WorldWideScience

Sample records for inert gas ar

  1. Inert gas thrusters

    Science.gov (United States)

    Kaufman, H. R.; Robinson, R. S.

    1980-01-01

    Some advances in component technology for inert gas thrusters are described. The maximum electron emission of a hollow cathode with Ar was increased 60-70% by the use of an enclosed keeper configuration. Operation with Ar, but without emissive oxide, was also obtained. A 30 cm thruster operated with Ar at moderate discharge voltages give double-ion measurements consistent with a double ion correlation developed previously using 15 cm thruster data. An attempt was made to reduce discharge losses by biasing anodes positive of the discharge plasma. The reason this attempt was unsuccessful is not yet clear. The performance of a single-grid ion-optics configuration was evaluated. The ion impingement on the single grid accelerator was found to approach the value expected from the projected blockage when the sheath thickness next to the accelerator was 2-3 times the aperture diameter.

  2. Epileptiform activity during inert gas euthanasia of mice.

    Science.gov (United States)

    Gent, Thomas C; Detotto, Carlotta; Vyssotski, Alexei L; Bettschart-Wolfensberger, Regula

    2018-01-01

    Carbon dioxide (CO2) is one of the most commonly used euthanasia agents for mice, yet it is highly aversive and nociceptive. Inert gases are a possible alternative, however there are qualitative reports of seizures resulting from exposure. Here we evaluate epileptiform activity caused by inert gases (N2, He, Ar and Xe) and CO2 in mice chronically instrumented for EEG/EMG undergoing single-gas euthanasia. We found that N2, He and Ar caused epileptiform activity in all animals, CO2 in half of animals and no epileptiform activity produced by Xe. Atmospheric O2 concentrations at epileptiform activity onset were significantly higher for CO2 than for all other gases and occurred soon after loss of motion, whereas N2 and Ar epileptiform activity occurred at cessation of neocortical activity. Helium caused the longest epileptiform activity and these commenced significantly before isoelectric EEG. We did not detect any epileptiform activity during active behaviour. Taken together, these results demonstrate that whilst epileptiform activity from inert gases and particularly Ar and N2 are more prevalent than for CO2, their occurrence at the onset of an isoelectric EEG is unlikely to impact on the welfare of the animal. Epileptiform activity from these gases should not preclude them from further investigation as euthanasia agents. The genesis of epileptiform activity from CO2 is unlikely to result from hypoxia as with the inert gases. Helium caused epileptiform activity before cessation of neocortical activity and for a longer duration and is therefore less suitable as an alternative to CO2.

  3. Trapping of He clusters by inert-gas impurities in tungsten: First-principles predictions and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Manh, Duc, E-mail: duc.nguyen@ccfe.ac.uk; Dudarev, S.L.

    2015-06-01

    Properties of point defects resulting from the incorporation of inert-gas atoms in bcc tungsten are investigated systematically using first-principles density functional theory (DFT) calculations. The most stable configuration for the interstitial neon, argon, krypton and xenon atoms is the tetrahedral site, similarly to what was found earlier for helium in W. The calculated formation energies for single inert-gas atoms at interstitial sites as well as at substitutional sites are much larger for Ne, Ar, Kr and Xe than for He. While the variation of the energy of insertion of inert-gas defects into interstitial configurations can be explained by a strong effect of their large atomic size, the trend exhibited by their substitutional energies is more likely related to the covalent interaction between the noble gas impurity atoms and the tungsten atoms. There is a remarkable variation exhibited by the energy of interaction between inert-gas impurities and vacancies, where a pronounced size effect is observed when going from He to Ne, Ar, Kr, Xe. The origin of this trend is explained by electronic structure calculations showing that p-orbitals play an important part in the formation of chemical bonds between a vacancy and an atom of any of the four inert-gas elements in comparison with helium, where the latter contains only 1s{sup 2} electrons in the outer shell. The binding energies of a helium atom trapped by five different defects (He-v, Ne-v, Ar-v, Kr-v, Xe-v, where v denotes a vacancy in bcc-W) are all in excellent agreement with experimental data derived from thermal desorption spectroscopy. Attachment of He clusters to inert gas impurity atom traps in tungsten is analysed as a function of the number of successive trapping helium atoms. Variation of the Young modulus due to inert-gas impurities is analysed on the basis of data derived from DFT calculations.

  4. Fuel hydrogen retention of tungsten and the reduction by inert gas glow discharges

    Energy Technology Data Exchange (ETDEWEB)

    Hino, T., E-mail: tomhino@qe.eng.hokudai.ac.jp [Laboratory of Plasma Physics and Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Yamauchi, Y.; Kimura, Y. [Laboratory of Plasma Physics and Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Nishimura, K. [National Institute for Fusion Science, Toki-shi, Gifu-ken 509-5292 (Japan); Ueda, Y. [Graduate School of Engineering, Osaka University, Suita-shi 565-0872 (Japan)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The performances of inert gas glow discharges for reduction of fuel hydrogen retention in tungsten were systematically investigated. Black-Right-Pointing-Pointer For the tungsten with rough surface structure, the reduction of fuel hydrogen retention by inert gas discharges is quite small. Black-Right-Pointing-Pointer The deuterium glow discharge is quite useful to reduce the tritium retention in plasma facing walls in fusion reactor. Black-Right-Pointing-Pointer The wall baking with temperature higher than 700-800 K is also useful to reduce the tritium retention in plasma facing walls. - Abstract: Polycrystalline tungsten was exposed to deuterium glow discharge followed by He, Ne or Ar glow discharge. The amount of retained deuterium in the tungsten was measured using residual gas analysis. The amount of desorbed deuterium during the inert gas glow discharge was also measured. The amount of retained deuterium was 2-3 times larger compared with a case of stainless steel. The ratios of desorbed amount of deuterium by He, Ne and Ar glow discharges were 4.6, 3.1 and 2.9%, respectively. These values were one order of magnitude smaller compared with the case of stainless steel. The inert gas glow discharge is not suitable to reduce the fuel hydrogen retention for tungsten walls. However, the wall baking with a temperature higher than 700 K is suitable to reduce the fuel hydrogen retention. It is also shown that the use of deuterium glow discharge is effective to reduce the in-vessel tritium inventory in fusion reactors through the hydrogen isotope exchange.

  5. Recoverying device for sodium vapor in inert gas

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tamotsu; Nagashima, Ikuo

    1992-11-06

    A multi-pipe type heat exchanger for cooling an inert gas and a mist trap connected to the inert gas exit of the heat exchanger are disposed. A mist filter having bottomed pipes made of an inert gas-permeable sintered metal is disposed in the mist trap, and an inert gas discharge port is disposed at the upper side wall. With such a constitution, a high temperature inert gas containing sodium vapors can be cooled efficiently by the multi-pipe type heat exchanger capable of easy temperature control, thereby converting sodium vapors into mists, and the inert gas containing sodium mists can be flown into the mist trap. Sodium mists are collected by the mist filter and sodium mists flown down are discharged from the discharge port. With such procedures, a great amount of the inert gas containing sodium vapors can be processed continuously. (T.M.).

  6. INERT GAS SHIELD FOR WELDING

    Science.gov (United States)

    Jones, S.O.; Daly, F.V.

    1958-10-14

    S>An inert gas shield is presented for arc-welding materials such as zirconium that tend to oxidize rapidly in air. The device comprises a rectangular metal box into which the welding electrode is introduced through a rubber diaphragm to provide flexibility. The front of the box is provided with a wlndow having a small hole through which flller metal is introduced. The box is supplied with an inert gas to exclude the atmosphere, and with cooling water to promote the solidification of the weld while in tbe inert atmosphere. A separate water-cooled copper backing bar is provided underneath the joint to be welded to contain the melt-through at the root of the joint, shielding the root of the joint with its own supply of inert gas and cooling the deposited weld metal. This device facilitates the welding of large workpieces of zirconium frequently encountered in reactor construction.

  7. Inert gas transport in blood and tissues.

    Science.gov (United States)

    Baker, A Barry; Farmery, Andrew D

    2011-04-01

    This article establishes the basic mathematical models and the principles and assumptions used for inert gas transfer within body tissues-first, for a single compartment model and then for a multicompartment model. From these, and other more complex mathematical models, the transport of inert gases between lungs, blood, and other tissues is derived and compared to known experimental studies in both animals and humans. Some aspects of airway and lung transfer are particularly important to the uptake and elimination of inert gases, and these aspects of gas transport in tissues are briefly described. The most frequently used inert gases are those that are administered in anesthesia, and the specific issues relating to the uptake, transport, and elimination of these gases and vapors are dealt with in some detail showing how their transfer depends on various physical and chemical attributes, particularly their solubilities in blood and different tissues. Absorption characteristics of inert gases from within gas cavities or tissue bubbles are described, and the effects other inhaled gas mixtures have on the composition of these gas cavities are discussed. Very brief consideration is given to the effects of hyper- and hypobaric conditions on inert gas transport. © 2011 American Physiological Society. Compr Physiol 1:569-592, 2011.

  8. 46 CFR 154.910 - Inert gas piping: Location.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Inert gas piping: Location. 154.910 Section 154.910 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Atmospheric Control in Cargo Containment Systems § 154.910 Inert gas piping: Location. Inert gas piping must...

  9. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    Science.gov (United States)

    Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.

    2013-10-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.

  10. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    International Nuclear Information System (INIS)

    Kühn-Kauffeldt, M; Marques, J-L; Forster, G; Schein, J

    2013-01-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned

  11. Inert gas investigations of the Apollo 15 and 17 landing sites

    International Nuclear Information System (INIS)

    Jordan, J.L.

    1975-01-01

    The inert gas contents in size fractions of the following fines from the Apollo 15 site: 15071, 15501, 15511, 15421, and 15080 has been determined. In addition, the same for size fractions of fines 79221, 79241, and 79261 from depths of 0 to 2 cm, 2 to 7 cm, and 7 to 17 cm in a trench near Van Serg Crater at the Apollo 17 site was determined. The very low gas contents and lack of anticorrelation with grain diameter of 15421 suggests that these fines are undersaturated with respect to solar wind irradiation. The decrease in slope of the curves for gas concentration vs grain diameter of 15071 for successively heavier gases is interpreted to be the effects of the Rosiwal principle + comminution + agglutinate formation. Evidence for heavily irradiated (with respect to cosmic rays) zones deep within or beneath the regolith exists at both Apollo 15 and 17 landing sites. This may in part explain the ''missing'' cosmic ray record. Scatter between ''young'' and ''old'' age limits in 40 Ar vs 36 Ar plots exists for 15511, and the 3 trench fines from the Apollo 17 landing site. In the case of 15511 the observed ratios suggest that these may be the result of large impacts on the Apennine Front contributing material to the site where 15511 was collected. The observed 40 Ar/ 36 Ar ratios in the trench fines may be the result of excavation of materials with high 40 Ar/ 36 Ar ratios during the Van Serg event. The low apparent 40 K-- 40 Ar ages of the Apollo 15 fines are interpreted to be the result of addition of young 40 K-- 40 Ar age material (less than 1.8 by) from Autolycus and Aristillus, two large craters north of the site, to the older (3.3 by) mare materials

  12. Inert gases in a terra sample - Measurements in six grain-size fractions and two single particles from Lunar 20.

    Science.gov (United States)

    Heymann, D.; Lakatos, S.; Walton, J. R.

    1973-01-01

    Review of the results of inert gas measurements performed on six grain-size fractions and two single particles from four samples of Luna 20 material. Presented and discussed data include the inert gas contents, element and isotope systematics, radiation ages, and Ar-36/Ar-40 systematics.

  13. 46 CFR 154.908 - Inert gas generator: Location.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Inert gas generator: Location. 154.908 Section 154.908 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Atmospheric Control in Cargo Containment Systems § 154.908 Inert gas generator: Location. (a) Except as...

  14. A new understanding of inert gas narcosis

    International Nuclear Information System (INIS)

    Zhang Meng; Gao Yi; Fang Haiping

    2016-01-01

    Anesthetics are extremely important in modern surgery to greatly reduce the patient’s pain. The understanding of anesthesia at molecular level is the preliminary step for the application of anesthetics in clinic safely and effectively. Inert gases, with low chemical activity, have been found to cause anesthesia for centuries, but the mechanism is unclear yet. In this review, we first summarize the progress of theories about general anesthesia, especially for inert gas narcosis, and then propose a new hypothesis that the aggregated rather than the dispersed inert gas molecules are the key to trigger the narcosis to explain the steep dose-response relationship of anesthesia. (topical review)

  15. Nuclear Technology. Course 28: Welding Inspection. Module 28-3, Tungsten Inert Gas (TIG), Metal Inert Gas (MIG) and Submerged Arc Welding.

    Science.gov (United States)

    Espy, John

    This third in a series of ten modules for a course titled Welding Inspection presents the apparatus, process techniques, procedures, applications, associated defects, and inspection for the tungsten inert gas, metal inert gas, and submerged arc welding processes. The module follows a typical format that includes the following sections: (1)…

  16. Portable spectrometer monitors inert gas shield in welding process

    Science.gov (United States)

    Grove, E. L.

    1967-01-01

    Portable spectrometer using photosensitive readouts, monitors the amount of oxygen and hydrogen in the inert gas shield of a tungsten-inert gas welding process. A fiber optic bundle transmits the light from the welding arc to the spectrometer.

  17. TIG (Tungsten Inert Gas) welding

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    After having recalled the Tungsten Inert Gas process principle and the different alternative TIG processes, the author explains the advantages and limits of this process. The applications and recent developments are given. (O.M.)

  18. First principles study of inert-gas (helium, neon, and argon) interactions with hydrogen in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiang-Shan [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Hou, Jie [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Li, Xiang-Yan [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Wu, Xuebang, E-mail: xbwu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Liu, C.S., E-mail: csliu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Chen, Jun-Ling; Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-04-15

    We have systematically evaluated binding energies of hydrogen with inert-gas (helium, neon, and argon) defects, including interstitial clusters and vacancy-inert-gas complexes, and their stable configurations using first-principles calculations. Our calculations show that these inert-gas defects have large positive binding energies with hydrogen, 0.4–1.1 eV, 0.7–1.0 eV, and 0.6–0.8 eV for helium, neon, and argon, respectively. This indicates that these inert-gas defects can act as traps for hydrogen in tungsten, and impede or interrupt the diffusion of hydrogen in tungsten, which supports the discussion on the influence of inert-gas on hydrogen retention in recent experimental literature. The interaction between these inert-gas defects and hydrogen can be understood by the attractive interaction due to the distortion of the lattice structure induced by inert-gas defects, the intrinsic repulsive interaction between inert-gas atoms and hydrogen, and the hydrogen-hydrogen repelling in tungsten lattice.

  19. Relationships among ventilation-perfusion distribution, multiple inert gas methodology and metabolic blood-gas tensions.

    Science.gov (United States)

    Lee, A S; Patterson, R W; Kaufman, R D

    1987-12-01

    The retention equations upon which the Multiple Inert Gas Method is based are derived from basic principles using elementary algebra. It is shown that widely disparate distributions produce indistinguishable sets of retentions. The limits of resolution of perfused compartments in the VA/Q distribution obtainable by the use of the multiple inert gas method are explored mathematically, and determined to be at most shunt and two alveolar compartments ("tripartite" distribution). Every continuous distribution studied produced retentions indistinguishable from those of its unique "matching" tripartite distribution. When a distribution is minimally specified, it is unique. Any additional specification (increased resolution--more compartments) of the distribution results in the existence of an infinitude of possible distributions characterized by indistinguishable sets of retention values. No further increase in resolution results from the use of more tracers. When sets of retention values were extracted from published multiple inert gas method continuous distributions, and compared with the published "measured" retention sets, substantial differences were found. This illustrates the potential errors incurred in the practical, in vivo application of the multiple inert gas method. In preliminary studies, the tripartite distribution could be determined with at least comparable accuracy by blood-gas (oxygen, carbon dioxide) measurements.

  20. Using fumarolic inert gas composition to investigate magma dynamics at Campi Flegrei (Italy)

    Science.gov (United States)

    Chiodini, G.; Caliro, S.; Paonita, A.; Cardellini, C.

    2013-12-01

    Since 2000 the Campi Flegrei caldera sited in Neapolitan area (Italy), has showed signs of reactivation, marked by ground uplift, seismic activity, compositional variations of fumarolic effluents from La Solfatara, an increase of the fumarolic activity as well as of soil CO2 fluxes. Comparing long time series of geochemical signals with ground deformation and seismicity, we show that these changes are at least partially caused by repeated injections of magmatic fluid into the hydrothermal system. The frequency of these degassing episodes has increased in the last years, causing pulsed uplift episodes and swarms of low magnitude earthquakes. We focus here in the inert gas species (CO2-He-Ar-N2) of Solfatara fumaroles which displayed in the time spectacular and persistent variation trends affecting all the monitored vents. The observed variations, which include a continuous decrease of both N2/He and N2/CO2 ratios since 1985, paralleled by an increase of He/CO2, can not be explained neither with changes in processes of boiling-condensation in the local hydrothermal system nor with changes in the mixing proportions between a magmatic vapour and hydrothermal fluids. Consequently we investigated the possibility that the trends of inert gas species are governed by changes in the conditions controlling magma degassing at depth. We applied a magma degassing model, with the most recent updates for inert gas solubilities, after to have included petrologic constraints from the ranges of melt composition and reservoir pressure at Campi Flegrei. The model simulations for mafic melts (trachybasalt and shoshonite) show a surprising agreement with the measured data. Both decompressive degassing of an ascending magma and mixing between magmatic fluids exsolved at various levels along the ascent path can explain the long-time geochemical changes. Our work highlights that, in caldera systems where the presence of hydrothermal aquifers commonly masks the magmatic signature of reactive

  1. Mobility of supercooled liquid toluene, ethylbenzene, and benzene near their glass transition temperatures investigated using inert gas permeation.

    Science.gov (United States)

    May, R Alan; Smith, R Scott; Kay, Bruce D

    2013-11-21

    We investigate the mobility of supercooled liquid toluene, ethylbenzene, and benzene near their respective glass transition temperatures (Tg). The permeation rate of Ar, Kr, and Xe through the supercooled liquid created when initially amorphous overlayers are heated above their glass transition temperature is used to determine the diffusivity. Amorphous benzene crystallizes at temperatures well below its Tg, and as a result, the inert gas underlayer remains trapped until the onset of benzene desorption. In contrast, for toluene and ethylbenzene the onset of inert gas permeation is observed at temperatues near Tg. The inert gas desorption peak temperature as a function of the heating rate and overlayer thickness is used to quantify the diffusivity of supercooled liquid toluene and ethylbenzene from 115 to 135 K. In this temperature range, diffusivities are found to vary across 5 orders of magnitude (∼10(-14) to 10(-9) cm(2)/s). The diffusivity data are compared to viscosity measurements and reveal a breakdown in the Stokes-Einstein relationship at low temperatures. However, the data are well fit by the fractional Stokes-Einstein equation with an exponent of 0.66. Efforts to determine the diffusivity of a mixture of benzene and ethylbenzene are detailed, and the effect of mixing these materials on benzene crystallization is explored using infrared spectroscopy.

  2. Advanced On Board Inert Gas Generation System (OBBIGS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Valcor Engineering Corporation proposes to develop an advanced On Board Inert Gas Generation System, OBIGGS, for aircraft fuel tank inerting to prevent hazardous...

  3. Magnetotransport of Monolayer Graphene with Inert Gas Adsorption in the Quantum Hall Regime

    Science.gov (United States)

    Fukuda, A.; Terasawa, D.; Fujimoto, A.; Kanai, Y.; Matsumoto, K.

    2018-03-01

    The surface of graphene is easily accessible from outside, and thus it is a suitable material to study the effects of molecular adsorption on the electric transport properties. We investigate the magnetotransport of inert-gas-adsorbed monolayer graphene at a temperature of 4.4 K under a magnetic field ranging from 0 to 7 T. We introduce 4He or Ar gas at low temperature to graphene kept inside a sample cell. The magnetoresistance change ΔRxx and Hall resistance change ΔRxy from the pristine graphene are measured as a function of gate voltage and magnetic field for one layer of adsorbates. ΔRxx and ΔRxy show oscillating patterns related to the constant filling factor lines in a Landau-fan diagram. Magnitudes of these quantities are relatively higher around a charge neutral point and may be mass-sensitive. These conditions could be optimized for development of a highly sensitive gas sensor.

  4. Ethanol Dehydration by Evaporation and Diffusion in an Inert Gas Layer

    Energy Technology Data Exchange (ETDEWEB)

    In-Sick, Chung; Kyu-Min, Song [Korea Advanced Institute of Science and Technology, Taejeon (Korea, Republic of); Won-Hi, Hong; Ho-Nam, Chang [Korea Advanced Institute of Science and Technology, Taejeon (Korea, Republic of)

    1994-08-01

    Ethanol dehydration of azeotropic mixture was performed by using diffusion distillation apparatus consisting of a wetted-wall column with two concentric tubes. Ethanol-water mixtures evaporated below the boiling point was separated during the diffusion through the gap filled with an inert gas. As the temperature difference between evaporation part and condensation part was increased, the total flux increased but the selectivity decreased. The effect of the annular width on the selectivity was not significant but the total flux was decreased with decreases in the annular width. Inert gas has an effect on the diffusivity of evaporated gas components. The total flux in case of helium as inert gas was larger than that in case of air but the selectivity in case of using helium was lower. (author). 14 refs. 1 tab. 12 figs.

  5. A purification process for an inert gas system

    International Nuclear Information System (INIS)

    Raj, S.S.; Samanta, S.K.; Jain, N.G.; Deshingkar, D.S.; Ramaswamy, M.

    1984-01-01

    Special inert atmosphere is desired inside hot cells used for handling radioactive materials. In this report, details of experiments conducted to generate data required for the design of a system for maintaining very low levels of organic and acid vapours, oxygen and moisture in a nitrogen gas inert atmosphere, are described. Several grades of activated charcoals impregnated with 1% KOH were studied for the adsorption of acidic and organic vapours. A Pd/Al 2 O 3 catalyst was developed to remove oxygen with greater than 90% efficiency. For the removal of moisture, a regenerable molecular sieve 4A dual-bed was provided. Based on the performance data thus generated, an integrated purification system for nitrogen gas is proposed. (author)

  6. Inert gas handling in ion plating systems

    International Nuclear Information System (INIS)

    Goode, A.R.; Burden, M.St.J.

    1979-01-01

    The results of an investigation into the best methods for production and monitoring of the inert gas environment for ion plating systems are reported. Work carried out on Pirani gauges and high pressure ion gauges for the measurement of pressures in the ion plating region (1 - 50mtorr) and the use of furnaces for cleaning argon is outlined. A schematic of a gas handling system is shown and discussed. (UK)

  7. Impact of airway gas exchange on the multiple inert gas elimination technique: theory.

    Science.gov (United States)

    Anderson, Joseph C; Hlastala, Michael P

    2010-03-01

    The multiple inert gas elimination technique (MIGET) provides a method for estimating alveolar gas exchange efficiency. Six soluble inert gases are infused into a peripheral vein. Measurements of these gases in breath, arterial blood, and venous blood are interpreted using a mathematical model of alveolar gas exchange (MIGET model) that neglects airway gas exchange. A mathematical model describing airway and alveolar gas exchange predicts that two of these gases, ether and acetone, exchange primarily within the airways. To determine the effect of airway gas exchange on the MIGET, we selected two additional gases, toluene and m-dichlorobenzene, that have the same blood solubility as ether and acetone and minimize airway gas exchange via their low water solubility. The airway-alveolar gas exchange model simulated the exchange of toluene, m-dichlorobenzene, and the six MIGET gases under multiple conditions of alveolar ventilation-to-perfusion, VA/Q, heterogeneity. We increased the importance of airway gas exchange by changing bronchial blood flow, Qbr. From these simulations, we calculated the excretion and retention of the eight inert gases and divided the results into two groups: (1) the standard MIGET gases which included acetone and ether and (2) the modified MIGET gases which included toluene and m-dichlorobenzene. The MIGET mathematical model predicted distributions of ventilation and perfusion for each grouping of gases and multiple perturbations of VA/Q and Qbr. Using the modified MIGET gases, MIGET predicted a smaller dead space fraction, greater mean VA, greater log(SDVA), and more closely matched the imposed VA distribution than that using the standard MIGET gases. Perfusion distributions were relatively unaffected.

  8. Synthesis of Fe Nanoparticles Functionalized with Oleic Acid Synthesized by Inert Gas Condensation

    Directory of Open Access Journals (Sweden)

    L. G. Silva

    2014-01-01

    Full Text Available In this work, we study the synthesis of monodispersed Fe nanoparticles (Fe-NPs in situ functionalized with oleic acid. The nanoparticles were self-assembled by inert gas condensation (IGC technique by using magnetron-sputtering process. Structural characterization of Fe-NPs was performed by transmission electron microscopy (TEM. Particle size control was carried out through the following parameters: (i condensation zone length, (ii magnetron power, and (iii gas flow (Ar and He. Typically the nanoparticles generated by IGC showed diameters which ranged from ~0.7 to 20 nm. Mass spectroscopy of Fe-NPs in the deposition system allowed the study of in situ nanoparticle formation, through a quadrupole mass filter (QMF that one can use together with a mass filter. When the deposition system works without quadrupole mass filter, the particle diameter distribution is around +/−20%. When the quadrupole is in line, then the distribution can be reduced to around +/−2%.

  9. Sn and Cu oxide nanoparticles deposited on TiO{sub 2} nanoflower 3D substrates by Inert Gas Condensation technique

    Energy Technology Data Exchange (ETDEWEB)

    Kusior, A., E-mail: akusior@agh.edu.pl [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Kollbek, K. [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Kowalski, K. [Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Borysiewicz, M. [Institute of Electron Technology, al. Lotnikow 32/46, 02-668 Warszawa (Poland); Wojciechowski, T. [Institute of Physics Polish Academy of Science, al. Lotnikow 32/46, 02-668 Warszawa (Poland); Adamczyk, A.; Trenczek-Zajac, A.; Radecka, M. [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Zakrzewska, K. [Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland)

    2016-09-01

    Graphical abstract: - Highlights: • Inert Gas Condensation method yields non-agglomerated nanoparticles. • The growth of nanoparticles is controllable at the level of deposition. • Electrical conductivity increases with respect to pure nanostructured TiO{sub 2}. - Abstract: Sn and Cu oxide nanoparticles were deposited by Inert Gas Condensation (IGC) technique combined with dc magnetron sputtering onto nanoflower TiO{sub 2} 3D substrates obtained in the oxidation process of Ti-foil in 30% H{sub 2}O{sub 2}. Sputtering parameters such as insertion length and Ar/He flow rates were optimized taking into account the nanostructure morphology. Comparative studies with hydrothermal method were carried out. Surface properties of the synthesized nanomaterials were studied by Scanning Electron Microscopy, SEM, Atomic Force Microscopy, AFM, and X-ray Photoelectron Spectroscopy, XPS. X-ray diffraction, XRD and Raman spectroscopy were performed in order to determine phase composition. Impedance spectroscopy demonstrated the influence of nanoparticles on the electrical conductivity.

  10. TIG (Tungsten Inert Gas) welding; Le soudage TIG

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-09-15

    After having recalled the Tungsten Inert Gas process principle and the different alternative TIG processes, the author explains the advantages and limits of this process. The applications and recent developments are given. (O.M.)

  11. Bone blood flow measured by 41Ar clearance formed by 44Ca(n,α)41Ar

    International Nuclear Information System (INIS)

    Rosenthal, M.S.; DeLuca, P.M. Jr.; Pearson, D.W.; Nickles, R.J.

    1983-01-01

    A technique to measure regional inert gas washout in bone, in vivo, by measuring 41 Ar clearance formed by fast-neutron activation of 44 Ca has been developed. Following fast-neutron irradiation of whole rats, the perfusion-limited clearance of 41 Ar was measured for both dead and living rats. The clearance rate for the live rats indicate that the bone perfusion is in the range of 3 to 20 ml/100 Argon distribution volume

  12. Thermodilution versus inert gas rebreathing for estimation of effective pulmonary blood flow

    DEFF Research Database (Denmark)

    Christensen, P; Clemensen, P; Andersen, P K

    2000-01-01

    To compare measurements of the effective pulmonary blood flow (Qep, i.e., nonshunted fraction of cardiac output, Qt) by the inert gas rebreathing (RB) method and the thermodilution (TD) technique in critically ill patients.......To compare measurements of the effective pulmonary blood flow (Qep, i.e., nonshunted fraction of cardiac output, Qt) by the inert gas rebreathing (RB) method and the thermodilution (TD) technique in critically ill patients....

  13. Tracheal volume in the pupa of the Saturniid moth Hyalophora cecropia determined with inert gases.

    Science.gov (United States)

    Bridges, C R; Kestler, P; Scheid, P

    1980-06-01

    Tracheal volume (VTr) was measured in pupae of the Giant silkworm moth Hyalophora cecropia (Saturniidae, Lepidoptera, Insecta) using inert gas wash-out techniques. The animal was placed in a small vessel that was continuously ventilated (rate, V) by a gas mixture containing 20% O2 in N2; the inflowing (F1) and outflowing gas fractions (FE) of the vessel could be continuously measured by a respiratory mass spectrometer. At the onset of a spiracular constriction period, which was evidenced from the FECO2 trace, the mixture was rapidly replaced by pure Ar. At the subsequent burst, the amount of N2 emerging from the animal, MN2, was calculated from V and the difference (FE--F1)N2. VTr was calculated from MN2 and the N2 concentration in the tracheal system before constriction (assumed to equal that in the ventilating gas before replacement by Ar). Measurements were repeated with N2 and Ar replacing each other. VTr average 48 microliter . g-1 (range 39 to 59) for animals of 5.8 g average body weight (range 3.4 to 9.9), when inert gas solubility in body fluids was accounted for. Both size and stage in pupal development appear to affect VTr. These values show reasonable agreement with literature data, mostly obtained by emptying the tracheal gas space by mechanical compression.

  14. A scintillation detector for measuring inert gas beta rays

    International Nuclear Information System (INIS)

    Shi Hengchang; Yu Yunchang

    1989-10-01

    The inert gas beta ray scintillation detector, which is made of organic high polymers as the base and coated with compact fluorescence materials, is a lower energy scintillation detector. It can be used in the nuclear power plant and radioactive fields as a lower energy monitor to detect inert gas beta rays. Under the conditions of time constant 10 minutes, confidence level is 99.7% (3σ), the intensity of gamma rays 2.6 x 10 -7 C/kg ( 60 Co), and the minimum detectable concentration (MDC) of this detector for 133 Xe 1.2 Bq/L. The measuring range for 133 Xe is 11.1 ∼ 3.7 x 10 4 Bq/L. After a special measure is taken, the device is able to withstand 3 x 10 5 Pa gauge pressure. In the loss-of-cooolant-accident, it can prevent the radioactive gas of the detector from leaking. This detector is easier to be manufactured and decontaminated

  15. Multiple inert gas elimination technique by micropore membrane inlet mass spectrometry--a comparison with reference gas chromatography.

    Science.gov (United States)

    Kretzschmar, Moritz; Schilling, Thomas; Vogt, Andreas; Rothen, Hans Ulrich; Borges, João Batista; Hachenberg, Thomas; Larsson, Anders; Baumgardner, James E; Hedenstierna, Göran

    2013-10-15

    The mismatching of alveolar ventilation and perfusion (VA/Q) is the major determinant of impaired gas exchange. The gold standard for measuring VA/Q distributions is based on measurements of the elimination and retention of infused inert gases. Conventional multiple inert gas elimination technique (MIGET) uses gas chromatography (GC) to measure the inert gas partial pressures, which requires tonometry of blood samples with a gas that can then be injected into the chromatograph. The method is laborious and requires meticulous care. A new technique based on micropore membrane inlet mass spectrometry (MMIMS) facilitates the handling of blood and gas samples and provides nearly real-time analysis. In this study we compared MIGET by GC and MMIMS in 10 piglets: 1) 3 with healthy lungs; 2) 4 with oleic acid injury; and 3) 3 with isolated left lower lobe ventilation. The different protocols ensured a large range of normal and abnormal VA/Q distributions. Eight inert gases (SF6, krypton, ethane, cyclopropane, desflurane, enflurane, diethyl ether, and acetone) were infused; six of these gases were measured with MMIMS, and six were measured with GC. We found close agreement of retention and excretion of the gases and the constructed VA/Q distributions between GC and MMIMS, and predicted PaO2 from both methods compared well with measured PaO2. VA/Q by GC produced more widely dispersed modes than MMIMS, explained in part by differences in the algorithms used to calculate VA/Q distributions. In conclusion, MMIMS enables faster measurement of VA/Q, is less demanding than GC, and produces comparable results.

  16. Development of high frequency tungsten inert gas welding method

    International Nuclear Information System (INIS)

    Morisada, Yoshiaki; Fujii, Hidetoshi; Inagaki, Fuminori; Kamai, Masayoshi

    2013-01-01

    Highlights: ► A new ultrasonic wave TIG welding method was developed. ► The area of the blowholes decreased to less than about 1/8 in the normal TIG weld. ► The number of blowholes decreased with the decreasing frequency. ► The number of blowholes increased when the frequency was less than 15 kHz. ► The microstructure of the weld was refined by ultrasonic wave. -- Abstract: A new welding method, called high frequency tungsten inert gas (TIG) welding, was developed to decrease blowholes in a weld. A1050 aluminum alloy plates (100 mm l × 50 mm w × 5 mm t ) were welded at a frequency from 10 to 40 kHz. An Ar-1% hydrogen mixture was used as the shielding gas to generate blowholes in the experiments. The welding was performed in the horizontal position so that the blowholes can easily be a problem. For comparison, a normal TIG welding was also performed at 60 Hz. After welding, the distribution of the blowholes in the welds was observed in order to evaluate the effect of the sonic wave. The number of blowholes changed with the frequency. A frequency near 15 kHz is the most suitable to decrease the blowholes. Using this new method, the area of blowholes is decreased to less than about 1/8 of the normal TIG weld. This method is much more effective for decreasing the number of blowholes, compared with an ultrasonic wave vibrator which is directly fixed to the sample.

  17. Measurements of hydrogen concentration in liquid sodium by using an inert gas carrier method

    International Nuclear Information System (INIS)

    Funada, T.; Nihei, I.; Yuhara, S.; Nakasuji, T.

    1979-01-01

    A technique was developed to measure the hydrogen level in liquid sodium using an inert gas carrier method. Hydrogen was extracted into an inert gas from sodium through a thin nickel membrane in the form of a helically wound tube. The amount of hydrogen in the inert gas was analyzed by gas chromatography. The present method is unique in that it can be used over the wide range of sodium temperatures (150 to 700 0 C) and has no problems associated with vacuum systems. The partial pressure of hydrogen in sodium was determined as a function of cold-trap temperature (T/sub c/). Sieverts' constant (K/sub s/) was determined as a function of sodium temperature (T). From Sieverts' constant, the solubility of hydrogen in sodium is calculated. It was found that other impurities in sodium, such as (O) and (OH), have little effect on the hydrogen pressure in the sodium loop

  18. effects of metal inert gas welding parameters on some mechanical ...

    African Journals Online (AJOL)

    EFFECTS OF METAL INERT GAS WELDING PARAMETERS ON SOME MECHANICAL PROPERTIES OF AUSTENITIC STAINLESS STEEL IN ACIDIC ... Design Expert Software, Scanning Electron Microscopy (SEM), Rockwell Hardness Test, Monsanto Tensometer and Izod Impact Test were used to determine the ...

  19. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture

    Directory of Open Access Journals (Sweden)

    T. Karthikeya Sharma

    2015-11-01

    Full Text Available Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE. This paper investigates the effects of using argon (Ar gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine’s performance within the range studied.

  20. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture.

    Science.gov (United States)

    Karthikeya Sharma, T

    2015-11-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine's performance within the range studied.

  1. Experimental and theoretical analysis of effects of atomic, diatomic and polyatomic inert gases in air and EGR on mixture properties, combustion, thermal efficiency and NOx emissions of a pilot-ignited NG engine

    International Nuclear Information System (INIS)

    Li, Weifeng; Liu, Zhongchang; Wang, Zhongshu; Dou, Huili

    2015-01-01

    Highlights: • The specific heat ratio of the mixture increases with increasing Ar. • The thermal efficiency increases first and then decreases with increasing Ar. • Mechanisms of reducing NOx emissions are different for different dilution gases. • A suitable inert gas should be used to meet different requirements. - Abstract: Argon (Ar), nitrogen (N_2) and carbon dioxide (CO_2), present in exhaust gas recirculation (EGR) and air, are common atomic, diatomic and polyatomic inert gases, separately. As dilution gases, they are always added into the intake charge to reduce nitrogen oxides (NOx) emissions, directly or along with EGR and air. This paper presents the effects of Ar, N_2 and CO_2 on mixture properties, combustion, thermal efficiency and NOx emissions of pilot-ignited natural gas engines. Thermodynamic properties of the air-dilution gas mixture with increasing dilution gases, including density, gas constant, specific heat ratio, specific heat capacity, heat capacity and thermal diffusivity, were analyzed theoretically using thermodynamic relations and ideal gas equations based on experimental results. The thermal and diluent effects of dilution gases on NOx emissions were investigated based on Arrhenius Law and Zeldovich Mechanism, experimentally and theoretically. The experiments were arranged based on an electronically controlled heavy-duty, 6-cylinder, turbocharged, pilot-ignited natural gas engine. The resulted show that adding different inert gases into the intake charge had different influences on the thermodynamic properties of the air-dilution gas mixture. No great change in combustion phase was found with increasing dilution ratio (DR) of Ar, while the flame development duration increased significantly and CA50 moved far away from combustion top dead center (TDC) obviously with increasing DR for both of N_2 and CO_2. Adding Ar was superior in maintaining high thermal efficiencies than CO_2 and N_2, but adding CO_2 was superior in maintaining

  2. Process for separation of inert fission gases for waste gas of a reprocessing plant for nuclear fuel

    International Nuclear Information System (INIS)

    Schnez, H.

    1980-01-01

    The inert fission gases Kr and Xe released in the resolver and other waste gases are taken to an acid regeneration plant. Part of the inert fission gases is separated by compression, cooling and filtering and deposited. The other part flows back to the resolver as flushing gas so that a flushing gas circuit is formed, which prevents explosive gas mixtures occurring. (DG) [de

  3. Control characteristics of inert gas recovery plant

    International Nuclear Information System (INIS)

    Mikawa, Hiroji; Kato, Yomei; Kamiya, Kunio

    1980-01-01

    This paper presents a dynamic simulator and the control characteristics for a radioactive inert gas recovery plant which uses a cryogenic liquefying process. The simulator was developed to analyze the operational characteristics and is applicable to gas streams which contain nitrogen, argon, oxygen and krypton. The characteristics analysis of the pilot plant was performed after the accuracy of the simulator was checked using data obtained in fundamental experiments. The relationship between the reflux ratio and krypton concentration in the effluent gas was obtained. The decontamination factor is larger than 10 9 when the reflux ratio is more than 2. 0. The control characteristics of the plant were examined by changing its various parameters. These included the amount of gas to be treated, the heater power inside the evaporator and the liquid nitrogen level in the condenser. These characteristics agreed well with the values obtained in the pilot plant. The results show that the krypton concentration in the effluent gas increases when the liquid nitrogen level is decreased. However, in this case, the krypton concentration can be minimized by applying a feed forward control to the evaporator liquid level controller. (author)

  4. Spectroscopic Diagnostics of Barrier Discharge Plasmas in Mixtures of Zinc Diiodide with Inert Gases

    International Nuclear Information System (INIS)

    Guivan, N.N.; Malinin, A.N.

    2005-01-01

    The spectral characteristics of the emission of gas discharge atmospheric pressure plasmas in mixtures of zinc diiodide vapor with inert gases (He, Ne, Ar, Kr, and Xe) are investigated. The formation of a gas discharge plasma and the excitation of the components of a working mixture were performed in a high-frequency (with a repetition frequency of sinusoidal voltage pulses of 100 kHz) barrier discharge. The gas discharge emission was analyzed in the spectral range 200-900 nm with a resolution of 0.05 nm. Emission bands of ZnI(B-X) exciplex molecules and I* 2 excimer molecules, lines of inert gases, and emission bands of XeI* exciplex molecules (in Xe-containing mixtures) were revealed. It is ascertained that the strongest emission of ZnI* molecules is observed in ZnI 2 /He(Ne) mixtures. The regularities in the spectral characteristics of the gas discharge plasma emission are considered

  5. Seeded inert gas driven disk generator

    International Nuclear Information System (INIS)

    Joshi, N.K.; Venkatramani, N.; Rohatgi, V.K.

    1987-01-01

    This report outlines the present status of work being carried out in closed cycle MHD and disk generators. It gives the basic principles and discusses a proposal for setting up an experimental facility to study nonequilibrium plasmas using an inert gas driven disk generator. Disk geometry is a near ideal geometry for plasma studies since it has single or few pair electrodes combined with near perfect insulating walls. The proposed outlay of facility with components and subsystem is given. The facility may also be used to study the concept of fully ionized seed and to develop advanced diagnostic techniques. The absic equation describing the working parameters of such a system is also given in the Appendix. (author). 57 refs

  6. Distribution of inert gases in fines from the Cayley-Descartes region

    Science.gov (United States)

    Walton, J. R.; Lakatos, S.; Heymann, D.

    1973-01-01

    The inert gases in 14 different fines and in one sample of 2 to 4 mm fines from Apollo 16 were measured by mass spectroscopy with respect to trapped solar wind gases, cosmogenic gases, and 'parentless' Ar-40. Such studies are helpful for the understanding of regolith evolution, of transport of regolith fines, and of the lunar atmosphere. The Apollo 16 soils are unique because they represent, after Luna 20, the second and much more extensive record from the lunar highlands. The landing site presents the problem of materials from the Cayley Formation vs those from the Descartes Formation. There are two large, relatively fresh craters in the area, North Ray and South Ray, whose ejecta patterns may be recognized in the inert-gas record.

  7. Possible 85Kr influence on the plant metabolism. Investigation of inert gas 85Kr interaction with plants

    International Nuclear Information System (INIS)

    Butkus, D.

    1999-01-01

    Model experiments have shown that inert gas 85 Kr is accumulated by plants. The aim of the work was to determine the way of the capture of inert gas by growing plants: either only through their overground part from air or in addition through their overground part from air or in addition through roots which accumulate water dissolved materials. For this purpose potatoes were grown in the chamber where the 85 Kr volume activity was (3.6±0.1)*10 6 Bq*m -3 . It was determined that 85 Kr gas accumulation was greater in those plant parts which grow faster and are further from the soil. Measurement results of 85 Kr activity of a potato tuber slightly differed from the environment background activity. It shows that the main penetration of inert gas into the plant occurred by absorption from air. (author)

  8. Production of inert gas for substitution of a part of the cushion gas trapped in an aquifer underground storage reservoir

    International Nuclear Information System (INIS)

    Berger, L.; Arnoult, J.P.

    1990-01-01

    In a natural gas storage reservoir operating over the different seasons, a varying fraction of the injected gas, the cushion gas, remains permanently trapped. This cushion gas may represent more than half the total gas volume, and more than 50% of the initial investment costs for the storage facility. Studies conducted by Gaz de France, backed up by experience acquired over the years, have shown that at least 20% of the cushion gas could be replaced by a less expensive inert gas. Nitrogen, carbon dioxide, or a mixture of the two, satisfy the specifications required for this inert gas. Two main production methods exist: recovery of natural gas combustion products (mixture of 88% N 2 and 12% Co 2 ) and physical separation of air components (more or less pure N 2 , depending on industrial conditions). For the specific needs of Gaz de France, the means of production must be suited to its programme of partial cushion gas substitution. The equipment must satisfy requirements of autonomy, operating flexibility and mobility. Gaz de France has tested two units for recovery of natural gas combustion products. In the first unit, the inert gas is produced in a combustion chamber, treated in a catalytic reactor to reduce nitrogen oxide content and then compressed by gas engine driven compressors. In the second unit, the exhaust gases of the compressor gas engines are collected, treated to eliminate nitrogen oxides and then compressed. The energy balance is improved. A PSA method nitrogen production unit by selective absorption of nitrogen in the air, will be put into service in 1989. The specific features of these two methods and the reasons for choosing them will be reviewed. (author). 1 fig

  9. The Production of Polycyclic Aromatic Hydrocarbon Anions in Inert Gas Matrices Doped with Alkali Metals. Electronic Absorption Spectra of the Pentacene Anion (C22H14(-))

    Science.gov (United States)

    Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)

    1999-01-01

    The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).

  10. Arc melting in inert gas atmosphere of zirconium sponge

    International Nuclear Information System (INIS)

    Julio Junior, O.; Andrade, A.H.P. de

    1991-01-01

    The obtainment of metallic zirconium in laboratory scale with commercial and nuclear quality is the objective of the Metallurgy Department of IEN/CNEN - Brazil, so a melting procedure of zirconium sponge in laboratory scale using an arc furnace in inert atmosphere is developed. The effects of atmosphere operation, and the use of gas absorber and the sponge characteristics over the quality of button in as-cast reporting with hardness measures are described. (C.G.C.)

  11. Influence of composition and substrate bias on structure and inert-gas content of sputter-deposited Ni-La alloys

    International Nuclear Information System (INIS)

    Knoll, R.W.; McClanahan, E.D.

    1982-09-01

    X-ray diffraction patterns show that the disappearance of crystallinity in the deposit occurs gradually as the La content increases. At the same time, the deposit becomes saturated with Kr. Because there is no evidence of crystalline La metal or Ni-La intermetallic phase in the diffraction data, it may be concluded that each La atom creates a highly disordered (amorphous) region in the lattice, and that this region contains interstitial voids large enough to capture inert gas atoms. Saturation of the gas content with respect to La/Ni ratio might commence when these disordered regions begin to impinge upon one another. Finally, if inert gas atoms occupy interstitial voids within the deposit, then determination of the gas trapping characteristics of the material, using inert gas ions of different sizes, may be a means of studying the structure of glassy vapor-deposited materials. For example, the size distribution of the interstitial voids might be determined in this manner

  12. Fabrication of Miniature Titanium Capsule for Brachytherapy Sources Using Tungsten Inert Gas Method

    International Nuclear Information System (INIS)

    Naghdi, R.; Sheibani, Sh.; Tamizifar, M.

    2013-01-01

    The capsules containing radioactive materials as brachytherapy sources are used for implanting into some target organs for malignant disorders treatments, such as prostate, eyes, and brain cancers. The conventional method for sealing the tubes is to weld them using a laser beam which is now a part of tube melting methods (self welding). The purpose of this study was to seal miniature titanium tubes containing radioactive materials in the form of capsules. This study introduced a new method based on melting process. A piece of commercially pure titanium grade 2 in the form of disk was used for the experiment. The sample was melted at the top of the tube by a Tungsten Inert Gas welding device for a short time duration. After completion of the melting, the disk in the form of a drop was mixed with a small part of it and both were solidified and hence closed the tube. We evaluated the tubes for the metallurgical properties and seal process which took place by Tungsten Inert Gas in different zones, including the heat affected zone, fusion zone, and interface of the joint of the drop to the tube. Finally, the produced samples were tested according to the ISO2919 and ISO9978 and the results confirmed the Disk and Tungsten Inert Gas procedure.

  13. TIG AISI-316 welds using an inert gas welding chamber and different filler metals: Changes in mechanical properties and microstructure

    Directory of Open Access Journals (Sweden)

    Sánchez, A.

    2010-12-01

    Full Text Available This report analyses the influence of the use of an inert gas welding chamber with a totally inert atmosphere on the microstructure and mechanical properties of austenitic AISI 316L stainless steel TIG welds, using AISI ER316L, AISI 308L and Inconel 625 as filler metals. When compared with the typical TIG process, the use of the inert gas chamber induced changes in the microstructure, mainly an increase in the presence of vermicular ferrite and ferrite stringers, what resulted in higher yield strengths and lower values of hardness. Its effect on other characteristics of the joins, such as tensile strength, depended on the filler metal. The best combination of mechanical characteristics was obtained when welding in the inert gas chamber using Inconel 625 as filler metal.

    En este estudio se analiza la influencia que el uso de una cámara de soldadura de gas inerte tiene sobre la microestructura y las propiedades mecánicas de las soldaduras TIG en el acero inoxidable austenítico AISI-316L cuando se emplean AISI ER316L, AISI 308L e Inconel 625 como materiales de aporte. Cuando se compara con el típico proceso de TIG, el uso de una cámara de gas inerte induce cambios en la microestructura, incrementando la presencia de ferrita vermicular y de laminillas de ferrita, resultando en un aumento del límite elástico y una pérdida de dureza. Su influencia sobre otras características de las soldaduras como la carga de rotura depende de la composición del material de aporte. La mejor combinación de propiedades mecánicas se obtuvo usando el Inconel 625 como material de aporte y soldando en la cámara de gas inerte.

  14. Experimental study of an aircraft fuel tank inerting system

    Directory of Open Access Journals (Sweden)

    Cai Yan

    2015-04-01

    Full Text Available In this work, a simulated aircraft fuel tank inerting system has been successfully established based on a model tank. Experiments were conducted to investigate the influences of different operating parameters on the inerting effectiveness of the system, including flow rate of the inert gas (nitrogen-enriched air, inert gas concentration, fuel load of the tank and different inerting approaches. The experimental results show that under the same operating conditions, the time span of a complete inerting process decreased as the flow rate of inert gas was increased; the time span using the inert gas with 5% oxygen concentration was much longer than that using pure nitrogen; when the fuel tank was inerted using the ullage washing approach, the time span increased as the fuel load was decreased; the ullage washing approach showed the best inerting performance when the time span of a complete inerting process was the evaluation criterion, but when the decrease of dissolved oxygen concentration in the fuel was also considered to characterize the inerting effectiveness, the approach of ullage washing and fuel scrubbing at the same time was the most effective.

  15. TIG AISI-316 welds using an inert gas welding chamber and different filler metals: Changes in mechanical properties and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Pascual, M.; Salas, F.; Carcel, F.J.; Perales, M.; Sanchez, A.

    2010-07-01

    This report analyses the influence of the use of an inert gas welding chamber with a totally inert atmosphere on the microstructure and mechanical properties of austenitic AISI 316L stainless steel TIG welds, using AISI ER316L, AISI 308L and Inconel 625 as filler metals. When compared with the typical TIG process, the use of the inert gas chamber induced changes in the microstructure, mainly an increase in the presence of vermicular ferrite and ferrite stringers, what resulted in higher yield strengths and lower values of hardness. Its effect on other characteristics of the joins, such as tensile strength, depended on the filler metal. The best combination of mechanical characteristics was obtained when welding in the inert gas chamber using Inconel 625 as filler metal. (Author). 12 refs.

  16. Collision-induced polarizabilities of inert gas atoms

    International Nuclear Information System (INIS)

    Clarke, K.L.; Madden, P.A.; Buckingham, A.D.

    1978-01-01

    The use of polarizability densities to calculate collision-induced polarizabilities is investigated. One method for computing polarizabilities of inert gas diatoms employs atomic polarizability densities from finite-field Hartree-Fock calculations, together with classical equations for the polarization of dielectrics. It is shown that this model gives inaccurate values for both the local fields and the local response to non-uniform fields. An alternative method incorporating the same physical effects is used to compute the pair polarizabilities to first order in the interatomic interaction. To first order the pair contribution to the trace of the polarizability is negative at short range. The calculated anisotropy does not differ significantly from the DID value, whereas the polarizability density calculation gives a substantial reduction in the anisotropy. (author)

  17. NOx emission control in SI engine by adding argon inert gas to intake mixture

    International Nuclear Information System (INIS)

    Moneib, Hany A.; Abdelaal, Mohsen; Selim, Mohamed Y.E.; Abdallah, Osama A.

    2009-01-01

    The Argon inert gas is used to dilute the intake air of a spark ignition engine to decrease nitrogen oxides and improve the performance of the engine. A research engine Ricardo E6 with variable compression was used in the present work. A special test rig has been designed and built to admit the gas to the intake air of the engine for up to 15% of the intake air. The system could admit the inert gas, oxygen and nitrogen gases at preset amounts. The variables studied included the engine speed, Argon to inlet air ratio, and air to fuel ratio. The results presented here included the combustion pressure, temperature, burned mass fraction, heat release rate, brake power, thermal efficiency, volumetric efficiency, exhaust temperature, brake specific fuel consumption and emissions of CO, CO 2 , NO and O 2 . It was found that the addition of Argon gas to the intake air of the gasoline engine causes the nitrogen oxide to reduce effectively and also it caused the brake power and thermal efficiency of the engine to increase. Mathematical program has been used to obtain the mixture properties and the heat release when the Argon gas is used.

  18. Low-temperature thermal expansion of pure and inert gas-doped fullerite C sub 6 sub 0

    CERN Document Server

    Aleksandrovskii, A N; Eselson, V B; Gavrilko, V G; Manzhelii, V G; Udovidchenko, B G; Bakai, A S; Gadd, G E; Moricca, S; Sundqvist, B

    2003-01-01

    The low temperature (2-24 K) thermal expansion of pure (single-crystal and polycrystalline) C sub 6 sub 0 and polycrystalline C sub 6 sub 0 intercalated with He, Ne, Ar, and Kr has been investigated using the high-resolution capacitance dilatometer. The investigation of the time dependence of the sample length variations DELTA L(t) on heating by DELTA T shows that the thermal expansion is determined by the sum of positive and negative contributions, which have different relaxation times. The negative thermal expansion usually prevails at helium temperatures. The positive expansion is connected with the phonon thermalization of the system. The negative expansion is caused by reorientation of the C sub 6 sub 0 molecules. It is assumed that the reorientation is of a quantum character. The inert gas impurities affect the reorientation of the C6 sub sub 0 molecules very strongly, especially at liquid helium temperatures. A temperature hysteresis of the thermal expansion coefficient of Kr- and He-C sub 6 sub 0 solu...

  19. Gas transport during in vitro and in vivo preclinical testing of inert gas therapies

    Directory of Open Access Journals (Sweden)

    Ira Katz

    2016-01-01

    Full Text Available New gas therapies using inert gases such as xenon and argon are being studied, which require in vitro and in vivo preclinical experiments. Examples of the kinetics of gas transport during such experiments are analyzed in this paper. Using analytical and numerical models, we analyze an in vitro experiment for gas transport to a 96 cell well plate and an in vivo delivery to a small animal chamber, where the key processes considered are the wash-in of test gas into an apparatus dead volume, the diffusion of test gas through the liquid media in a well of a cell test plate, and the pharmacokinetics in a rat. In the case of small animals in a chamber, the key variable controlling the kinetics is the chamber wash-in time constant that is a function of the chamber volume and the gas flow rate. For cells covered by a liquid media the diffusion of gas through the liquid media is the dominant mechanism, such that liquid depth and the gas diffusion constant are the key parameters. The key message from these analyses is that the transport of gas during preclinical experiments can be important in determining the true dose as experienced at the site of action in an animal or to a cell.

  20. 46 CFR 153.923 - Inerting systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Inerting systems. 153.923 Section 153.923 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK... Requirements § 153.923 Inerting systems. The master shall ensure that the inert gas systems for any cargo that...

  1. Testing of a prototype of calibration facility for noble gas monitoring using 41Ar

    International Nuclear Information System (INIS)

    Saibathulham, Holnisar; Wurdiyanto, Gatot; Marsum, Pujadi

    2012-01-01

    A prototype of a calibration facility for noble gas monitoring using 41 Ar in the PTKMR-BATAN has been tested. The facility was designed in such a way that the standard source of gas can be reused. The radioactive 41 Ar source was obtained by thermal neutron reaction of 40 Ar(n, γ) 41 Ar using a thermal neutron flux of 4.8×10 13 neutrons per cm 2 per second in two minutes on the multipurpose G.A. Siwabessy Reactor (Batan, Serpong, Indonesia). Gamma spectrometry was used to measure the radioactivity and purity of 41 Ar. The spectrum of the 41 Ar observed yields an energy of 1294 keV because of the highest intensity (99.2%). The activity of 41 Ar was 2821 kBq and 4% of the expanded uncertainty. The time required for 41 Ar to reach homogeneity was 7 min, and the effectiveness of resuse was 53%. - Highlights: ► Testing of a calibration facility prototype for noble gas monitor using 41 Ar in PTKMR-BATAN. ► This facility was designed such that a standard radioactive gas source can be used repeatedly. ► Standardization of the 41 Ar is performed using gamma spectrometry. ► The time required for the 41 Ar gas to be distributed evenly throughout the cavity of the facility was 7 min. ► The effectiveness of repeated use was 53%.

  2. Mn nanoparticles produced by inert gas condensation

    International Nuclear Information System (INIS)

    Ward, M B; Brydson, R; Cochrane, R F

    2006-01-01

    The results from experiments using the inert gas condensation method to produce nanoparticles of manganese are presented. Structural and compositional data have been collected through electron diffraction, EDX (energy dispersive X-ray) and EELS (electron energy loss spectroscopy). Both Mn 3 O 4 and pure Mn particles have been produced. Moisture in untreated helium gas causes the particles to oxidize, whereas running the helium through a liquid nitrogen trap removes the moisture and produces β-Mn particles in a metastable state. The particle sizes and the size distribution have been determined. Particle sizes range from 2nm to above 100 nm, however the majority of particles lie in the range below 20 nm with a modal particle size of 6 nm. As well as the modal particle size of 6 nm, there is another peak in the frequency curve at 16 nm that represents another group particles that lie in the range 12 to 20 nm. The smaller particles are single crystals, but the larger particles appear to have a dense region around their edge with a less dense centre. Determination of their exact nature is ongoing

  3. The possibility of lasing in Ne+Ar ionic molecules pumped by a hard ioniser

    International Nuclear Information System (INIS)

    Boichenko, Aleksandr M; Yakovlenko, Sergei I

    2000-01-01

    The kinetic model of relaxation in the Ne-Ar-Kr mixture pumped by a hard ioniser is constructed in connection with the analysis of the possibility of lasing at the Ne + Ar→NeAr + transition of the inert-gas ionic exciplexes. The calculations based on the typical rates of plasmachemical reactions demonstrate that the lasing is possible but difficult to realise: One needs high pressures (greater than 16 bar) and high pumping densities (∼ 1 MW cm -3 ). In the most favourable cases, the laser efficiency lies between 0.05 and 0.25%. (active media)

  4. An in vitro lung model to assess true shunt fraction by multiple inert gas elimination.

    Directory of Open Access Journals (Sweden)

    Balamurugan Varadarajan

    Full Text Available The Multiple Inert Gas Elimination Technique, based on Micropore Membrane Inlet Mass Spectrometry, (MMIMS-MIGET has been designed as a rapid and direct method to assess the full range of ventilation-to-perfusion (V/Q ratios. MMIMS-MIGET distributions have not been assessed in an experimental setup with predefined V/Q-distributions. We aimed (I to construct a novel in vitro lung model (IVLM for the simulation of predefined V/Q distributions with five gas exchange compartments and (II to correlate shunt fractions derived from MMIMS-MIGET with preset reference shunt values of the IVLM. Five hollow-fiber membrane oxygenators switched in parallel within a closed extracorporeal oxygenation circuit were ventilated with sweep gas (V and perfused with human red cell suspension or saline (Q. Inert gas solution was infused into the perfusion circuit of the gas exchange assembly. Sweep gas flow (V was kept constant and reference shunt fractions (IVLM-S were established by bypassing one or more oxygenators with perfusate flow (Q. The derived shunt fractions (MM-S were determined using MIGET by MMIMS from the retention data. Shunt derived by MMIMS-MIGET correlated well with preset reference shunt fractions. The in vitro lung model is a convenient system for the setup of predefined true shunt fractions in validation of MMIMS-MIGET.

  5. Purification of inert gas circuits of nuclear power facilities from tritium and hydrogen

    International Nuclear Information System (INIS)

    Eichler, R.

    1985-08-01

    Removing hydrogen and tritium from the inert primary coolant of a high temperature reactor is very important in regard to the process heat disposition. In this work a gas purification for a high temperature module reactor was laid out constructionally and researched technically. This system removes the contamination of the primary circuit with the aid of chemical getter beds of Cer alloy particles. (orig./PW) [de

  6. In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding

    Science.gov (United States)

    Taparli, Ugur Alp; Jacobsen, Lars; Griesche, Axel; Michalik, Katarzyna; Mory, David; Kannengiesser, Thomas

    2018-01-01

    A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding. Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence of weld defects and changes in the chemical composition in the weld pool or in the two-phase region where solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and Mn II characteristic emissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observed with the termination of the welding plume due to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels, Mn accumulations on both sides of the weld could be detected between the heat affected zone (HAZ) and the base material.

  7. Modelling the transient behaviour of pulsed current tungsten-inert-gas weldpools

    Science.gov (United States)

    Wu, C. S.; Zheng, W.; Wu, L.

    1999-01-01

    A three-dimensional model is established to simulate the pulsed current tungsten-inert-gas (TIG) welding process. The goal is to analyse the cyclic variation of fluid flow and heat transfer in weldpools under periodic arc heat input. To this end, an algorithm, which is capable of handling the transience, nonlinearity, multiphase and strong coupling encountered in this work, is developed. The numerical simulations demonstrate the transient behaviour of weldpools under pulsed current. Experimental data are compared with numerical results to show the effectiveness of the developed model.

  8. Experimental observations of effects of inert gas on cavity formation during irradiation

    International Nuclear Information System (INIS)

    Farrell, K.

    1980-04-01

    Cavity (void) formation and swelling in non-fissile materials during neutron irradiation and charged particle bombardments are reviewed. Helium is the most important inert gas and is primarily active as a cavity nucleant. It also enhances formation of dislocation structure. Preimplantation of helium overstimulates cavity nucleation and gives a different temperature response of swelling than when helium is coimplanted during the damage process. Helium affects, and is affected by, radiation-induced phase instability. Many of these effects are explainable in terms of cavity nucleation on submicroscopic critical size gas bubbles, and on the influence of the neutral sink strength of such bubbles. Titanium and zirconium resist cavity formation when vacancy loops are present

  9. Experimental observations of effects of inert gas on cavity formation during irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, K.

    1980-04-01

    Cavity (void) formation and swelling in non-fissile materials during neutron irradiation and charged particle bombardments are reviewed. Helium is the most important inert gas and is primarily active as a cavity nucleant. It also enhances formation of dislocation structure. Preimplantation of helium overstimulates cavity nucleation and gives a different temperature response of swelling than when helium is coimplanted during the damage process. Helium affects, and is affected by, radiation-induced phase instability. Many of these effects are explainable in terms of cavity nucleation on submicroscopic critical size gas bubbles, and on the influence of the neutral sink strength of such bubbles. Titanium and zirconium resist cavity formation when vacancy loops are present.

  10. Chemical identities of radioiodine released from U3O8 in oxygen and inert gas atmospheres

    International Nuclear Information System (INIS)

    Tachikawa, E.; Nakashima, M.

    1977-01-01

    Irradiated U 3 O 8 was heated from room temperature to 1100 0 C in a temperature-programmed oven (5 0 C/min) in a flow of carrier gas. The iodine released to an inert gas was deposited in the temperature range from 200 to 300 0 C with a peak at 250 0 C (speciesA). This species is neither in a form combined with other fission products nor in elemental form. It is possibly a chemical combination with uranium. It reacts with oxygen, yielding species B characterized by its deposition at a temperature close to room temperature. The activation energy of this oxidation reaction was determined to be 6.0 +-0.5 Kcal/mol. Comparing the deposition-profile with those obtained with carrier-free I 2 and HI indicated that species B was I 2 . As for the formation of organic iodides accompanying the release in an inert gas, it was concluded that these were produced in radical reactions. Thus, in a presence of oxygen, organic iodides were formed in competition with the reactions of organic radicals with oxygen. (author)

  11. Comparison of methods for separating small quantities of hydrogen isotopes from an inert gas

    International Nuclear Information System (INIS)

    Willms, R.S.; Tuggle, D.; Birdsell, S.; Parkinson, J.; Price, B.; Lohmeir, D.

    1998-03-01

    It is frequent within tritium processing systems that a small amount of hydrogen isotopes (Q 2 ) must be separated from an inert gas such as He, Ar and N 2 . Thus, a study of presently available technologies for effecting such a separation was performed. A base case and seven technology alternatives were identified and a simple design of each was prepared. These technologies included oxidation-adsorption-metal bed reduction, oxidation-adsorption-palladium membrane reactor, cryogenic adsorption, cryogenic trapping, cryogenic distillation, hollow fiber membranes, gettering and permeators. It was found that all but the last two methods were unattractive for recovering Q 2 from N 2 . Reasons for technology rejection included (1) the method unnecessarily turns the hydrogen isotopes into water, resulting in a cumbersome and more hazardous operation, (2) the method would not work without further processing, and (3) while the method would work, it would only do so in an impractical way. On the other hand, getters and permeators were found to be attractive methods for this application. Both of these methods would perform the separation in a straightforward, essentially zero-waste, single step operation. The only drawback for permeators was that limited low-partial Q 2 pressure data is available. The drawbacks for getters are their susceptibility to irreversible and exothermic reaction with common species such as oxygen and water, and the lack of long-term operation of such beds. More research is envisioned for both of these methods to mature these attractive technologies

  12. Assessment of Stress Corrosion Cracking Resistance of Activated Tungsten Inert Gas-Welded Duplex Stainless Steel Joints

    Science.gov (United States)

    Alwin, B.; Lakshminarayanan, A. K.; Vasudevan, M.; Vasantharaja, P.

    2017-12-01

    The stress corrosion cracking behavior of duplex stainless steel (DSS) weld joint largely depends on the ferrite-austenite phase microstructure balance. This phase balance is decided by the welding process used, heat input, welding conditions and the weld metal chemistry. In this investigation, the influence of activated tungsten inert gas (ATIG) and tungsten inert gas (TIG) welding processes on the stress corrosion cracking (SCC) resistance of DSS joints was evaluated and compared. Boiling magnesium chloride (45 wt.%) environment maintained at 155 °C was used. The microstructure and ferrite content of different weld zones are correlated with the outcome of sustained load, SCC test. Irrespective of the welding processes used, SCC resistance of weld joints was inferior to that of the base metal. However, ATIG weld joint exhibited superior resistance to SCC than the TIG weld joint. The crack initiation and final failure were in the weld metal for the ATIG weld joint; they were in the heat-affected zone for the TIG weld joint.

  13. 40Ar/39Ar dating of Quaternary volcanic ashes by multi-collection noble gas mass spectrometry: protocols, precision and intercalibration

    DEFF Research Database (Denmark)

    Storey, Michael; Rivera, Tiffany; Flude, Stephanie

    ) higher mass resolution allows hydrocarbon interferences to be pseudo resolved for the different argon isotopes; and (iv) multi-collection, allowing more data to be gathered in a fixed time in comparison with single-collector peak-switching measurements. We evaluate (i) protocols for detector inter......The recent availability of commercial high-resolution, multi-collector, noble gas mass spectrometers equipped with ion-counting electron multipliers provides new opportunities for improved precision in 40Ar/39Ar dating. This is particularly true for single crystal dating of Quaternary aged samples...... where potassium-bearing phenocrysts may contain relatively small amounts of radiogenic 40Ar. In 2005, the Quaternary Dating Laboratory, Roskilde University, installed a Nu-Instruments multi-collector Noblesse noble gas mass spectrometer, which is configured with a Faraday detector and three ion...

  14. Radiochemical and inert gas analyses

    International Nuclear Information System (INIS)

    Andrews, J.N.

