WorldWideScience

Sample records for inert cover gas

  1. Evaporation release behavior of volatile fission products from liquid sodium pool to the inert cover gas

    Energy Technology Data Exchange (ETDEWEB)

    Nakagiri, T; Miyahara, S [Oarai Engineering Center, Power Reactor and Nuclear Fuel Development Corp., Oaraimachi, Ibaraki (Japan)

    1996-12-01

    In fuel failure of sodium cooled fast breeder reactors, released volatile fission products (VFPs) such as iodine and cesium from the fuel will be dissolved into the liquid sodium coolant and transferred to the cover vaporization. In the cover gas system of the reactor, natural convection occurs due to temperature differences between the sodium pool and the gas phase. The release rates of VFPs together with sodium vaporization are considered to be controlled by the convection. In this study, three analytical models are developed and examined to calculate the transient release rates using the equilibrium partition coefficients of VFPs. The calculated release rates are compared with experimental results for sodium and sodium iodide. The release rate of sodium is closest to the calculation by the heterogeneous nucleation theory. The release rate of sodium iodide obtained from the experiment is between the release rates calculated by the model based on heat-and-mass transfer analogy and the Hill`s theory. From this study, it is confirmed that the realistic release rate of sodium is able to be calculated by the model based on the heterogeneous nucleation theory. The conservative release rate of sodium iodide is able to be calculated by the model based on the Hill`s theory using the equilibrium partition coefficient of sodium iodide. (author) 7 figs., 1 tab., 3 refs.

  2. Inert gas thrusters

    Science.gov (United States)

    Kaufman, H. R.; Robinson, R. S.

    1980-01-01

    Some advances in component technology for inert gas thrusters are described. The maximum electron emission of a hollow cathode with Ar was increased 60-70% by the use of an enclosed keeper configuration. Operation with Ar, but without emissive oxide, was also obtained. A 30 cm thruster operated with Ar at moderate discharge voltages give double-ion measurements consistent with a double ion correlation developed previously using 15 cm thruster data. An attempt was made to reduce discharge losses by biasing anodes positive of the discharge plasma. The reason this attempt was unsuccessful is not yet clear. The performance of a single-grid ion-optics configuration was evaluated. The ion impingement on the single grid accelerator was found to approach the value expected from the projected blockage when the sheath thickness next to the accelerator was 2-3 times the aperture diameter.

  3. TIG (Tungsten Inert Gas) welding

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    After having recalled the Tungsten Inert Gas process principle and the different alternative TIG processes, the author explains the advantages and limits of this process. The applications and recent developments are given. (O.M.)

  4. INERT GAS SHIELD FOR WELDING

    Science.gov (United States)

    Jones, S.O.; Daly, F.V.

    1958-10-14

    S>An inert gas shield is presented for arc-welding materials such as zirconium that tend to oxidize rapidly in air. The device comprises a rectangular metal box into which the welding electrode is introduced through a rubber diaphragm to provide flexibility. The front of the box is provided with a wlndow having a small hole through which flller metal is introduced. The box is supplied with an inert gas to exclude the atmosphere, and with cooling water to promote the solidification of the weld while in tbe inert atmosphere. A separate water-cooled copper backing bar is provided underneath the joint to be welded to contain the melt-through at the root of the joint, shielding the root of the joint with its own supply of inert gas and cooling the deposited weld metal. This device facilitates the welding of large workpieces of zirconium frequently encountered in reactor construction.

  5. A new understanding of inert gas narcosis

    International Nuclear Information System (INIS)

    Zhang Meng; Gao Yi; Fang Haiping

    2016-01-01

    Anesthetics are extremely important in modern surgery to greatly reduce the patient’s pain. The understanding of anesthesia at molecular level is the preliminary step for the application of anesthetics in clinic safely and effectively. Inert gases, with low chemical activity, have been found to cause anesthesia for centuries, but the mechanism is unclear yet. In this review, we first summarize the progress of theories about general anesthesia, especially for inert gas narcosis, and then propose a new hypothesis that the aggregated rather than the dispersed inert gas molecules are the key to trigger the narcosis to explain the steep dose-response relationship of anesthesia. (topical review)

  6. Inert gas transport in blood and tissues.

    Science.gov (United States)

    Baker, A Barry; Farmery, Andrew D

    2011-04-01

    This article establishes the basic mathematical models and the principles and assumptions used for inert gas transfer within body tissues-first, for a single compartment model and then for a multicompartment model. From these, and other more complex mathematical models, the transport of inert gases between lungs, blood, and other tissues is derived and compared to known experimental studies in both animals and humans. Some aspects of airway and lung transfer are particularly important to the uptake and elimination of inert gases, and these aspects of gas transport in tissues are briefly described. The most frequently used inert gases are those that are administered in anesthesia, and the specific issues relating to the uptake, transport, and elimination of these gases and vapors are dealt with in some detail showing how their transfer depends on various physical and chemical attributes, particularly their solubilities in blood and different tissues. Absorption characteristics of inert gases from within gas cavities or tissue bubbles are described, and the effects other inhaled gas mixtures have on the composition of these gas cavities are discussed. Very brief consideration is given to the effects of hyper- and hypobaric conditions on inert gas transport. © 2011 American Physiological Society. Compr Physiol 1:569-592, 2011.

  7. Radiochemical and inert gas analyses

    International Nuclear Information System (INIS)

    Andrews, J.N.

    1985-01-01

    The subject is discussed under the headings: introduction (radioelement solution in groundwaters; U and Th; Ra and Rn; atmospheric and radiogenic solution in groundwaters; atmosphere derived gases; radiogenic helium; radiogenic argon; biogenic gases); analytical methods (sampling; U-content and 234 U/ 238 U activity ratio; 222 Ru; 226 Ra; dissolved inert gases; 4 He in core samples); the gamma spectrometric determination of U,Th and K. Results are presented and discussed. (U.K.)

  8. Inert gas handling in ion plating systems

    International Nuclear Information System (INIS)

    Goode, A.R.; Burden, M.St.J.

    1979-01-01

    The results of an investigation into the best methods for production and monitoring of the inert gas environment for ion plating systems are reported. Work carried out on Pirani gauges and high pressure ion gauges for the measurement of pressures in the ion plating region (1 - 50mtorr) and the use of furnaces for cleaning argon is outlined. A schematic of a gas handling system is shown and discussed. (UK)

  9. Portable spectrometer monitors inert gas shield in welding process

    Science.gov (United States)

    Grove, E. L.

    1967-01-01

    Portable spectrometer using photosensitive readouts, monitors the amount of oxygen and hydrogen in the inert gas shield of a tungsten-inert gas welding process. A fiber optic bundle transmits the light from the welding arc to the spectrometer.

  10. 46 CFR 154.910 - Inert gas piping: Location.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Inert gas piping: Location. 154.910 Section 154.910 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Atmospheric Control in Cargo Containment Systems § 154.910 Inert gas piping: Location. Inert gas piping must...

  11. Recoverying device for sodium vapor in inert gas

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tamotsu; Nagashima, Ikuo

    1992-11-06

    A multi-pipe type heat exchanger for cooling an inert gas and a mist trap connected to the inert gas exit of the heat exchanger are disposed. A mist filter having bottomed pipes made of an inert gas-permeable sintered metal is disposed in the mist trap, and an inert gas discharge port is disposed at the upper side wall. With such a constitution, a high temperature inert gas containing sodium vapors can be cooled efficiently by the multi-pipe type heat exchanger capable of easy temperature control, thereby converting sodium vapors into mists, and the inert gas containing sodium mists can be flown into the mist trap. Sodium mists are collected by the mist filter and sodium mists flown down are discharged from the discharge port. With such procedures, a great amount of the inert gas containing sodium vapors can be processed continuously. (T.M.).

  12. Advanced On Board Inert Gas Generation System (OBBIGS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Valcor Engineering Corporation proposes to develop an advanced On Board Inert Gas Generation System, OBIGGS, for aircraft fuel tank inerting to prevent hazardous...

  13. Control characteristics of inert gas recovery plant

    International Nuclear Information System (INIS)

    Mikawa, Hiroji; Kato, Yomei; Kamiya, Kunio

    1980-01-01

    This paper presents a dynamic simulator and the control characteristics for a radioactive inert gas recovery plant which uses a cryogenic liquefying process. The simulator was developed to analyze the operational characteristics and is applicable to gas streams which contain nitrogen, argon, oxygen and krypton. The characteristics analysis of the pilot plant was performed after the accuracy of the simulator was checked using data obtained in fundamental experiments. The relationship between the reflux ratio and krypton concentration in the effluent gas was obtained. The decontamination factor is larger than 10 9 when the reflux ratio is more than 2. 0. The control characteristics of the plant were examined by changing its various parameters. These included the amount of gas to be treated, the heater power inside the evaporator and the liquid nitrogen level in the condenser. These characteristics agreed well with the values obtained in the pilot plant. The results show that the krypton concentration in the effluent gas increases when the liquid nitrogen level is decreased. However, in this case, the krypton concentration can be minimized by applying a feed forward control to the evaporator liquid level controller. (author)

  14. Seeded inert gas driven disk generator

    International Nuclear Information System (INIS)

    Joshi, N.K.; Venkatramani, N.; Rohatgi, V.K.

    1987-01-01

    This report outlines the present status of work being carried out in closed cycle MHD and disk generators. It gives the basic principles and discusses a proposal for setting up an experimental facility to study nonequilibrium plasmas using an inert gas driven disk generator. Disk geometry is a near ideal geometry for plasma studies since it has single or few pair electrodes combined with near perfect insulating walls. The proposed outlay of facility with components and subsystem is given. The facility may also be used to study the concept of fully ionized seed and to develop advanced diagnostic techniques. The absic equation describing the working parameters of such a system is also given in the Appendix. (author). 57 refs

  15. Mn nanoparticles produced by inert gas condensation

    International Nuclear Information System (INIS)

    Ward, M B; Brydson, R; Cochrane, R F

    2006-01-01

    The results from experiments using the inert gas condensation method to produce nanoparticles of manganese are presented. Structural and compositional data have been collected through electron diffraction, EDX (energy dispersive X-ray) and EELS (electron energy loss spectroscopy). Both Mn 3 O 4 and pure Mn particles have been produced. Moisture in untreated helium gas causes the particles to oxidize, whereas running the helium through a liquid nitrogen trap removes the moisture and produces β-Mn particles in a metastable state. The particle sizes and the size distribution have been determined. Particle sizes range from 2nm to above 100 nm, however the majority of particles lie in the range below 20 nm with a modal particle size of 6 nm. As well as the modal particle size of 6 nm, there is another peak in the frequency curve at 16 nm that represents another group particles that lie in the range 12 to 20 nm. The smaller particles are single crystals, but the larger particles appear to have a dense region around their edge with a less dense centre. Determination of their exact nature is ongoing

  16. 46 CFR 154.908 - Inert gas generator: Location.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Inert gas generator: Location. 154.908 Section 154.908 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Atmospheric Control in Cargo Containment Systems § 154.908 Inert gas generator: Location. (a) Except as...

  17. Purification by molecular sieve of helium used as inert cover gas in nuclear reactors; Epuration de l'helium de couverture des reacteurs nucleaires par adsorption sur tamis moleculaire

    Energy Technology Data Exchange (ETDEWEB)

    Rozenberg, J; Kahan, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    A method carried out at fairly low temperatures (between -50 and -80 deg. C) has been studied for the purification of the helium used as cover gas for heavy water in reactors. The use of the 5A molecular sieve has been adopted because of its superiority over other adsorbents in this temperature range. The particular problems connected with adsorption under dynamic conditions have been dealt with separately. The nitrogen adsorption isotherms have been plotted and the heat of adsorption calculated. (authors) [French] Une methode d'epuration, a temperature moderement basse (comprise entre -50 et -80 deg. C) de l'helium servant de couverture inerte a l'eau lourde des reacteurs a ete etudiee. L'emploi au tamis moleculaire 5A a ete retenu pour la superiorite de celui-ci sur d'autres adsorbants dans ce domaine de temperatures. Les problemes particuliers a l'adsorption en regime dynamique ont ete separement traites. Les isothermes d'adsorption d'azote ont ete tracees et la chaleur d'adsorp. tion calculee. (auteurs)

  18. TIG (Tungsten Inert Gas) welding; Le soudage TIG

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-09-15

    After having recalled the Tungsten Inert Gas process principle and the different alternative TIG processes, the author explains the advantages and limits of this process. The applications and recent developments are given. (O.M.)

  19. effects of metal inert gas welding parameters on some mechanical ...

    African Journals Online (AJOL)

    EFFECTS OF METAL INERT GAS WELDING PARAMETERS ON SOME MECHANICAL PROPERTIES OF AUSTENITIC STAINLESS STEEL IN ACIDIC ... Design Expert Software, Scanning Electron Microscopy (SEM), Rockwell Hardness Test, Monsanto Tensometer and Izod Impact Test were used to determine the ...

  20. A purification process for an inert gas system

    International Nuclear Information System (INIS)

    Raj, S.S.; Samanta, S.K.; Jain, N.G.; Deshingkar, D.S.; Ramaswamy, M.

    1984-01-01

    Special inert atmosphere is desired inside hot cells used for handling radioactive materials. In this report, details of experiments conducted to generate data required for the design of a system for maintaining very low levels of organic and acid vapours, oxygen and moisture in a nitrogen gas inert atmosphere, are described. Several grades of activated charcoals impregnated with 1% KOH were studied for the adsorption of acidic and organic vapours. A Pd/Al 2 O 3 catalyst was developed to remove oxygen with greater than 90% efficiency. For the removal of moisture, a regenerable molecular sieve 4A dual-bed was provided. Based on the performance data thus generated, an integrated purification system for nitrogen gas is proposed. (author)

  1. Gas transport during in vitro and in vivo preclinical testing of inert gas therapies

    Directory of Open Access Journals (Sweden)

    Ira Katz

    2016-01-01

    Full Text Available New gas therapies using inert gases such as xenon and argon are being studied, which require in vitro and in vivo preclinical experiments. Examples of the kinetics of gas transport during such experiments are analyzed in this paper. Using analytical and numerical models, we analyze an in vitro experiment for gas transport to a 96 cell well plate and an in vivo delivery to a small animal chamber, where the key processes considered are the wash-in of test gas into an apparatus dead volume, the diffusion of test gas through the liquid media in a well of a cell test plate, and the pharmacokinetics in a rat. In the case of small animals in a chamber, the key variable controlling the kinetics is the chamber wash-in time constant that is a function of the chamber volume and the gas flow rate. For cells covered by a liquid media the diffusion of gas through the liquid media is the dominant mechanism, such that liquid depth and the gas diffusion constant are the key parameters. The key message from these analyses is that the transport of gas during preclinical experiments can be important in determining the true dose as experienced at the site of action in an animal or to a cell.

  2. Arc melting in inert gas atmosphere of zirconium sponge

    International Nuclear Information System (INIS)

    Julio Junior, O.; Andrade, A.H.P. de

    1991-01-01

    The obtainment of metallic zirconium in laboratory scale with commercial and nuclear quality is the objective of the Metallurgy Department of IEN/CNEN - Brazil, so a melting procedure of zirconium sponge in laboratory scale using an arc furnace in inert atmosphere is developed. The effects of atmosphere operation, and the use of gas absorber and the sponge characteristics over the quality of button in as-cast reporting with hardness measures are described. (C.G.C.)

  3. Epileptiform activity during inert gas euthanasia of mice.

    Science.gov (United States)

    Gent, Thomas C; Detotto, Carlotta; Vyssotski, Alexei L; Bettschart-Wolfensberger, Regula

    2018-01-01

    Carbon dioxide (CO2) is one of the most commonly used euthanasia agents for mice, yet it is highly aversive and nociceptive. Inert gases are a possible alternative, however there are qualitative reports of seizures resulting from exposure. Here we evaluate epileptiform activity caused by inert gases (N2, He, Ar and Xe) and CO2 in mice chronically instrumented for EEG/EMG undergoing single-gas euthanasia. We found that N2, He and Ar caused epileptiform activity in all animals, CO2 in half of animals and no epileptiform activity produced by Xe. Atmospheric O2 concentrations at epileptiform activity onset were significantly higher for CO2 than for all other gases and occurred soon after loss of motion, whereas N2 and Ar epileptiform activity occurred at cessation of neocortical activity. Helium caused the longest epileptiform activity and these commenced significantly before isoelectric EEG. We did not detect any epileptiform activity during active behaviour. Taken together, these results demonstrate that whilst epileptiform activity from inert gases and particularly Ar and N2 are more prevalent than for CO2, their occurrence at the onset of an isoelectric EEG is unlikely to impact on the welfare of the animal. Epileptiform activity from these gases should not preclude them from further investigation as euthanasia agents. The genesis of epileptiform activity from CO2 is unlikely to result from hypoxia as with the inert gases. Helium caused epileptiform activity before cessation of neocortical activity and for a longer duration and is therefore less suitable as an alternative to CO2.

  4. Nuclear Technology. Course 28: Welding Inspection. Module 28-3, Tungsten Inert Gas (TIG), Metal Inert Gas (MIG) and Submerged Arc Welding.

    Science.gov (United States)

    Espy, John

    This third in a series of ten modules for a course titled Welding Inspection presents the apparatus, process techniques, procedures, applications, associated defects, and inspection for the tungsten inert gas, metal inert gas, and submerged arc welding processes. The module follows a typical format that includes the following sections: (1)…

  5. A scintillation detector for measuring inert gas beta rays

    International Nuclear Information System (INIS)

    Shi Hengchang; Yu Yunchang

    1989-10-01

    The inert gas beta ray scintillation detector, which is made of organic high polymers as the base and coated with compact fluorescence materials, is a lower energy scintillation detector. It can be used in the nuclear power plant and radioactive fields as a lower energy monitor to detect inert gas beta rays. Under the conditions of time constant 10 minutes, confidence level is 99.7% (3σ), the intensity of gamma rays 2.6 x 10 -7 C/kg ( 60 Co), and the minimum detectable concentration (MDC) of this detector for 133 Xe 1.2 Bq/L. The measuring range for 133 Xe is 11.1 ∼ 3.7 x 10 4 Bq/L. After a special measure is taken, the device is able to withstand 3 x 10 5 Pa gauge pressure. In the loss-of-cooolant-accident, it can prevent the radioactive gas of the detector from leaking. This detector is easier to be manufactured and decontaminated

  6. Collision-induced polarizabilities of inert gas atoms

    International Nuclear Information System (INIS)

    Clarke, K.L.; Madden, P.A.; Buckingham, A.D.

    1978-01-01

    The use of polarizability densities to calculate collision-induced polarizabilities is investigated. One method for computing polarizabilities of inert gas diatoms employs atomic polarizability densities from finite-field Hartree-Fock calculations, together with classical equations for the polarization of dielectrics. It is shown that this model gives inaccurate values for both the local fields and the local response to non-uniform fields. An alternative method incorporating the same physical effects is used to compute the pair polarizabilities to first order in the interatomic interaction. To first order the pair contribution to the trace of the polarizability is negative at short range. The calculated anisotropy does not differ significantly from the DID value, whereas the polarizability density calculation gives a substantial reduction in the anisotropy. (author)

  7. Relationships among ventilation-perfusion distribution, multiple inert gas methodology and metabolic blood-gas tensions.

    Science.gov (United States)

    Lee, A S; Patterson, R W; Kaufman, R D

    1987-12-01

    The retention equations upon which the Multiple Inert Gas Method is based are derived from basic principles using elementary algebra. It is shown that widely disparate distributions produce indistinguishable sets of retentions. The limits of resolution of perfused compartments in the VA/Q distribution obtainable by the use of the multiple inert gas method are explored mathematically, and determined to be at most shunt and two alveolar compartments ("tripartite" distribution). Every continuous distribution studied produced retentions indistinguishable from those of its unique "matching" tripartite distribution. When a distribution is minimally specified, it is unique. Any additional specification (increased resolution--more compartments) of the distribution results in the existence of an infinitude of possible distributions characterized by indistinguishable sets of retention values. No further increase in resolution results from the use of more tracers. When sets of retention values were extracted from published multiple inert gas method continuous distributions, and compared with the published "measured" retention sets, substantial differences were found. This illustrates the potential errors incurred in the practical, in vivo application of the multiple inert gas method. In preliminary studies, the tripartite distribution could be determined with at least comparable accuracy by blood-gas (oxygen, carbon dioxide) measurements.

  8. First principles study of inert-gas (helium, neon, and argon) interactions with hydrogen in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiang-Shan [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Hou, Jie [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Li, Xiang-Yan [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Wu, Xuebang, E-mail: xbwu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Liu, C.S., E-mail: csliu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Chen, Jun-Ling; Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-04-15

    We have systematically evaluated binding energies of hydrogen with inert-gas (helium, neon, and argon) defects, including interstitial clusters and vacancy-inert-gas complexes, and their stable configurations using first-principles calculations. Our calculations show that these inert-gas defects have large positive binding energies with hydrogen, 0.4–1.1 eV, 0.7–1.0 eV, and 0.6–0.8 eV for helium, neon, and argon, respectively. This indicates that these inert-gas defects can act as traps for hydrogen in tungsten, and impede or interrupt the diffusion of hydrogen in tungsten, which supports the discussion on the influence of inert-gas on hydrogen retention in recent experimental literature. The interaction between these inert-gas defects and hydrogen can be understood by the attractive interaction due to the distortion of the lattice structure induced by inert-gas defects, the intrinsic repulsive interaction between inert-gas atoms and hydrogen, and the hydrogen-hydrogen repelling in tungsten lattice.

  9. Cover gas box for handling sodium

    International Nuclear Information System (INIS)

    Kuenstler, K.; Betzl, K.

    1978-01-01

    An inert atmosphere box has been developed to work with sodium experimentally and analytically. The volumen of the box is 0.6 m 3 . A blower mounted inside the work chamber constantly circulates the argon from the work chamber through a gas purification system (nickel-catalyst 6525 and molecular sieve 4A). The flow rate is 450 l/h. The box is equipped with neoprene gloves. The glove ports can be closed with interior flanges. The work chamber is constantly kept to a low superpressure of 25 mm water gange. In a bypass the oxygen concentration is measured with the OXYLYT-electrolyte cell and the water vapour concentration with the KEIDEL-electrolytic hygrometer. During long-term operation oxygen levels of 35 vpm and water vapour levels of 50 vpm can be hold even when the gloves are not covered. By means of putting a vessel with liquid sodium in the work chamber oxygen levels of 8 vpm and water vapour levels of 20 vpm can be attained for short times. The inert atmosphere purity can be improved by means of increasing the gas flow rate. (author)

  10. Development of high frequency tungsten inert gas welding method

    International Nuclear Information System (INIS)

    Morisada, Yoshiaki; Fujii, Hidetoshi; Inagaki, Fuminori; Kamai, Masayoshi

    2013-01-01

    Highlights: ► A new ultrasonic wave TIG welding method was developed. ► The area of the blowholes decreased to less than about 1/8 in the normal TIG weld. ► The number of blowholes decreased with the decreasing frequency. ► The number of blowholes increased when the frequency was less than 15 kHz. ► The microstructure of the weld was refined by ultrasonic wave. -- Abstract: A new welding method, called high frequency tungsten inert gas (TIG) welding, was developed to decrease blowholes in a weld. A1050 aluminum alloy plates (100 mm l × 50 mm w × 5 mm t ) were welded at a frequency from 10 to 40 kHz. An Ar-1% hydrogen mixture was used as the shielding gas to generate blowholes in the experiments. The welding was performed in the horizontal position so that the blowholes can easily be a problem. For comparison, a normal TIG welding was also performed at 60 Hz. After welding, the distribution of the blowholes in the welds was observed in order to evaluate the effect of the sonic wave. The number of blowholes changed with the frequency. A frequency near 15 kHz is the most suitable to decrease the blowholes. Using this new method, the area of blowholes is decreased to less than about 1/8 of the normal TIG weld. This method is much more effective for decreasing the number of blowholes, compared with an ultrasonic wave vibrator which is directly fixed to the sample.

  11. Impact of airway gas exchange on the multiple inert gas elimination technique: theory.

    Science.gov (United States)

    Anderson, Joseph C; Hlastala, Michael P

    2010-03-01

    The multiple inert gas elimination technique (MIGET) provides a method for estimating alveolar gas exchange efficiency. Six soluble inert gases are infused into a peripheral vein. Measurements of these gases in breath, arterial blood, and venous blood are interpreted using a mathematical model of alveolar gas exchange (MIGET model) that neglects airway gas exchange. A mathematical model describing airway and alveolar gas exchange predicts that two of these gases, ether and acetone, exchange primarily within the airways. To determine the effect of airway gas exchange on the MIGET, we selected two additional gases, toluene and m-dichlorobenzene, that have the same blood solubility as ether and acetone and minimize airway gas exchange via their low water solubility. The airway-alveolar gas exchange model simulated the exchange of toluene, m-dichlorobenzene, and the six MIGET gases under multiple conditions of alveolar ventilation-to-perfusion, VA/Q, heterogeneity. We increased the importance of airway gas exchange by changing bronchial blood flow, Qbr. From these simulations, we calculated the excretion and retention of the eight inert gases and divided the results into two groups: (1) the standard MIGET gases which included acetone and ether and (2) the modified MIGET gases which included toluene and m-dichlorobenzene. The MIGET mathematical model predicted distributions of ventilation and perfusion for each grouping of gases and multiple perturbations of VA/Q and Qbr. Using the modified MIGET gases, MIGET predicted a smaller dead space fraction, greater mean VA, greater log(SDVA), and more closely matched the imposed VA distribution than that using the standard MIGET gases. Perfusion distributions were relatively unaffected.

  12. Development of KALIMER auxiliary sodium and cover gas management system

    International Nuclear Information System (INIS)

    Kwon, Sang Woon; Hwang, Sung Tae

    1996-11-01

    The objectives of this report are to develop and to describe the auxiliary liquid metal and cover gas management systems of KALIMER. the system includes following system: (1) Auxiliary liquid metal system (2) Inert gas receiving and processing system (3) Impurity monitoring and analysis system. Auxiliary liquid metal and cover gas management system of KALIMER was developed. Functions of each systems and design basis were describes. The auxiliary liquid metal system receives, transfers, and purifies all sodium used in the plant. The system furnishes the required sodium quantity at the pressure, temperature, flow rate, and purity specified by the interfacing system. The intermediated sodium processing subsystem (ISPS) provides continuous purification of IHTS sodium, as well as performs the initial fill operation for both the IHTS and reactor vessel. The primary sodium processing subsystem provides purification (cold trapping) for sodium used in the reactor vessel. The inert gas receiving and processing (IGRP) system provides liquefied and ambient gas storage, delivers inert gases of specified composition and purity at regulated flow rates and pressures to points of usage throughout the KALIMER, and accepts the contaminated gases through its vacuum facilities for storage and transfer to the gas radwaste system. Three gases are used in the KALIMER: helium, argon, and nitrogen. 11 tabs., 12 figs. (Author)

  13. Development of KALIMER auxiliary sodium and cover gas management system

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sang Woon; Hwang, Sung Tae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-11-01

    The objectives of this report are to develop and to describe the auxiliary liquid metal and cover gas management systems of KALIMER. the system includes following system: (1) Auxiliary liquid metal system (2) Inert gas receiving and processing system (3) Impurity monitoring and analysis system. Auxiliary liquid metal and cover gas management system of KALIMER was developed. Functions of each systems and design basis were describes. The auxiliary liquid metal system receives, transfers, and purifies all sodium used in the plant. The system furnishes the required sodium quantity at the pressure, temperature, flow rate, and purity specified by the interfacing system. The intermediated sodium processing subsystem (ISPS) provides continuous purification of IHTS sodium, as well as performs the initial fill operation for both the IHTS and reactor vessel. The primary sodium processing subsystem provides purification (cold trapping) for sodium used in the reactor vessel. The inert gas receiving and processing (IGRP) system provides liquefied and ambient gas storage, delivers inert gases of specified composition and purity at regulated flow rates and pressures to points of usage throughout the KALIMER, and accepts the contaminated gases through its vacuum facilities for storage and transfer to the gas radwaste system. Three gases are used in the KALIMER: helium, argon, and nitrogen. 11 tabs., 12 figs. (Author).

  14. Fast reactor cover gas purification - The UK position

    International Nuclear Information System (INIS)

    Thorley, A.W.

    1987-01-01

    The cover gas in the Prototype Fast Reactor (PFR) provides an inert gas blanket for both primary and secondary sodium circuits, ensures inert gas padding exists between the upper seals associated with penetrations through the reactor roof and provides argon to items of plant such as the control rods and the rotating shield and also to on line instruments such as the secondary circuit Katharometers. In order to meet these and other requirements purification of the argon cover gas is important to ensure: gas fed to purge gaps in the area of the magnetic hold device in the control rod mechanisms is not laden with sodium aerosols and reactive impurities (O 2 , H 2 ) which could cause blocking both within the gaps and pipelines; gas phase detection systems which provide early warning of steam generator failures or oil ingress into the sodium are not affected by the presence of gaseous impurities such as H 2 , CO/CO 2 and CH 4 ; mass transfer processes involving both corrosion products and interstitial atoms cannot be sustained in the cover gas environment due to the presence of high levels of O 2 , N 2 and carburising gases; background levels of radioactivity (eg Xe 133) are sufficiently low to enable gas phase detection of failed fuel pins, and the primary circuit gas blanket activity is sufficiently reduced so that discharges to the atmosphere are minimised. This paper describes how the PFR cover gas purification system is coping with these various items and how current thinking regarding the design of cover gas purification systems for a Civil Demonstration Fast Reactor (CDFR), where larger gas volumes and higher levels of radioactivity may be involved, is being guided by current experience on PFR. The paper also briefly review the experimental work planned to study aerosol and caesium behaviour in cove gas environments and discusses the behaviour of those impurities such as Zn, oil and N 2 which are potentially damaging if certain levels are exceeded in operating

  15. Thermodilution versus inert gas rebreathing for estimation of effective pulmonary blood flow

    DEFF Research Database (Denmark)

    Christensen, P; Clemensen, P; Andersen, P K

    2000-01-01

    To compare measurements of the effective pulmonary blood flow (Qep, i.e., nonshunted fraction of cardiac output, Qt) by the inert gas rebreathing (RB) method and the thermodilution (TD) technique in critically ill patients.......To compare measurements of the effective pulmonary blood flow (Qep, i.e., nonshunted fraction of cardiac output, Qt) by the inert gas rebreathing (RB) method and the thermodilution (TD) technique in critically ill patients....

  16. Measurements of hydrogen concentration in liquid sodium by using an inert gas carrier method

    International Nuclear Information System (INIS)

    Funada, T.; Nihei, I.; Yuhara, S.; Nakasuji, T.

    1979-01-01

    A technique was developed to measure the hydrogen level in liquid sodium using an inert gas carrier method. Hydrogen was extracted into an inert gas from sodium through a thin nickel membrane in the form of a helically wound tube. The amount of hydrogen in the inert gas was analyzed by gas chromatography. The present method is unique in that it can be used over the wide range of sodium temperatures (150 to 700 0 C) and has no problems associated with vacuum systems. The partial pressure of hydrogen in sodium was determined as a function of cold-trap temperature (T/sub c/). Sieverts' constant (K/sub s/) was determined as a function of sodium temperature (T). From Sieverts' constant, the solubility of hydrogen in sodium is calculated. It was found that other impurities in sodium, such as (O) and (OH), have little effect on the hydrogen pressure in the sodium loop

  17. Ethanol Dehydration by Evaporation and Diffusion in an Inert Gas Layer

    Energy Technology Data Exchange (ETDEWEB)

    In-Sick, Chung; Kyu-Min, Song [Korea Advanced Institute of Science and Technology, Taejeon (Korea, Republic of); Won-Hi, Hong; Ho-Nam, Chang [Korea Advanced Institute of Science and Technology, Taejeon (Korea, Republic of)

    1994-08-01

    Ethanol dehydration of azeotropic mixture was performed by using diffusion distillation apparatus consisting of a wetted-wall column with two concentric tubes. Ethanol-water mixtures evaporated below the boiling point was separated during the diffusion through the gap filled with an inert gas. As the temperature difference between evaporation part and condensation part was increased, the total flux increased but the selectivity decreased. The effect of the annular width on the selectivity was not significant but the total flux was decreased with decreases in the annular width. Inert gas has an effect on the diffusivity of evaporated gas components. The total flux in case of helium as inert gas was larger than that in case of air but the selectivity in case of using helium was lower. (author). 14 refs. 1 tab. 12 figs.

  18. Cover gas seals: FFTF-LMFBR seal test program

    International Nuclear Information System (INIS)

    Kurzeka, W.; Oliva, R.; Welch, T.S.; Shimazaki, T.

    1974-01-01

    The objectives of this program are to: (1) conduct static and dynamic tests to demonstrate or determine the mechanical performance of full-size (cross section) FFTF fuel transfer machine and reactor vessel head seals intended for use in a sodium vapor-inert gas environment, (2) demonstrate that these FFTF seals or new seal configurations provide acceptable fission product and cover gas retention capabilities at Clinch River Breeder Reactor Plant (CRBRP) operating environmental conditions other than radiation, and (3) develop improved seals and seal technology for the CRBRP to support the national objective to reduce all atmospheric contaminations to low levels

  19. Process for separation of inert fission gases for waste gas of a reprocessing plant for nuclear fuel

    International Nuclear Information System (INIS)

    Schnez, H.

    1980-01-01

    The inert fission gases Kr and Xe released in the resolver and other waste gases are taken to an acid regeneration plant. Part of the inert fission gases is separated by compression, cooling and filtering and deposited. The other part flows back to the resolver as flushing gas so that a flushing gas circuit is formed, which prevents explosive gas mixtures occurring. (DG) [de

  20. Fast reactor cover gas purification - The UK position

    Energy Technology Data Exchange (ETDEWEB)

    Thorley, A W

    1987-07-01

    The cover gas in the Prototype Fast Reactor (PFR) provides an inert gas blanket for both primary and secondary sodium circuits, ensures inert gas padding exists between the upper seals associated with penetrations through the reactor roof and provides argon to items of plant such as the control rods and the rotating shield and also to on line instruments such as the secondary circuit Katharometers. In order to meet these and other requirements purification of the argon cover gas is important to ensure: gas fed to purge gaps in the area of the magnetic hold device in the control rod mechanisms is not laden with sodium aerosols and reactive impurities (O{sub 2}, H{sub 2}) which could cause blocking both within the gaps and pipelines; gas phase detection systems which provide early warning of steam generator failures or oil ingress into the sodium are not affected by the presence of gaseous impurities such as H{sub 2}, CO/CO{sub 2} and CH{sub 4}; mass transfer processes involving both corrosion products and interstitial atoms cannot be sustained in the cover gas environment due to the presence of high levels of O{sub 2}, N{sub 2} and carburising gases; background levels of radioactivity (eg Xe 133) are sufficiently low to enable gas phase detection of failed fuel pins, and the primary circuit gas blanket activity is sufficiently reduced so that discharges to the atmosphere are minimised. This paper describes how the PFR cover gas purification system is coping with these various items and how current thinking regarding the design of cover gas purification systems for a Civil Demonstration Fast Reactor (CDFR), where larger gas volumes and higher levels of radioactivity may be involved, is being guided by current experience on PFR. The paper also briefly review the experimental work planned to study aerosol and caesium behaviour in cove gas environments and discusses the behaviour of those impurities such as Zn, oil and N{sub 2} which are potentially damaging if certain

  1. The effect of ion irradiation on inert gas bubble mobility

    International Nuclear Information System (INIS)

    Alexander, D.E.; Birtcher, R.C.

    1991-09-01

    The effect of Al ion irradiation on the mobility of Xe gas bubbles in Al thin films was investigated. Transmission electron microscopy was used to determine bubble diffusivities in films irradiated and/or annealed at 673K, 723K and 773K. Irradiation increased bubble diffusivity by a factor of 2--9 over that due to thermal annealing alone. The Arrhenius behavior and dose rate dependence of bubble diffusivity are consistent with a radiation enhanced diffusion phenomenon affecting a volume diffusion mechanism of bubble transport. 9 refs., 3 figs., 2 tabs

  2. Aerosol release from a hot sodium pool and behaviour in inert gas atmosphere

    International Nuclear Information System (INIS)

    Sauter, H.; Schuetz, W.

    1986-01-01

    In the KfK-NALA program, experiments were carried out on the subject of aerosol release from a contaminated sodium pool into inert gas atmosphere under various conditions. Besides the determination of retention factors for fuel and fission products, the sodium aerosol system was investigated and characterized, concerning aerosol generation (evaporation rate), particle size, mass concentration, and deposition behaviour. Pool temperatures were varied between 700 and 1000 K at different geometrical and convective conditions. Technical scale experiments with a 531-cm 2 pool surface area were performed at natural convection in a 2.2-m 3 heated vessel, as well as additional small scale experiments at forced convection and 38.5-cm 2 pool surface area. A best-fit formula is given for the specific evaporation rate into a 400 K argon atmosphere. Approximately, the very convenient relation (dm/dt) (kg/m 2 /h) = 0.1 p (mm Hg) was found. The sodium aerosol diameter lay between 0.6 μm, less than 1 sec after production, and 2.5 μm at maximum concentration. The deposition behaviour was characterized by very small quantities ( 80%) on the bottom cover of the vessel. In the model theoretic studies with the PARDISEKO code, calculations were performed of the mass concentration, particle diameter and deposition behaviour. Agreement with the experimental values could not be achieved until a modulus was introduced to allow for turbulent deposition. (author)

  3. Fuel hydrogen retention of tungsten and the reduction by inert gas glow discharges

    Energy Technology Data Exchange (ETDEWEB)

    Hino, T., E-mail: tomhino@qe.eng.hokudai.ac.jp [Laboratory of Plasma Physics and Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Yamauchi, Y.; Kimura, Y. [Laboratory of Plasma Physics and Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Nishimura, K. [National Institute for Fusion Science, Toki-shi, Gifu-ken 509-5292 (Japan); Ueda, Y. [Graduate School of Engineering, Osaka University, Suita-shi 565-0872 (Japan)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The performances of inert gas glow discharges for reduction of fuel hydrogen retention in tungsten were systematically investigated. Black-Right-Pointing-Pointer For the tungsten with rough surface structure, the reduction of fuel hydrogen retention by inert gas discharges is quite small. Black-Right-Pointing-Pointer The deuterium glow discharge is quite useful to reduce the tritium retention in plasma facing walls in fusion reactor. Black-Right-Pointing-Pointer The wall baking with temperature higher than 700-800 K is also useful to reduce the tritium retention in plasma facing walls. - Abstract: Polycrystalline tungsten was exposed to deuterium glow discharge followed by He, Ne or Ar glow discharge. The amount of retained deuterium in the tungsten was measured using residual gas analysis. The amount of desorbed deuterium during the inert gas glow discharge was also measured. The amount of retained deuterium was 2-3 times larger compared with a case of stainless steel. The ratios of desorbed amount of deuterium by He, Ne and Ar glow discharges were 4.6, 3.1 and 2.9%, respectively. These values were one order of magnitude smaller compared with the case of stainless steel. The inert gas glow discharge is not suitable to reduce the fuel hydrogen retention for tungsten walls. However, the wall baking with a temperature higher than 700 K is suitable to reduce the fuel hydrogen retention. It is also shown that the use of deuterium glow discharge is effective to reduce the in-vessel tritium inventory in fusion reactors through the hydrogen isotope exchange.

  4. Reactor cover gas monitoring at the Fast Flux Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bechtold, R A; Holt, F E; Meadows, G E; Schenter, R E [Westinghouse Hanford Company, Richland, WA (United States)

    1987-07-01

    The Fast Flux Test Facility (FFTF) is a 400 megawatt (thermal) sodium cooled reactor designed for irradiation testing of fuels, materials and components for LMRs. It is operated by the Westinghouse Hanford Company for the U. S. Department of Energy on the government-owned Hanford reservation near Richland, Washington. The first 100 day operating cycle began in April 1982 and the eighth operating cycle was completed In July 1986. Argon is used as the cover gas for all sodium systems at the plant. A program for cover gas monitoring has been in effect since the start of sodium fill in 1978. The argon is supplied to the FFTF by a liquid argon Dewar System and used without further purification. A liquid argon Dewar system provides the large volume of inert gas required for operation of the FFTF. The gas is used as received and is not recycled. Low concentrations of krypton and xenon in the argon supply are essential to preclude interference with the gas tag system. Gas chromatography has been valuable for detection of inadvertent air in leakage during refueling operations. A temporary system is installed over the reactor during outages to prevent oxide formation in the sodium vapor traps upstream from the on line gas chromatograph. On line gas monitoring by gamma spectrometry and grab sampling with GTSTs has been successful for the identification of numerous radioactive gas releases from creep capsule experiments as well as 9 fuel pin ruptures. A redundant fission gas monitoring system has been installed to insure constant surveillance of the reactor cover gas.

  5. Production of inert gas for substitution of a part of the cushion gas trapped in an aquifer underground storage reservoir

    International Nuclear Information System (INIS)

    Berger, L.; Arnoult, J.P.

    1990-01-01

    In a natural gas storage reservoir operating over the different seasons, a varying fraction of the injected gas, the cushion gas, remains permanently trapped. This cushion gas may represent more than half the total gas volume, and more than 50% of the initial investment costs for the storage facility. Studies conducted by Gaz de France, backed up by experience acquired over the years, have shown that at least 20% of the cushion gas could be replaced by a less expensive inert gas. Nitrogen, carbon dioxide, or a mixture of the two, satisfy the specifications required for this inert gas. Two main production methods exist: recovery of natural gas combustion products (mixture of 88% N 2 and 12% Co 2 ) and physical separation of air components (more or less pure N 2 , depending on industrial conditions). For the specific needs of Gaz de France, the means of production must be suited to its programme of partial cushion gas substitution. The equipment must satisfy requirements of autonomy, operating flexibility and mobility. Gaz de France has tested two units for recovery of natural gas combustion products. In the first unit, the inert gas is produced in a combustion chamber, treated in a catalytic reactor to reduce nitrogen oxide content and then compressed by gas engine driven compressors. In the second unit, the exhaust gases of the compressor gas engines are collected, treated to eliminate nitrogen oxides and then compressed. The energy balance is improved. A PSA method nitrogen production unit by selective absorption of nitrogen in the air, will be put into service in 1989. The specific features of these two methods and the reasons for choosing them will be reviewed. (author). 1 fig

  6. The smoke ion source: A device for the generation of cluster ions via inert gas condensation

    International Nuclear Information System (INIS)

    McHugh, K.M.; Sarkas, H.W.; Eaton, J.G.; Bowen, K.H.; Westgate, C.R.

    1989-01-01

    We report the development of an ion source for generating intense, continuous beams of both positive and negative cluster ions. This device is the result of the marriage of the inert gas condensation method with techniques for injecting electrons directly into expanding jets. In the preliminary studies described here, we have observed cluster ion size distributions ranging from n=1-400 for Pb n + and Pb n - and from n=12-5700 for Li n - . (orig.)

  7. Purification of inert gas circuits of nuclear power facilities from tritium and hydrogen

    International Nuclear Information System (INIS)

    Eichler, R.

    1985-08-01

    Removing hydrogen and tritium from the inert primary coolant of a high temperature reactor is very important in regard to the process heat disposition. In this work a gas purification for a high temperature module reactor was laid out constructionally and researched technically. This system removes the contamination of the primary circuit with the aid of chemical getter beds of Cer alloy particles. (orig./PW) [de

  8. Fabrication of Miniature Titanium Capsule for Brachytherapy Sources Using Tungsten Inert Gas Method

    International Nuclear Information System (INIS)

    Naghdi, R.; Sheibani, Sh.; Tamizifar, M.

