurotrophic factor (MANF). The results revealed that CRS significantly accelerated learning and memory impairment, and induced neuronal damage in the frontal cortex and hippocampus CA1 region. Moreover, CRS significantly increased the expression of PKCα, CHOP and MANF, and decreased that of GRP78 in the frontal cortex and hippocampus. Our data suggest that exposure to CRS (for 8 weeks) significantly accelerates learning and memory impairment, and the mechanisms involved may be related to ER stress in the frontal cortex and hippocampus.

  12. Activation of the left inferior frontal gyrus in the first 200 ms of reading: evidence from magnetoencephalography (MEG).

    Science.gov (United States)

    Cornelissen, Piers L; Kringelbach, Morten L; Ellis, Andrew W; Whitney, Carol; Holliday, Ian E; Hansen, Peter C

    2009-01-01

    It is well established that the left inferior frontal gyrus plays a key role in the cerebral cortical network that supports reading and visual word recognition. Less clear is when in time this contribution begins. We used magnetoencephalography (MEG), which has both good spatial and excellent temporal resolution, to address this question. MEG data were recorded during a passive viewing paradigm, chosen to emphasize the stimulus-driven component of the cortical response, in which right-handed participants were presented words, consonant strings, and unfamiliar faces to central vision. Time-frequency analyses showed a left-lateralized inferior frontal gyrus (pars opercularis) response to words between 100-250 ms in the beta frequency band that was significantly stronger than the response to consonant strings or faces. The left inferior frontal gyrus response to words peaked at approximately 130 ms. This response was significantly later in time than the left middle occipital gyrus, which peaked at approximately 115 ms, but not significantly different from the peak response in the left mid fusiform gyrus, which peaked at approximately 140 ms, at a location coincident with the fMRI-defined visual word form area (VWFA). Significant responses were also detected to words in other parts of the reading network, including the anterior middle temporal gyrus, the left posterior middle temporal gyrus, the angular and supramarginal gyri, and the left superior temporal gyrus. These findings suggest very early interactions between the vision and language domains during visual word recognition, with speech motor areas being activated at the same time as the orthographic word-form is being resolved within the fusiform gyrus. This challenges the conventional view of a temporally serial processing sequence for visual word recognition in which letter forms are initially decoded, interact with their phonological and semantic representations, and only then gain access to a speech code.

  13. [Correlation of diffusion tensor imaging between the cerebral cortex and speech discrimination in presbycusis].

    Science.gov (United States)

    Peng, Lu; Yu, Shuilian; Chen, Ruichun; Jing, Yan; Liang, Jianping

    2015-09-01

    To investigate the relationship between pure-tone average (PTA), the fractional anisotropy (FA) of the auditory pathway, cognitive cortex and auditory cortex in presbycusis. Twenty-five elderly subjects with presbycusis were participated in the study. PTA, speech discrimination abilities were evaluated in each subject. Diffusion tensor imaging (DTI) was applied to access the FA of the IC, the superior frontal gyrus and the Heschl's gyrus. Compare the difference between two sides of the values of FA in the three areas. Bivariate correlation analysis was performed to evaluate the effects of PTA and FA of the inferior colliculus (IC), the superior frontal gyrus and the Heschl's gyrus on speech discrimination abilities. There were no significant differences between the left and right side of the inferior colliculus (P > 0.05). Higher FA values were recorded at the left side of the Heschl's gyrus and the superior frontal gyrus (P < 0.05). Both PTA and the FA of the superior frontal gyrus have a negative association with speech discrimination abilities (P < 0.01, P < 0.05), while the FA of the Heschl's gyrus has a positive association with speech discrimination abilities (P < 0.05). Our findings indicated that the speech discrimination abilities of the elderly is not only related to the peripheral auditory function, but also to the central auditory and cognitive function.

  14. Accurate external localization of the left frontal cortex in dogs by using pointer based frameless neuronavigation

    Directory of Open Access Journals (Sweden)

    Robrecht Dockx

    2017-07-01

    Full Text Available Background In humans, non-stereotactic frameless neuronavigation systems are used as a topographical tool for non-invasive brain stimulation methods such as Transcranial Magnetic Stimulation (TMS. TMS studies in dogs may provide treatment modalities for several neuropsychological disorders in dogs. Nevertheless, an accurate non-invasive localization of a stimulation target has not yet been performed in this species. Hypothesis This study was primarily put forward to externally locate the left frontal cortex in 18 healthy dogs by means of a human non-stereotactic neuronavigation system. Secondly, the accuracy of the external localization was assessed. Animals A total of 18 healthy dogs, drawn at random from the research colony present at the faculty of Veterinary Medicine (Ghent University, were used. Methods Two sets of coordinates (X, Y, Z and X″, Y″, Z″ were compared on each dog their tomographical dataset. Results The non-stereotactic neuronavigation system was able to externally locate the frontal cortex in dogs with accuracy comparable with human studies. Conclusion and clinical importance This result indicates that a non-stereotactic neuronavigation system can accurately externally locate the left frontal cortex and paves the way to use guided non-invasive brain stimulation methods as an alternative treatment procedure for neurological and behavioral disorders in dogs. This technique could, in analogy with human guided non-invasive brain stimulation, provide a better treatment outcome for dogs suffering from anxiety disorders when compared to its non-guided alternative.

  15. Reciprocal activation/inactivation of ERK in the amygdala and frontal cortex is correlated with the degree of novelty of an open-field environment.

    Science.gov (United States)

    Sanguedo, Frederico Velasco; Dias, Caio Vitor Bueno; Dias, Flavia Regina Cruz; Samuels, Richard Ian; Carey, Robert J; Carrera, Marinete Pinheiro

    2016-03-01

    Phosphorylated extracellular signal-regulated kinase (ERK) has been used to identify brain areas activated by exogenous stimuli including psychostimulant drugs. Assess the role of the amygdala in emotional responses. Experimental manipulations were performed in which environmental familiarity was the variable. To provide the maximal degree of familiarity, ERK was measured after removal from the home cage and re-placement back into the same cage. To maximize exposure to an unfamiliar environment, ERK was measured following placement into a novel open field. To assess whether familiarity was the critical variable in the ERK response to the novel open field, ERK was also measured after either four or eight placements into the same environment. ERK quantification was carried out in the amygdala, frontal cortex, and the nucleus accumbens. After home cage re-placement, ERK activation was found in the frontal cortex and nucleus accumbens but was absent in the amygdala. Following placement in a novel environment, ERK activation was more prominent in the amygdala than the frontal cortex or nucleus accumbens. In contrast, with habituation to the novel environment, ERK phosphors declined markedly in the amygdala but increased in the frontal cortex and nucleus accumbens to the level observed following home cage re-placement. The differential responsiveness of the amygdala versus the frontal cortex and the nucleus accumbens to a novel versus a habituated environment is consistent with a reciprocal interaction between these neural systems and points to their important role in the mediation of behavioral activation to novelty and behavioral inactivation with habituation.

  16. The R-enantiomer of citalopram counteracts escitalopram-induced increase in extracellular 5-HT in the frontal cortex of freely moving rats

    DEFF Research Database (Denmark)

    Mørk, A; Kreilgaard, Mads; Sánchez, C

    2003-01-01

    The selective serotonin (5-HT) reuptake inhibitor, citalopram, is a racemic mixture of an S(+)- and R(-)-enantiomer, escitalopram and R-citalopram, respectively. The present study compares the effects of escitalopram, R-citalopram and citalopram on extracellular levels of 5-HT in the frontal cortex...... of freely moving rats. In addition, co-injection of escitalopram and R-citalopram (ratios 1:2 and 1:4) were assessed. In some experiments escitalopram and R-citalopram were infused into the frontal cortex by reverse microdialysis. Finally, the extracellular level of escitalopram in the frontal cortex...... was studied after administration of escitalopram alone or in combination with R-citalopram. Escitalopram (1.0-3.9 mg/kg, s.c.) produced a greater maximal increase in extracellular 5-HT than citalopram (2.0-8.0 mg/kg, s.c.). R-citalopram (15.6 mg/kg s.c.) did not affect the 5-HT levels. When co-injected, R...

  17. Tempering Proactive Cognitive Control by Transcranial Direct Current Stimulation of the Right (but Not the Left Lateral Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Carlos J. Gómez-Ariza

    2017-05-01

    Full Text Available Behavioral and neuroimaging data support the distinction of two different modes of cognitive control: proactive, which involves the active and sustained maintenance of task-relevant information to bias behavior in accordance with internal goals; and reactive, which entails the detection and resolution of interference at the time it occurs. Both control modes may be flexibly deployed depending on a variety of conditions (i.e., age, brain alterations, motivational factors, prior experience. Critically, and in line with specific predictions derived from the dual mechanisms of control account (Braver, 2012, findings from neuroimaging studies indicate that the same lateral prefrontal regions (i.e., left dorsolateral cortex and right inferior frontal junction may implement different control modes on the basis of temporal dynamics of activity, which would be modulated in response to external or internal conditions. In the present study, we aimed to explore whether transcraneal direct current stimulation over either the left dorsolateral prefrontal cortex or the right inferior frontal junction would differentially modulate performance on the AX-CPT, a well-validated task that provides sensitive and reliable behavioral indices of proactive/reactive control. The study comprised six conditions of real stimulation [3 (site: left dorsolateral, right dorsolateral and right inferior frontal junction × 2 (polarity: anodal and cathodal], and one sham condition. The reference electrode was always placed extracephalically. Performance on the AX-CPT was assessed through two blocks of trials. The first block took place while stimulation was being delivered, whereas the second block was administered after stimulation completion. The results indicate that both offline cathodal stimulation of the right dorsolateral prefrontal cortex and online anodal stimulation of the right inferior frontal junction led participants to be much less proactive, with such a dissociation

  18. Learning of spatial relationships between observed and imitated actions allows invariant inverse computation in the frontal mirror neuron system.

    Science.gov (United States)

    Oh, Hyuk; Gentili, Rodolphe J; Reggia, James A; Contreras-Vidal, José L

    2011-01-01

    It has been suggested that the human mirror neuron system can facilitate learning by imitation through coupling of observation and action execution. During imitation of observed actions, the functional relationship between and within the inferior frontal cortex, the posterior parietal cortex, and the superior temporal sulcus can be modeled within the internal model framework. The proposed biologically plausible mirror neuron system model extends currently available models by explicitly modeling the intraparietal sulcus and the superior parietal lobule in implementing the function of a frame of reference transformation during imitation. Moreover, the model posits the ventral premotor cortex as performing an inverse computation. The simulations reveal that: i) the transformation system can learn and represent the changes in extrinsic to intrinsic coordinates when an imitator observes a demonstrator; ii) the inverse model of the imitator's frontal mirror neuron system can be trained to provide the motor plans for the imitated actions.

  19. Lower Activation in Frontal Cortex and Posterior Cingulate Cortex Observed during Sex Determination Test in Early-Stage Dementia of the Alzheimer Type

    Directory of Open Access Journals (Sweden)

    Ravi Rajmohan

    2017-05-01

    Full Text Available Face-labeling refers to the ability to classify faces into social categories. This plays a critical role in human interaction as it serves to define concepts of socially acceptable interpersonal behavior. The purpose of the current study was to characterize, what, if any, impairments in face-labeling are detectable in participants with early-stage clinically diagnosed dementia of the Alzheimer type (CDDAT through the use of the sex determination test (SDT. In the current study, four (1 female, 3 males CDDAT and nine (4 females, 5 males age-matched neurotypicals (NT completed the SDT using chimeric faces while undergoing BOLD fMRI. It was expected that CDDAT participants would have poor verbal fluency, which would correspond to poor performance on the SDT. This could be explained by decreased activation and connectivity patterns within the fusiform face area (FFA and anterior cingulate cortex (ACC. DTI was also performed to test the association of pathological deterioration of connectivity in the uncinate fasciculus (UF and verbally-mediated performance. CDDAT showed lower verbal fluency test (VFT performance, but VFT was not significantly correlated to SDT and no significant difference was seen between CDDAT and NT for SDT performance as half of the CDDAT performed substantially worse than NT while the other half performed similarly. BOLD fMRI of SDT displayed differences in the left superior frontal gyrus and posterior cingulate cortex (PCC, but not the FFA or ACC. Furthermore, although DTI showed deterioration of the right inferior and superior longitudinal fasciculi, as well as the PCC, it did not demonstrate significant deterioration of UF tracts. Taken together, early-stage CDDAT may represent a common emerging point for the loss of face labeling ability.

  20. Interfering with the neural activity of mirror-related frontal areas impairs mentalistic inferences.

    Science.gov (United States)

    Herbet, Guillaume; Lafargue, Gilles; Moritz-Gasser, Sylvie; Bonnetblanc, François; Duffau, Hugues

    2015-07-01

    According to recently proposed interactive dual-process theories, mentalizing abilities emerge from the coherent interaction between two physically distinct neural systems: (1) the mirror network, coding for the low-level embodied representations involved in pre-reflective sociocognitive processes and (2) the mentalizing network per se, which codes for higher level representations subtending the reflective attribution of psychological states. However, although the latest studies have shown that the core areas forming these two neurocognitive systems do indeed maintain effective connectivity during mentalizing, it is unclear whether an intact mirror system (and, more specifically, its anterior node, namely the posterior inferior frontal cortex) is a prerequisite for accurate mentalistic inferences. Intraoperative brain mapping via direct electrical stimulation offers a unique opportunity to address this issue. Electrical stimulation of the brain creates a "virtual" lesion, which provides functional information on well-defined parts of the cerebral cortex. In the present study, five patients were mapped in real time while they performed a mentalizing task. We found six responsive sites: four in the lateral part of the right pars opercularis and two in the dorsal part of the right pars triangularis. On the subcortical level, two additional sites were located within the white matter connectivity of the pars opercularis. Taken as a whole, our results suggest that the right inferior frontal cortex and its underlying axonal connectivity have a key role in mentalizing. Specifically, our findings support the hypothesis whereby transient, functional disruption of the mirror network influences higher order mentalistic inferences.

  1. Inferior frontal gyrus links visual and motor cortices during a visuomotor precision grip force task.

    Science.gov (United States)

    Papadelis, Christos; Arfeller, Carola; Erla, Silvia; Nollo, Giandomenico; Cattaneo, Luigi; Braun, Christoph

    2016-11-01

    Coordination between vision and action relies on a fronto-parietal network that receives visual and proprioceptive sensory input in order to compute motor control signals. Here, we investigated with magnetoencephalography (MEG) which cortical areas are functionally coupled on the basis of synchronization during visuomotor integration. MEG signals were recorded from twelve healthy adults while performing a unimanual visuomotor (VM) task and control conditions. The VM task required the integration of pinch motor commands with visual sensory feedback. By using a beamformer, we localized the neural activity in the frequency range of 1-30Hz during the VM compared to rest. Virtual sensors were estimated at the active locations. A multivariate autoregressive model was used to estimate the power and coherence of estimated activity at the virtual sensors. Event-related desynchronisation (ERD) during VM was observed in early visual areas, the rostral part of the left inferior frontal gyrus (IFG), the right IFG, the superior parietal lobules, and the left hand motor cortex (M1). Functional coupling in the alpha frequency band bridged the regional activities observed in motor and visual cortices (the start and the end points in the visuomotor loop) through the left or right IFG. Coherence between the left IFG and left M1 correlated inversely with the task performance. Our results indicate that an occipital-prefrontal-motor functional network facilitates the modulation of instructed motor responses to visual cues. This network may supplement the mechanism for guiding actions that is fully incorporated into the dorsal visual stream. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Is evaluation of humorous stimuli associated with frontal cortex morphology? A pilot study using facial micro-movement analysis and MRI.

    Science.gov (United States)

    Juckel, Georg; Mergl, Roland; Brüne, Martin; Villeneuve, Isabelle; Frodl, Thomas; Schmitt, Gisela; Zetzsche, Thomas; Born, Christine; Hahn, Klaus; Reiser, Maximilian; Möller, Hans-Jürgen; Bär, Karl-Jürgen; Hegerl, Ulrich; Meisenzahl, Eva Maria

    2011-05-01

    Humour involves the ability to detect incongruous ideas violating social rules and norms. Accordingly, humour requires a complex array of cognitive skills for which intact frontal lobe functioning is critical. Here, we sought to examine the association of facial expression during an emotion inducing experiment with frontal cortex morphology in healthy subjects. Thirty-one healthy male subjects (mean age: 30.8±8.9 years; all right-handers) watching a humorous movie ("Mr. Bean") were investigated. Markers fixed at certain points of the face emitting high-frequency ultrasonic signals allowed direct measurement of facial movements with high spatial-temporal resolution. Magnetic resonance images of the frontal cortex were obtained with a 1.5-T Magnetom using a coronar T2- and protondensity-weighted Dual-Echo-Sequence and a 3D-magnetization-prepared rapid gradient echo (MPRAGE) sequence. Volumetric analysis was performed using BRAINS. Frontal cortex volume was partly associated with slower speed of "laughing" movements of the eyes ("genuine" or Duchenne smile). Specifically, grey matter volume was associated with longer emotional reaction time ipsilaterally, even when controlled for age and daily alcohol intake. These results lend support to the hypothesis that superior cognitive evaluation of humorous stimuli - mediated by larger prefrontal grey and white matter volume - leads to a measurable reduction of speed of emotional expressivity in normal adults. Copyright © 2010 Elsevier Srl. All rights reserved.

  3. Results of a pilot study on the involvement of bilateral inferior frontal gyri in emotional prosody perception: an rTMS study

    NARCIS (Netherlands)

    Hoekert, Marjolijn; Vingerhoets, Guy; Aleman, Andre

    2010-01-01

    Background: The right hemisphere may play an important role in paralinguistic features such as the emotional melody in speech. The extent of this involvement however is unclear. Imaging studies have shown involvement of both left and right inferior frontal gyri in emotional prosody perception. The

  4. Frontal lobe damage impairs process and content in semantic memory: evidence from category-specific effects in progressive non-fluent aphasia.

    Science.gov (United States)

    Reilly, Jamie; Rodriguez, Amy D; Peelle, Jonathan E; Grossman, Murray

    2011-06-01

    Portions of left inferior frontal cortex have been linked to semantic memory both in terms of the content of conceptual representation (e.g., motor aspects in an embodied semantics framework) and the cognitive processes used to access these representations (e.g., response selection). Progressive non-fluent aphasia (PNFA) is a neurodegenerative condition characterized by progressive atrophy of left inferior frontal cortex. PNFA can, therefore, provide a lesion model for examining the impact of frontal lobe damage on semantic processing and content. In the current study we examined picture naming in a cohort of PNFA patients across a variety of semantic categories. An embodied approach to semantic memory holds that sensorimotor features such as self-initiated action may assume differential importance for the representation of manufactured artifacts (e.g., naming hand tools). Embodiment theories might therefore predict that patients with frontal damage would be differentially impaired on manufactured artifacts relative to natural kinds, and this prediction was borne out. We also examined patterns of naming errors across a wide range of semantic categories and found that naming error distributions were heterogeneous. Although PNFA patients performed worse overall on naming manufactured artifacts, there was no reliable relationship between anomia and manipulability across semantic categories. These results add to a growing body of research arguing against a purely sensorimotor account of semantic memory, suggesting instead a more nuanced balance of process and content in how the brain represents conceptual knowledge. Copyright © 2010 Elsevier Srl. All rights reserved.

  5. The frontal-anatomic specificity of design fluency repetitions and their diagnostic relevance for behavioral variant frontotemporal dementia.

    Science.gov (United States)

    Possin, Katherine L; Chester, Serana K; Laluz, Victor; Bostrom, Alan; Rosen, Howard J; Miller, Bruce L; Kramer, Joel H

    2012-09-01

    On tests of design fluency, an examinee draws as many different designs as possible in a specified time limit while avoiding repetition. The neuroanatomical substrates and diagnostic group differences of design fluency repetition errors and total correct scores were examined in 110 individuals diagnosed with dementia, 53 with mild cognitive impairment (MCI), and 37 neurologically healthy controls. The errors correlated significantly with volumes in the right and left orbitofrontal cortex (OFC), the right and left superior frontal gyrus, the right inferior frontal gyrus, and the right striatum, but did not correlate with volumes in any parietal or temporal lobe regions. Regression analyses indicated that the lateral OFC may be particularly crucial for preventing these errors, even after excluding patients with behavioral variant frontotemporal dementia (bvFTD) from the analysis. Total correct correlated more diffusely with volumes in the right and left frontal and parietal cortex, the right temporal cortex, and the right striatum and thalamus. Patients diagnosed with bvFTD made significantly more repetition errors than patients diagnosed with MCI, Alzheimer's disease, semantic dementia, progressive supranuclear palsy, or corticobasal syndrome. In contrast, total correct design scores did not differentiate the dementia patients. These results highlight the frontal-anatomic specificity of design fluency repetitions. In addition, the results indicate that the propensity to make these errors supports the diagnosis of bvFTD. (JINS, 2012, 18, 1-11).

  6. [Effect of Electroacupuncture on Expression of Catechol-O-methyltransferase in the Inferior Colliculus and Auditory Cortex in Age-related Hearing Loss Guinea Pigs].

    Science.gov (United States)

    Liu, Shu-Yun; Deng, Li-Qiang; Yang, Ye; Yin, Ze-Deng

    2017-04-25

    To observe the expression of catechol-O-methyltransferase (COMT) in inferior colliculus and auditory cortex of guinea pigs with age-related hearing loss(AHL) induced by D-galactose, so as to explore the possible mechanism of electroacupuncture(EA) underlying preventing AHL. Thirty 3-month-old guinea pigs were randomly divided into control group, model group and EA group( n =10 in each group), and ten 18-month-old guinea pigs were allocated as elderly group. The AHL model was established by subcutaneous injection of D-galactose. EA was applied to bilateral "Yifeng"(SJ 17) and "Tinggong"(SI 19) for 15 min in the EA group while modeling, once daily for 6 weeks. After treatment, the latency of auditory brainstem response(ABR) Ⅲ wave was measured by a brain-stem evoked potentiometer. The expressions of COMT in the inferior colliculus and auditory cortex were detected by Western blot. Compared with the control group, the latencies of ABR Ⅲ wave were significantly prolonged and the expressions of COMT in the inferior colliculus and auditory cortex were significantly decreased in the model group and the elderly group( P guinea pigs, which may contribute to its effect in up-regulating the expression of COMT in the inferior colliculus and auditory cortex.

  7. The Right Posterior Inferior Frontal Gyrus Contributes to Phonological Word Decisions in the Healthy Brain: Evidence from Dual-Site TMS

    Science.gov (United States)

    Hartwigsen, Gesa; Price, Cathy J.; Baumgaertner, Annette; Geiss, Gesine; Koehnke, Maria; Ulmer, Stephan; Siebner, Hartwig R.

    2010-01-01

    There is consensus that the left hemisphere plays a dominant role in language processing, but functional imaging studies have shown that the right as well as the left posterior inferior frontal gyri (pIFG) are activated when healthy right-handed individuals make phonological word decisions. Here we used online transcranial magnetic stimulation…

  8. Learning of Spatial Relationships between Observed and Imitated Actions allows Invariant Inverse Computation in the Frontal Mirror Neuron System

    Science.gov (United States)

    Oh, Hyuk; Gentili, Rodolphe J.; Reggia, James A.; Contreras-Vidal, José L.

    2014-01-01

    It has been suggested that the human mirror neuron system can facilitate learning by imitation through coupling of observation and action execution. During imitation of observed actions, the functional relationship between and within the inferior frontal cortex, the posterior parietal cortex, and the superior temporal sulcus can be modeled within the internal model framework. The proposed biologically plausible mirror neuron system model extends currently available models by explicitly modeling the intraparietal sulcus and the superior parietal lobule in implementing the function of a frame of reference transformation during imitation. Moreover, the model posits the ventral premotor cortex as performing an inverse computation. The simulations reveal that: i) the transformation system can learn and represent the changes in extrinsic to intrinsic coordinates when an imitator observes a demonstrator; ii) the inverse model of the imitator’s frontal mirror neuron system can be trained to provide the motor plans for the imitated actions. PMID:22255261

  9. Amygdala Contributions to Stimulus–Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning

    Science.gov (United States)

    Averbeck, Bruno B.

    2017-01-01

    Orbitofrontal cortex (OFC), medial frontal cortex (MFC), and amygdala mediate stimulus–reward learning, but the mechanisms through which they interact are unclear. Here, we investigated how neurons in macaque OFC and MFC signaled rewards and the stimuli that predicted them during learning with and without amygdala input. Macaques performed a task that required them to evaluate two stimuli and then choose one to receive the reward associated with that option. Four main findings emerged. First, amygdala lesions slowed the acquisition and use of stimulus–reward associations. Further analyses indicated that this impairment was due, at least in part, to ineffective use of negative feedback to guide subsequent decisions. Second, the activity of neurons in OFC and MFC rapidly evolved to encode the amount of reward associated with each stimulus. Third, amygdalectomy reduced encoding of stimulus–reward associations during the evaluation of different stimuli. Reward encoding of anticipated and received reward after choices were made was not altered. Fourth, amygdala lesions led to an increase in the proportion of neurons in MFC, but not OFC, that encoded the instrumental response that monkeys made on each trial. These correlated changes in behavior and neural activity after amygdala lesions strongly suggest that the amygdala contributes to the ability to learn stimulus–reward associations rapidly by shaping encoding within OFC and MFC. SIGNIFICANCE STATEMENT Altered functional interactions among orbital frontal cortex (OFC), medial frontal cortex (MFC), and amygdala are thought to underlie several psychiatric conditions, many related to reward learning. Here, we investigated the causal contribution of the amygdala to the development of neuronal activity in macaque OFC and MFC related to rewards and the stimuli that predict them during learning. Without amygdala inputs, neurons in both OFC and MFC showed decreased encoding of stimulus–reward associations. MFC also

  10. Acute effect of Ethanol and Taurine on frontal cortex absolute beta power before and after exercise

    Science.gov (United States)

    Cagy, Mauricio; Velasques, Bruna; Ribeiro, Pedro; Gongora, Mariana; Alvarenga, Renato; Alonso, Luciano; Pompeu, Fernando A. M. S.

    2018-01-01

    Ethanol (ET) is a substance that modulates the Central Nervous System (CNS). Frequently, ET intake occurs combined with energy drinks, which contain taurine (TA), an important amino acid found in the body (i.e brain and muscles). Although TA administration has been used in the improvement of physical performance, the impact of TA, ET and exercise remains unknown. This study aimed to analyze the acute effect of 6g of Taurine (TA), 0.6 mL∙kg-1 of Ethanol (ET), and Taurine combined with Ethanol (TA+ET) ingestion on the electrocortical activity before and after a moderate intensity exercise in 9 subjects, 5 women (counterbalanced experimental design). In each of the 4 treatments (Placebo—PL, TA, ET and TA+ET), electroencephalography (EEG) tests were conducted in order to analyze changes in absolute beta power (ABP) in the frontal lobe in 3 moments: baseline (before ingestion), peak (before exercise) and post-exercise. In the PL treatment, the frontal areas showed decrease in ABP after exercise. However, in the ET+TA treatment, ABP values were greater after exercise, except for Fp1. The ET treatment had no effect on the Superior Frontal Gyrus area (F3, Fz and F4) and ABP decreased after exercise in Fp1 and Fp2. In the TA treatment, ABP increased after exercise, while it decreased at the peak moment in most of the frontal regions, except for Fp1, F3 and Fz. We concluded that after a moderate intensity exercise, a decrease in cortical activity occurs in placebo treatment. Moreover, we found a inhibitory effect of TA on cortical activity before exercise and a increased in cortical activity after exercise. A small ET dose is not enough to alter ABP in all regions of the frontal cortex and, in combination with TA, it showed an increase in the frontal cortex activity at the post-exercise moment. PMID:29538445

  11. Go/No Go task performance predicts cortical thickness in the caudal inferior frontal gyrus in young adults with and without ADHD.

    Science.gov (United States)

    Newman, Erik; Jernigan, Terry L; Lisdahl, Krista M; Tamm, Leanne; Tapert, Susan F; Potkin, Steven G; Mathalon, Daniel; Molina, Brooke; Bjork, James; Castellanos, F Xavier; Swanson, James; Kuperman, Joshua M; Bartsch, Hauke; Chen, Chi-Hua; Dale, Anders M; Epstein, Jeffery N; Group, Mta Neuroimaging

    2016-09-01

    Response inhibition deficits are widely believed to be at the core of Attention-Deficit Hyperactivity Disorder (ADHD). Several studies have examined neural architectural correlates of ADHD, but research directly examining structural correlates of response inhibition is lacking. Here we examine the relationship between response inhibition as measured by a Go/No Go task, and cortical surface area and thickness of the caudal inferior frontal gyrus (cIFG), a region implicated in functional imaging studies of response inhibition, in a sample of 114 young adults with and without ADHD diagnosed initially during childhood. We used multiple linear regression models to test the hypothesis that Go/No Go performance would be associated with cIFG surface area or thickness. Results showed that poorer Go/No Go performance was associated with thicker cIFG cortex, and this effect was not mediated by ADHD status or history of substance use. However, independent of Go/No Go performance, persistence of ADHD symptoms and more frequent cannabis use were associated with thinner cIFG. Go/No Go performance was not associated with cortical surface area. The association between poor inhibitory functioning and thicker cIFG suggests that maturation of this region may differ in low performing participants. An independent association of persistent ADHD symptoms and frequent cannabis use with thinner cIFG cortex suggests that distinct neural mechanisms within this region may play a role in inhibitory function, broader ADHD symptomatology, and cannabis use. These results contribute to Research Domain Criteria (RDoC) by revealing novel associations between neural architectural phenotypes and basic neurobehavioral processes measured dimensionally.

  12. Increased premotor cortex activation in high functioning autism during action observation.

    Science.gov (United States)

    Perkins, Tom J; Bittar, Richard G; McGillivray, Jane A; Cox, Ivanna I; Stokes, Mark A

    2015-04-01

    The mirror neuron (MN) hypothesis of autism has received considerable attention, but to date has produced inconsistent findings. Using functional MRI, participants with high functioning autism or Asperger's syndrome were compared to typically developing individuals (n=12 in each group). Participants passively observed hand gestures that included waving, pointing, and grasping. Concerning the MN network, both groups activated similar regions including prefrontal, inferior parietal and superior temporal regions, with the autism group demonstrating significantly greater activation in the dorsal premotor cortex. Concerning other regions, participants with autism demonstrated increased activity in the anterior cingulate and medial frontal gyrus, and reduced activation in calcarine, cuneus, and middle temporal gyrus. These results suggest that during observation of hand gestures, frontal cortex activation is affected in autism, which we suggest may be linked to abnormal functioning of the MN system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Foix-Chavany-Marie syndrome caused by a disconnection between the right pars opercularis of the inferior frontal gyrus and the supplementary motor area.

    Science.gov (United States)

    Martino, Juan; de Lucas, Enrique Marco; Ibáñez-Plágaro, Francisco Javier; Valle-Folgueral, José Manuel; Vázquez-Barquero, Alfonso

    2012-11-01

    Foix-Chavany-Marie syndrome (FCMS) is a rare type of suprabulbar palsy characterized by an automatic-voluntary dissociation of the orofacial musculature. Here, the authors report an original case of FCMS that occurred intraoperatively while resecting the pars opercularis of the inferior frontal gyrus. This 25-year-old right-handed man with an incidentally diagnosed right frontotemporoinsular tumor underwent surgery using an asleep-awake-asleep technique with direct cortical and subcortical electrical stimulation and a transopercular approach to the insula. While resecting the anterior part of the pars opercularis the patient suffered sudden anarthria and bilateral facial weakness. He was unable to speak or show his teeth on command, but he was able to voluntarily move his upper and lower limbs. This syndrome lasted for 8 days. Postoperative diffusion tensor imaging tractography revealed that connections of the pars opercularis of the right inferior frontal gyrus with the frontal aslant tract (FAT) and arcuate fasciculus (AF) were damaged. This case supplies evidence for localizing the structural substrate of FCMS. It was possible, for the first time in the literature, to accurately correlate the occurrence of FCMS to the resection of connections between the FAT and AF, and the right pars opercularis of the inferior frontal gyrus. The FAT has been recently described, but it may be an important connection to mediate supplementary motor area control of orofacial movement. The present case also contributes to our knowledge of complication avoidance in operculoinsular surgery. A transopercular approach to insuloopercular gliomas can generate FCMS, especially in cases of previous contralateral lesions. The prognosis is favorable, but the patient should be informed of this particular hazard, and the surgeon should anticipate the surgical strategy in case the syndrome occurs intraoperatively in an awake patient.

  14. Context-dependent switching between proactive and reactive working memory control mechanisms in the right inferior frontal gyrus.

    Science.gov (United States)

    Marklund, Petter; Persson, Jonas

    2012-11-15

    A critical feature of higher cognitive functioning is the capacity to flexibly tailor information processing and behaviors to current situational demands. Recent neurocognitive models have been postulated to account for the dynamic nature of human executive processing by invoking two dissociable cognitive control modes, proactive and reactive control. These may involve partially overlapping, but temporally distinct neural implementation in the prefrontal cortex. Prior brain imaging studies exploring proactive control have mainly used tasks requiring only information about single-items to be retained over unfilled delays. Whether proactive control can also be utilized to facilitate performance in more complex working memory tasks, in which concurrent processing of intervening items and updating is mandatory during contextual cue maintenance remains an open question. To examine this issue and to elucidate the extent to which overlapping neural substrates underlie proactive and reactive control we used fMRI and a modified verbal 3-back paradigm with embedded cues predictive of high-interference trials. This task requires context information to be retained over multiple intervening trials. We found that performance improved with item-specific cues predicting forthcoming lures despite increased working memory load. Temporal dynamics of activation in the right inferior frontal gyrus suggest flexible switching between proactive and reactive control in a context-dependent fashion, with greater sustained responses elicited in the 3-back task involving context maintenance of cue information and greater transient responses elicited in the 3-back task absent of cues. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. P1-24: Neural Representation of Gloss in the Macaque Inferior Temporal Cortex

    OpenAIRE

    Akiko Nishio; Naokazu Goda; Hidehiko Komatsu

    2012-01-01

    The variation of the appearance such as gloss provides one of the most important information for object recognition. However, little is known about the neural mechanisms related to the perception of gloss. We examined whether the neurons in the inferior temporal (IT) cortex of the monkeys are coding gloss of objects. We made visual stimuli which have various surface reflectance properties, and tested responses of IT neurons to these stimuli while a monkey was performing a visual fixation task...

  16. Reduced number of (/sup 3/H)nicotine and (/sup 3/H)acelylcholine binding sites in the frontal cortex of Alzheimer brains

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, A; Winblad, B

    1986-12-03

    Nicotinic cholinergic receptors were measured in human frontal cortex using (/sup 3/H)nicotine and (/sup 3/H)acetylcholine (in the presence of atropine) as receptor ligands. A parallel marked reduction in number of (/sup 3/H)nicotine (52%, P<0.01) and (/sup 3/H)acetylcholine (-55%, P<0.05) binding was found in the frontal cortex of Alzheimer brains (AD/SDAT) when compared to age-matched control brains. As a comparison the number of muscarinic receptors was quantified using (/sup 3/H)quinuclidinyl benzilate and found to be significantly increased (+23%, P<0.01) in AD/SDAT compared to controls. 26 refs.

  17. A Brain System for Auditory Working Memory.

    Science.gov (United States)

    Kumar, Sukhbinder; Joseph, Sabine; Gander, Phillip E; Barascud, Nicolas; Halpern, Andrea R; Griffiths, Timothy D

    2016-04-20

    The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. Copyright © 2016 Kumar et al.

  18. Orbitofrontal cortex contribution to working memory. N-back ERP study

    International Nuclear Information System (INIS)

    Nakao, Yoshiaki; Tamura, Toshiyo; Kodabashi, Atsushi; Fujimoto, Toshiro; Yarita, Masaru

    2011-01-01

    Remarkable progress in cognitive neuroscience has revealed the involvement of the prefrontal cortex and the orbitofrontal cortex in human working memory, but the orbitofrontal cortex is still one of the least understood regions in the human brain. To elucidate the contribution of the orbitofrontal cortex to human working memory, we studied electroencephalography (EEG) P300 activity in n-back task. We elicited early P3 around 300 ms and late P3 around 360 ms of P300 components in n-back event related potentials (ERP). The amplitudes of the respective peaks changed depending on the working memory load (0-back, 1-back, 2-back, 3-back). We used source analysis to evaluate the orbitofrontal cortex in P3 components. A source model was constructed with the sources seeded from fMRI meta-analysis of n-back task and additional sources in the orbitofrontal cortex and the visual cortex estimated with P100 and late P3 components in the n-back ERP. This source model had more than 99% of GOF (goodness of fit) in n-back ERP. It gave us an insight of brain activity at the positions where sources existed. Early P3 was mainly produced by the dorsolateral prefrontal cortex, the ventrolateral prefrontal cortex, the inferior parietal lobule, the medial posterior parietal and the visual cortex. Late P3 was mainly produced by the medial premotor, the lateral premotor, the frontal pole and the orbitofrontal cortex. The contribution of the frontal pole and the orbitofrontal cortex had peaks around 390 ms which were later than late P3 component. In this study, the method to evaluate the orbitofrontal cortex activity in n-back ERP was provided. Our results elicited the involvement of the orbitofrontal cortex in late P3 component of n-back ERP. (author)

  19. The Medial Temporal Lobe and the Left Inferior Prefrontal Cortex Jointly Support Interference Resolution in Verbal Working Memory

    Science.gov (United States)

    Oztekin, Ilke; Curtis, Clayton E.; McElree, Brian

    2009-01-01

    During working memory retrieval, proactive interference (PI) can be induced by semantic similarity and episodic familiarity. Here, we used fMRI to test hypotheses about the role of the left inferior frontal gyrus (LIFG) and the medial temporal lobe (MTL) regions in successful resolution of PI. Participants studied six-word lists and responded to a…

  20. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving.

    Directory of Open Access Journals (Sweden)

    Noriyuki Oka

    Full Text Available In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves, but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS.The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task. Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections.Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05, but cerebral oxygen exchange increased significantly more during left curves (p < 0.05 in the right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p < 0.05 only in the right frontal eye field.Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions.

  1. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving

    Science.gov (United States)

    Oka, Noriyuki; Yoshino, Kayoko; Yamamoto, Kouji; Takahashi, Hideki; Li, Shuguang; Sugimachi, Toshiyuki; Nakano, Kimihiko; Suda, Yoshihiro; Kato, Toshinori

    2015-01-01

    Objectives In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves), but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS). Research Design and Methods The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task). Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections. Results Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05), but cerebral oxygen exchange increased significantly more during left curves (p right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p right frontal eye field. Conclusions Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions

  2. Perturbation of the left inferior frontal gyrus triggers adaptive plasticity in the right homologous area during speech production

    OpenAIRE

    Hartwigsen, Gesa; Saur, Dorothee; Price, Cathy J.; Ulmer, Stephan; Baumgaertner, Annette; Siebner, Hartwig R.

    2013-01-01

    The role of the right hemisphere in aphasia recovery is unclear. We demonstrate that a virtual lesion of left inferior frontal gyrus (IFG) decreased activity in the targeted area and increased activity in the contralateral homologous area during pseudoword repetition. This was associated with a stronger facilitatory drive from the right IFG to the left IFG. Importantly, responses became faster with increased influence of the right IFG on the left IFG. Our results shed new light on the dynamic...

  3. Connections of the medial posterior parietal cortex (area 7m) in the monkey.

    Science.gov (United States)

    Leichnetz, G R

    2001-06-01

    The afferent and efferent cortical and subcortical connections of the medial posterior parietal cortex (area 7m) were studied in cebus (Cebus apella) and macaque (Macaca fascicularis) monkeys using the retrograde and anterograde capabilities of the horseradish peroxidase (HRP) technique. The principal intraparietal corticocortical connections of area 7m in both cebus and macaque cases were with the ipsilateral medial bank of the intraparietal sulcus (MIP) and adjacent superior parietal lobule (area 5), inferior parietal lobule (area 7a), lateral bank of the IPS (area 7ip), caudal parietal operculum (PGop), dorsal bank of the caudal superior temporal sulcus (visual area MST), and medial prestriate cortex (including visual area PO and caudal medial lobule). Its principal frontal corticocortical connections were with the prefrontal cortex in the shoulder above the principal sulcus and the cortex in the shoulder above the superior ramus of the arcuate sulcus (SAS), the area purported to contain the smooth eye movement-related frontal eye field (FEFsem) in the cebus monkey by other investigators. There were moderate connections with the cortex in the rostral bank of the arcuate sulcus (purported to contain the saccade-related frontal eye field; FEFsac), supplementary eye field (SEF), and rostral dorsal premotor area (PMDr). Area 7m also had major connections with the cingulate cortex (area 23), particularly the ventral bank of the cingulate sulcus. The principal subcortical connections of area 7m were with the dorsal portion of the ventrolateral thalamic (VLc) nucleus, lateral posterior thalamic nucleus, lateral pulvinar, caudal mediodorsal thalamic nucleus and medial pulvinar, central lateral, central superior lateral, and central inferior intralaminar thalamic nuclei, dorsolateral caudate nucleus and putamen, middle region of the claustrum, nucleus of the diagonal band, zona incerta, pregeniculate nucleus, anterior and posterior pretectal nuclei, intermediate layer of

  4. Inferior Frontal Gyrus Activation Underlies the Perception of Emotions, While Precuneus Activation Underlies the Feeling of Emotions during Music Listening

    Science.gov (United States)

    Tabei, Ken-ichi

    2015-01-01

    While music triggers many physiological and psychological reactions, the underlying neural basis of perceived and experienced emotions during music listening remains poorly understood. Therefore, using functional magnetic resonance imaging (fMRI), I conducted a comparative study of the different brain areas involved in perceiving and feeling emotions during music listening. I measured fMRI signals while participants assessed the emotional expression of music (perceived emotion) and their emotional responses to music (felt emotion). I found that cortical areas including the prefrontal, auditory, cingulate, and posterior parietal cortices were consistently activated by the perceived and felt emotional tasks. Moreover, activity in the inferior frontal gyrus increased more during the perceived emotion task than during a passive listening task. In addition, the precuneus showed greater activity during the felt emotion task than during a passive listening task. The findings reveal that the bilateral inferior frontal gyri and the precuneus are important areas for the perception of the emotional content of music as well as for the emotional response evoked in the listener. Furthermore, I propose that the precuneus, a brain region associated with self-representation, might be involved in assessing emotional responses. PMID:26504353

  5. Inferior Frontal Gyrus Activation Underlies the Perception of Emotions, While Precuneus Activation Underlies the Feeling of Emotions during Music Listening.

    Science.gov (United States)

    Tabei, Ken-ichi

    2015-01-01

    While music triggers many physiological and psychological reactions, the underlying neural basis of perceived and experienced emotions during music listening remains poorly understood. Therefore, using functional magnetic resonance imaging (fMRI), I conducted a comparative study of the different brain areas involved in perceiving and feeling emotions during music listening. I measured fMRI signals while participants assessed the emotional expression of music (perceived emotion) and their emotional responses to music (felt emotion). I found that cortical areas including the prefrontal, auditory, cingulate, and posterior parietal cortices were consistently activated by the perceived and felt emotional tasks. Moreover, activity in the inferior frontal gyrus increased more during the perceived emotion task than during a passive listening task. In addition, the precuneus showed greater activity during the felt emotion task than during a passive listening task. The findings reveal that the bilateral inferior frontal gyri and the precuneus are important areas for the perception of the emotional content of music as well as for the emotional response evoked in the listener. Furthermore, I propose that the precuneus, a brain region associated with self-representation, might be involved in assessing emotional responses.

  6. Multisensory and Modality Specific Processing of Visual Speech in Different Regions of the Premotor Cortex

    Directory of Open Access Journals (Sweden)

    Daniel eCallan

    2014-05-01

    Full Text Available Behavioral and neuroimaging studies have demonstrated that brain regions involved with speech production also support speech perception, especially under degraded conditions. The premotor cortex has been shown to be active during both observation and execution of action (‘Mirror System’ properties, and may facilitate speech perception by mapping unimodal and multimodal sensory features onto articulatory speech gestures. For this functional magnetic resonance imaging (fMRI study, participants identified vowels produced by a speaker in audio-visual (saw the speaker’s articulating face and heard her voice, visual only (only saw the speaker’s articulating face, and audio only (only heard the speaker’s voice conditions with varying audio signal-to-noise ratios in order to determine the regions of the premotor cortex involved with multisensory and modality specific processing of visual speech gestures. The task was designed so that identification could be made with a high level of accuracy from visual only stimuli to control for task difficulty and differences in intelligibility. The results of the fMRI analysis for visual only and audio-visual conditions showed overlapping activity in inferior frontal gyrus and premotor cortex. The left ventral inferior premotor cortex showed properties of multimodal (audio-visual enhancement with a degraded auditory signal. The left inferior parietal lobule and right cerebellum also showed these properties. The left ventral superior and dorsal premotor cortex did not show this multisensory enhancement effect, but there was greater activity for the visual only over audio-visual conditions in these areas. The results suggest that the inferior regions of the ventral premotor cortex are involved with integrating multisensory information, whereas, more superior and dorsal regions of the premotor cortex are involved with mapping unimodal (in this case visual sensory features of the speech signal with

  7. Enoxacin elevates microRNA levels in rat frontal cortex and prevents learned helplessness

    Directory of Open Access Journals (Sweden)

    Neil R Smalheiser

    2014-02-01

    Full Text Available Major depressive disorder (MDD is a major public health concern. Despite tremendous advancement, the pathogenic mechanisms associated with MDD are still unclear. Moreover, a significant number of MDD subjects do not respond to the currently available medication. MicroRNAs (miRNAs are a class of small non-coding RNAs that control gene expression by modulating translation, mRNA degradation or stability of mRNA targets. The role of miRNAs in disease pathophysiology is emerging rapidly. Recently, we reported that miRNA expression is down-regulated in frontal cortex of depressed suicide subjects, and that rats exposed to repeated inescapable shock show differential miRNA changes depending on whether they exhibited normal adaptive responses or learned helpless behavior. Enoxacin, a fluoroquinolone used clinically as an antibacterial compound, enhances the production of miRNAs in vitro and in peripheral tissues in vivo, but has not yet been tested as an experimental tool to study the relation of miRNA expression to neural functions or behavior. Treatment of rats with 10 or 25 mg/kg enoxacin for one week increased the expression of miRNAs in frontal cortex and decreased the proportion of rats exhibiting learned helpless behavior following inescapable shock. Further studies are warranted to learn whether enoxacin may ameliorate depressive behavior in other rodent paradigms and in human clinical situations, and if so whether its mechanism is due to upregulation of miRNAs.

  8. Amygdala Contributions to Stimulus-Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning.

    Science.gov (United States)

    Rudebeck, Peter H; Ripple, Joshua A; Mitz, Andrew R; Averbeck, Bruno B; Murray, Elisabeth A

    2017-02-22

    Orbitofrontal cortex (OFC), medial frontal cortex (MFC), and amygdala mediate stimulus-reward learning, but the mechanisms through which they interact are unclear. Here, we investigated how neurons in macaque OFC and MFC signaled rewards and the stimuli that predicted them during learning with and without amygdala input. Macaques performed a task that required them to evaluate two stimuli and then choose one to receive the reward associated with that option. Four main findings emerged. First, amygdala lesions slowed the acquisition and use of stimulus-reward associations. Further analyses indicated that this impairment was due, at least in part, to ineffective use of negative feedback to guide subsequent decisions. Second, the activity of neurons in OFC and MFC rapidly evolved to encode the amount of reward associated with each stimulus. Third, amygdalectomy reduced encoding of stimulus-reward associations during the evaluation of different stimuli. Reward encoding of anticipated and received reward after choices were made was not altered. Fourth, amygdala lesions led to an increase in the proportion of neurons in MFC, but not OFC, that encoded the instrumental response that monkeys made on each trial. These correlated changes in behavior and neural activity after amygdala lesions strongly suggest that the amygdala contributes to the ability to learn stimulus-reward associations rapidly by shaping encoding within OFC and MFC. SIGNIFICANCE STATEMENT Altered functional interactions among orbital frontal cortex (OFC), medial frontal cortex (MFC), and amygdala are thought to underlie several psychiatric conditions, many related to reward learning. Here, we investigated the causal contribution of the amygdala to the development of neuronal activity in macaque OFC and MFC related to rewards and the stimuli that predict them during learning. Without amygdala inputs, neurons in both OFC and MFC showed decreased encoding of stimulus-reward associations. MFC also showed

  9. Using fNIRS to Examine Occipital and Temporal Responses to Stimulus Repetition in Young Infants: Evidence of Selective Frontal Cortex Involvement

    Science.gov (United States)

    Emberson, Lauren L.; Cannon, Grace; Palmeri, Holly; Richards, John E.; Aslin, Richard N.

    2016-01-01

    How does the developing brain respond to recent experience? Repetition suppression (RS) is a robust and well-characterized response of to recent experience found, predominantly, in the perceptual cortices of the adult brain. We use functional near-infrared spectroscopy (fNIRS) to investigate how perceptual (temporal and occipital) and frontal cortices in the infant brain respond to auditory and visual stimulus repetitions (spoken words and faces). In Experiment 1, we find strong evidence of repetition suppression in the frontal cortex but only for auditory stimuli. In perceptual cortices, we find only suggestive evidence of auditory RS in the temporal cortex and no evidence of visual RS in any ROI. In Experiments 2 and 3, we replicate and extend these findings. Overall, we provide the first evidence that infant and adult brains respond differently to stimulus repetition. We suggest that the frontal lobe may support the development of RS in perceptual cortices. PMID:28012401

  10. Reduced N-acetylaspartate levels in the frontal cortex of 3,4-methylenedioxymethamphetamine (Ecstasy) users: preliminary results.

    Science.gov (United States)

    Reneman, Liesbeth; Majoie, Charles B L M; Flick, Herman; den Heeten, Gerard J

    2002-02-01

    The perceived safety of the recreational drug methylenedioxymethamphetamine (MDMA), or Ecstasy, conflicts with animal evidence indicating that MDMA damages cortical serotonin (5-HT) neurons at doses similar to those used by humans. Few data are available about the effects of MDMA on the human brain. This study was designed to evaluate MDMA-related alterations in metabolite ratios with single-voxel proton ((1)H) MR spectroscopy. Fifteen male MDMA users (mean lifetime exposure, 723 tablets; mean time since last tablet, 12.0 weeks) and 12 age-matched control subjects underwent single-voxel (1)H MR spectroscopy. N-Acetylaspartate (NAA)/creatine (Cr), NAA/Choline (Cho), and myoinositol (MI)/Cr ratios were measured in midfrontal gray matter, midoccipital gray matter, and right parietal white matter. Data were analyzed with linear model-based multivariate analysis of variance. NAA/Cr (P =.04) and NAA/Cho (P =.03) ratios, markers associated with neuronal loss or dysfunction, were reduced in the frontal cortex of MDMA users. Neither NAA/Cr (P =.72) nor NAA/Cho (P =.12) ratios were different between both groups in occipital gray matter and parietal white matter (P =.18). Extent of previous MDMA use and frontal cortical NAA/Cr (rho = -.50, P =.012) or NAA/Cho (rho = -.550, P spectroscopy provide evidence for neuronal abnormality in the frontal cortex of MDMA users; these are correlated with the degree of MDMA exposure. These data suggest that MDMA may be a neurotoxin in humans, as it is in animals.

  11. Prefrontal cortex volume reductions and tic inhibition are unrelated in uncomplicated GTS adults.

    Science.gov (United States)

    Ganos, Christos; Kühn, Simone; Kahl, Ursula; Schunke, Odette; Brandt, Valerie; Bäumer, Tobias; Thomalla, Götz; Haggard, Patrick; Münchau, Alexander

    2014-01-01

    Tics in Gilles de la Tourette syndrome (GTS) are repetitive patterned movements, resembling spontaneous motor behaviour, but escaping voluntary control. Previous studies hypothesised relations between structural alterations in prefrontal cortex of GTS adults and tic severity using voxel-based morphometry (VBM), but could not demonstrate a significant association. The relation between prefrontal cortex structure and tic inhibition has not been investigated. Here, we used VBM to examine 14 GTS adults without associated comorbidities, and 15 healthy controls. We related structural alterations in GTS to clinical measures of tic severity and tic control. Grey matter volumes in the right inferior frontal gyrus and the left frontal pole were reduced in patients relative to healthy controls. These changes were not related to tic severity and tic inhibition. Prefrontal grey matter volume reductions in GTS adults are not related to state measures of tic phenomenology. © 2013.

  12. Less efficient and costly processes of frontal cortex in childhood chronic fatigue syndrome

    Science.gov (United States)

    Mizuno, Kei; Tanaka, Masaaki; Tanabe, Hiroki C.; Joudoi, Takako; Kawatani, Junko; Shigihara, Yoshihito; Tomoda, Akemi; Miike, Teruhisa; Imai-Matsumura, Kyoko; Sadato, Norihiro; Watanabe, Yasuyoshi

    2015-01-01

    The ability to divide one's attention deteriorates in patients with childhood chronic fatigue syndrome (CCFS). We conducted a study using a dual verbal task to assess allocation of attentional resources to two simultaneous activities (picking out vowels and reading for story comprehension) and functional magnetic resonance imaging. Patients exhibited a much larger area of activation, recruiting additional frontal areas. The right middle frontal gyrus (MFG), which is included in the dorsolateral prefrontal cortex, of CCFS patients was specifically activated in both the single and dual tasks; this activation level was positively correlated with motivation scores for the tasks and accuracy of story comprehension. In addition, in patients, the dorsal anterior cingulate gyrus (dACC) and left MFG were activated only in the dual task, and activation levels of the dACC and left MFG were positively associated with the motivation and fatigue scores, respectively. Patients with CCFS exhibited a wider area of activated frontal regions related to attentional resources in order to increase their poorer task performance with massive mental effort. This is likely to be less efficient and costly in terms of energy requirements. It seems to be related to the pathophysiology of patients with CCFS and to cause a vicious cycle of further increases in fatigue. PMID:26594619

  13. Less efficient and costly processes of frontal cortex in childhood chronic fatigue syndrome.

    Science.gov (United States)

    Mizuno, Kei; Tanaka, Masaaki; Tanabe, Hiroki C; Joudoi, Takako; Kawatani, Junko; Shigihara, Yoshihito; Tomoda, Akemi; Miike, Teruhisa; Imai-Matsumura, Kyoko; Sadato, Norihiro; Watanabe, Yasuyoshi

    2015-01-01

    The ability to divide one's attention deteriorates in patients with childhood chronic fatigue syndrome (CCFS). We conducted a study using a dual verbal task to assess allocation of attentional resources to two simultaneous activities (picking out vowels and reading for story comprehension) and functional magnetic resonance imaging. Patients exhibited a much larger area of activation, recruiting additional frontal areas. The right middle frontal gyrus (MFG), which is included in the dorsolateral prefrontal cortex, of CCFS patients was specifically activated in both the single and dual tasks; this activation level was positively correlated with motivation scores for the tasks and accuracy of story comprehension. In addition, in patients, the dorsal anterior cingulate gyrus (dACC) and left MFG were activated only in the dual task, and activation levels of the dACC and left MFG were positively associated with the motivation and fatigue scores, respectively. Patients with CCFS exhibited a wider area of activated frontal regions related to attentional resources in order to increase their poorer task performance with massive mental effort. This is likely to be less efficient and costly in terms of energy requirements. It seems to be related to the pathophysiology of patients with CCFS and to cause a vicious cycle of further increases in fatigue.

  14. Less efficient and costly processes of frontal cortex in childhood chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    Kei Mizuno

    2015-01-01

    Full Text Available The ability to divide one's attention deteriorates in patients with childhood chronic fatigue syndrome (CCFS. We conducted a study using a dual verbal task to assess allocation of attentional resources to two simultaneous activities (picking out vowels and reading for story comprehension and functional magnetic resonance imaging. Patients exhibited a much larger area of activation, recruiting additional frontal areas. The right middle frontal gyrus (MFG, which is included in the dorsolateral prefrontal cortex, of CCFS patients was specifically activated in both the single and dual tasks; this activation level was positively correlated with motivation scores for the tasks and accuracy of story comprehension. In addition, in patients, the dorsal anterior cingulate gyrus (dACC and left MFG were activated only in the dual task, and activation levels of the dACC and left MFG were positively associated with the motivation and fatigue scores, respectively. Patients with CCFS exhibited a wider area of activated frontal regions related to attentional resources in order to increase their poorer task performance with massive mental effort. This is likely to be less efficient and costly in terms of energy requirements. It seems to be related to the pathophysiology of patients with CCFS and to cause a vicious cycle of further increases in fatigue.

  15. Cranialization of the frontal sinus for secondary mucocele prevention following open surgery for benign frontal lesions.

    Directory of Open Access Journals (Sweden)

    Gilad Horowitz

    Full Text Available OBJECTIVE: To compare frontal sinus cranialization to obliteration for future prevention of secondary mucocele formation following open surgery for benign lesions of the frontal sinus. STUDY DESIGN: Retrospective case series. SETTING: Tertiary academic medical center. PATIENTS: Sixty-nine patients operated for benign frontal sinus pathology between 1994 and 2011. INTERVENTIONS: Open excision of benign frontal sinus pathology followed by either frontal obliteration (n = 41, 59% or frontal cranialization (n = 28, 41%. MAIN OUTCOME MEASURES: The prevalence of post-surgical complications and secondary mucocele formation were compiled. RESULTS: Pathologies included osteoma (n = 34, 49%, mucocele (n = 27, 39%, fibrous dysplasia (n = 6, 9%, and encephalocele (n = 2, 3%. Complications included skin infections (n = 6, postoperative cutaneous fistula (n = 1, telecanthus (n = 4, diplopia (n = 3, nasal deformity (n = 2 and epiphora (n = 1. None of the patients suffered from postoperative CSF leak, meningitis or pneumocephalus. Six patients, all of whom had previously undergone frontal sinus obliteration, required revision surgery due to secondary mucocele formation. Statistical analysis using non-inferiority test reveal that cranialization of the frontal sinus is non-inferior to obliteration for preventing secondary mucocele formation (P<0.0001. CONCLUSION: Cranialization of the frontal sinus appears to be a good option for prevention of secondary mucocele development after open excision of benign frontal sinus lesions.

  16. The neural basis for simulated drawing and the semantic implications.

    Science.gov (United States)

    Harrington, Greg S; Farias, Dana; Davis, Christine H

    2009-03-01

    This functional magnetic resonance imaging (fMRI) study of the mental simulation of drawing (1) investigated the neural substrates of drawing and (2) delineated the semantic aspects of drawing. The goal was to advance our understanding of how drawing a familiar object is linked to lexical semantics and therefore a viable method to use to rehabilitate aphasia. We hypothesized that the semantic aspects of drawing familiar objects compared to drawing non-objects would yield greater activation in the inferior temporal cortex and the inferior frontal cortex of the left hemisphere. To test this hypothesis, eight right-handed subjects performed an fMRI experiment that directly contrasted drawing familiar objects to non-objects using mental imagery. Simulated drawing recruited a large, distributed network of frontal, parietal, and temporal structures. In the contrast comparing drawing familiar objects to non-objects there was stronger activation in the left hemisphere within the inferior temporal, anterior inferior frontal, inferior parietal and superior frontal cortices. The activation within the inferior temporal cortex was associated with visual semantic processing and semantic mediated naming. We suggest that the anterior inferior frontal activation is linked to the inferior temporal cortex and is involved in the selection of specific semantic features of the object as well as retrieval of information regarding the perceptual aspects of the object.

  17. Effects of sleep deprivation on extracellular serotonin in hippocampus and frontal cortex of the rat

    OpenAIRE

    Bjorvatn, B; Grønli, J; Hamre, F; Sørensen, E; Fiske, E; Bjorkum, Alvhild Alette; Portas, CM; Ursin, R

    2002-01-01

    Sleep deprivation improves the mood of depressed patients, but the exact mechanism behind this effect is unclear. An enhancement of serotonergic neurotransmission has been suggested. In this study, we used in vivo microdialysis to monitor extracellular serotonin in the hippocampus and the frontal cortex of rats during an 8 h sleep deprivation period. These brain regions were selected since both have been implicated in depression. The behavioral state of the animal was continuously monitored b...

  18. Response inhibition of face stimuli linked to inferior frontal gyrus microstructure in adolescents

    DEFF Research Database (Denmark)

    Holm-Skjold, Jonathan; Baaré, William Frans Christiaan; Jernigan, Terry Lynne

    matter underlying these regions continues to develop throughout childhood and adolescence, as indicated by in an increase in fractional anisotropy (FA), possibly reflecting ongoing myelination, and/or increase in axon diameter and density7,8. Here we used an emotional Go/Nogo task to test the hypothesis......The ability to inhibit inappropriate behavior is an essential cognitive and social skill. Response inhibition of pre-potent motor responses as measured with a stop-signal or a Go/Nogo task improves throughout adolescence1,2. Performance on these tasks can be modulated by the valence of task stimuli....... Inhibition of negative faces has been shown to be more difficult than that of positive faces1,3. The brain network underlying response inhibition includes the right inferior frontal gyrus (IFG), right presupplementary motor area (preSMA), and superior longitudinal fasciculus (SLF) bilaterally 4–6. The white...

  19. Issues in localization of brain function: The case of lateralized frontal cortex in cognition, emotion, and psychopathology.

    Science.gov (United States)

    Miller, Gregory A; Crocker, Laura D; Spielberg, Jeffrey M; Infantolino, Zachary P; Heller, Wendy

    2013-01-01

    The appeal of simple, sweeping portraits of large-scale brain mechanisms relevant to psychological phenomena competes with a rich, complex research base. As a prominent example, two views of frontal brain organization have emphasized dichotomous lateralization as a function of either emotional valence (positive/negative) or approach/avoidance motivation. Compelling findings support each. The literature has struggled to choose between them for three decades, without success. Both views are proving untenable as comprehensive models. Evidence of other frontal lateralizations, involving distinctions among dimensions of depression and anxiety, make a dichotomous view even more problematic. Recent evidence indicates that positive valence and approach motivation are associated with different areas in the left-hemisphere. Findings that appear contradictory at the level of frontal lobes as the units of analysis can be accommodated because hemodynamic and electromagnetic neuroimaging studies suggest considerable functional differentiation, in specialization and activation, of subregions of frontal cortex, including their connectivity to each other and to other regions. Such findings contribute to a more nuanced understanding of functional localization that accommodates aspects of multiple theoretical perspectives.

  20. Reversed Procrastination by Focal Disruption of Medial Frontal Cortex.

    Science.gov (United States)

    Jha, Ashwani; Diehl, Beate; Scott, Catherine; McEvoy, Andrew W; Nachev, Parashkev

    2016-11-07

    An enduring puzzle in the neuroscience of voluntary action is the origin of the remarkably wide dispersion of the reaction time distribution, an interval far greater than is explained by synaptic or signal transductive noise [1, 2]. That we are able to change our planned actions-a key criterion of volition [3]-so close to the time of their onset implies decision-making must reach deep into the execution of action itself [4-6]. It has been influentially suggested the reaction time distribution therefore reflects deliberate neural procrastination [7], giving alternative response tendencies sufficient time for fair competition in pursuing a decision threshold that determines which one is behaviorally manifest: a race model, where action selection and execution are closely interrelated [8-11]. Although the medial frontal cortex exhibits a sensitivity to reaction time on functional imaging that is consistent with such a mechanism [12-14], direct evidence from disruptive studies has hitherto been lacking. If movement-generating and movement-delaying neural substrates are closely co-localized here, a large-scale lesion will inevitably mask any acceleration, for the movement itself could be disrupted. Circumventing this problem, here we observed focal intracranial electrical disruption of the medial frontal wall in the context of the pre-surgical evaluation of two patients with epilepsy temporarily reversing such hypothesized procrastination. Effector-specific behavioral acceleration, time-locked to the period of electrical disruption, occurred exclusively at a specific locus at the ventral border of the pre-supplementary motor area. A cardinal prediction of race models of voluntary action is thereby substantiated in the human brain. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. The Effects of a Single Night of Sleep Deprivation on Fluency and Prefrontal Cortex Function during Divergent Thinking

    Directory of Open Access Journals (Sweden)

    Oshin eVartanian

    2014-04-01

    Full Text Available The dorsal and ventral aspects of the prefrontal cortex (PFC are the two regions most consistently recruited in divergent thinking tasks. Given that frontal tasks have been shown to be vulnerable to sleep loss, we explored the impact of a single night of sleep deprivation on fluency (i.e., number of generated responses and PFC function during divergent thinking. Participants underwent functional magnetic resonance imaging (fMRI scanning twice while engaged in the Alternate Uses Task (AUT—once following a single night of sleep deprivation and once following a night of normal sleep. They also wore wrist activity monitors, which enabled us to quantify daily sleep and model cognitive effectiveness. The intervention was effective, producing greater levels of fatigue and sleepiness. Modelled cognitive effectiveness and fluency were impaired following sleep deprivation, and sleep deprivation was associated with greater activation in the left inferior frontal gyrus during AUT. The results suggest that an intervention known to temporarily compromise frontal function can impair fluency, and that this effect is instantiated in the form of an increased haemodynamic response in the left inferior frontal gyrus.