    1985-01-01

    The subject is discussed under the headings: introduction (radioelement solution in groundwaters; U and Th; Ra and Rn; atmospheric and radiogenic solution in groundwaters; atmosphere derived gases; radiogenic helium; radiogenic argon; biogenic gases); analytical methods (sampling; U-content and 234 U/ 238 U activity ratio; 222 Ru; 226 Ra; dissolved inert gases; 4 He in core samples); the gamma spectrometric determination of U,Th and K. Results are presented and discussed. (U.K.)

  15. Numerical modelling of inert gas bubble rising in liquid metal pool

    International Nuclear Information System (INIS)

    Pradeep, Arjun; Sharma, Anil Kumar; Ponraju, D.; Nashine, B K.

    2016-01-01

    Two-phase flow finds several applications in safe operation of Sodium-cooled Fast Reactor (SFR). Numerical modelling of bubble rise dynamics in liquid metal pool of SFR is essential for the evaluation of residence time and shape changes, which are of utmost importance for simulating associated heat and mass transfer processes involved in reactor safety. A numerical model has been developed based on OpenFOAM for the evaluation of two-dimensional inert gas bubble rise dynamics in stagnant liquid metal pool. The governing model equations are discretized and solved using the Volume of Fluid based solver available in OpenFOAM with appropriate initial and boundary conditions. The model has been validated with available numerical benchmark results for laminar transient two-phase flow. The model has been used to evaluate velocity and rise trajectory of argon gas bubble with different diameters through a pool of liquid sodium. (author)

  16. Determination of hydrogen in uranium-niobium-zirconium alloy by inert-gas fusion

    International Nuclear Information System (INIS)

    Carden, W.F.

    1979-12-01

    An improved method has been developed using inert-gas fusion for determining the hydrogen content in uranium-niobium-zirconium (U-7.5Nb-2.5Zr) alloy. The method is applicable to concentrations of hydrogen ranging from 1 to 250 micrograms per gram and may be adjusted for analysis of greater hydrogen concentrations. Hydrogen is determined using a hydrogen determinator. The limit of error for a single determination at the 95%-confidence level (at the 3.7-μg/g-hydrogen level) is +-1.4 micrograms per gram hydrogen

  17. Electron drift velocities of Ar-CO2-CF4 gas mixtures

    International Nuclear Information System (INIS)

    Markeloff, R.

    1994-11-01

    The muon spectrometer for the D0 experiment at Fermi National Accelerator Laboratory uses proportional drift tubes filled with an Ar-CO 2 -CF 4 gas mixture. Measurements of drift velocity as a function of electric field magnitude for 90%-5%-5% and 90%-4%-6% Ar-CO 2 -CF 4 mixtures are presented, and our operational experiences with these gases at D0 is discussed

  18. Relativistic coupled-cluster calculations of 20Ne, 40Ar, 84Kr, and 129Xe: Correlation energies and dipole polarizabilities

    International Nuclear Information System (INIS)

    Mani, B. K.; Angom, D.; Latha, K. V. P.

    2009-01-01

    We have carried out a detailed and systematic study of the correlation energies of inert gas atoms Ne, Ar, Kr, and Xe using relativistic many-body perturbation theory and relativistic coupled-cluster theory. In the relativistic coupled-cluster calculations, we implement perturbative triples and include these in the correlation energy calculations. We then calculate the dipole polarizability of the ground states using perturbed coupled-cluster theory.

  19. The Influences of Time and Velocity of Inert Gas on the Quality of theProcessing Product of Graphite Matrix on the Baking Step

    International Nuclear Information System (INIS)

    Imam-Dahroni; Dwi-Herwidhi; NS, Kasilani

    2000-01-01

    The research of the synthesis of matrix graphite on the step of bakingprocess was conducted, by focusing on the influence of time and velocityvariables of the inert gas. The investigation on baking times ranging from 5minutes to 55 minutes and by varying the velocity of inert gas from 0.30l/minute to 3.60 l/minute, resulted the product of different matrix.Optimizing at the time of operation and the flow rate of argon gas indicatedthat the baking time for 30 minutes and by the flow rate of argon gas of 2.60l/minute resulted best matrix graphite that has a hardness value of 11kg/mm 2 of hardness and the ductility of 1800 Newton. (author)

  20. Gas-phase evolution of Ar/H2O and Ar/CH4 dielectric barrier discharge plasmas

    Science.gov (United States)

    Barni, Ruggero; Riccardi, Claudia

    2018-04-01

    We present some experimental results of an investigation aimed to hydrogen production with atmospheric pressure plasmas, based on the use of dielectric barrier discharges, fed with a high-voltage alternating signal at frequency 30-50 kHz, in mixtures of methane or water vapor diluted in argon. The plasma gas-phase of the discharge was investigated by means of optical and electrical diagnostics. The emission spectra of the discharges was measured with a wide band spectrometer and a photosensor module, based on a photomultiplier tube. A Rogowski coil allowed to measure the electric current flowing into the circuit and a high voltage probe was employed for evaluating the voltage at the electrodes. The analysis of the signals of voltage and current shows the presence of microdischarges between the electrodes in two alternating phases during the period of oscillation of the applied voltage. The hydrogen concentration in the gaseous mixture was measured too. Besides this experimental campaign, we present also results from a numerical modeling of chemical kinetics in the gas-phase of Ar/H2O and Ar/CH4 plasmas. The simulations were conducted under conditions of single discharge to study the evolution of the system and of fixed frequency repeated discharging. In particular in Ar/H2O mixtures we could study the evolution from early atomic dissociation in the discharge, to longer time scales, when chemical reactions take place producing an increase of the density of species such as OH, H2O2 and subsequently of H and H2. The results of numerical simulations provide some insights into the evolution happening in the plasma gas-phase during the hydrogen reforming process.

  1. Alteration of natural "3"7Ar activity concentration in the subsurface by gas transport and water infiltration

    International Nuclear Information System (INIS)

    Guillon, Sophie; Sun, Yunwei; Purtschert, Roland; Raghoo, Lauren; Pili, Eric; Carrigan, Charles R.

    2016-01-01

    High "3"7Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of "3"7Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict "3"7Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating "3"7Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for "3"7Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural "3"7Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of "3"7Ar activity concentrations. The influence of soil water content on "3"7Ar production is shown to be negligible to first order, while "3"7Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI. - Highlights: • "3"7Ar in the subsurface as a key evidence to detect underground nuclear explosions. • Numerical modeling of "3"7Ar production and transport in variably saturated soil. • Large uncertainty on predicting "3"7Ar activity concentration in soil gas. • Control of subsurface "3"7Ar temporal variability by water infiltration events. • Limited influence of soil water content on "3"7Ar production.

  2. Fluid simulation of species concentrations in capacitively coupled N2/Ar plasmas: Effect of gas proportion

    Science.gov (United States)

    Liang, Ying-Shuang; Liu, Gang-Hu; Xue, Chan; Liu, Yong-Xin; Wang, You-Nian

    2017-05-01

    A two-dimensional self-consistent fluid model and the experimental diagnostic are employed to investigate the dependencies of species concentrations on the gas proportion in the capacitive N2/Ar discharges operated at 60 MHz, 50 Pa, and 140 W. The results indicate that the N2/Ar proportion has a considerable impact on the species densities. As the N2 fraction increases, the electron density, as well as the Ar+ and Arm densities, decreases remarkably. On the contrary, the N2 + density is demonstrated to increase monotonically with the N2 fraction. Moreover, the N density is observed to increase significantly with the N2 fraction at the N2 fractions below 40%, beyond which it decreases slightly. The electrons are primarily generated via the electron impact ionization of the feed gases. The electron impact ionization of Ar essentially determines the Ar+ density. For the N2 + production, the charge transition process between the Ar+ ions and the feed gas N2 dominates at low N2 fraction, while the electron impact ionization of N2 plays the more important role at high N2 fraction. At any gas mixtures, more than 60% Arm atoms are generated through the radiative decay process from Ar(4p). The dissociation of the feed gas N2 by the excited Ar atoms and by the electrons is responsible for the N formation at low N2 fraction and high N2 fraction, respectively. To validate the simulation results, the floating double probe and the optical emission spectroscopy are employed to measure the total positive ion density and the emission intensity originating from Ar(4p) transitions, respectively. The results from the simulation show a qualitative agreement with that from the experiment, which indicates the reliable model.

  3. Influence of the nitrogen gas addition in the Ar shielding gas on the erosion-corrosion of tube-to-tube sheet welds of hyper duplex stainless steel

    International Nuclear Information System (INIS)

    Kim, Hye-Jin; Jeon, Soon-Hyeok; Kim, Soon-Tae; Lee, In-Sung; Park, Yong-Soo

    2014-01-01

    Duplex stainless steels with nearly equal fraction of the ferrite(α) phase and austenite(γ) phase have been increasingly used for various applications such as power plants, desalination facilities due to their high resistance to corrosion, good weldability, and excellent mechanical properties. Hyper duplex stainless steel (HDSS) is defined as the future duplex stainless steel with a pitting resistance equivalent (PRE= wt.%Cr+3.3(wt.%Mo+0.5wt.%W)+30wt.%N) of above 50. However, when HDSS is welded with gas tungsten arc (GTA), incorporation of nitrogen in the Ar shielding gas are very important because the volume fraction of α-phase and γ-phase is changed and harmful secondary phases can be formed in the welded zone. In other words, the balance of corrosion resistance between two phases and reduction of Cr 2 N are the key points of this study. The primary results of this study are as follows. The addition of N 2 to the Ar shielding gas provides phase balance under weld-cooling conditions and increases the transformation temperature of the α-phase to γ-phase, increasing the fraction of γ-phase as well as decreasing the precipitation of Cr2N. In the anodic polarization test, the addition of nitrogen gas in the Ar shielding gas improved values of the electrochemical parameters, compared to the Pure Ar. Also, in the erosion-corrosion test, the HDSS welded with shielding gas containing N 2 decreased the weight loss, compared to HDSS welded with the Ar pure gas. This result showed the resistance of erosion-corrosion was increased due to increasing the fraction of γ-phase and the stability of passive film according to the addition N 2 gas to the Ar shielding gas. As a result, the addition of nitrogen gas to the shielding gas improved the resistance of erosion-corrosion

  4. Influence of the nitrogen gas addition in the Ar shielding gas on the erosion-corrosion of tube-to-tube sheet welds of hyper duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hye-Jin; Jeon, Soon-Hyeok; Kim, Soon-Tae; Lee, In-Sung; Park, Yong-Soo [Yonsei University, Seoul (Korea, Republic of)

    2014-03-15

    Duplex stainless steels with nearly equal fraction of the ferrite(α) phase and austenite(γ) phase have been increasingly used for various applications such as power plants, desalination facilities due to their high resistance to corrosion, good weldability, and excellent mechanical properties. Hyper duplex stainless steel (HDSS) is defined as the future duplex stainless steel with a pitting resistance equivalent (PRE= wt.%Cr+3.3(wt.%Mo+0.5wt.%W)+30wt.%N) of above 50. However, when HDSS is welded with gas tungsten arc (GTA), incorporation of nitrogen in the Ar shielding gas are very important because the volume fraction of α-phase and γ-phase is changed and harmful secondary phases can be formed in the welded zone. In other words, the balance of corrosion resistance between two phases and reduction of Cr{sub 2}N are the key points of this study. The primary results of this study are as follows. The addition of N{sub 2} to the Ar shielding gas provides phase balance under weld-cooling conditions and increases the transformation temperature of the α-phase to γ-phase, increasing the fraction of γ-phase as well as decreasing the precipitation of Cr2N. In the anodic polarization test, the addition of nitrogen gas in the Ar shielding gas improved values of the electrochemical parameters, compared to the Pure Ar. Also, in the erosion-corrosion test, the HDSS welded with shielding gas containing N{sub 2} decreased the weight loss, compared to HDSS welded with the Ar pure gas. This result showed the resistance of erosion-corrosion was increased due to increasing the fraction of γ-phase and the stability of passive film according to the addition N{sub 2} gas to the Ar shielding gas. As a result, the addition of nitrogen gas to the shielding gas improved the resistance of erosion-corrosion.

  5. Alteration of natural (37)Ar activity concentration in the subsurface by gas transport and water infiltration.

    Science.gov (United States)

    Guillon, Sophie; Sun, Yunwei; Purtschert, Roland; Raghoo, Lauren; Pili, Eric; Carrigan, Charles R

    2016-05-01

    High (37)Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of (37)Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict (37)Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating (37)Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for (37)Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural (37)Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of (37)Ar activity concentrations. The influence of soil water content on (37)Ar production is shown to be negligible to first order, while (37)Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Techniques for optimizing inerting in electron processors

    International Nuclear Information System (INIS)

    Rangwalla, I.J.; Korn, D.J.; Nablo, S.V.

    1993-01-01

    The design of an ''inert gas'' distribution system in an electron processor must satisfy a number of requirements. The first of these is the elimination or control of beam produced ozone and NO x which can be transported from the process zone by the product into the work area. Since the tolerable levels for O 3 in occupied areas around the processor are 3 in the beam heated process zone, or exhausting and dilution of the gas at the processor exit. The second requirement of the inerting system is to provide a suitable environment for completing efficient, free radical initiated addition polymerization. The competition between radical loss through de-excitation and that from O 2 quenching must be understood. This group has used gas chromatographic analysis of electron cured coatings to study the trade-offs of delivered dose, dose rate and O 2 concentrations in the process zone to determine the tolerable ranges of parameter excursions for production quality control purposes. These techniques are described for an ink coating system on paperboard, where a broad range of process parameters have been studied (D, D radical, O 2 ). It is then shown how the technique is used to optimize the use of higher purity (10-100 ppm O 2 ) nitrogen gas for inerting, in combination with lower purity (2-20,000 ppm O 2 ) non-cryogenically produced gas, as from a membrane or pressure swing adsorption generators. (author)

  7. Adsorption and desorption of radioactive inert gases in various materials

    International Nuclear Information System (INIS)

    Butkus, D.

    1999-01-01

    Peculiarities of the 85 Kr and 133 Xe adsorption and desorption processes in active carbon and paraffin are considered in the work. During the desorption process, the distribution of 85 Kr and 133 Xe atoms in active carbon particles is uneven: atoms in narrow micropores desorb the last. It is shown that by changing adsorption conditions the presence time of radioactive inert gases in an active carbon can be prolonged. The adsorption and desorption processes change in the adsorbent, which changes its aggregation state: adsorption occurs in a liquid absorbent and desorption - in a solid absorbent. Paraffin is just such an absorbent changing its aggregation state with low energy losses. It has been obtained that 133 Xe accumulates less in liquid paraffin that in an active carbon. The absorption of 85 Kr in paraffin is larger than in an active carbon (at 18-20 degrees Celsius), while desorption is slower. The velocity of radioactive inert gas atom motion in different places of a solid paraffin sample is different - it increases approaching the borders of the sample. Prolongation of the desorption time of radioactive inert gases from adsorbents and adsorbents in many cases is of a practical importance. In this work, it has been shown by model experiments that the intensity of adsorption and desorption processes for the same sorbents can be changed. Desorption intensity changes are related to the distribution of gas atoms on the surface of particles and in micropores. Desorption velocity decreases if inert gas atoms having entered micropores are 'closed' by condensed liquids in the environment. In this case an inert gas atom diffuses within the whole particle volume or through the condensed liquid. Radioactive inert gases 85 Kr and 133 Xe are absorbed not only in liquid paraffin but in solid one as well. Therefore, after a paraffin sample is hermetically closed in a glass dish, 85 Kr (gas) having diffused from this sample is repeatedly absorbed in it. The 85 Kr

  8. 39Ar/Ar measurements using ultra-low background proportional counters

    International Nuclear Information System (INIS)

    Hall, Jeter; Aalseth, Craig E.; Bonicalzi, Ricco M.; Brandenberger, Jill M.; Day, Anthony R.; Humble, Paul H.; Mace, Emily K.; Panisko, Mark E.; Seifert, Allen

    2016-01-01

    Age-dating groundwater and seawater using the 39 Ar/Ar ratio is an important tool to understand water mass-flow rates and mean residence time. Low-background proportional counters developed at Pacific Northwest National Laboratory use mixtures of argon and methane as counting gas. We demonstrate sensitivity to 39 Ar by comparing geological (ancient) argon recovered from a carbon dioxide gas well and commercial argon. The demonstrated sensitivity to the 39 Ar/Ar ratio is sufficient to date water masses as old as 1000 years. - Highlights: • 39 Ar/Ar age dating is important for understanding environmental water migration. • Ultra low background proportional counters have been developed. • 39 Ar is detected in atmospheric argon at a rate of 70.3 counts per day. The demonstrated background is 166 counts per day. • Age dating is possible for water with underground residence time of up to 1000 years.

  9. Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities

    International Nuclear Information System (INIS)

    MM Hall

    2006-01-01

    A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing

  10. Active flux tungsten inert gas welding of austenitic stainless steel AISI 304

    Directory of Open Access Journals (Sweden)

    D. Klobčar

    2016-10-01

    Full Text Available The paper presents the effects of flux assisted tungsten inert gas (A-TIG welding of 4 (10 mm thick austenitic stainless steel EN X5CrNi1810 (AISI 304 in the butt joint. The sample dimensions were 300 ´ 50 mm, and commercially available active flux QuickTIG was used for testing. In the planned study the influence of welding position and weld groove shape was analysed based on the penetration depth. A comparison of microstructure formation, grain size and ferrit number between TIG welding and A-TIG welding was done. The A-TIG welds were subjected to bending test. A comparative study of TIG and A-TIG welding shows that A-TIG welding increases the weld penetration depth.

  11. Deposition of Size-Selected Cu Nanoparticles by Inert Gas Condensation

    Directory of Open Access Journals (Sweden)

    Martínez E

    2009-01-01

    Full Text Available Abstract Nanometer size-selected Cu clusters in the size range of 1–5 nm have been produced by a plasma-gas-condensation-type cluster deposition apparatus, which combines a grow-discharge sputtering with an inert gas condensation technique. With this method, by controlling the experimental conditions, it was possible to produce nanoparticles with a strict control in size. The structure and size of Cu nanoparticles were determined by mass spectroscopy and confirmed by atomic force microscopy (AFM and scanning electron transmission microscopy (STEM measurements. In order to preserve the structural and morphological properties, the energy of cluster impact was controlled; the energy of acceleration of the nanoparticles was in near values at 0.1 ev/atom for being in soft landing regime. From SEM measurements developed in STEM-HAADF mode, we found that nanoparticles are near sized to those values fixed experimentally also confirmed by AFM observations. The results are relevant, since it demonstrates that proper optimization of operation conditions can lead to desired cluster sizes as well as desired cluster size distributions. It was also demonstrated the efficiency of the method to obtain size-selected Cu clusters films, as a random stacking of nanometer-size crystallites assembly. The deposition of size-selected metal clusters represents a novel method of preparing Cu nanostructures, with high potential in optical and catalytic applications.

  12. The smoke ion source: A device for the generation of cluster ions via inert gas condensation

    International Nuclear Information System (INIS)

    McHugh, K.M.; Sarkas, H.W.; Eaton, J.G.; Bowen, K.H.; Westgate, C.R.

    1989-01-01

    We report the development of an ion source for generating intense, continuous beams of both positive and negative cluster ions. This device is the result of the marriage of the inert gas condensation method with techniques for injecting electrons directly into expanding jets. In the preliminary studies described here, we have observed cluster ion size distributions ranging from n=1-400 for Pb n + and Pb n - and from n=12-5700 for Li n - . (orig.)

  13. The quantitative studies on gas explosion suppression by an inert rock dust deposit.

    Science.gov (United States)

    Song, Yifan; Zhang, Qi

    2018-07-05

    The traditional defence against propagating gas explosions is the application of dry rock dust, but not much quantitative study on explosion suppression of rock dust has been made. Based on the theories of fluid dynamics and combustion, a simulated study on the propagation of premixed gas explosion suppressed by deposited inert rock dust layer is carried out. The characteristics of the explosion field (overpressure, temperature, flame speed and combustion rate) at different deposited rock dust amounts are investigated. The flame in the pipeline cannot be extinguished when the deposited rock dust amount is less than 12 kg/m 3 . The effects of suppressing gas explosion become weak when the deposited rock dust amount is greater than 45 kg/m 3 . The overpressure decreases with the increase of the deposited rock dust amounts in the range of 18-36 kg/m 3 and the flame speed and the flame length show the same trends. When the deposited rock dust amount is 36 kg/m 3 , the overpressure can be reduced by 40%, the peak flame speed by 50%, and the flame length by 42% respectively, compared with those of the gas explosion of stoichiometric mixture. In this model, the effective raised dust concentrations to suppress explosion are 2.5-3.5 kg/m 3 . Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Accurate and precise 40Ar/39Ar dating by high-resolution, multi-collection, mass spectrometry

    DEFF Research Database (Denmark)

    Storey, Michael; Rivera, Tiffany; Flude, Stephanie

    New generation, high resolution, multi-collector noble gas mass spectrometers equipped with ion-counting electron multipliers provide opportunities for improved accuracy and precision in 40Ar/39Ar dating. Here we report analytical protocols and age cross-calibration studies using a NU-Instruments......New generation, high resolution, multi-collector noble gas mass spectrometers equipped with ion-counting electron multipliers provide opportunities for improved accuracy and precision in 40Ar/39Ar dating. Here we report analytical protocols and age cross-calibration studies using a NU......-Instruments multi-collector Noblesse noble gas mass spectrometer configured with a faraday detector and three ion-counting electron multipliers. The instrument has the capability to measure several noble gas isotopes simultaneously and to change measurement configurations instantaneously by the use of QUAD lenses...... (zoom optics). The Noblesse offer several advantages over previous generation noble gas mass spectrometers and is particularly suited for single crystal 40Ar/39Ar dating because of: (i) improved source sensitivity (ii) ion-counting electron multipliers, which have much lower signal to noise ratios than...

  15. First-principles calibration of 40Ar/39Ar mineral standards and complete extraction of 40Ar* from sanidine

    Science.gov (United States)

    Morgan, L. E.; Kuiper, K.; Mark, D.; Postma, O.; Villa, I. M.; Wijbrans, J. R.

    2010-12-01

    40Ar/39Ar geochronology relies on comparing argon isotopic data for unknowns to those for knowns. Mineral standards used as neutron fluence monitors must be dated by the K-Ar method (or at least referenced to a mineral of known K-Ar age). The commonly used age of 28.02 ± 0.28 Ma for the Fish Canyon sanidine (FCs) (Renne et al., 1998) is based upon measurements of radiogenic 40Ar in GA1550 biotite (McDougall and Roksandic, 1974), but underlying full data were not published (these measurements were never intended for use as an international standard), so uncertainties are difficult to assess. Recent developments by Kuiper et al. (2008) and Renne et al. (2010) are limited by their reliance on the accuracy of other systems. Modern technology should allow for more precise and accurate calibration of primary K-Ar and 40Ar/39Ar standards. From the ideal gas law, the number of moles of 40Ar in a system can be calculated from measurements of pressure, volume, and temperature. Thus we have designed and are proceeding to build a pipette system to introduce well-determined amounts of 40Ar into noble gas extraction lines and mass spectrometers. This system relies on components with calibrations traceable to SI unit prototypes, including a diaphragm pressure gauge (MKS Instruments), thermocouples, and a “slug” of an accurately determined volume to be inserted into the reservoir for volume determinations of the reservoir and pipette. The system will be renewable, with a lifetime of ca. 1 month for gas in the reservoir, and portable, to permit interlaboratory calibrations. The quantitative extraction of 40Ar* from the mineral standard is of highest importance; for sanidine standards this is complicated by high melt viscosity during heating. Experiments adding basaltic “zero age glass” (ZAG) to decrease melt viscosity are underway. This has previously been explored by McDowell (1983) with a resistance furnace, but has not been quantitatively addressed with laser heating

  16. Inerting of a Vented Aircraft Fuel Tank Test Article with Nitrogen-Enriched Air

    National Research Council Canada - National Science Library

    Burns, Michael

    2001-01-01

    ...) required to inert a vented aircraft fuel tank. NEA, generated by a hollow fiber membrane gas separation system, was used to inert a laboratory fuel tank with a single vent on top designed to simulate a transport category airplane fuel tank...

  17. Method of producing hydrogen, and rendering a contaminated biomass inert

    Science.gov (United States)

    Bingham, Dennis N [Idaho Falls, ID; Klingler, Kerry M [Idaho Falls, ID; Wilding, Bruce M [Idaho Falls, ID

    2010-02-23

    A method for rendering a contaminated biomass inert includes providing a first composition, providing a second composition, reacting the first and second compositions together to form an alkaline hydroxide, providing a contaminated biomass feedstock and reacting the alkaline hydroxide with the contaminated biomass feedstock to render the contaminated biomass feedstock inert and further producing hydrogen gas, and a byproduct that includes the first composition.

  18. Investigation on gas medium parameters for an ArF excimer laser through orthogonal experimental design

    Science.gov (United States)

    Song, Xingliang; Sha, Pengfei; Fan, Yuanyuan; Jiang, R.; Zhao, Jiangshan; Zhou, Yi; Yang, Junhong; Xiong, Guangliang; Wang, Yu

    2018-02-01

    Due to complex kinetics of formation and loss mechanisms, such as ion-ion recombination reaction, neutral species harpoon reaction, excited state quenching and photon absorption, as well as their interactions, the performance behavior of different laser gas medium parameters for excimer laser varies greatly. Therefore, the effects of gas composition and total gas pressure on excimer laser performance attract continual research studies. In this work, orthogonal experimental design (OED) is used to investigate quantitative and qualitative correlations between output laser energy characteristics and gas medium parameters for an ArF excimer laser with plano-plano optical resonator operation. Optimized output laser energy with good pulse to pulse stability can be obtained effectively by proper selection of the gas medium parameters, which makes the most of the ArF excimer laser device. Simple and efficient method for gas medium optimization is proposed and demonstrated experimentally, which provides a global and systematic solution. By detailed statistical analysis, the significance sequence of relevant parameter factors and the optimized composition for gas medium parameters are obtained. Compared with conventional route of varying single gas parameter factor sequentially, this paper presents a more comprehensive way of considering multivariables simultaneously, which seems promising in striking an appropriate balance among various complicated parameters for power scaling study of an excimer laser.

  19. Inerting ballast tanks

    Energy Technology Data Exchange (ETDEWEB)

    Baes, Gabriel L.; Bronneberg, Jos [SBM Offshore, AA Schiedam (Netherlands); Barros, Maria A.S.D. de [Universidade Estadual de Maringa (UEM), PR (Brazil)

    2012-07-01

    This report expands upon the work conducted by SBM Offshore to develop a tank preservation treatment, which is intended to achieve a service life of 30 years. This work focuses on the corrosion problems, in the ballast tanks, based on new built hulls, both for the Gas Exploration Market, the FLNG - Floating Liquefied Natural Gas, and for the Oil Exploration market - FPSO's - Floating Production Storage and offloading Units. Herein, the corrosion rate input comes from the various references related to the process of nitrogen injection, which is expected to extend the vessel's time life. The essential elements of this solution comprise the deoxygenation process, corrosion models, coating effects, tests from laboratory, shipboard tests, corrosion institutes and regulations applicable to the operation. The best corrosion protection system for ballast tanks area combines a coating system and an inert gas system. The condition of the tanks will be dependent upon the level of protection applied to the steel structure, including, but not limited to coating, cathodic protection, etc. There is a need for products which extend the life time. It is not sufficient, only have good theoretical base for the corrosion and an excellent treatment system. In addition, the design of the ships structure must also eliminate the presence of local stress concentrations which can result in fatigue cracking and rupture of the protective coating barrier starting the corrosion. As a direct result of this, more problems in corrosion can be mitigated, vessels can have a better corrosion performance with less maintenance and repairs to coating systems in ballast tanks. Furthermore ships will be positively impacted operationally due to less frequent dry docking. There is a huge potential in the application of inert gas to combat the corrosion rate inside the ballast tanks, one of the most corrosive environments on earth. This application can have a direct impact on vessel structure

  20. High temperature reactivity of Li-titanates with H2 contained in Ar purge

    International Nuclear Information System (INIS)

    Alvani, C.; Casadio, S.; Contini, V.; Giorgi, R.; Mancini, M.R.; Pierdominici, F.; Salernitano, E.; Tsuchiya, Kunihiko; Kawamura, Hiroshi

    2004-01-01

    The reduction of stoichiometric and Li-depleted Li 2 TiO 3 (Li-Ti) pebbles was studied by isothermal step-annealing at 900degC in Ar + 0.1%H 2 sweep gas (R-gas, TPR cycle) followed by their re-oxidation (TPO ramps) performed in O 2 and in H 2 O vapor doped inert gases. The pebbles were found to react by a complex process whose characteristics (reaction rate and reduction degree) seem to depend mainly on the compound Li-depletion degree. When the depletion degree is high a new phase could be observed to nucleate at their grain surfaces. A fine powder of Li 4 Ti 5 O 12 spinel oxide was also studied by TPR/TPO and by Thermo-analysis. Under reduction at 1000degC in flowing Ar + 3%H 2 gas the spinel powder was found to react decomposing into orthorhombic Li 0.14 TiO 2 phase and Li 2 O. TG-DTA patterns were consistent with the relative TPR/TPO spectra, including those performed on the Li-Ti pebbles. The high temperature reduction rate and degree of these materials were then assumed to depend on their spinel phase content which decomposes with nucleation of orthorhombic type Li x TiO 2 phases (with 0.14 ≤ x < 0.45) at the Li-depleted grain boundary surfaces. (author)

  1. Simultaneous measurement of the 37Ar and 39Ar activity

    International Nuclear Information System (INIS)

    Fisenko, A.V.

    1978-01-01

    A method for simultaneous measurement of 37 Ar and 39 Ar activities, based on the different radiation penetrabilities of these isotopes is described. Two versions are realized. In the first case, a two-section detector is used whose partition partially transmits 39 Ar β-radiation and fully absorbs 37 Ar Auger electrons. A mixture of 37 Ar and 39 Ar is introduced into an internal counter operating at anticoincidences with an external counter. In the second version, a scintillation detector is used as an external counter, while the 37 Ar- 39 Ar mixture is introduced into a gas counter with a thin cathode. The rated detection efficiency of 37 Ar radiation in both versions is 80%. When measurement duration is 500 h, the sensitivity is approximately 10 -14 and 6x10 -15 Ci for 39 Ar and 37 Ar respectively

  2. Highly stable hydrogenated gallium-doped zinc oxide thin films grown by DC magnetron sputtering using H2/Ar gas

    International Nuclear Information System (INIS)

    Takeda, Satoshi; Fukawa, Makoto

    2004-01-01

    The effects of water partial pressure (P H 2 O ) on electrical and optical properties of Ga-doped ZnO films grown by DC magnetron sputtering were investigated. With increasing P H 2 O , the resistivity (ρ) of the films grown in pure Ar gas (Ar-films) significantly increased due to the decrease in both free carrier density and Hall mobility. The transmittance in the wavelength region of 300-400 nm for the films also increased with increasing P H 2 O . However, no significant P H 2 O dependence of the electrical and optical properties was observed for the films grown in H 2 /Ar gas mixture (H 2 /Ar-films). Secondary ion mass spectrometry (SIMS) and X-ray diffraction (XRD) analysis revealed that hydrogen concentration in the Ar-films increased with increasing P H 2 O and grain size of the films decreases with increasing the hydrogen concentration. These results indicate that the origin of the incorporated hydrogen is attributed to the residual water vapor in the coating chamber, and that the variation of ρ and transmittance along with P H 2 O of the films resulted from the change in the grain size. On the contrary, the hydrogen concentration in H 2 /Ar-films was almost constant irrespective of P H 2 O and the degree of change in the grain size of the films versus P H 2 O was much smaller than that of Ar-films. These facts indicate that the hydrogen primarily comes from H 2 gas and the adsorption species due to H 2 gas preferentially adsorb to the growing film surface over residual water vapor. Consequently, the effects of P H 2 O on the crystal growth are reduced

  3. Analysis of cracks in stainless steel TIG [tungsten inert gas] welds

    International Nuclear Information System (INIS)

    Nakagaki, M.; Marschall, C.; Brust, F.

    1986-12-01

    This report contains the results of a combined experimental and analytical study of ductile crack growth in tungsten inert gas (TIG) weldments of austenitic stainless steel specimens. The substantially greater yield strength of the weld metal relative to the base metal causes more plastic deformation in the base metal adjacent to the weld than in the weld metal. Accordingly, the analytical studies focused on the stress-strain interaction between the crack tip and the weld/base-metal interface. Experimental work involved tests using compact (tension) specimens of three different sizes and pipe bend experiments. The compact specimens were machined from a TIG weldment in Type 304 stainless steel plate. The pipe specimens were also TIG welded using the same welding procedures. Elastic-plastic finite element methods were used to model the experiments. In addition to the J-integral, different crack-tip integral parameters such as ΔT/sub p/* and J were evaluated. Also, engineering J-estimation methods were employed to predict the load-carrying capacity of the welded pipe with a circumferential through-wall crack under bending

  4. Effect of ''outer'' sources and dissipative processes on abundance of inert gases in atmospheres of the Earth group planets

    International Nuclear Information System (INIS)

    Pavlov, A.K.

    1981-01-01

    The problem of abundance of inert gases in atmospheres of the Earth group planets is discussed. It is shown that introduction of He, Ne and 36 Ar into the Mars and Mercury atmospheres with interplanetary dust and from other external sources require the presence of special mechanisms of losses for these gases. For the Mars atmosphere dissipation on atmosphere interaction with solar wind during the periods of anomalously low temperatures is a probable mechanisms of Ne and 36 Ar losses. For the Mercury thermal dissipation for He and polar wind for other inert gases are possible. For all the planets of the Earth group dissipation on interaction with solar wind and introduction with interplanetary dust could play an important role at the early stages of evolution of planets [ru

  5. Laser-enhanced ionization of mercury atoms in an inert atmosphere with avalanche amplification of the signal.

    Science.gov (United States)

    Clevenger, W L; Matveev, O I; Cabredo, S; Omenetto, N; Smith, B W; Winefordner, J D

    1997-07-01

    A new method for laser-enhanced ionization detection of mercury atoms in an inert gas atmosphere is described. The method, which is based on the avalanche amplification of the signal resulting from the ionization from a selected Rydberg level reached by a three-step laser excitation of mercury vapor in a simple quartz cell, can be applied to the determination of this element in various matrices by the use of conventional cold atomization techniques. The overall (collisional + photo) ionization efficiency is investigated at different temperatures, and the avalanche amplification effect is reported for Ar and P-10 gases at atmospheric pressure. It is shown that the amplified signal is related to the number of charges produced in the laser-irradiated volume. Under amplifier noise-limited conditions, a detection limit of ∼15 Hg atoms/laser pulse in the interaction region is estimated.

  6. Gas separation techniques with liquid Ar for production of 11C ions

    International Nuclear Information System (INIS)

    Hojo, Satoru; Honma, Toshihiro; Kanazawa, Mitsutaka; Muramatsu, Masayuki; Sakamoto, Yukio; Sugiura, Akinori; Suzuki, Naokata; Noda, Koji

    2009-01-01

    Heavy-ion cancer therapy with 12 C-beam has been carried out at HIMAC (Heavy Ion Medical Accelerator in Chiba) in NIRS (National Institute of Radiological Sciences) since 1994. One of the feasibility study in HIMAC is to use a positron emitter beam such as 11 C-beam for the cancer therapy. A nuclear reaction, 14 N (p,α) 11 C will be applied in the present study; it can be expected to obtain a considerably large number of 11 C-particles by utilizing the commonly used short-lives RI production techniques for PET (Positron Emission Tomography). The amount of 11 C gas is limited in this technique. The 11 CO 2 gas was produced from N 2 gas that is irradiated high-energy proton beam. Therefore, CO 2 gas separation from N 2 gas is very important. The gas-separation techniques with cryogenic system utilizing a liquid Ar were tested by dummy gas (N 2 + 12 CO 2 ). Details of the gas-separation techniques and measurement of CO 2 partial pressure are discussed. (author)

  7. Numerical analysis on hydrogen stratification and post-inerting of hydrogen risk

    International Nuclear Information System (INIS)

    Peng, Cheng; Tong, Lili; Cao, Xuewu

    2016-01-01

    Highlights: • A three-dimensional computational model was built and the applicability was discussed. • The formation of helium stratification was further studied. • Three influencing factors on the post-inerting of hydrogen risk were analyzed. - Abstract: In the case of severe accidents, the risk of hydrogen explosion threatens the integrity of the nuclear reactor containment. According to nuclear regulations, hydrogen control is required to ensure the safe operation of the nuclear reactor. In this study, the method of Computational Fluid Dynamics (CFD) has been applied to analyze process of hydrogen stratification and the post-inerting of hydrogen risk in the Large-Scale Gas Mixing Facility. A three-dimensional computational model was built and the applicability of different turbulence models was discussed. The result shows that the helium concentration calculated by the standard k–ε turbulence model is closest to the experiment data. Through analyzing the formation of helium stratification at different injection velocities, it is found that when the injection mass flow is constant and the injection velocity of helium increases, the mixture of helium and air is enhanced while there is rarely influence on the formation of helium stratification. In addition, the influences of mass flow rate, injection location and direction and inert gas on the post-inerting of hydrogen risk have been analyzed and the results are as follows: with the increasing of mass flow rate, the mitigation effect of nitrogen on hydrogen risk will be further improved; there is an obvious local difference between the mitigation effects of nitrogen on hydrogen risk in different injection directions and locations; when the inert gas is injected at the same mass flow rate, the mitigation effect of steam on hydrogen risk is better than that of nitrogen. This study can provide technical support for the mitigation of hydrogen risk in the small LWR containment.

  8. Gas replacement system for fuel cell. Nenryo denchi no gas chikan hoshiki

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, T

    1990-02-14

    When stopping the operation of a fuel cell, the gas in the reaction gas system is purged using such an inert gas as nitrogen for inactivation. A gas source such as inert gas bomb must be prepared beforehand for the purpose. This invention relates to a method of production of inert gas from the air collected from atmosphere to use it as the purge gas. The air collected from the atmosphere is passed through an oxygen remover filled with oxidation catalyst to remove oxygen, and dehumidified by a dehumidifier filled with drying agent, the obtained inert drying gas with nitrogen as the main constituent being used as the purge gas. Copper system catalyst supported by silica is used as the oxidation catalyst, and silica gel as the drying agent. After the operation of the fuel cell is re-started, a part of the high temperature fuel gas extracted from the reaction gas system is introduced to the oxygen remover for the reduction of oxidation catalyst and for heat regeneration of dehumidifying agent by the contained hydrogen. 1 fig.

  9. The Role of Spraying Parameters and Inert Gas Shrouding in Hybrid Water-Argon Plasma Spraying of Tungsten and Copper for Nuclear Fusion Applications

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Kavka, Tetyana; Bertolissi, Gabriele; Ctibor, Pavel; Vilémová, Monika; Mušálek, Radek; Nevrlá, Barbara

    2013-01-01

    Roč. 22, č. 5 (2013), s. 744-755 ISSN 1059-9630 R&D Projects: GA MPO FR-TI2/702; GA TA ČR TA01010300 Institutional support: RVO:61389021 Keywords : plasma spraying * tungsten * copper * inert gas shrouding * water-argon plasma torch * gas shroud * hybrid plasma torch * influence of spray parameters * nuclear fusion * oxidation Subject RIV: JG - Metallurgy Impact factor: 1.491, year: 2013 http://link.springer.com/content/pdf/10.1007%2Fs11666-013-9895-x.pdf

  10. Method for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas

    Science.gov (United States)

    Bitensky, Mark W.; Yoshida, Tatsuro

    1997-01-01

    Method using oxygen removal for extending the useful shelf-life of refrigerated red blood cells. A cost-effective, 4.degree. C. storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. Preservation of adenosine triphosphate levels and reduction in hemolysis and in membrane vesicle production of red blood cells stored at 4.degree. C. for prolonged periods of time is achieved by removing oxygen therefrom at the time of storage; in particular, by flushing with an inert gas. Adenosine triphosphate levels of the stored red blood cells are boosted in some samples by addition of ammonium phosphate.

  11. Validation of myocardial blood flow estimation with nitrogen-13 ammonia PET by the argon inert gas technique in humans

    International Nuclear Information System (INIS)

    Kotzerke, J.; Glatting, G.; Neumaier, B.; Reske, S.N.; Hoff, J. van den; Hoeher, M.; Woehrle, J. n

    2001-01-01

    We simultaneously determined global myocardial blood flow (MBF) by the argon inert gas technique and by nitrogen-13 ammonia positron emission tomography (PET) to validate PET-derived MBF values in humans. A total of 19 patients were investigated at rest (n=19) and during adenosine-induced hyperaemia (n=16). Regional coronary artery stenoses were ruled out by angiography. The argon inert gas method uses the difference of arterial and coronary sinus argon concentrations during inhalation of a mixture of 75% argon and 25% oxygen to estimate global MBF. It can be considered as valid as the microspheres technique, which, however, cannot be applied in humans. Dynamic PET was performed after injection of 0.8±0.2 GBq 13 N-ammonia and MBF was calculated applying a two-tissue compartment model. MBF values derived from the argon method at rest and during the hyperaemic state were 1.03±0.24 ml min -1 g -1 and 2.64±1.02 ml min -1 g -1 , respectively. MBF values derived from ammonia PET at rest and during hyperaemia were 0.95±0.23 ml min -1 g -1 and 2.44±0.81 ml min -1 g -1 , respectively. The correlation between the two methods was close (y=0.92x+0.14, r=0.96; P 13 N-ammonia PET. (orig.)

  12. Experimental investigations of tungsten inert gas assisted friction stir welding of pure copper plates

    Science.gov (United States)

    Constantin, M. A.; Boșneag, A.; Nitu, E.; Iordache, M.

    2017-10-01

    Welding copper and its alloys is usually difficult to join by conventional fusion welding processes because of high thermal diffusivity of the copper, alloying elements, necessity of using a shielding gas and a clean surface. To overcome this inconvenience, Friction Stir Welding (FSW), a solid state joining process that relies on frictional heating and plastic deformation, is used as a feasible welding process. In order to achieve an increased welding speed and a reduction in tool wear, this process is assisted by another one (WIG) which generates and adds heat to the process. The aim of this paper is to identify the influence of the additional heat on the process parameters and on the welding joint properties (distribution of the temperature, hardness and roughness). The research includes two experiments for the FSW process and one experiment for tungsten inert gas assisted FSW process. The outcomes of the investigation are compared and analysed for both welding variants. Adding a supplementary heat source, the plates are preheated and are obtain some advantages such as reduced forces used in process and FSW tool wear, faster and better plasticization of the material, increased welding speed and a proper weld quality.

  13. The effect of electrode vertex angle on automatic tungsten-inert-gas welds for stainless steel 304L plates

    International Nuclear Information System (INIS)

    Maarek, V.; Sharir, Y.; Stern, A.

    1980-03-01

    The effect of electrode vertex angle on penetration depth and weld bead width, in automatic tungsten-inert-gas (TIG) dcsp bead-on-plate welding with different currents, has been studied for stainless steel 304L plates 1.5 mm and 8 mm thick. It has been found that for thin plates, wider and deeper welds are obtained when using sharper electrodes while, for thick plates, narrower and deeper welds are produced when blunt electrodes (vertex angle 180 deg) are used. An explanation of the results, based on a literature survey, is included

  14. Van der Waals bond in dimers: H2Ne, H2Ar, H2Kr

    International Nuclear Information System (INIS)

    Waaijer, M.

    1981-01-01

    The H 2 -inert gas dimers H 2 X, and particularly H 2 Ne, H 2 Ar and H 2 Kr, form the subject of this thesis and are loosely bound van der Waals complexes, which is reflected in the low number of bound states and the small anisotropic interaction. The H 2 X dimers studied are formed in a supersonic nozzle expansion, in which the internal energy is converted into the macroscopic flow energy, establishing an internal temperature drop to 3 K, which favours dimer formation. Because of this cooling the H 2 X dimers relax to the lowest rotational states. The hyperfine transitions have been measured using magnetic beam resonance and yield information about the isotropic as well as the anisotropic intermolecular potential in the range between the classical turning points and in the adjacent part of the repulsive branch. The sensitivity of the method is very high and slight changes in the intermolecular potential cause significant effects. The analysis of the measured hyperfine transitions incorporates all interacting states of the molecule, bound as well as unbound (continuum) states. For H 2 Ne, which is the best studied H 2 -inert gas system from the experimental point of view, the author succeeded in establishing an intermolecular potential, that provides a solid ground for comparison with future ab initio calculations. (Auth.)

  15. First in situ determination of gas transport coefficients (DO2, DAr and DN2) from bulk gas concentration measurements (O2, N2, Ar) in natural sea ice

    DEFF Research Database (Denmark)

    Crabeck, O.; Delille, B.; Rysgaard, Søren

    2014-01-01

    We report bulk gas concentrations of O2, N2, and Ar, as well as their transport coefficients, in natural landfast subarctic sea ice in southwest Greenland. The observed bulk ice gas composition was 27.5% O2, 71.4% N2, and 1.09% Ar. Most previous studies suggest that convective transport is the main...... driver of gas displacement in sea ice and have neglected diffusion processes. According to our data, brines were stratified within the ice, so that no convective transport could occur within the brine system. There- fore, diffusive transport was the main driver of gas migration. By analyzing the temporal...... evolution of an internal gas peak within the ice, we deduced the bulk gas transport coefficients for oxygen (DO2), argon (DAr), and nitrogen (DN2). The values fit to the few existing estimates from experimental work, and are close to the diffusivity values in water (1025 cm2 s21). We suggest that gas...

  16. An investigation of the microstructures and properties of metal inert ...

    Indian Academy of Sciences (India)

    Friction stir welding; metal inert gas welding; aluminum alloy 5083; ... (2008) have studied fatigue crack propagation behaviour of friction ..... Kumar K, Kailas SV 2008 The role of friction stir welding tool on material flow and weld formation,.

  17. Gas adsorption during storage of plutonium dioxide powders

    International Nuclear Information System (INIS)

    Cuillerdier, C.; Cossonnet, C.; Germain, M.

    1984-10-01

    Adsorption phenomena occuring in plutonium dioxide containers are studied for the determination of safe conditions for storage and transportation of plutonium dioxide powders. Adsorption on dried PuO 2 of air individual gases, influence of powder isotopic composition, chemisorption, effect of moisture are determined. Adsorption of dry air obeys an Elovich's law for its kinetics it is greatly exchange by α radiolysis. Pressure in the container can be reduced by storage under dry inert gas (Ar), decreasing the PuO 2 load and using powder containing preadsorbed water or wet air then radiolysis may occur (H 2 formation)

  18. Electron scattering in dense He-Ar gas mixtures: A pressure shift study

    International Nuclear Information System (INIS)

    Asaf, U.; Felps, W.S.; McGlynn, S.P.

    1989-01-01

    The dependence of the energies of high-n Rydberg states of CH 3 I on the molar composition of helium-argon mixtures (in the number density range 1.3x10 20 --5.6x10 20 cm -3 ) is reported. The energy shifts, when normalized to a given density value, are found to vary linearly with the mole fraction of either component of the binary, rare-gas mixture. The observed change in sign of the energy shift is attributable to the different signs of the electron scattering lengths for the two rare-gas components. As a result, there exists a mixture composition, at a mole ratio [He]/[Ar]=2.0, at which the shift is null. The experimental results for the gas mixture agree with the Fermi formula, as modified to include the Alekseev-Sobel'man polarization term. Effective electron scattering lengths and cross sections, polarizabilities, and thermal velocities are used to characterize the effects of the binary gas perturber system

  19. Process for the manufacture of a gas largely free of inert gases for synthesis. Verfahren zur Herstellung eines weitgehend inertfreien Gases zur Synthese

    Energy Technology Data Exchange (ETDEWEB)

    Eisenlohr, K H; Gaensslen, H; Kriebel, M; Tanz, H

    1983-11-10

    In a process for producing a gas largely free of inert gases for the synthesis of alcohols, particularly methanol, and of hydrocarbons from coal or heavy hydrocarbons by gasification under pressure with oxygen and steam, the crude gas is cooled, the impurities are removed by washing with methanol and the methanol is removed from the cold pure gas by molecular sieves. The pure gas is then cooled further by evaporation and methane is distilled from the liquid part while simultaneously obtaining the synthetic gas consisting of hydrogen and carbon monoxide which is largely free of methane. The methane is wholly or partly compressed and then split into carbon monoxide and hydrogen using steam and oxygen. The split gas is fed back and mixed with the synthesis gas or the partly cleaned crude gas. The synthesis gas heated to the ambient temperature, freed of impurities and free of methane is compressed to the required synthesis pressure.

  20. Method for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas

    Science.gov (United States)

    Bitensky, M.W.; Yoshida, Tatsuro

    1997-04-29

    A method is disclosed using oxygen removal for extending the useful shelf-life of refrigerated red blood cells. A cost-effective, 4 C storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. Preservation of adenosine triphosphate levels and reduction in hemolysis and in membrane vesicle production of red blood cells stored at 4 C for prolonged periods of time is achieved by removing oxygen from the red blood cells at the time of storage; in particular, by flushing with an inert gas. Adenosine triphosphate levels of the stored red blood cells are boosted in some samples by addition of ammonium phosphate. 4 figs.

  1. Gas metal arc weldability of 1.5 GPa grade martensitic steels

    Science.gov (United States)

    Hwang, Insung; Yun, Hyeonsang; Kim, Dongcheol; Kang, Munjin; Kim, Young-Min

    2018-01-01

    The gas metal arc weldability of 1.5 GPa grade martensitic (MART) steel was evaluated using both inverter direct current (DC) and DC pulse power type welders, under conditions of different welding currents, welding speeds, and shielding gasses. By investigating the bead appearance, tensile strength, and arc stability, it was determined that DC pulse power is better than inverter DC power for arc welding of 1.3 mm thick 1.5 GPa grade MART steel. Further, from the results of the weldability for various shielding gases, it was determined that mixed shielding gas is more effective for welding 1.5 GPa grade MART steel than is pure inert gas (Ar) or active (CO2) gas. In the case of pure shielding gas, no sound bead was formed under any conditions. However, when the mixed shielding gas was used, sound and fine beads were obtained.

  2. Dating method with /sup 39/Ar

    Energy Technology Data Exchange (ETDEWEB)

    Loosli, H H [Bern Univ. (Switzerland). Physikalisches Inst.

    1983-04-01

    The principles of a dating method based on the cosmic-ray-produced radioisotope /sup 39/Ar are given. Technical requirements such as background and standard gas samples and gas proportional counting systems are described. With samples extracted from Greenland ice it can be demonstrated that /sup 39/Ar ages agree with ages obtained by other methods. First results on ocean water samples show that with this isotope valuable information on ocean mixing and circulation can be expected. /sup 39/Ar results on groundwater samples disagree for some aquifers with conventional /sup 14/C ages; possible explanations are discussed, especially underground production of /sup 39/Ar.

  3. Post-inertization of large dry containments in case of beyond-design base events in PWR plants

    International Nuclear Information System (INIS)

    Tiltmann, M.; Risse, D.; Pana, P.; Huettermann, B.; Rohde, J.

    1993-12-01

    The objective is to present a summary of basic thoughts and concepts as described in various publications. The report points out the obvious advantages and disadvantages of individual strategies as wel as the requirements derived from the knowledge of possible accident sequences for such a concept. Scoping calculations on the injection of inert-gas into the containment during the progress of accidents revealed additional indications as regards e.g. the required amount of inert-gas, the injection rate, and the resulting pressure behaviour in the containment. Thereby an assessment of the effectiveness as well as of the feasibility of such measures has become possible. From the large number of different initial conclusions, two major ones are singled out and presented: 1) In principle, the technical realisation of post-inerting is possible. Thus a deflagration of hydrogen in the containment can be prevented; 2) Post-inerting cannot be realised independent of the accident progress. Specific criteria for carrying out such measures will require extensive examinations. (orig./HP) [de

  4. Energy dependence of the reaction rate constants of Ar+, Ar++ and N2+ ions with Cl2

    International Nuclear Information System (INIS)

    Lukac, P.; Holubcik, L.; Morva, I.; Lindinger, W.

    2002-01-01

    Dry etching processes using low temperature plasmas in Cl 2 and in Cl 2 -noble gas or nitrogen mixtures are common in the manufacture of semiconductor devices, but their chemical mechanisms are often poorly understood. Results are given for the reaction rate constant measurements of Ar + , Ar ++ , N 2 + ions with chlorine as a function of mean relative kinetic energy. The experiments were performed by using the innsbruck flow drift tube (IFDT) apparatus. Measurements were done at various E/N values, where E is the electric field strength and N the buffer gas density in the drift section. The mean relative kinetic energy KE CM between the ions and the neutral chlorine Cl 2 was calculated using the Wanniers formula. It was found that The N 2 + , Ar + and Ar ++ positive ions react with chlorine Cl 2 very fast and the corresponding reaction rate coefficients depend on the mean relative kinetic energy. For the reaction of Ar - with Cl 2 , its reaction coefficient depends also on the buffer gas. It can imply the enhancement of Cl 2 + ions during etching of Si in the Ar/Cl 2 mixtures. (nevyjel)

  5. Hexavalent chromium content in stainless steel welding fumes is dependent on the welding process and shield gas type.

    Science.gov (United States)

    Keane, Michael; Stone, Samuel; Chen, Bean; Slaven, James; Schwegler-Berry, Diane; Antonini, James

    2009-02-01

    Occupational exposure to welding fumes is a known health hazard. To isolate elements in stainless steel welding fumes with high potential for adverse health outcomes, fumes were generated using a robotic gas metal arc system, using four shield gases of varying oxygen content. The objective was to measure Cr(VI) concentrations in a broad spectrum of gas metal arc welding processes, and identify processes of exceptionally high or low Cr(VI) content. The gases used were 95% Ar/5% O(2), 98% Ar/2% O(2), 95% Ar/5%CO(2), and 75% He/25% Ar. The welder was operated in axial spray mode (Ar/O(2), Ar/CO(2)), short-circuit (SC) mode (Ar/CO(2) low voltage and He/Ar), and pulsed axial-spray mode (98% Ar/2% O(2)). Results indicate large differences in Cr(VI) in the fumes, with Ar/O(2) (Pulsed)>Ar/O(2)>Ar/CO(2)>Ar/CO(2) (SC)>He/Ar; values were 3000+/-300, 2800+/-85, 2600+/-120, 1400+/-190, and 320+/-290 ppm respectively (means +/- standard errors for 2 runs and 3 replicates per run). Respective rates of Cr(VI) generation were 1.5, 3.2, 4.4, 1.3, and 0.46 microg/min; generation rates were also calculated in terms of microg Cr(VI) per metre of wire used. The generation rates of Cr(VI) increased with increasing O(3) concentrations. Particle size measurements indicated similar distributions, but somewhat higher >0.6 microm fractions for the short-circuit mode samples. Fumes were also sampled into 2 selected size ranges, a microspatter fraction (>or=0.6 microm) and a fine (welding type and shield gas type, and this presents an opportunity to tailor welding practices to lessen Cr(VI) exposures in workplaces by selecting low Cr(VI)-generating processes. Short-circuit processes generated less Cr(VI) than axial-spray methods, and inert gas shielding gave lower Cr(VI) content than shielding with active gases. A short circuit He/Ar shielded process and a pulsed axial spray Ar/O(2) process were both identified as having substantially lower Cr(VI) generation rates per unit of wire used relative

  6. Mechanical behaviour and diffusion of gas during neutron irradiation of actinides in ceramic inert matrices

    NARCIS (Netherlands)

    Neeft, E.A.C.

    2004-01-01

    Fission of actinides from nuclear waste in inert matrices (materials without uranium) can reduce the period in time that nuclear waste is more radiotoxic than uranium ore that is the rock from which ordinary reactor fuel is made. A pioneering study is performed with the inert matrices: MgO, MgAl2O4,

  7. Study of the characteristics of duplex stainless steel activated tungsten inert gas welds

    International Nuclear Information System (INIS)

    Chern, Tsann-Shyi; Tseng, Kuang-Hung; Tsai, Hsien-Lung

    2011-01-01

    The purpose of this study is to investigate the effects of the specific fluxes used in the tungsten inert gas (TIG) process on surface appearance, weld morphology, angular distortion, mechanical properties, and microstructures when welding 6 mm thick duplex stainless steel. This study applies a novel variant of the autogenous TIG welding, using oxide powders (TiO 2 , MnO 2 , SiO 2 , MoO 3 , and Cr 2 O 3 ), to grade 2205 stainless steel through a thin layer of the flux to produce a bead-on-plate joint. Experimental results indicate that using SiO 2 , MoO 3 , and Cr 2 O 3 fluxes leads to a significant increase in the penetration capability of TIG welds. The activated TIG process can increase the joint penetration and the weld depth-to-width ratio, and tends to reduce the angular distortion of grade 2205 stainless steel weldment. The welded joint also exhibited greater mechanical strength. These results suggest that the plasma column and the anode root are a mechanism for determining the morphology of activated TIG welds.

  8. Cross Sections of the 36Ar(d,α)34mCl, 40Ar(d,α)38Cl and 40Ar(d,p)41Ar Nuclear Reactions below 8.4 MeV

    Science.gov (United States)

    Engle, J W; Severin, G W; Barnhart, T E; Knutson, L D; Nickles, R J

    2011-01-01

    We have measured the cross section for production of the medically interesting isotope 34mCl, along with 38Cl and 41Ar, using deuteron bombardments of 36Ar and 40Ar below 8.4 MeV. ALICE/ASH analytical codes were employed to determine the shape of nuclear excitation functions, and experiments were performed using the University of Wisconsin tandem electrostatic accelerator to irradiate thin targets of argon gas. PMID:22041299

  9. Transformation of a beta gamma hot-cell under air in a tight hot-cell under inert gas

    International Nuclear Information System (INIS)

    Lambert, G.

    1981-05-01

    For several years now, fuel elements from graphite gas reactors have been stored in pools at the Cadarache Center after having been subjected (in general) to laboratory examinations. The CEA has adopted the following re-transfer procedure for these fuel elements while awaiting reprocessing: the fuel elements are extracted from their existing cartridges and transferred into new welded stainless steel containers capable of assuring long term storage. The storage, however, envisaged is temporary and is realized in the Pegase pool, specially adapted for this purpose. This re-transfer operation is envisaged for some 2.300 containers. All the appropriate safety measures will be taken. The various different fuel materials handled are often highly irradiated. The presence of water in certain containers due to loss of leaktightness has led to a series of chemical reactions (corrosion of uranium by water, reactions with magnesium, formation of hydrides). As a result, existing envelopes can contain UO 2 , UH 3 and hydrogen; operations must therefore being carried out in an inert atmosphere (preferably argon). The re-transfer process can not therefore be carried out in a conventional cell. It is therefore envisaged to carry out this work in a leaktight cell in an inert atmosphere. A laboratory cell could be modified to perform these functions. This cell would be reconverted to its original state when operations terminate (in about 3 years time) [fr

  10. Electron scattering from 36Ar and 40Ar

    International Nuclear Information System (INIS)

    Finn, J.M.

    1975-01-01

    The argon isotopes, 36 Ar and 40 Ar, have been investigated using electron scattering at the high-resolution Linac facilities of the National Bureau of Standards. Both elastic scattering and scattering to low-lying states have been observed. A high-pressure, low-volume gas target cell was designed and developed for this experiment. The cell features a transmission geometry and has resolution comparable to solid targets. Spectra were obtained at incident beam energies ranging from 65 to 115 MeV at scattering angles of 92.5 0 and 110 0 . Values obtained for the rms charge radii are 3.327 +- 0.015 and 3.393 +- 0.015 fm for 36 Ar and 40 Ar respectively. A sensitive measurement was made of the difference in the two radii yielding a value of Δ r = 0.079 +- 0.006 fm. The inelastic levels observed are the 1.97 (2 + ) and 4.18 MeV (3 - ) levels in 36 Ar, and the 1.46 (2 + ), 2.52 (2 + ), 3.21 (2 + ), and 3.68 MeV (3 - ) levels in 40 Ar. A Tassie model analysis was made of the inelastic transitions in the DWBA approximation and transition strengths of these levels were extracted

  11. Cross sections of the 36Ar(d,α)34mCl, 40Ar(d,α)38Cl, and 40Ar(d,p)41Ar nuclear reactions below 8.4 MeV.

    Science.gov (United States)

    Engle, J W; Severin, G W; Barnhart, T E; Knutson, L D; Nickles, R J

    2012-02-01

    We have measured the cross section for production of the medically interesting isotope (34m)Cl, along with (38)Cl and (41)Ar, using deuteron bombardments of (36)Ar and (40)Ar below 8.4 MeV. ALICE/ASH analytical codes were employed to determine the shape of nuclear excitation functions, and experiments were performed using the University of Wisconsin tandem electrostatic accelerator to irradiate thin targets of argon gas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. High-resolution Auger spectroscopy on 79 MeV Ar5+, 89 MeV Ar6+, and 136 MeV Ar7+ ions after excitation by helium

    International Nuclear Information System (INIS)

    Schneider, T.

    1988-01-01

    In this thesis the atomic structure of highly excited Ar 6+ and Ar 7+ ions was studied. For this 79 MeV Ar 5+ , 89 MeV Ar 6+ , and 136 MeV Ar 7+ ions of a heavy ion accelerator were excited by a He gas target to autoionizing states and the Auger electrons emitted in the decay were measured in highly-resolving state. The spectra were taken under an observational angle of zero degree relative to the beam axis in order to minimize the kinematical broadening of the Auger lines. (orig./HSI) [de

  13. Reducibility of ceria-lanthana mixed oxides under temperature programmed hydrogen and inert gas flow conditions

    International Nuclear Information System (INIS)

    Bernal, S.; Blanco, G.; Cifredo, G.; Perez-Omil, J.A.; Pintado, J.M.; Rodriguez-Izquierdo, J.M.

    1997-01-01

    The present paper deals with the preparation and characterization of La/Ce mixed oxides, with La molar contents of 20, 36 and 57%. We carry out the study of the structural, textural and redox properties of the mixed oxides, comparing our results with those for pure ceria. For this aim we use temperature programmed reduction (TPR), temperature programmed desorption (TPD), nitrogen physisorption at 77 K, X-ray diffraction and high resolution electron microscopy. The mixed oxides are more easy to reduce in a flow of hydrogen than ceria. Moreover, in an inert gas flow they release oxygen in higher amounts and at lower temperatures than pure CeO 2 . The textural stability of the mixed oxides is also improved by incorporation of lanthana. All these properties make the ceria-lanthana mixed oxides interesting alternative candidates to substitute ceria in three-way catalyst formulations. (orig.)

  14. Inert gas narcosis has no influence on thermo-tactile sensation.

    Science.gov (United States)

    Jakovljević, Miroljub; Vidmar, Gaj; Mekjavic, Igor B

    2012-05-01

    Contribution of skin thermal sensors under inert gas narcosis to the raising hypothermia is not known. Such information is vital for understanding the impact of narcosis on behavioural thermoregulation, diver safety and judgment of thermal (dis)comfort in the hyperbaric environment. So this study aimed at establishing the effects of normoxic concentration of 30% nitrous oxide (N(2)O) on thermo-tactile threshold sensation by studying 16 subjects [eight females and eight males; eight sensitive (S) and eight non-sensitive (NS) to N(2)O]. Their mean (SD) age was 22.1 (1.8) years, weight 72.8 (15.3) kg, height 1.75 (0.10) m and body mass index 23.8 (3.8) kg m(-2). Quantitative thermo-tactile sensory testing was performed on forearm, upper arm and thigh under two experimental conditions: breathing air (air trial) and breathing normoxic mixture of 30% N(2)O (N(2)O trial) in the mixed sequence. Difference in thermo-tactile sensitivity thresholds between two groups of subjects in two experimental conditions was analysed by 3-way mixed-model analysis of covariance. There were no statistically significant differences in thermo-tactile thresholds either between the Air and N(2)O trials, or between S and NS groups, or between females and males, or with respect to body mass index. Some clinically insignificant lowering of thermo-tactile thresholds occurred only for warm thermo-tactile thresholds on upper arm and thigh. The results indicated that normoxic mixture of 30% N(2)O had no influence on thermo-tactile sensation in normothermia.

  15. Pulmonary distribution of [sup 99m]Tc-technegas; A comparative study of radioactive inert gases

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Kenji; Shimada, Takao; Mori, Yutaka; Goto, Eisuke; Hirasawa, Yukinori [Jikei Univ., Tokyo (Japan). School of Medicine; Tominaga, Shigeru

    1992-10-01

    Technetium 99m-technegas ([sup 99m]Tc-gas), which consists of fine particles, is produced in carbon crucibles burned at 2500degC. In this study, the particle size of [sup 99m]Tc-gas was measured and the pulmonary distribution of [sup 99m]Tc-gas was assessed in 28 patients with various pulmonary diseases. Most particles were 5[approx]30 nm in diameter as determined by electron microscopy. In a clinical study, about 37 MBq of [sup 99m]Tc-gas was inhaled three times during deep breathing in a sitting position. In a comparative study with radioactive inert gases ([sup 133]Xe, [sup 81m]Kr), [sup 99m]Tc-gas showed a similar distribution to the inert gas in most patients, although some with obstructive disease showed hot spots in the lung fields. In patients with severe obstructive change, marked deposits of [sup 99m]Tc-gas was noted in the central airways, but [sup 99m]Tc-gas penetrated to the peripheral lung field. This result suggests that [sup 99m]Tc-gas can be used to evaluate ventilatory function even in patients with chronic obstructive pulmonary diseases. (author).

  16. Hydrogeological investigations in the Harwell region: the use of environmental isotopes, inert gas contents, and the uranium decay series

    International Nuclear Information System (INIS)

    Alexander, J.; Andrews, J.N.

    1984-12-01

    A comprehensive range of environmental isotopes, radioelement and dissolved gas contents have been measured in groundwaters from the high permeability formations of the Harwell area. These analyses were undertaken as part of a hydrochemical validation of groundwater circulation patterns derived from potentiometric data. These investigations have focused upon the Corallian and Great Oolite formations since these sandwich the Oxford Clay. Geochemical, isotopic, radioelement and inert gas studies have demonstrated consistent trends which substantiate fluid migration patterns derived from hydraulic considerations. Groundwaters at downdip localities in both the Corallian and Great Oolite formations are the oldest waters sampled from the region. Variations in trends in parameters can be attributed to cross-formational flow and subsequent mixing of groundwaters. Individually these techniques can only provide limited information, but the combination of methods used have provided corroborative evidence concerning the direction of fluid circulation in the Harwell region. (author)

  17. Experimental study of the thermal conductivity coefficients of Cesium and Mercury vapours and inert gases

    International Nuclear Information System (INIS)

    Zarkova, L.P.

    1976-01-01

    A general-purpose experimental setup is made to measure thermal conductivity coefficients lambda of inert gases and metal vapours in the range 1000-2500 K by means of the differential method. The setup can also be used to measure lambda of plasmas and reacting gases as well as the dependence of lambda on magnetic fields. A simple and reliable procedure to determine the filament temperature using values of the measured current and wire diameter is suggested. The influence of different factors such as the temperature jump at the boundary gas-filament, convective heat transfer, thermal expansion, excentricity and cold ends of filament on the measured values of the thermal conductivity is considered in details. A formula is deduced to calculate the temperature jump correction taking into account the dependence of the mean free path on the temperature. Expressions are also given to calculate the corrections for thermal expansion, eccentricity and cold ends of the filament. Thermal conductivity coefficients of inert gases are measured to check the method: Ne in the range 1100-2200 K, Ar in the range 1000-2200 K, Kr in the range 1300-2300 K and Xe in the range 1100-2200 K. The data for Ne and Xe in the range 1500 to 2200 K and for Kr at T=2000-2300 K are original. The thermal conductivity coefficient of monoatomic mercury vapour is measured in the range 1000-2300 K with 3% error. The thermal conductivity coefficient of monoatomic cesium vapour is also measured in the range 1000-1600 K with 4% error. (I.P.)