    2013-01-01

    The capsules containing radioactive materials as brachytherapy sources are used for implanting into some target organs for malignant disorders treatments, such as prostate, eyes, and brain cancers. The conventional method for sealing the tubes is to weld them using a laser beam which is now a part of tube melting methods (self welding). The purpose of this study was to seal miniature titanium tubes containing radioactive materials in the form of capsules. This study introduced a new method based on melting process. A piece of commercially pure titanium grade 2 in the form of disk was used for the experiment. The sample was melted at the top of the tube by a Tungsten Inert Gas welding device for a short time duration. After completion of the melting, the disk in the form of a drop was mixed with a small part of it and both were solidified and hence closed the tube. We evaluated the tubes for the metallurgical properties and seal process which took place by Tungsten Inert Gas in different zones, including the heat affected zone, fusion zone, and interface of the joint of the drop to the tube. Finally, the produced samples were tested according to the ISO2919 and ISO9978 and the results confirmed the Disk and Tungsten Inert Gas procedure.

  9. An in vitro lung model to assess true shunt fraction by multiple inert gas elimination.

    Directory of Open Access Journals (Sweden)

    Balamurugan Varadarajan

    Full Text Available The Multiple Inert Gas Elimination Technique, based on Micropore Membrane Inlet Mass Spectrometry, (MMIMS-MIGET has been designed as a rapid and direct method to assess the full range of ventilation-to-perfusion (V/Q ratios. MMIMS-MIGET distributions have not been assessed in an experimental setup with predefined V/Q-distributions. We aimed (I to construct a novel in vitro lung model (IVLM for the simulation of predefined V/Q distributions with five gas exchange compartments and (II to correlate shunt fractions derived from MMIMS-MIGET with preset reference shunt values of the IVLM. Five hollow-fiber membrane oxygenators switched in parallel within a closed extracorporeal oxygenation circuit were ventilated with sweep gas (V and perfused with human red cell suspension or saline (Q. Inert gas solution was infused into the perfusion circuit of the gas exchange assembly. Sweep gas flow (V was kept constant and reference shunt fractions (IVLM-S were established by bypassing one or more oxygenators with perfusate flow (Q. The derived shunt fractions (MM-S were determined using MIGET by MMIMS from the retention data. Shunt derived by MMIMS-MIGET correlated well with preset reference shunt fractions. The in vitro lung model is a convenient system for the setup of predefined true shunt fractions in validation of MMIMS-MIGET.

  10. Multiple inert gas elimination technique by micropore membrane inlet mass spectrometry--a comparison with reference gas chromatography.

    Science.gov (United States)

    Kretzschmar, Moritz; Schilling, Thomas; Vogt, Andreas; Rothen, Hans Ulrich; Borges, João Batista; Hachenberg, Thomas; Larsson, Anders; Baumgardner, James E; Hedenstierna, Göran

    2013-10-15

    The mismatching of alveolar ventilation and perfusion (VA/Q) is the major determinant of impaired gas exchange. The gold standard for measuring VA/Q distributions is based on measurements of the elimination and retention of infused inert gases. Conventional multiple inert gas elimination technique (MIGET) uses gas chromatography (GC) to measure the inert gas partial pressures, which requires tonometry of blood samples with a gas that can then be injected into the chromatograph. The method is laborious and requires meticulous care. A new technique based on micropore membrane inlet mass spectrometry (MMIMS) facilitates the handling of blood and gas samples and provides nearly real-time analysis. In this study we compared MIGET by GC and MMIMS in 10 piglets: 1) 3 with healthy lungs; 2) 4 with oleic acid injury; and 3) 3 with isolated left lower lobe ventilation. The different protocols ensured a large range of normal and abnormal VA/Q distributions. Eight inert gases (SF6, krypton, ethane, cyclopropane, desflurane, enflurane, diethyl ether, and acetone) were infused; six of these gases were measured with MMIMS, and six were measured with GC. We found close agreement of retention and excretion of the gases and the constructed VA/Q distributions between GC and MMIMS, and predicted PaO2 from both methods compared well with measured PaO2. VA/Q by GC produced more widely dispersed modes than MMIMS, explained in part by differences in the algorithms used to calculate VA/Q distributions. In conclusion, MMIMS enables faster measurement of VA/Q, is less demanding than GC, and produces comparable results.

  11. NOx emission control in SI engine by adding argon inert gas to intake mixture

    International Nuclear Information System (INIS)

    Moneib, Hany A.; Abdelaal, Mohsen; Selim, Mohamed Y.E.; Abdallah, Osama A.

    2009-01-01

    The Argon inert gas is used to dilute the intake air of a spark ignition engine to decrease nitrogen oxides and improve the performance of the engine. A research engine Ricardo E6 with variable compression was used in the present work. A special test rig has been designed and built to admit the gas to the intake air of the engine for up to 15% of the intake air. The system could admit the inert gas, oxygen and nitrogen gases at preset amounts. The variables studied included the engine speed, Argon to inlet air ratio, and air to fuel ratio. The results presented here included the combustion pressure, temperature, burned mass fraction, heat release rate, brake power, thermal efficiency, volumetric efficiency, exhaust temperature, brake specific fuel consumption and emissions of CO, CO 2 , NO and O 2 . It was found that the addition of Argon gas to the intake air of the gasoline engine causes the nitrogen oxide to reduce effectively and also it caused the brake power and thermal efficiency of the engine to increase. Mathematical program has been used to obtain the mixture properties and the heat release when the Argon gas is used.

  12. TIG AISI-316 welds using an inert gas welding chamber and different filler metals: Changes in mechanical properties and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Pascual, M.; Salas, F.; Carcel, F.J.; Perales, M.; Sanchez, A.

    2010-07-01

    This report analyses the influence of the use of an inert gas welding chamber with a totally inert atmosphere on the microstructure and mechanical properties of austenitic AISI 316L stainless steel TIG welds, using AISI ER316L, AISI 308L and Inconel 625 as filler metals. When compared with the typical TIG process, the use of the inert gas chamber induced changes in the microstructure, mainly an increase in the presence of vermicular ferrite and ferrite stringers, what resulted in higher yield strengths and lower values of hardness. Its effect on other characteristics of the joins, such as tensile strength, depended on the filler metal. The best combination of mechanical characteristics was obtained when welding in the inert gas chamber using Inconel 625 as filler metal. (Author). 12 refs.

  13. Nuclear reactor coolant and cover gas system

    International Nuclear Information System (INIS)

    George, J.A.; Redding, A.H.; Tower, S.N.

    1976-01-01

    A core cooling system is disclosed for a nuclear reactor of the type utilizing a liquid coolant with a cover gas above free surfaces of the coolant. The disclosed system provides for a large inventory of reactor coolant and a balanced low pressure cover gas arrangement. A flow restricting device disposed within a reactor vessel achieves a pressure of the cover gas in the reactor vessel lower than the pressure of the reactor coolant in the vessel. The low gas pressure is maintained over all free surfaces of the coolant in the cooling system including a coolant reservoir tank. Reactor coolant stored in the reservoir tank allows for the large reactor coolant inventory provided by the invention

  14. Determination of hydrogen in uranium-niobium-zirconium alloy by inert-gas fusion

    International Nuclear Information System (INIS)

    Carden, W.F.

    1979-12-01

    An improved method has been developed using inert-gas fusion for determining the hydrogen content in uranium-niobium-zirconium (U-7.5Nb-2.5Zr) alloy. The method is applicable to concentrations of hydrogen ranging from 1 to 250 micrograms per gram and may be adjusted for analysis of greater hydrogen concentrations. Hydrogen is determined using a hydrogen determinator. The limit of error for a single determination at the 95%-confidence level (at the 3.7-μg/g-hydrogen level) is +-1.4 micrograms per gram hydrogen

  15. Modelling the transient behaviour of pulsed current tungsten-inert-gas weldpools

    Science.gov (United States)

    Wu, C. S.; Zheng, W.; Wu, L.

    1999-01-01

    A three-dimensional model is established to simulate the pulsed current tungsten-inert-gas (TIG) welding process. The goal is to analyse the cyclic variation of fluid flow and heat transfer in weldpools under periodic arc heat input. To this end, an algorithm, which is capable of handling the transience, nonlinearity, multiphase and strong coupling encountered in this work, is developed. The numerical simulations demonstrate the transient behaviour of weldpools under pulsed current. Experimental data are compared with numerical results to show the effectiveness of the developed model.

  16. Chemical identities of radioiodine released from U3O8 in oxygen and inert gas atmospheres

    International Nuclear Information System (INIS)

    Tachikawa, E.; Nakashima, M.

    1977-01-01

    Irradiated U 3 O 8 was heated from room temperature to 1100 0 C in a temperature-programmed oven (5 0 C/min) in a flow of carrier gas. The iodine released to an inert gas was deposited in the temperature range from 200 to 300 0 C with a peak at 250 0 C (speciesA). This species is neither in a form combined with other fission products nor in elemental form. It is possibly a chemical combination with uranium. It reacts with oxygen, yielding species B characterized by its deposition at a temperature close to room temperature. The activation energy of this oxidation reaction was determined to be 6.0 +-0.5 Kcal/mol. Comparing the deposition-profile with those obtained with carrier-free I 2 and HI indicated that species B was I 2 . As for the formation of organic iodides accompanying the release in an inert gas, it was concluded that these were produced in radical reactions. Thus, in a presence of oxygen, organic iodides were formed in competition with the reactions of organic radicals with oxygen. (author)

  17. Magnetotransport of Monolayer Graphene with Inert Gas Adsorption in the Quantum Hall Regime

    Science.gov (United States)

    Fukuda, A.; Terasawa, D.; Fujimoto, A.; Kanai, Y.; Matsumoto, K.

    2018-03-01

    The surface of graphene is easily accessible from outside, and thus it is a suitable material to study the effects of molecular adsorption on the electric transport properties. We investigate the magnetotransport of inert-gas-adsorbed monolayer graphene at a temperature of 4.4 K under a magnetic field ranging from 0 to 7 T. We introduce 4He or Ar gas at low temperature to graphene kept inside a sample cell. The magnetoresistance change ΔRxx and Hall resistance change ΔRxy from the pristine graphene are measured as a function of gate voltage and magnetic field for one layer of adsorbates. ΔRxx and ΔRxy show oscillating patterns related to the constant filling factor lines in a Landau-fan diagram. Magnitudes of these quantities are relatively higher around a charge neutral point and may be mass-sensitive. These conditions could be optimized for development of a highly sensitive gas sensor.

  18. Trapping of He clusters by inert-gas impurities in tungsten: First-principles predictions and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Manh, Duc, E-mail: duc.nguyen@ccfe.ac.uk; Dudarev, S.L.

    2015-06-01

    Properties of point defects resulting from the incorporation of inert-gas atoms in bcc tungsten are investigated systematically using first-principles density functional theory (DFT) calculations. The most stable configuration for the interstitial neon, argon, krypton and xenon atoms is the tetrahedral site, similarly to what was found earlier for helium in W. The calculated formation energies for single inert-gas atoms at interstitial sites as well as at substitutional sites are much larger for Ne, Ar, Kr and Xe than for He. While the variation of the energy of insertion of inert-gas defects into interstitial configurations can be explained by a strong effect of their large atomic size, the trend exhibited by their substitutional energies is more likely related to the covalent interaction between the noble gas impurity atoms and the tungsten atoms. There is a remarkable variation exhibited by the energy of interaction between inert-gas impurities and vacancies, where a pronounced size effect is observed when going from He to Ne, Ar, Kr, Xe. The origin of this trend is explained by electronic structure calculations showing that p-orbitals play an important part in the formation of chemical bonds between a vacancy and an atom of any of the four inert-gas elements in comparison with helium, where the latter contains only 1s{sup 2} electrons in the outer shell. The binding energies of a helium atom trapped by five different defects (He-v, Ne-v, Ar-v, Kr-v, Xe-v, where v denotes a vacancy in bcc-W) are all in excellent agreement with experimental data derived from thermal desorption spectroscopy. Attachment of He clusters to inert gas impurity atom traps in tungsten is analysed as a function of the number of successive trapping helium atoms. Variation of the Young modulus due to inert-gas impurities is analysed on the basis of data derived from DFT calculations.

  19. Using fumarolic inert gas composition to investigate magma dynamics at Campi Flegrei (Italy)

    Science.gov (United States)

    Chiodini, G.; Caliro, S.; Paonita, A.; Cardellini, C.

    2013-12-01

    Since 2000 the Campi Flegrei caldera sited in Neapolitan area (Italy), has showed signs of reactivation, marked by ground uplift, seismic activity, compositional variations of fumarolic effluents from La Solfatara, an increase of the fumarolic activity as well as of soil CO2 fluxes. Comparing long time series of geochemical signals with ground deformation and seismicity, we show that these changes are at least partially caused by repeated injections of magmatic fluid into the hydrothermal system. The frequency of these degassing episodes has increased in the last years, causing pulsed uplift episodes and swarms of low magnitude earthquakes. We focus here in the inert gas species (CO2-He-Ar-N2) of Solfatara fumaroles which displayed in the time spectacular and persistent variation trends affecting all the monitored vents. The observed variations, which include a continuous decrease of both N2/He and N2/CO2 ratios since 1985, paralleled by an increase of He/CO2, can not be explained neither with changes in processes of boiling-condensation in the local hydrothermal system nor with changes in the mixing proportions between a magmatic vapour and hydrothermal fluids. Consequently we investigated the possibility that the trends of inert gas species are governed by changes in the conditions controlling magma degassing at depth. We applied a magma degassing model, with the most recent updates for inert gas solubilities, after to have included petrologic constraints from the ranges of melt composition and reservoir pressure at Campi Flegrei. The model simulations for mafic melts (trachybasalt and shoshonite) show a surprising agreement with the measured data. Both decompressive degassing of an ascending magma and mixing between magmatic fluids exsolved at various levels along the ascent path can explain the long-time geochemical changes. Our work highlights that, in caldera systems where the presence of hydrothermal aquifers commonly masks the magmatic signature of reactive

  20. TIG AISI-316 welds using an inert gas welding chamber and different filler metals: Changes in mechanical properties and microstructure

    Directory of Open Access Journals (Sweden)

    Sánchez, A.

    2010-12-01

    Full Text Available This report analyses the influence of the use of an inert gas welding chamber with a totally inert atmosphere on the microstructure and mechanical properties of austenitic AISI 316L stainless steel TIG welds, using AISI ER316L, AISI 308L and Inconel 625 as filler metals. When compared with the typical TIG process, the use of the inert gas chamber induced changes in the microstructure, mainly an increase in the presence of vermicular ferrite and ferrite stringers, what resulted in higher yield strengths and lower values of hardness. Its effect on other characteristics of the joins, such as tensile strength, depended on the filler metal. The best combination of mechanical characteristics was obtained when welding in the inert gas chamber using Inconel 625 as filler metal.

    En este estudio se analiza la influencia que el uso de una cámara de soldadura de gas inerte tiene sobre la microestructura y las propiedades mecánicas de las soldaduras TIG en el acero inoxidable austenítico AISI-316L cuando se emplean AISI ER316L, AISI 308L e Inconel 625 como materiales de aporte. Cuando se compara con el típico proceso de TIG, el uso de una cámara de gas inerte induce cambios en la microestructura, incrementando la presencia de ferrita vermicular y de laminillas de ferrita, resultando en un aumento del límite elástico y una pérdida de dureza. Su influencia sobre otras características de las soldaduras como la carga de rotura depende de la composición del material de aporte. La mejor combinación de propiedades mecánicas se obtuvo usando el Inconel 625 como material de aporte y soldando en la cámara de gas inerte.

  1. Synthesis of Fe Nanoparticles Functionalized with Oleic Acid Synthesized by Inert Gas Condensation

    Directory of Open Access Journals (Sweden)

    L. G. Silva

    2014-01-01

    Full Text Available In this work, we study the synthesis of monodispersed Fe nanoparticles (Fe-NPs in situ functionalized with oleic acid. The nanoparticles were self-assembled by inert gas condensation (IGC technique by using magnetron-sputtering process. Structural characterization of Fe-NPs was performed by transmission electron microscopy (TEM. Particle size control was carried out through the following parameters: (i condensation zone length, (ii magnetron power, and (iii gas flow (Ar and He. Typically the nanoparticles generated by IGC showed diameters which ranged from ~0.7 to 20 nm. Mass spectroscopy of Fe-NPs in the deposition system allowed the study of in situ nanoparticle formation, through a quadrupole mass filter (QMF that one can use together with a mass filter. When the deposition system works without quadrupole mass filter, the particle diameter distribution is around +/−20%. When the quadrupole is in line, then the distribution can be reduced to around +/−2%.

  2. Experimental observations of effects of inert gas on cavity formation during irradiation

    International Nuclear Information System (INIS)

    Farrell, K.

    1980-04-01

    Cavity (void) formation and swelling in non-fissile materials during neutron irradiation and charged particle bombardments are reviewed. Helium is the most important inert gas and is primarily active as a cavity nucleant. It also enhances formation of dislocation structure. Preimplantation of helium overstimulates cavity nucleation and gives a different temperature response of swelling than when helium is coimplanted during the damage process. Helium affects, and is affected by, radiation-induced phase instability. Many of these effects are explainable in terms of cavity nucleation on submicroscopic critical size gas bubbles, and on the influence of the neutral sink strength of such bubbles. Titanium and zirconium resist cavity formation when vacancy loops are present

  3. Experimental observations of effects of inert gas on cavity formation during irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, K.

    1980-04-01

    Cavity (void) formation and swelling in non-fissile materials during neutron irradiation and charged particle bombardments are reviewed. Helium is the most important inert gas and is primarily active as a cavity nucleant. It also enhances formation of dislocation structure. Preimplantation of helium overstimulates cavity nucleation and gives a different temperature response of swelling than when helium is coimplanted during the damage process. Helium affects, and is affected by, radiation-induced phase instability. Many of these effects are explainable in terms of cavity nucleation on submicroscopic critical size gas bubbles, and on the influence of the neutral sink strength of such bubbles. Titanium and zirconium resist cavity formation when vacancy loops are present.

  4. Numerical modelling of inert gas bubble rising in liquid metal pool

    International Nuclear Information System (INIS)

    Pradeep, Arjun; Sharma, Anil Kumar; Ponraju, D.; Nashine, B K.

    2016-01-01

    Two-phase flow finds several applications in safe operation of Sodium-cooled Fast Reactor (SFR). Numerical modelling of bubble rise dynamics in liquid metal pool of SFR is essential for the evaluation of residence time and shape changes, which are of utmost importance for simulating associated heat and mass transfer processes involved in reactor safety. A numerical model has been developed based on OpenFOAM for the evaluation of two-dimensional inert gas bubble rise dynamics in stagnant liquid metal pool. The governing model equations are discretized and solved using the Volume of Fluid based solver available in OpenFOAM with appropriate initial and boundary conditions. The model has been validated with available numerical benchmark results for laminar transient two-phase flow. The model has been used to evaluate velocity and rise trajectory of argon gas bubble with different diameters through a pool of liquid sodium. (author)

  5. Possible 85Kr influence on the plant metabolism. Investigation of inert gas 85Kr interaction with plants

    International Nuclear Information System (INIS)

    Butkus, D.

    1999-01-01

    Model experiments have shown that inert gas 85 Kr is accumulated by plants. The aim of the work was to determine the way of the capture of inert gas by growing plants: either only through their overground part from air or in addition through their overground part from air or in addition through roots which accumulate water dissolved materials. For this purpose potatoes were grown in the chamber where the 85 Kr volume activity was (3.6±0.1)*10 6 Bq*m -3 . It was determined that 85 Kr gas accumulation was greater in those plant parts which grow faster and are further from the soil. Measurement results of 85 Kr activity of a potato tuber slightly differed from the environment background activity. It shows that the main penetration of inert gas into the plant occurred by absorption from air. (author)

  6. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    Science.gov (United States)

    Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.

    2013-10-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.

  7. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    International Nuclear Information System (INIS)

    Kühn-Kauffeldt, M; Marques, J-L; Forster, G; Schein, J

    2013-01-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned

  8. Cover gas purification experience at KNK

    Energy Technology Data Exchange (ETDEWEB)

    Richard, H; Stade, K Ch [Kernkraftwerk-Betriebsgesellschaft m.b.H., Eggenstein-Leopoldshafen (Germany); Stamm, H H [Institute of Radiochemistry, Nuclear Research Center, Karsruhe (Germany)

    1987-07-01

    KNK II is an experimental, sodium cooled fast breeder reactor. The reactor was operated until 1974 with a thermal core (KNK I). The plant was converted into a fast breeder reactor (KNK II) from 1974 to 1977. The commissioning of KNK II was started in October 1977 with the first fast core KNK 11/1. After 400 effective full power days (EFPD) the reactor was shut down in August 1982. After replacing the complete core by the second fast core KNK 11/2, the plant went into operation again in August 1983. In August 1986 nearly 400 EFPD were achieved with the second fast core. Argon is used as cover gas in the primary and secondary sodium systems of KNK. In former times fresh argon was supplied by a bundle of gas cylinders. Later on a liquid argon supply was installed. Purification of cover gas is done by flushing only. During KNK I operation no fuel failures occurred. The primary cover gas activity was characterized by the formation of Ar-41, only small quantities of fission gas were measured, released from 'tramp uranium'. Therefore, no problems existed during KNK I operation with regard to radioactive gas disposal. However, after start-up of KNK II, several fuel elements failed. Until August 1986, five fuel failures were observed, two in KNK 11/1, and three in KNK 11/2. Sometimes, operation with defective fuel pins caused problems when fission gases leaked into the containment atmosphere, and the access had to be restricted. The purging rate of the primary cover gas was limited by the capacity of the charcoal filters in the delay line. Of all non-radioactive impurities, hydrogen (H{sub z}) and nitrogen (N{sub 2}) were of most importance in the primary cover gas. Main source of both impurities was the ingress of air and atmospheric moisture during handling operations in shutdown periods. An other possible source for hydrogen might be a release from the steel-clad zirconium hydride, used as moderator in the moderated driver fuel elements. Additional nitrogen may diffuse

  9. The quantitative studies on gas explosion suppression by an inert rock dust deposit.

    Science.gov (United States)

    Song, Yifan; Zhang, Qi

    2018-07-05

    The traditional defence against propagating gas explosions is the application of dry rock dust, but not much quantitative study on explosion suppression of rock dust has been made. Based on the theories of fluid dynamics and combustion, a simulated study on the propagation of premixed gas explosion suppressed by deposited inert rock dust layer is carried out. The characteristics of the explosion field (overpressure, temperature, flame speed and combustion rate) at different deposited rock dust amounts are investigated. The flame in the pipeline cannot be extinguished when the deposited rock dust amount is less than 12 kg/m 3 . The effects of suppressing gas explosion become weak when the deposited rock dust amount is greater than 45 kg/m 3 . The overpressure decreases with the increase of the deposited rock dust amounts in the range of 18-36 kg/m 3 and the flame speed and the flame length show the same trends. When the deposited rock dust amount is 36 kg/m 3 , the overpressure can be reduced by 40%, the peak flame speed by 50%, and the flame length by 42% respectively, compared with those of the gas explosion of stoichiometric mixture. In this model, the effective raised dust concentrations to suppress explosion are 2.5-3.5 kg/m 3 . Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Active flux tungsten inert gas welding of austenitic stainless steel AISI 304

    Directory of Open Access Journals (Sweden)

    D. Klobčar

    2016-10-01

    Full Text Available The paper presents the effects of flux assisted tungsten inert gas (A-TIG welding of 4 (10 mm thick austenitic stainless steel EN X5CrNi1810 (AISI 304 in the butt joint. The sample dimensions were 300 ´ 50 mm, and commercially available active flux QuickTIG was used for testing. In the planned study the influence of welding position and weld groove shape was analysed based on the penetration depth. A comparison of microstructure formation, grain size and ferrit number between TIG welding and A-TIG welding was done. The A-TIG welds were subjected to bending test. A comparative study of TIG and A-TIG welding shows that A-TIG welding increases the weld penetration depth.

  11. Reducibility of ceria-lanthana mixed oxides under temperature programmed hydrogen and inert gas flow conditions

    International Nuclear Information System (INIS)

    Bernal, S.; Blanco, G.; Cifredo, G.; Perez-Omil, J.A.; Pintado, J.M.; Rodriguez-Izquierdo, J.M.

    1997-01-01

    The present paper deals with the preparation and characterization of La/Ce mixed oxides, with La molar contents of 20, 36 and 57%. We carry out the study of the structural, textural and redox properties of the mixed oxides, comparing our results with those for pure ceria. For this aim we use temperature programmed reduction (TPR), temperature programmed desorption (TPD), nitrogen physisorption at 77 K, X-ray diffraction and high resolution electron microscopy. The mixed oxides are more easy to reduce in a flow of hydrogen than ceria. Moreover, in an inert gas flow they release oxygen in higher amounts and at lower temperatures than pure CeO 2 . The textural stability of the mixed oxides is also improved by incorporation of lanthana. All these properties make the ceria-lanthana mixed oxides interesting alternative candidates to substitute ceria in three-way catalyst formulations. (orig.)

  12. Deposition of Size-Selected Cu Nanoparticles by Inert Gas Condensation

    Directory of Open Access Journals (Sweden)

    Martínez E

    2009-01-01

    Full Text Available Abstract Nanometer size-selected Cu clusters in the size range of 1–5 nm have been produced by a plasma-gas-condensation-type cluster deposition apparatus, which combines a grow-discharge sputtering with an inert gas condensation technique. With this method, by controlling the experimental conditions, it was possible to produce nanoparticles with a strict control in size. The structure and size of Cu nanoparticles were determined by mass spectroscopy and confirmed by atomic force microscopy (AFM and scanning electron transmission microscopy (STEM measurements. In order to preserve the structural and morphological properties, the energy of cluster impact was controlled; the energy of acceleration of the nanoparticles was in near values at 0.1 ev/atom for being in soft landing regime. From SEM measurements developed in STEM-HAADF mode, we found that nanoparticles are near sized to those values fixed experimentally also confirmed by AFM observations. The results are relevant, since it demonstrates that proper optimization of operation conditions can lead to desired cluster sizes as well as desired cluster size distributions. It was also demonstrated the efficiency of the method to obtain size-selected Cu clusters films, as a random stacking of nanometer-size crystallites assembly. The deposition of size-selected metal clusters represents a novel method of preparing Cu nanostructures, with high potential in optical and catalytic applications.

  13. Experimental investigations of tungsten inert gas assisted friction stir welding of pure copper plates

    Science.gov (United States)

    Constantin, M. A.; Boșneag, A.; Nitu, E.; Iordache, M.

    2017-10-01

    Welding copper and its alloys is usually difficult to join by conventional fusion welding processes because of high thermal diffusivity of the copper, alloying elements, necessity of using a shielding gas and a clean surface. To overcome this inconvenience, Friction Stir Welding (FSW), a solid state joining process that relies on frictional heating and plastic deformation, is used as a feasible welding process. In order to achieve an increased welding speed and a reduction in tool wear, this process is assisted by another one (WIG) which generates and adds heat to the process. The aim of this paper is to identify the influence of the additional heat on the process parameters and on the welding joint properties (distribution of the temperature, hardness and roughness). The research includes two experiments for the FSW process and one experiment for tungsten inert gas assisted FSW process. The outcomes of the investigation are compared and analysed for both welding variants. Adding a supplementary heat source, the plates are preheated and are obtain some advantages such as reduced forces used in process and FSW tool wear, faster and better plasticization of the material, increased welding speed and a proper weld quality.

  14. Inert gas investigations of the Apollo 15 and 17 landing sites

    International Nuclear Information System (INIS)

    Jordan, J.L.

    1975-01-01

    The inert gas contents in size fractions of the following fines from the Apollo 15 site: 15071, 15501, 15511, 15421, and 15080 has been determined. In addition, the same for size fractions of fines 79221, 79241, and 79261 from depths of 0 to 2 cm, 2 to 7 cm, and 7 to 17 cm in a trench near Van Serg Crater at the Apollo 17 site was determined. The very low gas contents and lack of anticorrelation with grain diameter of 15421 suggests that these fines are undersaturated with respect to solar wind irradiation. The decrease in slope of the curves for gas concentration vs grain diameter of 15071 for successively heavier gases is interpreted to be the effects of the Rosiwal principle + comminution + agglutinate formation. Evidence for heavily irradiated (with respect to cosmic rays) zones deep within or beneath the regolith exists at both Apollo 15 and 17 landing sites. This may in part explain the ''missing'' cosmic ray record. Scatter between ''young'' and ''old'' age limits in 40 Ar vs 36 Ar plots exists for 15511, and the 3 trench fines from the Apollo 17 landing site. In the case of 15511 the observed ratios suggest that these may be the result of large impacts on the Apennine Front contributing material to the site where 15511 was collected. The observed 40 Ar/ 36 Ar ratios in the trench fines may be the result of excavation of materials with high 40 Ar/ 36 Ar ratios during the Van Serg event. The low apparent 40 K-- 40 Ar ages of the Apollo 15 fines are interpreted to be the result of addition of young 40 K-- 40 Ar age material (less than 1.8 by) from Autolycus and Aristillus, two large craters north of the site, to the older (3.3 by) mare materials

  15. On the Gas Dynamics of Inert-Gas-Assisted Laser Cutting of Steel Plate

    Science.gov (United States)

    Brandt, A. D.; Settles, G. S.; Scroggs, S. D.

    1996-11-01

    Laser beam cutting of sheet metal requires an assist gas to blow away the molten material. Since the assist-gas dynamics influences the quality and speed of the cut, the orientation of the gas nozzle with respect to the kerf is also expected to be important. A 1 kW cw CO2 laser with nitrogen assist gas was used to cut mild steel sheet of 1 to 4 mm thickness, using a sonic coaxial nozzle as a baseline. Off-axis nozzles were oriented from 20 deg to 60 deg from normal with exit Mach numbers from 1 to 2.4. Results showed maximum cutting speed at a 40 deg nozzle orientation. Shadowgrams of a geometrically-similar model kerf then revealed a separated shock wave-boundary layer interaction within the kerf for the (untilted) coaxial nozzle case. This was alleviated, resulting in a uniform supersonic flow throughout the kerf and consequent higher cutting speeds, by tilting the nozzle between 20 deg and 45 deg from the normal. This result did not depend upon the exit Mach number of the nozzle. (Research supported by NSF Grant DMI-9400119.)

  16. Mechanical behaviour and diffusion of gas during neutron irradiation of actinides in ceramic inert matrices

    NARCIS (Netherlands)

    Neeft, E.A.C.

    2004-01-01

    Fission of actinides from nuclear waste in inert matrices (materials without uranium) can reduce the period in time that nuclear waste is more radiotoxic than uranium ore that is the rock from which ordinary reactor fuel is made. A pioneering study is performed with the inert matrices: MgO, MgAl2O4,

  17. Study of the mobility activation in ZnSe thin films deposited using inert gas condensation

    Directory of Open Access Journals (Sweden)

    Jeewan Sharma

    2017-12-01

    Full Text Available ZnSe thin films were synthesized on glass substrates using the inert gas condensation technique at substrate temperature ranging from 25 °C to 100 °C. The hexagonal structure and average crystallite size (6.1–8.4 nm were determined from X-ray diffraction data. The transient photoconductivity was investigated using white light of intensity 8450 lx to deduce the effective density of states (Neff in the order of 1.02 × 1010–13.90 × 1010 cm−3, the frequency factor (S in the range 2.5 × 105–24.6 × 105 s−1 and the trap depth (E ranging between 0.37–0.64 eV of these films. The trap depth study revealed three different types of levels with quasi-continuous distribution below the conduction band. An increase in the photoconductivity was observed as a result of the formation of potential barriers (Vb and of the increase of carrier mobility at the crystallite boundaries. The study of the dependence of various mobility activation parameters on the deposition temperature and the crystallite size has provided better understanding of the mobility activation mechanism.

  18. Analysis of cracks in stainless steel TIG [tungsten inert gas] welds

    International Nuclear Information System (INIS)

    Nakagaki, M.; Marschall, C.; Brust, F.

    1986-12-01

    This report contains the results of a combined experimental and analytical study of ductile crack growth in tungsten inert gas (TIG) weldments of austenitic stainless steel specimens. The substantially greater yield strength of the weld metal relative to the base metal causes more plastic deformation in the base metal adjacent to the weld than in the weld metal. Accordingly, the analytical studies focused on the stress-strain interaction between the crack tip and the weld/base-metal interface. Experimental work involved tests using compact (tension) specimens of three different sizes and pipe bend experiments. The compact specimens were machined from a TIG weldment in Type 304 stainless steel plate. The pipe specimens were also TIG welded using the same welding procedures. Elastic-plastic finite element methods were used to model the experiments. In addition to the J-integral, different crack-tip integral parameters such as ΔT/sub p/* and J were evaluated. Also, engineering J-estimation methods were employed to predict the load-carrying capacity of the welded pipe with a circumferential through-wall crack under bending

  19. Microstructure and erosion characteristic of nodular cast iron surface modified by tungsten inert gas

    International Nuclear Information System (INIS)

    Abboud, Jaafar Hadi

    2012-01-01

    Highlights: ► Local surface melting. ► Significant improvement in erosion resistance. ► The ductile behaviour was found. -- Abstract: The surface of nodular cast iron has been melted and rapidly solidified by Tungsten Inert Gas (TIG) process to produce a chilled structure of high hardness and better erosion resistance. Welding currents of magnitude 100, 150, and 200 A at a constant voltage of 72 have been used to melt the surface of nodular cast iron. Microstructural characterization, hardness measurements, and erosion wear tests have been performed on these modified surfaces as well as on the untreated material. Microstructural characterization has shown that surface melting resulted in complete or partial dissolution of the graphite nodules and resolidification of primary austenite dendrites, which undergo further decomposition into ferrite and cementite, and interdendritic of acicular eutectic; their microhardness measured across the melted depth ranged between 600 and 800 Hv. The scale of the dendrites and the interdendritic eutectic became coarser when a higher current is used. The results also indicated that remelting process by TIG improved erosion resistance by three to four times. Eroded surface observations of the as-received and TIG melted samples showed a ductile behavior with a maximum erosion rate at 30°. The fine microstructures obtained by the rapid cooling and the formation of a large amount of eutectic cementite instead of the graphite have contributed greatly to the plastic flow and consequently to the better erosion resistance of the TIG surface melted samples.

  20. Tungsten inert gas (TIG) welding of Ni-rich NiTi plates: functional behavior

    Science.gov (United States)

    Oliveira, J. P.; Barbosa, D.; Braz Fernandes, F. M.; Miranda, R. M.

    2016-03-01

    It is often reported that, to successfully join NiTi shape memory alloys, fusion-based processes with reduced thermal affected regions (as in laser welding) are required. This paper describes an experimental study performed on the tungsten inert gas (TIG) welding of 1.5 mm thick plates of Ni-rich NiTi. The functional behavior of the joints was assessed. The superelasticity was analyzed by cycling tests at maximum imposed strains of 4, 8 and 12% and for a total of 600 cycles, without rupture. The superelastic plateau was observed, in the stress-strain curves, 30 MPa below that of the base material. Shape-memory effect was evidenced by bending tests with full recovery of the initial shape of the welded joints. In parallel, uniaxial tensile tests of the joints showed a tensile strength of 700 MPa and an elongation to rupture of 20%. The elongation is the highest reported for fusion-welding of NiTi, including laser welding. These results can be of great interest for the wide-spread inclusion of NiTi in complex shaped components requiring welding, since TIG is not an expensive process and is simple to operate and implement in industrial environments.

  1. Study of the characteristics of duplex stainless steel activated tungsten inert gas welds

    International Nuclear Information System (INIS)

    Chern, Tsann-Shyi; Tseng, Kuang-Hung; Tsai, Hsien-Lung

    2011-01-01

    The purpose of this study is to investigate the effects of the specific fluxes used in the tungsten inert gas (TIG) process on surface appearance, weld morphology, angular distortion, mechanical properties, and microstructures when welding 6 mm thick duplex stainless steel. This study applies a novel variant of the autogenous TIG welding, using oxide powders (TiO 2 , MnO 2 , SiO 2 , MoO 3 , and Cr 2 O 3 ), to grade 2205 stainless steel through a thin layer of the flux to produce a bead-on-plate joint. Experimental results indicate that using SiO 2 , MoO 3 , and Cr 2 O 3 fluxes leads to a significant increase in the penetration capability of TIG welds. The activated TIG process can increase the joint penetration and the weld depth-to-width ratio, and tends to reduce the angular distortion of grade 2205 stainless steel weldment. The welded joint also exhibited greater mechanical strength. These results suggest that the plasma column and the anode root are a mechanism for determining the morphology of activated TIG welds.

  2. Comparison of methods for separating small quantities of hydrogen isotopes from an inert gas

    International Nuclear Information System (INIS)

    Willms, R.S.; Tuggle, D.; Birdsell, S.; Parkinson, J.; Price, B.; Lohmeir, D.

    1998-03-01

    It is frequent within tritium processing systems that a small amount of hydrogen isotopes (Q 2 ) must be separated from an inert gas such as He, Ar and N 2 . Thus, a study of presently available technologies for effecting such a separation was performed. A base case and seven technology alternatives were identified and a simple design of each was prepared. These technologies included oxidation-adsorption-metal bed reduction, oxidation-adsorption-palladium membrane reactor, cryogenic adsorption, cryogenic trapping, cryogenic distillation, hollow fiber membranes, gettering and permeators. It was found that all but the last two methods were unattractive for recovering Q 2 from N 2 . Reasons for technology rejection included (1) the method unnecessarily turns the hydrogen isotopes into water, resulting in a cumbersome and more hazardous operation, (2) the method would not work without further processing, and (3) while the method would work, it would only do so in an impractical way. On the other hand, getters and permeators were found to be attractive methods for this application. Both of these methods would perform the separation in a straightforward, essentially zero-waste, single step operation. The only drawback for permeators was that limited low-partial Q 2 pressure data is available. The drawbacks for getters are their susceptibility to irreversible and exothermic reaction with common species such as oxygen and water, and the lack of long-term operation of such beds. More research is envisioned for both of these methods to mature these attractive technologies

  3. Microstructure and magnetic properties of inert gas atomized rare earth permanent magnetic materials

    International Nuclear Information System (INIS)

    Sellers, C.H.; Hyde, T.A.; Branagan, D.J.; Lewis, L.H.; Panchanathan, V.

    1997-01-01

    Several permanent magnet alloys based on the ternary Nd 2 Fe 14 B (2-14-1) composition have been prepared by inert gas atomization (IGA). The microstructure and magnetic properties of these alloys have been studied as a function of particle size, both before and after heat treatment. Different particle sizes have characteristic properties due to the differences in cooling rate experienced during solidification from the melt. These properties are also strongly dependent on the alloy composition due to the cooling rate close-quote s effect on the development of the phase structure; the use of rare earth rich compositions appears necessary to compensate for a generally inadequate cooling rate. After atomization, a brief heat treatment is necessary for the development of the optimal microstructure and magnetic properties, as seen from the hysteresis loop shape and improvements in key magnetic parameters (intrinsic coercivity H ci , remanence B r , and maximum energy product BH max ). By adjusting alloy compositions specifically for this process, magnetically isotropic powders with good magnetic properties can be obtained and opportunities for the achievement of better properties appear to be possible. copyright 1997 American Institute of Physics

  4. Clinical application of inert gas Multiple Breath Washout in children and adolescents with asthma.

    Science.gov (United States)

    Zwitserloot, Annelies; Fuchs, Susanne I; Müller, Christina; Bisdorf, Kornelia; Gappa, Monika

    2014-09-01

    Children with asthma often have normal spirometry despite significant disease. The pathology of the small airways in asthma may be assessed using Multiple Breath Washout (MBW) and calculating the Lung Clearance Index (LCI). There are only few studies using MBW in children with asthma and existing data regarding bronchodilator effect are contradictory. The aim of the present pilot study was to compare LCI in asthma and controls and assess the effect of salbutamol in children with asthma on the LCI. Unselected patients with a diagnosis of asthma visiting the outpatient department of our hospital between 04-2010 and 03-2011 were recruited and compared to a healthy control group. MBW was performed as inert gas MBW using sulfurhexafluorid (SF6) as the tracer gas. Clinical data were documented and spirometry and MBW (EasyOne Pro, MBW module, NDD Switzerland) were performed before and after the use of salbutamol (200-400 μg). Healthy controls performed baseline MBW only. 32 children diagnosed with asthma (4.7-17.4 years) and 42 controls (5.3-20.8) were included in the analysis. LCI differed between patients and controls, with a mean LCI (SD) of 6.48 (0.48) and 6.21 (0.38) (P = 0.008). Use of salbutamol had no significant effect on LCI for the group. These pilot data show that clinically stable asthma patients and controls both have a LCI in the normal range. However, in patients the LCI is significantly higher indicating that MBW may have a role in assessing small airways disease in asthma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Cover gas seals. 11 - FFTF-LMFBR seal-test program, January-March 1974

    International Nuclear Information System (INIS)

    Kurzeka, W.; Oliva, R.; Welch, F.

    1974-01-01

    The objectives of this program are to: (1) conduct static and dynamic tests to demonstrate or determine the mechanical performance of full-size (cross section) FFTF fuel transfer machine and reactor vessel head seals intended for use in a sodium vapor - inert gas environment, (2) demonstrate that these FFTF seals or new seal configuration provide acceptable fission product and cover gas retention capabilities at LMFBR Clinch River Plant operating environmental conditions other than radiation, and (3) develop improved seals and seal technology for the LMFBR Clinch River Plant to support the national objective to reduce all atmospheric contaminations to low levels

  6. Fatigue behaviour of T welded joints rehabilitated by tungsten inert gas and plasma dressing

    International Nuclear Information System (INIS)

    Ramalho, Armando L.; Ferreira, Jose A.M.; Branco, Carlos A.G.M.

    2011-01-01

    Highlights: → This study addresses the use of improvement techniques for repair T welded joints. → TIG and plasma arc re-melting are applied in joints with fatigue cracks at weld toes. → Plasma dressing provides reasonable repair in joints with cracks greater than 4 mm. → TIG dressing produces a deficient repair in joints with cracks greater than 4 mm. → TIG dressing provides good repair in joints with fatigue cracks lesser than 2.5 mm. -- Abstract: This paper concerns a fatigue study on the effect of tungsten inert gas (TIG) and plasma dressing in non-load-carrying fillet welds of structural steel with medium strength. The fatigue tests were performed in three point bending at the main plate under constant amplitude loading, with a stress ratio of R = 0.05 and a frequency of 7 Hz. Fatigue results are presented in the form of nominal stress range versus fatigue life (S-N) curves obtained from the as welded joints and the TIG dressing joints at the welded toe. These results were compared with the ones obtained in repaired joints, where TIG and plasma dressing were applied at the welded toes, containing fatigue cracks with a depth of 3-5 mm in the main plate and through the plate thickness. A deficient repair was obtained by TIG dressing, caused by the excessive depth of the crack. A reasonable fatigue life benefits were obtained with plasma dressing. Good results were obtained with the TIG dressing technique for specimens with shallower initial defects (depth lesser than 2.5 mm). The fatigue life benefits were presented in terms of a gain parameter assessed using both experimental data and life predictions based on the fatigue crack propagation law.