  2. Functional Dysconnection of the Inferior Frontal Gyrus in Young People With Bipolar Disorder or at Genetic High Risk.

    Science.gov (United States)

    Roberts, Gloria; Lord, Anton; Frankland, Andrew; Wright, Adam; Lau, Phoebe; Levy, Florence; Lenroot, Rhoshel K; Mitchell, Philip B; Breakspear, Michael

    2017-04-15

    Bipolar disorder (BD) is characterized by a dysregulation of affect and impaired integration of emotion with cognition. These traits are also expressed in probands at high genetic risk of BD. The inferior frontal gyrus (IFG) is a key cortical hub in the circuits of emotion and cognitive control, and it has been frequently associated with BD. Here, we studied resting-state functional connectivity of the left IFG in participants with BD and in those at increased genetic risk. Using resting-state functional magnetic resonance imaging we compared 49 young BD participants, 71 individuals with at least one first-degree relative with BD (at-risk), and 80 control subjects. We performed between-group analyses of the functional connectivity of the left IFG and used graph theory to study its local functional network topology. We also used machine learning to study classification based solely on the functional connectivity of the IFG. In BD, the left IFG was functionally dysconnected from a network of regions, including bilateral insulae, ventrolateral prefrontal gyri, superior temporal gyri, and the putamen (p < .001). A small network incorporating neighboring insular regions and the anterior cingulate cortex showed weaker functional connectivity in at-risk than control participants (p < .006). These constellations of regions overlapped with frontolimbic regions that a machine learning classifier selected as predicting group membership with an accuracy significantly greater than chance. Functional dysconnectivity of the IFG from regions involved in emotional regulation may represent a trait abnormality for BD and could potentially aid clinical diagnosis. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Changes in acetylcholinesterase, Na+,K+-ATPase, and Mg2+-ATPase activities in the frontal cortex and the hippocampus of hyper- and hypothyroid adult rats.

    Science.gov (United States)

    Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Stolakis, Vasileios; Mourouzis, Iordanis; Cokkinos, Dennis; Tsakiris, Stylianos

    2007-08-01

    The thyroid hormones (THs) are crucial determinants of normal development and metabolism, especially in the central nervous system. The metabolic rate is known to increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na+,K+)- and Mg2+-adenosinetriphosphatase (ATPase) in the frontal cortex and the hippocampus of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25 microg/100 g body weight) once daily for 14 days, and hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. A region-specific behavior was observed concerning the examined enzyme activities in hyper- and hypothyroidism. In hyperthyroidism, AChE activity was significantly increased only in the hippocampus (+22%), whereas Na+,K+-ATPase activity was significantly decreased in the hyperthyroid rat hippocampus (-47%) and remained unchanged in the frontal cortex. In hypothyroidism, AChE activity was significantly decreased in the frontal cortex (-23%) and increased in the hippocampus (+21%). Na+,K+-ATPase activity was significantly decreased in both the frontal cortex (-35%) and the hippocampus (-43%) of hypothyroid rats. Mg2+-ATPase remained unchanged in the regions of both hyper- and hypothyroid rat brains. Our data revealed that THs affect the examined adult rat brain parameters in a region- and state-specific way. The TH-reduced Na+,K+-ATPase activity may increase the synaptic acetylcholine release and, thus, modulate AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems in the examined brain regions.

  4. Frontal lobe epilepsy may present as myoclonic seizures.

    Science.gov (United States)

    Cho, Yong Won; Yi, Sang Doe; Motamedi, Gholam K

    2010-04-01

    We describe a patient with seizures arising from right anterior-inferior frontal lobe presenting as myoclonic epilepsy. A 19-year-old man had experienced frequent paroxysmal bilateral myoclonic jerks involving his upper arms, shoulders, neck, and upper trunk since the age of 10. His baseline EEG showed intermittent right frontal spikes, and his ictal EEG showed rhythmic sharp theta discharges in the same area. MRI revealed cortical dysplasia in the right inferior frontal gyrus, and ictal-interictal SPECT analysis by SPM showed increased signal abnormality in this region. Diffusion tensor imaging (DTI) showed defects in fasciculi in the same area. These findings suggest that frontal lobe epilepsy should be considered in some patients with myoclonic seizures. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  5. Word wins over Face: Emotional Stroop effect activates the frontal cortical network

    Directory of Open Access Journals (Sweden)

    Shima Ovaysikia

    2011-01-01

    Full Text Available The prefrontal cortex (PFC has been implicated in higher order cognitive control of behaviour. Sometimes such control is executed through suppression of an unwanted response in order to avoid conflict. Conflict occurs when two simultaneously competing processes lead to different behavioral outcomes, as seen in tasks such as the anti-saccade, go/no-go and the Stroop task. We set out to examine whether different types of stimuli in a modified emotional Stroop task would cause similar interference effects as the original Stroop-colour/word, and whether the required suppression mechanism(s would recruit similar regions of the medial PFC (mPFC. By using emotional words and emotional faces in this Stroop experiment, we examined the two well-learned automatic behaviours of word reading and recognition of face expressions. In our emotional Stroop paradigm, words were processed faster than face expressions with incongruent trials yielding longer reaction times (RT and larger number of errors compared to the congruent trials. This novel Stroop effect activated the anterior and inferior regions of the mPFC, namely the anterior cingulate cortex (ACC, inferior frontal gyrus (IFG as well as the superior frontal gyrus. Our results suggest that prepotent behaviours such as reading and recognition of face expressions are stimulus-dependent and perhaps hierarchical, hence recruiting distinct regions of the mPFC. Moreover, the faster processing of word reading compared to reporting face expressions is indicative of the formation of stronger stimulus-response (SR associations of an over-learned behaviour compared to an instinctive one, which could alternatively be explained through the distinction between awareness and selective attention.

  6. Characterization of the fiber connectivity profile of the cerebral cortex in schizotypal personality disorder: A pilot study

    Directory of Open Access Journals (Sweden)

    Kai eLiu

    2016-05-01

    Full Text Available Schizotypal personality disorder (SPD is considered one of the classic disconnection syndromes. However, the specific cortical disconnectivity pattern has not been fully investigated. In this study, we aimed to explore significant alterations in whole-cortex structural connectivity in SPD individuals (SPDs by combining the techniques of brain surface morphometry and white matter (WM tractography. Diffusion and structural MR data were collected from twenty subjects with SPD (all males; age, 19.7 ± 0.9 yrs and eighteen healthy controls (all males; age, 20.3 ± 1.0 yrs. To measure the structural connectivity for a given unit area of the cortex, the fiber connectivity density (FiCD value was proposed and calculated as the sum of the fractional anisotropy of all the fibers connecting to that unit area in tractography. Then, the resultant whole-cortex FiCD maps were compared in a vertex-wise manner between SPDs and controls. Compared with normal controls, SPDs showed significantly decreased FiCD in the rostral middle frontal gyrus (crossing BA9 and BA10 and significantly increased FiCD in the anterior part of the fusiform/inferior temporal cortex (P < 0.05, Monte Carlo simulation corrected. Moreover, the gray matter volume extracted from the left rostral middle frontal cluster was observed to be significantly greater in the SPD group (P = 0.02. Overall, this study identifies a decrease in connectivity in the left middle frontal cortex as a key neural deficit at the whole-cortex level in SPD, thus providing insight into its neuropathological basis.

  7. Issues in Localization of brain function: The case of lateralized frontal cortex in cognition, emotion, and psychopathology

    Directory of Open Access Journals (Sweden)

    Gregory A. Miller

    2013-01-01

    Full Text Available The appeal of simple, sweeping portraits of large-scale brain mechanisms relevant to psychological phenomena competes with a rich, complex research base. As a prominent example, two views of frontal brain organization have emphasized dichotomous lateralization as a function of either emotional valence (positive/negative or approach/avoidance motivation. Compelling findings support each. The literature has struggled to choose between them for three decades, without success. Both views are proving untenable as comprehensive models. Recent evidence indicates that positive valence and approach motivation are associated with different areas in the left hemisphere. Evidence of other frontal lateralizations, involving distinctions among dimensions of depression and anxiety, make a dichotomous view even more problematic. Hemodynamic and electromagnetic neuroimaging studies suggest considerable functional differentiation, in specialization and activation, of subregions of frontal cortex, including their connectivity to each other and to other regions. Such findings contribute to a more nuanced understanding of functional localization that accommodates aspects of multiple theoretical perspectives.

  8. The right posterior inferior frontal gyrus contributes to phonological word decisions in the healthy brain

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Price, Cathy J; Baumgaertner, Annette

    2010-01-01

    There is consensus that the left hemisphere plays a dominant role in language processing, but functional imaging studies have shown that the right as well as the left posterior inferior frontal gyri (pIFG) are activated when healthy right-handed individuals make phonological word decisions. Here we...... used online transcranial magnetic stimulation (TMS) to examine the functional relevance of the right pIFG for auditory and visual phonological decisions. Healthy right-handed individuals made phonological or semantic word judgements on the same set of auditorily and visually presented words while......IFG impaired reaction times and accuracy of phonological but not semantic decisions for visually and auditorily presented words. TMS over left, right or bilateral pIFG disrupted phonological processing to a similar degree. In a follow-up experiment, the intensity threshold for delaying phonological judgements...

  9. Cholinergic receptor binding in the frontal cortex of suicide victims

    International Nuclear Information System (INIS)

    Stanley, M.

    1986-01-01

    Because there is a high incidence of individuals diagnosed as having an affective disorder who subsequently commit suicide, the author thought it would be of interest to determine QNB binding in the brains of a large sample of suicide victims, and to compare the findings with a well-matched control group. Brain samples were obtained at autopsy from 22 suicide victims and 22 controls. Frontal cortex samples were diseected, frozen, and stored until assayed. Samples of tissue homogenate were incubated in duplicate with 10 concentrations of tritium-QNB. Specific binding was determined with and without atropine. The results confirmed previous studies in which no changes were noted in suicide versus control brains. While the findings neither disprove nor support the cholinergic hypothesis of depression, they do suggest that the neurochemical basis for the in vivo observations of increased responsivity of depressed individuals to muscarinic cholinergic agents might not involve changes in receptors estimated by QNB binding

  10. Roles of frontal and temporal regions in reinterpreting semantically ambiguous sentences

    Directory of Open Access Journals (Sweden)

    Sylvia eVitello

    2014-07-01

    Full Text Available Semantic ambiguity resolution is an essential and frequent part of speech comprehension because many words map onto multiple meanings (e.g., bark, bank. Neuroimaging research highlights the importance of the left inferior frontal gyrus (LIFG and the left posterior temporal cortex in this process but the roles they serve in ambiguity resolution are uncertain. One possibility is that both regions are engaged in the processes of semantic reinterpretation that follows incorrect interpretation of an ambiguous word. Here we used fMRI to investigate this hypothesis. 20 native British English monolinguals were scanned whilst listening to sentences that contained an ambiguous word. To induce semantic reinterpretation, the disambiguating information was presented after the ambiguous word and delayed until the end of the sentence (e.g., the teacher explained that the BARK was going to be very damp. These sentences were compared to well-matched unambiguous sentences. Supporting the reinterpretation hypothesis, these ambiguous sentences produced more activation in both the LIFG and the left posterior inferior temporal cortex. Importantly, all but one subject showed ambiguity-related peaks within both regions, demonstrating that the group-level results were driven by high inter-subject consistency. Further support came from the finding that activation in both regions was modulated by meaning dominance. Specifically, sentences containing biased ambiguous words, which have one more dominant meaning, produced greater activation than those with balanced ambiguous words, which have two equally frequent meanings. Because the context always supported the less frequent meaning, the biased words require reinterpretation more often than balanced words. This is the first evidence of dominance effects in the spoken modality and provides strong support that frontal and temporal regions support the updating of semantic representations during speech comprehension.

  11. Trait aggression and trait impulsivity are not related to frontal cortex 5-HT2A receptor binding in healthy individuals

    DEFF Research Database (Denmark)

    da Cunha-Bang, Sophie; Stenbæk, Dea Siggaard; Holst, Klaus

    2013-01-01

    age 47.0±18.7, range 23-86) to determine if trait aggression and trait impulsivity were related to frontal cortex 5-HT2A receptor binding (5-HT2AR) as measured with [(18)F]-altanserin PET imaging. Trait aggression and trait impulsivity were assessed with the Buss-Perry Aggression Questionnaire (AQ...... and the AQ or BIS-11 total scores. Also, there was no significant interaction between gender and frontal cortex 5-HT2AR in predicting trait aggression and trait impulsivity. This is the first study to examine how 5-HT2AR relates to trait aggression and trait impulsivity in a large sample of healthy......Numerous studies indicate that the serotonergic (5-HT) transmitter system is involved in the regulation of impulsive aggression and there is from post-mortem, in vivo imaging and genetic studies evidence that the 5-HT2A receptor may be involved. We investigated 94 healthy individuals (60 men, mean...

  12. Differential involvement of left prefrontal cortex in inductive and deductive reasoning.

    Science.gov (United States)

    Goel, Vinod; Dolan, Raymond J

    2004-10-01

    While inductive and deductive reasoning are considered distinct logical and psychological processes, little is known about their respective neural basis. To address this issue we scanned 16 subjects with fMRI, using an event-related design, while they engaged in inductive and deductive reasoning tasks. Both types of reasoning were characterized by activation of left lateral prefrontal and bilateral dorsal frontal, parietal, and occipital cortices. Neural responses unique to each type of reasoning determined from the Reasoning Type (deduction and induction) by Task (reasoning and baseline) interaction indicated greater involvement of left inferior frontal gyrus (BA 44) in deduction than induction, while left dorsolateral (BA 8/9) prefrontal gyrus showed greater activity during induction than deduction. This pattern suggests a dissociation within prefrontal cortex for deductive and inductive reasoning.

  13. Monoamine oxidase-A and B activities in the cerebellum and frontal cortex of children and young adults with autism.

    Science.gov (United States)

    Gu, Feng; Chauhan, Ved; Chauhan, Abha

    2017-10-01

    Monoamine oxidases (MAOs) catalyze the metabolism of monoamine neurotransmitters, such as serotonin, dopamine, and norepinephrine, and are key regulators for brain function. In this study, we analyzed the activities of MAO-A and MAO-B in the cerebellum and frontal cortex from subjects with autism and age-matched control subjects. In the cerebellum, MAO-A activity in subjects with autism (aged 4-38 years) was significantly lower by 20.6% than in controls. When the subjects were divided into children (aged 4-12 years) and young adults (aged 13-38 years) subgroups, a significant decrease by 27.8% in the MAO-A activity was observed only in children with autism compared with controls. When the 95% confidence interval of the control group was taken as a reference range, reduced activity of MAO-A was observed in 70% of children with autism. In the frontal cortex, MAO-A activity in children with autism was also lower by 30% than in the control group, and impaired activity of MAO-A was observed in 55.6% of children with autism, although the difference between the autism and control groups was not significant when all subjects were considered. On the contrary, there was no significant difference in MAO-B activity in both the cerebellum and frontal cortex between children with autism and the control group as well as in adults. These results suggest impaired MAO-A activity in the brain of subjects with autism, especially in children with autism. Decreased activity of MAOs may lead to increased levels of monoaminergic neurotransmitters, such as serotonin, which have been suggested to have a critical role in autism. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Short-Term and Procedural Memory for Colours and Inferior Temporal Cortex Activity

    Directory of Open Access Journals (Sweden)

    E. Castro-Sierra

    1997-01-01

    Full Text Available Two children (male, 10 years, and female, 13 years one month with tumours of the inferior temporal (IT cortex of the brain were studied post-surgically for their abilities to carry out a short-term memory test. This involved: differences in colour, number and shape of small plastic objects; differences in receptacles where these objects should be placed and in ways in which this placement should be done; a procedural task involving differences either in colour or in size of wooden rings employed in the task. Their performances in these tests, and those of patients with tumours of other encephalic areas, were compared with the performances of normal controls. The subjects with IT tumours spent a significantly greater amount of time than normal subjects of their age in carrying out the procedural task involving differences in colour. One of the IT subjects also spent a significantly greater amount of time in the procedural task involving size differences. Other differences in the performances of patients with encephalic tumours and the performances of normal controls were not significant. Results are discussed in relation to findings of colour and size perception and memory localized to the inferior temporal and middle temporal cortices.

  15. Does a single session of theta-burst transcranial magnetic stimulation of inferior temporal cortex affect tinnitus perception?

    Directory of Open Access Journals (Sweden)

    Moser Tobias

    2009-05-01

    Full Text Available Abstract Background Cortical excitability changes as well as imbalances in excitatory and inhibitory circuits play a distinct pathophysiological role in chronic tinnitus. Repetitive transcranial magnetic stimulation (rTMS over the temporoparietal cortex was recently introduced to modulate tinnitus perception. In the current study, the effect of theta-burst stimulation (TBS, a novel rTMS paradigm was investigated in chronic tinnitus. Twenty patients with chronic tinnitus completed the study. Tinnitus severity and loudness were monitored using a tinnitus questionnaire (TQ and a visual analogue scale (VAS before each session. Patients received 600 pulses of continuous TBS (cTBS, intermittent TBS (iTBS and intermediate TBS (imTBS over left inferior temporal cortex with an intensity of 80% of the individual active or resting motor threshold. Changes in subjective tinnitus perception were measured with a numerical rating scale (NRS. Results TBS applied to inferior temporal cortex appeared to be safe. Although half of the patients reported a slight attenuation of tinnitus perception, group analysis resulted in no significant difference when comparing the three specific types of TBS. Converting the NRS into the VAS allowed us to compare the time-course of aftereffects. Only cTBS resulted in a significant short-lasting improvement of the symptoms. In addition there was no significant difference when comparing the responder and non-responder groups regarding their anamnestic and audiological data. The TQ score correlated significantly with the VAS, lower loudness indicating less tinnitus distress. Conclusion TBS does not offer a promising outcome for patients with tinnitus in the presented study.

  16. Challenge-driven attention: interacting frontal and brainstem systems

    Directory of Open Access Journals (Sweden)

    Rajeev D S Raizada

    2008-03-01

    Full Text Available The world is an unpredictable place, presenting challenges that fl uctuate from moment to moment. However, the neural systems for responding to such challenges are far from fully understood. Using fMRI, we studied an audiovisual task in which the trials' diffi culty and onset times varied unpredictably. Two regions were found to increase their activation for challenging trials, with their activities strongly correlated: right frontal cortex and the brainstem. The frontal area matched regions found in previous human studies of cognitive control, and activated in a graded manner with increasing task diffi culty. The brainstem responded only to the most diffi cult trials, showing a phasic activity pattern paralleling locus coeruleus recordings in monkeys. These results reveal a bridge between animal and human studies, and suggest interacting roles for the brainstem and right frontal cortex: the brainstem may signal that an attentional challenge is occurring, while right frontal cortex allocates cognitive resources in response.

  17. Downregulation of GABA[Subscript A] Receptor Protein Subunits a6, ß2, d, e, ?2, ?, and ?2 in Superior Frontal Cortex of Subjects with Autism

    Science.gov (United States)

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rustan, Oyvind G.; Rooney, Robert J.; Thuras, Paul D.

    2014-01-01

    We measured protein and mRNA levels for nine gamma-aminobutyric acid A (GABA[subscript A]) receptor subunits in three brain regions (cerebellum, superior frontal cortex, and parietal cortex) in subjects with autism versus matched controls. We observed changes in mRNA for a number of GABA[subscript A] and GABA[subscript B] subunits and overall…

  18. Frontal and subcortical grey matter reductions in PTSD.

    Science.gov (United States)

    O'Doherty, Daniel C M; Tickell, Ashleigh; Ryder, Will; Chan, Charles; Hermens, Daniel F; Bennett, Maxwell R; Lagopoulos, Jim

    2017-08-30

    Post-traumatic stress disorder (PTSD) is characterised by a range of debilitating psychological, physical and cognitive symptoms. PTSD has been associated with grey matter atrophy in limbic and frontal cortical brain regions. However, previous studies have reported heterogeneous findings, with grey matter changes observed beyond limbic/frontal areas. Seventy-five adults were recruited from the community, 25 diagnosed with PTSD along with 25 healthy and 25 trauma exposed age and gender matched controls. Participants underwent clinical assessment and magnetic resonance imaging. The data-analyses method Voxel Based Morphometry (VBM) was used to estimate cortical grey matter volumes. When compared to both healthy and trauma exposed controls, PTSD subjects demonstrated decreased grey matter volumes within subcortical brain regions-including the hippocampus and amygdala-along with reductions in the anterior cingulate cortex, frontal medial cortex, middle frontal gyrus, superior frontal gyrus, paracingulate gyrus, and precuneus cortex. Significant negative correlations were found between total CAPS lifetime clinical scores/sub-scores and GM volume of both the PTSD and TC groups. GM volumes of the left rACC and right amygdala showed a significant negative correlation within PTSD diagnosed subjects. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  19. Frontal and superior temporal auditory processing abnormalities in schizophrenia.

    Science.gov (United States)

    Chen, Yu-Han; Edgar, J Christopher; Huang, Mingxiong; Hunter, Michael A; Epstein, Emerson; Howell, Breannan; Lu, Brett Y; Bustillo, Juan; Miller, Gregory A; Cañive, José M

    2013-01-01

    Although magnetoencephalography (MEG) studies show superior temporal gyrus (STG) auditory processing abnormalities in schizophrenia at 50 and 100 ms, EEG and corticography studies suggest involvement of additional brain areas (e.g., frontal areas) during this interval. Study goals were to identify 30 to 130 ms auditory encoding processes in schizophrenia (SZ) and healthy controls (HC) and group differences throughout the cortex. The standard paired-click task was administered to 19 SZ and 21 HC subjects during MEG recording. Vector-based Spatial-temporal Analysis using L1-minimum-norm (VESTAL) provided 4D maps of activity from 30 to 130 ms. Within-group t-tests compared post-stimulus 50 ms and 100 ms activity to baseline. Between-group t-tests examined 50 and 100 ms group differences. Bilateral 50 and 100 ms STG activity was observed in both groups. HC had stronger bilateral 50 and 100 ms STG activity than SZ. In addition to the STG group difference, non-STG activity was also observed in both groups. For example, whereas HC had stronger left and right inferior frontal gyrus activity than SZ, SZ had stronger right superior frontal gyrus and left supramarginal gyrus activity than HC. Less STG activity was observed in SZ than HC, indicating encoding problems in SZ. Yet auditory encoding abnormalities are not specific to STG, as group differences were observed in frontal and SMG areas. Thus, present findings indicate that individuals with SZ show abnormalities in multiple nodes of a concurrently activated auditory network.

  20. Differential activity in left inferior frontal gyrus for pseudowords and real words: an event-related fMRI study on auditory lexical decision.

    Science.gov (United States)

    Xiao, Zhuangwei; Zhang, John X; Wang, Xiaoyi; Wu, Renhua; Hu, Xiaoping; Weng, Xuchu; Tan, Li Hai

    2005-06-01

    After Newman and Twieg and others, we used a fast event-related functional magnetic resonance imaging (fMRI) design and contrasted the lexical processing of pseudowords and real words. Participants carried out an auditory lexical decision task on a list of randomly intermixed real and pseudo Chinese two-character (or two-syllable) words. The pseudowords were constructed by recombining constituent characters of the real words to control for sublexical code properties. Processing of pseudowords and real words activated a highly comparable network of brain regions, including bilateral inferior frontal gyrus, superior, middle temporal gyrus, calcarine and lingual gyrus, and left supramarginal gyrus. Mirroring a behavioral lexical effect, left inferior frontal gyrus (IFG) was significantly more activated for pseudowords than for real words. This result disconfirms a popular view that this area plays a role in grapheme-to-phoneme conversion, as such a conversion process was unnecessary in our task with auditory stimulus presentation. An alternative view was supported that attributes increased activity in left IFG for pseudowords to general processes in decision making, specifically in making positive versus negative responses. Activation in left supramarginal gyrus was of a much larger volume for real words than for pseudowords, suggesting a role of this region in the representation of phonological or semantic information for two-character Chinese words at the lexical level.

  1. Social isolation stress and chronic glutathione deficiency have a common effect on the glutamine-to-glutamate ratio and myo-inositol concentration in the mouse frontal cortex.

    Science.gov (United States)

    Corcoba, Alberto; Gruetter, Rolf; Do, Kim Q; Duarte, João M N

    2017-09-01

    Environmental stress can interact with genetic predisposition to increase the risk of developing psychopathology. In this work, we tested the hypothesis that social isolation stress interacts with impaired glutathione synthesis and have cumulative effects on the neurochemical profile of the frontal cortex. A mouse model with chronic glutathione deficit induced by knockout (-/-) of the glutamate-cysteine ligase modulatory subunit (Gclm) was exposed to social isolation stress from weaning to post-natal day 65. Using magnetic resonance methods at high-field (14.1 T), we analysed the neurochemical profile in the frontal cortex, brain size and ventricular volume of adult animals. Glutathione deficit was accompanied by elevated concentrations of N-acetylaspartate, alanine, and glutamine, as well as the ratio of glutamine-to-glutamate (Gln/Glu), and by a reduction in levels of myo-inositol and choline-containing compounds in the frontal cortex of -/- animals with respect to wild-type littermates. Although there was no significant interaction between social isolation stress and glutathione deficiency, mice reared in isolation displayed lower myo-inositol concentration (-8.4%, p social isolation had no effect on these parameters. We conclude that social isolation caused neurochemical alterations that may add to those associated to impaired glutathione synthesis. © 2017 International Society for Neurochemistry.

  2. Human medial frontal cortex activity predicts learning from errors.

    Science.gov (United States)

    Hester, Robert; Barre, Natalie; Murphy, Kevin; Silk, Tim J; Mattingley, Jason B

    2008-08-01

    Learning from errors is a critical feature of human cognition. It underlies our ability to adapt to changing environmental demands and to tune behavior for optimal performance. The posterior medial frontal cortex (pMFC) has been implicated in the evaluation of errors to control behavior, although it has not previously been shown that activity in this region predicts learning from errors. Using functional magnetic resonance imaging, we examined activity in the pMFC during an associative learning task in which participants had to recall the spatial locations of 2-digit targets and were provided with immediate feedback regarding accuracy. Activity within the pMFC was significantly greater for errors that were subsequently corrected than for errors that were repeated. Moreover, pMFC activity during recall errors predicted future responses (correct vs. incorrect), despite a sizeable interval (on average 70 s) between an error and the next presentation of the same recall probe. Activity within the hippocampus also predicted future performance and correlated with error-feedback-related pMFC activity. A relationship between performance expectations and pMFC activity, in the absence of differing reinforcement value for errors, is consistent with the idea that error-related pMFC activity reflects the extent to which an outcome is "worse than expected."

  3. Stem-cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients.

    Science.gov (United States)

    Martinez, Hector R; Gonzalez-Garza, Maria T; Moreno-Cuevas, Jorge E; Caro, Enrique; Gutierrez-Jimenez, Eugenio; Segura, Jose J

    2009-01-01

    Amyotrophic lateral sclerosis (ALS) is characterized by the selective death of motor neurons. CD133(+) stem cells are known to have the capacity to differentiate into neural lineages. Stem cells may provide an alternative treatment for ALS and other neurodegenerative diseases. Five men and five women (aged 38-62 years) with confirmed ALS were included in this study. Our institutional ethics and research committees approved the protocol. After informed consent was obtained, patients underwent Hidrogen-Magnetic Resonance Imaging (H-MRI) spectroscopy and were given scores according to an ALS functional rating scale, Medical Research Council power muscle scale and daily living activities. Bone marrow was stimulated with 300 microg filgrastim subcutaneously daily for 3 days. Peripheral blood mononuclear cells were obtained after admission by leukapheresis. The cell suspension was conjugated with anti-human CD133 superparamagnetic microbeads, and linked cells were isolated in a magnetic field. The isolated cells (2.5-7.5x10(5)) were resuspended in 300 microL of the patient's cerebrospinal fluid, and implanted in motor cortexes using a Hamilton syringe. Ten patients with confirmed ALS without transplantation were used as a control group. Patients were followed up for a period of 1 year. The autologous transplantation of CD133(+) stem cells into the frontal motor cortex is a safe and well-tolerated procedure in ALS patients. The survival of treated patients was statistically higher (P=0.01) than untreated control patients. Stem-cell transplantation in the motor cortex delays ALS progression and improves quality of life.

  4. Long-range functional interactions of anterior insula and medial frontal cortex are differently modulated by visuospatial and inductive reasoning tasks.

    Science.gov (United States)

    Ebisch, Sjoerd J H; Mantini, Dante; Romanelli, Roberta; Tommasi, Marco; Perrucci, Mauro G; Romani, Gian Luca; Colom, Roberto; Saggino, Aristide

    2013-09-01

    The brain is organized into functionally specific networks as characterized by intrinsic functional relationships within discrete sets of brain regions. However, it is poorly understood whether such functional networks are dynamically organized according to specific task-states. The anterior insular cortex (aIC)-dorsal anterior cingulate cortex (dACC)/medial frontal cortex (mFC) network has been proposed to play a central role in human cognitive abilities. The present functional magnetic resonance imaging (fMRI) study aimed at testing whether functional interactions of the aIC-dACC/mFC network in terms of temporally correlated patterns of neural activity across brain regions are dynamically modulated by transitory, ongoing task demands. For this purpose, functional interactions of the aIC-dACC/mFC network are compared during two distinguishable fluid reasoning tasks, Visualization and Induction. The results show an increased functional coupling of bilateral aIC with visual cortices in the occipital lobe during the Visualization task, whereas coupling of mFC with right anterior frontal cortex was enhanced during the Induction task. These task-specific modulations of functional interactions likely reflect ability related neural processing. Furthermore, functional connectivity strength between right aIC and right dACC/mFC reliably predicts general task performance. The findings suggest that the analysis of long-range functional interactions may provide complementary information about brain-behavior relationships. On the basis of our results, it is proposed that the aIC-dACC/mFC network contributes to the integration of task-common and task-specific information based on its within-network as well as its between-network dynamic functional interactions. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Dorso-Lateral Frontal Cortex of the Ferret Encodes Perceptual Difficulty during Visual Discrimination.

    Science.gov (United States)

    Zhou, Zhe Charles; Yu, Chunxiu; Sellers, Kristin K; Fröhlich, Flavio

    2016-03-30

    Visual discrimination requires sensory processing followed by a perceptual decision. Despite a growing understanding of visual areas in this behavior, it is unclear what role top-down signals from prefrontal cortex play, in particular as a function of perceptual difficulty. To address this gap, we investigated how neurons in dorso-lateral frontal cortex (dl-FC) of freely-moving ferrets encode task variables in a two-alternative forced choice visual discrimination task with high- and low-contrast visual input. About two-thirds of all recorded neurons in dl-FC were modulated by at least one of the two task variables, task difficulty and target location. More neurons in dl-FC preferred the hard trials; no such preference bias was found for target location. In individual neurons, this preference for specific task types was limited to brief epochs. Finally, optogenetic stimulation confirmed the functional role of the activity in dl-FC before target touch; suppression of activity in pyramidal neurons with the ArchT silencing opsin resulted in a decrease in reaction time to touch the target but not to retrieve reward. In conclusion, dl-FC activity is differentially recruited for high perceptual difficulty in the freely-moving ferret and the resulting signal may provide top-down behavioral inhibition.

  6. Longitudinal Effects of Ketamine on Dendritic Architecture In Vivo in the Mouse Medial Frontal Cortex123

    Science.gov (United States)

    Phoumthipphavong, Victoria; Barthas, Florent; Hassett, Samantha

    2016-01-01

    Abstract A single subanesthetic dose of ketamine, an NMDA receptor antagonist, leads to fast-acting antidepressant effects. In rodent models, systemic ketamine is associated with higher dendritic spine density in the prefrontal cortex, reflecting structural remodeling that may underlie the behavioral changes. However, turnover of dendritic spines is a dynamic process in vivo, and the longitudinal effects of ketamine on structural plasticity remain unclear. The purpose of the current study is to use subcellular resolution optical imaging to determine the time course of dendritic alterations in vivo following systemic ketamine administration in mice. We used two-photon microscopy to visualize repeatedly the same set of dendritic branches in the mouse medial frontal cortex (MFC) before and after a single injection of ketamine or saline. Compared to controls, ketamine-injected mice had higher dendritic spine density in MFC for up to 2 weeks. This prolonged increase in spine density was driven by an elevated spine formation rate, and not by changes in the spine elimination rate. A fraction of the new spines following ketamine injection was persistent, which is indicative of functional synapses. In a few cases, we also observed retraction of distal apical tuft branches on the day immediately after ketamine administration. These results indicate that following systemic ketamine administration, certain dendritic inputs in MFC are removed immediately, while others are added gradually. These dynamic structural modifications are consistent with a model of ketamine action in which the net effect is a rebalancing of synaptic inputs received by frontal cortical neurons. PMID:27066532

  7. Attention, emotion, and deactivation of default activity in inferior medial prefrontal cortex

    DEFF Research Database (Denmark)

    Geday, Jacob; Gjedde, Albert

    2008-01-01

    Attention deactivates the inferior medial prefrontal cortex (IMPC), but it is uncertain if emotions can attenuate this deactivation. To test the extent to which common emotions interfere with attention, we measured changes of a blood flow index of brain activity in key areas of the IMPC...... with positron emission tomography (PET) of labeled water (H(15)2O) uptake in brain of 14 healthy subjects. The subjects performed either a less demanding or a more demanding task of attention while they watched neutral and emotive images of people in realistic indoor or outdoor situations. In the less demanding...... cortices, revealed significant activation in the fusiform gyrus, independently of the task. In contrast, we found no effect of emotional content in the IMPC, where emotions failed to override the effect of the task. The results are consistent with a role of the IMPC in the selection among competitive...

  8. Functional MRI study of verbal working memory in children with attention deficit hyperactivity disorder

    International Nuclear Information System (INIS)

    Lu Youran; Geng Daoying; Feng Xiaoyuan; Du Yasong; Zhao Zhimin

    2006-01-01

    Objective: To study the verbal working memory of children with attention deficit hyperactivity disorder (ADHD) as well as to explore the characteristics of functional areas of verbal working memory with blood oxygenation level dependent functional magnetic resonance imaging (fMRI). Method: Eighteen children were selected in the study. There were 9 ADHD children with inattention subtype and 9 healthy subjects. All patients and healthy subjects completed the cognitive examination and the block- designed N-block verbal working memory task using a GE 3.0 T MR. Data were analyzed by AFNI software. Result: The neural activations of ADHD's children are lower than that of control under verbal working memory. Especially in the areas of bilateral middle frontal gyri and inferior frontal gyri, bilateral superior parietal lobules and inferior parietal lobules, right basal ganglia in the 1-BACK task. And bilateral middle frontal gyri and inferior frontal gyri, bilateral superior parietal lobules, left cortex inferior parietallobule, right basal ganglia, anterior cingulatecortex in the 2-BACK task. Conclusion: The hypofunctional areas of verbal working memory (including bilateral dorsolateral prefrontal cortex and parietal cortex) can be seen in the ADHD children especially who also has lower activation of anterior cingulate cortex under 2-BACK task. (authors)

  9. Amygdala lesions disrupt modulation of functional MRI activity evoked by facial expression in the monkey inferior temporal cortex

    Science.gov (United States)

    Hadj-Bouziane, Fadila; Liu, Ning; Bell, Andrew H.; Gothard, Katalin M.; Luh, Wen-Ming; Tootell, Roger B. H.; Murray, Elisabeth A.; Ungerleider, Leslie G.

    2012-01-01

    We previously showed that facial expressions modulate functional MRI activity in the face-processing regions of the macaque monkey’s amygdala and inferior temporal (IT) cortex. Specifically, we showed that faces expressing emotion yield greater activation than neutral faces; we term this difference the “valence effect.” We hypothesized that amygdala lesions would disrupt the valence effect by eliminating the modulatory feedback from the amygdala to the IT cortex. We compared the valence effects within the IT cortex in monkeys with excitotoxic amygdala lesions (n = 3) with those in intact control animals (n = 3) using contrast agent-based functional MRI at 3 T. Images of four distinct monkey facial expressions—neutral, aggressive (open mouth threat), fearful (fear grin), and appeasing (lip smack)—were presented to the subjects in a blocked design. Our results showed that in monkeys with amygdala lesions the valence effects were strongly disrupted within the IT cortex, whereas face responsivity (neutral faces > scrambled faces) and face selectivity (neutral faces > non-face objects) were unaffected. Furthermore, sparing of the anterior amygdala led to intact valence effects in the anterior IT cortex (which included the anterior face-selective regions), whereas sparing of the posterior amygdala led to intact valence effects in the posterior IT cortex (which included the posterior face-selective regions). Overall, our data demonstrate that the feedback projections from the amygdala to the IT cortex mediate the valence effect found there. Moreover, these modulatory effects are consistent with an anterior-to-posterior gradient of projections, as suggested by classical tracer studies. PMID:23184972

  10. High-alpha band synchronization across frontal, parietal and visual cortex mediates behavioral and neuronal effects of visuospatial attention.

    Science.gov (United States)

    Lobier, Muriel; Palva, J Matias; Palva, Satu

    2018-01-15

    Visuospatial attention prioritizes processing of attended visual stimuli. It is characterized by lateralized alpha-band (8-14 Hz) amplitude suppression in visual cortex and increased neuronal activity in a network of frontal and parietal areas. It has remained unknown what mechanisms coordinate neuronal processing among frontoparietal network and visual cortices and implement the attention-related modulations of alpha-band amplitudes and behavior. We investigated whether large-scale network synchronization could be such a mechanism. We recorded human cortical activity with magnetoencephalography (MEG) during a visuospatial attention task. We then identified the frequencies and anatomical networks of inter-areal phase synchronization from source localized MEG data. We found that visuospatial attention is associated with robust and sustained long-range synchronization of cortical oscillations exclusively in the high-alpha (10-14 Hz) frequency band. This synchronization connected frontal, parietal and visual regions and was observed concurrently with amplitude suppression of low-alpha (6-9 Hz) band oscillations in visual cortex. Furthermore, stronger high-alpha phase synchronization was associated with decreased reaction times to attended stimuli and larger suppression of alpha-band amplitudes. These results thus show that high-alpha band phase synchronization is functionally significant and could coordinate the neuronal communication underlying the implementation of visuospatial attention. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Repetition Suppression in the Left Inferior Frontal Gyrus Predicts Tone Learning Performance.

    Science.gov (United States)

    Asaridou, Salomi S; Takashima, Atsuko; Dediu, Dan; Hagoort, Peter; McQueen, James M

    2016-06-01

    Do individuals differ in how efficiently they process non-native sounds? To what extent do these differences relate to individual variability in sound-learning aptitude? We addressed these questions by assessing the sound-learning abilities of Dutch native speakers as they were trained on non-native tone contrasts. We used fMRI repetition suppression to the non-native tones to measure participants' neuronal processing efficiency before and after training. Although all participants improved in tone identification with training, there was large individual variability in learning performance. A repetition suppression effect to tone was found in the bilateral inferior frontal gyri (IFGs) before training. No whole-brain effect was found after training; a region-of-interest analysis, however, showed that, after training, repetition suppression to tone in the left IFG correlated positively with learning. That is, individuals who were better in learning the non-native tones showed larger repetition suppression in this area. Crucially, this was true even before training. These findings add to existing evidence that the left IFG plays an important role in sound learning and indicate that individual differences in learning aptitude stem from differences in the neuronal efficiency with which non-native sounds are processed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    Science.gov (United States)

    Emadi, Nazli; Rajimehr, Reza; Esteky, Hossein

    2014-01-01

    Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance. PMID:25404900

  13. Role of the Frontal Cortex in Standing Postural Sway Tasks While Dual-Tasking: A Functional Near-Infrared Spectroscopy Study Examining Working Memory Capacity

    Directory of Open Access Journals (Sweden)

    Hiroyuki Fujita

    2016-01-01

    Full Text Available Posture control during a dual-task involves changing the distribution of attention resources between the cognitive and motor tasks and involves the frontal cortex working memory (WM. The present study aimed to better understand the impact of frontal lobe activity and WM capacity in postural control during a dual-task. High and low WM-span groups were compared using their reading span test scores. High and low WM capacity were compared based on cognitive and balance performance and hemoglobin oxygenation (oxyHb levels during standing during single (S-S, standing during dual (S-D, one leg standing during single (O-S, and one leg standing during dual (O-D tasks. For sway pass length, significant difference in only the O-D task was observed between both groups. oxyHb levels were markedly increased in the right dorsolateral prefrontal cortex and supplementary motor area in the high-span group during a dual-task. Therefore, WM capacity influenced the allocation of attentional resources and motor performance.

  14. 5-HT has contrasting effects in the frontal cortex, but not the hypothalamus, on changes in noradrenaline efflux induced by the monoamine releasing-agent, d-amphetamine, and the reuptake inhibitor, BTS 54 354.

    Science.gov (United States)

    Géranton, Sandrine M; Heal, David J; Stanford, S Clare

    2004-03-01

    There is extensive evidence for functional interactions between central noradrenergic and serotonergic neurones. Here, dual-probe microdialysis was used in freely-moving rats to compare the effects of 5-HT on noradrenergic transmission in the rat frontal cortex and hypothalamus. We studied the effects of the 5-HT synthesis inhibitor, para-chlorophenylalanine (pCPA; which depleted 5-HT stores in both the frontal cortex and the hypothalamus), on spontaneous efflux of noradrenaline and on the noradrenergic responses to d-amphetamine, and the monoamine reuptake inhibitor, BTS 54 354. pCPA pretreatment alone did not affect spontaneous noradrenaline efflux in either brain region, whether or not alpha2-autoreceptors were inactivated by administration of the alpha2-antagonist, atipamezole (1 mg/kg i.p). However, in the frontal cortex, pCPA pretreatment augmented the amplitude of, and prolonged, the noradrenergic response to local infusion of d-amphetamine (10 microM). In contrast, pCPA abolished the increase in cortical noradrenaline efflux induced by local infusion of BTS 54 354 (50 microM). In the hypothalamus, pCPA did not affect the amplitude of the response to either of these agents but did prolong the effects of d-amphetamine on noradrenaline efflux. These findings suggest that serotonergic transmission has complex effects on the noradrenergic response to drugs that increase noradrenergic transmission in the frontal cortex, but has less influence in the hypothalamus.

  15. Prenatal alcohol exposure modifies glucocorticoid receptor subcellular distribution in the medial prefrontal cortex and impairs frontal cortex-dependent learning.

    Directory of Open Access Journals (Sweden)

    Andrea M Allan

    Full Text Available Prenatal alcohol exposure (PAE has been shown to impair learning, memory and executive functioning in children. Perseveration, or the failure to respond adaptively to changing contingencies, is a hallmark on neurobehavioral assessment tasks for human fetal alcohol spectrum disorder (FASD. Adaptive responding is predominantly a product of the medial prefrontal cortex (mPFC and is regulated by corticosteroids. In our mouse model of PAE we recently reported deficits in hippocampal formation-dependent learning and memory and a dysregulation of hippocampal formation glucocorticoid receptor (GR subcellular distribution. Here, we examined the effect of PAE on frontal cortical-dependent behavior, as well as mPFC GR subcellular distribution and the levels of regulators of intracellular GR transport. PAE mice displayed significantly reduced response flexibility in a Y-maze reversal learning task. While the levels of total nuclear GR were reduced in PAE mPFC, levels of GR phosphorylated at serines 203, 211 and 226 were not significantly changed. Cytosolic, but not nuclear, MR levels were elevated in the PAE mPFC. The levels of critical GR trafficking proteins, FKBP51, Hsp90, cyclophilin 40, dynamitin and dynein intermediate chain, were altered in PAE mice, in favor of the exclusion of GR from the nucleus, indicating dysregulation of GR trafficking. Our findings suggest that there may be a link between a deficit in GR nuclear localization and frontal cortical learning deficits in prenatal alcohol-exposed mice.

  16. Dissociations in Hippocampal and Frontal Contributions to Episodic Memory Performance

    OpenAIRE

    Kramer, Joel H.; Rosen, Howard J.; Du, An-Tao; Schuff, Norbert; Hollnagel, Caroline; Weiner, Michael W.; Miller, Bruce L.; Delis, Dean C.

    2005-01-01

    The hippocampus and frontal lobes both contribute to episodic memory performance. In the present study, the authors evaluated the relative contributions of hippocampus, frontal lobes, anterior temporal cortex, and posterior cortex to memory performance in neurodegenerative patients and normal older controls. Subjects (n = 42) were studied with structural MRI and a memory paradigm that measured delayed recall, semantic clustering during recall, recognition discriminability, and recognition res...

  17. Amygdala, Pulvinar & Inferior Parietal Cortex Contribute to Early Processing of Faces without Awareness

    Directory of Open Access Journals (Sweden)

    Vanessa eTroiani

    2013-06-01

    Full Text Available The goals of the present study were twofold. First, we wished to investigate the neural correlates of stimulus-driven processing of stimuli strongly suppressed from awareness and in the absence of top-down influences. We accomplished this using a novel approach in which participants performed an orthogonal task atop a flash suppression noise image to prevent top-down search. Second, we wished to investigate the extent to which amygdala responses differentiate between suppressed stimuli (fearful faces and houses based on their motivational relevance. Using continuous flash suppression in conjunction with fMRI, we presented fearful faces, houses, and a no stimulus control to one eye while participants performed an orthogonal task that appeared atop the flashing Mondrian image presented to the opposite eye. In 29 adolescents, we show activation in subcortical regions, including the superior colliculus, amygdala, thalamus, and hippocampus for suppressed objects (fearful faces and houses compared to a no stimulus control. Suppressed stimuli showed less activation compared to a no stimulus control in early visual cortex, indicating that object information was being suppressed from this region. Additionally, we find no activation in regions associated with conscious processing of these percepts (fusiform gyrus and/or parahippocampal cortex as assessed by mean activations and multi-voxel patterns. A psychophysiological interaction analysis that seeded the amygdala showed task-specific (fearful faces greater than houses modulation of right pulvinar and left inferior parietal cortex. Taken together, our results support a role for the amygdala in stimulus-driven attentional guidance towards objects of relevance and a potential mechanism for successful suppression of rivalrous stimuli.

  18. Frontal and anterior cingulate activation during overt verbal fluency in patients with first episode psychosis Ativação frontal e do cíngulo anterior durante tarefa de fluência verbal em pacientes em primeiro episódio psicótico

    Directory of Open Access Journals (Sweden)

    Maristela Schaufelberger

    2005-09-01

    Full Text Available OBJECTIVE: Functional neuroimaging studies using phonological verbal fluency tasks allow the assessment of neural circuits relevant to the neuropsychology of psychosis. There is evidence that the prefrontal cortex and anterior cingulate gyrus present different activation patterns in subjects with chronic schizophrenia relative to healthy controls. We assessed the functioning in these brain regions during phonological verbal fluency in subjects with recent-onset functional psychoses, using functional magnetic resonance imaging (FMRI. METHODS: Seven patients with functional psychoses (3 schizophreniform, 4 affective and 9 healthy controls were studied. We compared functional magnetic resonance images acquired during articulation of words beginning with letters classified as easy for word production in Portuguese. Statistical comparisons were performed using non-parametric tests. RESULTS: There were no differences between patients and controls in task performance. Controls showed greater activation than patients in the left rostral anterior cingulate gyrus and right inferior prefrontal cortex, whereas patients showed stronger activation than controls in a more dorsal part of the anterior cingulate gyrus bilaterally and in a more superior portion of the right prefrontal cortex. CONCLUSION: Our preliminary findings of attenuated engagement of inferior prefrontal cortex and anterior cingulate gyrus in patients with recent onset psychosis during phonological verbal fluency are consistent with those of previous studies. The greater activation found in other parts of the anterior cingulate gyrus and prefrontal cortex in patients may be related to a compensatory response that is required to maintain normal task performance, and suggests a pattern of disorganized activity of different functional anterior cingulate gyrus units in association with psychotic conditions.OBJETIVO: Estudos de neuroimagem funcional empregando tarefa de fluência verbal fonol

  19. Alteration of astrocytes and Wnt/β-catenin signaling in the frontal cortex of autistic subjects

    Directory of Open Access Journals (Sweden)

    Cao Fujiang

    2012-09-01

    Full Text Available Abstract Background Autism is a neurodevelopmental disorder characterized by impairments in social interaction, verbal communication and repetitive behaviors. To date the etiology of this disorder is poorly understood. Studies suggest that astrocytes play critical roles in neural plasticity by detecting neuronal activity and modulating neuronal networks. Recently, a number of studies suggested that an abnormal function of glia/astrocytes may be involved in the development of autism. However, there is yet no direct evidence showing how astrocytes develop in the brain of autistic individuals. Methods Study subjects include brain tissue from autistic subjects, BTBR T + tfJ (BTBR and Neuroligin (NL-3 knock-down mice. Western blot analysis, Immunohistochemistry and confocal microscopy studies have be used to examine the density and morphology of astrocytes, as well as Wnt and β-catenin protein expression. Results In this study, we demonstrate that the astrocytes in autisitcsubjects exhibit significantly reduced branching processes, total branching length and cell body sizes. We also detected an astrocytosis in the frontal cortex of autistic subjects. In addition, we found that the astrocytes in the brain of an NL3 knockdown mouse exhibited similar alterations to what we found in the autistic brain. Furthermore, we detected that both Wnt and β-catenin proteins are decreased in the frontal cortex of autistic subjects. Wnt/β-catenin pathway has been suggested to be involved in the regulation of astrocyte development. Conclusions Our findings imply that defects in astrocytes could impair neuronal plasticity and partially contribute to the development of autistic-like behaviors in both humans and mice. The alteration of Wnt/β-catenin pathway in the brain of autistic subjects may contribute to the changes of astrocytes.

  20. Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants.

    Directory of Open Access Journals (Sweden)

    Laura Musazzi

    2010-01-01

    Full Text Available Behavioral stress is recognized as a main risk factor for neuropsychiatric diseases. Converging evidence suggested that acute stress is associated with increase of excitatory transmission in certain forebrain areas. Aim of this work was to investigate the mechanism whereby acute stress increases glutamate release, and if therapeutic drugs prevent the effect of stress on glutamate release.Rats were chronically treated with vehicle or drugs employed for therapy of mood/anxiety disorders (fluoxetine, desipramine, venlafaxine, agomelatine and then subjected to unpredictable footshock stress. Acute stress induced marked increase in depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex in superfusion, and the chronic drug treatments prevented the increase of glutamate release. Stress induced rapid increase in the circulating levels of corticosterone in all rats (both vehicle- and drug-treated, and glutamate release increase was blocked by previous administration of selective antagonist of glucocorticoid receptor (RU 486. On the molecular level, stress induced accumulation of presynaptic SNARE complexes in synaptic membranes (both in vehicle- and drug-treated rats. Patch-clamp recordings of pyramidal neurons in the prefrontal cortex revealed that stress increased glutamatergic transmission through both pre- and postsynaptic mechanisms, and that antidepressants may normalize it by reducing release probability.Acute footshock stress up-regulated depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex. Stress-induced increase of glutamate release was dependent on stimulation of glucocorticoid receptor by corticosterone. Because all drugs employed did not block either elevation of corticosterone or accumulation of SNARE complexes, the dampening action of the drugs on glutamate release must be downstream of these processes. This novel effect of antidepressants on the response to stress

  1. Early growth hormone (GH) treatment promotes relevant motor functional improvement after severe frontal cortex lesion in adult rats.

    Science.gov (United States)

    Heredia, Margarita; Fuente, A; Criado, J; Yajeya, J; Devesa, J; Riolobos, A S

    2013-06-15

    A number of studies, in animals and humans, describe the positive effects of the growth hormone (GH) treatment combined with rehabilitation on brain reparation after brain injury. We examined the effect of GH treatment and rehabilitation in adult rats with severe frontal motor cortex ablation. Thirty-five male rats were trained in the paw-reaching-for-food task and the preferred forelimb was recorded. Under anesthesia, the motor cortex contralateral to the preferred forelimb was aspirated or sham-operated. Animals were then treated with GH (0.15 mg/kg/day, s.c) or vehicle during 5 days, commencing immediately or 6 days post-lesion. Rehabilitation was applied at short- and long-term after GH treatment. Behavioral data were analized by ANOVA following Bonferroni post hoc test. After sacrifice, immunohistochemical detection of glial fibrillary acid protein (GFAP) and nestin were undertaken in the brain of all groups. Animal group treated with GH immediately after the lesion, but not any other group, showed a significant improvement of the motor impairment induced by the motor lesion, and their performances in the motor test were no different from sham-operated controls. GFAP immunolabeling and nestin immunoreactivity were observed in the perilesional area in all injured animals; nestin immunoreactivity was higher in GH-treated injured rats (mainly in animals GH-treated 6 days post-lesion). GFAP immunoreactivity was similar among injured rats. Interestingly, nestin re-expression was detected in the contralateral undamaged motor cortex only in GH-treated injured rats, being higher in animals GH-treated immediately after the lesion than in animals GH-treated 6 days post-lesion. Early GH treatment induces significant recovery of the motor impairment produced by frontal cortical ablation. GH effects include increased neurogenesis for reparation (perilesional area) and for increased brain plasticity (contralateral motor area). Copyright © 2013 Elsevier B.V. All rights

  2. Storage and executive processes in the frontal lobes.

    Science.gov (United States)

    Smith, E E; Jonides, J

    1999-03-12

    The human frontal cortex helps mediate working memory, a system that is used for temporary storage and manipulation of information and that is involved in many higher cognitive functions. Working memory includes two components: short-term storage (on the order of seconds) and executive processes that operate on the contents of storage. Recently, these two components have been investigated in functional neuroimaging studies. Studies of storage indicate that different frontal regions are activated for different kinds of information: storage for verbal materials activates Broca's area and left-hemisphere supplementary and premotor areas; storage of spatial information activates the right-hemisphere premotor cortex; and storage of object information activates other areas of the prefrontal cortex. Two of the fundamental executive processes are selective attention and task management. Both processes activate the anterior cingulate and dorsolateral prefrontal cortex.

  3. Pure apraxia of speech due to infarct in premotor cortex.

    Science.gov (United States)

    Patira, Riddhi; Ciniglia, Lauren; Calvert, Timothy; Altschuler, Eric L

    Apraxia of speech (AOS) is now recognized as an articulation disorder distinct from dysarthria and aphasia. Various lesions have been associated with AOS in studies that are limited in precise localization due to variability in size and type of pathology. We present a case of pure AOS in setting of an acute stroke to localize more precisely than ever before the brain area responsible for AOS, dorsal premotor cortex (dPMC). The dPMC is in unique position to plan and coordinate speech production by virtue of its connection with nearby motor cortex harboring corticobulbar tract, supplementary motor area, inferior frontal operculum, and temporo-parietal area via the dorsal stream of dual-stream model of speech processing. The role of dPMC is further supported as part of dorsal stream in the dual-stream model of speech processing as well as controller in the hierarchical state feedback control model. Copyright © 2017 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  4. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    On direct comparison of the two groups, Fl subjects showed additional activation in parts of primary visual cortex, thalamus, cerebellum, inferior and middle frontal gyrus. Conversely, FDs showed greater activation in inferior frontal gyms, precentral gyms, putamen, caudate nucleus and superior parietal lobule as compared ...

  5. Perturbation of the left inferior frontal gyrus triggers adaptive plasticity in the right homologous area during speech production

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Saur, Dorothee; Price, Cathy J

    2013-01-01

    The role of the right hemisphere in aphasia recovery after left hemisphere damage remains unclear. Increased activation of the right hemisphere has been observed after left hemisphere damage. This may simply reflect a release from transcallosal inhibition that does not contribute to language...... functions. Alternatively, the right hemisphere may actively contribute to language functions by supporting disrupted processing in the left hemisphere via interhemispheric connections. To test this hypothesis, we applied off-line continuous theta burst stimulation (cTBS) over the left inferior frontal gyrus...... (IFG) in healthy volunteers, then used functional MRI to investigate acute changes in effective connectivity between the left and right hemispheres during repetition of auditory and visual words and pseudowords. In separate sessions, we applied cTBS over the left anterior IFG (aIFG) or posterior IFG (p...

  6. Dissociable effects of cingulate and medial frontal cortex lesions on stimulus-reward learning using a novel Pavlovian autoshaping procedure for the rat: implications for the neurobiology of emotion.

    Science.gov (United States)

    Bussey, T J; Everitt, B J; Robbins, T W

    1997-10-01

    The effects of quinolinic acid-induced lesions of the anterior cingulate, posterior cingulate, and medial frontal cortices on stimulus-reward learning were investigated with a novel Pavlovian autoshaping procedure in an apparatus allowing the automated presentation of computer-graphic stimuli to rats (T. J. Bussey, J. L. Muir, & T. W. Robbins, 1994). White vertical rectangles were presented on the left or the right of a computer screen. One of these conditioned stimuli (the CS+) was always followed by the presentation of a sucrose pellet; the other, the CS-, was never followed by reward. With training, rats came to approach the CS+ more often than the CS-. Anterior cingulate cortex-lesioned rats failed to demonstrate normal discriminated approach, making significantly more approaches to the CS- than did sham-operated controls. Medial frontal cortex-lesioned rats acquired the task normally but had longer overall approach latencies. Posterior cingulate cortex lesions did not affect acquisition.

  7. Drug Addiction and Its Underlying Neurobiological Basis: Neuroimaging Evidence for the Involvement of the Frontal Cortex

    Science.gov (United States)

    Goldstein, Rita Z.; Volkow, Nora D.

    2005-01-01

    Objective Studies of the neurobiological processes underlying drug addiction primarily have focused on limbic subcortical structures. Here the authors evaluated the role of frontal cortical structures in drug addiction. Method An integrated model of drug addiction that encompasses intoxication, bingeing, withdrawal, and craving is proposed. This model and findings from neuroimaging studies on the behavioral, cognitive, and emotional processes that are at the core of drug addiction were used to analyze the involvement of frontal structures in drug addiction. Results The orbitofrontal cortex and the anterior cingulate gyrus, which are regions neuroanatomically connected with limbic structures, are the frontal cortical areas most frequently implicated in drug addiction. They are activated in addicted subjects during intoxication, craving, and bingeing, and they are deactivated during withdrawal. These regions are also involved in higher-order cognitive and motivational functions, such as the ability to track, update, and modulate the salience of a reinforcer as a function of context and expectation and the ability to control and inhibit prepotent responses. Conclusions These results imply that addiction connotes cortically regulated cognitive and emotional processes, which result in the overvaluing of drug reinforcers, the undervaluing of alternative reinforcers, and deficits in inhibitory control for drug responses. These changes in addiction, which the authors call I-RISA (impaired response inhibition and salience attribution), expand the traditional concepts of drug dependence that emphasize limbic-regulated responses to pleasure and reward. PMID:12359667

  8. Subcortical surgical anatomy of the lateral frontal region: human white matter dissection and correlations with functional insights provided by intraoperative direct brain stimulation: laboratory investigation.

    Science.gov (United States)

    De Benedictis, Alessandro; Sarubbo, Silvio; Duffau, Hugues

    2012-12-01

    Recent neuroimaging and surgical results support the crucial role of white matter in mediating motor and higher-level processing within the frontal lobe, while suggesting the limited compensatory capacity after damage to subcortical structures. Consequently, an accurate knowledge of the anatomofunctional organization of the pathways running within this region is mandatory for planning safe and effective surgical approaches to different diseases. The aim of this dissection study was to improve the neurosurgeon's awareness of the subcortical anatomofunctional architecture for a lateral approach to the frontal region, to optimize both resection and postoperative outcome. Ten human hemispheres (5 left, 5 right) were dissected according to the Klingler technique. Proceeding lateromedially, the main association and projection tracts as well as the deeper basal structures were identified. The authors describe the anatomy and the relationships among the exposed structures in both a systematic and topographical surgical perspective. Structural results were also correlated to the functional responses obtained during resections of infiltrative frontal tumors guided by direct cortico-subcortical electrostimulation with patients in the awake condition. The eloquent boundaries crucial for a safe frontal lobectomy or an extensive lesionectomy are as follows: 1) the motor cortex; 2) the pyramidal tract and premotor fibers in the posterior and posteromedial part of the surgical field; 3) the inferior frontooccipital fascicle and the superior longitudinal fascicle posterolaterally; and 4) underneath the inferior frontal gyrus, the head of the caudate nucleus, and the tip of the frontal horn of the lateral ventricle in the depth. Optimization of results following brain surgery, especially within the frontal lobe, requires a perfect knowledge of functional anatomy, not only at the cortical level but also with regard to subcortical white matter connectivity.

  9. Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions.

    Science.gov (United States)

    Morgan, Helen M; Jackson, Margaret C; van Koningsbruggen, Martijn G; Shapiro, Kimron L; Linden, David E J

    2013-03-01

    In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activity in these areas was intermediate to the level of activity for the single task preferred and non-preferred information. To examine whether these specialised areas play a critical role in coordinating visual and spatial WM to perform a conjunction task, we used theta burst transcranial magnetic stimulation (TMS) to induce a functional deficit. Compared to sham stimulation, TMS to right PC or left IFG selectively impaired WM for conjunctions but not single features. This is consistent with findings from visual search paradigms, in which frontal and parietal TMS selectively affects search for conjunctions compared to single features, and with combined TMS and functional imaging work suggesting that parietal and frontal regions are functionally coupled in tasks requiring integration of visual and spatial information. Our results thus elucidate mechanisms by which the brain coordinates spatially segregated processing streams and have implications beyond the field of working memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Left frontal hub connectivity delays cognitive impairment in autosomal-dominant and sporadic Alzheimer’s disease

    Science.gov (United States)

    Franzmeier, Nicolai; Düzel, Emrah; Jessen, Frank; Buerger, Katharina; Levin, Johannes; Duering, Marco; Dichgans, Martin; Haass, Christian; Suárez-Calvet, Marc; Fagan, Anne M; Paumier, Katrina; Benzinger, Tammie; Masters, Colin L; Morris, John C; Perneczky, Robert; Janowitz, Daniel; Catak, Cihan; Wolfsgruber, Steffen; Wagner, Michael; Teipel, Stefan; Kilimann, Ingo; Ramirez, Alfredo; Rossor, Martin; Jucker, Mathias; Chhatwal, Jasmeer; Spottke, Annika; Boecker, Henning; Brosseron, Frederic; Falkai, Peter; Fliessbach, Klaus; Heneka, Michael T; Laske, Christoph; Nestor, Peter; Peters, Oliver; Fuentes, Manuel; Menne, Felix; Priller, Josef; Spruth, Eike J; Franke, Christiana; Schneider, Anja; Kofler, Barbara; Westerteicher, Christine; Speck, Oliver; Wiltfang, Jens; Bartels, Claudia; Araque Caballero, Miguel Ángel; Metzger, Coraline; Bittner, Daniel; Weiner, Michael; Lee, Jae-Hong; Salloway, Stephen; Danek, Adrian; Goate, Alison; Schofield, Peter R; Bateman, Randall J; Ewers, Michael

    2018-01-01

    Abstract Patients with Alzheimer’s disease vary in their ability to sustain cognitive abilities in the presence of brain pathology. A major open question is which brain mechanisms may support higher reserve capacity, i.e. relatively high cognitive performance at a given level of Alzheimer’s pathology. Higher functional MRI-assessed functional connectivity of a hub in the left frontal cortex is a core candidate brain mechanism underlying reserve as it is associated with education (i.e. a protective factor often associated with higher reserve) and attenuated cognitive impairment in prodromal Alzheimer’s disease. However, no study has yet assessed whether such hub connectivity of the left frontal cortex supports reserve throughout the evolution of pathological brain changes in Alzheimer’s disease, including the presymptomatic stage when cognitive decline is subtle. To address this research gap, we obtained cross-sectional resting state functional MRI in 74 participants with autosomal dominant Alzheimer’s disease, 55 controls from the Dominantly Inherited Alzheimer’s Network and 75 amyloid-positive elderly participants, as well as 41 amyloid-negative cognitively normal elderly subjects from the German Center of Neurodegenerative Diseases multicentre study on biomarkers in sporadic Alzheimer’s disease. For each participant, global left frontal cortex connectivity was computed as the average resting state functional connectivity between the left frontal cortex (seed) and each voxel in the grey matter. As a marker of disease stage, we applied estimated years from symptom onset in autosomal dominantly inherited Alzheimer’s disease and cerebrospinal fluid tau levels in sporadic Alzheimer’s disease cases. In both autosomal dominant and sporadic Alzheimer’s disease patients, higher levels of left frontal cortex connectivity were correlated with greater education. For autosomal dominant Alzheimer’s disease, a significant left frontal cortex connectivity

  11. Prenatal alcohol exposure alters p35, CDK5 and GSK3β in the medial frontal cortex and hippocampus of adolescent mice

    Directory of Open Access Journals (Sweden)

    Samantha L. Goggin

    2014-01-01

    Full Text Available Fetal alcohol spectrum disorders (FASDs are the number one cause of preventable mental retardation. An estimated 2–5% of children are diagnosed as having a FASD. While it is known that children prenatally exposed to alcohol experience cognitive deficits and a higher incidence of psychiatric illness later in life, the pathways underlying these abnormalities remain uncertain. GSK3β and CDK5 are protein kinases that are converging points for a vast number of signaling cascades, including those controlling cellular processes critical to learning and memory. We investigated whether levels of GSK3β and CDK5 are affected by moderate prenatal alcohol exposure (PAE, specifically in the hippocampus and medial frontal cortex of the adolescent mouse. In the present work we utilized immunoblotting techniques to demonstrate that moderate PAE increased hippocampal p35 and β-catenin, and decreased total levels of GSK3β, while increasing GSK3β Ser9 and Tyr216 phosphorylation. Interestingly, different alterations were seen in the medial frontal cortex where p35 and CDK5 were decreased and increased total GSK3β was accompanied by reduced Tyr216 of the enzyme. These results suggest that kinase dysregulation during adolescence might be an important contributing factor to the effects of PAE on hippocampal and medial frontal cortical functioning; and by extension, that global modulation of these kinases may produce differing effects depending on brain region.