  18. Implantation damage in heavy gas implanted 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C. [Institut Pprime, CNRS, Université de Poitiers, ENSMA, UPR 3346, Département Physique et Mécanique des Matériaux, Bd Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex (France); Nicolaï, J., E-mail: julien.nicolai@univ-poitiers.fr [Institut Pprime, CNRS, Université de Poitiers, ENSMA, UPR 3346, Département Physique et Mécanique des Matériaux, Bd Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex (France); Declémy, A. [Institut Pprime, CNRS, Université de Poitiers, ENSMA, UPR 3346, Département Physique et Mécanique des Matériaux, Bd Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex (France); Gilabert, E. [Centre d’Etude Nucléaire de Bordeaux-Gradignan, 33175 Gradignan Cedex (France); Beaufort, M.-F.; Barbot, J.-F. [Institut Pprime, CNRS, Université de Poitiers, ENSMA, UPR 3346, Département Physique et Mécanique des Matériaux, Bd Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex (France)

    2016-05-01

    Single crystals of SiC were implanted with heavy inert gases (Xe, Ar) at elevated temperatures (300–800 °C) and for a large range of fluence (1 × 10{sup 12}–1 × 10{sup 15} ions cm{sup −2}). Thermodesorption measurements suggest that gas is trapped by implantation-induced vacancy-type defects impeding any gas diffusion. The damage accumulation versus dose was studied through the tensile elastic strain determined by using X-ray diffraction. Results show that at low dose the strain is predictable via a thermally activated direct impact model. The low thermal activation energy at saturation suggests a dynamic recovery process dominated by the migration of interstitial-type defects as its relaxation during post thermal annealing. As compared with light-gas implantation the heavy-gas to defect ratio is low enhancing the formation of strongly perturbed zones rather than the formation of bubble precursors.

  19. An investigation of the microstructures and properties of metal inert ...

    Indian Academy of Sciences (India)

    Abstract. Two different types of welds, Metal Inert Gas (MIG) and Friction Stir. Welding (FSW), have been used to weld aluminum alloy 5083. The microstructure of the welds, including the nugget zone and heat affected zone, has been compared in these two methods using optical microscopy. The mechanical properties of ...

  20. Detection of a noble gas molecular ion, 36ArH+, in the Crab Nebula.

    Science.gov (United States)

    Barlow, M J; Swinyard, B M; Owen, P J; Cernicharo, J; Gomez, H L; Ivison, R J; Krause, O; Lim, T L; Matsuura, M; Miller, S; Olofsson, G; Polehampton, E T

    2013-12-13

    Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of (36)ArH(+) at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed (36)ArH(+) emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed.

  1. 40Ar/39Ar geochronology of terrestrial pyroxene

    Science.gov (United States)

    Ware, Bryant; Jourdan, Fred

    2018-06-01

    Geochronological techniques such as U/Pb in zircon and baddeleyite and 40Ar/39Ar on a vast range of minerals, including sanidine, plagioclase, and biotite, provide means to date an array of different geologic processes. Many of these minerals, however, are not always present in a given rock, or can be altered by secondary processes (e.g. plagioclase in mafic rocks) limiting our ability to derive an isotopic age. Pyroxene is a primary rock forming mineral for both mafic and ultramafic rocks and is resistant to alteration process but attempts to date this phase with 40Ar/39Ar has been met with little success so far. In this study, we analyzed pyroxene crystals from two different Large Igneous Provinces using a multi-collector noble gas mass spectrometer (ARGUS VI) since those machines have been shown to significantly improve analytical precision compared to the previous single-collector instruments. We obtain geologically meaningful and relatively precise 40Ar/39Ar plateau ages ranging from 184.6 ± 3.9 to 182.4 ± 0.8 Ma (2σ uncertainties of ±1.8-0.4%) and 506.3 ± 3.4 Ma for Tasmanian and Kalkarindji dolerites, respectively. Those data are indistinguishable from new and/or published U-Pb and 40Ar/39Ar plagioclase ages showing that 40Ar/39Ar dating of pyroxene is a suitable geochronological tool. Scrutinizing the analytical results of the pyroxene analyses as well as comparing them to the analytical result from plagioclase of the same samples indicate pure pyroxene was dated. Numerical models of argon diffusion in plagioclase and pyroxene support these observations. However, we found that the viability of 40Ar/39Ar dating approach of pyroxene can be affected by irradiation-induced recoil redistribution between thin pyroxene exsolution lamellae and the main pyroxene crystal, hence requiring careful petrographic observations before analysis. Finally, diffusion modeling show that 40Ar/39Ar of pyroxene can be used as a powerful tool to date the formation age of mafic

  2. Tungsten inert gas (TIG) welding of Ni-rich NiTi plates: functional behavior

    Science.gov (United States)

    Oliveira, J. P.; Barbosa, D.; Braz Fernandes, F. M.; Miranda, R. M.

    2016-03-01

    It is often reported that, to successfully join NiTi shape memory alloys, fusion-based processes with reduced thermal affected regions (as in laser welding) are required. This paper describes an experimental study performed on the tungsten inert gas (TIG) welding of 1.5 mm thick plates of Ni-rich NiTi. The functional behavior of the joints was assessed. The superelasticity was analyzed by cycling tests at maximum imposed strains of 4, 8 and 12% and for a total of 600 cycles, without rupture. The superelastic plateau was observed, in the stress-strain curves, 30 MPa below that of the base material. Shape-memory effect was evidenced by bending tests with full recovery of the initial shape of the welded joints. In parallel, uniaxial tensile tests of the joints showed a tensile strength of 700 MPa and an elongation to rupture of 20%. The elongation is the highest reported for fusion-welding of NiTi, including laser welding. These results can be of great interest for the wide-spread inclusion of NiTi in complex shaped components requiring welding, since TIG is not an expensive process and is simple to operate and implement in industrial environments.

  3. Microstructure and magnetic properties of inert gas atomized rare earth permanent magnetic materials

    International Nuclear Information System (INIS)

    Sellers, C.H.; Hyde, T.A.; Branagan, D.J.; Lewis, L.H.; Panchanathan, V.

    1997-01-01

    Several permanent magnet alloys based on the ternary Nd 2 Fe 14 B (2-14-1) composition have been prepared by inert gas atomization (IGA). The microstructure and magnetic properties of these alloys have been studied as a function of particle size, both before and after heat treatment. Different particle sizes have characteristic properties due to the differences in cooling rate experienced during solidification from the melt. These properties are also strongly dependent on the alloy composition due to the cooling rate close-quote s effect on the development of the phase structure; the use of rare earth rich compositions appears necessary to compensate for a generally inadequate cooling rate. After atomization, a brief heat treatment is necessary for the development of the optimal microstructure and magnetic properties, as seen from the hysteresis loop shape and improvements in key magnetic parameters (intrinsic coercivity H ci , remanence B r , and maximum energy product BH max ). By adjusting alloy compositions specifically for this process, magnetically isotropic powders with good magnetic properties can be obtained and opportunities for the achievement of better properties appear to be possible. copyright 1997 American Institute of Physics

  4. Correction factor to determine total hydrogen+deuterium concentration obtained by inert gas fusion-thermal conductivity detection (IGF- TCD) technique

    International Nuclear Information System (INIS)

    Ramakumar, K.L.; Sesha Sayi, Y.; Shankaran, P.S.; Chhapru, G.C; Yadav, C.S.; Venugopal, V.

    2004-01-01

    The limitation of commercially available dedicated equipment based on Inert Gas Fusion- Thermal Conductivity Detection (IGF - TCD) for the determination of hydrogen+deuterium is described. For a given molar concentration, deuterium is underestimated vis a vis hydrogen because of lower thermal conductivity and not considering its molecular weight in calculations. An empirical correction factor based on the differences between the thermal conductivities of hydrogen, deuterium and the carrier gas argon, and the mole fraction of deuterium in the sample has been derived to correct the observed hydrogen+deuterium concentration. The corrected results obtained by IGF - TCD technique have been validated by determining hydrogen and deuterium contents in a few samples using an independent method based on hot vacuum extraction-quadrupole mass spectrometry (HVE-QMS). Knowledge of mole fraction of deuterium (XD) is necessary to effect the correction. The correction becomes insignificant at low X D values (XD < 0.2) as the precision in the IGF measurements is comparable with the extent of correction. (author)

  5. 37Ar monitoring techniques and on-site inspection system

    International Nuclear Information System (INIS)

    Duan Rongliang; Chen Yinliang; Li Wei; Wang Hongxia; Hao Fanhua

    2001-01-01

    37 Ar is separated, purified and extracted from air sample with a low temperature gas-solid chromatographic purifying method, prepared into a radioactive measurement source and its radioactivity is measured with a proportional counter. Based on the monitoring result, a judgement can be made if an nuclear explosion event has happened recently in a spectabilis area. A series of element techniques that are associated the monitoring of the trace element 37 Ar have been investigated and developed. Those techniques include leaked gas sampling, 37 Ar separation and purification, 37 Ar radioactivity measurement and the on-site inspection of 37 Ar. An advanced 37 Ar monitoring method has been developed, with which 200 liters of air can be treated in 2 hours with sensitivity of 0.01 Bq/L for 37 Ar radioactivity measurement. A practical 37 Ar On-site Inspection system has been developed. This research work may provide technical and equipment support for the verification protection, verification supervision and CTBT verification

  6. Etching characteristic and mechanism of BST thin films using inductively coupled Cl2/Ar plasma with additive CF4 gas

    International Nuclear Information System (INIS)

    Kim, Gwan-Ha; Kim, Kyoung-Tae; Kim, Dong-Pyo; Kim, Chang-Il

    2004-01-01

    BST thin films were etched with inductively coupled CF 4 /(Cl 2 +Ar) plasmas. The maximum etch rate of the BST thin films was 53.6 nm/min for a 10% CF 4 to the Cl 2 /Ar gas mixture at RF power of 700 W, DC bias of -150 V, and chamber pressure of 2 Pa. Small addition of CF 4 to the Cl 2 /Ar mixture increased chemical effect. Consequently, the increased chemical effect caused the increase in the etch rate of the BST thin films. To clarify the etching mechanism, the surface reaction of the BST thin films was investigated by X-ray photoelectron spectroscopy

  7. The elastic scattering of electrons from inert gases: 5. Argon and Krypton in the vicinity of Ramsauer-Townsend minima and on the choice of pseudo-states

    International Nuclear Information System (INIS)

    Fon, W.C.

    1986-07-01

    Recently, several electron scattering experiments using improved experimental techniques have been reported for Ar and Kr in the region of Ramsauer-Townsend minima. The calculations of Fon et al. on electrons colliding with inert-gas atoms are extended to examine these experimental data. These calculations using a single pseudo-state to account for the dipole polarisability of the ground state atom while ignoring a whole host of excitation mechanisms, have been the subject of considerable controversy (e.g. Reinhardt 1981; Walters 1981). The answers to the questions raised by Walters (1981) may well lie in the present calculation and those of Fon et al. (1983, 1984) in which the 1 P pseudo-states used in these calculations give polarisabilities at least 15% larger than the experimental values. (author)

  8. Surface kinetics of Bi4-xLaxTi3O12 films etched in a CF4/Ar gas chemistry

    International Nuclear Information System (INIS)

    Kim, Dong-Pyo; Kim, Kyoung-Tae; Efremov, A. M.; Kim, Chang-Il

    2004-01-01

    The surface reactions and the etch rate of Bi 4-x La x Ti 3 O 12 (BLT) films in a CF 4 /Ar plasma were investigated in an inductively coupled plasma (ICP) reactor in terms of the gas mixing ratio. The variation of relative volume densities for the F and the Ar atoms were measured with optical emission spectroscopy (OES). The maximum etch rate of 803 A/min was obtained in a CF 4 (20 %)/Ar(80 %) plasma. The presence of a maximum in the BLT etch rate at CF 4 (20 %)/Ar(80 %) may be explained by the concurrence of two etching mechanisms, physical sputtering and chemical reaction. Ar-ion bombardment played roles of destroying the metal (Bi, La, Ti)-O bonds and assisting the chemical reaction between metal and fluorine atoms. The chemical states of BLT were investigated using X-ray photoelectron spectroscopy (XPS), which confirmed the existence of nonvolatile etch byproducts (La-fluorides).

  9. Phase analysis of fume during arc weld brazing of steel sheets with protective coatings

    Directory of Open Access Journals (Sweden)

    J. Matusiak

    2016-04-01

    Full Text Available The article presents the results of research of the phase identification and of the quantitative phase analysis of fume generated during Cold Metal Transfer (CMT, ColdArc and Metal Inert Gas / Metal Active Gas (MIG / MAG weld brazing. Investigations were conducted for hot - dip coated steel sheets with zinc (Zn and zinc-iron (Zn - Fe alloy coatings. Arc shielding gases applied during the research-related tests were Ar + O2, Ar + CO2, Ar + H2 and Ar + CO2 + H2 gas mixtures. The analysis of the results covers the influence of the chemical composition of shielding gas on the chemical composition of welding fume.

  10. Inert atmosphere system for plutonium processing gloveboxes

    International Nuclear Information System (INIS)

    Bogard, C.F.; Calkins, K.W.; Rogers, R.F.

    1975-01-01

    Recent efforts to reduce fire hazards in plutonium processing operations are described. In such operations, the major environmental controls are developed through various kinds of glovebox systems. In evaluating the air-atmosphere glovebox systems, formerly in use at Rocky Flats and many other plants, a decision was made to convert to a recirculating ''inert'' atmosphere. The inert atmosphere consists of nitrogen, supplied from an on-site generating plant, diluting oxygen content to one to 5 percent by volume. Problems encountered during the change over included: determination of all factors influencing air leakage into the system, and reducing leakage to the practical minimum; meeting all fire and safety standards on the filter plenum and exhaust systems; provision for converting portions of the system to an air atmosphere to conduct maintenance work; inclusion of oxygen analyzers throughout the system to check gas quality and monitor for leaks; and the use of automatic controls to protect against a variety of potential malfunctions. The current objectives to reduce fire hazards have been met and additional safeguards were added. The systems are operating satisfactorily. (U.S.)

  11. Topography development on selected inert gas and self-ion bombarded Si

    International Nuclear Information System (INIS)

    Vishnyakov, V.; Carter, G.; Goddard, D.T.; Nobes, M.J.

    1995-01-01

    An AFM and SEM study of the topography induced by 20 keV Si + , Ar + and Xe + ion bombardment of Si at 45 o incidence angles and for ion fluences between 10 17 and 10 20 cm -2 has been undertaken at room temperature. All species generate an atomic scale random roughness, the magnitude of which does not increase extensively with ion fluence, suggesting the operation of a local relaxation process. This nanometre scale roughness forms, for Ar and Xe, a background for coarser micrometre scale structures such as pits, chevrons and waves. Apart from isolated etch pits Si + irradiation generates no repetitive micrometre scale structures. Xe + irradiation produces well developed transverse waves while Ar + irradiation results in isolated chevron-like etch pit trains and ripple patches. This latter pattern evolves, with increasing ion fluence, to a corrugated facet structure. The reasons for the different behaviours are still not fully clarified. (author)

  12. Estimation of radiation exposure associated with inert gas radionuclides discharged to the environment by the nuclear power industry

    International Nuclear Information System (INIS)

    Bryant, P.M.; Jones, J.A.

    1973-05-01

    Several fission product isotopes of krypton and xenon are formed during operation of nuclear power stations, while other radioactive inert gases, notably isotopes of argon and nitrogen, are produced as neutron activation products. With the exception of 85 Kr these radionuclides are short-lived, and the containment and hold-up arrangements in different reactor systems influence the composition of the inert gas mixtures discharged to the environment. Cooling of irradiated fuel before chemical reprocessing reduces very substantially the amounts of the short-lived krypton and xenon isotopes available for discharge at reprocessing plants, but almost all the 85 Kr formed in the fuel is currently discharged to atmosphere from these plants. Estimates are made of the radiation exposure of the public associated with these discharges to atmosphere taking into account the type of radiation emitted, radioactive half-life and the local, regional and world-wide populations concerned. Such estimates are often based on simple models in which activity is assumed to be distributed in a semi-infinite cloud. The model used in this assessment takes into account the finite cloud near the point of its discharge and its behaviour when dispersion in the atmosphere is affected by the presence of buildings. This is particularly important in the case of discharges from those reactors which do not have high stacks. The model also provides in detail for the continued world-wide circulation of the longer-lived 85 Kr. (author)

  13. Drying of encapsulated parts (nuclear fuel rods) in applying vacuum, by introducing dehydratings, vacuum, and filling with an inert gas

    International Nuclear Information System (INIS)

    Johnson, C.R.

    1976-01-01

    This invention concerns a decontamination technique, in particular a process and equipment for extracting the water contained in fuel rods and other similar components of a nuclear reactor. The extraction of the contaminants contained in the fuel rods is carried out by a standard method by drilling a small hole in the surface of the cladding and applying a vacuum to bleed the rod of its impurities (moisture and gas). The invention consists for example in applying a vacuum at the hole drilled in the cladding to extract the contaminants and introducing spirit into the rod through the same orifice. The spirit absorbs the remaining liquid and other impurities. The spirit charged with the impurities is then pumped out by the same aperture by means of a regulated atmosphere inside a closed receptacle. This receptacle is then filled with an inert gas cooled to ambient temperature. The rods are then pressurised and the small orifice is sealed [fr

  14. Numerical Modeling of Fluid Flow, Heat Transfer and Arc-Melt Interaction in Tungsten Inert Gas Welding

    Science.gov (United States)

    Li, Linmin; Li, Baokuan; Liu, Lichao; Motoyama, Yuichi

    2017-04-01

    The present work develops a multi-region dynamic coupling model for fluid flow, heat transfer and arc-melt interaction in tungsten inert gas (TIG) welding using the dynamic mesh technique. The arc-weld pool unified model is developed on basis of magnetohydrodynamic (MHD) equations and the interface is tracked using the dynamic mesh method. The numerical model for arc is firstly validated by comparing the calculated temperature profiles and essential results with the former experimental data. For weld pool convection solution, the drag, Marangoni, buoyancy and electromagnetic forces are separately validated, and then taken into account. Moreover, the model considering interface deformation is adopted in a stationary TIG welding process with SUS304 stainless steel and the effect of interface deformation is investigated. The depression of weld pool center and the lifting of pool periphery are both predicted. The results show that the weld pool shape calculated with considering the interface deformation is more accurate.

  15. Effects of shock pressure on 40Ar-39Ar radiometric age determinations

    International Nuclear Information System (INIS)

    Davis, P.K.

    1977-01-01

    The relation of shock to the drop in the 40 *Ar/ 39 *Ar ratio seen at high release temperatures in some neutron-irradiated lunar samples is investigated through measurements of the 40 *Ar/ 39 *Ar ratio in gas samples released by stepwise heating of rock samples previously subjected to shock, either in the laboratory or in nature. Explosives were used to shock solid pieces and powder of a basalt from a diabase dike in Liberia to calculated pressures of 65, 150 and 270 kbar. These, an unshocked sample of the powder, two naturally shocked samples from the Brent impact crater in Canada, one unshocked sample from near the crater, and appropriate monitors were irradiated. Ar from stepwise heating was analyzed. The unshocked basalt shows a good 40 *Ar/ 39 *Ar plateau at age 198 +-9 m.y. in agreement with a previous result of 186 +- 2 m.y. The shocked samples contain varying amounts of implanted atmospheric Ar, the isotopes of which have experienced mass fractionation. This effect is small enough in four samples so that the linearity of their graphs of 39 *Ar/ 40 Ar vs 36 Ar/ 40 Ar is evidence of a plateau. The ages of these samples are then 201 +- 10, 205 +- 12 and 201 +-9 m.y. It appears that the shock has had little effect on the 40 Ar- 39 Ar age spectrum, although the release patterns of the 39 *Ar are shifted downward by the order of 200 0 C. Shock implantation of Ar was at lower shock pressure, in the presence of less Ar, and into a less porous material than previously demonstrated. The Brent Crater samples do not all show good plateaus, but do indicate an age of 420 m.y. for the crater event and 795 +- 24 m.y. for the rock formation, in agreement with previous results. None of the 40 *Ar/ 39 *Ar profiles shows a drop at high temperature, but a possible role of shock implantation of Ar is indicated in the production of this effect. Further experiments are suggested. (author)

  16. Inert gas narcosis and the encoding and retrieval of long-term memory.

    Science.gov (United States)

    Kneller, Wendy; Hobbs, Malcolm

    2013-12-01

    Prior research has indicated that inert gas narcosis (IGN) causes decrements in free recall memory performance and that these result from disruption of either encoding or self-guided search in the retrieval process. In a recent study we provided evidence, using a Levels of Processing approach, for the hypothesis that IGN affects the encoding of new information. The current study sought to replicate these results with an improved methodology. The effect of ambient pressure (111.5-212.8 kPa/1-11 msw vs. 456-516.8 kPa/35-41 msw) and level of processing (shallow vs. deep) on free recall memory performance was measured in 34 divers in the context of an underwater field experiment. Free recall was significantly worse at high ambient pressure compared to low ambient pressure in the deep processing condition (low pressure: M = 5.6; SD = 2.7; high pressure: M = 3.3; SD = 1.4), but not in the shallow processing condition (low pressure: M = 3.9; SD = 1.7; high pressure: M = 3.1; SD = 1.8), indicating IGN impaired memory ability in the deep processing condition. In the shallow water, deep processing improved recall over shallow processing but, significantly, this effect was eliminated in the deep water. In contrast to our earlier study this supported the hypothesis that IGN affects the self-guided search of information and not encoding. It is suggested that IGN may affect both encoding and self-guided search and further research is recommended.

  17. Laser, tungsten inert gas, and metal active gas welding of DP780 steel: Comparison of hardness, tensile properties and fatigue resistance

    International Nuclear Information System (INIS)

    Lee, Jeong Hun; Park, Sung Hyuk; Kwon, Hyuk Sun; Kim, Gyo Sung; Lee, Chong Soo

    2014-01-01

    Highlights: • We report the mechanical properties of DP780 steel welded by three methods. • The size of the welded zone increases with heat input (MAG > TIG > laser). • The hardness of the welded zone increases with cooling rate (laser > TIG > MAG). • Tensile and fatigue properties are strongly dependent on welding method. • Crack initiation sites depend on the microstructural features of the welded zone. - Abstract: The microstructural characteristics, tensile properties and low-cycle fatigue properties of a dual-phase steel (DP780) were investigated following its joining by three methods: laser welding, tungsten inert gas (TIG) welding, and metal active gas (MAG) welding. Through this, it was found that the size of the welded zone increases with greater heat input (MAG > TIG > laser), whereas the hardness of the weld metal (WM) and heat-affected zone (HAZ) increases with cooling rate (laser > TIG > MAG). Consequently, laser- and TIG-welded steels exhibit higher yield strength than the base metal due to a substantially harder WM. In contrast, the strength of MAG-welded steel is reduced by a broad and soft WM and HAZ. The fatigue life of laser-and TIG-welded steel was similar, with both being greater than that of MAG-welded steel; however, the fatigue resistance of all welds was inferior to that of the non-welded base metal. Finally, crack initiation sites were found to differ depending on the microstructural characteristics of the welded zone, as well as the tensile and cyclic loading

  18. A thermodynamics model for morphology prediction of aluminum nano crystals fabricated by the inert gas condensation method

    Science.gov (United States)

    Wen, Yu; Xia, Dehong

    2018-03-01

    The purpose of this study is to provide scientific guidance for the morphological control of nanoparticle synthesis using the gas phase method. A universal thermodynamics model is developed to predict the morphology of nanoparticles fabricated using the inert gas condensation method. By using this model, the morphologies of aluminum nanocrystals are predicted under various preparation conditions. There are two types of energy that jointly determine the formation of nanoparticle morphology—Gibbs free energy for nanoparticles and energy variation during the process. The results show that energy variation dominates morphology formation when the cooling rate is less than 2 × 1011 K s-1 in the aluminum nanocrystal production process. At the beginning of the nanoparticle growth, the most stable morphology is predicted to be spherical, but the energetically preferred morphology becomes cubic as the particle grows. The turning point in the particle size at which spherical morphology is no longer the most stable morphology is exhibited as a function of pressure in a condensation chamber for different cooling rates. In this paper, we focus on the need for morphology prediction based on preparation conditions. It is concluded that nanoparticles with various morphologies could be obtained by adjusting the cooling rate and pressure in the condensation chamber.

  19. Technical basis for storage of Zircaloy-clad spent fuel in inert gases

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Gilbert, E.R.

    1983-09-01

    The technical bases to establish safe conditions for dry storage of Zircaloy-clad fuel are summarized. Dry storage of fuel with zirconium alloy cladding has been licensed in Canada, the Federal Republic of Germany, and Switzerland. Dry storage demonstrations, hot cell tests, and modeling have been conducted using Zircaloy-clad fuel. The demonstrations have included irradiated boiling water reactor, pressurized heavy-water reactor, and pressurized water reactor fuel assemblies. Irradiated fuel has been emplaced in and retrieved from metal casks, dry wells, silos, and a vault. Dry storage tests and demonstrations have involved about 15,000 fuel rods, and about 5600 rods have been monitored during dry storage in inert gases with maximum cladding temperatures ranging from 50 to 570 0 C. Although some tests and demonstrations are still in progress, there is currently no evidence that any rods exposed to inert gases have failed (one PWR rod exposed to an air cover gas failed at about 270 0 C). Based on this favorable experience, it is concluded that there is sufficient information on fuel rod behavior, storage conditions, and potential cladding failure mechanisms to support licensing of dry storage in the US. This licensing position includes a requirement for inert cover gases and a maximum cladding temperature guideline of 380 0 C for Zircaloy-clad fuel. Using an inert cover gas assures that even if fuel with cladding defects were placed in dry storage, or if defects develop during storage, the defects would not propagate. Tests and demonstrations involving Zircaloy-clad rods and assemblies with maximum cladding temperatures above 400 0 C are in progress. When the results from these tests have been evaluated, the viability of higher temperature limits should be examined. Acceptable conditions for storage in air and dry storage of consolidated fuel are issues yet to be resolved

  20. Clinical application of inert gas Multiple Breath Washout in children and adolescents with asthma.

    Science.gov (United States)

    Zwitserloot, Annelies; Fuchs, Susanne I; Müller, Christina; Bisdorf, Kornelia; Gappa, Monika

    2014-09-01

    Children with asthma often have normal spirometry despite significant disease. The pathology of the small airways in asthma may be assessed using Multiple Breath Washout (MBW) and calculating the Lung Clearance Index (LCI). There are only few studies using MBW in children with asthma and existing data regarding bronchodilator effect are contradictory. The aim of the present pilot study was to compare LCI in asthma and controls and assess the effect of salbutamol in children with asthma on the LCI. Unselected patients with a diagnosis of asthma visiting the outpatient department of our hospital between 04-2010 and 03-2011 were recruited and compared to a healthy control group. MBW was performed as inert gas MBW using sulfurhexafluorid (SF6) as the tracer gas. Clinical data were documented and spirometry and MBW (EasyOne Pro, MBW module, NDD Switzerland) were performed before and after the use of salbutamol (200-400 μg). Healthy controls performed baseline MBW only. 32 children diagnosed with asthma (4.7-17.4 years) and 42 controls (5.3-20.8) were included in the analysis. LCI differed between patients and controls, with a mean LCI (SD) of 6.48 (0.48) and 6.21 (0.38) (P = 0.008). Use of salbutamol had no significant effect on LCI for the group. These pilot data show that clinically stable asthma patients and controls both have a LCI in the normal range. However, in patients the LCI is significantly higher indicating that MBW may have a role in assessing small airways disease in asthma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. (e, 2e) processes on Ne, Ar and Xe targets

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, G; Patidar, Vinod; Sud, K K, E-mail: g_vpurohit@yahoo.co, E-mail: ghanshyam.purohit@spsu.ac.i [Department of Physics, School of Engineering, Sir Padampat Singhania University, Bhatewar, Udaipur-313 601 (India)

    2010-06-01

    Recently, there have been several attempts to explain the features of triple differential cross section (TDCS) for the (e, 2e) processes on inert targets Ne, Ar and Xe but there are still certain discrepancies in theoretical results and measurements, which require more theoretical efforts to understand the collision dynamics of these targets. We present in this paper the results of our modified distorted wave Born approximation (DWBA) calculation of TDCS for the ionization of Ne (2p), Ar (3p) and Xe (5p) targets. We modify the standard DWBA formalism by including the correlation-polarization potential (which is function of electron density) and compare our computed results with the available experimental and theoretical data. We observe that the polarization potential is able to improve the agreement with experimental results.

  2. Numerical simualtion of underground 37Ar transportation to the ground

    International Nuclear Information System (INIS)

    She Ruogu; Li Hua; Liu Cheng'an; Wu Jun

    2008-01-01

    Monitoring radioactive gas 37 Ar is an important technique for the On-Site Inspection(OSI) of the Comprehensive Nuclear Test Ban Treaty (CTBT) verification regime. In order to establish a theoretical model that can be used to calculate the appearing time and radioactivity of 37 Ar which transports to the ground after a nuclear explosion, the rock media in the test area is assumed to be a homogeneous porous media, without consideration of gas absorption by and release from the rock media. The seepage model in the porous media is used to calculate 37 Ar transportation. Computational results give the time 37 Ar leaks to the ground and the variation of its radioactivity with time. And we can analyze and consider the computational results when we have developed OSI noble gas monitoring systems and evaluated their effectiveness. (authors)

  3. Oriented Polar Molecules in a Solid Inert-Gas Matrix: A Proposed Method for Measuring the Electric Dipole Moment of the Electron

    Directory of Open Access Journals (Sweden)

    A. C. Vutha

    2018-01-01

    Full Text Available We propose a very sensitive method for measuring the electric dipole moment of the electron using polar molecules embedded in a cryogenic solid matrix of inert-gas atoms. The polar molecules can be oriented in the z ^ -direction by an applied electric field, as has recently been demonstrated by Park et al. The trapped molecules are prepared into a state that has its electron spin perpendicular to z ^ , and a magnetic field along z ^ causes precession of this spin. An electron electric dipole moment d e would affect this precession due to the up to 100 GV/cm effective electric field produced by the polar molecule. The large number of polar molecules that can be embedded in a matrix, along with the expected long coherence times for the precession, allows for the possibility of measuring d e to an accuracy that surpasses current measurements by many orders of magnitude. Because the matrix can inhibit molecular rotations and lock the orientation of the polar molecules, it may not be necessary to have an electric field present during the precession. The proposed technique can be applied using a variety of polar molecules and inert gases, which, along with other experimental variables, should allow for careful study of systematic uncertainties in the measurement.

  4. Reduction of impurity contamination in a working gas for closed-cycle MHD power generation

    International Nuclear Information System (INIS)

    Endo, N.; Yoshikawa, K.; Shioda, S.

    1989-01-01

    The reduction of impurity contamination in a working inert gas for closed-cycle MHD power generation is examined. A conceptual operation system of regenerative heat exchangers is proposed for minimizing the amount of combustion gas which mixes in the working inert gas. Experiments have shown that this mixing can be reduced significantly by evacuating and flushing the heat exchangers after being heated by combustion gas. Calculations have shown that, among the main molecular contaminants in the working inert gas, CO 2 , H 2 O and O 2 can be removed as compounds with the seed material, while N 2 and H 2 can be reduced by a partial purification of the circulating working inert gas. (author)

  5. Assessment of a chemical getter for scavenging tritium from an inert gas

    International Nuclear Information System (INIS)

    Maienschein, J.L.

    1976-01-01

    Results are presented of a study aimed at determining the feasibility of using chemical getter beds to scavenge tritium from inert gases. Two types of getter bed, fixed and fluidized, were considered, using cerium as the getter material. Mathematical-modeling results and capital-cost estimates indicate that not only is the gettering approach technically feasible, it could lead to considerable cost savings over catalytic oxidation, the tritium-removal method traditionally used

  6. Corrosion characterisation of laser beam and tungsten inert gas weldment of nickel base alloys: Micro-cell technique

    International Nuclear Information System (INIS)

    Abraham, Geogy J.; Kain, V.; Dey, G.K.; Raja, V.S.

    2015-01-01

    Highlights: • Grain matrix showed better corrosion resistance than grain boundary. • Microcell studies showed distinct corrosion behaviour of individual regions of weldment. • TIG welding resulted in increased stable anodic current density on weld fusion zone. • LB welding resulted in high stable anodic current density for heat affected zone. - Abstract: The electrochemical studies using micro-cell technique gave new understanding of electrochemical behaviour of nickel base alloys in solution annealed and welded conditions. The welding simulated regions depicted varied micro structural features. In case of tungsten inert gas (TIG) weldments, the weld fusion zone (WFZ) showed least corrosion resistance among all other regions. For laser beam (LB) weldments it was the heat-affected zone (HAZ) that showed comparatively high stable anodic current density. The high heat input of TIG welding resulted in slower heat dissipation hence increased carbide precipitation and segregation in WFZ resulting in high stable anodic current density

  7. Origins of inert Higgs doublets

    Directory of Open Access Journals (Sweden)

    Thomas W. Kephart

    2016-05-01

    Full Text Available We consider beyond the standard model embedding of inert Higgs doublet fields. We argue that inert Higgs doublets can arise naturally in grand unified theories where the necessary associated Z2 symmetry can occur automatically. Several examples are discussed.

  8. Deformation behavior of Zircaloy-4 cladding tubes under inert gas conditions in the temperature range from 600 to 12000C

    International Nuclear Information System (INIS)

    Hofmann, P.; Raff, S.; Gausmann, G.

    1981-07-01

    Within the temperature range from 600 0 to 1200 0 isothermal, isobaric creep rupture experiments were performed under inert gas with short Zircaloy-4 tube specimens in order to obtain experimental data supporting the development of the NORA cladding tube deformation model. The values of the tube inner pressure were so selected that the time-to-failure values varied between 2 and 2000 s. The corresponding creep rupture curves are indicated. Besides the temperature and the burst pressure the development of deformation over time of the tube specimens was measured. This allowed to draw diagrams of stress, strain rate and strain. On account of the type of specimen heating applied (radiation heating) the temperature difference at the cladding tube circumference is very small ( [de

  9. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders

    Science.gov (United States)

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-01-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm−3, with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. PMID:26464505

  10. Dynamic characteristics of stay cables with inerter dampers

    Science.gov (United States)

    Shi, Xiang; Zhu, Songye

    2018-06-01

    This study systematically investigates the dynamic characteristics of a stay cable with an inerter damper installed close to one end of a cable. The interest in applying inerter dampers to stay cables is partially inspired by the superior damping performance of negative stiffness dampers in the same application. A comprehensive parametric study on two major parameters, namely, inertance and damping coefficients, are conducted using analytical and numerical approaches. An inerter damper can be optimized for one vibration mode of a stay cable by generating identical wave numbers in two adjacent modes. An optimal design approach is proposed for inerter dampers installed on stay cables. The corresponding optimal inertance and damping coefficients are summarized for different damper locations and interested modes. Inerter dampers can offer better damping performance than conventional viscous dampers for the target mode of a stay cable that requires optimization. However, additional damping ratios in other vibration modes through inerter damper are relatively limited.

  11. Effect of current and speed on porosity in autogenous Tungsten Inert Gas (TIG) welding of aluminum alloys A1100 butt joint

    Science.gov (United States)

    Milyardi, Indra; Sunar Baskoro, Ario

    2018-04-01

    Autogenous Tungsten Inert Gas (TIG) welding has been conducted on aluminum alloy A1100. The purpose of this research is to determine the proper current and speed of autogenous TIG welding with butt joint pattern. Variations on welding current are 150 A, 155 A, and 160 A with the variations on welding speed are 1 mm/seconds, 1.1 mm/seconds, 1.2 mm/seconds. The welded results were tested using non-destructive test (NDT) method using X-Ray radiography. After the test, it is found that the appropriate current for the best result without porosity can be achieved using the welding parameter of welding current of 160 A and the welding speed of 1.1 mm seconds.

  12. Ar-Ar_Redux: rigorous error propagation of 40Ar/39Ar data, including covariances

    Science.gov (United States)

    Vermeesch, P.

    2015-12-01

    Rigorous data reduction and error propagation algorithms are needed to realise Earthtime's objective to improve the interlaboratory accuracy of 40Ar/39Ar dating to better than 1% and thereby facilitate the comparison and combination of the K-Ar and U-Pb chronometers. Ar-Ar_Redux is a new data reduction protocol and software program for 40Ar/39Ar geochronology which takes into account two previously underappreciated aspects of the method: 1. 40Ar/39Ar measurements are compositional dataIn its simplest form, the 40Ar/39Ar age equation can be written as: t = log(1+J [40Ar/39Ar-298.5636Ar/39Ar])/λ = log(1 + JR)/λ Where λ is the 40K decay constant and J is the irradiation parameter. The age t does not depend on the absolute abundances of the three argon isotopes but only on their relative ratios. Thus, the 36Ar, 39Ar and 40Ar abundances can be normalised to unity and plotted on a ternary diagram or 'simplex'. Argon isotopic data are therefore subject to the peculiar mathematics of 'compositional data', sensu Aitchison (1986, The Statistical Analysis of Compositional Data, Chapman & Hall). 2. Correlated errors are pervasive throughout the 40Ar/39Ar methodCurrent data reduction protocols for 40Ar/39Ar geochronology propagate the age uncertainty as follows: σ2(t) = [J2 σ2(R) + R2 σ2(J)] / [λ2 (1 + R J)], which implies zero covariance between R and J. In reality, however, significant error correlations are found in every step of the 40Ar/39Ar data acquisition and processing, in both single and multi collector instruments, during blank, interference and decay corrections, age calculation etc. Ar-Ar_Redux revisits every aspect of the 40Ar/39Ar method by casting the raw mass spectrometer data into a contingency table of logratios, which automatically keeps track of all covariances in a compositional context. Application of the method to real data reveals strong correlations (r2 of up to 0.9) between age measurements within a single irradiation batch. Propertly taking

  13. Skolotāju uztvertā stresa saistība ar apmierinātību ar darbu

    OpenAIRE

    Dejus, Ilze

    2014-01-01

    Pētījuma „Skolotāju uztvertā stresa saistība ar apmierinātību ar darbu” mērķis, pamatojoties uz teorētisko analīzi, pētīt skolotāju uztvertā stresa saistību ar apmierinātību ar darbu. Pētījuma jautājumi: 1.Vai pastāv statistiski nozīmīga saistība starp skolotāju uztvertā stresa līmeni un apmierinātību ar darbu? 2.Vai pastāv statistiski nozīmīgas atšķirības starp Liepājas 15.vidusskolas un Grobiņas novada skolotāju uztvertā stresa līmeni un apmierinātību ar darbu? Aptaujāti 113 skolot...

  14. Novel manufacturing process of nanoparticle/Al composite filler metals of tungsten inert gas welding by accumulative roll bonding

    Energy Technology Data Exchange (ETDEWEB)

    Fattahi, M., E-mail: fattahi.put@gmail.com [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Noei Aghaei, V. [Aerospace Engineering Department, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Dabiri, A.R. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Amirkhanlou, S. [Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of); Akhavan, S.; Fattahi, Y. [Materials Engineering Department, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2015-11-11

    In the present work, accumulative roll bonding (ARB) was used as an effective method for manufacturing nanoparticle/Al composite filler metals of tungsten inert gas (TIG) welding. After welding, the distribution of ceramic nanoparticles and mechanical properties of welds were investigated. By applying ARB, ceramic nanoparticles were uniformly dispersed in the composite filler metals. Consequently, the welds produced by these filler metals had a uniform dispersion of ceramic nanoparticles in their compositions. The test results showed that the yield strength of welds was greatly increased when using the nanoparticle/Al composite filler metals. The improvement in the yield strength was attributed to the coefficient of thermal expansion mismatch and Orowan strengthening mechanisms. Therefore, according to the results presented in this paper, it can be concluded that the nanoparticle/Al composite filler metals can serve as a novel filler metal for TIG welding of aluminum and its alloys.

  15. Optical characteristics of a RF DBD plasma jet in various {Ar}/ {O}_{2}Ar/O2 mixtures

    Science.gov (United States)

    Falahat, A.; Ganjovi, A.; Taraz, M.; Ravari, M. N. Rostami; Shahedi, A.

    2018-02-01

    In this paper, using the optical emission spectroscopy (OES) technique, the optical characteristics of a radiofrequency (RF) plasma jet are examined. The Ar/O2 mixture is taken as the operational gas and, the Ar percentage in the Ar/O2 mixture is varied from 70% to 95%. Using the optical emission spectrum analysis of the RF plasma jet, the excitation temperature is determined based on the Boltzmann plot method. The electron density in the plasma medium of the RF plasma jet is obtained by the Stark broadening of the hydrogen Balmer H_{β }. It is mostly seen that, the radiation intensity of Ar 4p→ 4s transitions at higher argon contributions in Ar/O2 mixture is higher. It is found that, at higher Ar percentages, the emission intensities from atomic oxygen (O) are higher and, the line intensities from the argon atoms and ions including O atoms linearly increase. It is observed that the quenching of Ar^{*} with O2 results in higher O species with respect to O2 molecules. In addition, at higher percentages of Ar in the Ar/O2 mixture, while the excitation temperature is decreased, the electron density is increased.

  16. Models of bending strength for Gilsocarbon graphites irradiated in inert and oxidising environments

    International Nuclear Information System (INIS)

    Eason, Ernest D.; Hall, Graham N.; Marsden, Barry J.; Heys, Graham B.

    2013-01-01

    This paper presents the development and validation of an empirical model of fast neutron damage and radiolytic oxidation effects on bending strength for the moulded Gilsocarbon graphites used in Advanced Gas-cooled Reactors (AGRs). The inert environment model is based on evidence of essentially constant strength as fast neutron dose increases in inert environment. The model of combined irradiation and oxidation calibrates that constant along with an exponential function representing the degree of radiolytic oxidation as measured by weight loss. The change in strength with exposure was found to vary from one AGR station to another. The model was calibrated to data on material trepanned from AGR moderator bricks after varying operating times

  17. Site-specific fragmentation of polystyrene molecule using size-selected Ar gas cluster ion beam

    International Nuclear Information System (INIS)

    Moritani, Kousuke; Mukai, Gen; Hashinokuchi, Michihiro; Mochiji, Kozo

    2009-01-01

    The secondary ion mass spectrum (SIMS) of a polystyrene thin film was investigated using a size-selected Ar gas cluster ion beam (GCIB). The fragmentation in the SIM spectrum varied by kinetic energy per atom (E atom ); the E atom dependence of the secondary ion intensity of the fragment species of polystyrene can be essentially classified into three types based on the relationship between E atom and the dissociation energy of a specific bonding site in the molecule. These results indicate that adjusting E atom of size-selected GCIB may realize site-specific bond breaking within a molecule. (author)

  18. Aerosol release from a hot sodium pool and behaviour in inert gas atmosphere

    International Nuclear Information System (INIS)

    Sauter, H.; Schuetz, W.

    1986-01-01

    In the KfK-NALA program, experiments were carried out on the subject of aerosol release from a contaminated sodium pool into inert gas atmosphere under various conditions. Besides the determination of retention factors for fuel and fission products, the sodium aerosol system was investigated and characterized, concerning aerosol generation (evaporation rate), particle size, mass concentration, and deposition behaviour. Pool temperatures were varied between 700 and 1000 K at different geometrical and convective conditions. Technical scale experiments with a 531-cm 2 pool surface area were performed at natural convection in a 2.2-m 3 heated vessel, as well as additional small scale experiments at forced convection and 38.5-cm 2 pool surface area. A best-fit formula is given for the specific evaporation rate into a 400 K argon atmosphere. Approximately, the very convenient relation (dm/dt) (kg/m 2 /h) = 0.1 p (mm Hg) was found. The sodium aerosol diameter lay between 0.6 μm, less than 1 sec after production, and 2.5 μm at maximum concentration. The deposition behaviour was characterized by very small quantities ( 80%) on the bottom cover of the vessel. In the model theoretic studies with the PARDISEKO code, calculations were performed of the mass concentration, particle diameter and deposition behaviour. Agreement with the experimental values could not be achieved until a modulus was introduced to allow for turbulent deposition. (author)

  19. Oriented Polar Molecules in a Solid Inert-Gas Matrix: A Proposed Method for Measuring the Electric Dipole Moment of the Electron

    Science.gov (United States)

    Vutha, A.; Horbatsch, M.; Hessels, E.

    2018-01-01

    We propose a very sensitive method for measuring the electric dipole moment of the electron using polar molecules embedded in a cryogenic solid matrix of inert-gas atoms. The polar molecules can be oriented in the $\\hat{\\rm{z}}$ direction by an applied electric field, as has recently been demonstrated by Park, et al. [Angewandte Chemie {\\bf 129}, 1066 (2017)]. The trapped molecules are prepared into a state which has its electron spin perpendicular to $\\hat{\\rm{z}}$, and a magnetic field along $\\hat{\\rm{z}}$ causes precession of this spin. An electron electric dipole moment $d_e$ would affect this precession due to the up to 100~GV/cm effective electric field produced by the polar molecule. The large number of polar molecules that can be embedded in a matrix, along with the expected long coherence times for the precession, allows for the possibility of measuring $d_e$ to an accuracy that surpasses current measurements by many orders of magnitude. Because the matrix can inhibit molecular rotations and lock the orientation of the polar molecules, it may not be necessary to have an electric field present during the precession. The proposed technique can be applied using a variety of polar molecules and inert gases, which, along with other experimental variables, should allow for careful study of systematic uncertainties in the measurement.

  20. FFTF gas processing systems

    International Nuclear Information System (INIS)

    Halverson, T.G.

    1977-01-01

    The design and operation of the two radioactive gas processing systems at the Fast Flux Test Facility (FFTF) exemplifies the concept that will be used in the first generation of Liquid Metal Fast Breeder Reactors (LMFBR's). The two systems, the Radioactive Argon Processing System (RAPS) and the Cell Atmosphere Processing System (CAPS), process the argon and nitrogen used in the FFTF for cover gas on liquid metal systems and as inert atmospheres in steel lined cells housing sodium equipment. The RAPS specifically processes the argon cover gas from the reactor coolant system, providing for decontamination and eventual reuse. The CAPS processes radioactive gasses from inerted cells and other liquid metal cover gas systems, providing for decontamination and ultimate discharge to the atmosphere. The cryogenic processing of waste gas by both systems is described

  1. 40Ar/39Ar incremental-release ages of biotite from a progressively remetamorphosed Archean basement terrane in southwestern Labrador

    International Nuclear Information System (INIS)

    Dallmeyer, R.D.

    1982-01-01

    Gneisses within Archean basement terrane adjacent to the southwestern portion of the Labrador Trough were variably retrograded during a regional metamorphism of Grenville age (ca. 1000 Ma). Bioties from non-retrograded segments of the gneiss terrane record 40 Ar/ 39 Ar plateau and isochron ages which date times of cooling following an episode of the Kenoran orogeny (2376-2391 Ma). A suite of gneiss samples displaying varying degrees of retrograde alteration was collected across the Grenville metamorphic gradient. Bioties in these samples show no petrographic evidence of retrograde alteration, however they do record internally discordant 40 Ar/ 39 Ar age spectra. Although the extent of internal discordance is variable, the overall character of the release patterns is similar with younger apparent ages recorded in intermediate-temperature gas fractions. The total-gas dates range from 2257+-27 Ma (northwest) to 1751+-23 Ma (southeast), suggesting that variable quantities of radiogenic argon were lost from the Archean biotites during Grenville metamorphism. The 'saddle-shaped' nature of the discordant spectra indicates that argon loss was not accomplished through single-stage, volume diffusion processes. (orig./ME)

  2. INERT Atmosphere confinement operability test procedure

    International Nuclear Information System (INIS)

    RISENMAY, H.R.

    1999-01-01

    This Operability Test Procedure (OTP) provides instructions for testing operability of the Inert Atmosphere Confinement (IAC). The Inert Atmosphere Confinement was designed and built for opening cans of metal items that might have hydrided surfaces. Unreviewed Safety Question (USQ) PFP-97-005 addresses the discovery of suspected plutonium hydride forming on plutonium metal currently stored in the Plutonium Finishing Plant vaults. Plutonium hydride reacts quickly with air, liberating energy. The Inert Atmosphere Confinement was designed to prevent this sudden liberation of energy by opening the material in an inert argon atmosphere instead of the normal glovebox atmosphere. The IAC is located in glovebox HC-21A, room 230B of the 234-5Z Building at the Plutonium Finishing Plant (PFP) in the 200-West Area of the Hanford Site

  3. Dissociative recombination of rare gas hydride ions: II. ArH+

    International Nuclear Information System (INIS)

    Mitchell, J B A; Novotny, O; LeGarrec, J L; Florescu-Mitchell, A; Rebrion-Rowe, C; Stolyarov, A V; Child, M S; Svendsen, A; Ghazaly, M A El; Andersen, L H

    2005-01-01

    A storage ring measurement of the rate coefficient for the production of neutral Ar in e + ArH + collisions is described. It is found that the recombination rate is too small to measure at low centre-of-mass energies but the combined rate coefficient for dissociative recombination and dissociative excitation increases above 2.5 eV displaying peaks centred at 7.5 eV, 16 and 26 eV. Calculated potential energy curves for the ground and excited states of ArH + are presented and these aid in the elucidation of the recombination and excitation processes observed at higher energies. The implications for plasma modelling are discussed. (letter to the editor)

  4. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders.

    Science.gov (United States)

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-03-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm(-3), with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  5. Inert gas narcosis disrupts encoding but not retrieval of long term memory.

    Science.gov (United States)

    Hobbs, Malcolm; Kneller, Wendy

    2015-05-15

    Exposure to increased ambient pressure causes inert gas narcosis of which one symptom is long-term memory (LTM) impairment. Narcosis is posited to impair LTM by disrupting information encoding, retrieval (self-guided search), or both. The effect of narcosis on the encoding and retrieval of LTM was investigated by testing the effect of learning-recall pressure and levels of processing (LoP) on the free-recall of word lists in divers underwater. All participants (n=60) took part in four conditions in which words were learnt and then recalled at either low pressure (1.4-1.9atm/4-9msw) or high pressure (4.4-5.0atm/34-40msw), as manipulated by changes in depth underwater: low-low (LL), low-high(LH), high-high (HH), and high-low (HL). In addition, participants were assigned to either a deep or shallow processing condition, using LoP methodology. Free-recall memory ability was significantly impaired only when words were initially learned at high pressure (HH & HL conditions). When words were learned at low pressure and then recalled at low pressure (LL condition) or high pressure (LH condition) free-recall was not impaired. Although numerically superior in several conditions, deeper processing failed to significantly improve free-recall ability in any of the learning-recall conditions. This pattern of results support the hypothesis that narcosis disrupts encoding of information into LTM, while retrieval appears to be unaffected. These findings are discussed in relation to similar effects reported by some memory impairing drugs and the practical implications for workers in pressurised environments. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Effects of Ar or O2 Gas Bubbling for Shape, Size, and Composition Changes in Silver-Gold Alloy Nanoparticles Prepared from Galvanic Replacement Reaction

    Directory of Open Access Journals (Sweden)

    Md. Jahangir Alam

    2013-01-01

    Full Text Available The galvanic replacement reaction between silver nanostructures and AuCl4- solution has recently been demonstrated as a versatile method for generating metal nanostructures with hollow interiors. Here we describe the results of a systematic study detailing the morphological, structural, compositional, and spectral changes involved in such a heterogeneous reaction on the nanoscale. Effects of Ar or O2 gas bubbling for the formation of Ag-Au alloy nanoparticles by the galvanic replacement between spherical Ag nanoparticles and AuCl4- especially were studied in ethylene glycol (EG at 150°C. The shape, size, and composition changes occur rapidly under O2 bubbling in comparison with those under Ar bubbling. The major product after 60 min heating under Ar gas bubbling was perforated Ag-Au alloy particles formed by the replacement reaction and the minor product was ribbon-type particles produced from splitting off some perforated particles. On the other hand, the major product after 60 min heating under O2 gas bubbling was ribbon-type particles. In addition, small spherical Ag particles are produced. They are formed through rereduction of Ag+ ions released from the replacement reaction and oxidative etching of Ag nanoparticles by O2/Cl− in EG.

  7. Study of the mobility activation in ZnSe thin films deposited using inert gas condensation

    Directory of Open Access Journals (Sweden)

    Jeewan Sharma

    2017-12-01

    Full Text Available ZnSe thin films were synthesized on glass substrates using the inert gas condensation technique at substrate temperature ranging from 25 °C to 100 °C. The hexagonal structure and average crystallite size (6.1–8.4 nm were determined from X-ray diffraction data. The transient photoconductivity was investigated using white light of intensity 8450 lx to deduce the effective density of states (Neff in the order of 1.02 × 1010–13.90 × 1010 cm−3, the frequency factor (S in the range 2.5 × 105–24.6 × 105 s−1 and the trap depth (E ranging between 0.37–0.64 eV of these films. The trap depth study revealed three different types of levels with quasi-continuous distribution below the conduction band. An increase in the photoconductivity was observed as a result of the formation of potential barriers (Vb and of the increase of carrier mobility at the crystallite boundaries. The study of the dependence of various mobility activation parameters on the deposition temperature and the crystallite size has provided better understanding of the mobility activation mechanism.

  8. Hot spots in Ar and Ne gas puff Z-pinch

    International Nuclear Information System (INIS)

    Krejci, A.; Krousky, E.; Renner, O.

    1989-02-01

    The hot spots in Ar and Ne pinch plasma were investigated. Two pinhole cameras with entrance diameter 13 to 250 μm and flat crystal spectrographs with Si and KAP crystals were used for spatially and spectrally resolved soft X-ray diagnostics. The diameters of Ar (25 to 30 μm) and Ne (40 μm) hot spots were found. From X-ray spectrum of Ar spots the following plasma parameters were determined: T e =1.0 to 1.1 keV and n e =(1.8 to 4.0)x10 27 m -3 . The validity of the Bennett equilibrium for unstable hot spots is discussed. (author). 1 fig., 11 refs

  9. Comfort-oriented vehicle suspension design with skyhook inerter configuration

    Science.gov (United States)

    Hu, Yinlong; Chen, Michael Z. Q.; Sun, Yonghui

    2017-09-01

    This paper is concerned with the comfort-oriented vehicle suspension design problem by using a skyhook inerter configuration. The rationale of the skyhook inerter is to use a grounded inerter to virtually increase the sprung mass of a vehicle, as it is analytically demonstrated that increasing the sprung mass can always improve the ride comfort performance. Semi-active means to realize the skyhook inerter configuration are investigated by using semi-active inerters. Three control laws, that is the on-off control, the anti-chatter on-off control, and the continuous control, are proposed for the semi-active inerter to approximate the skyhook inerter. Numerical simulations are performed to demonstrate the effectiveness and performances of these control laws. It is shown that the semi-active realizations of the skyhook inerter by using the proposed control laws can achieve over 10% improvement compared with the traditional strut, and similar performances are obtained for these control laws, with slight differences with respect to different static stiffnesses of the suspension system.

  10. WVNS Tank Farm Process Support: Experimental evaluation of an inert gas (nitrogen) to mitigate external corrosion of high-level waste storage tanks

    International Nuclear Information System (INIS)

    Elmore, M.R.

    1996-02-01

    Corrosion of the carbon steel waste storage tanks at West Valley Nuclear Services continues to be of concern, especially as the planned duration of waste storage time increases and sludge washing operations are conducted. The external surfaces of Tanks 8D-1 and 8D-2 have been exposed for more than 10 years to water that has intruded into the tank vaults. Visual inspection of the external tank surfaces using a remote video camera has shown indications of heavy corrosion in localized areas on the tank walls. Tests on mild steel specimens under simulated tank vault conditions showed that corrosion is related to the availability of oxygen for the corrosion reactions; consequently, removing oxygen as one of the reactants should effectively eliminate corrosion. In terms of the waste tanks, excluding oxygen from the annular vault space, such as by continuous flushing with an inert gas, should substantially decrease corrosion of the external surfaces of the mild steel tanks (100% exclusion of oxygen is probably not practicable). Laboratory corrosion testing was conducted at Pacific Northwest National Laboratory to give a preliminary assessment of the ability of nitrogen-inerting to reduce steel corrosion. This report summarizes test results obtained after 18-month corrosion tests comparing open-quotes nitrogen-inertedclose quotes corrosion with open-quotes air-equilibratedclose quotes corrosion under simulated tank vault conditions

  11. Experimental study of single-electron loss by Ar+ ions in rare-gas atoms

    Science.gov (United States)

    Reyes, P. G.; Castillo, F.; Martínez, H.

    2001-04-01

    Absolute differential and total cross sections for single-electron loss were measured for Ar+ ions on rare-gas atoms in the laboratory energy range of 1.5 to 5.0 keV. The electron loss cross sections for all the targets studied are found to be in the order of magnitude between 10-19 and 10-22 cm2, and show a monotonically increasing behaviour as a function of the incident energy. The behaviour of the total single-electron loss cross sections with the atomic target number, Zt, shows different dependences as the collision energy increases. In all cases the present results display experimental evidence of saturation in the single-electron loss cross section as the atomic number of the target increases.

  12. Thermal significance of potassium feldspar K-Ar ages inferred from /sup 40/Ar//sup 39/Ar age spectrum results

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, T.M.; McDougall, I. (Australian National Univ., Canberra. Research School of Earth Sciences)

    1982-10-01

    /sup 40/Ar//sup 39/Ar age spectrum analyses of three microcline separates from the Separation Point Batholith, northwest Nelson, New Zealand, which cooled slowly through the temperature zone of partial radiogenic /sup 40/Ar accumulation are characterized by a linear age increase over the first 65 percent of gas release with the lowest ages corresponding to the time that the samples cooled below about 100/sup 0/C. The last 35 percent of /sup 39/Ar released from the microclines yields plateau ages which reflect the different bulk mineral ages, and correspond to cooling temperatures between about 130 to 160/sup 0/C. Theoretical calculations confirm the likelihood of diffusion gradients in feldspars cooling at rates =< 5/sup 0/C-Ma/sup -1/. Diffusion parameters calculated from the /sup 39/Ar release yield an activation energy, E = 28.8 +- 1.9 kcal-mol/sup -1/, and a frequency factor/grain size parameter, D/sub 0//l/sup 2/ = 5.6sub(-3.9)sup(+14) sec/sup -1/. This Arrhenius relationship corresponds to a closure temperature of 132 +- 13/sup 0/C which is very similar to the independently estimated temperature. From the observed diffusion compensation correlation, this D/sub 0//l/sup 2/ implies an average diffusion half-width of about 3 ..mu..m, similar to the half-width of the perthite lamellae in the feldspars. The results are discussed.

  13. Enhanced mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joint using two-pass friction stir processing with rapid cooling

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Nan, E-mail: xunan@hhu.edu.cn; Bao, Yefeng

    2016-02-08

    In this study, tungsten inert gas (TIG) welded AZ31 magnesium alloy joint was subjected to two-pass rapid cooling friction stir processing (RC-FSP). The main results show that, two-pass RC-FSP causes the significant dissolution of the coarse eutectic β-Mg{sub 17}Al{sub 12} phase into the magnesium matrix and the remarkable grain refinement in the stir zone. The low-hardness region which frequently located at heat-affected zone was eliminated. The stir zone showed ultrafine grains of 3.1 μm, and exhibited a good combination of ultrahigh tensile strength of 284 MPa and large elongation of 7.1%. This work provides an effective strategy to enhance the strength of TIG welded magnesium alloy joint without ductility loss.

  14. Enhanced mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joint using two-pass friction stir processing with rapid cooling

    International Nuclear Information System (INIS)

    Xu, Nan; Bao, Yefeng

    2016-01-01

    In this study, tungsten inert gas (TIG) welded AZ31 magnesium alloy joint was subjected to two-pass rapid cooling friction stir processing (RC-FSP). The main results show that, two-pass RC-FSP causes the significant dissolution of the coarse eutectic β-Mg_1_7Al_1_2 phase into the magnesium matrix and the remarkable grain refinement in the stir zone. The low-hardness region which frequently located at heat-affected zone was eliminated. The stir zone showed ultrafine grains of 3.1 μm, and exhibited a good combination of ultrahigh tensile strength of 284 MPa and large elongation of 7.1%. This work provides an effective strategy to enhance the strength of TIG welded magnesium alloy joint without ductility loss.

  15. Modeling, Testing, and Characteristic Analysis of a Planetary Flywheel Inerter

    Directory of Open Access Journals (Sweden)

    Zheng Ge

    2018-01-01

    Full Text Available We propose the planetary flywheel inerter, which is a new type of ball screw inerter. A planetary flywheel consists of several planetary gears mounted on a flywheel bracket. When the flywheel bracket is driven by a screw and rotating, each planetary gear meshing with an outer ring gear generates a compound motion composed of revolution and rotation. Theoretical analysis shows that the output force of the planetary flywheel inerter is proportional to the relative acceleration of one terminal of the inerter to the other. Optimizing the gear ratio of the planetary gears to the ring gear allows the planetary flywheel to be lighter than its traditional counterpart, without any loss on the inertance. According to the structure of the planetary flywheel inerter, nonlinear factors of the inerter are analyzed, and a nonlinear dynamical model of the inerter is established. Then the parameters in the model are identified and the accuracy of the model is validated by experiment. Theoretical analysis and experimental data show that the dynamical characteristics of a planetary flywheel inerter and those of a traditional flywheel inerter are basically the same. It is concluded that a planetary flywheel can completely replace a traditional flywheel, making the inerter lighter.

  16. Fog inerting criteria for hydrogen/air mixtures

    International Nuclear Information System (INIS)

    Tsai, S.S.; Liparulo, N.J.

    1982-01-01

    A distributed ignition system has been proposed to ignite hydrogen at low concentration in the ice condenser containment during severe accidents. The post-accident containment atmosphere could be misty due to fog generation from the break flow and condensation in the ice bed. Thus it is important to establish a fog inerting criterion for effective performance of the ignition system. This paper presents such a criterion that specifies the necessary fogging conditions, i.e., fog concentration and drop size, for inerting a hydrogen/air mixture. The criterion shows that the minimum fog inerting concentration varies with the square of the volume mean fog drop size. The present fog inerting criterion is shown to be in general agreement with the Factory Mutual test data

  17. Microstructure and erosion characteristic of nodular cast iron surface modified by tungsten inert gas

    International Nuclear Information System (INIS)

    Abboud, Jaafar Hadi

    2012-01-01

    Highlights: ► Local surface melting. ► Significant improvement in erosion resistance. ► The ductile behaviour was found. -- Abstract: The surface of nodular cast iron has been melted and rapidly solidified by Tungsten Inert Gas (TIG) process to produce a chilled structure of high hardness and better erosion resistance. Welding currents of magnitude 100, 150, and 200 A at a constant voltage of 72 have been used to melt the surface of nodular cast iron. Microstructural characterization, hardness measurements, and erosion wear tests have been performed on these modified surfaces as well as on the untreated material. Microstructural characterization has shown that surface melting resulted in complete or partial dissolution of the graphite nodules and resolidification of primary austenite dendrites, which undergo further decomposition into ferrite and cementite, and interdendritic of acicular eutectic; their microhardness measured across the melted depth ranged between 600 and 800 Hv. The scale of the dendrites and the interdendritic eutectic became coarser when a higher current is used. The results also indicated that remelting process by TIG improved erosion resistance by three to four times. Eroded surface observations of the as-received and TIG melted samples showed a ductile behavior with a maximum erosion rate at 30°. The fine microstructures obtained by the rapid cooling and the formation of a large amount of eutectic cementite instead of the graphite have contributed greatly to the plastic flow and consequently to the better erosion resistance of the TIG surface melted samples.

  18. Thermodynamics of the production of condensed phases in the chemical vapor deposition of ZrC in the ZrCl{sub 4}–CH{sub 4}–H{sub 2}–Ar system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haiping [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Deng, Juanli, E-mail: dengjl@chd.edu.cn [School of Materials Science and Engineering, Chang' an University, Xi' an, Shaanxi 710064 (China); Yang, Lianli [College of Chemistry and Chemical Engineering, Xianyang Teachers College, Xianyang, Shaanxi 712000 (China); Cheng, Laifei; Luo, Lei; Zhu, Yan [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Su, Kehe [Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Zhang, Litong [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)

    2014-05-02

    Production conditions of ZrC, Zr and C(graphite) condensed phases in the chemical vapor deposition process with ZrCl{sub 4}–CH{sub 4}–H{sub 2}–Ar precursor system have been investigated based on thermodynamic analyses using the FactSage code. The yields of condensed phases have been examined as functions of the injected reactant ratios of ZrCl{sub 4}/(ZrCl{sub 4} + CH{sub 4}), H{sub 2}/(ZrCl{sub 4} + CH{sub 4}) and Ar/(ZrCl{sub 4} + CH{sub 4}), the temperature and the pressure. The results show that the yields strongly depend on the molar ratios of the ZrCl{sub 4}/(ZrCl{sub 4} + CH{sub 4}) and H{sub 2}/(ZrCl{sub 4} + CH{sub 4}) injected reactant and on the temperature, but are insensitive to the inert gas Ar ratio and pressure. The co-deposition of ZrC with Zr or C(graphite) can be easily controlled by changing the ratios of ZrCl{sub 4}/CH{sub 4} and H{sub 2}/(ZrCl{sub 4} + CH{sub 4}). Process conditions such as high input amount of H{sub 2}, relatively low amount of Ar, low pressure and temperature above 1300 K are favorable for the deposition of ZrC. The results of this work will be helpful for further experimental investigation on different deposition conditions. - Highlights: • Control of the composition of deposits via adjustment of precursor ratios • Carbon enrichment can be avoided using a low amount of argon diluting gas. • The deposition process is significantly influenced by the presence of hydrogen.

  19. Micro-fabricated membrane gas valves with a non-stiction coating deposited by C4F8/Ar plasma

    International Nuclear Information System (INIS)

    Han, Jeahyeong; Flachsbart, Bruce; Shannon, Mark A; Masel, Rich I

    2008-01-01

    Micro-fabricated gas valves with C 4 F 8 /Ar treatment at the sealing interface are designed, fabricated and characterized to passively control gases in a micro gas analysis system. The check valves form a seal between a polished Si/SiO 2 substrate and a smooth polyimide (PI) membrane. The smooth PI membrane touches the SiO 2 surface, giving rise to relatively strong van der Waals adhesion, and under humid conditions hydrogen-bonded stiction can occur at the interface between PI and SiO 2 . To prevent stiction from dominating adhesion, the valve-seat surface was treated with a hydrophobic CF n thin film, which was formed by exposing the surface to C 4 F 8 /Ar inductively coupled plasma (ICP) at low power. The valves without a non-stiction coating did not open with inlet pressures up to 210 kPa. With a non-stiction coating, the valves showed an average initial opening pressure of 59.25 kPa. In order to further reduce the opening pressure, 40% of the valve-seat area is reduced. After modification, the average opening pressure is reduced to 32.5 kPa. After the initial opening, the average in-use opening pressure was 16.9 kPa before area modification, and 13.1 kPa after the modification. The valve has been tested up to 10 000 open/close cycles under dry N 2 gas flow, and an additional 3000 open/close cycles under humid N 2 gas flow. The average forward flow conductance of the valves before modification was 1.1 sccm kPa −1 , and the conductance after modification was 1.41 sccm kPa −1 . The measured leakage is between 0.0003 and 0.004 sccm up to 35 kPa reverse pressure

  20. ar-ch

    Indian Academy of Sciences (India)

    The credit for isolating helium and most ofthe remaining inert gases goes to William Ramsay ( Oct. 2,. 1852 - July 23 ... Some important properties of the inert gases are given below: .Ii. Name .... Department of Inorganic and Physical Chemistry.