  7. Inert gas narcosis and the encoding and retrieval of long-term memory.

    Science.gov (United States)

    Kneller, Wendy; Hobbs, Malcolm

    2013-12-01

    Prior research has indicated that inert gas narcosis (IGN) causes decrements in free recall memory performance and that these result from disruption of either encoding or self-guided search in the retrieval process. In a recent study we provided evidence, using a Levels of Processing approach, for the hypothesis that IGN affects the encoding of new information. The current study sought to replicate these results with an improved methodology. The effect of ambient pressure (111.5-212.8 kPa/1-11 msw vs. 456-516.8 kPa/35-41 msw) and level of processing (shallow vs. deep) on free recall memory performance was measured in 34 divers in the context of an underwater field experiment. Free recall was significantly worse at high ambient pressure compared to low ambient pressure in the deep processing condition (low pressure: M = 5.6; SD = 2.7; high pressure: M = 3.3; SD = 1.4), but not in the shallow processing condition (low pressure: M = 3.9; SD = 1.7; high pressure: M = 3.1; SD = 1.8), indicating IGN impaired memory ability in the deep processing condition. In the shallow water, deep processing improved recall over shallow processing but, significantly, this effect was eliminated in the deep water. In contrast to our earlier study this supported the hypothesis that IGN affects the self-guided search of information and not encoding. It is suggested that IGN may affect both encoding and self-guided search and further research is recommended.

  8. Inert gas narcosis disrupts encoding but not retrieval of long term memory.

    Science.gov (United States)

    Hobbs, Malcolm; Kneller, Wendy

    2015-05-15

    Exposure to increased ambient pressure causes inert gas narcosis of which one symptom is long-term memory (LTM) impairment. Narcosis is posited to impair LTM by disrupting information encoding, retrieval (self-guided search), or both. The effect of narcosis on the encoding and retrieval of LTM was investigated by testing the effect of learning-recall pressure and levels of processing (LoP) on the free-recall of word lists in divers underwater. All participants (n=60) took part in four conditions in which words were learnt and then recalled at either low pressure (1.4-1.9atm/4-9msw) or high pressure (4.4-5.0atm/34-40msw), as manipulated by changes in depth underwater: low-low (LL), low-high(LH), high-high (HH), and high-low (HL). In addition, participants were assigned to either a deep or shallow processing condition, using LoP methodology. Free-recall memory ability was significantly impaired only when words were initially learned at high pressure (HH & HL conditions). When words were learned at low pressure and then recalled at low pressure (LL condition) or high pressure (LH condition) free-recall was not impaired. Although numerically superior in several conditions, deeper processing failed to significantly improve free-recall ability in any of the learning-recall conditions. This pattern of results support the hypothesis that narcosis disrupts encoding of information into LTM, while retrieval appears to be unaffected. These findings are discussed in relation to similar effects reported by some memory impairing drugs and the practical implications for workers in pressurised environments. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Inert gas narcosis has no influence on thermo-tactile sensation.

    Science.gov (United States)

    Jakovljević, Miroljub; Vidmar, Gaj; Mekjavic, Igor B

    2012-05-01

    Contribution of skin thermal sensors under inert gas narcosis to the raising hypothermia is not known. Such information is vital for understanding the impact of narcosis on behavioural thermoregulation, diver safety and judgment of thermal (dis)comfort in the hyperbaric environment. So this study aimed at establishing the effects of normoxic concentration of 30% nitrous oxide (N(2)O) on thermo-tactile threshold sensation by studying 16 subjects [eight females and eight males; eight sensitive (S) and eight non-sensitive (NS) to N(2)O]. Their mean (SD) age was 22.1 (1.8) years, weight 72.8 (15.3) kg, height 1.75 (0.10) m and body mass index 23.8 (3.8) kg m(-2). Quantitative thermo-tactile sensory testing was performed on forearm, upper arm and thigh under two experimental conditions: breathing air (air trial) and breathing normoxic mixture of 30% N(2)O (N(2)O trial) in the mixed sequence. Difference in thermo-tactile sensitivity thresholds between two groups of subjects in two experimental conditions was analysed by 3-way mixed-model analysis of covariance. There were no statistically significant differences in thermo-tactile thresholds either between the Air and N(2)O trials, or between S and NS groups, or between females and males, or with respect to body mass index. Some clinically insignificant lowering of thermo-tactile thresholds occurred only for warm thermo-tactile thresholds on upper arm and thigh. The results indicated that normoxic mixture of 30% N(2)O had no influence on thermo-tactile sensation in normothermia.

  10. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders.

    Science.gov (United States)

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-03-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm(-3), with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  11. UNS S31603 Stainless Steel Tungsten Inert Gas Welds Made with Microparticle and Nanoparticle Oxides

    Directory of Open Access Journals (Sweden)

    Kuang-Hung Tseng

    2014-06-01

    Full Text Available The purpose of this study was to investigate the difference between tungsten inert gas (TIG welding of austenitic stainless steel assisted by microparticle oxides and that assisted by nanoparticle oxides. SiO2 and Al2O3 were used to investigate the effects of the thermal stability and the particle size of the activated compounds on the surface appearance, geometric shape, angular distortion, delta ferrite content and Vickers hardness of the UNS S31603 stainless steel TIG weld. The results show that the use of SiO2 leads to a satisfactory surface appearance compared to that of the TIG weld made with Al2O3. The surface appearance of the TIG weld made with nanoparticle oxide has less flux slag compared with the one made with microparticle oxide of the same type. Compared with microparticle SiO2, the TIG welding with nanoparticle SiO2 has the potential benefits of high joint penetration and less angular distortion in the resulting weldment. The TIG welding with nanoparticle Al2O3 does not result in a significant increase in the penetration or reduction of distortion. The TIG welding with microparticle or nanoparticle SiO2 uses a heat source with higher power density, resulting in a higher ferrite content and hardness of the stainless steel weld metal. In contrast, microparticle or nanoparticle Al2O3 results in no significant difference in metallurgical properties compared to that of the C-TIG weld metal. Compared with oxide particle size, the thermal stability of the oxide plays a significant role in enhancing the joint penetration capability of the weld, for the UNS S31603 stainless steel TIG welds made with activated oxides.

  12. Comparison of creep rupture behavior of tungsten inert gas and electron beam welded grade 91 steel

    International Nuclear Information System (INIS)

    Dey, H.C.; Vanaja, J.; Laha, K.; Bhaduri, A.K.; Albert, S.K.; Roy, G.G.

    2016-01-01

    Creep rupture behavior of Grade 91 steel weld joints fabricated by multi-pass tungsten inert gas (TIG) and electron beam welding (EBW) processes has been studied and compared with base metal. Cross-weld creep specimens were fabricated from the X-ray radiography qualified and post weld heat treated (760°C/4 h) weld joints. Creep testing of weld joints and base metal was carried out at 650°C over a stress range of 40°120 MPa. Creep life of EBW joint is comparable to base metal; whereas multi-pass TIG joint have shown significant drop in creep life tested for the same stress level. Both types of weld joints show Type IV cracking for all the stress levels. The steady state creep rate of multi-pass TIG is found to be fifteen times than that of EBW joint for stress level of 80 MPa, which may be attributed to over tempering, more re-austenization, and fine grain structure of inter-critical and fine grain heat affected zone regions of the TIG joint. In contrast, single-pass and rapid weld thermal cycles associated with EBW process causes minimum phase transformation in the corresponding regions of heat affected zone. Microstructure studies on creep tested specimens shows creep cavities formed at the primary austenite grain boundaries nucleated on coarse carbide precipitates. The hardness measured across the weld on creep tested specimens shows significant drop in hardness in the inter-critical and fine grain heat affected zone regions of multi-pass TIG (176 VHN) in comparison to 192 VHN in the corresponding locations in EBW joint. (author)

  13. A study of thorium exposure during tungsten inert gas welding in an airline engineering population.

    Science.gov (United States)

    McElearney, N; Irvine, D

    1993-07-01

    To investigate the theoretic possibility of excessive exposure to thorium during the process of tungsten inert gas (TIG) welding using thoriated rods we carried out a cross-sectional study of TIG welders and an age- and skill-matched group. We measured the radiation doses from inhaled thorium that was retained in the body and investigated whether any differences in health or biologic indices could have been attributable to the welding and tip-grinding process. Sixty-four TIG welders, 11 non-TIG welders, and 61 control subjects from an airline engineering population participated. All of the subjects were interviewed for biographic, occupational history and morbidity details. All of the welders and eight control subjects carried out large-volume urine sampling to recover thorium 232 and thorium 228; this group also had chest radiographs. All of the subjects had a blood sample taken to estimate liver enzymes, and they provided small-volume urine samples for the estimation of retinol-binding protein and beta 2-microglobulin. We found no excess of morbidity among the TIG or non-TIG welding groups, and the levels of retinol-binding protein and beta 2-microglobulin were the same for both groups. There was a higher aspartate aminotransferase level in the control group. The internal radiation doses were estimated at less than an annual level of intake in all cases, and considerably less if the exposure (as was the case) was assumed to be chronic over many years. Some additional precautionary measures are suggested to reduce further any potential hazard from this process.

  14. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders

    Science.gov (United States)

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-01-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm−3, with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. PMID:26464505

  15. Mobility of supercooled liquid toluene, ethylbenzene, and benzene near their glass transition temperatures investigated using inert gas permeation.

    Science.gov (United States)

    May, R Alan; Smith, R Scott; Kay, Bruce D

    2013-11-21

    We investigate the mobility of supercooled liquid toluene, ethylbenzene, and benzene near their respective glass transition temperatures (Tg). The permeation rate of Ar, Kr, and Xe through the supercooled liquid created when initially amorphous overlayers are heated above their glass transition temperature is used to determine the diffusivity. Amorphous benzene crystallizes at temperatures well below its Tg, and as a result, the inert gas underlayer remains trapped until the onset of benzene desorption. In contrast, for toluene and ethylbenzene the onset of inert gas permeation is observed at temperatues near Tg. The inert gas desorption peak temperature as a function of the heating rate and overlayer thickness is used to quantify the diffusivity of supercooled liquid toluene and ethylbenzene from 115 to 135 K. In this temperature range, diffusivities are found to vary across 5 orders of magnitude (∼10(-14) to 10(-9) cm(2)/s). The diffusivity data are compared to viscosity measurements and reveal a breakdown in the Stokes-Einstein relationship at low temperatures. However, the data are well fit by the fractional Stokes-Einstein equation with an exponent of 0.66. Efforts to determine the diffusivity of a mixture of benzene and ethylbenzene are detailed, and the effect of mixing these materials on benzene crystallization is explored using infrared spectroscopy.

  16. Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities

    International Nuclear Information System (INIS)

    MM Hall

    2006-01-01

    A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing

  17. Argon cover gas purity control on LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Hiroshi; Kobayashi, Takayoshi [PNC (Japan); Ishiyama, Satoshi [Toshiba (Japan); Motonaga, Tetsuji [Hitachi (Japan)

    1987-07-01

    Various control methods on chemical impurities and radioactive materials (fission products) in the primary argon gas of LMFBRs' have been studied based on experiences in Joyo and results of research and development. These results are reflected on MONJU design. On-line gas chromatographs are installed both in the Primary and in the Secondary Argon Gas Systems in JOYO. Also, chemical analysis has been done by batch sampling in JOYO. Though the rise of impurity concentration had been measured after periodical fuel exchange operation, impurity concentration has been controlled sufficiently under target control limits. In MONJU detailed design, the Rare Gas Removal and Recovery System which consisted of cryogenic distillation equipment had been eliminated and the capacity of Charcoal Beds in the Primary Argon Gas System has been improved to keep the concentration of radioactive materials sufficient low levels. The necessity to control the impurities in fresh argon gas which is supplied to the Primary Argon Gas System is now considered to keep the concentration of Kr and Xe isotopes in specified level, because their isotopes may make background rise for the Tagging Gas Failed Fuel Detection and Location System. Based on various investigations performed on sodium vapor trapping to obtain its detailed characteristics, design specifications and operating conditions of MONJU's Vapor Traps have been decided. To keep the level of radioactivity in gaseous effluents to the environment as low as reasonably achievable, the following means are now adopted in MONJU: the Primary Argon Gas System is composed of a closed recirculating path, but the exhaust gas discharged has different path after the Charcoal Beds; fresh argon gas is blown down to prevent Primary Argon Gas from releasing to the circumference during opening of the primary argon gas boundary, such as fuel exchange operations. (author)

  18. Assessment of a chemical getter for scavenging tritium from an inert gas

    International Nuclear Information System (INIS)

    Maienschein, J.L.

    1976-01-01

    Results are presented of a study aimed at determining the feasibility of using chemical getter beds to scavenge tritium from inert gases. Two types of getter bed, fixed and fluidized, were considered, using cerium as the getter material. Mathematical-modeling results and capital-cost estimates indicate that not only is the gettering approach technically feasible, it could lead to considerable cost savings over catalytic oxidation, the tritium-removal method traditionally used

  19. Method for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas

    Science.gov (United States)

    Bitensky, M.W.; Yoshida, Tatsuro

    1997-04-29

    A method is disclosed using oxygen removal for extending the useful shelf-life of refrigerated red blood cells. A cost-effective, 4 C storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. Preservation of adenosine triphosphate levels and reduction in hemolysis and in membrane vesicle production of red blood cells stored at 4 C for prolonged periods of time is achieved by removing oxygen from the red blood cells at the time of storage; in particular, by flushing with an inert gas. Adenosine triphosphate levels of the stored red blood cells are boosted in some samples by addition of ammonium phosphate. 4 figs.

  20. The effect of electrode vertex angle on automatic tungsten-inert-gas welds for stainless steel 304L plates

    International Nuclear Information System (INIS)

    Maarek, V.; Sharir, Y.; Stern, A.

    1980-03-01

    The effect of electrode vertex angle on penetration depth and weld bead width, in automatic tungsten-inert-gas (TIG) dcsp bead-on-plate welding with different currents, has been studied for stainless steel 304L plates 1.5 mm and 8 mm thick. It has been found that for thin plates, wider and deeper welds are obtained when using sharper electrodes while, for thick plates, narrower and deeper welds are produced when blunt electrodes (vertex angle 180 deg) are used. An explanation of the results, based on a literature survey, is included

  1. Method for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas

    Science.gov (United States)

    Bitensky, Mark W.; Yoshida, Tatsuro

    1997-01-01

    Method using oxygen removal for extending the useful shelf-life of refrigerated red blood cells. A cost-effective, 4.degree. C. storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. Preservation of adenosine triphosphate levels and reduction in hemolysis and in membrane vesicle production of red blood cells stored at 4.degree. C. for prolonged periods of time is achieved by removing oxygen therefrom at the time of storage; in particular, by flushing with an inert gas. Adenosine triphosphate levels of the stored red blood cells are boosted in some samples by addition of ammonium phosphate.

  2. Inert-Gas Condensed Co-W Nanoclusters: Formation, Structure and Magnetic Properties

    Science.gov (United States)

    Golkar-Fard, Farhad Reza

    Rare-earth permanent magnets are used extensively in numerous technical applications, e.g. wind turbines, audio speakers, and hybrid/electric vehicles. The demand and production of rare-earth permanent magnets in the world has in the past decades increased significantly. However, the decrease in export of rare-earth elements from China in recent time has led to a renewed interest in developing rare-earth free permanent magnets. Elements such as Fe and Co have potential, due to their high magnetization, to be used as hosts in rare-earth free permanent magnets but a major challenge is to increase their magnetocrystalline anisotropy constant, K1, which largely drives the coercivity. Theoretical calculations indicate that dissolving the 5d transition metal W in Fe or Co increases the magnetocrystalline anisotropy. The challenge, though, is in creating a solid solution in hcp Co or bcc Fe, which under equilibrium conditions have negligible solubility. In this dissertation, the formation, structure, and magnetic properties of sub-10 nm Co-W clusters with W content ranging from 4 to 24 atomic percent were studied. Co-W alloy clusters with extended solubility of W in hcp Co were produced by inert gas condensation. The different processing conditions such as the cooling scheme and sputtering power were found to control the structural state of the as-deposited Co-W clusters. For clusters formed in the water-cooled formation chamber, the mean size and the fraction crystalline clusters increased with increasing power, while the fraction of crystalline clusters formed in the liquid nitrogen-cooled formation chamber was not as affected by the sputtering power. For the low W content clusters, the structural characterization revealed clusters predominantly single crystalline hcp Co(W) structure, a significant extension of W solubility when compared to the equilibrium solubility, but fcc Co(W) and Co3W structures were observed in very small and large clusters, respectively. At high

  3. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture.

    Science.gov (United States)

    Karthikeya Sharma, T

    2015-11-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine's performance within the range studied.

  4. Influence of composition and substrate bias on structure and inert-gas content of sputter-deposited Ni-La alloys

    International Nuclear Information System (INIS)

    Knoll, R.W.; McClanahan, E.D.

    1982-09-01

    X-ray diffraction patterns show that the disappearance of crystallinity in the deposit occurs gradually as the La content increases. At the same time, the deposit becomes saturated with Kr. Because there is no evidence of crystalline La metal or Ni-La intermetallic phase in the diffraction data, it may be concluded that each La atom creates a highly disordered (amorphous) region in the lattice, and that this region contains interstitial voids large enough to capture inert gas atoms. Saturation of the gas content with respect to La/Ni ratio might commence when these disordered regions begin to impinge upon one another. Finally, if inert gas atoms occupy interstitial voids within the deposit, then determination of the gas trapping characteristics of the material, using inert gas ions of different sizes, may be a means of studying the structure of glassy vapor-deposited materials. For example, the size distribution of the interstitial voids might be determined in this manner

  5. Chemical behaviour of zinc in cover gas environments

    International Nuclear Information System (INIS)

    Thorley, A.W; Blundell, A.; Lloyd, R.

    1987-01-01

    The possibility that enhancement of 65-Zn in the cover gas regions of reactor plant may increase levels of radioactivity and provide potential embrittlement situations has lead to a limited metallurgical and chemical investigation into how this element behaves in cover gas environments. This paper reports the chemical findings from those investigations and compare results obtained with those anticipated from thermodynamic predictions

  6. Assessment of Stress Corrosion Cracking Resistance of Activated Tungsten Inert Gas-Welded Duplex Stainless Steel Joints

    Science.gov (United States)

    Alwin, B.; Lakshminarayanan, A. K.; Vasudevan, M.; Vasantharaja, P.

    2017-12-01

    The stress corrosion cracking behavior of duplex stainless steel (DSS) weld joint largely depends on the ferrite-austenite phase microstructure balance. This phase balance is decided by the welding process used, heat input, welding conditions and the weld metal chemistry. In this investigation, the influence of activated tungsten inert gas (ATIG) and tungsten inert gas (TIG) welding processes on the stress corrosion cracking (SCC) resistance of DSS joints was evaluated and compared. Boiling magnesium chloride (45 wt.%) environment maintained at 155 °C was used. The microstructure and ferrite content of different weld zones are correlated with the outcome of sustained load, SCC test. Irrespective of the welding processes used, SCC resistance of weld joints was inferior to that of the base metal. However, ATIG weld joint exhibited superior resistance to SCC than the TIG weld joint. The crack initiation and final failure were in the weld metal for the ATIG weld joint; they were in the heat-affected zone for the TIG weld joint.

  7. Validation of myocardial blood flow estimation with nitrogen-13 ammonia PET by the argon inert gas technique in humans

    International Nuclear Information System (INIS)

    Kotzerke, J.; Glatting, G.; Neumaier, B.; Reske, S.N.; Hoff, J. van den; Hoeher, M.; Woehrle, J. n

    2001-01-01

    We simultaneously determined global myocardial blood flow (MBF) by the argon inert gas technique and by nitrogen-13 ammonia positron emission tomography (PET) to validate PET-derived MBF values in humans. A total of 19 patients were investigated at rest (n=19) and during adenosine-induced hyperaemia (n=16). Regional coronary artery stenoses were ruled out by angiography. The argon inert gas method uses the difference of arterial and coronary sinus argon concentrations during inhalation of a mixture of 75% argon and 25% oxygen to estimate global MBF. It can be considered as valid as the microspheres technique, which, however, cannot be applied in humans. Dynamic PET was performed after injection of 0.8±0.2 GBq 13 N-ammonia and MBF was calculated applying a two-tissue compartment model. MBF values derived from the argon method at rest and during the hyperaemic state were 1.03±0.24 ml min -1 g -1 and 2.64±1.02 ml min -1 g -1 , respectively. MBF values derived from ammonia PET at rest and during hyperaemia were 0.95±0.23 ml min -1 g -1 and 2.44±0.81 ml min -1 g -1 , respectively. The correlation between the two methods was close (y=0.92x+0.14, r=0.96; P 13 N-ammonia PET. (orig.)

  8. Hydrogeological investigations in the Harwell region: the use of environmental isotopes, inert gas contents, and the uranium decay series

    International Nuclear Information System (INIS)

    Alexander, J.; Andrews, J.N.

    1984-12-01

    A comprehensive range of environmental isotopes, radioelement and dissolved gas contents have been measured in groundwaters from the high permeability formations of the Harwell area. These analyses were undertaken as part of a hydrochemical validation of groundwater circulation patterns derived from potentiometric data. These investigations have focused upon the Corallian and Great Oolite formations since these sandwich the Oxford Clay. Geochemical, isotopic, radioelement and inert gas studies have demonstrated consistent trends which substantiate fluid migration patterns derived from hydraulic considerations. Groundwaters at downdip localities in both the Corallian and Great Oolite formations are the oldest waters sampled from the region. Variations in trends in parameters can be attributed to cross-formational flow and subsequent mixing of groundwaters. Individually these techniques can only provide limited information, but the combination of methods used have provided corroborative evidence concerning the direction of fluid circulation in the Harwell region. (author)

  9. Drying of encapsulated parts (nuclear fuel rods) in applying vacuum, by introducing dehydratings, vacuum, and filling with an inert gas

    International Nuclear Information System (INIS)

    Johnson, C.R.

    1976-01-01

    This invention concerns a decontamination technique, in particular a process and equipment for extracting the water contained in fuel rods and other similar components of a nuclear reactor. The extraction of the contaminants contained in the fuel rods is carried out by a standard method by drilling a small hole in the surface of the cladding and applying a vacuum to bleed the rod of its impurities (moisture and gas). The invention consists for example in applying a vacuum at the hole drilled in the cladding to extract the contaminants and introducing spirit into the rod through the same orifice. The spirit absorbs the remaining liquid and other impurities. The spirit charged with the impurities is then pumped out by the same aperture by means of a regulated atmosphere inside a closed receptacle. This receptacle is then filled with an inert gas cooled to ambient temperature. The rods are then pressurised and the small orifice is sealed [fr

  10. Estimation of radiation exposure associated with inert gas radionuclides discharged to the environment by the nuclear power industry

    International Nuclear Information System (INIS)

    Bryant, P.M.; Jones, J.A.

    1973-05-01

    Several fission product isotopes of krypton and xenon are formed during operation of nuclear power stations, while other radioactive inert gases, notably isotopes of argon and nitrogen, are produced as neutron activation products. With the exception of 85 Kr these radionuclides are short-lived, and the containment and hold-up arrangements in different reactor systems influence the composition of the inert gas mixtures discharged to the environment. Cooling of irradiated fuel before chemical reprocessing reduces very substantially the amounts of the short-lived krypton and xenon isotopes available for discharge at reprocessing plants, but almost all the 85 Kr formed in the fuel is currently discharged to atmosphere from these plants. Estimates are made of the radiation exposure of the public associated with these discharges to atmosphere taking into account the type of radiation emitted, radioactive half-life and the local, regional and world-wide populations concerned. Such estimates are often based on simple models in which activity is assumed to be distributed in a semi-infinite cloud. The model used in this assessment takes into account the finite cloud near the point of its discharge and its behaviour when dispersion in the atmosphere is affected by the presence of buildings. This is particularly important in the case of discharges from those reactors which do not have high stacks. The model also provides in detail for the continued world-wide circulation of the longer-lived 85 Kr. (author)

  11. Transformation of a beta gamma hot-cell under air in a tight hot-cell under inert gas

    International Nuclear Information System (INIS)

    Lambert, G.

    1981-05-01

    For several years now, fuel elements from graphite gas reactors have been stored in pools at the Cadarache Center after having been subjected (in general) to laboratory examinations. The CEA has adopted the following re-transfer procedure for these fuel elements while awaiting reprocessing: the fuel elements are extracted from their existing cartridges and transferred into new welded stainless steel containers capable of assuring long term storage. The storage, however, envisaged is temporary and is realized in the Pegase pool, specially adapted for this purpose. This re-transfer operation is envisaged for some 2.300 containers. All the appropriate safety measures will be taken. The various different fuel materials handled are often highly irradiated. The presence of water in certain containers due to loss of leaktightness has led to a series of chemical reactions (corrosion of uranium by water, reactions with magnesium, formation of hydrides). As a result, existing envelopes can contain UO 2 , UH 3 and hydrogen; operations must therefore being carried out in an inert atmosphere (preferably argon). The re-transfer process can not therefore be carried out in a conventional cell. It is therefore envisaged to carry out this work in a leaktight cell in an inert atmosphere. A laboratory cell could be modified to perform these functions. This cell would be reconverted to its original state when operations terminate (in about 3 years time) [fr

  12. Soil cover of gas-bearing areas

    Science.gov (United States)

    Mozharova, N. V.

    2010-08-01

    Natural soils with disturbed functioning parameters compared to the background soils with conservative technogenic-pedogenic features were distinguished on vast areas above the artificial underground gas storages in the zones of spreading and predominant impact of hydrocarbon gases. The disturbance of the functioning parameters is related to the increase in the methane concentration, the bacterial oxidation intensity and destruction, and the complex microbiological and physicochemical synthesis of iron oxides. The technogenic-pedogenic features include neoformations of bacteriomorphic microdispersed iron oxides. The impurity components consist of elements typical for biogenic structures. New soil layers, horizons, specific anthropogenically modified soils, and soil-like structures were formed on small areas in the industrial zones of underground gas storages due to the mechanical disturbance, the deposition of drilling sludge, and the chemical contamination. Among the soils, postlithogenic formations were identified—chemotechnosols (soddy-podzolic soils and chernozems), as well as synlithogenic ones: strato-chemotechnosols and stratochemoembryozems. The soil-like bodies included postlithogenic soil-like structures (chemotechnozems) and synlithogenic ones (strato-chemotechnozems). A substantive approach was used for the soil diagnostics. The morphological and magnetic profiles and the physical, chemical, and physicochemical properties of the soils were analyzed. The micromorphological composition of the soil magnetic fraction was used as a magnetic label.

  13. Specialists' meeting on fast reactor cover gas purification

    International Nuclear Information System (INIS)

    1987-01-01

    The tentative agenda was adopted by the participants without comment and was followed throughout the meeting. The following topics were discussed at the subsequent sessions of the meeting on 'Fast Reactor Cover Gas Purification': National Position Papers; Impurities: Sources and Measurement; Cover Gas Purification Techniques; Sodium Aerosol Trapping; Radiological Considerations. Based on the papers presented and the discussions following, session summaries and conclusions were prepared and are included in this report

  14. Specialists' meeting on fast reactor cover gas purification

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-07-01

    The tentative agenda was adopted by the participants without comment and was followed throughout the meeting. The following topics were discussed at the subsequent sessions of the meeting on 'Fast Reactor Cover Gas Purification': National Position Papers; Impurities: Sources and Measurement; Cover Gas Purification Techniques; Sodium Aerosol Trapping; Radiological Considerations. Based on the papers presented and the discussions following, session summaries and conclusions were prepared and are included in this report.

  15. LMFBR technology. FFTF cover-gas leakage calculation

    International Nuclear Information System (INIS)

    Deboi, H.

    1974-01-01

    The FFTF LMFBR is intended to have a near zero release of radioactive gases during normal reactor operation with 1% failed fuel. This report presents calculations which provide an approximation of these cover gas leakages. Data from ongoing static and dynamic seal leak tests at AI are utilized. Leakage through both elastomeric and metallic seals in all sub-assemblies and penetrations comprising the reactor cover gas containment during reactor operation system are included

  16. Novel manufacturing process of nanoparticle/Al composite filler metals of tungsten inert gas welding by accumulative roll bonding

    Energy Technology Data Exchange (ETDEWEB)

    Fattahi, M., E-mail: fattahi.put@gmail.com [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Noei Aghaei, V. [Aerospace Engineering Department, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Dabiri, A.R. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Amirkhanlou, S. [Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of); Akhavan, S.; Fattahi, Y. [Materials Engineering Department, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2015-11-11

    In the present work, accumulative roll bonding (ARB) was used as an effective method for manufacturing nanoparticle/Al composite filler metals of tungsten inert gas (TIG) welding. After welding, the distribution of ceramic nanoparticles and mechanical properties of welds were investigated. By applying ARB, ceramic nanoparticles were uniformly dispersed in the composite filler metals. Consequently, the welds produced by these filler metals had a uniform dispersion of ceramic nanoparticles in their compositions. The test results showed that the yield strength of welds was greatly increased when using the nanoparticle/Al composite filler metals. The improvement in the yield strength was attributed to the coefficient of thermal expansion mismatch and Orowan strengthening mechanisms. Therefore, according to the results presented in this paper, it can be concluded that the nanoparticle/Al composite filler metals can serve as a novel filler metal for TIG welding of aluminum and its alloys.

  17. The effects of alloying elements on microstructures and mechanical properties of tungsten inert gas welded AZ80 magnesium alloys joint

    Science.gov (United States)

    Li, Hui; Zhang, Jiansheng; Ding, Rongrong

    2017-11-01

    The effects of alloying elements on the macrostructures, microstructures and tensile strength of AZ80 Mg alloy weldments were studied in the present study. The results indicate that with the decrease of Al element content of filler wire, the welding defects of seam are gradually eliminated and the β-Mg17Al12 phases at α-Mg boundaries are refined and become discontinuous, which are beneficial to the improvement of tensile strength. With AZ31 Mg alloy filler wire, the maximum tensile strength of AZ80 weldment is 220 MPa and fracture occurs at the welding seam of joint. It is experimentally proved that robust AZ80 Mg alloy joints can be obtained by tungsten inert gas (TIG) welding process with AZ31 Mg alloy filler wire. However, further study is required to improve the microstructures and reduce welding defects of joint in order to further improve the joining strength of AZ80 Mg alloy joint.

  18. Numerical Modeling of Fluid Flow, Heat Transfer and Arc-Melt Interaction in Tungsten Inert Gas Welding

    Science.gov (United States)

    Li, Linmin; Li, Baokuan; Liu, Lichao; Motoyama, Yuichi

    2017-04-01

    The present work develops a multi-region dynamic coupling model for fluid flow, heat transfer and arc-melt interaction in tungsten inert gas (TIG) welding using the dynamic mesh technique. The arc-weld pool unified model is developed on basis of magnetohydrodynamic (MHD) equations and the interface is tracked using the dynamic mesh method. The numerical model for arc is firstly validated by comparing the calculated temperature profiles and essential results with the former experimental data. For weld pool convection solution, the drag, Marangoni, buoyancy and electromagnetic forces are separately validated, and then taken into account. Moreover, the model considering interface deformation is adopted in a stationary TIG welding process with SUS304 stainless steel and the effect of interface deformation is investigated. The depression of weld pool center and the lifting of pool periphery are both predicted. The results show that the weld pool shape calculated with considering the interface deformation is more accurate.

  19. Corrosion characterisation of laser beam and tungsten inert gas weldment of nickel base alloys: Micro-cell technique

    International Nuclear Information System (INIS)

    Abraham, Geogy J.; Kain, V.; Dey, G.K.; Raja, V.S.

    2015-01-01

    Highlights: • Grain matrix showed better corrosion resistance than grain boundary. • Microcell studies showed distinct corrosion behaviour of individual regions of weldment. • TIG welding resulted in increased stable anodic current density on weld fusion zone. • LB welding resulted in high stable anodic current density for heat affected zone. - Abstract: The electrochemical studies using micro-cell technique gave new understanding of electrochemical behaviour of nickel base alloys in solution annealed and welded conditions. The welding simulated regions depicted varied micro structural features. In case of tungsten inert gas (TIG) weldments, the weld fusion zone (WFZ) showed least corrosion resistance among all other regions. For laser beam (LB) weldments it was the heat-affected zone (HAZ) that showed comparatively high stable anodic current density. The high heat input of TIG welding resulted in slower heat dissipation hence increased carbide precipitation and segregation in WFZ resulting in high stable anodic current density

  20. Deformation behavior of Zircaloy-4 cladding tubes under inert gas conditions in the temperature range from 600 to 12000C

    International Nuclear Information System (INIS)

    Hofmann, P.; Raff, S.; Gausmann, G.

    1981-07-01

    Within the temperature range from 600 0 to 1200 0 isothermal, isobaric creep rupture experiments were performed under inert gas with short Zircaloy-4 tube specimens in order to obtain experimental data supporting the development of the NORA cladding tube deformation model. The values of the tube inner pressure were so selected that the time-to-failure values varied between 2 and 2000 s. The corresponding creep rupture curves are indicated. Besides the temperature and the burst pressure the development of deformation over time of the tube specimens was measured. This allowed to draw diagrams of stress, strain rate and strain. On account of the type of specimen heating applied (radiation heating) the temperature difference at the cladding tube circumference is very small ( [de

  1. Cover-gas seals: 11-LMFBR seal-test program

    International Nuclear Information System (INIS)

    Steele, O.P. III; Horton, P.H.

    1977-01-01

    The objective of the Cover Gas Seal Material Development Program is to perform the engineering development required to provide reliable seals for LMFBR application. Specific objectives are to verify the performance of commercial solid cross-section and inflatable seals under reactor environments including radiation, to develop advanced materials and configurations capable of achieving significant improvement in radioactive gas containment and seal temperature capabilities, and to optimize seal geometry for maximum reliability and minimal gas permeation

  2. Convection Study by PIV Method Within Horizontal Liquid Layer Evaporating Into Inert Gas Flow

    Directory of Open Access Journals (Sweden)

    Kreta Aleksei

    2016-01-01

    Full Text Available The paper is devoted to the experimental study of convection in a horizontal evaporating liquid layer (ethanol of limited size under the action of gas flow (air. The two-dimensional velocity field in the liquid layer is obtained using the PIV method. The existence of a vortex convective flow within a liquid layer directed towards the gas flow has been revealed.

  3. Modeled heating and surface erosion comparing motile (gas borne) and stationary (surface coating) inert particle additives

    International Nuclear Information System (INIS)

    Buckingham, A.C.; Siekhaus, W.J.

    1982-01-01

    The unsteady, non-similar, chemically reactive, turbulent boundary layer equations are modified for gas plus dispersed solid particle mixtures, for gas phase turbulent combustion reactions and for heterogeneous gas-solid surface erosive reactions. The exterior (ballistic core) edge boundary conditions for the solutions are modified to include dispersed particle influences on core propellant combustion-generated turbulence levels, combustion reactants and products, and reaction-induced, non-isentropic mixture states. The wall surface (in this study it is always steel) is considered either bare or coated with a fixed particle coating which is conceptually non-reactive, insulative, and non-ablative. Two families of solutions are compared. These correspond to: (1) consideration of gas-borne, free-slip, almost spontaneously mobile (motile) solid particle additives which influence the turbulent heat transfer at the uncoated steel surface and, in contrast, (2) consideration of particle-free, gas phase turbulent heat transfer to the insulated surface coated by stationary particles. Significant differences in erosive heat transfer are found in comparing the two families of solutions over a substantial range of interior ballistic flow conditions. The most effective influences on reducing erosive heat transfer appear to favor mobile, gas-borne particle additives

  4. Cover gas purification in the German LMFBR-programme

    International Nuclear Information System (INIS)

    Schillings, K.-L.; Wagner, J.; Stade, K. Ch.

    1987-01-01

    A specific problem of sodium-cooled reactor plants is the purity of the noble gas argon which is used to protect the liquid alkali metal sodium in its systems in order to avoid or reduce disagreeable reactions between sodium and gaseous compounds like moisture or air and organic products like oil and grease. But as this contact cannot completely be excluded, we have to recycle such soiled cover gas. Simultaneously this procedure has to correct the release of radioactivity. Therefore the cover gas purification of primary systems of reactor plants contains the removal of the inorganic chemical disposal and of the nuclear waste. (author)

  5. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture

    Directory of Open Access Journals (Sweden)

    T. Karthikeya Sharma

    2015-11-01

    Full Text Available Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE. This paper investigates the effects of using argon (Ar gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine’s performance within the range studied.

  6. The injection of inert gas ions into solids: their trapping and escape

    International Nuclear Information System (INIS)

    Carter, G.; Armour, D.G.; Donnelly, S.E.; Ingram, D.C.; Webb, R.P.

    1980-01-01

    Basic information is required to understand fission gas generation and its consequence for swelling and embrittlement in fission reactors, for understanding and controlling first wall problems in fusion reactors and for attempting to design storage for active gas waste. In all of these areas the rare gas atoms are generated with kinetic energy and may thus interact differently, during their slowing down, with the solid than if they had been introduced more gently (e.g. via diffusion) into the solid. An important method of simulating the behaviour of such energetic rare gas atoms in solids is via external irradiation of the solid with rare gas ions of appropriate species and energies and it is the purpose of this review to evaluate studies of this nature. The review is divided into three parts. The first describes experimental techniques, discusses the results of measurements of how ions penetrate into and may be retained in a solid, and outlines theoretical interpretations of the data. The mechanisms of gas atom dissolution and thermal transport in solids are of profound importance and so, in the second part of this review, attention is devoted to how the technique of post-implantation thermal evolution spectrometry can be employed to attempt to understand some of these processes. Particular attention is paid to the difficulties of unique interpretation of evolution spectra. In the final section, consideration will be given to the processes which lead to the inevitable saturation of solids undergoing continued irradiation with rare gas ions and experimental measurements and their probable interpretation will be discussed. Since many materials are of importance in the context of this symposium, reference will be made to as broad a range of studies as possible. (author)

  7. A prediction of the inert gas solubilities in stoichiometric molten UO2

    International Nuclear Information System (INIS)

    Gunnerson, F.S.; Cronenberg, A.W.

    1975-01-01

    To analyze the effect of fission gas behaviour on fast reactor fuels during a hypothetical overpower transient, the solubility characteristics of the noble gases in molten UO 2 have been assessed. To accomplish this, a theoretical estimation of such solubilities is made by determining the reversible work required to introduce a hard sphere, the size of the gas atom, into the liquid solvent. Results indicate that the solubility of the noble gases in molten UO 2 is quite low, the molar fraction of gas-to-liquid being approximately 10 -6 . Such a low solubility of fission gases suggests that for preirradiated fuels, added swelling or formation may occur upon melting. In addition, such low solubility potential indicates that the fission gases do not play an appreciable role in the fragmentation of molten UO 2 upon quenching in sodium coolant. (Auth.)

  8. Fast reactor primary cover gas system proposals for CDFR

    International Nuclear Information System (INIS)

    Harrison, L.M.T.

    1987-01-01

    A primary sodium gas cover has been designed for CDFR, it comprises plant to maintain and control; cover gas pressure for all reactor operating at fault conditions, cover gas purity by both blowdown and by a special clean-up facility and the clean argon supply for the failed fuel detection system and the primary pump seal purge. The design philosophy is to devise a cover gas system that can be specified for any LMFBR where only features like vessel and pipework size need to be altered to suit different design and operating conditions. The choice of full power and shutdown operating pressures is derived and the method chosen to control these values is described. A part active/part passive system is proposed for this duty, a surge volume of 250 m 3 gives passive control between full power and hot shutdown. Pressure control operation criteria is presented for various reactor operating conditions. A design for a sodium aerosol filter, based on that used on PFR is presented, it is specifically designed so that it can be fitted with an etched disc type particulate filter and maintenance is minimised. Two methods that maintain cover gas purity are described. The first, used during normal reactor operation with a small impurities ingress, utilises the continuous blowdown associated with the inevitable clean argon purge through the various reactor component seals. The second method physically removes the impurities xenon and krypton from the cover gas by their adsorption, at cryogenic temperature, onto a bed of activated carbon. The equipment required for these two duties and their mode of operation is described with the aid of a system flow diagram. The primary pump seals requires a gas purge to suppress aerosol migration. A system where the argon used for this task is recirculated and partially purified is described. (author)

  9. A thermodynamics model for morphology prediction of aluminum nano crystals fabricated by the inert gas condensation method

    Science.gov (United States)

    Wen, Yu; Xia, Dehong

    2018-03-01

    The purpose of this study is to provide scientific guidance for the morphological control of nanoparticle synthesis using the gas phase method. A universal thermodynamics model is developed to predict the morphology of nanoparticles fabricated using the inert gas condensation method. By using this model, the morphologies of aluminum nanocrystals are predicted under various preparation conditions. There are two types of energy that jointly determine the formation of nanoparticle morphology—Gibbs free energy for nanoparticles and energy variation during the process. The results show that energy variation dominates morphology formation when the cooling rate is less than 2 × 1011 K s-1 in the aluminum nanocrystal production process. At the beginning of the nanoparticle growth, the most stable morphology is predicted to be spherical, but the energetically preferred morphology becomes cubic as the particle grows. The turning point in the particle size at which spherical morphology is no longer the most stable morphology is exhibited as a function of pressure in a condensation chamber for different cooling rates. In this paper, we focus on the need for morphology prediction based on preparation conditions. It is concluded that nanoparticles with various morphologies could be obtained by adjusting the cooling rate and pressure in the condensation chamber.

  10. In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding

    Science.gov (United States)

    Taparli, Ugur Alp; Jacobsen, Lars; Griesche, Axel; Michalik, Katarzyna; Mory, David; Kannengiesser, Thomas

    2018-01-01

    A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding. Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence of weld defects and changes in the chemical composition in the weld pool or in the two-phase region where solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and Mn II characteristic emissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observed with the termination of the welding plume due to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels, Mn accumulations on both sides of the weld could be detected between the heat affected zone (HAZ) and the base material.

  11. The injection of inert gas ions into solids: their trapping and escape

    International Nuclear Information System (INIS)

    Carter, G.; Armour, D.G.; Donnelly, S.E.; Ingram, D.C.; Webb, R.P.

    1980-01-01

    The first part of this contribution will review experimental studies of the trapping probabilities of ions injected into solids as a function of ion energy and indicate how the data can be modelled theoretically. It will be demonstrated that trapping is a two stage process, the first involving penetration into the solid and the second requiring atom dissolution and experimental evidence will be cited to show how the latter process may be dominant for light ions which create little radiation damage. For low ion fluences, injected atoms are generally trapped in isolation but as fluence increases gas-defect complexes are formed and it will be shown how post bombardment thermal evaluation studies can provide evidence for the growth of these complexes. Concomitant with trapping however, dissolved gas may be evolved from the solid by some form of sputtering process, sometimes by mechanisms much more efficient than congruent sputtering of the solid together with the trapped species. Measurements of the trapped atom concentration-ion fluence behaviour and of the evolution of one initially trapped species by bombardment with a second species provide information on the physical processes involved in trapped atom sputtering and upon the mechanism of gas incorporation saturation and experimental studies in this area, together with some first approximation theoretical investigations will be discussed. It will be shown that an important mechanism in dictating incorporation saturation, in addition to sputtering, is the atomic saturation of the solid by the implant. (author)

  12. The Influences of Time and Velocity of Inert Gas on the Quality of theProcessing Product of Graphite Matrix on the Baking Step

    International Nuclear Information System (INIS)

    Imam-Dahroni; Dwi-Herwidhi; NS, Kasilani

    2000-01-01

    The research of the synthesis of matrix graphite on the step of bakingprocess was conducted, by focusing on the influence of time and velocityvariables of the inert gas. The investigation on baking times ranging from 5minutes to 55 minutes and by varying the velocity of inert gas from 0.30l/minute to 3.60 l/minute, resulted the product of different matrix.Optimizing at the time of operation and the flow rate of argon gas indicatedthat the baking time for 30 minutes and by the flow rate of argon gas of 2.60l/minute resulted best matrix graphite that has a hardness value of 11kg/mm 2 of hardness and the ductility of 1800 Newton. (author)

  13. Problems of hydrogen - water vapor - inert gas mixture use in heavy liquid metal coolant technology

    International Nuclear Information System (INIS)

    Ul'yanov, V.V.; Martynov, P.N.; Gulevskij, V.A.; Teplyakov, Yu.A.; Fomin, A.S.