  12. Early aphasia rehabilitation is associated with functional reactivation of the left inferior frontal gyrus: a pilot study.

    Science.gov (United States)

    Mattioli, Flavia; Ambrosi, Claudia; Mascaro, Lorella; Scarpazza, Cristina; Pasquali, Patrizia; Frugoni, Marina; Magoni, Mauro; Biagi, Laura; Gasparotti, Roberto

    2014-02-01

    Early poststroke aphasia rehabilitation effects and their functional MRI (fMRI) correlates were investigated in a pilot, controlled longitudinal study. Twelve patients with mild/moderate aphasia (8 Broca, 3 anomic, and 1 Wernicke) were randomly assigned to daily language rehabilitation for 2 weeks (starting 2.2 [mean] days poststroke) or no rehabilitation. The Aachen Aphasia Test and fMRI recorded during an auditory comprehension task were performed at 3 time intervals: mean 2.2 (T1), 16.2 (T2), and 190 (T3) days poststroke. Groups did not differ in terms of age, education, aphasia severity, lesions volume, baseline fMRI activations, and in task performance during fMRI across examinations. Rehabilitated patients significantly improved in naming and written language tasks (Paphasia treatment is useful, has durable effects, and may lead to early enhanced recruitment of brain areas, particularly the left inferior frontal gyrus, which persists in the chronic phase.

  13. The contribution of distinct subregions of the ventromedial frontal cortex to emotion, social behavior, and decision making.

    Science.gov (United States)

    Rudebeck, P H; Bannerman, D M; Rushworth, M F S

    2008-12-01

    Damage to the ventromedial frontal cortex (VMFC) in humans is associated with deficits in decision making. Decision making, however, often happens while people are interacting with others, where it is important to take the social consequences of a course of action into account. It is well known that VMFC lesions also lead to marked alterations in patients' emotions and ability to interact socially; however, it has not been clear which parts of the VMFC are critical for these changes. Recently, there has been considerable interest in the role of the VMFC in choice behavior during interpersonal exchanges. Here, we highlight recent research that suggests that two areas within or adjacent to the VMFC, the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC), may play distinct but complementary roles in mediating normal patterns of emotion and social behavior. Converging lines of evidence from human, macaque, and rat studies now suggest that the OFC may be more specialized for simple emotional responses, such as fear and aggression, through its role in representing primary reinforcement or punishment. By contrast, the ACC may play a distinct role in more complex aspects of emotion, such as social interaction, by virtue of its connections with the discrete parts of the temporal lobe and subcortical structures that control autonomic responses.

  14. Semantic strategy training increases memory performance and brain activity in patients with prefrontal cortex lesions.

    Science.gov (United States)

    Miotto, Eliane C; Savage, Cary R; Evans, Jonathan J; Wilson, Barbara A; Martin, Maria G M; Balardin, Joana B; Barros, Fabio G; Garrido, Griselda; Teixeira, Manoel J; Amaro Junior, Edson

    2013-03-01

    Memory deficit is a frequent cognitive disorder following acquired prefrontal cortex lesions. In the present study, we investigated the brain correlates of a short semantic strategy training and memory performance of patients with distinct prefrontal cortex lesions using fMRI and cognitive tests. Twenty-one adult patients with post-acute prefrontal cortex (PFC) lesions, twelve with left dorsolateral PFC (LPFC) and nine with bilateral orbitofrontal cortex (BOFC) were assessed before and after a short cognitive semantic training using a verbal memory encoding paradigm during scanning and neuropsychological tests outside the scanner. After the semantic strategy training both groups of patients showed significant behavioral improvement in verbal memory recall and use of semantic strategies. In the LPFC group, greater activity in left inferior and medial frontal gyrus, precentral gyrus and insula was found after training. For the BOFC group, a greater activation was found in the left parietal cortex, right cingulated and precuneus after training. The activation of these specific areas in the memory and executive networks following cognitive training was associated to compensatory brain mechanisms and application of the semantic strategy. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Structural and functional changes in the somatosensory cortex in euthymic females with bipolar disorder.

    Science.gov (United States)

    Minuzzi, Luciano; Syan, Sabrina K; Smith, Mara; Hall, Alexander; Hall, Geoffrey Bc; Frey, Benicio N

    2017-12-01

    Current evidence from neuroimaging data suggests possible dysfunction of the fronto-striatal-limbic circuits in individuals with bipolar disorder. Somatosensory cortical function has been implicated in emotional recognition, risk-taking and affective responses through sensory modalities. This study investigates anatomy and function of the somatosensory cortex in euthymic bipolar women. In total, 68 right-handed euthymic women (bipolar disorder = 32 and healthy controls = 36) between 16 and 45 years of age underwent high-resolution anatomical and functional magnetic resonance imaging during the mid-follicular menstrual phase. The somatosensory cortex was used as a seed region for resting-state functional connectivity analysis. Voxel-based morphometry was used to evaluate somatosensory cortical gray matter volume between groups. We found increased resting-state functional connectivity between the somatosensory cortex and insular cortex, inferior prefrontal gyrus and frontal orbital cortex in euthymic bipolar disorder subjects compared to healthy controls. Voxel-based morphometry analysis showed decreased gray matter in the left somatosensory cortex in the bipolar disorder group. Whole-brain voxel-based morphometry analysis controlled by age did not reveal any additional significant difference between groups. This study is the first to date to evaluate anatomy and function of the somatosensory cortex in a well-characterized sample of euthymic bipolar disorder females. Anatomical and functional changes in the somatosensory cortex in this population might contribute to the pathophysiology of bipolar disorder.

  16. Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation.

    Science.gov (United States)

    Nagarajan, Raman P; Hogart, Amber R; Gwye, Ynnez; Martin, Michelle R; LaSalle, Janine M

    2006-01-01

    Mutations in MECP2, encoding methyl CpG binding protein 2 (MeCP2), cause most cases of Rett syndrome (RTT), an X-linked neurodevelopmental disorder. Both RTT and autism are "pervasive developmental disorders" and share a loss of social, cognitive and language skills and a gain in repetitive stereotyped behavior, following apparently normal perinatal development. Although MECP2 coding mutations are a rare cause of autism, MeCP2 expression defects were previously found in autism brain. To further study the role of MeCP2 in autism spectrum disorders (ASDs), we determined the frequency of MeCP2 expression defects in brain samples from autism and other ASDs. We also tested the hypotheses that MECP2 promoter mutations or aberrant promoter methylation correlate with reduced expression in cases of idiopathic autism. MeCP2 immunofluorescence in autism and other neurodevelopmental disorders was quantified by laser scanning cytometry and compared with control postmortem cerebral cortex samples on a large tissue microarray. A significant reduction in MeCP2 expression compared to age-matched controls was found in 11/14 autism (79%), 9/9 RTT (100%), 4/4 Angelman syndrome (100%), 3/4 Prader-Willi syndrome (75%), 3/5 Down syndrome (60%), and 2/2 attention deficit hyperactivity disorder (100%) frontal cortex samples. One autism female was heterozygous for a rare MECP2 promoter variant that correlated with reduced MeCP2 expression. A more frequent occurrence was significantly increased MECP2 promoter methylation in autism male frontal cortex compared to controls. Furthermore, percent promoter methylation of MECP2 significantly correlated with reduced MeCP2 protein expression. These results suggest that both genetic and epigenetic defects lead to reduced MeCP2 expression and may be important in the complex etiology of autism.

  17. Difference in the functional connectivity of the dorsolateral prefrontal cortex between smokers with nicotine dependence and individuals with internet gaming disorder.

    Science.gov (United States)

    Ge, Xin; Sun, Yawen; Han, Xu; Wang, Yao; Ding, Weina; Cao, Mengqiu; Du, Yasong; Xu, Jianrong; Zhou, Yan

    2017-07-27

    It has been reported that internet gaming disorder (IGD) and smokers with nicotine dependence (SND) share clinical characteristics, such as over-engagement despite negative consequences and cravings. This study is to investigate the alterations in the resting-state functional connectivity (rsFC) of the dorsolateral prefrontal cortex (DLPFC) observed in SND and IGD. In this study, 27 IGD, 29 SND, and 33 healthy controls (HC) underwent a resting-state functional magnetic resonance imaging (rs-fMRI) scan. DLPFC connectivity was determined in all participates by investigating the synchronized low-frequency fMRI signal fluctuations using a temporal seed-based correlation method. Compared with the HC group, the IGD and SND groups showed decreased rsFC with DLPFC in the right insula and left inferior frontal gyrus with DLPFC. Compared with SND group, the IGD subjects exhibited increased rsFC in the left inferior temporal gyrus and right inferior orbital frontal gyrus and decreased rsFC in the right middle occipital gyrus, supramarginal gyrus, and cuneus with DLPFC. Our results confirmed that SND and IGD share similar neural mechanisms related to craving and impulsive inhibitions. The significant difference in rsFC with DLPFC between the IGD and SND subjects may be attributed to the visual and auditory stimulation generated by long-term internet gaming.

  18. Passive heat exposure induced by hot water leg immersion increased oxyhemoglobin in pre-frontal cortex to preserve oxygenation and did not contribute to impaired cognitive functioning

    Science.gov (United States)

    Wijayanto, Titis; Toramoto, Sayo; Tochihara, Yutaka

    2013-07-01

    This study investigated the effects of passive heat exposure on pre-frontal cortex oxygenation and cognitive functioning, specifically to examine whether the change in pre-frontal cortex oxygenation coincided with cognitive functioning during heat exposure. Eleven male students who participated in this study immersed their lower legs to the knees in three different water temperatures, 38 °C, 40 °C, and 42 °C water in an air temperature of 28 º C and 50 % relative humidity for 60 min. After 45 min of leg immersion they performed cognitive functioning tasks assessing their short-term memory while immersing their lower legs. There were higher rectal temperature ( P 0.05). No statistical difference in cognitive functioning among the three conditions was observed with a higher increase of oxyhemoglobin during the cognitive functioning in the 42 °C condition for the left ( P = 0.05) and right ( P thermally comfortable.

  19. Subcortical and cortical correlates of pitch discrimination: Evidence for two levels of neuroplasticity in musicians

    DEFF Research Database (Denmark)

    Bianchi, Federica; Hjortkjær, Jens; Santurette, Sébastien

    2017-01-01

    superior temporal gyrus, Heschl's gyrus, insular cortex, inferior frontal gyrus, and in the inferior colliculus. Both subcortical and cortical neural responses predicted the individual pitch-discrimination performance. However, functional activity in the inferior colliculus correlated with differences...

  20. A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields.

    Science.gov (United States)

    Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B

    2016-09-06

    Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas.

  1. Estrogens regulate neuroinflammatory genes via estrogen receptors α and β in the frontal cortex of middle-aged female rats

    Directory of Open Access Journals (Sweden)

    Mahó Sándor

    2011-07-01

    Full Text Available Abstract Background Estrogens exert anti-inflammatory and neuroprotective effects in the brain mainly via estrogen receptors α (ERα and β (ERβ. These receptors are members of the nuclear receptor superfamily of ligand-dependent transcription factors. This study was aimed at the elucidation of the effects of ERα and ERβ agonists on the expression of neuroinflammatory genes in the frontal cortex of aging female rats. Methods To identify estrogen-responsive immunity/inflammation genes, we treated middle-aged, ovariectomized rats with 17β-estradiol (E2, ERα agonist 16α-lactone-estradiol (16α-LE2 and ERβ agonist diarylpropionitrile (DPN, or vehicle by Alzet minipump delivery for 29 days. Then we compared the transcriptomes of the frontal cortex of estrogen-deprived versus ER agonist-treated animals using Affymetrix Rat230 2.0 expression arrays and TaqMan-based quantitative real-time PCR. Microarray and PCR data were evaluated by using Bioconductor packages and the RealTime StatMiner software, respectively. Results Microarray analysis revealed the transcriptional regulation of 21 immunity/inflammation genes by 16α-LE2. The subsequent comparative real-time PCR study analyzed the isotype specific effects of ER agonists on neuroinflammatory genes of primarily glial origin. E2 regulated the expression of sixteen genes, including down-regulation of complement C3 and C4b, Ccl2, Tgfb1, macrophage expressed gene Mpeg1, RT1-Aw2, Cx3cr1, Fcgr2b, Cd11b, Tlr4 and Tlr9, and up-regulation of defensin Np4 and RatNP-3b, IgG-2a, Il6 and ER gene Esr1. Similar to E2, both 16α-LE2 and DPN evoked up-regulation of defensins, IgG-2a and Il6, and down-regulation of C3 and its receptor Cd11b, Ccl2, RT1-Aw2 and Fcgr2b. Conclusions These findings provide evidence that E2, 16α-LE2 and DPN modulate the expression of neuroinflammatory genes in the frontal cortex of middle-aged female rats via both ERα and ERβ. We propose that ERβ is a promising target to suppress

  2. Dissociating Effects of Scrambling and Topicalization within the Left Frontal and Temporal Language Areas: An fMRI Study in Kaqchikel Maya.

    Science.gov (United States)

    Ohta, Shinri; Koizumi, Masatoshi; Sakai, Kuniyoshi L

    2017-01-01

    Some natural languages grammatically allow different types of changing word orders, such as object scrambling and topicalization. Scrambling and topicalization are more related to syntax and semantics/phonology, respectively. Here we hypothesized that scrambling should activate the left frontal regions, while topicalization would affect the bilateral temporal regions. To examine such distinct effects in our functional magnetic resonance imaging study, we targeted the Kaqchikel Maya language, a Mayan language spoken in Guatemala. In Kaqchikel, the syntactically canonical word order is verb-object-subject (VOS), but at least three non-canonical word orders (i.e., SVO, VSO, and OVS) are also grammatically allowed. We used a sentence-picture matching task, in which the participants listened to a short Kaqchikel sentence and judged whether a picture matched the meaning of the sentence. The advantage of applying this experimental paradigm to an understudied language such as Kaqchikel is that it will allow us to validate the universality of linguistic computation in the brain. We found that the conditions with scrambled sentences [+scrambling] elicited significant activation in the left inferior frontal gyrus and lateral premotor cortex, both of which have been proposed as grammar centers, indicating the effects of syntactic loads. In contrast, the conditions without topicalization [-topicalization] resulted in significant activation in bilateral Heschl's gyrus and superior temporal gyrus, demonstrating that the syntactic and phonological processes were clearly dissociated within the language areas. Moreover, the pre-supplementary motor area and left superior/middle temporal gyri were activated under relatively demanding conditions, suggesting their supportive roles in syntactic or semantic processing. To exclude any semantic/phonological effects of the object-subject word orders, we performed direct comparisons while making the factor of topicalization constant, and

  3. Rostro-Caudal Organization of Connectivity between Cingulate Motor Areas and Lateral Frontal Regions

    Directory of Open Access Journals (Sweden)

    Kep Kee Loh

    2018-01-01

    Full Text Available According to contemporary views, the lateral frontal cortex is organized along a rostro-caudal functional axis with increasingly complex cognitive/behavioral control implemented rostrally, and increasingly detailed motor control implemented caudally. Whether the medial frontal cortex follows the same organization remains to be elucidated. To address this issue, the functional connectivity of the 3 cingulate motor areas (CMAs in the human brain with the lateral frontal cortex was investigated. First, the CMAs and their representations of hand, tongue, and eye movements were mapped via task-related functional magnetic resonance imaging (fMRI. Second, using resting-state fMRI, their functional connectivity with lateral prefrontal and lateral motor cortical regions of interest (ROIs were examined. Importantly, the above analyses were conducted at the single-subject level to account for variability in individual cingulate morphology. The results demonstrated a rostro-caudal functional organization of the CMAs in the human brain that parallels that in the lateral frontal cortex: the rostral CMA has stronger functional connectivity with prefrontal regions and weaker connectivity with motor regions; conversely, the more caudal CMAs have weaker prefrontal and stronger motor connectivity. Connectivity patterns of the hand, tongue and eye representations within the CMAs are consistent with that of their parent CMAs. The parallel rostral-to-caudal functional organization observed in the medial and lateral frontal cortex could likely contribute to different hierarchies of cognitive-motor control.

  4. Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex

    Science.gov (United States)

    Lafer-Sousa, Rosa; Conway, Bevil R.

    2014-01-01

    Visual-object processing culminates in inferior temporal (IT) cortex. To assess the organization of IT, we measured fMRI responses in alert monkey to achromatic images (faces, fruit, bodies, places) and colored gratings. IT contained multiple color-biased regions, which were typically ventral to face patches and, remarkably, yoked to them, spaced regularly at four locations predicted by known anatomy. Color and face selectivity increased for more anterior regions, indicative of a broad hierarchical arrangement. Responses to non-face shapes were found across IT, but were stronger outside color-biased regions and face patches, consistent with multiple parallel streams. IT also contained multiple coarse eccentricity maps: face patches overlapped central representations; color-biased regions spanned mid-peripheral representations; and place-biased regions overlapped peripheral representations. These results suggest that IT comprises parallel, multi-stage processing networks subject to one organizing principle. PMID:24141314

  5. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    Science.gov (United States)

    Noohi, Fatemeh; Kinnaird, Catherine; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2014-01-01

    The aim of the current study was to characterize the brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit saccular Vestibular Evoked Myogenic Potentials (VEMP) (Colebatch & Halmagyi 1992; Colebatch et al. 1994). Some researchers have reported that airconducted skull tap elicits both saccular and utricle VEMPs, while being faster and less irritating for the subjects (Curthoys et al. 2009, Wackym et al., 2012). However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying the vestibular disorders related to otolith deficits. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, pre and post central gyri, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation (Bottini et al., 1994; Dieterich et al., 2003; Emri et al., 2003; Schlindwein et al., 2008; Janzen et al., 2008). Here we hypothesized that the skull tap elicits the similar pattern of cortical activity as the auditory tone burst. Subjects put on a set of MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in supine position, with eyes closed. All subjects received both forms of the stimulation, however, the order of stimulation with auditory tone burst and air-conducted skull tap was counterbalanced across subjects. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular cortex, resulting in vestibular response (Halmagyi et al., 1995). Auditory tone bursts were also delivered for comparison. To validate

  6. Visual Categorization and the Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Jamie K Fitzgerald

    2012-05-01

    Full Text Available The primate brain is adept at rapidly grouping items and events into functional classes, or categories, in order to recognize the significance of stimuli and guide behavior. Higher cognitive functions have traditionally been considered the domain of frontal areas. However, increasing evidence suggests that parietal cortex is also involved in categorical and associative processes. Previous work showed that the parietal cortex is highly involved in spatial processing, attention and saccadic eye movement planning, and more recent studies have found decision-making signals in LIP. We recently found that a subdivision of parietal cortex, the lateral intraparietal area (LIP, reflects learned categories for multiple types of visual stimuli. Additionally, a comparison of categorization signals in parietal and frontal areas found stronger and earlier categorization signals in parietal cortex, arguing that parietal abstract association or category signals are unlikely to arise via feedback from prefrontal cortex (PFC.

  7. Modulation of sibutramine-induced increases in extracellular noradrenaline concentration in rat frontal cortex and hypothalamus by α2-adrenoceptors

    Science.gov (United States)

    Wortley, K E; Heal, D J; Stanford, S C

    1999-01-01

    The effects of sibutramine (0.25–10 mg kg−1 i.p.) on extracellular noradrenaline concentration in the frontal cortex and hypothalamus of freely-moving rats were investigated using microdialysis. The role of presynaptic α2-adrenoceptors in modulating the effects of sibutramine in these brain areas was also determined.Sibutramine induced an increase in extracellular noradrenaline concentration, the magnitude of which paralleled dose, in both brain areas. In the cortex, this increase was gradual and sustained, whereas in the hypothalamus it was more rapid and of shorter duration.In both the cortex and hypothalamus, pretreatment of rats with the α2-adrenoceptor antagonist RX821002 (3 mg kg−1 i.p.) potentiated increases in the accumulation of extracellular noradrenaline induced by sibutramine (10 mg kg−1 i.p.), by 7 and 10 fold respectively. RX821002 also reduced the latency of sibutramine to reach its maximum effect in the cortex, but not in the hypothalamus.Infusion of RX821002 (1 μM) via the probe increased the accumulation of extracellular noradrenaline induced by sibutramine (10 mg kg−1 i.p.) in both brain areas. In the hypothalamus, the effects of RX821002 on the accumulation of noradrenaline induced by sibutramine were 2 fold greater than those in the cortex.These findings support evidence that sibutramine inhibits the reuptake of noradrenaline in vivo, but that the accumulation of extracellular noradrenaline is limited by noradrenergic activation of presynaptic α2-adrenoceptors. Furthermore, the data suggest that terminal α2-adrenoceptors in the hypothalamus exert a greater inhibitory effect over the control of extracellular noradrenaline accumulation than do those in the cortex. PMID:10516646

  8. Subregions of the human superior frontal gyrus and their connections.

    Science.gov (United States)

    Li, Wei; Qin, Wen; Liu, Huaigui; Fan, Lingzhong; Wang, Jiaojian; Jiang, Tianzi; Yu, Chunshui

    2013-09-01

    The superior frontal gyrus (SFG) is located at the superior part of the prefrontal cortex and is involved in a variety of functions, suggesting the existence of functional subregions. However, parcellation schemes of the human SFG and the connection patterns of each subregion remain unclear. We firstly parcellated the human SFG into the anteromedial (SFGam), dorsolateral (SFGdl), and posterior (SFGp) subregions based on diffusion tensor tractography. The SFGam was anatomically connected with the anterior and mid-cingulate cortices, which are critical nodes of the cognitive control network and the default mode network (DMN). The SFGdl was connected with the middle and inferior frontal gyri, which are involved in the cognitive execution network. The SFGp was connected with the precentral gyrus, caudate, thalamus, and frontal operculum, which are nodes of the motor control network. Resting-state functional connectivity analysis further revealed that the SFGam was mainly correlated with the cognitive control network and the DMN; the SFGdl was correlated with the cognitive execution network and the DMN; and the SFGp was correlated with the sensorimotor-related brain regions. The SFGam and SFGdl were further parcellated into three and two subclusters that are well corresponding to Brodmann areas. These findings suggest that the human SFG consists of multiple dissociable subregions that have distinct connection patterns and that these subregions are involved in different functional networks and serve different functions. These results may improve our understanding on the functional complexity of the SFG and provide us an approach to investigate the SFG at the subregional level. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Early visual experience and the recognition of basic facial expressions: involvement of the middle temporal and inferior frontal gyri during haptic identification by the early blind.

    Science.gov (United States)

    Kitada, Ryo; Okamoto, Yuko; Sasaki, Akihiro T; Kochiyama, Takanori; Miyahara, Motohide; Lederman, Susan J; Sadato, Norihiro

    2013-01-01

    Face perception is critical for social communication. Given its fundamental importance in the course of evolution, the innate neural mechanisms can anticipate the computations necessary for representing faces. However, the effect of visual deprivation on the formation of neural mechanisms that underlie face perception is largely unknown. We previously showed that sighted individuals can recognize basic facial expressions by haptics surprisingly well. Moreover, the inferior frontal gyrus (IFG) and posterior superior temporal sulcus (pSTS) in the sighted subjects are involved in haptic and visual recognition of facial expressions. Here, we conducted both psychophysical and functional magnetic-resonance imaging (fMRI) experiments to determine the nature of the neural representation that subserves the recognition of basic facial expressions in early blind individuals. In a psychophysical experiment, both early blind and sighted subjects haptically identified basic facial expressions at levels well above chance. In the subsequent fMRI experiment, both groups haptically identified facial expressions and shoe types (control). The sighted subjects then completed the same task visually. Within brain regions activated by the visual and haptic identification of facial expressions (relative to that of shoes) in the sighted group, corresponding haptic identification in the early blind activated regions in the inferior frontal and middle temporal gyri. These results suggest that the neural system that underlies the recognition of basic facial expressions develops supramodally even in the absence of early visual experience.

  10. Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex.

    Science.gov (United States)

    Chudasama, Y; Robbins, Trevor W

    2003-09-24

    To examine possible heterogeneity of function within the ventral regions of the rodent frontal cortex, the present study compared the effects of excitotoxic lesions of the orbitofrontal cortex (OFC) and the infralimbic cortex (ILC) on pavlovian autoshaping and discrimination reversal learning. During the pavlovian autoshaping task, in which rats learn to approach a stimulus predictive of reward [conditional stimulus (CS+)], only the OFC group failed to acquire discriminated approach but was unimpaired when preoperatively trained. In the visual discrimination learning and reversal task, rats were initially required to discriminate a stimulus positively associated with reward. There was no effect of either OFC or ILC lesions on discrimination learning. When the stimulus-reward contingencies were reversed, both groups of animals committed more errors, but only the OFC-lesioned animals were unable to suppress the previously rewarded stimulus-reward association, committing more "stimulus perseverative" errors. In contrast, the ILC group showed a pattern of errors that was more attributable to "learning" than perseveration. These findings suggest two types of dissociation between the effects of OFC and ILC lesions: (1) OFC lesions impaired the learning processes implicated in pavlovian autoshaping but not instrumental simultaneous discrimination learning, whereas ILC lesions were unimpaired at autoshaping and their reversal learning deficit did not reflect perseveration, and (2) OFC lesions induced perseverative responding in reversal learning but did not disinhibit responses to pavlovian CS-. In contrast, the ILC lesion had no effect on response inhibitory control in either of these settings. The findings are discussed in the context of dissociable executive functions in ventral sectors of the rat prefrontal cortex.

  11. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    Directory of Open Access Journals (Sweden)

    Nazli eEmadi

    2014-11-01

    Full Text Available Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (< 8 Hz oscillation in the spike train, prior and phase-locked to the stimulus onset, was correlated with increased gamma power and neuronal baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance.

  12. The role of the frontal cortex in memory: an investigation of the Von Restorff effect

    Science.gov (United States)

    Elhalal, Anat; Davelaar, Eddy J.; Usher, Marius

    2014-01-01

    Evidence from neuropsychology and neuroimaging indicate that the pre-frontal cortex (PFC) plays an important role in human memory. Although frontal patients are able to form new memories, these memories appear qualitatively different from those of controls by lacking distinctiveness. Neuroimaging studies of memory indicate activation in the PFC under deep encoding conditions, and under conditions of semantic elaboration. Based on these results, we hypothesize that the PFC enhances memory by extracting differences and commonalities in the studied material. To test this hypothesis, we carried out an experimental investigation to test the relationship between the PFC-dependent factors and semantic factors associated with common and specific features of words. These experiments were performed using Free-Recall of word lists with healthy adults, exploiting the correlation between PFC function and fluid intelligence. As predicted, a correlation was found between fluid intelligence and the Von-Restorff effect (better memory for semantic isolates, e.g., isolate “cat” within category members of “fruit”). Moreover, memory for the semantic isolate was found to depend on the isolate's serial position. The isolate item tends to be recalled first, in comparison to non-isolates, suggesting that the process interacts with short term memory. These results are captured within a computational model of free recall, which includes a PFC mechanism that is sensitive to both commonality and distinctiveness, sustaining a trade-off between the two. PMID:25018721

  13. Enhancing verbal creativity: modulating creativity by altering the balance between right and left inferior frontal gyrus with tDCS.

    Science.gov (United States)

    Mayseless, N; Shamay-Tsoory, S G

    2015-04-16

    Creativity is the production of novel ideas that have value. Previous research indicated that while regions in the right hemisphere are implicated in the production of new ideas, damage to the left inferior frontal gyrus (IFG) is associated with increased creativity, indicating that the left IFG damage may have a "releasing" effect on creativity. To examine this, in the present study we used transcranial direct current stimulation (tDCS) to modulate activity of the right and the left IFG. In the first experiment we show that whereas anodal tDCS over the right IFG coupled with cathodal tDCS over the left IFG increases creativity as measured by a verbal divergent thinking task, the reverse stimulation does not affect creative production. To further confirm that only altering the balance between the two hemispheres is crucial in modulating creativity, in the second experiment we show that stimulation targeting separately the left IFG (cathodal stimulation) or the right IFG (anodal stimulation) did not result in changes in creativity as measured by verbal divergent thinking. These findings support the balance hypothesis, according to which verbal creativity requires a balance of activation between the right and the left frontal lobes, and more specifically, between the right and the left IFG. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Q-Ball of Inferior Fronto-Occipital Fasciculus and Beyond

    Science.gov (United States)

    Amirbekian, Bagrat; Berger, Mitchel S.; Henry, Roland G.

    2014-01-01

    The inferior fronto-occipital fasciculus (IFOF) is historically described as the longest associative bundle in the human brain and it connects various parts of the occipital cortex, temporo-basal area and the superior parietal lobule to the frontal lobe through the external/extreme capsule complex. The exact functional role and the detailed anatomical definition of the IFOF are still under debate within the scientific community. In this study we present a fiber tracking dissection of the right and left IFOF by using a q-ball residual-bootstrap reconstruction of High-Angular Resolution Diffusion Imaging (HARDI) data sets in 20 healthy subjects. By defining a single seed region of interest on the coronal fractional anisotropy (FA) color map of each subject, we investigated all the pathways connecting the parietal, occipital and posterior temporal cortices to the frontal lobe through the external/extreme capsule. In line with recent post-mortem dissection studies we found more extended anterior-posterior association connections than the “classical” fronto-occipital representation of the IFOF. In particular the pathways we evidenced showed: a) diffuse projections in the frontal lobe, b) fronto-parietal lobes connections trough the external capsule in almost all the subjects and c) widespread connections in the posterior regions. Our study represents the first consistent in vivo demonstration across a large group of individuals of these novel anterior and posterior terminations of the IFOF detailed described only by post-mortem anatomical dissection. Furthermore our work establishes the feasibility of consistent in vivo mapping of this architecture with independent in vivo methodologies. In conclusion q-ball tractography dissection supports a more complex definition of IFOF, which includes several subcomponents likely underlying specific function. PMID:24945305

  15. Q-ball of inferior fronto-occipital fasciculus and beyond.

    Directory of Open Access Journals (Sweden)

    Eduardo Caverzasi

    Full Text Available The inferior fronto-occipital fasciculus (IFOF is historically described as the longest associative bundle in the human brain and it connects various parts of the occipital cortex, temporo-basal area and the superior parietal lobule to the frontal lobe through the external/extreme capsule complex. The exact functional role and the detailed anatomical definition of the IFOF are still under debate within the scientific community. In this study we present a fiber tracking dissection of the right and left IFOF by using a q-ball residual-bootstrap reconstruction of High-Angular Resolution Diffusion Imaging (HARDI data sets in 20 healthy subjects. By defining a single seed region of interest on the coronal fractional anisotropy (FA color map of each subject, we investigated all the pathways connecting the parietal, occipital and posterior temporal cortices to the frontal lobe through the external/extreme capsule. In line with recent post-mortem dissection studies we found more extended anterior-posterior association connections than the "classical" fronto-occipital representation of the IFOF. In particular the pathways we evidenced showed: a diffuse projections in the frontal lobe, b fronto-parietal lobes connections trough the external capsule in almost all the subjects and c widespread connections in the posterior regions. Our study represents the first consistent in vivo demonstration across a large group of individuals of these novel anterior and posterior terminations of the IFOF detailed described only by post-mortem anatomical dissection. Furthermore our work establishes the feasibility of consistent in vivo mapping of this architecture with independent in vivo methodologies. In conclusion q-ball tractography dissection supports a more complex definition of IFOF, which includes several subcomponents likely underlying specific function.

  16. Auditory Connections and Functions of Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Bethany ePlakke

    2014-07-01

    Full Text Available The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC. In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition.

  17. Auditory connections and functions of prefrontal cortex

    Science.gov (United States)

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  18. Frontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex.

    Science.gov (United States)

    Marshall, Tom R; O'Shea, Jacinta; Jensen, Ole; Bergmann, Til O

    2015-01-28

    Covertly directing visuospatial attention produces a frequency-specific modulation of neuronal oscillations in occipital and parietal cortices: anticipatory alpha (8-12 Hz) power decreases contralateral and increases ipsilateral to attention, whereas stimulus-induced gamma (>40 Hz) power is boosted contralaterally and attenuated ipsilaterally. These modulations must be under top-down control; however, the control mechanisms are not yet fully understood. Here we investigated the causal contribution of the human frontal eye field (FEF) by combining repetitive transcranial magnetic stimulation (TMS) with subsequent magnetoencephalography. Following inhibitory theta burst stimulation to the left FEF, right FEF, or vertex, participants performed a visual discrimination task requiring covert attention to either visual hemifield. Both left and right FEF TMS caused marked attenuation of alpha modulation in the occipitoparietal cortex. Notably, alpha modulation was consistently reduced in the hemisphere contralateral to stimulation, leaving the ipsilateral hemisphere relatively unaffected. Additionally, right FEF TMS enhanced gamma modulation in left visual cortex. Behaviorally, TMS caused a relative slowing of response times to targets contralateral to stimulation during the early task period. Our results suggest that left and right FEF are causally involved in the attentional top-down control of anticipatory alpha power in the contralateral visual system, whereas a right-hemispheric dominance seems to exist for control of stimulus-induced gamma power. These findings contrast the assumption of primarily intrahemispheric connectivity between FEF and parietal cortex, emphasizing the relevance of interhemispheric interactions. The contralaterality of effects may result from a transient functional reorganization of the dorsal attention network after inhibition of either FEF. Copyright © 2015 the authors 0270-6474/15/351638-10$15.00/0.

  19. The role of the inferior frontal junction area in cognitive control

    NARCIS (Netherlands)

    Brass, M.; Derrfuss, J.; Forstmann, B.U.; Cramon, D.Y. von

    2005-01-01

    Cognitive control processes refer to our ability to coordinate thoughts and actions in accordance with internal goals. In the fronto-lateral cortex such processes have been primarily related to mid-dorsolateral prefrontal cortex (mid-DLPFC). However, recent brain-imaging and meta-analytic studies

  20. P1-24: Neural Representation of Gloss in the Macaque Inferior Temporal Cortex

    Directory of Open Access Journals (Sweden)

    Akiko Nishio

    2012-10-01

    Full Text Available The variation of the appearance such as gloss provides one of the most important information for object recognition. However, little is known about the neural mechanisms related to the perception of gloss. We examined whether the neurons in the inferior temporal (IT cortex of the monkeys are coding gloss of objects. We made visual stimuli which have various surface reflectance properties, and tested responses of IT neurons to these stimuli while a monkey was performing a visual fixation task. We found that there exist neurons in the lower bank of the superior temporal sulcus that selectively responded to specific stimuli. The selectivity was largely maintained when the object shape or illumination condition was changed. In contrast, neural selectivity was lost when the pixels of objects were randomly rearranged. In the former manipulation of the stimuli, gloss perceptions were maintained, whereas in the latter manipulation, gloss perception was dramatically changed. These results indicate that these IT neurons selectively responded to gloss, not to the irrelevant local image features or average luminance or color. Next, to understand how the responses of gloss selective neurons are related to perceived gloss, responses of gloss selective neurons were mapped in perceptual gloss space in which glossiness changes uniformly. I found that responses of most gloss selective neurons can be explained by linear combinations of two parameters that are shown to be important for gloss perception. This result suggests that the responses of gloss selective neurons of IT cortex are closely related to gloss perception.

  1. New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography.

    Science.gov (United States)

    De Benedictis, Alessandro; Petit, Laurent; Descoteaux, Maxime; Marras, Carlo Efisio; Barbareschi, Mattia; Corsini, Francesco; Dallabona, Monica; Chioffi, Franco; Sarubbo, Silvio

    2016-12-01

    Extensive studies revealed that the human corpus callosum (CC) plays a crucial role in providing large-scale bi-hemispheric integration of sensory, motor and cognitive processing, especially within the frontal lobe. However, the literature lacks of conclusive data regarding the structural macroscopic connectivity of the frontal CC. In this study, a novel microdissection approach was adopted, to expose the frontal fibers of CC from the dorsum to the lateral cortex in eight hemispheres and in one entire brain. Post-mortem results were then combined with data from advanced constrained spherical deconvolution in 130 healthy subjects. We demonstrated as the frontal CC provides dense inter-hemispheric connections. In particular, we found three types of fronto-callosal fibers, having a dorso-ventral organization. First, the dorso-medial CC fibers subserve homotopic connections between the homologous medial cortices of the superior frontal gyrus. Second, the ventro-lateral CC fibers subserve homotopic connections between lateral frontal cortices, including both the middle frontal gyrus and the inferior frontal gyrus, as well as heterotopic connections between the medial and lateral frontal cortices. Third, the ventro-striatal CC fibers connect the medial and lateral frontal cortices with the contralateral putamen and caudate nucleus. We also highlighted an intricate crossing of CC fibers with the main association pathways terminating in the lateral regions of the frontal lobes. This combined approach of ex vivo microdissection and in vivo diffusion tractography allowed demonstrating a previously unappreciated three-dimensional architecture of the anterior frontal CC, thus clarifying the functional role of the CC in mediating the inter-hemispheric connectivity. Hum Brain Mapp 37:4718-4735, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Synchronous retinotopic frontal-temporal activity during long-term memory for spatial location.

    Science.gov (United States)

    Slotnick, Scott D

    2010-05-12

    Early visual areas in occipital cortex are known to be retinotopic. Recently, retinotopic maps have been reported in frontal and parietal cortex during spatial attention and working memory. The present event-related potential (ERP) and functional magnetic resonance imaging (fMRI) study determined whether spatial long-term memory was associated with retinotopic activity in frontal and parietal regions, and assessed whether retinotopic activity in these higher level control regions was synchronous with retinotopic activity in lower level visual sensory regions. During encoding, abstract shapes were presented to the left or right of fixation. During retrieval, old and new shapes were presented at fixation and participants classified each shape as old and previously on the "left", old and previously on the "right", or "new". Retinotopic effects were manifested by accurate memory for items previously presented on the left producing activity in the right hemisphere and accurate memory for items previously presented on the right producing activity in the left hemisphere. Retinotopic ERP activity was observed in frontal regions and visual sensory (occipital and temporal) regions. In frontal cortex, retinotopic fMRI activity was localized to the frontal eye fields. There were no significant ERP or fMRI retinotopic memory effects in parietal regions. The present long-term memory retinotopic effects complement previous spatial attention and working memory findings (and suggest retinotopic activity in parietal cortex may require an external peripheral stimulus). Furthermore, ERP cross-correlogram analysis revealed that retinotopic activations in frontal and temporal regions were synchronous, indicating that these regions interact during retrieval of spatial information. (c) 2010 Elsevier B.V. All rights reserved.

  3. Temporal lobe and inferior frontal gyrus dysfunction in patients with schizophrenia during face-to-face conversation: a near-infrared spectroscopy study.

    Science.gov (United States)

    Takei, Yuichi; Suda, Masashi; Aoyama, Yoshiyuki; Yamaguchi, Miho; Sakurai, Noriko; Narita, Kosuke; Fukuda, Masato; Mikuni, Masahiko

    2013-11-01

    Schizophrenia (SC) is marked by poor social-role performance and social-skill deficits that are well reflected in daily conversation. Although the mechanism underlying these impairments has been investigated by functional neuroimaging, technical limitations have prevented the investigation of brain activation during conversation in typical clinical situations. To fill this research gap, this study investigated and compared frontal and temporal lobe activation in patients with SC during face-to-face conversation. Frontal and temporal lobe activation in 29 patients and 31 normal controls (NC) (n = 60) were measured during 180-s conversation periods by using near-infrared spectroscopy (NIRS). The grand average values of oxyhemoglobin concentration ([oxy-Hb]) changes during task performance were analyzed to determine their correlation with clinical variables and Positive and Negative Syndrome Scale (PANSS) subscores. Compared to NCs, patients with SC exhibited decreased performance in the conversation task and decreased activation in both the temporal lobes and the right inferior frontal gyrus (IFG) during task performance, as indicated by the grand average of [oxy-Hb] changes. The decreased activation in the left temporal lobe was negatively correlated with the PANSS disorganization and negative symptoms subscores and that in the right IFG was negatively correlated with illness duration, PANSS disorganization, and negative symptom subscores. These findings indicate that brain dysfunction in SC during conversation is related to functional deficits in both the temporal lobes and the right IFG and manifests primarily in the form of disorganized thinking and negative symptomatology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats.

    Science.gov (United States)

    Sandoval-Salazar, Cuauhtemoc; Ramírez-Emiliano, Joel; Trejo-Bahena, Aurora; Oviedo-Solís, Cecilia I; Solís-Ortiz, Martha Silvia

    2016-02-29

    It has been proposed that the γ-aminobutyric acid (GABA) plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC). It has been also proposed that the high-fat diet (HFD) could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats. The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats. HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.

  5. Differential contributions of the superior and inferior parietal cortex to feedback versus feedforward control of tools.

    Science.gov (United States)

    Macuga, Kristen L; Frey, Scott H

    2014-05-15

    Damage to the superior and/or inferior parietal lobules (SPL, IPL) (Sirigu et al., 1996) or cerebellum (Grealy and Lee, 2011) can selectively disrupt motor imagery, motivating the hypothesis that these regions participate in predictive (i.e., feedforward) control. If so, then the SPL, IPL, and cerebellum should show greater activity as the demands on feedforward control increase from visually-guided execution (closed-loop) to execution without visual feedback (open-loop) to motor imagery. Using fMRI and a Fitts' reciprocal aiming task with tools directed at targets in far space, we found that the SPL and cerebellum exhibited greater activity during closed-loop control. Conversely, open-loop and imagery conditions were associated with increased activity within the IPL and prefrontal areas. These results are consistent with a superior-to-inferior gradient in the representation of feedback-to-feedforward control within the posterior parietal cortex. Additionally, the anterior SPL displayed greater activity when aiming movements were performed with a stick vs. laser pointer. This may suggest that it is involved in the remapping of far into near (reachable) space (Maravita and Iriki, 2004), or in distalization of the end-effector from hand to stick (Arbib et al., 2009). Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Auditory conflict resolution correlates with medial-lateral frontal theta/alpha phase synchrony.

    Science.gov (United States)

    Huang, Samantha; Rossi, Stephanie; Hämäläinen, Matti; Ahveninen, Jyrki

    2014-01-01

    When multiple persons speak simultaneously, it may be difficult for the listener to direct attention to correct sound objects among conflicting ones. This could occur, for example, in an emergency situation in which one hears conflicting instructions and the loudest, instead of the wisest, voice prevails. Here, we used cortically-constrained oscillatory MEG/EEG estimates to examine how different brain regions, including caudal anterior cingulate (cACC) and dorsolateral prefrontal cortices (DLPFC), work together to resolve these kinds of auditory conflicts. During an auditory flanker interference task, subjects were presented with sound patterns consisting of three different voices, from three different directions (45° left, straight ahead, 45° right), sounding out either the letters "A" or "O". They were asked to discriminate which sound was presented centrally and ignore the flanking distracters that were phonetically either congruent (50%) or incongruent (50%) with the target. Our cortical MEG/EEG oscillatory estimates demonstrated a direct relationship between performance and brain activity, showing that efficient conflict resolution, as measured with reduced conflict-induced RT lags, is predicted by theta/alpha phase coupling between cACC and right lateral frontal cortex regions intersecting the right frontal eye fields (FEF) and DLPFC, as well as by increased pre-stimulus gamma (60-110 Hz) power in the left inferior fontal cortex. Notably, cACC connectivity patterns that correlated with behavioral conflict-resolution measures were found during both the pre-stimulus and the pre-response periods. Our data provide evidence that, instead of being only transiently activated upon conflict detection, cACC is involved in sustained engagement of attentional resources required for effective sound object selection performance.

  7. Auditory Conflict Resolution Correlates with Medial–Lateral Frontal Theta/Alpha Phase Synchrony

    Science.gov (United States)

    Huang, Samantha; Rossi, Stephanie; Hämäläinen, Matti; Ahveninen, Jyrki

    2014-01-01

    When multiple persons speak simultaneously, it may be difficult for the listener to direct attention to correct sound objects among conflicting ones. This could occur, for example, in an emergency situation in which one hears conflicting instructions and the loudest, instead of the wisest, voice prevails. Here, we used cortically-constrained oscillatory MEG/EEG estimates to examine how different brain regions, including caudal anterior cingulate (cACC) and dorsolateral prefrontal cortices (DLPFC), work together to resolve these kinds of auditory conflicts. During an auditory flanker interference task, subjects were presented with sound patterns consisting of three different voices, from three different directions (45° left, straight ahead, 45° right), sounding out either the letters “A” or “O”. They were asked to discriminate which sound was presented centrally and ignore the flanking distracters that were phonetically either congruent (50%) or incongruent (50%) with the target. Our cortical MEG/EEG oscillatory estimates demonstrated a direct relationship between performance and brain activity, showing that efficient conflict resolution, as measured with reduced conflict-induced RT lags, is predicted by theta/alpha phase coupling between cACC and right lateral frontal cortex regions intersecting the right frontal eye fields (FEF) and DLPFC, as well as by increased pre-stimulus gamma (60–110 Hz) power in the left inferior fontal cortex. Notably, cACC connectivity patterns that correlated with behavioral conflict-resolution measures were found during both the pre-stimulus and the pre-response periods. Our data provide evidence that, instead of being only transiently activated upon conflict detection, cACC is involved in sustained engagement of attentional resources required for effective sound object selection performance. PMID:25343503

  8. Auditory conflict resolution correlates with medial-lateral frontal theta/alpha phase synchrony.

    Directory of Open Access Journals (Sweden)

    Samantha Huang

    Full Text Available When multiple persons speak simultaneously, it may be difficult for the listener to direct attention to correct sound objects among conflicting ones. This could occur, for example, in an emergency situation in which one hears conflicting instructions and the loudest, instead of the wisest, voice prevails. Here, we used cortically-constrained oscillatory MEG/EEG estimates to examine how different brain regions, including caudal anterior cingulate (cACC and dorsolateral prefrontal cortices (DLPFC, work together to resolve these kinds of auditory conflicts. During an auditory flanker interference task, subjects were presented with sound patterns consisting of three different voices, from three different directions (45° left, straight ahead, 45° right, sounding out either the letters "A" or "O". They were asked to discriminate which sound was presented centrally and ignore the flanking distracters that were phonetically either congruent (50% or incongruent (50% with the target. Our cortical MEG/EEG oscillatory estimates demonstrated a direct relationship between performance and brain activity, showing that efficient conflict resolution, as measured with reduced conflict-induced RT lags, is predicted by theta/alpha phase coupling between cACC and right lateral frontal cortex regions intersecting the right frontal eye fields (FEF and DLPFC, as well as by increased pre-stimulus gamma (60-110 Hz power in the left inferior fontal cortex. Notably, cACC connectivity patterns that correlated with behavioral conflict-resolution measures were found during both the pre-stimulus and the pre-response periods. Our data provide evidence that, instead of being only transiently activated upon conflict detection, cACC is involved in sustained engagement of attentional resources required for effective sound object selection performance.

  9. Effects of Crocin on Learning and Memory in Rats Under Chronic Restraint Stress with Special Focus on the Hippocampal and Frontal Cortex Corticosterone Levels.

    Science.gov (United States)

    Dastgerdi, Azadehalsadat Hosseini; Radahmadi, Maryam; Pourshanazari, Ali Asghar; Dastgerdi, Hajaralsadat Hosseini

    2017-01-01

    Chronic stress adversely influences brain functions while crocin, as an effective component of saffron, exhibits positive effects on memory processes. This study investigated the effects of different doses of crocin on the improvement of learning and memory as well as corticosterone (CORT) levels in the hippocampus and frontal cortex of rats subjected to chronic stress. Forty male rats were randomly allocated to five different groups ( n = 8): Control, sham; stress (6 h/day for 21 days) groups, and two groups receiving daily intraperitoneal injections of one of two doses (30 and 60 mg/kg) of crocin accompanied by 21 days of restraint stress. Latency was evaluated as a brain function using the passive avoidance test before and one-day after a foot shock. CORT levels were measured in the homogenized hippocampus and frontal cortex. Results revealed that chronic stress had a significantly ( P effect on memory. Crocin (30 and 60 mg/kg), however, gave increase to significantly ( P effects than its higher (60 mg/kg) dose on learning and memory under chronic stress conditions. Moreover, it was speculated that different doses of crocin act on different neurotransmitters and biochemical factors in the brain.

  10. Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain

    Directory of Open Access Journals (Sweden)

    Minchenko Dimitri

    2010-04-01

    Full Text Available Abstract Background The Rett Syndrome (RTT brain displays regional histopathology and volumetric reduction, with frontal cortex showing such abnormalities, whereas the occipital cortex is relatively less affected. Results Using microarrays and quantitative PCR, the mRNA expression profiles of these two neuroanatomical regions were compared in postmortem brain tissue from RTT patients and normal controls. A subset of genes was differentially expressed in the frontal cortex of RTT brains, some of which are known to be associated with neurological disorders (clusterin and cytochrome c oxidase subunit 1 or are involved in synaptic vesicle cycling (dynamin 1. RNAi-mediated knockdown of MeCP2 in vitro, followed by further expression analysis demonstrated that the same direction of abnormal expression was recapitulated with MeCP2 knockdown, which for cytochrome c oxidase subunit 1 was associated with a functional respiratory chain defect. Chromatin immunoprecipitation (ChIP analysis showed that MeCP2 associated with the promoter regions of some of these genes suggesting that loss of MeCP2 function may be responsible for their overexpression. Conclusions This study has shed more light on the subset of aberrantly expressed genes that result from MECP2 mutations. The mitochondrion has long been implicated in the pathogenesis of RTT, however it has not been at the forefront of RTT research interest since the discovery of MECP2 mutations. The functional consequence of the underexpression of cytochrome c oxidase subunit 1 indicates that this is an area that should be revisited.

  11. Laterality patterns of brain functional connectivity: gender effects.

    Science.gov (United States)

    Tomasi, Dardo; Volkow, Nora D

    2012-06-01

    Lateralization of brain connectivity may be essential for normal brain function and may be sexually dimorphic. Here, we study the laterality patterns of short-range (implicated in functional specialization) and long-range (implicated in functional integration) connectivity and the gender effects on these laterality patterns. Parallel computing was used to quantify short- and long-range functional connectivity densities in 913 healthy subjects. Short-range connectivity was rightward lateralized and most asymmetrical in areas around the lateral sulcus, whereas long-range connectivity was rightward lateralized in lateral sulcus and leftward lateralizated in inferior prefrontal cortex and angular gyrus. The posterior inferior occipital cortex was leftward lateralized (short- and long-range connectivity). Males had greater rightward lateralization of brain connectivity in superior temporal (short- and long-range), inferior frontal, and inferior occipital cortices (short-range), whereas females had greater leftward lateralization of long-range connectivity in the inferior frontal cortex. The greater lateralization of the male's brain (rightward and predominantly short-range) may underlie their greater vulnerability to disorders with disrupted brain asymmetries (schizophrenia, autism).

  12. Human left ventral premotor cortex mediates matching of hand posture to object use.

    Directory of Open Access Journals (Sweden)

    Guy Vingerhoets

    Full Text Available Visuomotor transformations for grasping have been associated with a fronto-parietal network in the monkey brain. The human homologue of the parietal monkey region (AIP has been identified as the anterior part of the intraparietal sulcus (aIPS, whereas the putative human equivalent of the monkey frontal region (F5 is located in the ventral part of the premotor cortex (vPMC. Results from animal studies suggest that monkey F5 is involved in the selection of appropriate hand postures relative to the constraints of the task. In humans, the functional roles of aIPS and vPMC appear to be more complex and the relative contribution of each region to grasp selection remains uncertain. The present study aimed to identify modulation in brain areas sensitive to the difficulty level of tool object - hand posture matching. Seventeen healthy right handed participants underwent fMRI while observing pictures of familiar tool objects followed by pictures of hand postures. The task was to decide whether the hand posture matched the functional use of the previously shown object. Conditions were manipulated for level of difficulty. Compared to a picture matching control task, the tool object - hand posture matching conditions conjointly showed increased modulation in several left hemispheric regions of the superior and inferior parietal lobules (including aIPS, the middle occipital gyrus, and the inferior temporal gyrus. Comparison of hard versus easy conditions selectively modulated the left inferior frontal gyrus with peak activity located in its opercular part (Brodmann area (BA 44. We suggest that in the human brain, vPMC/BA44 is involved in the matching of hand posture configurations in accordance with visual and functional demands.

  13. Motor areas of the frontal cortex in patients with motor eloquent brain lesions.

    Science.gov (United States)

    Bulubas, Lucia; Sabih, Jamil; Wohlschlaeger, Afra; Sollmann, Nico; Hauck, Theresa; Ille, Sebastian; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2016-12-01

    OBJECTIVE Because of its huge clinical potential, the importance of premotor areas for motor function itself and plastic reshaping due to tumors or ischemic brain lesions has received increased attention. Thus, in this study the authors used navigated transcranial magnetic stimulation (nTMS) to investigate whether tumorous brain lesions induce a change in motor cortex localization in the human brain. METHODS Between 2010 and 2013, nTMS motor mapping was performed in a prospective cohort of 100 patients with brain tumors in or adjacent to the rolandic cortex. Spatial data analysis was performed by normalization of the individual motor maps and creation of overlays according to tumor location. Analysis of motor evoked potential (MEP) latencies was performed regarding mean overall latencies and potentially polysynaptic latencies, defined as latencies longer than 1 SD above the mean value. Hemispheric dominance, lesion location, and motor-function deficits were also considered. RESULTS Graphical analysis showed that motor areas were not restricted to the precentral gyrus. Instead, they spread widely in the anterior-posterior direction. An analysis of MEP latency showed that mean MEP latencies were shortest in the precentral gyrus and longest in the superior and middle frontal gyri. The percentage of latencies longer than 1 SD differed widely across gyri. The dominant hemisphere showed a greater number of longer latencies than the nondominant hemisphere (p < 0.0001). Moreover, tumor location-dependent changes in distribution of polysynaptic latencies were observed (p = 0.0002). Motor-function deficit did not show any statistically significant effect. CONCLUSIONS The distribution of primary and polysynaptic motor areas changes in patients with brain tumors and highly depends on tumor location. Thus, these data should be considered for resection planning.

  14. Transcriptional response of rat frontal cortex following acute In Vivo exposure to the pyrethroid insecticides permethrin and deltamethrin

    Directory of Open Access Journals (Sweden)

    Tornero-Velez Rogelio

    2008-11-01

    Full Text Available Abstract Background Pyrethroids are neurotoxic pesticides that interact with membrane bound ion channels in neurons and disrupt nerve function. The purpose of this study was to characterize and explore changes in gene expression that occur in the rat frontal cortex, an area of CNS affected by pyrethroids, following an acute low-dose exposure. Results Rats were acutely exposed to either deltamethrin (0.3 – 3 mg/kg or permethrin (1 – 100 mg/kg followed by collection of cortical tissue at 6 hours. The doses used range from those that cause minimal signs of intoxication at the behavioral level to doses well below apparent no effect levels in the whole animal. A statistical framework based on parallel linear (SAM and isotonic regression (PIR methods identified 95 and 53 probe sets as dose-responsive. The PIR analysis was most sensitive for detecting transcripts with changes in expression at the NOAEL dose. A sub-set of genes (Camk1g, Ddc, Gpd3, c-fos and Egr1 was then confirmed by qRT-PCR and examined in a time course study. Changes in mRNA levels were typically less than 3-fold in magnitude across all components of the study. The responses observed are consistent with pyrethroids producing increased neuronal excitation in the cortex following a low-dose in vivo exposure. In addition, Significance Analysis of Function and Expression (SAFE identified significantly enriched gene categories common for both pyrethroids, including some relating to branching morphogenesis. Exposure of primary cortical cell cultures to both compounds resulted in an increase (~25% in the number of neurite branch points, supporting the results of the SAFE analysis. Conclusion In the present study, pyrethroids induced changes in gene expression in the frontal cortex near the threshold for decreases in ambulatory motor activity in vivo. The penalized regression methods performed similarly in detecting dose-dependent changes in gene transcription. Finally, SAFE analysis of

  15. Early visual experience and the recognition of basic facial expressions: involvement of the middle temporal and inferior frontal gyri during haptic identification by the early blind

    Science.gov (United States)

    Kitada, Ryo; Okamoto, Yuko; Sasaki, Akihiro T.; Kochiyama, Takanori; Miyahara, Motohide; Lederman, Susan J.; Sadato, Norihiro

    2012-01-01

    Face perception is critical for social communication. Given its fundamental importance in the course of evolution, the innate neural mechanisms can anticipate the computations necessary for representing faces. However, the effect of visual deprivation on the formation of neural mechanisms that underlie face perception is largely unknown. We previously showed that sighted individuals can recognize basic facial expressions by haptics surprisingly well. Moreover, the inferior frontal gyrus (IFG) and posterior superior temporal sulcus (pSTS) in the sighted subjects are involved in haptic and visual recognition of facial expressions. Here, we conducted both psychophysical and functional magnetic-resonance imaging (fMRI) experiments to determine the nature of the neural representation that subserves the recognition of basic facial expressions in early blind individuals. In a psychophysical experiment, both early blind and sighted subjects haptically identified basic facial expressions at levels well above chance. In the subsequent fMRI experiment, both groups haptically identified facial expressions and shoe types (control). The sighted subjects then completed the same task visually. Within brain regions activated by the visual and haptic identification of facial expressions (relative to that of shoes) in the sighted group, corresponding haptic identification in the early blind activated regions in the inferior frontal and middle temporal gyri. These results suggest that the neural system that underlies the recognition of basic facial expressions develops supramodally even in the absence of early visual experience. PMID:23372547

  16. Categorization is modulated by transcranial direct current stimulation over left prefrontal cortex.

    Science.gov (United States)

    Lupyan, Gary; Mirman, Daniel; Hamilton, Roy; Thompson-Schill, Sharon L

    2012-07-01

    Humans have an unparalleled ability to represent objects as members of multiple categories. A given object, such as a pillow may be-depending on current task demands-represented as an instance of something that is soft, as something that contains feathers, as something that is found in bedrooms, or something that is larger than a toaster. This type of processing requires the individual to dynamically highlight task-relevant properties and abstract over or suppress object properties that, although salient, are not relevant to the task at hand. Neuroimaging and neuropsychological evidence suggests that this ability may depend on cognitive control processes associated with the left inferior prefrontal gyrus. Here, we show that stimulating the left inferior frontal cortex using transcranial direct current stimulation alters performance of healthy subjects on a simple categorization task. Our task required subjects to select pictures matching a description, e.g., "click on all the round things." Cathodal stimulation led to poorer performance on classification trials requiring attention to specific dimensions such as color or shape as opposed to trials that required selecting items belonging to a more thematic category such as objects that hold water. A polarity reversal (anodal stimulation) lowered the threshold for selecting items that were more weakly associated with the target category. These results illustrate the role of frontally-mediated control processes in categorization and suggest potential interactions between categorization, cognitive control, and language. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Categorization is modulated by transcranical direct current stimulation over left prefrontal cortex

    Science.gov (United States)

    Lupyan, Gary; Mirman, Daniel; Hamilton, Roy; Thompson-Schill, Sharon L.

    2013-01-01

    Humans have an unparalleled ability to represent objects as members of multiple categories. A given object, such as a pillow may be—depending on current task demands—represented as an instance of something that is soft, as something that contains feathers, as something that is found in bedrooms, or something that is larger than a toaster. This type of processing requires the individual to dynamically highlight task-relevant properties and abstract over or suppress object properties that, although salient, are not relevant to the task at hand. Neuroimaging and neuropsychological evidence suggests that this ability may depend on cognitive control processes associated with the left inferior prefrontal gyrus. Here, we show that stimulating the left inferior frontal cortex using transcranial direct current stimulation alters performance of healthy subjects on a simple categorization task. Our task required subjects to select pictures matching a description, e.g., “click on all the round things.“ Cathodal stimulation led to poorer performance on classification trials requiring attention to specific dimensions such as color or shape as opposed to trials that required selecting items belonging to a more thematic category such as objects that hold water. A polarity reversal (anodal stimulation) lowered the threshold for selecting items that were more weakly associated with the target category. These results illustrate the role of frontally-mediated control processes in categorization and suggest potential interactions between categorization, cognitive control, and language. PMID:22578885

  18. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats

    Directory of Open Access Journals (Sweden)

    Cuauhtemoc Sandoval-Salazar

    Full Text Available BACKGROUND: It has been proposed that the γ-aminobutyric acid (GABA plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC. It has been also proposed that the high-fat diet (HFD could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats RESULTS: The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats CONCLUSIONS: HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.

  19. Perinatal nicotine treatment induces transient increases in NACHO protein levels in the rat frontal cortex

    DEFF Research Database (Denmark)

    Wichern, Franziska; Jensen, Majbrit M; Christensen, Ditte Z

    2017-01-01

    The nicotinic acetylcholine receptor (nAChR) regulator chaperone (NACHO) was recently identified as an important regulator of nAChR maturation and surface expression. Here we show that NACHO levels decrease during early postnatal development in rats. This decrease occurs earlier and to a greater...... degree in the frontal cortex (FC) compared with the hippocampus (HIP). We further show that rats exposed to nicotine during pre- and postnatal development exhibit significantly higher NACHO levels in the FC at postnatal day (PND) 21, but not at PND60. Repeated exposure to nicotine selectively during...... a single exposure to a combination of nicotine and the type II α7 nAChR positive allosteric modulator (PAM) PNU-120596, but not the type I PAM AVL-3288. These findings suggest that exposure to nAChR agonism affects NACHO protein levels, and that this effect is more pronounced during pre- or early postnatal...

  20. Exploratory Metabolomic Analyses Reveal Compounds Correlated with Lutein Concentration in Frontal Cortex, Hippocampus, and Occipital Cortex of Human Infant Brain.

    Directory of Open Access Journals (Sweden)

    Jacqueline C Lieblein-Boff

    Full Text Available Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510 were excluded. In addition, moderate correlations with xenobiotic relationships (2 or those driven by single outliers (3 were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region-specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development.

  1. Role of the right inferior parietal cortex in auditory selective attention: An rTMS study.

    Science.gov (United States)

    Bareham, Corinne A; Georgieva, Stanimira D; Kamke, Marc R; Lloyd, David; Bekinschtein, Tristan A; Mattingley, Jason B

    2018-02-01

    Selective attention is the process of directing limited capacity resources to behaviourally relevant stimuli while ignoring competing stimuli that are currently irrelevant. Studies in healthy human participants and in individuals with focal brain lesions have suggested that the right parietal cortex is crucial for resolving competition for attention. Following right-hemisphere damage, for example, patients may have difficulty reporting a brief, left-sided stimulus if it occurs with a competitor on the right, even though the same left stimulus is reported normally when it occurs alone. Such "extinction" of contralesional stimuli has been documented for all the major sense modalities, but it remains unclear whether its occurrence reflects involvement of one or more specific subregions of the temporo-parietal cortex. Here we employed repetitive transcranial magnetic stimulation (rTMS) over the right hemisphere to examine the effect of disruption of two candidate regions - the supramarginal gyrus (SMG) and the superior temporal gyrus (STG) - on auditory selective attention. Eighteen neurologically normal, right-handed participants performed an auditory task, in which they had to detect target digits presented within simultaneous dichotic streams of spoken distractor letters in the left and right channels, both before and after 20 min of 1 Hz rTMS over the SMG, STG or a somatosensory control site (S1). Across blocks, participants were asked to report on auditory streams in the left, right, or both channels, which yielded focused and divided attention conditions. Performance was unchanged for the two focused attention conditions, regardless of stimulation site, but was selectively impaired for contralateral left-sided targets in the divided attention condition following stimulation of the right SMG, but not the STG or S1. Our findings suggest a causal role for the right inferior parietal cortex in auditory selective attention. Copyright © 2017 Elsevier Ltd. All rights

  2. Auditory and visual connectivity gradients in frontoparietal cortex.

    Science.gov (United States)

    Braga, Rodrigo M; Hellyer, Peter J; Wise, Richard J S; Leech, Robert

    2017-01-01

    A frontoparietal network of brain regions is often implicated in both auditory and visual information processing. Although it is possible that the same set of multimodal regions subserves both modalities, there is increasing evidence that there is a differentiation of sensory function within frontoparietal cortex. Magnetic resonance imaging (MRI) in humans was used to investigate whether different frontoparietal regions showed intrinsic biases in connectivity with visual or auditory modalities. Structural connectivity was assessed with diffusion tractography and functional connectivity was tested using functional MRI. A dorsal-ventral gradient of function was observed, where connectivity with visual cortex dominates dorsal frontal and parietal connections, while connectivity with auditory cortex dominates ventral frontal and parietal regions. A gradient was also observed along the posterior-anterior axis, although in opposite directions in prefrontal and parietal cortices. The results suggest that the location of neural activity within frontoparietal cortex may be influenced by these intrinsic biases toward visual and auditory processing. Thus, the location of activity in frontoparietal cortex may be influenced as much by stimulus modality as the cognitive demands of a task. It was concluded that stimulus modality was spatially encoded throughout frontal and parietal cortices, and was speculated that such an arrangement allows for top-down modulation of modality-specific information to occur within higher-order cortex. This could provide a potentially faster and more efficient pathway by which top-down selection between sensory modalities could occur, by constraining modulations to within frontal and parietal regions, rather than long-range connections to sensory cortices. Hum Brain Mapp 38:255-270, 2017. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  3. Virtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans

    Science.gov (United States)

    Hecht, Erin E.; Gutman, David A.; Bradley, Bruce A.; Preuss, Todd M.; Stout, Dietrich

    2015-01-01

    Many of the behavioral capacities that distinguish humans from other primates rely on fronto-parietal circuits. The superior longitudinal fasciculus (SLF) is the primary white matter tract connecting lateral frontal with lateral parietal regions; it is distinct from the arcuate fasciculus, which interconnects the frontal and temporal lobes. Here we report a direct, quantitative comparison of SLF connectivity using virtual in vivo dissection of the SLF in chimpanzees and humans. SLF I, the superior-most branch of the SLF, showed similar patterns of connectivity between humans and chimpanzees, and was proportionally volumetrically larger in chimpanzees. SLF II, the middle branch, and SLF III, the inferior-most branch, showed species differences in frontal connectivity. In humans, SLF II showed greater connectivity with dorsolateral prefrontal cortex, whereas in chimps SLF II showed greater connectivity with the inferior frontal gyrus. SLF III was right-lateralized and proportionally volumetrically larger in humans, and human SLF III showed relatively reduced connectivity with dorsal premotor cortex and greater extension into the anterior inferior frontal gyrus, especially in the right hemisphere. These results have implications for the evolution of fronto-parietal functions including spatial attention to observed actions, social learning, and tool use, and are in line with previous research suggesting a unique role for the right anterior inferior frontal gyrus in the evolution of human fronto-parietal network architecture. PMID:25534109

  4. Projections of Somatosensory Cortex and Frontal Eye Fields onto Incertotectal Neurons in the Cat

    Science.gov (United States)

    Perkins, Eddie; Warren, Susan; Lin, Rick C.-S.; May, Paul J.