  1. Development of Key-Enabling Technologies for a Variable-blend Natural Gas Vehicle

    Science.gov (United States)

    2017-12-01

    A portable, economic and reliable sensor for the Natural Gas (NG) fuel quality has been developed. Both Wobbe Index (WI) and Methane Indexes (MI) as well as inert gas content (inert%) of the NG fuel can be measured in real time within 5% accuracy. Th...

  2. Effect of N{sub 2} and Ar gas on DC arc plasma generation and film composition from Ti-Al compound cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhirkov, Igor, E-mail: igozh@ifm.liu.se; Rosen, Johanna [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Oks, Efim [Institute of High Current Electronics SB RAS, 2/3 Akademichesky Avenue, 634055 Tomsk (Russian Federation)

    2015-06-07

    DC arc plasma from Ti, Al, and Ti{sub 1−x}Al{sub x} (x = 0.16, 0.25, 0.50, and 0.70) compound cathodes has been characterized with respect to plasma chemistry (charged particles) and charge-state-resolved ion energy for Ar and N{sub 2} pressures in the range 10{sup −6} to 3 × 10{sup −2} Torr. Scanning electron microscopy was used for exploring the correlation between the cathode and film composition, which in turn was correlated with the plasma properties. In an Ar atmosphere, the plasma ion composition showed a reduction of Al of approximately 5 at. % compared to the cathode composition, while deposited films were in accordance with the cathode stoichiometry. Introducing N{sub 2} above ∼5 × 10{sup −3} Torr, lead to a reduced Al content in the plasma as well as in the film, and hence a 1:1 correlation between the cathode and film composition cannot be expected in a reactive environment. This may be explained by an influence of the reactive gas on the arc mode and type of erosion of Ti and Al rich contaminations, as well as on the plasma transport. Throughout the investigated pressure range, a higher deposition rate was obtained from cathodes with higher Al content. The origin of generated gas ions was investigated through the velocity rule, stating that the most likely ion velocities of all cathode elements from a compound cathode are equal. The results suggest that the major part of the gas ions in Ar is generated from electron impact ionization, while gas ions in a N{sub 2} atmosphere primarily originate from a nitrogen contaminated layer on the cathode surface. The presented results provide a contribution to the understanding processes of plasma generation from compound cathodes. It also allows for a more reasonable approach to the selection of composite cathode and experimental conditions for thin film depositions.

  3. Gasification of the southern spread of Bolivia-Brazil gas pipeline

    International Nuclear Information System (INIS)

    Frisoli, Caetano; Senna, Ferando Jose Ennes de; Faria, Jose Aurelio Carvalho de

    2000-01-01

    As to the commissioning of the Northern spread, Inert Direct Purging was also adopted for purging the Southern Spread of Bolivia-Brazil Gas Pipeline. This section is 1191 km long and lies between the city of Paulinia in the State of Sao Paulo up to Canoas in the Sate of Rio Grande do Sul. The Inert Direct Purging is based on the principle of high gas injection flow rates at the initial point and the purging of air at the other end, separated by a nitrogen plug. A purging model, developed by The Gas Research Institute, was used in conjunction with the software Pipeline Studio for planning purposes. The arrival of gas at each valve and the size of gas/nitrogen/air interfaces were also recorded. Graphs and tables compare calculated and recorded data. Final results demonstrated model accuracy and its suitable applicability for purging, as well as the Inert Direct Purging method for gas pipelines of extensive lengths. (author)

  4. Design of a radioactive gas sampling system for NESHAP compliance measurements of 41Ar

    International Nuclear Information System (INIS)

    Newton, G.J.; McDonald, M.J.; Ghanbari, F.; Hoover, M.D.; Barr, E.B.

    1994-01-01

    United States Department of Energy facilities are required to comply with the U.S. Environmental Protection Agency, National Emission Standard for Hazardous Air Pollutants (NESHAP) 40 CFR, part 61, subpart H. Compliance generally requires confirmatory measurements of emitted radionuclides. Although a number of standard procedures exist for extractive sampling of particle-associated radionuclides, sampling approaches for radioactive gases are less defined. Real-time, flow-through sampling of radioactive gases can be done when concentrations are high compared to interferences from background radiation. Cold traps can be used to collect and concentrate condensible effluents in applications where cryogenic conditions can be established and maintained. Commercially available gas-sampling cylinders can be used to capture grab samples of contaminated air under ambient or compressed conditions, if suitable sampling and control hardware are added to the cylinders. The purpose of the current study was to develop an efficient and compact set of sampling and control hardware for use with commercially available gas-sampling cylinders, and to demonstrate its use in NESHAP compliance testing of 41 Ar at two experimental research reactors

  5. Improvement in ferroelectric properties of Pt/PZT/Pt capacitors etched as a function of Ar/O2 gas mixing ratio into Cl2/CF4 plasma

    International Nuclear Information System (INIS)

    Lim, Kyu-Tae; Koo, Seong-Mo; Kim, Kyoung-Tae; Kim, Dong-Pyo; Kim, Chang-Il

    2004-01-01

    In this work, to investigate improvement of the damage using oxygen containing plasma, we etched PZT films as a function of Ar (x%)/O 2 (y%) gas mixing ratio in Cl 2 (56%)/CF 4 (14%) plasma (where the sum of x and y is 30). The maximum etch rate of the PZT thin films was 146 nm/min for Ar (30%)/O 2 (0%) added into the Cl 2 /CF 4 plasma. After the etching, the plasma-induced damages were characterized in terms of hysteresis curves, leakage current, switching polarization and retention capacity as a function of the gas mixing ratio. When the ferroelectric properties of PZT films were etched as a function of O 2 and Ar and the gas mixing ratios were compared, the value of remnant polarization in O 2 (30%) added Cl 2 /CF 4 plasma is higher than that in Ar (30%). The results showed that after the etching the charges accumulated by oxygen vacancies prevented further domain switching at the top electrode-ferroelectric interface and created leakage current because of modification of the interfacial Schottky barrier during the etching process. The physical damage to the near surface and the crystal structure of the etched PZT thin films was evaluated by using X-ray diffraction (XRD). The remnant polarization, leakage current, retention and fatigue properties are improved with increasing O 2 content. From XRD results, the improvement in the ferroelectric properties of PZT capacitors etched in O 2 containing plasma was consistent with the increased intensities of the (100) and (200) peaks

  6. 7 CFR 201.51 - Inert matter.

    Science.gov (United States)

    2010-01-01

    ... REGULATIONS Purity Analysis in the Administration of the Act § 201.51 Inert matter. Inert matter shall include... kochia that pass through a 1 mm opening, square-hole sieve, when shaken for 30 seconds. (8) The thin... devoid of the husk and pass through a 1/13th-inch, round-hole sieve. (ii) Bulblets which show evident...

  7. Inert Reassessment Document for Gluconic Acid and Sodium Salt

    Science.gov (United States)

    Gluconic acid and D-gluconic acid are classified as List 3 inert ingredients, sodium gluconate is classified as a List 4B inert ingredient, and D-gluconic acid, sodium salt has not been categorized as to inert ingredient list classification status.

  8. On the Benefits of Semi-Active Suspensions with Inerters

    Directory of Open Access Journals (Sweden)

    Xin-Jie Zhang

    2012-01-01

    Full Text Available Inerters have become a hot topic in recent years especially in vehicle, train, building suspension systems, etc. Eight different layouts of suspensions were analyzed with a quarter-car model in this paper. Dimensionless root mean square (RMS responses of the sprung mass vertical acceleration, the suspension travel, and the tire deflection are derived which were used to evaluate the performance of the quarter-car model. The behaviour of semi-active suspensions with inerters using Groundhook, Skyhook, and Hybrid control has been evaluated and compared to the performance of passive suspensions with inerters. Sensitivity analysis was applied to the development of a high performance semi-active suspension with an inerter. Numerical simulations indicate that a semi-active suspension with an inerter has much better performance than the passive suspension with an inerter, especially with the Hybrid control method, which has the best compromise between comfort and road holding quality.

  9. Alternative inerting agents

    CSIR Research Space (South Africa)

    Du

    1997-08-01

    Full Text Available Final Project Report ALTERNATIVE INERTING AGENTS Author/s: J J L DU PLESSIS Research Agency: OSIR MINING TECHNOLOGY Project No: Date: 3 2 7 2 COL 443 APRIL 1999 N’ ) ( G~6~ I Title: 9 / The results show...

  10. Sr and Ar isotope studies of detrital smectites from the Atlantic Ocean (D.S.D.P., Legs 43, 48 and 50)

    International Nuclear Information System (INIS)

    Clauer, N.; Lucas, J.

    1984-01-01

    Mineralogical, morphological and isotopic (Rb-Sr and K-Ar) determinations were made on some detrital smectites of Palaeocene and Cenomanian ages from D.S.D.P. drillings in the Atlantic Ocean. These minerals are not inert in their depositional environment; authigenic laths grow on detrital sheets with sharp borders. This authigenesis could occur slightly after deposition in a closed system, for some of these smectites. It has been tentatively quantified by the Rb-Sr and K-Ar isotopic methods, which seem also well suited to evaluate the chemical extent of this authigenesis. At least, no preferential loss of 40 Ar vs. 87 Sr could be detected in the minerals, even in those which are smaller than 0.2 μm. (Auth.)

  11. Effects of high-pressure argon and nitrogen treatments on respiration, browning and antioxidant potential of minimally processed pineapples during shelf life.

    Science.gov (United States)

    Wu, Zhi-shuang; Zhang, Min; Wang, Shao-jin

    2012-08-30

    High-pressure (HP) inert gas processing causes inert gas and water molecules to form clathrate hydrates that restrict intracellular water activity and enzymatic reactions. This technique can be used to preserve fruits and vegetables. In this study, minimally processed (MP) pineapples were treated with HP (∼10 MPa) argon (Ar) and nitrogen (N) for 20 min. The effects of these treatments on respiration, browning and antioxidant potential of MP pineapples were investigated after cutting and during 20 days of storage at 4 °C. Lower respiration rate and ethylene production were found in HP Ar- and HP N-treated samples compared with control samples. HP Ar and HP N treatments effectively reduced browning and loss of total phenols and ascorbic acid and maintained antioxidant capacity of MP pineapples. They did not cause a significant decline in tissue firmness or increase in juice leakage. HP Ar treatments had greater effects than HP N treatments on reduction of respiration rate and ethylene production and maintenance of phenolic compounds and DPPH(•) and ABTS(•+) radical-scavenging activities. Both HP Ar and HP N processing had beneficial effects on MP pineapples throughout 20 days of storage at 4 °C. Copyright © 2012 Society of Chemical Industry.

  12. Near thermal charge transfer between Ar+2 and N2

    International Nuclear Information System (INIS)

    Holzscheiter, H.M.; Church, D.A.

    1981-01-01

    The near thermal charge transfer reaction of Ar +2 with N 2 has been studied at total pressures below 10 -7 Torr using a stored ion technique. Ar +2 ions produced by electron impact double ionization of Ar gas were selectively stored for times the order of seconds in a split-ring Penning-type ion trap. The decay with time of the initial ion sample number in a mixture of Ar and N 2 gases was fit to the sum of two exponentials, corresponding to different reaction rates for the 3 P and 1 D low-lying Ar +2 levels. The observed Ar +2 number decrease is attributed to the double-charge transfer process Ar +2 +N 2 →Ar+N 2 +2 →Ar+N + +N + in accord with recent flow-tube measurements. A rate constant for the metastable Ar +2 ( 1 D) level reaction with a value k( 1 D)=1.4 x 10 -9 cm 3 /sec is obtained, using the previously measured rate constant for the Ar +2 ( 3 P) state

  13. The effects of alloying elements on microstructures and mechanical properties of tungsten inert gas welded AZ80 magnesium alloys joint

    Science.gov (United States)

    Li, Hui; Zhang, Jiansheng; Ding, Rongrong

    2017-11-01

    The effects of alloying elements on the macrostructures, microstructures and tensile strength of AZ80 Mg alloy weldments were studied in the present study. The results indicate that with the decrease of Al element content of filler wire, the welding defects of seam are gradually eliminated and the β-Mg17Al12 phases at α-Mg boundaries are refined and become discontinuous, which are beneficial to the improvement of tensile strength. With AZ31 Mg alloy filler wire, the maximum tensile strength of AZ80 weldment is 220 MPa and fracture occurs at the welding seam of joint. It is experimentally proved that robust AZ80 Mg alloy joints can be obtained by tungsten inert gas (TIG) welding process with AZ31 Mg alloy filler wire. However, further study is required to improve the microstructures and reduce welding defects of joint in order to further improve the joining strength of AZ80 Mg alloy joint.

  14. Investigation of the Hall MHD channel operating with the ionized instable plasma of inert gases

    International Nuclear Information System (INIS)

    Vasi'leva, R.V.; D'yakova, E.A.; Erofeev, A.V.; Zuev, A.D.; Lapushkina, T.A.; Markhotok, A.A.

    1997-01-01

    Possibility of applying ionization-instable plasma of pure inert gases as perspective working substance for closed-cycle MHD generators is studied. The experiment was produced in the model of the disk Hall MHD channel. The ionized gas flux was produced in a shock tube. Xenon was used as a working substance. Gas pressure, flux velocity, electron concentration and temperature, azimuthal current density, potential distribution in the channel and near-electrode voltage drop values were measured in the experiment. Volt-ampere characteristics were taken by various indices of magnetic field and load resistance

  15. Catalytic Reactor for Inerting of Aircraft Fuel Tanks

    Science.gov (United States)

    1974-06-01

    Aluminum Panels After Triphase Corrosion Test 79 35 Inerting System Flows in Various Flight Modes 82 36 High Flow Reactor Parametric Data 84 37 System...AD/A-000 939 CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS George H. McDonald, et al AiResearch Manufacturing Company Prepared for: Air Force...190th Street 2b. GROUP Torrance, California .. REPORT TITLE CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS . OESCRIP TIVE NOTEs (Thpe of refpoft

  16. Electron transfer from H2 and Ar to stored multiply charged argon ions produced by synchrotron radiation

    International Nuclear Information System (INIS)

    Kravis, S.D.; Church, D.A.; Johnson, B.M.; Meron, M.; Jones, K.W.; Levin, J.C.; Sellin, I.A.; Azuma, Y.; Berrah-Mansour, N.; Berry, H.G.; Druetta, M.

    1992-01-01

    The rate coefficients for electron transfer from Ar and H 2 to Ar q+ ions (3≤q≤6) have been measured using an ion-storage technique in a Penning ion trap. The ions were produced in the trap by K-shell photoionization of Ar atoms, using broadband synchrotron x-ray radiation. K-electron removal resulted in vacancy cascading, yielding a distribution of argon-ion charge states peaked near Ar 4+ . The stored ion gas had an initial temperature near 480 K. The basic data determining the rate coefficients k(Ar q+ ) are the storage time constants of each charge state in the trap, in the presence of a measured pressure of target gas. The results of the measurements (in units of 10 -9 cm 3 s -1 ) are k(Ar 3+ ,H 2 )=4.3(0.7), k(Ar 3+ ,Ar)=1.6(0.2), k(Ar 4+ ,H 2 )=5.2(0.6), k(Ar 4+ ,Ar)=2.5(0.3), k(Ar 5+ ,H 2 )=5.9(0.7), k(Ar 5+ ,Ar)=2.9(0.3), k(Ar 6+ ,H 2 )=8.5(1.2), and k(Ar 6+ ,Ar)=2.5(0.3)

  17. Atmospheric pressure plasma jet utilizing Ar and Ar/H2O mixtures and its applications to bacteria inactivation

    International Nuclear Information System (INIS)

    Cheng Cheng; Shen Jie; Xiao De-Zhi; Xie Hong-Bing; Lan Yan; Fang Shi-Dong; Meng Yue-Dong; Chu Paul K

    2014-01-01

    An atmospheric pressure plasma jet generated with Ar with H 2 O vapor is characterized and applied to inactivation of Bacillus subtilis spores. The emission spectra obtained from Ar/H 2 O plasma shows a higher intensity of OH radicals compared to pure argon at a specified H 2 O concentration. The gas temperature is estimated by comparing the simulated spectra of the OH band with experimental spectra. The excitation electron temperature is determined from the Boltzmann's plots and Stark broadening of the hydrogen Balmer H β line is applied to measure the electron density. The gas temperature, excitation electron temperature, and electron density of the plasma jet decrease with the increase of water vapor concentration at a fixed input voltage. The bacteria inactivation rate increases with the increase of OH generation reaching a maximum reduction at 2.6% (v/v) water vapor. Our results also show that the OH radicals generated by the Ar/H 2 O plasma jet only makes a limited contribution to spore inactivation and the shape change of the spores before and after plasma irradiation is discussed. (physics of gases, plasmas, and electric discharges)

  18. Preparation of water and ice samples for 39Ar dating by atom trap trace analysis (ATTA)

    Science.gov (United States)

    Schwefel, R.; Reichel, T.; Aeschbach-Hertig, W.; Wagenbach, D.

    2012-04-01

    Atom trap trace analysis (ATTA) is a new and promising method to measure very rare noble gas radioisotopes in the environment. The applicability of this method for the dating of very old groundwater with 81Kr has already been demonstrated [1]. Recent developments now show its feasibility also for the analysis of 39Ar [2,3], which is an ideal dating tracer for the age range between 50 and 1000 years. This range is of interest in the fields of hydro(geo)logy, oceanography, and glaciology. We present preparation (gas extraction and Ar separation) methods for groundwater and ice samples for later analysis by the ATTA technique. For groundwater, the sample size is less of a limitation than for applications in oceanography or glaciology. Large samples are furthermore needed to enable a comparison with the classical method of 39Ar detection by low-level counting. Therefore, a system was built that enables gas extraction from several thousand liters of water using membrane contactors. This system provides degassing efficiencies greater than 80 % and has successfully been tested in the field. Gas samples are further processed to separate a pure Ar fraction by a gas-chromatographic method based on Li-LSX zeolite as selective adsorber material at very low temperatures. The gas separation achieved by this system is controlled by a quadrupole mass spectrometer. It has successfully been tested and used on real samples. The separation efficiency was found to be strongly temperature dependent in the range of -118 to -130 °C. Since ATTA should enable the analysis of 39Ar on samples of less than 1 ccSTP of Ar (corresponding to about 100 ml of air, 2.5 l of water or 1 kg of ice), a method to separate Ar from small amounts of gas was developed. Titanium sponge was found to absorb 60 ccSTP of reactive gases per g of the getter material with reasonably high absorption rates at high operating temperatures (~ 800 ° C). Good separation (higher than 92 % Ar content in residual gas) was

  19. Small angle Ar2+ + Ar collisions

    International Nuclear Information System (INIS)

    Stevens, J.J.

    1983-01-01

    Electron capture in Ar 2+ + Ar is studied at low keV energies. Using Ar 2+ + He collisions as a calibration, it is shown that the dominant single electron capture process is endothermic and of the type Ar 2+ ( 3 P) + ArAr + ( 2 P) + Ar + (3s 2 3p 4 nI), with nI primarily being 3d and 4p. Weaker exothermic processes are also found and are due mainly to the existence of long-lived highly-excited states in the incident Ar 2+ beam. The direct scattering and double electron capture processes are also studied. Direct scattering occurs with no target excitation. Differential cross sections are presented for the collision processes. The single electron capture results are interpreted using a simple model in which a strongly attractive intermediate state couples with incident and outgoing channels

  20. Etching properties of BLT films in CF4/Ar plasma

    International Nuclear Information System (INIS)

    Kim, Dong Pyo; Kim, Kyoung Tae; Kim, Chang Il

    2003-01-01

    CF 4 /Ar plasma mass content and etching rate behavior of BLT thin films were investigated in inductively coupled plasma (ICP) reactor as functions of CF 4 /Ar gas mixing ratio, rf power, and dc bias voltage. The variation of relative volume densities for F and Ar atoms were measured by the optical emission spectroscopy (OES). The etching rate as functions of Ar content showed the maximum of 803 A/min at 80 % Ar addition into CF 4 plasma. The presence of maximum etch rate may be explained by the concurrence of two etching mechanisms such as physical sputtering and chemical reaction. The role of Ar ion bombardment includes destruction of metal (Bi, La, Ti)-O bonds as well as support of chemical reaction of metals with fluorine atoms

  1. Use of argon to measure gas exchange in turbulent mountain streams

    Science.gov (United States)

    Hall, Robert O., Jr.; Madinger, Hilary L.

    2018-05-01

    Gas exchange is a parameter needed in stream metabolism and trace gas emissions models. One way to estimate gas exchange is via measuring the decline of added tracer gases such as sulfur hexafluoride (SF6). Estimates of oxygen (O2) gas exchange derived from SF6 additions require scaling via Schmidt number (Sc) ratio, but this scaling is uncertain under conditions of high gas exchange via bubbles because scaling depends on gas solubility as well as Sc. Because argon (Ar) and O2 have nearly identical Schmidt numbers and solubility, Ar may be a useful tracer gas for estimating stream O2 exchange. Here we compared rates of gas exchange measured via Ar and SF6 for turbulent mountain streams in Wyoming, USA. We measured Ar as the ratio of Ar : N2 using a membrane inlet mass spectrometer (MIMS). Normalizing to N2 confers higher precision than simply measuring [Ar] alone. We consistently enriched streams with Ar from 1 to 18 % of ambient Ar concentration and could estimate gas exchange rate using an exponential decline model. The mean ratio of gas exchange of Ar relative to SF6 was 1.8 (credible interval 1.1 to 2.5) compared to the theoretical estimate 1.35, showing that using SF6 would have underestimated exchange of Ar. Steep streams (slopes 11-12 %) had high rates of gas exchange velocity normalized to Sc = 600 (k600, 57-210 m d-1), and slope strongly predicted variation in k600 among all streams. We suggest that Ar is a useful tracer because it is easily measured, requires no scaling assumptions to estimate rates of O2 exchange, and is not an intense greenhouse gas as is SF6. We caution that scaling from rates of either Ar or SF6 gas exchange to CO2 is uncertain due to solubility effects in conditions of bubble-mediated gas transfer.

  2. Methanol Droplet Combustion in Oxygen-Inert Environments in Microgravity

    Science.gov (United States)

    Nayagam, Vedha; Dietrich, Daniel L.; Hicks, Michael C.; Williams, Forman A.

    2013-01-01

    The Flame Extinguishment (FLEX) experiment that is currently underway in the Combustion Integrated Rack facility onboard the International Space Station is aimed at understanding the effects of inert diluents on the flammability of condensed phase fuels. To this end, droplets of various fuels, including alkanes and alcohols, are burned in a quiescent microgravity environment with varying amounts of oxygen and inert diluents to determine the limiting oxygen index (LOI) for these fuels. In this study we report experimental observations of methanol droplets burning in oxygen-nitrogen-carbon dioxide and oxygen-nitrogen-helium gas mixtures at 0.7 and 1 atmospheric pressures. The initial droplet size varied between approximately 1.5 mm and 4 mm to capture both diffusive extinction brought about by insufficient residence time at the flame and radiative extinction caused by excessive heat loss from the flame zone. The ambient oxygen concentration varied from a high value of 30% by volume to as low as 12%, approaching the limiting oxygen index for the fuel. The inert dilution by carbon dioxide and helium varied over a range of 0% to 70% by volume. In these experiments, both freely floated and tethered droplets were ignited using symmetrically opposed hot-wire igniters and the burning histories were recorded onboard using digital cameras, downlinked later to the ground for analysis. The digital images yielded droplet and flame diameters as functions of time and subsequently droplet burning rate, flame standoff ratio, and initial and extinction droplet diameters. Simplified theoretical models correlate the measured burning rate constant and the flame standoff ratio reasonably well. An activation energy asymptotic theory accounting for time-dependent water dissolution or evaporation from the droplet is shown to predict the measured diffusive extinction conditions well. The experiments also show that the limiting oxygen index for methanol in these diluent gases is around 12% to

  3. Determination of hydrogen in zirconium hydride and uranium-zirconium hydride by inert gas exraction-gravimetric method

    International Nuclear Information System (INIS)

    Hoshino, Akira; Iso, Shuichi

    1976-01-01

    An inert gas extraction-gravimetric method has been applied to the determination of hydrogen in zirconium hydride and uranium-zirconium hydride which are used as neutron moderator and fuel of nuclear safety research reactor (NSRR), respectively. The sample in a graphite-enclosed quartz crucible is heated inductively to 1200 0 C for 20 min in a helium stream. Hydrogen liberated from the sample is oxidized to water by copper(I) oxide-copper(II) oxide at 400 0 C, and the water is determined gravimetrically by absorption in anhydrone. The extraction curves of hydrogen for zirconium hydride and uranium-zirconium hydride samples are shown in Figs. 2 and 3. Hydrogen in the samples is extracted quantitatively by heating at (1000 -- 1250) 0 C for (10 -- 40) min. Recoveries of hydrogen in the case of zirconium hydride were examined as follows: a weighed zirconium rod (5 phi x 6 mm, hydrogen -5 Torr. After the chamber was filled with purified hydrogen to 200 Torr, the rod was heated to 400 0 C for 15 h, and again weighed to determine the increase in weight. Hydrogen in the rod was then determined by the proposed method. The results are in excellent agreement with the increase in weight as shown in Table 1. Analytical results of hydrogen in zirconium hydride samples and an uranium-zirconium hydride sample are shown in Table 2. (auth.)

  4. Experimental study of single-electron loss by Ar{sup +} ions in rare-gas atoms

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, P.G. [Facultad de Ciencias, UNAM, Coyoacan (Mexico); Castillo, F. [Instituto de Ciencias Nucleares, UNAM, Coyoacan (Mexico); Martinez, H. [Centro de Ciencias Fisicas, UNAM, Cuernavaca, Morelos (Mexico)]. E-mail: hm@fis.unam.mx

    2001-04-28

    Absolute differential and total cross sections for single-electron loss were measured for Ar{sup +} ions on rare-gas atoms in the laboratory energy range of 1.5 to 5.0 keV. The electron loss cross sections for all the targets studied are found to be in the order of magnitude between 10{sup -19} and 10{sup -22} cm{sup 2}, and show a monotonically increasing behaviour as a function of the incident energy. The behaviour of the total single-electron loss cross sections with the atomic target number, Z{sub t}, shows different dependences as the collision energy increases. In all cases the present results display experimental evidence of saturation in the single-electron loss cross section as the atomic number of the target increases. (author)

  5. Mass transfer between gas and particles in a gas-solid trickle flow reactor

    NARCIS (Netherlands)

    Kiel, J.H.A.; Kiel, J.H.A.; Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    Gas-solids mass transfer was studied for counter-current flow of gas and millimetre-sized solid particles over an inert packing at dilute phase or trickle flow conditions. Experimental data were obtained from the adsorption of water vapour on 640 and 2200 ¿m diameter molecular sieve spheres at

  6. Action mechanism of hydrogen gas on deposition of HfC coating using HfCl{sub 4}-CH{sub 4}-H{sub 2}-Ar system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yalei, E-mail: yaleipm@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); School of Metallurgy and Environment, Central South University, Changsha, 410083 (China); Li, Zehao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); Xiong, Xiang, E-mail: xiongx@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); Li, Xiaobin [School of Metallurgy and Environment, Central South University, Changsha, 410083 (China); Chen, Zhaoke; Sun, Wei [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China)

    2016-12-30

    Highlights: • HfC coatings were deposited on C/C composites by LPCVD using HfCl4-CH4-H2-Ar system. • Action mechanism of H2 on structure and growth behavior of HfC coating was studied. • Increased H2 concentration leads to transformation in growth mechanism of coating. - Abstract: Hafnium carbide coatings were deposited on carbon/carbon composites by low pressure chemical vapor deposition using HfCl{sub 4}-CH{sub 4}-H{sub 2}-Ar system. The microstructure, mechanical and ablation resistance performance of HfC coatings deposited with various H{sub 2} concentrations were investigated. The effect of hydrogen gas on the deposition of HfC coating was also discussed. Results show that all of the deposited coatings are composed of single cubic HfC phase, the hydrogen gas acted as a crucial role in determining the preferred orientation, microstructure and growth behavior of HfC coatings. During the deposition process, the gas phase supersaturation of the reaction species can be controlled by adjusting the hydrogen gas concentration. When deposited with low hydrogen gas concentration, the coating growth was dominated by the nucleation of HfC, which results in the particle-stacked structure of HfC coating. Otherwise, the coating growth was dominated by the crystal growth at high hydrogen gas concentration, which leads to the column-arranged structure of HfC coating. Under the ablation environment, the coating C2 exhibits better configurational stability and ablation resistance. The coating structure has a significant influence on the mechanical and ablation resistance properties of HfC coating.

  7. The anisotropic potential of molecular hydrogen determined from the scattering of oriented H2 on inert gases

    International Nuclear Information System (INIS)

    Zandee, A.P.L.M.

    1977-01-01

    This thesis deals with an experiment aimed at determining the angle dependence of an intermolecular potential between H 2 molecule and a rare gas atom. The small relative difference in total collision cross section for beams of differently oriented H 2 molecules colliding with inert gas atoms in a scattering box is measured (anisotropy A). Through variation of the orientation and by studying its influence on the total collision cross sections, the angle dependence of the intermolecular potential can be arrived at

  8. Identification of excess 40Ar by the 40Ar/39Ar age spectrum technique

    International Nuclear Information System (INIS)

    Lanphere, M.A.; Dalrymple, G.B.

    1976-01-01

    40 Ar/ 39 Ar incremental heating experiments on igneous plagioclase, biotite, and pyroxene that contain known amounts of excess 40 Ar indicate that saddle-shaped age spectra are diagnostic of excess 40 Ar in igneous minerals as well as in igneous rocks. The minima in the age spectra approach but do not reach the crystallization age. Neither the age spectrum diagram nor the 40 Ar/ 36 Ar versus 39 Ar/ 36 Ar isochron diagram reliably reveal the crystallization age in such samples. (Auth.)

  9. Model identification methodology for fluid-based inerters

    Science.gov (United States)

    Liu, Xiaofu; Jiang, Jason Zheng; Titurus, Branislav; Harrison, Andrew

    2018-06-01

    Inerter is the mechanical dual of the capacitor via the force-current analogy. It has the property that the force across the terminals is proportional to their relative acceleration. Compared with flywheel-based inerters, fluid-based forms have advantages of improved durability, inherent damping and simplicity of design. In order to improve the understanding of the physical behaviour of this fluid-based device, especially caused by the hydraulic resistance and inertial effects in the external tube, this work proposes a comprehensive model identification methodology. Firstly, a modelling procedure is established, which allows the topological arrangement of the mechanical networks to be obtained by mapping the damping, inertance and stiffness effects directly to their respective hydraulic counterparts. Secondly, an experimental sequence is followed, which separates the identification of friction, stiffness and various damping effects. Furthermore, an experimental set-up is introduced, where two pressure gauges are used to accurately measure the pressure drop across the external tube. The theoretical models with improved confidence are obtained using the proposed methodology for a helical-tube fluid inerter prototype. The sources of remaining discrepancies are further analysed.

  10. Calibration of an ultra-low-background proportional counter for measuring 37Ar

    International Nuclear Information System (INIS)

    Seifert, A.; Aalseth, C. E.; Bonicalzi, R. M.; Bowyer, T. W.; Day, A. R.; Fuller, E. S.; Haas, D. A.; Hayes, J. C.; Hoppe, E. W.; Humble, P. H.; Keillor, M. E.; LaFerriere, B. D.; Mace, E. K.; McIntyre, J. I.; Merriman, J. H.; Miley, H. S.; Myers, A. W.; Orrell, J. L.; Overman, C. T.; Panisko, M. E.

    2013-01-01

    An ultra-low-background proportional counter design has been developed at Pacific Northwest National Laboratory (PNNL) using clean materials, primarily electro-chemically-purified copper. This detector, along with an ultra-low-background counting system (ULBCS), was developed to complement a new shallow underground laboratory (30 meters water-equivalent) at PNNL. The ULBCS design includes passive neutron and gamma shielding, along with an active cosmic-veto system. This system provides a capability for making ultra-sensitive measurements to support applications like age-dating soil hydrocarbons with 14 C/ 3 H, age-dating of groundwater with 39 Ar, and soil-gas assay for 37 Ar to support On-Site Inspection (OSI). On-Site Inspection is a key component of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Measurements of radionuclides created by an underground nuclear explosion are valuable signatures of a Treaty violation. For OSI, the 35-day half-life of 37 Ar, produced from neutron interactions with calcium in soil, provides both high specific activity and sufficient time for inspection before decay limits sensitivity. This work describes the calibration techniques and analysis methods developed to enable quantitative measurements of 37 Ar samples over a broad range of proportional counter operating pressures. These efforts, along with parallel work in progress on gas chemistry separation, are expected to provide a significant new capability for 37 Ar soil gas background studies

  11. Clamp and Gas Nozzle for TIG Welding

    Science.gov (United States)

    Gue, G. B.; Goller, H. L.

    1982-01-01

    Tool that combines clamp with gas nozzle is aid to tungsten/inert-gas (TIG) welding in hard-to-reach spots. Tool holds work to be welded while directing a stream of argon gas at weld joint, providing an oxygen-free environment for tungsten-arc welding.

  12. Self-Flammability of Gases Generated by Hanford Tank Waste and the Potential of Nitrogen Inerting to Eliminate Flammability Safety Concerns

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Lenna A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-12

    Through radiolytic and thermolytic reactions, Hanford tank wastes generate and retain a variety of gases, including hydrogen, nitrous oxide, methane (and other hydrocarbons), ammonia, and nitrogen. This gas generation can be expected to continue during processing in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The generation rates in the WTP will change from those for the in-situ tank waste because of different process temperatures, different dose rates produced by in-process changes in the proportions of solid and liquid, and dilution of the waste liquid. The flammability of the generated gas that is continuously released, and of any retained gas that might be released into a vessel headspace in quantity due to a spontaneous release, depends on the concentrations not only of the fuel gases—primarily hydrogen (H2), methane, other hydrocarbons, and ammonia—but of the oxidizer nitrous oxide (N2O). As a result of high concentrations of N2O, some gas mixtures are “self-flammable” (i.e., ignition can occur when no air is present because N2O provides the only oxidizer needed). Self-flammability could potentially reduce the effectiveness of using a nitrogen (N2) purge in the headspace as a flammability control, if its effects are not accounted for. A given amount of inertant gas (N2) can accommodate only a certain amount of a generated self-flammable gas before the mixture with inertant gas becomes flammable.

  13. A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal.

    Science.gov (United States)

    Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N

    2013-01-01

    The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A study of thorium exposure during tungsten inert gas welding in an airline engineering population.

    Science.gov (United States)

    McElearney, N; Irvine, D

    1993-07-01

    To investigate the theoretic possibility of excessive exposure to thorium during the process of tungsten inert gas (TIG) welding using thoriated rods we carried out a cross-sectional study of TIG welders and an age- and skill-matched group. We measured the radiation doses from inhaled thorium that was retained in the body and investigated whether any differences in health or biologic indices could have been attributable to the welding and tip-grinding process. Sixty-four TIG welders, 11 non-TIG welders, and 61 control subjects from an airline engineering population participated. All of the subjects were interviewed for biographic, occupational history and morbidity details. All of the welders and eight control subjects carried out large-volume urine sampling to recover thorium 232 and thorium 228; this group also had chest radiographs. All of the subjects had a blood sample taken to estimate liver enzymes, and they provided small-volume urine samples for the estimation of retinol-binding protein and beta 2-microglobulin. We found no excess of morbidity among the TIG or non-TIG welding groups, and the levels of retinol-binding protein and beta 2-microglobulin were the same for both groups. There was a higher aspartate aminotransferase level in the control group. The internal radiation doses were estimated at less than an annual level of intake in all cases, and considerably less if the exposure (as was the case) was assumed to be chronic over many years. Some additional precautionary measures are suggested to reduce further any potential hazard from this process.

  15. Dipole, quadrupole, and octupole terms in the long-range hyperfine frequency shift for hydrogen in the presence of inert gases

    International Nuclear Information System (INIS)

    Greenwood, W.G.; Tang, K.T.

    1987-01-01

    The R -6 , R -8 , and R -10 terms in the long-range expansion for the hyperfine frequency shift are calculated for hydrogen in the presence of He, Ne, Ar, Kr, and Xe. The R -6 terms are based on the dipole oscillator strength sums. For helium, the R -8 and R -10 terms are based on quadrupole and octupole oscillator strength sums. For the heavier inert gases, the results for the R -8 and R -10 terms are obtained from the sum rules and the static polarizabilities. Upper bounds are also determined for the R -8 and R -10 terms

  16. On the Gas Dynamics of Inert-Gas-Assisted Laser Cutting of Steel Plate

    Science.gov (United States)

    Brandt, A. D.; Settles, G. S.; Scroggs, S. D.

    1996-11-01

    Laser beam cutting of sheet metal requires an assist gas to blow away the molten material. Since the assist-gas dynamics influences the quality and speed of the cut, the orientation of the gas nozzle with respect to the kerf is also expected to be important. A 1 kW cw CO2 laser with nitrogen assist gas was used to cut mild steel sheet of 1 to 4 mm thickness, using a sonic coaxial nozzle as a baseline. Off-axis nozzles were oriented from 20 deg to 60 deg from normal with exit Mach numbers from 1 to 2.4. Results showed maximum cutting speed at a 40 deg nozzle orientation. Shadowgrams of a geometrically-similar model kerf then revealed a separated shock wave-boundary layer interaction within the kerf for the (untilted) coaxial nozzle case. This was alleviated, resulting in a uniform supersonic flow throughout the kerf and consequent higher cutting speeds, by tilting the nozzle between 20 deg and 45 deg from the normal. This result did not depend upon the exit Mach number of the nozzle. (Research supported by NSF Grant DMI-9400119.)

  17. Inert Anode Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1999-07-01

    This ASME report provides a broad assessment of open literature and patents that exist in the area of inert anodes and their related cathode systems and cell designs, technologies that are relevant for the advanced smelting of aluminum. The report also discusses the opportunities, barriers, and issues associated with these technologies from a technical, environmental, and economic viewpoint.

  18. Improved Assembly for Gas Shielding During Welding or Brazing

    Science.gov (United States)

    Gradl, Paul; Baker, Kevin; Weeks, Jack

    2009-01-01

    An improved assembly for inert-gas shielding of a metallic joint is designed to be useable during any of a variety of both laser-based and traditional welding and brazing processes. The basic purpose of this assembly or of a typical prior related assembly is to channel the flow of a chemically inert gas to a joint to prevent environmental contamination of the joint during the welding or brazing process and, if required, to accelerate cooling upon completion of the process.

  19. Biomarkers of exposure to stainless steel tungsten inert gas welding fumes and the effect of exposure on exhaled breath condensate.

    Science.gov (United States)

    Riccelli, Maria Grazia; Goldoni, Matteo; Andreoli, Roberta; Mozzoni, Paola; Pinelli, Silvana; Alinovi, Rossella; Selis, Luisella; Mutti, Antonio; Corradi, Massimo

    2018-08-01

    The respiratory tract is the main target organ of the inhaled hexavalent chromium (Cr-VI) and nickel (Ni) contained in stainless steel (SS) welding fumes (WFs). The aim of this study was to investigate the Cr and Ni content of the exhaled breath condensate (EBC) of SS tungsten inert gas (TIG) welders, and relate their concentrations with oxidative stress and inflammatory biomarkers. EBC and urine from 100 SS TIG welders were collected pre-(T 0 ) and post-shift (T 1 ) on a Friday, and pre-shift (T 2 ) on the following Monday morning. Both EBC and urinary Cr concentrations were higher at T 1 (0.08 μg/L and 0.71 μg/g creatinine) and T 0 (0.06 μg/L and 0.74 μg/g creatinine) than at T 2 (below the limit of detection [LOD] and 0.59 μg/g creatinine), and EBC Ni concentrations generally remained welding also play a role in generating lung oxidative stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Mechanical behavior of cellular borosilicate glass with pressurized Ar-filled closed pores

    International Nuclear Information System (INIS)

    Wang Bo; Matsumaru, Koji; Yang Jianfeng; Fu Zhengyi; Ishizaki, Kozo

    2012-01-01

    High strength borosilicate foams were fabricated by melting glass powder under high-pressure argon gas and subsequent heat treatment of the glass bulk at atmospheric pressure. In the first step, borosilicate glass powder was melted at 1100 °C for 1 h by capsule-free hot isostatic pressing (HIPing) under a high gas pressure of 10–70 MPa. Pressurized Ar-filled spherical pores were introduced into the glass, and argon atoms were dissolved in the glass network structure. The expansion of argon-filled pores and the release of the dissolved Ar gas resulted in the formation of pressurized Ar-filled closed pores by isothermal heat treatment at 800 °C for 10 min. A high porosity of up to 80% with a bimodal distribution of micro-size cells was obtained for the resultant cellular borosilicate glass. By increasing the total gas pressure from 10 to 70 MPa, the compressive strength and the Young’s modulus were increased considerably from 15 to 52 MPa and from 4.1 to 12.6 GPa, respectively, which can be substantially attributed to the high collapse stress from the high enclosed gas pressure. The cellular glass with a high porosity showed a large failure strain under uniaxial compression.

  1. Spectroanalytical investigations on inductively coupled N2/Ar and Ar/Ar high frequency plasmas

    International Nuclear Information System (INIS)

    Malinowski, P.; Mazurkiewicz, M.; Nickel, H.

    1981-03-01

    In order to improve the detection limits of trace elements in corrosion products of metallic materials, the inductively coupled plasma excitation source (ICP) was applied for spectroscopic analysis. Besides optimizing the working conditions for the mentioned materials, the fundamental research clearing the excitation processes in ICP was carried out. Basicly, two plasma systems were investigated: the nitrogen cooled N 2 /Ar- and pure Ar/Ar-plasma. The computed detection limits for 8 chosen elements are between 0.1 and 50 μg ml -1 in both plasmas. The advantage of ion lines was clearly present; in N 2 /Ar-plasma it was larger than in Ar/Ar-plasma. The excitation temperatures measured with help of ArI, FeI and ZnI lines rise with increasing power and decreasing distance from the induction coil. The distribution of Zn excitation temperature in N 2 /Ar-plasma as well as the measured N + 2 rotational and CN vibrational temperatures indicate, that the toroidal structure of Ar/Ar-plasma is not analogue to the N 2 /Ar-plasma. The values of the various excitation temperatures (Ar, Fe, Zn) and the differences between the excitation, vibration, rotation and ionization temperatures (Tsub(i) > Tsub(n) = Tsub(vib) > Tsub(rot)) indicate an absence of thermal equilibrium in the concerned system. (orig.)

  2. The release code package REVOLS/RENONS for fission product release from a liquid sodium pool into an inert gas atmosphere

    International Nuclear Information System (INIS)

    Starflinger, J.; Scholtyssek, W.; Unger, H.

    1994-12-01

    For aerosol source term considerations in the field of nuclear safety, the investigation of the release of volatile and non-volatile species from liquid surfaces into a gas atmosphere is important. In case of a hypothetical liquid metal fast breeder reactor accident with tank failure, primary coolant sodium with suspended or solved fuel particles and fission products may be released into the containment. The computer code package REVOLS/RENONS, based on a theoretical mechanistic model with a modular structure, has been developed for the prediction of sodium release as well as volatile and non-volatile radionuclide release from a liquid pool surface into the inert gas atmosphere of the inner containment. Hereby the release of sodium and volatile fission products, like cesium and sodium iodide, is calculated using a theoretical model in a mass transfer coefficient formulation. This model has been transposed into the code version REVOLS.MOD1.1, which is discussed here. It enables parameter analysis under highly variable user-defined boundary conditions. Whereas the evaporative release of the volatile components is governed by diffusive and convective transport processes, the release of the non-volatile ones may be governed by mechanical processes which lead to droplet entrainment from the wavy pool surface under conditions of natural or forced convection into the atmosphere. The mechanistic model calculates the liquid entrainment rate of the non-volatile species, like the fission product strontium oxide and the fuel (uranium dioxide) from a liquid pool surface into a parallel gas flow. The mechanistic model has been transposed into the computer code package REVOLS/RENONS, which is discussed here. Hereby the module REVOLS (RElease of VOLatile Species) calculates the evaporative release of the volatile species, while the module RENONS (RElease of NON-Volatile Species) computes the entrainment release of the non-volatile radionuclides. (orig./HP) [de

  3. Hydrogen gas detector

    International Nuclear Information System (INIS)

    Bohl, T.L.

    1982-01-01

    A differential thermocouple hydrogen gas detector has one thermocouple junction coated with an activated palladium or palladium-silver alloy catalytic material to allow heated hydrogen gas to react with the catalyst and raise the temperature of that junction. The other juction is covered with inert glass or epoxy resin, and does not experience a rise in temperature in the presence of hydrogen gas. A coil heater may be mounted around the thermocouple junctions to heat the hydrogen, or the gas may be passed through a heated block prior to exposing it to the thermocouples

  4. Fatigue behaviour of T welded joints rehabilitated by tungsten inert gas and plasma dressing

    International Nuclear Information System (INIS)

    Ramalho, Armando L.; Ferreira, Jose A.M.; Branco, Carlos A.G.M.

    2011-01-01

    Highlights: → This study addresses the use of improvement techniques for repair T welded joints. → TIG and plasma arc re-melting are applied in joints with fatigue cracks at weld toes. → Plasma dressing provides reasonable repair in joints with cracks greater than 4 mm. → TIG dressing produces a deficient repair in joints with cracks greater than 4 mm. → TIG dressing provides good repair in joints with fatigue cracks lesser than 2.5 mm. -- Abstract: This paper concerns a fatigue study on the effect of tungsten inert gas (TIG) and plasma dressing in non-load-carrying fillet welds of structural steel with medium strength. The fatigue tests were performed in three point bending at the main plate under constant amplitude loading, with a stress ratio of R = 0.05 and a frequency of 7 Hz. Fatigue results are presented in the form of nominal stress range versus fatigue life (S-N) curves obtained from the as welded joints and the TIG dressing joints at the welded toe. These results were compared with the ones obtained in repaired joints, where TIG and plasma dressing were applied at the welded toes, containing fatigue cracks with a depth of 3-5 mm in the main plate and through the plate thickness. A deficient repair was obtained by TIG dressing, caused by the excessive depth of the crack. A reasonable fatigue life benefits were obtained with plasma dressing. Good results were obtained with the TIG dressing technique for specimens with shallower initial defects (depth lesser than 2.5 mm). The fatigue life benefits were presented in terms of a gain parameter assessed using both experimental data and life predictions based on the fatigue crack propagation law.

  5. Kinetics of Ar isotopes during neutron irradiation: 39Ar loss from minerals as a source of error in 40Ar/39Ar dating

    International Nuclear Information System (INIS)

    Hess, J.C.; Lippolt, H.J.

    1986-01-01

    The loss of 39 Ar from minerals in the course of neutron activation for 40 Ar/ 39 Ar dating is studied by directly measuring the loss rates in vacuum-sealed ampoules. Biotite shows 39 Ar losses between 0.1% and 16%. These losses are predominantly due to diffusion processes from K-poor alteration-phase intergrowths in the biotites at the elevated temperatures during the irradiation. Estimates for the irradiation temperatures range from 150 0 to 180 0 C. Direct 39 Ar recoil loss from biotite seems to be minor compared to difussion loss of recoil-implanted 39 Ar. Precise 40 Ar/ 39 Ar dating of biotites therefore requires the measurement of the 39 Ar losses during irradiation. Glauconite loses not only neutron-induced Ar isotopes ( 39 Ar: 20-22%, 37 Ar: 17-19%) but also radiogenic 40 Ar(∼9%). Slight 39 Ar losses are also observed for light micas (0.2% and 0.35%), hornblendes (0.1%) and sanidines (200 and 700 ppm). 25 refs.; 4 figs.; 6 tabs

  6. Influences of pulsed current tungsten inert gas welding parameters on the tensile properties of AA 6061 aluminium alloy

    International Nuclear Information System (INIS)

    Senthil Kumar, T.; Balasubramanian, V.; Sanavullah, M.Y.

    2007-01-01

    Medium strength aluminium alloy (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. In any structural application of this alloy consideration its weldability is of utmost importance as welding is largely used for joining of structural components. The preferred welding process of aluminium alloy is frequently tungsten inert gas (TIG) welding due to its comparatively easier applicability and better economy. In the case of single pass TIG welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. The use of pulsed current parameters has been found to improve the mechanical properties of the welds compared to those of continuous current welds of this alloy due to grain refinement occurring in the fusion zone. Many considerations come into the picture and one need to carefully balance various pulse current parameters to arrive at an optimum combination. Hence, in this investigation an attempt has been made to study the influence of pulsed current TIG welding parameters on tensile properties of AA 6061 aluminium alloy weldments

  7. Experimental Study of an On-board Fuel Tank Inerting System

    Science.gov (United States)

    Wu, Fei; Lin, Guiping; Zeng, Yu; Pan, Rui; Sun, Haoyang

    2017-03-01

    A simulated aircraft fuel tank inerting system was established and experiments were conducted to investigate the performance of the system. The system uses hollow fiber membrane which is widely used in aircraft as the air separation device and a simplified 20% scale multi compartment fuel tank as the inerting object. Experiments were carried out to investigate the influences of different operating parameters on the inerting effectiveness of the system, including NEA (nitrogen-enriched air) flow rate, NEA oxygen concentration, NEA distribution, pressure of bleeding air and fuel load of the tank. Results showed that for the multi compartment fuel tank, concentrated flow washing inerting would cause great differences throughout the distribution of oxygen concentration in the fuel tank, and inerting dead zone would exist. The inerting effectiveness was greatly improved and the ullage oxygen concentration of the tank would reduce to 12% successfully when NEA entered three compartments evenly. The time span of a complete inerting process reduced obviously with increasing NEA flow rate and decreasing NEA concentration, but the trend became weaker gradually. However, the reduction of NEA concentration will decrease the utilization efficiency of the bleeding air. In addition, the time span can also be reduced by raising the pressure of bleeding air, which will improve the bleeding air utilization efficiency at the same time. The time span decreases linearly as the fuel load increases.

  8. A pulsed plasma jet with the various Ar/N2 mixtures

    Science.gov (United States)

    Barkhordari, A.; Ganjovi, A.; Mirzaei, I.; Falahat, A.; Rostami Ravari, M. N.

    2017-12-01

    In this paper, using the Optical Emission Spectroscopy technique, the physical properties of a fabricated pulsed DBD plasma jet are studied. Ar/N2 gaseous mixture is taken as operational gas, and Ar contribution in Ar/N2 mixture is varied from 75 to 95%. Through the optical emission spectra analysis of the pulsed DBD plasma jet, the rotational, vibrational and excitation temperatures and density of electrons in plasma medium of the pulsed plasma jet are obtained. It is seen that, at the wavelength of 750.38 nm, the radiation intensity from the Ar 4p → 4 s transition increases at the higher Ar contributions in Ar/N2 mixture. It is found that, for 95% of Ar presence in the mixture, the emission intensities from argon and molecular nitrogen are higher, and the emission line intensities will increase nonlinearly. In addition, it is observed that the quenching of Ar* by N2 results in the higher intensities of N2 excited molecules. Moreover, at the higher percentages of Ar in Ar/N2 mixture, while all the plasma temperatures are increased, the plasma electron density is reduced.

  9. Influences of atom Ar on Ar at C60 + Ar at C60 collisions

    International Nuclear Information System (INIS)

    Zhao Qiang; Zhou Hongyu; Zhang Fengshou

    2007-01-01

    A semi-emperical molecular dynamics model was developed. The central collisions of C 60 + C 60 and Ar at C 60 + Ar at C 60 at the same incident energy were investigated within this model. The fullerene dimers could be formed by a self-assembly of C 60 fullerene, and the new fullerene structure like 'peanut' could be formed by a self-assembly of Ar at C 60 . It was found that atom Ar had a great effect on the collision of Ar at C 60 + Ar at C 60 . (authors)

  10. Effect of cascade remnants on freely migrating defects in Cu-1% Au alloys

    Energy Technology Data Exchange (ETDEWEB)

    Iwase, A; Rehn, L E; Baldo, P M; Funk, L [Argonne National Lab., IL (United States). Materials Science Div.

    1997-03-01

    The effects of cascade remnants on Freely Migrating Defects (FMD) were studied by measuring Radiation-Induced Segregation (RIS) in Cu-1%Au at 400degC during simultaneous irradiation with 1.5-MeV He and (400-800)-keV heavy ions (Ne, Ar or Cu). The large RIS observed during 1.5-MeV He-only irradiation was dramatically suppressed under simultaneous heavy ion irradiation. For Cu simultaneous irradiation, the suppression disappeared immediately after the Cu irradiation ceased, while for simultaneous inert gas (Ne or Ar) irradiation, the suppression persisted after the ion beam was turned off. These results demonstrate that the displacement cascades created by heavy ions introduce additional annihilation sites, which reduce the steady-state FMD concentrations. As the cascade remnants produced by Cu ions are thermally unstable at 400degC, the RIS suppression occurs only during simultaneous irradiation. On the other hand, the inert gas atoms which accumulate in the specimen apparently stabilize the cascade remnants, allowing the suppression to persist. (author)

  11. One-loop contributions to neutral minima in the inert doublet model

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, P.M. [Instituto Superior de Engenharia de Lisboa - ISEL,1959-007 Lisboa (Portugal); Centro de Física Teórica e Computacional - FCUL,Universidade de Lisboa, R. Ernesto de Vasconcelos, 1749-016 Lisboa (Portugal); Świeżewska, Bogumiła [Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warsaw (Poland)

    2016-04-15

    The vacuum structure of the inert doublet model is analysed at the one-loop level using the effective potential formalism, to verify the validity of tree-level predictions for the properties of the global minimum. An inert minimum (with massive fermions) and an inert-like minimum (with massless fermions) can coexist at tree level. But the one-loop analysis reveals that the allowed parameter space for the coexistence of more than one minimum is larger than the tree-level expected one. It is also shown that for some choices of parameters, the global minimum found at the one-loop level may be inert (or inert-like), contrary to what the tree-level analysis indicates.

  12. Development of KALIMER auxiliary sodium and cover gas management system

    International Nuclear Information System (INIS)

    Kwon, Sang Woon; Hwang, Sung Tae

    1996-11-01

    The objectives of this report are to develop and to describe the auxiliary liquid metal and cover gas management systems of KALIMER. the system includes following system: (1) Auxiliary liquid metal system (2) Inert gas receiving and processing system (3) Impurity monitoring and analysis system. Auxiliary liquid metal and cover gas management system of KALIMER was developed. Functions of each systems and design basis were describes. The auxiliary liquid metal system receives, transfers, and purifies all sodium used in the plant. The system furnishes the required sodium quantity at the pressure, temperature, flow rate, and purity specified by the interfacing system. The intermediated sodium processing subsystem (ISPS) provides continuous purification of IHTS sodium, as well as performs the initial fill operation for both the IHTS and reactor vessel. The primary sodium processing subsystem provides purification (cold trapping) for sodium used in the reactor vessel. The inert gas receiving and processing (IGRP) system provides liquefied and ambient gas storage, delivers inert gases of specified composition and purity at regulated flow rates and pressures to points of usage throughout the KALIMER, and accepts the contaminated gases through its vacuum facilities for storage and transfer to the gas radwaste system. Three gases are used in the KALIMER: helium, argon, and nitrogen. 11 tabs., 12 figs. (Author)

  13. Development of KALIMER auxiliary sodium and cover gas management system

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sang Woon; Hwang, Sung Tae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-11-01

    The objectives of this report are to develop and to describe the auxiliary liquid metal and cover gas management systems of KALIMER. the system includes following system: (1) Auxiliary liquid metal system (2) Inert gas receiving and processing system (3) Impurity monitoring and analysis system. Auxiliary liquid metal and cover gas management system of KALIMER was developed. Functions of each systems and design basis were describes. The auxiliary liquid metal system receives, transfers, and purifies all sodium used in the plant. The system furnishes the required sodium quantity at the pressure, temperature, flow rate, and purity specified by the interfacing system. The intermediated sodium processing subsystem (ISPS) provides continuous purification of IHTS sodium, as well as performs the initial fill operation for both the IHTS and reactor vessel. The primary sodium processing subsystem provides purification (cold trapping) for sodium used in the reactor vessel. The inert gas receiving and processing (IGRP) system provides liquefied and ambient gas storage, delivers inert gases of specified composition and purity at regulated flow rates and pressures to points of usage throughout the KALIMER, and accepts the contaminated gases through its vacuum facilities for storage and transfer to the gas radwaste system. Three gases are used in the KALIMER: helium, argon, and nitrogen. 11 tabs., 12 figs. (Author).

  14. Reduction kinetics of Wüstite scale on pure iron and steel sheets in Ar and H

    NARCIS (Netherlands)

    Mao, W.; Sloof, W.G.

    2017-01-01

    A dense and closed Wüstite scale is formed on pure iron and Mn alloyed steel after oxidation in Ar + 33 vol pct CO2 + 17 vol pct CO gas mixture. Reducing the Wüstite scale in Ar + H2 gas mixture forms a dense and uniform iron layer on top of the remaining Wüstite scale,

  15. System efficiency for two-step metal oxide solar thermochemical hydrogen production – Part 2: Impact of gas heat recuperation and separation temperatures

    KAUST Repository

    Ehrhart, Brian D.

    2016-09-22

    The solar-to-hydrogen (STH) efficiency is calculated for various operating conditions for a two-step metal oxide solar thermochemical hydrogen production cycle using cerium(IV) oxide. An inert sweep gas was considered as the O2 removal method. Gas and solid heat recuperation effectiveness values were varied between 0 and 100% in order to determine the limits of the effect of these parameters. The temperature at which the inert gas is separated from oxygen for an open-loop and recycled system is varied. The hydrogen and water separation temperature was also varied and the effect on STH efficiency quantified. This study shows that gas heat recuperation is critical for high efficiency cycles, especially at conditions that require high steam and inert gas flowrates. A key area for future study is identified to be the development of ceramic heat exchangers for high temperature gas-gas heat exchange. Solid heat recuperation is more important at lower oxidation temperatures that favor temperature-swing redox processing, and the relative impact of this heat recuperation is muted if the heat can be used elsewhere in the system. A high separation temperature for the recycled inert gas has been shown to be beneficial, especially for cases of lower gas heat recuperation and increased inert gas flowrates. A higher water/hydrogen separation temperature is beneficial for most gas heat recuperation effectiveness values, though the overall impact on optimal system efficiency is relatively small for the values considered. © 2016 Hydrogen Energy Publications LLC.

  16. Density effects on high-n molecular Rydberg states: CH3I and C6H6 in H2 and Ar

    International Nuclear Information System (INIS)

    Asaf, U.; Felps, W.S.; Rupnik, K.; McGlynn, S.P.; Ascarelli, G.

    1989-01-01

    The absorption spectra of high-n Rydberg states of methyl iodide and benzene perturbed by varying number densities of hydrogen or argon, range 0.9x10 20 --10.5x10 20 cm -3 for H 2 and 0.6x10 20 --7.5x10 20 cm -3 for Ar, have been investigated. The high-n molecular states of both absorbers were found to shift linearly with the number density of atomic Ar and molecular H 2 scatterers. The Fermi formula modified by the Alekseev--Sobel'man polarization term provides an excellent fit of the shift data. The electron scattering lengths obtained are: 0.93 a 0 for H 2 and -1.63 a 0 for Ar using the CH 3 I absorber; and 0.99 a 0 for H 2 and -1.57 a 0 for Ar using the C 6 H 6 absorber. The electron scattering lengths for H 2 and Ar agree with the results of an empirical model that correlates scattering lengths and the polarizabilities α(spherical) for inert atoms and α 2 (nonspherical) for H 2 molecule

  17. $\\beta$ decay of $^{47}$Ar

    CERN Document Server

    Weissman, L; Bergmann, U C; Brown, B A; Catherall, R; Cederkäll, J; Dillmann, I; Hallmann, O; Fraile-Prieto, L M; Franchoo, S; Gaudefroy, L; Köster, U; Kratz, K L; Pfeiffer, B; Sorlin, O; 10.1103/PhysRevC.70.024304

    2004-01-01

    Information on beta -decay properties of neutron-rich /sup 47/Ar was obtained at the ISOLDE facility at CERN using isobaric selectivity. This was achieved by a combination of a plasma-ion source with a cooled transfer line and subsequent mass separation. A doubly charged beam was used in order to improve the signal-to-background ratio associated with multi-charged noble gas fission products. The identification of the /sup 47/Ar gamma -ray transitions was performed by comparing the spectra obtained from direct proton bombardment of the target and of the neutron converter. New excited levels in the daughter /sup 47/K nucleus corresponding to the negative-parity states were observed. The obtained data are compared to the result of large-scale shell model calculations and quasiparticle random-phase approximation predictions. (29 refs).

  18. Neutralino dark matter with inert higgsinos and singlinos

    International Nuclear Information System (INIS)

    Hall, Jonathan P.; King, Stephen F.

    2009-01-01

    We discuss neutralino dark matter arising from supersymmetric models with extra inert Higgsinos and singlinos, where inert means that their scalar partners do not get vacuum expectation values. As an example, we consider the extended neutralino sector of the E 6 SSM, which predicts three families of Higgs doublet pairs, plus three singlets, plus a Z', together with their fermionic superpartners. We show that the two families of inert doublet Higgsinos and singlinos predicted by this model provide an almost decoupled neutralino sector with a naturally light LSP which can account for the cold dark matter relic abundance independently of the rest of the model, providing that the ratio of the two usual Higgs doublets satisfies tan β < 2.

  19. Ar-37 in the Atmospheric and Sub-Soil Gases

    International Nuclear Information System (INIS)

    Purtschert, R.; Raghoo, L.S.

    2015-01-01

    On-site inspection of the radioactive noble gas isotope 37Ar is a definitive and unambiguous indicator of an underground nuclear explosion. 37Ar is produced underground by neutron activation of calcium by the reaction 40Ca(n,α)37Ar. In the atmosphere, 37Ar is produced by the spallation reaction 40Ar(n,4n)37Ar. Periodic measurements over the last six years on air collected in Bern revealed a background level in the order of 1-5 mBq/m 3 air in agreement with former findings and theoretical calculations. Those calculations also indicated that the intrusion of stratospheric air masses may lead to elevated tropospheric 37Ar concentrations up to 8-10 mBq/m 3 air. Selected samples taken up to now in the vicinity of nuclear power plants revealed no significant deviation from the natural background. In order to distinguish between natural and artificially elevated 37Ar the location-specific 37Ar activity range in soils, rocks and the atmosphere were identified. From CARIBIC flights, a passenger aircraft with a special air freight container filled with scientific equipment in the cargo compartment, tropospheric air samples were analyzed for 37Ar and 85Kr. The natural 37Ar production in soils and the rock basement underlying the alluvium is investigated by means of in situ measurements of different isotopes, theoretical calculations and irradiation experiments on selected rock samples. This will help resolve the temporal evolution and/or constancy of the natural 37Ar background and allow for an interpretation in terms of the identification of clandestine nuclear explosions. (author)

  20. Multistage plasma initiation process by pulsed CO2 laser irradiation of a Ti sample in an ambient gas (He, Ar, or N2)

    Science.gov (United States)

    Hermann, J.; Boulmer-Leborgne, C.; Mihailescu, I. N.; Dubreuil, B.

    1993-02-01

    New experimental results are reported on plasma initiation in front of a titanium sample irradiated by ir (λ=10.6 μm) laser pulses in an ambient gas (He, Ar, and N2) at pressures ranging from several Torr up to the atmosphere. The plasma is studied by space- and time-resolved emission spectroscopy, while sample vaporization is probed by laser-induced fluorescence spectroscopy. Threshold laser intensities leading to the formation of a plasma in the vapor and in the ambient gases are determined. Experimental results support the model of a vaporization mechanism for the plasma initiation (vaporization-initiated plasma breakdown). The plasma initiation is described by simple numerical criteria based on a two-stage process. Theoretical predictions are found to be in a reasonable agreement with the experiment. This study provides also a clear explanation of the influence of the ambient gas on the laser beam-metal surface energy transfer. Laser irradiation always causes an important vaporization when performed in He, while in the case of Ar or N2, the interaction is reduced in heating and vaporization of some surface defects and impurities.

  1. 40Ar/39Ar dating and geochemistry of tholeiitic magmatism related to the early opening of the Central Atlantic rift

    International Nuclear Information System (INIS)

    Sebai, A.; Feraud, G.; Bertrand, H.; Hanes, J.

    1991-01-01

    Tholeiitic effusive and intrusive magnetism from Iberia, Morocco, Algeria and Mali, realted to the early opening of the Central Atlantic rift, was dated by the 40 Ar/ 39 Ar step-heating method. Four plateau ags, rangin from 203.7±2.7 to 197.1±1.8 Ma, were obtained on plagioclase from dykes from theTaoudenni area (Mali) and two lava flows from Morocco. The Messejana dyke (Iberia), which previously yielded discrepant conventional K-Ar dates, did not furnish any 40 Ar/ 39 Ar plateau dates. However, there is a clear inverse relationship between apparent age and K/Ca atio for gas fractions from a plagioclase separate (proportional to the alteration degree) which, combined with dates obtained on amphibole, biotite and pyroxene, allows us to determine an age of around 200 Ma for this body. These data, and those obtained on the Foum Zguid (Morocco) and the Ksi Ksou (Algeria) dykes, give evidence of a brief magmatic event (between 206 and 195 Ma ago) which affected a large area ca. 2500 km long. Trace-element modelling shows that most of these formations originated from a homogeneous, enriched, source material. Such a brief magmatic episode related to the opening of a continental rift is in agreement with findings in other magmatic provinces (e.g. the Deccan traps and the Red Sea rift, precisely dated by the 40 Ar/ 39 Ar method as well). (orig.)

  2. Production of 41Ar and 79Kr gaseous radiotracers for industrial applications

    International Nuclear Information System (INIS)

    Yelgaonkar, V.N.; Jagadeesan, K.C.; Shivarudrappa, V.; Sharma, V.K.; Chitra, S.

    2007-01-01

    Radiotracers are extensively used in many industries for trouble shooting and optimization of process parameters leading to considerable savings in time and huge economic benefits. In chemical and petrochemical industries different gases and vapours flowing in the conversion reactors play a major role in the final production. Gaseous radiotracers are ideal to study hydrodynamics of gas phases in process vessels. 41 Ar and 79 Kr are the preferred gaseous radiotracers for such studies. Owing to the increase in demand from Indian industries for gas phase radiotracers, efforts have been made to produce 41 Ar and 79 Kr indigenously by irradiation of 40 Ar and enriched 78 Kr gaseous targets in research reactors. Prequalification of the containers used, safety aspects concerning accidental rupture and mandatory tests necessary for irradiation of gaseous targets in the reactors have been studied. The paper describes some of the important safety aspects involved and the results of trial irradiations on the production of 41 Ar and 79 Kr radiotracers. Standardization of suitable assay protocols for their regular production and supply for applications in industries is also described. (author)

  3. Dating of ice and ocean samples with Atom Trap Trace Analysis of 39Ar

    OpenAIRE

    Ebser, Sven Conrad

    2018-01-01

    The noble gas radioisotope 39Ar with a half-life of 269 years is an almost ideal tracer for dating ice and water samples in the time range of 50 to 1000 years ago, for which no other reliable methods exist. Due to its very low relative abundance of 39Ar/Ar = 8.1(3)*10^-16, 39Ar has only been routinely measured by Low-Level Counting so far. However, since Low-Level Counting requires samples in the order of 1000 L, the application of 39Ar, besides some proof-of-principle experiments, has been l...