    2014-01-01

    The reasons of slag deposit formation in circulation circuits with heavy liquid metal coolants, which can cause reactor core blockage, are considered. To prevent formation of deposits hydrogen purification of coolant and surfaces of circulation circuit is used. It consists in introduction of gaseous mixtures hydrogen - water vapor - rare gas (argon or helium) directly into coolant flow. The principle scheme of hydrogen purification and the processes occurring during it are under consideration. Measures which make it completely impossible to overlap of the flow cross section of reactor core, steam generators, pumps and other equipment by lead oxides in reactor facilities with heavy liquid metal coolants are listed [ru

  14. Process for the manufacture of a gas largely free of inert gases for synthesis. Verfahren zur Herstellung eines weitgehend inertfreien Gases zur Synthese

    Energy Technology Data Exchange (ETDEWEB)

    Eisenlohr, K H; Gaensslen, H; Kriebel, M; Tanz, H

    1983-11-10

    In a process for producing a gas largely free of inert gases for the synthesis of alcohols, particularly methanol, and of hydrocarbons from coal or heavy hydrocarbons by gasification under pressure with oxygen and steam, the crude gas is cooled, the impurities are removed by washing with methanol and the methanol is removed from the cold pure gas by molecular sieves. The pure gas is then cooled further by evaporation and methane is distilled from the liquid part while simultaneously obtaining the synthetic gas consisting of hydrogen and carbon monoxide which is largely free of methane. The methane is wholly or partly compressed and then split into carbon monoxide and hydrogen using steam and oxygen. The split gas is fed back and mixed with the synthesis gas or the partly cleaned crude gas. The synthesis gas heated to the ambient temperature, freed of impurities and free of methane is compressed to the required synthesis pressure.

  15. Ionization processes in combined high-voltage nanosecond - laser discharges in inert gas

    Science.gov (United States)

    Starikovskiy, Andrey; Shneider, Mikhail; PU Team

    2016-09-01

    Remote control of plasmas induced by laser radiation in the atmosphere is one of the challenging issues of free space communication, long-distance energy transmission, remote sensing of the atmosphere, and standoff detection of trace gases and bio-threat species. Sequences of laser pulses, as demonstrated by an extensive earlier work, offer an advantageous tool providing access to the control of air-plasma dynamics and optical interactions. The avalanche ionization induced in a pre-ionized region by infrared laser pulses where investigated. Pre-ionization was created by an ionization wave, initiated by high-voltage nanosecond pulse. Then, behind the front of ionization wave extra avalanche ionization was initiated by the focused infrared laser pulse. The experiment was carried out in argon. It is shown that the gas pre-ionization inhibits the laser spark generation under low pressure conditions.

  16. Spraying of metallic powders by hybrid gas/water torch and the effects of inert gas shrouding

    Czech Academy of Sciences Publication Activity Database

    Kavka, Tetyana; Matějíček, Jiří; Ctibor, Pavel; Hrabovský, Milan

    2012-01-01

    Roč. 21, 3-4 (2012), s. 695-705 ISSN 1059-9630 R&D Projects: GA MPO FR-TI2/702; GA MPO FR-TI2/561 Institutional research plan: CEZ:AV0Z20430508 Keywords : copper * tungsten * hybrid water-gas torch * plasma facing materials * plasma spraying * gas shroud Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.481, year: 2012 http://www.springerlink.com/content/j07t3222hnv87882/fulltext.pdf

  17. Biomarkers of exposure to stainless steel tungsten inert gas welding fumes and the effect of exposure on exhaled breath condensate.

    Science.gov (United States)

    Riccelli, Maria Grazia; Goldoni, Matteo; Andreoli, Roberta; Mozzoni, Paola; Pinelli, Silvana; Alinovi, Rossella; Selis, Luisella; Mutti, Antonio; Corradi, Massimo

    2018-08-01

    The respiratory tract is the main target organ of the inhaled hexavalent chromium (Cr-VI) and nickel (Ni) contained in stainless steel (SS) welding fumes (WFs). The aim of this study was to investigate the Cr and Ni content of the exhaled breath condensate (EBC) of SS tungsten inert gas (TIG) welders, and relate their concentrations with oxidative stress and inflammatory biomarkers. EBC and urine from 100 SS TIG welders were collected pre-(T 0 ) and post-shift (T 1 ) on a Friday, and pre-shift (T 2 ) on the following Monday morning. Both EBC and urinary Cr concentrations were higher at T 1 (0.08 μg/L and 0.71 μg/g creatinine) and T 0 (0.06 μg/L and 0.74 μg/g creatinine) than at T 2 (below the limit of detection [LOD] and 0.59 μg/g creatinine), and EBC Ni concentrations generally remained welding also play a role in generating lung oxidative stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Low-temperature thermal expansion of pure and inert gas-doped fullerite C sub 6 sub 0

    CERN Document Server

    Aleksandrovskii, A N; Eselson, V B; Gavrilko, V G; Manzhelii, V G; Udovidchenko, B G; Bakai, A S; Gadd, G E; Moricca, S; Sundqvist, B

    2003-01-01

    The low temperature (2-24 K) thermal expansion of pure (single-crystal and polycrystalline) C sub 6 sub 0 and polycrystalline C sub 6 sub 0 intercalated with He, Ne, Ar, and Kr has been investigated using the high-resolution capacitance dilatometer. The investigation of the time dependence of the sample length variations DELTA L(t) on heating by DELTA T shows that the thermal expansion is determined by the sum of positive and negative contributions, which have different relaxation times. The negative thermal expansion usually prevails at helium temperatures. The positive expansion is connected with the phonon thermalization of the system. The negative expansion is caused by reorientation of the C sub 6 sub 0 molecules. It is assumed that the reorientation is of a quantum character. The inert gas impurities affect the reorientation of the C6 sub sub 0 molecules very strongly, especially at liquid helium temperatures. A temperature hysteresis of the thermal expansion coefficient of Kr- and He-C sub 6 sub 0 solu...

  19. Influences of pulsed current tungsten inert gas welding parameters on the tensile properties of AA 6061 aluminium alloy

    International Nuclear Information System (INIS)

    Senthil Kumar, T.; Balasubramanian, V.; Sanavullah, M.Y.

    2007-01-01

    Medium strength aluminium alloy (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. In any structural application of this alloy consideration its weldability is of utmost importance as welding is largely used for joining of structural components. The preferred welding process of aluminium alloy is frequently tungsten inert gas (TIG) welding due to its comparatively easier applicability and better economy. In the case of single pass TIG welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. The use of pulsed current parameters has been found to improve the mechanical properties of the welds compared to those of continuous current welds of this alloy due to grain refinement occurring in the fusion zone. Many considerations come into the picture and one need to carefully balance various pulse current parameters to arrive at an optimum combination. Hence, in this investigation an attempt has been made to study the influence of pulsed current TIG welding parameters on tensile properties of AA 6061 aluminium alloy weldments

  20. Determination of hydrogen in zirconium hydride and uranium-zirconium hydride by inert gas exraction-gravimetric method

    International Nuclear Information System (INIS)

    Hoshino, Akira; Iso, Shuichi

    1976-01-01

    An inert gas extraction-gravimetric method has been applied to the determination of hydrogen in zirconium hydride and uranium-zirconium hydride which are used as neutron moderator and fuel of nuclear safety research reactor (NSRR), respectively. The sample in a graphite-enclosed quartz crucible is heated inductively to 1200 0 C for 20 min in a helium stream. Hydrogen liberated from the sample is oxidized to water by copper(I) oxide-copper(II) oxide at 400 0 C, and the water is determined gravimetrically by absorption in anhydrone. The extraction curves of hydrogen for zirconium hydride and uranium-zirconium hydride samples are shown in Figs. 2 and 3. Hydrogen in the samples is extracted quantitatively by heating at (1000 -- 1250) 0 C for (10 -- 40) min. Recoveries of hydrogen in the case of zirconium hydride were examined as follows: a weighed zirconium rod (5 phi x 6 mm, hydrogen -5 Torr. After the chamber was filled with purified hydrogen to 200 Torr, the rod was heated to 400 0 C for 15 h, and again weighed to determine the increase in weight. Hydrogen in the rod was then determined by the proposed method. The results are in excellent agreement with the increase in weight as shown in Table 1. Analytical results of hydrogen in zirconium hydride samples and an uranium-zirconium hydride sample are shown in Table 2. (auth.)

  1. Reactor cover gas monitoring at the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Bechtold, R.A.; Holt, F.E.; Meadows, G.E.; Schenter, R.E.

    1986-09-01

    The Fast Flux Test Facility (FFTF) is a 400-megawatt (thermal) sodium-cooled reactor designed for irradiation testing of fuels, materials and components for LMRs. It is operated by the Westinghouse Hanford Company for the US Department of Energy on the government-owned Hanford reservation near Richland, Washington. The first 100-day operating cycle began in April 1982 and the eighth operating cycle was completed in July 1986. Argon is used as the cover gas for all sodium systems at the plant. A program for cover gas monitoring has been in effect since the start of sodium fill in 1978. The argon is supplied to the FFTF by a liquid argon Dewar System and used without further purification

  2. Dose dependence of nano-hardness of 6H-SiC crystal under irradiation with inert gas ions

    Science.gov (United States)

    Yang, Yitao; Zhang, Chonghong; Su, Changhao; Ding, Zhaonan; Song, Yin

    2018-05-01

    Single crystal 6H-SiC was irradiated by inert gas ions (He, Ne, Kr and Xe ions) to various damage levels at room temperature. Nano-indentation test was performed to investigate the hardness change behavior with damage. The depth profile of nano-hardness for 6H-SiC decreased with increasing depth for both the pristine and irradiated samples, which was known as indentation size effect (ISE). Nix-Gao model was proposed to determine an asymptotic value of nano-hardness by taking account of ISE for both the pristine and irradiated samples. In this study, nano-hardness of the irradiated samples showed a strong dependence on damage level and showed a weak dependence on ions species. From the dependence of hardness on damage, it was found that the change of hardness demonstrated three distinguishable stages with damage: (I) The hardness increased with damage from 0 to 0.2 dpa and achieved a maximum of hardening fraction ∼20% at 0.2 dpa. The increase of hardness in this damage range was contributed to defects produced by ion irradiation, which can be described well by Taylor relation. (II) The hardness reduced rapidly with large decrement in the damage range from 0.2 to 0.5 dpa, which was considered to be from the covalent bond breaking. (III) The hardness reduced with small decrement in the damage range from 0.5 to 2.2 dpa, which was induced by extension of the amorphous layer around damage peak.

  3. Effect of post-weld heat treatment and electrolytic plasma processing on tungsten inert gas welded AISI 4140 alloy steel

    International Nuclear Information System (INIS)

    Dewan, Mohammad W.; Liang, Jiandong; Wahab, M.A.; Okeil, Ayman M.

    2014-01-01

    Highlights: • The effects of PWHT and EPP were explored on TIG welded AISI4140 alloy steel. • All welded samples were checked with PAUT and ensured defect-free before testing. • Residual stresses, hardness, and tensile properties were measured experimentally. • PWHT resulted higher ductility but lower tensile strength for grain refinement. • EPP-treated samples showed higher tensile strength but lower ductility. - Abstract: Post-weld heat treatment (PWHT) is commonly adopted on welded joints and structures to relieve post-weld residual stresses; and restore the mechanical properties and structural integrity. An electrolytic plasma process (EPP) has been developed to improve corrosion behavior and wear resistance of structural materials; and can be employed in other applications and surface modifications aspects. In this study the effects of PWHT and EPP on the residual stresses, micro-hardness, microstructures, and uniaxial tensile properties are explored on tungsten inert gas (TIG) welded AISI-4140 alloys steel with SAE-4130 chromium–molybdenum alloy welding filler rod. For rational comparison all of the welded samples are checked with nondestructive Phased Array Ultrasonic Testing (PAUT) and to ensure defect-free samples before testing. Residual stresses are assessed with ultrasonic testing at different distances from weld center line. PWHT resulted in relief of tensile residual stress due to grain refinement. As a consequence higher ductility but lower strength existed in PWHT samples. In comparison, EPP-treated samples revealed lower residual stresses, but no significant variation on the grain refinement. Consequently, EPP-treated specimens exhibited higher tensile strength but lower ductility and toughness for the martensitic formation due to the rapid heating and quenching effects. EPP was also applied on PWHT samples, but which did not reveal any substantial effect on the tensile properties after PWHT at 650 °C. Finally the microstructures and

  4. Laser, tungsten inert gas, and metal active gas welding of DP780 steel: Comparison of hardness, tensile properties and fatigue resistance

    International Nuclear Information System (INIS)

    Lee, Jeong Hun; Park, Sung Hyuk; Kwon, Hyuk Sun; Kim, Gyo Sung; Lee, Chong Soo

    2014-01-01

    Highlights: • We report the mechanical properties of DP780 steel welded by three methods. • The size of the welded zone increases with heat input (MAG > TIG > laser). • The hardness of the welded zone increases with cooling rate (laser > TIG > MAG). • Tensile and fatigue properties are strongly dependent on welding method. • Crack initiation sites depend on the microstructural features of the welded zone. - Abstract: The microstructural characteristics, tensile properties and low-cycle fatigue properties of a dual-phase steel (DP780) were investigated following its joining by three methods: laser welding, tungsten inert gas (TIG) welding, and metal active gas (MAG) welding. Through this, it was found that the size of the welded zone increases with greater heat input (MAG > TIG > laser), whereas the hardness of the weld metal (WM) and heat-affected zone (HAZ) increases with cooling rate (laser > TIG > MAG). Consequently, laser- and TIG-welded steels exhibit higher yield strength than the base metal due to a substantially harder WM. In contrast, the strength of MAG-welded steel is reduced by a broad and soft WM and HAZ. The fatigue life of laser-and TIG-welded steel was similar, with both being greater than that of MAG-welded steel; however, the fatigue resistance of all welds was inferior to that of the non-welded base metal. Finally, crack initiation sites were found to differ depending on the microstructural characteristics of the welded zone, as well as the tensile and cyclic loading

  5. 46 CFR 153.923 - Inerting systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Inerting systems. 153.923 Section 153.923 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK... Requirements § 153.923 Inerting systems. The master shall ensure that the inert gas systems for any cargo that...

  6. The Role of Spraying Parameters and Inert Gas Shrouding in Hybrid Water-Argon Plasma Spraying of Tungsten and Copper for Nuclear Fusion Applications

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Kavka, Tetyana; Bertolissi, Gabriele; Ctibor, Pavel; Vilémová, Monika; Mušálek, Radek; Nevrlá, Barbara

    2013-01-01

    Roč. 22, č. 5 (2013), s. 744-755 ISSN 1059-9630 R&D Projects: GA MPO FR-TI2/702; GA TA ČR TA01010300 Institutional support: RVO:61389021 Keywords : plasma spraying * tungsten * copper * inert gas shrouding * water-argon plasma torch * gas shroud * hybrid plasma torch * influence of spray parameters * nuclear fusion * oxidation Subject RIV: JG - Metallurgy Impact factor: 1.491, year: 2013 http://link.springer.com/content/pdf/10.1007%2Fs11666-013-9895-x.pdf

  7. Sodium mists behavior in cover gas space of an LMFBR

    International Nuclear Information System (INIS)

    Himeno, Y.; Takahashi, J.

    1978-03-01

    This paper present the sodium mist behavior in Argon cover gas space of an LMFBR experimentally using a test vessel of 1,400 mm in axial length, 305.5 mm in inner diameter and about 100 l in volume. Experiments are consisted with measurements of the mist concentration and the mist gravitational settling flux between the sodium pool temperature range of 290 0 to 520 0 C. The results are discussed under the monosize assumption of the particles, and the particle sizes and evaporation rate are derived. Transient and steady state mist concentration behavior were also investigated. (author)

  8. The Production of Polycyclic Aromatic Hydrocarbon Anions in Inert Gas Matrices Doped with Alkali Metals. Electronic Absorption Spectra of the Pentacene Anion (C22H14(-))

    Science.gov (United States)

    Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)

    1999-01-01

    The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).

  9. Problems of technology and corrosion in sodium coolant and cover gas

    International Nuclear Information System (INIS)

    Kuenstler, K.; Ullmann, H.

    1977-07-01

    The meeting encloses the following themes: (i) Reactions in the system sodium-steel-cover gas (ii) Corrosion behaviour of structural and cladding materials (iii) Determination of impurities in sodium and cover gas (iv) Technology of sodium and cover gas (v) Testing equipments (vi) Safety problems

  10. Land cover changes and greenhouse gas emissions in two different soil covers in the Brazilian Caatinga.

    Science.gov (United States)

    Ribeiro, Kelly; Sousa-Neto, Eráclito Rodrigues de; Carvalho, João Andrade de; Sousa Lima, José Romualdo de; Menezes, Rômulo Simões Cezar; Duarte-Neto, Paulo José; da Silva Guerra, Glauce; Ometto, Jean Pierre Henry Baulbaud

    2016-11-15

    The Caatinga biome covers an area of 844,453km(2) and has enormous endemic biodiversity, with unique characteristics that make it an exclusive Brazilian biome. It falls within the earth's tropical zone and is one of the several important ecoregions of Brazil. This biome undergoes natural lengthy periods of drought that cause losses in crop and livestock productivity, having a severe impact on the population. Due to the vulnerability of this ecosystem to climate change, livestock has emerged as the main livelihood of the rural population, being the precursor of the replacement of native vegetation by grazing areas. This study aimed to measure GHG emissions from two different soil covers: native forest (Caatinga) and pasture in the municipality of São João, Pernambuco State, in the years 2013 and 2014. GHG measurements were taken by using static chamber techniques in both soil covers. According to a previous search, so far, this is the first study measuring GHG emissions using the static chamber in the Caatinga biome. N2O emissions ranged from -1.0 to 4.2mgm(-2)d(-1) and -1.22 to 3.4mgm(-2)d(-1) in the pasture and Caatinga, respectively, and they did not significantly differ from each other. Emissions were significantly higher during dry seasons. Carbon dioxide ranged from -1.1 to 14.1 and 1.2 to 15.8gm(-2)d(-1) in the pasture and Caatinga, respectively. CO2 emissions were higher in the Caatinga in 2013, and they were significantly influenced by soil temperature, showing an inverse relation. Methane emission ranged from 6.6 to 6.8 and -6.0 to 4.8mgm(-2)d(-1) in the pasture and Caatinga, respectively, and was significantly higher only in the Caatinga in the rainy season of 2014. Soil gas fluxes seemed to be influenced by climatic and edaphic conditions as well as by soil cover in the Caatinga biome. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Sn and Cu oxide nanoparticles deposited on TiO{sub 2} nanoflower 3D substrates by Inert Gas Condensation technique

    Energy Technology Data Exchange (ETDEWEB)

    Kusior, A., E-mail: akusior@agh.edu.pl [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Kollbek, K. [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Kowalski, K. [Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Borysiewicz, M. [Institute of Electron Technology, al. Lotnikow 32/46, 02-668 Warszawa (Poland); Wojciechowski, T. [Institute of Physics Polish Academy of Science, al. Lotnikow 32/46, 02-668 Warszawa (Poland); Adamczyk, A.; Trenczek-Zajac, A.; Radecka, M. [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Zakrzewska, K. [Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland)

    2016-09-01

    Graphical abstract: - Highlights: • Inert Gas Condensation method yields non-agglomerated nanoparticles. • The growth of nanoparticles is controllable at the level of deposition. • Electrical conductivity increases with respect to pure nanostructured TiO{sub 2}. - Abstract: Sn and Cu oxide nanoparticles were deposited by Inert Gas Condensation (IGC) technique combined with dc magnetron sputtering onto nanoflower TiO{sub 2} 3D substrates obtained in the oxidation process of Ti-foil in 30% H{sub 2}O{sub 2}. Sputtering parameters such as insertion length and Ar/He flow rates were optimized taking into account the nanostructure morphology. Comparative studies with hydrothermal method were carried out. Surface properties of the synthesized nanomaterials were studied by Scanning Electron Microscopy, SEM, Atomic Force Microscopy, AFM, and X-ray Photoelectron Spectroscopy, XPS. X-ray diffraction, XRD and Raman spectroscopy were performed in order to determine phase composition. Impedance spectroscopy demonstrated the influence of nanoparticles on the electrical conductivity.

  12. Measurement of cross-sections for step-bystep excitation of inert gas atoms from metastable states by electron collisions

    International Nuclear Information System (INIS)

    Mityureva, A.A.; Penkin, N.P.; Smirnov, V.V.

    1989-01-01

    Excitation of argon atoms by electron collisions from metastable (MS) to high-lying states of inert gases (the so-called step-by-step excitation) is investigated. Formation of MS atoms m and their further step-by-step excitation up to k level is carried out by an electron beam with energy from 1 up to 40 eV. Time distribution of forming metastable and step-by-step electron collisions is used. The method used permits to measure the functions of step-by-step excitation and the absolute values of cross sections. Absolute values of cross-sections and functions of step-by-step excitation of some lines and argon levels are obtained

  13. FFTF sodium and cover gas characterization and purification

    International Nuclear Information System (INIS)

    McCown, J.J.; Bloom, G.R.; Meadows, G.E.; Mettler, G.W.

    1980-02-01

    The FFTF Primary and Secondary Heat Transport System (HTS) sodium is purified with cold traps which have packed crystallizers and external economizers. The Primary HTS cold trap is NaK cooled and the Secondary HTS cold traps are air cooled. The FFTF cold traps have maintained high purity in the sodium since sodium fill. Plant operational procedures during fill and initial sodium heatup to 800 0 F were controlled to assure low release rates of impurities to the sodium. The FFTF sodium systems are monitored by plugging temperature indicators and by several sampling methods. During reactor fill and non-fueled operations at 400 to 800 0 F, impurity changes in the sodium were followed by continuous plugging indicator coverage, by exposing wires and foils to measure carbon, hydrogen and oxygen, and by bulk sample analysis of all other trace constituents. The sampling and analysis methods and data are presented, impurity excursions in the cover gas and sodium are described, and impurity trends are discussed

  14. WVNS Tank Farm Process Support: Experimental evaluation of an inert gas (nitrogen) to mitigate external corrosion of high-level waste storage tanks

    International Nuclear Information System (INIS)

    Elmore, M.R.

    1996-02-01

    Corrosion of the carbon steel waste storage tanks at West Valley Nuclear Services continues to be of concern, especially as the planned duration of waste storage time increases and sludge washing operations are conducted. The external surfaces of Tanks 8D-1 and 8D-2 have been exposed for more than 10 years to water that has intruded into the tank vaults. Visual inspection of the external tank surfaces using a remote video camera has shown indications of heavy corrosion in localized areas on the tank walls. Tests on mild steel specimens under simulated tank vault conditions showed that corrosion is related to the availability of oxygen for the corrosion reactions; consequently, removing oxygen as one of the reactants should effectively eliminate corrosion. In terms of the waste tanks, excluding oxygen from the annular vault space, such as by continuous flushing with an inert gas, should substantially decrease corrosion of the external surfaces of the mild steel tanks (100% exclusion of oxygen is probably not practicable). Laboratory corrosion testing was conducted at Pacific Northwest National Laboratory to give a preliminary assessment of the ability of nitrogen-inerting to reduce steel corrosion. This report summarizes test results obtained after 18-month corrosion tests comparing open-quotes nitrogen-inertedclose quotes corrosion with open-quotes air-equilibratedclose quotes corrosion under simulated tank vault conditions

  15. Oriented Polar Molecules in a Solid Inert-Gas Matrix: A Proposed Method for Measuring the Electric Dipole Moment of the Electron

    Directory of Open Access Journals (Sweden)

    A. C. Vutha

    2018-01-01

    Full Text Available We propose a very sensitive method for measuring the electric dipole moment of the electron using polar molecules embedded in a cryogenic solid matrix of inert-gas atoms. The polar molecules can be oriented in the z ^ -direction by an applied electric field, as has recently been demonstrated by Park et al. The trapped molecules are prepared into a state that has its electron spin perpendicular to z ^ , and a magnetic field along z ^ causes precession of this spin. An electron electric dipole moment d e would affect this precession due to the up to 100 GV/cm effective electric field produced by the polar molecule. The large number of polar molecules that can be embedded in a matrix, along with the expected long coherence times for the precession, allows for the possibility of measuring d e to an accuracy that surpasses current measurements by many orders of magnitude. Because the matrix can inhibit molecular rotations and lock the orientation of the polar molecules, it may not be necessary to have an electric field present during the precession. The proposed technique can be applied using a variety of polar molecules and inert gases, which, along with other experimental variables, should allow for careful study of systematic uncertainties in the measurement.

  16. Oriented Polar Molecules in a Solid Inert-Gas Matrix: A Proposed Method for Measuring the Electric Dipole Moment of the Electron

    Science.gov (United States)

    Vutha, A.; Horbatsch, M.; Hessels, E.

    2018-01-01

    We propose a very sensitive method for measuring the electric dipole moment of the electron using polar molecules embedded in a cryogenic solid matrix of inert-gas atoms. The polar molecules can be oriented in the $\\hat{\\rm{z}}$ direction by an applied electric field, as has recently been demonstrated by Park, et al. [Angewandte Chemie {\\bf 129}, 1066 (2017)]. The trapped molecules are prepared into a state which has its electron spin perpendicular to $\\hat{\\rm{z}}$, and a magnetic field along $\\hat{\\rm{z}}$ causes precession of this spin. An electron electric dipole moment $d_e$ would affect this precession due to the up to 100~GV/cm effective electric field produced by the polar molecule. The large number of polar molecules that can be embedded in a matrix, along with the expected long coherence times for the precession, allows for the possibility of measuring $d_e$ to an accuracy that surpasses current measurements by many orders of magnitude. Because the matrix can inhibit molecular rotations and lock the orientation of the polar molecules, it may not be necessary to have an electric field present during the precession. The proposed technique can be applied using a variety of polar molecules and inert gases, which, along with other experimental variables, should allow for careful study of systematic uncertainties in the measurement.

  17. Study on the inside gas flow visualization of oxygen sensor cover; Kashika ni yoru O2 sensor cover nai no gas nagare hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Hocho, S; Mitsuishi, Y; Inagaki, M [Nippon Soken, Inc., Tokyo (Japan); Hamaguchi, S; Mizusawa, K [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    In order to make clear the difference of the response time between the oxygen sensors with different protection covers, we visualized gas flow inside of sensor covers by means of two experimental methods: One is `Smoke Suspension Method` using liquid paraffin vapor as the smoke. With smoke suspension method, we detected the streamlines inside of the covers. The other is `Color Reaction Method` using the reaction of phenolphthalein and NH3 gas. With color reaction method, we confirmed the streamline inside of the cover and furthermore detected the difference of the response time of each sensor. 3 refs., 7 figs., 1 tab.

  18. Inerting ballast tanks

    Energy Technology Data Exchange (ETDEWEB)

    Baes, Gabriel L.; Bronneberg, Jos [SBM Offshore, AA Schiedam (Netherlands); Barros, Maria A.S.D. de [Universidade Estadual de Maringa (UEM), PR (Brazil)

    2012-07-01

    This report expands upon the work conducted by SBM Offshore to develop a tank preservation treatment, which is intended to achieve a service life of 30 years. This work focuses on the corrosion problems, in the ballast tanks, based on new built hulls, both for the Gas Exploration Market, the FLNG - Floating Liquefied Natural Gas, and for the Oil Exploration market - FPSO's - Floating Production Storage and offloading Units. Herein, the corrosion rate input comes from the various references related to the process of nitrogen injection, which is expected to extend the vessel's time life. The essential elements of this solution comprise the deoxygenation process, corrosion models, coating effects, tests from laboratory, shipboard tests, corrosion institutes and regulations applicable to the operation. The best corrosion protection system for ballast tanks area combines a coating system and an inert gas system. The condition of the tanks will be dependent upon the level of protection applied to the steel structure, including, but not limited to coating, cathodic protection, etc. There is a need for products which extend the life time. It is not sufficient, only have good theoretical base for the corrosion and an excellent treatment system. In addition, the design of the ships structure must also eliminate the presence of local stress concentrations which can result in fatigue cracking and rupture of the protective coating barrier starting the corrosion. As a direct result of this, more problems in corrosion can be mitigated, vessels can have a better corrosion performance with less maintenance and repairs to coating systems in ballast tanks. Furthermore ships will be positively impacted operationally due to less frequent dry docking. There is a huge potential in the application of inert gas to combat the corrosion rate inside the ballast tanks, one of the most corrosive environments on earth. This application can have a direct impact on vessel structure

  19. Effect of Alternate Supply of Shielding Gases of Tungsten Inert Gas Welding on Mechanical Properties of Austenitic Stainless Steel

    Science.gov (United States)

    Shinde, Neelam Vilas; Telsang, Martand Tamanacharya

    2016-07-01

    In the present study, an attempt is made to study the effect of alternate supply of the shielding gas in comparison with the conventional method of TIG welding with pure argon gas. The two sets of combination are used as 10-10 and 40-20 s for alternate supply of the Argon and Helium shielding gas respectively. The effect of alternate supply of shielding gas is studied on the mechanical properties like bend test, tensile test and impact test. The full factorial experimental design is applied for three set of combinations. The ANOVA is used to find significant parameters for the process and regression analysis used to develop the mathematical model. The result shows that the alternate supply of the shielding gas for 10-10 s provides better result for the bend, tensile and impact test as compared with the conventional argon gas and the alternate supply of 40-20 s argon and helium gas respectively. Welding speed can be increased for alternate supply of the shielding gas that can reduce the total welding cost.

  20. Effect of current and speed on porosity in autogenous Tungsten Inert Gas (TIG) welding of aluminum alloys A1100 butt joint

    Science.gov (United States)

    Milyardi, Indra; Sunar Baskoro, Ario

    2018-04-01

    Autogenous Tungsten Inert Gas (TIG) welding has been conducted on aluminum alloy A1100. The purpose of this research is to determine the proper current and speed of autogenous TIG welding with butt joint pattern. Variations on welding current are 150 A, 155 A, and 160 A with the variations on welding speed are 1 mm/seconds, 1.1 mm/seconds, 1.2 mm/seconds. The welded results were tested using non-destructive test (NDT) method using X-Ray radiography. After the test, it is found that the appropriate current for the best result without porosity can be achieved using the welding parameter of welding current of 160 A and the welding speed of 1.1 mm seconds.

  1. Enhanced mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joint using two-pass friction stir processing with rapid cooling

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Nan, E-mail: xunan@hhu.edu.cn; Bao, Yefeng

    2016-02-08

    In this study, tungsten inert gas (TIG) welded AZ31 magnesium alloy joint was subjected to two-pass rapid cooling friction stir processing (RC-FSP). The main results show that, two-pass RC-FSP causes the significant dissolution of the coarse eutectic β-Mg{sub 17}Al{sub 12} phase into the magnesium matrix and the remarkable grain refinement in the stir zone. The low-hardness region which frequently located at heat-affected zone was eliminated. The stir zone showed ultrafine grains of 3.1 μm, and exhibited a good combination of ultrahigh tensile strength of 284 MPa and large elongation of 7.1%. This work provides an effective strategy to enhance the strength of TIG welded magnesium alloy joint without ductility loss.

  2. A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal.

    Science.gov (United States)

    Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N

    2013-01-01

    The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Enhanced mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joint using two-pass friction stir processing with rapid cooling

    International Nuclear Information System (INIS)

    Xu, Nan; Bao, Yefeng

    2016-01-01

    In this study, tungsten inert gas (TIG) welded AZ31 magnesium alloy joint was subjected to two-pass rapid cooling friction stir processing (RC-FSP). The main results show that, two-pass RC-FSP causes the significant dissolution of the coarse eutectic β-Mg_1_7Al_1_2 phase into the magnesium matrix and the remarkable grain refinement in the stir zone. The low-hardness region which frequently located at heat-affected zone was eliminated. The stir zone showed ultrafine grains of 3.1 μm, and exhibited a good combination of ultrahigh tensile strength of 284 MPa and large elongation of 7.1%. This work provides an effective strategy to enhance the strength of TIG welded magnesium alloy joint without ductility loss.

  4. Method of controlling weld chamber purge and cover gas atmosphere

    International Nuclear Information System (INIS)

    Yeo, D.

    1992-01-01

    A method of controlling the gas atmosphere in a welding chamber includes detecting the absence of a fuel rod from the welding chamber and, in response thereto, initiating the supplying of a flow of argon gas to the chamber to purge air therefrom. Further, the method includes detecting the entry of a fuel rod in the welding chamber and, in response thereto, terminating the supplying of the flow of argon gas to the chamber and initiating the supplying of a flow of helium gas to the chamber to purge argon gas therefrom and displace the argon gas in the chamber. Also, the method includes detecting the withdrawal of the fuel rod from the welding chamber and, in response thereto, terminating the supplying of the flow of helium gas to the chamber and initiating the supplying of argon to the chamber to purge the air therefrom. The method also includes detecting the initiation of a weld cycle and, in response thereto, momentarily supplying a flow of argon gas to the welding electrode tip for initiating the welding arc. (Author)

  5. Correction factor to determine total hydrogen+deuterium concentration obtained by inert gas fusion-thermal conductivity detection (IGF- TCD) technique

    International Nuclear Information System (INIS)

    Ramakumar, K.L.; Sesha Sayi, Y.; Shankaran, P.S.; Chhapru, G.C; Yadav, C.S.; Venugopal, V.

    2004-01-01

    The limitation of commercially available dedicated equipment based on Inert Gas Fusion- Thermal Conductivity Detection (IGF - TCD) for the determination of hydrogen+deuterium is described. For a given molar concentration, deuterium is underestimated vis a vis hydrogen because of lower thermal conductivity and not considering its molecular weight in calculations. An empirical correction factor based on the differences between the thermal conductivities of hydrogen, deuterium and the carrier gas argon, and the mole fraction of deuterium in the sample has been derived to correct the observed hydrogen+deuterium concentration. The corrected results obtained by IGF - TCD technique have been validated by determining hydrogen and deuterium contents in a few samples using an independent method based on hot vacuum extraction-quadrupole mass spectrometry (HVE-QMS). Knowledge of mole fraction of deuterium (XD) is necessary to effect the correction. The correction becomes insignificant at low X D values (XD < 0.2) as the precision in the IGF measurements is comparable with the extent of correction. (author)

  6. NACOWA experiments on LMFBR cover gas aerosols, heat transfer, and fission product enrichment

    International Nuclear Information System (INIS)

    Minges, J.; Schuetz, W.

    1993-12-01

    Fifteen different NACOWA test series were carried out. The following items were investigated: sodium mass concentration in the cover gas, sodium aerosol particle size, radiative heat transfer across the cover gas, total heat transfer across the cover gas, sodium deposition on the cover plate, temperature profiles across the cover gas, phenomena if the argon cover gas is replaced by helium, enrichment of cesium, iodine, and zinc in the aerosol and in the deposits. The conditions were mainly related to the design parameters of the EFR. According to the first consistent design, a pool temperature of 545 C and a roof temperature of only 120 C were foreseen at a cover gas height of 85 cm. The experiments were carried out in a stainless steel test vessel of 0.6 m diameter and 1.14 m height. Pool temperature (up to 545 C), cover gas height (12.5 cm, 33 cm, and others), and roof temperature (from 110 C to 450 C) were the main parameters. (orig./HP) [de

  7. The release code package REVOLS/RENONS for fission product release from a liquid sodium pool into an inert gas atmosphere

    International Nuclear Information System (INIS)

    Starflinger, J.; Scholtyssek, W.; Unger, H.

    1994-12-01

    For aerosol source term considerations in the field of nuclear safety, the investigation of the release of volatile and non-volatile species from liquid surfaces into a gas atmosphere is important. In case of a hypothetical liquid metal fast breeder reactor accident with tank failure, primary coolant sodium with suspended or solved fuel particles and fission products may be released into the containment. The computer code package REVOLS/RENONS, based on a theoretical mechanistic model with a modular structure, has been developed for the prediction of sodium release as well as volatile and non-volatile radionuclide release from a liquid pool surface into the inert gas atmosphere of the inner containment. Hereby the release of sodium and volatile fission products, like cesium and sodium iodide, is calculated using a theoretical model in a mass transfer coefficient formulation. This model has been transposed into the code version REVOLS.MOD1.1, which is discussed here. It enables parameter analysis under highly variable user-defined boundary conditions. Whereas the evaporative release of the volatile components is governed by diffusive and convective transport processes, the release of the non-volatile ones may be governed by mechanical processes which lead to droplet entrainment from the wavy pool surface under conditions of natural or forced convection into the atmosphere. The mechanistic model calculates the liquid entrainment rate of the non-volatile species, like the fission product strontium oxide and the fuel (uranium dioxide) from a liquid pool surface into a parallel gas flow. The mechanistic model has been transposed into the computer code package REVOLS/RENONS, which is discussed here. Hereby the module REVOLS (RElease of VOLatile Species) calculates the evaporative release of the volatile species, while the module RENONS (RElease of NON-Volatile Species) computes the entrainment release of the non-volatile radionuclides. (orig./HP) [de

  8. Experimental study of an aircraft fuel tank inerting system

    Directory of Open Access Journals (Sweden)

    Cai Yan

    2015-04-01

    Full Text Available In this work, a simulated aircraft fuel tank inerting system has been successfully established based on a model tank. Experiments were conducted to investigate the influences of different operating parameters on the inerting effectiveness of the system, including flow rate of the inert gas (nitrogen-enriched air, inert gas concentration, fuel load of the tank and different inerting approaches. The experimental results show that under the same operating conditions, the time span of a complete inerting process decreased as the flow rate of inert gas was increased; the time span using the inert gas with 5% oxygen concentration was much longer than that using pure nitrogen; when the fuel tank was inerted using the ullage washing approach, the time span increased as the fuel load was decreased; the ullage washing approach showed the best inerting performance when the time span of a complete inerting process was the evaluation criterion, but when the decrease of dissolved oxygen concentration in the fuel was also considered to characterize the inerting effectiveness, the approach of ullage washing and fuel scrubbing at the same time was the most effective.

  9. Method of collecting helium cover gas for heavy water moderated reactor

    International Nuclear Information System (INIS)

    Miyamoto, Keiji; Ueda, Hiroshi.

    1981-01-01

    Purpose: To reduce the systematic facility cost in a heavy water moderated reactor by contriving the simplification of a helium cover gas collecting intake system. Method: A detachable low pressure metal tank and a neoprene balloon are prepared for a vacuum pump in a permanent vacuum drying facility. When all of the helium cover gas is collected from a heavy water moderated reactor, a large capacity of neoprene balloon capable of temporarily storing it under low pressure is connected to the exhaust of the vacuum pump. On the other hand, while the reactor is operating, a suitable amount of the low pressure tank or neoprene balloon is connected to the exhaust side of the pump, thereby regulating the pressure of the helium cover gas. When refeeding the cover gas, the balloon, with a large capacity for collecting and storing the cover gas is connected to the intake side of the pump. Thus, the pressure regulation, collection of all of the cover gas and refeeding of the cover gas can be conducted without using a high discharge pump and high pressure tank. (Kamimura, M.)

  10. Emanation of /sup 232/U daughter products from submicrometer particles of uranium oxide and thorium dioxide by nuclear recoil and inert gas diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, M.A.; Cuddihy, R.G. (Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (USA). Inhalation Toxicology Research Inst.)

    1983-01-01

    Emanation of /sup 232/U daughter products by nuclear recoil and inert gas diffusion from spherical, submicrometer particles of uranium oxide and thorium dioxide was studied. Monodisperse samples of particles containing 1% /sup 232/U and having physical diameters between 0.1 and 1 ..mu..m were used for the emanation measurements. Thorium-228 ions recoiling from the particles after alpha-decay of /sup 232/U were collected electrostatically on a recoil cathode. Radon-220 diffusing from the particles was swept by an airstream into a 4 l. chamber where the /sup 220/Rn daughters were collected on a second cathode. Mathematical models of radionuclide emanation from spherical particles were used to calculate the recoil range of /sup 228/Th and the diffusion coefficient of /sup 220/Rn in the particle matrix. A /sup 228/Th recoil range of 0.02 ..mu..m and a /sup 220/Rn diffusion coefficient of 3 x 10/sup -14/ cm/sup 2//sec were obtained in both uranium oxide and thorium dioxide particles.

  11. Tungsten Inert Gas and Friction Stir Welding Characteristics of 4-mm-Thick 2219-T87 Plates at Room Temperature and -196 °C

    Science.gov (United States)

    Lei, Xuefeng; Deng, Ying; Yin, Zhimin; Xu, Guofu

    2014-06-01

    2219-T87 aluminum alloy is widely used for fabricating liquid rocket propellant storage tank, due to its admirable cryogenic property. Welding is the dominant joining method in the manufacturing process of aerospace components. In this study, the tungsten inert gas welding and friction stir welding (FSW) characteristics of 4-mm-thick 2219-T87 alloy plate at room temperature (25 °C) and deep cryogenic temperature (-196 °C) were investigated by property measurements and microscopy methods. The studied 2219 base alloy exhibits a low strength plane anisotropy and excellent room temperature and cryogenic mechanical properties. The ultimate tensile strength values of TIG and FSW welding joints can reach 265 and 353 MPa at room temperature, and 342 and 438 MPa at -196 °C, respectively. The base metal consists of elongated deformed grains and many nano-scaled θ (Al2Cu) aging precipitates. Fusion zone and heat-affected zone (HAZ) of the TIG joint are characterized by coarsening dendritic grains and equiaxed recrystallized grains, respectively. The FSW-welded joint consists of the weld nugget zone, thermo-mechanically affected zone (TMAZ), and HAZ. In the weld nugget zone, a micro-scaled sub-grain structure is the main microstructure characteristic. The TMAZ and HAZ are both characterized by coarsened aging precipitates and elongated deformed grains. The excellent FSW welding properties are attributed to the preservation of the working structures and homogenous chemical compositions.

  12. Effect of post-weld aging treatment on mechanical properties of Tungsten Inert Gas welded low thickness 7075 aluminium alloy joints

    International Nuclear Information System (INIS)

    Temmar, M.; Hadji, M.; Sahraoui, T.

    2011-01-01

    Highlights: → The effects of post-weld aging treatment on the properties of joints is studied. → The post-weld aging treatment increases the tensile strength of TIG welded joints. → The strengthening is due to a balance of dissolution, reversion and precipitation. → Simple post-weld aging at 140 o C enhances the properties of the welded joints. -- Abstract: This paper reports the influence of post-weld aging treatment on the microstructure, tensile strength, hardness and Charpy impact energy of weld joints low thickness 7075 T6 aluminium alloy welded by Tungsten Inert Gas (TIG). Hot cracking occurs in aluminium welds when high levels of thermal stress and solidification shrinkage are present while the weld is undergoing various degrees of solidification. Weld fusion zones typically exhibit microstructure modifications because of the thermal conditions during weld metal solidification. This often results in low weld mechanical properties and low resistance to hot cracking. It has been observed that the mechanical properties are very sensitive to microstructure of weld metal. Simple post-weld aging treatment at 140 o C applied to the joints is found to be beneficial to enhance the mechanical properties of the welded joints. Correlations between microstructures and mechanical properties were discussed.

  13. Oil in the FFTF secondary loop cover gas piping. Final unusual occurrence report

    International Nuclear Information System (INIS)

    Kuechle, J.D.

    1981-01-01

    The final unusual occurrence report describes the discovery of oil in the FFTF secondary sodium system cover gas piping. A thorough evaluation has been performed and corrective actions have been implemented to prevent a recurrence of this event

  14. Interaction of cover and target with xenon gas in the IFE-reaction chamber

    International Nuclear Information System (INIS)

    Kuteev, Boris V.