    2014-01-01

    The goal of this study was to determine whether the input-output characteristics of the zona incerta (ZI) are appropriate for it to serve as a conduit for cortical control over saccade-related activity in the superior colliculus. The study utilized the neuronal tracers wheat germ agglutinin-horseradish peroxidase (WGA-HRP) and biotinylated dextran amine (BDA) in the cat. Injections of WGA-HRP into primary somatosensory cortex (SI) revealed sparse, widespread nontopographic projections throughout ZI. In addition, region-specific areas of more intense termination were present in ventral ZI, although strict topography was not observed. In comparison, the frontal eye fields (FEF) also projected sparsely throughout ZI, but terminated more heavily, medially, along the border between the two sublaminae. Furthermore, retrogradely labeled incertocortical neurons were observed in both experiments. The relationship of these two cortical projections to incertotectal cells was also directly examined by retrogradely labeling incertotectal cells with WGA-HRP in animals that had also received cortical BDA injections. Labeled axonal arbors from both SI and FEF had thin, sparsely branched axons with numerous en passant boutons. They formed numerous close associations with the somata and dendrites of WGA-HRP-labeled incertotectal cells. In summary, these results indicate that both sensory and motor cortical inputs to ZI display similar morphologies and distributions. In addition, both display close associations with incertotectal cells, suggesting direct synaptic contact. From these data, we conclude that inputs from somatosensory and FEF cortex both play a role in controlling gaze-related activity in the superior colliculus by way of the inhibitory incertotectal projection. PMID:17083121

  5. MRI volumetry of prefrontal cortex

    Science.gov (United States)

    Sheline, Yvette I.; Black, Kevin J.; Lin, Daniel Y.; Pimmel, Joseph; Wang, Po; Haller, John W.; Csernansky, John G.; Gado, Mokhtar; Walkup, Ronald K.; Brunsden, Barry S.; Vannier, Michael W.

    1995-05-01

    Prefrontal cortex volumetry by brain magnetic resonance (MR) is required to estimate changes postulated to occur in certain psychiatric and neurologic disorders. A semiautomated method with quantitative characterization of its performance is sought to reliably distinguish small prefrontal cortex volume changes within individuals and between groups. Stereological methods were tested by a blinded comparison of measurements applied to 3D MR scans obtained using an MPRAGE protocol. Fixed grid stereologic methods were used to estimate prefrontal cortex volumes on a graphic workstation, after the images are scaled from 16 to 8 bits using a histogram method. In addition images were resliced into coronal sections perpendicular to the bicommissural plane. Prefrontal cortex volumes were defined as all sections of the frontal lobe anterior to the anterior commissure. Ventricular volumes were excluded. Stereological measurement yielded high repeatability and precision, and was time efficient for the raters. The coefficient of error was volumetry by stereology can yield accurate and repeatable measurements. Small frontal lobe volume reductions in patients with brain disorders such as depression and schizophrenia can be efficiently assessed using this method.

  6. Nontraumatic frontal lobe hemorrhages: Clinical-computed tomographic correlations

    International Nuclear Information System (INIS)

    Weisberg, L.A.; Stazio, A.; Veterans Administration Hospital, New Orleans, LA; Charity Hospital, New Orleans, LA

    1988-01-01

    Correlation of lesion location and appearance with clinical sequelae in 25 patients with CT-proven frontal lobe hematomas reveals 10 of 25 hematomas were located above the frontal horns of the lateral ventricles. Nine of the 10 patients were normotensive. All presented with contralateral motor and sensory deficits. Four of 25 hematomas were situated inferior to the frontal horns. All these patients were hypertensive, rapidly became comatose and exhibited hemiplegia, hemianestesia and gaze preference contralateral to the hemiplegia. Five patients had frontal hematomas which extended inward from the interhemispheric fissure or caval-septal region. All were normotensive. All had anterior cerebral-anterior communicating artery aneurysms on angiography. Four patients had hematomas involving both the frontal and temporal region. All were normotensive with no known cause for hemorrhage. Two patients had bifrontal hematomas; one had butterfly appearance extending across the interhemispheric fissure and the other was midline but had no interhemispheric blood. Both were normotensive. One had an anterior cerebral-anterior communicating artery aneurysm. (orig.)

  7. Mapping a lateralisation gradient within the ventral stream for auditory speech perception

    OpenAIRE

    Karsten eSpecht

    2013-01-01

    Recent models on speech perception propose a dual stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend towards the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus...

  8. Mapping a lateralization gradient within the ventral stream for auditory speech perception

    OpenAIRE

    Specht, Karsten

    2013-01-01

    Recent models on speech perception propose a dual-stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend toward the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus....

  9. Functional mapping of the neural basis for the encoding and retrieval of human episodic memory using H215O PET

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Nam, Hyun Woo; Lee, Dong Soo; Lee, Sang Kun; Jang, Myoung Jin; Ahn, Ji Young; Park, Kwang Suk; Chung, June Key; Lee, Myung Chul

    2000-01-01

    Episodic memory is described as an 'autobiographical' memory responsible for storing a record of the events in our lives. We performed functional brain activation study using H 2 1 5O PET to reveal the neural basis of the encoding and the retrieval of episodic memory in human normal volunteers. Four repeated H 2 1 5O PET scans with two reference and two activation tasks were performed on 6 normal volunteers to activate brain areas engaged in encoding and retrieval with verbal materials. Images from the same subject were spatially registered and normalized using linear and nonlinear transformation. Using the means and variances for every condition which were adjusted with analysis of covariance, t-statistic analysis were performed voxel-wise. Encoding of episodic memory activated the opercular and triangular parts of left inferior frontal gyrus, right prefrontal cortex, medial frontal area, cingulate gyrus, posterior middle and inferior temporal gyri, and cerebellum, and both primary visual and visual association areas. Retrieval of episodic memory activated the triangular part of left inferior frontal gyrus and inferior temporal gyrus, right prefrontal cortex and medial temporal ares, and both cerebellum and primary visual and visual association areas. The activations in the opercular part of left inferior frontal gyrus and the right prefrontal cortex meant the essential role of these areas in the encoding and retrieval of episodic memeory. We could localize the neural basis of the encoding and retrieval of episodic memory using H 2 1 5O PET, which was partly consistent with the hypothesis of hemispheric encoding/retrieval asymmetry.=20

  10. Neural Mechanism of Inferring Person's Inner Attitude towards Another Person through Observing the Facial Affect in an Emotional Context.

    Science.gov (United States)

    Kim, Ji-Woong; Kim, Jae-Jin; Jeong, Bumseok; Kim, Sung-Eun; Ki, Seon Wan

    2010-03-01

    The goal of the present study was to identify the brain mechanism involved in the attribution of person's attitude toward another person, using facial affective pictures and pictures displaying an affectively-loaded situation. Twenty four right-handed healthy subjects volunteered for our study. We used functional magnetic resonance imaging (MRI) to examine brain activation during attitude attribution task as compared to gender matching tasks. We identified activation in the left inferior frontal cortex, left superior temporal sulcus, and left inferior parietal lobule during the attitude attribution task, compared to the gender matching task. This study suggests that mirror neuron system and ventrolateral inferior frontal cortex play a critical role in the attribution of a person's inner attitude towards another person in an emotional situation.

  11. Genotype-induced changes in biophysical properties of frontal cortex lipid raft from APP/PS1 transgenic mice

    Directory of Open Access Journals (Sweden)

    Mario L Diaz

    2012-11-01

    Full Text Available Alterations in the lipid composition of lipid rafts have been demonstrated both in human brain and transgenic mouse models, and it has been postulated that aberrant lipid composition in lipid rafts is partly responsible for neuronal degeneration. In order to assess the impact of lipid changes on lipid raft functional properties, we have aimed at determining relevant physicochemical modifications in lipid rafts purified from frontal cortex of wild type (WT and APP/PS1 double transgenic mice. By means of steady-state fluorescence anisotropy analyses using two lipid soluble fluorescent probes, TMA-DPH (1-[(4-trimethyl-aminophenyl]-6-phenyl-1,3,5-hexatriene and DPH (1,6-diphenyl-1,3,5-hexatriene, we demonstrate that cortical lipid rafts from WT and APP/PS1 animals exhibit different biophysical behaviours, depending on genotype but also on age. Thus, aged APP/PS1 animals exhibited slightly more liquid-ordered lipid rafts than WT counterparts. Membrane microviscosity napp analyses demonstrate that WT lipid rafts are more fluid than APP/PS1 animals of similar age, both at the aqueous interface and hydrophobic core of the membrane. napp in APP/PS1 animals was higher for DPH than for TMA-DPH under similar experimental conditions, indicating that the internal core of the membrane is more viscous than the raft membrane at the aqueous interface. The most dramatic changes in biophysical properties of lipid rafts were observed when membrane cholesterol was depleted with methyl-beta-cyclodextrin. Overall, our results indicate that APP/PS1 genotype strongly affects physicochemical properties of lipid raft. Such alterations appear not to be homogeneous across the raft membrane axis, but rather are more prominent at the membrane plane. These changes correlate with aberrant proportions of sphingomyelin, cholesterol and saturated fatty acids, as well as polyunsaturated fatty acids, measured in lipid rafts from frontal cortex in this familial model of

  12. Frontal and parietal cortical interactions with distributed visual representations during selective attention and action selection.

    Science.gov (United States)

    Nelissen, Natalie; Stokes, Mark; Nobre, Anna C; Rushworth, Matthew F S

    2013-10-16

    Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity.

  13. Frontal and Parietal Cortical Interactions with Distributed Visual Representations during Selective Attention and Action Selection

    Science.gov (United States)

    Stokes, Mark; Nobre, Anna C.; Rushworth, Matthew F. S.

    2013-01-01

    Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity. PMID:24133250

  14. Reappraising social emotions: the role of inferior frontal gyrus, temporo-parietal junction and insula in interpersonal emotion regulation.

    Science.gov (United States)

    Grecucci, Alessandro; Giorgetta, Cinzia; Bonini, Nicolao; Sanfey, Alan G

    2013-01-01

    Previous studies have reported the effect of emotion regulation (ER) strategies on both individual and social decision-making, however, the effect of regulation on socially driven emotions independent of decisions is still unclear. In the present study, we investigated the neural effects of using reappraisal to both up- and down-regulate socially driven emotions. Participants played the Dictator Game (DG) in the role of recipient while undergoing fMRI, and concurrently applied the strategies of either up-regulation (reappraising the proposer's intentions as more negative), down-regulation (reappraising the proposer's intentions as less negative), as well as a baseline "look" condition. Results showed that regions responding to the implementation of reappraisal (effect of strategy, that is, "regulating regions") were the inferior and middle frontal gyrus, temporo parietal junction and insula bilaterally. Importantly, the middle frontal gyrus activation correlated with the frequency of regulatory strategies in daily life, with the insula activation correlating with the perceived ability to reappraise the emotions elicited by the social situation. Regions regulated by reappraisal (effect of regulation, that is, "regulated regions") were the striatum, the posterior cingulate and the insula, showing increased activation for the up-regulation and reduced activation for down-regulation, both compared to the baseline condition. When analyzing the separate effects of partners' behavior, selfish behavior produced an activation of the insula, not observed when subjects were treated altruistically. Here we show for the first time that interpersonal ER strategies can strongly affect neural responses when experiencing socially driven emotions. Clinical implications of these findings are also discussed to understand how the way we interpret others' intentions may affect the way we emotionally react.

  15. Reappraising social emotions: the role of inferior frontal gyrus, temporo-parietal junction and insula in interpersonal emotion regulation

    Directory of Open Access Journals (Sweden)

    Alessandro eGrecucci

    2013-09-01

    Full Text Available Previous studies have reported the effect of emotion regulation strategies on both individual and social decision making, however the effect of regulation on socially driven emotions independent of decisions is still unclear. In the present study, we investigated the neural effects of using reappraisal to both up- and down-regulate socially driven emotions. Participants played the Dictator Game in the role of recipient while undergoing fMRI, and concurrently applied the strategies of either up-regulation (reappraising the proposer’s intentions as more negative, down-regulation (reappraising the proposer’s intentions as less negative, as well as a baseline ‘look’ condition. Results showed that regions responding to the implementation of reappraisal (effect of strategy, that is, regulating regions were the inferior and middle frontal gyrus, temporo parietal junction and insula bilaterally. Importantly, the middle frontal gyrus activation correlated with the frequency of regulatory strategies in daily life, with the insula activation correlating with the perceived ability to reappraise the emotions elicited by the social situation. Regions regulated by reappraisal (effect of regulation, that is, regulated regions were the striatum, the posterior cingulate and the insula, showing increased activation for the up-regulation and reduced activation for down-regulation, both compared to the baseline condition. When analyzing the separate effects of partners’ behavior, selfish behavior produced an activation of the insula, not observed when subjects were treated altruistically. Here we show for the first time that interpersonal emotion regulation strategies can strongly affect neural responses when experiencing socially driven emotions. Clinical implications of these findings are also discussed to understand how the way we interpret others’ intentions may affect the way we emotionally react.

  16. Reappraising social emotions: the role of inferior frontal gyrus, temporo-parietal junction and insula in interpersonal emotion regulation

    Science.gov (United States)

    Grecucci, Alessandro; Giorgetta, Cinzia; Bonini, Nicolao; Sanfey, Alan G.

    2013-01-01

    Previous studies have reported the effect of emotion regulation (ER) strategies on both individual and social decision-making, however, the effect of regulation on socially driven emotions independent of decisions is still unclear. In the present study, we investigated the neural effects of using reappraisal to both up- and down-regulate socially driven emotions. Participants played the Dictator Game (DG) in the role of recipient while undergoing fMRI, and concurrently applied the strategies of either up-regulation (reappraising the proposer's intentions as more negative), down-regulation (reappraising the proposer's intentions as less negative), as well as a baseline “look” condition. Results showed that regions responding to the implementation of reappraisal (effect of strategy, that is, “regulating regions”) were the inferior and middle frontal gyrus, temporo parietal junction and insula bilaterally. Importantly, the middle frontal gyrus activation correlated with the frequency of regulatory strategies in daily life, with the insula activation correlating with the perceived ability to reappraise the emotions elicited by the social situation. Regions regulated by reappraisal (effect of regulation, that is, “regulated regions”) were the striatum, the posterior cingulate and the insula, showing increased activation for the up-regulation and reduced activation for down-regulation, both compared to the baseline condition. When analyzing the separate effects of partners' behavior, selfish behavior produced an activation of the insula, not observed when subjects were treated altruistically. Here we show for the first time that interpersonal ER strategies can strongly affect neural responses when experiencing socially driven emotions. Clinical implications of these findings are also discussed to understand how the way we interpret others' intentions may affect the way we emotionally react. PMID:24027512

  17. Functional segregation of the inferior frontal gyrus for syntactic processes: a functional magnetic-resonance imaging study.

    Science.gov (United States)

    Uchiyama, Yuji; Toyoda, Hiroshi; Honda, Manabu; Yoshida, Haruyo; Kochiyama, Takanori; Ebe, Kazutoshi; Sadato, Norihiro

    2008-07-01

    We used functional magnetic resonance imaging in 18 normal volunteers to determine whether there is separate representation of syntactic, semantic, and verbal working memory processing in the left inferior frontal gyrus (GFi). We compared a sentence comprehension task with a short-term memory maintenance task to identify syntactic and semantic processing regions. To investigate the effects of syntactic and verbal working memory load while minimizing the differences in semantic processes, we used comprehension tasks with garden-path (GP) sentences, which require re-parsing, and non-garden-path (NGP) sentences. Compared with the short-term memory task, sentence comprehension activated the left GFi, including Brodmann areas (BAs) 44, 45, and 47, and the left superior temporal gyrus. In GP versus NGP sentences, there was greater activity in the left BAs 44, 45, and 46 extending to the left anterior insula, the pre-supplementary motor area, and the right cerebellum. In the left GFi, verbal working memory activity was located more dorsally (BA 44/45), semantic processing was located more ventrally (BA 47), and syntactic processing was located in between (BA 45). These findings indicate a close relationship between semantic and syntactic processes, and suggest that BA 45 might link verbal working memory and semantic processing via syntactic unification processes.

  18. Disrupted Reinforcement Signaling in Orbital Frontal Cortex and Caudate in Youths with Conduct Disorder/Oppositional Defiant Disorder and High Psychopathic Traits

    Science.gov (United States)

    Finger, Elizabeth C.; Marsh, Abigail A.; Blair, Karina S.; Reid, Marguerite. E.; Sims, Courtney; Ng, Pamela; Pine, Daniel S.; Blair, R. James. R.

    2010-01-01

    OBJECTIVE Dysfunction in amygdala and orbital frontal cortex functioning has been reported in youths and adults with psychopathic traits. However, the specific nature of the computational irregularities within these brain structures remains poorly understood. The current study used the passive avoidance task to examine responsiveness of these systems to early stimulus-reinforcement exposure, when prediction errors are greatest and learning maximized, and to reward in youths with psychopathic traits and comparison youths. METHOD 30 youths (N=15 with conduct disorder or oppositional defiant disorder plus high psychopathic traits and N=15 comparison subjects) completed a 3.0 T fMRI scan while performing a passive avoidance learning task. RESULTS Relative to comparison youth, youths with conduct disorder or oppositional defiant disorder plus psychopathic traits showed reduced orbitofrontal cortex responsiveness both to early stimulus-reinforcement exposure and to rewards, as well as reduced caudate response to early stimulus-reinforcement exposure. Contrary to other predictions, however, there were no group differences in amygdala responsiveness specifically to these two task parameters. However, amygdala responsiveness throughout the task was reduced in the youths with conduct disorder or oppositional defiant disorder plus psychopathic traits. CONCLUSIONS This study demonstrates that youths with conduct disorder or oppositional defiant disorder plus psychopathic traits are marked by a compromised sensitivity to early reinforcement information in both orbitofrontal cortex and caudate and to reward outcome information within orbitofrontal cortex. They further suggest that the integrated functioning of the amygdala, caudate and orbitofrontal cortex may be disrupted in individuals with this disorder. PMID:21078707

  19. The left inferior frontal gyrus is involved in adjusting response bias during a perceptual decision-making task.

    Science.gov (United States)

    Reckless, Greg E; Ousdal, Olga T; Server, Andres; Walter, Henrik; Andreassen, Ole A; Jensen, Jimmy

    2014-05-01

    Changing the way we make decisions from one environment to another allows us to maintain optimal decision-making. One way decision-making may change is how biased one is toward one option or another. Identifying the regions of the brain that underlie the change in bias will allow for a better understanding of flexible decision-making. An event-related, perceptual decision-making task where participants had to detect a picture of an animal amongst distractors was used during functional magnetic resonance imaging. Positive and negative financial motivation were used to affect a change in response bias, and changes in decision-making behavior were quantified using signal detection theory. Response bias became relatively more liberal during both positive and negative motivated trials compared to neutral trials. For both motivational conditions, the larger the liberal shift in bias, the greater the left inferior frontal gyrus (IFG) activity. There was no relationship between individuals' belief that they used a different strategy and their actual change in response bias. The present findings suggest that the left IFG plays a role in adjusting response bias across different decision environments. This suggests a potential role for the left IFG in flexible decision-making.

  20. Shifted dynamic interactions between subcortical nuclei and inferior frontal gyri during response preparation in persistent developmental stuttering.

    Science.gov (United States)

    Metzger, F Luise; Auer, Tibor; Helms, Gunther; Paulus, Walter; Frahm, Jens; Sommer, Martin; Neef, Nicole E

    2018-01-01

    Persistent developmental stuttering is associated with basal ganglia dysfunction or dopamine dysregulation. Here, we studied whole-brain functional connectivity to test how basal ganglia structures coordinate and reorganize sensorimotor brain networks in stuttering. To this end, adults who stutter and fluent speakers (control participants) performed a response anticipation paradigm in the MRI scanner. The preparation of a manual Go/No-Go response reliably produced activity in the basal ganglia and thalamus and particularly in the substantia nigra. Strikingly, in adults who stutter, substantia nigra activity correlated positively with stuttering severity. Furthermore, functional connectivity analyses yielded altered task-related network formations in adults who stutter compared to fluent speakers. Specifically, in adults who stutter, the globus pallidus and the thalamus showed increased network synchronization with the inferior frontal gyrus. This implies dynamic shifts in the response preparation-related network organization through the basal ganglia in the context of a non-speech motor task in stuttering. Here we discuss current findings in the traditional framework of how D1 and D2 receptor activity shapes focused movement selection, thereby suggesting a disproportional involvement of the direct and the indirect pathway in stuttering.

  1. The cerebral functional location in normal subjects when they listened to a story in unfamiliar Japanese

    International Nuclear Information System (INIS)

    Sun Da; Xu Wei; Zhang Hongwei; Liu Hongbiao; Liu Qichang

    2004-01-01

    Purpose: To detect the cerebral functional location when normal subjects listened to a story in unfamiliar Japanese. Methods: 7 normal young students of the medical collage of Zhejiang University, 22-24 years old, 4 male and 3 female. The first they underwent a 99mTc-ECD brain imaging at rest using a dual-head gamma camera with fan beam collimators. After 2-4 days they were asked to listen a story in unfamiliar Japanese carefully on a tap for 20 minters. 99mTc-ECD was administered in the first 3 minutes during they listened the story. The brain imaging was performed in 30-60 minutes after the tracer was administered. Results: To compare the rest state, during listen to the story in unfamiliar Japanese the right superior temporal in 5 cases, left superior temporal in 2 cases, right inferior temporal in 2 cases, and left inferior temporal in 1 case were activated. Among them, dual temporal were activated in 2 cases, only right temporal in 4 cases and left temporal in 1 case. Although they were no asked to remember the plot of the story, the frontal lobes were activated lightly in all 9 subjects. Among them dual inferior frontal and/or medial frontal lobes (3 cases), right inferior frontal and/or medial frontal lobes (2 cases), left inferior frontal (5 cases), right inferior frontal (1 case), right superior frontal (3 cases) were activated. The were activated in 6 subjects, and dual occipital in 5 cases, left occipital in 1 case. Other regions that were activated included parietal lobes (right in 2 cases and left in 1 case), and left occipital lobes (in 1 case) were activated. Conclusion: During listened to the story in unfamiliar Japanese the auditory association cortex in the superior temporal and some right midtemporal (it is more in right than in left) were activated. The frontal lobes were activated widely too, and mainly in left inferior frontal lobes (Broca's area), and in the frontal eye fields and the superolateral prefrontal cortex. It is consistent with the

  2. Activity in inferior parietal and medial prefrontal cortex signals the accumulation of evidence in a probability learning task.

    Directory of Open Access Journals (Sweden)

    Mathieu d'Acremont

    Full Text Available In an uncertain environment, probabilities are key to predicting future events and making adaptive choices. However, little is known about how humans learn such probabilities and where and how they are encoded in the brain, especially when they concern more than two outcomes. During functional magnetic resonance imaging (fMRI, young adults learned the probabilities of uncertain stimuli through repetitive sampling. Stimuli represented payoffs and participants had to predict their occurrence to maximize their earnings. Choices indicated loss and risk aversion but unbiased estimation of probabilities. BOLD response in medial prefrontal cortex and angular gyri increased linearly with the probability of the currently observed stimulus, untainted by its value. Connectivity analyses during rest and task revealed that these regions belonged to the default mode network. The activation of past outcomes in memory is evoked as a possible mechanism to explain the engagement of the default mode network in probability learning. A BOLD response relating to value was detected only at decision time, mainly in striatum. It is concluded that activity in inferior parietal and medial prefrontal cortex reflects the amount of evidence accumulated in favor of competing and uncertain outcomes.

  3. Virtual lesions of the inferior parietal cortex induce fast changes of implicit religiousness/spirituality.

    Science.gov (United States)

    Crescentini, Cristiano; Aglioti, Salvatore M; Fabbro, Franco; Urgesi, Cosimo

    2014-05-01

    Religiousness and spirituality (RS) are two ubiquitous aspects of human experience typically considered impervious to scientific investigation. Nevertheless, associations between RS and frontoparietal neural activity have been recently reported. However, much less is known about whether such activity is causally involved in modulating RS or just epiphenomenal to them. Here we combined two-pulse (10 Hz) Transcranial Magnetic Stimulation (TMS) with a novel, ad-hoc developed RS-related, Implicit Association Test (IAT) to investigate whether implicit RS representations, although supposedly rather stable, can be rapidly modified by a virtual lesion of inferior parietal lobe (IPL) and dorsolateral prefrontal cortex (DLPFC). A self-esteem (SE) IAT, focused on self-concepts nonrelated to RS representations, was developed as control. A specific increase of RS followed inhibition of IPL demonstrating its causative role in inducing fast plastic changes of religiousness/spirituality. In contrast, DLPFC inhibition had more widespread effects probably reflecting a general role in the acquisition or maintenance of task-rules or in controlling the expression of self-related representations not specific to RS. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Distribution of catecholamines and serotonin in the rat cerebral cortex:

    International Nuclear Information System (INIS)

    Reader, T.A.

    1981-01-01

    The rat cerebral cortex was dissected in five regions and analyzed for the catecholamines noradrenaline, adrenaline and dopamine, and for the indoleamine seroton in using sensitive radioenzymatic assay methods with thin-layer-chromatography. The noradrenaline concentration was highest in the ventral cortex, lateral to the hypothalamus, had intermediate values for the prefrontal, frontal and parietal cortical areas and was lowest in the occipital cortex. Dopamine levels were also highest in the cortex lateral to the hypothalamus, and moderate in the prefrontal and frontal cortical areas, with the lowest values measured for the occipital cortex. The ratios dopamine/noradrenaline further support the hypothesis that they are independent transmitters. Traces of adrenaline were measured in all regions examined. The serotonin distribution was found to be non-homogeneous, with the highest values for the prefrontal cortex and ventral cortex lateral to the hypothalamus. The functional significance of these amines and their ratios are discussed in relation to their role as putative modulators of cortical neuronal excitability. (author)

  5. Facilitation of acetylcholine release in rat frontal cortex by indeloxazine hydrochloride: involvement of endogenous serotonin and 5-HT4 receptors.

    Science.gov (United States)

    Yamaguchi, T; Suzuki, M; Yamamoto, M

    1997-12-01

    Effects of indeloxazine hydrochloride, an inhibitor of serotonin (5-HT) and norepinephrine (NE) reuptake with a facilitatory effect on 5-HT release, on acetylcholine (ACh) output in frontal cortex of conscious rats were characterized using an in vivo microdialysis technique. Systemic administration of indeloxazine (3 and 10 mg/kg, i.p.) increased ACh and 5-HT output in a dose-dependent manner. Depletion of endogenous monoamines by reserpine and of 5-HT by p-chlorophenylalanine, but not that of catecholamines by alpha-methyl-p-tyrosine, significantly attenuated the facilitatory effect of indeloxazine on ACh release. When applied locally by reverse dialysis, indeloxazine (10 and 30 microM) and the selective 5-HT reuptake inhibitor citalopram (10 microM), but not the NE reuptake inhibitor maprotiline (30 microM), increased cortical ACh output. Indeloxazine (10 mg/kg)-induced increase in ACh release was significantly inhibited by local application of the 5-HT4 receptor antagonists RS23597 (50 microM) and GR113803 (1 microM), while the 5-HT1A antagonist WAY-100135 (100 microM), 5-HT1A/1B/beta-adrenoceptor antagonist (-)propranolol (150 microM), 5-HT2A/2C antagonist ritanserin (10 microM) and 5-HT3 antagonist ondansetron (10 microM) failed to significantly modify this effect. Neither depletion of monoamines nor treatment with serotonergic antagonists significantly changed the basal ACh level, indicating that endogenous monoamines do not tonically activate ACh release. These results suggest that indeloxazine-induced facilitation of ACh release in rat frontal cortex is mediated by endogenous 5-HT and involves at least in part cortical 5-HT4 receptors.

  6. Functional connection between posterior superior temporal gyrus and ventrolateral prefrontal cortex in human.

    Science.gov (United States)

    Garell, P C; Bakken, H; Greenlee, J D W; Volkov, I; Reale, R A; Oya, H; Kawasaki, H; Howard, M A; Brugge, J F

    2013-10-01

    The connection between auditory fields of the temporal lobe and prefrontal cortex has been well characterized in nonhuman primates. Little is known of temporofrontal connectivity in humans, however, due largely to the fact that invasive experimental approaches used so successfully to trace anatomical pathways in laboratory animals cannot be used in humans. Instead, we used a functional tract-tracing method in 12 neurosurgical patients with multicontact electrode arrays chronically implanted over the left (n = 7) or right (n = 5) perisylvian temporal auditory cortex (area PLST) and the ventrolateral prefrontal cortex (VLPFC) of the inferior frontal gyrus (IFG) for diagnosis and treatment of medically intractable epilepsy. Area PLST was identified by the distribution of average auditory-evoked potentials obtained in response to simple and complex sounds. The same sounds evoked little if there is any activity in VLPFC. A single bipolar electrical pulse (0.2 ms, charge-balanced) applied between contacts within physiologically identified PLST resulted in polyphasic evoked potentials clustered in VLPFC, with greatest activation being in pars triangularis of the IFG. The average peak latency of the earliest negative deflection of the evoked potential on VLPFC was 13.48 ms (range: 9.0-18.5 ms), providing evidence for a rapidly conducting pathway between area PLST and VLPFC.

  7. Clinical-physiologic correlates of Alzheimer's disease and frontal lobe dementia

    International Nuclear Information System (INIS)

    Jagust, W.J.; Reed, B.R.; Seab, J.P.; Kramer, J.H.; Budinger, T.F.

    1989-01-01

    Thirty patients with degenerative dementia underwent clinical evaluation, neuropsychological testing, and single photon emission computed tomography (SPECT) with the blood flow tracer [ 123 I]-N-isopropyl-p-iodoamphetamine. Five of these patients were clinically and psychologically different from the others, demonstrating predominant behavioral disturbances with relative preservation of memory function. These five patients, who were felt to have a frontal lobe dementia (FLD), showed SPECT perfusion patterns which differed from the remaining 25 patients, who were diagnosed as having Alzheimer's disease (AD), and from 16 healthy control subjects. The FLD patients showed diminished perfusion in orbitofrontal, dorsolateral frontal, and temporal cortex relative to controls, while the AD patients showed lower perfusion in temporal and parietal cortex than controls. The FLD patients also showed hypoperfusion in both frontal cortical regions relative to AD patients. The pattern of performance on neuropsychological testing paralleled these differences in regional perfusion. These results suggest that clinical evaluation and physiological imaging may enable the differentiation of groups of degenerative dementia patients during life

  8. Jealousy increased by induced relative left frontal cortical activity.

    Science.gov (United States)

    Kelley, Nicholas J; Eastwick, Paul W; Harmon-Jones, Eddie; Schmeichel, Brandon J

    2015-10-01

    Asymmetric frontal cortical activity may be one key to the process linking social exclusion to jealous feelings. The current research examined the causal role of asymmetric frontal brain activity in modulating jealousy in response to social exclusion. Transcranial direct-current stimulation (tDCS) over the frontal cortex to manipulate asymmetric frontal cortical activity was combined with a modified version of the Cyberball paradigm designed to induce jealousy. After receiving 15 min of tDCS, participants were excluded by a desired partner and reported how jealous they felt. Among individuals who were excluded, tDCS to increase relative left frontal cortical activity caused greater levels of self-reported jealousy compared to tDCS to increase relative right frontal cortical activity or sham stimulation. Limitations concerning the specificity of this effect and implications for the role of the asymmetric prefrontal cortical activity in motivated behaviors are discussed. (c) 2015 APA, all rights reserved).

  9. Self-reflection and the inner voice: activation of the left inferior frontal gyrus during perceptual and conceptual self-referential thinking.

    Science.gov (United States)

    Morin, Alain; Hamper, Breanne

    2012-01-01

    Inner speech involvement in self-reflection was examined by reviewing 130 studies assessing brain activation during self-referential processing in key self-domains: agency, self-recognition, emotions, personality traits, autobiographical memory, and miscellaneous (e.g., prospection, judgments). The left inferior frontal gyrus (LIFG) has been shown to be reliably recruited during inner speech production. The percentage of studies reporting LIFG activity for each self-dimension was calculated. Fifty five percent of all studies reviewed indicated LIFG (and presumably inner speech) activity during self-reflection tasks; on average LIFG activation is observed 16% of the time during completion of non-self tasks (e.g., attention, perception). The highest LIFG activation rate was observed during retrieval of autobiographical information. The LIFG was significantly more recruited during conceptual tasks (e.g., prospection, traits) than during perceptual tasks (agency and self-recognition). This constitutes additional evidence supporting the idea of a participation of inner speech in self-related thinking.

  10. Why do patients with neurodegenerative frontal syndrome fail to answer: 'In what way are an orange and a banana alike?'.

    Science.gov (United States)

    Lagarde, Julien; Valabrègue, Romain; Corvol, Jean-Christophe; Garcin, Béatrice; Volle, Emmanuelle; Le Ber, Isabelle; Vidailhet, Marie; Dubois, Bruno; Levy, Richard

    2015-02-01

    in the frontal-basal-ganglion network. Two types of errors were observed in frontal patients. The most frequent was discriminating instead of grouping items ('linking deficit'). Patients also linked items on a concrete instead of an abstract basis ('abstraction deficit'). Linking and abstraction deficits were related to partially different areas: the linking deficit to the dorsal anterior cingulate cortex, right middle frontal gyrus and both inferior parietal lobules and the abstraction deficit to the head of the caudate nuclei and the left superior frontal gyrus. These data suggest that verbal concept formation requires the integrity of the prefrontal-basal-ganglion functional network. In addition, it can be divided into two distinct cognitive processes, which are underlain by two partially different neural networks. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Investigation of human frontal cortex under noxious thermal stimulation of temporo-mandibular joint using functional near infrared spectroscopy

    Science.gov (United States)

    Yennu, Amarnath; Rawat, Rohit; Manry, Michael T.; Gatchel, Robert; Liu, Hanli

    2013-03-01

    According to American Academy of Orofacial Pain, 75% of the U.S. population experiences painful symptoms of temporo-mandibular joint and muscle disorder (TMJMD) during their lifetime. Thus, objective assessment of pain is crucial for efficient pain management. We used near infrared spectroscopy (NIRS) as a tool to explore hemodynamic responses in the frontal cortex to noxious thermal stimulation of temporomadibular joint (TMJ). NIRS experiments were performed on 9 healthy volunteers under both low pain stimulation (LPS) and high pain stimulation (HPS), using a temperature-controlled thermal stimulator. To induce thermal pain, a 16X16 mm2 thermode was strapped onto the right TMJ of each subject. Initially, subjects were asked to rate perceived pain on a scale of 0 to 10 for the temperatures from 41°C to 47°C. For the NIRS measurement, two magnitudes of temperatures, one rated as 3 and another rated as 7, were chosen as LPS and HPS, respectively. By analyzing the temporal profiles of changes in oxy-hemoglobin concentration (HbO) using cluster-based statistical tests, we were able to identify several regions of interest (ROI), (e.g., secondary somatosensory cortex and prefrontal cortex), where significant differences (ppain, a neural-network-based classification algorithm was used. With leave-one-out cross validation from 9 subjects, the two levels of pain were identified with 100% mean sensitivity, 98% mean specificity and 99% mean accuracy to high pain. From the receiver operating characteristics curve, 0.99 mean area under curve was observed.

  12. Functional mapping of the neural basis for the encoding and retrieval of human episodic memory using H{sub 2}{sup 15}O PET

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Nam, Hyun Woo; Lee, Dong Soo; Lee, Sang Kun; Jang, Myoung Jin; Ahn, Ji Young; Park, Kwang Suk; Chung, June Key; Lee, Myung Chul [Seoul National Univ., Seoul (Korea, Republic of)

    2000-02-01

    Episodic memory is described as an 'autobiographical' memory responsible for storing a record of the events in our lives. We performed functional brain activation study using H{sub 2}{sup 1}5O PET to reveal the neural basis of the encoding and the retrieval of episodic memory in human normal volunteers. Four repeated H{sub 2}{sup 1}5O PET scans with two reference and two activation tasks were performed on 6 normal volunteers to activate brain areas engaged in encoding and retrieval with verbal materials. Images from the same subject were spatially registered and normalized using linear and nonlinear transformation. Using the means and variances for every condition which were adjusted with analysis of covariance, t-statistic analysis were performed voxel-wise. Encoding of episodic memory activated the opercular and triangular parts of left inferior frontal gyrus, right prefrontal cortex, medial frontal area, cingulate gyrus, posterior middle and inferior temporal gyri, and cerebellum, and both primary visual and visual association areas. Retrieval of episodic memory activated the triangular part of left inferior frontal gyrus and inferior temporal gyrus, right prefrontal cortex and medial temporal ares, and both cerebellum and primary visual and visual association areas. The activations in the opercular part of left inferior frontal gyrus and the right prefrontal cortex meant the essential role of these areas in the encoding and retrieval of episodic memeory. We could localize the neural basis of the encoding and retrieval of episodic memory using H{sub 2}{sup 1}5O PET, which was partly consistent with the hypothesis of hemispheric encoding/retrieval asymmetry.

  13. Manipulation of the extrastriate frontal loop can resolve visual disability in blindsight patients.

    Science.gov (United States)

    Badgaiyan, Rajendra D

    2012-12-01

    Patients with blindsight are not consciously aware of visual stimuli in the affected field of vision but retain nonconscious perception. This disability can be resolved if nonconsciously perceived information can be brought to their conscious awareness. It can be accomplished by manipulating neural network of visual awareness. To understand this network, we studied the pattern of cortical activity elicited during processing of visual stimuli with or without conscious awareness. The analysis indicated that a re-entrant signaling loop between the area V3A (located in the extrastriate cortex) and the frontal cortex is critical for processing conscious awareness. The loop is activated by visual signals relayed in the primary visual cortex, which is damaged in blindsight patients. Because of the damage, V3A-frontal loop is not activated and the signals are not processed for conscious awareness. These patients however continue to receive visual signals through the lateral geniculate nucleus. Since these signals do not activate the V3A-frontal loop, the stimuli are not consciously perceived. If visual input from the lateral geniculate nucleus is appropriately manipulated and made to activate the V3A-frontal loop, blindsight patients can regain conscious vision. Published by Elsevier Ltd.

  14. Hemispheric differences in the voluntary control of spatial attention: direct evidence for a right-hemispheric dominance within frontal cortex.

    Science.gov (United States)

    Duecker, Felix; Formisano, Elia; Sack, Alexander T

    2013-08-01

    Lesion studies in neglect patients have inspired two competing models of spatial attention control, namely, Heilman's "hemispatial" theory and Kinsbourne's "opponent processor" model. Both assume a functional asymmetry between the two hemispheres but propose very different mechanisms. Neuroimaging studies have identified a bilateral dorsal frontoparietal network underlying voluntary shifts of spatial attention. However, lateralization of attentional processes within this network has not been consistently reported. In the current study, we aimed to provide direct evidence concerning the functional asymmetry of the right and left FEF during voluntary shifts of spatial attention. To this end, we applied fMRI-guided neuronavigation to disrupt individual FEF activation foci with a longer-lasting inhibitory patterned TMS protocol followed by a spatial cueing task. Our results indicate that right FEF stimulation impaired the ability of shifting spatial attention toward both hemifields, whereas the effects of left FEF stimulation were limited to the contralateral hemifield. These results provide strong direct evidence for right-hemispheric dominance in spatial attention within frontal cortex supporting Heilman's "hemispatial" theory. This complements previous TMS studies that generally conform to Kinsbourne's "opponent processor" model after disruption of parietal cortex, and we therefore propose that both theories are not mutually exclusive.

  15. Anorexia Nervosa during Adolescence Is Associated with Decreased Gray Matter Volume in the Inferior Frontal Gyrus.

    Directory of Open Access Journals (Sweden)

    Takashi X Fujisawa

    Full Text Available Anorexia nervosa (AN is an eating disorder characterized by the relentless pursuit to lose weight, mostly through self-starvation, and a distorted body image. AN tends to begin during adolescence among women. However, the underlying neural mechanisms related to AN remain unclear. Using voxel-based morphometry based on magnetic resonance imaging scans, we investigated whether the presence of AN was associated with discernible changes in brain morphology. Participants were 20 un-medicated, right-handed patients with early-onset AN and 14 healthy control subjects. Group differences in gray matter volume (GMV were assessed using high-resolution, T1-weighted, volumetric magnetic resonance imaging datasets (3T Trio scanner; Siemens AG and analyzed after controlling for age and total GMV, which was decreased in the bilateral inferior frontal gyrus (IFG (left IFG: FWE corrected, p < 0.05; right IFG: uncorrected, p < 0.05 of patients with AN. The GMV in the bilateral IFG correlated significantly with current age (left IFG: r = -.481, p < .05; right IFG: r = -.601, p < .01 and was limited to the AN group. We speculate that decreased IFG volume might lead to deficits in executive functioning or inhibitory control within neural reward systems. Precocious or unbalanced neurological trimming within this particular region might be an important factor for the pathogenesis of AN onset.

  16. PTSD symptom severity is associated with increased recruitment of top-down attentional control in a trauma-exposed sample.

    Science.gov (United States)

    White, Stuart F; Costanzo, Michelle E; Blair, James R; Roy, Michael J

    2015-01-01

    Recent neuroimaging work suggests that increased amygdala responses to emotional stimuli and dysfunction within regions mediating top down attentional control (dorsomedial frontal, lateral frontal and parietal cortices) may be associated with the emergence of anxiety disorders, including posttraumatic stress disorder (PTSD). This report examines amygdala responsiveness to emotional stimuli and the recruitment of top down attention systems as a function of task demands in a population of U.S. military service members who had recently returned from combat deployment in Afghanistan/Iraq. Given current interest in dimensional aspects of pathophysiology, it is worthwhile examining patients who, while not meeting full PTSD criteria, show clinically significant functional impairment. Fifty-seven participants with sub-threshold levels of PTSD symptoms completed the affective Stroop task while undergoing fMRI. Participants with PTSD or depression at baseline were excluded. Greater PTSD symptom severity scores were associated with increased amygdala activation to emotional, particularly positive, stimuli relative to neutral stimuli. Furthermore, greater PTSD symptom severity was associated with increased superior/middle frontal cortex response during task conditions relative to passive viewing conditions. In addition, greater PTSD symptom severity scores were associated with: (i) increased activation in the dorsolateral prefrontal, lateral frontal, inferior parietal cortices and dorsomedial frontal cortex/dorsal anterior cingulate cortex (dmFC/dACC) in response to emotional relative to neutral stimuli; and (ii) increased functional connectivity during emotional trials, particularly positive trials, relative to neutral trials between the right amygdala and dmFC/dACC, left caudate/anterior insula cortex, right lentiform nucleus/caudate, bilateral inferior parietal cortex and left middle temporal cortex. We suggest that these data may reflect two phenomena associated with

  17. Medial cortex activity, self-reflection and depression.

    Science.gov (United States)

    Johnson, Marcia K; Nolen-Hoeksema, Susan; Mitchell, Karen J; Levin, Yael

    2009-12-01

    Using functional magnetic resonance imaging, we investigated neural activity associated with self-reflection in depressed [current major depressive episode (MDE)] and healthy control participants, focusing on medial cortex areas previously shown to be associated with self-reflection. Both the MDE and healthy control groups showed greater activity in anterior medial cortex (medial frontal gyrus, anterior cingulate gyrus) when cued to think about hopes and aspirations compared with duties and obligations, and greater activity in posterior medial cortex (precuneus, posterior cingulate) when cued to think about duties and obligations (Experiment 1). However, the MDE group showed less activity than controls in the same area of medial frontal cortex when self-referential cues were more ambiguous with respect to valence (Experiment 2), and less deactivation in a non-self-referential condition in both experiments. Furthermore, individual differences in rumination were positively correlated with activity in both anterior and posterior medial cortex during non-self-referential conditions. These results provide converging evidence for a dissociation of anterior and posterior medial cortex depending on the focus of self-relevant thought. They also provide neural evidence consistent with behavioral findings that depression is associated with disruption of positively valenced thoughts in response to ambiguous cues, and difficulty disengaging from self-reflection when it is appropriate to do so.

  18. Specific metabolomics adaptations define a differential regional vulnerability in the adult human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Rosanna Cabré

    2016-12-01

    Full Text Available Brain neurons offer diverse responses to stresses and detrimental factors during development and aging, and as a result of both neurodegenerative and neuropsychiatric disorders. This multiplicity of responses can be ascribed to the great diversity among neuronal populations. Here we have determined the metabolomic profile of three healthy adult human brain regions—entorhinal cortex, hippocampus, and frontal cortex—using mass spectrometry-based technologies. Our results show the existence of a lessened energy demand, mitochondrial stress, and lower one-carbon metabolism (particularly restricted to the methionine cycle specifically in frontal cortex. These findings, along with the better antioxidant capacity and lower mTOR signaling also seen in frontal cortex, suggest that this brain region is especially resistant to stress compared to the entorhinal cortex and hippocampus, which are more vulnerable regions. Globally, our results show the presence of specific metabolomics adaptations in three mature, healthy human brain regions, confirming the existence of cross-regional differences in cell vulnerability in the human cerebral cortex.

  19. Rapid eye movement (REM sleep deprivation reduces rat frontal cortex acetylcholinesterase (EC 3.1.1.7 activity

    Directory of Open Access Journals (Sweden)

    Camarini R.

    1997-01-01

    Full Text Available Rapid eye movement (REM sleep deprivation induces several behavioral changes. Among these, a decrease in yawning behavior produced by low doses of cholinergic agonists is observed which indicates a change in brain cholinergic neurotransmission after REM sleep deprivation. Acetylcholinesterase (Achase controls acetylcholine (Ach availability in the synaptic cleft. Therefore, altered Achase activity may lead to a change in Ach availability at the receptor level which, in turn, may result in modification of cholinergic neurotransmission. To determine if REM sleep deprivation would change the activity of Achase, male Wistar rats, 3 months old, weighing 250-300 g, were deprived of REM sleep for 96 h by the flower-pot technique (N = 12. Two additional groups, a home-cage control (N = 6 and a large platform control (N = 6, were also used. Achase was measured in the frontal cortex using two different methods to obtain the enzyme activity. One method consisted of the obtention of total (900 g supernatant, membrane-bound (100,000 g pellet and soluble (100,000 g supernatant Achase, and the other method consisted of the obtention of a fraction (40,000 g pellet enriched in synaptic membrane-bound enzyme. In both preparations, REM sleep deprivation induced a significant decrease in rat frontal cortex Achase activity when compared to both home-cage and large platform controls. REM sleep deprivation induced a significant decrease of 16% in the membrane-bound Achase activity (nmol thiocholine formed min-1 mg protein-1 in the 100,000 g pellet enzyme preparation (home-cage group 152.1 ± 5.7, large platform group 152.7 ± 24.9 and REM sleep-deprived group 127.9 ± 13.8. There was no difference in the soluble enzyme activity. REM sleep deprivation also induced a significant decrease of 20% in the enriched synaptic membrane-bound Achase activity (home-cage group 126.4 ± 21.5, large platform group 127.8 ± 20.4, REM sleep-deprived group 102.8 ± 14.2. Our results

  20. GABAA receptor B subunit expression in the superior frontal cortex of human alcoholics

    International Nuclear Information System (INIS)

    Buckley, S.T.; Dodd, P.R.

    2001-01-01

    Full text: Changes in GABA A receptor pharmacology can be ascribed to alterations in expression of specific GABA A receptor subunits. Ethanol is known to be a potent agonist of the GABA A receptor. Chronic abuse of alcohol in humans results in damage of selective brain regions such as the superior frontal cortex (SFC), leading to neuronal cell loss. Studies in our laboratory 1 and elsewhere 2 have shown differences in expression of a number of GABA A receptor subunits in chronic human alcoholism. This suggests that alterations in GABA A receptor composition may be involved in the pathogenesis of alcoholic brain damage. We analysed the expression of the β 1 ,β 2 and β 3 isoforms of the GABA A receptor by a competitive reverse transcription polymerase chain reaction (RT-PCR) technique, which utilised an internal standard (IS) for quantitation. 35 S-dATP was incorporated to enable visualisation of the PCR products. Human brain tissue was obtained at autopsy and stored in 0.32 M sucrose at -80 deg C. Total RNA was extracted from pathologically susceptible and spared regions, SFC and motor cortex respectively,of 22 control and 22 alcoholic patients. 1 μg of total RNA from each sample was co-amplified with 0.5 pg of IS and a ratio determined. A standard consisting of known amounts of β 1 cRNA titrated against 0.5 pg of IS enabled a standard curve to be generated for quantitation of each unknown sample. The samples were subjected to polyacrylamide gel electrophoresis and the dried gel exposed to a phosphorimager screen. Data analysis was performed using the ImageQuant program. Initial results indicate that there is a reduction in expression of all the β transcripts in alcoholics when compared with controls, which supports the hypothesis that the GABA A receptor is altered by alcohol abuse. Supported by NHMRC. Copyright (2001) Australian Neuroscience Society

  1. Quantitative analysis of basal dendritic tree of layer III pyramidal neurons in different areas of adult human frontal cortex.

    Science.gov (United States)

    Zeba, Martina; Jovanov-Milosević, Natasa; Petanjek, Zdravko

    2008-01-01

    Large long projecting (cortico-cortical) layer IIIc pyramidal neurons were recently disclosed to be in the basis of cognitive processing in primates. Therefore, we quantitatively examined the basal dendritic morphology of these neurons by using rapid Golgi and Golgi Cox impregnation methods among three distinct Brodmann areas (BA) of an adult human frontal cortex: the primary motor BA4 and the associative magnopyramidal BA9 from left hemisphere and the Broca's speech BA45 from both hemispheres. There was no statistically significant difference in basal dendritic length or complexity, as dendritic spine number or their density between analyzed BA's. In addition, we analyzed each of these BA's immunocytochemically for distribution of SMI-32, a marker of largest long distance projecting neurons. Within layer IIIc, the highest density of SMI-32 immunopositive pyramidal neurons was observed in associative BA9, while in primary BA4 they were sparse. Taken together, these data suggest that an increase in the complexity of cortico-cortical network within human frontal areas of different functional order may be principally based on the increase in density of large, SMI-32 immunopositive layer IIIc neurons, rather than by further increase in complexity of their dendritic tree and synaptic network.

  2. Determination of hyperactive areas of Cortex Cerebri with using brain SPECT study

    International Nuclear Information System (INIS)

    Stepien, A.; Pawlus, J.; Wasilewska-Radwanska, M.

    2004-01-01

    The aim of this study was the assessment of the ability to apply of SPECT technique to determination of hyperactive areas of cortex cerebri. Analysis included 50 patients (mean aged 44 - 58). Brain SPECT scanning was performed after 1 hour after the intravenous injection of 740 MBq of ethylcisteinate dimmer labeled 99m Technetium (99mTc-ECD) with the use one-head gamma camera with a low-energy, ultra-high resolution collimator. Qualitative and quantitative analysis was performed using specialised software. In 20 cases normal biodistribution of the radiotracer was observed (hyperactive areas in cerebellum and occiput). In patients with psychiatric and neurological disturbances hyperactive areas were visualized in 25 cases in temporal lobes, in 4 cases in parietal lobes and in 1 patient in frontal area and basal ganglia. It is concluded that a number of factors limit the wide-scale use of SPECT, including the sophistication of imaging equipment (single-head cameras are inferior to the newer multihead units) and the experience of the physicians interpreting the scans and utilizing the data. In many diseases physicians do not know which areas of the patient's brain according disorders. Brain SPECT study can be a very useful tool to evaluation of hyperactive areas of cortex cerebri. This technique visualization of cortex cerebri completes standard analysis of disorders of brain activity

  3. Moderate effects of noninvasive brain stimulation of the frontal cortex for improving negative symptoms in schizophrenia: Meta-analysis of controlled trials.

    Science.gov (United States)

    Aleman, André; Enriquez-Geppert, Stefanie; Knegtering, Henderikus; Dlabac-de Lange, Jozarni J

    2018-06-01

    Negative symptoms in schizophrenia concern a clinically relevant reduction of goal-directed behavior that strongly and negatively impacts daily functioning. Existing treatments are of marginal effect and novel approaches are needed. Noninvasive neurostimulation by means of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are novel approaches that may hold promise. To provide a quantitative integration of the published evidence regarding effects of rTMS and tDCS over the frontal cortex on negative symptoms, including an analysis of effects of sham stimulation. Meta-analysis was applied, using a random effects model, to calculate mean weighted effect sizes (Cohen's d). Heterogeneity was assessed by using Cochrans Q and I 2 tests. For rTMS treatment, the mean weighted effect size compared to sham stimulation was 0.64 (0.32-0.96; k = 22, total N = 827). Studies with younger participants showed stronger effects as compared to studies with older participants. For tDCS studies a mean weighted effect size of 0.50 (-0.07 to 1.07; k = 5, total N = 134) was found. For all frontal noninvasive neurostimulation studies together (i.e., TMS and tDCS studies combined) active stimulation was superior to sham, the mean weighted effect size was 0.61 (24 studies, 27 comparisons, 95% confidence interval 0.33-0.89; total N = 961). Sham rTMS (baseline - posttreatment comparison) showed a significant improvement of negative symptoms, d = 0.31 (0.09-0.52; k = 16, total N = 333). Whereas previous meta-analyses were underpowered, our meta-analysis had a power of 0.87 to detect a small effect. The available evidence indicates that noninvasive prefrontal neurostimulation can improve negative symptoms. This finding suggests a causal role for the lateral frontal cortex in self-initiated goal-directed behavior. The evidence is stronger for rTMS than for tDCS, although this may be due to the small number of

  4. Segregation of the human medial prefrontal cortex in social cognition

    Directory of Open Access Journals (Sweden)

    Danilo eBzdok

    2013-05-01

    Full Text Available While the human medial prefrontal cortex (mPFC is widely believed to be a key node of neural networks relevant for socio-emotional processing, its functional subspecialization is still poorly understood. We thus revisited the often assumed differentiation of the mPFC in social cognition along its ventral-dorsal axis. Our neuroinformatic analysis was based on a neuroimaging meta-analysis of perspective-taking that yielded two separate clusters in the ventral and dorsal mPFC, respectively. We determined each seed region’s brain-wide interaction pattern by two complementary measures of functional connectivity: co-activation across a wide range of neuroimaging studies archived in the BrainMap database and correlated signal fluctuations during unconstrained (resting cognition. Furthermore, we characterized the functions associated with these two regions using the BrainMap database. Across methods, the ventral mPFC was more strongly connected with the nucleus accumbens, hippocampus, posterior cingulate cortex, and retrosplenial cortex, while the dorsal mPFC was more strongly connected with the inferior frontal gyrus, temporo-parietal junction, and middle temporal gyrus. Further, the ventral mPFC was selectively associated with action execution, olfaction, and reward related tasks, while the dorsal mPFC was selectively associated with perspective-taking and episodic memory retrieval. The ventral mPFC is therefore predominantly involved in sensory-driven, approach/avoidance-modulating, and evaluation-related processing, whereas the dorsal mPFC is predominantly involved in internally driven, memory-informed, and metacognition-related processing in social cognition.

  5. Spatial distribution of diffuse, primitive, and classic amyloid-beta deposits and blood vessels in the upper laminae of the frontal cortex in Alzheimer disease.

    Science.gov (United States)

    Armstrong, R A; Cairns, N J; Lantos, P L

    1998-12-01

    The spatial distribution of the diffuse, primitive, and classic amyloid-beta deposits was studied in the upper laminae of the superior frontal gyrus in cases of sporadic Alzheimer disease (AD). Amyloid-beta-stained tissue was counterstained with collagen IV to determine whether the spatial distribution of the amyloid-beta deposits along the cortex was related to blood vessels. In all patients, amyloid-beta deposits and blood vessels were aggregated into distinct clusters and in many patients, the clusters were distributed with a regular periodicity along the cortex. The clusters of diffuse and primitive deposits did not coincide with the clusters of blood vessels in most patients. However, the clusters of classic amyloid-beta deposits coincided with those of the large diameter (>10 microm) blood vessels in all patients and with clusters of small-diameter (upper cortical laminae.

  6. Dissociating Parieto-Frontal Networks for Phonological and Semantic Word Decisions

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Weigel, Anni; Schuschan, Paul

    2016-01-01

    Left posterior inferior frontal gyrus (pIFG) and supramarginal gyrus (SMG) are key regions for phonological decisions, whereas angular gyrus (ANG) and anterior IFG (aIFG) are associated with semantics. However, it is less clear whether the functional contribution of one area changes in the presen...

  7. Norepinephrine in the Medial Pre-frontal Cortex Supports Accumbens Shell Responses to a Novel Palatable Food in Food-Restricted Mice Only

    Directory of Open Access Journals (Sweden)

    Emanuele Claudio Latagliata

    2018-01-01

    Full Text Available Previous findings from this laboratory demonstrate: (1 that different classes of addictive drugs require intact norepinephrine (NE transmission in the medial pre Frontal Cortex (mpFC to promote conditioned place preference and to increase dopamine (DA tone in the nucleus accumbens shell (NAc Shell; (2 that only food-restricted mice require intact NE transmission in the mpFC to develop conditioned preference for a context associated with milk chocolate; and (3 that food-restricted mice show a significantly larger increase of mpFC NE outflow then free fed mice when experiencing the palatable food for the first time. In the present study we tested the hypothesis that only the high levels of frontal cortical NE elicited by the natural reward in food restricted mice stimulate mesoaccumbens DA transmission. To this aim we investigated the ability of a first experience with milk chocolate to increase DA outflow in the accumbens Shell and c-fos expression in striatal and limbic areas of food–restricted and ad-libitum fed mice. Moreover, we tested the effects of a selective depletion of frontal cortical NE on both responses in either feeding group. Only in food-restricted mice milk chocolate induced an increase of DA outflow beyond baseline in the accumbens Shell and a c-fos expression larger than that promoted by a novel inedible object in the nucleus accumbens. Moreover, depletion of frontal cortical NE selectively prevented both the increase of DA outflow and the large expression of c-fos promoted by milk chocolate in the NAc Shell of food-restricted mice. These findings support the conclusion that in food-restricted mice a novel palatable food activates the motivational circuit engaged by addictive drugs and support the development of noradrenergic pharmacology of motivational disturbances.

  8. Biased and unbiased perceptual decision-making on vocal emotions.

    Science.gov (United States)

    Dricu, Mihai; Ceravolo, Leonardo; Grandjean, Didier; Frühholz, Sascha

    2017-11-24

    Perceptual decision-making on emotions involves gathering sensory information about the affective state of another person and forming a decision on the likelihood of a particular state. These perceptual decisions can be of varying complexity as determined by different contexts. We used functional magnetic resonance imaging and a region of interest approach to investigate the brain activation and functional connectivity behind two forms of perceptual decision-making. More complex unbiased decisions on affective voices recruited an extended bilateral network consisting of the posterior inferior frontal cortex, the orbitofrontal cortex, the amygdala, and voice-sensitive areas in the auditory cortex. Less complex biased decisions on affective voices distinctly recruited the right mid inferior frontal cortex, pointing to a functional distinction in this region following decisional requirements. Furthermore, task-induced neural connectivity revealed stronger connections between these frontal, auditory, and limbic regions during unbiased relative to biased decision-making on affective voices. Together, the data shows that different types of perceptual decision-making on auditory emotions have distinct patterns of activations and functional coupling that follow the decisional strategies and cognitive mechanisms involved during these perceptual decisions.

  9. Frontal lobe atrophy in motor neuron diseases.

    Science.gov (United States)

    Kiernan, J A; Hudson, A J

    1994-08-01

    Neuronal degeneration in the precentral gyrus alone cannot account for the occurrence of spastic paresis in motor neuron diseases. To look for more extensive cortical atrophy we measured MRIs of the upper parts of the frontal and parietal lobes in 11 sporadic cases of classical amyotrophic lateral sclerosis (ALS), eight patients with primary lateral sclerosis (PLS) and an age- and sex-matched group of 49 neurologically normal people. None of the patients had overt dementia or other mental diseases. In PLS there is progressive spastic paresis but in contrast to ALS there is no lower motor neuron degeneration. The surface area of the precentral gyri and the amount of underlying white matter in PLS were consistently approximately 75% of the normal size. By contrast, there was some shrinkage of the precentral gyri in some of the ALS patients but the mean measurements for the group did not differ significantly from the controls. Anterior to the precentral sulci, the cortical surface area in PLS was approximately 85% of that of the controls, with correspondingly reduced white matter. In ALS the cortical surface areas of the anterior frontal lobes did not differ from those of the controls, but the amount of underlying white matter was reduced almost as much in ALS as it was in PLS. The measured changes in the frontal lobes suggest that in PLS there is simultaneous atrophy of the primary, premotor and supplementary motor areas of the cortex, with consequent degeneration of corticospinal and corticoreticular axons descending through the underlying white matter. These changes could account for the progressive upper motor neuron syndrome. In ALS, with no significant frontal cortical atrophy, the shrinkage of the white matter may be due to degeneration of axons projecting to the frontal cortex from elsewhere. Deprivation of afferents could explain the diminution of motor functions of the frontal lobes in ALS and also the changes in word fluency, judgement and attention that

  10. Inferior frontal gyrus preserves working memory and emotional learning under conditions of impaired noradrenergic signaling

    Directory of Open Access Journals (Sweden)

    Benjamin eBecker

    2013-12-01

    Full Text Available Compensation has been widely applied to explain neuroimaging findings in neuropsychiatric patients. Functional compensation is often invoked when patients display equal performance and increased neural activity in comparison to healthy controls. According to the compensatory hypothesis increased activity allows the brain to maintain cognitive performance despite underlying neuropathological changes. Due to methodological and pathology-related issues, however, the functional relevance of the increased activity and the specific brain regions involved in the compensatory response remain unclear. An experimental approach that allows a transient induction of compensatory responses in the healthy brain could help to overcome these issues. To this end we used the nonselective beta-blocker propranolol to pharmacologically induce sub-optimal noradrenergic signaling in healthy participants. In two independent fMRI experiments participants received either placebo or propranolol before they underwent a cognitive challenge (experiment 1: working memory; experiment 2: emotional learning: Pavlovian fear conditioning. In experiment 1 propranolol had no effects on working memory performance, but evoked stronger activity in the left inferior frontal gyrus (IFG. In experiment 2 propranolol produced no effects on emotional memory formation, but evoked stronger activity in the right IFG. The present finding that sub-optimal beta-adrenergic signaling did not disrupt performance and concomitantly increased IFG activity is consistent with, and extends, current perspectives on functional compensation. Together, our findings suggest that under conditions of impaired noradrenergic signaling, heightened activity in brain regions located within the cognitive control network, particularly the IFG, may reflect compensatory operations subserving the maintenance of behavioral performance.