  4. Combustión de mezclas ricas de etano-aire en medios porosos inertes Combustion of rich ethane-air mixtures in inert porous media

    Directory of Open Access Journals (Sweden)

    Khriscia Utria S

    2013-04-01

    Full Text Available El presente trabajo tiene por objetivo analizar teórica-experimentalmente la combustión de mezclas ricas de etano-aire en medios porosos inertes (MPI para evaluar la producción de hidrógeno y gas de síntesis. Se analizan los perfiles de temperatura, las velocidades de propagación de llama y los productos principales de la combustión, como son el hidrógeno (H2 y el monóxido de carbono (CO, mediante el uso de cromatografía gaseosa, para relaciones de equivalencia en el rango de 1,0 a 2,5 y dos diámetros de esferas de alúmina que componen el medio poroso. Se simula numéricamente el proceso de combustión mediante el uso del programa PREMIX utilizando dos mecanismos de reacción, como son el GRI-MECH 1.2 y GRI-MECH 3.0. Con GRI-MECH 3.0 se obtienen resultados numéricos que predicen correctamente los resultados experimentales para todo el rango de relaciones de equivalencia con un medio poroso compuesto por esferas de alúmina de 3,5 mm. La máxima generación de hidrógeno H2 y CO presentes en los productos de combustión son de 14,3% y 18,0%, respectivamente. El porcentaje de conversión de etano en H2 (61,3% y en CO (81% muestra el potencial de este combustible como generador de gas de síntesis.This research develops the theoretical and experimental analysis of ethane-air combustion in inert porous media (IPM to evaluate hydrogen and syngas production. Temperature profiles, flame propagation rates and major combustion products such as hydrogen (H2 and carbon monoxide (CO, through gas chromatography, are analysed at a range of equivalence ratios between 1.0 and 2.5, with two different alumina sphere diameters composing the porous media. Combustion of ethane-air mixture in IPM is simulated numerically using the PREMIX program with two reaction mechanisms, such as GRI-MECH 1.2 and GRI-MECH 3.0. GRI-MECH 3.0 numerical results predict correctly experimental results for a porous media with 3.5 mm alumina spheres along the range of

  5. Irradiation effects of Ar cluster ion beams on Si substrates

    International Nuclear Information System (INIS)

    Ishii, Masahiro; Sugahara, Gaku; Takaoka, G.H.; Yamada, Isao

    1993-01-01

    Gas-cluster ion beams can be applied to new surface modification techniques such as surface cleaning, low damage sputtering and shallow junction formation. The effects of energetic Ar cluster impacts on solid surface were studied for cluster energies of 10-30keV. Irradiation effects were studied by RBS. For Si(111) substrates, irradiated with Ar ≥500 clusters to a dose of 1x10 15 ion/cm 2 at acceleration voltage 15kV, 2x10 14 atoms/cm 2 implanted Ar atoms were detected. In this case, the energy per cluster atom was smaller than 30eV; at this energy, no significant implantation occurs in the case of monomer ions. Ar cluster implantation into Si substrates occurred due to the high energy density irradiation. (author)

  6. New concept for ARS dry spent fuel storage

    International Nuclear Information System (INIS)

    Doroszlai, P.G.K.; Johanson, N.W.; Patak, H.N.

    1980-01-01

    The dry fully passive and modular away-from-reactor (AFR) storage concept has been presented before for a size of 1500 to 3000 MTHM. Here it is suggested that the same concept is applicable for a small AR storage facility of 200 MTHM. Detailed investigations and feasibility studies have shown this concept to be economically interesting. Dry storage in the proposed concept has some other inherent advantages: spent fuel is stored in a dry and inert atmosphere, where no corrosion nor determination of cladding is to be expected during extended storage periods; storage canister and the silo concrete are additional barriers against activity release and increase therefore the security for long term safety; there are only passive systems involved where the heat is dissipated by natural convection and there is no need for additional emergency systems or special redundancy; concept of AR storage should be relatively easily licensed, as all requirements or constructions are well known standards of engineering; this storage concept creates no secondary waste nor contamination making decomissioning simple after retransfer of spent fuel canisters; manpower requirements for operation and maintenance is very small; operating costs are estimated to be some 2 US $/kg U (1980); investment costs are calculated to be 96 US $/kg U (May 1980) for a total size of 200 MTHM stored

  7. Radioactive gas storage device

    International Nuclear Information System (INIS)

    Sano, Yuji.

    1988-01-01

    Purpose: To easily and reliably detect the consumption of a sputtered cathode in a radioactive gas storage device using ion injection method. Constitution: Inert gases are sealed to the inside of a cathode. As the device is operated, the cathode is consumed and, if it is scraped to some extent, inert gases in the cathode gases are blown out to increase the inner pressure of the device. The pressure elevation is detected by a pressure detector connected with a gas introduction pipe or discharge pipe. Further, since the discharge current in the inside is increased along with the elevation of the pressure, it is possible to detect the increase of the electrical current. In this way, the consumption of the cathode can be recognized by detecting the elevation in the pressure or increase in the current. (Ikeda, J.)

  8. XRD-based 40Ar/39Ar age correction for fine-grained illite, with application to folded carbonates in the Monterrey Salient (northern Mexico)

    Science.gov (United States)

    Fitz-Díaz, Elisa; Hall, Chris M.; van der Pluijm, Ben A.

    2016-05-01

    Due to their minute size, 40Ar/39Ar analysis of illite faces significant analytical challenges, including mineral characterization and, especially, effects of grain size and crystallography on 39Ar recoil. Quantifying the effects of 39Ar recoil requires the use of sample vacuum encapsulation during irradiation, which permits the measurement of the fraction of recoiled 39Ar as well as the 39Ar and 40Ar∗ retained within illite crystals that are released during step heating. Total-Gas Ages (TGA) are calculated by using both recoiled and retained argon, which is functionally equivalent to K-Ar ages, while Retention Ages (RA) only involve retained Ar in the crystal. Natural applications have shown that TGA fits stratigraphic constraints of geological processes when the average illite crystallite thickness (ICT) is smaller than 10 nm, and that RA matches these constraints for ICTs larger than 50 nm. We propose a new age correction method that takes into account the average ICT and corresponding recoiled 39Ar for a sample, with X-ray Corrected Ages (XCA) lying between Total-Gas and Retention Ages depending on ICT. This correction is particularly useful in samples containing authigenic illite formed in the anchizone, with typical ICT values between 10 and 50 nm. In three samples containing authigenic illite from Cretaceous carbonates in the Monterrey Salient in northern Mexico, there is a range in TGAs among the different size-fractions of 46-49, 36-43 and 40-52 Ma, while RAs range from 54-64, 47-52 and 53-54 Ma, respectively. XCA calculations produce tighter age ranges for these samples of 52.5-56, 45.5-48.5 and 49-52.5 Ma, respectively. In an apparent age vs ICT or %2M 1illite plot, authigenic illite grains show a slope that is in general slightly positive for TGA, slightly negative for RA, but close to zero for XCA, with thinner crystallites showing more dispersion than thicker ones. In order to test if dispersion is due to a different formation history or the result

  9. Electron cloud sizes in gas-filled detectors

    International Nuclear Information System (INIS)

    Boggende, A.J.F. den; Schrijver, C.J.

    1984-01-01

    Electron cloud sizes have been calculated for gas mixtures containing Ar, Xe, CO 2 , CH 4 , and N 2 for drifts through a constant electric field. The transport coefficients w and D/μ are in good agreement with experimental data of various sources for pure gases. Results of measurements, also performed in this work, for Ar+CO 2 , Ar+CH 4 , and Ar+Xe+CO 2 mixtures are in fair agreement with the calculated cloud sizes. For a large number of useful gas mixtures calculated electron cloud sizes are presented and discussed, most of which are given for the first time. A suggestion is made for an optimal gas mixture for an X-ray position sensitive proportional counter for medium and low energies. (orig.)

  10. Electronic-state distribution of Ar* produced from Ar+(2P3/2)/2e- collisional radiative recombination in an argon flowing afterglow

    International Nuclear Information System (INIS)

    Tsuji, Masaharu; Matsuzaki, Toshinori; Tsuji, Takeshi

    2002-01-01

    The Ar + /2e - collisional radiative recombination has been studied by observing UV and visible emissions of Ar* in an Ar flowing afterglow. In order to clarify recombination mechanism, the Ar + ( 2 P 3/2 ) spin-orbit component was selected by using a filter gas of the Ar + ( 2 P 1/2 ) component. Spectral analysis indicated that 34 Ar*(4p, 4d, 5p, 5d, 6s, 6p, 6d, 4p ' , 4d ' , 5p ' , 5d ' , 6s ' ) states in the 13.08-15.33 eV range are produced. The electronic-state distribution decreased with an increase in the excitation energy of Ar*, which was expressed by a Boltzmann electronic temperature of 0.54 eV. The formation ratios of the 4p: 4d + 5p + 5d + 6s + 6p + 6d: 4p ' : 4d ' + 5p ' + 5d ' + 6s ' states were 43%, 2.8%, 54%, and 0.31%, respectively. The high formation ratio of the 4p ' state having an Ar + ( 2 P 1/2 ) ion core in the Ar + ( 2 P 3/2 )/2e - recombination indicated that such a two-electron process as an electron transfer to an inner 3p orbital followed by excitation of a 3p electron to an outer 4p orbital occurs significantly. The higher formation ratios of 4d + 5p + 5d + 6s + 6p + 6d than those of 4d ' + 5p ' + 5d ' + 6s ' led us to conclude the formation of these upper states dominantly proceeds through one electron transfer to an outer nl orbital of Ar + ( 2 P 3/2 )

  11. Determination of Ar metastable atom densities in Ar and Ar/H2 inductively coupled low-temperature plasmas

    International Nuclear Information System (INIS)

    Fox-Lyon, N; Knoll, A J; Oehrlein, G S; Franek, J; Demidov, V; Koepke, M; Godyak, V

    2013-01-01

    Ar metastable atoms are important energy carriers and surface interacting species in low-temperature plasmas that are difficult to quantify. Ar metastable atom densities (N Ar,m ) in inductively coupled Ar and Ar/H 2 plasmas were obtained using a model combining electrical probe measurements of electron density (N e ) and temperature (T e ), with analysis of spectrally resolved Ar plasma optical emission based on 3p → 1s optical emission ratios of the 419.8 nm line to the 420.1 nm line. We present the variation of N Ar,m as the Ar pressure and the addition of H 2 to Ar are changed comparatively to recent adsorption spectroscopy measurements. (paper)

  12. Dose dependence of nano-hardness of 6H-SiC crystal under irradiation with inert gas ions

    Science.gov (United States)

    Yang, Yitao; Zhang, Chonghong; Su, Changhao; Ding, Zhaonan; Song, Yin

    2018-05-01

    Single crystal 6H-SiC was irradiated by inert gas ions (He, Ne, Kr and Xe ions) to various damage levels at room temperature. Nano-indentation test was performed to investigate the hardness change behavior with damage. The depth profile of nano-hardness for 6H-SiC decreased with increasing depth for both the pristine and irradiated samples, which was known as indentation size effect (ISE). Nix-Gao model was proposed to determine an asymptotic value of nano-hardness by taking account of ISE for both the pristine and irradiated samples. In this study, nano-hardness of the irradiated samples showed a strong dependence on damage level and showed a weak dependence on ions species. From the dependence of hardness on damage, it was found that the change of hardness demonstrated three distinguishable stages with damage: (I) The hardness increased with damage from 0 to 0.2 dpa and achieved a maximum of hardening fraction ∼20% at 0.2 dpa. The increase of hardness in this damage range was contributed to defects produced by ion irradiation, which can be described well by Taylor relation. (II) The hardness reduced rapidly with large decrement in the damage range from 0.2 to 0.5 dpa, which was considered to be from the covalent bond breaking. (III) The hardness reduced with small decrement in the damage range from 0.5 to 2.2 dpa, which was induced by extension of the amorphous layer around damage peak.

  13. Chemical activity of noble gases Kr and Xe and its impact on fission gas accumulation in the irradiated UO2 fuel

    International Nuclear Information System (INIS)

    Szuta, M.

    2006-01-01

    It is generally accepted that most of the insoluble inert gas atoms Xe and Kr produced during fissioning are retained in the fuel irradiated at a temperature lower than the threshold. Experimental data imply that we can assume that after irradiation exposure in excess of 10 18 fissions/cm 3 the single gas atom diffusion can be disregarded in description of fission gas behaviour. It is assumed that the vicinity of the fission fragment trajectory is the place of intensive irradiation induced chemical interaction of the fission gas products with UO 2 . Significant part of fission gas product is thus expected to be chemically bound in the matrix of UO 2 . Experiments with mixture of noble gases, coupled with theoretical calculations, provide strong evidence for direct bonds between Ar, Kr, or Xe atoms and the U atom of the CUO molecule. Because of its positive charge, the UO 2 2+ ion, which is isoelectronic with CUO, should form even stronger bonds with noble gas atoms, which could lead to a growing number of complexes that contain direct noble gas - to - actinide bonds. Considering the huge amount of gas immobilised in the UO 2 fuel the solution process and in consequence the re-solution process of rare gases is to be replaced by the chemical bonding process. This explains the fission gas accumulation in the irradiated UO 2 fuel. (author)

  14. UNS S31603 Stainless Steel Tungsten Inert Gas Welds Made with Microparticle and Nanoparticle Oxides

    Directory of Open Access Journals (Sweden)

    Kuang-Hung Tseng

    2014-06-01

    Full Text Available The purpose of this study was to investigate the difference between tungsten inert gas (TIG welding of austenitic stainless steel assisted by microparticle oxides and that assisted by nanoparticle oxides. SiO2 and Al2O3 were used to investigate the effects of the thermal stability and the particle size of the activated compounds on the surface appearance, geometric shape, angular distortion, delta ferrite content and Vickers hardness of the UNS S31603 stainless steel TIG weld. The results show that the use of SiO2 leads to a satisfactory surface appearance compared to that of the TIG weld made with Al2O3. The surface appearance of the TIG weld made with nanoparticle oxide has less flux slag compared with the one made with microparticle oxide of the same type. Compared with microparticle SiO2, the TIG welding with nanoparticle SiO2 has the potential benefits of high joint penetration and less angular distortion in the resulting weldment. The TIG welding with nanoparticle Al2O3 does not result in a significant increase in the penetration or reduction of distortion. The TIG welding with microparticle or nanoparticle SiO2 uses a heat source with higher power density, resulting in a higher ferrite content and hardness of the stainless steel weld metal. In contrast, microparticle or nanoparticle Al2O3 results in no significant difference in metallurgical properties compared to that of the C-TIG weld metal. Compared with oxide particle size, the thermal stability of the oxide plays a significant role in enhancing the joint penetration capability of the weld, for the UNS S31603 stainless steel TIG welds made with activated oxides.

  15. Isotopic effect of the mean lifetimes of the NeAr2+ doubly charged rare-gas dimer

    International Nuclear Information System (INIS)

    Ben-Itzhak, I.; Bouhnik, J.P.; Chen, Z.; Gertner, I.; Heinemann, C.; Koch, W.; Lin, C.D.; Rosner, B.

    1995-01-01

    It has been suggested recently by Chen et al. [Phys. Rev. A 49, 3472 (1994)] that the measured long-lived NeAr 2+ formed in fast NeAr + + Ar charge-stripping collisions is mostly in its v=12 vibrational state bound to the electronic ground state, and that this molecular ion decays by tunneling through the potential barrier. Such a decay rate is expected to depend strongly on the reduced mass of the molecular ion leading to large isotopic effects. We have measured the mean lifetimes of the 20 Ne 40 Ar 2+ and 22 Ne 40 Ar 2+ isotopes in order to see this isotopic effect. Surprisingly, the mean lifetimes of both isotopes are similar to each other. Thus, it is suggested that the observed NeAr 2+ molecular ions do not decay via a tunneling mechanism, which would indicate that they reside in the metastable electronic ground state. Rather, electronic transitions from bound or metastable excited states into other repulsive states are the origin for the experimentally observed decay. Qualitative estimates for the shapes and ordering of these states in the electronic spectrum of NeAr 2+ are given

  16. 40Ar/39Ar studies of deep sea igneous rocks

    International Nuclear Information System (INIS)

    Seidemann, D.

    1978-01-01

    An attempt to date deep-sea igneous rocks reliably was made using the 40 Ar/ 39 Ar dating technique. It was determined that the 40 Ar/ 39 Ar incremental release technique could not be used to eliminate the effects of excess radiogenic 40 Ar in deep-sea basalts. Excess 40 Ar is released throughout the extraction temperature range and cannot be distinguished from 40 Ar generated by in situ 40 K decay. The problem of the reduction of K-Ar dates associated with sea water alteration of deep-sea igneous rocks could not be resolved using the 40 Ar/ 39 Ar technique. Irradiation induced 39 Ar loss and/or redistribution in fine-grained and altered igneous rocks results in age spectra that are artifacts of the experimental procedure and only partly reflect the geologic history of the sample. Therefore, caution must be used in attributing significance to age spectra of fine grained and altered deep-sea igneous rocks. Effects of 39 Ar recoil are not important for either medium-grained (or coarser) deep-sea rocks or glasses because only a small fraction of the 39 Ar recoils to channels of easy diffusion, such as intergranular boundaries or cracks, during the irradiation. (author)

  17. Dating quartz: Ar/Ar analyses of coexisting muscovite and fluid inclusion - rich quartz from paleocene amorphic aureole

    International Nuclear Information System (INIS)

    Matthews, S.J.; Perez de Arce, C.; Cornejo, P.; Cuitino, L; Klein, J

    2001-01-01

    We present Ar/Ar total fusion and step-heating data for coexisting muscovite and white quartz from the metamorphic aureole of the Lower Paleocene La Copiapina Pluton, 6 km south of Inca de Oro, III Region, Chile. The pluton intrudes the upper clastic sedimentary member of the Punta del Cobre Group (Upper Jurassic - Lower Cretaceous) and the calcareous sedimentary rocks of the Chanarcillo Group (Neocomian), and comprises fine to coarse grained pyroxene-hornblende-biotite quartz diorites and monzodiorites. Its emplacement was controlled on its north-western side by a subvertical NE-trending fault, along which were developed vertically banded skarns (skarn mylonite), suggesting syntectonic intrusion. Biotite K-Ar ages for the pluton fall in the range 61-63 Ma, relating it to a latest Cretaceous to Lowest Paleocene syn-compressional intrusive belt which is present in the area (Matthews and Cornejo, 2000). A metamorphic / metasomatic aureole is developed within the sandstones of the Punta del Cobre Group, on the extreme northern limit of the pluton. In this area, the sedimentary rocks have been replaced by quartz-sericite and quartz-muscovite assemblages, with minor hematite and tourmaline, and late supergene kaolinite and pyrophyllite. A coarse muscovite-quartz-tourmaline-hematite assemblage is developed in and around older (early Upper Cretaceous) andesitic dykes, in the form of replacement / fracture fill veins and replacement zones. Further from the contact with the pluton, fine-grained quartz-sericite rock with coarser muscovite-rich replacement veins represents the dominant lithology. Quartz in the coarse replacement rock is very rich in fluid inclusions. Primary inclusions are mainly of two coexisting types; bi-phase (liquid and gas bubble) and tri-phase (liquid, gas bubble and halite crystal), indicating that the quartz formed in the presence of a boiling fluid. Some inclusions also contain sylvite and occasional hematite daughter crystals. Secondary inclusions

  18. Geological Dating by 40 Ar - 39 Ar method

    International Nuclear Information System (INIS)

    Vollbert Romero, M.E.

    1992-01-01

    The isotope 40 K is radioactive, it decays to 40 Ar stable. The number of 40 Ar atoms produced from 40 K, permits to calculate the date of rocks and minerals. This dating technique is named 'Conventional K-Ar Dating Method'. The 40 Ar - 39 Ar dating method permits to calculate the age of rocks and minerals eliminating the limitation of the K-Ar method by calculating potassium and argon concentrations in a single measurement of the ratio of argon isotopes. In this work, the irradiation of the sample with fast neutrons in the nuclear reactor was established. 39 Ar is obtained from the induced reaction 39 K (n,p) 39 Ar. Thus the ration of 40 Ar - 39 Ar allows to obtain the date of rocks and minerals. This ratio was measured in a mass spectrometer. If the measurement of argon concentration in the sample is carried out at different increasing temperature values, it is possible to get information of paleotemperatures. The number of atoms 39 Ar is a function of the number 39 K atoms, irradiation time, neutrons flux, its energy E and the capture cross section σ of 39 K. These parameters are calculate indirectly by obtaining the so called 'J value ' by using a standard mineral with known age (HD-BI y Biot-133), this mineral is irradiated together with the unknown age sample. The values of 'J' obtained are in the interval of 2.85 a 3.03 (x 10 - 3)J/h. Rocks from 'Tres Virgenes' were dated by the method described in this work, showing an agreement with previous values of different authors. The age of this rocks are from Cenozoico era, mainly in the miocene period. (Author)

  19. Preliminary Design Report Shippingport Spent Fuel Drying and Inerting System

    International Nuclear Information System (INIS)

    JEPPSON, D.W.

    2000-01-01

    A process description and system flow sheets have been prepared to support the design/build package for the Shippingport Spent Fuel Canister drying and inerting process skid. A process flow diagram was prepared to show the general steps to dry and inert the Shippingport fuel loaded into SSFCs for transport and dry storage. Flow sheets have been prepared to show the flows and conditions for the various steps of the drying and inerting process. Calculations and data supporting the development of the flow sheets are included

  20. Theoretical treatment of the spin-orbit coupling in the rare gas oxides NeO, ArO, KrO, and XeO

    Science.gov (United States)

    Langhoff, S. R.

    1980-01-01

    Off-diagonal spin-orbit matrix elements are calculated as a function of internuclear distance for the rare gas oxides NeO, ArO, KrO, and XeO using the full microscopic spin-orbit Hamiltonian, including all one- and two-electron integrals, and POL-CI wave functions comparable to those of Dunning and Hay (1977). A good agreement was found when comparing these results in detail with the calculations of Cohen, Wadt and Hay (1979) that utilize an effective one-electron one-center spin-orbit operator. For the rare gas oxide molecules, it is suggested that the numerical results are a more sensitive test of the wave functions (particularly to the extent of charge transfer) than the exact evaluation of all terms in the full spin-orbit operator.

  1. Influence of Ar addition on ozone generation in nonthermal plasmas

    International Nuclear Information System (INIS)

    Chen, Hsin Liang; Lee, How Ming; Chen, Shiaw Huei; Wei, Ta Chin; Chang, Moo Been

    2010-01-01

    Inconsistency regarding the influence of Ar addition on ozone generation in a corona discharge has been found in relevant studies. Unlike in the literature to date, a dielectric barrier discharge (DBD) reactor is adopted in this study. In addition to clarifying whether using Ar as an additive would lead to different types of behavior in a DBD and a corona discharge, this study is also motivated to explore the possible causes leading to the inconsistency. The experimental results show that adding Ar into the O 2 plasma would lead to the same influence on ozone generation in the DBD and corona discharge. Moreover, all types of controversial behavior caused by Ar addition reported in the relevant literature are observed in this study as well, indicating that the results of this study are comprehensive enough to interpret the inconsistency. By examining the experimental results in detail, it is found that the controversial influences of Ar addition on ozone generation were found using different assumptions. At a fixed applied voltage, the ozone generation might increase as the Ar concentration is increased, which results from a higher discharge power. Nevertheless, for a certain specific input energy (the ratio of discharge power to gas flow rate), the ozone concentration is lower as the Ar concentration is increased. Therefore, adding Ar is not a good way to enhance ozone generation from an economic point of view.

  2. Brome isotope selective control of CF3Br molecule clustering by IR laser radiation in gas-dynamic expansion of CF3Br - Ar mixture

    Science.gov (United States)

    Apatin, V. M.; Lokhman, V. N.; Makarov, G. N.; Ogurok, N.-D. D.; Ryabov, E. A.

    2018-02-01

    We report the results of research on the experimental control of CF3Br molecule clustering under gas-dynamic expansion of the CF3Br - Ar mixture at a nozzle exit by using IR laser radiation. A cw CO2 laser is used for exciting molecules and clusters in the beam and a time-of-flight mass-spectrometer with laser UV ionisation of particles for their detection. The parameters of the gas above the nozzle are determined (compositions and pressure) at which intensive molecule clustering occurs. It is found that in the case of the CF3Br gas without carrier when the pressure P0 above the nozzle does not exceed 4 atm, molecular clusters actually are not generated in the beam. If the gas mixture of CF3Br with argon is used at a pressure ratio 1 : N, where N >= 3, and the total pressure above the nozzle is P0 >= 2 atm, then there occurs molecule clustering. We study the dependences of the efficiency of suppressing the molecule clustering on parameters of the exciting pulse, gas parameters above the nozzle, and on a distance of the molecule irradiation zone from the nozzle exit section. It is shown that in the case of resonant vibrational excitation of gas-dynamically cooled CF3Br molecules at the nozzle exit one can realise isotope-selective suppression of molecule clustering with respect to bromine isotopes. With the CF3Br - Ar mixtures having the pressure ratio 1 : 3 and 1 : 15, the enrichment factors obtained with respect to bromine isotopes are kenr ≈ 1.05 ± 0.005 and kenr ≈ 1.06 ± 0.007, respectively, under jet irradiation by laser emission in the 9R(30) line (1084.635 cm-1). The results obtained let us assume that this method can be used to control clustering of molecules comprising heavy element isotopes, which have a small isotopic shift in IR absorption spectra.

  3. Comparison of creep rupture behavior of tungsten inert gas and electron beam welded grade 91 steel

    International Nuclear Information System (INIS)

    Dey, H.C.; Vanaja, J.; Laha, K.; Bhaduri, A.K.; Albert, S.K.; Roy, G.G.

    2016-01-01

    Creep rupture behavior of Grade 91 steel weld joints fabricated by multi-pass tungsten inert gas (TIG) and electron beam welding (EBW) processes has been studied and compared with base metal. Cross-weld creep specimens were fabricated from the X-ray radiography qualified and post weld heat treated (760°C/4 h) weld joints. Creep testing of weld joints and base metal was carried out at 650°C over a stress range of 40°120 MPa. Creep life of EBW joint is comparable to base metal; whereas multi-pass TIG joint have shown significant drop in creep life tested for the same stress level. Both types of weld joints show Type IV cracking for all the stress levels. The steady state creep rate of multi-pass TIG is found to be fifteen times than that of EBW joint for stress level of 80 MPa, which may be attributed to over tempering, more re-austenization, and fine grain structure of inter-critical and fine grain heat affected zone regions of the TIG joint. In contrast, single-pass and rapid weld thermal cycles associated with EBW process causes minimum phase transformation in the corresponding regions of heat affected zone. Microstructure studies on creep tested specimens shows creep cavities formed at the primary austenite grain boundaries nucleated on coarse carbide precipitates. The hardness measured across the weld on creep tested specimens shows significant drop in hardness in the inter-critical and fine grain heat affected zone regions of multi-pass TIG (176 VHN) in comparison to 192 VHN in the corresponding locations in EBW joint. (author)

  4. Standardization of 40Ar-39Ar dating facility at KDMIPE, ONGC, Dehradun

    International Nuclear Information System (INIS)

    Rathore, S.S.; Singh, M.P.; Vijan, A.R.; Bansal, M.; Prabhu, B.N.; Misra, K.N.

    2003-01-01

    In the pursuit of acquiring state of the art technology, efforts were being made for last more than two years to establish 40 Ar- 39 Ar dating facility at KDMIPE. The 40 Ar- 39 Ar dating technique is an analytical conversion of the conventional K-Ar dating method. In this method, the sample to be dated is first irradiated in a nuclear reactor to transform a portion of 39 K to 39 Ar by the fast neutron reaction i.e. 39 K(n, p) 39 Ar. After irradiation, the sample is placed in an ultra-high vacuum system and the argon extracted from it by fusion is purified and analyzed isotopically in a mass spectrometer. The relative abundances of 40 Ar, 39 Ar, 37 Ar and 36 Ar are measured. The 40 Ar/ 39 Ar K is determined, where 40 Ar is the radiogenic argon, and 39 Ar K is the 39 Ar produced from 39 K during the irradiation. The 40 Ar/ 39 Ar K ratio is proportional to the 40 Ar/ 40 K ratio in the sample and, therefore, is proportional to age

  5. Temperature and pressure effects on 40Ar-39Ar systematics

    International Nuclear Information System (INIS)

    Ozima, M.; Kaneoka, I.; Yanagisawa, M.

    1979-01-01

    The effects of thermal and compressional treatment on 40 Ar- 39 Ar systematics have been investigated on three artificially heated biotite samples (heated for 1 hour at 700 0 C and 860 0 C in air and 700 0 C in vacuum respectively) and uniaxially compressed granite (p=1400 bar) and basalt samples (p=1660 bar). The 40 Ar- 39 Ar results for the disturbed samples are compared with those for undisturbed samples. Except for the vacuum-heating case, the effects of the disturbances may be interpreted as the combined effect of a partial loss of radiogenic 40 Ar from the sample and an incorporation of air Ar into the sample. Common diagnostic effects are (1) reduction of the total fusion age, (2) distortion of the age spectrum and, if the degree of the partial Ar loss is small (3) approximate preservation of the isochron age, and (4) reduction of the intercept value ( 40 Ar/ 36 Ar) in the isochron plot. The features observed in the age spectra of artificially disturbed samples are rather common in geologically disturbed samples, suggesting that the artificial disturbances simulate the effects of geological disturbances on 40 Ar- 39 Ar systematics. (Auth.)

  6. Inert-Gas Condensed Co-W Nanoclusters: Formation, Structure and Magnetic Properties

    Science.gov (United States)

    Golkar-Fard, Farhad Reza

    Rare-earth permanent magnets are used extensively in numerous technical applications, e.g. wind turbines, audio speakers, and hybrid/electric vehicles. The demand and production of rare-earth permanent magnets in the world has in the past decades increased significantly. However, the decrease in export of rare-earth elements from China in recent time has led to a renewed interest in developing rare-earth free permanent magnets. Elements such as Fe and Co have potential, due to their high magnetization, to be used as hosts in rare-earth free permanent magnets but a major challenge is to increase their magnetocrystalline anisotropy constant, K1, which largely drives the coercivity. Theoretical calculations indicate that dissolving the 5d transition metal W in Fe or Co increases the magnetocrystalline anisotropy. The challenge, though, is in creating a solid solution in hcp Co or bcc Fe, which under equilibrium conditions have negligible solubility. In this dissertation, the formation, structure, and magnetic properties of sub-10 nm Co-W clusters with W content ranging from 4 to 24 atomic percent were studied. Co-W alloy clusters with extended solubility of W in hcp Co were produced by inert gas condensation. The different processing conditions such as the cooling scheme and sputtering power were found to control the structural state of the as-deposited Co-W clusters. For clusters formed in the water-cooled formation chamber, the mean size and the fraction crystalline clusters increased with increasing power, while the fraction of crystalline clusters formed in the liquid nitrogen-cooled formation chamber was not as affected by the sputtering power. For the low W content clusters, the structural characterization revealed clusters predominantly single crystalline hcp Co(W) structure, a significant extension of W solubility when compared to the equilibrium solubility, but fcc Co(W) and Co3W structures were observed in very small and large clusters, respectively. At high

  7. Study of sample preparation in the measurement of 36Ar(n, p)36Cl reaction cross section

    International Nuclear Information System (INIS)

    Jiang Songsheng; Hemick, T.K.

    1992-01-01

    The preparation of enriched 36 Ar gas samples and 36 Cl samples for the use in the AMS measurement of 36 Ar(n, p) 36 Cl reaction cross section was described. The 36 Ar samples prepared had the volumes of about 0.4 ml and the weights of about 0.5 mg. The uncertainty in atomic numbers of 36 Ar was (0.3∼0.4)%. The reaction product, 36 Cl, in the 36 Ar was collected and the AgCl samples were prepared

  8. Mobilities of positive ions in gas ionization chambers

    International Nuclear Information System (INIS)

    Kusumegi, Asao

    1990-01-01

    Observed ion mobilities of organic molecules in Ar are compared with a complete polarization model to examine the performance of the model, and its applicability is discussed. In spite of its simplicity, the polarization model (small sphere limit) is found to agree satisfactorily with observed mobilities in the case of alkali ions in Ar. However, the model fails to account for the mobility of Ar + in Ar due to a resonant charge transfer interaction between the ion and the parent gas. On the other hand, the values of k, a parameter which depends on the kinetic and the potential energy of the relevant ion, derived from observed ion mobilities of organic molecules in Ar and in the parent gas are found to be close to each other. Except for few cases, it appears that the complete polarization model gives a reasonable approximation for the positive ion mobilities of organic molecules in Ar, though the importance of the ion mass identification is significant in considering the applicability of the model to the positive ion mobility of those organic molecules in Ar used in a gas ionization chamber. (N.K.)

  9. The Optimum Plutonium Inert Matrix Fuel Form for Reactor-Based Plutonium Disposition

    International Nuclear Information System (INIS)

    Tulenko, J.S.; Wang, J.; Acosta, C.

    2004-01-01

    The University of Florida has underway an ongoing research program to validate the economic, operational and performance benefits of developing an inert matrix fuel (IMF) for the disposition of the U.S. weapons plutonium (Pu) and for the recycle of reprocessed Pu. The current fuel form of choice for Pu disposition for the Department of Energy is as a mixed oxide (MOX) (PuO2/UO2). We will show analyses that demonstrate that a Silicon Carbide (SiC) IMF offers improved performance capabilities as a fuel form for Pu recycle and disposition. The reason that UF is reviewing various materials to serve as an inert matrix fuel is that an IMF fuel form can offer greatly reduced Pu and transuranic isotope (TRU) production and also improved thermal performance characteristics. Our studies showed that the Pu content is reduced by an order of magnitude while centerline fuel temperatures are reduced approximately 380 degrees centigrade compared to MOX. These reduced temperatures result in reduced stored heat and thermal stresses in the pellet. The reduced stored heat reduces the consequences of the loss of coolant accident, while the reduced temperatures and thermal stresses yield greatly improved fuel performance. Silicon Carbide is not new to the nuclear industry, being a basic fuel material in gas cooled reactors

  10. Study of argon-based Penning gas mixtures for use in proportional counters

    International Nuclear Information System (INIS)

    Agrawal, P.C.; Ramsey, B.D.; Weisskopf, M.C.

    1989-01-01

    Results from an experimental investigation of three Penning gas mixtures, namely argon-acetylene (Ar-C 2 H 2 ), argon-xenon (Ar-Xe) and argon-xenon-trimethylamine (Ar-Xe-TMA), are reported. The measurements, carried out in cylindrical geometry as well as parallel plate geometry detectors, demonstrate that the Ar-C 2 H 2 mixtures show a significant Penning effect even at an acetylene concentration of 10% and provide the best energy resolution among all the argon-based gas mixtures (≤13% FWHM at 5.9 keV and 6.7% at 22.2 keV). In the parallel plate detector the Ar-C 2 H 2 fillings provide a resolution of ≅7% FWHM at 22.2 keV up to a gas gain of at least ≅10 4 . The nonmetastable Penning mixture Ar-Xe provides the highest gas gain among all the argon-based gas mixtures and is well suited for use in long-duration space-based experiments. Best results are obtained with 5% and 20% Xe in Ar, the energy resolution being ≅7% FWHM at 22.2 keV and ≅4.5% at 59.6 keV for gas gain 3 . Addition of ≥1% TMA to an 80% Ar-20% Xe mixture produces a dramatic increase in gas gain but the energy resolution remains unaffected (≅7% FWHM at 22.2 keV). This increase in gas gain is attributed to the occurrence of a Penning effect between Xe and TMA, the ionization potential of TMA being 8.3 eV, just below the xenon metastable potential of 8.39 eV. (orig.)

  11. High-Temperature Corrosion of AlCrSiN Film in Ar-1%SO2 Gas

    Directory of Open Access Journals (Sweden)

    Poonam Yadav

    2017-03-01

    Full Text Available AlCrSiN film with a composition of 29.1Al-17.1Cr-2.1Si-51.7N in at. % was deposited on a steel substrate by cathodic arc ion plating at a thickness of 1.8 μm. It consisted of nanocrystalline hcp-AlN and fcc-CrN, where a small amount of Si was dissolved. Corrosion tests were carried out at 800 °C for 5–200 h in Ar-1%SO2 gas. The major corrosion reaction was oxidation owing to the high oxygen affinity of Al and Cr in the film. The formed oxide scale consisted primarily of (Al,Cr2O3, within which Fe, Si, and S were dissolved. Even after corrosion for 200 h, the thickness of the scale was about 0.7–1.2 μm, indicating that the film had good corrosion resistance in the SO2-containing atmosphere.

  12. Behaviour of AR glass fibre for building structural applications

    Directory of Open Access Journals (Sweden)

    Miravete, A.

    2005-12-01

    Full Text Available The AR glass reinforcement fibres were designed to resist the alkalis from the concrete. This is the main reason for its utilisation as a short-fibre-reinforcement of mortar and concrete for the last decades. Originally, the AR glass fibre sizing was not compatible with synthetic resins, so that this type of reinforcement was applied exclusively to mortar and concrete matrices. Recently, due to the developments of sizing, which are compatible with synthetic resins, the AR- glass fibres may be used as reinforcement of organic matrix composite materials, broadening the range of structural applications. The mechanical properties of AR glass fibre and organic matrix composite materials will be studied in this paper. First, the behaviour of this material under stress corrosion will be analysed. Their mass loss will be compared to E, C, and boron free glass fibres. Second, an experimental study dealing with 3P test bending and short beam ofAR glass fibre/polyester will de described with the goal of obtaining their Young modulus and tensile and interlaminar shear strengths. Finally, these experimental results will be compared to E glass fibre/polyester and several conclusions about their structural applications will be drawn.

    El vidrio AR y su presentación en forma de fibras de refuerzo, fue diseñado para ser inerte a los álcalis de los cementos. Por este motivo se viene utilizando desde hace varias décadas como refuerzo de morteros y hormigones en forma de fibra corta. El ensimaje que estas fibras de vidrio de refuerzo A R presentaba en su origen no era compatible con resinas de tipo sintéticas, por lo que el refuerzo era exclusivo para cementos y hormigones fuera cual fuera la aplicación, formato o proceso productivo. Recientemente, gracias al desarrollo específico de ensimajes especiales acordes a las fibras de vidrio AR ha aparecido la misma tipología de vidrio AR como refuerzo en forma de fibra continua compatible con resinas sint

  13. Effect of post-weld aging treatment on mechanical properties of Tungsten Inert Gas welded low thickness 7075 aluminium alloy joints

    International Nuclear Information System (INIS)

    Temmar, M.; Hadji, M.; Sahraoui, T.

    2011-01-01

    Highlights: → The effects of post-weld aging treatment on the properties of joints is studied. → The post-weld aging treatment increases the tensile strength of TIG welded joints. → The strengthening is due to a balance of dissolution, reversion and precipitation. → Simple post-weld aging at 140 o C enhances the properties of the welded joints. -- Abstract: This paper reports the influence of post-weld aging treatment on the microstructure, tensile strength, hardness and Charpy impact energy of weld joints low thickness 7075 T6 aluminium alloy welded by Tungsten Inert Gas (TIG). Hot cracking occurs in aluminium welds when high levels of thermal stress and solidification shrinkage are present while the weld is undergoing various degrees of solidification. Weld fusion zones typically exhibit microstructure modifications because of the thermal conditions during weld metal solidification. This often results in low weld mechanical properties and low resistance to hot cracking. It has been observed that the mechanical properties are very sensitive to microstructure of weld metal. Simple post-weld aging treatment at 140 o C applied to the joints is found to be beneficial to enhance the mechanical properties of the welded joints. Correlations between microstructures and mechanical properties were discussed.

  14. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    International Nuclear Information System (INIS)

    Ghosh, Somnath; Friedrich, Rainer

    2015-01-01

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case

  15. Installation for gas purification and gas mixture preparation

    International Nuclear Information System (INIS)

    Ciortea, Constantin; Dumitrescu, Ioana; Armeanu, Adrian

    2002-01-01

    The Gas Production Division of ICSI at Rm. Valcea developed advanced facilities for purification of hydrogen, nitrogen, methane gases, etc, with concentrations up to 99.999 % vol. Pure and ultrapure gases are used for analytical purposes in food industry, biology, medicine, research laboratories, chemical and metallurgical industries. In the frame of ICSI the purified gases are used for preparation of usual and special mixtures of gases as for instance for production of Ar + CO 2 , Ar + CH 4 , Ar + H 2 , Ar + N 2 , N 2 + CO 2 , N 2 + O 2 etc. These mixtures are required in diverse sectors of chemical, electrical, machine and food industry, in nuclear power plants for monitoring, in laboratories of equipment calibrations, etc. (authors)

  16. Spraying of metallic powders by hybrid gas/water torch and the effects of inert gas shrouding

    Czech Academy of Sciences Publication Activity Database

    Kavka, Tetyana; Matějíček, Jiří; Ctibor, Pavel; Hrabovský, Milan

    2012-01-01

    Roč. 21, 3-4 (2012), s. 695-705 ISSN 1059-9630 R&D Projects: GA MPO FR-TI2/702; GA MPO FR-TI2/561 Institutional research plan: CEZ:AV0Z20430508 Keywords : copper * tungsten * hybrid water-gas torch * plasma facing materials * plasma spraying * gas shroud Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.481, year: 2012 http://www.springerlink.com/content/j07t3222hnv87882/fulltext.pdf

  17. Formation of doubly charged argon ions, Ar2+, from long-lived highly excited argon ions, Arsup(+*), colliding with Ar and N2 gases

    International Nuclear Information System (INIS)

    Okuno, Kazuhiko

    1976-01-01

    Formation of Ar 2+ from long-lived highly excited Ar + * colliding with Ar and N 2 gases is studied by means of a tandem mass spectrometer. The tandem mass spectrometer used consists of two mass analyzers connected in series and a collision chamber located in between. The collision chamber is electrically floated and can be set at a desired potential, so that one can identify the fast ions (resulting from the primary ions) and the slow ions (secondary ions) in the mass spectra taken by the second mass analyzer. When the first mass analyzer is tuned to Ar + , peaks corresponding Ar 2+ appear in the second mass spectra. From the analysis of variation of mass positions and heights of these peaks with the change of the potential and pressure of the collision chamber, the Ar 2+ is concluded to result from the primary Ar + in collision with gas molecules and wall surface. From the threshold behavior of the product Ar 2+ with the electron energy in the ion source, three sets of long-lived highly excited Ar + * states (Rydberg states) are found to be responsible for this process. They are 3s 2 3p 4 ( 3 P)nl, 3s 2 3p 4 ( 1 D 2 )n'l and 3s 2 3p 4 ( 1 S 0 )n''l converging to Ar 2+3 Psub(2.1.0) (43.38, 43.51, 43.57 eV), 1 D 2 (45.11 eV) and 1 S 0 (47.50 eV), respectively. Their fractional ratio in the primary Ar + beam is determined as 3.0:1.0:1.2 which is close to that of multiplicities of the states concerned. The autoionization mechanism reported by other investigators to be responsible for the formation of Ar 2+ in Aston band or tandem mass spectra is found to be negligible. The cross sections of formation of Ar 2+ from Ar + * colliding with Ar and N 2 increase in proportion to the 1.15th power of the collision energy in the range from 750 eV to 2.5 keV. At the collision energy of 1.0 keV, they are 2.0x10 -20 /F cm 2 for Ar target and 6.6x10 -20 /F cm 2 for N 2 target, where the fractional density of Ar + * is estimated to be 0.7x10 -4 -4 . (auth.)

  18. 40Ar/39Ar age calibration against counted annuallayers

    DEFF Research Database (Denmark)

    Storey, Michael; Stecher, Ole

    2008-01-01

    The 40Ar/39Ar method, based on the decay of the naturally occurring radioactive isotope 40K, is capable of producing ages with precision better than ± 0.1 %. However, accuracy is limited to no better than 1 % mainly due to the relatively large uncertainty in the 40K decay constants. One approach...... worth exploring for an improved absolute age basis for the 40Ar/39Ar system is through cross-calibration with counted annual layers (e.g. tree rings, varves and ice cores). North Atlantic Ash Zone (NAAZ) II is found within the dated part of the annual Greenland ice core record. NAAZ II has been...... correlated to the Icelandic peralkaline rhyolitic Thorsmörk ignimbrite. We will present preliminary 40Ar/39Ar results on the age of this eruption...

  19. 40Ar/39Ar and K-Ar dating of altered glassy volcanic rocks: the Dabi Volcanics, P.N.G

    International Nuclear Information System (INIS)

    Walker, D.A.; McDougall, I.

    1982-01-01

    K-Ar and 40 Ar/ 39 Ar ages have been determined for altered submarine tholeiitic and boninite (high-Mg andesite) lavas from the Dabi Volcanics, Cape Vogel Peninsula, Papua New Guinea. 40 Ar/ 39 Ar whole rock total fusion and plateau ages identify a Late Paleocene age for the tholeiitic lavas (58.9 +- 1.1 Ma), and also for the boninitic lavas (58.8 +- 0.8 Ma). Apparent K-Ar ages for the same samples range from 27.2 +- 0.7 to 63.9 +- 4.5 Ma, and young K-Ar ages for glassy boninites are probably due to variable radiogenic 40 Ar( 40 Ar*) loss. These new ages effectively reconcile previously ambiguous age data for the Dabi Volcanics, and indicate contemporaneous tholeiitic and boninitic volcanism occurring in southeast PNG during the Late Paleocene. Smectites, developed as alteration products after glass in oceanic lavas commonly do not retain 39 Ar during or subsequent to irradiation, but in some cases may contain 40 Ar*. The results are discussed. (author)

  20. The Noble Gas Fingerprint in a UK Unconventional Gas Reservoir

    Science.gov (United States)

    McKavney, Rory; Gilfillan, Stuart; Györe, Domokos; Stuart, Fin

    2016-04-01

    In the last decade, there has been an unprecedented expansion in the development of unconventional hydrocarbon resources. Concerns have arisen about the effect of this new industry on groundwater quality, particularly focussing on hydraulic fracturing, the technique used to increase the permeability of the targeted tight shale formations. Methane contamination of groundwater has been documented in areas of gas production1 but conclusively linking this to fugitive emissions from unconventional hydrocarbon production has been controversial2. A lack of baseline measurements taken before drilling, and the equivocal interpretation of geochemical data hamper the determination of possible contamination. Common techniques for "fingerprinting" gas from discrete sources rely on gas composition and isotopic ratios of elements within hydrocarbons (e.g. δ13CCH4), but the original signatures can be masked by biological and gas transport processes. The noble gases (He, Ne, Ar, Kr, Xe) are inert and controlled only by their physical properties. They exist in trace quantities in natural gases and are sourced from 3 isotopically distinct environments (atmosphere, crust and mantle)3. They are decoupled from the biosphere, and provide a separate toolbox to investigate the numerous sources and migration pathways of natural gases, and have found recent utility in the CCS4 and unconventional gas5 industries. Here we present a brief overview of noble gas data obtained from a new coal bed methane (CBM) field, Central Scotland. We show that the high concentration of helium is an ideal fingerprint for tracing fugitive gas migration to a shallow groundwater. The wells show variation in the noble gas signatures that can be attributed to differences in formation water pumping from the coal seams as the field has been explored for future commercial development. Dewatering the seams alters the gas/water ratio and the degree to which noble gases degas from the formation water. Additionally the

  1. Emanation of /sup 232/U daughter products from submicrometer particles of uranium oxide and thorium dioxide by nuclear recoil and inert gas diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, M.A.; Cuddihy, R.G. (Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (USA). Inhalation Toxicology Research Inst.)

    1983-01-01

    Emanation of /sup 232/U daughter products by nuclear recoil and inert gas diffusion from spherical, submicrometer particles of uranium oxide and thorium dioxide was studied. Monodisperse samples of particles containing 1% /sup 232/U and having physical diameters between 0.1 and 1 ..mu..m were used for the emanation measurements. Thorium-228 ions recoiling from the particles after alpha-decay of /sup 232/U were collected electrostatically on a recoil cathode. Radon-220 diffusing from the particles was swept by an airstream into a 4 l. chamber where the /sup 220/Rn daughters were collected on a second cathode. Mathematical models of radionuclide emanation from spherical particles were used to calculate the recoil range of /sup 228/Th and the diffusion coefficient of /sup 220/Rn in the particle matrix. A /sup 228/Th recoil range of 0.02 ..mu..m and a /sup 220/Rn diffusion coefficient of 3 x 10/sup -14/ cm/sup 2//sec were obtained in both uranium oxide and thorium dioxide particles.

  2. INERT-MATRIX FUEL: ACTINIDE ''BURNING'' AND DIRECT DISPOSAL

    International Nuclear Information System (INIS)

    Rodney C. Ewing; Lumin Wang

    2002-01-01

    Excess actinides result from the dismantlement of nuclear weapons (Pu) and the reprocessing of commercial spent nuclear fuel (mainly 241 Am, 244 Cm and 237 Np). In Europe, Canada and Japan studies have determined much improved efficiencies for burnup of actinides using inert-matrix fuels. This innovative approach also considers the properties of the inert-matrix fuel as a nuclear waste form for direct disposal after one-cycle of burn-up. Direct disposal can considerably reduce cost, processing requirements, and radiation exposure to workers

  3. The Inert and the Noble

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 3. The Inert and the Noble. A G Samuelson. Article-in-a-Box Volume 4 Issue 3 March 1999 pp 3-5 ... Author Affiliations. A G Samuelson1. Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India.

  4. 40Ar-39Ar stepheating studies of clay concentrates from Irish orebodies

    International Nuclear Information System (INIS)

    Halliday, A.N.

    1978-01-01

    40 Ar- 39 Ar step heating analyses of clay concentrates from the Gortdrum and Tynagh orebodies (Ireland) previously dated by conventional K-Ar, indicate major losses of 39 Ar (32 to 45%) and rad. 40 Ar (25 to 35%) during the irradiation. The proportion of rad. 40 Ar loss, unlike that of 39 Ar, increases with J-value. The difference between 39 Ar and rad. 40 Ar proportion losses is related to the mineralogy and grain intimacy. These also affect the stepwise release patterns - the Gortdrum concentrates yield age spectra very consistent with 39 Ar recoil predictions, whereas the Tynagh concentrates in which the grains are intimately intergrown, show no clear evidence for 39 Ar recoil depletion in the K-rich phases. The difference is resolvable if illite argon release is not a simple volume diffusion type process under vacuum conditions. (author)

  5. High-resolution (noble) gas time series for aquatic research

    Science.gov (United States)

    Popp, A. L.; Brennwald, M. S.; Weber, U.; Kipfer, R.

    2017-12-01

    We developed a portable mass spectrometer (miniRUEDI) for on-site quantification of gas concentrations (He, Ar, Kr, N2, O2, CO2, CH4, etc.) in terrestrial gases [1,2]. Using the gas-equilibrium membrane-inlet technique (GE-MIMS), the miniRUEDI for the first time also allows accurate on-site and long-term dissolved-gas analysis in water bodies. The miniRUEDI is designed for operation in the field and at remote locations, using battery power and ambient air as a calibration gas. In contrast to conventional sampling and subsequent lab analysis, the miniRUEDI provides real-time and continuous time series of gas concentrations with a time resolution of a few seconds.Such high-resolution time series and immediate data availability open up new opportunities for research in highly dynamic and heterogeneous environmental systems. In addition the combined analysis of inert and reactive gas species provides direct information on the linkages of physical and biogoechemical processes, such as the air/water gas exchange, excess air formation, O2 turnover, or N2 production by denitrification [1,3,4].We present the miniRUEDI instrument and discuss its use for environmental research based on recent applications of tracking gas dynamics related to rapid and short-term processes in aquatic systems. [1] Brennwald, M.S., Schmidt, M., Oser, J., and Kipfer, R. (2016). Environmental Science and Technology, 50(24):13455-13463, doi: 10.1021/acs.est.6b03669[2] Gasometrix GmbH, gasometrix.com[3] Mächler, L., Peter, S., Brennwald, M.S., and Kipfer, R. (2013). Excess air formation as a mechanism for delivering oxygen to groundwater. Water Resources Research, doi:10.1002/wrcr.20547[4] Mächler, L., Brennwald, M.S., and Kipfer, R. (2013). Argon Concentration Time-Series As a Tool to Study Gas Dynamics in the Hyporheic Zone. Environmental Science and Technology, doi: 10.1021/es305309b

  6. NEW ACCURATE MEASUREMENT OF {sup 36}ArH{sup +} AND {sup 38}ArH{sup +} RO-VIBRATIONAL TRANSITIONS BY HIGH RESOLUTION IR ABSORPTION SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Cueto, M.; Herrero, V. J.; Tanarro, I.; Doménech, J. L. [Molecular Physics Department, Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, E-28006 Madrid (Spain); Cernicharo, J. [Department of Astrophysics, CAB. INTA-CSIC. Crta Torrejón-Ajalvir Km 4, E-28850 Torrejón de Ardoz, Madrid (Spain); Barlow, M. J.; Swinyard, B. M., E-mail: jl.domenech@csic.es [Department of Physics and Astronomy, University College London. Gower Street, London WC1E 6BT (United Kingdom)

    2014-03-01

    The protonated argon ion, {sup 36}ArH{sup +}, was recently identified in the Crab Nebula from Herschel spectra. Given the atmospheric opacity at the frequency of its J = 1-0 and J = 2-1 rotational transitions (617.5 and 1234.6 GHz, respectively), and the current lack of appropriate space observatories after the recent end of the Herschel mission, future studies on this molecule will rely on mid-infrared observations. We report on accurate wavenumber measurements of {sup 36}ArH{sup +} and {sup 38}ArH{sup +} rotation-vibration transitions in the v = 1-0 band in the range 4.1-3.7 μm (2450-2715 cm{sup –1}). The wavenumbers of the R(0) transitions of the v = 1-0 band are 2612.50135 ± 0.00033 and 2610.70177 ± 0.00042 cm{sup –1} (±3σ) for {sup 36}ArH{sup +} and {sup 38}ArH{sup +}, respectively. The calculated opacity for a gas thermalized at a temperature of 100 K and with a linewidth of 1 km s{sup –1} of the R(0) line is 1.6 × 10{sup –15} × N({sup 36}ArH{sup +}). For column densities of {sup 36}ArH{sup +} larger than 1 × 10{sup 13} cm{sup –2}, significant absorption by the R(0) line can be expected against bright mid-IR sources.

  7. Continuous high-frequency dissolved O2/Ar measurements by equilibrator inlet mass spectrometry.

    Science.gov (United States)

    Cassar, Nicolas; Barnett, Bruce A; Bender, Michael L; Kaiser, Jan; Hamme, Roberta C; Tilbrook, Bronte

    2009-03-01

    The oxygen (O(2)) concentration in the surface ocean is influenced by biological and physical processes. With concurrent measurements of argon (Ar), which has similar solubility properties as oxygen, we can remove the physical contribution to O(2) supersaturation and determine the biological oxygen supersaturation. Biological O(2) supersaturation in the surface ocean reflects the net metabolic balance between photosynthesis and respiration, i.e., the net community productivity (NCP). We present a new method for continuous shipboard measurements of O(2)/Ar by equilibrator inlet mass spectrometry (EIMS). From these measurements and an appropriate gas exchange parametrization, NCP can be estimated at high spatial and temporal resolution. In the EIMS configuration, seawater from the ship's continuous intake flows through a cartridge enclosing a gas-permeable microporous membrane contactor. Gases in the headspace of the cartridge equilibrate with dissolved gases in the flowing seawater. A fused-silica capillary continuously samples headspace gases, and the O(2)/Ar ratio is measured by mass spectrometry. The ion current measurements on the mass spectrometer reflect the partial pressures of dissolved gases in the water flowing through the equilibrator. Calibration of the O(2)/Ar ion current ratio (32/40) is performed automatically every 2 h by sampling ambient air through a second capillary. A conceptual model demonstrates that the ratio of gases reaching the mass spectrometer is dependent on several parameters, such as the differences in molecular diffusivities and solubilities of the gases. Laboratory experiments and field observations performed by EIMS are discussed. We also present preliminary evidence that other gas measurements, such as N(2)/Ar and pCO(2) measurements, may potentially be performed with EIMS. Finally, we compare the characteristics of the EIMS with the previously described membrane inlet mass spectrometry (MIMS) approach.

  8. Comparative Study between Two Schemes of Active-Control-Based Mechatronic Inerter

    Directory of Open Access Journals (Sweden)

    He Lingduo

    2017-01-01

    Full Text Available Based on force-current analogy and velocity-voltage analogy in the theory of electromechanical analogy, the inerter is a device that corresponded to the capacitor completely where conquers the nature restriction of mass, what’s more, it is significant to improve the ratio of the inerter’s inertance to its mass for mechanical networks synthesis. And according to the principle of active-control-based mechatronic inerter, we present two implementation schemes. One was based on linear motor, and the other was based on the ball screw and rotary motor. We introduced the implementation methods and established theoretical model of the two schemes, then compared the ratio of the inerter’s inertance to its mass for the two schemes. Finally, we consider the scheme is better which was based on the ball screw and rotary motor.

  9. Energy-filtered TEM imaging and EELS study of ODS particles and argon-filled cavities in ferritic-martensitic steels.

    Science.gov (United States)

    Klimiankou, M; Lindau, R; Möslang, A

    2005-01-01

    Oxide-dispersion-strengthened (ODS) ferritic-martensitic steels with yttrium oxide (Y(2)O(3)) have been produced by mechanical alloying and hot isostatic pressing for use as advanced material in fusion power reactors. Argon gas, usually widely used as inert gas during mechanical alloying, was surprisingly detected in the nanodispersion-strengthened materials. Energy-filtered transmission electron microscopy (EFTEM) and electron energy loss spectroscopy (EELS) led to the following results: (i) chemical composition of ODS particles, (ii) voids with typical diameters of 1-6 nm are formed in the matrix, (iii) these voids are filled with Ar gas, and (iv) the high-density nanosized ODS particles serve as trapping centers for the Ar bubbles. The Ar L(3,2) energy loss edge at 245 eV as well as the absorption features of the ODS particle elements were identified in the EELS spectrum. The energy resolution in the EEL spectrum of about 1.0 eV allows to identify the electronic structure of the ODS particles.

  10. Influence of residual Ar+ in Ar cluster ion beam for DLC film formation

    International Nuclear Information System (INIS)

    Kitagawa, Teruyuki; Miyauchi, Kazuya; Toyoda, Noriaki; Kanda, Kazuhiro; Ikeda, Tokumi; Tsubakino, Harushige; Matsuo, Jiro; Matsui, Shinji; Yamada, Isao

    2003-01-01

    In order to study the influences of residual Ar monomer ion (Ar + ) on sp 2 content and hardness of diamond like carbon (DLC) films formed by Ar cluster ion beam assisted deposition, Ar cluster ion, Ar + and their mixed ions (Ar cluster ion and Ar + ) bombardments were performed during evaporation of C 60 . From near edge X-ray absorption fine structure (NEXAFS) and Raman spectroscopy measurements, lower sp 2 content in the carbon films was obtained with Ar cluster ion bombardment than that with Ar + and mixed ion. Furthermore higher hardness and smooth surface were shown with Ar cluster ion bombardments. Therefore it was important to reduce Ar + in Ar cluster ion beams to obtain hard DLC films with flat surface

  11. Reducing Actinide Production Using Inert Matrix Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Deinert, Mark [Colorado School of Mines, Golden, CO (United States)

    2017-08-23

    The environmental and geopolitical problems that surround nuclear power stem largely from the longlived transuranic isotopes of Am, Cm, Np and Pu that are contained in spent nuclear fuel. New methods for transmuting these elements into more benign forms are needed. Current research efforts focus largely on the development of fast burner reactors, because it has been shown that they could dramatically reduce the accumulation of transuranics. However, despite five decades of effort, fast reactors have yet to achieve industrial viability. A critical limitation to this, and other such strategies, is that they require a type of spent fuel reprocessing that can efficiently separate all of the transuranics from the fission products with which they are mixed. Unfortunately, the technology for doing this on an industrial scale is still in development. In this project, we explore a strategy for transmutation that can be deployed using existing, current generation reactors and reprocessing systems. We show that use of an inert matrix fuel to recycle transuranics in a conventional pressurized water reactor could reduce overall production of these materials by an amount that is similar to what is achievable using proposed fast reactor cycles. Furthermore, we show that these transuranic reductions can be achieved even if the fission products are carried into the inert matrix fuel along with the transuranics, bypassing the critical separations hurdle described above. The implications of these findings are significant, because they imply that inert matrix fuel could be made directly from the material streams produced by the commercially available PUREX process. Zirconium dioxide would be an ideal choice of inert matrix in this context because it is known to form a stable solid solution with both fission products and transuranics.

  12. Irradiation of inert matrix and mixed oxide fuel in the Halden test reactor

    International Nuclear Information System (INIS)

    Hellwig, Ch.; Kasemeyer, U.

    2001-01-01

    In a new type of fuel, called Inert Matrix Fuel (IMF), plutonium is embedded in a U-free matrix. This offers advantages for more efficient plutonium consumption, higher proliferation resistance, and for inert behaviour later in a waste repository. In the fuel type investigated at PSI, plutonium is dissolved in yttrium-stabilized zirconium oxide (YSZ), a highly radiation-resistant cubic phase, with addition of erbium as burnable poison for reactivity control. A first irradiation experiment of YSZ-based IMF is ongoing in the OECD Material Test Reactor in Halden (HBWR), together with MOX fuel (Rig IFA-651.1). The experiment is described herein and results are presented of the first 120 days of irradiation with an average assembly burnup of 47 kWd/cm 3 . The results are compared with neutronic calculations performed before the experiment, and are used to model the fuel behaviour with the PSI-modified TRANSURANUS code. The measured fuel temperatures are within the expected range. An unexpectedly strong densification of the IMF during the first irradiation cycle does not alter the fuel temperatures. An explanation for this behaviour is proposed. The irradiation at higher linear heat rates during forthcoming cycles will deliver information about the fission gas release behaviour of the IMF. (author)

  13. Irradiation of inert matrix and mixed oxide fuel in the Halden test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hellwig, Ch.; Kasemeyer, U

    2001-03-01

    In a new type of fuel, called Inert Matrix Fuel (IMF), plutonium is embedded in a U-free matrix. This offers advantages for more efficient plutonium consumption, higher proliferation resistance, and for inert behaviour later in a waste repository. In the fuel type investigated at PSI, plutonium is dissolved in yttrium-stabilized zirconium oxide (YSZ), a highly radiation-resistant cubic phase, with addition of erbium as burnable poison for reactivity control. A first irradiation experiment of YSZ-based IMF is ongoing in the OECD Material Test Reactor in Halden (HBWR), together with MOX fuel (Rig IFA-651.1). The experiment is described herein and results are presented of the first 120 days of irradiation with an average assembly burnup of 47 kWd/cm{sup 3}. The results are compared with neutronic calculations performed before the experiment, and are used to model the fuel behaviour with the PSI-modified TRANSURANUS code. The measured fuel temperatures are within the expected range. An unexpectedly strong densification of the IMF during the first irradiation cycle does not alter the fuel temperatures. An explanation for this behaviour is proposed. The irradiation at higher linear heat rates during forthcoming cycles will deliver information about the fission gas release behaviour of the IMF. (author)

  14. Ultrafast Mid-IR Nonlinear Optics in Gas-filled Hollow-core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Habib, Selim

    Invention of hollow-core fiber has been proven an ideal medium to study light-gas interaction. Tight confinement of light inside hollowcore fiber allows unremitting and tailored interaction between light and gas over long distances. In this work, we used a special kind of hollowcore fiber − hollow......-core anti-resonant (HC-AR) fiber to study the various nonlinear effects filled with Raman free noble gas. One of the main striking features of HC-AR fiber is that ∼99.99% light can be guided inside the central hollow-core region, which significantly enhances damage threshold level. HC-AR fiber can sustain...... be tuned by simply changing the pressure of the gas while at the same time providing extremely wide transparency ranges. In this thesis, we propose several low-loss broadband guidance HC-AR fibers and investigate soliton-plasma dynamics using HC-AR fiber filled with noble gas in the mid-IR. The combined...

  15. Demonstration of a CW diode-pumped Ar metastable laser operating at 4  W.

    Science.gov (United States)

    Han, J; Heaven, M C; Moran, P J; Pitz, G A; Guild, E M; Sanderson, C R; Hokr, B

    2017-11-15

    Optically pumped rare gas lasers are being investigated as potential high-energy, high beam quality systems. The lasing medium consists of rare gas atoms (Rg=Ne, Ar, Kr, or Xe) that have been electric discharge excited to the metastable np 5 (n+1)s P3 2 state. Following optical excitation, helium (He) at pressures of 200-1000 Torr is used as the energy transfer agent to create a population inversion. The primary technical difficulty for this scheme is the discharge production of sufficient Rg* metastables in the presence of >200  Torr of He. In this Letter, we describe a pulsed discharge that yields >10 13   cm -3 Ar* in the presence of He at total pressures up to 750 Torr. Using this discharge, a diode-pumped Ar* laser providing 4.1 W has been demonstrated.

  16. Atmospheric pressure plasma produced inside a closed package by a dielectric barrier discharge in Ar/CO2 for bacterial inactivation of biological samples

    International Nuclear Information System (INIS)

    Chiper, A S; Chen, W; Stamate, E; Mejlholm, O; Dalgaard, P

    2011-01-01

    The generation and evaluation of a dielectric barrier discharge produced inside a closed package made of a commercially available packaging film and filled with gas mixtures of Ar/CO 2 at atmospheric pressure is reported. The discharge parameters were analysed by electrical measurements and optical emission spectroscopy in two modes of operation: trapped gas atmosphere and flowing gas atmosphere. Gas temperature was estimated using the OH(A-X) emission spectrum and the rotational temperature reached a saturation level after a few minutes of plasma running. The rotational temperature was almost three times higher in the Ar/CO 2 plasma compared with an Ar plasma. The efficiency of the produced plasma for the inactivation of bacteria on food inside the closed package was investigated.

  17. OEDGE modeling of plasma contamination efficiency of Ar puffing from different divertor locations in EAST

    Science.gov (United States)

    Pengfei, ZHANG; Ling, ZHANG; Zhenwei, WU; Zong, XU; Wei, GAO; Liang, WANG; Qingquan, YANG; Jichan, XU; Jianbin, LIU; Hao, QU; Yong, LIU; Juan, HUANG; Chengrui, WU; Yumei, HOU; Zhao, JIN; J, D. ELDER; Houyang, GUO

    2018-04-01

    Modeling with OEDGE was carried out to assess the initial and long-term plasma contamination efficiency of Ar puffing from different divertor locations, i.e. the inner divertor, the outer divertor and the dome, in the EAST superconducting tokamak for typical ohmic plasma conditions. It was found that the initial Ar contamination efficiency is dependent on the local plasma conditions at the different gas puff locations. However, it quickly approaches a similar steady state value for Ar recycling efficiency >0.9. OEDGE modeling shows that the final equilibrium Ar contamination efficiency is significantly lower for the more closed lower divertor than that for the upper divertor.

  18. Indium-tin oxide thin films deposited at room temperature on glass and PET substrates: Optical and electrical properties variation with the H2-Ar sputtering gas mixture

    Science.gov (United States)

    Álvarez-Fraga, L.; Jiménez-Villacorta, F.; Sánchez-Marcos, J.; de Andrés, A.; Prieto, C.