    2001-11-01

    Interaction of a direct drive target and a cover, which is shielding the target against gas particle and heat flows in the reaction chamber of the Inertial Confinement Reactor, is considered. The cover is produced from solid gas -deuterium, neon of xenon. It is shown that at the SOMBRERO parameters the xenon cover with 5.6-mm size significantly reduces the heat flows onto the 4-mm target. The gas drag produces the deceleration of the target much larger than that for the cover due to large mass difference between them. The distance between the target and the cover is about 15 mm at the explosion point, which is sufficient for normal irradiation of the target by laser beams. Protection of the target against the wall radiation is necessary during the flight. Along with creation of reflecting layers over the target surface ablating layers from solid hydrogen or neon seem to be a solution. (author)

  15. Measuring Greenhouse Gas Emissions and Sinks Across California Land Cover

    Science.gov (United States)

    Fischer, M. L.

    2017-12-01

    Significant reductions in greenhouse gas (GHG) emissions are needed to limit rising planetary temperatures that will otherwise limit Earth's capacity to support life, introducing geopolitical instability. To help mitigate this threat, California has legislated landmark reductions in state-level greenhouse gas (GHG) emissions that set an example for broader action. Beginning with relatively assured reduction of current emissions to 1990 levels by 2020, future goals are much more challenging with 40% and 80% reductions below 1990 emissions by 2030 and 2050, respectively. While the majority of the reductions must focus on fossil fuels, inventory estimates of non-CO2 GHG emissions (i.e., CH4, N2O, and industrial compounds) constitute 15% of the total, suggesting reductions are required across multiple land use sectors. However, recent atmospheric inversion studies show methane and nitrous oxide (CH4 & N2O) emissions exceed current inventory estimates by factors of 1.2-1.8 and 1.6-2.6 (at 95% confidence), respectively, perhaps constituting up to 30% of State total emissions. The discrepancy is likely because current bottom-up models used for inventories do not accurately capture important management or biophysical factors. In the near term, process level experiments and sector-specific inversions are being planned to quantify the factors controlling non-CO2 GHG emissions for several of the dominant emission sectors. For biosphere carbon, California forests lands, which also depend on the combination of management, climate, and weather, lost above ground carbon from 2001-2010, and may be expected to lose soil and root carbon as a longer-term result. Here, it is important to identify and apply the best principles in forestry and agriculture to increase carbon stocks in depleted forest and agricultural areas, focusing on approaches that provide resilience to future climate and weather variations. Taken together, improved atmospheric, plant, and soil observations, together

  16. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    International Nuclear Information System (INIS)

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L.; Chen, R.; Zhou, C.

    2015-01-01

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different

  17. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L. [Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Chen, R., E-mail: chenrui1005@hotmail.com [Shenzhen Key Laboratory of Urban and Civil Engineering for Disaster Prevention and Mitigation, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055 (China); Zhou, C. [Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2015-10-15

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different

  18. Effects of Sc and Zr on mechanical property and microstructure of tungsten inert gas and friction stir welded aerospace high strength Al–Zn–Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ying, E-mail: csudengying@163.com [School of Metallurgy and Environment, Central South University, Hunan, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083 (China); State Key Laboratory for Power Metallurgy, Central South University, Hunan, Changsha 410083 (China); Peng, Bing [School of Metallurgy and Environment, Central South University, Hunan, Changsha 410083 (China); Xu, Guofu, E-mail: csuxgf66@csu.edu.cn [School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083 (China); State Key Laboratory for Power Metallurgy, Central South University, Hunan, Changsha 410083 (China); Pan, Qinglin; Yin, Zhimin; Ye, Rui [School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083 (China); Wang, Yingjun; Lu, Liying [Northeast Light Alloy Co. Ltd., Hei Longjiang, Harbin 150060 (China)

    2015-07-15

    New aerospace high strength Al–Zn–Mg and Al–Zn–Mg–0.25Sc–0.10Zr (wt%) alloys were welded by tungsten inert gas (TIG) process using a new Al–6.0Mg–0.25Sc–0.10Zr (wt%) filler material, and friction stir welding (FSW) process, respectively. Mechanical property and microstructure of the welded joints were investigated comparatively by tensile tests and microscopy methods. The results show that Sc and Zr can improve the yield strength and ultimate tensile strength of Al–Zn–Mg alloy by 59 MPa (23.3%) and 16 MPa (4.0%) in TIG welded joints, and by 77 MPa (23.8%) and 54 MPa (11.9%) in FSW welded joints, respectively. The ultimate tensile strength and elongation of new Al–Zn–Mg–Sc–Zr alloy FSW welded joint are 506±4 MPa and 6.34±0.2%, respectively, showing superior post welded performance. Mechanical property of welded joint is mainly controlled by its “weakest microstructural zone”. TIG welded Al–Zn–Mg and Al–Zn–Mg–Sc–Zr alloys reinforced with weld bead both failed at fusion boundaries. Secondary Al{sub 3}Sc{sub x}Zr{sub 1−x} particles originally present in parent alloy coarsen during TIG welding process, but they can restrain the grain growth and recrystallization here, thus improving welding performance. For two FSW welded joints, fracture occurred in weld nugget zone. Secondary Al{sub 3}Sc{sub x}Zr{sub 1−x} nano-particles almost can keep unchangeable size (20–40 nm) across the entire FSW welded joint, and thus provide effective Orowan strengthening, grain boundary strengthening and substructure strengthening to strengthen FSW joints. The positive effect from Sc and Zr additions into base metals can be better preserved by FSW process than by TIG welding process.

  19. Assessment of the biological effects of welding fumes emitted from metal inert gas welding processes of aluminium and zinc-plated materials in humans.

    Science.gov (United States)

    Hartmann, L; Bauer, M; Bertram, J; Gube, M; Lenz, K; Reisgen, U; Schettgen, T; Kraus, T; Brand, P

    2014-03-01

    The aim of this study was to investigate biological effects and potential health risks due to two different metal-inert-gas (MIG) welding fumes (MIG welding of aluminium and MIG soldering of zinc coated steel) in healthy humans. In a threefold cross-over design study 12 male subjects were exposed to three different exposure scenarios. Exposures were performed under controlled conditions in the Aachener Workplace Simulation Laboratory (AWSL). On three different days the subjects were either exposed to filtered ambient air, to welding fumes from MIG welding of aluminium, or to fumes from MIG soldering of zinc coated materials. Exposure was performed for 6 h and the average fume concentration was 2.5 mg m(-3). Before, directly after, 1 day after, and 7 days after exposure spirometric and impulse oscillometric measurements were performed, exhaled breath condensate (EBC) was collected and blood samples were taken and analyzed for inflammatory markers. During MIG welding of aluminium high ozone concentrations (up to 250 μg m(-3)) were observed, whereas ozone was negligible for MIG soldering. For MIG soldering, concentrations of high-sensitivity CRP (hsCRP) and factor VIII were significantly increased but remained mostly within the normal range. The concentration of neutrophils increased in tendency. For MIG welding of aluminium, the lung function showed significant decreases in Peak Expiratory Flow (PEF) and Mean Expiratory Flow at 75% vital capacity (MEF 75) 7 days after exposure. The concentration of ristocetin cofactor was increased. The observed increase of hsCRP during MIG-soldering can be understood as an indicator for asymptomatic systemic inflammation probably due to zinc (zinc concentration 1.5 mg m(-3)). The change in lung function observed after MIG welding of aluminium may be attributed to ozone inhalation, although the late response (7 days after exposure) is surprising. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Effects of Sc and Zr on mechanical property and microstructure of tungsten inert gas and friction stir welded aerospace high strength Al–Zn–Mg alloys

    International Nuclear Information System (INIS)

    Deng, Ying; Peng, Bing; Xu, Guofu; Pan, Qinglin; Yin, Zhimin; Ye, Rui; Wang, Yingjun; Lu, Liying

    2015-01-01

    New aerospace high strength Al–Zn–Mg and Al–Zn–Mg–0.25Sc–0.10Zr (wt%) alloys were welded by tungsten inert gas (TIG) process using a new Al–6.0Mg–0.25Sc–0.10Zr (wt%) filler material, and friction stir welding (FSW) process, respectively. Mechanical property and microstructure of the welded joints were investigated comparatively by tensile tests and microscopy methods. The results show that Sc and Zr can improve the yield strength and ultimate tensile strength of Al–Zn–Mg alloy by 59 MPa (23.3%) and 16 MPa (4.0%) in TIG welded joints, and by 77 MPa (23.8%) and 54 MPa (11.9%) in FSW welded joints, respectively. The ultimate tensile strength and elongation of new Al–Zn–Mg–Sc–Zr alloy FSW welded joint are 506±4 MPa and 6.34±0.2%, respectively, showing superior post welded performance. Mechanical property of welded joint is mainly controlled by its “weakest microstructural zone”. TIG welded Al–Zn–Mg and Al–Zn–Mg–Sc–Zr alloys reinforced with weld bead both failed at fusion boundaries. Secondary Al 3 Sc x Zr 1−x particles originally present in parent alloy coarsen during TIG welding process, but they can restrain the grain growth and recrystallization here, thus improving welding performance. For two FSW welded joints, fracture occurred in weld nugget zone. Secondary Al 3 Sc x Zr 1−x nano-particles almost can keep unchangeable size (20–40 nm) across the entire FSW welded joint, and thus provide effective Orowan strengthening, grain boundary strengthening and substructure strengthening to strengthen FSW joints. The positive effect from Sc and Zr additions into base metals can be better preserved by FSW process than by TIG welding process

  1. Fusion welding of Fe-added lap joints between AZ31B magnesium alloy and 6061 aluminum alloy by hybrid laser-tungsten inert gas welding technique

    International Nuclear Information System (INIS)

    Qi, Xiao-dong; Liu, Li-ming

    2012-01-01

    Highlights: → Hybrid Laser-TIG fusion welding technique was used for joining Mg to Al alloys. → Laser defocusing amount determined penetration depth inside Al alloy of joints. → The addition of Fe interlayer suppressed Mg-Al intermetallics greatly in joints. → A maximum joint strength with optimum thickness of Fe interlayer was obtained. → Excessive addition of Fe interlayer was adverse for the strength improvement. -- Abstract: AZ31B magnesium alloy and 6061-T6 aluminum alloy were lap joined together with the addition of Fe interlayer by fusion welding of hybrid laser-tungsten inert gas (TIG) technique. The influence of location of laser focal spot (LFS) on joint penetration depth and that of the depth on joint strength were investigated. The results showed that when the LFS was just on the surface of Al plate, the deepest penetration could be obtained, which contributed to the improvement of shear strength of Fe-added joints, but not to the elevation of the strength of Mg/Al direct joints. The addition of Fe interlayer suppressed massive production of Mg-Al intermetallics but produced Fe-Al intermetallics in the fusion zone of the joints, whose micro-hardness was extremely high and was also adverse for the enhancement of joint shear strength. The effect of Fe-interlayer thickness on the joint shear strength was also examined, and the maximum shear strength of Fe-added joint could achieve 100 MPa with 0.13 mm thick Fe interlayer. The fracture modes of 0.07 and 0.13 mm Fe-interlayer-added joints were both quasi-cleavage, while those of direct and 0.22 mm interlayer-added joints were completely cleavage. The theoretical shear strength of the Fe-added joints was also discussed.

  2. Study of local-zone microstructure, strength and fracture toughness of hybrid laser-metal-inert-gas-welded A7N01 aluminum alloy joint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaomin, E-mail: xmwang991011@163.com [School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan (China); Li, Bo [School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan (China); Li, Mingxing; Huang, Cui [School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan (China); Chen, Hui [School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan (China)

    2017-03-14

    Mechanical properties of hybrid laser-metal-inert-gas-welded A7N01-T5 aluminum alloy joints were studied by using local samples that were extracted from the base metal (BM), heat-affected zone (HAZ), and fusion zone (FZ) of the joint to investigate the triangular relationship of microstructure, strength and fracture toughness of the local zones. The BM had the highest yield strength, ultimate tensile strength (UTS) and lowest elongation, which contrasts with the FZ. The yield strength of the HAZ is lower than that of the BM, whereas its UTS is very close to that of the BM, and its elongation is higher than that of the BM. The fracture toughness of the three local zones decreased as HAZ>BM>FZ. To analyze differences in local mechanical behavior, the detailed microstructure of the three local zones was studied by optical microscopy and electron backscattered diffraction, whereas the fracture surface and precipitation were studied by scanning and transmission electron microscopy. The variation of grain size, especially the morphology and distribution of strengthening phase in HAZ in welding process is the key factor that leads to its different mechanical properties from that of BM, which can be elucidated by different dislocation mechanism, sheared mechanism or Orowan mechanism. The as-cast microstructure and second-phase particles that segregate between dendritic branches provide the FZ with the lowest yield strength and UTS. The factors including area fraction of the precipitates, the difference of strength between the matrix and the grain boundaries, the precipitate-free zone along grain boundaries, as well as the grain boundaries angle are taken into account to explain the difference of fracture toughness among BM, HAZ and FZ, and their fracture modes.

  3. Effects of TiO2 coating on the microstructures and mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joints

    International Nuclear Information System (INIS)

    Wang Linzhi; Shen Jun; Xu Nan

    2011-01-01

    Highlights: → The weld penetration and the D/W ratio could be improved dramatically by increasing of the amount of the TiO 2 coating. → The average grain size of the α-Mg grains increased and the β-Mg 17 Al 12 IMC transformed from granular structure to continuous structure with an increase of the amount of the TiO 2 coating. → With an increase of the amount of the TiO 2 coating, the microhardness of the FZ of the AZ31 magnesium alloy welded joints decreased slightly at first and then decreased sharply. → The UTS value of the welded joints increased with an increase of the amount of the TiO 2 coating. → However, too much TiO 2 coating caused a significant decrease of the UTS value of the welded joints. - Abstract: The effects of TiO 2 coating on the macro-morphologies, microstructures and mechanical properties of tungsten inert gas (TIG) welded AZ31 magnesium alloy joints were investigated by microstructural observations, microhardness tests and tensile tests. The results showed that an increase in the amount of the TiO 2 coating resulted in an increase in the weld penetration and the depth/width (D/W) ratio of the TIG welded AZ31 magnesium alloy seams. Moreover, the average grain size of the α-Mg grains increased and the β-Mg 17 Al 12 intermetallic compound (IMC) was coarser in the case of higher amount of the TiO 2 coating. With an increase in the amount of the TiO 2 coating, the microhardness of the fusion zone (FZ) of the AZ31 magnesium alloy welded joints decreased slightly initially and then decreased sharply. In addition, with an increase in the amount of the TiO 2 coating, the ultimate tensile strength (UTS) value and elongation of the welded joints increased at first and then decreased sharply.

  4. Human biomonitoring of aluminium after a single, controlled manual metal arc inert gas welding process of an aluminium-containing worksheet in nonwelders.

    Science.gov (United States)

    Bertram, Jens; Brand, Peter; Hartmann, Laura; Schettgen, Thomas; Kossack, Veronika; Lenz, Klaus; Purrio, Ellwyn; Reisgen, Uwe; Kraus, Thomas

    2015-10-01

    Several existing field studies evaluate aluminium welding works but no thoroughly controlled exposure scenario for welding fume has been described yet. This study provides information about the uptake and elimination of aluminium from welding fumes under controlled conditions. In the Aachen Workplace Simulation Laboratory, we are able to generate welding fumes of a defined particle mass concentration. We exposed 12, until then occupationally unexposed participants with aluminium-containing welding fumes of a metal inert gas (MIG) welding process of a total dust mass concentration of 2.5 mg/m(3) for 6 h. Room air filter samples were collected, and the aluminium concentration in air derived. Urine and plasma samples were collected directly before and after the 6-h lasting exposure, as well as after 1 and 7 days. Human biomonitoring methods were used to determine the aluminium content of the samples with high-resolution continuum source atomic absorption spectrometry. Urinary aluminium concentrations showed significant changes after exposure compared to preexposure levels (mean t(1) (0 h) 13.5 µg/L; mean t(2) (6 h) 23.5 µg/L). Plasma results showed the same pattern but pre-post comparison did not reach significance. We were able to detect a significant increase of the internal aluminium burden of a single MIG aluminium welding process in urine, while plasma failed significance. Biphasic elimination kinetic can be observed. The German BAT of 60 µg/g creatinine was not exceeded, and urinary aluminium returned nearly to baseline concentrations after 7 days.

  5. EBR-II Cover Gas Cleanup System upgrade distributed control and front end computer systems

    International Nuclear Information System (INIS)

    Carlson, R.B.

    1992-01-01

    The Experimental Breeder Reactor II (EBR-II) Cover Gas Cleanup System (CGCS) control system was upgraded in 1991 to improve control and provide a graphical operator interface. The upgrade consisted of a main control computer, a distributed control computer, a front end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper briefly describes the Cover Gas Cleanup System and the overall control system; gives reasons behind the computer system structure; and then gives a detailed description of the distributed control computer, the front end computer, and how these computers interact with the main control computer. The descriptions cover both hardware and software

  6. FFTF fuel failure detection and characterization by cover gas monitoring. Final report

    International Nuclear Information System (INIS)

    Miller, W.C.; Holt, F.E.

    1977-01-01

    The Fast Flux Test Facility (FFTF) will include a Fuel Failure Monitoring (FFM) System designed to detect, characterize, and locate fuel and absorber pin failures (i.e., cladding breaches) using a combination of delayed neutron detection, cover gas radioisotope monitoring, and gas tagging. During the past several years the Hanford Engineering Development Laboratory has been involved in the development, design, procurement, and installation of this integrated system. The paper describes one portion of the FFM System, the Cover Gas Monitoring System (CGMS), which has the primary function of fuel failure detection and characterization in the FFTF. By monitoring the various radioisotopes in the cover gas, the CGMS will both detect fuel and absorber pin failures and characterize those failures as to magnitude and severity

  7. A method for calculating the gas volume proportions and inhalation temperature of inert gas mixtures allowing reaching normothermic or hypothermic target body temperature in the awake rat

    Directory of Open Access Journals (Sweden)

    Jacques H Abraini

    2017-01-01

    Full Text Available The noble gases xenon (Xe and helium (He are known to possess neuroprotective properties. Xe is considered the golden standard neuroprotective gas. However, Xe has a higher molecular weight and lower thermal conductivity and specific heat than those of nitrogen, the main diluent of oxygen (O2 in air, conditions that could impair or at least reduce the intrinsic neuroprotective properties of Xe by increasing the critical care patient's respiratory workload and body temperature. In contrast, He has a lower molecular weight and higher thermal conductivity and specific heat than those of nitrogen, but is unfortunately far less potent than Xe at providing neuroprotection. Therefore, combining Xe with He could allow obtaining, depending on the gas inhalation temperature and composition, gas mixtures with neutral or hypothermic properties, the latter being advantageous in term of neuroprotection. However, calculating the thermal properties of a mixture, whatever the substances – gases, metals, rubbers, etc. – is not trivial. To answer this question, we provide a graphical method to assess the volume proportions of Xe, He and O2 that a gas mixture should contain, and the inhalation temperature to which it should be administered to allow a clinician to maintain the patient at a target body temperature.

  8. Study on Resources Assessment of Coal Seams covered by Long-Distance Oil & Gas Pipelines

    Science.gov (United States)

    Han, Bing; Fu, Qiang; Pan, Wei; Hou, Hanfang

    2018-01-01

    The assessment of mineral resources covered by construction projects plays an important role in reducing the overlaying of important mineral resources and ensuring the smooth implementation of construction projects. To take a planned long-distance gas pipeline as an example, the assessment method and principles for coal resources covered by linear projects are introduced. The areas covered by multiple coal seams are determined according to the linear projection method, and the resources covered by pipelines directly and indirectly are estimated by using area segmentation method on the basis of original blocks. The research results can provide references for route optimization of projects and compensation for mining right..

  9. Developments on the European energy market. Part 1. Natural gas supply. Extra import covers growing natural gas demand in Europe

    International Nuclear Information System (INIS)

    Van Gelder, J.W.

    2000-01-01

    This first part of a series on developments in the European gas market features the growth in gas supply. 35% of the gas demand must be covered from sources outside Europe. For the future additional imports are required from countries such as the Russian Federation, Algeria and Nigeria. Over the next few years the artificial link between ga and oil prices will disappear, bringing the gas price to a structurally lower level. It will be of crucial importance that gas suppliers will not be able to form cartels to keep prices high. All competing projects will curb price increases on the European market, but will definitely result in more freedom of choice for European natural gas consumers

  10. Parametric study of sodium aerosols in the cover-gas space of sodium-cooled reactors

    International Nuclear Information System (INIS)

    Sheth, A.

    1975-03-01

    A mathematical model has been developed to describe the behavior of sodium aerosols in the cover-gas space of a sodium-cooled reactor. A review of the literature was first made to examine methods of aerosol generation, mathematical expressions representing aerosol behavior, and pertinent experimental investigations of sodium aerosols. In the development of the model, some terms were derived from basic principles and other terms were estimated from available correlations. The model was simulated on a computer, and important parameters were studied to determine their effects on the overall behavior of sodium aerosols. The parameters studied were sodium pool temperature, source and initial size of particles, film thickness at the sodium pool/cover gas interface, wall plating parameters, cover-gas flow rate, and type of cover gas (argon and helium). The model satisfactorily describes the behavior of sodium aerosol in argon, but not in helium. Possible reasons are given for the failure of the model with helium, and further experimental work is recommended. The mathematical model, with appropriate modifications to describe the behavior of sodium aerosols in helium, would be very useful in designing traps to remove aerosols from the cover gas of sodium-cooled reactors. (U.S.)

  11. Corrosion of carbon steel in the [P_1_4_6_6_6][Br] ionic liquid: The effects of γ-radiation and cover gas

    International Nuclear Information System (INIS)

    Morco, Ryan P.; Musa, Ahmed Y.; Momeni, Mojtaba; Wren, J.C.

    2016-01-01

    Highlights: • Carbon steel corrosion in non-aqueous ionic liquid ([P_1_4_6_6_6] [Br]) electrolyte. • Gamma-irradiation results to less corrosion, forming protective oxides. • Substantial corrosion is seen in the absence of gamma-radiation. • A corrosion mechanism is proposed for the observed results. - Abstract: The corrosion of carbon steel in the ionic liquid (IL) [P_1_4_6_6_6] [Br] was studied with the IL in contact with an inert (Ar) or oxidizing (air) cover gas in the presence and absence of γ-radiation. Significant corrosion was observed for the tests performed in the absence of γ-radiation while a protective oxide layer is formed in the presence of γ-radiation. The corrosion is attributed to the presence of impurity H_2O and O_2 dissolved in the IL, and a corrosion mechanism is proposed.

  12. Radiological considerations of the reactor cover gas processing system at the FFTF

    International Nuclear Information System (INIS)

    Prevo, P.R.

    1987-01-01

    Radiological and environmental protection experience associated with the reactor cover gas processing system at the Fast Flux Test Facility (FFTF) has been excellent. Personnel radiation exposures received from operating and maintaining the reactor cover gas processing system have been very low, the system has remained free of radioactive particulate contamination through the first seven operating cycles (cesium contamination was detected at the end of Cycle 8A), and releases of radioactivity to the environment have been very low, well below environmental standards. This report discusses these three aspects of fast reactor cover gas purification over the first eight operating cycles of the FFTF (a duration of a little more than four years, from April 1982 through July 1986). (author)

  13. Radiological considerations of the reactor cover gas processing system at the FFTF [Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Prevo, P.R.

    1986-09-01

    Radiological and environmental protection experience associated with the reactor cover gas processing system at the Fast Flux Test Facility (FFTF) has been excellent. Personnel radiation exposures received from operating and maintaining the reactor cover gas processing system have been very low, the system has remained free of radioactive particulate contamination through the first seven operating cycles (cesium contamination was detected at the end of Cycle 8A), and releases of radioactivity to the environment have been very low, well below environmental standards. This report discusses these three aspects of fast reactor cover gas purification over the first eight operating cycles of the FFTF (a duration of a little more than four years, from April 1982 through July 1986)

  14. Modeling and analyzing the effects of heat treatment on the characteristics of magnesium alloy joint welded by the tungsten-arc inert gas welding

    International Nuclear Information System (INIS)

    Tsai, Te-Chang; Chou, Chih-Chung; Tsai, Deng-Maw; Chiang, Ko-Ta

    2011-01-01

    Highlights: → The mathematical model was provided to study the effect of heat treatment on the magnesium alloy welded joint. → The solution strengthening effect of β-phase Mg 17 Al 12 gain promotes the strengthening matrix and ductility of hcp-α-phase Mg. → The average size and proportion of α-phase Mg grain decreases with the increase of the tempering time and temperature. → An increase in the high value of tempering temperature and tempering time leads to increase the maximum tensile strength. → The values of the elongation increases with increasing in both the value of tempering temperature and tempering time. -- Abstract: The objective of this paper is to present the mathematical models for modeling and analysis of the effects of heat treatment on the characteristics of magnesium alloy joint welded by the tungsten-arc inert gas (TIG) welding. The process of heat treatment adopts the tempering process with varying processing parameters, including tempering temperature and tempering time. The microstructure and mechanical properties of the welded joint are considered in the characteristic evaluation and explored by experiment. An experimental plan of the face-centered central composite design (CCD) based on the response surface methodology (RSM) has been employed to carry out the experimental study. The results of analysis of variance (ANOVA) and comparisons of experimental data show that the mathematical models of the value of the maximum tensile strength and elongation are fairly well fitted with the experimental values with a 95% confidence interval. In the tempering process, the microstructure of welded joint in the weld bead displays two main microstructures of hcp-α-phase Mg and bcc-β-phase Mg 17 Al 12 . Results show that the average size and proportion of α-phase Mg grains decreases with the increase of the tempering time and temperature. But, the increase of the tempering time and temperature promote increasing the average size and

  15. EBR-II Cover Gas Cleanup System upgrade process control system structure

    International Nuclear Information System (INIS)

    Carlson, R.B.; Staffon, J.D.

    1992-01-01

    The Experimental Breeder Reactor II (EBR-II) Cover Gas Cleanup System (CGCS) control system was upgraded in 1991 to improve control and provide a graphical operator interface. The upgrade consisted of a main control computer, a distributed control computer, a front end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper briefly describes the Cover Gas Cleanup System and the overall control system; describes the main control computer hardware and system software features in more detail; and, then, describes the real-time control tasks, and how they interact with each other, and how they interact with the operator interface task

  16. Impact of different plants on the gas profile of a landfill cover

    International Nuclear Information System (INIS)

    Reichenauer, Thomas G.; Watzinger, Andrea; Riesing, Johann; Gerzabek, Martin H.

    2011-01-01

    Research highlights: → Plants influence gas profile and methane oxidation in landfill covers. → Plants regulate water content and increase the availability of oxygen for methane oxidation. → Plant species with deep roots like alfalfa showed more stimulation of methane oxidation than plants with shallow root systems like grasses. - Abstract: Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa + grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa + grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content.

  17. Sodium and cover gas chemistry in the high temperature sodium facility

    International Nuclear Information System (INIS)

    McCown, J.J.; Duncan, H.C.

    1976-01-01

    The equipment and procedures used in following sodium and cover gas chemistry changes in the High Temperature Sodium Facility are presented. The methods of analysis and results obtained are given. Impurity trends which have been measured during the facility operations are discussed

  18. Evaluation of the LMFBR cover gas source term and synthesis of the associated R and D

    International Nuclear Information System (INIS)

    Balard, F.; Carluec, B.

    1996-01-01

    At the end of the seventies and the beginning of the eighties, there appeared a pressing need of experimental results to assess the LMFBR's safety level. Because of the urgency, analytical studies were not systematically undertaken and maximum credible cover gas instantaneous source terms (radionuclides core release fraction) were got directly from crude out-of-pile experiment interpretations. Two types of studies and mock-ups were undertaken depending on the timescale of the phenomena: instantaneous source terms (corresponding to an unlikely energetic core disruptive accident CDA), and delayed ones (tens of minutes to some hours). The experiments performed in this frame are reviewed in this presentation: 1) instantaneous source term: - FAUST experiments: I, Cs, UO2 source terms (FzK, Germany), - FAST experiments : pool depth influence on non volatile source term (USA), - CARAVELLE experiments: nonvolatile source term in SPX1 geometry (CEA, France); 2) delayed source term: - NALA experiments: I, Cs, Sr, UO2 source term (FzK, Germany), - PAVE experiments: I source term (CEA, France), - NACOWA experiments: cover gas aerosols enrichment in I and Cs (FzK, Germany) - other French experiments in COPACABANA and GULLIVER facilities. The volatile fission products release is tightly bound to sodium evaporation and a large part of the fission products is dissolved in the liquid sodium aerosols present in the cover gas. Thus the knowledge of the amount of aerosol release to the cover gas is important for the evaluation of the source term. The maximum credible cover gas instantaneous source terms deduced from the experiments have led to conservative source terms to be taken into account in safety analysis. Nevertheless modelling attempts of the observed (in-pile or out-of-pile) physico-chemical phenomena have been undertaken for extrapolation to the reactor case. The main topics of this theoretical research are as follows: fission products evaporation in the cover gas (Fz

  19. Mathematical modelling of water and gas transport in layered soil covers for coal ash deposits

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, A; Lindgren, M [Kemakta Consultants Co, Stockholm (SE)

    1990-12-17

    In the present work the dry deposition alternative is investigated. In particular the design of soil covers is treated theoretically using mathematical models. The soil cover should primarily act as a barrier against infiltrating water. This is done by having soil cover materials with low permeabilities and sloping covers thereby diverting the infiltrating water in the lateral direction. An important design aspect is that overflow should be avoided since this may cause erosional problems. Thus the design of the cover should allow for lateral water flow within the cover. In the present work we use the computer code TRUST for calculating the flow rates and the moisture contents in two layer covers (till on top of clay) for varying conditions. The calculations so far show that the hydraulic conductivity of the clay layer should be smaller than 10{sup -8} m/s. However, for the simulated longer covers (50 m) a lower hydraulic conductivity gives overflow indicating that better lateral drainage must be provided for. This can be done by increasing the thickness or hydraulic conductivity of the till layer. Simulations for different slopes give little impact, while the hydraulic conductivity of the clay layer is of major importance. Gas transport through the soil cover may be of importance if the waste contains pyrite. In the presence of oxygen and water, pyrite is oxidized producing sulphuric acid. The lowered pH will accelerate the leaching of several heavy metals. The transport rate of gas through a porous material is very sensitive to the water content, decreasing rapidly with increasing water content. In the present work a model, where the unsaturated conditions are accounted for, is outlined. A previously developed method for calculating oxygen transport and oxidation rate of pyrite in connection with mine wastes is generalized from 1D to 2D. A sample calculation illustrates the feasibility of the method. (au) (43 refs.).

  20. Alternative inerting agents

    CSIR Research Space (South Africa)

    Du

    1997-08-01

    Full Text Available Final Project Report ALTERNATIVE INERTING AGENTS Author/s: J J L DU PLESSIS Research Agency: OSIR MINING TECHNOLOGY Project No: Date: 3 2 7 2 COL 443 APRIL 1999 N’ ) ( G~6~ I Title: 9 / The results show...

  1. Inert Anode Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1999-07-01

    This ASME report provides a broad assessment of open literature and patents that exist in the area of inert anodes and their related cathode systems and cell designs, technologies that are relevant for the advanced smelting of aluminum. The report also discusses the opportunities, barriers, and issues associated with these technologies from a technical, environmental, and economic viewpoint.

  2. FFTF gas processing systems

    International Nuclear Information System (INIS)

    Halverson, T.G.

    1977-01-01

    The design and operation of the two radioactive gas processing systems at the Fast Flux Test Facility (FFTF) exemplifies the concept that will be used in the first generation of Liquid Metal Fast Breeder Reactors (LMFBR's). The two systems, the Radioactive Argon Processing System (RAPS) and the Cell Atmosphere Processing System (CAPS), process the argon and nitrogen used in the FFTF for cover gas on liquid metal systems and as inert atmospheres in steel lined cells housing sodium equipment. The RAPS specifically processes the argon cover gas from the reactor coolant system, providing for decontamination and eventual reuse. The CAPS processes radioactive gasses from inerted cells and other liquid metal cover gas systems, providing for decontamination and ultimate discharge to the atmosphere. The cryogenic processing of waste gas by both systems is described

  3. Transport and reaction processes affecting the attenuation of landfill gas in cover soils

    DEFF Research Database (Denmark)

    Molins, S.; Mayer, K.U.; Scheutz, Charlotte

    2008-01-01

    of methane, chlorofluorocarbons, and hydrochlorofluorocarbons to the atmosphere. This study was conducted to investigate the effect of oxidation reactions on the overall gas transport regime and to evaluate, the contributions of various gas transport processes on methane attenuation in landfill cover soils....... For this purpose, a reactive transport model that includes advection and the Dusty Gas Model for simulation of multicomponent gas diffusion was used. The simulations are constrained by data from a series of counter-gradient laboratory experiments. Diffusion typically accounts for over 99% of methane emission...... to the atmosphere. Oxygen supply into the soil column is driven exclusively by diffusion, whereas advection outward offsets part of the diffusive contribution. In the reaction zone, methane consumption reduces the pressure gradient, further decreasing the significance of advection near the top of the column...

  4. Mathematical modelling of water and gas transport in layered soil covers for coal ash deposit

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, M [Kemakta Consultants Co, Stockholm (SE); Rasmuson, A [Chalmers University of Technology, Goeteborg (SE). Dept. of Chemical Engineering Design

    1991-06-19

    In phase 1 of this study the design of soil covers for deposits of coal ash from energy production was studied with regard to various parameters like: climate, cover slope, hydraulic conductivity of tight layer and length of cover. One of the main results was the relatively large risk for total saturation up to the surface and overflow which may cause surface erosion problems. In the present study two theoretical cases are studied to further elucidate the problem. A case from the phase 1 study is used to illustrate the effect of increased infiltration. Calculations show that total saturation and thereby overflow is achieved when the infiltration is increased by 20% in March, but not when increased by 10% only. This shows that the margin in an acceptable case may be small. A cover treated in phase 1, where totally saturated conditions were obtained, was modified so that two decimeters of the one meter till in its bottom part were exchanged for a drainage layer. It is shown that the effect of this layer is large. A negative side-effect, however, is that gas flow may increase due to the lower saturation of the cover. Calculations were made for a real soil covered mine tailings deposit at Bersbo. This deposit was chosen mainly because it is the only well documented case in Sweden where soil covers are used for securing a deposit, but also because some contradictory results as compared to theory were obtained. Another topic studied in the present work was the influence of a heterogeneous clay layer. For example, a weak zone with a hydraulic conductivity of 10{sup -7} m/s (10{sup -9} m/s for the rest of the clay), covering 0.5 m x 0.5 m of 10 m in length and 5 m in width, will increase the flow through the bottom of the cover with almost 30%. The gas transport through the heterogeneous soil cover was also studied, showing about 5 times increased gas transport rate around the weak zone, but almost no difference about 1 m from the weak zone. (29 figs., 5 tabs., 27 refs.).

  5. Method of producing hydrogen, and rendering a contaminated biomass inert

    Science.gov (United States)

    Bingham, Dennis N [Idaho Falls, ID; Klingler, Kerry M [Idaho Falls, ID; Wilding, Bruce M [Idaho Falls, ID

    2010-02-23

    A method for rendering a contaminated biomass inert includes providing a first composition, providing a second composition, reacting the first and second compositions together to form an alkaline hydroxide, providing a contaminated biomass feedstock and reacting the alkaline hydroxide with the contaminated biomass feedstock to render the contaminated biomass feedstock inert and further producing hydrogen gas, and a byproduct that includes the first composition.

  6. Removal of halogenated organic compounds in landfill gas by top covers containing zero-valent iron

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Winther, K.; Kjeldsen, Peter

    2000-01-01

    Transformation of gaseous CCl3F and CCl4 by zero-valent iron was studied in systems unsaturated with water under anaerobic conditionssin an N2 gas and in a landfill gas atmosphere. The transformation was studied in batch as well as flow-through column tests. In both systems, the transformation....... During continuous aerobic conditions, the transformation of CCl3F decreased toward zero. Model calculations show that use of zero-valent iron in landfill top covers is a potential treatment technology for emission reduction of halogenated trace compounds from landfills....

  7. A comparative evaluation of microstructural and mechanical behavior of fiber laser beam and tungsten inert gas dissimilar ultra high strength steel welds

    Directory of Open Access Journals (Sweden)

    Jaiteerth R. Joshi

    2016-12-01

    Full Text Available The influence of different welding processes on the mechanical properties and the corresponding variation in the microstructural features have been investigated for the dissimilar weldments of 18% Ni maraging steel 250 and AISI 4130 steel. The weld joints are realized through two different fusion welding processes, tungsten inert arc welding (TIG and laser beam welding (LBW, in this study. The dissimilar steel welds were characterized through optical microstructures, microhardness survey across the weldment and evaluation of tensile properties. The fiber laser beam welds have demonstrated superior mechanical properties and reduced heat affected zone as compared to the TIG weldments.

  8. Electrical markets, energy security and technology diversification: nuclear as cover against gas and carbon price risks?

    International Nuclear Information System (INIS)

    Roques, F.A.; Newbery, D.M.; Nuttall, W.J.; Neufville, R. de

    2005-01-01

    Recent tension in the oil and gas markets has brought back the concept of energy offer diversification. Electrical production technology diversification in a country helps improve the security of supply and make up for the negative effects of hydrocarbons price variations. The portfolio and real options theories help to quantify the optimum diversification level for a country or a power company. The cover value of a nuclear investment for a power company facing cost uncertainties (price of gas and of carbon dioxide emission permit) and proceeds (price of electricity) is assessed. A strong link between the prices of gas and electricity reduces incentives to private producers to diversify, disputing the capacity of a liberalized electrical market to achieve optimum technology diversity from a domestic point of view. (authors)

  9. Methods and devices prepared to eliminate activation and fission products from PEC reactor cover gas

    International Nuclear Information System (INIS)

    Caponetti, R.; Gherardi, G.; Petrazzuolo, F.

    1987-01-01

    The major effort made in Italy for the development of fast nuclear reactor is concentrated in the PEC reactor, whose construction is now in the completion stage. The PEC reactor (Prova Elementi di Combustibile - Fuel Element Testing ) is a sodium-cooled reactor with a power rating of 120 MWt, being built for the purpose of studying the behavior of fuel elements under thermal and neutronic conditions similar to those of fast reactor power stations, whit particular attention to safety aspects. The PEC reactor represents a research instrument particularly suitable for studies and experiments in the following fields: performances of the fuel element and its economical optimization (also with the possibility of testing fuel elements not necessarily based on mixed oxides); experiments in the safety field, not only referred to fuel elements, but also to plant subsystems. The experimental program will cover the research of the limit conditions of the typical parameters, such as cladding temperature, linear power, radiation rate, etc. PEC will also allow researches on new-concept fuel elements and thermal, hydraulic and power transients and cycles foreseen in the commercial power plants under normal, upset and emergency conditions. A number of the solutions regarding the PEC reactor and preparatory approaches to its operation are reported in this paper. In particular the following items are discussed: a description of three cover-gas circuits present in the reactor; an estimate of the contamination conditions foreseen under operating conditions; a description of the equipment for the purification of the cover gas and relative operating conditions. There are three cover-gas circuits present in the PEC reactor. They concern the following sodium circuits: primary reactor, primary emergency reactor and sodium purification primary reactor; secondary reactor, test channel and emergency reactor; primary test channel

  10. Techniques for optimizing inerting in electron processors

    International Nuclear Information System (INIS)

    Rangwalla, I.J.; Korn, D.J.; Nablo, S.V.

    1993-01-01

    The design of an ''inert gas'' distribution system in an electron processor must satisfy a number of requirements. The first of these is the elimination or control of beam produced ozone and NO x which can be transported from the process zone by the product into the work area. Since the tolerable levels for O 3 in occupied areas around the processor are 3 in the beam heated process zone, or exhausting and dilution of the gas at the processor exit. The second requirement of the inerting system is to provide a suitable environment for completing efficient, free radical initiated addition polymerization. The competition between radical loss through de-excitation and that from O 2 quenching must be understood. This group has used gas chromatographic analysis of electron cured coatings to study the trade-offs of delivered dose, dose rate and O 2 concentrations in the process zone to determine the tolerable ranges of parameter excursions for production quality control purposes. These techniques are described for an ink coating system on paperboard, where a broad range of process parameters have been studied (D, D radical, O 2 ). It is then shown how the technique is used to optimize the use of higher purity (10-100 ppm O 2 ) nitrogen gas for inerting, in combination with lower purity (2-20,000 ppm O 2 ) non-cryogenically produced gas, as from a membrane or pressure swing adsorption generators. (author)

  11. An investigation of the microstructures and properties of metal inert ...

    Indian Academy of Sciences (India)

    Friction stir welding; metal inert gas welding; aluminum alloy 5083; ... (2008) have studied fatigue crack propagation behaviour of friction ..... Kumar K, Kailas SV 2008 The role of friction stir welding tool on material flow and weld formation,.

  12. On-line gamma spectroscopy measuring station for cover gas monitoring at KNK II

    International Nuclear Information System (INIS)

    Hoffmann, G.; Letz, K.D.

    1980-02-01

    An automated Ge-γ-spectrometer was developed for cover gas monitoring at KNK II which, by the gamma spectra measured, is to allow the following statements to be made on fuel cladding failure: Type, size, variation with time and subsequent development of the failure. In this report the hardware and software will be explained. Besides, an instruction manual was written for the measuring station, which allows to operate it without detailed knowledge of the manuals for the individual hardware components. (orig.) 891 HP/orig. 892 MKO [de

  13. Technical basis for storage of Zircaloy-clad spent fuel in inert gases

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Gilbert, E.R.

    1983-09-01

    The technical bases to establish safe conditions for dry storage of Zircaloy-clad fuel are summarized. Dry storage of fuel with zirconium alloy cladding has been licensed in Canada, the Federal Republic of Germany, and Switzerland. Dry storage demonstrations, hot cell tests, and modeling have been conducted using Zircaloy-clad fuel. The demonstrations have included irradiated boiling water reactor, pressurized heavy-water reactor, and pressurized water reactor fuel assemblies. Irradiated fuel has been emplaced in and retrieved from metal casks, dry wells, silos, and a vault. Dry storage tests and demonstrations have involved about 15,000 fuel rods, and about 5600 rods have been monitored during dry storage in inert gases with maximum cladding temperatures ranging from 50 to 570 0 C. Although some tests and demonstrations are still in progress, there is currently no evidence that any rods exposed to inert gases have failed (one PWR rod exposed to an air cover gas failed at about 270 0 C). Based on this favorable experience, it is concluded that there is sufficient information on fuel rod behavior, storage conditions, and potential cladding failure mechanisms to support licensing of dry storage in the US. This licensing position includes a requirement for inert cover gases and a maximum cladding temperature guideline of 380 0 C for Zircaloy-clad fuel. Using an inert cover gas assures that even if fuel with cladding defects were placed in dry storage, or if defects develop during storage, the defects would not propagate. Tests and demonstrations involving Zircaloy-clad rods and assemblies with maximum cladding temperatures above 400 0 C are in progress. When the results from these tests have been evaluated, the viability of higher temperature limits should be examined. Acceptable conditions for storage in air and dry storage of consolidated fuel are issues yet to be resolved

  14. Numerical modelling of methane oxidation efficiency and coupled water-gas-heat reactive transfer in a sloping landfill cover.