  11. [Amplitude Changes of Low Frequency Fluctuation in Brain Spontaneous Nervous Activities Induced by Needling at Hand Taiyin Lung Channel].

    Science.gov (United States)

    Zhou, You-long; Su, Cheng-guo; Liu, Shou-fang; Jin, Xiang-yu; Duan, Yan-li; Chen, Xiao-yan; Zhao, Shu-hua; Wang, Quan-liang; Dang, Chang-lin

    2016-05-01

    To observe amplitude changes of low frequency fluctuation in brain spontaneous nervous activities induced by needling at Hand Taiyin Lung Channel, and to preliminarily explore the possible brain function network of Hand Taiyin Lung Channel. By using functional magnetic resonance imaging (fMRI), 16 healthy volunteers underwent resting-state scanning (R1) and scanning with retained acupuncture at Hand Taiyin Lung Channel (acupuncture, AP). Data of fMRI collected were statistically calculated using amplitude of low frequency fluctuations (ALFF). Under R1 significantly enhanced ALFF occurred in right precuneus, left inferior parietal lobule, bilateral superior temporal gyrus, bilateral middle frontal gyrus, left superior frontal gyrus, left inferior frontal gyrus, left medial frontal gyrus. Under AP significantly enhanced ALFF occurred in right precuneus, bilateral superior frontal gyrus, cerebellum, bilateral middle frontal gyrus, right medial frontal gyrus, and so on. Compared with R1, needing at Hand Taiyin Lung Channel could significantly enhance ALFF in right gyrus subcallosum and right inferior frontal gyrus. Significant decreased ALFF appeared in right postcentral gyrus, left precuneus, left superior temporal gyrus, left middle temporal gyrus, and so on. Needing at Hand Taiyin Lung Channel could significantly change fixed activities of cerebral cortex, especially in right subcallosal gyrus, right inferior frontal gyrus, and so on.

  12. Performance monitoring in the medial frontal cortex and related neural networks: From monitoring self actions to understanding others' actions.

    Science.gov (United States)

    Ninomiya, Taihei; Noritake, Atsushi; Ullsperger, Markus; Isoda, Masaki

    2018-04-27

    Action is a key channel for interacting with the outer world. As such, the ability to monitor actions and their consequences - regardless as to whether they are self-generated or other-generated - is of crucial importance for adaptive behavior. The medial frontal cortex (MFC) has long been studied as a critical node for performance monitoring in nonsocial contexts. Accumulating evidence suggests that the MFC is involved in a wide range of functions necessary for one's own performance monitoring, including error detection, and monitoring and resolving response conflicts. Recent studies, however, have also pointed to the importance of the MFC in performance monitoring under social conditions, ranging from monitoring and understanding others' actions to reading others' mental states, such as their beliefs and intentions (i.e., mentalizing). Here we review the functional roles of the MFC and related neural networks in performance monitoring in both nonsocial and social contexts, with an emphasis on the emerging field of a social systems neuroscience approach using macaque monkeys as a model system. Future work should determine the way in which the MFC exerts its monitoring function via interactions with other brain regions, such as the superior temporal sulcus in the mentalizing system and the ventral premotor cortex in the mirror system. Copyright © 2018. Published by Elsevier B.V.

  13. Mapping brain morphological and functional conversion patterns in predementia late-onset bvFTD

    Energy Technology Data Exchange (ETDEWEB)

    Morbelli, Silvia; Fiz, Francesco; Bossert, Irene; Buschiazzo, Ambra; Picori, Lorena; Sambuceti, Gianmario [University of Genoa and IRCCS AOU San Martino-IST, Nuclear Medicine Unit, Department of Health Science (DISSAL), Genoa (Italy); Ferrara, Michela; Dessi, Barbara; Arnaldi, Dario; Picco, Agnese; Accardo, Jennifer; Nobili, Flavio [University of Genoa and IRCCS AOU San Martino-IST, Clinical Neurology, Department of Neuroscience (DINOGMI), Genoa (Italy); Girtler, Nicola [University of Genoa and IRCCS AOU San Martino-IST, Clinical Neurology, Department of Neuroscience (DINOGMI), Genoa (Italy); University of Genoa and IRCCS AOU San Martino-IST, Clinical Psychology, Department of Neuroscience (DINOGMI), Genoa (Italy); Mandich, Paola [University of Genoa and IRCCS AOU San Martino-IST, Medical Genetics, Department of Neuroscience (DINOGMI), Genoa (Italy); Pagani, Marco [Institute of Cognitive Sciences and Technologies, CNR, Rome (Italy); Karolinska Hospital, Department of Nuclear Medicine, Stockholm (Sweden)

    2016-07-15

    The diagnosis of behavioural variant frontotemporal dementia (bvFTD) is challenging during the predementia stage when symptoms are subtle and confounding. Morphological and functional neuroimaging can be particularly helpful during this stage but few data are available. We retrospectively selected 25 patients with late-onset probable bvFTD. Brain structural MRI and FDG PET were performed during the predementia stage (mean MMSE score 27.1 ± 2.5) on average 2 years before. The findings with the two imaging modalities were compared (SPM8) with those in a group of 20 healthy subjects. The bvFTD patients were divided into two subgroups: those with predominant disinhibition (bvFTD+) and those with apathy (bvFTD-). Hypometabolism exceeded grey matter (GM) density reduction in terms of both extension and statistical significance in all comparisons. In the whole bvFTD group, hypometabolism involved the bilateral medial, inferior and superior lateral frontal cortex, anterior cingulate, left temporal and right parietal cortices and the caudate nuclei. GM density reduction was limited to the right frontal cortex and the left medial temporal lobe. In bvFTD+ patients hypometabolism was found in the bilateral medial and basal frontal cortex, while GM reduction involved the left anterior cingulate and left inferior frontal cortices, and the right insula. In bvFTD- patients, atrophy and mainly hypometabolism involved the lateral frontal cortex and the inferior parietal lobule. These findings suggest that hypometabolism is more extensive than, and thus probably precedes, atrophy in predementia late-onset bvFTD, underscoring different topographic involvement in disinhibited and apathetic presentations. If confirmed in a larger series, these results should prompt biomarker operationalization in bvFTD, especially for patient selection in therapeutic clinical trials. (orig.)

  14. Mapping brain morphological and functional conversion patterns in predementia late-onset bvFTD

    International Nuclear Information System (INIS)

    Morbelli, Silvia; Fiz, Francesco; Bossert, Irene; Buschiazzo, Ambra; Picori, Lorena; Sambuceti, Gianmario; Ferrara, Michela; Dessi, Barbara; Arnaldi, Dario; Picco, Agnese; Accardo, Jennifer; Nobili, Flavio; Girtler, Nicola; Mandich, Paola; Pagani, Marco

    2016-01-01

    The diagnosis of behavioural variant frontotemporal dementia (bvFTD) is challenging during the predementia stage when symptoms are subtle and confounding. Morphological and functional neuroimaging can be particularly helpful during this stage but few data are available. We retrospectively selected 25 patients with late-onset probable bvFTD. Brain structural MRI and FDG PET were performed during the predementia stage (mean MMSE score 27.1 ± 2.5) on average 2 years before. The findings with the two imaging modalities were compared (SPM8) with those in a group of 20 healthy subjects. The bvFTD patients were divided into two subgroups: those with predominant disinhibition (bvFTD+) and those with apathy (bvFTD-). Hypometabolism exceeded grey matter (GM) density reduction in terms of both extension and statistical significance in all comparisons. In the whole bvFTD group, hypometabolism involved the bilateral medial, inferior and superior lateral frontal cortex, anterior cingulate, left temporal and right parietal cortices and the caudate nuclei. GM density reduction was limited to the right frontal cortex and the left medial temporal lobe. In bvFTD+ patients hypometabolism was found in the bilateral medial and basal frontal cortex, while GM reduction involved the left anterior cingulate and left inferior frontal cortices, and the right insula. In bvFTD- patients, atrophy and mainly hypometabolism involved the lateral frontal cortex and the inferior parietal lobule. These findings suggest that hypometabolism is more extensive than, and thus probably precedes, atrophy in predementia late-onset bvFTD, underscoring different topographic involvement in disinhibited and apathetic presentations. If confirmed in a larger series, these results should prompt biomarker operationalization in bvFTD, especially for patient selection in therapeutic clinical trials. (orig.)

  15. Mirror therapy in lower limb amputees. A look beyond primary motor cortex reorganization

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, S.; Essmeister, M.; Sycha, T.; Auff, E. [Vienna Medical Univ. (Austria). Dept. of Neurology; Kasprian, G.; Furtner, J.; Schoepf, V.; Prayer, D. [Vienna Medical Univ. (Austria). Dept. of Neuroradiology

    2011-11-15

    Phantom pain in upper limb amputees is associated with the extent of reorganization in the primary sensorimotor cortex. Mirror visual feedback therapy has been shown to improve phantom pain. We investigated the extent of cortical reorganization in lower limb amputees and changes in neural activity induced by mirror therapy. Eight lower limb amputees underwent 12 sessions of MVFT and functional magnetic resonance imaging (fMRI) of the brain before the first and after the last MVFT session. FMRI sessions consisted of two runs in which subjects were instructed to perform repetitive movement of the healthy and phantom ankle. Before MVFT, the mean phantom pain intensity was 4.6 {+-} 3.1 on a visual analog scale and decreased to 1.8 {+-} 1.7 (p = 0.04). We did not observe a consistent pattern of cortical activation in primary sensorimotor areas during phantom limb movements. Following MVFT, increased activity was obtained in the right orbitofrontal cortex during phantom ankle movements. Comparison of cortical activity during movements of the phantom ankle and the intact ankle showed significantly higher activity in the left inferior frontal cortex (pars triangularis). These results question the known association between phantom pain and primary sensorimotor reorganization and propose reorganizational changes involving multiple cortical areas in lower limb amputees. Finally, reduction of phantom pain after mirror visual feedback therapy was associated with increased prefrontal cortical activity during phantom ankle movements. (orig.)

  16. Association fibers connecting the Broca center and the lateral superior frontal gyrus: a microsurgical and tractographic anatomy.

    Science.gov (United States)

    Kinoshita, Masashi; Shinohara, Harumichi; Hori, Osamu; Ozaki, Noriyuki; Ueda, Fumiaki; Nakada, Mitsutoshi; Hamada, Jun-Ichiro; Hayashi, Yutaka

    2012-02-01

    Recently, intraoperative mapping has disclosed that, in addition to the classic language centers (that is, the Broca and Wernicke centers), other cortical regions may also play an important role in language organization. In the prefrontal cortex, although the lateral superior frontal gyrus (LSFG) could have language-related functions, there are no detailed reports that demonstrate the anatomical connection between the LSFG and other well-known language cortices, such as the Broca center. To show the existence of the structural connection, white matter association fibers between the inferior frontal gyrus (IFG) and the LSFG were examined using fiber dissection (FD) and diffusion tensor (DT) imaging-based tractography. Eight cadaveric cerebral hemispheres were dissected to reveal the association fibers between the IFG and LSFG. The DT imaging-based tractography studies targeting the prefrontal cortex were obtained in 53 right-handed patients who had no organic cerebral lesions. The association fiber tract between Brodmann area 44/45 (the Broca center in the dominant hemisphere) and LSFG were detected in all specimens by FD. In the DT imaging-based tractography studies, the tract was identified in all patients bilaterally, except for the 4 in whom the tract was detected only in the left hemisphere. This tract was spread significantly wider in the left than in the right hemisphere, and left lateralization was evident in male patients. Based on its character, this tract was named the Broca-LSFG pathway. These findings suggest a close relationship between this pathway and language organization. The structural anatomy of the Broca-LSFG pathway may explain speech disturbances induced by LSFG stimulation that are sometimes observed during intraoperative language mapping.

  17. The dorsal medial frontal cortex is sensitive to time on task, not response conflict or error likelihood.

    Science.gov (United States)

    Grinband, Jack; Savitskaya, Judith; Wager, Tor D; Teichert, Tobias; Ferrera, Vincent P; Hirsch, Joy

    2011-07-15

    The dorsal medial frontal cortex (dMFC) is highly active during choice behavior. Though many models have been proposed to explain dMFC function, the conflict monitoring model is the most influential. It posits that dMFC is primarily involved in detecting interference between competing responses thus signaling the need for control. It accurately predicts increased neural activity and response time (RT) for incompatible (high-interference) vs. compatible (low-interference) decisions. However, it has been shown that neural activity can increase with time on task, even when no decisions are made. Thus, the greater dMFC activity on incompatible trials may stem from longer RTs rather than response conflict. This study shows that (1) the conflict monitoring model fails to predict the relationship between error likelihood and RT, and (2) the dMFC activity is not sensitive to congruency, error likelihood, or response conflict, but is monotonically related to time on task. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. A comparative technetium 99m hexamethylpropylene amine oxime SPET study in different types of dementia

    Energy Technology Data Exchange (ETDEWEB)

    Habert, M O; Piketty, M L; Askienazy, S [Centre Hospitalier Sainte-Anne, 75 - Paris (France). Dept. de Medecine Nucleaire; Spampinato, U; Mas, J L; Recondo, J de; Rondot, P [Centre Hospitalier Sainte-Anne, 75 - Paris (France). Dept. de Neurologie; Bourdel, M C [Centre Hospitalier Sainte-Anne, 75 - Paris (France). Dept. de Psychiatrie

    1991-01-01

    Regional cerebral perfusion was evaluated by single photon emission tomography (SPET) using technetium 99m hexamethylpropylene amine oxime ({sup 99m}Tc-HMPAO) as a tracer, in 13 control subjects and 44 age-matched patients suffering from dementia of the Alzheimer's type (DAT, n=19) presumed Pick's disease (n=5), idiopathic Parkinson's disease with dementia (DPD, n=15) and progressive supranuclear palsy (PSP, n=5), HMPAO uptake was measured in the superior frontal, inferior frontal, parietal, temporal and occipital cortices, and the perfusion values were expressed as cortical/cerebellar activity ratios. As compared with controls, tracer uptake ratios in the DAT group were signficantly reduced over all cortical regions, with the largest defects in the parieto-temporal and superior frontal cortices. A marked hypoperfusion affecting the superior and inferior frontal cortices was found in Pick's diesease, whereas a mild but significant hypoperfusion was observed only in the superior frontal cortex of patients with PSP. In the DPD group, HMPAO uptake was significantly reduced in the parietal, temporal and occipital cortices, but not in the frontal cortex. These results show that DAT and DPD share the opposite anteroposterior HMPAO uptake defect as compared with the Pick's and PSP groups. (orig.).

  19. Bilingualism Alters Children's Frontal Lobe Functioning for Attentional Control

    Science.gov (United States)

    Arredondo, Maria M.; Hu, Xiao-Su; Satterfield, Teresa; Kovelman, Ioulia

    2017-01-01

    Bilingualism is a typical linguistic experience, yet relatively little is known about its impact on children's cognitive and brain development. Theories of bilingualism suggest early dual-language acquisition can improve children's cognitive abilities, specifically those relying on frontal lobe functioning. While behavioral findings present much conflicting evidence, little is known about its effects on children's frontal lobe development. Using functional Near-Infrared Spectroscopy (fNIRS), the findings suggest that Spanish-English bilingual children (n=13, ages 7-13) had greater activation in left prefrontal cortex during a non-verbal attentional control task relative to age-matched English monolinguals. In contrast, monolinguals (n=14) showed greater right prefrontal activation than bilinguals. The present findings suggest early bilingualism yields significant changes to the functional organization of children's prefrontal cortex for attentional control and carry implications for understanding how early life experiences impact cognition and brain development. PMID:26743118

  20. Working memory load impairs the evaluation of behavioral errors in the medial frontal cortex.

    Science.gov (United States)

    Maier, Martin E; Steinhauser, Marco

    2017-10-01

    Early error monitoring in the medial frontal cortex enables error detection and the evaluation of error significance, which helps prioritize adaptive control. This ability has been assumed to be independent from central capacity, a limited pool of resources assumed to be involved in cognitive control. The present study investigated whether error evaluation depends on central capacity by measuring the error-related negativity (Ne/ERN) in a flanker paradigm while working memory load was varied on two levels. We used a four-choice flanker paradigm in which participants had to classify targets while ignoring flankers. Errors could be due to responding either to the flankers (flanker errors) or to none of the stimulus elements (nonflanker errors). With low load, the Ne/ERN was larger for flanker errors than for nonflanker errors-an effect that has previously been interpreted as reflecting differential significance of these error types. With high load, no such effect of error type on the Ne/ERN was observable. Our findings suggest that working memory load does not impair the generation of an Ne/ERN per se but rather impairs the evaluation of error significance. They demonstrate that error monitoring is composed of capacity-dependent and capacity-independent mechanisms. © 2017 Society for Psychophysiological Research.

  1. Abnormal deactivation of the inferior frontal gyrus during implicit emotion processing in youth with bipolar disorder: attenuated by medication.

    Science.gov (United States)

    Hafeman, Danella M; Bebko, Genna; Bertocci, Michele A; Fournier, Jay C; Bonar, Lisa; Perlman, Susan B; Travis, Michael; Gill, Mary Kay; Diwadkar, Vaibhav A; Sunshine, Jeffrey L; Holland, Scott K; Kowatch, Robert A; Birmaher, Boris; Axelson, David; Horwitz, Sarah M; Arnold, L Eugene; Fristad, Mary A; Frazier, Thomas W; Youngstrom, Eric A; Findling, Robert L; Drevets, Wayne; Phillips, Mary L

    2014-11-01

    Previous neuroimaging studies of youth with bipolar disorder (BD) have identified abnormalities in emotion regulation circuitry. Using data from the Longitudinal Assessment of Manic Symptoms Cohort (a clinical sample recruited for behavioral and emotional dysregulation), we examined the impact of BD and medication on activation in these regions. Functional neuroimaging data were obtained from 15 youth with BD who currently were unmedicated with a mood stabilizer or antipsychotic (U-BD), 19 youth with medicated BD (M-BD), a non-bipolar clinical sample with high rates of disruptive behavioral disorders (non-BD, n = 59), and 29 healthy controls (HC) while they were shown task-irrelevant morphing emotional faces and shapes. Whole brain analysis was used to identify clusters that showed differential activation to emotion vs. shapes across group. To assess pair-wise comparisons and potential confounders, mean activation data were extracted only from clusters within regions previously implicated in emotion regulation (including amygdala and ventral prefrontal regions). A cluster in the right inferior frontal gyrus (IFG) showed group differences to emotion vs. shapes (159 voxels, corrected p abnormally decreased right IFG activation to negative emotions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Glutamine synthetase activity and glutamate uptake in hippocampus and frontal cortex in portal hypertensive rats

    Science.gov (United States)

    Acosta, Gabriela Beatriz; Fernández, María Alejandra; Roselló, Diego Martín; Tomaro, María Luján; Balestrasse, Karina; Lemberg, Abraham

    2009-01-01

    AIM: To study glutamine synthetase (GS) activity and glutamate uptake in the hippocampus and frontal cortex (FC) from rats with prehepatic portal vein hypertension. METHODS: Male Wistar rats were divided into sham-operated group and a portal hypertension (PH) group with a regulated stricture of the portal vein. Animals were sacrificed by decapitation 14 d after portal vein stricture. GS activity was determined in the hippocampus and FC. Specific uptake of radiolabeled L-glutamate was studied using synaptosome-enriched fractions that were freshly prepared from both brain areas. RESULTS: We observed that the activity of GS increased in the hippocampus of PH rats, as compared to control animals, and decreased in the FC. A significant decrease in glutamate uptake was found in both brain areas, and was more marked in the hippocampus. The decrease in glutamate uptake might have been caused by a deficient transport function, significantly and persistent increase in this excitatory neurotransmitter activity. CONCLUSION: The presence of moderate ammonia blood levels may add to the toxicity of excitotoxic glutamate in the brain, which causes alterations in brain function. Portal vein stricture that causes portal hypertension modifies the normal function in some brain regions. PMID:19533812

  3. Differences in the neural correlates of frontal lobe tests.

    Science.gov (United States)

    Matsuoka, Teruyuki; Kato, Yuka; Imai, Ayu; Fujimoto, Hiroshi; Shibata, Keisuke; Nakamura, Kaeko; Yamada, Kei; Narumoto, Jin

    2018-01-01

    The Executive Interview (EXIT25), the executive clock-drawing task (CLOX1), and the Frontal Assessment Battery (FAB) are used to assess executive function at the bedside. These tests assess distinct psychometric properties. The aim of this study was to examine differences in the neural correlates of the EXIT25, CLOX1, and FAB based on magnetic resonance imaging. Fifty-eight subjects (30 with Alzheimer's disease, 10 with mild cognitive impairment, and 18 healthy controls) participated in this study. Multiple regression analyses were performed to examine the brain regions correlated with the EXIT25, CLOX1, and FAB scores. Age, gender, and years of education were included as covariates. Statistical thresholds were set to uncorrected P-values of 0.001 at the voxel level and 0.05 at the cluster level. The EXIT25 score correlated inversely with the regional grey matter volume in the left lateral frontal lobe (Brodmann areas 6, 9, 44, and 45). The CLOX1 score correlated positively with the regional grey matter volume in the right orbitofrontal cortex (Brodmann area 11) and the left supramarginal gyrus (Brodmann area 40). The FAB score correlated positively with the regional grey matter volume in the right precentral gyrus (Brodmann area 6). The left lateral frontal lobe (Brodmann area 9) and the right lateral frontal lobe (Brodmann area 46) were identified as common brain regions that showed association with EXIT25, CLOX1, and FAB based only a voxel-level threshold. The results of this study suggest that the EXIT25, CLOX1, and FAB may be associated with the distinct neural correlates of the frontal cortex. © 2018 Japanese Psychogeriatric Society.

  4. α2-Adrenoceptor Functionality in Postmortem Frontal Cortex of Depressed Suicide Victims

    Science.gov (United States)

    Valdizán, Elsa M.; Díez-Alarcia, Rebeca; González-Maeso, Javier; Pilar-Cuéllar, Fuencisla; García-Sevilla, Jesús A.; Meana, J. Javier; Pazos, Angel

    2013-01-01

    Background Alterations in brain density and signaling associated with monoamine receptors are believed to play a role in depressive disorders. This study evaluates the functional status of α2A-adrenoceptors in postmortem frontal cortex of depressed subjects. Methods G-protein activation and inhibition of adenylyl cyclase (AC) activity induced by the α2-adrenoceptor agonist UK14304 were measured in triplicate in samples from 15 suicide victims with an antemortem diagnosis of major depression and 15 matched control subjects. Results Basal [35S] guanosine γ thio-phosphate (GTPγS) binding and cyclic adenosine monophosphate accumulation did not differ between groups. In depressed victims, an increase in [35S] GTPγS binding potency (EC50 = .58 μmol/L vs. EC50 = 3.31 μmol/L; p < .01; depressed vs. control) and a significant reduction in the maximal inhibition of AC activity (Imax = 27 ± 4% vs. Imax = 47 ± 5%; p < .01) were observed after incubation with the α2-adrenoceptor agonist UK14304. No differences were found between antidepressant-free and antidepressant-treated subjects. A significant relationship between EC50 values for [35S] GTPγS and Imax values for AC assay was found (n = 30; r = −.43; p < .05). Conclusions The dual regulation of α2A-adrenoceptor signaling pathways raises the possibility that factors affecting the G-protein cycle and/or selective access of Gαi/o–protein to AC might be relevant to receptor abnormalities in depression, providing further support for the involvement of α2A-adrenoceptors in the pathogenesis of depression. PMID:20864091

  5. Frontal Structural Neural Correlates of Working Memory Performance in Older Adults.

    Science.gov (United States)

    Nissim, Nicole R; O'Shea, Andrew M; Bryant, Vaughn; Porges, Eric C; Cohen, Ronald; Woods, Adam J

    2016-01-01

    Working memory is an executive memory process that allows transitional information to be held and manipulated temporarily in memory stores before being forgotten or encoded into long-term memory. Working memory is necessary for everyday decision-making and problem solving, making it a fundamental process in the daily lives of older adults. Working memory relies heavily on frontal lobe structures and is known to decline with age. The current study aimed to determine the neural correlates of decreased working memory performance in the frontal lobes by comparing cortical thickness and cortical surface area from two demographically matched groups of healthy older adults, free from cognitive impairment, with high versus low N-Back working memory performance ( N = 56; average age = 70.29 ± 10.64). High-resolution structural T1-weighted images (1 mm isotropic voxels) were obtained on a 3T Philips MRI scanner. When compared to high performers, low performers exhibited significantly decreased cortical surface area in three frontal lobe regions lateralized to the right hemisphere: medial orbital frontal gyrus, inferior frontal gyrus, and superior frontal gyrus (FDR p frontal regions may underlie age-related decline of working memory function.

  6. Impaired response inhibition and excess cortical thickness as candidate endophenotypes for trichotillomania

    DEFF Research Database (Denmark)

    Odlaug, Brian Lawrence; Chamberlain, Samuel R; Derbyshire, Katie L

    2014-01-01

    occupying an intermediate position. Permutation cluster analysis revealed significant excesses of cortical thickness in patients and their relatives compared to controls, in right inferior/middle frontal gyri (Brodmann Area, BA 47 & 11), right lingual gyrus (BA 18), left superior temporal cortex (BA 21......Trichotillomania is characterized by repetitive pulling out of one's own hair. Impaired response inhibition has been identified in patients with trichotillomania, along with gray matter density changes in distributed neural regions including frontal cortex. The objective of this study...

  7. Predicting Treatment Outcomes from Prefrontal Cortex Activation for Self-Harming Patients with Borderline Personality Disorder: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Anthony Charles Ruocco

    2016-05-01

    Full Text Available Self-harm is a potentially lethal symptom of borderline personality disorder (BPD that often improves with dialectical behavior therapy (DBT. While DBT is effective for reducing self-harm in many patients with BPD, a small but significant number of patients either does not improve in treatment or ends treatment prematurely. Accordingly, it is crucial to identify factors that may prospectively predict which patients are most likely to benefit from and remain in treatment. In the present preliminary study, twenty-nine actively self-harming patients with BPD completed brain-imaging procedures probing activation of the prefrontal cortex during impulse control prior to beginning DBT and after seven months of treatment. Patients that reduced their frequency of self-harm the most over treatment displayed lower levels of neural activation in the bilateral dorsolateral prefrontal cortex prior to beginning treatment, and they showed the greatest increases in activity within this region after seven months of treatment. Prior to starting DBT, treatment non-completers demonstrated greater activation than treatment-completers in the medial prefrontal cortex and right inferior frontal gyrus. Reductions in self-harm over the treatment period were associated with increases in activity in right dorsolateral prefrontal cortex even after accounting for improvements in depression, mania, and BPD symptom severity. These findings suggest that pre-treatment patterns of activation in the prefrontal cortex underlying impulse control may be prospectively associated with improvements in self-harm and treatment attrition for patients with BPD treated with DBT.

  8. Dynamic Variation in Pleasure in Children Predicts Nonlinear Change in Lateral Frontal Brain Electrical Activity

    Science.gov (United States)

    Light, Sharee N.; Coan, James A.; Frye, Corrina; Goldsmith, H. Hill; Davidson, Richard J.

    2009-01-01

    Individual variation in the experience and expression of pleasure may relate to differential patterns of lateral frontal activity. Brain electrical measures have been used to study the asymmetric involvement of lateral frontal cortex in positive emotion, but the excellent time resolution of these measures has not been used to capture…

  9. Pathways of the inferior frontal occipital fasciculus in overt speech and reading.

    Science.gov (United States)

    Rollans, Claire; Cheema, Kulpreet; Georgiou, George K; Cummine, Jacqueline

    2017-11-19

    In this study, we examined the relationship between tractography-based measures of white matter integrity (ex. fractional anisotropy [FA]) from diffusion tensor imaging (DTI) and five reading-related tasks, including rapid automatized naming (RAN) of letters, digits, and objects, and reading of real words and nonwords. Twenty university students with no reported history of reading difficulties were tested on all five tasks and their performance was correlated with diffusion measures extracted through DTI tractography. A secondary analysis using whole-brain Tract-Based Spatial Statistics (TBSS) was also used to find clusters showing significant negative correlations between reaction time and FA. Results showed a significant relationship between the left inferior fronto-occipital fasciculus FA and performance on the RAN of objects task, as well as a strong relationship to nonword reading, which suggests a role for this tract in slower, non-automatic and/or resource-demanding speech tasks. There were no significant relationships between FA and the faster, more automatic speech tasks (RAN of letters and digits, and real word reading). These findings provide evidence for the role of the inferior fronto-occipital fasciculus in tasks that are highly demanding of orthography-phonology translation (e.g., nonword reading) and semantic processing (e.g., RAN object). This demonstrates the importance of the inferior fronto-occipital fasciculus in basic naming and suggests that this tract may be a sensitive predictor of rapid naming performance within the typical population. We discuss the findings in the context of current models of reading and speech production to further characterize the white matter pathways associated with basic reading processes. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Khat distorts the prefrontal cortex histology and function of adult ...

    African Journals Online (AJOL)

    Khat is a psychoactive herbal drug of pronounced ethno-pharmacological significance often abused due to its unregulated use. It affects many brain centers including the prefrontal cortex which is the anterior most part of the frontal lobe. The prefrontal cortex modulates working memory, planning complex cognitive ...

  11. Frontal Lobe Contusion in Mice Chronically Impairs Prefrontal-Dependent Behavior.

    Directory of Open Access Journals (Sweden)

    Austin Chou

    Full Text Available Traumatic brain injury (TBI is a major cause of chronic disability in the world. Moderate to severe TBI often results in damage to the frontal lobe region and leads to cognitive, emotional, and social behavioral sequelae that negatively affect quality of life. More specifically, TBI patients often develop persistent deficits in social behavior, anxiety, and executive functions such as attention, mental flexibility, and task switching. These deficits are intrinsically associated with prefrontal cortex (PFC functionality. Currently, there is a lack of analogous, behaviorally characterized TBI models for investigating frontal lobe injuries despite the prevalence of focal contusions to the frontal lobe in TBI patients. We used the controlled cortical impact (CCI model in mice to generate a frontal lobe contusion and studied behavioral changes associated with PFC function. We found that unilateral frontal lobe contusion in mice produced long-term impairments to social recognition and reversal learning while having only a minor effect on anxiety and completely sparing rule shifting and hippocampal-dependent behavior.

  12. Mindfulness based cognitive therapy improves frontal control in bipolar disorder: a pilot EEG study

    Directory of Open Access Journals (Sweden)

    Howells Fleur M

    2012-02-01

    Full Text Available Abstract Background Cognitive processing in Bipolar Disorder is characterized by a number of attentional abnormalities. Mindfulness Based Cognitive Therapy combines mindfulness meditation, a form of attentional training, along with aspects of cognitive therapy, and may improve attentional dysfunction in bipolar disorder patients. Methods 12 euthymic BD patients and 9 control participants underwent record of electroencephalography (EEG, band frequency analysis during resting states (eyes open, eyes closed and during the completion of a continuous performance task (A-X version, EEG event-related potential (ERP wave component analysis. The individuals with BD completed an 8-week MBCT intervention and record of EEG was repeated. Results (1 Brain activity, individuals with BD showed significantly decreased theta band power, increased beta band power, and decreased theta/beta ratios during the resting state, eyes closed, for frontal and cingulate cortices. Post MBCT intervention improvement over the right frontal cortex was seen in the individuals with BD, as beta band power decreased. (2 Brain activation, individuals with BD showed a significant P300-like wave form over the frontal cortex during the cue. Post MBCT intervention the P300-like waveform was significantly attenuated over the frontal cortex. Conclusions Individuals with BD show decreased attentional readiness and activation of non-relevant information processing during attentional processes. These data are the first that show, MBCT in BD improved attentional readiness, and attenuated activation of non-relevant information processing during attentional processes.

  13. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages

    Science.gov (United States)

    Lauterstein, Dana E.; Tijerina, Pamella B.; Corbett, Kevin; Akgol Oksuz, Betul; Shen, Steven S.; Gordon, Terry; Klein, Catherine B.; Zelikoff, Judith T.

    2016-01-01

    Electronic cigarettes (e-cigarettes), battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS) transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation) throughout gestation (3 h/day; 5 days/week) to aerosols produced from e-cigarettes either with nicotine (13–16 mg/mL) or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND) 4–6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq). Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology. PMID:27077873

  14. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages

    Directory of Open Access Journals (Sweden)

    Dana E. Lauterstein

    2016-04-01

    Full Text Available Electronic cigarettes (e-cigarettes, battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation throughout gestation (3 h/day; 5 days/week to aerosols produced from e-cigarettes either with nicotine (13–16 mg/mL or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND 4–6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq. Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology.

  15. Changes in tau phosphorylation levels in the hippocampus and frontal cortex following chronic stress

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.; Guo, X. [Wuhan University, Renmin Hospital, Department of Psychiatry, Wuhan, China, Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan (China); Wang, G.H. [Wuhan University, Renmin Hospital, Department of Psychiatry, Wuhan, China, Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan (China); Wuhan University, Institute of Neuropsychiatry, Wuhan, China, Institute of Neuropsychiatry, Wuhan University, Wuhan (China); Wang, H.L.; Liu, Z.C.; Liu, H.; Zhu, Z.X.; Li, Y. [Wuhan University, Renmin Hospital, Department of Psychiatry, Wuhan, China, Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan (China)

    2014-03-03

    Studies have indicated that early-life or early-onset depression is associated with a 2- to 4-fold increased risk of developing Alzheimers disease (AD). In AD, aggregation of an abnormally phosphorylated form of the tau protein may be a key pathological event. Tau is known to play a major role in promoting microtubule assembly and stabilization, and in maintaining the normal morphology of neurons. Several studies have reported that stress may induce tau phosphorylation. The main aim of the present study was to investigate possible alterations in the tau protein in the hippocampus and frontal cortex of 32 male Sprague-Dawley rats exposed to chronic unpredictable mild stress (CUMS) and then re-exposed to CUMS to mimic depression and the recurrence of depression, respectively, in humans. We evaluated the effects of CUMS, fluoxetine, and CUMS re-exposure on tau and phospho-tau. Our results showed that a single exposure to CUMS caused a significant reduction in sucrose preference, indicating a state of anhedonia. The change in behavior was accompanied by specific alterations in phospho-tau protein levels, but fluoxetine treatment reversed the CUMS-induced impairments. Moreover, changes in sucrose preference and phospho-tau were more pronounced in rats re-exposed to CUMS than in those subjected to a single exposure. Our results suggest that changes in tau phosphorylation may contribute to the link between depression and AD.

  16. Changes in tau phosphorylation levels in the hippocampus and frontal cortex following chronic stress

    International Nuclear Information System (INIS)

    Yang, C.; Guo, X.; Wang, G.H.; Wang, H.L.; Liu, Z.C.; Liu, H.; Zhu, Z.X.; Li, Y.

    2014-01-01

    Studies have indicated that early-life or early-onset depression is associated with a 2- to 4-fold increased risk of developing Alzheimers disease (AD). In AD, aggregation of an abnormally phosphorylated form of the tau protein may be a key pathological event. Tau is known to play a major role in promoting microtubule assembly and stabilization, and in maintaining the normal morphology of neurons. Several studies have reported that stress may induce tau phosphorylation. The main aim of the present study was to investigate possible alterations in the tau protein in the hippocampus and frontal cortex of 32 male Sprague-Dawley rats exposed to chronic unpredictable mild stress (CUMS) and then re-exposed to CUMS to mimic depression and the recurrence of depression, respectively, in humans. We evaluated the effects of CUMS, fluoxetine, and CUMS re-exposure on tau and phospho-tau. Our results showed that a single exposure to CUMS caused a significant reduction in sucrose preference, indicating a state of anhedonia. The change in behavior was accompanied by specific alterations in phospho-tau protein levels, but fluoxetine treatment reversed the CUMS-induced impairments. Moreover, changes in sucrose preference and phospho-tau were more pronounced in rats re-exposed to CUMS than in those subjected to a single exposure. Our results suggest that changes in tau phosphorylation may contribute to the link between depression and AD

  17. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages.

    Science.gov (United States)

    Lauterstein, Dana E; Tijerina, Pamella B; Corbett, Kevin; Akgol Oksuz, Betul; Shen, Steven S; Gordon, Terry; Klein, Catherine B; Zelikoff, Judith T

    2016-04-12

    Electronic cigarettes (e-cigarettes), battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS) transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation) throughout gestation (3 h/day; 5 days/week) to aerosols produced from e-cigarettes either with nicotine (13-16 mg/mL) or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND) 4-6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq). Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology.

  18. In search of the functional neuroanatomy of sociality: MRI subdivisions of orbital frontal cortex and social cognition.

    Science.gov (United States)

    Nestor, Paul G; Nakamura, Motoaki; Niznikiewicz, Margaret; Thompson, Elizabeth; Levitt, James J; Choate, Victoria; Shenton, Martha E; McCarley, Robert W

    2013-04-01

    We examined social cognition in a sample of healthy participants who had prior magnetic resonance imaging (MRI) gray matter volume studies of the orbital frontal cortex (OFC) that was parcellated into three regions: gyrus rectus, middle orbital gyrus and lateral orbital gyrus. These subjects also completed a self-report measure of Machiavelli personality traits, along with psychometric tests of social comprehension and declarative episodic memory, all of which we used as proxy measures to examine various features of social cognition. The data pointed to distinct functional-anatomical relationships highlighted by strong correlations of left lateral orbital gyrus and Machiavellian scores and right middle orbital gyrus with social comprehension and declarative episodic memory. In addition, hierarchical regression analyses revealed statistical evidence of a double dissociation between Machiavellian scores and left lateral orbital gyrus on one hand, and social comprehension with right middle orbital gyrus, on the other hand. To our knowledge, these findings are the first to show evidence linking normal variation in OFC subregions and different aspects of social cognition.

  19. Frontal white matter anisotropy and antidepressant remission in late-life depression.

    Directory of Open Access Journals (Sweden)

    Warren D Taylor

    2008-09-01

    Full Text Available Neuroanatomic features associated with antidepressant treatment outcomes in older depressed individuals are not well established. This study used diffusion tensor imaging to examine frontal white matter structure in depressed subjects undergoing a 12-week trial of sertraline. We hypothesized that remission would be associated with higher frontal anisotropy measures, and failure to remit with lower anisotropy.74 subjects with Major Depressive Disorder and age 60 years or older were enrolled in a twelve-week open-label trial of sertraline and completed clinical assessments and 1.5T magnetic resonance brain imaging. The apparent diffusion coefficient (ADC and fractional anisotropy (FA were measured in regions of interest placed in the white matter of the dorsolateral prefrontal cortex, anterior cingulate cortex, and corpus callosum. Differences in ADC and FA values between subjects who did and did not remit to treatment over the study period were assessed using generalized estimating equations, controlling for age, sex, medical comorbidity and baseline depression severity.Subjects who did not remit to sertraline exhibited higher FA values in the superior frontal gyri and anterior cingulate cortices bilaterally. There were no statistically significant associations between ADC measures and remission.Failure to remit to sertraline is associated with higher frontal FA values. Functional imaging studies demonstrate that depression is characterized by functional disconnection between frontal and limbic regions. Those individuals where this disconnection is related to structural changes as detected by DTI may be more likely to respond to antidepressants.ClinicalTrials.gov NCT00339066.

  20. Reduced dorso-lateral prefrontal cortex in treatment resistant schizophrenia.

    Science.gov (United States)

    Zugman, André; Gadelha, Ary; Assunção, Idaiane; Sato, João; Ota, Vanessa K; Rocha, Deyvis L; Mari, Jair J; Belangero, Sintia I; Bressan, Rodrigo A; Brietzke, Elisa; Jackowski, Andrea P

    2013-08-01

    Treatment resistance affects up to one third of patients with schizophrenia (SCZ). A better understanding of its biological underlying processes could improve treatment. The aim of this study was to compare cortical thickness between non-resistant SCZ (NR-SCZ), treatment-resistant SCZ (TR-SCZ) patients and healthy controls (HC). Structural MRI scans were obtained from 3 groups of individuals: 61 treatment resistant SCZ individuals, 67 non-resistant SCZ and 80 healthy controls. Images were analyzed using cortical surface modelling (implemented in freesurfer package) to identify group differences in cortical thickness. Statistical significant differences were identified using Monte-Carlo simulation method with a corrected p-cluster<0.01. Patients in the TR-SCZ group showed a widespread reduction in cortical thickness in frontal, parietal, temporal and occipital regions bilaterally. NR-SCZ group had reduced cortex in two regions (left superior frontal cortex and left caudal middle frontal cortex). TR-SCZ group also showed decreased thickness in the left dorsolateral prefrontal cortex (DLPFC) when compared with patients from NR-SCZ group. The reduction in cortical thickness in DLPFC indicates a more severe form of the disease or a specific finding for this group. Alterations in this region should be explored as a putative marker for treatment resistance. Prospective studies, with individuals being followed from first episode psychosis until refractoriness is diagnosed, are needed to clarify these hypotheses. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Mirror therapy in lower limb amputees. A look beyond primary motor cortex reorganization

    International Nuclear Information System (INIS)

    Seidel, S.; Essmeister, M.; Sycha, T.; Auff, E.; Kasprian, G.; Furtner, J.; Schoepf, V.; Prayer, D.

    2011-01-01

    Phantom pain in upper limb amputees is associated with the extent of reorganization in the primary sensorimotor cortex. Mirror visual feedback therapy has been shown to improve phantom pain. We investigated the extent of cortical reorganization in lower limb amputees and changes in neural activity induced by mirror therapy. Eight lower limb amputees underwent 12 sessions of MVFT and functional magnetic resonance imaging (fMRI) of the brain before the first and after the last MVFT session. FMRI sessions consisted of two runs in which subjects were instructed to perform repetitive movement of the healthy and phantom ankle. Before MVFT, the mean phantom pain intensity was 4.6 ± 3.1 on a visual analog scale and decreased to 1.8 ± 1.7 (p = 0.04). We did not observe a consistent pattern of cortical activation in primary sensorimotor areas during phantom limb movements. Following MVFT, increased activity was obtained in the right orbitofrontal cortex during phantom ankle movements. Comparison of cortical activity during movements of the phantom ankle and the intact ankle showed significantly higher activity in the left inferior frontal cortex (pars triangularis). These results question the known association between phantom pain and primary sensorimotor reorganization and propose reorganizational changes involving multiple cortical areas in lower limb amputees. Finally, reduction of phantom pain after mirror visual feedback therapy was associated with increased prefrontal cortical activity during phantom ankle movements. (orig.)

  2. Lateral prefrontal cortex is organized into parallel dorsal and ventral streams along the rostro-caudal axis.

    Science.gov (United States)

    Blumenfeld, Robert S; Nomura, Emi M; Gratton, Caterina; D'Esposito, Mark

    2013-10-01

    Anatomical connectivity differences between the dorsal and ventral lateral prefrontal cortex (PFC) of the non-human primate strongly suggests that these regions support different functions. However, after years of study, it remains unclear whether these regions are functionally distinct. In contrast, there has been a groundswell of recent studies providing evidence for a rostro-caudal functional organization, along the lateral as well as dorsomedial frontal cortex. Thus, it is not known whether dorsal and ventral regions of lateral PFC form distinct functional networks and how to reconcile any dorso-ventral organization with the medio-lateral and rostro-caudal axes. Here, we used resting-state connectivity data to identify parallel dorsolateral and ventrolateral streams of intrinsic connectivity with the dorsomedial frontal cortex. Moreover, we show that this connectivity follows a rostro-caudal gradient. Our results provide evidence for a novel framework for the intrinsic organization of the frontal cortex that incorporates connections between medio-lateral, dorso-ventral, and rostro-caudal axes.

  3. A comparative technetium 99m hexamethylpropylene amine oxime SPET study in different types of dementia

    Energy Technology Data Exchange (ETDEWEB)

    Habert, M.O.; Piketty, M.L.; Askienazy, S. (Centre Hospitalier Sainte-Anne, 75 - Paris (France). Dept. de Medecine Nucleaire); Spampinato, U.; Mas, J.L.; Recondo, J. de; Rondot, P. (Centre Hospitalier Sainte-Anne, 75 - Paris (France). Dept. de Neurologie); Bourdel, M.C. (Centre Hospitalier Sainte-Anne, 75 - Paris (France). Dept. de Psychiatrie)

    1991-01-01

    Regional cerebral perfusion was evaluated by single photon emission tomography (SPET) using technetium 99m hexamethylpropylene amine oxime ({sup 99m}Tc-HMPAO) as a tracer, in 13 control subjects and 44 age-matched patients suffering from dementia of the Alzheimer's type (DAT, n=19) presumed Pick's disease (n=5), idiopathic Parkinson's disease with dementia (DPD, n=15) and progressive supranuclear palsy (PSP, n=5), HMPAO uptake was measured in the superior frontal, inferior frontal, parietal, temporal and occipital cortices, and the perfusion values were expressed as cortical/cerebellar activity ratios. As compared with controls, tracer uptake ratios in the DAT group were signficantly reduced over all cortical regions, with the largest defects in the parieto-temporal and superior frontal cortices. A marked hypoperfusion affecting the superior and inferior frontal cortices was found in Pick's diesease, whereas a mild but significant hypoperfusion was observed only in the superior frontal cortex of patients with PSP. In the DPD group, HMPAO uptake was significantly reduced in the parietal, temporal and occipital cortices, but not in the frontal cortex. These results show that DAT and DPD share the opposite anteroposterior HMPAO uptake defect as compared with the Pick's and PSP groups. (orig.).

  4. The role of frontal and parietal brain areas in bistable perception

    NARCIS (Netherlands)

    Knapen, T.; Brascamp, J.; Pearson, J.; van Ee, R.; Blake, R.

    2011-01-01

    When sensory input allows for multiple, competing perceptual interpretations, observers' perception can fluctuate over time, which is called bistable perception. Imaging studies in humans have revealed transient responses in a right-lateralized network in the frontal-parietal cortex (rFPC) around

  5. Brain activation during phonological and semantic processing of Chinese characters in deaf signers

    Directory of Open Access Journals (Sweden)

    Yanyan eLi

    2014-04-01

    Full Text Available Previous studies found altered brain function in deaf individuals reading alphabetic orthographies. However, it is not known whether similar alterations of brain function are characteristic of non-alphabetic writing systems and whether alterations are specific to certain kinds of lexical tasks. Here we examined differences in brain activation between Chinese congenitally deaf individuals (CD and hearing controls (HC during character reading tasks requiring phonological and semantic judgments. For both tasks, we found that CD showed less activation than HC in left inferior frontal gyrus, but greater activation in several right hemisphere regions including inferior frontal gyrus, angular gyrus and inferior temporal gyrus. Although many group differences were similar across tasks, greater activation in right middle frontal gyrus was more pronounced for the rhyming compared to the meaning task. Finally, within the deaf individuals better performance on the rhyming task was associated with less activation in right inferior parietal lobule and angular gyrus. Our results in Chinese CD are broadly consistent with previous studies in alphabetic languages suggesting greater engagement of inferior frontal gyrus and inferior parietal cortex for reading that is largely independent of task, with the exception of right middle frontal gyrus for phonological processing. The brain behavior correlations potentially indicate that CD that more efficiently use the right hemisphere are better readers.

  6. Bereitschaftspotentials recorded from the lateral part of the superior frontal gyrus in humans.

    Science.gov (United States)

    Ohara, Shinji; Ikeda, Akio; Matsuhashi, Masao; Satow, Takeshi; Kunieda, Takeharu; Mikuni, Nobuhiro; Baba, Koichi; Mihara, Tadahiro; Miyamoto, Susumu; Shibasaki, Hiroshi

    2006-05-15

    To demonstrate the Bereitschaftspotentials (BPs) over the high lateral convexity in the superior frontal gyrus, movement-related cortical potentials with respect to the middle finger extension were recorded in seven patients with refractory epilepsy who underwent subdural implantation of platinum electrode grids and/or strips covering the high lateral frontal convexity. In two out of the seven patients, BPs were recorded from the electrodes placed on the superior frontal gyrus in the vicinity of the border between the medial and lateral frontal lobes, which were distinct from those recorded from the primary sensorimotor cortex. The results suggest the possible contribution of either the lateral dorsal non-primary motor area or the SMA to the generation of the BPs.

  7. Frontal White Matter Damage Impairs Response Inhibition in Children Following Traumatic Brain Injury

    Science.gov (United States)

    Lipszyc, Jonathan; Levin, Harvey; Hanten, Gerri; Hunter, Jill; Dennis, Maureen; Schachar, Russell

    2014-01-01

    Inhibition, the ability to suppress inappropriate cognitions or behaviors, can be measured using computer tasks and questionnaires. Inhibition depends on the frontal cortex, but the role of the underlying white matter (WM) is unclear. We assessed the specific impact of frontal WM damage on inhibition in 29 children with moderate-to-severe traumatic brain injury (15 with and 14 without frontal WM damage), 21 children with orthopedic injury, and 29 population controls. We used the Stop Signal Task to measure response inhibition, the Behavior Rating Inventory of Executive Function to assess everyday inhibition, and T2 fluid-attenuated inversion recovery magnetic resonance imaging to identify lesions. Children with frontal WM damage had impaired response inhibition compared with all other groups and poorer everyday inhibition than the orthopedic injury group. Frontal WM lesions most often affected the superior frontal gyrus. These results provide evidence for the critical role of frontal WM in inhibition. PMID:24618405

  8. 3-D Cytoarchitectonic parcellation of human orbitofrontal cortex Correlation with postmortem MRI

    NARCIS (Netherlands)

    Uylings, H.B.M.; Sanz-Arigita, E.J.; Vos, K.; Pool, C.W.; Evers, P.; Rajkowska, G.

    2010-01-01

    The orbitofrontal cortex (OFC) is located on the basal surface of the frontal lobe and is distinguished by its unique anatomical and functional features. Clinical and postmortem studies suggest the involvement of the orbitofrontal cortex in psychiatric disorders. However, the exact parcellation of

  9. Functional Mapping of the Human Auditory Cortex: fMRI Investigation of a Patient with Auditory Agnosia from Trauma to the Inferior Colliculus.

    Science.gov (United States)

    Poliva, Oren; Bestelmeyer, Patricia E G; Hall, Michelle; Bultitude, Janet H; Koller, Kristin; Rafal, Robert D

    2015-09-01

    To use functional magnetic resonance imaging to map the auditory cortical fields that are activated, or nonreactive, to sounds in patient M.L., who has auditory agnosia caused by trauma to the inferior colliculi. The patient cannot recognize speech or environmental sounds. Her discrimination is greatly facilitated by context and visibility of the speaker's facial movements, and under forced-choice testing. Her auditory temporal resolution is severely compromised. Her discrimination is more impaired for words differing in voice onset time than place of articulation. Words presented to her right ear are extinguished with dichotic presentation; auditory stimuli in the right hemifield are mislocalized to the left. We used functional magnetic resonance imaging to examine cortical activations to different categories of meaningful sounds embedded in a block design. Sounds activated the caudal sub-area of M.L.'s primary auditory cortex (hA1) bilaterally and her right posterior superior temporal gyrus (auditory dorsal stream), but not the rostral sub-area (hR) of her primary auditory cortex or the anterior superior temporal gyrus in either hemisphere (auditory ventral stream). Auditory agnosia reflects dysfunction of the auditory ventral stream. The ventral and dorsal auditory streams are already segregated as early as the primary auditory cortex, with the ventral stream projecting from hR and the dorsal stream from hA1. M.L.'s leftward localization bias, preserved audiovisual integration, and phoneme perception are explained by preserved processing in her right auditory dorsal stream.

  10. Reduced Numbers of Somatostatin Receptors in the Cerebral Cortex in Alzheimer's Disease

    Science.gov (United States)

    Flint Beal, M.; Mazurek, Michael F.; Tran, Vinh T.; Chattha, Geetinder; Bird, Edward D.; Martin, Joseph B.

    1985-07-01

    Somatostatin receptor concentrations were measured in patients with Alzheimer's disease and controls. In the frontal cortex (Brodmann areas 6, 9, and 10) and temporal cortex (Brodmann area 21), the concentrations of somatostatin in receptors in the patients were reduced to approximately 50 percent of control values. A 40 percent reduction was seen in the hippocampus, while no significant changes were found in the cingulate cortex, postcentral gyrus, temporal pole, and superior temporal gyrus. Scatchard analysis showed a reduction in receptor number rather than a change in affinity. Somatostatin-like immunoreactivity was significantly reduced in both the frontal and temporal cortex. Somatostatin-like immunoreactivity was linearly related to somatostatin-receptor binding in the cortices of Alzheimer's patients. These findings may reflect degeneration of postsynaptic neurons or cortical afferents in the patients' cerebral cortices. Alternatively, decreased somatostatinlike immunoreactivity in Alzheimer's disease might indicate increased release of somatostatin and down regulation of postsynaptic receptors.

  11. Altered auditory processing and effective connectivity in 22q11.2 deletion syndrome

    DEFF Research Database (Denmark)

    Larsen, Kit Melissa; Mørup, Morten; Birknow, Michelle Rosgaard

    2018-01-01

    . Mismatch negativity (MMN), a brain marker of change detection, is reduced in people with schizophrenia compared to healthy controls. Using dynamic causal modelling (DCM), previous studies showed that top-down effective connectivity linking the frontal and temporal cortex is reduced in schizophrenia......11.2 deletion carriers. DCM showed reduced intrinsic connection within right primary auditory cortex as well as in the top-down, connection from the right inferior frontal gyrus to right superior temporal gyrus for 22q11.2 deletion carriers although not surviving correction for multiple comparison...

  12. Facilitation of speech repetition accuracy by theta burst stimulation of the left posterior inferior frontal gyrus.

    Science.gov (United States)

    Restle, Julia; Murakami, Takenobu; Ziemann, Ulf

    2012-07-01

    The posterior part of the inferior frontal gyrus (pIFG) in the left hemisphere is thought to form part of the putative human mirror neuron system and is assigned a key role in mapping sensory perception onto motor action. Accordingly, the pIFG is involved in motor imitation of the observed actions of others but it is not known to what extent speech repetition of auditory-presented sentences is also a function of the pIFG. Here we applied fMRI-guided facilitating intermittent theta burst transcranial magnetic stimulation (iTBS), or depressant continuous TBS (cTBS), or intermediate TBS (imTBS) over the left pIFG of healthy subjects and compared speech repetition accuracy of foreign Japanese sentences before and after TBS. We found that repetition accuracy improved after iTBS and, to a lesser extent, after imTBS, but remained unchanged after cTBS. In a control experiment, iTBS was applied over the left middle occipital gyrus (MOG), a region not involved in sensorimotor processing of auditory-presented speech. Repetition accuracy remained unchanged after iTBS of MOG. We argue that the stimulation type and stimulation site specific facilitating effect of iTBS over left pIFG on speech repetition accuracy indicates a causal role of the human left-hemispheric pIFG in the translation of phonological perception to motor articulatory output for repetition of speech. This effect may prove useful in rehabilitation strategies that combine repetitive speech training with iTBS of the left pIFG in speech disorders, such as aphasia after cerebral stroke. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. "Lipid raft aging" in the human frontal cortex during nonpathological aging: gender influences and potential implications in Alzheimer's disease.

    Science.gov (United States)

    Díaz, Mario; Fabelo, Noemí; Ferrer, Isidre; Marín, Raquel

    2018-07-01

    Lipid rafts are highly dynamic membrane domains featured by distinctive biochemical composition and physicochemical properties compared with the surrounding plasma membrane. These microstructures are associated not only with cellular signaling and communication in normal nerve cells but also with pathological processing of amyloid precursor protein in Alzheimer's disease. Using lipid rafts isolated from human frontal cortex in nondemented subjects aging 24 to 85 years, we demonstrate here that lipid structure of lipid rafts undergo significant alterations of specific lipid classes and phospholipid-bound fatty acids as brain cortex correlating with aging. Main changes affect levels of plasmalogens, polyunsaturated fatty acids (especially docosahexaenoic acid and arachidonic acid), total polar lipids (mainly phosphatidylinositol, sphingomyelin, sulfatides, and cerebrosides), and total neutral lipids (particularly cholesterol and sterol esters). Besides, relevant relationships between main fatty acids and/or lipid classes were altered in an age-related manner. This "lipid raft aging" exhibits clear gender differences and appear to be more pronounced in women than in men, especially in older (postmenopausal) women. The outcomes led us to conclude that human cortical lipid rafts are modified by aging in a gender-dependent fashion. Given the central role of bilayer lipid matrix in lipid rafts functionality and neuronal signaling, we hypothesize that these findings might underlie the higher prevalence of cognitive decline evolving toward Alzheimer's disease in postmenopausal women. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. The role of orbitofrontal cortex in processing empathy stories in 4-8 year-old children

    Directory of Open Access Journals (Sweden)

    Tila Tabea eBrink

    2011-04-01

    Full Text Available This study investigates the neuronal correlates of empathic processing in childrenaged 4 to 8 years, an age range discussed to be crucial for the development ofempathy. Empathy, defined as the ability to understand and share another person’sinner life, consists of two components: affective (emotion-sharing and cognitiveempathy (Theory of Mind. We examined the hemodynamic responses of pre-schooland school children (N=48, while they processed verbal (auditory and non-verbal(cartoons empathy stories in a passive following paradigm, using functional NearInfrared Spectroscopy (fNIRS. To control for the two types of empathy, childrenwere presented blocks of stories eliciting either affective or cognitive empathy, orneutral scenes which relied on the understanding of physical causalities.By contrasting the activations of the younger and older children, we expected toobserve developmental changes in brain activations when children process storieseliciting empathy in either stimulus modality towards a greater involvement ofanterior frontal brain regions. Our results indicate that children's processing of storieseliciting affective and cognitive empathy is associated with medial and bilateralorbitofrontal cortex (OFC activation. In contrast to what is known from studies usingadult participants, no additional recruitment of posterior brain regions was observed,often associated with the processing of stories eliciting empathy. Developmentalchanges were found only for stories eliciting affective empathy with increasedactivation, in older children, in medial OFC, left inferior frontal gyrus (IFG, and theleft dorsolateral prefrontal cortex (dlPFC. Activations for the two modalities differonly little, with non-verbal presentation of the stimuli having a greater impact onempathy processing in children, showing more similarities to adult processing thanthe verbal one. This might be caused by the fact that non-verbal processing developsearlier in life

  15. Origin of human motor readiness field linked to left middle frontal gyrus by MEG and PET

    DEFF Research Database (Denmark)

    Pedersen, Jane Rygaard; Johannsen, P; Bak, Christen Kjeldahl

    1998-01-01

    Combined magnetoencephalography and positron emission tomography identified a prior source of activity in the left middle frontal gyrus duping uncued movements of the right index finger Voluntary movements gave rise to a change in the cortical electrical potential known as the Bereitschaftspotent......Combined magnetoencephalography and positron emission tomography identified a prior source of activity in the left middle frontal gyrus duping uncued movements of the right index finger Voluntary movements gave rise to a change in the cortical electrical potential known...... sources subsequently to be active were mapped to the supplementary motor area, premotor cortex, and motor cortex (M1), all in the left hemisphere. (C) 1998 Academic Press....

  16. Parcellation of the human orbitofrontal cortex based on gray matter volume covariance.

    Science.gov (United States)

    Liu, Huaigui; Qin, Wen; Qi, Haotian; Jiang, Tianzi; Yu, Chunshui

    2015-02-01

    The human orbitofrontal cortex (OFC) is an enigmatic brain region that cannot be parcellated reliably using diffusional and functional magnetic resonance imaging (fMRI) because there is signal dropout that results from an inherent defect in imaging techniques. We hypothesise that the OFC can be reliably parcellated into subregions based on gray matter volume (GMV) covariance patterns that are derived from artefact-free structural images. A total of 321 healthy young subjects were examined by high-resolution structural MRI. The OFC was parcellated into subregions-based GMV covariance patterns; and then sex and laterality differences in GMV covariance pattern of each OFC subregion were compared. The human OFC was parcellated into the anterior (OFCa), medial (OFCm), posterior (OFCp), intermediate (OFCi), and lateral (OFCl) subregions. This parcellation scheme was validated by the same analyses of the left OFC and the bilateral OFCs in male and female subjects. Both visual observation and quantitative comparisons indicated a unique GMV covariance pattern for each OFC subregion. These OFC subregions mainly covaried with the prefrontal and temporal cortices, cingulate cortex and amygdala. In addition, GMV correlations of most OFC subregions were similar across sex and laterality except for significant laterality difference in the OFCl. The right OFCl had stronger GMV correlation with the right inferior frontal cortex. Using high-resolution structural images, we established a reliable parcellation scheme for the human OFC, which may provide an in vivo guide for subregion-level studies of this region and improve our understanding of the human OFC at subregional levels. © 2014 Wiley Periodicals, Inc.

  17. Cognitive Functions and Neurodevelopmental Disorders Involving the Prefrontal Cortex and Mediodorsal Thalamus

    Directory of Open Access Journals (Sweden)

    Zakaria Ouhaz

    2018-02-01

    Full Text Available The mediodorsal nucleus of the thalamus (MD has been implicated in executive functions (such as planning, cognitive control, working memory, and decision-making because of its significant interconnectivity with the prefrontal cortex (PFC. Yet, whilst the roles of the PFC have been extensively studied, how the MD contributes to these cognitive functions remains relatively unclear. Recently, causal evidence in monkeys has demonstrated that in everyday tasks involving rapid updating (e.g., while learning something new, making decisions, or planning the next move, the MD and frontal cortex are working in close partnership. Furthermore, researchers studying the MD in rodents have been able to probe the underlying mechanisms of this relationship to give greater insights into how the frontal cortex and MD might interact during the performance of these essential tasks. This review summarizes the circuitry and known neuromodulators of the MD, and considers the most recent behavioral, cognitive, and neurophysiological studies conducted in monkeys and rodents; in total, this evidence demonstrates that MD makes a critical contribution to cognitive functions. We propose that communication occurs between the MD and the frontal cortex in an ongoing, fluid manner during rapid cognitive operations, via the means of efference copies of messages passed through transthalamic routes; the conductance of these messages may be modulated by other brain structures interconnected to the MD. This is similar to the way in which other thalamic structures have been suggested to carry out forward modeling associated with rapid motor responding and visual processing. Given this, and the marked thalamic pathophysiology now identified in many neuropsychiatric disorders, we suggest that changes in the different subdivisions of the MD and their interconnections with the cortex could plausibly give rise to a number of the otherwise disparate symptoms (including changes to olfaction

  18. Language networks in anophthalmia: maintained hierarchy of processing in 'visual' cortex.

    Science.gov (United States)

    Watkins, Kate E; Cowey, Alan; Alexander, Iona; Filippini, Nicola; Kennedy, James M; Smith, Stephen M; Ragge, Nicola; Bridge, Holly

    2012-05-01

    Imaging studies in blind subjects have consistently shown that sensory and cognitive tasks evoke activity in the occipital cortex, which is normally visual. The precise areas involved and degree of activation are dependent upon the cause and age of onset of blindness. Here, we investigated the cortical language network at rest and during an auditory covert naming task in five bilaterally anophthalmic subjects, who have never received visual input. When listening to auditory definitions and covertly retrieving words, these subjects activated lateral occipital cortex bilaterally in addition to the language areas activated in sighted controls. This activity was significantly greater than that present in a control condition of listening to reversed speech. The lateral occipital cortex was also recruited into a left-lateralized resting-state network that usually comprises anterior and posterior language areas. Levels of activation to the auditory naming and reversed speech conditions did not differ in the calcarine (striate) cortex. This primary 'visual' cortex was not recruited to the left-lateralized resting-state network and showed high interhemispheric correlation of activity at rest, as is typically seen in unimodal cortical areas. In contrast, the interhemispheric correlation of resting activity in extrastriate areas was reduced in anophthalmia to the level of cortical areas that are heteromodal, such as the inferior frontal gyrus. Previous imaging studies in the congenitally blind show that primary visual cortex is activated in higher-order tasks, such as language and memory to a greater extent than during more basic sensory processing, resulting in a reversal of the normal hierarchy of functional organization across 'visual' areas. Our data do not support such a pattern of organization in anophthalmia. Instead, the patterns of activity during task and the functional connectivity at rest are consistent with the known hierarchy of processing in these areas

  19. Impaired right inferior frontal gyrus response to contextual cues in male veterans with PTSD during response inhibition.

    Science.gov (United States)

    van Rooij, Sanne J H; Rademaker, Arthur R; Kennis, Mitzy; Vink, Matthijs; Kahn, René S; Geuze, Elbert

    2014-09-01

    Posttraumatic stress disorder (PTSD) is often associated with impaired fear inhibition and decreased safety cue processing; however, studies capturing the cognitive aspect of inhibition and contextual cue processing are limited. In this fMRI study, the role of contextual cues in response inhibition was investigated. Male medication-naive war veterans with PTSD, male control veterans (combat controls) and healthy nonmilitary men (healthy controls) underwent fMRI while performing the stop-signal anticipation task (SSAT). The SSAT evokes 2 forms of response inhibition: reactive inhibition (outright stopping) and proactive inhibition (anticipation of stopping based on contextual cues). We enrolled 28 veterans with PTSD, 26 combat controls and 25 healthy controls in our study. Reduced reactive inhibition was observed in all veterans, both with and without PTSD, but not in nonmilitary controls, whereas decreased inhibition of the left pre/postcentral gyrus appeared to be specifically associated with PTSD. Impaired behavioural proactive inhibition was also specific to PTSD. Furthermore, the PTSD group showed a reduced right inferior frontal gyrus response during proactive inhibition compared with the combat control group. Most patients with PTSD had comorbid psychiatric disorders, but such comorbidity is common in patients with PTSD. Also, the education level (estimate of intelligence) of participants, but not of their parents, differed among the groups. Our findings of reduced proactive inhibition imply that patients with PTSD show reduced contextual cue processing. These results complement previous findings on fear inhibition and demonstrate that contextual cue processing in patients with PTSD is also reduced during cognitive processes, indicating a more general deficit.