    2015-07-01

    The optical and electrical properties of indium tin oxide (ITO) films deposited at room temperature on glass and polyethylene terephthalate (PET) substrates were investigated. A clear evolution of optical transparency and sheet resistance with the content of H2 in the gas mixture of H2 and Ar during magnetron sputtering deposition is observed. An optimized performance of the transparent conductive properties ITO films on PET was achieved for samples prepared using H2/(Ar + H2) ratio in the range of 0.3-0.6%. Moreover, flexible ITO-PET samples show a better transparent conductive figure of merit, ΦTC = T10/RS, than their glass counterparts. These results provide valuable insight into the room temperature fabrication and development of transparent conductive ITO-based flexible devices.

  19. Baicalein suppresses the androgen receptor (AR)-mediated prostate cancer progression via inhibiting the AR N-C dimerization and AR-coactivators interaction.

    Science.gov (United States)

    Xu, Defeng; Chen, Qiulu; Liu, Yalin; Wen, Xingqiao

    2017-12-01

    Androgen receptor (AR) plays a critical role in prostate cancer (PCa) development and progression. Androgen deprivation therapy with antiandrogens to reduce androgen biosynthesis or prevent androgens from binding to AR are widely used to suppress AR-mediated PCa growth. However, most of ADT may eventually fail with development of the castration resistance after 12-24 months. Here we found that a natural product baicalein can effectively suppress the PCa progression via targeting the androgen-induced AR transactivation with little effect to AR protein expression. PCa cells including LNCaP, CWR22Rv1, C4-2, PC-3, and DU145, were treated with baicalein and luciferase assay was used to evaluate their effect on the AR transactivation. Cell growth and IC 50 were determined by MTT assay after 48 hrs treatment. RT-PCR was used to evaluate the mRNA levels of AR target genes including PSA, TMPRSS2, and TMEPA1. Western blot was used to determine AR and PSA protein expression. The natural product of baicalein can selectively inhibit AR transactivation with little effect on the other nuclear receptors, including ERα, and GR. At a low concentration, 2.5 μM of baicalein effectively suppresses the growth of AR-positive PCa cells, and has little effect on AR-negative PCa cells. Mechanism dissection suggest that baicalein can suppress AR target genes (PSA, TMPRSS2, and TMEPA1) expression in both androgen responsive LNCaP cells and castration resistant CWR22Rv1 cells, that may involve the inhibiting the AR N/C dimerization and AR-coactivators interaction. Baicalein may be developed as an effective anti-AR therapy via its ability to inhibit AR transactivation and AR-mediated PCa cell growth.

  20. Effects of N2 gas on preheated laminar LPG jet diffusion flame

    International Nuclear Information System (INIS)

    Mishra, D.P.; Kumar, P.

    2010-01-01

    This paper presents an experimental investigation of the inert gas effect on flame length, NO x and soot free length fraction (SFLF) in a laminar LPG diffusion flame. Besides this, flame radiant fraction and temperature are also measured to explain observed NO x emission and SFLF. The inert is added to both air and fuel stream at each base line condition by maintaining a constant mass flow rate in each stream. Results indicate that inert addition leads to a significant enhancement in flame length for air-diluted stream than fuel-diluted stream. However, the flame length is observed to reduce with increasing reactant temperature. It is also observed that the SFLF increases with addition of N 2 for fuel-diluted stream. In contrast, SFLF remains almost constant when N 2 is added to air stream. The decrease in fuel concentration and gas temperature caused by inert addition leads to reduction in soot volume fraction and hence enhances SFLF. Interestingly, the SFLF reduces with increasing reactant temperature, due to reduction in induction period of soot formation caused by enhanced flame temperature. Besides this, the reduction in NO x emission level with inert addition is also observed. For all the three cases, the air dilution proved to be much efficient in reducing NO x emission level as compared to fuel dilution. This can be attributed to the differences in reduced gas temperature and residence time between air and fuel-diluted streams. On the contrary, NO x emission level enhances significantly with increasing reactant temperature as a result of increase in thermal NO x through Zeldovich mechanism.

  1. Single Chondrule K/Ar ages of Mexican Meteorites Using ID-TIMS.

    Science.gov (United States)

    Hernandez, M.; Sole, J.

    2007-05-01

    We have determined the K/Ar ages of two H5 ordinary meteorites: Cosina and Nuevo Mercurio, neither dated until this study. We analyzed several single chondrules - weighing few milligrams - of each meteorite. Ages were obtained by using very precise K content determined by isotope dilution mass spectrometry. The K content in chondrules ranges between 650 and 1400 ppm. The 40Ar was measured by static vacuum noble gas mass spectrometry. Samples were fused with an infrared CO2 laser. Chondrule ages vary from 3.66 to 4.59 Ga for Cosina and from 4.20 to 4.87 Ga for Nuevo Mercurio. A comparison between our data and the published K/Ar ages of H and L whole rocks shows that dates obtained from single chondrules are older than those obtained from whole rocks and seem to preserve older events not evidenced in the WR ages. This implies that chondrules can preserve K/Ar ages very close to U-Pb crystallization ages.

  2. /sup 40/Ar//sup 39/Ar and K-Ar dating of altered glassy volcanic rocks: the Dabi Volcanics, P. N. G

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.A. (Australian National Univ., Canberra. Dept. of Geology); McDougall, I. (Australian National Univ., Canberra. Research School of Earth Sciences)

    1982-11-01

    K-Ar and /sup 40/Ar//sup 39/Ar ages have been determined for altered submarine tholeiitic and boninite (high-Mg andesite) lavas from the Dabi Volcanics, Cape Vogel Peninsula, Papua New Guinea. /sup 40/Ar//sup 39/Ar whole rock total fusion and plateau ages identify a Late Paleocene age for the tholeiitic lavas (58.9 +- 1.1 Ma), and also for the boninitic lavas (58.8 +- 0.8 Ma). Apparent K-Ar ages for the same samples range from 27.2 +- 0.7 to 63.9 +- 4.5 Ma, and young K-Ar ages for glassy boninites are probably due to variable radiogenic /sup 40/Ar(/sup 40/Ar*) loss. These new ages effectively reconcile previously ambiguous age data for the Dabi Volcanics, and indicate contemporaneous tholeiitic and boninitic volcanism occurring in southeast PNG during the Late Paleocene. Smectites, developed as alteration products after glass in oceanic lavas commonly do not retain /sup 39/Ar during or subsequent to irradiation, but in some cases may contain /sup 40/Ar*. The results are discussed.

  3. The injection of inert gas ions into solids: their trapping and escape

    International Nuclear Information System (INIS)

    Carter, G.; Armour, D.G.; Donnelly, S.E.; Ingram, D.C.; Webb, R.P.

    1980-01-01

    Basic information is required to understand fission gas generation and its consequence for swelling and embrittlement in fission reactors, for understanding and controlling first wall problems in fusion reactors and for attempting to design storage for active gas waste. In all of these areas the rare gas atoms are generated with kinetic energy and may thus interact differently, during their slowing down, with the solid than if they had been introduced more gently (e.g. via diffusion) into the solid. An important method of simulating the behaviour of such energetic rare gas atoms in solids is via external irradiation of the solid with rare gas ions of appropriate species and energies and it is the purpose of this review to evaluate studies of this nature. The review is divided into three parts. The first describes experimental techniques, discusses the results of measurements of how ions penetrate into and may be retained in a solid, and outlines theoretical interpretations of the data. The mechanisms of gas atom dissolution and thermal transport in solids are of profound importance and so, in the second part of this review, attention is devoted to how the technique of post-implantation thermal evolution spectrometry can be employed to attempt to understand some of these processes. Particular attention is paid to the difficulties of unique interpretation of evolution spectra. In the final section, consideration will be given to the processes which lead to the inevitable saturation of solids undergoing continued irradiation with rare gas ions and experimental measurements and their probable interpretation will be discussed. Since many materials are of importance in the context of this symposium, reference will be made to as broad a range of studies as possible. (author)

  4. Annual and transient signatures of gas exchange and transport in the Castañar de Ibor cave (Spain

    Directory of Open Access Journals (Sweden)

    Fernandez-Cortes A.

    2009-07-01

    Full Text Available The large microclimatic stability is a basic characteristic of the subterranean karst systems and causes a high sensitivity to changesin environmental conditions. High-accuracy monitoring of Castañar de Ibor cave (Spain determined the temporal evolution of theaerodynamic processes and ventilation rate by tracking CO2 and 222Rn levels over a twelve-month period. This cave is characterizedby a very stable microclimate, with high and relatively constant radon content (the mean value is 32200 Bq/m3, roughly, and thestandard deviation is 7600 Bq/m3 and a moderate and quite stable CO2 concentration (the mean value is 3730 ppm and the standarddeviation is 250 ppm. Beside the general patterns of cave microclimate throughout an annual cycle, some particular microclimaticprocesses are described with regard to the gas exchange between the cave and the outside atmosphere. There is a complexmicroclimatic functional relationship between the meteorological and cave microclimate conditions and the diffusion and flow of tracergases from the fractures and the pore system of soil and host rock to cave atmosphere. Transient variations of tracer gas on cave airare controlled by natural barometric fluxes and anthropogenic forced ventilation due to uncontrolled opening of cave entrance. Theshort-term fluctuations of gas levels on cave air reveal distinct patterns during the exhalation process of theses gases from the netof fissures and pores to the cave atmosphere, depending on the isolation effect of soil and host rock.

  5. Theories of fission gas behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Dias, J W.C. [Companhia Brasileira de Tecnologia Nuclear, Rio de Janeiro (Brazil). Diretoria de Tecnologia e Desenvolvimento; Merckx, K R

    1976-01-01

    A review is presented of the theoretical developments and experimental evidence that have helped to evolve current models used to describe the behavior of inert fission gases created during the irradiation of reactor fuel materials. The phenomena which are stressed relate primarily to steady state behavior of fuel elements but are also relevant to an understanding of transient behavior. The processes considered include gas atom solubility; gas atom diffusivity; bubble nucleation; and bubble growth by bubble coalescence.

  6. Gas tungsten arc welder

    International Nuclear Information System (INIS)

    Christiansen, D.W.; Brown, W.F.

    1984-01-01

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable grinder, co-axial with the electrode, is provided in the enclosure for refurbishing the used electrode between welds. The specification also discloses means for loading of the cladding with fuel pellets and for placement of reflectors, gas capsules and end caps. Gravity feed conveyor and inerting means are also described. (author)

  7. Single electron capture by state-prepared Ar2+ projectiles in Ar

    International Nuclear Information System (INIS)

    Puerta, J.; Huber, B.A.

    1985-03-01

    Electron capture by state-selected Ar 2+ projectiles in Ar has been studied at low collision energies ( 2+ ions are measured explaining existing discrepancies of partial and total cross sections in the Ar 2+ /Ar collision system. Although highly excited metastable ions ( 5 D 4 0 , 3 F 4 0 ) represent a minor contamination of a non-prepared Ar 2+ beam (proportional1%), their contributions are found to dominate the capture process due to cross section values larger than 10 -15 cm 2 . (orig.)

  8. Passive and active vibration isolation systems using inerter

    Science.gov (United States)

    Alujević, N.; Čakmak, D.; Wolf, H.; Jokić, M.

    2018-03-01

    This paper presents a theoretical study on passive and active vibration isolation schemes using inerter elements in a two degree of freedom (DOF) mechanical system. The aim of the work is to discuss basic capabilities and limitations of the vibration control systems at hand using simple and physically transparent models. Broad frequency band dynamic excitation of the source DOF is assumed. The purpose of the isolator system is to prevent vibration transmission to the receiving DOF. The frequency averaged kinetic energy of the receiving mass is used as the metric for vibration isolation quality. It is shown that the use of inerter element in the passive vibration isolation scheme can enhance the isolation effect. In the active case, a feedback disturbance rejection scheme is considered. Here, the error signal is the receiving body absolute velocity which is directly fed to a reactive force actuator between the source and the receiving bodies. In such a scheme, the so-called subcritical vibration isolation problems exist. These problems are characterised by the uncoupled natural frequency of the receiving body larger than the uncoupled natural frequency of the source body. In subcritical vibration isolation problems, the performance of the active control is limited by poor stability margins. This is because the stable feedback gain is restricted in a narrow range between a minimum and a maximum. However, with the inclusion of an inerter in the isolator, one of the two stability margins can be opened. This enables large, theoretically unlimited negative feedback gains and large active damping of the receiving body vibration. A simple expression for the required inertance is derived.

  9. Inert carrier drying and coating process

    International Nuclear Information System (INIS)

    1980-01-01

    An inert carrier process is described for drying radioactive (particularly low level) waste material and for incorporating the dry material into a binder matrix from which the dried material will not be leached. Experimental details, and examples of the carrier and binder materials, are given. (U.K.)

  10. Timing and processes for exhumation of HP/LT rocks of the southern Brooks Range (AK): Insight from combined geochemistry and 40Ar/39Ar thermochronology of white mica

    Science.gov (United States)

    O'Brien, T.; Miller, E. L.; Grove, M. J.; Hayden, L. A.

    2015-12-01

    The obduction of an island arc onto the Arctic Alaska continental margin in the Jura-Cretaceous led to southward subduction of continental crust and high-pressure/low-temperature (HP/LT) epidote-blueschist facies metamorphism in the southern Brooks Range (BR). A regionally developed greenschist facies normal-sense shear zone system along the southern margin of the BR suggests that extensional faulting had an influential role in the exhumation of the metamorphic core. To better constrain the exhumation history of the metamorphic core of the BR, samples were collected from a N-S transect through the metamorphic core of the orogen. Electron microprobe (EMP) analyses of white micas reveal that they are composed of phengite (Si > 3.0 pfu) or a combination of phengite + paragonite. Si-content of phengites reveal a southward increase in Si from 3.1 to 3.4 pfu (corresponding to an increase in pressure). Si-contents in higher-P phengites are scattered, reflecting subsequent muscovite growth. The Si trend is matched by a southward increase in the 40Ar/39Ar total gas ages of white micas. Phengite from the north are characterized by younger ages (~115 Ma) and flatter 40Ar/39Ar spectra. Farther south, phengites and paragonites yield older 40Ar/39Ar ages. These samples yield convex, staircase 40Ar/39Ar spectra that initiate ~115-120 Ma and flatten-out ~130-138 Ma. Modeling using MacArgon proposes that an initial cooling of HP/LT metamorphism occurred ~130-138 Ma, recorded in the high-Si phengites and paragonites. Following initial cooling, modeling suggests HP/LT rocks stalled in the greenschist facies field before subsequent exhumation, resulting in the staircase 40Ar/39Ar spectra. Flatter 40Ar/39Ar spectra recorded by the northern samples and modeling of 40Ar/39Ar results from the southern samples suggest that these rocks from metamorphic core of the BR were exhumed to temperatures < 300°C by ~115 Ma.

  11. On mechanism of Ar(3p54p) states excitation in low-energy Ar-Ar collisions

    International Nuclear Information System (INIS)

    Kurskov, S Y; Kashuba, A S

    2009-01-01

    The present work is devoted to study of Ar(3p 5 4p) states excitation in binary low-energy Ar-Ar collisions. The results of the experimental investigation of excitation cross sections of Ar I 4p'[l/2] 1 , 4p'[3/2] 1 , 4p'[3/2] 2 and 4p[3/2] 2 levels in the collision energy range from threshold up to 500 eV (cm) and degree of polarization for 4s[3/2] 2 0 -4p'[l/2] 1 and 4s[3/2] 2 0 -4p[3/2] 2 transitions in this energy range are represented.

  12. Effects of N{sub 2} gas on preheated laminar LPG jet diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, D.P.; Kumar, P. [Department of Aerospace Engineering, Indian Institute of Technology, Kanpur 208 016 (India)

    2010-11-15

    This paper presents an experimental investigation of the inert gas effect on flame length, NO{sub x} and soot free length fraction (SFLF) in a laminar LPG diffusion flame. Besides this, flame radiant fraction and temperature are also measured to explain observed NO{sub x} emission and SFLF. The inert is added to both air and fuel stream at each base line condition by maintaining a constant mass flow rate in each stream. Results indicate that inert addition leads to a significant enhancement in flame length for air-diluted stream than fuel-diluted stream. However, the flame length is observed to reduce with increasing reactant temperature. It is also observed that the SFLF increases with addition of N{sub 2} for fuel-diluted stream. In contrast, SFLF remains almost constant when N{sub 2} is added to air stream. The decrease in fuel concentration and gas temperature caused by inert addition leads to reduction in soot volume fraction and hence enhances SFLF. Interestingly, the SFLF reduces with increasing reactant temperature, due to reduction in induction period of soot formation caused by enhanced flame temperature. Besides this, the reduction in NO{sub x} emission level with inert addition is also observed. For all the three cases, the air dilution proved to be much efficient in reducing NO{sub x} emission level as compared to fuel dilution. This can be attributed to the differences in reduced gas temperature and residence time between air and fuel-diluted streams. On the contrary, NO{sub x} emission level enhances significantly with increasing reactant temperature as a result of increase in thermal NO{sub x} through Zeldovich mechanism. (author)

  13. Corrosion of carbon steel in the [P_1_4_6_6_6][Br] ionic liquid: The effects of γ-radiation and cover gas

    International Nuclear Information System (INIS)

    Morco, Ryan P.; Musa, Ahmed Y.; Momeni, Mojtaba; Wren, J.C.

    2016-01-01

    Highlights: • Carbon steel corrosion in non-aqueous ionic liquid ([P_1_4_6_6_6] [Br]) electrolyte. • Gamma-irradiation results to less corrosion, forming protective oxides. • Substantial corrosion is seen in the absence of gamma-radiation. • A corrosion mechanism is proposed for the observed results. - Abstract: The corrosion of carbon steel in the ionic liquid (IL) [P_1_4_6_6_6] [Br] was studied with the IL in contact with an inert (Ar) or oxidizing (air) cover gas in the presence and absence of γ-radiation. Significant corrosion was observed for the tests performed in the absence of γ-radiation while a protective oxide layer is formed in the presence of γ-radiation. The corrosion is attributed to the presence of impurity H_2O and O_2 dissolved in the IL, and a corrosion mechanism is proposed.

  14. Investigation of nitrogen atom production in Ar/N2 and He/N2 surface wave plasmas

    International Nuclear Information System (INIS)

    Tabbal, M.; Kazopoulo, M.; Christidis, T.; Isber, S.

    2000-01-01

    Full text: There is presently great interest in nitrogen plasmas for surface coating processes. Such as the deposition of nitride thin films and surface treatment of materials. Indeed, nitrogen plasmas have been used to nitride the surface of ferrous and non-ferrous materials in order to improve their surface properties such as resistance to corrosion and hardness. Moreover, the design and development of nitrogen atom sources could be essential for the synthesis of gallium nitride (GaN), a wide band-gap semiconductor whose properties have revolutionized the microelectronics and optoelectronics industries. Correlations have been established between the density of active species in the process, namely atomic nitrogen (N) produced by the discharge and GaN film properties. Thus, it is of fundamental importance to investigate the N-atom production mechanisms in such discharges. N-atom production has been studied in pure N 2 surface-wave plasmas (SWP), as a function of operating parameters, namely gas pressure and electrical power. These studies indicate that the increase in the gas temperature (T g ) limits the N-atom production. One possible way of enhancing the N 2 dissociation rate ([N]/[N 2 ]) in the plasma could be the use of gas mixtures such as Ar/N 2 or He/N 2 . the aim of this paper is to characterize an Ar/N 2 and He/N 2 surface-wave discharge (SWD) by optical emission spectroscopy (OES), in order to determine the optimal plasma conditions in terms of [N]/[N 2 ]. The plasma is generated by a radio frequency (40.68 MHz) wave launcher. The effect of mixing N 2 with Ar and He on the production of N-atoms in the plasma was investigated at varying experimental conditions, such as operating pressure (4.5 and 7.5 Torr), electrical power (40 to 120 W), at a total gas flow of 250 sccm. It was found that [N]/[N 2 ] increases with the partial pressure of Ar in the mixture by a factor of about 8 at 120W. Such an enhancement is reduced at lower incident powers. On the

  15. Excitation function measurements of sup 4 sup 0 Ar(p,3n) sup 3 sup 8 K, sup 4 sup 0 Ar(p,2pn) sup 3 sup 8 Cl and sup 4 sup 0 Ar(p,2p) sup 3 sup 9 Cl reactions

    CERN Document Server

    Nagatsu, K; Suzuki, K

    1999-01-01

    For the production of sup 3 sup 8 K, excitation functions of the sup 4 sup 0 Ar(p,3n) sup 3 sup 8 K reaction and its accompanying reactions sup 4 sup 0 Ar(p,2pn) sup 3 sup 8 Cl, and sup 4 sup 0 Ar(p,2p) sup 3 sup 9 Cl were measured at the proton energy of 20.5-39.5 MeV to determine the optimum conditions of irradiation. Target cells containing argon gas were prepared using specially developed tools in an argon-replaced glove box. In the sup 4 sup 0 Ar(p,3n) sup 3 sup 8 K, sup 4 sup 0 Ar(p,2pn) sup 3 sup 8 Cl, and sup 4 sup 0 Ar(p,2p) sup 3 sup 9 Cl reactions, the maximum cross sections were 6.7+-0.7, 34+-3.3 and 11+-1.2mbarn at 37.6, 39.5 and 32.0 MeV, respectively, and the saturation thick target yields were calculated to be 560, 2200, and 1300 sup * MBq/mu A, respectively, at an incident energy of 39.5 MeV ( sup * integral yield above 21 MeV).

  16. Control of degradation of spent LWR [light-water reactor] fuel during dry storage in an inert atmosphere

    International Nuclear Information System (INIS)

    Cunningham, M.E.; Simonen, E.P.; Allemann, R.T.; Levy, I.S.; Hazelton, R.F.

    1987-10-01

    Dry storage of Zircaloy-clad spent fuel in inert gas (referred to as inerted dry storage or IDS) is being developed as an alternative to water pool storage of spent fuel. The objectives of the activities described in this report are to identify potential Zircaloy degradation mechanisms and evaluate their applicability to cladding breach during IDS, develop models of the dominant Zircaloy degradation mechanisms, and recommend cladding temperature limits during IDS to control Zircaloy degradation. The principal potential Zircaloy cladding breach mechanisms during IDS have been identified as creep rupture, stress corrosion cracking (SCC), and delayed hydride cracking (DHC). Creep rupture is concluded to be the primary cladding breach mechanism during IDS. Deformation and fracture maps based on creep rupture were developed for Zircaloy. These maps were then used as the basis for developing spent fuel cladding temperature limits that would prevent cladding breach during a 40-year IDS period. The probability of cladding breach for spent fuel stored at the temperature limit is less than 0.5% per spent fuel rod. 52 refs., 7 figs., 1 tab

  17. Status of Standardization Projects

    Science.gov (United States)

    1992-12-31

    GM HE M250 INERT PT AR B 924 932 931 G AR U 1336 N622 MIL-R-231398 ROCKET MOTORS,SURFACE LAUNC 05 02 912 932 932 A N D 1336 N628 MIL-B-22450C...904 A AR N C 1336 A633 MIL S 14799C SAFTY ARMING DEVICE GM M114 AR 82 924 931 931 G AR U 1336 A634 MIL-W-50849D AM5 WHD GM HE M250 INERT PT AR 81 924

  18. temperature fluctuation inside inert atmosphere silos

    African Journals Online (AJOL)

    ... the two silos for twenty-eight (28) months of storage were recorded in order to monitor temperature fluctuation at different sections inside the inert atmosphere silos loaded with two varieties of wheat namely LACRIWHT-2 (Cettia) and LACRIWHT-4 (Atilla-Gan-Atilla) from Lake Chad Research Institute, Maiduguri, Nigeria.

  19. Nanotoxicity of Inert Materials: The Case of Gold, Silver and Iron.

    Science.gov (United States)

    Umair, Muhammad; Javed, Ibrahim; Rehman, Mubashar; Madni, Asadullah; Javeed, Aqeel; Ghafoor, Aamir; Ashraf, Muhammad

    2016-01-01

    Nanotechnology has opened a new horizon of research in various fields including applied physics, chemistry, electronics, optics, robotics, biotechnology and medicine. In the biomedical field, nanomaterials have shown remarkable potential as theranostic agents. Materials which are considered inert are often used in nanomedicine owning to their nontoxic profile. At nanoscale, these inert materials have shown unique properties that differ from bulk and dissolved counterparts. In the case of metals, this unique behavior not only imparts paramount advantages but also confers toxicity due to their unwanted interaction with different cellular processes. In the literature, the toxicity of nanoparticles made from inert materials has been investigated and many of these have revealed toxic potential under specific conditions. The surge to understand underlying mechanism of toxicity has increased and different means have been employed to overcome toxicity problems associated with these agents. In this review, we have focused nanoparticles of three inert metallic materials i.e. gold, silver and iron as these are regarded as biologically inert in the bulk and dissolved form. These materials have gained wider research interest and studies indicating the toxicity of these materials are also emerging. Oxidative stress, physical binding and interference with intracellular signaling are the major role player in nanotoxicity and their predominance is highly dependent upon size, surface coating and administered dose of nanoparticles. Current strategies to overcome toxicity have also been reviewed in the light of recent literature. The authors also suggested that uniform testing standards and well-designed studies are needed to evaluate nanotoxicity of these materials that are otherwise considered as inert. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  20. Structural, K-Ar and 40Ar-39Ar age studies of adularia K-feldspars from the Lizard Complex, England

    International Nuclear Information System (INIS)

    Halliday, A.N.; Mitchell, J.G.

    1976-01-01

    Conventional K-Ar analyses of fifteen adularia feldspars from the Lizard Complex yield ages between 181+-2 Ma and 220+-3 Ma (with one exception from Holseer Cove yielding an age of 156+-3 Ma). The feldspars are dominantly monoclinic but most contain a minor but constant proportion of triclinic material with variable triclinicity. An inverse correlation exists between triclinicity and K-Ar age interpreted as representing argon loss related to the structural state. Extrapolation of the data to zero triclinicity indicates a true age of 210-220 Ma. 40 Ar- 39 Ar stepwise degassing analyses yield plateau ages related to the K-Ar ages and not the crystallization age. The results can be explained in terms of postcrystallization Al-Si ordering resulting in argon loss from lattice sites which under normal diffusion conditions requires a range of activation energies. The Holseer Cove sample is monoclinic and an 40 Ar- 39 Ar stepheating analysis suggests a later crystallization at 160-170 Ma. Neither primary crystallization nor spontaneous ordering through time explain the origin of the triclinic adularia. It is suggested that ordering has been induced by the passage of low-temperature alkaline solutions at a subsequent point in geological time. Argon loss by ordering could explain the low ages found using both K-Ar and 40 Ar- 39 Ar stepheating methods when applied to feldspars in general. The 210-220 Ma, and 160-170 Ma hydrothermal events affected much of southwest England and are probably related to major geotectonic movements in western Europe. (Auth.)

  1. Dry boxes and inert atmosphere techniques

    International Nuclear Information System (INIS)

    Bartak, D.E.

    1987-01-01

    Practitioners need to conduct experiments with molten salts in an inert atmosphere owing to the chemical reactivity of these media. Most fused salt solvent systems show reactivity to water and/or oxygen, which results in significant chemical changes in the properties of these solvents. Although several studies on the nature of an oxygen/oxide electrode in this melt have been reported, the reactions have not been fully understood because of apparent water contamination in many cases. Nitrate melt systems are also hygroscopic; for example, the LiNO 3 -KNO 3 eutectic (177 0 C) absorbs water to at least 0.2% by weight. The result is that the electrochemistry of heavier, electropositive metal ions has been significantly altered. In addition, trace amounts of water have been shown to significantly affect the oxygen-oxide redox chemistry in NaNO 3 -KNO 3 melts (250 0 C). The haloaluminates, which include AlCl 3 -NaCl (175 0 C), as well as AlCl 3 -organic salt binaries are particularly sensitive to the presence of both oxygen and moisture. Oxygen is a strong oxidant in the fused hydroxide systems with formation of superoxide ion from either oxide or water. This chapter describes general, inert atmosphere techniques which can be used by the molten salt experimentalist. Because of the limitations of volatility, vacuum manipulations are not considered. Rather, the use of glove boxes, glove bags, and inert bench-top techniques are discussed. The areas covered are: glove box and bag equipment, operation and maintenance of glove boxes and glove bags, and common operations conducted inside glove boxes

  2. Vecrīgas restorānu ģeogrāfija

    OpenAIRE

    Udova, Alīna

    2009-01-01

    Bakalaura darbs “Vecrīgas restorānu ģeogrāfija” izstrādāts ar mērķi izvērtēt restorānu pakalpojumu vietu un attīstības iespējas Vecrīgā. Darbs sastāv no 7 nodaļām, kas veltītās restorānu attīstības vēsturei; attīstības tendencēm restorānos Latvijā; Vecrīgas restorānu izplatībai, daudzumam un virtuvei; Vecrīgas restorānu salīdzinājumam ar Viļņas un Tallinas restorāniem; Vecrīgas restorānu nozīmei Rīgas tūrisma piedāvājumu klāstā un Vecrīgas attīstības iespēju izvērtējumam ar pētījuma autora ...

  3. ELECTROCHEMICAL SEPARATION AND CONCENTRATION OF HYDROGEN SULFIDE FROM GAS MIXTURES

    Science.gov (United States)

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  4. Ar-40/Ar-39 age determinations for the Rotoiti eruption, New Zealand

    Science.gov (United States)

    Flude, S.; Storey, M.

    2013-12-01

    The contemporaneous Rotoiti and Earthquake Flat ignimbrites, erupted from the Taupo Volcanic zone, New Zealand, form a distinctive tephrostratigraphic horizon in the Southern Pacific. Radioisotopic dating results for these eruptions remain controversial, with published ages ranging from 35.1 × 2.8 ka [1] to 71 × 6 ka [2], with 61.0 × 1.5 ka [3] often being cited as the most widely accepted age. These eruptions are difficult to date as their age is near the limit for various radiometric dating techniques, which are complicated by a large proportion of inherited material (xenocrysts) and a lack of phases suitable for dating. Glass-bearing plutonic blocks erupted with the Rotoiti and Earthquake Flat ignimbrites have previously been interpreted as deriving from a slowly cooled and incompletely solidified magma body that was sampled by the eruptions. They contain large vugs lined with euhedral quartz, sanidine and biotite crystals, indicating that these crystals grew in a gas or aqueous fluid rich environment and are interpreted to have formed shortly before or during eruption. Here we will present Ar-40/Ar-39 ages for sanidines and biotites extracted from vugs in lithic blocks erupted as part of the Earthquake Flat ignimbrite. We show that, even for vug-lining material, inherited ages remain a problem and are the likely source of the wide variation in published radiometric ages. Nevertheless, many of the Ar-40/Ar-39 ages are much younger than the 61 ka age [3] and are more consistent with the recent stratigraphic, C-14 and U-238/Th-230+(U-Th)/He ages that have been suggested (e.g. [4,5]). 1. Whitehead, N. & Ditchburn, R. New Zealand Journal of Geology and Geophysics 37, 381-383 (1994). 2. Ota, Y., Omura, A. & Iwata, H. New Zealand Journal of Geology and Geophysics 32, 327-331 (1989). 3. Wilson, C. J. N. et al. Quaternary Science Reviews 26, 1861-1870 (2007). 4. Molloy, C., Shane, P. & Augustinus, P. Geological Society of America Bulletin 121, 1666-1677 (2009). 5

  5. Investigations of X-ray response of single wire anode Ar-N2 flow type gas scintillation proportional counters

    International Nuclear Information System (INIS)

    Garg, S.P.; Sharma, R.C.

    1984-01-01

    The X-ray response of single wire anode gas scintillation proportional counters of two different geometries operated with argon+nitrogen gases in continuous flow has been investigated with wire anodes of diameters 25 μm to 1.7 mm. An energy resolution of 19% is obtained for 5.9 keV X-rays entering the counter perpendicular to the anode in pill-box geometry with 25 μm diameter anode. With cylindrical geometry counters energy obtained at 5.9 keV are 18%, 24% and 33% for 50 μm, 0.5 mm and 1.7 mm diameter anodes respectively. An analysis of the observed resolution shows that the contribution from photon counting statistics to the relative variance of scintillation pulses even for X-rays in Ar-N 2 single wire anode gas scintillation proportional counters is small and is not a limiting factor. The energy resolution with thicker anodes, where the contribution from the variance of the charge multiplication factor also has been minimised, is found to deteriorate mainly by the interaction in the scintillation production region. Comments are made on the possibility of improvement in energy resolution by suppression of pulses due to such interactions with the help of the pulse risetime discrimination technique. (orig.)

  6. Synchrotron X-Ray Study of Melting in Submonolayer Ar and other Rare-Gas Films on Graphite

    DEFF Research Database (Denmark)

    McTague, J. P.; Als-Nielsen, Jens Aage; Bohr, Jakob

    1982-01-01

    Synchrotron x-ray diffraction studies of the (10) peak of Ar on the (001) surface of ZYX graphite show a sharp but continuous broadening of the Bragg peak with increasing temperature. Below a coverage of ∼ 1 Ar atom per six surface carbon atoms (ρ=1) the onset of this transition occurs...

  7. Investigations on Ni-Co-Mn-Sn thin films: Effect of substrate temperature and Ar gas pressure on the martensitic transformations and exchange bias properties

    Energy Technology Data Exchange (ETDEWEB)

    Machavarapu, Ramudu, E-mail: macrams2@gmail.com; Jakob, Gerhard [Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, D-55128 Mainz (Germany)

    2015-03-15

    We report the effect of substrate temperature (T{sub S}) and Ar gas pressure (P{sub D}) on the martensitic transformations, magnetic and exchange bias (EB) properties in Heusler type Ni-Co-Mn-Sn epitaxial thin films. Martensitic transformation temperatures and EB fields at 5 K were found to increase with increasing T{sub S}. The observed maximum EB value of 320 Oe after field cooling in the film deposited at 650 {sup ∘}C is high among the values reported for Ni-Mn-Sn thin films which is attributed to the coexistence of ferromagnetic (FM) and antiferromagnetic (AF) phases in the martensitic state. In the case of P{sub D} variation, with increase in P{sub D}, martensitic transformation temperatures were increased and a sharp transformation was observed in the film deposited at 0.06 mbar. Magnetization values at 5 K were higher for increasing P{sub D}. These observations are attributed to the compositional shift. EB effect is also present in these films. Microstructural features observed using atomic force microscopy (AFM) shows a fine twinning and reduced precipitation with increase in P{sub D}, which is also confirmed from the scanning electron microscopy (SEM) images. EB effects in both series were confirmed from the training effect. Target ageing effect has been observed in the films deposited before and after ninety days of time interval. This has been confirmed both on substrate temperature and Ar gas pressure variations.

  8. Geochronology and thermochronology by the 40Ar/39Ar method

    International Nuclear Information System (INIS)

    McDougall, I.; Harrison, T.M.

    1988-01-01

    This work is a response to the authors' belief that there is a need for a monograph on 40 Ar/ 39 Ar dating to provide concise knowledge concerning the application of this method to geological studies. They aim to provide a reasonably comprehensive but by no means exhaustive coverage of the principles and practices of 40 Ar/ 39 Ar dating, with emphasis on interpretation of results. In attempting to provide an overview of the current state of knowledge, they commonly cite examples from the available literature. They draw rather heavily upon their own work, because they feel comfortable with their own examples. (author)

  9. Pulsed electron-beam-sustained discharge in oxygen-containing gas mixtures: electrical characteristics, spectroscopy,and singlet oxygen yield

    International Nuclear Information System (INIS)

    Vagin, Nikolai P; Ionin, Andrei A; Klimachev, Yu M; Kotkov, A A; Podmar'kov, Yu P; Seleznev, L V; Sinitsyn, D V; Frolov, M P; Yuryshev, Nikolai N; Kochetov, Igor' V; Napartovich, A P; Hager, G D

    2004-01-01

    The electrical and spectroscopic characteristics of electron-beam-sustained discharge (EBSD) in oxygen and oxygen-containing gas mixtures are studied experimentally under gas pressures up to 100 Torr in a large excitation volume (∼18 L). It is shown that the EBSD in pure oxygen and its mixtures with inert gases is unstable and is characterised by a small specific energy contribution. The addition of small amounts (∼1%-10%) of carbon monoxide or hydrogen to oxygen or its mixtures with inert gases considerably improves the stability of the discharge, while the specific energy contribution W increases by more then an order of magnitude, achieving ∼6.5 kJ L -1 atm -1 per molecular component of the gas mixture. A part of the energy supplied to the EBSD is spent to excite vibrational levels of molecular additives. This was demonstrated experimentally by the initiation of a CO laser based on the O 2 : Ar : CO = 1 : 1 : 0.1 mixture. Experimental results on spectroscopy of the excited electronic states O 2 (a 1 Δ g ) and O 2 (b 1 Σ g + ), of oxygen formed in the EBSD are presented. A technique was worked out for measuring the concentration of singlet oxygen in the O 2 (a 1 Δ g ) state in the afterglow of the pulsed EBSD by comparing with the radiation intensity of singlet oxygen of a given concentration produced in a chemical generator. Preliminary measurements of the singlet-oxygen yield in the EBSD show that its value ∼3% for W ∼ 1.0 kJ L -1 atm -1 is in agreement with the theoretical estimate. Theoretical calculations performed for W ∼ 6.5 kJ L -1 atm -1 at a fixed temperature show that the singlet-oxygen yield may be ∼20%, which is higher than the value required to achieve the lasing threshold in an oxygen-iodine laser at room temperature. (laser applications and other topics in quantum electronics)

  10. Thermodynamic evaluation of hydrogen production for fuel cells by using bio-ethanol steam reforming: Effect of carrier gas addition

    Science.gov (United States)

    Hernández, Liliana; Kafarov, Viatcheslav

    Omitting the influence of the addition of carrier gas to the reaction system for hydrogen production by bio-ethanol steam reforming can lead to wrong conclusions, especially when it is going to be made to scale. The effect of carrier gas addition to produce hydrogen using bio-ethanol steam reforming to feed fuel cells was evaluated. Thermodynamic calculations in equilibrium conditions were made, however the analysis derived from them can also be applied to kinetic conditions. These calculations were made by using the Aspen-HYSYS software at atmospheric pressure and different values of temperature, water/ethanol molar ratios, and inert (argon)/(water/ethanol) molar ratios. The addition of inert carrier gas modifies the concentrations of the reaction products in comparison to those obtained without its presence. This behavior occurs because most of the reactions which take place in bio-ethanol steam reforming have a positive difference of moles. This fact enhances the system sensitivity to inert concentration at low and moderated temperatures (<700 °C). At high values of temperature, the inert addition does not influence the composition of the reaction products because of the predominant effect of inverse WGS reaction.

  11. Thermodynamic evaluation of hydrogen production for fuel cells by using bio-ethanol steam reforming: Effect of carrier gas addition

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Liliana; Kafarov, Viatcheslav [Universidad Industrial de Santander, Escuela de Ingenieria Quimica, Bucaramanga 678 (Colombia)

    2009-07-01

    Omitting the influence of the addition of carrier gas to the reaction system for hydrogen production by bio-ethanol steam reforming can lead to wrong conclusions, especially when it is going to be made to scale. The effect of carrier gas addition to produce hydrogen using bio-ethanol steam reforming to feed fuel cells was evaluated. Thermodynamic calculations in equilibrium conditions were made, however the analysis derived from them can also be applied to kinetic conditions. These calculations were made by using the Aspen-HYSYS software at atmospheric pressure and different values of temperature, water/ethanol molar ratios, and inert (argon)/(water/ethanol) molar ratios. The addition of inert carrier gas modifies the concentrations of the reaction products in comparison to those obtained without its presence. This behavior occurs because most of the reactions which take place in bio-ethanol steam reforming have a positive difference of moles. This fact enhances the system sensitivity to inert concentration at low and moderated temperatures (<700 C). At high values of temperature, the inert addition does not influence the composition of the reaction products because of the predominant effect of inverse WGS reaction. (author)

  12. Influence of Xe and Kr impurities on x-ray yield from debris-free plasma x-ray sources with an Ar supersonic gas jet irradiated by femtosecond near-infrared-wavelength laser pulses

    Science.gov (United States)

    Kantsyrev, V. L.; Schultz, K. A.; Shlyaptseva, V. V.; Petrov, G. M.; Safronova, A. S.; Petkov, E. E.; Moschella, J. J.; Shrestha, I.; Cline, W.; Wiewior, P.; Chalyy, O.

    2016-11-01

    Many aspects of physical phenomena occurring when an intense laser pulse with subpicosecond duration and an intensity of 1018-1019W /cm2 heats an underdense plasma in a supersonic clustered gas jet are studied to determine the relative contribution of thermal and nonthermal processes to soft- and hard-x-ray emission from debris-free plasmas. Experiments were performed at the University of Nevada, Reno (UNR) Leopard laser operated with a 15-J, 350-fs pulse and different pulse contrasts (107 or 105). The supersonic linear (elongated) nozzle generated Xe cluster-monomer gas jets as well as jets with Kr-Ar or Xe-Kr-Ar mixtures with densities of 1018-1019cm-3 . Prior to laser heating experiments, all jets were probed with optical interferometry and Rayleigh scattering to measure jet density and cluster distribution parameters. The supersonic linear jet provides the capability to study the anisotropy of x-ray yield from laser plasma and also laser beam self-focusing in plasma, which leads to efficient x-ray generation. Plasma diagnostics included x-ray diodes, pinhole cameras, and spectrometers. Jet signatures of x-ray emission from pure Xe gas, as well as from a mixture with Ar and Kr, was found to be very different. The most intense x-ray emission in the 1-9 KeV spectral region was observed from gas mixtures rather than pure Xe. Also, this x-ray emission was strongly anisotropic with respect to the direction of laser beam polarization. Non-local thermodynamic equilibrium (Non-LTE) models have been implemented to analyze the x-ray spectra to determine the plasma temperature and election density. Evidence of electron beam generation in the supersonic jet plasma was found. The influence of the subpicosecond laser pulse contrast (a ratio between the laser peak intensity and pedestal pulse intensity) on the jets' x-ray emission characteristics is discussed. Surprisingly, it was found that the x-ray yield was not sensitive to the prepulse contrast ratio.

  13. Calculation of electron transport in Ar/N2 and He/Kr gas mixtures emdash implications for validity of the Blanc close-quote s law method

    International Nuclear Information System (INIS)

    Wang, Y.; Van Brunt, R.J.

    1997-01-01

    The electron drift velocities and corresponding mean energies have been calculated numerically using an approximate two-term solution of the Boltzmann transport equation for Ar/N 2 gas mixtures at electric field-to-gas density ratios (E/N) below 2.0x10 -20 Vm 2 (20 Td) and for He/Kr mixtures at E/N below 5.0x10 -21 Vm 2 (5.0 Td). The results are compared with predictions obtained from a method proposed by Chiflikian based on an open-quotes analog of Blanc close-quote s lawclose quotes [Phys. Plasmas 2, 3902 (1995)]. Large differences are found between the results derived from the Blanc close-quote s law method and those found here from solutions of the transport equation that indicate serious errors and limitations associated with use of the Blanc close-quote s law method to compute drift velocities in gas mixtures. copyright 1997 American Institute of Physics

  14. Preparation of mesoporous zirconia microspheres as inert matrix

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ting [State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China); Wang, Chen; Lv, Jinlong [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China)

    2016-12-01

    Mesoporous zirconia microspheres, with a diameter of 900 μm, were prepared as an inert accelerator driven system (ADS) transmutation element matrix by the sol-gel method. The purpose of mesopores is to improve the adsorption capacity of inert matrix fuel (IMF) for minor actinides. The study indicated that the mesoporous zirconia performance was improved after the microspheres were hydrothermally treated at 150 °C, the specific surface area increased from 28.29 m{sup 2}/g to 61.28 m{sup 2}/g, and hydrothermal treatment avoided the cracking of the microspheres. Pre-decomposition of the organics during the hydrothermal process stabilized the mesoporous structure. The average pore diameter of mesoporous microsphere was 14.3 nm. - Highlights: • Mesoporous zirconia microspheres with a diameter of 900 μm were prepared as ADS transmutation element inert matrix. • The mesoporous performance was improved after the microspheres were hydrothermally treated at 150 °C. • The specific surface area increased from 28.29 m{sup 2}/g to 61.28 m{sup 2}/g. • The hydrothermal treatment could avoid the cracking of the microspheres. • The specific surface area of mesoporous microsphere was 61.28 m{sup 2}/g and the average pore diameter was 14.3 nm.

  15. A flavor of 40Ar-39Ar geochronology research at lIT Bombay

    International Nuclear Information System (INIS)

    Pande, Kanchan

    2017-01-01

    Geochronology based on radiogenic isotopes has become an invaluable tool in earth sciences. Several radioactive parent-daughter systems of varying half-lives such as Rb-Sr, Sm-Nd, K-Ar have been traditionally used by researchers for determining the timing of geological and planetary processes. 40 Ar- 39 Ar dating, a variant of the K-Ar system, is a well-established and versatile method of determining the eruptive ages of volcanic rocks and the ∼150-500° C thermal histories of a variety of more slowly cooled igneous and metamorphic rocks. In the 40 Ar- 39 Ar method the sample is irradiated by fast neutrons in a nuclear reactor to convert some of 39 K into 39 Ar. The fixed natural ratio 39 K/ 40 K provides estimate for the parent 40 K by measuring 39 Ar. In order to know the conversion factor of 39 K to 39 Ar and to take care of other nuclear interfering reactions a sample of known K-Ar age is irradiated along with the unknown. The age of the unknown is then derived by comparison with the monitor sample of known age

  16. High-density plasma etching characteristics of indium-gallium-zinc oxide thin films in CF4/Ar plasma

    International Nuclear Information System (INIS)

    Joo, Young-Hee; Kim, Chang-Il

    2015-01-01

    We investigated the etching process of indium-gallium-zinc oxide (IGZO) thin films in an inductively coupled plasma system. The dry etching characteristics of the IGZO thin films were studied by varying the CF 4 /Ar gas mixing ratio, RF power, DC-bias voltage, and process pressure. We determined the following optimized process conditions: an RF power of 700 W, a DC-bias voltage of − 150 V, and a process pressure of 2 Pa. A maximum etch rate of 25.63 nm/min for the IGZO thin films was achieved in a plasma with CF 4 /Ar(= 25:75), and the selectivity of IGZO to Al and TiN was found to be 1.3 and 0.7, respectively. We determined the ionic composition of the CF 4 /Ar plasma using optical emission spectroscopy. Analysis of chemical reactions at the IGZO thin film surfaces was performed using X-ray photoelectron spectroscopy. - Highlights: • IGZO thin film was etched by CF 4 /Ar plasma as a function of gas mixing ratio. • IGZO bonds were broken Ar + sputtering and then reacted with the C-F x radicals. • The physical sputtering is dominant in etch control compared with chemical etching

  17. Calibration of a Noble Gas Mass Spectrometer with an Atmospheric Argon Standard (Invited)

    Science.gov (United States)

    Prasad, V.; Grove, M.

    2009-12-01

    Like other mass spectrometers, gas source instruments are very good at precisely measuring isotopic ratios but need to be calibrated with a standard to be accurate. The need for calibration arises due to the complicated ionization process which inefficiently and differentially creates ions from the various isotopes that make up the elemental gas. Calibration of the ionization process requires materials with well understood isotopic compositions as standards. Our project goal was to calibrate a noble gas (Noblesse) mass spectrometer with a purified air sample. Our sample obtained from Ocean Beach in San Francisco was under known temperature, pressure, volume, humidity. We corrected the pressure for humidity and used the ideal gas law to calculate the number of moles of argon gas. We then removed all active gasses using specialized equipment designed for this purpose at the United States Geological Survey. At the same time, we measured the volume ratios of various parts of the gas extraction line system associated with the Noblesse mass spectrometer. Using this data, we calculated how much Ar was transferred to the reservoir from the vacuum-sealed vial that contained the purified gas standard. Using similar measurements, we also calculated how much Ar was introduced into the extraction line from a pipette system and how much of this Ar was ultimately expanded into the Noblesse mass spectrometer. Based upon this information, it was possible to calibrate the argon sensitivity of the mass spectrometer. From a knowledge of the isotopic composition of air, it was also possible to characterize how ionized argon isotopes were fractionated during analysis. By repeatedly analyzing our standard we measured a 40Ar Sensitivity of 2.05 amps/bar and a 40Ar/36Ar ratio of 309.2 on the Faraday detector. In contrast, measurements carried out by ion counting using electron multipliers yield a value (296.8) which is much closer to the actual atmospheric 40Ar/36Ar value of 295.5.

  18. Non-Linear MDT Drift Gases like Ar/CO2

    CERN Document Server

    Aleksa, Martin

    1998-01-01

    Detailed measurements and simulations have been performed, investigating the properties of Ar/CO2 mixtures as a MDT drift gas. This note presents these measurements and compares them to other drift gases that have been simulated using GARFIELD, HEED and MAGBOLTZ.This note also describes systematic errors to be considered in the operation of precision drift chambers using such gases. In particular we analyze effects of background rate variations, gas-density changes, variations of the gas composition, autocalibration, magnetic field differences and non-concentricity of the wire. Their impact on the reconstructed muon momentum resolution was simulated with DICE/ATRECON.The different properties of linear and non-linear drift gases and their relative advantages and disadvantages are discussed in detail.

  19. Vector analyzing power and cross section for the reactions 40Ar(d(pol),p)41Ar and 40Ar(d(pol),t)39Ar

    International Nuclear Information System (INIS)

    Sen, S.; Darden, S.E.; Yoh, W.A.; Berners, E.D.

    1975-01-01

    Angular distributions of vector analyzing power and cross section for the reactions 40 Ar(d,p) 41 Ar and 40 Ar(d,t) 39 Ar have been measured at an incident deuteron energy of 14.83 MeV. The bound-state data in the (d,p) reaction and the (d,t) data are compared to DWBA calculations. The data for the neutron-unbound states are analyzed in the framework of the DWBA using (i) a form factor for weakly bound neutron and (ii) a resonance form factor, following the approach of Vincent and Fortune. The j-dependence of the (d,p) vector analyzing power permits definite spin-parity assignments to be made for 19 neutron-bound and 4 neutron unbound states in 41 Ar with excitation energy up to 6.57 MeV. Tentative Jsup(π) assignments have been made for 3 states. The l-value for the 5.62 MeV states has been determined. Data for the observed unbound states are found to be equally well reproduced by the type (i) calculations as by the type (ii) calculations. The (d,t) vector cnalyzing power data show definite J-dependence although not as strongly as in the (d,p) reaction. For relatively weakly excited states a pre-knowledge of the l-value of the transition is desirable for an unambiguous spin assignment. In general, the J-dependence in the (d,t) vector analyzing power can be utilized for definitive Jsup(π) assignments. On this basis, Jsub(π) values have been assigned for seven states in 39 Ar with excitation energies up to 4.47MeV excitation. Possible spin values for three other states are suggested. Spectroscopic factors fo the states in 41 Ar and 39 Ar have been extracted and are in fair agreement with those obtained by other workers. (Auth.)

  20. Spectroscopic analysis of visible and near UV light emitted by Ar7+ and Ar6+ ions produced in Ar8+-He and Ar8+-H2 collisions at 120 keV

    International Nuclear Information System (INIS)

    Boduch, P.; Chantepie, M.; Hennecart, D.; Husson, X.; Kucal, H.; Lecler, D.; Stolterfoht, N.; Druetta, M.; Fawcett, B.; Wilson, M.

    1992-01-01

    A spectroscopic analysis of light emitted in the 2000-6000A wavelength range by Ar 7+ and Ar 6+ ions produced in Ar 8+ -He and Ar 8+ -H 2 collisions at 120 keV is performed. Well resolved fine structure components of 5s-5p and 5p-5d transitions in Ar VIII following single electron capture are precisely measured. Predominant lines due to double electron capture are observed. In particular, strong lines observed both in Ar 8+ -He and Ar 8+ -H 2 collisions are attributed to Ryberg transitions 3snl-3sn'l' in Ar VII. Attempts at identifications are made for the transition 3dnl-3dn'l' (n=4, 5) with the help of ab initio calculations. Photon emission cross sections for individual lines are determined from the measured data. (orig.)

  1. arXiv Candidate eco-friendly gas mixtures for MPGDs

    CERN Document Server

    Benussi, L.; Saviano, G.; Muhammad, S.; Ferrini, M.; Primavera, F.; Parvis, M.; Grassing, S.; Colafranceschi, S.; Kjøbro, J.; Sharma, A.; Yang, D.; Chen, G.; Ban, Y.; Li, Q.

    2018-01-01

    Modern gas detectors for detection of particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This review studies properties of potential eco-friendly gas candidate replacements.

  2. 40Ar/39Ar dating of pyrite

    International Nuclear Information System (INIS)

    York, D.; Masliwec, A.; Kuybida, P.; Hanes, J.A.; Hall, C.M.; Kenyon, W.J.; Spooner, E.T.C.; Scott, S.D.

    1982-01-01

    To overcome difficulties encountered in the customary method of determining the age of mineralization of sulphide ore deposits by analysing silicate material, the sulphide minerals themselves have been examined to see if they contained sufficient potassium and argon for 40 Ar/ 39 Ar age determination. Initial results indicate that this is the case for pyrite from the Geco ore body in northwestern Ontario, Canada. (U.K.)

  3. Ar-40/Ar-39 Studies of Martian Meteorite RBT 04262 and Terrestrial Standards

    Science.gov (United States)

    Park, J.; Herzog, G. F.; Turrin, B.; Lindsay, F. N.; Delaney, J. S.; Swisher, C. C., III; Nagao, K.; Nyquist, L. E.

    2014-01-01

    Park et al. recently presented an Ar-40/Ar-39 dating study of maskelynite separated from the Martian meteorite RBT 04262. Here we report an additional study of Ar-40/Ar-39 patterns for smaller samples, each consisting of only a few maskelynite grains. Considered as a material for Ar-40/Ar-39 dating, the shock-produced glass maskelynite has both an important strength (relatively high K concentration compared to other mineral phases) and some potentially problematic weaknesses. At Rutgers, we have been analyzing small grains consisting of a single phase to explore local effects that might be averaged and remain hidden in larger samples. Thus, to assess the homogeneity of the RBT maskelynite and for comparison with the results of, we analyzed six approx. 30 microgram samples of the same maskelynite separate they studied. Furthermore, because most Ar-40/Ar-39 are calculated relative to the age of a standard, we present new Ar-40/Ar-39 age data for six standards. Among the most widely used standards are sanidine from Fish Canyon (FCs) and various hornblendes (hb3gr, MMhb-1, NL- 25), which are taken as primary standards because their ages have been determined by independent, direct measurements of K and A-40.

  4. Thermochromatography study of volatile polonium species in various gas atmospheres

    CERN Document Server

    Maugeri, Emilio Andrea; Eichler, Robert; Piguet,David; Mendonça, Tania Melo; Stora, Thierry; Schumann, Dorothea

    2014-01-01

    Phenomena related to the volatilization of polonium and its compounds are critical issues for the safety assessment of the innovative lead–bismuth cooled type of nuclear reactor or accelerator driven systems. The formation and volatilization of different species of polonium and their interaction with fused silica was studied by thermochromatography using carrier gases with varied redox potential. The obtained results show that under inert and reducing conditions in the absence of moisture, elemental polonium is formed. Polonium compounds more volatile than elemental polonium can be formed if traces of moisture are present in both inert and reducing carrier gas. The use of dried oxygen as carrier gas leads to the formation of polonium oxides, which are less volatile than elemental polonium. It was also found that the volatility of polonium oxides increases with increasing oxidation state. In the presence of moisture in an oxidizing carrier gas, species are formed that are more volatile than the oxides and le...

  5. 37Ar and 39Ar in meteorites and the spatial cosmic ray gradient

    International Nuclear Information System (INIS)

    Heusser, G.; Schaeffer, O.A.

    1977-01-01

    Cosmic-ray-produced 37 Ar (tsub(1/2) = 35 days), and 39 Ar (tsub(1/2) = 269 years) in the Fe-Ni phase of meteorites have been studied in connection with their implications for the radial gradient of cosmic ray particles. For the chondrite, Canon City, which fell on October 27, 1973, 20.1 +- 1.5 dpm/kg FeNi of 37 Ar and 22.5 +- 1.4 dpm/kg FeNi of 39 Ar was found. Usually, the 37 Ar/ 39 Ar ratio is used to deduce a spatial gradient. However, 37 Ar data reported in the literature are inconsistent. They fluctuate much more than could be accounted for by different orbits and the anticipated correlation with the cosmic ray neutron registrations is rather weak. Consequently, the 37 Ar/ 39 Ar-derived gradient has a low confidence level. On the other hand, 39 Ar activities group close to a mean value of 22.5 dpm/kg FeNi and appear to be almost independent of the different meteoroid orbits. A comparison of measured 39 Ar activities in meteorites with those calculated for orbits obtained from fireball data shows that a gradient of 10%/Au or less is reconcilable with the experimental findings. The average gradient (E > 200 MeV) during the last 500 years was probably not much larger than that measured presently by the Pioneer 10 and 11, and Helios spacecrafts. (Auth.)

  6. Photoionization study of HgAr

    International Nuclear Information System (INIS)

    Linn, S.H.; Brom, J.M. Jr.; Tzeng, W.; Ng, C.Y.

    1985-01-01

    Photoionization efficiency data for HgAr + have been obtained in the region of 680--1240 A. The ionization energy of HgAr was determined to be 10.217 +- 0.012 eV. This value allows the calculation of the dissociation energy of HgAr + to be 0.228 +- 0.017 eV. The relative probabilities for the formation of HgAr + via the reactions Ar* x Hg or Hg* x Ar→ HgAr + +e - with Ar* and Hg* prepared in high Rydberg states in the energy range of 10.22--15.79 eV were estimated. Although the radii for the 3d and 5s Rydberg ortitals of Ar have similar values, the probabilities for the formation of HgAr + from Hg x Ar* with Ar* in the 5s[3/2] 0 1 and 5s'[1/2] 0 1 Rydberg states are substantially greater than those when the Ar* excited atoms are in the 3d[1/2] 0 1 , 3s[3/2] 0 1 , and 3d'[3/2] 0 1 Rydberg levels. The ratio for the cross sections for the formation of HgAr + from Hg x Ar* with Ar* formed in the 3d[1/2] 0 1 and 4d[1/2] 0 1 states, as well as that with Ar* prepared in the 5d[1/2] 0 1 and 6d[1/2] 0 1 states, were found to be consistent with the predictions of the previous impact parameter calculations

  7. A prediction of the inert gas solubilities in stoichiometric molten UO2

    International Nuclear Information System (INIS)

    Gunnerson, F.S.; Cronenberg, A.W.

    1975-01-01

    To analyze the effect of fission gas behaviour on fast reactor fuels during a hypothetical overpower transient, the solubility characteristics of the noble gases in molten UO 2 have been assessed. To accomplish this, a theoretical estimation of such solubilities is made by determining the reversible work required to introduce a hard sphere, the size of the gas atom, into the liquid solvent. Results indicate that the solubility of the noble gases in molten UO 2 is quite low, the molar fraction of gas-to-liquid being approximately 10 -6 . Such a low solubility of fission gases suggests that for preirradiated fuels, added swelling or formation may occur upon melting. In addition, such low solubility potential indicates that the fission gases do not play an appreciable role in the fragmentation of molten UO 2 upon quenching in sodium coolant. (Auth.)

  8. Age measurements of potassium-bearing sulfide minerals by the 40Ar/39Ar technique

    International Nuclear Information System (INIS)

    Czamanske, G.K.; Lanphere, M.A.; Erd, R.C.; Blake, M.C. Jr.

    1978-01-01

    K-Ar ages have been determined for sulfide minerals for the first time. The occurrence of adequate amounts of potassium-bearing sulfides with ideal compositions K 3 Fe 10 S 14 (approximately 10 wt.% K) and KFe 2 S 3 (approximately 16 wt.% K) in samples from a mafic alkalic diatreme at Coyote Peak, California, prompted an attempt to date these materials. K 3 Fe 10 S 14 , a massive mineral with conchoidal fracture, gives an age of 29.4 +- 0.5 m.y. ( 40 Ar/ 39 Ar), indistinguishable from the 28.3 +- 0.4 m.y. ( 40 Ar/ 39 Ar) and 30.2 +- 1.0 m.y. (conventional K-Ar) ages obtained for associated phlogopite (8.7 wt.% K). KFe 2 S 3 , a bladed, fibrous sulfide, gives a younger age, 26.5 +- 0.5 m.y. ( 40 Ar/ 39 Ar), presumably owing to Ar loss. (Auth.)

  9. Dry etching of new phase-change material Al1.3Sb3Te in CF4/Ar plasma

    International Nuclear Information System (INIS)

    Zhang Xu; Rao Feng; Liu Bo; Peng Cheng; Zhou Xilin; Yao Dongning; Guo Xiaohui; Song Sannian; Wang Liangyong; Cheng Yan; Wu Liangcai; Song Zhitang; Feng Songlin

    2012-01-01

    The dry etching characteristic of Al 1.3 Sb 3 Te film was investigated by using a CF 4 /Ar gas mixture. The experimental control parameters were gas flow rate into the chamber, CF 4 /Ar ratio, the O 2 addition, the chamber background pressure, and the incident RF power applied to the lower electrode. The total flow rate was 50 sccm and the behavior of etch rate of Al 1.3 Sb 3 Te thin films was investigated as a function of the CF 4 /Ar ratio, the O 2 addition, the chamber background pressure, and the incident RF power. Then the parameters were optimized. The fast etch rate was up to 70.8 nm/min and a smooth surface was achieved using optimized etching parameters of CF 4 concentration of 4%, power of 300 W and pressure of 80 mTorr.

  10. Ar-Ar dating techniques for terrestrial meteorite impacts

    Science.gov (United States)

    Kelley, S. P.

    2003-04-01

    The ages of the largest (>100 km) known impacts on Earth are now well characterised. However the ages of many intermediate sized craters (20-100 km) are still poorly known, often the only constraints are stratigraphic - the difference between the target rock age and the age of crater filling sediments. The largest impacts result in significant melt bodies which cool to form igneous rocks and can be dated using conventional radiometric techniques. Smaller impacts give rise to thin bands of melted rock or melt clasts intimately mixed with country rock clasts in breccia deposits, and present much more of a challenge to dating. The Ar-Ar dating technique can address a wide variety of complex and heterogeneous samples associated with meteorite impacts and obtain reasonable ages. Ar-Ar results will be presented from a series of terrestrial meteorite impact craters including Boltysh (65.17±0.64 Ma, Strangways (646±42 Ma), and St Martin (220±32 Ma) and a Late Triassic spherule bed, possibly representing distal deposits from Manicouagan (214±1 Ma) crater. Samples from the Boltysh and Strangways craters demonstrate the importance of rapid cooling upon the retention of old ages in glassy impact rocks. A Late Triassic spherule bed in SW England is cemented by both carbonate and K-feldspar cements allowing Ar-Ar dating of fine grained cement to place a mimimum age upon the age of the associated impact. An age of 214.7±2.5 Ma places the deposit with errors of the age of the Manicouagan impact, raising the possibility that it may represent a distal deposit (the deposit lay around 2000 km away from the site of the Manicouagan crater during the Late Triassic). Finally the limits of the technique will be demonstrated using an attempt to date melt rocks from the St Martin Crater in Canada.

  11. Ignition of a reactive solid by an inert hot spot

    OpenAIRE

    Liñán Martínez, Amable; Kindelan Gómez, Manuel

    1981-01-01

    A theoretical analysis is presented for the description of the ignition of a reactive media by inert hot bodies of finite size, when the activation energy of the reaction is large. The analysis leads to closed-form relations for the minimum "critical" size of the hot spot resulting in ignition and for the ignition time by hot spots of supercritical size. The analysis is carried out, first, for inert spots with heat conductivities and diff usivities of the order of those of the reactive media,...

  12. ScattAR

    DEFF Research Database (Denmark)

    Baldwin, Alex Dempster; Serafin, Stefania; Erkut, Cumhur

    2017-01-01

    We present an augmented reality (AR) audio application where scattering delay networks efficiently generate and organize a reverberator, based on room geometry scanned by an AR device. The application allows for real-time processing and updating of reflection path geometry. It provides a proof...

  13. Ar-39/Ar-40 systematics of Allende inclusions

    International Nuclear Information System (INIS)

    Herzog, G.F.; Rutgers University, New Brunswick, NJ); Bence, A.E.

    1980-01-01

    A laser microprobe was used to measure the Ar isotopic contents of individual mineral grains in four neutron-irradiated Allende samples: two coarse-grained Ca-Al-rich inclusions, one fine-grained Ca-Al-rich inclusion, and one sample with matrix and miscellaneous chondrules. The following K-Ar ages (G.y.) were obtained after degassing low Ar retentive sites by preheating the samples for one hour at 675 C: matrix, 3.5 + or - 0.2 three miscellaneous chondrules, 4.4 + or - 0.1, 4.0 + or - 0.1, and 4.4 + or - 0.1 and the fine-grained inclusion, 4.5 + or - 0.2. The minerals in the coarse-grained Ca-Al-rich inclusions have ubiquitous chlorine, less than 10 ppm K and apparent ages ranging upwards from 4.6 G.y. to well over 10 G.y. Possible explanations for these apparent ages are atmospheric contamination, the decay of K-40 prior to the formation of the solar system, and the trapping of radiogenic Ar-40 lost by the matrix

  14. High-density plasma etching characteristics of indium-gallium-zinc oxide thin films in CF{sub 4}/Ar plasma

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young-Hee; Kim, Chang-Il

    2015-05-29

    We investigated the etching process of indium-gallium-zinc oxide (IGZO) thin films in an inductively coupled plasma system. The dry etching characteristics of the IGZO thin films were studied by varying the CF{sub 4}/Ar gas mixing ratio, RF power, DC-bias voltage, and process pressure. We determined the following optimized process conditions: an RF power of 700 W, a DC-bias voltage of − 150 V, and a process pressure of 2 Pa. A maximum etch rate of 25.63 nm/min for the IGZO thin films was achieved in a plasma with CF{sub 4}/Ar(= 25:75), and the selectivity of IGZO to Al and TiN was found to be 1.3 and 0.7, respectively. We determined the ionic composition of the CF{sub 4}/Ar plasma using optical emission spectroscopy. Analysis of chemical reactions at the IGZO thin film surfaces was performed using X-ray photoelectron spectroscopy. - Highlights: • IGZO thin film was etched by CF{sub 4}/Ar plasma as a function of gas mixing ratio. • IGZO bonds were broken Ar{sup +} sputtering and then reacted with the C-F{sub x} radicals. • The physical sputtering is dominant in etch control compared with chemical etching.