    Science.gov (United States)

    Feng, S; Ng, C W W; Leung, A K; Liu, H W

    2017-10-01

    Microbial aerobic methane oxidation in unsaturated landfill cover involves coupled water, gas and heat reactive transfer. The coupled process is complex and its influence on methane oxidation efficiency is not clear, especially in steep covers where spatial variations of water, gas and heat are significant. In this study, two-dimensional finite element numerical simulations were carried out to evaluate the performance of unsaturated sloping cover. The numerical model was calibrated using a set of flume model test data, and was then subsequently used for parametric study. A new method that considers transient changes of methane concentration during the estimation of the methane oxidation efficiency was proposed and compared against existing methods. It was found that a steeper cover had a lower oxidation efficiency due to enhanced downslope water flow, during which desaturation of soil promoted gas transport and hence landfill gas emission. This effect was magnified as the cover angle and landfill gas generation rate at the bottom of the cover increased. Assuming the steady-state methane concentration in a cover would result in a non-conservative overestimation of oxidation efficiency, especially when a steep cover was subjected to rainfall infiltration. By considering the transient methane concentration, the newly-modified method can give a more accurate oxidation efficiency. Copyright © 2017. Published by Elsevier Ltd.

  15. On-line sodium and cover as purity monitors gas operating tools at EBR-II

    International Nuclear Information System (INIS)

    Smith, C.R.F.; Richardson, W.J.; Holmes, J.T.

    1976-01-01

    Plugging temperature indicators, electrochemical oxygen meters and hydrogen diffusion meters are the on-line sodium purity monitors now in use at EBR-II. On-line gas chromatographs are used to monitor helium, hydrogen, oxygen and nitrogen impurities in the argon cover gases. Monitors for tritium-in-sodium and for hydrocarbons-in-cover gas have been developed and are scheduled for installation in the near future. An important advantage of on-line monitors over the conventional grab-sampling techniques is the speed of response to changing reactor conditions. This helps us to identify the source of the impurity, whether the cause may be transient or constant, and take corrective action as necessary. The oxygen meter is calibrated monthly against oxygen in sodium determined by the vanadium wire equilibration method. The other instruments either do not require calibration or are self-calibrating. The ranges, sensitivity and response times of all of the on-line purity monitors has proven satisfactory under EBR-II operating conditions

  16. Origins of inert Higgs doublets

    Directory of Open Access Journals (Sweden)

    Thomas W. Kephart

    2016-05-01

    Full Text Available We consider beyond the standard model embedding of inert Higgs doublet fields. We argue that inert Higgs doublets can arise naturally in grand unified theories where the necessary associated Z2 symmetry can occur automatically. Several examples are discussed.

  17. Liquid metal reactor cover gas purification and analysis in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Allen, K J [Argonne National Laboratory, EBR-II Division, Idaho Falls, ID (United States); Meadows, G E; Schuck, W J [Westinghouse Hanford Company, Richland, WA (United States)

    1987-07-01

    Two sodium cooled reactors are currently being operated In the United States of America for the U.S. Department of Energy. These are Experimental Breeder Reactor II, EBR-ll, and the Fast Flux Test Facility, FFTF. EBR-ll is located near Idaho Falls, Idaho and the FFTF is near Rich land, Washington. These reactors are currently engaged In a wide range of testing including fuels and materials tests, and plant system performance and safety development. The U.S. DOE program also includes designs of a next generation sodium cooled power reactor. This paper discusses the efforts to develop and operate cover gas systems for the sodium cooled nuclear reactor program in the USA.

  18. EBR-II Cover Gas Cleanup System (CGCS) upgrade graphical interface design

    International Nuclear Information System (INIS)

    Staffon, J.D.; Peters, G.G.

    1992-01-01

    Technology advances in the past few years have prompted an effort at Argonne National Laboratory to replace existing equipment with high performance digital computers and color graphic displays. Improved operation of process systems can be achieved by utilizing state-of-the-art computer technology in the areas of process control and process monitoring. The Cover Gas Cleanup System (CGCS) at EBR-II is the first system to be upgraded with high performance digital equipment. The upgrade consisted of a main control computer, a distributed control computer, a front end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper describes the main control computer and the operator interface control software

  19. Liquid metal reactor cover gas purification and analysis in the USA

    International Nuclear Information System (INIS)

    Allen, K.J.; Meadows, G.E.; Schuck, W.J.

    1986-09-01

    Two sodium cooled reactors are currently being operated in the United States of America for the US Department of Energy. These are Experimental Breeder Reactor 11, EBR-11, and the Fast Flux Test Facility, FFTF. EBR-11 is located near Idaho Falls, Idaho, and the FFTF is near Richland, Washington. These reactors are currently engaged in a wide range of testing including fuels and materials tests, and plant system performance and safety development. The US DOE program also includes designs of a next generation sodium cooled power reactor. The FFTF and EBR-11 communities are providing input to these designs. This paper discusses the efforts to develop and operate cover gas systems for the sodium cooled nuclear reactor program in the USA

  20. Liquid metal reactor cover gas purification and analysis in the USA

    International Nuclear Information System (INIS)

    Allen, K.J.; Meadows, G.E.; Schuck, W.J.

    1987-01-01

    Two sodium cooled reactors are currently being operated In the United States of America for the U.S. Department of Energy. These are Experimental Breeder Reactor II, EBR-ll, and the Fast Flux Test Facility, FFTF. EBR-ll is located near Idaho Falls, Idaho and the FFTF is near Rich land, Washington. These reactors are currently engaged In a wide range of testing including fuels and materials tests, and plant system performance and safety development. The U.S. DOE program also includes designs of a next generation sodium cooled power reactor. This paper discusses the efforts to develop and operate cover gas systems for the sodium cooled nuclear reactor program in the USA

  1. Thermal-hydraulic Analysis of High-temperature Cover Gas Region in STELLA-2

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Youngchul; Son, Seok-Kwon; Yoon, Jung; Eoh, Jaehyuk; Jeong, Ji-Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The first phase of the program was focused on the key sodium component tests, and the second one has been concentrated on the sodium thermal-hydraulic integral effect test (STELLA-2). Based on its platform, simulation of the PGSFR transient will be made to evaluate plant dynamic behaviors as well as to demonstrate decay heat removal performance. Therefore, most design features of PGSFR have been modeled in STELLA-2 as closely as possible. The similarities of temperature and pressure between the model (STELLA-2) and the prototype (PGSFR) have been well preserved to reflect thermal-hydraulic behavior with natural convection as well as heat transfer between structure and sodium coolant inside the model reactor vessel (RV). For this reason, structural integrity of the entire test section should be confirmed as in the prototype. In particular, since the model reactor head in STELLA-2 supports key components and internal structures, its structural integrity exposed to high-temperature cover gas region should be confirmed. In order to reduce thermal radiation heat transfer from the hot sodium pool during normal operation, a dedicated insulation layer has been installed at the downward surface of the model reactor head to prevent direct heat flux from the sodium free surface at 545 .deg. C. Three-dimensional conjugate heat transfer analyses for the full-shape geometry of the upper part of the model reactor vessel in STELLA-2 have been carried out. Based on the results, steady-state temperature distributions in the cover gas region and the model reactor head itself have been obtained and the design requirement in temperature of the model reactor head has been newly proposed to be 350 .deg. C. For any elevated temperature conditions in STELLA-2, it was confirmed that the model reactor head generally satisfied the requirement. The CFD database constructed from this study will be used to optimize geometric parameters such as thicknesses and/or types of the insulator.

  2. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    Energy Technology Data Exchange (ETDEWEB)

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  3. Surfacing behavior and gas release of the physostome sprat (Sprattus sprattus) in ice-free and ice-covered waters

    KAUST Repository

    Solberg, Ingrid

    2013-10-04

    Upward-facing echosounders that provided continuous, long-term measurements were applied to address the surfacing behavior and gas release of the physostome sprat (Sprattus sprattus) throughout an entire winter in a 150-m-deep Norwegian fjord. During ice-free conditions, the sprat surfaced and released gas bubbles at night with an estimated surfacing rate of 3.5 times per fish day-1. The vertical swimming speeds during surfacing were considerably higher (~10 times) than during diel vertical migrations, especially when returning from the surface, and particularly when the fjord was not ice covered. The sprat released gas a few hours after surfacing, suggesting that the sprat gulped atmospheric air during its excursions to the surface. While the surface activity increased after the fjord became ice covered, the records of gas release decreased sharply. The under-ice fish then displayed a behavior interpreted as "searching for the surface" by repeatedly ascending toward the ice, apparently with limited success of filling the swim bladder. This interpretation was supported by lower acoustic target strength in ice-covered waters. The frequent surfacing behavior demonstrated in this study indicates that gulping of atmospheric air is an important element in the life of sprat. While at least part of the population endured overwintering in the ice-covered habitat, ice covering may constrain those physostome fishes that lack a gas-generating gland in ways that remain to be established. 2013 The Author(s).

  4. Nanoporous gold synthesized by plasma-assisted inert gas condensation: room temperature sintering, nanoscale mechanical properties and stability against high energy electron irradiation

    Science.gov (United States)

    Weyrauch, S.; Wagner, C.; Suckfuell, C.; Lotnyk, A.; Knolle, W.; Gerlach, J. W.; Mayr, S. G.

    2018-02-01

    With a plasma assisted gas condensation system it is possible to achieve high-purity nanoporous Au (np-Au) structures with minimal contaminations and impurities. The structures consist of single Au-nanoparticles, which partially sintered together due to their high surface to volume ratio. Through electron microscopy investigations a porosity  >50% with ligament sizes between 20-30 nm was revealed. The elastic modulus of the np-Au was determined via peak force quantitative nanomechanical mapping and resulted in values of 7.5  ±  1.5 GPa. The presented structures partially sintered at room temperature, but proved to be stable to electron irradiation with energies of 7 MeV up to doses of 100 MGy. The electron irradiation stability opens the venue for electron assisted functionalization with biomolecules.

  5. Developments in modelling the effect of aerosol on the thermal performance of the Fast Reactor cover gas space

    International Nuclear Information System (INIS)

    Ford, I.J.; Clement, C.F.

    1990-03-01

    The sodium aerosol which forms in the cover gas space of a Fast Reactor couples the processes of heat and mass transfer to and from the bounding surfaces and affects the thermal performance of the cavity. This report describes extensions to previously separate models of heat transfer and aerosol formation and removal in the cover gas space, and the linking of the two calculations in a consistent manner. The extensions made to the theories include thermophoretic aerosol removal, radiative-driven redistribution in aerosol sizes, and the side-wall influence on the bulk cavity temperature. The link between aerosol properties and boundary layer saturations is also examined, especially in the far-from-saturated limit. The models can be used in the interpretation of cover gas space experiments and some example calculations are given. (author)

  6. Optical properties of palladium nanoparticles under exposure of hydrogen and inert gas prepared by dewetting synthesis of thin-sputtered layers

    Energy Technology Data Exchange (ETDEWEB)

    Kracker, Michael, E-mail: Michael.Kracker@uni-jena.de; Worsch, Christian; Ruessel, Christian [Otto-Schott-Institut, Jena University (Germany)

    2013-04-15

    Thin layers of palladium with a thickness of 5 nm were sputtered on fused silica substrates. Subsequently, the coated glasses were annealed at a temperature of 900 Degree-Sign C for 1 h. This resulted in the formation of small and well-separated palladium nanoparticles with diameters in the range from 20 to 200 nm on the glass surface. The existence of a palladium oxide layer can be detected using optical absorption spectroscopy. Purging with hydrogen leads to an irreversible change in the optical spectra due to the reduction of PdO to metallic palladium. Changing the gas atmosphere from hydrogen to argon leads to significant reversible changes in the optical properties of the particle layer. Based on Mie theory and the respective dielectric functions, the spectra were calculated using the real particle size distribution, weighted dispersions relation to adapt the geometrical conditions and complex dielectric functions of palladium and palladium hydride. A good agreement with measured spectra was found and the dependency of the surrounding media can be explained.Graphical Abstract.

  7. Thermo-mechanical behaviour of FBTR reactor vessel due to natural convection in cover gas space

    International Nuclear Information System (INIS)

    Srinivasan, G.; Varadarajan, S.; Kapoor, R.P.

    1988-01-01

    Fast Breeder Test Reactor is a 40 MW(t), loop type sodium cooled reactor, similar in design to Rapsodie. The Reactor Assembly, which is the heart of FBTR, comprises the Reactor Vessel (RV) housed in a safety vessel within a concrete cell (A1 Cell). The RV which supports the core is shielded at the top by two rotatable plugs which are stacked with layers of borated graphite and steel. The smaller plug (SRP), is mounted excentric to the larger one (LRP). A nominal annular gap of 16 mm is provided between RV and LRP and between LRP and SRP to enable free rotation of the plugs. Stainless Steel insulation is fixed inside the steel vessel, to avoid overheating of the A1 Cell concrete. The core is supported by the Grid Plate (GP), bolted to the RV. During preheating, sodium charging and isothermal runs upto 350 0 C, temperature asymmetries were noticed in the reactor vessel wall in the cover gas space. This was attributable to convection currents in the annulus between RV and LRP. The asymmetries also resulted in a lateral shift of the grid plate. This paper discusses our experience in suppressing these convection currents, and minimising the grid plate shift

  8. Italian position paper on heat and mass transfer in the reactor cover gas

    International Nuclear Information System (INIS)

    Caponetti, R.; Olivieri, P.; Petrazzuolo, F.

    1986-01-01

    The major effort being made in Italy with regard to the development of fast nuclear reactors is concentrated, as is known, in the construction of the PEC reactor, whose mechanical completion is expected early in 1988. The 116MWt PEC (Prova Elementi di Combustibile; i.e. Fuel Element Testing) reactor is sodium cooled. It is being built to study the behavior of fuel elements under thermal and neutronic conditions similar to those of fast nuclear power stations. Particular attention is being dedicated to safety aspects. This document furnishes a number of construction solutions with regard to that reactor and preparatory approaches to its operation, namely: a brief description of the construction solutions as far as concerns the Closure Head Assembly and the cover gas circuit together with its main components; the description of some test facilities arranged for abatement and measurement of sodium aerosol concentration; a number of preliminary evaluation results obtained thus far with regard to the formation, transport and depositing of sodium aerosols

  9. Hydrogen gas detector

    International Nuclear Information System (INIS)

    Bohl, T.L.

    1982-01-01

    A differential thermocouple hydrogen gas detector has one thermocouple junction coated with an activated palladium or palladium-silver alloy catalytic material to allow heated hydrogen gas to react with the catalyst and raise the temperature of that junction. The other juction is covered with inert glass or epoxy resin, and does not experience a rise in temperature in the presence of hydrogen gas. A coil heater may be mounted around the thermocouple junctions to heat the hydrogen, or the gas may be passed through a heated block prior to exposing it to the thermocouples

  10. Specialists' meeting on heat and mass transfer in the reactor cover gas, Harwell, England, 8-10 October 1985

    International Nuclear Information System (INIS)

    1986-07-01

    The specialists' meeting on ''Heat and Mass Transfer in the Reactor Cover Gas'' was held at Harwell, the United Kingdom, on 8-10 October 1985. It was attended by 24 participants from all IWGFR member-countries: France, the Federal Republic of Germany, India, Italy, Japan, the Union of Soviet Socialist Republics, the United Kingdom and the United States. The meeting was presided over by Dr K. Eickhoff of the United Kingdom. The following topical areas were reviewed and discussed during the meeting: 1. National review presentations on the status of activities on heat and mass transfer in the reactor cover gas - 2 papers; 2. Aerosol dynamics - 4 papers; 3. Aerosol trapping - 2 papers; 4. Heat and mass transfer through cover gas in annuli - 3 papers; 5. Radiative properties - 4 papers; 6. Modelling of cover gas - 4 papers. A separate abstract was prepared for each of these papers. On the basis of papers presented and discussed by participants, session summaries and conclusions were drafted on the above topical areas. These summaries, as well as general conclusions and recommendations of the meeting were reviewed and agreed upon by consensus at the end of the meeting

  11. Equation of state for inert gas solids

    Indian Academy of Sciences (India)

    Srimath

    their melting points. The EOS is basically a pressure–volume–temperature relationship. The studies based on EOS are widely important not only in physics but ..... Earth Planet. Inter. 109, 1 (1998). [11] J Hama and K Suito, J. Phys. Condens. Matter 116, 133 (1999). [12] A Prasad, M Singh and B R K Gupta, Indian J. Phys.

  12. The Inert and the Noble

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 3. The Inert and the Noble. A G Samuelson. Article-in-a-Box Volume 4 Issue 3 March 1999 pp 3-5 ... Author Affiliations. A G Samuelson1. Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India.

  13. An investigation of the microstructures and properties of metal inert ...

    Indian Academy of Sciences (India)

    Abstract. Two different types of welds, Metal Inert Gas (MIG) and Friction Stir. Welding (FSW), have been used to weld aluminum alloy 5083. The microstructure of the welds, including the nugget zone and heat affected zone, has been compared in these two methods using optical microscopy. The mechanical properties of ...

  14. Dry boxes and inert atmosphere techniques

    International Nuclear Information System (INIS)

    Bartak, D.E.

    1987-01-01

    Practitioners need to conduct experiments with molten salts in an inert atmosphere owing to the chemical reactivity of these media. Most fused salt solvent systems show reactivity to water and/or oxygen, which results in significant chemical changes in the properties of these solvents. Although several studies on the nature of an oxygen/oxide electrode in this melt have been reported, the reactions have not been fully understood because of apparent water contamination in many cases. Nitrate melt systems are also hygroscopic; for example, the LiNO 3 -KNO 3 eutectic (177 0 C) absorbs water to at least 0.2% by weight. The result is that the electrochemistry of heavier, electropositive metal ions has been significantly altered. In addition, trace amounts of water have been shown to significantly affect the oxygen-oxide redox chemistry in NaNO 3 -KNO 3 melts (250 0 C). The haloaluminates, which include AlCl 3 -NaCl (175 0 C), as well as AlCl 3 -organic salt binaries are particularly sensitive to the presence of both oxygen and moisture. Oxygen is a strong oxidant in the fused hydroxide systems with formation of superoxide ion from either oxide or water. This chapter describes general, inert atmosphere techniques which can be used by the molten salt experimentalist. Because of the limitations of volatility, vacuum manipulations are not considered. Rather, the use of glove boxes, glove bags, and inert bench-top techniques are discussed. The areas covered are: glove box and bag equipment, operation and maintenance of glove boxes and glove bags, and common operations conducted inside glove boxes

  15. Land cover and land use changes in the oil and gas regions of Northwestern Siberia under changing climatic conditions

    International Nuclear Information System (INIS)

    Yu, Qin; Engstrom, Ryan; Shiklomanov, Nikolay; Strelestskiy, Dmitry; Epstein, Howard E

    2015-01-01

    Northwestern Siberia has been undergoing a range of land cover and land use changes associated with climate change, animal husbandry and development of mineral resources, particularly oil and gas. The changes caused by climate and oil/gas development Southeast of the city of Nadym were investigated using multi-temporal and multi-spatial remotely sensed images. Comparison between high spatial resolution imagery acquired in 1968 and 2006 indicates that 8.9% of the study area experienced an increase in vegetation cover (e.g. establishment of new saplings, extent of vegetated cover) in response to climate warming while 10.8% of the area showed a decrease in vegetation cover due to oil and gas development and logging activities. Waterlogging along linear structures and vehicle tracks was found near the oil and gas development site, while in natural landscapes the drying of thermokarst lakes is evident due to warming caused permafrost degradation. A Landsat time series dataset was used to document the spatial and temporal dynamics of these ecosystems in response to climate change and disturbances. The impacts of land use on surface vegetation, radiative, and hydrological properties were evaluated using Landsat image-derived biophysical indices. The spatial and temporal analyses suggest that the direct impacts associated with infrastructure development were mostly within 100 m distance from the disturbance source. While these impacts are rather localized they persist for decades despite partial recovery of vegetation after the initial disturbance and can have significant implications for changes in permafrost dynamics and surface energy budgets at landscape and regional scales. (letter)

  16. Inerting of a Vented Aircraft Fuel Tank Test Article with Nitrogen-Enriched Air

    National Research Council Canada - National Science Library

    Burns, Michael

    2001-01-01

    ...) required to inert a vented aircraft fuel tank. NEA, generated by a hollow fiber membrane gas separation system, was used to inert a laboratory fuel tank with a single vent on top designed to simulate a transport category airplane fuel tank...

  17. Effects of various tailings covers on radon gas emanation from pyritic uranium tailings

    International Nuclear Information System (INIS)

    Dave, N.K.; Lim, T.P.

    1987-01-01

    Radon emanation studies were carried out at an inactive pyritic uranium tailings site in Elliot Lake, Ontario, Canada, to evaluate the effects of various existing dry and wet covers on radon flux rates. Measurements were taken using activated charcoal cartridges for various surface covers consisting of bare, vegetated, acidophilic moss with high degree of water saturation, compacted crushed rock and gravel, and winter snow. The results showed that at a given site, there was no significant difference in radon emanation rates between various tailings covers and bare tailings. In particular, no increase In radon emanation rates from vegetated areas compared to bare tailings was observed. Radon emanation rates varied spatially depending on tailings grain size, porosity, moisture content and on pressure and water table variations. The emanation rates were higher for tailings with low water contents compared to those for wet and moss covered tailings

  18. Inert atmosphere system for plutonium processing gloveboxes

    International Nuclear Information System (INIS)

    Bogard, C.F.; Calkins, K.W.; Rogers, R.F.

    1975-01-01

    Recent efforts to reduce fire hazards in plutonium processing operations are described. In such operations, the major environmental controls are developed through various kinds of glovebox systems. In evaluating the air-atmosphere glovebox systems, formerly in use at Rocky Flats and many other plants, a decision was made to convert to a recirculating ''inert'' atmosphere. The inert atmosphere consists of nitrogen, supplied from an on-site generating plant, diluting oxygen content to one to 5 percent by volume. Problems encountered during the change over included: determination of all factors influencing air leakage into the system, and reducing leakage to the practical minimum; meeting all fire and safety standards on the filter plenum and exhaust systems; provision for converting portions of the system to an air atmosphere to conduct maintenance work; inclusion of oxygen analyzers throughout the system to check gas quality and monitor for leaks; and the use of automatic controls to protect against a variety of potential malfunctions. The current objectives to reduce fire hazards have been met and additional safeguards were added. The systems are operating satisfactorily. (U.S.)

  19. JOYO coolant sodium and cover gas purity control database (MK-II core)

    International Nuclear Information System (INIS)

    Ito, Kazuhiro; Nemoto, Masaaki

    2000-03-01

    The experimental fast reactor 'JOYO' served as the MK-II irradiation bed core for testing fuel and material for FBR development for 15 years from 1982 to 1997. During the MK-II operation, impurities concentrations in the sodium and the argon gas were determined by 67 samples of primary sodium, 81 samples of secondary sodium, 75 samples of primary argon gas, 89 samples of secondary argon gas (the overflow tank) and 89 samples of secondary argon gas (the dump tank). The sodium and the argon gas purity control data were accumulated from in thirty-one duty operations, thirteen special test operations and eight annual inspections. These purity control results and related plant data were compiled into database, which were recorded on CD-ROM for user convenience. Purity control data include concentration of oxygen, carbon, hydrogen, nitrogen, chlorine, iron, nickel and chromium in sodium, concentration of oxygen, hydrogen, nitrogen, carbon dioxide, methane and helium in argon gas with the reactor condition. (author)

  20. Inert gases in a terra sample - Measurements in six grain-size fractions and two single particles from Lunar 20.

    Science.gov (United States)

    Heymann, D.; Lakatos, S.; Walton, J. R.

    1973-01-01

    Review of the results of inert gas measurements performed on six grain-size fractions and two single particles from four samples of Luna 20 material. Presented and discussed data include the inert gas contents, element and isotope systematics, radiation ages, and Ar-36/Ar-40 systematics.

  1. Adsorption and desorption of radioactive inert gases in various materials

    International Nuclear Information System (INIS)

    Butkus, D.

    1999-01-01

    Peculiarities of the 85 Kr and 133 Xe adsorption and desorption processes in active carbon and paraffin are considered in the work. During the desorption process, the distribution of 85 Kr and 133 Xe atoms in active carbon particles is uneven: atoms in narrow micropores desorb the last. It is shown that by changing adsorption conditions the presence time of radioactive inert gases in an active carbon can be prolonged. The adsorption and desorption processes change in the adsorbent, which changes its aggregation state: adsorption occurs in a liquid absorbent and desorption - in a solid absorbent. Paraffin is just such an absorbent changing its aggregation state with low energy losses. It has been obtained that 133 Xe accumulates less in liquid paraffin that in an active carbon. The absorption of 85 Kr in paraffin is larger than in an active carbon (at 18-20 degrees Celsius), while desorption is slower. The velocity of radioactive inert gas atom motion in different places of a solid paraffin sample is different - it increases approaching the borders of the sample. Prolongation of the desorption time of radioactive inert gases from adsorbents and adsorbents in many cases is of a practical importance. In this work, it has been shown by model experiments that the intensity of adsorption and desorption processes for the same sorbents can be changed. Desorption intensity changes are related to the distribution of gas atoms on the surface of particles and in micropores. Desorption velocity decreases if inert gas atoms having entered micropores are 'closed' by condensed liquids in the environment. In this case an inert gas atom diffuses within the whole particle volume or through the condensed liquid. Radioactive inert gases 85 Kr and 133 Xe are absorbed not only in liquid paraffin but in solid one as well. Therefore, after a paraffin sample is hermetically closed in a glass dish, 85 Kr (gas) having diffused from this sample is repeatedly absorbed in it. The 85 Kr

  2. Greenhouse gas microbiology in wet and dry straw crust covering pig slurry

    DEFF Research Database (Denmark)

    Hansen, Rikke Ruth; Nielsen, Daniel Aagren; Schramm, Andreas

    2009-01-01

    was observed in all crusted treatments exposed to anoxia, and this was probably a result of denitrification based on NO2- and NO3- that had accumulated in the crust during oxic conditions. To reduce overall greenhouse gas emissions, floating crust should be managed to optimize conditions for methanotrophs....... microbiology had an effect on the emission of the potent greenhouse gases CH4 and nitrous oxide (N2O) when crust moisture was manipulated ("Dry", "Moderate", and "Wet"). The dry crust had the deepest oxygen penetration (45 mm as compared to 20 mm in the Wet treatment) as measured with microsensors, the highest...... oxidizing bacteria were undetectable and methane oxidizing bacteria were only sparsely present in the "Wet" treatment. A change to anoxia did not affect the CH4 emission indicating the virtual absence of aerobic methane oxidation in the investigated 2-months old crusts. However, an increase in N2O emission...

  3. Effects of land cover change on litter decomposition and soil greenhouse gas fluxes in subtropical Hong Kong

    Science.gov (United States)

    Ngar Wong, Chun; Lai, Derrick Yuk Fo

    2017-04-01

    Nowadays, over 50% of the world's population live in urbanized areas and the level of urbanization varies substantially across countries. Intense human activities and management associated with urbanization can alter the microclimate and biogeochemical processes in urban areas, which subsequently affect the provision of ecosystem services and functions. Litter decomposition and soil greenhouse gas (GHG) exchange play an important role in governing nutrient cycling and future climate change, respectively. Yet, the effects of urbanization on these two biogeochemical processes remain uncertain and not well understood, especially in subtropical and high-density cities. This study aims to examine the effects of urbanization on decomposition and GHG fluxes among four land covers- natural forest, urban forest, farmland and roadside planter, in Hong Kong based on litterbag experiment and closed chamber measurements for one full year. Litter decomposition rate was significantly lower in farmland than in other land cover types. Significant differences in CO2 emission were detected among the four land cover types (pmean N2O fluxes, respectively. The emission of CO2 was positively correlated with soil potassium content, while CH4 and N2O flux increased markedly with soil temperature and nitrate nitrogen content, respectively. The results obtained in this study will enhance our understanding on urban ecosystem and be useful for recommending sustainable management strategies for conservation of ecosystem services in urban areas.

  4. Evaluation of cover gas impurities and their effects on the dry storage of LWR [light-water reactor] spent fuel

    International Nuclear Information System (INIS)

    Knoll, R.W.; Gilbert, E.R.

    1987-11-01

    The purposes of this report are to (1) identify the sources of impurity gases in spent fuel storage casks; (2) identify the expected concentrations and types of reactive impurity gases from these sources over an operating lifetime of 40 years; and (3) determine whether these impurities could significantly degrade cladding or exposed fuel during this period. Four potential sources of impurity gases in the helium cover gas in operating casks were identified and evaluated. Several different bounding cases have been considered, where the reactive gas inventory is either assumed to be completely gettered by the cladding or where all oxygen is assumed to react completely with the exposed fuel. It is concluded that the reactive gas inventory will have no significant effect on the cladding unless all available oxygen reacts with the UO 2 fuel to produce U 3 O 8 at one or two cladding breaches. Based on Zircaloy oxidation data, the oxygen inventory in a fully loaded pressurized water reactor cask such as the Castor-V/21 will be gettered by the Zircaloy cladding in about 1 year if the peak cladding temperature within the task is ≥300 0 C. Only a negligible decrease in the thickness of the cladding would result. 24 refs., 4 tabs

  5. 7 CFR 201.51 - Inert matter.

    Science.gov (United States)

    2010-01-01

    ... REGULATIONS Purity Analysis in the Administration of the Act § 201.51 Inert matter. Inert matter shall include... kochia that pass through a 1 mm opening, square-hole sieve, when shaken for 30 seconds. (8) The thin... devoid of the husk and pass through a 1/13th-inch, round-hole sieve. (ii) Bulblets which show evident...

  6. The French experience concerning the contamination by inactive and radioactive impurities and the purification of the cover gas of LMFBRs

    Energy Technology Data Exchange (ETDEWEB)

    Michaille, P [CEA/IRDI/DEDR/DRNR/STRA, C.E.N. Cadarache (France); Clerc, R [CEA/IRDI/DERPE/SCPx, C.E.N. Marcoule (France); comps.

    1987-07-01

    With regard to the problems related to the cover gas of LMFBRs, the French position based on the experience of RAPSODIE and PHENIX can be summarized as follows: 1. No particular difficulty has been encountered with impurities such as air. The consequences of lubricants leaks were limited to the maintenance of big components. 2. Concerning the contamination by radioactive species, the main source in the reactor tank is {sup 23}Ne, but fortunately its half decay period is very short (38 s). Two managements of fuel failures were experienced. On RAPSODIE, the failures were numerous for experimental purpose and - in the absence of an efficient localization device - often simultaneous. On PHENIX, the fuel failure rate appears to be very low. Furthermore, the gas analysis unit of the fuel failure localization device (LRG/gas) has been improved steadily, which permits to localize and follow the evolution of each individual failed sub-assembly from the very beginning of the clad failure. For both of the reactors, leaks through the roof were observed, for which solutions were found. 3. The analysis equipment of RAPSODIE and PHENIX evolved to account for: the needs of the operator; experimental programs. The experience gained permitted to select for SUPER PHENIX a simple instrumentation. 4. Limited efforts have been paid to the purification techniques towards the fission products: On RAPSODIE, the use of helium as cover gas allowed to use trapping with charcoal cooled with liquid nitrogen with a high efficiency not only towards xenons, but also kryptons. On PHENIX, it is not necessary to trap krypton: the release rates of {sup 85}Kr (T1/2=10,4 a) are very low, of the same order as {sup 37}Ar (T1/2=35 d) produced by activation, and the fuel failure localization is not performed by gas tagging. Therefore, cooled charcoal adsorption is sufficient. For experimental purpose, a cryogenic distillation column has been installed at PHENIX, but has not yet been put into operation

  7. Identification of advective entry of soil-gas radon into a crawl space covered with sheets of polyethylene foil

    International Nuclear Information System (INIS)

    Andersen, C.; Koopmanns, M.; Meijer, R.J. de

    1996-04-01

    To assess the effectiveness of mitigative measures against radon ( 222 Rn) entry into houses, experiments were conducted in a crawl-space house where the dirt floor of the crawl space was covered with sheets of 0.23 mm polyethylene foil fixed to the walls. The radon concentration was measured below the foil and in the crawl space together with environmental variables such as indoor-outdoor pressure differences. The experimental data was analyzed using various types of models including a simplistic mass-balance model, a regression model, and a two-dimensional numerical model based on Darcy flow or soil gas and combined diffusive and advective transport of radon. The main outcome of the work was that: (i) The soil-gas entry rate per pascal depressurization was at the order of 1 m 3 h -1 , (ii) the stack-related part of the depressurization of the crawl space (approx. 0.1 Pa deg. C -1 ) was controlled by the temperature difference between the living room of the house and the outdoors (not by the difference between the crawl space and the outdoors), (iii) that part of the wind-related depressurization that was measured by the pressure transducers seemed to force radon into the crawl space in the same proportion as the stack-related part of the depressurization, (iv) the ratio of advective and diffusive entry was approx. 0.7, when the crawl space was depressurized 1.5 Pa, (v) the effective diffusivity of the foil was found to be three orders of magnitude larger than that measured in the laboratory (the enhanced diffusivity was most likely caused by leaks in the foil and by mixing fans located in the crawl space), and (vi) there was no measurable mitigative impact of having the sheets of foil on the crawl-space floor even if the crawl space was artificially pressurized or depressurized. (au) 28 tabs., 36 ills., 61 refs

  8. INERT Atmosphere confinement operability test procedure

    International Nuclear Information System (INIS)

    RISENMAY, H.R.

    1999-01-01

    This Operability Test Procedure (OTP) provides instructions for testing operability of the Inert Atmosphere Confinement (IAC). The Inert Atmosphere Confinement was designed and built for opening cans of metal items that might have hydrided surfaces. Unreviewed Safety Question (USQ) PFP-97-005 addresses the discovery of suspected plutonium hydride forming on plutonium metal currently stored in the Plutonium Finishing Plant vaults. Plutonium hydride reacts quickly with air, liberating energy. The Inert Atmosphere Confinement was designed to prevent this sudden liberation of energy by opening the material in an inert argon atmosphere instead of the normal glovebox atmosphere. The IAC is located in glovebox HC-21A, room 230B of the 234-5Z Building at the Plutonium Finishing Plant (PFP) in the 200-West Area of the Hanford Site

  9. Identification of advective entry of soil-gas radon into a crawl space covered with sheets of polyethylene foil

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C. [Risoe National Lab., Dept. of Nucl. Safety Res. and Nucl. Facilities, Roskilde (Denmark); Koopmanns, M.; Meijer, R.J. de [Kernfysische Versneller Inst., Environmental Radioactivity Res., Groningen (Netherlands)

    1996-04-01

    To assess the effectiveness of mitigative measures against radon ({sup 222}Rn) entry into houses, experiments were conducted in a crawl-space house where the dirt floor of the crawl space was covered with sheets of 0.23 mm polyethylene foil fixed to the walls. The radon concentration was measured below the foil and in the crawl space together with environmental variables such as indoor-outdoor pressure differences. The experimental data was analyzed using various types of models including a simplistic mass-balance model, a regression model, and a two-dimensional numerical model based on Darcy flow or soil gas and combined diffusive and advective transport of radon. The main outcome of the work was that: (i) The soil-gas entry rate per pascal depressurization was at the order of 1 m{sup 3} h{sup -1}, (ii) the stack-related part of the depressurization of the crawl space (approx. 0.1 Pa deg. C{sup -1}) was controlled by the temperature difference between the living room of the house and the outdoors (not by the difference between the crawl space and the outdoors), (iii) that part of the wind-related depressurization that was measured by the pressure transducers seemed to force radon into the crawl space in the same proportion as the stack-related part of the depressurization, (iv) the ratio of advective and diffusive entry was approx. 0.7, when the crawl space was depressurized 1.5 Pa, (v) the effective diffusivity of the foil was found to be three orders of magnitude larger than that measured in the laboratory (the enhanced diffusivity was most likely caused by leaks in the foil and by mixing fans located in the crawl space), and (vi) there was no measurable mitigative impact of having the sheets of foil on the crawl-space floor even if the crawl space was artificially pressurized or depressurized. (au) 28 tabs., 36 ills., 61 refs.

  10. Effect of cover crops on greenhouse gas emissions in an irrigated field under integrated soil fertility management

    Science.gov (United States)

    Guardia, Guillermo; Abalos, Diego; García-Marco, Sonia; Quemada, Miguel; Alonso-Ayuso, María; Cárdenas, Laura M.; Dixon, Elizabeth R.; Vallejo, Antonio

    2016-09-01

    Agronomical and environmental benefits are associated with replacing winter fallow by cover crops (CCs). Yet, the effect of this practice on nitrous oxide (N2O) emissions remains poorly understood. In this context, a field experiment was carried out under Mediterranean conditions to evaluate the effect of replacing the traditional winter fallow (F) by vetch (Vicia sativa L.; V) or barley (Hordeum vulgare L.; B) on greenhouse gas (GHG) emissions during the intercrop and the maize (Zea mays L.) cropping period. The maize was fertilized following integrated soil fertility management (ISFM) criteria. Maize nitrogen (N) uptake, soil mineral N concentrations, soil temperature and moisture, dissolved organic carbon (DOC) and GHG fluxes were measured during the experiment. Our management (adjusted N synthetic rates due to ISFM) and pedo-climatic conditions resulted in low cumulative N2O emissions (0.57 to 0.75 kg N2O-N ha-1 yr-1), yield-scaled N2O emissions (3-6 g N2O-N kg aboveground N uptake-1) and N surplus (31 to 56 kg N ha-1) for all treatments. Although CCs increased N2O emissions during the intercrop period compared to F (1.6 and 2.6 times in B and V, respectively), the ISFM resulted in similar cumulative emissions for the CCs and F at the end of the maize cropping period. The higher C : N ratio of the B residue led to a greater proportion of N2O losses from the synthetic fertilizer in these plots when compared to V. No significant differences were observed in CH4 and CO2 fluxes at the end of the experiment. This study shows that the use of both legume and nonlegume CCs combined with ISFM could provide, in addition to the advantages reported in previous studies, an opportunity to maximize agronomic efficiency (lowering synthetic N requirements for the subsequent cash crop) without increasing cumulative or yield-scaled N2O losses.

  11. Measurement of Henry’s Law constant and infinite dilution activity coefficient of isopropyl mercaptan and isobutyl mercaptan in (methyldiethanolamine (1) + water (2)) with w_1 = 0.25 and 0.50 at temperature of (298 to 348) K using inert gas stripping method

    International Nuclear Information System (INIS)

    Zin, Rohani Mohd; Coquelet, Christophe; Valtz, Alain; Abdul Mutalib, Mohamed I.; Sabil, Khalik Mohamad

    2016-01-01

    Highlights: • Measurement of Henry’s Law constants of nPM, iPM, nBM and iBM in aqueous MDEA. • Measurement of infinite dilution activity coefficients of nPM, iPM, nBM and iBM in aqueous MDEA. • Measurement using gas stripping method for T = (298 to 348) K and MDEA solution of (25 and 50) wt%. • Limiting activity coefficient and Henry’s Law constant is increasing with solute molecular size. • The experimental technique has provided information about heats of solution of aqueous MDEA. - Abstract: In this study, the Henry’s Law constant and the activity coefficients in infinite dilution in a mass fraction of (25 and 50)% of methyldiethanolamine (MDEA) aqueous solution within the temperature range of (298 to 348) K at atmospheric pressure, were measured. An inert gas stripping method was used to perform all the measurements. The new values of Henry’s Law constant and the activity coefficients in infinite dilution correlation with solute molecular size were explained. The influence of the solvent is discussed taking into consideration the heat of absorptions for different MDEA concentrations. Experimental results are compared to literature data wherever available.

  12. temperature fluctuation inside inert atmosphere silos

    African Journals Online (AJOL)

    ... the two silos for twenty-eight (28) months of storage were recorded in order to monitor temperature fluctuation at different sections inside the inert atmosphere silos loaded with two varieties of wheat namely LACRIWHT-2 (Cettia) and LACRIWHT-4 (Atilla-Gan-Atilla) from Lake Chad Research Institute, Maiduguri, Nigeria.

  13. Inert carrier drying and coating process

    International Nuclear Information System (INIS)

    1980-01-01

    An inert carrier process is described for drying radioactive (particularly low level) waste material and for incorporating the dry material into a binder matrix from which the dried material will not be leached. Experimental details, and examples of the carrier and binder materials, are given. (U.K.)

  14. Effects of a temporary HDPE cover on landfill gas emissions: multiyear evaluation with the static chamber approach at an Italian landfill.

    Science.gov (United States)

    Capaccioni, Bruno; Caramiello, Cristina; Tatàno, Fabio; Viscione, Alessandro

    2011-05-01

    According to the European Landfill Directive 1999/31/EC and the related Italian Legislation ("D. Lgs. No. 36/2003"), monitoring and control procedures of landfill gas emissions, migration and external dispersions are clearly requested. These procedures could be particularly interesting in the operational circumstance of implementing a temporary cover, as for instance permitted by the Italian legislation over worked-out landfill sections, awaiting the evaluation of expected waste settlements. A possible quantitative approach for field measurement and consequential evaluation of landfill CO(2), CH(4) emission rates in pairs consists of the static, non-stationary accumulation chamber technique. At the Italian level, a significant and recent situation of periodical landfill gas emission monitoring is represented by the sanitary landfill for non-hazardous waste of the "Fano" town district, where monitoring campaigns with the static chamber have been annually conducted during the last 5 years (2005-2009). For the entire multiyear monitoring period, the resulting CO(2), CH(4) emission rates varied on the whole up to about 13,100g CO(2) m(-2)d(-1) and 3800 g CH(4) m(-2)d(-1), respectively. The elaboration of these landfill gas emission data collected at the "Fano" case-study site during the monitoring campaigns, presented and discussed in the paper, gives rise to a certain scientific evidence of the possible negative effects derivable from the implementation of a temporary HDPE cover over a worked-out landfill section, notably: the lateral migration and concentration of landfill gas emissions through adjacent, active landfill sections when hydraulically connected; and consequently, the increase of landfill gas flux velocities throughout the reduced overall soil cover surface, giving rise to a flowing through of CH(4) emissions without a significant oxidation. Thus, these circumstances are expected to cause a certain increase of the overall GHG emissions from the given

  15. Methanol Droplet Combustion in Oxygen-Inert Environments in Microgravity

    Science.gov (United States)

    Nayagam, Vedha; Dietrich, Daniel L.; Hicks, Michael C.; Williams, Forman A.

    2013-01-01

    The Flame Extinguishment (FLEX) experiment that is currently underway in the Combustion Integrated Rack facility onboard the International Space Station is aimed at understanding the effects of inert diluents on the flammability of condensed phase fuels. To this end, droplets of various fuels, including alkanes and alcohols, are burned in a quiescent microgravity environment with varying amounts of oxygen and inert diluents to determine the limiting oxygen index (LOI) for these fuels. In this study we report experimental observations of methanol droplets burning in oxygen-nitrogen-carbon dioxide and oxygen-nitrogen-helium gas mixtures at 0.7 and 1 atmospheric pressures. The initial droplet size varied between approximately 1.5 mm and 4 mm to capture both diffusive extinction brought about by insufficient residence time at the flame and radiative extinction caused by excessive heat loss from the flame zone. The ambient oxygen concentration varied from a high value of 30% by volume to as low as 12%, approaching the limiting oxygen index for the fuel. The inert dilution by carbon dioxide and helium varied over a range of 0% to 70% by volume. In these experiments, both freely floated and tethered droplets were ignited using symmetrically opposed hot-wire igniters and the burning histories were recorded onboard using digital cameras, downlinked later to the ground for analysis. The digital images yielded droplet and flame diameters as functions of time and subsequently droplet burning rate, flame standoff ratio, and initial and extinction droplet diameters. Simplified theoretical models correlate the measured burning rate constant and the flame standoff ratio reasonably well. An activation energy asymptotic theory accounting for time-dependent water dissolution or evaporation from the droplet is shown to predict the measured diffusive extinction conditions well. The experiments also show that the limiting oxygen index for methanol in these diluent gases is around 12% to

  16. Surfacing behavior and gas release of the physostome sprat (Sprattus sprattus) in ice-free and ice-covered waters

    KAUST Repository

    Solberg, Ingrid; Kaartvedt, Stein

    2013-01-01

    Upward-facing echosounders that provided continuous, long-term measurements were applied to address the surfacing behavior and gas release of the physostome sprat (Sprattus sprattus) throughout an entire winter in a 150-m-deep Norwegian fjord

  17. Spectroscopic Diagnostics of Barrier Discharge Plasmas in Mixtures of Zinc Diiodide with Inert Gases

    International Nuclear Information System (INIS)

    Guivan, N.N.; Malinin, A.N.