  20. Intertemporal Decision Making After Brain Injury: Amount-Dependent Steeper Discounting after Frontal Cortex Damage

    Directory of Open Access Journals (Sweden)

    Białaszek Wojciech

    2017-12-01

    Full Text Available Traumatic brain injuries to the frontal lobes are associated with many maladaptive forms of behavior. We investigated the association between brain damage and impulsivity, as measured by the rate of delay discounting (i.e., the extent to which future outcomes are devalued in time. The main aim of this study was to test the hypothesis of steeper discounting of different amounts in a group of patients with frontal lobe damage. We used a delay discounting task in the form of a structured interview. A total of 117 participants were divided into five groups: three neurological groups and two groups without brain damage. Our analyses showed that patients with focal damage to the frontal lobes demonstrated steeper delay discounting than other participants. Other clinical groups demonstrated similar discounting rates. The data pattern related to the magnitude effect on the group level suggested that the magnitude effect is absent in the group of patients with damage to the frontal lobes; however, results were less consistent on an individual level. Amount-dependent discounting was observed in only two groups, the healthy control group and the neurological group with other cortical areas damaged.

  1. Cognitive control dysfunction and abnormal frontal cortex activation in stimulant drug users and their biological siblings.

    Science.gov (United States)

    Smith, D G; Jones, P S; Bullmore, E T; Robbins, T W; Ersche, K D

    2013-05-14

    Cognitive and neural abnormalities are known to accompany chronic drug abuse, with impairments in cognition and changes in cortical structure seen in stimulant-dependent individuals. However, premorbid differences have also been observed in the brains and behavior of individuals at risk for substance abuse, before they develop dependence. Endophenotype research has emerged as a useful method for assessing preclinical traits that may be risk factors for pathology by studying patient populations and their undiagnosed first-degree relatives. This study used the color-word Stroop task to assess executive functioning in stimulant-dependent individuals, their unaffected biological siblings and unrelated healthy control volunteers using a functional magnetic resonance imaging paradigm. Both the stimulant-dependent and sibling participants demonstrated impairments in cognitive control and processing speed on the task, registering significantly longer response latencies. However, the two groups generated very different neural responses, with the sibling participants exhibiting a significant decrease in activation in the inferior frontal gyrus compared with both stimulant-dependent individuals and control participants. Both target groups also demonstrated a decrease in hemispheric laterality throughout the task, exhibiting a disproportionate increase in right hemispheric activation, which was associated with their behavioral inefficiencies. These findings not only suggest a possible risk factor for stimulant abuse of poor inhibitory control and cortical inefficiency but they also demonstrate possible adaptations in the brains of stimulant users.

  2. Glutamatergic neurometabolites during early abstinence from chronic methamphetamine abuse.

    Science.gov (United States)

    O'Neill, Joseph; Tobias, Marc C; Hudkins, Matthew; London, Edythe D

    2014-10-31

    The acute phase of abstinence from methamphetamine abuse is critical for rehabilitation success. Proton magnetic resonance spectroscopy has detected below-normal levels of glutamate+glutamine in anterior middle cingulate of chronic methamphetamine abusers during early abstinence, attributed to abstinence-induced downregulation of the glutamatergic systems in the brain. This study further explored this phenomenon. We measured glutamate+glutamine in additional cortical regions (midline posterior cingulate, midline precuneus, and bilateral inferior frontal cortex) putatively affected by methamphetamine. We examined the relationship between glutamate+glutamine in each region with duration of methamphetamine abuse as well as the depressive symptoms of early abstinence. Magnetic resonance spectroscopic imaging was acquired at 1.5 T from a methamphetamine group of 44 adults who had chronically abused methamphetamine and a control group of 23 age-, sex-, and tobacco smoking-matched healthy volunteers. Participants in the methamphetamine group were studied as inpatients during the first week of abstinence from the drug and were not receiving treatment. In the methamphetamine group, small but significant (5-15%, Pright inferior frontal cortex; glutamate+glutamine in posterior cingulate was negatively correlated (Pabuse. The Beck Depression Inventory score was negatively correlated (Pright inferior frontal cortex. Our findings support the idea that glutamatergic metabolism is downregulated in early abstinence in multiple cortical regions. The extent of downregulation may vary with length of abuse and may be associated with severity of depressive symptoms emergent in early recovery. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  3. Updating expected action outcome in the medial frontal cortex involves an evaluation of error type.

    Science.gov (United States)

    Maier, Martin E; Steinhauser, Marco

    2013-10-02

    Forming expectations about the outcome of an action is an important prerequisite for action control and reinforcement learning in the human brain. The medial frontal cortex (MFC) has been shown to play an important role in the representation of outcome expectations, particularly when an update of expected outcome becomes necessary because an error is detected. However, error detection alone is not always sufficient to compute expected outcome because errors can occur in various ways and different types of errors may be associated with different outcomes. In the present study, we therefore investigate whether updating expected outcome in the human MFC is based on an evaluation of error type. Our approach was to consider an electrophysiological correlate of MFC activity on errors, the error-related negativity (Ne/ERN), in a task in which two types of errors could occur. Because the two error types were associated with different amounts of monetary loss, updating expected outcomes on error trials required an evaluation of error type. Our data revealed a pattern of Ne/ERN amplitudes that closely mirrored the amount of monetary loss associated with each error type, suggesting that outcome expectations are updated based on an evaluation of error type. We propose that this is achieved by a proactive evaluation process that anticipates error types by continuously monitoring error sources or by dynamically representing possible response-outcome relations.

  4. Synaptic proteome changes in the superior frontal gyrus and occipital cortex of the alcoholic brain.

    Science.gov (United States)

    Etheridge, Naomi; Lewohl, Joanne M; Mayfield, R Dayne; Harris, R Adron; Dodd, Peter R

    2009-06-24

    Cognitive deficits and behavioral changes that result from chronic alcohol abuse are a consequence of neuropathological changes which alter signal transmission through the neural network. To focus on the changes that occur at the point of connection between the neural network cells, synaptosomal preparations from post-mortem human brain of six chronic alcoholics and six non-alcoholic controls were compared using 2D-DIGE. Functionally affected and spared regions (superior frontal gyrus, SFG, and occipital cortex, OC, respectively) were analyzed from both groups to further investigate the specific pathological response that alcoholism has on the brain. Forty-nine proteins were differentially regulated between the SFG of alcoholics and the SFG of controls and 94 proteins were regulated in the OC with an overlap of 23 proteins. Additionally, the SFG was compared to the OC within each group (alcoholics or controls) to identify region specific differences. A selection were identified by MALDI-TOF mass spectrometry revealing proteins involved in vesicle transport, metabolism, folding and trafficking, and signal transduction, all of which have the potential to influence synaptic activity. A number of proteins identified in this study have been previously related to alcoholism; however, the focus on synaptic proteins has also uncovered novel alcoholism-affected proteins. Further exploration of these proteins will illuminate the mechanisms altering synaptic plasticity, and thus neuronal signaling and response, in the alcoholic brain.

  5. Neural correlates of associative face memory in the anterior inferior temporal cortex of monkeys.

    Science.gov (United States)

    Eifuku, Satoshi; Nakata, Ryuzaburo; Sugimori, Michiya; Ono, Taketoshi; Tamura, Ryoi

    2010-11-10

    To investigate the neural basis of the associative aspects of facial identification, we recorded neuronal activity from the ventral, anterior inferior temporal cortex (AITv) of macaque monkeys during the performance of an asymmetrical paired-association (APA) task that required associative pairing between an abstract pattern and five different facial views of a single person. In the APA task, after one element of a pair (either an abstract pattern or a face) was presented as a sample cue, the reward-seeking monkey correctly identified the other element of the pair among various repeatedly presented test stimuli (faces or patterns) that were temporally separated by interstimulus delays. The results revealed that a substantial number of AITv neurons responded both to faces and abstract patterns, and the majority of these neurons responded selectively to a particular associative pair. It was demonstrated that in addition to the view-invariant identity of faces used in the APA task, the population of AITv neurons was also able to represent the associative pairing between faces and abstract patterns, which was acquired by training in the APA task. It also appeared that the effect of associative pairing was not so strong that the abstract pattern could be treated in a manner similar to a series of faces belonging to a unique identity. Together, these findings indicate that the AITv plays a crucial role in both facial identification and semantic associations with facial identities.

  6. Selective activation of the superior frontal gyrus in task-switching: an event-related fNIRS study.

    Science.gov (United States)

    Cutini, Simone; Scatturin, Pietro; Menon, Enrica; Bisiacchi, Patrizia Silvia; Gamberini, Luciano; Zorzi, Marco; Dell'Acqua, Roberto

    2008-08-15

    In the task-switching paradigm, reaction time is longer and accuracy is worse in switch trials relative to repetition trials. This so-called switch cost has been ascribed to the engagement of control processes required to alternate between distinct stimulus-response mapping rules. Neuroimaging studies have reported an enhanced activation of the human lateral prefrontal cortex and the superior frontal gyrus during the task-switching paradigm. Whether neural activation in these regions is dissociable and associated with separable cognitive components of task switching has been a matter of recent debate. We used multi-channel near-infrared spectroscopy (fNIRS) to measure brain cortical activity in a task-switching paradigm designed to avoid task differences, order predictability, and frequency effects. The results showed a generalized bilateral activation of the lateral prefrontal cortex and the superior frontal gyrus in both switch trials and repetition trials. To isolate the activity selectively associated with the task-switch, the overall activity recorded during repetition trials was subtracted from the activity recorded during switch trials. Following subtraction, the remaining activity was entirely confined to the left portion of the superior frontal gyrus. The present results suggest that factors associated with load and maintenance of distinct stimulus-response mapping rules in working memory are likely contributors to the activation of the lateral prefrontal cortex, whereas only activity in the left superior frontal gyrus can be linked unequivocally to switching between distinct cognitive tasks.

  7. Neural correlates of mirth and laughter: a direct electrical cortical stimulation study.

    Science.gov (United States)

    Yamao, Yukihiro; Matsumoto, Riki; Kunieda, Takeharu; Shibata, Sumiya; Shimotake, Akihiro; Kikuchi, Takayuki; Satow, Takeshi; Mikuni, Nobuhiro; Fukuyama, Hidenao; Ikeda, Akio; Miyamoto, Susumu

    2015-05-01

    Laughter consists of both motor and emotional aspects. The emotional component, known as mirth, is usually associated with the motor component, namely, bilateral facial movements. Previous electrical cortical stimulation (ES) studies revealed that mirth was associated with the basal temporal cortex, inferior frontal cortex, and medial frontal cortex. Functional neuroimaging implicated a role for the left inferior frontal and bilateral temporal cortices in humor processing. However, the neural origins and pathways linking mirth with facial movements are still unclear. We hereby report two cases with temporal lobe epilepsy undergoing subdural electrode implantation in whom ES of the left basal temporal cortex elicited both mirth and laughter-related facial muscle movements. In one case with normal hippocampus, high-frequency ES consistently caused contralateral facial movement, followed by bilateral facial movements with mirth. In contrast, in another case with hippocampal sclerosis (HS), ES elicited only mirth at low intensity and short duration, and eventually laughter at higher intensity and longer duration. In both cases, the basal temporal language area (BTLA) was located within or adjacent to the cortex where ES produced mirth. In conclusion, the present direct ES study demonstrated that 1) mirth had a close relationship with language function, 2) intact mesial temporal structures were actively engaged in the beginning of facial movements associated with mirth, and 3) these emotion-related facial movements had contralateral dominance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Ventromedial Frontal Cortex Is Critical for Guiding Attention to Reward-Predictive Visual Features in Humans.

    Science.gov (United States)

    Vaidya, Avinash R; Fellows, Lesley K

    2015-09-16

    Adaptively interacting with our environment requires extracting information that will allow us to successfully predict reward. This can be a challenge, particularly when there are many candidate cues, and when rewards are probabilistic. Recent work has demonstrated that visual attention is allocated to stimulus features that have been associated with reward on previous trials. The ventromedial frontal lobe (VMF) has been implicated in learning in dynamic environments of this kind, but the mechanism by which this region influences this process is not clear. Here, we hypothesized that the VMF plays a critical role in guiding attention to reward-predictive stimulus features based on feedback. We tested the effects of VMF damage in human subjects on a visual search task in which subjects were primed to attend to task-irrelevant colors associated with different levels of reward, incidental to the search task. Consistent with previous work, we found that distractors had a greater influence on reaction time when they appeared in colors associated with high reward in the previous trial compared with colors associated with low reward in healthy control subjects and patients with prefrontal damage sparing the VMF. However, this reward modulation of attentional priming was absent in patients with VMF damage. Thus, an intact VMF is necessary for directing attention based on experience with cue-reward associations. We suggest that this region plays a role in selecting reward-predictive cues to facilitate future learning. There has been a swell of interest recently in the ventromedial frontal cortex (VMF), a brain region critical to associative learning. However, the underlying mechanism by which this region guides learning is not well understood. Here, we tested the effects of damage to this region in humans on a task in which rewards were linked incidentally to visual features, resulting in trial-by-trial attentional priming. Controls and subjects with prefrontal damage

  9. IMP-SPECT at patients with hallucinations

    International Nuclear Information System (INIS)

    Podreka, I.; Mamoli, B.; Lesch, O.; Suess, E.; Wimberger, D.; Mayr, N.; Havelec, L.; Mueller, C.; Steiner, M.; Deecke, L.

    1986-01-01

    IMP-SPECT was performed in 14 normal volunteers. A 'regional index=RI' of tracer distribution was calculated for 18 regions in each hemisphere RI=(cts/voxel ROI)/(mean cts/voxel of all ROI's). 30 seizure patients (E) and 12 patients with acoustic, partialy also visual hallucinations (H) were investigated. Regions were defined as hypo- or hyperperfused if the RI exceeded the value of the corresponding normal-RI +- 2 std. EEG was recorded in all (E). 93.3% of EEG-findings were abnormal, 50% showed a focus, 46.7% paroxysmal activity. SPECT detected in 93.3% of (E) hypoperfused regions, mostly located in the temporal lobe. All (H) had decreased rCBF, predominantly in the frontal cortex. ANOVA and t-test revealed significant RI-differences in the frontal lobe, both hippocampi, right and left inferior occipital cortex, and right anterior basal ganglia. (H) had lower RI's in frontal lobes, higher RI's in both hippocampal regions as well as inferior occipital regions and anterior basal ganglia Differences between (E) and (H) were found in the frontal lobe ((H)sub(→)), right superior temporal region ((H)sup(→)), left hippocampus ((H)sup(→)), both inferior occipital regions ((H)sup(→)) and right anterior basal ganglia ((H)sup(→)). The study shows that by means of IMP-SPECT hypo- and hyperperfused areas can be detected in the hemispheres of (E) and (H), corresponding to disturbed brain function. Higher hippocampal CBF in (E) and (H) may be related to the role of this limbic structure in generation of seizures and psychotic states. Hallucinations are associated with increased CBF in the right temporal and associative visual cortex. (Author)

  10. Frontal glutamate and reward processing in adolescence and adulthood.

    Science.gov (United States)

    Gleich, Tobias; Lorenz, Robert C; Pöhland, Lydia; Raufelder, Diana; Deserno, Lorenz; Beck, Anne; Heinz, Andreas; Kühn, Simone; Gallinat, Jürgen

    2015-11-01

    The fronto-limbic network interaction, driven by glutamatergic and dopaminergic neurotransmission, represents a core mechanism of motivated behavior and personality traits. Reward seeking behavior undergoes tremendous changes in adolescence paralleled by neurobiological changes of this network including the prefrontal cortex, striatum and amygdala. Since fronto-limbic dysfunctions also underlie major psychiatric diseases beginning in adolescence, this investigation focuses on network characteristics separating adolescents from adults. To investigate differences in network interactions, the brain reward system activity (slot machine task) together with frontal glutamate concentration (anterior cingulate cortex, ACC) was measured in 28 adolescents and 26 adults employing functional magnetic resonance imaging and magnetic resonance spectroscopy, respectively. An inverse coupling of glutamate concentrations in the ACC and activation of the ventral striatum was observed in adolescents. Further, amygdala response in adolescents was negatively correlated with the personality trait impulsivity. For adults, no significant associations of network components or correlations with impulsivity were found. The inverse association between frontal glutamate concentration and striatal activation in adolescents is in line with the triadic model of motivated behavior stressing the important role of frontal top-down inhibition on limbic structures. Our data identified glutamate as the mediating neurotransmitter of this inhibitory process and demonstrates the relevance of glutamate on the reward system and related behavioral traits like impulsivity. This fronto-limbic coupling may represent a vulnerability factor for psychiatric disorders starting in adolescence but not in adulthood.

  11. The relation of hedonic hunger and restrained eating to lateralized frontal activation.

    Science.gov (United States)

    Winter, S R; Feig, E H; Kounios, J; Erickson, B; Berkowitz, S; Lowe, M R

    2016-09-01

    Asymmetrical alpha activation in the prefrontal cortex (frontal asymmetry) in electroencephalography (EEG) has been related to eating behavior. Prior studies linked dietary restraint with right frontal asymmetry [1] and disinhibition with left frontal asymmetry [2]. The current study simultaneously assessed restrained eating and hedonic hunger (drive for food reward in the absence of hunger) in relation to frontal asymmetry. Resting-state EEG and measures of restrained eating (Revised Restraint Scale; RRS) and hedonic hunger (Power of Food Scale; PFS) were assessed in 61 non-obese adults. Individually, hedonic hunger predicted left asymmetry. However, PFS and RRS were correlated (r=0.48, phunger exhibited left asymmetry irrespective of RRS scores; among those low in PFS, only those high in RRS showed right asymmetry. Results were consistent with literature linking avoidant behaviors (restraint) with right-frontal asymmetry and approach behaviors (binge eating) with left-frontal asymmetry. It appears that a strong drive toward palatable foods predominates at a neural level even when restraint is high. Findings suggest that lateralized frontal activity is an indicator of motivation both to consume and to avoid consuming highly palatable foods. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Brain structural network topological alterations of the left prefrontal and limbic cortex in psychogenic erectile dysfunction.

    Science.gov (United States)

    Chen, Jianhuai; Chen, Yun; Gao, Qingqiang; Chen, Guotao; Dai, Yutian; Yao, Zhijian; Lu, Qing

    2018-05-01

    Despite increasing understanding of the cerebral functional changes and structural abnormalities in erectile dysfunction, alterations in the topological organization of brain networks underlying psychogenic erectile dysfunction remain unclear. Here, based on the diffusion tensor image data of 25 patients and 26 healthy controls, we investigated the topological organization of brain structural networks and its correlations with the clinical variables using the graph theoretical analysis. Patients displayed a preserved overall small-world organization and exhibited a less connectivity strength in the left inferior frontal gyrus, amygdale and the right inferior temporal gyrus. Moreover, an abnormal hub pattern was observed in patients, which might disturb the information interactions of the remaining brain network. Additionally, the clustering coefficient of the left hippocampus was positively correlated with the duration of patients and the normalized betweenness centrality of the right anterior cingulate gyrus and the left calcarine fissure were negatively correlated with the sum scores of the 17-item Hamilton Depression Rating Scale. These findings suggested that the damaged white matter and the abnormal hub distribution of the left prefrontal and limbic cortex might contribute to the pathogenesis of psychogenic erectile dysfunction and provided new insights into the understanding of the pathophysiological mechanisms of psychogenic erectile dysfunction.

  13. Context-dependent lexical ambiguity resolution: MEG evidence for the time-course of activity in left inferior frontal gyrus and posterior middle temporal gyrus.

    Science.gov (United States)

    Mollo, Giovanna; Jefferies, Elizabeth; Cornelissen, Piers; Gennari, Silvia P

    An MEG study investigated the role of context in semantic interpretation by examining the comprehension of ambiguous words in contexts leading to different interpretations. We compared high-ambiguity words in minimally different contexts (to bowl, the bowl) to low-ambiguity counterparts (the tray, to flog). Whole brain beamforming revealed the engagement of left inferior frontal gyrus (LIFG) and posterior middle temporal gyrus (LPMTG). Points of interest analyses showed that both these sites showed a stronger response to verb-contexts by 200 ms post-stimulus and displayed overlapping ambiguity effects that were sustained from 300 ms onwards. The effect of context was stronger for high-ambiguity words than for low-ambiguity words at several different time points, including within the first 100 ms post-stimulus. Unlike LIFG, LPMTG also showed stronger responses to verb than noun contexts in low-ambiguity trials. We argue that different functional roles previously attributed to LIFG and LPMTG are in fact played out at different periods during processing. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  14. Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity

    Science.gov (United States)

    Boccia, Maddalena; Piccardi, Laura; Palermo, Liana; Nori, Raffaella; Palmiero, Massimiliano

    2015-01-01

    Many studies have assessed the neural underpinnings of creativity, failing to find a clear anatomical localization. We aimed to provide evidence for a multi-componential neural system for creativity. We applied a general activation likelihood estimation (ALE) meta-analysis to 45 fMRI studies. Three individual ALE analyses were performed to assess creativity in different cognitive domains (Musical, Verbal, and Visuo-spatial). The general ALE revealed that creativity relies on clusters of activations in the bilateral occipital, parietal, frontal, and temporal lobes. The individual ALE revealed different maximal activation in different domains. Musical creativity yields activations in the bilateral medial frontal gyrus, in the left cingulate gyrus, middle frontal gyrus, and inferior parietal lobule and in the right postcentral and fusiform gyri. Verbal creativity yields activations mainly located in the left hemisphere, in the prefrontal cortex, middle and superior temporal gyri, inferior parietal lobule, postcentral and supramarginal gyri, middle occipital gyrus, and insula. The right inferior frontal gyrus and the lingual gyrus were also activated. Visuo-spatial creativity activates the right middle and inferior frontal gyri, the bilateral thalamus and the left precentral gyrus. This evidence suggests that creativity relies on multi-componential neural networks and that different creativity domains depend on different brain regions. PMID:26322002

  15. The cerebral cortex of Albert Einstein: a description and preliminary analysis of unpublished photographs.

    Science.gov (United States)

    Falk, Dean; Lepore, Frederick E; Noe, Adrianne

    2013-04-01

    Upon his death in 1955, Albert Einstein's brain was removed, fixed and photographed from multiple angles. It was then sectioned into 240 blocks, and histological slides were prepared. At the time, a roadmap was drawn that illustrates the location within the brain of each block and its associated slides. Here we describe the external gross neuroanatomy of Einstein's entire cerebral cortex from 14 recently discovered photographs, most of which were taken from unconventional angles. Two of the photographs reveal sulcal patterns of the medial surfaces of the hemispheres, and another shows the neuroanatomy of the right (exposed) insula. Most of Einstein's sulci are identified, and sulcal patterns in various parts of the brain are compared with those of 85 human brains that have been described in the literature. To the extent currently possible, unusual features of Einstein's brain are tentatively interpreted in light of what is known about the evolution of higher cognitive processes in humans. As an aid to future investigators, these (and other) features are correlated with blocks on the roadmap (and therefore histological slides). Einstein's brain has an extraordinary prefrontal cortex, which may have contributed to the neurological substrates for some of his remarkable cognitive abilities. The primary somatosensory and motor cortices near the regions that typically represent face and tongue are greatly expanded in the left hemisphere. Einstein's parietal lobes are also unusual and may have provided some of the neurological underpinnings for his visuospatial and mathematical skills, as others have hypothesized. Einstein's brain has typical frontal and occipital shape asymmetries (petalias) and grossly asymmetrical inferior and superior parietal lobules. Contrary to the literature, Einstein's brain is not spherical, does not lack parietal opercula and has non-confluent Sylvian and inferior postcentral sulci.

  16. The cerebral cortex of Albert Einstein: a description and preliminary analysis of unpublished photographs

    Science.gov (United States)

    Lepore, Frederick E.; Noe, Adrianne

    2013-01-01

    Upon his death in 1955, Albert Einstein’s brain was removed, fixed and photographed from multiple angles. It was then sectioned into 240 blocks, and histological slides were prepared. At the time, a roadmap was drawn that illustrates the location within the brain of each block and its associated slides. Here we describe the external gross neuroanatomy of Einstein’s entire cerebral cortex from 14 recently discovered photographs, most of which were taken from unconventional angles. Two of the photographs reveal sulcal patterns of the medial surfaces of the hemispheres, and another shows the neuroanatomy of the right (exposed) insula. Most of Einstein’s sulci are identified, and sulcal patterns in various parts of the brain are compared with those of 85 human brains that have been described in the literature. To the extent currently possible, unusual features of Einstein’s brain are tentatively interpreted in light of what is known about the evolution of higher cognitive processes in humans. As an aid to future investigators, these (and other) features are correlated with blocks on the roadmap (and therefore histological slides). Einstein’s brain has an extraordinary prefrontal cortex, which may have contributed to the neurological substrates for some of his remarkable cognitive abilities. The primary somatosensory and motor cortices near the regions that typically represent face and tongue are greatly expanded in the left hemisphere. Einstein’s parietal lobes are also unusual and may have provided some of the neurological underpinnings for his visuospatial and mathematical skills, as others have hypothesized. Einstein’s brain has typical frontal and occipital shape asymmetries (petalias) and grossly asymmetrical inferior and superior parietal lobules. Contrary to the literature, Einstein’s brain is not spherical, does not lack parietal opercula and has non-confluent Sylvian and inferior postcentral sulci. PMID:23161163

  17. How Left Inferior Frontal Cortex Participates in Syntactic Processing: Evidence from Aphasia

    Science.gov (United States)

    Love, Tracy; Swinney, David; Walenski, Matthew; Zurif, Edgar

    2008-01-01

    We report on three experiments that provide a real-time processing perspective on the poor comprehension of Broca's aphasic patients for non-canonically structured sentences. In the first experiment we presented sentences (via a Cross Modal Lexical Priming (CMLP) paradigm) to Broca's patients at a normal rate of speech. Unlike the pattern found…

  18. A Postmortem Study of Frontal and Temporal Gyri Thickness and Cell Number in Human Obesity.

    Science.gov (United States)

    Gómez-Apo, Erick; García-Sierra, Adrián; Silva-Pereyra, Juan; Soto-Abraham, Virgilia; Mondragón-Maya, Alejandra; Velasco-Vales, Verónica; Pescatello, Linda S

    2018-01-01

    This study aimed to compare cortex thickness and neuronal cell density in postmortem brain tissue from people with overweight or obesity and normal weight. The cortex thickness and neuron density of eight donors with overweight or obesity (mean = 31.6 kg/m 2 ; SD = 4.35; n = 8; 6 male) and eight donors with normal weight (mean = 21.8 kg/m 2 ; SD = 1.5; n = 8; 5 male) were compared. All participants were Mexican and lived in Mexico City. Randomly selected thickness measures of different cortex areas from the frontal and temporal lobes were analyzed based on high-resolution real-size photographs. A histological analysis of systematic-random fields was used to quantify the number of neurons in postmortem left and right of the first, second, and third gyri of frontal and temporal lobe brain samples. No statistical difference was found in cortical thickness between donors with overweight or obesity and individuals with normal weight. A smaller number of neurons was found among the donors with overweight or obesity than the donors with normal weight at different frontal and temporal areas. A lower density of neurons is associated with overweight or obesity. The morphological basis for structural brain changes in obesity requires further investigation. © 2017 The Obesity Society.

  19. Development of rostral inferior parietal lobule area functional connectivity from late childhood to early adulthood.

    Science.gov (United States)

    Wang, Mengxing; Zhang, Jilei; Dong, Guangheng; Zhang, Hui; Lu, Haifeng; Du, Xiaoxia

    2017-06-01

    Although the mirror neuron system (MNS) has been extensively studied in monkeys and adult humans, very little is known about its development. Previous studies suggest that the MNS is present by infancy and that the brain and MNS-related cognitive abilities (such as language, empathy, and imitation learning) continue to develop after childhood. In humans, the PFt area of the inferior parietal lobule (IPL) seems to particularly correlate with the functional properties of the PF area in primates, which contains mirror neurons. However, little is known about the functional connectivity (FC) of the PFt area with other brain areas and whether these networks change over time. Here, we investigated the FC development of the PFt area-based network in 59 healthy subjects aged 7-26 years at resting-state to study brain development from late childhood through adolescence to early adulthood. The bilateral PFt showed similar core FC networks, which included the frontal lobe, the cingulate gyri, the insula, the somatosensory cortex, the precuneus, the superior and inferior parietal lobules, the temporal lobe, and the cerebellum posterior lobes. Furthermore, the FC between the left PFt and the left IPL exhibited a significantly positive correlation with age, and the FC between the left PFt and the right postcentral gyrus exhibited a significantly negative correlation with age. In addition, the FC between the right PFt and the right putamen exhibited a significantly negative correlation with age. Our findings suggest that the PFt area-based network develops and is reorganized with age. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  20. Abnormal anatomical connectivity between the amygdala and orbitofrontal cortex in conduct disorder.

    Directory of Open Access Journals (Sweden)

    Luca Passamonti

    Full Text Available Previous research suggested that structural and functional abnormalities within the amygdala and orbitofrontal cortex contribute to the pathophysiology of Conduct Disorder (CD. Here, we investigated whether the integrity of the white-matter pathways connecting these regions is abnormal and thus may represent a putative neurobiological marker for CD.Diffusion Tensor Imaging (DTI was used to investigate white-matter microstructural integrity in male adolescents with childhood-onset CD, compared with healthy controls matched in age, sex, intelligence, and socioeconomic status. Two approaches were employed to analyze DTI data: voxel-based morphometry of fractional anisotropy (FA, an index of white-matter integrity, and virtual dissection of white-matter pathways using tractography.Adolescents with CD displayed higher FA within the right external capsule relative to controls (T = 6.08, P<0.05, Family-Wise Error, whole-brain correction. Tractography analyses showed that FA values within the uncinate fascicle (connecting the amygdala and orbitofrontal cortex were abnormally increased in individuals with CD relative to controls. This was in contrast with the inferior frontal-occipital fascicle, which showed no significant group differences in FA. The finding of increased FA in the uncinate fascicle remained significant when factoring out the contribution of attention-deficit/hyperactivity disorder symptoms. There were no group differences in the number of streamlines in either of these anatomical tracts.These results provide evidence that CD is associated with white-matter microstructural abnormalities in the anatomical tract that connects the amygdala and orbitofrontal cortex, the uncinate fascicle. These results implicate abnormal maturation of white-matter pathways which are fundamental in the regulation of emotional behavior in CD.

  1. Transcranial direct current stimulation, implicit alcohol associations and craving

    NARCIS (Netherlands)

    den Uijl, T.E.; Gladwin, T.E.; Wiers, R.W.

    2015-01-01

    Previous research has shown that stimulation of the left dorsolateral prefrontal cortex (DLPFC) enhances working memory (e.g. in the n-back task), and reduces craving for cigarettes and alcohol. Stimulation of the right inferior frontal gyrus (IFG) improves response inhibition. The underlying

  2. Dissociating medial frontal and posterior cingulate activity during self-reflection.

    Science.gov (United States)

    Johnson, Marcia K; Raye, Carol L; Mitchell, Karen J; Touryan, Sharon R; Greene, Erich J; Nolen-Hoeksema, Susan

    2006-06-01

    Motivationally significant agendas guide perception, thought and behaviour, helping one to define a 'self' and to regulate interactions with the environment. To investigate neural correlates of thinking about such agendas, we asked participants to think about their hopes and aspirations (promotion focus) or their duties and obligations (prevention focus) during functional magnetic resonance imaging and compared these self-reflection conditions with a distraction condition in which participants thought about non-self-relevant items. Self-reflection resulted in greater activity than distraction in dorsomedial frontal/anterior cingulate cortex and posterior cingulate cortex/precuneus, consistent with previous findings of activity in these areas during self-relevant thought. For additional medial areas, we report new evidence of a double dissociation of function between medial prefrontal/anterior cingulate cortex, which showed relatively greater activity to thinking about hopes and aspirations, and posterior cingulate cortex/precuneus, which showed relatively greater activity to thinking about duties and obligations. One possibility is that activity in medial prefrontal cortex is associated with instrumental or agentic self-reflection, whereas posterior medial cortex is associated with experiential self-reflection. Another, not necessarily mutually exclusive, possibility is that medial prefrontal cortex is associated with a more inward-directed focus, while posterior cingulate is associated with a more outward-directed, social or contextual focus.

  3. Activity in ventral premotor cortex is modulated by vision of own hand in action

    Directory of Open Access Journals (Sweden)

    Luciano Fadiga

    2013-07-01

    Full Text Available Parietal and premotor cortices of the macaque monkey contain distinct populations of neurons which, in addition to their motor discharge, are also activated by visual stimulation. Among these visuomotor neurons, a population of grasping neurons located in the anterior intraparietal area (AIP shows discharge modulation when the own hand is visible during object grasping. Given the dense connections between AIP and inferior frontal regions, we aimed at investigating whether two hand-related frontal areas, ventral premotor area F5 and primary motor cortex (area F1, contain neurons with similar properties. Two macaques were involved in a grasping task executed in various light/dark conditions in which the to-be-grasped object was kept visible by a dim retro-illumination. Approximately 62% of F5 and 55% of F1 motor neurons showed light/dark modulations. To better isolate the effect of hand-related visual input, we introduced two further conditions characterized by kinematic features similar to the dark condition. The scene was briefly illuminated (i during hand preshaping (pre-touch flash, PT-flash and (ii at hand-object contact (touch flash, T-flash. Approximately 48% of F5 and 44% of F1 motor neurons showed a flash-related modulation. Considering flash-modulated neurons in the two flash conditions, ∼40% from F5 and ∼52% from F1 showed stronger activity in PT- than T-flash (PT-flash-dominant, whereas ∼60% from F5 and ∼48% from F1 showed stronger activity in T- than PT-flash (T-flash-dominant. Furthermore, F5, but not F1, flash-dominant neurons were characterized by a higher peak and mean discharge in the preferred flash condition as compared to light and dark conditions. Still considering F5, the distribution of the time of peak discharge was similar in light and preferred flash conditions. This study shows that the frontal cortex contains neurons, previously classified as motor neurons, which are sensitive to the observation of meaningful

  4. Effects of early weaning and social isolation on the expression of glucocorticoid and mineralocorticoid receptor and 11beta-hydroxysteroid dehydrogenase 1 and 2 mRNAs in the frontal cortex and hippocampus of piglets.

    Science.gov (United States)

    Poletto, R; Steibel, J P; Siegford, J M; Zanella, A J

    2006-01-05

    Pigs weaned at young ages show more abnormal and aggressive behaviors and cognitive deficits compared to later weaned pigs. We investigated the effects of age, weaning and/or social isolation on the expression of genes regulating glucocorticoid response [glucocorticoid receptor (GR), mineralocorticoid receptor (MR), 11beta-hydroxysteroid dehydrogenases 1 and 2 (11beta-HSD1 and 11beta-HSD2)] in the frontal cortex and hippocampus. Early- (EW; n = 6) and conventionally-weaned (CW; n = 6) piglets were weaned at 10 and 21 days after birth, respectively. Non-weaned (NW) piglets of both ages (NW; n = 6/group) remained with their dams. Immediately before euthanasia, half of CW, EW and NW animals were socially isolated for 15 min at 12 (EW, NW) and 23 (CW, NW) days of age. Differences in amounts of 11beta-HSD1, 11beta-HSD2, GR and MR mRNA were determined by quantitative real-time RT-PCR and data subjected to multivariate linear mixed model analysis. When compared with NW piglets at 12 days of age, the hippocampi of EW piglets showed decreased gene expression (P Social isolation decreased gene expression (P social isolation affected frontal cortex regardless of age. These results may be correlated with behavioral and cognitive changes reported in EW piglets.

  5. Chronic Underactivity of Medial Frontal Cortical β2-Containing Nicotinic Receptors Increases Clozapine-Induced Working Memory Impairment in Female Rats

    Science.gov (United States)

    Levin, Edward D.; Perkins, Abigail; Brotherton, Terrell; Qazi, Melissa; Berez, Chantal; Montalvo-Ortiz, Janitza; Davis, Kasey; Williams, Paul; Christopher, N. Channelle

    2009-01-01

    Nicotinic receptor decreases in the frontal cortex and hippocampus are important mediators of cognitive impairment in both schizophrenia and Alzheimer's disease. Drug treatments for these diseases should take into account the impacts of compromised brain function on drug response. This study investigated the impact of compromised nicotinic receptor activity in the frontal cortex in rats on memory function. Since both Alzheimer's disease and schizophrenia can involve psychosis, antipsychotic drugs are often given. The impacts of antipsychotic drugs on cognitive function have been found to be quite variable. It is the hypothesis of this and previous studies that the cognitive effects of antispychotic drugs on cognitive function depend on the integrity of brain systems involved in cognition. Previously in studies of the hippocampus, we found that chronic inhibition of β2-containing nicotinic receptors with dihydro-β-erythrodine (DHβE) impaired working memory and that this effect was attenuated by the antipsychotic drug clozapine. In contrast, chronic hippocampal α7 nicotinic receptor blockade with methyllycaconitine (MLA) potentiated the clozapine-induced memory impairment which is seen in rats without compromised nicotinic receptor activity. The current study determined medial frontal cortical α7 and β2-containing nicotinic receptor involvement in memory and the interactions with antipsychotic drug therapy with clozapine. Chronic DHβE and MLA infusion effects and interactions with systemic clozapine were assessed in female rats tested for memory on the radial-arm maze. Antipsychotic drug interactions with chronic systemic nicotine were investigated because nicotinic procognitive treatment has been proposed. The same local infusion DHβE dose that impaired memory with hippocampal infusion did not impair memory when infused in the medial frontal cortex. Frontal DHβE infusion potentiated clozapine-induced memory impairment, whereas previously the memory

  6. Chronic underactivity of medial frontal cortical beta2-containing nicotinic receptors increases clozapine-induced working memory impairment in female rats.

    Science.gov (United States)

    Levin, Edward D; Perkins, Abigail; Brotherton, Terrell; Qazi, Melissa; Berez, Chantal; Montalvo-Ortiz, Janitza; Davis, Kasey; Williams, Paul; Christopher, N Channelle

    2009-03-17

    Nicotinic receptor decreases in the frontal cortex and hippocampus are important mediators of cognitive impairment in both schizophrenia and Alzheimer's disease. Drug treatments for these diseases should take into account the impacts of compromised brain function on drug response. This study investigated the impact of compromised nicotinic receptor activity in the frontal cortex in rats on memory function. Since both Alzheimer's disease and schizophrenia can involve psychosis, antipsychotic drugs are often given. The impacts of antipsychotic drugs on cognitive function have been found to be quite variable. It is the hypothesis of this and previous studies that the cognitive effects of antispychotic drugs on cognitive function depend on the integrity of brain systems involved in cognition. Previously in studies of the hippocampus, we found that chronic inhibition of beta2-containing nicotinic receptors with dihydro-beta-erythrodine (DHbetaE) impaired working memory and that this effect was attenuated by the antipsychotic drug clozapine. In contrast, chronic hippocampal alpha7 nicotinic receptor blockade with methyllycaconitine (MLA) potentiated the clozapine-induced memory impairment which is seen in rats without compromised nicotinic receptor activity. The current study determined medial frontal cortical alpha7 and beta2-containing nicotinic receptor involvement in memory and the interactions with antipsychotic drug therapy with clozapine. Chronic DHbetaE and MLA infusion effects and interactions with systemic clozapine were assessed in female rats tested for memory on the radial-arm maze. Antipsychotic drug interactions with chronic systemic nicotine were investigated because nicotinic procognitive treatment has been proposed. The same local infusion DHbetaE dose that impaired memory with hippocampal infusion did not impair memory when infused in the medial frontal cortex. Frontal DHbetaE infusion potentiated clozapine-induced memory impairment, whereas previously

  7. Musical structure is processed in "language" areas of the brain: a possible role for Brodmann Area 47 in temporal coherence.

    Science.gov (United States)

    Levitin, Daniel J; Menon, Vinod

    2003-12-01

    The neuroanatomical correlates of musical structure were investigated using functional magnetic neuroimaging (fMRI) and a unique stimulus manipulation involving scrambled music. The experiment compared brain responses while participants listened to classical music and scrambled versions of that same music. Specifically, the scrambled versions disrupted musical structure while holding low-level musical attributes constant, including the psychoacoustic features of the music such as pitch, loudness, and timbre. Comparing music to its scrambled counterpart, we found focal activation in the pars orbitalis region (Brodmann Area 47) of the left inferior frontal cortex, a region that has been previously closely associated with the processing of linguistic structure in spoken and signed language, and its right hemisphere homologue. We speculate that this particular region of inferior frontal cortex may be more generally responsible for processing fine-structured stimuli that evolve over time, not merely those that are linguistic.

  8. Overlapping Neural Correlates of Reading Emotionally Positive and Negative Adjectives

    OpenAIRE

    Demirakca, Traute; Herbert, Cornelia; Kissler, Johanna; Ruf, Matthias; Wokrina, Tim; Ende, Gabriele

    2009-01-01

    Comparison of positive and negative naturally read adjectives to neutral adjectives yielded an overlapping higher BOLD response in the occipital and the orbitofrontal cortex (gyrus rectus). Superior medial frontal gyrus and posterior cingulate gyrus showed higher BOLD response to negative adjectives and inferior frontal gyrus to positive adjectives. The overlap of activated regions and lack of pronounced distinct regions supports the assumption that the processing of negative and positive wor...

  9. Neural correlates of processing harmonic expectancy violations in children and adolescents with OCD.

    Science.gov (United States)

    Buse, Judith; Roessner, Veit

    2016-01-01

    It has been suggested that patients with obsessive-compulsive disorder (OCD) exhibit enhanced awareness of embedded stimulus patterns as well as enhanced allocation of attention towards unexpected stimuli. Our study aimed at investigating these OCD characteristics by running the harmonic expectancy violation paradigm in 21 boys with OCD and 29 healthy controls matched for age, gender and IQ during a functional magnetic resonance imaging (fMRI) scan. Each trial consisted of a chord sequence in which the first four chords induced a strong expectancy for a harmonic chord at the next position. In 70% of the trials the fifth chord fulfilled this expectancy (harmonic condition), while in 30% the expectancy was violated (disharmonic condition). Overall, the harmonic condition elicited blood-oxygen-level dependent (BOLD) activation in the auditory cortex, while during the disharmonic condition the precuneus, the auditory cortex, the medial frontal gyrus, the premotor cortex, the lingual gyrus, the inferior frontal gyrus and the superior frontal gyrus were activated. In a cluster extending from the right superior temporal gyrus to the inferior frontal gyrus, boys with OCD exhibited increased activation compared to healthy controls in the harmonic condition and decreased activation in the disharmonic condition. Our findings might indicate that patients with OCD are excessively engaged in processing the implicit structure embedded in music stimuli, but they speak against the suggestion that OCD is associated with a misallocation of attention towards the processing of unexpected stimuli.

  10. Neural correlates of processing harmonic expectancy violations in children and adolescents with OCD

    Directory of Open Access Journals (Sweden)

    Judith Buse

    2016-01-01

    Full Text Available It has been suggested that patients with obsessive–compulsive disorder (OCD exhibit enhanced awareness of embedded stimulus patterns as well as enhanced allocation of attention towards unexpected stimuli. Our study aimed at investigating these OCD characteristics by running the harmonic expectancy violation paradigm in 21 boys with OCD and 29 healthy controls matched for age, gender and IQ during a functional magnetic resonance imaging (fMRI scan. Each trial consisted of a chord sequence in which the first four chords induced a strong expectancy for a harmonic chord at the next position. In 70% of the trials the fifth chord fulfilled this expectancy (harmonic condition, while in 30% the expectancy was violated (disharmonic condition. Overall, the harmonic condition elicited blood-oxygen-level dependent (BOLD activation in the auditory cortex, while during the disharmonic condition the precuneus, the auditory cortex, the medial frontal gyrus, the premotor cortex, the lingual gyrus, the inferior frontal gyrus and the superior frontal gyrus were activated. In a cluster extending from the right superior temporal gyrus to the inferior frontal gyrus, boys with OCD exhibited increased activation compared to healthy controls in the harmonic condition and decreased activation in the disharmonic condition. Our findings might indicate that patients with OCD are excessively engaged in processing the implicit structure embedded in music stimuli, but they speak against the suggestion that OCD is associated with a misallocation of attention towards the processing of unexpected stimuli.

  11. The prefrontal cortex in the Göttingen minipig brain defined by neural projection criteria and cytoarchitecture

    DEFF Research Database (Denmark)

    Jelsing, J; Hay-Schmidt, Anders; Dyrby, Tim

    2006-01-01

    In an attempt to delineate the prefrontal cortex (PFC) in the Gottingen minipig brain the distribution of reciprocal thalamocortical projections was investigated using anterograde and retrograde tracing techniques and evaluated in relation to the specific cytoarchitectonic organization. Tracers...... the medial and rostral pole of the frontal lobe as well as the anterior cingulate, anterior insular and dorsomedial frontal cortices. Subsequently, the reciprocity and specificity of these connections were tested from injections into the traced frontal cortices indicating that the PFC has cortical...... connections to different parts of the MD nucleus. Although the granular layer IV, characteristic of primate PFC could not be identified, both cytoarchitectonic and connectional data suggests that the Gottingen minipig has a structurally divided prefrontal cortex. Stereological estimates of PFC volume showed...

  12. Toward Probabilistic Diagnosis and Understanding of Depression Based on Functional MRI Data Analysis with Logistic Group LASSO.

    Directory of Open Access Journals (Sweden)

    Yu Shimizu

    Full Text Available Diagnosis of psychiatric disorders based on brain imaging data is highly desirable in clinical applications. However, a common problem in applying machine learning algorithms is that the number of imaging data dimensions often greatly exceeds the number of available training samples. Furthermore, interpretability of the learned classifier with respect to brain function and anatomy is an important, but non-trivial issue. We propose the use of logistic regression with a least absolute shrinkage and selection operator (LASSO to capture the most critical input features. In particular, we consider application of group LASSO to select brain areas relevant to diagnosis. An additional advantage of LASSO is its probabilistic output, which allows evaluation of diagnosis certainty. To verify our approach, we obtained semantic and phonological verbal fluency fMRI data from 31 depression patients and 31 control subjects, and compared the performances of group LASSO (gLASSO, and sparse group LASSO (sgLASSO to those of standard LASSO (sLASSO, Support Vector Machine (SVM, and Random Forest. Over 90% classification accuracy was achieved with gLASSO, sgLASSO, as well as SVM; however, in contrast to SVM, LASSO approaches allow for identification of the most discriminative weights and estimation of prediction reliability. Semantic task data revealed contributions to the classification from left precuneus, left precentral gyrus, left inferior frontal cortex (pars triangularis, and left cerebellum (c rus1. Weights for the phonological task indicated contributions from left inferior frontal operculum, left post central gyrus, left insula, left middle frontal cortex, bilateral middle temporal cortices, bilateral precuneus, left inferior frontal cortex (pars triangularis, and left precentral gyrus. The distribution of normalized odds ratios further showed, that predictions with absolute odds ratios higher than 0.2 could be regarded as certain.

  13. The 5-HT6 receptor antagonist idalopirdine potentiates the effects of donepezil on gamma oscillations in the frontal cortex of anesthetized and awake rats without affecting sleep-wake architecture.

    Science.gov (United States)

    Amat-Foraster, Maria; Leiser, Steven C; Herrik, Kjartan F; Richard, Nelly; Agerskov, Claus; Bundgaard, Christoffer; Bastlund, Jesper F; de Jong, Inge E M

    2017-02-01

    The 5-HT 6 receptor is a promising target for cognitive disorders, in particular for Alzheimer's disease (AD). The high affinity and selective 5-HT 6 receptor antagonist idalopirdine (Lu AE58054) is currently in development for mild-moderate AD as adjunct therapy to acetylcholinesterase inhibitors (AChEIs). We studied the effects of idalopirdine alone and in combination with the AChEI donepezil on cortical function using two in vivo electrophysiological methods. Neuronal network oscillations in the frontal cortex were measured during electrical stimulation of the brainstem nucleus pontis oralis (nPO) in the anesthetized rat and by an electroencephalogram (EEG) in the awake, freely moving rat. In conjunction with the EEG study, we investigated the effects of idalopirdine and donepezil on sleep-wake architecture using telemetric polysomnography. Idalopirdine (2 mg/kg i.v.) increased gamma power in the medial prefrontal cortex (mPFC) during nPO stimulation. Donepezil (0.3 and 1 mg/kg i.v.) also increased cortical gamma power and pretreatment with idalopirdine (2 mg/kg i.v.) potentiated and prolonged the effects of donepezil. Similarly, donepezil (1 and 3 mg/kg s.c.) dose-dependently increased frontal cortical gamma power in the freely moving rat and pretreatment with idalopirdine (10 mg/kg p.o.) augmented the effect of donepezil 1 mg/kg. Analysis of the sleep-wake architecture showed that donepezil (1 and 3 mg/kg s.c.) dose-dependently delayed sleep onset and decreased the time spent in both REM and non REM sleep stages. In contrast, idalopirdine (10 mg/kg p.o.) did not affect sleep-wake architecture nor the effects of donepezil. In summary, we show that idalopirdine potentiates the effects of donepezil on frontal cortical gamma oscillations, a pharmacodynamic biomarker associated with cognition, without modifying the effects of donepezil on sleep. The increased cortical excitability may contribute to the procognitive effects of idalopirdine in donepezil

  14. Functional magnetic resonance imaging of the frontal eye fields during saccadic eye movements

    International Nuclear Information System (INIS)

    Miki, Atsushi; Takagi, Mineo; Abe, Haruki; Nakajima, Takashi; Miyauchi, Satoru.

    1996-01-01

    We evaluated activity-induced signal intensity changes in the human cerebral cortex during horizontal saccadic eye movements using functional magnetic resonance imaging (fMRI) based on the blood-oxygenation-level-dependent (BOLD) contrast method. Compared with central fixation, significant signal increases were observed bilaterally in the middle frontal gyrus (Brodmann area 8) during saccadic conditions. The location of the activated area was consistent with that of previously reported frontal eye fields (FEF). These results suggest that fMRI has potential merit for the study of cortical control of eye movements in humans. (author)

  15. Separation of trait and state in stuttering.

    Science.gov (United States)

    Connally, Emily L; Ward, David; Pliatsikas, Christos; Finnegan, Sarah; Jenkinson, Mark; Boyles, Rowan; Watkins, Kate E

    2018-04-06

    Stuttering is a disorder in which the smooth flow of speech is interrupted. People who stutter show structural and functional abnormalities in the speech and motor system. It is unclear whether functional differences reflect general traits of the disorder or are specifically related to the dysfluent speech state. We used a hierarchical approach to separate state and trait effects within stuttering. We collected sparse-sampled functional MRI during two overt speech tasks (sentence reading and picture description) in 17 people who stutter and 16 fluent controls. Separate analyses identified indicators of: (1) general traits of people who stutter; (2) frequency of dysfluent speech states in subgroups of people who stutter; and (3) the differences between fluent and dysfluent states in people who stutter. We found that reduced activation of left auditory cortex, inferior frontal cortex bilaterally, and medial cerebellum were general traits that distinguished fluent speech in people who stutter from that of controls. The stuttering subgroup with higher frequency of dysfluent states during scanning (n = 9) had reduced activation in the right subcortical grey matter, left temporo-occipital cortex, the cingulate cortex, and medial parieto-occipital cortex relative to the subgroup who were more fluent (n = 8). Finally, during dysfluent states relative to fluent ones, there was greater activation of inferior frontal and premotor cortex extending into the frontal operculum, bilaterally. The above differences were seen across both tasks. Subcortical state effects differed according to the task. Overall, our data emphasise the independence of trait and state effects in stuttering. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  16. [Language Functions in the Frontal Association Area: Brain Mechanisms That Create Language].

    Science.gov (United States)

    Yamamoto, Kayako; Sakai, Kuniyoshi L

    2016-11-01

    Broca's area is known to be critically involved in language processing for more than 150 years. Recent neuroimaging techniques, including functional magnetic resonance imaging (fMRI) and diffusion MRI, enabled the subdivision of Broca's area based on both functional and anatomical aspects. Networks among the frontal association areas, especially the left inferior frontal gyrus (IFG), and other cortical regions in the temporal/parietal association areas, are also important for language-related information processing. Here, we review how neuroimaging studies, combined with research paradigms based on theoretical linguistics, have contributed to clarifying the critical roles of the left IFG in syntactic processing and those of language-related networks, including cortical and cerebellar regions.

  17. Dorsal anterior cingulate cortex in typically developing children: Laterality analysis

    Directory of Open Access Journals (Sweden)

    Jue Wang

    2015-10-01

    Full Text Available We aimed to elucidate the dACC laterality in typically developing children and their sex/age-related differences with a sample of 84 right-handed children (6–16 years, 42 boys. We first replicated the previous finding observed in adults that gray matter density asymmetry in the dACC was region-specific: leftward (left > right in its superior part, rightward (left < right in its inferior part. Intrinsic connectivity analysis of these regions further revealed region-specific asymmetric connectivity profiles in dACC as well as their sex and age differences. Specifically, the superior dACC connectivity with frontoparietal network and the inferior dACC connectivity with visual network are rightward. The superior dACC connectivity with the default network (lateral temporal cortex was more involved in the left hemisphere. In contrast, the inferior dACC connectivity with the default network (anterior medial prefrontal cortex was more lateralized towards the right hemisphere. The superior dACC connectivity with lateral visual cortex was more distinct across two hemispheres in girls than that in boys. This connection in boys changed with age from right-prominent to left-prominent asymmetry whereas girls developed the connection from left-prominent to no asymmetry. These findings not only highlight the complexity and laterality of the dACC but also provided insights into dynamical structure–function relationships during the development.

  18. The Role of Orbitofrontal Cortex in Processing Empathy Stories in 4- to 8-Year-Old Children

    Science.gov (United States)

    Brink, Tila Tabea; Urton, Karolina; Held, Dada; Kirilina, Evgeniya; Hofmann, Markus J.; Klann-Delius, Gisela; Jacobs, Arthur M.; Kuchinke, Lars

    2010-01-01

    This study investigates the neuronal correlates of empathic processing in children aged 4–8 years, an age range discussed to be crucial for the development of empathy. Empathy, defined as the ability to understand and share another person's inner life, consists of two components: affective (emotion-sharing) and cognitive empathy (Theory of Mind). We examined the hemodynamic responses of preschool and school children (N = 48), while they processed verbal (auditory) and non-verbal (cartoons) empathy stories in a passive following paradigm, using functional Near-Infrared Spectroscopy. To control for the two types of empathy, children were presented blocks of stories eliciting either affective or cognitive empathy, or neutral scenes which relied on the understanding of physical causalities. By contrasting the activations of the younger and older children, we expected to observe developmental changes in brain activations when children process stories eliciting empathy in either stimulus modality toward a greater involvement of anterior frontal brain regions. Our results indicate that children's processing of stories eliciting affective and cognitive empathy is associated with medial and bilateral orbitofrontal cortex (OFC) activation. In contrast to what is known from studies using adult participants, no additional recruitment of posterior brain regions was observed, often associated with the processing of stories eliciting empathy. Developmental changes were found only for stories eliciting affective empathy with increased activation, in older children, in medial OFC, left inferior frontal gyrus, and the left dorsolateral prefrontal cortex. Activations for the two modalities differ only little, with non-verbal presentation of the stimuli having a greater impact on empathy processing in children, showing more similarities to adult processing than the verbal one. This might be caused by the fact that non-verbal processing develops earlier in life and is more

  19. Reading front to back: MEG evidence for early feedback effects during word recognition.

    Science.gov (United States)

    Woodhead, Z V J; Barnes, G R; Penny, W; Moran, R; Teki, S; Price, C J; Leff, A P

    2014-03-01

    Magnetoencephalography studies in humans have shown word-selective activity in the left inferior frontal gyrus (IFG) approximately 130 ms after word presentation ( Pammer et al. 2004; Cornelissen et al. 2009; Wheat et al. 2010). The role of this early frontal response is currently not known. We tested the hypothesis that the IFG provides top-down constraints on word recognition using dynamic causal modeling of magnetoencephalography data collected, while subjects viewed written words and false font stimuli. Subject-specific dipoles in left and right occipital, ventral occipitotemporal and frontal cortices were identified using Variational Bayesian Equivalent Current Dipole source reconstruction. A connectivity analysis tested how words and false font stimuli differentially modulated activity between these regions within the first 300 ms after stimulus presentation. We found that left inferior frontal activity showed stronger sensitivity to words than false font and a stronger feedback connection onto the left ventral occipitotemporal cortex (vOT) in the first 200 ms. Subsequently, the effect of words relative to false font was observed on feedforward connections from left occipital to ventral occipitotemporal and frontal regions. These findings demonstrate that left inferior frontal activity modulates vOT in the early stages of word processing and provides a mechanistic account of top-down effects during word recognition.

  20. Alterations of benzodiazepine receptor binding potential in anxiety and somatoform disorders measured by 123I-iomazenil SPECT

    International Nuclear Information System (INIS)

    Tokunaga, Mari; Ida, Ituro; Mikuni, Masahiko; Higuchi, Teruhiko.

    1997-01-01

    123 I-iomazenil (IMZ), a newly developed radioligand which acts on benzodiazepine receptors (BZR) as a partial inverse agonist, made it possible to evaluate the function of central BZR by single photon emission tomography (SPECT). To examine the alterations of the binding potential (BP) in the anxiety state, 123 I-IMZ SPECT was performed in five patients with anxiety and somatoform disorders, and five epileptic patients without anxiety symptoms served as a reference. The BP of BZR was determined by using a table look-up procedure based on a three-compartment, two-parameter model in the bilateral superior frontal, inferior frontal, temporal, parietal, occipital, and cerebellar cortex. The mean BP of patients with anxiety and somatoform disorders was significantly decreased in the superior frontal, temporal, and parietal cortex, in comparison with that of epileptic patients. A significant correlation was observed between the anxiety levels scored on the Hamilton anxiety scale and BP in the right temporal cortex and left superior frontal cortex. These changes in BZR revealed by SPECT suggest the usefulness of 123 I-IMZ SPECT to objectively evaluate anxiety levels in patients with anxiety symptoms. (author)

  1. Facial expressions : What the mirror neuron system can and cannot tell us

    NARCIS (Netherlands)

    van der Gaag, Christiaan; Minderaa, Ruud B.; Keysers, Christian

    2007-01-01

    Facial expressions contain both motor and emotional components. The inferior frontal gyrus (IFG) and posterior parietal cortex have been considered to compose a mirror neuron system (MNS) for the motor components of facial expressions, while the amygdala and insula may represent an "additional" MNS

  2. Expression of immediate-early genes in the inferior colliculus and auditory cortex in salicylate-induced tinnitus in rat.

    Science.gov (United States)

    Hu, S S; Mei, L; Chen, J Y; Huang, Z W; Wu, H

    2014-03-12

    Tinnitus could be associated with neuronal hyperactivity in the auditory center. As a neuronal activity marker, immediate-early gene (IEG) expression is considered part of a general neuronal response to natural stimuli. Some IEGs, especially the activity-dependent cytoskeletal protein (Arc) and the early growth response gene-1 (Egr-1), appear to be highly correlated with sensory-evoked neuronal activity. We hypothesize, therefore, an increase of Arc and Egr-1 will be observed in a tinnitus model. In our study, we used the gap prepulse inhibition of acoustic startle (GPIAS) paradigm to confirm that salicylate induces tinnitus-like behavior in rats. However, expression of the Arc gene and Egr-1 gene were decreased in the inferior colliculus (IC) and auditory cortex (AC), in contradiction of our hypothesis. Expression of N-methyl d-aspartate receptor subunit 2B (NR2B) was increased and all of these changes returned to normal 14 days after treatment with salicylate ceased. These data revealed long-time administration of salicylate induced tinnitus markedly but reversibly and caused neural plasticity changes in the IC and the AC. Decreased expression of Arc and Egr-1 might be involved with instability of synaptic plasticity in tinnitus.

  3. Frontal lobe activation during object permanence: data from near-infrared spectroscopy.

    Science.gov (United States)

    Baird, Abigail A; Kagan, Jerome; Gaudette, Thomas; Walz, Kathryn A; Hershlag, Natalie; Boas, David A

    2002-08-01

    The ability to create and hold a mental schema of an object is one of the milestones in cognitive development. Developmental scientists have named the behavioral manifestation of this competence object permanence. Convergent evidence indicates that frontal lobe maturation plays a critical role in the display of object permanence, but methodological and ethical constrains have made it difficult to collect neurophysiological evidence from awake, behaving infants. Near-infrared spectroscopy provides a noninvasive assessment of changes in oxy- and deoxyhemoglobin and total hemoglobin concentration within a prescribed region. The evidence described in this report reveals that the emergence of object permanence is related to an increase in hemoglobin concentration in frontal cortex.

  4. Residual number processing in dyscalculia.

    Science.gov (United States)

    Cappelletti, Marinella; Price, Cathy J

    2014-01-01

    Developmental dyscalculia - a congenital learning disability in understanding numerical concepts - is typically associated with parietal lobe abnormality. However, people with dyscalculia often retain some residual numerical abilities, reported in studies that otherwise focused on abnormalities in the dyscalculic brain. Here we took a different perspective by focusing on brain regions that support residual number processing in dyscalculia. All participants accurately performed semantic and categorical colour-decision tasks with numerical and non-numerical stimuli, with adults with dyscalculia performing slower than controls in the number semantic tasks only. Structural imaging showed less grey-matter volume in the right parietal cortex in people with dyscalculia relative to controls. Functional MRI showed that accurate number semantic judgements were maintained by parietal and inferior frontal activations that were common to adults with dyscalculia and controls, with higher activation for participants with dyscalculia than controls in the right superior frontal cortex and the left inferior frontal sulcus. Enhanced activation in these frontal areas was driven by people with dyscalculia who made faster rather than slower numerical decisions; however, activation could not be accounted for by response times per se, because it was greater for fast relative to slow dyscalculics but not greater for fast controls relative to slow dyscalculics. In conclusion, our results reveal two frontal brain regions that support efficient number processing in dyscalculia.

  5. Residual number processing in dyscalculia

    Directory of Open Access Journals (Sweden)

    Marinella Cappelletti

    2014-01-01

    Full Text Available Developmental dyscalculia – a congenital learning disability in understanding numerical concepts – is typically associated with parietal lobe abnormality. However, people with dyscalculia often retain some residual numerical abilities, reported in studies that otherwise focused on abnormalities in the dyscalculic brain. Here we took a different perspective by focusing on brain regions that support residual number processing in dyscalculia. All participants accurately performed semantic and categorical colour-decision tasks with numerical and non-numerical stimuli, with adults with dyscalculia performing slower than controls in the number semantic tasks only. Structural imaging showed less grey-matter volume in the right parietal cortex in people with dyscalculia relative to controls. Functional MRI showed that accurate number semantic judgements were maintained by parietal and inferior frontal activations that were common to adults with dyscalculia and controls, with higher activation for participants with dyscalculia than controls in the right superior frontal cortex and the left inferior frontal sulcus. Enhanced activation in these frontal areas was driven by people with dyscalculia who made faster rather than slower numerical decisions; however, activation could not be accounted for by response times per se, because it was greater for fast relative to slow dyscalculics but not greater for fast controls relative to slow dyscalculics. In conclusion, our results reveal two frontal brain regions that support efficient number processing in dyscalculia.

  6. Residual number processing in dyscalculia☆

    Science.gov (United States)

    Cappelletti, Marinella; Price, Cathy J.