  15. AR copy number and AR signaling-directed therapies in castration-resistant prostate cancer.

    Science.gov (United States)

    Salvi, Samanta; Conteduca, Vincenza; Lolli, Cristian; Testoni, Sara; Casadio, Valentina; Zaccheroni, Andrea; Rossi, Lorena; Burgio, Salvatore Luca; Menna, Cecilia; Schepisi, Giuseppe; De Giorgi, Ugo

    2017-11-22

    Adaptive upregulation of androgen receptor (AR) is the most common event involved in the progression from hormone sensitive to castration-resistant prostate cancer (CRPC). AR signaling remains the main target of new AR signalling-directed therapies such as abiraterone and enzalutamide in CRPC patients. In this review, we discuss general mechanisms of resistance to AR-targeted therapies, with a focus on the role of AR copy number (CN). We reported methods and clinical applications of AR CN evaluation in tissue and liquid biopsy, thus to have a complete information regarding its role as predictive and prognostic biomarker. Outcomes of CRPC patients are reported to be highly variable as consequence of tumor heterogeneity. AR CN could contribute to patient selection and tumor monitoring in CRPC treated with new anti-cancer treatment as abiraterone and enzalutamide. Further studies to investigate AR CN effect to these agents and its potential combination with other prognostic or predictive clinical factors are necessary in the context of harmonized clinical trial design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Hybrid simulation of electron energy distributions and plasma characteristics in pulsed RF CCP sustained in Ar and SiH4/Ar discharges

    Science.gov (United States)

    Wang, Xi-Feng; Jia, Wen-Zhu; Song, Yuan-Hong; Zhang, Ying-Ying; Dai, Zhong-Ling; Wang, You-Nian

    2017-11-01

    Pulsed-discharge plasmas offer great advantages in deposition of silicon-based films due to the fact that they can suppress cluster agglomeration, moderate the energy of bombarding ions, and prolong the species' diffusion time on the substrate. In this work, a one-dimensional fluid/Monte-Carlo hybrid model is applied to study pulse modulated radio-frequency (RF) plasmas sustained in capacitively coupled Ar and SiH4/Ar discharges. First, the electron energy distributions in pulsed Ar and SiH4/Ar plasmas have been investigated and compared under identical discharge-circuit conditions. The electron energy distribution function (EEDF) in Ar discharge exhibits a familiar bi-Maxwellian shape during the power-on phase of the pulse, while a more complex (resembling a multi-Maxwellian) distribution with extra inflection points at lower energies is observed in the case of the SiH4/Ar mixture. These features become more prominent with the increasing fraction of SiH4 in the gas mixture. The difference in the shape of the EEDF (which is pronounced inside the plasma but not in the RF sheath where electron heating occurs) is mainly attributed to the electron-impact excitations of SiH4. During the power-off phase of the pulse, the EEDFs in both Ar and SiH4/Ar discharges evolve into bi-Maxwellian shapes, with shrinking high energy tails. Furthermore, the parameter of ion species in the case of SiH4/Ar discharge is strongly modulated by pulsing. For positive ions, such as SiH3+ and Si2H4+ , the particle fluxes overshoot at the beginning of the power-on interval. Meanwhile, for negative ions such as SiH2- and SiH3- , density profiles observed between the electrodes are saddle-shaped due to the repulsion by the self-bias electric field as it builds up. During the power-off phase, the wall fluxes of SiH2- and SiH3- gradually increase, leading to a significant decrease in the net surface charge density on the driven electrode. Compared with ions, the density of SiH3 is poorly modulated

  17. AR4VI: AR as an Accessibility Tool for People with Visual Impairments.

    Science.gov (United States)

    Coughlan, James M; Miele, Joshua

    2017-10-01

    Although AR technology has been largely dominated by visual media, a number of AR tools using both visual and auditory feedback have been developed specifically to assist people with low vision or blindness - an application domain that we term Augmented Reality for Visual Impairment (AR4VI). We describe two AR4VI tools developed at Smith-Kettlewell, as well as a number of pre-existing examples. We emphasize that AR4VI is a powerful tool with the potential to remove or significantly reduce a range of accessibility barriers. Rather than being restricted to use by people with visual impairments, AR4VI is a compelling universal design approach offering benefits for mainstream applications as well.

  18. 40Ar/39Ar age spectra from the KBS Tuff, Koobi Fora Formation

    International Nuclear Information System (INIS)

    McDougall, I.

    1981-01-01

    40 Ar/ 39 Ar age spectra on anorthoclase phenocrysts from three pumice clasts in the KBS Tuff yield nearly ideal flat patterns, providing good evidence that the samples have remained undisturbed since crystallization. The ages are concordant at 1.88 = 0.02 Myr, and confirm that the KBS Tuff, a key marker bed in the Koobi Fora Formation, northern Kenya, is now very well dated. These results resolve the conflict between earlier 40 Ar/ 39 Ar and conventional K-Ar dating measurements on the KBS Tuff. (author)

  19. 40Ar/39Ar age spectra from the KBS Tuff, Koobi Fora Formation.

    Science.gov (United States)

    McDougall, Ian

    1981-11-12

    40 Ar/ 39 Ar age spectra on anorthoclase phenocrysts from three pumice clasts in the KBS Tuff yield nearly ideal flat patterns, providing good evidence that the samples have remained undisturbed since crystallization. The ages are concordant at 1.88±0.02 Myr, and confirm that the KBS Tuff, a key marker bed in the Koobi Fora Formation, northern Kenya, is now very well dated. These results resolve the conflict between earlier 40 Ar/ 39 Ar and conventional K-Ar dating measurements on the KBS Tuff.

  20. Comparative simulation analysis on the ignition threshold of atmospheric He and Ar dielectric barrier discharge

    Science.gov (United States)

    Yao, Congwei; Chang, Zhengshi; Chen, Sile; Ma, Hengchi; Mu, Haibao; Zhang, Guan-Jun

    2017-09-01

    Dielectric barrier discharge (DBD) is widely applied in many fields, and the discharge characteristics of insert gas have been the research focus for years. In this paper, fluid models of atmospheric Ar and He DBDs driven by 22 kHz sinusoidal voltage are built to analyze their ignition processes. The contributions of different electron sources in ignition process are analyzed, including the direct ionization of ground state atom, stepwise ionization of metastable particles, and secondary electron emission from dielectric wall, and they play different roles in different discharge stages. The Townsend direct ionization coefficient of He is higher than Ar with the same electrical field intensity, which is the direct reason for the different ignition thresholds between He and Ar. Further, the electron energy loss per free electron produced in Ar and He DBDs is discussed. It is found that the total electron energy loss rate of Ar is higher than He when the same electrical field is applied. The excitation reaction of Ar consumes the major electron energy but cannot produce free electrons effectively, which is the essential reason for the higher ignition threshold of Ar. The computation results of He and Ar extinction voltages can be explained in the view of electron energy loss, as well as the experimental results of different extinction voltages between Ar/NH3 and He DBDs.

  1. MonitAR, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop MonitAR, an Augmented Reality (AR) system that provides procedure completion guidance to astronauts. MonitAR will replace guidance from mission...

  2. The 40Ar/39Ar and K/Ar dating of lavas from the Hilo 1-km core hole, Hawaii Scientific Drilling Project

    Science.gov (United States)

    Sharp, W.D.; Turrin, B.D.; Renne, P.R.; Lanphere, M.A.

    1996-01-01

    Mauna Kea lava flows cored in the HilIo hole range in age from <200 ka to about 400 ka based on 40Ar/39Ar incremental heating and K-Ar analyses of 16 groundmass samples and one coexisting plagioclase. The lavas, all subaerially deposited, include a lower section consisting only of tholeiitic basalts and an upper section of interbedded alkalic, transitional tholeiitic, and tholeiitic basalts. The lower section has yielded predominantly complex, discordant 40Ar/39Ar age spectra that result from mobility of 40Ar and perhaps K, the presence of excess 40Ar, and redistribution of 39Ar by recoil. Comparison of K-Ar ages with 40Ar/39Ar integrated ages indicates that some of these samples have also lost 39Ar. Nevertheless, two plateau ages of 391 ?? 40 and 400 ?? 26 ka from deep in the hole, combined with data from the upper section, show that the tholeiitic section accumulated at an average rate of about 7 to 8 m/kyr and has an mean recurrence interval of 0.5 kyr/flow unit. Samples from the upper section yield relatively precise 40Ar/39Ar plateau and isotope correlation ages of 326 ?? 23, 241 ?? 5, 232 ?? 4, and 199 ?? 9 ka for depths of -415.7 m to -299.2 m. Within their uncertainty, these ages define a linear relationship with depth, with an average accumulation rate of 0.9 m/kyr and an average recurrence interval of 4.8 kyr/flow unit. The top of the Mauna Kea sequence at -280 m must be older than the plateau age of 132 ?? 32 ka, obtained for the basal Mauna Loa flow in the corehole. The upward decrease in lava accumulation rate is a consequence of the decreasing magma supply available to Mauna Kea as it rode the Pacific plate away from its magma source, the Hawaiian mantle plume. The age-depth relation in the core hole may be used to test and refine models that relate the growth of Mauna Kea to the thermal and compositional structure of the mantle plume.

  3. AR4VI: AR as an Accessibility Tool for People with Visual Impairments

    OpenAIRE

    Coughlan, James M.; Miele, Joshua

    2017-01-01

    Although AR technology has been largely dominated by visual media, a number of AR tools using both visual and auditory feedback have been developed specifically to assist people with low vision or blindness – an application domain that we term Augmented Reality for Visual Impairment (AR4VI). We describe two AR4VI tools developed at Smith-Kettlewell, as well as a number of pre-existing examples. We emphasize that AR4VI is a powerful tool with the potential to remove or significantly reduce a r...

  4. Reevaluation of the Solar Wind 36Ar/38Ar Ratio

    Science.gov (United States)

    Becker, R. H.; Schlutter, D. J.; Rider, P. E.; Pepin, R. O.

    1996-03-01

    The isotopic composition of solar wind (SW) argon is an important parameter in the modeling of the evolution of the terrestrial planet atmospheres. Anders and Grevesse assumed a 36Ar/38Ar ratio for SW of 5.31, essentially equal to that of air. Considerable evidence has since developed which indicates that this ratio is too low. Benkert et al. have reported their best estimate for the recent SW as 5.48 +/- 0.05, determined from measurements of lunar soil 71501. Based on Ar data obtained from surface oxidation of a metal separate from the Weston meteorite and from an uncontrolled etch of lunar sample 67701, reported by our group previously, we consider even this value to be too low. Since values of 5.75 to 5.85 were reported by Black for initial low temperature (fairly high SW 36Ar/38Ar ratio (in the range of ~5.6 to ~5.7), we decided to analyze Kapoeta for its light solar wind gases using the acid-etching techniques developed in our laboratory based on the CSSE procedure of Benkert et al.

  5. 40Ar/39Ar laser-probe dating of diamond inclusions from the Premier kimberlite

    International Nuclear Information System (INIS)

    Phillips, D.; Onstott, T.C.; Harris, J.W.; Strathclyde Univ., Glasgow

    1989-01-01

    Inclusions encapsulated by diamonds at the time of their formation provide a means for determining diamond crystallization ages and the chemistry of the surrounding upper mantle at that time. Sm-Nd studies of peridotitic inclusions, from Cretaceous-age kimberlites in southern Africa, suggest that the diamonds formed 3.3 Gyr ago. By contrast, eclogite-suite inclusions generally yield younger ages, sometimes approaching the time of kimberlite eruption. Here we report the results of 40 Ar/ 39 Ar laser-probe analyses of individual eclogitic clinopyroxene inclusions from Premier diamonds, which yield a mean age of 1,198±14 Myr. This age agrees well with Sm-Nd and 40 Ar/ 39 Ar analyses on similar Premier inclusions, and is indistinguishable from the inferred time of emplacement of the host kimberlite (1,150-1,230 Myr), which implies that diamond formation was essentially synchronous with kimberlite generation. The extrapolated non-radiogenic 40 Ar/ 36 Ar ratio of 334±102 is similar to the present-day atmospheric composition. This value is inconsistent with Sr and Nd isotopic signatures from Premier eclogite inclusions, which suggest a depleted mantle source ( 40 Ar/ 36 Ar>20,000). Pre-entrapment equilibration of the inclusions with an 36 Ar-rich fluid is the most probable explanation for the low non-radiogenic ( 40 Ar/ 36 Ar) composition. (author)

  6. Photoinduced C-C Cross-Coupling of Aryl Chlorides and Inert Arenes

    Directory of Open Access Journals (Sweden)

    Lele Wang

    2016-01-01

    Full Text Available Here we report a facile, efficient, and catalyst-free method to realize C-C cross-coupling of aryl chlorides and inert arenes under UV light irradiation. The aryl radical upon homolytic cleavage of C-Cl bond initiated the nucleophilic substitution reaction with inert arenes to give biaryl products. This mild reaction mode can also be applied to other synthetic reactions, such as the construction of C-N bonds and trifluoromethylated compounds.

  7. Properties of high pressure nitrogen-argon and nitrogen-xenon gas scintillators

    International Nuclear Information System (INIS)

    Tornow, W.; Huck, H.; Koeber, H.J.; Mertens, G.

    1976-01-01

    Investigations of scintillation light output and energy resolution have been made at pressures up to 90 atm in gaseous mixtures of nitrogen with both argon and xenon by stopping of 210 Po-alpha particles. In the absence of a wavelength shifter, the N 2 -Ar mixtures gave a maximum pulse height at a ratio of nitrogen to argon partial pressures rsub(N 2 /Ar) approximately =0.2. However, when using the wavelength shifter diphenyl stilbene (DPS), the measured light output was much larger at lower values of rsub(N 2 /Ar), whereas for rsub(N 2 /Ar)>0.2 pulse height and energy resolution of the studied N 2 -Ar mixtures were roughly indentical with and without DPS. The N 2 -Xe gas mixtures exhibited a similar dependence of pulse height and energy resolution to that of the N 2 -Ar mixtures employing DPS, but the pulse height was larger by a factor of about 7. A 40 atm 50% N 2 -50% Xe gas scintillator showed an energy resolution ΔE/E=0.25, while an 80 atm 75% N 2 -25% Xe scintillator gave ΔE/E=0.6. The pulse height from the 80 atm N 2 -Xe scintillator was smaller by a factor of about 240 than the pulse height from a 20 atm pure Xe gas scintillator, but larger by a factor of about 20 than the pulse height from a 75 atm pure N 2 gas scintillator. The N 2 -Xe mixtures showed a remarkable increase of light output as the temperature of the gas was descreased. (Auth.)

  8. Ars disyecta Ars disyecta

    Directory of Open Access Journals (Sweden)

    Alejandra Castillo

    2012-07-01

    Full Text Available Bajo la nominación Ars Disyecta se busca exponer el vínculo entre artes visuales, feminismo y metamorfosis. Las prácticas artísticas feministas aquí presentadas se proponen perturbar el espacio metafórico heredado de la diferencia sexual (pensemos, por ejemplo, en las palabras engendramiento, matriz, vida, compenetración o invaginamiento. En este sentido, la nominación Ars disyecta pone en escena un conjunto de prácticas e intervenciones que intentan interrumpir la matriz de la diferencia, desestabilizando lo femenino desde aquellas figuras que se resisten a la lógica de la totalidad y de un tiempo propio. Buscando seguir la huella de un arte disyecto es que interrogaré en este ensayo aquellas autorías feministas que en el arte contemporáneo trafican con las huellas del contagio, la mutación y la alteridad.This article aims to present the relation between visual arts, feminism I and metamorphosis. The feminist artistic practices portrayed in this article attempt to question categories inherited from the metaphor of sexual difference such as engendering, matrix and life. From this perspective, Ars disyecta will establish a set of artistic practices and interventions that intend to interrupt the proper idea of «feminine difference». Following this line of argument, I will discuss in this article a few contemporary feminist works of art that could be defined by words such as contagious, mutation and otherness.

  9. 40Ar-39Ar method for age estimation: principles, technique and application in orogenic regions

    International Nuclear Information System (INIS)

    Dalmejer, R.

    1984-01-01

    A variety of the K-Ar method for age estimation by 40 Ar/ 39 Ar recently developed is described. This method doesn't require direct analysis of potassium, its content is calculated as a function of 39 Ar, which is formed from 39 K under neutron activation. Errors resulted from interactions between potassium and calcium nuclei with neutrons are considered. The attention is paid to the technique of gradual heating, used in 40 Ar- 39 Ar method, and of obtaining age spectrum. Aplicabilities of isochronous diagram is discussed for the case of presence of excessive argon in a sample. Examples of 40 Ar- 39 Ar method application for dating events in orogenic regions are presented

  10. Formation of Load Parameters of Destroyed Massife in Explosion of Multicharge Composition with Separation of its Parts by Profile Inert Interval

    Science.gov (United States)

    Paramonov, G. P.; Mysin, A. V.; Babkin, R. S.

    2017-10-01

    The paper introduces construction of multicharge composition with separation of parts by the profile inert interval. On the basis of the previous researches, the pulse-forming process at explosion of the borehole multicharge taking into account the offered design is considered. The physical model for definition of reflected wavelet taking into account an increment of radius of cross section of a charging cavity and the expiration of detonation products is offered. A technique is developed for numerical modeling of gas-dynamic processes in a borehole with a change in the axial channel of a profile inert interval caused by a high-temperature flow of gaseous products of an explosion. The authors obtained the dependence of the change in mean pressure on the borehole wall on time for each of the parts of the multicharge. To blast a series of charges of the proposed design, taking into account optimization of the stress fields of neighboring charges, the delay interval is determined for a short-delayed explosion.

  11. Evidence of interatomic Coulombic decay in ArKr after Ar 2p Auger decay

    International Nuclear Information System (INIS)

    Morishita, Y; Saito, N; Suzuki, I H; Fukuzawa, H; Liu, X-J; Sakai, K; Pruemper, G; Ueda, K; Iwayama, H; Nagaya, K; Yao, M; Kreidi, K; Schoeffler, M; Jahnke, T; Schoessler, S; Doerner, R; Weber, T; Harries, J; Tamenori, Y

    2008-01-01

    We have identified interatomic Coulombic decay (ICD) processes in the ArKr dimer following Ar 2p Auger decay, using momentum-resolved electron-ion-ion coincidence spectroscopy and simultaneously determining the kinetic energy of the ICD electron and the KER between Ar 2+ and Kr + . We find that the spin-conserved ICD processes in which Ar 2+ (3p -3 3d) 1 P and 3 P decay to Ar 2+ (3p -2 ) 1 D and 3 P, respectively, ionizing the Kr atom, are significantly stronger than the spin-flip ICD processes in which Ar 2+ (3p -3 3d) 1 P and 3 P decay to Ar 2+ (3p -2 ) 3 P and 1 D, respectively

  12. Angular dependence of secondary ion emission from silicon bombarded with inert gas ions

    International Nuclear Information System (INIS)

    Wittmaack, K.

    1984-01-01

    The emission of positive and negative, atomic and molecular secondary ions sputtered from silicon has been studied under ultrahigh vacuum conditions. The sample was bombarded with 2-12 keV Ar + and Xe + ions at angles of incidence between 0 0 and 60 0 to the surface normal. The angular dependence of the secondary ion intensity as well as the energy spectra of Si + and Si - were found to differ significantly. The effect is attributed mostly do differences in the rate of neutralization. The stability of molecular ions appears to be independent of the charge state. Supporting evidence is provided for the idea that multiply charged secondary ions are due to Auger de-excitation of sputtered atoms in vacuum. (orig.)

  13. Oxygen functionalization of MWCNTs in RF-dielectric barrier discharge Ar/O2 plasma

    Science.gov (United States)

    Abdel-Fattah, E.; Ogawa, D.; Nakamura, K.

    2017-07-01

    The oxygenation of multi-wall carbon nanotubes (MWCNTs) was performed via a radio frequency dielectric barrier discharge (RF-DBD) in an Ar/{{\\text{H}}2}\\text{O} plasma mixture. The relative intensity of the Ar/{{\\text{O}}2} plasma species was characterized by optical emission spectroscopy (OES). The effects of treatment time, RF power and oxygen gas percentage on the chemical composition and surface morphology of MWCNTs were investigated by means of x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and field emission scanning electron microscopy (FE-SEM). The results of FTIR and XPS revealed the presence of oxygen-containing functional groups on the MWCNTs treated in an Ar/{{\\text{O}}2} plasma at an RF power of 50 W and pressure of 400 Pa. The amount of oxygen functional groups (C=O, C-O, and O-COO) also increased by increasing treatment time up to 6 min, but slightly decreased when treatment time was increased by 10 min. The increase of oxygen gas percentage in the plasma mixture does not affect the oxygen content in the treated MWCNTs. Meanwhile, MWCNTs treated at high power (80 W) showed a reduction in oxygen functional groups in comparison with low RF power conditions. The Raman analysis was consistent with the XPS and FTIR results. The integrity of the nanotube patterns also remained damaged as observed by FE-SEM images. The MWCNTs treated in RF-DBD using the Ar/{{\\text{O}}2} plasma mixture showed improved dispersibility in deionized water. A correlation between the OES data and the observed surface characterization for an improved understanding of the functionalization of MWCNTs in Ar/{{\\text{O}}2} plasma was presented.

  14. The pH Sensing Properties of RF Sputtered RuO2 Thin-Film Prepared Using Different Ar/O2 Flow Ratio

    Directory of Open Access Journals (Sweden)

    Ali Sardarinejad

    2015-06-01

    Full Text Available The influence of the Ar/O2 gas ratio during radio frequency (RF sputtering of the RuO2 sensing electrode on the pH sensing performance is investigated. The developed pH sensor consists in an RF sputtered ruthenium oxide thin-film sensing electrode, in conjunction with an electroplated Ag/AgCl reference electrode. The performance and characterization of the developed pH sensors in terms of sensitivity, response time, stability, reversibility, and hysteresis are investigated. Experimental results show that the pH sensor exhibits super-Nernstian slopes in the range of 64.33–73.83 mV/pH for Ar/O2 gas ratio between 10/0–7/3. In particular, the best pH sensing performance, in terms of sensitivity, response time, reversibility and hysteresis, is achieved when the Ar/O2 gas ratio is 8/2, at which a high sensitivity, a low hysteresis and a short response time are attained simultaneously.

  15. Feldspar 40Ar/39Ar dating of ICDP PALEOVAN cores

    Science.gov (United States)

    Engelhardt, Jonathan Franz; Sudo, Masafumi; Stockhecke, Mona; Oberhänsli, Roland

    2017-11-01

    Volcaniclastic fall deposits in ICDP drilling cores from Lake Van, Turkey, contain sodium-rich sanidine and calcium-rich anorthoclase, which both comprise a variety of textural zoning and inclusions. An age model records the lake's history and is based on climate-stratigraphic correlations, tephrostratigraphy, paleomagnetics, and earlier 40Ar/39Ar analyses (Stockhecke et al., 2014b). Results from total fusion and stepwise heating 40Ar/39Ar analyses presented in this study allow for the comparison of radiometric constraints from texturally diversified feldspar and the multi-proxy lacustrine age model and vice versa. This study has investigated several grain-size fractions of feldspar from 13 volcaniclastic units. The feldspars show textural features that are visible in cathodoluminescence (CL) or back-scattered electron (BSE) images and can be subdivided into three dominant zoning-types: (1) compositional zoning, (2) round pseudo-oscillatory zoning and (3) resorbed and patchy zoning (Ginibre et al., 2004). Round pseudo-oscillatory zoning records a sensitive alternation of Fe and Ca that also reflects resorption processes. This is only visible in CL images. Compositional zoning reflects anticorrelated anorthite and orthoclase contents and is visible in BSE. Eleven inverse isochron ages from total fusion and three from stepwise heating analyses fit the age model. Four experiments resulted in older inverse isochron ages that do not concur with the model within 2σ uncertainties and that deviate from 1 ka to 17 ka minimum. C- and R-type zoning are interpreted as representing growth in magma chamber cupolas, as wall mushes, or in narrow conduits. Persistent compositions of PO-type crystals and abundant surfaces recording dissolution features correspond to formation within a magma chamber. C-type zoning and R-type zoning have revealed an irregular incorporation of melt and fluid inclusions. These two types of zoning in feldspar are interpreted as preferentially

  16. Helium in inert matrix dispersion fuels

    International Nuclear Information System (INIS)

    Veen, A. van; Konings, R.J.M.; Fedorov, A.V.

    2003-01-01

    The behaviour of helium, an important decay product in the transmutation chains of actinides, in dispersion-type inert matrix fuels is discussed. A phenomenological description of its accumulation and release in CERCER and CERMET fuel is given. A summary of recent He-implantation studies with inert matrix metal oxides (ZrO 2 , MgAl 2 O 4 , MgO and Al 2 O 3 ) is presented. A general picture is that for high helium concentrations helium and vacancy defects form helium clusters which convert into over-pressurized bubbles. At elevated temperature helium is released from the bubbles. On some occasions thermal stable nano-cavities or nano-pores remain. On the basis of these results the consequences for helium induced swelling and helium storage in oxide matrices kept at 800-1000 deg. C will be discussed. In addition, results of He-implantation studies for metal matrices (W, Mo, Nb and V alloys) will be presented. Introduction of helium in metals at elevated temperatures leads to clustering of helium to bubbles. When operational temperatures are higher than 0.5 melting temperature, swelling and helium embrittlement might occur

  17. Testes de toxicidade aguda através de bioensaios no extrato solubilizado dos resíduos classe II A - não inertes e classe II B - inertes Acute toxicity tests by bioassays applied to the solubilized extracts of solid wastes class II A - non inerts and class II B - inerts

    Directory of Open Access Journals (Sweden)

    Nébora Liz Vendramin Brasil Rodrigues

    2007-03-01

    Full Text Available A grande diversidade de substâncias potencialmente tóxicas contribuem para a deterioração do meio ambiente. O objetivo deste trabalho foi propor a utilização de bioensaios, através de testes de toxicidade aguda com Daphnia magna e Vibrio fischeri, como mais um parâmetro a ser analisado no extrato solubilizado dos resíduos que, segundo a NBR 10004/04 fossem classificados como classe II A - não inertes ou classe II B - inertes. Realizaram-se, também, testes de toxicidade no drenado dos aterros classe II A e II B. Verificou-se que a toxicidade foi constatada nos extratos solubilizados dos 18 resíduos analisados e que, apenas três das amostras estariam próprias para lançamento, ou seja os resíduos 04, 14 e 15. Já, a toxicidade encontrada no drenado dos aterros, ficou muito superior do que a toxicidade de cada extrato solubilizado analisado separadamente.A great diversity of substances potencially toxic contributes to the deterioration of the environment. The aim of this research was to propose the use of bioassays using Daphnia magna and Vibrio fischeri, as another parameter to be analyzed in the solubilized extraction of waste according to NBR 10004/04 and classified as class II A - non inerts or class II B - inerts. Besides, another test was performed to measure the level of toxicity in the drainage of the landfill class II A and II B. It was verified that the toxicity found in the solubilized extracts of the 18 wastes analysed.Only 3 wastes (04, 14 and 15 were within the emission limits. On the other hand the toxicity found in the drainage of the landfill, from which all the samples came from, was much higher than the individual one.

  18. Influence of Ar addition on ozone generation in a non-thermal plasma—a numerical investigation

    Science.gov (United States)

    Chen, Hsin Liang; Lee, How Ming; Chen, Shiaw Huei; Wei, Ta Chin; Been Chang, Moo

    2010-10-01

    A numerical model based on a dielectric barrier discharge is developed in this study to investigate the influence of Ar addition on ozone generation. The simulation results show good agreement with the experimental data, confirming the validity of the numerical model. The mechanisms regarding how the Ar addition affects ozone generation are investigated with the assistance of a numerical simulation by probing into the following two questions, (1) why the ozone concentration just slightly decreases in the low specific input energy (SIE, the ratio of discharge power to gas flow rate) region even if the inlet O2 concentration is substantially decreased and (2) why the variation of the increased rate of ozone concentration with SIE (i.e. the variation in the slope of ozone concentration versus SIE) is more significant for an O2/Ar mixture plasma. As SIE is relatively low, ozone decomposition through electron-impact and radical attack reactions is less significant because of low ozone concentration and gas temperature. Therefore, the ozone concentration depends mainly on the amount of oxygen atoms generated. The simulation results indicate that the amount of oxygen atoms generated per electronvolt for Ar concentrations of 0%, 10%, 30%, 50% and 80% are 0.178, 0.174, 0.169, 0.165 and 0.166, respectively, explaining why the ozone concentration does not decrease linearly with the inlet O2 concentration in the low SIE region. On the other hand, the simulation results show that increasing Ar concentration would lead to a lower reduced field and a higher gas temperature. The former would lead to an increase in the rate constant of e + O3 → e + O + O2 while the latter would result in a decrease in the rate constant of O + O2 + M → O3 + M and an increase in that of O3 + O → 2O2. The changes in the rate constants of these reactions would have a negative effect on ozone generation, which is the rationale for the second question.

  19. Influence of Ar addition on ozone generation in a non-thermal plasma-a numerical investigation

    International Nuclear Information System (INIS)

    Chen, Hsin Liang; Lee, How Ming; Chen, Shiaw Huei; Wei, Ta Chin; Chang, Moo Been

    2010-01-01

    A numerical model based on a dielectric barrier discharge is developed in this study to investigate the influence of Ar addition on ozone generation. The simulation results show good agreement with the experimental data, confirming the validity of the numerical model. The mechanisms regarding how the Ar addition affects ozone generation are investigated with the assistance of a numerical simulation by probing into the following two questions, (1) why the ozone concentration just slightly decreases in the low specific input energy (SIE, the ratio of discharge power to gas flow rate) region even if the inlet O 2 concentration is substantially decreased and (2) why the variation of the increased rate of ozone concentration with SIE (i.e. the variation in the slope of ozone concentration versus SIE) is more significant for an O 2 /Ar mixture plasma. As SIE is relatively low, ozone decomposition through electron-impact and radical attack reactions is less significant because of low ozone concentration and gas temperature. Therefore, the ozone concentration depends mainly on the amount of oxygen atoms generated. The simulation results indicate that the amount of oxygen atoms generated per electronvolt for Ar concentrations of 0%, 10%, 30%, 50% and 80% are 0.178, 0.174, 0.169, 0.165 and 0.166, respectively, explaining why the ozone concentration does not decrease linearly with the inlet O 2 concentration in the low SIE region. On the other hand, the simulation results show that increasing Ar concentration would lead to a lower reduced field and a higher gas temperature. The former would lead to an increase in the rate constant of e + O 3 → e + O + O 2 while the latter would result in a decrease in the rate constant of O + O 2 + M → O 3 + M and an increase in that of O 3 + O → 2O 2 . The changes in the rate constants of these reactions would have a negative effect on ozone generation, which is the rationale for the second question.

  20. Photodissociation dynamics of Ar2(+) and Ar3(+) excited by 527 nm photons.

    Science.gov (United States)

    Lepère, V; Picard, Y J; Barat, M; Fayeton, J A; Lucas, B; Béroff, K

    2009-05-21

    The photofragmentation dynamics of Ar(2)(+) and Ar(3)(+) clusters has been investigated at a 527 nm wavelength (2.35 eV) using a setup that allows simultaneous detection of the ionic and neutral fragments in a coincidence experiment. Measurement of positions and times of flight enables in principle a complete description of the fragmentation dynamics. The photofragmentation dynamics of Ar(3)(+) clusters is similar to that of Ar(2)(+) with, in addition, the ejection of a third fragment that can be neutral or ionized via a resonant electron capture. This is attributed to the triangular geometry of the Ar(3)(+) ion.

  1. The effects of acid treatment and sample preparation on 40Ar/39Ar ages

    Science.gov (United States)

    Morgan, L. E.; Davidheiser, B.; Kuiper, K.; Wijbrans, J. R.

    2011-12-01

    Practitioners of K-Ar and 40Ar/39Ar geochronology regularly use dilute acids (typically 5-10% hydrofluoric acid (HF)) to clean mineral grains prior to irradiation (in the case of 40Ar/39Ar), and analysis (e.g. Evernden and Curtis, 1965; Dalrymple, 1967). This treatment has been shown to reduce contamination from atmospheric Ar, which consists largely of 40Ar and thus must be differentiated from radiogenic 40Ar* (Evernden and Curtis, 1965). Acid treatments can also remove fine grained material attached to mineral grains, such as glass shards or devitrified glass, which can affect analyses and is difficult to remove by other means (Evernden and Curtis, 1965). Such treatments were originally examined for their efficacy in reducing atmospheric argon contamination (Dalrymple, 1967) but were not assessed for the possibility of leaching Ar* or K differentially, which would affect both K-Ar and 40Ar/39Ar ages. Indeed, Evernden and Curtis (1965) state that they are simply removing the "outer portions of the crystals" and apparently do not account for the potential for leaching of 40Ar* or K from the mass of their host mineral. Moreover, the capabilities of the K-Ar system in the 1960s was limited to a precision of ca. 3-4% on samples of 1-3 Ma (Cox and Dalrymple, 1967). Effects of smaller magnitude could not have been detected at the time. As the developments of the 40Ar/39Ar system and modern mass spectrometer technology have allowed for precision to approach 0.1%, the potential effects of acid treatment during sample preparation warrant revisiting. Additionally, the use of Calgon for sample disintegration has not previously been quantitatively assessed but is used extensively in some laboratories. Here we present a series of experiments from co-irradiated Fish Canyon sanidine (FCs) and Mes-4 (Kuiper et al., 2008). FCs is used as the mineral standard following standard procedures. Mes-4 splits were treated with H2O (10 minutes, ultrasonic), Calgon (10%, overnight at 50

  2. ArF short-pulse extraction studies. Final technical report, 18 September 1981-18 February 1983

    International Nuclear Information System (INIS)

    Mandl, A.

    1983-02-01

    The experimental apparatus including e-beam pulse diagnostics is discussed. The relative fluorescence and laser output for various gas mixtures is presented and the significant improvement in laser performance for Ne buffered mixtures, allowing scaling to high pressures and high Joules per liter, is discussed. The energy deposition measurements for Ar and Ne buffered mixtures are presented. Accurate deposition measurements are necessary for a meaningful measure of the laser output efficiency. Background absorption measurements important for accessing the scalability of the ArF system are presented. The sidelight suppression experiments are discussed and the laser efficiency measurements are shown. Finally, a discussion of the measurements with their implications for the ArF system is presented in the concluding section

  3. A comparative study of gas-gas miscibility processes in underground gas storage reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Rafiee, M.M.; Schmitz, S. [DBI - Gastechnologisches Institut gGmbH, Freiberg (Germany)

    2013-08-01

    Intermixture of gases in underground gas reservoirs have had great weight for natural gas storage in UGS projects with substitution of cushion gas by inert gases or changing the stored gas quality or origin, as for the replacement of town gas by natural gas. It was also investigated during the last years for Enhanced Gas Recovery (EGR) and Carbon Capture and Storage (CCS) projects. The actual importance of its mechanisms is discussed for the H{sub 2} storage in Power to Gas to Power projects (PGP). In these approaches miscibility of the injected gas with the gas in place in the reservoir plays an important role in the displacement process. The conditions and parameters for the gas-gas displacement and mixing have been investigated in previous projects, as e.g. the miscibility of CO{sub 2} with natural gas (CLEAN). Furthermore the miscibility process of town gas with natural gas and sauer gas with sweet gas were also previously measured and compared in laboratory. The objective of this work is to investigate the miscibility of H{sub 2} injection into natural gas reservoirs using a compositional and a black oil reservoir simulator. Three processes of convection, dispersion and diffusion are considered precisely. The effect of gas miscibility is studied for both simulators and the results are compared to find optimum miscibility parameters. The findings of this work could be helpful for further pilot and field case studies to predict and monitor the changes in gas composition and quality. In future this monitoring might become more important when PGP together with H{sub 2}-UGS, as storage technology, will help to successfully implement the change to an energy supply from more renewable sources. Similarly the method confirms the use of the black oil simulator as an alternative for gas-gas displacement and sequestration reservoir simulation in comparison to the compositional simulator. (orig.)

  4. Multi-Canister Overpack (MCO) Combustible Gas Management Leak Test Acceptance Criteria (OCRWM)

    International Nuclear Information System (INIS)

    SHERRELL, D.L.

    2000-01-01

    The purpose of this document is to support the Spent Nuclear Fuel Project's combustible gas management strategy while avoiding the need to impose any requirements for oxygen free atmospheres within storage tubes that contain multi-canister overpacks (MCO). In order to avoid inerting requirements it is necessary to establish and confirm leak test acceptance criteria for mechanically sealed and weld sealed MCOs that are adequte to ensure that, in the unlikely event the leak test results for any MCO were to approach either of those criteria, it could still be handled and stored in stagnant air without compromising the SNF Project's overall strategy to prevent accumulation of combustible gas mixtures within MCOs or within their surroundings. To support that strategy, this document: (1) establishes combustible gas management functions and minimum functional requirements for the MCO's mechanical seals and closure weld(s); (2) establishes a maximum practical value for the minimum required initial MCO inert backfill gas pressure; and (3) based on items 1 and 2, establishes and confirms leak test acceptance criteria for the MCO's mechanical seal and final closure weld(s)

  5. 40Ar/36Ar in MORB glasses: Constraints on atmosphere and mantle evolution

    International Nuclear Information System (INIS)

    Sarda, P.; Staudacher, T.; Allegre, C.J.; Paris-7 Univ., 75

    1985-01-01

    Argon isotopic composition measurements of MORB glassy samples from the Pacific, Atlantic and Indian Oceans are performed. There is a very large scatter in the 40 Ar/ 36 Ar ratio, from 980 up to 24,400 for bulk rock analyses, which is mainly due to atmospheric contamination: Using the stepwise heating technique, very high ratios are obtained, from 15,000 up to 25,250 which is the highest 40 Ar/ 36 Ar ratio ever measured in MORB. We establish a negative correlation between the highest 40 Ar/ 36 Ar results from stepwise heating and 87 Sr/ 86 Sr ratios, which is perfectly consistent with a two-layered mantle structure. From both 40 Ar and 129 Xe MORB systematics a model is proposed for the kinetics of degassing: a very early and extensive burst, with a time constant of approx.= 4 My, is followed by a slower process of present day type, with a time constant of approx.= 0.5 Gy. The mean age of the atmosphere is so determined to be around 4.4 Gy. (orig./WB)

  6. Mixed Inert scalar triplet dark matter, radiative neutrino masses and leptogenesis

    Directory of Open Access Journals (Sweden)

    Wen-Bin Lu

    2017-11-01

    Full Text Available The neutral component of an inert scalar multiplet with hypercharge can provide a stable dark matter particle when its real and imaginary parts have a splitting mass spectrum. Otherwise, a tree-level dark-matter-nucleon scattering mediated by the Z boson will be much above the experimental limit. In this paper we focus on a mixed inert scalar triplet dark matter scenario where a complex scalar triplet with hypercharge can mix with another real scalar triplet without hypercharge through their renormalizable coupling to the standard model Higgs doublet. We consider three specified cases that carry most of the relevant features of the full parameter space: (i the neutral component of the real triplet dominates the dark matter particle, (ii the neutral component of the complex triplet dominates the dark matter particle; and (iii the neutral components of the real and complex triplets equally constitute the dark matter particle. Subject to the dark matter relic abundance and direct detection constraint, we perform a systematic study on the allowed parameter space with particular emphasis on the interplay among triplet-doublet terms and gauge interactions. In the presence of these mixed inert scalar triplets, some heavy Dirac fermions composed of inert fermion doublets can be utilized to generate a tiny Majorana neutrino mass term at one-loop level and realize a successful leptogenesis for explaining the cosmic baryon asymmetry.

  7. The use of 41Ar to investigate residence time distribution (RTD) in petrochemical industry

    International Nuclear Information System (INIS)

    Sirelkhatim, D. A.; Hassan, B. A.; ElTayeb, M. A. H.; Hills, A. E.

    2004-01-01

    Residence time measurements were carried out on a wax slurry bed reactor (SBR) and on a pilot FTDU reactor by means of radioisotope tracer technology using Ar-41 as tracer gas. Representative results were obtained as the behaviour of the gas in the SBR showed channeling downstream and in the FTDU, possible different mixing zones in the upper portion and the occurrence of air pockets was evident. ( Authors)

  8. An aging study of triple GEMs in Ar-CO sub 2

    CERN Document Server

    Guirl, L; May, J; Miyamoto, J; Shipsey, I

    2002-01-01

    An aging study was performed using triple GEMs and a print circuit board (PCB) with an intense X-ray radiation source. The GEM chamber consists of three identical GEMs and a large gas gain (6000) was shared by them. The chamber and its gas circulation line was carefully cleaned and constructed with stainless steel materials. The detector was irradiated continuously about 750 h without interruption until a large amount of charge was accumulated. A single-wire counter served as a monitoring device to check the beam and ambient conditions. The quality of the Ar-CO sub 2 gas was checked by gas chromatography and no measurable amount of hydrocarbons were found. 27 mC/mm sup 2 was accumulated with no noticeable degradation and no deposit or discoloration was found in an optical check.

  9. Legacy K/Ar and 40Ar/39Ar geochronologic data from the Alaska-Aleutian Range batholith of south-central Alaska

    Science.gov (United States)

    Koeneman, Lisa L.; Wilson, Frederic H.

    2018-04-06

    Sample descriptions and analytical data for more than 200 K/Ar and 40Ar/39Ar analyses from rocks of the Alaska-Aleutian Range batholith of south-central Alaska are reported here. Samples were collected over a period of 20 years by Bruce R. Reed and Marvin A. Lanphere (both U.S. Geological Survey) as part of their studies of the batholith.

  10. Off-gas processing method in reprocessing plant

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Seki, Eiji.

    1990-01-01

    Off-gases containing a radioactive Kr gas generated in a nuclear fuel reprocessing plant are at first sent to a Kr gas separator. Then, the radioactive Kr gas extracted there is introduced to a Kr gas fixing device. A pretreatment and a post-treatment are applied by using a non-radioactive clean inert gas except for the Kr gas as a purge gas. If the radioactive Kr gas is contained in the off-gases discharged from the Kr gas fixing device after applying the post-treatment, the off gases are returned to the Kr gas separator. Accordingly, in a case where the radioactive Kr gas is contained in the off-gases discharged from the Kr gas fixing device, it is not necessary to apply the fixing treatment to all of the off gases. In view of the above, increase of the amount of processing gases can be suppressed and the radioactive Kr gas can be fixed efficiently and economically. (I.N.)

  11. On the doubly ionized states of Ar2 and their intra- and interatomic decay to Ar23+

    International Nuclear Information System (INIS)

    Stoychev, Spas D.; Kuleff, Alexander I.; Tarantelli, Francesco; Cederbaum, Lorenz S.

    2008-01-01

    Potential energy curves of the Auger state Ar + (2p -1 )-Ar, the different one- and two-site dicationic states Ar 2 ++ (with energies in the range of 32-77 eV), and the lowest two-site tricationic states Ar ++ -Ar + (with energies in the range of 64-76 eV) computed using elaborated ab initio methods are reported. The accessible relaxation channels of the electronic states of Ar ++ -Ar populated by Auger decay are studied. In particular, we study in detail the interatomic Coulombic decay following the population of one-site satellite states of Ar ++ (3s -1 3p -1 )-Ar recently observed experimentally. Other relaxation pathways of Ar ++ -Ar, including radiative charge transfer, nuclear dynamics through curve crossing, and intra-atomic decay processes are also investigated

  12. 40Ar-39Ar age determinations on the Owyhee basalt of the Columbia plateau

    International Nuclear Information System (INIS)

    Bottomley, R.J.; York, D.

    1976-01-01

    40 Ar/ 39 Ar step-heating analyses have been performed on 11 samples of basalt from sites near Owyhee Reservoir of southeastern Oregon, U.S.A. These rocks were extruded during the great flood basalt episode of the Pacific Northwest. The whole-rock points are highly correlated on a plot of 40 Ar/ 36 Ar versus 39 Ar/ 36 Ar, corresponding to a common age of the samples of 14.3+-0.3 m.y. Inspite of this, individual 'plateau' plots of the age versus fraction of 39 Ar released do not give good plateaux. These age spectra exhibit to varying degrees a common structure in which lower age values are found at higher temperatures. This pattern may result from a closed-system redistribution of the argon isotopes. The usefulness of grinding the basalts in removing a loosely held atmospheric argon component is confirmed. (Auth.)

  13. 40Ar/39Ar age and thermal history of the Kirin chondrite

    International Nuclear Information System (INIS)

    Wang, S.; McDougall, I.; Tetley, N.; Harrison, T.M.

    1980-01-01

    The Kirin meteorite, a large (> 2800 kg) H5 chondrite, fell in Kirin Province, China in 1976. A sample from each of the two largest fragments (K-1. K-2) yield 40 Ar/ 39 Ar total fusion ages of 3.63 +- 0.02 b.y. and 2.78 +- 0.02 b.y. respectively. 40 Ar/ 40 Ar age spectra show typical diffusional argon loss profiles. Maximum apparent ages of 4.36 b.y. (K-1) and approx. 4.0 b.y. (K-2) are interpreted as possible minimum estimates for the age of crystallization of the parent body. (orig./ME)

  14. Low-k SiOCH Film Etching Process and Its Diagnostics Employing Ar/C5F10O/N2 Plasma

    Science.gov (United States)

    Nagai, Mikio; Hayashi, Takayuki; Hori, Masaru; Okamoto, Hidekazu

    2006-09-01

    We proposed an environmental harmonic etching gas of C5F10O (CF3CF2CF2OCFCF2), and demonstrated the etching of low-k SiOCH films employing a dual-frequency capacitively coupled etching system. Dissociative ionization cross sections for the electron impact ionizations of C5F10O and c-C4F8 gases have been measured by quadrupole mass spectroscopy (QMS). The dissociative ionization cross section of CF3+ from C5F10O gas was much higher than those of other ionic species, and 10 times higher than that of CF3+ from C4F8 gas. CF3+ is effective for increasing the etching rate of SiO2. As a result, the etching rate of SiOCH films using Ar/C5F10O/N2 plasma was about 1000 nm/min, which is much higher than that using Ar/C4F8/N2 plasma. The behaviours of fluorocarbon radicals in Ar/C5F10O/N2 plasma, which were measured by infrared diode laser absorption spectroscopy, were similar to those in Ar/C4F8/N2 plasma. The densities of CF and CF3 radicals were markedly decreased with increasing N2 flow rate. Etching rate was controlled by N2 flow rate. A vertical profile of SiOCH with a high etching rate and less microloading was realized using Ar/C5F10O/N2 plasma chemistry.

  15. AGENTES INERTES PARA CONTOLE DE TOMBAMENTO EM SEMENTEIRAS DE OLERÍCOLAS

    Directory of Open Access Journals (Sweden)

    Ricardo Silveiro Balardin

    1994-01-01

    Full Text Available RESUMO Este trabalho foi conduzido com o objetivo de avaliar o comportamento de materiais inertes para controle de tombamento durante a emergência. Os tratamentos foram cobertura do sulco de semeadura com areia e serragem, tratamento químico com brometo de metila e uma testemunha. Os parâmetros avaliados foram percentagem e velocidade de emergência, percentagem de tombamento de pré e pós-emergência. Os dados obtidos permitiram concluir que, dentre os materiais inertes testados, a areia pode constituir-se em uma alternativa eficiente no controle do tombamento em sementeiras de repolho e beterraba, pois permitiu o maior número de plântulas emergidas e o menor número de plântulas tombadas não alterando a velocidade de emergência, enquanto que nas sementeiras de alface a utilização dos materiais inertes prejudicou a emergência normal das plântulas, não se constituindo em agente de controle eficiente.

  16. Measurement of cross-sections for step-bystep excitation of inert gas atoms from metastable states by electron collisions

    International Nuclear Information System (INIS)

    Mityureva, A.A.; Penkin, N.P.; Smirnov, V.V.

    1989-01-01

    Excitation of argon atoms by electron collisions from metastable (MS) to high-lying states of inert gases (the so-called step-by-step excitation) is investigated. Formation of MS atoms m and their further step-by-step excitation up to k level is carried out by an electron beam with energy from 1 up to 40 eV. Time distribution of forming metastable and step-by-step electron collisions is used. The method used permits to measure the functions of step-by-step excitation and the absolute values of cross sections. Absolute values of cross-sections and functions of step-by-step excitation of some lines and argon levels are obtained

  17. Characteristics of SiO{sub 2} etching with a C{sub 4}F{sub 8}/Ar/CHF{sub 3}/O{sub 2} gas mixture in 60-MHz/2-MHz dual-frequency capacitively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, M. H.; Kang, S. K.; Park, J. Y.; Yeom, G. Y. [Sungkyunkwan University, Suwon (Korea, Republic of)

    2011-11-15

    Nanoscale SiO{sub 2} contact holes were etched by using C{sub 4}F{sub 8}/CHF{sub 3}/O{sub 2}/Ar gas mixtures in dual frequency capacitively coupled plasmas (DF-CCPs) where a 60-MHz source power was applied to the top electrode while a 2-MHz bias power was applied to the bottom electrode. The initial increase in the CHF{sub 3} gas flow rate at a fixed CHF{sub 3}+O{sub 2} flow rate increased the SiO{sub 2} etch rate as well as SiO{sub 2} etch selectivity over that of the amorphous carbon layer (ACL). When the high-frequency (HF) power was increased both SiO{sub 2} etch rate and the etch selectivity over ACL were increased. For a 300 W/500 W power ratio of 60-MHz HF power/ 2-MHz low-freqeuncy (LF) and a gas mixture of Ar (140 sccm) /C{sub 4}F{sub 8} (30 sccm) /CHF{sub 3} (25 sccm) /O{sub 2} (5 sccm) while maintaining 20 mTorr, an anisotropic etch profile with an SiO{sub 2} etch rate of 3350 A/min and an etch selectivity of higher than 6 over ACL could be obtained.

  18. Infrared Spectra of Novel NgBeSO2 Complexes (Ng = Ne, Ar, Kr, Xe) in Low Temperature Matrixes.

    Science.gov (United States)

    Yu, Wenjie; Liu, Xing; Xu, Bing; Xing, Xiaopeng; Wang, Xuefeng

    2016-11-03

    The novel noble-gas complexes NgBeSO 2 (Ng = Ne, Ar, Kr, Xe) have been prepared in the laser-evaporated beryllium atom reactions with SO 2 in low-temperature matrixes. Doped with heavier noble gas, the guest (Ar, Kr, Xe) atom can substitute neon to form more stable complex. Infrared spectroscopy and theoretical calculations are used to confirm the band assignment. The dissociation energies are calculated at 0.9, 4.0, 4.7, and 6.0 kcal/mol for NeBeSO 2 , ArBeSO 2 , KrBeSO 2 , and XeBeSO 2 , respectively, at the CCSD(T) level. Quantum chemical calculations demonstrate that the Ng-Be bonds in NgBeSO 2 could be formed by the combination of electron-donation and ion-induced dipole interactions. The Wiberg bond index (WBI) values of Ng-Be bonds and LOL (localized orbital locator) profile indicate that the Ng-Be bond exhibits a gradual increase in covalent character along Ne to Xe.

  19. A technique for measuring hydrogen and water in inert gases and the hydrogen concentration in liquid sodium

    International Nuclear Information System (INIS)

    Smith, C.A.

    1978-04-01

    A method is described of measuring the hydrogen and water content of an inert gas. It is based upon the use of an electrochemical oxygen cell and has a high sensitivity at low hydrogen and water levels. The following possible applications of the method are described together with supporting experimental measurements: improving the sensitivity and range of the present PFR secondary circuit hydrogen detection instruments; the measurement of hydrogen diffusion coefficients in steels; the measurement of waterside corrosion rates of boiler steels; on-line monitoring of waterside boiler corrosion. Attention is given to the characteristics of diffusion barriers in relation to the first and last of these. (author)

  20. An electromagnetic inerter-based vibration suppression device

    International Nuclear Information System (INIS)

    Gonzalez-Buelga, A; Clare, L R; Neild, S A; Jiang, J Z; Inman, D J

    2015-01-01

    This paper describes how an inerter-based device for structural vibration suppression can be realized using an electromagnetic transducer such as a linear motor. When the motor shaft moves, a difference of voltage is generated across the transducer coil. The voltage difference is proportional to the relative velocity between its two terminals. The electromagnetic transducer will exert a force proportional to current following the Lorentz principle if the circuit is closed around the transducer coil. If an electronic circuit consisting of a capacitor, an inductance and a resistance with the appropriate configuration is connected, the resulting force reflected back into the mechanical domain is equivalent to that achieved by a mechanical inerter-based device. The proposed configuration is easy to implement and very versatile, provided a high quality conversion system with negligible losses. With the use of electromagnetic devices, a new generation of vibration absorbers can be realized, for example in the electrical domain it would be relatively uncomplicated to synthesize multi-frequency or real time tunable vibration absorbers by adding electrical components in parallel. In addition by using resistance emulators in the electrical circuits, part of the absorbed vibration energy can be converted into usable power. Here an electromagnetic tuned inerter damper (E-TID) is tested experimentally using real time dynamic substructuring. A voltage compensation unit was developed in order to compensate for coil losses. This voltage compensation unit requires power, which is acquired through harvesting from the vibration energy using a resistance emulator. A power balance analysis was developed in order to ensure the device can be self sufficient. Promising experimental results, using this approach, have been obtained and are presented in this paper. The ultimate goal of this research is the development of autonomous electromagnetic vibration absorbers, able to harvest energy

  1. The effects of retrograde reactions and of diffusion on 39Ar-40Ar ages of micas

    DEFF Research Database (Denmark)

    Allaz, Julien; Engi, Martin; Berger, Alfons

    2011-01-01

    Effects of metamorphic reactions occurring during decompression were explored to understand their influence on 39Ar-40Ar ages of micas. Monometamorphic metasediments from the Lepontine Alps (Switzerland) were studied. Collected samples reached lower amphibolite facies during the Barrovian....... XRD-data indicated that some mineral separates prepared for Ar-Ar stepwise heating analysis were monomineralic, whereas others were composed of two white micas (muscovite with paragonite or margarite), or biotite and chlorite. In monomineralic samples 37Ar/39Ar and 38Ar/39Ar (proportional to Ca....../K and Cl/K ratios) did not change and the resulting ages can be interpreted unambiguously. In mineral separates containing two white micas, Ca/K and Cl/K ratios were variable, reflecting non-simultaneous laboratory degassing of the two heterochemical Ar-reservoirs. These ratios were used to identify each...

  2. Experimental study of spatial distribution of Ar glow discharge plasma

    International Nuclear Information System (INIS)

    Guo, X.M.; Zhou, T.D.; Pai, S.T.

    1996-01-01

    The characteristics of the spatial distribution of Ar glow discharge plasma were experimentally investigated. By means of direct comparisons between theory and experiment, the effects of the variation of gap separation, gas pressure, and electrode radius on the spatial distributions of electron density and electric field were studied. Results indicate that the maximum electron density moves toward the cathode as the gap separation or gas pressure increases while variation of electrode radius produces little effect. Predictions from a theoretical model have been experimentally verified. General agreements between theory and experiment were found to be reasonably good except in the cathode region, where discrepancy exists. copyright 1996 American Institute of Physics

  3. Geochronology and thermochronology by the sup 40 Ar/ sup 39 Ar method

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, I. (Australian National Univ., Canberra (Australia)); Harrison, T.M. (State Univ. of New York, Albany, NY (USA))

    1988-01-01

    This work is a response to the authors' belief that there is a need for a monograph on {sup 40}Ar/{sup 39}Ar dating to provide concise knowledge concerning the application of this method to geological studies. They aim to provide a reasonably comprehensive but by no means exhaustive coverage of the principles and practices of {sup 40}Ar/{sup 39}Ar dating, with emphasis on interpretation of results. In attempting to provide an overview of the current state of knowledge, they commonly cite examples from the available literature. They draw rather heavily upon their own work, because they feel comfortable with their own examples. (author).

  4. The effect of ion irradiation on inert gas bubble mobility

    International Nuclear Information System (INIS)

    Alexander, D.E.; Birtcher, R.C.

    1991-09-01

    The effect of Al ion irradiation on the mobility of Xe gas bubbles in Al thin films was investigated. Transmission electron microscopy was used to determine bubble diffusivities in films irradiated and/or annealed at 673K, 723K and 773K. Irradiation increased bubble diffusivity by a factor of 2--9 over that due to thermal annealing alone. The Arrhenius behavior and dose rate dependence of bubble diffusivity are consistent with a radiation enhanced diffusion phenomenon affecting a volume diffusion mechanism of bubble transport. 9 refs., 3 figs., 2 tabs

  5. The quantitative analysis of silicon carbide surface smoothing by Ar and Xe cluster ions

    Science.gov (United States)

    Ieshkin, A. E.; Kireev, D. S.; Ermakov, Yu. A.; Trifonov, A. S.; Presnov, D. E.; Garshev, A. V.; Anufriev, Yu. V.; Prokhorova, I. G.; Krupenin, V. A.; Chernysh, V. S.

    2018-04-01

    The gas cluster ion beam technique was used for the silicon carbide crystal surface smoothing. The effect of processing by two inert cluster ions, argon and xenon, was quantitatively compared. While argon is a standard element for GCIB, results for xenon clusters were not reported yet. Scanning probe microscopy and high resolution transmission electron microscopy techniques were used for the analysis of the surface roughness and surface crystal layer quality. The gas cluster ion beam processing results in surface relief smoothing down to average roughness about 1 nm for both elements. It was shown that xenon as the working gas is more effective: sputtering rate for xenon clusters is 2.5 times higher than for argon at the same beam energy. High resolution transmission electron microscopy analysis of the surface defect layer gives values of 7 ± 2 nm and 8 ± 2 nm for treatment with argon and xenon clusters.

  6. 40Ar/39Ar and K-Ar age constraints on the timing of regional deformation, south coast of New South Wales, Lachlan Fold Belt: problems and implications

    International Nuclear Information System (INIS)

    Fergusson, C.L.; Phillips, D.

    2001-01-01

    Four slate samples from subduction complex rocks exposed on the south coast of New South Wales, south of Batemans Bay, were analysed by K-Ar and 40 Ar/ 39 Ar step-heating methods, One sample contains relatively abundant detrital muscovite flakes that are locally oblique to the regional cleavage in the rock, whereas the remaining samples appear to contain sparse detrital muscovite. Separates of detrital muscovite yielded plateau ages of 505 + 3 Ma and 513 + 3 Ma indicating that inheritance has not been eliminated by metamorphism and recrystallisation. Step-heating analyses of whole-rock chips from all four slate samples produced discordant apparent age spectra with 'saddle shapes' following young apparent ages at the lowest temperature increments. Elevated apparent ages associated with the highest temperature steps are attributed to the presence of variable quantities of detrital muscovite ( 40 Ar/ 39 Ar integrated ages of ca 455Ma, which are some 15-30 million years older than K-Ar ages for the same samples. These discrepancies suggest that the slates have also been affected by recoil loss/redistribution of 39 Ar, Ieading to anomalously old 40 Ar/ 39 Ar ages. Two other samples, from slaty tectonic melange and intensely cleaved slate, yielded average 40 Ar/ 39 Ar integrated ages of ca 424Ma, which are closer to associated mean K-Ar ages of 423 + 4Ma and 409 + 16Ma, respectively. Taking into account the potential influences of recoil loss/redistribution of 39 Ar and inheritance, the results from the latter samples suggest a maximum age of ca 440 Ma for deformation/metamorphism. The current results indicate that recoil and inheritance problems may also have affected whole-rock 40 Ar/ 39 Ar data reported from other regions of the Lachlan Fold Belt. Therefore, until these effects are adequately quantified, models for the evolution of the Lachlan Fold Belt, that are based on such whole-rock 40 Ar/ 39 Ar data, should be treated with caution. Copyright (2001) Geological

  7. Alignment and orientation of Ar+ in He+-Ar collisions

    International Nuclear Information System (INIS)

    Moudry, B.W.; Yenen, O.; Jaecks, D.H.

    1994-01-01

    We have measured the alignment and orientation parameters of the 2 F 7/2 0 and 2 F 5/2 0 states of Ar + formed in the two-electron process; He + +Ar→He(1s 2 )+Ar + (3p 4 4p'). These have been measured at a collision energy of 0.25 keV/amu and for scattering angles ranging from 0.94 to 3.75 . First, by comparing the orientation prameter for the Ar + [(3p 4 [ 1 D]4p' 2 F 7/2 0 ] and the Ar + [(3p 4 [ 1 D]4p' 2 F 5/2 0 ] states, we have experimentally determined the importance of the spin-dependent interactions for the present collision system, by testing the Percival-Seaton hypothesis of spin independence. If the Percival-Seaton hypothesis holds for this system, the orientation parameter should be J-independent. Secondly, the magnitude of the orientation prameter can be interpreted as resulting from the collective circulation of the unexcited 3p 4 electrons and the excited 4p electron. The direction of this collective circulation is compared to the propensity rule for colliding di-atom systems. (orig.)

  8. Simulations of Ar gas-puff Z-pinch radiation sources with double shells and central jets on the Z generator

    Science.gov (United States)

    Tangri, V.; Harvey-Thompson, A. J.; Giuliani, J. L.; Thornhill, J. W.; Velikovich, A. L.; Apruzese, J. P.; Ouart, N. D.; Dasgupta, A.; Jones, B.; Jennings, C. A.

    2016-10-01

    Radiation-magnetohydrodynamic simulations using the non-local thermodynamic equilibrium Mach2-Tabular Collisional-Radiative Equilibrium code in (r, z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1. In each pair, one of the shots had a central jet. The experimental trends in the Ar K-shell yield and power are reproduced in the calculations. However, the K-shell yield and power are significantly lower than the other three shots for the case of a double-shell puff of 1:1 mass ratio and no central jet configuration. Further simulations of a hypothetical experiment with the same relative density profile of this configuration, but higher total mass, show that the coupled energy from the generator and the K-shell yield can be increased to levels achieved in the other three configurations, but not the K-shell power. Based on various measures of effective plasma radius, the compression in the 1:1 mass ratio and no central jet case is found to be less because the plasma inside the magnetic piston is hotter and of lower density. Because of the reduced density, and the reduced radiation cooling (which is proportional to the square of the density), the core plasma is hotter. Consequently, for the 1:1 outer-to-inner shell mass ratio, the load mass controls the yield and the center jet controls the power.

  9. Fast reactor cover gas purification - The UK position

    Energy Technology Data Exchange (ETDEWEB)

    Thorley, A W

    1987-07-01

    The cover gas in the Prototype Fast Reactor (PFR) provides an inert gas blanket for both primary and secondary sodium circuits, ensures inert gas padding exists between the upper seals associated with penetrations through the reactor roof and provides argon to items of plant such as the control rods and the rotating shield and also to on line instruments such as the secondary circuit Katharometers. In order to meet these and other requirements purification of the argon cover gas is important to ensure: gas fed to purge gaps in the area of the magnetic hold device in the control rod mechanisms is not laden with sodium aerosols and reactive impurities (O{sub 2}, H{sub 2}) which could cause blocking both within the gaps and pipelines; gas phase detection systems which provide early warning of steam generator failures or oil ingress into the sodium are not affected by the presence of gaseous impurities such as H{sub 2}, CO/CO{sub 2} and CH{sub 4}; mass transfer processes involving both corrosion products and interstitial atoms cannot be sustained in the cover gas environment due to the presence of high levels of O{sub 2}, N{sub 2} and carburising gases; background levels of radioactivity (eg Xe 133) are sufficiently low to enable gas phase detection of failed fuel pins, and the primary circuit gas blanket activity is sufficiently reduced so that discharges to the atmosphere are minimised. This paper describes how the PFR cover gas purification system is coping with these various items and how current thinking regarding the design of cover gas purification systems for a Civil Demonstration Fast Reactor (CDFR), where larger gas volumes and higher levels of radioactivity may be involved, is being guided by current experience on PFR. The paper also briefly review the experimental work planned to study aerosol and caesium behaviour in cove gas environments and discusses the behaviour of those impurities such as Zn, oil and N{sub 2} which are potentially damaging if certain

  10. Fast reactor cover gas purification - The UK position

    International Nuclear Information System (INIS)

    Thorley, A.W.

    1987-01-01

    The cover gas in the Prototype Fast Reactor (PFR) provides an inert gas blanket for both primary and secondary sodium circuits, ensures inert gas padding exists between the upper seals associated with penetrations through the reactor roof and provides argon to items of plant such as the control rods and the rotating shield and also to on line instruments such as the secondary circuit Katharometers. In order to meet these and other requirements purification of the argon cover gas is important to ensure: gas fed to purge gaps in the area of the magnetic hold device in the control rod mechanisms is not laden with sodium aerosols and reactive impurities (O 2 , H 2 ) which could cause blocking both within the gaps and pipelines; gas phase detection systems which provide early warning of steam generator failures or oil ingress into the sodium are not affected by the presence of gaseous impurities such as H 2 , CO/CO 2 and CH 4 ; mass transfer processes involving both corrosion products and interstitial atoms cannot be sustained in the cover gas environment due to the presence of high levels of O 2 , N 2 and carburising gases; background levels of radioactivity (eg Xe 133) are sufficiently low to enable gas phase detection of failed fuel pins, and the primary circuit gas blanket activity is sufficiently reduced so that discharges to the atmosphere are minimised. This paper describes how the PFR cover gas purification system is coping with these various items and how current thinking regarding the design of cover gas purification systems for a Civil Demonstration Fast Reactor (CDFR), where larger gas volumes and higher levels of radioactivity may be involved, is being guided by current experience on PFR. The paper also briefly review the experimental work planned to study aerosol and caesium behaviour in cove gas environments and discusses the behaviour of those impurities such as Zn, oil and N 2 which are potentially damaging if certain levels are exceeded in operating

  11. Thermoregulated Nitric Cryosystem for Cooling Gas-Filled Detectors of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Zharkov I.P.

    2015-09-01

    Full Text Available Cryosystem for cooling and filling of gas-filled detectors of ionizing radiation with compressed inert gas on the basis of wide-nitrogen cryostat, which provides detetector temperature control in a range of 173 — 293 K and its stabilization with accuracy of ± 1°. The work was carried out within the Ukraine — NATO Program of Collaboration, Grant SfP #984655.

  12. 3 to 15 keV Ar+ induced Auger electron emission from Si and Ar

    International Nuclear Information System (INIS)

    Kempf, J.; Kaus, G.

    1977-01-01

    Ar + induced Auger electrons from Si and Ar were investigated at bombardment energies between 3-15 keV and target currents of a few μA. The Auger electron yields were compared with secondary ion yields of Si and Ar by simultaneous SIMS-AES measurements. In the ion induced Auger spectra of Si five Auger peaks and in the Ar spectra three Auger peaks were observed. The ion induced Auger electron yield of Si and Ar were found to be strongly dependent upon the primary ion energy. 'Bulk like' and 'atomic like' Auger transitions of ion induced Auger electrons of Si were observed. (orig.) [de

  13. Purification by molecular sieve of helium used as inert cover gas in nuclear reactors; Epuration de l'helium de couverture des reacteurs nucleaires par adsorption sur tamis moleculaire

    Energy Technology Data Exchange (ETDEWEB)

    Rozenberg, J; Kahan, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    A method carried out at fairly low temperatures (between -50 and -80 deg. C) has been studied for the purification of the helium used as cover gas for heavy water in reactors. The use of the 5A molecular sieve has been adopted because of its superiority over other adsorbents in this temperature range. The particular problems connected with adsorption under dynamic conditions have been dealt with separately. The nitrogen adsorption isotherms have been plotted and the heat of adsorption calculated. (authors) [French] Une methode d'epuration, a temperature moderement basse (comprise entre -50 et -80 deg. C) de l'helium servant de couverture inerte a l'eau lourde des reacteurs a ete etudiee. L'emploi au tamis moleculaire 5A a ete retenu pour la superiorite de celui-ci sur d'autres adsorbants dans ce domaine de temperatures. Les problemes particuliers a l'adsorption en regime dynamique ont ete separement traites. Les isothermes d'adsorption d'azote ont ete tracees et la chaleur d'adsorp. tion calculee. (auteurs)

  14. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Addai, Emmanuel Kwasi, E-mail: emmanueladdai41@yahoo.com; Gabel, Dieter; Krause, Ulrich

    2016-04-15

    Highlights: • Ignition sensitivity of a highly flammable dust decreases upon addition of inert dust. • Minimum ignition temperature of a highly flammable dust increases when inert concentration increase. • Minimum ignition energy of a highly flammable dust increases when inert concentration increase. • The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. - Abstract: The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%.