    2005-01-01

    The spectral characteristics of the emission of gas discharge atmospheric pressure plasmas in mixtures of zinc diiodide vapor with inert gases (He, Ne, Ar, Kr, and Xe) are investigated. The formation of a gas discharge plasma and the excitation of the components of a working mixture were performed in a high-frequency (with a repetition frequency of sinusoidal voltage pulses of 100 kHz) barrier discharge. The gas discharge emission was analyzed in the spectral range 200-900 nm with a resolution of 0.05 nm. Emission bands of ZnI(B-X) exciplex molecules and I* 2 excimer molecules, lines of inert gases, and emission bands of XeI* exciplex molecules (in Xe-containing mixtures) were revealed. It is ascertained that the strongest emission of ZnI* molecules is observed in ZnI 2 /He(Ne) mixtures. The regularities in the spectral characteristics of the gas discharge plasma emission are considered

  18. Dynamic characteristics of stay cables with inerter dampers

    Science.gov (United States)

    Shi, Xiang; Zhu, Songye

    2018-06-01

    This study systematically investigates the dynamic characteristics of a stay cable with an inerter damper installed close to one end of a cable. The interest in applying inerter dampers to stay cables is partially inspired by the superior damping performance of negative stiffness dampers in the same application. A comprehensive parametric study on two major parameters, namely, inertance and damping coefficients, are conducted using analytical and numerical approaches. An inerter damper can be optimized for one vibration mode of a stay cable by generating identical wave numbers in two adjacent modes. An optimal design approach is proposed for inerter dampers installed on stay cables. The corresponding optimal inertance and damping coefficients are summarized for different damper locations and interested modes. Inerter dampers can offer better damping performance than conventional viscous dampers for the target mode of a stay cable that requires optimization. However, additional damping ratios in other vibration modes through inerter damper are relatively limited.

  19. Reducing Actinide Production Using Inert Matrix Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Deinert, Mark [Colorado School of Mines, Golden, CO (United States)

    2017-08-23

    The environmental and geopolitical problems that surround nuclear power stem largely from the longlived transuranic isotopes of Am, Cm, Np and Pu that are contained in spent nuclear fuel. New methods for transmuting these elements into more benign forms are needed. Current research efforts focus largely on the development of fast burner reactors, because it has been shown that they could dramatically reduce the accumulation of transuranics. However, despite five decades of effort, fast reactors have yet to achieve industrial viability. A critical limitation to this, and other such strategies, is that they require a type of spent fuel reprocessing that can efficiently separate all of the transuranics from the fission products with which they are mixed. Unfortunately, the technology for doing this on an industrial scale is still in development. In this project, we explore a strategy for transmutation that can be deployed using existing, current generation reactors and reprocessing systems. We show that use of an inert matrix fuel to recycle transuranics in a conventional pressurized water reactor could reduce overall production of these materials by an amount that is similar to what is achievable using proposed fast reactor cycles. Furthermore, we show that these transuranic reductions can be achieved even if the fission products are carried into the inert matrix fuel along with the transuranics, bypassing the critical separations hurdle described above. The implications of these findings are significant, because they imply that inert matrix fuel could be made directly from the material streams produced by the commercially available PUREX process. Zirconium dioxide would be an ideal choice of inert matrix in this context because it is known to form a stable solid solution with both fission products and transuranics.

  20. A comparison of alumina, carbon and carbon-covered alumina as support for Ni-Mo-F additives: gas oil hydroprocessing studies

    Energy Technology Data Exchange (ETDEWEB)

    Boorman, P.M.; Kydd, R.A.; Sorensen, T.S.; Chong, K.; Lewis, J.M.; Bell, W.S. (University of Calgary, Calgary, AB (Canada). Dept. of Chemistry)

    1991-01-01

    Catalysts with 3 wt% NiO, 15 wt% MoO{sub 3} and 0-6.9 nominal wt% fluoride supported on alumina, carbon and carbon-covered alumina were studied to examine the role of fluoride and the influence of the support on hydroprocessing on Alberta gas oil. Experiments were carried out in a batch reactor at 410{degree}C and 6.9 MPa initial H{sub 2} pressure. It was found that fluoride promotion enhances cracking and hydrogenation reactions resulting in decreased aromatic and sulphur contents in the gas oil. The promotion is dependent on the type of support and is related to the strength of the fluoride-support interaction and the accessibility of the fluoride to the surface hydroxyl groups on the support. A maximum in activity at 3.6 wt% fluoride was observed for the alumina-supported catalysts whereas higher loadings of fluoride were required for carbon-covered alumina-supported catalysts to see an improvement over their carbon-supported counterparts. However, the carbon-covered alumina-supported catalysts seem to have a lower propensity for coke deposition than their alumina counterparts. 27 refs., 1 fig., 4 tabs.

  1. A comparison of alumina, carbon and carbon-covered alumina as supports for Ni-Mo-F additives: gas oil hydroprocessing studies

    Energy Technology Data Exchange (ETDEWEB)

    Boorman, P.M.; Kydd, R.A.; Sorensen, T.S.; Chong, K.; Lewis, J.M.; Bell, W.S. (Calgary Univ., AB (Canada). Dept. of Chemistry)

    1992-01-01

    Catalysts with 3 wt% NiO, 15 wt% MoO{sub 3} and 0-6.9 nominal wt% fluoride supported on alumina, carbon and carbon-covered alumina were studied to examine the role of fluoride and the influence of the support on hydroprocessing on Alberta gas oil. Experiments were carried out in a batch reactor at 410{sup o}C and 6.9 MPa initial H{sub 2} pressure. It was found that fluoride promotion enhances cracking and hydrogenation reactions resulting in decreased aromatic and sulphur contents in the gas oil. The promotion is dependent on the type of support and is related to the strength of the fluoride-support interaction and the accessibility of the fluoride to the surface hydroxyl groups on the support. A maximum in activity at 3.6 wt% fluoride was observed for the alumina-supported catalysts whereas higher loadings of fluoride were required for carbon-covered alumina-supported catalysts to see an improvement over their carbon supported counterparts. However, the carbon-covered alumina supported catalysts seem to have a lower propensity for coke deposition than their alumina counterparts. (author).

  2. Inert Reassessment Document for Gluconic Acid and Sodium Salt

    Science.gov (United States)

    Gluconic acid and D-gluconic acid are classified as List 3 inert ingredients, sodium gluconate is classified as a List 4B inert ingredient, and D-gluconic acid, sodium salt has not been categorized as to inert ingredient list classification status.

  3. Gas-kinetic unified algorithm for hypersonic flows covering various flow regimes solving Boltzmann model equation in nonequilibrium effect

    International Nuclear Information System (INIS)

    Li, Zhihui; Ma, Qiang; Wu, Junlin; Jiang, Xinyu; Zhang, Hanxin

    2014-01-01

    Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body

  4. Modeling, Testing, and Characteristic Analysis of a Planetary Flywheel Inerter

    Directory of Open Access Journals (Sweden)

    Zheng Ge

    2018-01-01

    Full Text Available We propose the planetary flywheel inerter, which is a new type of ball screw inerter. A planetary flywheel consists of several planetary gears mounted on a flywheel bracket. When the flywheel bracket is driven by a screw and rotating, each planetary gear meshing with an outer ring gear generates a compound motion composed of revolution and rotation. Theoretical analysis shows that the output force of the planetary flywheel inerter is proportional to the relative acceleration of one terminal of the inerter to the other. Optimizing the gear ratio of the planetary gears to the ring gear allows the planetary flywheel to be lighter than its traditional counterpart, without any loss on the inertance. According to the structure of the planetary flywheel inerter, nonlinear factors of the inerter are analyzed, and a nonlinear dynamical model of the inerter is established. Then the parameters in the model are identified and the accuracy of the model is validated by experiment. Theoretical analysis and experimental data show that the dynamical characteristics of a planetary flywheel inerter and those of a traditional flywheel inerter are basically the same. It is concluded that a planetary flywheel can completely replace a traditional flywheel, making the inerter lighter.

  5. Pulmonary distribution of [sup 99m]Tc-technegas; A comparative study of radioactive inert gases

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Kenji; Shimada, Takao; Mori, Yutaka; Goto, Eisuke; Hirasawa, Yukinori [Jikei Univ., Tokyo (Japan). School of Medicine; Tominaga, Shigeru

    1992-10-01

    Technetium 99m-technegas ([sup 99m]Tc-gas), which consists of fine particles, is produced in carbon crucibles burned at 2500degC. In this study, the particle size of [sup 99m]Tc-gas was measured and the pulmonary distribution of [sup 99m]Tc-gas was assessed in 28 patients with various pulmonary diseases. Most particles were 5[approx]30 nm in diameter as determined by electron microscopy. In a clinical study, about 37 MBq of [sup 99m]Tc-gas was inhaled three times during deep breathing in a sitting position. In a comparative study with radioactive inert gases ([sup 133]Xe, [sup 81m]Kr), [sup 99m]Tc-gas showed a similar distribution to the inert gas in most patients, although some with obstructive disease showed hot spots in the lung fields. In patients with severe obstructive change, marked deposits of [sup 99m]Tc-gas was noted in the central airways, but [sup 99m]Tc-gas penetrated to the peripheral lung field. This result suggests that [sup 99m]Tc-gas can be used to evaluate ventilatory function even in patients with chronic obstructive pulmonary diseases. (author).

  6. Numerical analysis on hydrogen stratification and post-inerting of hydrogen risk

    International Nuclear Information System (INIS)

    Peng, Cheng; Tong, Lili; Cao, Xuewu

    2016-01-01

    Highlights: • A three-dimensional computational model was built and the applicability was discussed. • The formation of helium stratification was further studied. • Three influencing factors on the post-inerting of hydrogen risk were analyzed. - Abstract: In the case of severe accidents, the risk of hydrogen explosion threatens the integrity of the nuclear reactor containment. According to nuclear regulations, hydrogen control is required to ensure the safe operation of the nuclear reactor. In this study, the method of Computational Fluid Dynamics (CFD) has been applied to analyze process of hydrogen stratification and the post-inerting of hydrogen risk in the Large-Scale Gas Mixing Facility. A three-dimensional computational model was built and the applicability of different turbulence models was discussed. The result shows that the helium concentration calculated by the standard k–ε turbulence model is closest to the experiment data. Through analyzing the formation of helium stratification at different injection velocities, it is found that when the injection mass flow is constant and the injection velocity of helium increases, the mixture of helium and air is enhanced while there is rarely influence on the formation of helium stratification. In addition, the influences of mass flow rate, injection location and direction and inert gas on the post-inerting of hydrogen risk have been analyzed and the results are as follows: with the increasing of mass flow rate, the mitigation effect of nitrogen on hydrogen risk will be further improved; there is an obvious local difference between the mitigation effects of nitrogen on hydrogen risk in different injection directions and locations; when the inert gas is injected at the same mass flow rate, the mitigation effect of steam on hydrogen risk is better than that of nitrogen. This study can provide technical support for the mitigation of hydrogen risk in the small LWR containment.

  7. Containment Performance Evaluation of a Sodium Fire Event Due to Air Ingress into the Cover Gas Region of the Reactor Vessel in the PGSFR

    International Nuclear Information System (INIS)

    Ahn, Sang June; Chang, Won-Pyo; Kang, Seok Hun; Choi, Chi-Woong; Yoo, Jin; Lee, Kwi Lim; Jeong, Jae-Ho; Lee, Seung Won; Jeong, Taekyeong; Ha, Kwi-Seok

    2015-01-01

    Comparing with the light water reactor, sodium as a reactor coolant violently reacts with oxygen in the containment atmosphere. Due to this chemical reaction, heat generated from the combustion heat increases the temperature and pressure in the containment atmosphere. The structural integrity of the containment building which is a final radiological defense barrier is threaten. A sodium fire event in the containment due to air ingress into the cover gas region in the reactor vessel is classified as one of the design basis events in the PGSFR. This event comes from a leak or crack on the reactor upper closure header surface. It accompanys an event of the radiological fission products release to the inside the containment. In this paper, evaluation for the sodium fire and radiological influence due to air ingress into the cover gas region of the reactor vessel is described. To evaluate this event, the CONTAIN-LMR, MACCS-II and OR-IGEN-II codes are used. For the sodium pool fire event in the containment, the performance evaluation and radiological influence are carried out. In the thermal hydraulic aspects, the 1 cell containment yields the most conservative result. In this event, the maximum temperature and pressure in the containment are calculated 0.185 MPa, 280.0 .deg. C, respectively. The radiological dose at the EAB and LPZ are below the acceptance criteria specified in the 10CFR100

  8. Containment Performance Evaluation of a Sodium Fire Event Due to Air Ingress into the Cover Gas Region of the Reactor Vessel in the PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang June; Chang, Won-Pyo; Kang, Seok Hun; Choi, Chi-Woong; Yoo, Jin; Lee, Kwi Lim; Jeong, Jae-Ho; Lee, Seung Won; Jeong, Taekyeong; Ha, Kwi-Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Comparing with the light water reactor, sodium as a reactor coolant violently reacts with oxygen in the containment atmosphere. Due to this chemical reaction, heat generated from the combustion heat increases the temperature and pressure in the containment atmosphere. The structural integrity of the containment building which is a final radiological defense barrier is threaten. A sodium fire event in the containment due to air ingress into the cover gas region in the reactor vessel is classified as one of the design basis events in the PGSFR. This event comes from a leak or crack on the reactor upper closure header surface. It accompanys an event of the radiological fission products release to the inside the containment. In this paper, evaluation for the sodium fire and radiological influence due to air ingress into the cover gas region of the reactor vessel is described. To evaluate this event, the CONTAIN-LMR, MACCS-II and OR-IGEN-II codes are used. For the sodium pool fire event in the containment, the performance evaluation and radiological influence are carried out. In the thermal hydraulic aspects, the 1 cell containment yields the most conservative result. In this event, the maximum temperature and pressure in the containment are calculated 0.185 MPa, 280.0 .deg. C, respectively. The radiological dose at the EAB and LPZ are below the acceptance criteria specified in the 10CFR100.

  9. Measurement of NO2 pollutant sorption of various trees, shrubs and ground cover plants using gas NO2 labelled 15N

    International Nuclear Information System (INIS)

    Nasrullah, Nizar; Wungkar, Marietje; Gunawan, Andi; Gandanegara, Soertini; Suharsono, Heny

    2000-01-01

    The objective of this study is to measure the NO 2 pollutant sorption of various trees, shrubs and ground cover plants. 32 species of trees, 64 speceis of shrubs and 13 species of ground cover plants were exposed to 3 ppm (v / v) N- 15 O 2 in a gas chamber for 60 minutes. Experiment consisted of 2 replicates. The environment conditions in the chamber were set at 30 o C, 1000 lux, and initial relative humidity 60 %. After gas treatment, plants parts were separated into leaves, stems and roots, than dried in 70 o C for 48 hours and then weighed. After weighing, those plants parts were ground to a pine powder. After kjendhal digestion, N total content of plants were analyzed by distillation method. 15 N content of plant samples were analyzed by emission spectrometer ( Yasco, N-151). The amount of N-15 absorbed by plant was the total content of 15 N in the whole plants ( leaves, stem and root ) per gram dry weight of leaves. The amount of 15 N absorbed by plants varied among investigated plants. 15 N sorption of trees are in the range 0.28 - 68.31μg/g. The sorption of shrubs and ground cover plants varied in 1.97 - 100.02 μg/g and 2.38 - 24.06μg/g, respectively. According to the amount of 15 N sorption , the plants were divided into 3 groups of sorption level, high ( > 30.0μg/g), moderate ( 15 - 30 μg/g ), and low sorption level ( 15 μg/g). Results showed that among of 32 investigated trees, 64 shrubs and 13 ground cover plant, 4 species of trees and 13 species of shrubs performed a high sorption level and no one of ground cover plants performed a high sorption level. The species of trees and 15 species of shrubs that mention above are recommended to use as an element of landscape which to be functioned to reduce NO 2 atmospheric pollutant

  10. Inert Welding/Brazing Gas Filters and Dryers

    Science.gov (United States)

    Goudy, Jerry

    2009-01-01

    The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heat-flux environments (150 W/sq cm) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading-edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same "pick" location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by the choice of constituents, varying fiber tow sizes and constituent part ratios. This structural concept provides high strength and stiffness at low density 1.06 g/cu cm in panels tested. Varieties of face sheet constructions are possible, including variations in fiber type and weave geometry. The integrated structures possible with this composite could eliminate the need for non-load-bearing thermal protection systems on top of a structural component. The back sheet can readily be integrated to substructures through the incorporation of ribs. This would eliminate weight and cost for aerospace missions.

  11. Controlled beta-quenching of fuel channels using inert gas

    Energy Technology Data Exchange (ETDEWEB)

    Moeckel, Andreas; Cremer, Ingo; Kratzer, Anton; Walter, Dirk [AREVA NP (Germany)

    2008-07-01

    The trend towards higher fuel assembly discharge burnups poses new challenges for fuel channels in terms of their dimensional behavior and corrosion resistance. This led AREVA NP to develop a new technique for beta quenching of fuel channels that combines the effect of beta-quenching with the optimization of the microstructure. The first set of fuel channels with these optimized material properties have been placed in the core of a German boiling water reactor (BWR) nuclear power plant in spring of 2004. Some more channels have been sited in the core of a Scandinavian BWR in fall of 2007 to broaden the in-pile experience with these channels. Dimensional stability is the major requirement that is applied to fuel channels. High corrosion resistance and low hydrogen pickup are certainly required as well. However, corrosion and hydrogen pickup are usually not life limiting factors due to the large wall thickness of the material. Since thick layers of oxide may spall off extensively at high burnup and cause increase of the dose rate for the personnel, high corrosion resistance of fuel channels is mandatory. The fuel channels which surround BWR fuel assemblies are exposed to neutron irradiation as well as to loads induced by the reactor coolant flowing through them. These service conditions induce material growth and creep which cause permanent changes in the dimensions of the channels. Especially, fuel channel bow is of certain interest as increased channel bow may lead to some friction with control blades. Fuel channel bow is mainly induced by fluence gradients. However, there may be additional influences such as oxidation and hydrogen uptake to cause increased channel bow. The effect of hydrogen is currently discussed in the nuclear community to explain the unexpected high fuel channel bow that has been observed in some nuclear power plants. (orig.)

  12. 33 CFR 157.164 - Use of inert gas system.

    Science.gov (United States)

    2010-07-01

    ...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK... oxygen content of 8 percent or less by volume. (ii) A positive atmospheric pressure. (5) During COW... instrumentation has an alarm that sounds in the cargo control room when the oxygen content exceeds 8 percent by...

  13. Comparative evaluation of tungsten inert gas and laser beam ...

    Indian Academy of Sciences (India)

    In the present work, LB welding was applied to 5 mm thick plates of non-heat treatable aluminum alloy AA ... The transverse tensile properties such as yield stress, ultimate tensile strength and .... 82, 39, Orlando; FL: Laser Institute of America.

  14. Recent study of nanomaterials prepared by inert gas condensation ...

    Indian Academy of Sciences (India)

    ITO), ZnO, Al2O3, Ag2O, CdO, CuO, ZnSe:ZnO etc., were prepared by this technique and characterized. Results of some of these materials will be presented in this paper. In solid-state 207Pb NMR on PbF2 a separate signal due to the presence ...

  15. Theoretical treatment of embrittlement by inert gas under creep conditions

    International Nuclear Information System (INIS)

    Beere, W.

    1980-01-01

    Cavities situated on grain boundaries can grow at high temperature under the action of an applied stress. Grain boundary diffusion, surface diffusion, plastic growth, vacancy source control or geometric creep constraint processes may control the rate of cavity growth. The growth mechanisms are compared for the particular application of an irradiated austenitic stainless steel. The calculated growth rates are compared with out of pile measurements of time to fracture of pre-irradiated steel. The comparison is based on the assumption that bubbles nucleate during the initial part of the post irradiation test. The larger bubbles are suitable cavity nuclei and grow. (author)

  16. effects of metal inert gas welding parameters on some mechanical

    African Journals Online (AJOL)

    HOD

    mechanical properties (hardness, tensile and impact) of type 304 austenitic stainless steel (ASS) immersed in 0.5M hydrochloric acid at ... The increasing high demand on stainless steel usage in industry as a ... materials prices of major alloying additions such as nickel ..... Microstructure of Cast Fibre-Polyester/Iron Filings.

  17. Electron temperature measurement of tungsten inert gas arcs

    International Nuclear Information System (INIS)

    Tanaka, Manabu; Tashiro, Shinichi

    2008-01-01

    In order to make clear the physical grounds of deviations from LTE (Local Thermodynamic Equilibrium) in the atmospheric helium TIG arcs electron temperature and LTE temperature obtained from electron number density were measured by using of line-profile analysis of the laser scattering method without an assumption of LTE. The experimental results showed that in comparison with the argon TIG arcs, the region where a deviation from LTE occurs tends to expand in higher arc current because the plasma reaches the similar state to LTE within shorter distance from the cathode due to the slower cathode jet velocity

  18. Helium in inert matrix dispersion fuels

    International Nuclear Information System (INIS)

    Veen, A. van; Konings, R.J.M.; Fedorov, A.V.

    2003-01-01

    The behaviour of helium, an important decay product in the transmutation chains of actinides, in dispersion-type inert matrix fuels is discussed. A phenomenological description of its accumulation and release in CERCER and CERMET fuel is given. A summary of recent He-implantation studies with inert matrix metal oxides (ZrO 2 , MgAl 2 O 4 , MgO and Al 2 O 3 ) is presented. A general picture is that for high helium concentrations helium and vacancy defects form helium clusters which convert into over-pressurized bubbles. At elevated temperature helium is released from the bubbles. On some occasions thermal stable nano-cavities or nano-pores remain. On the basis of these results the consequences for helium induced swelling and helium storage in oxide matrices kept at 800-1000 deg. C will be discussed. In addition, results of He-implantation studies for metal matrices (W, Mo, Nb and V alloys) will be presented. Introduction of helium in metals at elevated temperatures leads to clustering of helium to bubbles. When operational temperatures are higher than 0.5 melting temperature, swelling and helium embrittlement might occur

  19. Implicit gas-kinetic unified algorithm based on multi-block docking grid for multi-body reentry flows covering all flow regimes

    Science.gov (United States)

    Peng, Ao-Ping; Li, Zhi-Hui; Wu, Jun-Lin; Jiang, Xin-Yu

    2016-12-01

    Based on the previous researches of the Gas-Kinetic Unified Algorithm (GKUA) for flows from highly rarefied free-molecule transition to continuum, a new implicit scheme of cell-centered finite volume method is presented for directly solving the unified Boltzmann model equation covering various flow regimes. In view of the difficulty in generating the single-block grid system with high quality for complex irregular bodies, a multi-block docking grid generation method is designed on the basis of data transmission between blocks, and the data structure is constructed for processing arbitrary connection relations between blocks with high efficiency and reliability. As a result, the gas-kinetic unified algorithm with the implicit scheme and multi-block docking grid has been firstly established and used to solve the reentry flow problems around the multi-bodies covering all flow regimes with the whole range of Knudsen numbers from 10 to 3.7E-6. The implicit and explicit schemes are applied to computing and analyzing the supersonic flows in near-continuum and continuum regimes around a circular cylinder with careful comparison each other. It is shown that the present algorithm and modelling possess much higher computational efficiency and faster converging properties. The flow problems including two and three side-by-side cylinders are simulated from highly rarefied to near-continuum flow regimes, and the present computed results are found in good agreement with the related DSMC simulation and theoretical analysis solutions, which verify the good accuracy and reliability of the present method. It is observed that the spacing of the multi-body is smaller, the cylindrical throat obstruction is greater with the flow field of single-body asymmetrical more obviously and the normal force coefficient bigger. While in the near-continuum transitional flow regime of near-space flying surroundings, the spacing of the multi-body increases to six times of the diameter of the single

  20. On the Benefits of Semi-Active Suspensions with Inerters

    Directory of Open Access Journals (Sweden)

    Xin-Jie Zhang

    2012-01-01

    Full Text Available Inerters have become a hot topic in recent years especially in vehicle, train, building suspension systems, etc. Eight different layouts of suspensions were analyzed with a quarter-car model in this paper. Dimensionless root mean square (RMS responses of the sprung mass vertical acceleration, the suspension travel, and the tire deflection are derived which were used to evaluate the performance of the quarter-car model. The behaviour of semi-active suspensions with inerters using Groundhook, Skyhook, and Hybrid control has been evaluated and compared to the performance of passive suspensions with inerters. Sensitivity analysis was applied to the development of a high performance semi-active suspension with an inerter. Numerical simulations indicate that a semi-active suspension with an inerter has much better performance than the passive suspension with an inerter, especially with the Hybrid control method, which has the best compromise between comfort and road holding quality.

  1. Catalytic Reactor for Inerting of Aircraft Fuel Tanks

    Science.gov (United States)

    1974-06-01

    Aluminum Panels After Triphase Corrosion Test 79 35 Inerting System Flows in Various Flight Modes 82 36 High Flow Reactor Parametric Data 84 37 System...AD/A-000 939 CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS George H. McDonald, et al AiResearch Manufacturing Company Prepared for: Air Force...190th Street 2b. GROUP Torrance, California .. REPORT TITLE CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS . OESCRIP TIVE NOTEs (Thpe of refpoft

  2. Inert carriers for column extraction chromatography

    International Nuclear Information System (INIS)

    Katykhin, G.S.

    1978-01-01

    Inert carriers used in column extraction chromatography are reviewed. Such carriers are devided into two large groups: hydrophilic carriers which possess high surface energy and are well wetted only with strongly polar liquids (kieselguhrs, silica gels, glasses, cellulose, Al 2 O 3 ) and water-repellent carriers which possess low surface energy and are well wetted with various organic solvents (polyethylene, polytetrafluorethylene polytrifluorochlorethylene). Properties of various carriers are presented: structure, chemical and radiation stability, adsorption properties, extracting agent capacity. The effect of structure and sizes of particles on the efficiency of chromatography columns is considered. Ways of immovable phase deposition on the carrier and the latter's regeneration. Peculiarities of column packing for preparative and continuous chromatography are discussed

  3. Observability of inert scalars at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, Majid [Shiraz University, Physics Department, College of Sciences, Shiraz (Iran, Islamic Republic of); Najjari, Saereh [University of Warsaw, Faculty of Physics, Warsaw (Poland)

    2017-09-15

    In this work we investigate the observability of inert doublet model scalars at the LHC operating at the center of mass energy of 14 TeV. The signal production process is pp → AH{sup ±} → ZHW{sup ±}H leading to two different final states of l{sup +}l{sup -}HjjH and l{sup +}l{sup -}Hl{sup ±}νH based on the hadronic and leptonic decay channels of the W boson. All the relevant background processes are considered and an event selection is designed to distinguish the signal from the large Standard Model background. We found that signals of the selected search channels are well observable at the LHC with an integrated luminosity of 300 fb{sup -1}. (orig.)

  4. Inerting Aircraft Fuel Systems Using Exhaust Gases

    Science.gov (United States)

    Hehemann, David G.

    2002-01-01

    Our purpose in this proposal was to determine the feasibility of using carbon dioxide, possibly obtained from aircraft exhaust gases as a substance to inert the fuel contained in fuel tanks aboard aircraft. To do this, we decided to look at the effects carbon dioxide has upon commercial Jet-A aircraft fuel. In particular, we looked at the solubility of CO2 in Jet-A fuel, the pumpability of CO2-saturated Jet-A fuel, the flashpoint of Jet-A fuel under various mixtures of air and CO2, the static outgassing of CO2-Saturated Jet-A fuel and the dynamic outgassing of Jet-A fuel during pumping of Jet-A fuel.

  5. Tracheal volume in the pupa of the Saturniid moth Hyalophora cecropia determined with inert gases.

    Science.gov (United States)

    Bridges, C R; Kestler, P; Scheid, P

    1980-06-01

    Tracheal volume (VTr) was measured in pupae of the Giant silkworm moth Hyalophora cecropia (Saturniidae, Lepidoptera, Insecta) using inert gas wash-out techniques. The animal was placed in a small vessel that was continuously ventilated (rate, V) by a gas mixture containing 20% O2 in N2; the inflowing (F1) and outflowing gas fractions (FE) of the vessel could be continuously measured by a respiratory mass spectrometer. At the onset of a spiracular constriction period, which was evidenced from the FECO2 trace, the mixture was rapidly replaced by pure Ar. At the subsequent burst, the amount of N2 emerging from the animal, MN2, was calculated from V and the difference (FE--F1)N2. VTr was calculated from MN2 and the N2 concentration in the tracheal system before constriction (assumed to equal that in the ventilating gas before replacement by Ar). Measurements were repeated with N2 and Ar replacing each other. VTr average 48 microliter . g-1 (range 39 to 59) for animals of 5.8 g average body weight (range 3.4 to 9.9), when inert gas solubility in body fluids was accounted for. Both size and stage in pupal development appear to affect VTr. These values show reasonable agreement with literature data, mostly obtained by emptying the tracheal gas space by mechanical compression.

  6. Comfort-oriented vehicle suspension design with skyhook inerter configuration

    Science.gov (United States)

    Hu, Yinlong; Chen, Michael Z. Q.; Sun, Yonghui

    2017-09-01

    This paper is concerned with the comfort-oriented vehicle suspension design problem by using a skyhook inerter configuration. The rationale of the skyhook inerter is to use a grounded inerter to virtually increase the sprung mass of a vehicle, as it is analytically demonstrated that increasing the sprung mass can always improve the ride comfort performance. Semi-active means to realize the skyhook inerter configuration are investigated by using semi-active inerters. Three control laws, that is the on-off control, the anti-chatter on-off control, and the continuous control, are proposed for the semi-active inerter to approximate the skyhook inerter. Numerical simulations are performed to demonstrate the effectiveness and performances of these control laws. It is shown that the semi-active realizations of the skyhook inerter by using the proposed control laws can achieve over 10% improvement compared with the traditional strut, and similar performances are obtained for these control laws, with slight differences with respect to different static stiffnesses of the suspension system.

  7. Investigation of the Hall MHD channel operating with the ionized instable plasma of inert gases

    International Nuclear Information System (INIS)

    Vasi'leva, R.V.; D'yakova, E.A.; Erofeev, A.V.; Zuev, A.D.; Lapushkina, T.A.; Markhotok, A.A.

    1997-01-01

    Possibility of applying ionization-instable plasma of pure inert gases as perspective working substance for closed-cycle MHD generators is studied. The experiment was produced in the model of the disk Hall MHD channel. The ionized gas flux was produced in a shock tube. Xenon was used as a working substance. Gas pressure, flux velocity, electron concentration and temperature, azimuthal current density, potential distribution in the channel and near-electrode voltage drop values were measured in the experiment. Volt-ampere characteristics were taken by various indices of magnetic field and load resistance

  8. Landfill Top Covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2011-01-01

    The purpose of the final cover of a landfill is to contain the waste and to provide for a physical separation between the waste and the environment for protection of public health. Most landfill covers are designed with the primary goal to reduce or prevent infiltration of precipitation...... into the landfill in order to minimize leachate generation. In addition the cover also has to control the release of gases produced in the landfill so the gas can be ventilated, collected and utilized, or oxidized in situ. The landfill cover should also minimize erosion and support vegetation. Finally the cover...... is landscaped in order to fit into the surrounding area/environment or meet specific plans for the final use of the landfill. To fulfill the above listed requirements landfill covers are often multicomponent systems which are placed directly on top of the waste. The top cover may be placed immediately after...

  9. Viking Helmet Corroles: Activating Inert Oxidometal Corroles.

    Science.gov (United States)

    Schweyen, Peter; Brandhorst, Kai; Hoffmann, Martin; Wolfram, Benedikt; Zaretzke, Marc-Kevin; Bröring, Martin

    2017-10-09

    Chemically inert oxidometal(V) corrols of molybdenum and rhenium undergo clean ligand-exchange reactions upon the action of SiCl 4 . The resulting dichlorido complexes show trigonal prismatic coordination of the metal ion with the chlorine atoms residing in a cis configuration, and were studied by optical and resonance spectroscopy as well as DFT calculations. In situ reactivity studies with carbon nucleophiles indicate high reactivity for chlorine replacement. Treatment with sodium cyclopentadienide paves the way to robust molybdenum corrolocene half-sandwich complexes. These organometallic compounds are the first corrole species that stabilize an air-stable and diamagnetic low spin d 2 -Mo IV center. Structural, spectroelectrochemical, and chemical investigations prove a reversible Mo IV /Mo V redox couple close to the Fc/Fc + potential for these systems. The high stability of the compounds in both redox states calls for future applications in catalysis and as redox switch. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Models of bending strength for Gilsocarbon graphites irradiated in inert and oxidising environments

    International Nuclear Information System (INIS)

    Eason, Ernest D.; Hall, Graham N.; Marsden, Barry J.; Heys, Graham B.

    2013-01-01

    This paper presents the development and validation of an empirical model of fast neutron damage and radiolytic oxidation effects on bending strength for the moulded Gilsocarbon graphites used in Advanced Gas-cooled Reactors (AGRs). The inert environment model is based on evidence of essentially constant strength as fast neutron dose increases in inert environment. The model of combined irradiation and oxidation calibrates that constant along with an exponential function representing the degree of radiolytic oxidation as measured by weight loss. The change in strength with exposure was found to vary from one AGR station to another. The model was calibrated to data on material trepanned from AGR moderator bricks after varying operating times

  11. Distribution of inert gases in fines from the Cayley-Descartes region

    Science.gov (United States)

    Walton, J. R.; Lakatos, S.; Heymann, D.

    1973-01-01

    The inert gases in 14 different fines and in one sample of 2 to 4 mm fines from Apollo 16 were measured by mass spectroscopy with respect to trapped solar wind gases, cosmogenic gases, and 'parentless' Ar-40. Such studies are helpful for the understanding of regolith evolution, of transport of regolith fines, and of the lunar atmosphere. The Apollo 16 soils are unique because they represent, after Luna 20, the second and much more extensive record from the lunar highlands. The landing site presents the problem of materials from the Cayley Formation vs those from the Descartes Formation. There are two large, relatively fresh craters in the area, North Ray and South Ray, whose ejecta patterns may be recognized in the inert-gas record.

  12. Land Cover

    Data.gov (United States)

    Kansas Data Access and Support Center — The Land Cover database depicts 10 general land cover classes for the State of Kansas. The database was compiled from a digital classification of Landsat Thematic...

  13. The anisotropic potential of molecular hydrogen determined from the scattering of oriented H2 on inert gases

    International Nuclear Information System (INIS)

    Zandee, A.P.L.M.

    1977-01-01

    This thesis deals with an experiment aimed at determining the angle dependence of an intermolecular potential between H 2 molecule and a rare gas atom. The small relative difference in total collision cross section for beams of differently oriented H 2 molecules colliding with inert gas atoms in a scattering box is measured (anisotropy A). Through variation of the orientation and by studying its influence on the total collision cross sections, the angle dependence of the intermolecular potential can be arrived at

  14. Bioactive and inert dental glass-ceramics.

    Science.gov (United States)

    Montazerian, Maziar; Zanotto, Edgar Dutra

    2017-02-01

    The global market for dental materials is predicted to exceed 10 billion dollars by 2020. The main drivers for this growth are easing the workflow of dentists and increasing the comfort of patients. Therefore, remarkable research projects have been conducted and are currently underway to develop improved or new dental materials with enhanced properties or that can be processed using advanced technologies, such as CAD/CAM or 3D printing. Among these materials, zirconia, glass or polymer-infiltrated ceramics, and glass-ceramics (GCs) are of great importance. Dental glass-ceramics are highly attractive because they are easy to process and have outstanding esthetics, translucency, low thermal conductivity, high strength, chemical durability, biocompatibility, wear resistance, and hardness similar to that of natural teeth, and, in certain cases, these materials are bioactive. In this review article, we divide dental GCs into the following two groups: restorative and bioactive. Most restorative dental glass-ceramics (RDGCs) are inert and biocompatible and are used in the restoration and reconstruction of teeth. Bioactive dental glass-ceramics (BDGCs) display bone-bonding ability and stimulate positive biological reactions at the material/tissue interface. BDGCs are suggested for dentin hypersensitivity treatment, implant coating, bone regeneration and periodontal therapy. Throughout this paper, we elaborate on the history, processing, properties and applications of RDGCs and BDGCs. We also report on selected papers that address promising types of dental glass-ceramics. Finally, we include trends and guidance on relevant open issues and research possibilities. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 619-639, 2017. © 2016 Wiley Periodicals, Inc.

  15. Structure of the surface of the Paleozoic basement of the cis-Kopetdag trough in connection with the oil and gas content of the sedimentary cover

    Energy Technology Data Exchange (ETDEWEB)

    Odekov, O.A.; Mel' nik, N.M.; Tulaeva, S.V.

    1981-01-01

    Use of a complex of different methods permitted a new approach to the study of the nature of the surface of the Paleozoic basement. As a result of constructing models of the deep structure of the cis-Kopetdag trough and the Bakhardok monocline a new map of the major tectonic elements of the region has been developed and a map of the surface structure of the Paleozoic basement and a map of the Moho discontinuity have been compiled. The former gives a major new solution to many problems of the dep structure of the region: 1) in the zone of juncture of the cis-Kopetdag trough and the Bakhardok monocline a new positive structural element has been identified, called the Bakhardok-Kumbet buried superarch; 2) a completely new morphology of the western part of the Serakh connector has been given, within which two independent buried arches are identified, the Shatlyk and Tedzhenskii; 3) it has been established that the Izgantskii arch of the sedimentary cover corresponds to the Izgant uplifted block of the basement. These structural elements are described, methods for identifying them are outlined, and some principles of the variatin of the parameters of the geophysical fields are described. The prospects for the juncture zone are estimated as fairly high from the viewpoint of discovering different types of oil and gas deposits in the widest stratigraphic interval, from the Lower Jurassic to the Neokomian.

  16. Preliminary Design Report Shippingport Spent Fuel Drying and Inerting System

    International Nuclear Information System (INIS)

    JEPPSON, D.W.

    2000-01-01

    A process description and system flow sheets have been prepared to support the design/build package for the Shippingport Spent Fuel Canister drying and inerting process skid. A process flow diagram was prepared to show the general steps to dry and inert the Shippingport fuel loaded into SSFCs for transport and dry storage. Flow sheets have been prepared to show the flows and conditions for the various steps of the drying and inerting process. Calculations and data supporting the development of the flow sheets are included

  17. Car Covers | Outdoor Covers Canada

    OpenAIRE

    Covers, Outdoor

    2018-01-01

    Protect your car from the elements with Ultimate Touch Car Cover. The multi-layer non-woven fabric is soft on the finish and offers 4 seasons all weather protection.https://outdoorcovers.ca/car-covers/

  18. Fog inerting criteria for hydrogen/air mixtures

    International Nuclear Information System (INIS)

    Tsai, S.S.; Liparulo, N.J.

    1982-01-01

    A distributed ignition system has been proposed to ignite hydrogen at low concentration in the ice condenser containment during severe accidents. The post-accident containment atmosphere could be misty due to fog generation from the break flow and condensation in the ice bed. Thus it is important to establish a fog inerting criterion for effective performance of the ignition system. This paper presents such a criterion that specifies the necessary fogging conditions, i.e., fog concentration and drop size, for inerting a hydrogen/air mixture. The criterion shows that the minimum fog inerting concentration varies with the square of the volume mean fog drop size. The present fog inerting criterion is shown to be in general agreement with the Factory Mutual test data

  19. Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system

    Science.gov (United States)

    Yao, Z.; Du, Y.; Tao, Y.; Zheng, X.; Liu, C.; Lin, S.; Butterbach-Bahl, K.

    2014-11-01

    To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emissions) over a complete year, and the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), and solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40 and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.09 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha-1 yr-1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80-11.02 Mg CO2-eq ha-1 yr-1 for the conventional paddy and 3.05-9.37 Mg CO2-eq ha-1 yr-1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effects from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions of CH4

  20. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  1. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    International Nuclear Information System (INIS)

    Ghosh, Somnath; Friedrich, Rainer

    2015-01-01

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case

  2. Post-inertization of large dry containments in case of beyond-design base events in PWR plants

    International Nuclear Information System (INIS)

    Tiltmann, M.; Risse, D.; Pana, P.; Huettermann, B.; Rohde, J.

    1993-12-01

    The objective is to present a summary of basic thoughts and concepts as described in various publications. The report points out the obvious advantages and disadvantages of individual strategies as wel as the requirements derived from the knowledge of possible accident sequences for such a concept. Scoping calculations on the injection of inert-gas into the containment during the progress of accidents revealed additional indications as regards e.g. the required amount of inert-gas, the injection rate, and the resulting pressure behaviour in the containment. Thereby an assessment of the effectiveness as well as of the feasibility of such measures has become possible. From the large number of different initial conclusions, two major ones are singled out and presented: 1) In principle, the technical realisation of post-inerting is possible. Thus a deflagration of hydrogen in the containment can be prevented; 2) Post-inerting cannot be realised independent of the accident progress. Specific criteria for carrying out such measures will require extensive examinations. (orig./HP) [de

  3. Benthic Cover

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic cover (habitat) maps are derived from aerial imagery, underwater photos, acoustic surveys, and data gathered from sediment samples. Shallow to moderate-depth...

  4. Neutralino dark matter with inert higgsinos and singlinos

    International Nuclear Information System (INIS)

    Hall, Jonathan P.; King, Stephen F.

    2009-01-01

    We discuss neutralino dark matter arising from supersymmetric models with extra inert Higgsinos and singlinos, where inert means that their scalar partners do not get vacuum expectation values. As an example, we consider the extended neutralino sector of the E 6 SSM, which predicts three families of Higgs doublet pairs, plus three singlets, plus a Z', together with their fermionic superpartners. We show that the two families of inert doublet Higgsinos and singlinos predicted by this model provide an almost decoupled neutralino sector with a naturally light LSP which can account for the cold dark matter relic abundance independently of the rest of the model, providing that the ratio of the two usual Higgs doublets satisfies tan β < 2.

  5. Ignition of a reactive solid by an inert hot spot

    OpenAIRE

    Liñán Martínez, Amable; Kindelan Gómez, Manuel

    1981-01-01

    A theoretical analysis is presented for the description of the ignition of a reactive media by inert hot bodies of finite size, when the activation energy of the reaction is large. The analysis leads to closed-form relations for the minimum "critical" size of the hot spot resulting in ignition and for the ignition time by hot spots of supercritical size. The analysis is carried out, first, for inert spots with heat conductivities and diff usivities of the order of those of the reactive media,...