    2013-01-01

    Developmental dyscalculia – a congenital learning disability in understanding numerical concepts – is typically associated with parietal lobe abnormality. However, people with dyscalculia often retain some residual numerical abilities, reported in studies that otherwise focused on abnormalities in the dyscalculic brain. Here we took a different perspective by focusing on brain regions that support residual number processing in dyscalculia. All participants accurately performed semantic and categorical colour-decision tasks with numerical and non-numerical stimuli, with adults with dyscalculia performing slower than controls in the number semantic tasks only. Structural imaging showed less grey-matter volume in the right parietal cortex in people with dyscalculia relative to controls. Functional MRI showed that accurate number semantic judgements were maintained by parietal and inferior frontal activations that were common to adults with dyscalculia and controls, with higher activation for participants with dyscalculia than controls in the right superior frontal cortex and the left inferior frontal sulcus. Enhanced activation in these frontal areas was driven by people with dyscalculia who made faster rather than slower numerical decisions; however, activation could not be accounted for by response times per se, because it was greater for fast relative to slow dyscalculics but not greater for fast controls relative to slow dyscalculics. In conclusion, our results reveal two frontal brain regions that support efficient number processing in dyscalculia. PMID:24266008

  7. The left inferior frontal gyrus: A neural crossroads between abstract and concrete knowledge.

    Science.gov (United States)

    Della Rosa, Pasquale Anthony; Catricalà, Eleonora; Canini, Matteo; Vigliocco, Gabriella; Cappa, Stefano F

    2018-07-15

    Evidence from both neuropsychology and neuroimaging suggests that different types of information are necessary for representing and processing concrete and abstract word meanings. Both abstract and concrete concepts, however, conjointly rely on perceptual, verbal and contextual knowledge, with abstract concepts characterized by low values of imageability (IMG) (low sensory-motor grounding) and low context availability (CA) (more difficult to contextualize). Imaging studies supporting differences between abstract and concrete concepts show a greater recruitment of the left inferior frontal gyrus (LIFG) for abstract concepts, which has been attributed either to the representation of abstract-specific semantic knowledge or to the request for more executive control than in the case of concrete concepts. We conducted an fMRI study on 27 participants, using a lexical decision task involving both abstract and concrete words, whose IMG and CA values were explicitly modelled in separate parametric analyses. The LIFG was significantly more activated for abstract than for concrete words, and a conjunction analysis showed a common activation for words with low IMG or low CA only in the LIFG, in the same area reported for abstract words. A regional template map of brain activations was then traced for words with low IMG or low CA, and BOLD regional time-series were extracted and correlated with the specific LIFG neural activity elicited for abstract words. The regions associated to low IMG, which were functionally correlated with LIFG, were mainly in the left hemisphere, while those associated with low CA were in the right hemisphere. Finally, in order to reveal which LIFG-related network increased its connectivity with decreases of IMG or CA, we conducted generalized psychophysiological interaction analyses. The connectivity strength values extracted from each region connected with the LIFG were correlated with specific LIFG neural activity for abstract words, and a regression

  8. The cerebral functional location in normal subjects with Chinese classical national music auditory stimulus

    International Nuclear Information System (INIS)

    Sun Da; Xu Wei; Zhan Hongwei; Liu Hongbiao

    2004-01-01

    thalamic (in 1 case). Conclusion: During listening the Chinese classical national music and paying special attention to the imagination of music the auditory association cortex in the right and left superior temporal and midtemporal were activated. The inferior frontal and/or medial frontal lobes were activated too. And the activity was markedly higher in frontal than in temporal. According to the literatures, almost invariably, in any task which requires analysis of auditory information the posterior part of the inferior frontal gyms is activated. In the left hemisphere this region is often called Broca's area. The inferior frontal lobe, frontal eye field and superolateral prefrontal cortex are also related to mood and judgment. So it is not wonder that the frontal lobes showed as higher activity in these subjects. (authors)

  9. Factors influencing frontal cortex development and recovery from early frontal injury.

    Science.gov (United States)

    Halliwell, Celeste; Comeau, Wendy; Gibb, Robbin; Frost, Douglas O; Kolb, Bryan

    2009-01-01

    Neocortical development represents more than a simple unfolding of a genetic blueprint but rather represents a complex dance of genetic and environmental events that interact to adapt the brain to fit a particular environmental context. Although most cortical regions are sensitive to a wide range of experiential factors during development and later in life, the prefrontal cortex appears to be unusually sensitive to perinatal experiences and relatively immune to many adulthood experiences relative to other neocortical regions. One way to examine experience-dependent prefrontal development is to conduct studies in which experiential perturbations are related neuronal morphology. This review of the research reveals both pre- and post-natal factors have important effects on prefrontal development and behaviour. Such factors include psychoactive drugs, including both illicit drugs and prescription drugs, stress, gonadal hormones and sensory and motor stimulation. A second method of study is to examine both the effects of perinatal prefrontal injury on the development of the remaining cerebral mantle and correlated behaviours as well as the effects of post-injury rehabilitation programmes on the anatomical and behavioural measures. Prefrontal injury alters cerebral development in a developmental-stage dependent manner with perinatal injuries having far more deleterious effects than similar injuries later in infancy. The outcome of perinatal injuries can be modified, however, by rehabilitation with many of the factors shown to influence prefrontal development in the otherwise normal brain.

  10. Maps of space in human frontoparietal cortex.

    Science.gov (United States)

    Jerde, Trenton A; Curtis, Clayton E

    2013-12-01

    Prefrontal cortex (PFC) and posterior parietal cortex (PPC) are neural substrates for spatial cognition. We here review studies in which we tested the hypothesis that human frontoparietal cortex may function as a priority map. According to priority map theory, objects or locations in the visual world are represented by neural activity that is proportional to their attentional priority. Using functional magnetic resonance imaging (fMRI), we first identified topographic maps in PFC and PPC as candidate priority maps of space. We then measured fMRI activity in candidate priority maps during the delay periods of a covert attention task, a spatial working memory task, and a motor planning task to test whether the activity depended on the particular spatial cognition. Our hypothesis was that some, but not all, candidate priority maps in PFC and PPC would be agnostic with regard to what was being prioritized, in that their activity would reflect the location in space across tasks rather than a particular kind of spatial cognition (e.g., covert attention). To test whether patterns of delay period activity were interchangeable during the spatial cognitive tasks, we used multivariate classifiers. We found that decoders trained to predict the locations on one task (e.g., working memory) cross-predicted the locations on the other tasks (e.g., covert attention and motor planning) in superior precentral sulcus (sPCS) and in a region of intraparietal sulcus (IPS2), suggesting that these patterns of maintenance activity may be interchangeable across the tasks. Such properties make sPCS in frontal cortex and IPS2 in parietal cortex viable priority map candidates, and suggest that these areas may be the human homologs of the monkey frontal eye field (FEF) and lateral intraparietal area (LIP). Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Emotional face expression modulates occipital-frontal effective connectivity during memory formation in a bottom-up fashion

    Directory of Open Access Journals (Sweden)

    Daiming eXiu

    2015-04-01

    Full Text Available This study investigated the role of bottom-up and top-down neural mechanisms in the processing of emotional face expression during memory formation. Functional brain imaging data was acquired during incidental learning of positive (‘happy’, neutral and negative (‘angry’ or ‘fearful’ faces. Dynamic Causal Modeling (DCM was applied on the fMRI data to characterize effective connectivity within a brain network involving face perception (inferior occipital gyrus and fusiform gyrus and successful memory formation related areas (hippocampus, superior parietal lobule, amygdala and orbitofrontal cortex. The bottom-up models assumed processing of emotional face expression along feed forward pathways to the orbitofrontal cortex. The top-down models assumed that the orbitofrontal cortex processed emotional valence and mediated connections to the hippocampus. A subsequent recognition memory test showed an effect of negative emotion on the response bias, but not on memory performance. Our DCM findings showed that the bottom-up model family of effective connectivity best explained the data across all subjects and specified that emotion affected most bottom-up connections to the orbitofrontal cortex, especially from the occipital visual cortex and superior parietal lobule. Of those pathways to the orbitofrontal cortex the connection from the inferior occipital gyrus correlated with memory performance independently of valence. We suggest that bottom-up neural mechanisms support effects of emotional face expression and memory formation in a parallel and partially overlapping fashion.

  12. Resting-state, functional MRI on regional homogeneity changes of brain in the heavy smokers

    International Nuclear Information System (INIS)

    Yang Shiqi; Wu Guangyao; Lin Fuchun; Kong Xiangquan; Zhou Guofeng; Pang Haopeng; Zhu Ling; Liu Guobing; Lei Hao

    2012-01-01

    Objective: To explore the mechanism of self-awareness in the heavy smokers (HS) by using regional homogeneity (ReHo) combined with resting-state functional MRI (fMRI). Methods: Thirty HS and 31 healthy non-smokers (NS) matched for age and sex underwent a 3.0 T resting-state fMRI. The data were post-processed by SPM 5 and then the ReHo values were calculated by REST software. The ReHo values between the two groups were compared by two-sample t-test. The brain map with significant difference of ReHo value was obtained. Results: Compared with that in NS group, the regions with decreased ReHo value included the bilateral precuneus, superior frontal gyrus,medial prefrontal cortex, right angular gyrus, inferior frontal gyrus, inferior occipital gyrus, cerebellum, and left middle frontal gyrus in HS group. The regions of increased ReHo value included the bilateral insula, parahippocampal gyrus, white matter of parietal lobe, pons, left inferior parietal lobule, lingual gyrus, thalamus, inferior orbital gyrus, white matter of temporal-frontal lobe, and cerebellum. The difference was more obvious in the left hemisphere. Conclusions: In HS, abnormal ReHo on a resting state which reflects network of smoking addiction. This method may be helpful in understanding the mechanism of self-awareness in HS. (authors)

  13. Statistical parametric mapping for analyzing interictal magnetoencephalography in patients with left frontal lobe epilepsy.

    Science.gov (United States)

    Zhu, Haitao; Zhu, Jinlong; Bao, Forrest Sheng; Liu, Hongyi; Zhu, Xuchuang; Wu, Ting; Yang, Lu; Zou, Yuanjie; Zhang, Rui; Zheng, Gang

    2016-01-01

    Frontal lobe epilepsy is a common epileptic disorder and is characterized by recurring seizures that arise in the frontal lobes. The purpose of this study is to identify the epileptogenic regions and other abnormal regions in patients with left frontal lobe epilepsy (LFLE) based on the magnetoencephalogram (MEG), and to understand the effects of clinical variables on brain activities in patients with LFLE. Fifteen patients with LFLE (23.20 ± 8.68 years, 6 female and 9 male) and 16 healthy controls (23.13 ± 7.66 years, 6 female and 10 male) were included in resting-stage MEG examinations. Epileptogenic regions of LFLE patients were confirmed by surgery. Regional brain activations were quantified using statistical parametric mapping (SPM). The correlation between the activations of the abnormal brain regions and the clinical seizure parameters were computed for LFLE patients. Brain activations of LFLE patients were significantly elevated in left superior/middle/inferior frontal gyri, postcentral gyrus, inferior temporal gyrus, insula, parahippocampal gyrus and amygdala, including the epileptogenic regions. Remarkable decreased activations were found mainly in the left parietal gyrus and precuneus. There is a positive correlation between the duration of the epilepsy (in month) and activations of the abnormal regions, while no relation was found between age of seizure onset (year), seizure frequency and the regions of the abnormal activity of the epileptic patients. Our findings suggest that the aberrant brain activities of LFLE patients were not restricted to the epileptogenic zones. Long duration of epilepsy might induce further functional damage in patients with LFLE. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  14. Prefrontal cortex and somatosensory cortex in tactile crossmodal association: an independent component analysis of ERP recordings.

    Directory of Open Access Journals (Sweden)

    Yixuan Ku

    2007-08-01

    Full Text Available Our previous studies on scalp-recorded event-related potentials (ERPs showed that somatosensory N140 evoked by a tactile vibration in working memory tasks was enhanced when human subjects expected a coming visual stimulus that had been paired with the tactile stimulus. The results suggested that such enhancement represented the cortical activities involved in tactile-visual crossmodal association. In the present study, we further hypothesized that the enhancement represented the neural activities in somatosensory and frontal cortices in the crossmodal association. By applying independent component analysis (ICA to the ERP data, we found independent components (ICs located in the medial prefrontal cortex (around the anterior cingulate cortex, ACC and the primary somatosensory cortex (SI. The activity represented by the IC in SI cortex showed enhancement in expectation of the visual stimulus. Such differential activity thus suggested the participation of SI cortex in the task-related crossmodal association. Further, the coherence analysis and the Granger causality spectral analysis of the ICs showed that SI cortex appeared to cooperate with ACC in attention and perception of the tactile stimulus in crossmodal association. The results of our study support with new evidence an important idea in cortical neurophysiology: higher cognitive operations develop from the modality-specific sensory cortices (in the present study, SI cortex that are involved in sensation and perception of various stimuli.

  15. Evaluating the roles of the inferior frontal gyrus and superior parietal lobule in deductive reasoning: an rTMS study.

    Science.gov (United States)

    Tsujii, Takeo; Sakatani, Kaoru; Masuda, Sayako; Akiyama, Takekazu; Watanabe, Shigeru

    2011-09-15

    This study used off-line repetitive transcranial magnetic stimulation (rTMS) to examine the roles of the superior parietal lobule (SPL) and inferior frontal gyrus (IFG) in a deductive reasoning task. Subjects performed a categorical syllogistic reasoning task involving congruent, incongruent, and abstract trials. Twenty four subjects received magnetic stimulation to the SPL region prior to the task. In the other 24 subjects, TMS was administered to the IFG region before the task. Stimulation lasted for 10min, with an inter-pulse frequency of 1Hz. We found that bilateral SPL (Brodmann area (BA) 7) stimulation disrupted performance on abstract and incongruent reasoning. Left IFG (BA 45) stimulation impaired congruent reasoning performance while paradoxically facilitating incongruent reasoning performance. This resulted in the elimination of the belief-bias. In contrast, right IFG stimulation only impaired incongruent reasoning performance, thus enhancing the belief-bias effect. These findings are largely consistent with the dual-process theory of reasoning, which proposes the existence of two different human reasoning systems: a belief-based heuristic system; and a logic-based analytic system. The present findings suggest that the left language-related IFG (BA 45) may correspond to the heuristic system, while bilateral SPL may underlie the analytic system. The right IFG may play a role in blocking the belief-based heuristic system for solving incongruent reasoning trials. This study could offer an insight about functional roles of distributed brain systems in human deductive reasoning by utilizing the rTMS approach. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Dissociated roles of the inferior frontal gyrus and superior temporal sulcus in audiovisual processing: top-down and bottom-up mismatch detection.

    Science.gov (United States)

    Uno, Takeshi; Kawai, Kensuke; Sakai, Katsuyuki; Wakebe, Toshihiro; Ibaraki, Takuya; Kunii, Naoto; Matsuo, Takeshi; Saito, Nobuhito

    2015-01-01

    Visual inputs can distort auditory perception, and accurate auditory processing requires the ability to detect and ignore visual input that is simultaneous and incongruent with auditory information. However, the neural basis of this auditory selection from audiovisual information is unknown, whereas integration process of audiovisual inputs is intensively researched. Here, we tested the hypothesis that the inferior frontal gyrus (IFG) and superior temporal sulcus (STS) are involved in top-down and bottom-up processing, respectively, of target auditory information from audiovisual inputs. We recorded high gamma activity (HGA), which is associated with neuronal firing in local brain regions, using electrocorticography while patients with epilepsy judged the syllable spoken by a voice while looking at a voice-congruent or -incongruent lip movement from the speaker. The STS exhibited stronger HGA if the patient was presented with information of large audiovisual incongruence than of small incongruence, especially if the auditory information was correctly identified. On the other hand, the IFG exhibited stronger HGA in trials with small audiovisual incongruence when patients correctly perceived the auditory information than when patients incorrectly perceived the auditory information due to the mismatched visual information. These results indicate that the IFG and STS have dissociated roles in selective auditory processing, and suggest that the neural basis of selective auditory processing changes dynamically in accordance with the degree of incongruity between auditory and visual information.

  17. Adjunctive selective estrogen receptor modulator increases neural activity in the hippocampus and inferior frontal gyrus during emotional face recognition in schizophrenia.

    Science.gov (United States)

    Ji, E; Weickert, C S; Lenroot, R; Kindler, J; Skilleter, A J; Vercammen, A; White, C; Gur, R E; Weickert, T W

    2016-05-03

    Estrogen has been implicated in the development and course of schizophrenia with most evidence suggesting a neuroprotective effect. Treatment with raloxifene, a selective estrogen receptor modulator, can reduce symptom severity, improve cognition and normalize brain activity during learning in schizophrenia. People with schizophrenia are especially impaired in the identification of negative facial emotions. The present study was designed to determine the extent to which adjunctive raloxifene treatment would alter abnormal neural activity during angry facial emotion recognition in schizophrenia. Twenty people with schizophrenia (12 men, 8 women) participated in a 13-week, randomized, double-blind, placebo-controlled, crossover trial of adjunctive raloxifene treatment (120 mg per day orally) and performed a facial emotion recognition task during functional magnetic resonance imaging after each treatment phase. Two-sample t-tests in regions of interest selected a priori were performed to assess activation differences between raloxifene and placebo conditions during the recognition of angry faces. Adjunctive raloxifene significantly increased activation in the right hippocampus and left inferior frontal gyrus compared with the placebo condition (family-wise error, Precognition in schizophrenia. These findings support the hypothesis that estrogen plays a modifying role in schizophrenia and shows that adjunctive raloxifene treatment may reverse abnormal neural activity during facial emotion recognition, which is relevant to impaired social functioning in men and women with schizophrenia.

  18. High Working Memory Load Increases Intracortical Inhibition in Primary Motor Cortex and Diminishes the Motor Affordance Effect.

    Science.gov (United States)

    Freeman, Scott M; Itthipuripat, Sirawaj; Aron, Adam R

    2016-05-18

    Motor affordances occur when the visual properties of an object elicit behaviorally relevant motor representations. Typically, motor affordances only produce subtle effects on response time or on motor activity indexed by neuroimaging/neuroelectrophysiology, but sometimes they can trigger action itself. This is apparent in "utilization behavior," where individuals with frontal cortex damage inappropriately grasp affording objects. This raises the possibility that, in healthy-functioning individuals, frontal cortex helps ensure that irrelevant affordance provocations remain below the threshold for actual movement. In Experiment 1, we tested this "frontal control" hypothesis by "loading" the frontal cortex with an effortful working memory (WM) task (which ostensibly consumes frontal resources) and examined whether this increased EEG measures of motor affordances to irrelevant affording objects. Under low WM load, there were typical motor affordance signatures: an event-related desynchronization in the mu frequency and an increased P300 amplitude for affording (vs nonaffording) objects over centroparietal electrodes. Contrary to our prediction, however, these affordance measures were diminished under high WM load. In Experiment 2, we tested competing mechanisms responsible for the diminished affordance in Experiment 1. We used paired-pulse transcranial magnetic stimulation over primary motor cortex to measure long-interval cortical inhibition. We found greater long-interval cortical inhibition for high versus low load both before and after the affording object, suggesting that a tonic inhibition state in primary motor cortex could prevent the affordance from provoking the motor system. Overall, our results suggest that a high WM load "sets" the motor system into a suppressed state that mitigates motor affordances. Is an irrelevant motor affordance more likely to be triggered when you are under low or high cognitive load? We examined this using physiological measures

  19. Insight in psychotic disorder: relation with psychopathology and frontal lobe function.

    Science.gov (United States)

    Kumar, Atmesh; Sharma, Pranjal; Das, Shyamanta; Nath, Kamal; Talukdar, Uddip; Bhagabati, Dipesh

    2014-01-01

    Through conceptualising poor insight in psychotic disorders as a form of anosognosia, frontal lobe dysfunction is often ascribed a vital role in its pathogenesis. The objective of this study was to compare the relation of insight in patients with psychotic illness to that of psychopathology and frontal lobe function. Forty patients with psychotic disorder were selected from those attending the Department of Psychiatry in a tertiary care teaching hospital. The evaluation of insight was carried out using the Schedule for Assessment of Insight (SAI), that of frontal lobe function by the Frontal Assessment Battery (FAB) and psychopathology by the Brief Psychiatric Rating Scale (BPRS). The correlation coefficients were determined. A negative correlation between SAI and BPRS scores means that the BPRS score is opposite to SAI scores. When the SAI total score was compared with the FAB total score, the correlation coefficient demonstrated a positive correlation. Better insight predicted lesser psychopathology and also that poor insight would exist with greater psychopathology. Better insight predicted a higher functional status of frontal lobes and prefrontal cortex in particular. Insight deficits in schizophrenia and other psychotic illnesses are multidimensional. Integration of different aetiological factors like biological, psychopathological, environmental ones and others are necessary for a better understanding of insight in psychosis. Copyright © 2013 S. Karger AG, Basel.

  20. Frontopolar cortex mediates abstract integration in analogy.

    Science.gov (United States)

    Green, Adam E; Fugelsang, Jonathan A; Kraemer, David J M; Shamosh, Noah A; Dunbar, Kevin N

    2006-06-22

    Integration of abstractly similar relations during analogical reasoning was investigated using functional magnetic resonance imaging. Activation elicited by an analogical reasoning task that required both complex working memory and integration of abstractly similar relations was compared to activation elicited by a non-analogical task that required complex working memory in the absence of abstract relational integration. A left-sided region of the frontal pole of the brain (BA 9/10) was selectively active for the abstract relational integration component of analogical reasoning. Analogical reasoning also engaged a left-sided network of parieto-frontal regions. Activity in this network during analogical reasoning is hypothesized to reflect categorical alignment of individual component terms that make up analogies. This parieto-frontal network was also engaged by the complex control task, which involved explicit categorization, but not by a simpler control task, which did not involve categorization. We hypothesize that frontopolar cortex mediates abstract relational integration in complex reasoning while parieto-frontal regions mediate working memory processes, including manipulation of terms for the purpose of categorical alignment, that facilitate this integration.

  1. Neural correlates of continuous causal word generation.

    Science.gov (United States)

    Wende, Kim C; Straube, Benjamin; Stratmann, Mirjam; Sommer, Jens; Kircher, Tilo; Nagels, Arne

    2012-09-01

    Causality provides a natural structure for organizing our experience and language. Causal reasoning during speech production is a distinct aspect of verbal communication, whose related brain processes are yet unknown. The aim of the current study was to investigate the neural mechanisms underlying the continuous generation of cause-and-effect coherences during overt word production. During fMRI data acquisition participants performed three verbal fluency tasks on identical cue words: A novel causal verbal fluency task (CVF), requiring the production of multiple reasons to a given cue word (e.g. reasons for heat are fire, sun etc.), a semantic (free association, FA, e.g. associations with heat are sweat, shower etc.) and a phonological control task (phonological verbal fluency, PVF, e.g. rhymes with heat are meat, wheat etc.). We found that, in contrast to PVF, both CVF and FA activated a left lateralized network encompassing inferior frontal, inferior parietal and angular regions, with further bilateral activation in middle and inferior as well as superior temporal gyri and the cerebellum. For CVF contrasted against FA, we found greater bold responses only in the left middle frontal cortex. Large overlaps in the neural activations during free association and causal verbal fluency indicate that the access to causal relationships between verbal concepts is at least partly based on the semantic neural network. The selective activation in the left middle frontal cortex for causal verbal fluency suggests that distinct neural processes related to cause-and-effect-relations are associated with the recruitment of middle frontal brain areas. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Auditory Association Cortex Lesions Impair Auditory Short-Term Memory in Monkeys

    Science.gov (United States)

    Colombo, Michael; D'Amato, Michael R.; Rodman, Hillary R.; Gross, Charles G.

    1990-01-01

    Monkeys that were trained to perform auditory and visual short-term memory tasks (delayed matching-to-sample) received lesions of the auditory association cortex in the superior temporal gyrus. Although visual memory was completely unaffected by the lesions, auditory memory was severely impaired. Despite this impairment, all monkeys could discriminate sounds closer in frequency than those used in the auditory memory task. This result suggests that the superior temporal cortex plays a role in auditory processing and retention similar to the role the inferior temporal cortex plays in visual processing and retention.

  3. Resting-state functional connectivity between right anterior insula and right orbital frontal cortex correlate with insight level in obsessive-compulsive disorder

    Directory of Open Access Journals (Sweden)

    Jie Fan

    2017-01-01

    Full Text Available Few studies have explored the neurobiological basis of insight level in obsessive-compulsive disorder (OCD, though the salience network (SN has been implicated in insight deficits in schizophrenia. This study was then designed to investigate whether resting-state (rs functional connectivity (FC of SN was associated with insight level in OCD patients. We analyzed rs-functional magnetic resonance imaging (fMRI data from 21 OCD patients with good insight (OCD-GI, 19 OCD patients with poor insight (OCD-PI, and 24 healthy controls (HCs. Seed-based whole-brain FC and ROI (region of interest-wise connectivity analyses were performed with seeds/ROIs in the bilateral anterior insula (AI and dorsal anterior cingulate cortex (dACC. The right AI-right medial orbital frontal cortex (mOFC connectivity was found to be uniquely decreased in the OCD-PI group, and the value of this aberrant connectivity correlated with insight level in OCD patients. In addition, we found that the OCD-GI group had significantly increased right AI-left dACC connectivity within the SN, relative to HCs (overall trend for groups: OCD-GI > OCD-PI > HC. Our findings suggest that abnormal right AI-right mOFC FC may mediate insight deficits in OCD, perhaps due to impaired encoding and integration of self-evaluative information about OCD-related beliefs and behaviors. Our findings indicate a SN connectivity dissociation between OCD-GI and OCD-PI patients and support the notion of considering OCD-GI and OCD-PI as two distinct disorder subtypes.

  4. Reduced gamma frequency in the medial frontal cortex of aged rats during behavior and rest: implications for age-related behavioral slowing.

    Science.gov (United States)

    Insel, Nathan; Patron, Lilian A; Hoang, Lan T; Nematollahi, Saman; Schimanski, Lesley A; Lipa, Peter; Barnes, Carol A

    2012-11-14

    Age-related cognitive and behavioral slowing may be caused by changes in the speed of neural signaling or by changes in the number of signaling steps necessary to achieve a given function. In the mammalian cortex, neural communication is organized by a 30-100 Hz "gamma" oscillation. There is a putative link between the gamma frequency and the speed of processing in a neural network: the dynamics of pyramidal neuron membrane time constants suggest that synaptic integration is framed by the gamma cycle, and pharmacological slowing of gamma also slows reaction times on behavioral tasks. The present experiments identify reductions in a robust 40-70 Hz gamma oscillation in the aged rat medial frontal cortex. The reductions were observed in the form of local field potentials, later peaks in fast-spiking neuron autocorrelations, and delays in the spiking of inhibitory neurons following local excitatory signals. Gamma frequency did not vary with movement speed, but rats with slower gamma also moved more slowly. Gamma frequency age differences were not observed in hippocampus. Hippocampal CA1 fast-spiking neurons exhibited interspike intervals consistent with a fast (70-100 Hz) gamma frequency, a pattern maintained across theta phases and theta frequencies independent of fluctuations in the average firing rates of the neurons. We propose that an average lengthening of the cortical 15-25 ms gamma cycle is one factor contributing to age-related slowing and that future attempts to offset cognitive declines will find a target in the response of fast-spiking inhibitory neurons to excitatory inputs.

  5. Dissociable contribution of the parietal and frontal cortex to coding movement direction and amplitude

    Directory of Open Access Journals (Sweden)

    Marco eDavare

    2015-05-01

    Full Text Available To reach for an object, we must convert its spatial location into an appropriate motor command, merging movement direction and amplitude. In humans, it has been suggested that this visuo-motor transformation occurs in a dorsomedial parieto-frontal pathway, although the causal contribution of the areas constituting the reaching circuit remains unknown. Here we used transcranial magnetic stimulation (TMS in healthy volunteers to disrupt the function of either the medial intraparietal area (mIPS or dorsal premotor cortex (PMd, in each hemisphere. The task consisted in performing step-tracking movements with the right wrist towards targets located in different directions and eccentricities; the targets were either visible for the whole trial (Target-ON or flashed for 200 ms (Target-OFF. Left and right mIPS disruption led to errors in the initial direction of movements performed towards contralateral targets. These errors were corrected online in the Target-ON condition but when the target was flashed for 200 ms, mIPS TMS manifested as a larger endpoint spreading. In contrast, left PMd virtual lesions led to higher acceleration and velocity peaks - two parameters typically used to probe the planned movement amplitude - irrespective of the target position, hemifield and presentation condition; in the Target-OFF condition, left PMd TMS induced overshooting and increased the endpoint dispersion along the axis of the target direction. These results indicate that left PMd intervenes in coding amplitude during movement preparation. The critical TMS timings leading to errors in direction and amplitude were different, namely 160-100 ms before movement onset for mIPS and 100-40 ms for left PMd. TMS applied over right PMd had no significant effect. These results indicate that, during motor preparation, direction and amplitude of goal-directed movements are processed by different cortical areas, at distinct timings, and according to a specific hemispheric

  6. The impact of top-down spatial attention on laterality and hemispheric asymmetry in the human parietal cortex.

    Science.gov (United States)

    Jeong, Su Keun; Xu, Yaoda

    2016-08-01

    The human parietal cortex exhibits a preference to contralaterally presented visual stimuli (i.e., laterality) as well as an asymmetry between the two hemispheres with the left parietal cortex showing greater laterality than the right. Using visual short-term memory and perceptual tasks and varying target location predictability, this study examined whether hemispheric laterality and asymmetry are fixed characteristics of the human parietal cortex or whether they are dynamic and modulated by the deployment of top-down attention to the target present hemifield. Two parietal regions were examined here that have previously been shown to be involved in visual object individuation and identification and are located in the inferior and superior intraparietal sulcus (IPS), respectively. Across three experiments, significant laterality was found in both parietal regions regardless of attentional modulation with laterality being greater in the inferior than superior IPS, consistent with their roles in object individuation and identification, respectively. Although the deployment of top-down attention had no effect on the superior IPS, it significantly increased laterality in the inferior IPS. The deployment of top-down spatial attention can thus amplify the strength of laterality in the inferior IPS. Hemispheric asymmetry, on the other hand, was absent in both brain regions and only emerged in the inferior but not the superior IPS with the deployment of top-down attention. Interestingly, the strength of hemispheric asymmetry significantly correlated with the strength of laterality in the inferior IPS. Hemispheric asymmetry thus seems to only emerge when there is a sufficient amount of laterality present in a brain region.

  7. Modulation of the release of norepinephrine by gamma-aminobutyric acid and morphine in the frontal cerebral cortex of the rat

    International Nuclear Information System (INIS)

    Peoples, R.W.

    1989-01-01

    Agents that enhance gamma-aminobutyric acid, or GABA, neurotransmission modulate certain effects of opioids, such as analgesia. Opioid analgesia is mediated in part by norepinephrine in the forebrain. In this study, the interactions between morphine and GABAergic agents on release of [ 3 H] norepinephrine from rat frontal cerebral cortical slices were examined. GABA, 5 x 10 -5 -10 -3 M, enhanced potassium stimulated [ 3 H] norepinephrine release and reversed the inhibitory effect of morphine in a noncompetitive manner. GABA did not enhance release of [ 3 H] norepinephrine stimulated by the calcium ionophore A23187. The effect of GABA was reduced by the GABA A receptor antagonists bicuculline methiodide or picrotoxin, and by the selective inhibitor of GABA uptake SKF 89976A, but was blocked completely only when bicuculline methiodide and SKF 89976A were used in combination. The GABA A agonist muscimol, 10 -4 M, mimicked the effect of GABA, but the GABA B agonist (±)baclofen, 10 -4 M, did not affect the release of [ 3 H] norepinephrine in the absence or the presence of morphine. Thus GABA appears to produce this effect by stimulating GABA uptake and GABA A , but not GABA B , receptors. In contrast to the results that would be predicted for an event involving GABA A receptors, however, the effect of GABA did not desensitize, and benzodiazepine agonists did not enhance the effect of GABA at any concentration tested between 10 -8 and 10 -4 M. Thus these receptors may constitute a subclass of GABA A receptors. These results support a role of GABA uptake and GABA A receptors in enhancing the release of norepinephrine and modulating its inhibition by opioids in the frontal cortex of the rat

  8. Modulation of the release of norepinephrine by gamma-aminobutyric acid and morphine in the frontal cerebral cortex of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Peoples, R.W.

    1989-01-01

    Agents that enhance gamma-aminobutyric acid, or GABA, neurotransmission modulate certain effects of opioids, such as analgesia. Opioid analgesia is mediated in part by norepinephrine in the forebrain. In this study, the interactions between morphine and GABAergic agents on release of ({sup 3}H) norepinephrine from rat frontal cerebral cortical slices were examined. GABA, 5 {times} 10{sup {minus}5}-10{sup {minus}3} M, enhanced potassium stimulated ({sup 3}H) norepinephrine release and reversed the inhibitory effect of morphine in a noncompetitive manner. GABA did not enhance release of ({sup 3}H) norepinephrine stimulated by the calcium ionophore A23187. The effect of GABA was reduced by the GABA{sub A} receptor antagonists bicuculline methiodide or picrotoxin, and by the selective inhibitor of GABA uptake SKF 89976A, but was blocked completely only when bicuculline methiodide and SKF 89976A were used in combination. The GABA{sub A} agonist muscimol, 10{sup {minus}4} M, mimicked the effect of GABA, but the GABA{sub B} agonist ({plus minus})baclofen, 10{sup {minus}4} M, did not affect the release of ({sup 3}H) norepinephrine in the absence or the presence of morphine. Thus GABA appears to produce this effect by stimulating GABA uptake and GABA{sub A}, but not GABA{sub B}, receptors. In contrast to the results that would be predicted for an event involving GABA{sub A} receptors, however, the effect of GABA did not desensitize, and benzodiazepine agonists did not enhance the effect of GABA at any concentration tested between 10{sup {minus}8} and 10{sup {minus}4} M. Thus these receptors may constitute a subclass of GABA{sub A} receptors. These results support a role of GABA uptake and GABA{sub A} receptors in enhancing the release of norepinephrine and modulating its inhibition by opioids in the frontal cortex of the rat.

  9. The Brain Functional Networks Associated to Human and Animal Suffering Differ among Omnivores, Vegetarians and Vegans

    Science.gov (United States)

    Filippi, Massimo; Riccitelli, Gianna; Falini, Andrea; Di Salle, Francesco; Vuilleumier, Patrik; Comi, Giancarlo; Rocca, Maria A.

    2010-01-01

    Empathy and affective appraisals for conspecifics are among the hallmarks of social interaction. Using functional MRI, we hypothesized that vegetarians and vegans, who made their feeding choice for ethical reasons, might show brain responses to conditions of suffering involving humans or animals different from omnivores. We recruited 20 omnivore subjects, 19 vegetarians, and 21 vegans. The groups were matched for sex and age. Brain activation was investigated using fMRI and an event-related design during observation of negative affective pictures of human beings and animals (showing mutilations, murdered people, human/animal threat, tortures, wounds, etc.). Participants saw negative-valence scenes related to humans and animals, alternating with natural landscapes. During human negative valence scenes, compared with omnivores, vegetarians and vegans had an increased recruitment of the anterior cingulate cortex (ACC) and inferior frontal gyrus (IFG). More critically, during animal negative valence scenes, they had decreased amygdala activation and increased activation of the lingual gyri, the left cuneus, the posterior cingulate cortex and several areas mainly located in the frontal lobes, including the ACC, the IFG and the middle frontal gyrus. Nonetheless, also substantial differences between vegetarians and vegans have been found responding to negative scenes. Vegetarians showed a selective recruitment of the right inferior parietal lobule during human negative scenes, and a prevailing activation of the ACC during animal negative scenes. Conversely, during animal negative scenes an increased activation of the inferior prefrontal cortex was observed in vegans. These results suggest that empathy toward non conspecifics has different neural representation among individuals with different feeding habits, perhaps reflecting different motivational factors and beliefs. PMID:20520767

  10. Out-of-synchrony speech entrainment in developmental dyslexia.

    Science.gov (United States)

    Molinaro, Nicola; Lizarazu, Mikel; Lallier, Marie; Bourguignon, Mathieu; Carreiras, Manuel

    2016-08-01

    Developmental dyslexia is a reading disorder often characterized by reduced awareness of speech units. Whether the neural source of this phonological disorder in dyslexic readers results from the malfunctioning of the primary auditory system or damaged feedback communication between higher-order phonological regions (i.e., left inferior frontal regions) and the auditory cortex is still under dispute. Here we recorded magnetoencephalographic (MEG) signals from 20 dyslexic readers and 20 age-matched controls while they were listening to ∼10-s-long spoken sentences. Compared to controls, dyslexic readers had (1) an impaired neural entrainment to speech in the delta band (0.5-1 Hz); (2) a reduced delta synchronization in both the right auditory cortex and the left inferior frontal gyrus; and (3) an impaired feedforward functional coupling between neural oscillations in the right auditory cortex and the left inferior frontal regions. This shows that during speech listening, individuals with developmental dyslexia present reduced neural synchrony to low-frequency speech oscillations in primary auditory regions that hinders higher-order speech processing steps. The present findings, thus, strengthen proposals assuming that improper low-frequency acoustic entrainment affects speech sampling. This low speech-brain synchronization has the strong potential to cause severe consequences for both phonological and reading skills. Interestingly, the reduced speech-brain synchronization in dyslexic readers compared to normal readers (and its higher-order consequences across the speech processing network) appears preserved through the development from childhood to adulthood. Thus, the evaluation of speech-brain synchronization could possibly serve as a diagnostic tool for early detection of children at risk of dyslexia. Hum Brain Mapp 37:2767-2783, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Gender-specific cerebral activation during cognitive tasks using functional MRI: comparison of women in mid-luteal phase and men

    International Nuclear Information System (INIS)

    Gizewski, Elke R.; Wanke, Isabel; Forsting, Michael; Krause, Eva; Senf, Wolfgang

    2006-01-01

    Previous studies of gender-specific differences in functional imaging during spatial and language tasks have been inconclusive. Furthermore, among women, such differences may occur during mid-luteal phase compared to the rest of the menstrual cycle. In order to examine further gender differences, functional MRI was performed in 12 male volunteers and 12 female volunteers (in the mid-luteal phase) during mental rotation and verb-generation tests. Two-sample t-tests with uncorrected P values of <0.001 for the specific regions of interest (ROIs) revealed cerebral activation differences in both stimuli. During mental rotation tests, higher levels of activation were noted in the right medial frontal, precentral, and bilateral inferior parietal cortex, while in women this occurred in the right inferior and medial temporal, right superior frontal cortex, and left fusiform gyrus. During verb-generation tests, higher levels of activation in men was found in the left medial temporal and precentral cortex. Our results indicate that differences in cerebral activity during cognitive tasks can be shown between men and women in the mid-luteal phase. Gender differences while performing a mental rotation task were more prominent than during a verb-generation task. (orig.)

  12. Generation of novel motor sequences: the neural correlates of musical improvisation.

    Science.gov (United States)

    Berkowitz, Aaron L; Ansari, Daniel

    2008-06-01

    While some motor behavior is instinctive and stereotyped or learned and re-executed, much action is a spontaneous response to a novel set of environmental conditions. The neural correlates of both pre-learned and cued motor sequences have been previously studied, but novel motor behavior has thus far not been examined through brain imaging. In this paper, we report a study of musical improvisation in trained pianists with functional magnetic resonance imaging (fMRI), using improvisation as a case study of novel action generation. We demonstrate that both rhythmic (temporal) and melodic (ordinal) motor sequence creation modulate activity in a network of brain regions comprised of the dorsal premotor cortex, the rostral cingulate zone of the anterior cingulate cortex, and the inferior frontal gyrus. These findings are consistent with a role for the dorsal premotor cortex in movement coordination, the rostral cingulate zone in voluntary selection, and the inferior frontal gyrus in sequence generation. Thus, the invention of novel motor sequences in musical improvisation recruits a network of brain regions coordinated to generate possible sequences, select among them, and execute the decided-upon sequence.

  13. Expression of immediate-early genes in the inferior colliculus and auditory cortex in salicylate-induced tinnitus in rat

    Directory of Open Access Journals (Sweden)

    S.S. Hu

    2014-03-01

    Full Text Available Tinnitus could be associated with neuronal hyperactivity in the auditory center. As a neuronal activity marker, immediate-early gene (IEG expression is considered part of a general neuronal response to natural stimuli. Some IEGs, especially the activity-dependent cytoskeletal protein (Arc and the early growth response gene-1 (Egr-1, appear to be highly correlated with sensory-evoked neuronal activity. We hypothesize, therefore, an increase of Arc and Egr-1 will be observed in a tinnitus model. In our study, we used the gap prepulse inhibition of acoustic startle (GPIAS paradigm to confirm that salicylate induces tinnitus-like behavior in rats. However, expression of the Arc gene and Egr-1 gene were decreased in the inferior colliculus (IC and auditory cortex (AC, in contradiction of our hypothesis. Expression of N-methyl d-aspartate receptor subunit 2B (NR2B was increased and all of these changes returned to normal 14 days after treatment with salicylate ceased. These data revealed long-time administration of salicylate induced tinnitus markedly but reversibly and caused neural plasticity changes in the IC and the AC. Decreased expression of Arc and Egr-1 might be involved with instability of synaptic plasticity in tinnitus.

  14. Neuropharmacologic characterization of strychnine seizure potentiation in the inferior olive lesioned rat

    International Nuclear Information System (INIS)

    Anderson, M.C.

    1988-01-01

    Cerebellar stimulation is associated with anticonvulsant activity in several animal models. There are two afferent inputs to cerebellar Purkinje cells: (1) parallel fibers, which relay mossy fiber input, from brainstem, spinal cord, cerebral cortex and cerebellum, and (2) climbing fibers, arising from the inferior olive. Both climbing and parallel fibers release excitatory amino acid neurotransmitters, which stimulate Purkinje cells and cause GABA release in the deep cerebellar nuclei. Climbing fibers also exert tonic inhibition over Purkinje cell activity by producing an absolute refractory period following stimulation, rendering Purkinje cells unresponsive to parallel fibers. Climbing fiber deafferentation by bilateral inferior olive lesions produced a specific decrease in threshold for strychnine-seizures in the rat. Inferior olive lesions produced no change in threshold to seizures induced by picrotoxin, bicuculline or pentylenetetrazole. Inferior olive lesions also produced abnormal motor behavior including, myoclonus, backward locomotion and hyperextension, which was significantly aggravated by strychnine, brucine, picrotoxin, bicuculline and pentylenetetrazole. Inferior olive lesions produced a significant increase in quisqualate sensitive [ 3 H]AMPA ((Rs)-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid) binding to cerebellar membranes. AMPA is a glutamate analog with high affinity for quisqualate sensitive receptors

  15. Dynamic adjustments in prefrontal, hippocampal, and inferior temporal interactions with increasing visual working memory load.

    Science.gov (United States)

    Rissman, Jesse; Gazzaley, Adam; D'Esposito, Mark

    2008-07-01

    The maintenance of visual stimuli across a delay interval in working memory tasks is thought to involve reverberant neural communication between the prefrontal cortex and posterior visual association areas. Recent studies suggest that the hippocampus might also contribute to this retention process, presumably via reciprocal interactions with visual regions. To characterize the nature of these interactions, we performed functional connectivity analysis on an event-related functional magnetic resonance imaging data set in which participants performed a delayed face recognition task. As the number of faces that participants were required to remember was parametrically increased, the right inferior frontal gyrus (IFG) showed a linearly decreasing degree of functional connectivity with the fusiform face area (FFA) during the delay period. In contrast, the hippocampus linearly increased its delay period connectivity with both the FFA and the IFG as the mnemonic load increased. Moreover, the degree to which participants' FFA showed a load-dependent increase in its connectivity with the hippocampus predicted the degree to which its connectivity with the IFG decreased with load. Thus, these neural circuits may dynamically trade off to accommodate the particular mnemonic demands of the task, with IFG-FFA interactions mediating maintenance at lower loads and hippocampal interactions supporting retention at higher loads.

  16. Using imaging to target the prefrontal cortex for transcranial magnetic stimulation studies in treatment-resistant depression

    OpenAIRE

    Johnson, Kevin A.; Ramsey, Dave; Kozel, Frank A.; Bohning, Daryl E.; Anderson, Berry; Nahas, Ziad; Sacke?m, Harold A.; George, Mark S.

    2006-01-01

    Structural imaging studies of the brains of patients with treatment-resistant depression (TRD) have found several abnormalities, including smaller hippocampus, orbitofrontal cortex, or pre?frontal cortex. Transcranial magnetic stimulation (TMS) is a noninvasive means of modulating brain activity, and has shown antidepressant treatment efficacy. 1 The initial methods used for targeting the prefrontal cortex are most likely insufficient. Herwig et al found that a common rule-based approach (the...

  17. Temporally Specific Divided Attention Tasks in Young Adults Reveal the Temporal Dynamics of Episodic Encoding Failures in Elderly Adults

    OpenAIRE

    Johnson, Ray; Nessler, Doreen; Friedman, David

    2012-01-01

    Nessler, Johnson, Bersick, and Friedman (D. Nessler, R. Johnson, Jr., M. Bersick, & D. Friedman, 2006, On why the elderly have normal semantic retrieval but deficient episodic encoding: A study of left inferior frontal ERP activity, NeuroImage, Vol. 30, pp. 299–312) found that, compared with young adults, older adults show decreased event-related brain potential (ERP) activity over posterior left inferior prefrontal cortex (pLIPFC) in a 400- to 1,400-ms interval during episodic encoding. This...

  18. Representation of cognitive reappraisal goals in frontal gamma oscillations.

    Science.gov (United States)

    Kang, Jae-Hwan; Jeong, Ji Woon; Kim, Hyun Taek; Kim, Sang Hee; Kim, Sung-Phil

    2014-01-01

    Recently, numerous efforts have been made to understand the neural mechanisms underlying cognitive regulation of emotion, such as cognitive reappraisal. Many studies have reported that cognitive control of emotion induces increases in neural activity of the control system, including the prefrontal cortex and the dorsal anterior cingulate cortex, and increases or decreases (depending upon the regulation goal) in neural activity of the appraisal system, including the amygdala and the insula. It has been hypothesized that information about regulation goals needs to be processed through interactions between the control and appraisal systems in order to support cognitive reappraisal. However, how this information is represented in the dynamics of cortical activity remains largely unknown. To address this, we investigated temporal changes in gamma band activity (35-55 Hz) in human electroencephalograms during a cognitive reappraisal task that was comprised of three reappraisal goals: to decease, maintain, or increase emotional responses modulated by affect-laden pictures. We examined how the characteristics of gamma oscillations, such as spectral power and large-scale phase synchronization, represented cognitive reappraisal goals. We found that left frontal gamma power decreased, was sustained, or increased when the participants suppressed, maintained, or amplified their emotions, respectively. This change in left frontal gamma power appeared during an interval of 1926 to 2453 ms after stimulus onset. We also found that the number of phase-synchronized pairs of gamma oscillations over the entire brain increased when participants regulated their emotions compared to when they maintained their emotions. These results suggest that left frontal gamma power may reflect cortical representation of emotional states modulated by cognitive reappraisal goals and gamma phase synchronization across whole brain regions may reflect emotional regulatory efforts to achieve these goals

  19. Energy metabolism of rat cerebral cortex, hypothalamus and hypophysis during ageing.

    Science.gov (United States)

    Villa, R F; Ferrari, F; Gorini, A

    2012-12-27

    Ageing is one of the main risk factors for brain disorders. According to the neuroendocrine theory, ageing modifies the sensitivity of hypothalamus-pituitary-adrenal axis to homoeostatic signals coming from the cerebral cortex. The relationships between the energy metabolism of these areas have not been considered yet, in particular with respect to ageing. For these reasons, this study was undertaken to systematically investigate in female Sprague-Dawley rats aged 4, 6, 12, 18, 24, 28 months and in 4-month-old male ones, the catalytic properties of energy-linked enzymes of the Krebs' cycle, electron transport chain, glutamate and related amino acids on different mitochondrial subpopulations, i.e. non-synaptic perikaryal and intra-synaptic (two types) mitochondria. The biochemical enzymatic pattern of these mitochondria shows different expression of the above-mentioned enzymatic activities in the investigated brain areas, including frontal cerebral cortex, hippocampus, striatum, hypothalamus and hypophysis. The study shows that: (i) the energy metabolism of the frontal cerebral cortex is poorly affected by physiological ageing; (ii) the biochemical machinery of non-synaptic perikaryal mitochondria is differently expressed in the considered brain areas; (iii) at 4-6 months, hypothalamus and hypophysis possess lower oxidative metabolism with respect to the frontal cerebral cortex while (iv), during ageing, the opposite situation occurs. We hypothesised that these metabolic modifications likely try to grant HPA functionality in response to the incoming external stress stimuli increased during ageing. It is particularly notable that age-related changes in brain bioenergetics and in mitochondrial functionality may be considered as remarkable factors during physiological ageing and should play important roles in predisposing the brain to physiopathological events, tightly related to molecular mechanisms evoked for pharmacological treatments. Copyright © 2012 IBRO

  20. Timing tasks synchronize cerebellar and frontal ramping activity and theta oscillations: Implications for cerebellar stimulation in diseases of impaired cognition

    Directory of Open Access Journals (Sweden)

    Krystal Lynn Parker

    2016-01-01

    Full Text Available Timing is a fundamental and highly conserved mammalian capability yet the underlying neural mechanisms are widely debated. Ramping activity of single neurons that gradually increase or decrease activity to encode the passage of time, has been speculated to predict a behaviorally relevant temporal event. Cue-evoked low-frequency activity has also been implicated in temporal processing. Ramping activity and low-frequency oscillations occur throughout the brain and could indicate a network-based approach to timing. Temporal processing requires cognitive mechanisms of working memory, attention, and reasoning which are dysfunctional in neuropsychiatric disease. Therefore, timing tasks could be used to probe cognition in animals with disease phenotypes. The medial frontal cortex and cerebellum are involved in cognition. Cerebellar stimulation has been shown to influence medial frontal activity and improve cognition in schizophrenia. However, the mechanism underlying the efficacy of cerebellar stimulation is unknown. Here we discuss how timing tasks can be used to probe cerebellar interactions with the frontal cortex and the therapeutic potential of cerebellar stimulation. The goal of this theory and hypothesis manuscript is threefold. First, we will summarize evidence indicating that in addition to motor learning, timing tasks involve cognitive processes that are present within both the cerebellum and medial frontal cortex. Second, we propose methodologies to investigate the connections between these areas in patients with Parkinson’s disease, autism, and schizophrenia. We hypothesis that cerebellar transcranial stimulation may rescue medial frontal ramping activity, theta oscillations, and timing abnormalities, thereby restoring executive function in diseases of impaired cognition. These hypotheses could inspire the use of timing tasks as biomarkers for neuronal and cognitive abnormalities in neuropsychiatric disease and promote the therapeutic

  1. Sentence processing in anterior superior temporal cortex shows a social-emotional bias.

    Science.gov (United States)

    Mellem, Monika S; Jasmin, Kyle M; Peng, Cynthia; Martin, Alex

    2016-08-01

    The anterior region of the left superior temporal gyrus/superior temporal sulcus (aSTG/STS) has been implicated in two very different cognitive functions: sentence processing and social-emotional processing. However, the vast majority of the sentence stimuli in previous reports have been of a social or social-emotional nature suggesting that sentence processing may be confounded with semantic content. To evaluate this possibility we had subjects read word lists that differed in phrase/constituent size (single words, 3-word phrases, 6-word sentences) and semantic content (social-emotional, social, and inanimate objects) while scanned in a 7T environment. This allowed us to investigate if the aSTG/STS responded to increasing constituent structure (with increased activity as a function of constituent size) with or without regard to a specific domain of concepts, i.e., social and/or social-emotional content. Activity in the left aSTG/STS was found to increase with constituent size. This region was also modulated by content, however, such that social-emotional concepts were preferred over social and object stimuli. Reading also induced content type effects in domain-specific semantic regions. Those preferring social-emotional content included aSTG/STS, inferior frontal gyrus, posterior STS, lateral fusiform, ventromedial prefrontal cortex, and amygdala, regions included in the "social brain", while those preferring object content included parahippocampal gyrus, retrosplenial cortex, and caudate, regions involved in object processing. These results suggest that semantic content affects higher-level linguistic processing and should be taken into account in future studies. Copyright © 2016. Published by Elsevier Ltd.

  2. ACTHsub(1-24) and lysine vasopressin selectively activate dopamine synthesis in frontal cortex

    Energy Technology Data Exchange (ETDEWEB)

    Delanoy, R L; Kramarcy, N R; Dunn, A J [Florida Univ., Gainesville (USA). Coll. of Medicine

    1982-01-07

    The accumulation of (/sup 3/H)catecholamines from (/sup 3/H)tyrosine in frontal cortical, septal, striatal and hippocampal slices was examined following intracerebroventricular (i.c.v.) injections of ACTHsub(1-24), lysine vasopressin (LVP) and saline. Both ACTHsub(1-24) and LVP (1..mu..g) selectively increased the accumulation of (/sup 3/H)dopamine (DA) in frontal cortical slices, but did not affect that of (/sup 3/H)norepinephrine (NE). LVP but not ACTHsub(1-24) also inhibited the accumulation of (/sup 3/H)DA in striatal slices. ACTHsub(1-24) did not alter the accumulation of (/sup 3/H)NE in hippocampal slices, nor did LVP alter the accumulation of either catecholamine (CA) in septal slices. In vitro incubations with ACTH analogs or LVP failed to alter the rate of accumulation of (/sup 3/H)CAs in striatal, substantia nigral and frontal cortical slices, except for an inhibitory effect at high doses. This effect is believed to be an artifact of precursor dilution caused by release of tyrosine following degradation of the peptides. Neither peptide modified the increased (/sup 3/H)CA accumulation stimulated by 26 mM K/sup +/, nor did ACTHsub(1-24) modify the inhibition of (/sup 3/H)CA accumulation caused by 3 X 10/sup -6/ M Haloperidol or 3 X 10/sup -7/ M apomorphine. Selective activation of the mesocortical DA system has also been reported to occur in response to footshock, suggesting the possibility that endogenous ACTH and/or LVP might mediate the stress-induced activation of mesocortical DA synthesis. Alternatively, i.c.v. injections of these peptides may themselves be stressful and thus indirectly elicit the response.

  3. Tell it to a child! A brain stimulation study of the role of left inferior frontal gyrus in emotion regulation during storytelling.

    Science.gov (United States)

    Urgesi, Cosimo; Mattiassi, Alan D A; Buiatti, Tania; Marini, Andrea

    2016-08-01

    In everyday life we need to continuously regulate our emotional responses according to their social context. Strategies of emotion regulation allow individuals to control time, intensity, nature and expression of emotional responses to environmental stimuli. The left inferior frontal gyrus (LIFG) is involved in the cognitive control of the selection of semantic content. We hypothesized that it might also be involved in the regulation of emotional feelings and expressions. We applied continuous theta burst stimulation (cTBS) over LIFG or a control site before a newly-developed ecological regulation task that required participants to produce storytelling of pictures with negative or neutral valence to either a peer (unregulated condition) or a child (regulated condition). Linguistic, expressive, and physiological responses were analyzed in order to assess the effects of LIFG-cTBS on emotion regulation. Results showed that the emotion regulation context modulated the emotional content of narrative productions, but not the physiologic orienting response or the early expressive behavior to negative stimuli. Furthermore, LIFG-cTBS disrupted the text-level structuring of negative picture storytelling and the early cardiac and muscular response to negative pictures; however, it did not affect the contextual emotional regulation of storytelling. These results may suggest that LIFG is involved in the initial detection of the affective arousal of emotional stimuli. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Dysfunctional frontal lobe activity during inhibitory tasks in individuals with childhood trauma: An event-related potential study.

    Science.gov (United States)

    Kim, Sungkean; Kim, Ji Sun; Jin, Min Jin; Im, Chang-Hwan; Lee, Seung-Hwan

    2018-01-01

    Individuals who experience childhood trauma are vulnerable to various psychological and behavioral problems throughout their lifetime. This study aimed to investigate whether individuals with childhood trauma show altered frontal lobe activity during response inhibition tasks. In total, 157 healthy individuals were recruited and instructed to perform a Go/Nogo task during electroencephalography recording. Source activities of N2 and P3 of Nogo event-related potentials (ERP) were analyzed. The Childhood Trauma Questionnaire (CTQ) and Barratt Impulsivity Scale (BIS) were applied. Individuals were divided into three groups based on their total CTQ score: low CTQ, middle CTQ, and high CTQ groups. The high CTQ group exhibited significantly higher BIS scores than the low CTQ group. P3 amplitudes of the differences between Nogo and Go ERP waves exhibited higher mean values in the low CTQ than the high CTQ group, with trending effects. In Nogo-P3, the source activities of the right anterior cingulate cortex, bilateral medial frontal cortex (MFC), bilateral superior frontal gyrus (SFG), and right precentral gyrus were significantly lower in the high CTQ than the low CTQ group. Motor impulsivity showed a significant negative correlation with activities of the bilateral MFC and SFG in Nogo-P3 conditions. Our study revealed that individuals with childhood trauma have inhibitory failure and frontal lobe dysfunction in regions related to Nogo-P3.

  5. Decoding Grasping Movements from the Parieto-Frontal Reaching Circuit in the Nonhuman Primate.

    Science.gov (United States)

    Nelissen, Koen; Fiave, Prosper Agbesi; Vanduffel, Wim

    2018-04-01

    Prehension movements typically include a reaching phase, guiding the hand toward the object, and a grip phase, shaping the hand around it. The dominant view posits that these components rely upon largely independent parieto-frontal circuits: a dorso-medial circuit involved in reaching and a dorso-lateral circuit involved in grasping. However, mounting evidence suggests a more complex arrangement, with dorso-medial areas contributing to both reaching and grasping. To investigate the role of the dorso-medial reaching circuit in grasping, we trained monkeys to reach-and-grasp different objects in the dark and determined if hand configurations could be decoded from functional magnetic resonance imaging (MRI) responses obtained from the reaching and grasping circuits. Indicative of their established role in grasping, object-specific grasp decoding was found in anterior intraparietal (AIP) area, inferior parietal lobule area PFG and ventral premotor region F5 of the lateral grasping circuit, and primary motor cortex. Importantly, the medial reaching circuit also conveyed robust grasp-specific information, as evidenced by significant decoding in parietal reach regions (particular V6A) and dorsal premotor region F2. These data support the proposed role of dorso-medial "reach" regions in controlling aspects of grasping and demonstrate the value of complementing univariate with more sensitive multivariate analyses of functional MRI (fMRI) data in uncovering information coding in the brain.

  6. Activation of sensory cortex by imagined genital stimulation: an fMRI analysis.

    Science.gov (United States)

    Wise, Nan J; Frangos, Eleni; Komisaruk, Barry R

    2016-01-01

    During the course of a previous study, our laboratory made a serendipitous finding that just thinking about genital stimulation resulted in brain activations that overlapped with, and differed from, those generated by physical genital stimulation. This study extends our previous findings by further characterizing how the brain differentially processes physical 'touch' stimulation and 'imagined' stimulation. Eleven healthy women (age range 29-74) participated in an fMRI study of the brain response to imagined or actual tactile stimulation of the nipple and clitoris. Two additional conditions - imagined dildo self-stimulation and imagined speculum stimulation - were included to characterize the effects of erotic versus non-erotic imagery. Imagined and tactile self-stimulation of the nipple and clitoris each activated the paracentral lobule (the genital region of the primary sensory cortex) and the secondary somatosensory cortex. Imagined self-stimulation of the clitoris and nipple resulted in greater activation of the frontal pole and orbital frontal cortex compared to tactile self-stimulation of these two bodily regions. Tactile self-stimulation of the clitoris and nipple activated the cerebellum, primary somatosensory cortex (hand region), and premotor cortex more than the imagined stimulation of these body regions. Imagining dildo stimulation generated extensive brain activation in the genital sensory cortex, secondary somatosensory cortex, hippocampus, amygdala, insula, nucleus accumbens, and medial prefrontal cortex, whereas imagining speculum stimulation generated only minimal activation. The present findings provide evidence of the potency of imagined stimulation of the genitals and that the following brain regions may participate in erogenous experience: primary and secondary sensory cortices, sensory-motor integration areas, limbic structures, and components of the 'reward system'. In addition, these results suggest a mechanism by which some individuals may

  7. Activation of sensory cortex by imagined genital stimulation: an fMRI analysis

    Directory of Open Access Journals (Sweden)

    Nan J. Wise

    2016-10-01

    Full Text Available Background: During the course of a previous study, our laboratory made a serendipitous finding that just thinking about genital stimulation resulted in brain activations that overlapped with, and differed from, those generated by physical genital stimulation. Objective: This study extends our previous findings by further characterizing how the brain differentially processes physical ‘touch’ stimulation and ‘imagined’ stimulation. Design: Eleven healthy women (age range 29–74 participated in an fMRI study of the brain response to imagined or actual tactile stimulation of the nipple and clitoris. Two additional conditions – imagined dildo self-stimulation and imagined speculum stimulation – were included to characterize the effects of erotic versus non-erotic imagery. Results: Imagined and tactile self-stimulation of the nipple and clitoris each activated the paracentral lobule (the genital region of the primary sensory cortex and the secondary somatosensory cortex. Imagined self-stimulation of the clitoris and nipple resulted in greater activation of the frontal pole and orbital frontal cortex compared to tactile self-stimulation of these two bodily regions. Tactile self-stimulation of the clitoris and nipple activated the cerebellum, primary somatosensory cortex (hand region, and premotor cortex more than the imagined stimulation of these body regions. Imagining dildo stimulation generated extensive brain activation in the genital sensory cortex, secondary somatosensory cortex, hippocampus, amygdala, insula, nucleus accumbens, and medial prefrontal cortex, whereas imagining speculum stimulation generated only minimal activation. Conclusion: The present findings provide evidence of the potency of imagined stimulation of the genitals and that the following brain regions may participate in erogenous experience: primary and secondary sensory cortices, sensory-motor integration areas, limbic structures, and components of the

  8. Non-invasive brain stimulation of the right inferior frontal gyrus may improve attention in early Alzheimer's disease: a pilot study.

    Science.gov (United States)

    Eliasova, Ilona; Anderkova, Lubomira; Marecek, Radek; Rektorova, Irena

    2014-11-15

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive tool for modulating cortical activity. In this pilot study, we evaluated the effects of high frequency rTMS applied over the right inferior frontal gyrus (IFG) on cognitive functions in patients with amnestic mild cognitive impairment (MCI) or incipient dementia due to Alzheimer's disease (AD). Ten patients (6 men; 4 women, mean age of 72 ± 8 years; MMSE 23 ± 3.56) were enrolled in a randomized, placebo-controlled study with a crossover design. All participants received 2 sessions of 10 Hz rTMS over the non-dominant right hemisphere in random order: IFG (active stimulation site) and vertex (control stimulation site). Intensities were adjusted to 90% of resting motor threshold. A total of 2250 pulses were applied in a session. The Trail Making Test (TMT), the Stroop test, and the complex visual scene encoding task (CVSET) were administered before and immediately after each session. The Wilcoxon paired test was used for data analysis. Stimulation applied over the IFG induced improvement in the TMT parts A (p = 0.037) and B (p = 0.049). No significant changes were found in the Stroop test or the CVSET after the IFG stimulation. We observed no significant cognitive aftereffects of rTMS applied over the vertex. High frequency rTMS of the right IFG induced significant improvement of attention and psychomotor speed in patients with MCI/mild dementia due to AD. This pilot study is part of a more complex protocol and ongoing research. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Neural substrates of reading and writing

    International Nuclear Information System (INIS)

    Sakurai, Yasuhisa

    2008-01-01

    Functional MRI has made a great advance in the neurological field because of its low invasion, easiness to collect data to be analyzed by such a globally standardizable software as SPM (statistical parametric mapping), and appearance of academic journals specified for neuroimaging. This chapter of the review describes the activating regions and functions in reading and writing, the essential ability of language belonging to the cerebral highest function, as evidenced by the fMRI and positron emission tomography (PET) images including those under disease states (alexia and agraphia), in the following order; Correspondence of Japanese kanji/kana-words to English ones for studies on activation, Cognitive psychological model of reading, Studies on the activation of reading words, and Studies on the activation of writing words. In this paper, regions are mainly documented in accordance with the coordinate of Montreal Neurological Institute. The third section above mentions the concerned regions in the fusiform gyrus and posterior inferior temporal cortex; lateral occipital gyrus subcortex; temporal plane, superior temporal gyrus and middle temporal gyrus; posterior middle temporal, angular and supramarginal gyri; and inferior frontal gyrus, insular gyri, and supplementary motor area. The fourth section for writing words says the regions in the fusiform gyrus, posterior inferior temporal gyrus and posterior inferior temporal cortex; intraparietal sulcus pericortex, superior parietal lobule and lateral occipital gyrus; and sensorimotor area, posterior middle temporal gyrus and posterior inferior frontal gyrus. (R.T.)

  10. TMS interferes with lexical-semantic retrieval in left inferior frontal gyrus and posterior middle temporal gyrus: Evidence from cyclical picture naming.

    Science.gov (United States)

    Krieger-Redwood, Katya; Jefferies, Elizabeth

    2014-11-01

    We used TMS to investigate the contribution of left inferior frontal gyrus (LIFG) and posterior middle temporal gyrus (pMTG) to lexical/semantic selection and retrieval processes using a cyclical naming paradigm. Participants named pictures that were presented repeatedly across six cycles, either in semantically related or unrelated sets. Previous research has suggested that selection demands are higher for related sets, especially after repetition, since participants experience competition from the activation of semantic neighbours. In contrast, retrieval demands are greater for unrelated sets in the absence of semantic priming, particularly on the first cycle when the target names have not been previously activated. Therefore, this paradigm can reveal independent effects of (i) retrieval demands (i.e., the ease of accessing picture names from visual input) and (ii) selection/competition. We found that rTMS to LIFG and pMTG produced similar behavioural effects: stimulation of both sites disrupted picture naming performance on early cycles (when participants were less practised at producing the picture names) and for semantically-related sets (when there was the potential for increased competition and yet also facilitation from semantic neighbours). There were no effects of TMS when either retrieval or selection requirements were maximal on their own. The data therefore support the view that both LIFG and pMTG contribute to picture name retrieval, with both sites playing a critical role in mediating the semantic facilitation of naming when retrieval demands are high. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Cultural differences in human brain activity: a quantitative meta-analysis.