  15. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures

    International Nuclear Information System (INIS)

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-01-01

    Highlights: • Ignition sensitivity of a highly flammable dust decreases upon addition of inert dust. • Minimum ignition temperature of a highly flammable dust increases when inert concentration increase. • Minimum ignition energy of a highly flammable dust increases when inert concentration increase. • The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. - Abstract: The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%.

  16. Alternatives to argon for gas stopping volumes in the B194 neutron imager

    Energy Technology Data Exchange (ETDEWEB)

    Bleuel, D. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anderson, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Caggiano, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hall, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Johnson, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ratkiewicz, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rusnak, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-17

    In a recent experiment at Lawrence Berkeley National Laboratory, the 40Ar(d,p)41Ar excitation function between 3-7 MeV was measured, confirming a previous estimation that there may be an intolerable radiation dose from 41Ar production by slowing to rest 6.74 MeV deuterons in the gas cell of the neutron imaging facility being constructed in B194. Gas alternatives to argon are considered, including helium, nitrogen (N2), neon, sulfur hexafluoride (SF6), krypton, and xenon, as well as high atomic number solid backings such as tantalum.

  17. Numerical and experimental study on laminar round free jet of Ar discharging into stagnant air

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Hishida, Makoto; Kunugi, Tomoaki

    1990-01-01

    The objective of the present study is to investigate numerically and experimentally the behavior of the fluid flow and the mass transfer of argon gas (Ar) laminar round jet discharging into stagnant air along the gravity force. The SIMPLE method and two differential numerical schemes of PLDS and QUICK are used in the TEAM code modified by adding the binary diffusion equation. The solution domain is comprised of 80X40 grids of uniform size. As the result, the following were obtained: The half radius of Ar mass fraction obtained by QUICK was in good agreement with experimental result. The half radii of axial velocity and Ar mass fraction obtained by PLDS were larger than those by QUICK due to numerical viscosity. Numerical analyses by PLDS and QUICK schemes agreed well with experimental results on centerline Ar mass fraction. Computational times of PLDS and QUICK are about 40 min. and 120 min. respectively by FACOM VP100 computer in JAERI. (author)

  18. Androgen Receptor-Mediated Growth Suppression of HPr-1AR and PC3-Lenti-AR Prostate Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Young-Chae Kim

    Full Text Available The androgen receptor (AR mediates the developmental, physiologic, and pathologic effects of androgens including 5α-dihydrotestosterone (DHT. However, the mechanisms whereby AR regulates growth suppression and differentiation of luminal epithelial cells in the prostate gland and proliferation of malignant versions of these cells are not well understood, though they are central to prostate development, homeostasis, and neoplasia. Here, we identify androgen-responsive genes that restrain cell cycle progression and proliferation of human prostate epithelial cell lines (HPr-1AR and PC3-Lenti-AR, and we investigate the mechanisms through which AR regulates their expression. DHT inhibited proliferation of HPr-1AR and PC3-Lenti-AR, and cell cycle analysis revealed a prolonged G1 interval. In the cell cycle, the G1/S-phase transition is initiated by the activity of cyclin D and cyclin-dependent kinase (CDK complexes, which relieve growth suppression. In HPr-1AR, cyclin D1/2 and CDK4/6 mRNAs were androgen-repressed, whereas CDK inhibitor, CDKN1A, mRNA was androgen-induced. The regulation of these transcripts was AR-dependent, and involved multiple mechanisms. Similar AR-mediated down-regulation of CDK4/6 mRNAs and up-regulation of CDKN1A mRNA occurred in PC3-Lenti-AR. Further, CDK4/6 overexpression suppressed DHT-inhibited cell cycle progression and proliferation of HPr-1AR and PC3-Lenti-AR, whereas CDKN1A overexpression induced cell cycle arrest. We therefore propose that AR-mediated growth suppression of HPr-1AR involves cyclin D1 mRNA decay, transcriptional repression of cyclin D2 and CDK4/6, and transcriptional activation of CDKN1A, which serve to decrease CDK4/6 activity. AR-mediated inhibition of PC3-Lenti-AR proliferation occurs through a similar mechanism, albeit without down-regulation of cyclin D. Our findings provide insight into AR-mediated regulation of prostate epithelial cell proliferation.

  19. Comparative study of the Ar and He atmospheric pressure plasmas on E-cadherin protein regulation for plasma-mediated transdermal drug delivery

    Science.gov (United States)

    Lee, Hyun Young; Hae Choi, Jeong; Hong, Jin Woo; Kim, Gyoo Cheon; Lee, Hae June

    2018-05-01

    The effects of argon plasma (ArP) and helium plasma (HeP) jets on E-cadherin protein function have been tested in order to choose the working gas for a better plasma-mediated transdermal drug delivery. The plasma-mediated changes of the E-cadherin function and the skin penetration efficacies of epidermal growth factor (EGF) were monitored in vitro using HaCaT human keratinocytes and in vivo using hairless mice. The ArP showed higher efficacy for E-cadherin regulation and EGF absorption than HeP under the same applied voltage and the same gas flow rate. The ArP generates higher volume power density, higher discharge current peak, and more reactive species than HeP, especially for OH with the same operating parameters. Moreover, the effect of ArP on E-cadherin function was blocked by the use of a grounded metal mesh. Taken together, this study presents the possibility that the synergetic effect of negative charges with radicals plays an important role in plasma-mediated E-cadherin regulation, which leads to enhanced transdermal drug delivery.

  20. Cover gas box for handling sodium

    International Nuclear Information System (INIS)

    Kuenstler, K.; Betzl, K.

    1978-01-01

    An inert atmosphere box has been developed to work with sodium experimentally and analytically. The volumen of the box is 0.6 m 3 . A blower mounted inside the work chamber constantly circulates the argon from the work chamber through a gas purification system (nickel-catalyst 6525 and molecular sieve 4A). The flow rate is 450 l/h. The box is equipped with neoprene gloves. The glove ports can be closed with interior flanges. The work chamber is constantly kept to a low superpressure of 25 mm water gange. In a bypass the oxygen concentration is measured with the OXYLYT-electrolyte cell and the water vapour concentration with the KEIDEL-electrolytic hygrometer. During long-term operation oxygen levels of 35 vpm and water vapour levels of 50 vpm can be hold even when the gloves are not covered. By means of putting a vessel with liquid sodium in the work chamber oxygen levels of 8 vpm and water vapour levels of 20 vpm can be attained for short times. The inert atmosphere purity can be improved by means of increasing the gas flow rate. (author)

  1. Analysis list: Ar [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Ar Gonad,Kidney,Prostate + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/targe...t/Ar.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Ar.5.tsv http://dbarchive.biosciencedbc.jp/...kyushu-u/mm9/target/Ar.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Ar.Gonad.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Ar.Kidney.tsv,http://dbarchive.bioscienced...bc.jp/kyushu-u/mm9/colo/Ar.Prostate.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Gonad.gml,http://dbarchive.bioscience

  2. Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum

    Science.gov (United States)

    Ray, Siba P.; Liu, Xinghua

    2000-01-01

    An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

  3. An investigation of Ar metastable state density in low pressure dual-frequency capacitively coupled argon and argon-diluted plasmas

    International Nuclear Information System (INIS)

    Liu, Wen-Yao; Xu, Yong; Peng, Fei; Guo, Qian; Li, Xiao-Song; Zhu, Ai-Min; Liu, Yong-Xin; Wang, You-Nian

    2015-01-01

    An tunable diode laser absorption spectroscopy has been used to determine the Ar*( 3 P 2 ) and Ar*( 3 P 0 ) metastable atoms densities in dual-frequency capacitively coupled plasmas. The effects of different control parameters, such as high-frequency power, gas pressure and content of Ar, on the densities of two metastable atoms and electron density were discussed in single-frequency and dual-frequency Ar discharges, respectively. Particularly, the effects of the pressure on the axial profile of the electron and Ar metastable state densities were also discussed. Furthermore, a simple rate model was employed and its results were compared with experiments to analyze the main production and loss processes of Ar metastable states. It is found that Ar metastable state is mainly produced by electron impact excitation from the ground state, and decayed by diffusion and collision quenching with electrons and neutral molecules. Besides, the addition of CF 4 was found to significantly increase the metastable destruction rate by the CF 4 quenching, especially for large CF 4 content and high pressure, it becomes the dominant depopulation process

  4. A gas thermometer for vapor pressure measurements

    Science.gov (United States)

    Rusin, A. D.

    2008-08-01

    The pressure of an inert gas over the range 400 1000 K was measured on a tensimetric unit with a quartz membrane pressure gauge of enhanced sensitivity. It was shown that a reactor with a membrane null gauge could be used as a gas thermometer. The experimental confidence pressure and temperature intervals were 0.07 torr and 0.1 K at a significance level of 0.05. A Pt-Pt/10% Rh thermocouple was calibrated; the results were approximated by a polynomial of degree five. The error in temperature calculations was 0.25 K.

  5. Average energy expended per ion pair, exciton enhanced ionization (Jesse effect), electron drift velocity, average electron energy and scintillation in rare gas liquids

    International Nuclear Information System (INIS)

    Doke, T.; Hitachi, A.; Hoshi, Y.; Masuda, K.; Hamada, T.

    1977-01-01

    Precise measurements of W-values, the average energy expended per electron-hole pair in liquid Ar and Xe, were made by the electron-pulse method, and that in liquid Kr by the steady conduction current method. The results showed that the W-values were clearly smaller than those in gaseous Ar, Xe and Kr as predicted by Doke. The results can be explained by the conduction bands which exist in these rare gas liquids as well as in the solid state. The enhanced ionization yield was observed for Xe-doped liquid Ar, and it was attributed to the ionizing excitation transfer process from Ar excitons to doped Xe. This is very similar to the Jesse effect in the gas phase. The saturated value of the enhanced ionization was in good agreement with the theoretical value, and it provides strong evidence for the existence of the exciton states in liquid Ar. Fano factors in liquid Ar, Kr, Xe and Xe-doped liquid Ar have been estimated from the Fano Formula, and they were smaller than those in the gas phase. The drift velocity of electrons in liquid Ar, liquid Ar-gas mixtures and liquid Xe have been measured with gridded ionization chambers. The average electron energy in liquid Ar has been measured. The electron-induced scintillations of liquid Xe and Ar have been studied. (Kato, T.)

  6. Ramon Llull's Ars Magna

    DEFF Research Database (Denmark)

    Jensen, Thessa

    2017-01-01

    might be a viable and valuable approach to understand some of the challenges and possibilities found in computer science and ethics. Vita Llull was born in 1232 in Palma de Mallorca, a melting pot for different cul-tures and religions at the time. Being educated at the king’s court, Llull learned...... of belief, life, and God as such. Computer Science? Llull was an inspiration for later scientists, most notably Giordano Bruno, Athanasius Kirchner, Agrippa of Nettesheim and Gottfried Wilhelm Leibniz, whose dissertation De Arte Combinatoria begins with a discussion of Llull’s Ars Magna. Umberto Eco also......-ple of Mallorca have since tried to have Llull canonised as a saint. Ars Magna A few years before his death Llull began to write the most thorough and final version of his Ars Magna, the Ars Generalis Ultima [3]. The books explain the different figures of the Ars, its principles, questions, descriptions...

  7. Method for high temperature mercury capture from gas streams

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2006-04-25

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  8. Fabrication of inert matrices for heterogeneous transmutation. EFTTRA-T2 (RAS 2) irradiation programme

    International Nuclear Information System (INIS)

    Boshoven, J.G.; Hein, H.; Konings, R.J.M.

    1996-07-01

    This report describes the fabrication of targets containing inert matrices for the heterogeneous transmutation of plutonium and minor actinides. These targets will be irradiated in the EFTTRA-T2 (RAS-2) irradiation programme. The selection, preparation and characterization of the inert matrices and fabrication and loading of the irradiation capsules are discussed. (orig.)

  9. Non-equilibrium plasma reactor for natrual gas processing

    International Nuclear Information System (INIS)

    Shair, F.H.; Ravimohan, A.L.

    1974-01-01

    A non-equilibrium plasma reactor for natural gas processing into ethane and ethylene comprising means of producing a non-equilibrium chemical plasma wherein selective conversion of the methane in natural gas to desired products of ethane and ethylene at a pre-determined ethane/ethylene ratio in the chemical process may be intimately controlled and optimized at a high electrical power efficiency rate by mixing with a recycling gas inert to the chemical process such as argon, helium, or hydrogen, reducing the residence time of the methane in the chemical plasma, selecting the gas pressure in the chemical plasma from a wide range of pressures, and utilizing pulsed electrical discharge producing the chemical plasma. (author)

  10. Timing of Hydrocarbon Fluid Emplacement in Sandstone Reservoirs in Neogene in Huizhou Sag, Southern China Sea, by Authigenic Illite 40Ar- 39Ar Laser Stepwise Heating

    Science.gov (United States)

    Hesheng, Shi; Junzhang, Zhu; Huaning, Qiu; yu, Shu; Jianyao, Wu; Zulie, Long

    Timing of oil or gas emplacements is a new subject in isotopic geochronology and petroleum geology. Hamilton et al. expounded the principle of the illite K-Ar age: Illite is often the last or one of the latest mineral cements to form prior to hydrocarbon accumulation. Since the displacement of formation water by hydrocarbons will cause silicate diagenesis to cease, K-Ar ages for illite will constrain the timing of this event, and also constrain the maximum age of formation of the trap structure. In this study, the possibility of authigenic illites 40Ar- 39Ar dating has been investigated. The illite samples were separated from the Tertiary sandstones in three rich oil reservoir belts within the Huizhou sag by cleaning, fracturing by cycled cooling-heating, soxhlet-extraction with solvents of benzene and methanol and separating with centrifugal machine. If oil is present in the separated samples, ionized organic fragments with m/e ratios of 36 to 40 covering the argon isotopes will be yielded by the ion source of a mass spectrometer, resulting in wrong argon isotopic analyses and wrong 40Ar- 39Ar ages. The preliminary experiments of illite by heating did show the presence of ionized organic fragments with m/e ratios of 36 to 44. In order to clean up the organic gases completely and obtain reliable analysis results, a special purification apparatus has been established by Qiu et al. and proved valid by the sequent illite analyses. All the illite samples by 40Ar- 39Ar IR-laser stepwise heating yield stair-up age spectra in lower laser steps and plateaux in higher laser steps. The youngest apparent ages corresponding to the beginning steps are reasonable to be interpreted for the hydrocarbon accumulation ages. The weighted mean ages of the illites from the Zhuhai and Zhujiang Formations are (12.1 ± 1.1) Ma and (9.9 ± 1.2) Ma, respectively. Therefore, the critical emplacement of petroleum accumulation in Zhujiang Formation in Huizhou sag took place in ca 10 Ma. Late

  11. Forming gas treatment of lithium ion battery anode graphite powders

    Science.gov (United States)

    Contescu, Cristian Ion; Gallego, Nidia C; Howe, Jane Y; Meyer, III, Harry M; Payzant, Edward Andrew; Wood, III, David L; Yoon, Sang Young

    2014-09-16

    The invention provides a method of making a battery anode in which a quantity of graphite powder is provided. The temperature of the graphite powder is raised from a starting temperature to a first temperature between 1000 and 2000.degree. C. during a first heating period. The graphite powder is then cooled to a final temperature during a cool down period. The graphite powder is contacted with a forming gas during at least one of the first heating period and the cool down period. The forming gas includes H.sub.2 and an inert gas.

  12. Mixed PWR core loadings with inert matrix Pu-fuel assemblies

    International Nuclear Information System (INIS)

    Stanculescu, A.; Kasemeyer, U.; Paratte, J.-M.; Chawla, R.

    1999-01-01

    The most efficient way to enhance plutonium consumption in light water reactors is to eliminate the production of plutonium all together. This requirement leads to fuel concepts in which the uranium is replaced by an inert matrix. At PSI, studies have focused on employing ZrO 2 as inert matrix. Adding a burnable poison to such a fuel proves to be necessary. As a result of scoping studies, Er 2 O 3 was identified as the most suitable burnable poison material. The results of whole-core three-dimensional neutronics analyses indicated, for a present-day 1000 MW e pressurised water reactor, the feasibility of an asymptotic equilibrium four-batch cycle fuelled solely with the proposed PuO 2 -Er 2 O 3 -ZrO 2 inert matrix fuel (IMF). The present paper presents the results of more recent investigations related to 'real-life' situations, which call for transition configurations in which mixed IMF and UO 2 assembly loadings must be considered. To determine the influence of the introduction of IMF assemblies on the characteristics of a UO 2 -fuelled core, three-dimensional full-core calculations have been performed for a present-day 1000 MW e PWR containing up to 12 optimised IMF assemblies. (author)

  13. VUV spectroscopy of rare gas van der Waals dimers

    International Nuclear Information System (INIS)

    Dehmer, P.M.; Pratt, S.T.

    1982-01-01

    We have undertaken a systematic study of the photoionization spectra of the homonuclear and heteronuclear rare gas dimers in order to better understand the nature of the bonding in the Rydberg states adnd ions of these molecules. We have obtained results for Ar 2 , Kr 2 , Xe 2 , NeAr, NeKr, NeXe, ArKr, ArXe, and KrXe. Of the remaining dimer species (Ne 2 and the Herare gas dimers), only Ne 2 has been studied using photoionization mass spectrometry. The results of the present series of experiments provide information both on the excited states of the neutral dimers and on the ground and excited states of the dimer ions. Using the data obtained in these measurements, we are able to compile for the first time a nearly complete list of ground state dissociation energies for the homonuclear and heteronuclear rare gas dimer ions. Somewhat less complete results are obtained for the excited states of these species. The observed trends in binding energy provide an excellent example of the systematic changes that occur as a result of changes in atomic orbital energies, polarizability, and internuclear distance, and these trends can be explained qualitatively in terms of simple molecular orbital theory

  14. The celecoxib derivatives AR-12 and AR-14 induce autophagy and clear prion-infected cells from prions.

    Science.gov (United States)

    Abdulrahman, Basant A; Abdelaziz, Dalia; Thapa, Simrika; Lu, Li; Jain, Shubha; Gilch, Sabine; Proniuk, Stefan; Zukiwski, Alexander; Schatzl, Hermann M

    2017-12-14

    Prion diseases are fatal infectious neurodegenerative disorders that affect both humans and animals. The autocatalytic conversion of the cellular prion protein (PrP C ) into the pathologic isoform PrP Sc is a key feature in prion pathogenesis. AR-12 is an IND-approved derivative of celecoxib that demonstrated preclinical activity against several microbial diseases. Recently, AR-12 has been shown to facilitate clearance of misfolded proteins. The latter proposes AR-12 to be a potential therapeutic agent for neurodegenerative disorders. In this study, we investigated the role of AR-12 and its derivatives in controlling prion infection. We tested AR-12 in prion infected neuronal and non-neuronal cell lines. Immunoblotting and confocal microscopy results showed that AR-12 and its analogue AR-14 reduced PrP Sc levels after only 72 hours of treatment. Furthermore, infected cells were cured of PrP Sc after exposure of AR-12 or AR-14 for only two weeks. We partially attribute the influence of the AR compounds on prion propagation to autophagy stimulation, in line with our previous findings that drug-induced stimulation of autophagy has anti-prion effects in vitro and in vivo. Taken together, this study demonstrates that AR-12 and the AR-14 analogue are potential new therapeutic agents for prion diseases and possibly protein misfolding disorders involving prion-like mechanisms.

  15. A steam inerting system for hydrogen disposal for the Vandenberg Shuttle

    Science.gov (United States)

    Belknap, Stuart B.

    1988-01-01

    A two-year feasibility and test program to solve the problem of unburned confined hydrogen at the Vandenberg Space Launch Complex Six (SLC-6) during Space Shuttle Main Engine (SSME) firings is discussed. A novel steam inerting design was selected for development. Available sound suppression water is superheated to flash to steam at the duct entrance. Testing, analysis, and design during 1987 showed that the steam inerting system (SIS) solves the problem and meets other flight-critical system requirements. The SIS design is complete and available for installation at SLC-6 to support shuttle or derivative vehicles.

  16. Measurement of 37Ar to support technology for On-Site Inspection under the Comprehensive Nuclear-Test-BanTreaty

    Science.gov (United States)

    Aalseth, C. E.; Day, A. R.; Haas, D. A.; Hoppe, E. W.; Hyronimus, B. J.; Keillor, M. E.; Mace, E. K.; Orrell, J. L.; Seifert, A.; Woods, V. T.

    2011-10-01

    On-Site Inspection (OSI) is a key component of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Measurements of radionuclide isotopes created by an underground nuclear explosion are a valuable signature of a Treaty violation. Argon-37 is produced by neutron interaction with calcium in soil, 40Ca( n, α) 37Ar. For OSI, the 35-day half-life of 37Ar provides both high specific activity and sufficient time for completion of an inspection before decay limits sensitivity. This paper presents a low-background internal-source gas proportional counter with an 37Ar measurement sensitivity level equivalent to 45 mBq/SCM in wholeair.

  17. Electronic Spectroscopy of B Atoms and B2 Molecules Isolated in Para-H2, Normal-D2, Ne, Ar, Kr, and Xe Matrices

    National Research Council Canada - National Science Library

    Tam, Simon

    2000-01-01

    ...), Ne, Ar, Kr, and Xe matrices, and of B2 molecules in Ne, Ar, Kr, and Xe matrices. The 2s(sup 2)3s((sup 2)S) left arrow 2s(sup 2)2p((sup 2)P) B atom Rydberg absorption suffers large gas-to-matrix blue shifts, increasing...

  18. Effective ionization coefficients, electron drift velocities, and limiting breakdown fields for gas mixtures of possible interest to particle detectors

    International Nuclear Information System (INIS)

    Datskos, P.G.

    1991-01-01

    We have measured the gas-density, N, normalized effective ionization coefficient, bar a/N, and the electron drift velocity, w, as a function of the density-reduced electric field, E/N, and obtained the limiting, (E/N) lim , value of E/N for the unitary gases Ar, CO 2 , and CF 4 , the binary gas mixtures CO 2 :Ar (20: 80), CO 2 :CH 4 (20:80), and CF 4 :Ar (20:80), and the ternary gas mixtures CO 2 :CF 4 :Ar (10:10:80) and H 2 O: CF 4 :Ar (2:18:80). Addition of the strongly electron thermalizing gas CO 2 or H 2 O to the binary mixture CF 4 :Ar (1)''cools'' the mixture (i.e., lowers the electron energies), (2) has only a small effect on the magnitude of w(E/N) in the E/N range employed in the particle detectors, and (3) increases bar a/N for E/N ≥ 50 x 10 -17 V cm 2 . The increase in bar a/N, even though the electron energies are lower in the ternary mixture, is due to the Penning ionization of CO 2 (or H 2 O) in collisions with excited Ar* atoms. The ternary mixtures -- being fast, cool, and efficient -- have potential for advanced gas-filled particle detectors such as those for the SCC muon chambers. 17 refs., 8 figs., 1 tab

  19. The injection of inert gas ions into solids: their trapping and escape

    International Nuclear Information System (INIS)

    Carter, G.; Armour, D.G.; Donnelly, S.E.; Ingram, D.C.; Webb, R.P.

    1980-01-01

    The first part of this contribution will review experimental studies of the trapping probabilities of ions injected into solids as a function of ion energy and indicate how the data can be modelled theoretically. It will be demonstrated that trapping is a two stage process, the first involving penetration into the solid and the second requiring atom dissolution and experimental evidence will be cited to show how the latter process may be dominant for light ions which create little radiation damage. For low ion fluences, injected atoms are generally trapped in isolation but as fluence increases gas-defect complexes are formed and it will be shown how post bombardment thermal evaluation studies can provide evidence for the growth of these complexes. Concomitant with trapping however, dissolved gas may be evolved from the solid by some form of sputtering process, sometimes by mechanisms much more efficient than congruent sputtering of the solid together with the trapped species. Measurements of the trapped atom concentration-ion fluence behaviour and of the evolution of one initially trapped species by bombardment with a second species provide information on the physical processes involved in trapped atom sputtering and upon the mechanism of gas incorporation saturation and experimental studies in this area, together with some first approximation theoretical investigations will be discussed. It will be shown that an important mechanism in dictating incorporation saturation, in addition to sputtering, is the atomic saturation of the solid by the implant. (author)

  20. Status of the inert matrix fuel program at PSI

    International Nuclear Information System (INIS)

    Ledergerber, G.; Degueldre, C.; Kasemeyer, U.; Stanculescu, A.; Paratte, J.M.; Chawla, R.

    1997-01-01

    Incineration of plutonium by a once-through cycle in LWRs utilising an inert matrix based fuel may prove to be an attractive way of making use of the energy of fissile plutonium and reducing both the hazard potential and the volumes of the waste. Yttria stabilised zirconia forms a solid solution with oxides of rare earth elements (e.g. erbium, cerium) and some actinides. The small absorption cross section, the excellent stability under irradiation, and the insolubility in acids and water recommends this material as an inert matrix. Neutronics calculations with erbium as burnable poison show that these compositions would be optimal from the reactivity point of view. A fuel element with an improved reactivity behaviour over its life cycle has been designed for possible introduction into a heterogeneous LWR core. (author). 16 refs., 1 tab., 10 figs

  1. Improved gas mixtures for gas-filled particle detectors

    Science.gov (United States)

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    Improved binary and tertiary gas mixture for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below about 0.5 eV; whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  2. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    Science.gov (United States)

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  3. Landfill gas in the Dutch perspective

    International Nuclear Information System (INIS)

    Scheepers, M.J.J.

    1991-01-01

    Until 1986 landfill gas had a considerable value because of the relative high energy prices. It appeared also that landfill gas was formed in large quantities. However after the collapse of the energy prices in 1986 many new landfill gas projects were delayed or stopped. Recently, the gas emissions on landfills have attracted attention again, but now because of various environmental aspects. With respect to landfill management a well controlled gas extraction seems to be necessary. Utilisation of the gas is still favourable for economic reasons and because of energy savings. The Dutch policy for the next ten years will be reduction of the amount of waste by prevention and recycling. The organic fraction of the municipal solid waste (refuse from vegetables, fruit and garden), obtained by separation in households, will be composted. The other part will be burnt in incinerators. Only the remaining inert refuse will be deposited on landfills. (author)

  4. Effect of Shielding Gas on the Properties of AW 5083 Aluminum Alloy Laser Weld Joints

    Science.gov (United States)

    Vyskoč, Maroš; Sahul, Miroslav; Sahul, Martin

    2018-04-01

    The paper deals with the evaluation of the shielding gas influence on the properties of AW 5083 aluminum alloy weld joints produced with disk laser. Butt weld joints were produced under different shielding gas types, namely Ar, He, Ar + 5 vol.% He, Ar + 30 vol.% He and without shielding weld pool. Light and electron microscopy, computed tomography, microhardness measurements and tensile testing were used for evaluation of weld joint properties. He-shielded weld joints were the narrowest ones. On the other hand, Ar-shielded weld joints exhibited largest weld width. The choice of shielding gas had significant influence on the porosity level of welds. The lowest porosity was observed in weld joint produced in Ar with the addition of 5 vol.% He shielding atmosphere (only 0.03%), while the highest level of porosity was detected in weld joint produced in pure He (0.24%). Except unshielded aluminum alloy weld joint, the lowest tensile strength was recorded in He-shielded weld joints. On the contrary, the highest average microhardness was measured in He-shielded weld joints.

  5. Tungsten Inert Gas and Friction Stir Welding Characteristics of 4-mm-Thick 2219-T87 Plates at Room Temperature and -196 °C

    Science.gov (United States)

    Lei, Xuefeng; Deng, Ying; Yin, Zhimin; Xu, Guofu

    2014-06-01

    2219-T87 aluminum alloy is widely used for fabricating liquid rocket propellant storage tank, due to its admirable cryogenic property. Welding is the dominant joining method in the manufacturing process of aerospace components. In this study, the tungsten inert gas welding and friction stir welding (FSW) characteristics of 4-mm-thick 2219-T87 alloy plate at room temperature (25 °C) and deep cryogenic temperature (-196 °C) were investigated by property measurements and microscopy methods. The studied 2219 base alloy exhibits a low strength plane anisotropy and excellent room temperature and cryogenic mechanical properties. The ultimate tensile strength values of TIG and FSW welding joints can reach 265 and 353 MPa at room temperature, and 342 and 438 MPa at -196 °C, respectively. The base metal consists of elongated deformed grains and many nano-scaled θ (Al2Cu) aging precipitates. Fusion zone and heat-affected zone (HAZ) of the TIG joint are characterized by coarsening dendritic grains and equiaxed recrystallized grains, respectively. The FSW-welded joint consists of the weld nugget zone, thermo-mechanically affected zone (TMAZ), and HAZ. In the weld nugget zone, a micro-scaled sub-grain structure is the main microstructure characteristic. The TMAZ and HAZ are both characterized by coarsened aging precipitates and elongated deformed grains. The excellent FSW welding properties are attributed to the preservation of the working structures and homogenous chemical compositions.

  6. Gain limits of a Thick GEM in high-purity Ne, Ar and Xe

    CERN Document Server

    Miyamoto, J; Peskov, V

    2010-01-01

    The dependence of the avalanche charge gain in Thick Gas Electron Multipliers (THGEM) on the purity of Ne, Ar and Xe filling gases was investigated. The gain, measured with alpha-particles in standard conditions (atmospheric pressure, room temperature), was found to considerably drop in gases purified by non-evaporable getters. On the other hand, small N2 admixtures to noble gases resulted in high reachable gains. The results are of general relevance in the operation of gas-avalanche detectors in noble gases, particularly that of two-phase cryogenic detectors for rare events.

  7. Use of gas mixture electroluminescence for optical data readout from wire chambers

    International Nuclear Information System (INIS)

    Polyakov, V.A.; Rykalin, V.I.; Tskhadadze, Eh.G.

    1988-01-01

    The radiation spectra, the values of electroluminescence yield and coefficients of gas amplification of Ar and Ne mixture with inorganic and organic additions in a wire chamber operating under proportional and self-quenching streamer conditions are measured. Maximum light yield: 2x10 7 photons for Ar+acetone+white spirit gas mixture in a proportional regime and 1.1x10 7 photons for Ar+CO 2 + ethyl alcohol+ white spirit in self-quenching streamer regime is obtained. Three methods of optical data readout from the wire chambers are tested. The best results are obtained when spectrum shifting bands and fibers are placed behind the chamber cathode planes

  8. Kinetic analysis of rare gas metastable production and optically pumped Xe lasers

    Science.gov (United States)

    Demyanov, A. V.; Kochetov, I. V.; Mikheyev, P. A.; Azyazov, V. N.; Heaven, M. C.

    2018-01-01

    Optically pumped all-rare-gas lasers use metastable rare gas atoms as the lasing species in mixtures with He or Ar buffer gas. The metastables are generated in a glow discharge, and we report model calculations for the optimal production of Ne*, Ar*, Kr* and Xe*. Discharge efficiency was estimated by solving the Boltzmann equation. Laser efficiency, gain and output power of the CW optically pumped Xe laser were assessed as functions of heavier rare gas content, pressure, optical pump intensity and the optical path length. It was found that, for efficient operation the heavier rare gas content has to be of the order of one percent or less, and the total pressure—in the range 0.3-1.5 atm. Output power and specific discharge power increase approximately linearly with pump intensity over the output range from 300-500 W cm-2. Ternary mixtures Xe:Ar:He were found to be the most promising. Total laser efficiency was found to be nearly the same for pumping the 2p8 or 2p9 state, reaching 61%-70% for a pump intensity of ~720 W cm-2 when the Xe fraction was in the range 0.001 ÷ 0.01 and Ar fraction—0.1 ÷ 0.5. However, when the 2p8 state was pumped, the maximum total efficiency occurred at larger pressures than for pumping of the 2p9 state. The discharge power density required to sustain a sufficient Xe* number density was in the range of tens of watts per cubic centimeter for 50% Ar in the mixture.

  9. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 2: Advanced energy conversion systems. Part 1: Open-cycle gas turbines

    Science.gov (United States)

    Brown, D. H.; Corman, J. C.

    1976-01-01

    Ten energy conversion systems are defined and analyzed in terms of efficiency. These include: open-cycle gas turbine recuperative; open-cycle gas turbine; closed-cycle gas turbine; supercritical CO2 cycle; advanced steam cycle; liquid metal topping cycle; open-cycle MHD; closed-cycle inert gas MHD; closed-cycle liquid metal MHD; and fuel cells. Results are presented.

  10. 10 CFR 50.44 - Combustible gas control for nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... with Mark III type containments and all pressurized water reactors with ice condenser containments must... condenser containments that do not rely upon an inerted atmosphere inside containment to control combustible... containment atmosphere following a significant beyond design-basis accident for combustible gas control and...

  11. Human biomonitoring of aluminium after a single, controlled manual metal arc inert gas welding process of an aluminium-containing worksheet in nonwelders.

    Science.gov (United States)

    Bertram, Jens; Brand, Peter; Hartmann, Laura; Schettgen, Thomas; Kossack, Veronika; Lenz, Klaus; Purrio, Ellwyn; Reisgen, Uwe; Kraus, Thomas

    2015-10-01

    Several existing field studies evaluate aluminium welding works but no thoroughly controlled exposure scenario for welding fume has been described yet. This study provides information about the uptake and elimination of aluminium from welding fumes under controlled conditions. In the Aachen Workplace Simulation Laboratory, we are able to generate welding fumes of a defined particle mass concentration. We exposed 12, until then occupationally unexposed participants with aluminium-containing welding fumes of a metal inert gas (MIG) welding process of a total dust mass concentration of 2.5 mg/m(3) for 6 h. Room air filter samples were collected, and the aluminium concentration in air derived. Urine and plasma samples were collected directly before and after the 6-h lasting exposure, as well as after 1 and 7 days. Human biomonitoring methods were used to determine the aluminium content of the samples with high-resolution continuum source atomic absorption spectrometry. Urinary aluminium concentrations showed significant changes after exposure compared to preexposure levels (mean t(1) (0 h) 13.5 µg/L; mean t(2) (6 h) 23.5 µg/L). Plasma results showed the same pattern but pre-post comparison did not reach significance. We were able to detect a significant increase of the internal aluminium burden of a single MIG aluminium welding process in urine, while plasma failed significance. Biphasic elimination kinetic can be observed. The German BAT of 60 µg/g creatinine was not exceeded, and urinary aluminium returned nearly to baseline concentrations after 7 days.

  12. Durable regenerable sorbent pellets for removal of hydrogen sulfide coal gas

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1999-01-01

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  13. A compilation of 40Ar-39 and K-Ar ages: report 25

    International Nuclear Information System (INIS)

    Hunt, P.A.; Roddick, J.C.

    1996-01-01

    Twenty-three 40 Ar- 39 Ar age determinations (including two potassium-argon analyses) carried out by the Geological Survey of Canada are reported. Each age determination is accompanied by a description of the rock and mineral concentrate used; brief interpretative comments regarding the geological significance of each age are also provided where possible. The experimental procedures employed are described in outline. An index of all Geological Survey of Canada K-Ar age determinations published in this format has been prepared using NTS quadrangles as the primary reference. (author). 6 refs., 2 tabs., 1 fig

  14. Viability of inert matrix fuel in reducing plutonium amounts in reactors

    International Nuclear Information System (INIS)

    2006-08-01

    Reactors worldwide have produced more than 2000 tonnes of plutonium, contained in spent fuel or as separated forms through reprocessing. Disposition of fissile materials has become a primary concern of nuclear non-proliferation efforts. There is a significant interest in IAEA Member States to develop proliferation resistant nuclear fuel cycles for incineration of plutonium such as inert matrix fuels (IMFs). The present report summarises R and D work on inert matrix fuel for plutonium and (to a lesser extent) minor actinide stock-pile reduction, and discusses the possible strategies to include inert matrix fuel approaches to the nuclear fuel cycle. The publication reviews the status of potential IMF candidates and describes several identified candidate materials for both fast and thermal reactors: MgO, ZrO2, SiC, Zr alloy, SiAl, ZrN; some of these have undergone test irradiations and post-irradiation examination. Also discussed are modelling of IMF fuel performance and safety analysis. System studies have identified strategies for both implementation of IMF fuel as homogeneous or heterogeneous phases, as assemblies or core loadings and in existing reactors in the shorter term, as well as in new reactors in the longer term

  15. Anode and cathode geometry and shielding gas interdependence in GTAW

    International Nuclear Information System (INIS)

    Key, J.F.

    1979-01-01

    Parametric analyses and high-speed photography of the interdependence of electrode (cathode) tip geometry, shielding gas composition, and groove (anode) geometry indicate that spot-on-plate tests show that blunt cathode shapes have penetration effects similar to addition of a high ionization potential inert gas (such as helium) to the argon shielding gas. Electrode shape and shielding gas composition effects are not synergistic. The time required to develop a given penetration is a function of anode and cathode geometry and shielding gas composition, in addition to other essential welding variables. Spot-on-plate tests are a valid analysis of radical pulsed GTAW. Bead-on-plate tests are a valid analysis of mild pulsed or constant current GTAW

  16. High-precision 40Ar/39AR age of the gas emplacement into the Songliao Basin

    NARCIS (Netherlands)

    Qiu, H.N.; Wu, H.Y.; Yun, Y.B.; Feng, Z.H.; Xu, Y.G.; Mei, L.F.; Wijbrans, J.R.

    2011-01-01

    The problem of determining an exact isotopic age of hydrocarbon emplacement is complex because minerals suitable for dating with common isotopic methods are often lacking in the sedimentary domain. However, the igneous quartz from the Cretaceous volcanic rocks that host the gas reservoir in the

  17. Calculations of elastic, ionization and total cross sections for inert gases upon electron impact: threshold to 2 keV

    Energy Technology Data Exchange (ETDEWEB)

    Vinodkumar, Minaxi [V P and R P T P Science College, Vallabh Vidyanagar 388 120, Gujarat (India); Limbachiya, Chetan [P S Science College, Kadi 382 715, Gujarat (India); Antony, Bobby [Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts Lowell, 265 Riverside Street, Lowell, MA 01854-5045 (United States); Joshipura, K N [Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388 120, Gujarat (India)

    2007-08-28

    In this paper we report comprehensive calculations of total elastic (Q{sub el}), total ionization (Q{sub ion}) and total (complete) cross sections (Q{sub T}) for the impact of electrons on inert gases (He, Ne, Ar, Kr and Xe) at energies from about threshold to 2000 eV. We have employed the spherical complex optical potential (SCOP) formalism to evaluate Q{sub el} and Q{sub T} and used the complex spherical potential-ionization contribution (CSP-ic) method to derive Q{sub ion}. The dependence of Q{sub T} on polarizability and incident energy is presented for these targets through an analytical formula. Mutual comparison of various cross sections is provided to show their relative contribution to the total cross sections Q{sub T}. Comparison of Q{sub T} for all these targets is carried out to present a general theoretical picture of collision processes. The present calculations also provide information, hitherto sparse, on the excitation processes of these atomic targets. These results are compared with available experimental and other theoretical data and overall good agreement is observed.

  18. Histone demethylase JMJD1A promotes alternative splicing of AR variant 7 (AR-V7) in prostate cancer cells.

    Science.gov (United States)

    Fan, Lingling; Zhang, Fengbo; Xu, Songhui; Cui, Xiaolu; Hussain, Arif; Fazli, Ladan; Gleave, Martin; Dong, Xuesen; Qi, Jianfei

    2018-05-15

    Formation of the androgen receptor splicing variant 7 (AR-V7) is one of the major mechanisms by which resistance of prostate cancer to androgen deprivation therapy occurs. The histone demethylase JMJD1A (Jumonji domain containing 1A) functions as a key coactivator for AR by epigenetic regulation of H3K9 methylation marks. Here, we describe a role for JMJD1A in AR-V7 expression. While JMJD1A knockdown had no effect on full-length AR (AR-FL), it reduced AR-V7 levels in prostate cancer cells. Reexpression of AR-V7 in the JMJD1A-knockdown cells elevated expression of select AR targets and partially rescued prostate cancer cell growth in vitro and in vivo. The AR-V7 protein level correlated positively with JMJD1A in a subset of human prostate cancer specimens. Mechanistically, we found that JMJD1A promoted alternative splicing of AR-V7 through heterogeneous nuclear ribonucleoprotein F (HNRNPF), a splicing factor known to regulate exon inclusion. Knockdown of JMJD1A or HNRNPF inhibited splicing of AR-V7, but not AR-FL, in a minigene reporter assay. JMJD1A was found to interact with and promote the recruitment of HNRNPF to a cryptic exon 3b on AR pre-mRNA for the generation of AR-V7. Taken together, the role of JMJD1A in AR-FL coactivation and AR-V7 alternative splicing highlights JMJD1A as a potentially promising target for prostate cancer therapy.

  19. A Refined Astronomically Calibrated 40Ar/39Ar Age for Fish Canyon Sanidine

    DEFF Research Database (Denmark)

    Rivera, Tiffany; Storey, Michael; Zeeden, Christian

    2011-01-01

    Intercalibration between the astronomical and radio-isotopic dating methods provides a means to improving accuracy and reducing uncertainty of an integrated, multi-chronometer geologic timescale. Here we report a high-precision 40Ar/39Ar age for the Fish Canyon sanidine (FCs) neutron fluence...... sanidine age of 0.7674±0.0022 Ma (2σ, external errors) is indistinguishable from the ID-TIMS U/Pb zircon age (0.7671±0.0019 Ma). The consistency between the astronomically calibrated 40Ar/39Ar sanidine age and U/Pb zircon age for this Quaternary unit suggests that agreement between these two radio-isotopic...... dating techniques is now achievable at better than±0.3% (2σ) in the youngest part of geologic time (

  20. Test of freonless operation of resistive plate chambers with glass electrodes--1 mm gas gap vs 2 mm gas gap

    CERN Document Server

    Sakaue, H; Takahashi, T; Teramoto, Y

    2002-01-01

    Non-freon gas mixtures (Ar/iso-C sub 4 H sub 1 sub 0) were tested as the chamber gas for 1 and 2 mm gas gap Resistive Plate Chambers (RPCs) with float glass as the resistive electrodes, operated in the streamer mode. With the narrower (1 mm) gas gap, streamer charge is reduced (approx 1/3), which reduces the dead time (and dead area), associated with each streamer, improving the detection efficiency. The best performance was obtained for two cases: Ar/iso-C sub 4 H sub 1 sub 0 =50/50 and 60/40. For the 50/50 mixture, a detection efficiency of better than 98% was obtained for the 1 mm gap RPC, while the efficiency was 95% for the 2 mm gap RPC, each operated as a double-gap RPC. The measured time resolution (rms) was 1.45+-0.05 (2.52+-0.09) ns for the 1 (2) mm gap RPC for the 50/50 mixture.

  1. Convection Study by PIV Method Within Horizontal Liquid Layer Evaporating Into Inert Gas Flow

    Directory of Open Access Journals (Sweden)

    Kreta Aleksei

    2016-01-01

    Full Text Available The paper is devoted to the experimental study of convection in a horizontal evaporating liquid layer (ethanol of limited size under the action of gas flow (air. The two-dimensional velocity field in the liquid layer is obtained using the PIV method. The existence of a vortex convective flow within a liquid layer directed towards the gas flow has been revealed.

  2. Androgen Receptor Variant AR-V9 Is Coexpressed with AR-V7 in Prostate Cancer Metastases and Predicts Abiraterone Resistance.

    Science.gov (United States)

    Kohli, Manish; Ho, Yeung; Hillman, David W; Van Etten, Jamie L; Henzler, Christine; Yang, Rendong; Sperger, Jamie M; Li, Yingming; Tseng, Elizabeth; Hon, Ting; Clark, Tyson; Tan, Winston; Carlson, Rachel E; Wang, Liguo; Sicotte, Hugues; Thai, Ho; Jimenez, Rafael; Huang, Haojie; Vedell, Peter T; Eckloff, Bruce W; Quevedo, Jorge F; Pitot, Henry C; Costello, Brian A; Jen, Jin; Wieben, Eric D; Silverstein, Kevin A T; Lang, Joshua M; Wang, Liewei; Dehm, Scott M

    2017-08-15

    Purpose: Androgen receptor (AR) variant AR-V7 is a ligand-independent transcription factor that promotes prostate cancer resistance to AR-targeted therapies. Accordingly, efforts are under way to develop strategies for monitoring and inhibiting AR-V7 in castration-resistant prostate cancer (CRPC). The purpose of this study was to understand whether other AR variants may be coexpressed with AR-V7 and promote resistance to AR-targeted therapies. Experimental Design: We utilized complementary short- and long-read sequencing of intact AR mRNA isoforms to characterize AR expression in CRPC models. Coexpression of AR-V7 and AR-V9 mRNA in CRPC metastases and circulating tumor cells was assessed by RNA-seq and RT-PCR, respectively. Expression of AR-V9 protein in CRPC models was evaluated with polyclonal antisera. Multivariate analysis was performed to test whether AR variant mRNA expression in metastatic tissues was associated with a 12-week progression-free survival endpoint in a prospective clinical trial of 78 CRPC-stage patients initiating therapy with the androgen synthesis inhibitor, abiraterone acetate. Results: AR-V9 was frequently coexpressed with AR-V7. Both AR variant species were found to share a common 3' terminal cryptic exon, which rendered AR-V9 susceptible to experimental manipulations that were previously thought to target AR-V7 uniquely. AR-V9 promoted ligand-independent growth of prostate cancer cells. High AR-V9 mRNA expression in CRPC metastases was predictive of primary resistance to abiraterone acetate (HR = 4.0; 95% confidence interval, 1.31-12.2; P = 0.02). Conclusions: AR-V9 may be an important component of therapeutic resistance in CRPC. Clin Cancer Res; 23(16); 4704-15. ©2017 AACR . ©2017 American Association for Cancer Research.

  3. Single-crystal 40Ar/39Ar incremental heating reveals bimodal sanidine ages in the Bishop Tuff

    Science.gov (United States)

    Andersen, N. L.; Jicha, B. R.; Singer, B. S.

    2015-12-01

    The 650 km3 Bishop Tuff (BT) is among the most studied volcanic deposits because it is an extensive marker bed deposited just after the Matuyama-Brunhes boundary. Reconstructions of the vast BT magma reservoir from which high-silica rhyolite erupted have long influenced thinking about how large silicic magma systems are assembled, crystallized, and mixed. Yet, the longevity of the high silica rhyolitic melt and exact timing of the eruption remain controversial due to recent conflicting 40Ar/39Ar sanidine vs. SIMS and ID-TIMS U-Pb zircon dates. We have undertaken 21 40Ar/39Ar incremental heating ages on 2 mm BT sanidine crystals from pumice in 3 widely separated outcrops of early-erupted fall and flow units. Plateau ages yield a bimodal distribution: a younger group has a mean of 766 ka and an older group gives a range between 772 and 782 ka. The younger population is concordant with the youngest ID-TIMS and SIMS U-Pb zircon ages recently published, as well as the astronomical age of BT in marine sediment. Of 21 crystals, 17 yield older, non-plateau, steps likely affected by excess Ar that would bias traditional 40Ar/39Ar total crystal fusion ages. The small spread in older sanidine ages, together with 25+ kyr of pre-eruptive zircon growth, suggest that the older sanidines are not partially outgassed xenocrysts. A bimodal 40Ar/39Ar age distribution implies that some fraction of rhyolitic melt cooled below the Ar closure temperature at least 10 ky prior to eruption. We propose that rapid "thawing" of a crystalline mush layer released older crystals into rhyolitic melt from which sanidine also nucleated and grew immediately prior to the eruption. High precision 40Ar/39Ar dating can thus provide essential information on thermo-physical processes at the millenial time scale that are critical to interpreting U-Pb zircon age distributions that are complicated by large uncertainties associated with zircon-melt U-Th systematics.

  4. Formation and migration properties of the rare gases He, Ne, Ar, Ke, and Xe in nickel

    International Nuclear Information System (INIS)

    Melius, C.F.; Wilson, W.D.; Bisson, C.L.

    1980-01-01

    The energies of formation and migration of various rare gas-point defect complexes in an f.c.c. nickel lattice have been calculated for He, Ne, Ar, Kr, and Xe. Formation energies of rare gas atoms at interstitial sites are compared with those in substitutional sites. Binding energies are presented for self-interstitials and vacancies trapped to the various rare gas substitutionals. Migration energies and migration paths are also presented for various rare gas interstitials and substitutionals with and without trapped vacancies and self-interstitials. The migration energies are compared with the breakup energies for the corresponding complexes. It is found that divacancy-rare gas complexes are rather stable and will migrate at relatively low energies compared to other substitutional rare gas migration processes. (author)

  5. Effects of N2 mixed gas atomization on electrochemical properties of Mm(Ni,Co,Mn,Al)5.0 alloy powder

    International Nuclear Information System (INIS)

    Yanagimoto, K.; Sunada, S.; Majima, K.; Sawada, T.

    2004-01-01

    N 2 gas, N 2 -Ar mixed gas and Ar gas atomization followed by acid surface treatment was applied to improve electrochemical properties of AB 5 type hydrogen storage alloy powder. The shape of Ar atomized powder was spherical and it changed to be irregular with increasing N 2 content of mixed gas. Irrespective of gas kinds, electrodes of atomized powder showed the same discharge capacity as cast-pulverized powder under auxiliary electrical conductivity by nickel powder addition. Without nickel powder, however, N 2 atomized powder showed the best electrochemical properties as well as gas activation behavior. By the combination process of N 2 gas atomization and acid surface treatment, it was considered that irregular shape of N 2 atomized powder promoted electrical conductivity of electrodes and catalytic nickel concentrated surface layer was formed to increase the hydrogen storage rapidity

  6. Endotracheal tube resistance and inertance in a model of mechanical ventilation of newborns and small infants—the impact of ventilator settings on tracheal pressure swings

    International Nuclear Information System (INIS)

    Hentschel, Roland; Buntzel, Julia; Guttmann, Josef; Schumann, Stefan

    2011-01-01

    Resistive properties of endotracheal tubes (ETTs) are particularly relevant in newborns and small infants who are generally ventilated through ETTs with a small inner diameter. The ventilation rate is also high and the inspiratory time (ti) is short. These conditions effectuate high airway flows with excessive flow acceleration, so airway resistance and inertance play an important role. We carried out a model study to investigate the impact of varying ETT size, lung compliance and ventilator settings, such as peak inspiratory pressure (PIP), positive end expiratory pressure (PEEP) and inspiratory time (ti) on the pressure–flow characteristics with respect to the resistive and inertive properties of the ETT. Pressure at the Y piece was compared to direct measurement of intratracheal pressure (P trach ) at the tip of the ETT, and pressure drop (ΔP ETT ) was calculated. Applying published tube coefficients (Rohrer's constants and inertance), P trach was calculated from ventilator readings and compared to measured P trach using the root-mean-square error. The most relevant for ΔP ETT was the ETT size, followed by (in descending order) PIP, compliance, ti and PEEP, with gas flow velocity being the principle in common for all these parameters. Depending on the ventilator settings ΔP ETT exceeded 8 mbar in the smallest 2.0 mm ETT. Consideration of inertance as an additional effect in this setting yielded a better agreement of calculated versus measured P trach than Rohrer's constants alone. We speculate that exact tracheal pressure tracings calculated from ventilator readings by applying Rohrer's equation and the inertance determination to small size ETTs would be helpful. As an integral part of ventilator software this would (1) allow an estimate of work of breathing and implementation of an automatic tube compensation, and (2) be important for gentle ventilation in respiratory care, especially of small infants, since it enables the physician to

  7. Compressed gas domestic aerosol valve design using high viscous product

    Directory of Open Access Journals (Sweden)

    A Nourian

    2016-10-01

    Full Text Available Most of the current universal consumer aerosol products using high viscous product such as cooking oil, antiperspirants, hair removal cream are primarily used LPG (Liquefied Petroleum Gas propellant which is unfriendly environmental. The advantages of the new innovative technology described in this paper are: i. No butane or other liquefied hydrocarbon gas is used as a propellant and it replaced with Compressed air, nitrogen or other safe gas propellant. ii. Customer acceptable spray quality and consistency during can lifetime iii. Conventional cans and filling technology There is only a feasible energy source which is inert gas (i.e. compressed air to replace VOCs (Volatile Organic Compounds and greenhouse gases, which must be avoided, to improve atomisation by generating gas bubbles and turbulence inside the atomiser insert and the actuator. This research concentrates on using "bubbly flow" in the valve stem, with injection of compressed gas into the passing flow, thus also generating turbulence. The new valve designed in this investigation using inert gases has advantageous over conventional valve with butane propellant using high viscous product (> 400 Cp because, when the valving arrangement is fully open, there are negligible energy losses as fluid passes through the valve from the interior of the container to the actuator insert. The use of valving arrangement thus permits all pressure drops to be controlled, resulting in improved control of atomising efficiency and flow rate, whereas in conventional valves a significant pressure drops occurs through the valve which has a complex effect on the corresponding spray.

  8. Indium-tin oxide thin films deposited at room temperature on glass and PET substrates: Optical and electrical properties variation with the H2–Ar sputtering gas mixture

    International Nuclear Information System (INIS)

    Álvarez-Fraga, L.; Jiménez-Villacorta, F.; Sánchez-Marcos, J.; Andrés, A. de; Prieto, C.

    2015-01-01

    Highlights: • ITO deposition on glass and PET at room temperature by using H. • High transparency and low resistance is obtained by tuning the H. • The figure of merit for ITO films on PET becomes maximal for thickness near 100 nm. - Abstract: The optical and electrical properties of indium tin oxide (ITO) films deposited at room temperature on glass and polyethylene terephthalate (PET) substrates were investigated. A clear evolution of optical transparency and sheet resistance with the content of H 2 in the gas mixture of H 2 and Ar during magnetron sputtering deposition is observed. An optimized performance of the transparent conductive properties ITO films on PET was achieved for samples prepared using H 2 /(Ar + H 2 ) ratio in the range of 0.3–0.6%. Moreover, flexible ITO-PET samples show a better transparent conductive figure of merit, Φ TC = T 10 /R S , than their glass counterparts. These results provide valuable insight into the room temperature fabrication and development of transparent conductive ITO-based flexible devices

  9. Etch characteristics of (Pb,Sr)TiO3 thin films using CF4/Ar inductively coupled plasma

    International Nuclear Information System (INIS)

    Kim, Gwan-Ha; Kim, Kyoung-Tae; Kim, Dong-Pyo; Kim, Chang-Il

    2003-01-01

    The investigations of the (Pb,Sr)TiO 3 (PST) etching characteristics in CF 4 /Ar plasma were carried out using the inductively coupled plasma system. Experiments showed that an increase of the Ar mixing ratio under constant pressure and input power conditions leads to increasing etch rate of PST, which reaches a maximum of 740 A/min when the Ar is 80% of the gas mixture. To understand the etching mechanism, the surface state of the etched PST samples was investigated using x-ray photoelectron spectroscopy. It was found that Pb and Ti atoms were removed mainly by the ion-assisted etching mechanism. At the same time, Sr forms extremely low volatile fluorides and therefore can be removed only by physical (sputter) etching

  10. Torrefaction of empty fruit bunches under biomass combustion gas atmosphere.

    Science.gov (United States)

    Uemura, Yoshimitsu; Sellappah, Varsheta; Trinh, Thanh Hoai; Hassan, Suhaimi; Tanoue, Ken-Ichiro

    2017-11-01

    Torrefaction of oil palm empty fruit bunches (EFB) under combustion gas atmosphere was conducted in a batch reactor at 473, 523 and 573K in order to investigate the effect of real combustion gas on torrefaction behavior. The solid mass yield of torrefaction in combustion gas was smaller than that of torrefaction in nitrogen. This may be attributed to the decomposition enhancement effect by oxygen and carbon dioxide in combustion gas. Under combustion gas atmosphere, the solid yield for torrefaction of EFB became smaller as the temperature increased. The representative products of combustion gas torrefaction were carbon dioxide and carbon monoxide (gas phase) and water, phenol and acetic acid (liquid phase). By comparing torrefaction in combustion gas with torrefaction in nitrogen gas, it was found that combustion gas can be utilized as torrefaction gas to save energy and inert gas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effect of post-weld heat treatment and electrolytic plasma processing on tungsten inert gas welded AISI 4140 alloy steel

    International Nuclear Information System (INIS)

    Dewan, Mohammad W.; Liang, Jiandong; Wahab, M.A.; Okeil, Ayman M.

    2014-01-01

    Highlights: • The effects of PWHT and EPP were explored on TIG welded AISI4140 alloy steel. • All welded samples were checked with PAUT and ensured defect-free before testing. • Residual stresses, hardness, and tensile properties were measured experimentally. • PWHT resulted higher ductility but lower tensile strength for grain refinement. • EPP-treated samples showed higher tensile strength but lower ductility. - Abstract: Post-weld heat treatment (PWHT) is commonly adopted on welded joints and structures to relieve post-weld residual stresses; and restore the mechanical properties and structural integrity. An electrolytic plasma process (EPP) has been developed to improve corrosion behavior and wear resistance of structural materials; and can be employed in other applications and surface modifications aspects. In this study the effects of PWHT and EPP on the residual stresses, micro-hardness, microstructures, and uniaxial tensile properties are explored on tungsten inert gas (TIG) welded AISI-4140 alloys steel with SAE-4130 chromium–molybdenum alloy welding filler rod. For rational comparison all of the welded samples are checked with nondestructive Phased Array Ultrasonic Testing (PAUT) and to ensure defect-free samples before testing. Residual stresses are assessed with ultrasonic testing at different distances from weld center line. PWHT resulted in relief of tensile residual stress due to grain refinement. As a consequence higher ductility but lower strength existed in PWHT samples. In comparison, EPP-treated samples revealed lower residual stresses, but no significant variation on the grain refinement. Consequently, EPP-treated specimens exhibited higher tensile strength but lower ductility and toughness for the martensitic formation due to the rapid heating and quenching effects. EPP was also applied on PWHT samples, but which did not reveal any substantial effect on the tensile properties after PWHT at 650 °C. Finally the microstructures and

  12. Classical treatment of Li2++Ar and He2++Ar collisions

    International Nuclear Information System (INIS)

    Jorge, A; Illescas, Clara; Pons, B

    2015-01-01

    Classical Trajectory Monte Carlo calculations are carried out for Li 2+ +Ar and He 2+ +Ar collisions, motivated by recent experiments on these systems. Cross sections for electron capture, projectile electron loss and target multiple ionization processes are evaluated and compared to the experimental values in the 75-500 keV/amy impact energy range. (paper)

  13. Gas-cooled reactors for advanced terrestrial applications

    International Nuclear Information System (INIS)

    Kesavan, K.; Lance, J.R.; Jones, A.R.; Spurrier, F.R.; Peoples, J.A.; Porter, C.A.; Bresnahan, J.D.

    1986-01-01

    Conceptual design of a power plant on an inert gas cooled nuclear coupled to an open, air Brayton power conversion cycle is presented. The power system, called the Westinghouse GCR/ATA (Gas-Cooled Reactors for Advanced Terrestrial Applications), is designed to meet modern military needs, and offers the advantages of secure, reliable and safe electrical power. The GCR/ATA concept is adaptable over a range of 1 to 10 MWe power output. Design descriptions of a compact, air-transportable forward base unit for 1 to 3 MWe output and a fixed-base, permanent installation for 3 to 10 MWe output are presented

  14. Low energy electron attachment to SF6 in N2, Ar, and Xe buffer gases

    International Nuclear Information System (INIS)

    Hunter, S.R.; Carter, J.G.; Christophorou, L.G.

    1989-01-01

    The electron attachment rate constants k/sub a/ for SF 6 have been measured in dilute mixtures of SF 6 in high pressure (>1 atm) N 2 , Ar, and Xe buffer gases at room temperature (T≅300 K) over a wide E/N range (electric field strength to gas number density ratio), corresponding to mean electron energies from near thermal electron energies (≅0.04 eV) to ≅4.3 eV. Particular attention has been paid to the effects of space charge distortion, molecular impurities, and changes in the electron energy distribution function on the measured electron attachment rate constant values at the lower E/N values in these mixtures. The present measured thermal electron attachment rate constants in SF 6 /N 2 and SF 6 /Xe gas mixtures are in excellent agreement with recent accurate measurements of these parameters in several SF 6 /buffer gas mixtures. At higher values, the present SF 6 /N 2 measurements are in fair agreement with previous measurements, while no previous measurements using Ar and Xe buffer gases have been published. These measurements have been used in numerical two term, spherical harmonic Boltzmann equation analyses of the electron motion in these gas mixtures to obtain the low energy ( 6 . The present derived electron attachment cross sections are compared with recently measured and derived nondissociative and dissociative electron attachment cross sections for SF 6

  15. Inert Reassessment Document for Acetone - CAS No. 67-64-1

    Science.gov (United States)

    Acetone is a highly volatile chemical that is used as an inert ingredient, a solvent/co-solvent, in a variety of pesticide products (including outdoor yard, garden and turf products, and agricultural crop products).

  16. System efficiency for two-step metal oxide solar thermochemical hydrogen production – Part 2: Impact of gas heat recuperation and separation temperatures

    KAUST Repository

    Ehrhart, Brian D.; Muhich, Christopher L.; Al-Shankiti, Ibraheam; Weimer, Alan W.

    2016-01-01

    . The hydrogen and water separation temperature was also varied and the effect on STH efficiency quantified. This study shows that gas heat recuperation is critical for high efficiency cycles, especially at conditions that require high steam and inert gas

  17. Study of gas-puff Z-pinches on COBRA

    Energy Technology Data Exchange (ETDEWEB)

    Qi, N.; Rosenberg, E. W.; Gourdain, P. A.; Grouchy, P. W. L. de; Kusse, B. R.; Hammer, D. A.; Bell, K. S.; Shelkovenko, T. A.; Potter, W. M.; Atoyan, L.; Cahill, A. D.; Evans, M.; Greenly, J. B.; Hoyt, C. L.; Pikuz, S. A.; Schrafel, P. C. [Laboratory of Plasma Studies, Cornell University, Ithaca, New York 14853 (United States); Kroupp, E.; Fisher, A.; Maron, Y. [Weizmann Institute of Science, Rehovot 76100 (Israel)

    2014-11-15

    Gas-puff Z-pinch experiments were conducted on the 1 MA, 200 ns pulse duration Cornell Beam Research Accelerator (COBRA) pulsed power generator in order to achieve an understanding of the dynamics and instability development in the imploding and stagnating plasma. The triple-nozzle gas-puff valve, pre-ionizer, and load hardware are described. Specific diagnostics for the gas-puff experiments, including a Planar Laser Induced Fluorescence system for measuring the radial neutral density profiles along with a Laser Shearing Interferometer and Laser Wavefront Analyzer for electron density measurements, are also described. The results of a series of experiments using two annular argon (Ar) and/or neon (Ne) gas shells (puff-on-puff) with or without an on- (or near-) axis wire are presented. For all of these experiments, plenum pressures were adjusted to hold the radial mass density profile as similar as possible. Initial implosion stability studies were performed using various combinations of the heavier (Ar) and lighter (Ne) gasses. Implosions with Ne in the outer shell and Ar in the inner were more stable than the opposite arrangement. Current waveforms can be adjusted on COBRA and it was found that the particular shape of the 200 ns current pulse affected on the duration and diameter of the stagnated pinched column and the x-ray yield.

  18. 40Ar-39Ar dating of hornfels dredged near the Japan trench

    International Nuclear Information System (INIS)

    Takigami, Yutaka; Fujioka, Kantaro

    1989-01-01

    During the KH 81-3 Cruise of the R/V Hakuho-Maru, biotite-bearing hornfelses were dredged from the landward slope of the Japan Trench. Bulk sample and separated biotite were dated by the 40 Ar- 39 Ar method and they showed 40 Ar- 39 Ar ages of 28.9±1.4 Ma and 28.5±1.4 Ma, respectively. This would indicate that biotite was formed at about 29 Ma by the thermal metamorphism which might have related with some magmatic activity. In this magmatic activity was caused by the subducting oceanic plate in the similar conditions at present, it seems to have occurred at a place too close to the present trench axis. This discrepancy could be explained by such processes as the change of the angle of the subducting plate, the moving of the trench axis by tectonic erosion and so on. However, more age data are required to solve this discrepancy. (author)

  19. 40Ar/39Ar and K/Ar whole rock age constraints on the timing of regional deformation, South Coast of New South Wales, Lachlan Fold Belt, Southeastern Australia: problems and implications

    International Nuclear Information System (INIS)

    Phillips, D.; Fergusson, C.L.

    1999-01-01

    Full text: Subduction complex rocks are well exposed on the south coast of New South Wales around Batemans Bay. Farther south in the Narooma and Bermagui region, Offier et al (1998) have determined two 40 Ar/ 39 Ar ages of 450 ± 3 Ma and 445 ± 2 Ma. They argued that these ages constrain the timing of intense underplating-related deformation and we have undertaken farther work, from an area south of Batemans Bay, to test this suggestion. The 40 Ar/ 39 Ar method applied to fine-grained, low temperature metamorphic rocks, such as slates, is beset by the problem of recoil loss and/or redistribution of 39 Ar during the irradiation process. Another problem is the difficulty of distinguishing between the contributions to 40 Ar/ 39 Ar spectra from illite/muscovite grown during the cleavage-producing deformation and detrital muscovite/illite. In the current study, four slate samples, with variable contents of detrital white mica, were analysed by both the K-Ar and 40 Ar/ 39 Ar step-heating methods. A separate of detrital white mica from one slate sample yields a plateau age of 500 ± 2 Ma. This result indicates that inheritance has not been eliminated by metamorphism as is commonly assumed and that the 40 Ar/ 39 Ar ages provide only a maximum estimate for the timing of deformation. 40 Ar/ 39 Ar analyses of state chips yield discordant, saddle-shaped age spectra, with minimum, within-saddle' ages of ca. 420 Ma. Two slate samples give identical 40 Ar/ 39 Ar integrated ages of 455 ± 2 Ma. One sample contains relatively abundant detrital bedding-parallel mica flakes that are locally oblique to the regional cleavage in the rock. The 40 Ar/ 39 Ar ages are some 20 Ma older than K-Ar ages for these same samples, suggesting that recoil loss of 39 Ar may also have affected these slates. Both recoil loss of 39 Ar and inherited white micas will yield elevated apparent ages, thus providing only maximum ages for the cleavage-producing deformation. Two other samples from slaty tectonic

  20. Androgen Receptor (AR) Physiological Roles in Male and Female Reproductive Systems: Lessons Learned from AR-Knockout Mice Lacking AR in Selective Cells1

    Science.gov (United States)

    Chang, Chawnshang; Lee, Soo Ok; Wang, Ruey-Sheng; Yeh, Shuyuan; Chang, Ta-Min

    2013-01-01

    ABSTRACT Androgens/androgen receptor (AR) signaling is involved primarily in the development of male-specific phenotypes during embryogenesis, spermatogenesis, sexual behavior, and fertility during adult life. However, this signaling has also been shown to play an important role in development of female reproductive organs and their functions, such as ovarian folliculogenesis, embryonic implantation, and uterine and breast development. The establishment of the testicular feminization (Tfm) mouse model exploiting the X-linked Tfm mutation in mice has been a good in vivo tool for studying the human complete androgen insensitivity syndrome, but this mouse may not be the perfect in vivo model. Mouse models with various cell-specific AR knockout (ARKO) might allow us to study AR roles in individual types of cells in these male and female reproductive systems, although discrepancies are found in results between labs, probably due to using various Cre mice and/or knocking out AR in different AR domains. Nevertheless, no doubt exists that the continuous development of these ARKO mouse models and careful studies will provide information useful for understanding AR roles in reproductive systems of humans and may help us to develop more effective and more specific therapeutic approaches for reproductive system-related diseases. PMID:23782840