    Science.gov (United States)

    Han, Shihui; Ma, Yina

    2014-10-01

    Psychologists have been trying to understand differences in cognition and behavior between East Asian and Western cultures within a single cognitive framework such as holistic versus analytic or interdependent versus independent processes. However, it remains unclear whether cultural differences in multiple psychological processes correspond to the same or different neural networks. We conducted a quantitative meta-analysis of 35 functional MRI studies to examine cultural differences in brain activity engaged in social and non-social processes. We showed that social cognitive processes are characterized by stronger activity in the dorsal medial prefrontal cortex, lateral frontal cortex and temporoparietal junction in East Asians but stronger activity in the anterior cingulate, ventral medial prefrontal cortex and bilateral insula in Westerners. Social affective processes are associated with stronger activity in the right dorsal lateral frontal cortex in East Asians but greater activity in the left insula and right temporal pole in Westerners. Non-social processes induce stronger activity in the left inferior parietal cortex, left middle occipital and left superior parietal cortex in East Asians but greater activations in the right lingual gyrus, right inferior parietal cortex and precuneus in Westerners. The results suggest that cultural differences in social and non-social processes are mediated by distinct neural networks. Moreover, East Asian cultures are associated with increased neural activity in the brain regions related to inference of others' mind and emotion regulation whereas Western cultures are associated with enhanced neural activity in the brain areas related to self-relevance encoding and emotional responses during social cognitive/affective processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Neural correlates of cognitive dysfunction in Lewy body diseases and tauopathies: combined assessment with FDG-PET and the CERAD test battery.

    Science.gov (United States)

    Hellwig, Sabine; Frings, Lars; Bormann, Tobias; Kreft, Annabelle; Amtage, Florian; Spehl, Timo S; Weiller, Cornelius; Tüscher, Oliver; Meyer, Philipp T

    2013-11-01

    We investigated disease-specific cognitive profiles and their neural correlates in Lewy-body diseases (LBD) and tauopathies by CERAD assessment and FDG-PET. Analyses revealed a significant interaction between reduced semantic fluency in tauopathies and impaired verbal learning in LBD. Semantic fluency discriminated between groups with high accuracy (83%). Compared to LBD, tauopathy patients showed bilateral hypometabolism of midbrain, thalamus, middle cingulate gyrus and supplementary motor/premotor cortex. In the reverse contrast, LBD patients exhibited bilateral hypometabolism in posterior parietal cortex, precuneus and inferior temporal gyrus extending into occipital and frontal cortices. In diagnosis-independent voxel-based analyses, verbal learning/memory correlated with left temporal and right parietal metabolism, while fluency was coupled to bilateral striatal and frontal metabolism. Naming correlated with left frontal metabolism and drawing with metabolism in bilateral temporal and left frontal regions. In line with disease-specific patterns of regional glucose metabolism, tauopathies and LBD show distinct cognitive profiles, which may assist clinical differentiation. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Reading a suspenseful literary text activates brain areas related to social cognition and predictive inference.

    Directory of Open Access Journals (Sweden)

    Moritz Lehne

    Full Text Available Stories can elicit powerful emotions. A key emotional response to narrative plots (e.g., novels, movies, etc. is suspense. Suspense appears to build on basic aspects of human cognition such as processes of expectation, anticipation, and prediction. However, the neural processes underlying emotional experiences of suspense have not been previously investigated. We acquired functional magnetic resonance imaging (fMRI data while participants read a suspenseful literary text (E.T.A. Hoffmann's "The Sandman" subdivided into short text passages. Individual ratings of experienced suspense obtained after each text passage were found to be related to activation in the medial frontal cortex, bilateral frontal regions (along the inferior frontal sulcus, lateral premotor cortex, as well as posterior temporal and temporo-parietal areas. The results indicate that the emotional experience of suspense depends on brain areas associated with social cognition and predictive inference.

  14. Neural correlates of successful and unsuccessful syntactic processing in primary progressive aphasia

    Directory of Open Access Journals (Sweden)

    Stephen M Wilson

    2015-04-01

    Our findings suggest that some of the regions modulated by a syntactic processing task reflect task-related functions such as working memory, attention, and executive function, specifically the anterior insula bilaterally, the supplementary motor cortex bilaterally, and left dorsal premotor cortex. In contrast, other regions were modulated only in individuals with relatively intact syntactic processing, namely the left inferior frontal junction, left posterior superior temporal sulcus, and left intraparietal sulcus, suggesting that these regions are important for syntactic processing.

  15. Impact of tDCS on Performance and Learning of Target Detection: Interaction with Stimulus Characteristics and Experimental Design

    Science.gov (United States)

    Coffman, B. A.; Trumbo, M. C.; Flores, R. A.; Garcia, C. M.; van der Merwe, A. J.; Wassermann, E. M.; Weisend, M. P.; Clark, V. P.

    2012-01-01

    We have previously found that transcranial direct current stimulation (tDCS) over right inferior frontal cortex (RIFC) enhances performance during learning of a difficult visual target detection task (Clark et al., 2012). In order to examine the cognitive mechanisms of tDCS that lead to enhanced performance, here we analyzed its differential…

  16. Localization of dysfunction in major depressive disorder: prefrontal cortex and amygdala.

    Science.gov (United States)

    Murray, Elisabeth A; Wise, Steven P; Drevets, Wayne C

    2011-06-15

    Despite considerable effort, the localization of dysfunction in major depressive disorder (MDD) remains poorly understood. We present a hypothesis about its localization that builds on recent findings from primate neuropsychology. The hypothesis has four key components: a deficit in the valuation of "self" underlies the core disorder in MDD; the medial frontal cortex represents "self"; interactions between the amygdala and cortical representations update their valuation; and inefficiency in using positive feedback by orbital prefrontal cortex contributes to MDD. Published by Elsevier Inc.

  17. Voxel-based morphometry in Alzheimers disease and mild cognitive impairment: Systematic review of studies addressing the frontal lobe.

    Science.gov (United States)

    Ribeiro, Luís Gustavo; Busatto, Geraldo

    2016-01-01

    Voxel-based morphometry (VBM) is a useful approach for investigating neurostructural brain changes in dementia. We systematically reviewed VBM studies of Alzheimer's disease (AD) and mild cognitive impairment (MCI), specifically focusing on grey matter (GM) atrophy in the frontal lobe. Two searches were performed on the Pubmed database. A set of exclusion criteria was applied to ensure the selection of only VBM studies that directly investigated GM volume abnormalities in AD and/or MCI patients compared to cognitively normal controls. From a total of 46 selected articles, 35 VBM studies reported GM volume reductions in the frontal lobe. The frontal subregions, where most of the volume reductions were reported, included the inferior, superior and middle frontal gyri, as well as the anterior cingulate gyrus. We also found studies in which reduced frontal GM was detected in MCI patients who converted to AD. In a minority of studies, correlations between frontal GM volumes and behavioural changes or cognitive deficits in AD patients were investigated, with variable findings. Results of VBM studies indicate that the frontal lobe should be regarded as an important brain area when investigating GM volume deficits in association with AD. Frontal GM loss might not be a feature specific to late AD only. Future VBM studies involving large AD samples are warranted to further investigate correlations between frontal volume deficits and both cognitive impairment and neuropsychiatric symptoms.

  18. Potential role of monkey inferior parietal neurons coding action semantic equivalences as precursors of parts of speech.

    Science.gov (United States)

    Yamazaki, Yumiko; Yokochi, Hiroko; Tanaka, Michio; Okanoya, Kazuo; Iriki, Atsushi

    2010-01-01

    The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax.

  19. Attention enhances multi-voxel representation of novel objects in frontal, parietal and visual cortices.

    Science.gov (United States)

    Woolgar, Alexandra; Williams, Mark A; Rich, Anina N

    2015-04-01

    Selective attention is fundamental for human activity, but the details of its neural implementation remain elusive. One influential theory, the adaptive coding hypothesis (Duncan, 2001, An adaptive coding model of neural function in prefrontal cortex, Nature Reviews Neuroscience 2:820-829), proposes that single neurons in certain frontal and parietal regions dynamically adjust their responses to selectively encode relevant information. This selective representation may in turn support selective processing in more specialized brain regions such as the visual cortices. Here, we use multi-voxel decoding of functional magnetic resonance images to demonstrate selective representation of attended--and not distractor--objects in frontal, parietal, and visual cortices. In addition, we highlight a critical role for task demands in determining which brain regions exhibit selective coding. Strikingly, representation of attended objects in frontoparietal cortex was highest under conditions of high perceptual demand, when stimuli were hard to perceive and coding in early visual cortex was weak. Coding in early visual cortex varied as a function of attention and perceptual demand, while coding in higher visual areas was sensitive to the allocation of attention but robust to changes in perceptual difficulty. Consistent with high-profile reports, peripherally presented objects could also be decoded from activity at the occipital pole, a region which corresponds to the fovea. Our results emphasize the flexibility of frontoparietal and visual systems. They support the hypothesis that attention enhances the multi-voxel representation of information in the brain, and suggest that the engagement of this attentional mechanism depends critically on current task demands. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. P1-5: Effect of Luminance Contrast on the Color Selective Responses in the Inferior Temporal Cortex Neurons of the Macaque Monkey

    Directory of Open Access Journals (Sweden)

    Tomoyuki Namima

    2012-10-01

    Full Text Available Although the relationship between color signal and luminance signal is an important problem in visual perception, relatively little is known about how the luminance contrast affects the responses of color selective neurons in the visual cortex. In this study, we examined this problem in the inferior temporal (IT of the awake monkey performing a visual fixation task. Single neuron activities were recorded from the anterior and posterior color selective regions in IT cortex (AITC and PITC identified in previous studies where color selective neurons are accumulated. Color stimuli consisted of 28 stimuli that evenly distribute across the gamut of the CRT display defined on the CIE- xychromaticity diagram at two different luminance levels (5 cd/m 2or 20 cd/m 2 and 2 stimuli at white points. The background was maintained at 10 cd/m 2gray. We found that the effect of luminance contrast on the color selectivity was markedly different between AITC and PITC. When we examined the correlation between the responses to the bright stimuli and those to the dark stimuli with the same chromaticity coordinates, most AITC neurons exhibited high correlation whereas many PITC neurons showed no correlation or only weak correlation. In PITC, the effect was specifically large for neutral colors (white, gray, black and for colors with low saturation. These results indicate that the effect of luminance contrast on the color selective responses differs across different areas and suggest that the separation between color signal and luminance signal involves a higher stage of the cortical color processing.

  1. Frontal brain asymmetry as a marker of depression and effectiveness of TMS therapy

    International Nuclear Information System (INIS)

    Mani, D.; Lithgow, B.

    2010-01-01

    Full text: Resting frontal brain electroencephalography (EEG) asymmetry has been hypothesi sed as a diagnostic marker for depression. A number of studies have shown that depressed individuals are characterised by diminished left sided activation of the prefrontal cortex, which is indicated by greater left than right alpha-band power. Relative left frontal region activity is believed to be associated with positive approach related behaviour and relative right frontal activity is seen to be linked to negative withdrawal related behaviour. In this study, frontal brain EEG was recorded from 17 depressed and 19 control subjects, from which frontal brain asymmetry ratios were calculated. The results confirmed the trend of relative left anterior hypoaclivation for individuals with depression compared to the healthy controls. This study also looked at beta and theta band ratios and found theta for depressed is predominantly negative, while the control group dis played mainly positive values. Beta comparison showed little significant difference between control and depressed groups. In addition, there have been few studies that examined frontal brain asymmetry in depression soon after treatment to gauge its effectiv ness. In a very preliminary study, the effect of Transcranial Magnetic Stimulation (TMS) therapy on the alpha band frontal brain asymmetry ratio for 5 depl'essed subjects before and after treatment found a slight increase in FBA ratio for 4 subjects. Further research and a larger subject group is required to validate these results.

  2. Low Dose Propofol-induced Amnesia Is Not Due to a Failure of Encoding: Left Inferior Prefrontal Cortex Is Still Active

    Science.gov (United States)

    Veselis, Robert A.; Pryor, Kane O.; Reinsel, Ruth A.; Mehta, Meghana; Pan, Hong; Johnson, Ray

    2008-01-01

    Background Propofol may produce amnesia by affecting encoding. The hypothesis that propofol weakens encoding was tested by measuring regional cerebral blood flow during verbal encoding. Methods 17 volunteer participants (12 M, 30.4±6.5 years old) had regional cerebral blood flow measured using H2O15 positron emission tomography during complex and simple encoding tasks (deep vs. shallow level of processing), to identify a region of interest in the left inferior prefrontal cortex (LIPFC). The effect of either propofol (n=6, 0.9 mcg/ml target concentration), placebo with a divided attention task (n=5), or thiopental at sedative doses (n=6, 3 mcg/ml) on regional cerebral blood flow activation in the LIPFC was tested. The divided attention task was expected to decrease activation in the LIPFC. Results Propofol did not impair encoding performance or reaction times, but impaired recognition memory of deeply encoded words 4 hours later (median recognition of 35% (17–54 interquartile) of words presented during propofol versus 65% (38–91) before drug, pdeep encoding was present in this region of interest in each group before drug (T>4.41, pprocesses. PMID:18648230

  3. Low-dose propofol-induced amnesia is not due to a failure of encoding: left inferior prefrontal cortex is still active.

    Science.gov (United States)

    Veselis, Robert A; Pryor, Kane O; Reinsel, Ruth A; Mehta, Meghana; Pan, Hong; Johnson, Ray

    2008-08-01

    Propofol may produce amnesia by affecting encoding. The hypothesis that propofol weakens encoding was tested by measuring regional cerebral blood flow during verbal encoding. Seventeen volunteer participants (12 men; aged 30.4 +/- 6.5 yr) had regional cerebral blood flow measured using H2O positron emission tomography during complex and simple encoding tasks (deep vs. shallow level of processing) to identify a region of interest in the left inferior prefrontal cortex (LIPFC). The effect of either propofol (n = 6, 0.9 microg/ml target concentration), placebo with a divided attention task (n = 5), or thiopental at sedative doses (n = 6, 3 microg/ml) on regional cerebral blood flow activation in the LIPFC was tested. The divided attention task was expected to decrease activation in the LIPFC. Propofol did not impair encoding performance or reaction times, but impaired recognition memory of deeply encoded words 4 h later (median recognition of 35% [interquartile range, 17-54%] of words presented during propofol vs. 65% [38-91%] before drug; P deep encoding was present in this region of interest in each group before drug (T > 4.41, P memory processes.

  4. Management of maxillary sinus inverted papilloma via endoscopic partial medial maxillectomy with an inferior turbinate reversing approach.

    Science.gov (United States)

    Wang, Feng; Yang, Yang; Wang, Shenqing; Chen, Haihong; Wang, Dehui; Wang, Qinying

    2017-12-01

    The aim of this study is to evaluate the efficacy of endoscopic treatment for maxillary inverted papilloma (IP) through partial medial maxillectomy with an inferior turbinate reversing approach. A retrospective analysis of patients treated in our institution for maxillary sinus IP between July 2011 and August 2015 was performed. Demographics, operative technique, characteristics of tumors, complications, postoperative follow-up, and recurrence were evaluated. Twenty-two patients were enrolled in the study. All tumor attachments were identified intraoperatively. Adequate visualization was obtained following our approach. All inferior turbinate and nasolacrimal ducts were preserved. The median follow-up time was 41 months. One recurrence occurred at the follow-up time of 27 months. Postoperative hemorrhage and numbness at the ipsilateral frontal teeth were reported in two and one patients, respectively. Endoscopic surgery through partial medial maxillectomy using an inferior turbinate reversing approach provides full access to the maxillary sinus and preserves the inferior turbinate and nasolacrimal duct.

  5. Common and distinct neural mechanisms of attentional switching and response conflict.

    Science.gov (United States)

    Kim, Chobok; Johnson, Nathan F; Gold, Brian T

    2012-08-21

    The human capacities for overcoming prepotent actions and flexibly switching between tasks represent cornerstones of cognitive control. Functional neuroimaging has implicated a diverse set of brain regions contributing to each of these cognitive control processes. However, the extent to which attentional switching and response conflict draw on shared or distinct neural mechanisms remains unclear. The current study examined the neural correlates of response conflict and attentional switching using event-related functional magnetic resonance imaging (fMRI) and a fully randomized 2×2 design. We manipulated an arrow-word version of the Stroop task to measure conflict and switching in the context of a single task decision, in response to a common set of stimuli. Under these common conditions, both behavioral and imaging data showed significant main effects of conflict and switching but no interaction. However, conjunction analyses identified frontal regions involved in both switching and response conflict, including the dorsal anterior cingulate cortex (dACC) and left inferior frontal junction. In addition, connectivity analyses demonstrated task-dependent functional connectivity patterns between dACC and inferior temporal cortex for attentional switching and between dACC and posterior parietal cortex for response conflict. These results suggest that the brain makes use of shared frontal regions, but can dynamically modulate the connectivity patterns of some of those regions, to deal with attentional switching and response conflict. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Negative emotion modulates prefrontal cortex activity during a working memory task: A NIRS study

    Directory of Open Access Journals (Sweden)

    Sachiyo eOzawa

    2014-02-01

    Full Text Available This study investigated the neural processing underlying the cognitive control of emotions induced by the presentation of task-irrelevant emotional pictures before a working memory task. Previous studies have suggested that the cognitive control of emotion involves the prefrontal regions. Therefore, we measured the hemodynamic responses that occurred in the prefrontal region with a 16-channel near-infrared spectroscopy (NIRS system. In our experiment, participants observed two negative or two neutral pictures in succession immediately before a 1-back or 3-back task. Pictures were selected from the International Affective Picture System. We measured the changes in the concentration of oxygenated hemoglobin (oxyHb during picture presentation and during the n-back task. The emotional valence of the picture affected the oxyHb changes in anterior parts of the medial prefrontal cortex (located in the left and right superior frontal gyrus and left inferior frontal gyrus during the n-back task; the oxyHb changes during the task were significantly greater following negative rather than neutral stimulation. As indicated in a number of previous studies, and the time courses of the oxyHb changes in our study, activation in these locations is possibly led by cognitive control of emotion, though we cannot deny it may simply be emotional responses. There were no effects of emotion on oxyHb changes during picture presentation or on n-back task performance. Although further studies are necessary to confirm this interpretation, our findings suggest that NIRS can be used to investigate neural processing during emotional control.

  7. Frontal alpha asymmetry predicts inhibitory processing in youth with attention deficit/hyperactivity disorder.

    Science.gov (United States)

    Ellis, Alissa J; Kinzel, Chantelle; Salgari, Giulia C; Loo, Sandra K

    2017-07-28

    Atypical asymmetry in brain activity has been implicated in the behavioral and attentional dysregulation observed in ADHD. Specifically, asymmetry in neural activity in the right versus left frontal regions has been linked to ADHD, as well as to symptoms often associated with ADHD such as heightened approach behaviors, impulsivity and difficulties with inhibition. Clarifying the role of frontal asymmetry in ADHD-like traits, such as disinhibition, may provide information on the neurophysiological processes underlying these behaviors. ADHD youth (ADHD: n = 25) and healthy, typically developing controls (TD: n = 25) underwent an electroencephalography (EEG) recording while completing a go/no-go task-a commonly used test measuring behavioral inhibition. In addition, advanced signal processing for source localization estimated the location of signal generators underlying frontal alpha asymmetry (FA) during correct and incorrect trials. This is the first study in ADHD to demonstrate that the dorsal-lateral prefrontal cortex (DLPFC) may be responsible for generating frontal alpha. During failed inhibition trials, ADHD youth displayed greater FA than TD youth. In addition, within the ADHD group, frontal asymmetry during later processing stages (i.e., 400-800ms after stimulus) predicted a higher number of commission errors throughout the task. These results suggest that frontal alpha asymmetry may be a specific biomarker of cognitive disinhibition among youth with ADHD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Loss of Sleep Affects the Ultrastructure of Pyramidal Neurons in the Adolescent Mouse Frontal Cortex.

    Science.gov (United States)

    de Vivo, Luisa; Nelson, Aaron B; Bellesi, Michele; Noguti, Juliana; Tononi, Giulio; Cirelli, Chiara

    2016-04-01

    The adolescent brain may be uniquely affected by acute sleep deprivation (ASD) and chronic sleep restriction (CSR), but direct evidence is lacking. We used electron microscopy to examine how ASD and CSR affect pyramidal neurons in the frontal cortex of adolescent mice, focusing on mitochondria, endosomes, and lysosomes that together perform most basic cellular functions, from nutrient intake to prevention of cellular stress. Adolescent (1-mo-old) mice slept (S) or were sleep deprived (ASD, with novel objects and running wheels) during the first 6-8 h of the light period, chronically sleep restricted (CSR) for > 4 days (using novel objects, running wheels, social interaction, forced locomotion, caffeinated water), or allowed to recover sleep (RS) for ∼32 h after CSR. Ultrastructural analysis of 350 pyramidal neurons was performed (S = 82; ASD = 86; CSR = 103; RS = 79; 4 to 5 mice/group). Several ultrastructural parameters differed in S versus ASD, S versus CSR, CSR versus RS, and S versus RS, although the different methods used to enforce wake may have contributed to some of the differences between short and long sleep loss. Differences included larger cytoplasmic area occupied by mitochondria in CSR versus S, and higher number of secondary lysosomes in CSR versus S and RS. We also found that sleep loss may unmask interindividual differences not obvious during baseline sleep. Moreover, using a combination of 11 ultrastructural parameters, we could predict in up to 80% of cases whether sleep or wake occurred at the single cell level. Ultrastructural analysis may be a powerful tool to identify which cellular organelles, and thus which cellular functions, are most affected by sleep and sleep loss. © 2016 Associated Professional Sleep Societies, LLC.

  9. Transcranial Direct Current Stimulation of Frontal Cortex Decreases Performance on the WAIS-IV Intelligence Test

    Science.gov (United States)

    Sellers, Kristin K.; Mellin, Juliann M.; Lustenberger, Caroline M.; Boyle, Michael R.; Lee, Won Hee; Peterchev, Angel V.; Frohlich, Flavio

    2015-01-01

    Transcranial direct current stimulation (tDCS) modulates excitability of motor cortex. However, there is conflicting evidence about the efficacy of this non-invasive brain stimulation modality to modulate performance on cognitive tasks. Previous work has tested the effect of tDCS on specific facets of cognition and executive processing. However, no randomized, double-blind, sham-controlled study has looked at the effects of tDCS on a comprehensive battery of cognitive processes. The objective of this study was to test if tDCS had an effect on performance on a comprehensive assay of cognitive processes, a standardized intelligence quotient (IQ) test. The study consisted of two substudies and followed a double-blind, between-subjects, sham-controlled design. In total, 41 healthy adult participants completed the Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV) as a baseline measure. At least one week later, participants in substudy 1 received either bilateral tDCS (anodes over both F4 and F3, cathode over Cz, 2mA at each anode for 20 minutes) or active sham tDCS (2mA for 40 seconds), and participants in substudy 2 received either right or left tDCS (anode over either F4 or F3, cathode over Cz, 2mA for 20 minutes). In both studies, the WAIS-IV was immediately administered following stimulation to assess for performance differences induced by bilateral and unilateral tDCS. Compared to sham stimulation, right, left, and bilateral tDCS reduced improvement between sessions on Full Scale IQ and the Perceptual Reasoning Index. This demonstration that frontal tDCS selectively degraded improvement on specific metrics of the WAIS-IV raises important questions about the often proposed role of tDCS in cognitive enhancement. PMID:25934490

  10. Frontopolar and anterior temporal cortex activation in a moral judgment task. Preliminary functional MRI results in normal subjects

    International Nuclear Information System (INIS)

    Moll, Jorge; Oliveira-Souza, Ricardo de

    2001-01-01

    The objective was to study the brain areas which are activated when normal subjects make moral judgments. Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI) during the auditory presentation of sentences that they were instructed to silently judge as either 'right' or 'wrong'. Half of the sentences had an explicit moral content ('We break the law when necessary'), the other half comprised factual statements devoid of moral connotation ('Stones are made of water'). After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemo dynamically modeled for event-related f MRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. Regions activated during moral judgment included the frontopolar cortex (FPC), medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (B A 10/46 and 9) were largely independent of emotional experience and represented the largest areas of activation. These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct. (author)

  11. Changes of functional connectivity in the left frontoparietal network following aphasic stroke

    Directory of Open Access Journals (Sweden)

    Dan eZhu

    2014-05-01

    Full Text Available Language is an essential higher cognitive function supported by large-scale brain networks. In this study, we investigated functional connectivity changes in the left frontoparietal network (LFPN, a language-cognition related brain network in aphasic patients. We enrolled thirteen aphasic patients who had undergone a stroke in the left hemisphere and age-, gender-, educational level-matched controls and analyzed the data by integrating independent component analysis (ICA with a network connectivity analysis method. Resting state functional magnetic resonance imaging (fMRI and clinical evaluation of language function were assessed at two stages: one and two months after stroke onset. We found reduced functional connectivity between the LFPN and the right middle frontal cortex, medial frontal cortex and right inferior frontal cortex in aphasic patients as compared to controls. Correlation analysis showed that stronger functional connectivity between the LFPN and the right middle frontal cortex and medial frontal cortex coincided with more preserved language comprehension ability after stroke. Network connectivity analysis showed reduced LFPN connectivity as indicated by the mean network connectivity index of key regions in the LFPN of aphasic patients. The decreased LFPN connectivity in stroke patients was significantly associated with the impairment of language function in their comprehension ability. We also found significant association between recovery of comprehension ability and the mean changes in intrinsic LFPN connectivity. Our findings suggest that brain lesions may influence language comprehension by altering functional connectivity between regions and that the patterns of abnormal functional connectivity may contribute to the recovery of language deficits.

  12. Adult Structure and Development of the Human Fronto-Opercular Cerebral Cortex (Broca's Region)

    Science.gov (United States)

    Judas, Milos; Cepanec, Maja

    2007-01-01

    Broca's area encompasses opercular and triangular part of the inferior frontal gyrus, covered by Brodmann's areas 44 and 45, respectively. Recent neuroimaging studies have revealed that, in addition to classical language functions, Broca's area has novel and unexpected functions, serving as a likely interface of action and perception important for…

  13. Abnormal Intrinsic Functional Hubs in Severe Male Obstructive Sleep Apnea: Evidence from a Voxel-Wise Degree Centrality Analysis.

    Science.gov (United States)

    Li, Haijun; Li, Lan; Shao, Yi; Gong, Honghan; Zhang, Wei; Zeng, Xianjun; Ye, Chenglong; Nie, Si; Chen, Liting; Peng, Dechang

    2016-01-01

    Obstructive sleep apnea (OSA) has been associated with changes in brain structure and regional function in certain brain areas. However, the functional features of network organization in the whole brain remain largely uncertain. The purpose of this study was to identify the OSA-related spatial centrality distribution of the whole brain functional network and to investigate the potential altered intrinsic functional hubs. Forty male patients with newly confirmed severe OSA on polysomnography, and well-matched good sleepers, participated in this study. All participants underwent a resting-state functional MRI scan and clinical and cognitive evaluation. Voxel-wise degree centrality (DC) was measured across the whole brain, and group difference in DC was compared. The relationship between the abnormal DC value and clinical variables was assessed using a linear correlation analysis. Remarkably similar spatial distributions of the functional hubs (high DC) were found in both groups. However, OSA patients exhibited a pattern of significantly reduced regional DC in the left middle occipital gyrus, posterior cingulate cortex, left superior frontal gyrus, and bilateral inferior parietal lobule, and DC was increased in the right orbital frontal cortex, bilateral cerebellum posterior lobes, and bilateral lentiform nucleus, including the putamen, extending to the hippocampus, and the inferior temporal gyrus, which overlapped with the functional hubs. Furthermore, a linear correlation analysis revealed that the DC value in the posterior cingulate cortex and left superior frontal gyrus were positively correlated with Montreal cognitive assessment scores, The DC value in the left middle occipital gyrus and bilateral inferior parietal lobule were negatively correlated with apnea-hypopnea index and arousal index in OSA patients. Our findings suggest that OSA patients exhibited specific abnormal intrinsic functional hubs including relatively reduced and increased DC. This expands

  14. Alcoholism, Korsakoff’s Syndrome and the Frontal Lobes

    Directory of Open Access Journals (Sweden)

    R. R. Jacobson

    1989-01-01

    Full Text Available A subset of the diffuse cerebral changes and psychometric deficits found in chronic alcoholics is similar to that seen in the frontal lobe syndrome. Certain features of alcoholic Korsakoff's syndrome (AKS also point to cortical involvement, and this may have a basis in alcohol neurotoxicity. Twenty-five patients with AKS and 24 non-Korsakoff alcoholic controls were compared using an automated CT brain scan program. In addition to evidence of their diencephalic lesions (wide third ventricles, AKS patients revealed widespread cerebral damage with greater Sylvian and interhemispheric fissure (IHF size than alcoholics. Korsakoffs were also inferior to alcoholics in performance on a category sorting test, in which non-perseverative error scores correlated significantly with IHF size. The principle of distinguishing between selective memory decline and global intellectual decline (GID was applied to 38 patients with AKS. Indices were developed for each type of deficit and much variation found in their distributions. The degree of GID correlated significantly with IHF size, showing similar trends with other cortical measures. These results suggest a cortical substrate for the degree of GID and a frontal substrate for category sorting deficits; with a probable basis in alcohol neurotoxicity rather than thiamine deficiency, which is not known to impair cortical structure. A new model is proposed of the pathophysiology of alcoholic brain damage and AKS which includes recent work on neurotransmitter sources and thalamo-frontal connections.

  15. Functional dissociation between anterior temporal lobe and inferior frontal gyrus in the processing of dynamic body expressions: Insights from behavioral variant frontotemporal dementia.

    Science.gov (United States)

    Jastorff, Jan; De Winter, Francois-Laurent; Van den Stock, Jan; Vandenberghe, Rik; Giese, Martin A; Vandenbulcke, Mathieu

    2016-12-01

    Several brain regions are involved in the processing of emotional stimuli, however, the contribution of specific regions to emotion perception is still under debate. To investigate this issue, we combined behavioral testing, structural and resting state imaging in patients diagnosed with behavioral variant frontotemporal dementia (bvFTD) and age matched controls, with task-based functional imaging in young, healthy volunteers. As expected, bvFTD patients were impaired in emotion detection as well as emotion categorization tasks, testing dynamic emotional body expressions as stimuli. Interestingly, their performance in the two tasks correlated with gray matter volume in two distinct brain regions, the left anterior temporal lobe for emotion detection and the left inferior frontal gyrus (IFG) for emotion categorization. Confirming this observation, multivoxel pattern analysis in healthy volunteers demonstrated that both ROIs contained information for emotion detection, but that emotion categorization was only possible from the pattern in the IFG. Furthermore, functional connectivity analysis showed reduced connectivity between the two regions in bvFTD patients. Our results illustrate that the mentalizing network and the action observation network perform distinct tasks during emotion processing. In bvFTD, communication between the networks is reduced, indicating one possible cause underlying the behavioral symptoms. Hum Brain Mapp 37:4472-4486, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Hemoglobin mRNA Changes in the Frontal Cortex of Patients with Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Silvia Vanni

    2018-01-01

    Full Text Available Background: Hemoglobin is the major protein found in erythrocytes, where it acts as an oxygen carrier molecule. In recent years, its expression has been reported also in neurons and glial cells, although its role in brain tissue remains still unknown. Altered hemoglobin expression has been associated with various neurodegenerative disorders. Here, we investigated hemoglobin mRNA levels in brains of patients affected by variant, iatrogenic, and sporadic forms of Creutzfeldt-Jakob disease (vCJD, iCJD, sCJD, respectively and in different genetic forms of prion diseases (gPrD in comparison to Alzheimer's disease (AD subjects and age-matched controls.Methods: Total RNA was obtained from the frontal cortex of vCJD (n = 20, iCJD (n = 11, sCJD (n = 23, gPrD (n = 30, and AD (n = 14 patients and age-matched controls (n = 30. RT-qPCR was performed for hemoglobin transcripts HBB and HBA1/2 using four reference genes for normalization. In addition, expression analysis of the specific erythrocyte marker ALAS2 was performed in order to account for blood contamination of the tissue samples. Hba1/2 and Hbb protein expression was then investigated with immunofluorescence and confocal microscope analysis.Results: We observed a significant up-regulation of HBA1/2 in vCJD brains together with a significant down-regulation of HBB in iCJD. In addition, while in sporadic and genetic forms of prion disease hemoglobin transcripts did not shown any alterations, both chains display a strong down-regulation in AD brains. These results were confirmed also at a protein level.Conclusions: These data indicate distinct hemoglobin transcriptional responses depending on the specific alterations occurring in different neurodegenerative diseases. In particular, the initial site of misfolding event (central nervous system vs. peripheral tissue—together with specific molecular and conformational features of the pathological agent of the disease—seem to dictate the peculiar

  17. Hemoglobin mRNA Changes in the Frontal Cortex of Patients with Neurodegenerative Diseases.

    Science.gov (United States)

    Vanni, Silvia; Zattoni, Marco; Moda, Fabio; Giaccone, Giorgio; Tagliavini, Fabrizio; Haïk, Stéphane; Deslys, Jean-Philippe; Zanusso, Gianluigi; Ironside, James W; Carmona, Margarita; Ferrer, Isidre; Kovacs, Gabor G; Legname, Giuseppe

    2018-01-01

    Background: Hemoglobin is the major protein found in erythrocytes, where it acts as an oxygen carrier molecule. In recent years, its expression has been reported also in neurons and glial cells, although its role in brain tissue remains still unknown. Altered hemoglobin expression has been associated with various neurodegenerative disorders. Here, we investigated hemoglobin mRNA levels in brains of patients affected by variant, iatrogenic, and sporadic forms of Creutzfeldt-Jakob disease (vCJD, iCJD, sCJD, respectively) and in different genetic forms of prion diseases (gPrD) in comparison to Alzheimer's disease (AD) subjects and age-matched controls. Methods: Total RNA was obtained from the frontal cortex of vCJD ( n = 20), iCJD ( n = 11), sCJD ( n = 23), gPrD ( n = 30), and AD ( n = 14) patients and age-matched controls ( n = 30). RT-qPCR was performed for hemoglobin transcripts HBB and HBA1/2 using four reference genes for normalization. In addition, expression analysis of the specific erythrocyte marker ALAS2 was performed in order to account for blood contamination of the tissue samples. Hba1/2 and Hbb protein expression was then investigated with immunofluorescence and confocal microscope analysis. Results: We observed a significant up-regulation of HBA1/2 in vCJD brains together with a significant down-regulation of HBB in iCJD. In addition, while in sporadic and genetic forms of prion disease hemoglobin transcripts did not shown any alterations, both chains display a strong down-regulation in AD brains. These results were confirmed also at a protein level. Conclusions: These data indicate distinct hemoglobin transcriptional responses depending on the specific alterations occurring in different neurodegenerative diseases. In particular, the initial site of misfolding event (central nervous system vs. peripheral tissue)-together with specific molecular and conformational features of the pathological agent of the disease-seem to dictate the peculiar hemoglobin

  18. Neural correlates of early-closure garden-path processing: Effects of prosody and plausibility.

    Science.gov (United States)

    den Ouden, Dirk-Bart; Dickey, Michael Walsh; Anderson, Catherine; Christianson, Kiel

    2016-01-01

    Functional magnetic resonance imaging (fMRI) was used to investigate neural correlates of early-closure garden-path sentence processing and use of extrasyntactic information to resolve temporary syntactic ambiguities. Sixteen participants performed an auditory picture verification task on sentences presented with natural versus flat intonation. Stimuli included sentences in which the garden-path interpretation was plausible, implausible because of a late pragmatic cue, or implausible because of a semantic mismatch between an optionally transitive verb and the following noun. Natural sentence intonation was correlated with left-hemisphere temporal activation, but also with activation that suggests the allocation of more resources to interpretation when natural prosody is provided. Garden-path processing was associated with upregulation in bilateral inferior parietal and right-hemisphere dorsolateral prefrontal and inferior frontal cortex, while differences between the strength and type of plausibility cues were also reflected in activation patterns. Region of interest (ROI) analyses in regions associated with complex syntactic processing are consistent with a role for posterior temporal cortex supporting access to verb argument structure. Furthermore, ROI analyses within left-hemisphere inferior frontal gyrus suggest a division of labour, with the anterior-ventral part primarily involved in syntactic-semantic mismatch detection, the central part supporting structural reanalysis, and the posterior-dorsal part showing a general structural complexity effect.

  19. The primary motor and premotor areas of the human cerebral cortex.

    Science.gov (United States)

    Chouinard, Philippe A; Paus, Tomás

    2006-04-01

    Brodmann's cytoarchitectonic map of the human cortex designates area 4 as cortex in the anterior bank of the precentral sulcus and area 6 as cortex encompassing the precentral gyrus and the posterior portion of the superior frontal gyrus on both the lateral and medial surfaces of the brain. More than 70 years ago, Fulton proposed a functional distinction between these two areas, coining the terms primary motor area for cortex in Brodmann area 4 and premotor area for cortex in Brodmann area 6. The parcellation of the cortical motor system has subsequently become more complex. Several nonprimary motor areas have been identified in the brain of the macaque monkey, and associations between anatomy and function in the human brain are being tested continuously using brain mapping techniques. In the present review, the authors discuss the unique properties of the primary motor area (M1), the dorsal portion of the premotor cortex (PMd), and the ventral portion of the premotor cortex (PMv). They end this review by discussing how the premotor areas influence M1.

  20. Dysconnection of right parietal and frontal cortex in neglect syndrome

    DEFF Research Database (Denmark)

    Dietz, Martin; Nielsen, Jørgen Feldbæk; Roepstorff, Andreas

    2017-01-01

    A lesion to the right hemisphere of the brain often leads to perceptual neglect of the left side of the sensorium. The fact that lesions to different cortical regions lead to the same symptoms points to neglect as a dysconnection syndrome that may result from the dysconnection of a distributed...... network, rather than a disruption of computation in any particular brain region. To test this hypothesis, we used Bayesian analysis of effective connectivity based on electroencephalographic recordings in patients with left-sided neglect after a right-hemisphere lesion. While age-matched healthy controls...... connectivity in the left hemisphere when stimuli appeared on their right. Crucially, this parieto-frontal feedback connectivity was aggravated in patients with more severe symptoms. In contrast, patients and controls did not show differences in the local connectivity within regions. These findings suggest...

  1. Functional magnetic resonance imaging (fMRI) in patients with gliomas adjacent to classical language areas. Lateralization of activated prefrontal cortex is important in determining the dominant hemisphere

    International Nuclear Information System (INIS)

    Karibe, Hiroshi; Kumabe, Toshihiro; Shirane, Reizo; Yoshimoto, Takashi

    2003-01-01

    In patients with gliomas adjacent to classical language areas, lateralized activation of prefrontal cortex was assessed to determine language dominant hemisphere using functional magnetic resonance imaging (fMRI). Twelve patients presented with aphasias were studied. In all patients, either the left frontal operculum or left superior temporal gyri were adjacent to gliomas, suggesting all patients had left lateralization in hemispheric language dominance. Functional MRI was performed with a 1.5T scanner, with the sequence of gradient-echo type echo-planar imaging. As specific language tasks, verb, word, and capping generations were used. Using a cross-correlation analysis method, primary activation maps were generated using pixels with a correlation coefficient of >0.7. The lateralized activation of frontal operculum, superior temporal gyrus, and prefrontal cortex were assessed by calculating laterality index. Successful activation of frontal operculum was imaged in 11 of 12, in the superior temporal gyrus or prefrontal cortex. Three out of 11 cases had apparent activation lateralized in the right frontal operculum on fMRI, while 3 out of 12 cases showed activation in the superior temporal gyrus. On the other hand, all cases had apparent activation lateralized to the left prefrontal cortex. Significant activation of true language area may not be obtained in some cases with gliomas adjacent to classical language areas. In such cases, lateralization of apparent activation of prefrontal cortex may reflect lateralization in the dominant hemisphere. These result suggest that the assessment of apparent activation of prefrontal cortex lateralization is useful to determine the language dominant hemisphere. (author)

  2. Role of Frontal Alpha Oscillations in Creativity

    Science.gov (United States)

    Lustenberger, Caroline; Boyle, Michael R.; Foulser, A. Alban; Mellin, Juliann M.; Fröhlich, Flavio

    2015-01-01

    Creativity, the ability to produce innovative ideas, is a key higher-order cognitive function that is poorly understood. At the level of macroscopic cortical network dynamics, recent EEG data suggests that cortical oscillations in the alpha frequency band (8 – 12 Hz) are correlated with creative thinking. However, whether alpha oscillations play a fundamental role in creativity has remained unknown. Here we show that creativity is increased by enhancing alpha power using 10 Hz transcranial alternating current stimulation (10Hz-tACS) of the frontal cortex. In a study of 20 healthy participants with a randomized, balanced cross-over design, we found a significant improvement of 7.4% in the Creativity Index measured by the Torrance Test of Creative Thinking, a comprehensive and most frequently used assay of creative potential and strengths. In a second similar study with 20 subjects, 40Hz-tACS was used in instead of 10Hz-tACS to rule out a general “electrical stimulation” effect. No significant change in the Creativity Index was found for such frontal gamma stimulation. Our results suggest that alpha activity in frontal brain areas is selectively involved in creativity; this enhancement represents the first demonstration of specific neuronal dynamics that drive creativity and can be modulated by non-invasive brain stimulation. Our findings agree with the model that alpha recruitment increases with internal processing demands and is involved in inhibitory top-down control, which is an important requirement for creative ideation. PMID:25913062

  3. High BMI levels associate with reduced mRNA expression of IL10 and increased mRNA expression of iNOS (NOS2) in human frontal cortex

    DEFF Research Database (Denmark)

    Lauridsen, J K; Olesen, R H; Vendelbo, J

    2017-01-01

    unknown. Therefore we aim to examine the relationship between BMI and gene expression of central inflammatory markers in the human frontal cortex. Microarray data of 141 neurologically and psychiatrically healthy individuals were obtained through the BrainCloud database. A simple linear regression...... correlated (Plinear regression analyses with BMI, age, sex and race as variables were performed in order to identify potential confounders. In conclusion, increasing BMI could affect the IL10-mediated anti...... analysis was performed with BMI as variable on data on IL10, IL1β, IL6, PTGS2 (COX2) and NOS2 (iNOS). Increasing BMI is associated with a decrease in the mRNA expression of IL10 (P=0.014) and an increase in the expression of NOS2 (iNOS; P=0.040). Expressions of IL10 and NOS2 (iNOS) were negatively...

  4. Cytoarchitecture, probability maps and functions of the human frontal pole.

    Science.gov (United States)

    Bludau, S; Eickhoff, S B; Mohlberg, H; Caspers, S; Laird, A R; Fox, P T; Schleicher, A; Zilles, K; Amunts, K

    2014-06-01

    The frontal pole has more expanded than any other part in the human brain as compared to our ancestors. It plays an important role for specifically human behavior and cognitive abilities, e.g. action selection (Kovach et al., 2012). Evidence about divergent functions of its medial and lateral part has been provided, both in the healthy brain and in psychiatric disorders. The anatomical correlates of such functional segregation, however, are still unknown due to a lack of stereotaxic, microstructural maps obtained in a representative sample of brains. Here we show that the human frontopolar cortex consists of two cytoarchitectonically and functionally distinct areas: lateral frontopolar area 1 (Fp1) and medial frontopolar area 2 (Fp2). Based on observer-independent mapping in serial, cell-body stained sections of 10 brains, three-dimensional, probabilistic maps of areas Fp1 and Fp2 were created. They show, for each position of the reference space, the probability with which each area was found in a particular voxel. Applying these maps as seed regions for a meta-analysis revealed that Fp1 and Fp2 differentially contribute to functional networks: Fp1 was involved in cognition, working memory and perception, whereas Fp2 was part of brain networks underlying affective processing and social cognition. The present study thus disclosed cortical correlates of a functional segregation of the human frontopolar cortex. The probabilistic maps provide a sound anatomical basis for interpreting neuroimaging data in the living human brain, and open new perspectives for analyzing structure-function relationships in the prefrontal cortex. The new data will also serve as a starting point for further comparative studies between human and non-human primate brains. This allows finding similarities and differences in the organizational principles of the frontal lobe during evolution as neurobiological basis for our behavior and cognitive abilities. Copyright © 2013 Elsevier Inc. All

  5. Prediction During Natural Language Comprehension.

    Science.gov (United States)

    Willems, Roel M; Frank, Stefan L; Nijhof, Annabel D; Hagoort, Peter; van den Bosch, Antal

    2016-06-01

    The notion of prediction is studied in cognitive neuroscience with increasing intensity. We investigated the neural basis of 2 distinct aspects of word prediction, derived from information theory, during story comprehension. We assessed the effect of entropy of next-word probability distributions as well as surprisal A computational model determined entropy and surprisal for each word in 3 literary stories. Twenty-four healthy participants listened to the same 3 stories while their brain activation was measured using fMRI. Reversed speech fragments were presented as a control condition. Brain areas sensitive to entropy were left ventral premotor cortex, left middle frontal gyrus, right inferior frontal gyrus, left inferior parietal lobule, and left supplementary motor area. Areas sensitive to surprisal were left inferior temporal sulcus ("visual word form area"), bilateral superior temporal gyrus, right amygdala, bilateral anterior temporal poles, and right inferior frontal sulcus. We conclude that prediction during language comprehension can occur at several levels of processing, including at the level of word form. Our study exemplifies the power of combining computational linguistics with cognitive neuroscience, and additionally underlines the feasibility of studying continuous spoken language materials with fMRI. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Fatty acid composition of the postmortem prefrontal cortex of patients with schizophrenia, bipolar disorder, and major depressive disorder.

    Science.gov (United States)

    Hamazaki, Kei; Maekawa, Motoko; Toyota, Tomoko; Dean, Brian; Hamazaki, Tomohito; Yoshikawa, Takeo

    2015-06-30

    Postmortem brain studies have shown abnormal levels of n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid, in the frontal cortex (particularly the orbitofrontal cortex) of patients with depression, schizophrenia, or bipolar disorder. However, the results from regions in the frontal cortex other than the orbitofrontal cortex are inconsistent. In this study we investigated whether patients with schizophrenia, bipolar disorder, or major depressive disorder have abnormalities in PUFA levels in the prefrontal cortex [Brodmann area (BA) 8]. In postmortem studies, fatty acids in the phospholipids of the prefrontal cortex (BA8) were evaluated by thin layer chromatography and gas chromatography. Specimens were evaluated for patients with schizophrenia (n=15), bipolar disorder (n=15), or major depressive disorder (n=15) and compared with unaffected controls (n=15). In contrast to previous studies, we found no significant differences in the levels of PUFAs or other fatty acids in the prefrontal cortex (BA8) between patients and controls. Subanalysis by sex also showed no significant differences. No significant differences were found in any individual fatty acids between suicide and non-suicide cases. These psychiatric disorders might be characterized by very specific fatty acid compositions in certain areas of the brain, and BA8 might not be involved in abnormalities of PUFA metabolism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Altered grey matter volume and cortical thickness in patients with schizo-obsessive comorbidity

    DEFF Research Database (Denmark)

    Wang, Yongming; Zou, Lai-quan; Xie, Wen-lan

    2018-01-01

    healthy controls (HCs). We found that patients with SOC exhibited reduced GM volume in the left thalamus, the left inferior semi-lunar lobule of the cerebellum, the bilateral medial orbitofrontal cortex (medial oFC), the medial superior frontal gyrus (medial sFG), the rectus gyrus and the anterior...... cingulate cortex (aCC) compared with HCs. Patients with SOC also exhibited reduced cortical thickness in the right superior temporal gyrus (sTG), the right angular gyrus, the right supplementary motor area (SMA), the right middle cingulate cortex (mCC) and the right middle occipital gyrus (mOG) compared...

  8. Comparison of fMRI data from passive listening and active-response story processing tasks in children.

    Science.gov (United States)

    Vannest, Jennifer J; Karunanayaka, Prasanna R; Altaye, Mekibib; Schmithorst, Vincent J; Plante, Elena M; Eaton, Kenneth J; Rasmussen, Jerod M; Holland, Scott K

    2009-04-01

    To use functional MRI (fMRI) methods to visualize a network of auditory and language-processing brain regions associated with processing an aurally-presented story. We compare a passive listening (PL) story paradigm to an active-response (AR) version including online performance monitoring and a sparse acquisition technique. Twenty children (ages 11-13 years) completed PL and AR story processing tasks. The PL version presented alternating 30-second blocks of stories and tones; the AR version presented story segments, comprehension questions, and 5-second tone sequences, with fMRI acquisitions between stimuli. fMRI data was analyzed using a general linear model approach and paired t-test identifying significant group activation. Both tasks showed activation in the primary auditory cortex, superior temporal gyrus bilaterally, and left inferior frontal gyrus (IFG). The AR task demonstrated more extensive activation, including the dorsolateral prefrontal cortex and anterior/posterior cingulate cortex. Comparison of effect size in each paradigm showed a larger effect for the AR paradigm in a left inferior frontal region-of-interest (ROI). Activation patterns for story processing in children are similar in PL and AR tasks. Increases in extent and magnitude of activation in the AR task are likely associated with memory and attention resources engaged across acquisition intervals.

  9. Neural correlates of informational cascades: brain mechanisms of social influence on belief updating.

    Science.gov (United States)

    Huber, Rafael E; Klucharev, Vasily; Rieskamp, Jörg

    2015-04-01

    Informational cascades can occur when rationally acting individuals decide independently of their private information and follow the decisions of preceding decision-makers. In the process of updating beliefs, differences in the weighting of private and publicly available social information may modulate the probability that a cascade starts in a decisive way. By using functional magnetic resonance imaging, we examined neural activity while participants updated their beliefs based on the decisions of two fictitious stock market traders and their own private information, which led to a final decision of buying one of two stocks. Computational modeling of the behavioral data showed that a majority of participants overweighted private information. Overweighting was negatively correlated with the probability of starting an informational cascade in trials especially prone to conformity. Belief updating by private information was related to activity in the inferior frontal gyrus/anterior insula, the dorsolateral prefrontal cortex and the parietal cortex; the more a participant overweighted private information, the higher the activity in the inferior frontal gyrus/anterior insula and the lower in the parietal-temporal cortex. This study explores the neural correlates of overweighting of private information, which underlies the tendency to start an informational cascade. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. No effects of bilateral tDCS over inferior frontal gyrus on response inhibition and aggression

    NARCIS (Netherlands)

    Dambacher, F.; Schuhmann, T.; Lobbestael, J.; Arntz, A.; Brugman, S.; Sack, A.T.

    2015-01-01

    Response inhibition is defined as the capacity to adequately withdraw pre-planned responses. It has been shown that individuals with deficits in inhibiting pre-planned responses tend to display more aggressive behaviour. The prefrontal cortex is involved in both, response inhibition and aggression.

  11. Inactivation of the prelimbic or infralimbic cortex impairs decision-making in the rat gambling task.

    Science.gov (United States)

    Zeeb, Fiona D; Baarendse, P J J; Vanderschuren, L J M J; Winstanley, Catharine A

    2015-12-01

    Studies employing the Iowa Gambling Task (IGT) demonstrated that areas of the frontal cortex, including the ventromedial prefrontal cortex, orbitofrontal cortex (OFC), dorsolateral prefrontal cortex, and anterior cingulate cortex (ACC), are involved in the decision-making process. However, the precise role of these regions in maintaining optimal choice is not clear. We used the rat gambling task (rGT), a rodent analogue of the IGT, to determine whether inactivation of or altered dopamine signalling within discrete cortical sub-regions disrupts decision-making. Following training on the rGT, animals were implanted with guide cannulae aimed at the prelimbic (PrL) or infralimbic (IL) cortices, the OFC, or the ACC. Prior to testing, rats received an infusion of saline or a combination of baclofen and muscimol (0.125 μg of each/side) to inactivate the region and an infusion of a dopamine D2 receptor antagonist (0, 0.1, 0.3, and 1.0 μg/side). Rats tended to increase their choice of a disadvantageous option and decrease their choice of the optimal option following inactivation of either the IL or PrL cortex. In contrast, OFC or ACC inactivation did not affect decision-making. Infusion of a dopamine D2 receptor antagonist into any sub-region did not alter choice preference. Online activity of the IL or PrL cortex is important for maintaining an optimal decision-making strategy, but optimal performance on the rGT does not require frontal cortex dopamine D2 receptor activation. Additionally, these results demonstrate that the roles of different cortical regions in cost-benefit decision-making may be dissociated using the rGT.

  12. Gaze-related mimic word activates the frontal eye field and related network in the human brain: an fMRI study.

    Science.gov (United States)

    Osaka, Naoyuki; Osaka, Mariko

    2009-09-18

    This is an fMRI study demonstrating new evidence that a mimic word highly suggestive of an eye gaze, heard by the ear, significantly activates the frontal eye field (FEF), inferior frontal gyrus (IFG), dorsolateral premotor area (PMdr) and superior parietal lobule (SPL) connected with the frontal-parietal network. However, hearing a non-sense words that did not imply gaze under the same task does not activate this area in humans. We concluded that the FEF would be a critical area for generating/processing an active gaze, evoked by an onomatopoeia word that implied gaze closely associated with social skill. We suggest that the implied active gaze may depend on prefrontal-parietal interactions that modify cognitive gaze led by spatial visual attention associated with the SPL.

  13. Seeing is not feeling: posterior parietal but not somatosensory cortex engagement during touch observation.

    Science.gov (United States)

    Chan, Annie W-Y; Baker, Chris I

    2015-01-28

    Observing touch has been reported to elicit activation in human primary and secondary somatosensory cortices and is suggested to underlie our ability to interpret other's behavior and potentially empathy. However, despite these reports, there are a large number of inconsistencies in terms of the precise topography of activation, the extent of hemispheric lateralization, and what aspects of the stimulus are necessary to drive responses. To address these issues, we investigated the localization and functional properties of regions responsive to observed touch in a large group of participants (n = 40). Surprisingly, even with a lenient contrast of hand brushing versus brushing alone, we did not find any selective activation for observed touch in the hand regions of somatosensory cortex but rather in superior and inferior portions of neighboring posterior parietal cortex, predominantly in the left hemisphere. These regions in the posterior parietal cortex required the presence of both brush and hand to elicit strong responses and showed some selectivity for the form of the object or agent of touch. Furthermore, the inferior parietal region showed nonspecific tactile and motor responses, suggesting some similarity to area PFG in the monkey. Collectively, our findings challenge the automatic engagement of somatosensory cortex when observing touch, suggest mislocalization in previous studies, and instead highlight the role of posterior parietal cortex. Copyright © 2015 the authors 0270-6474/15/351468-13$15.00/0.

  14. Neuroanatomical circuitry associated with exploratory eye movement in schizophrenia: a voxel-based morphometric study.

    Directory of Open Access Journals (Sweden)

    Linlin Qiu

    Full Text Available Schizophrenic patients present abnormalities in a variety of eye movement tasks. Exploratory eye movement (EEM dysfunction appears to be particularly specific to schizophrenia. However, the underlying mechanisms of EEM dysfunction in schizophrenia are not clearly understood. To assess the potential neuroanatomical substrates of EEM, we recorded EEM performance and conducted a voxel-based morphometric analysis of gray matter in 33 schizophrenic patients and 29 well matched healthy controls. In schizophrenic patients, decreased responsive search score (RSS and widespread gray matter density (GMD reductions were observed. Moreover, the RSS was positively correlated with GMD in distributed brain regions in schizophrenic patients. Furthermore, in schizophrenic patients, some brain regions with neuroanatomical deficits overlapped with some ones associated with RSS. These brain regions constituted an occipito-tempro-frontal circuitry involved in visual information processing and eye movement control, including the left calcarine cortex [Brodmann area (BA 17], the left cuneus (BA 18, the left superior occipital cortex (BA 18/19, the left superior frontal gyrus (BA 6, the left cerebellum, the right lingual cortex (BA 17/18, the right middle occipital cortex (BA19, the right inferior temporal cortex (BA 37, the right dorsolateral prefrontal cortex (BA 46 and bilateral precentral gyri (BA 6 extending to the frontal eye fields (FEF, BA 8. To our knowledge, we firstly reported empirical evidence that gray matter loss in the occipito-tempro-frontal neuroanatomical circuitry of visual processing system was associated with EEM performance in schizophrenia, which may be helpful for the future effort to reveal the underlying neural mechanisms for EEM disturbances in schizophrenia.

  15. Relationship of frontal D2/3 binding potentials to cognition

    DEFF Research Database (Denmark)

    Fagerlund, Birgitte; Pinborg, Lars H; Mortensen, Erik Lykke

    2013-01-01

    for set shifting. The main findings indicated a relation between D2/3 receptor binding in the frontal cortex and set shifting, planning and attention, but also support a differential involvement of cortical dopamine D2/3 receptor binding in at least some cognitive functions, perhaps particularly attention......Studies of in vivo dopamine receptors in schizophrenia have mostly focused on D2 receptors in striatal areas or on D1 receptors in cortex. No previous study has examined the correlation between cortical dopamine D2/3 receptor binding potentials and cognition in schizophrenia patients. The objective......, in schizophrenia patients compared to healthy people. The results suggest that cortical D2/3 receptor function may be more involved in some cognitive functions (i.e. attention, fluency and planning) in patients with schizophrenia than in healthy people, suggesting that information processing in schizophrenia may...

  16. Right ventrolateral prefrontal cortex mediates individual differences in conflict-driven cognitive control

    Science.gov (United States)

    Egner, Tobias

    2013-01-01

    Conflict adaptation – a conflict-triggered improvement in the resolution of conflicting stimulus or response representations – has become a widely used probe of cognitive control processes in both healthy and clinical populations. Previous functional magnetic resonance imaging (fMRI) studies have localized activation foci associated with conflict resolution to dorsolateral prefrontal cortex (dlPFC). The traditional group-analysis approach employed in these studies highlights regions that are, on average, activated during conflict resolution, but does not necessarily reveal areas mediating individual differences in conflict resolution, because between-subject variance is treated as noise. Here, we employed a complementary approach in order to elucidate the neural bases of variability in the proficiency of conflict-driven cognitive control. We analyzed two independent fMRI data sets of face-word Stroop tasks by using individual variability in the behavioral expression of conflict adaptation as the metric against which brain activation was regressed, while controlling for individual differences in mean reaction time and Stroop interference. Across the two experiments, a replicable neural substrate of individual variation in conflict adaptation was found in ventrolateral prefrontal cortex (vlPFC), specifically, in the right inferior frontal gyrus, pars orbitalis (BA 47). Unbiased regression estimates showed that variability in activity in this region accounted for ~40% of the variance in behavioral expression of conflict adaptation across subjects, thus documenting a heretofore unsuspected key role for vlPFC in mediating conflict-driven adjustments in cognitive control. We speculate that vlPFC plays a primary role in conflict control that is supplemented by dlPFC recruitment under conditions of suboptimal performance. PMID:21568631

  17. Activation of dominant hemisphere association cortex during naming as a function of cognitive performance in mild traumatic brain injury: Insights into mechanisms of lexical access

    Directory of Open Access Journals (Sweden)

    Mihai Popescu

    2017-01-01

    Full Text Available Patients with a history of mild traumatic brain injury (mTBI and objective cognitive deficits frequently experience word finding difficulties in normal conversation. We sought to improve our understanding of this phenomenon by determining if the scores on standardized cognitive testing are correlated with measures of brain activity evoked in a word retrieval task (confrontational picture naming. The study participants (n = 57 were military service members with a history of mTBI. The General Memory Index (GMI determined after administration of the Rivermead Behavioral Memory Test, Third Edition, was used to assign subjects to three groups: low cognitive performance (Group 1: GMI ≤ 87, n = 18, intermediate cognitive performance (Group 2: 88 ≤ GMI ≤ 99, n = 18, and high cognitive performance (Group 3: GMI ≥ 100, n = 21. Magnetoencephalography data were recorded while participants named eighty pictures of common objects. Group differences in evoked cortical activity were observed relatively early (within 200 ms from picture onset over a distributed network of left hemisphere cortical regions including the fusiform gyrus, the entorhinal and parahippocampal cortex, the supramarginal gyrus and posterior part of the superior temporal gyrus, and the inferior frontal and rostral middle frontal gyri. Differences were also present in bilateral cingulate cortex and paracentral lobule, and in the right fusiform gyrus. All differences reflected a lower amplitude of the evoked responses for Group 1 relative to Groups 2 and 3. These findings may indicate weak afferent inputs to and within an extended cortical network including association cortex of the dominant hemisphere in patients with low cognitive performance. The association between word finding difficulties and low cognitive performance may therefore be the result of a diffuse pathophysiological process affecting distributed neuronal networks serving a wide range of cognitive

  18. Isolated inferior mesenteric portal hypertension with giant inferior mesenteric vein and anomalous inferior mesenteric vein insertion

    Directory of Open Access Journals (Sweden)

    G Raghavendra Prasad

    2013-01-01

    Full Text Available Extrahepatic portal hypertension is not an uncommon disease in childhood, but isolated inferior mesenteric portal varices and lower gastrointestinal (GI bleed have not been reported till date. A 4-year-old girl presented with lower GI bleed. Surgical exploration revealed extrahepatic portal vein obstruction with giant inferior mesenteric vein and colonic varices. Inferior mesenteric vein was joining the superior mesenteric vein. The child was treated successfully with inferior mesenteric - inferior vena caval anastomosis. The child was relieved of GI bleed during the follow-up.

  19. Frontal and temporal cortical functional recovery after electroconvulsive therapy for depression: A longitudinal functional near-infrared spectroscopy study.

    Science.gov (United States)

    Hirano, Jinichi; Takamiya, Akihiro; Yamagata, Bun; Hotta, Syogo; Miyasaka, Yukiko; Pu, Shenghong; Iwanami, Akira; Uchida, Hiroyuki; Mimura, Masaru

    2017-08-01

    While the efficacy and tolerability of electroconvulsive therapy (ECT) for depression has been well established, the acute effects of ECT on brain function remain unclear. Particularly, although cognitive dysfunction has been consistently observed after ECT, little is known about the extent and time course of ECT-induced brain functional changes, as observed during cognitive tasks. Considering the acute antidepressant effects of ECT on depression, aberrant brain functional responses during cognitive tasks in patients with depression may improve immediately after this treatment. To clarify changes in cortical functional responses to cognitive tasks following ECT, we used task-related functional near-infrared spectroscopy (NIRS) to assess 30 patients with major depressive disorder or bipolar depression before and after an ECT series, as well as 108 healthy controls. Prior to ECT, patients exhibited significantly smaller [oxy-Hb] values in the bilateral frontal cortex during a letter verbal fluency task (VFT) compared with healthy controls. We found a significant increase in [oxy-Hb] values in the bilateral frontal cortex during the VFT after ECT in the patient group. A decrease in depression severity was significantly correlated with an increase in [oxy-Hb] values in the right ventrolateral prefrontal cortex following ECT. This is the first NIRS study to evaluate brain functional changes before vs. after ECT. Impaired functional responses, observed during the cognitive task in depressed patients, were normalized after ECT. Thus, recovery from abnormal functional responses to cognitive tasks in the frontal brain regions may be associated with the acute therapeutic effects of ECT for depression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. GABAA receptors, but not dopamine, serotonin or NMDA receptors, are increased in the frontal cortex from schizophrenic subjects

    International Nuclear Information System (INIS)

    Daen, B.; Hussain, T.; Scarr, E.; Tomaskovic, E.; Kitsoulis, S.; Pavey, G.; Hill, C.; Keks, N.; Opeskin, K.; Copolov, D.L.

    1998-01-01

    Full text: Having shown changed 5HT 2A receptor density in the frontal cortex (FC) from schizophrenic subjects (1) we now report on further studies of the molecular neuroanatomy of the FC in schizophrenia. We used in situ radioligand binding and autoradiography to measure the density of [ 3 H]8OH-DPAT (1 nM) binding (5HT 1A receptors) and [ 3 H]GR113808 (2.4nM) binding (5HT 4 receptors) in Brodmann's areas (BA) 8, 9 and 10 from 10 schizophrenic and 10 controls subjects. In addition, [ 3 H]muscimol (100 nM) binding (GABA A receptors), [ 3 H]TCP (20nM) binding (NMDA receptors), [ 3 H]SCH 23390 (3nM) binding (DA D 1 like receptors) and [ 3 H]YM-09151-2 (4nM) binding (DA D 2 -like receptors) was measured in BA 9 from 17 schizophrenic and 17 control subjects. Subjects were matched for age and sex and the post-mortem interval for tissue collection did not differ. There was a significant increase (18%) in the density of GABA A receptors in BA 9 from subjects with schizophrenia (p<0.05) with no change in NMDA, dopamine or serotonin receptors. These data support the hypothesis that there are selective changes in neurotransmitter receptors in the FC of subjects with schizophrenia. It is not yet clear if such changes contribute to the pathology of the illness. Copyright (1998) Australian Neuroscience Society