  6. INERT-MATRIX FUEL: ACTINIDE ''BURNING'' AND DIRECT DISPOSAL

    International Nuclear Information System (INIS)

    Rodney C. Ewing; Lumin Wang

    2002-01-01

    Excess actinides result from the dismantlement of nuclear weapons (Pu) and the reprocessing of commercial spent nuclear fuel (mainly 241 Am, 244 Cm and 237 Np). In Europe, Canada and Japan studies have determined much improved efficiencies for burnup of actinides using inert-matrix fuels. This innovative approach also considers the properties of the inert-matrix fuel as a nuclear waste form for direct disposal after one-cycle of burn-up. Direct disposal can considerably reduce cost, processing requirements, and radiation exposure to workers

  7. STRUCTURE, PHASE COMPOSITION AND PROPERTIES OF GAS-THERMAL COVERINGS OF MECHANICALLY ALLOYED THERMOREACTING COMPOSITE POWDERS OF NICKEL-ALUMINIUM SYSTEM

    Directory of Open Access Journals (Sweden)

    F. G. Lovshenko

    2015-01-01

    Full Text Available The presented results show that coverings from mechanically alloyed thermoreacting powders of system «nickel–aluminum» are nonequilibrium multiphase systems which basis represents solid solution of aluminum in nickel. It has the microcrystalline type of structure which is characterized by an advanced surface of borders of the grains and subgrains stabilized by nanodimensional inclusions of oxides and alyuminid. These coverings surpass by 1,2–1,6 times analogs in durability, hardness and wear resistance.

  8. The effect of floating vegetation on denitrification and greenhouse gas production in wetland mesocosms

    Science.gov (United States)

    Jacobs, A. E.; Harrison, J. A.

    2012-12-01

    Anthropogenic intensification of nitrogen (N) loading to aquatic ecosystems is widespread and can lead to the degradation of these systems. Wetlands are important sites for N removal via denitrification, the microbially mediated reduction of reactive nitrate to inert N2 gas, but they can also produce high levels of greenhouse gases. Floating plants play an important role in encouraging denitrification, since they create low oxygen conditions that may favor denitrification. We investigated whether wetland sediments with floating plant cover had higher denitrification and greenhouse gas production rates than wetland sediments without floating plants. Replicate flow-through mesocosms with wetland sediment and water were constructed in a growth chamber to mimic the wetland where the sediment and water were collected. Mesocosm treatments were covered with floating vegetation (duckweed), an opaque tarp, or no cover to determine how cover type affects denitrification and greenhouse gas production and whether biotic or abiotic factors are likely responsible for observed differences. Denitrification and greenhouse gas production rates were calculated by measuring excess N2 gas, methane, and nitrous oxide concentrations in the water column and measuring the gas exchange rates between the water column and the atmosphere. Gas exchange rates were measured using an inert volatile tracer added to the water column and accumulation of gas in the mesocosm headspace. Additional mesocosm experiments were performed to determine how duckweed-dominated wetland systems respond to nitrogen loading and which mechanism for lowering dissolved oxygen concentrations is important in affecting denitrification under floating vegetation. Mesocosms with floating vegetation had lower dissolved oxygen than no cover or tarp-covered mesocosms, which is consistent with field and literature observations. Water flowing out of the mesocosms had statistically lower total nitrogen and nitrate concentrations

  9. Model identification methodology for fluid-based inerters

    Science.gov (United States)

    Liu, Xiaofu; Jiang, Jason Zheng; Titurus, Branislav; Harrison, Andrew

    2018-06-01

    Inerter is the mechanical dual of the capacitor via the force-current analogy. It has the property that the force across the terminals is proportional to their relative acceleration. Compared with flywheel-based inerters, fluid-based forms have advantages of improved durability, inherent damping and simplicity of design. In order to improve the understanding of the physical behaviour of this fluid-based device, especially caused by the hydraulic resistance and inertial effects in the external tube, this work proposes a comprehensive model identification methodology. Firstly, a modelling procedure is established, which allows the topological arrangement of the mechanical networks to be obtained by mapping the damping, inertance and stiffness effects directly to their respective hydraulic counterparts. Secondly, an experimental sequence is followed, which separates the identification of friction, stiffness and various damping effects. Furthermore, an experimental set-up is introduced, where two pressure gauges are used to accurately measure the pressure drop across the external tube. The theoretical models with improved confidence are obtained using the proposed methodology for a helical-tube fluid inerter prototype. The sources of remaining discrepancies are further analysed.

  10. The Influence of Suspended Inert Solid Particles on Zinc Corrosion

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers

    1996-01-01

    The rate of corrosion of electroplated zinc in near-neutral chloride solutions can be lowered by as much as 75% by adding fine, inert particles of substances such as MnO2, Fe3O4, SiC and TiN to the well-stirred solution. Spreading of local areas of etching is also stopped. Copyright (C) 1996...

  11. Irradiation of inert matrix and mixed oxide fuel in the Halden test reactor

    International Nuclear Information System (INIS)

    Hellwig, Ch.; Kasemeyer, U.

    2001-01-01

    In a new type of fuel, called Inert Matrix Fuel (IMF), plutonium is embedded in a U-free matrix. This offers advantages for more efficient plutonium consumption, higher proliferation resistance, and for inert behaviour later in a waste repository. In the fuel type investigated at PSI, plutonium is dissolved in yttrium-stabilized zirconium oxide (YSZ), a highly radiation-resistant cubic phase, with addition of erbium as burnable poison for reactivity control. A first irradiation experiment of YSZ-based IMF is ongoing in the OECD Material Test Reactor in Halden (HBWR), together with MOX fuel (Rig IFA-651.1). The experiment is described herein and results are presented of the first 120 days of irradiation with an average assembly burnup of 47 kWd/cm 3 . The results are compared with neutronic calculations performed before the experiment, and are used to model the fuel behaviour with the PSI-modified TRANSURANUS code. The measured fuel temperatures are within the expected range. An unexpectedly strong densification of the IMF during the first irradiation cycle does not alter the fuel temperatures. An explanation for this behaviour is proposed. The irradiation at higher linear heat rates during forthcoming cycles will deliver information about the fission gas release behaviour of the IMF. (author)

  12. Irradiation of inert matrix and mixed oxide fuel in the Halden test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hellwig, Ch.; Kasemeyer, U

    2001-03-01

    In a new type of fuel, called Inert Matrix Fuel (IMF), plutonium is embedded in a U-free matrix. This offers advantages for more efficient plutonium consumption, higher proliferation resistance, and for inert behaviour later in a waste repository. In the fuel type investigated at PSI, plutonium is dissolved in yttrium-stabilized zirconium oxide (YSZ), a highly radiation-resistant cubic phase, with addition of erbium as burnable poison for reactivity control. A first irradiation experiment of YSZ-based IMF is ongoing in the OECD Material Test Reactor in Halden (HBWR), together with MOX fuel (Rig IFA-651.1). The experiment is described herein and results are presented of the first 120 days of irradiation with an average assembly burnup of 47 kWd/cm{sup 3}. The results are compared with neutronic calculations performed before the experiment, and are used to model the fuel behaviour with the PSI-modified TRANSURANUS code. The measured fuel temperatures are within the expected range. An unexpectedly strong densification of the IMF during the first irradiation cycle does not alter the fuel temperatures. An explanation for this behaviour is proposed. The irradiation at higher linear heat rates during forthcoming cycles will deliver information about the fission gas release behaviour of the IMF. (author)

  13. The Optimum Plutonium Inert Matrix Fuel Form for Reactor-Based Plutonium Disposition

    International Nuclear Information System (INIS)

    Tulenko, J.S.; Wang, J.; Acosta, C.

    2004-01-01

    The University of Florida has underway an ongoing research program to validate the economic, operational and performance benefits of developing an inert matrix fuel (IMF) for the disposition of the U.S. weapons plutonium (Pu) and for the recycle of reprocessed Pu. The current fuel form of choice for Pu disposition for the Department of Energy is as a mixed oxide (MOX) (PuO2/UO2). We will show analyses that demonstrate that a Silicon Carbide (SiC) IMF offers improved performance capabilities as a fuel form for Pu recycle and disposition. The reason that UF is reviewing various materials to serve as an inert matrix fuel is that an IMF fuel form can offer greatly reduced Pu and transuranic isotope (TRU) production and also improved thermal performance characteristics. Our studies showed that the Pu content is reduced by an order of magnitude while centerline fuel temperatures are reduced approximately 380 degrees centigrade compared to MOX. These reduced temperatures result in reduced stored heat and thermal stresses in the pellet. The reduced stored heat reduces the consequences of the loss of coolant accident, while the reduced temperatures and thermal stresses yield greatly improved fuel performance. Silicon Carbide is not new to the nuclear industry, being a basic fuel material in gas cooled reactors

  14. Status of the inert matrix fuel program at PSI

    International Nuclear Information System (INIS)

    Ledergerber, G.; Degueldre, C.; Kasemeyer, U.; Stanculescu, A.; Paratte, J.M.; Chawla, R.

    1997-01-01

    Incineration of plutonium by a once-through cycle in LWRs utilising an inert matrix based fuel may prove to be an attractive way of making use of the energy of fissile plutonium and reducing both the hazard potential and the volumes of the waste. Yttria stabilised zirconia forms a solid solution with oxides of rare earth elements (e.g. erbium, cerium) and some actinides. The small absorption cross section, the excellent stability under irradiation, and the insolubility in acids and water recommends this material as an inert matrix. Neutronics calculations with erbium as burnable poison show that these compositions would be optimal from the reactivity point of view. A fuel element with an improved reactivity behaviour over its life cycle has been designed for possible introduction into a heterogeneous LWR core. (author). 16 refs., 1 tab., 10 figs

  15. Gas Flow Validation with Panda Tests from the OECD SETH Benchmark Covering Steam/Air and Steam/Helium/Air Mixtures

    International Nuclear Information System (INIS)

    Royl, P.; Travis, J.R.; Breitung, W.; Kim, J.; Kim, S.B.

    2009-01-01

    The CFD code GASFLOW solves the time-dependent compressible Navier-Stokes Equations with multiple gas species. GASFLOW was developed for nonnuclear and nuclear applications. The major nuclear applications of GASFLOW are 3D analyses of steam/hydrogen distributions in complex PWR containment buildings to simulate scenarios of beyond design basis accidents. Validation of GASFLOW has been a continuously ongoing process together with the development of this code. This contribution reports the results from the open posttest GASFLOW calculations that have been performed for new experiments from the OECD SETH Benchmark. Discussed are the steam distribution tests 9 and 9 bis, 21 and 21 bis involving comparable sequences with and without steam condensation and the last SETH test 25 with steam/helium release and condensation. The latter one involves lighter gas mixture sources like they can result in real accidents. The helium is taken as simulant for hydrogen

  16. Passive and active vibration isolation systems using inerter

    Science.gov (United States)

    Alujević, N.; Čakmak, D.; Wolf, H.; Jokić, M.

    2018-03-01

    This paper presents a theoretical study on passive and active vibration isolation schemes using inerter elements in a two degree of freedom (DOF) mechanical system. The aim of the work is to discuss basic capabilities and limitations of the vibration control systems at hand using simple and physically transparent models. Broad frequency band dynamic excitation of the source DOF is assumed. The purpose of the isolator system is to prevent vibration transmission to the receiving DOF. The frequency averaged kinetic energy of the receiving mass is used as the metric for vibration isolation quality. It is shown that the use of inerter element in the passive vibration isolation scheme can enhance the isolation effect. In the active case, a feedback disturbance rejection scheme is considered. Here, the error signal is the receiving body absolute velocity which is directly fed to a reactive force actuator between the source and the receiving bodies. In such a scheme, the so-called subcritical vibration isolation problems exist. These problems are characterised by the uncoupled natural frequency of the receiving body larger than the uncoupled natural frequency of the source body. In subcritical vibration isolation problems, the performance of the active control is limited by poor stability margins. This is because the stable feedback gain is restricted in a narrow range between a minimum and a maximum. However, with the inclusion of an inerter in the isolator, one of the two stability margins can be opened. This enables large, theoretically unlimited negative feedback gains and large active damping of the receiving body vibration. A simple expression for the required inertance is derived.

  17. Preparation of mesoporous zirconia microspheres as inert matrix

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ting [State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China); Wang, Chen; Lv, Jinlong [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China)

    2016-12-01

    Mesoporous zirconia microspheres, with a diameter of 900 μm, were prepared as an inert accelerator driven system (ADS) transmutation element matrix by the sol-gel method. The purpose of mesopores is to improve the adsorption capacity of inert matrix fuel (IMF) for minor actinides. The study indicated that the mesoporous zirconia performance was improved after the microspheres were hydrothermally treated at 150 °C, the specific surface area increased from 28.29 m{sup 2}/g to 61.28 m{sup 2}/g, and hydrothermal treatment avoided the cracking of the microspheres. Pre-decomposition of the organics during the hydrothermal process stabilized the mesoporous structure. The average pore diameter of mesoporous microsphere was 14.3 nm. - Highlights: • Mesoporous zirconia microspheres with a diameter of 900 μm were prepared as ADS transmutation element inert matrix. • The mesoporous performance was improved after the microspheres were hydrothermally treated at 150 °C. • The specific surface area increased from 28.29 m{sup 2}/g to 61.28 m{sup 2}/g. • The hydrothermal treatment could avoid the cracking of the microspheres. • The specific surface area of mesoporous microsphere was 61.28 m{sup 2}/g and the average pore diameter was 14.3 nm.

  18. Sganzerla Cover

    Directory of Open Access Journals (Sweden)

    Victor da Rosa

    2014-06-01

    Full Text Available Neste artigo, realizo uma leitura do cinema de Rogério Sganzerla, desde o clássico O bandido da luz vermelha até os documentários filmados na década de oitenta, a partir de duas noções centrais: cover e over. Para isso, parto de uma controvérsia com o ensaio de Ismail Xavier, Alegorias do subdesenvolvimento, em que o crítico realiza uma leitura do cinema brasileiro da década de sessenta através do conceito de alegoria; depois releio uma série de textos críticos do próprio Sganzerla, publicados em Edifício Sganzerla, procurando repensar as ideias de “herói vazio” ou “cinema impuro” e sugerindo assim uma nova relação do seu cinema com o tempo e a representação; então busco articular tais ideias com certos procedimentos de vanguarda, como a falsificação, a cópia, o clichê e a colagem; e finalmente procuro mostrar que, no cinema de Sganzerla, a partir principalmente de suas reflexões sobre Orson Welles, a voz é usada de maneira a deformar a interpretação naturalista.

  19. Production of inert scalars at the high energy e+e− colliders

    International Nuclear Information System (INIS)

    Hashemi, Majid; Krawczyk, Maria; Najjari, Saereh; Żarnecki, Aleksander Filip

    2016-01-01

    We investigate the phenomenology of the light charged and neutral scalars in Inert Doublet Model at future e + e − colliders with center of mass energies of 0.5 and 1 TeV, and integrated luminosity of 500 fb −1 . The analysis covers two production processes, e + e − →H + H − and e + e − →AH, and consists of signal selections, cross section determinations as well as dark matter mass measurements. Several benchmark points are studied with focus on H ± →W ± H and A→ZH decays. It is concluded that the signal will be well observable in different final states allowing for mass determination of all new scalars with statistical precision of the order of few hundred MeV.

  20. Development of a radiochemical method for analyzing radon gas in uranium mine atmospheres: covering the period February 3, 1975--March 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Stein, L.; Shearer, J.A.; Hohorst, F.A.; Markun, F.

    1977-01-14

    A simplified radiochemical method has been developed for quantitatively analyzing radon gas in underground uranium mines. In this method, a measured volume of air is drawn by a pump through a drying tube and a cartridge containing dioxygenyl hexafluoroantimonate reagent. Radon is captured as a nonvolatile product. After radioactive equilibrium has been established between radon and its short-lived daughters (approximately 4 hours), the gamma-emission of the cartridge is measured with a scintillation counter. The amount of radon is then calculated from the gamma-emission rate. The effect of cartridge geometry, reagent load, and air flow rate upon collection efficiency and counting efficiency is reported.

  1. Development of a radiochemical method for analyzing radon gas in uranium mine atmospheres: covering the period February 3, 1975--March 31, 1976

    International Nuclear Information System (INIS)

    Stein, L.; Shearer, J.A.; Hohorst, F.A.; Markun, F.

    1977-01-01

    A simplified radiochemical method has been developed for quantitatively analyzing radon gas in underground uranium mines. In this method, a measured volume of air is drawn by a pump through a drying tube and a cartridge containing dioxygenyl hexafluoroantimonate reagent. Radon is captured as a nonvolatile product. After radioactive equilibrium has been established between radon and its short-lived daughters (approximately 4 hours), the gamma-emission of the cartridge is measured with a scintillation counter. The amount of radon is then calculated from the gamma-emission rate. The effect of cartridge geometry, reagent load, and air flow rate upon collection efficiency and counting efficiency is reported

  2. Defining the natural fracture network in a shale gas play and its cover succession: The case of the Utica Shale in eastern Canada

    Science.gov (United States)

    Ladevèze, P.; Séjourné, S.; Rivard, C.; Lavoie, D.; Lefebvre, R.; Rouleau, A.

    2018-03-01

    In the St. Lawrence sedimentary platform (eastern Canada), very little data are available between shallow fresh water aquifers and deep geological hydrocarbon reservoir units (here referred to as the intermediate zone). Characterization of this intermediate zone is crucial, as the latter controls aquifer vulnerability to operations carried out at depth. In this paper, the natural fracture networks in shallow aquifers and in the Utica shale gas reservoir are documented in an attempt to indirectly characterize the intermediate zone. This study used structural data from outcrops, shallow observation well logs and deep shale gas well logs to propose a conceptual model of the natural fracture network. Shallow and deep fractures were categorized into three sets of steeply-dipping fractures and into a set of bedding-parallel fractures. Some lithological and structural controls on fracture distribution were identified. The regional geologic history and similarities between the shallow and deep fracture datasets allowed the extrapolation of the fracture network characterization to the intermediate zone. This study thus highlights the benefits of using both datasets simultaneously, while they are generally interpreted separately. Recommendations are also proposed for future environmental assessment studies in which the existence of preferential flow pathways and potential upward fluid migration toward shallow aquifers need to be identified.

  3. Clamp and Gas Nozzle for TIG Welding

    Science.gov (United States)

    Gue, G. B.; Goller, H. L.

    1982-01-01

    Tool that combines clamp with gas nozzle is aid to tungsten/inert-gas (TIG) welding in hard-to-reach spots. Tool holds work to be welded while directing a stream of argon gas at weld joint, providing an oxygen-free environment for tungsten-arc welding.

  4. Cover gases in nuclear reactors with special reference to argon

    International Nuclear Information System (INIS)

    Jose, C.J.; Shah, G.C.; Prabhu, L.H.; Vartak, D.G.

    1975-01-01

    The report describes the specifications of an ideal cover gas for the smooth operation of a nuclear reactor. The advantages of using helium as cover gas, the sources of impurities in helium cover gas and the methods of purification of helium are given in detail. Various problems associated with the use of argon as cover gas and methods to purify and decontaminate argon cover gas are discussed on the basis of experimental data collected. A laboratory model of the system which can be used to evaluate the performance of the gas purification adsorbents is also described. (author)

  5. Development of Key-Enabling Technologies for a Variable-blend Natural Gas Vehicle

    Science.gov (United States)

    2017-12-01

    A portable, economic and reliable sensor for the Natural Gas (NG) fuel quality has been developed. Both Wobbe Index (WI) and Methane Indexes (MI) as well as inert gas content (inert%) of the NG fuel can be measured in real time within 5% accuracy. Th...

  6. An electromagnetic inerter-based vibration suppression device

    International Nuclear Information System (INIS)

    Gonzalez-Buelga, A; Clare, L R; Neild, S A; Jiang, J Z; Inman, D J

    2015-01-01

    This paper describes how an inerter-based device for structural vibration suppression can be realized using an electromagnetic transducer such as a linear motor. When the motor shaft moves, a difference of voltage is generated across the transducer coil. The voltage difference is proportional to the relative velocity between its two terminals. The electromagnetic transducer will exert a force proportional to current following the Lorentz principle if the circuit is closed around the transducer coil. If an electronic circuit consisting of a capacitor, an inductance and a resistance with the appropriate configuration is connected, the resulting force reflected back into the mechanical domain is equivalent to that achieved by a mechanical inerter-based device. The proposed configuration is easy to implement and very versatile, provided a high quality conversion system with negligible losses. With the use of electromagnetic devices, a new generation of vibration absorbers can be realized, for example in the electrical domain it would be relatively uncomplicated to synthesize multi-frequency or real time tunable vibration absorbers by adding electrical components in parallel. In addition by using resistance emulators in the electrical circuits, part of the absorbed vibration energy can be converted into usable power. Here an electromagnetic tuned inerter damper (E-TID) is tested experimentally using real time dynamic substructuring. A voltage compensation unit was developed in order to compensate for coil losses. This voltage compensation unit requires power, which is acquired through harvesting from the vibration energy using a resistance emulator. A power balance analysis was developed in order to ensure the device can be self sufficient. Promising experimental results, using this approach, have been obtained and are presented in this paper. The ultimate goal of this research is the development of autonomous electromagnetic vibration absorbers, able to harvest energy

  7. Nucleosynthesis confronts an unstable inert 17 keV state

    International Nuclear Information System (INIS)

    Enqvist, K.; Kainulainen, K.; Thomson, M.

    1991-01-01

    We study the cosmological consequences of an inert 17 keV state mixing with the electron neutrino. We find that the nucleosynthesis upper bound on the primordial helium abundance prohibits the existence of such a state, unless its lifetime falls into the range 6x10 -4 s vac -2 s. In this range the decay occurs after the chemical decoupling of the electron neutrinos and before the beginning of the nucleosynthesis, with the result that the predicted helium abundance can be lower than what it would be in the standard scenario. (orig.)

  8. Electrolytic 99TcO4- reduction at inert electrodes

    International Nuclear Information System (INIS)

    Kremer, C.; Gambino, D.; Leon, A.; Kremer, E.

    1990-01-01

    Electrolytic pertechnetate reduction at inert electrodes was studied as an alternative procedure for synthesizing Tc complexes. Pertechnetate reduction was carried out in aqueous media using different aminated ligands (en, dien, trien and 1,3-dap) forming [TcO 2 (amine) 2 ] + type complexes. Simultaneously with synthesis of the desired Tc complex, TcO 2 was electrodeposited onto the cathode. Conversion of TcO 4 - to Tc complex and TcO 2 was studied as a function of several variables (kind and concentration of supporting electrolyte, ligand concentration, pH, current and electrolysis time). (author) 9 refs.; 6 figs.; 1 tab

  9. Separation of Nuclear Fuel Surrogates from Silicon Carbide Inert Matrix

    International Nuclear Information System (INIS)

    Baney, Ronald

    2008-01-01

    The objective of this project has been to identify a process for separating transuranic species from silicon carbide (SiC). Silicon carbide has become one of the prime candidates for the matrix in inert matrix fuels, (IMF) being designed to reduce plutonium inventories and the long half-lives actinides through transmutation since complete reaction is not practical it become necessary to separate the non-transmuted materials from the silicon carbide matrix for ultimate reprocessing. This work reports a method for that required process

  10. Vector boson fusion in the inert doublet model

    Science.gov (United States)

    Dutta, Bhaskar; Palacio, Guillermo; Restrepo, Diego; Ruiz-Álvarez, José D.

    2018-03-01

    In this paper we probe the inert Higgs doublet model at the LHC using vector boson fusion (VBF) search strategy. We optimize the selection cuts and investigate the parameter space of the model and we show that the VBF search has a better reach when compared with the monojet searches. We also investigate the Drell-Yan type cuts and show that they can be important for smaller charged Higgs masses. We determine the 3 σ reach for the parameter space using these optimized cuts for a luminosity of 3000 fb-1 .

  11. Re-derived overclosure bound for the inert doublet model

    Science.gov (United States)

    Biondini, S.; Laine, M.

    2017-08-01

    We apply a formalism accounting for thermal effects (such as modified Sommerfeld effect; Salpeter correction; decohering scatterings; dissociation of bound states), to one of the simplest WIMP-like dark matter models, associated with an "inert" Higgs doublet. A broad temperature range T ˜ M/20 . . . M/104 is considered, stressing the importance and less-understood nature of late annihilation stages. Even though only weak interactions play a role, we find that resummed real and virtual corrections increase the tree-level overclosure bound by 1 . . . 18%, depending on quartic couplings and mass splittings.

  12. Triheterometallic Lanthanide Complexes Prepared from Kinetically Inert Lanthanide Building Blocks

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Tropiano, Manuel; Kenwright, Alan M.

    2017-01-01

    Three molecular structures, each containing three different lanthanide(III) centres, have been prepared by coupling three kinetically inert lanthanide(III) complexes in an Ugi reaction. These 2 kDa molecules were purified by dialysis and characterised by NMR and luminescence techniques. The photo...... and lanthanide(III) centres in these molecules inhibits the efficient sensitisation of europium. We conclude that the intramolecular collisions required for efficient Dexter energy transfer from the sensitiser to the lanthanide(III) centre can be prevented by steric congestion....

  13. Dissimilar steel welding and overlay covering with nickel based alloys using SWAM (Shielded Metal Arc Welding) and GTAW (Gas Tungsten Arc Welding) processes in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Arce Chilque, Angel Rafael [Centro Tecnico de Engenharia e Inovacao Empresarial Ltda., Belo Horizonte, MG (Brazil); Bracarense, Alexander Queiroz; Lima, Luciana Iglesias Lourenco [Federal University of Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Quinan, Marco Antonio Dutra; Schvartzman, Monica Maria de Abreu Mendonca [Nuclear Technology Development Centre (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Marconi, Guilherme [Federal Center of Technological Education (CEFET-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    This work presents the welding of dissimilar ferritic steel type A508 class 3 and austenitic stainless steel type AISI 316 L using Inconel{sup R} 600 (A182 and A82) and overlay covering with Inconel{sup R} 690 (A52) as filler metal. Dissimilar welds with these materials without defects and weldability problems such as hot, cold, reheat cracking and Ductility Dip Crack were obtained. Comparables mechanical properties to those of the base metal were found and signalized the efficiency of the welding procedure and thermal treatment selected and used. This study evidences the importance of meeting compromised properties between heat affected zone of the ferritic steel and the others regions presents in the dissimilar joint, to elaborate the dissimilar metal welding procedure specification and weld overlay. Metallographic studies with optical microscopy and Vickers microhardness were carried out to justified and support the results, showing the efficiency of the technique of elaboration of dissimilar metal welding procedure and overlay. The results are comparables and coherent with the results found by others. Some alternatives of welding procedures are proposed to attain the efficacy. Further studies are proposed like as metallographic studies of the fine microstructure, making use, for example, of scanning electron microscope (SEM adapted with an EDS) to explain looking to increase the resistance to primary water stress corrosion (PWSCC) in nuclear equipment. (author)

  14. A technique for measuring hydrogen and water in inert gases and the hydrogen concentration in liquid sodium

    International Nuclear Information System (INIS)

    Smith, C.A.

    1978-04-01

    A method is described of measuring the hydrogen and water content of an inert gas. It is based upon the use of an electrochemical oxygen cell and has a high sensitivity at low hydrogen and water levels. The following possible applications of the method are described together with supporting experimental measurements: improving the sensitivity and range of the present PFR secondary circuit hydrogen detection instruments; the measurement of hydrogen diffusion coefficients in steels; the measurement of waterside corrosion rates of boiler steels; on-line monitoring of waterside boiler corrosion. Attention is given to the characteristics of diffusion barriers in relation to the first and last of these. (author)

  15. Climatic, biological, and land cover controls on the exchange of gas-phase semivolatile chemical pollutants between forest canopies and the atmosphere.

    Science.gov (United States)

    Nizzetto, Luca; Perlinger, Judith A

    2012-03-06

    An ecophysiological model of a structured broadleaved forest canopy was coupled to a chemical fate model of the air-canopy exchange of gaseous semivolatile chemicals to dynamically assess the short-term (hours) and medium term (days to season) air-canopy exchange and the influence of biological, climatic, and land cover drivers on the dynamics of the air-canopy exchange and on the canopy storage for airborne semivolatile pollutants. The chemical fate model accounts for effects of short-term variations in air temperature, wind speed, stomatal opening, and leaf energy balance, all as a function of layer in the canopy. Simulations showed the potential occurrence of intense short/medium term re-emission of pollutants having log K(OA) up to 10.7 from the canopy as a result of environmental forcing. In addition, relatively small interannual variations in seasonally averaged air temperature, canopy biomass, and precipitation can produce relevant changes in the canopy storage capacity for the chemicals. It was estimated that possible climate change related variability in environmental parameters (e.g., an increase of 2 °C in seasonally averaged air temperature in combination with a 10% reduction in canopy biomass due to, e.g., disturbance or acclimatization) may cause a reduction in canopy storage capacity of up to 15-25%, favoring re-emission and potential for long-range atmospheric transport. On the other hand, an increase of 300% in yearly precipitation can increase canopy sequestration by 2-7% for the less hydrophobic compounds.

  16. Plutonium fuel lattice neutron behavior in inert matrix

    International Nuclear Information System (INIS)

    Hernandez L, H.; Lucatero, M. A.

    2010-10-01

    In several countries is had been researching the possibility of using plutonium, as weapon degree as reactor degree, as fuel material in commercial reactors to generate electricity. In special a great development has been in Pressure Water Reactors. However, in Mexico the reactors are Boiling Water Reactors type, reason for which the necessity to considers feasibility to use this fuel type in the reactors of nuclear power plant of Laguna Verde. For this propose a comparison of fuel lattice that compose a fuel assembly is made. The fuel assembly will propose to be used whit in the reactor present different inert matrix, as well as burnable poison. The material that compose the inert matrices used are cerium and zirconia (CeO 2 and ZrO 2 ) and as burnable poisons have gadolinium and erbium (Gd 2 O 4 and ErO 2 ). As far as the hydraulic design used is a cell 10 X 10 with two water channels. The lattice calculations are made with the Helios code a library with 35 energy groups, having determined the pin power factors, the infinite multiplication factor and the neutron flux profiles. (Author)

  17. Experimental study of the thermal conductivity coefficients of Cesium and Mercury vapours and inert gases

    International Nuclear Information System (INIS)

    Zarkova, L.P.

    1976-01-01

    A general-purpose experimental setup is made to measure thermal conductivity coefficients lambda of inert gases and metal vapours in the range 1000-2500 K by means of the differential method. The setup can also be used to measure lambda of plasmas and reacting gases as well as the dependence of lambda on magnetic fields. A simple and reliable procedure to determine the filament temperature using values of the measured current and wire diameter is suggested. The influence of different factors such as the temperature jump at the boundary gas-filament, convective heat transfer, thermal expansion, excentricity and cold ends of filament on the measured values of the thermal conductivity is considered in details. A formula is deduced to calculate the temperature jump correction taking into account the dependence of the mean free path on the temperature. Expressions are also given to calculate the corrections for thermal expansion, eccentricity and cold ends of the filament. Thermal conductivity coefficients of inert gases are measured to check the method: Ne in the range 1100-2200 K, Ar in the range 1000-2200 K, Kr in the range 1300-2300 K and Xe in the range 1100-2200 K. The data for Ne and Xe in the range 1500 to 2200 K and for Kr at T=2000-2300 K are original. The thermal conductivity coefficient of monoatomic mercury vapour is measured in the range 1000-2300 K with 3% error. The thermal conductivity coefficient of monoatomic cesium vapour is also measured in the range 1000-1600 K with 4% error. (I.P.)

  18. Combustión de mezclas ricas de etano-aire en medios porosos inertes Combustion of rich ethane-air mixtures in inert porous media

    Directory of Open Access Journals (Sweden)

    Khriscia Utria S

    2013-04-01

    Full Text Available El presente trabajo tiene por objetivo analizar teórica-experimentalmente la combustión de mezclas ricas de etano-aire en medios porosos inertes (MPI para evaluar la producción de hidrógeno y gas de síntesis. Se analizan los perfiles de temperatura, las velocidades de propagación de llama y los productos principales de la combustión, como son el hidrógeno (H2 y el monóxido de carbono (CO, mediante el uso de cromatografía gaseosa, para relaciones de equivalencia en el rango de 1,0 a 2,5 y dos diámetros de esferas de alúmina que componen el medio poroso. Se simula numéricamente el proceso de combustión mediante el uso del programa PREMIX utilizando dos mecanismos de reacción, como son el GRI-MECH 1.2 y GRI-MECH 3.0. Con GRI-MECH 3.0 se obtienen resultados numéricos que predicen correctamente los resultados experimentales para todo el rango de relaciones de equivalencia con un medio poroso compuesto por esferas de alúmina de 3,5 mm. La máxima generación de hidrógeno H2 y CO presentes en los productos de combustión son de 14,3% y 18,0%, respectivamente. El porcentaje de conversión de etano en H2 (61,3% y en CO (81% muestra el potencial de este combustible como generador de gas de síntesis.This research develops the theoretical and experimental analysis of ethane-air combustion in inert porous media (IPM to evaluate hydrogen and syngas production. Temperature profiles, flame propagation rates and major combustion products such as hydrogen (H2 and carbon monoxide (CO, through gas chromatography, are analysed at a range of equivalence ratios between 1.0 and 2.5, with two different alumina sphere diameters composing the porous media. Combustion of ethane-air mixture in IPM is simulated numerically using the PREMIX program with two reaction mechanisms, such as GRI-MECH 1.2 and GRI-MECH 3.0. GRI-MECH 3.0 numerical results predict correctly experimental results for a porous media with 3.5 mm alumina spheres along the range of

  19. Performances of continuous dryer with inert medium fluidized bed

    Directory of Open Access Journals (Sweden)

    Arsenijević Zorana Lj.

    2008-01-01

    Full Text Available A fluid bed dryer with inert particles represents a very attractive alternative to other drying technologies according to the main efficiency criteria, i.e. specific water evaporation rate, specific heat consumption and speci­fic air consumption. A high drying efficiency results from the large con­tact area and from the large temperature difference between the inlet and outlet air. A rapid mixing of the particles leads to nearly isothermal conditions throughout the bed. A fluid bed dryer with inert particles was used for drying of slurries. Experiments were performed in a cylindrical column 215 mm in diameter with glass spheres as inert particles. In this paper, results of drying experi­ments with slurries of Zineb fungicide, copper hydroxide, calcium carbo­nate and pure water used as the feed material are presented. In our fluidized bed we successfully dried a number of other materials such as: fungicides and pesticides (Ziram, Propineb, Mangozeb, copper oxy-chloride, copper oxy-sulphate, Bordeaux mixture, other inorganic compounds (calcium sulphate, cobalt carbonate, electrolytic copper, sodium chloride, and a complex compound (organo-bentonite. The effects of operating conditions on dryer throughput and product quality were investigated. Main performance criteria, i.e. specific water evaporation rate, specific heat consumption and specific air consumption, were quantified. Temperature profile along the bed was mapped, and nearly isothermal conditions were found due to thorough mixing of the particles. Analysis of drying and energy efficiencies as a function of inlet and outlet air temperature difference was performed for deeper insight in dryer behavior and for optimizing dryer design and operation from an energy point of view. A simple mathematical model based on an overall heat balance predicts the dryer performance quite well. The industrial prototype with fluid bed of 0.8 m in diameter and capacity 650 kg of evaporated moisture per

  20. Gas replacement system for fuel cell. Nenryo denchi no gas chikan hoshiki

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, T

    1990-02-14

    When stopping the operation of a fuel cell, the gas in the reaction gas system is purged using such an inert gas as nitrogen for inactivation. A gas source such as inert gas bomb must be prepared beforehand for the purpose. This invention relates to a method of production of inert gas from the air collected from atmosphere to use it as the purge gas. The air collected from the atmosphere is passed through an oxygen remover filled with oxidation catalyst to remove oxygen, and dehumidified by a dehumidifier filled with drying agent, the obtained inert drying gas with nitrogen as the main constituent being used as the purge gas. Copper system catalyst supported by silica is used as the oxidation catalyst, and silica gel as the drying agent. After the operation of the fuel cell is re-started, a part of the high temperature fuel gas extracted from the reaction gas system is introduced to the oxygen remover for the reduction of oxidation catalyst and for heat regeneration of dehumidifying agent by the contained hydrogen. 1 fig.

  1. Self-Flammability of Gases Generated by Hanford Tank Waste and the Potential of Nitrogen Inerting to Eliminate Flammability Safety Concerns

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Lenna A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-12

    Through radiolytic and thermolytic reactions, Hanford tank wastes generate and retain a variety of gases, including hydrogen, nitrous oxide, methane (and other hydrocarbons), ammonia, and nitrogen. This gas generation can be expected to continue during processing in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The generation rates in the WTP will change from those for the in-situ tank waste because of different process temperatures, different dose rates produced by in-process changes in the proportions of solid and liquid, and dilution of the waste liquid. The flammability of the generated gas that is continuously released, and of any retained gas that might be released into a vessel headspace in quantity due to a spontaneous release, depends on the concentrations not only of the fuel gases—primarily hydrogen (H2), methane, other hydrocarbons, and ammonia—but of the oxidizer nitrous oxide (N2O). As a result of high concentrations of N2O, some gas mixtures are “self-flammable” (i.e., ignition can occur when no air is present because N2O provides the only oxidizer needed). Self-flammability could potentially reduce the effectiveness of using a nitrogen (N2) purge in the headspace as a flammability control, if its effects are not accounted for. A given amount of inertant gas (N2) can accommodate only a certain amount of a generated self-flammable gas before the mixture with inertant gas becomes flammable.

  2. Thermal degradation of CR-39 polymer in an inert atmosphere

    International Nuclear Information System (INIS)

    Kalsi, P.C.; Pandey, A.K.; Iyer, R.H.; Singh Mudher, K.D.

    1995-01-01

    The thermal degradation of CR-39 (allyl diglycol carbonate), a polymer widely used in nuclear science and technology, in an inert atmosphere has been studied using thermogravimetric analysis (TGA) and differential thermal analysis (DTA) techniques. The results are compared with the thermal degradation data of the polymer in an air atmosphere. The present studies showed that the thermal degradation of the polymer proceeds in two steps in an argon atmosphere as compared to three steps in air atmosphere. The mass losses in air are higher than that in argon due to the oxidative decomposition of the residue. The kinetics of the different stages of degradation were also evaluated from the TG curves. (author). 7 refs., 1 tab

  3. Wigner's infinite spin representations and inert matter

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [CBPF, Rio de Janeiro (Brazil); Institut fuer Theoretische Physik FU-Berlin, Berlin (Germany)

    2017-06-15

    Positive energy ray representations of the Poincare group are naturally subdivided into three classes according to their mass and spin content: m > 0, m = 0 finite helicity and m = 0 infinite spin. For a long time the localization properties of the massless infinite spin class remained unknown, until it became clear that such matter does not permit compact spacetime localization and its generating covariant fields are localized on semi-infinite space-like strings. Using a new perturbation theory for higher spin fields we present arguments which support the idea that infinite spin matter cannot interact with normal matter and we formulate conditions under which this also could happen for finite spin s > 1 fields. This raises the question of a possible connection between inert matter and dark matter. (orig.)

  4. Muon implantation in inert gases studied by radio frequency spectroscopy

    International Nuclear Information System (INIS)

    Johnson, C; Cottrell, S P; Ghandi, K; Fleming, D G

    2005-01-01

    Diamagnetic and muonium (Mu) fractions formed in low-pressure inert gases, by energetic muon implantation, have been studied using the technique of time-delayed radio frequency muon spin resonance (RF-μSR). Results obtained establish the validity of the long-held view that formation of these species is due only to prompt processes, and in turn confirms that the diamagnetic environment is due to a muon molecular ion, MMu + , and not a bare μ + . In addition, polarization fractions for the diamagnetic and Mu environments have been determined at different pressures, thereby complementing earlier data, and demonstrating that the RF-μSR technique provides polarization fractions in good accord with those obtained using conventional transverse-field muon spin resonance measurements

  5. Muon implantation in inert gases studied by radio frequency spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C [ISIS Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom); Cottrell, S P [ISIS Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom); Ghandi, K [TRIUMF and Department of Chemistry, University of British Columbia, Vancouver (Canada); Fleming, D G [TRIUMF and Department of Chemistry, University of British Columbia, Vancouver (Canada)

    2005-01-14

    Diamagnetic and muonium (Mu) fractions formed in low-pressure inert gases, by energetic muon implantation, have been studied using the technique of time-delayed radio frequency muon spin resonance (RF-{mu}SR). Results obtained establish the validity of the long-held view that formation of these species is due only to prompt processes, and in turn confirms that the diamagnetic environment is due to a muon molecular ion, MMu{sup +}, and not a bare {mu}{sup +}. In addition, polarization fractions for the diamagnetic and Mu environments have been determined at different pressures, thereby complementing earlier data, and demonstrating that the RF-{mu}SR technique provides polarization fractions in good accord with those obtained using conventional transverse-field muon spin resonance measurements.

  6. Water fog inerting of hydrogen-air mixtures

    International Nuclear Information System (INIS)

    Zalosh, R.G.; Bajpai, S.N.

    1982-01-01

    Laboratory tests have been conducted to determine the effects of water fog density, droplet diameter and temperature on the lower flammable limit (LFL) of hydrogen-air-steam mixtures. Five different fog nozzles were used to generate dense fogs with volume mean drop diameters ranging from 20 micro-meters to 115 micro-meters. At 20 0 C, these nozzles marginally raised the hydrogen LFL from 4.0 vol.% hydrogen to typically 4.8%, with one exceptional nozzle producing an LFL of 7.2%. At 50 0 C, the LFL in the presence of dense fog ranged from 5.0 to 7.9%, while at 70 0 C, the range was 5.9 to 8.5%. Fog densities required to achieve a given level of partial inerting increased with approximately the second power of average drop diameter, as predicted by a theoretical flame quenching analysis

  7. Inert matrix fuel in dispersion type fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Savchenko, A.M. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation)]. E-mail: sav@bochvar.ru; Vatulin, A.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Morozov, A.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Sirotin, V.L. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Dobrikova, I.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Kulakov, G.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Ershov, S.A. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Kostomarov, V.P. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Stelyuk, Y.I. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation)

    2006-06-30

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg{sup -1} (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  8. Inert matrix fuel in dispersion type fuel elements

    Science.gov (United States)

    Savchenko, A. M.; Vatulin, A. V.; Morozov, A. V.; Sirotin, V. L.; Dobrikova, I. V.; Kulakov, G. V.; Ershov, S. A.; Kostomarov, V. P.; Stelyuk, Y. I.

    2006-06-01

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg-1 (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  9. Improved Assembly for Gas Shielding During Welding or Brazing

    Science.gov (United States)

    Gradl, Paul; Baker, Kevin; Weeks, Jack

    2009-01-01

    An improved assembly for inert-gas shielding of a metallic joint is designed to be useable during any of a variety of both laser-based and traditional welding and brazing processes. The basic purpose of this assembly or of a typical prior related assembly is to channel the flow of a chemically inert gas to a joint to prevent environmental contamination of the joint during the welding or brazing process and, if required, to accelerate cooling upon completion of the process.

  10. Radioactive gas storage device

    International Nuclear Information System (INIS)

    Sano, Yuji.

    1988-01-01

    Purpose: To easily and reliably detect the consumption of a sputtered cathode in a radioactive gas storage device using ion injection method. Constitution: Inert gases are sealed to the inside of a cathode. As the device is operated, the cathode is consumed and, if it is scraped to some extent, inert gases in the cathode gases are blown out to increase the inner pressure of the device. The pressure elevation is detected by a pressure detector connected with a gas introduction pipe or discharge pipe. Further, since the discharge current in the inside is increased along with the elevation of the pressure, it is possible to detect the increase of the electrical current. In this way, the consumption of the cathode can be recognized by detecting the elevation in the pressure or increase in the current. (Ikeda, J.)

  11. Land Cover - Minnesota Land Cover Classification System

    Data.gov (United States)

    Minnesota Department of Natural Resources — Land cover data set based on the Minnesota Land Cover Classification System (MLCCS) coding scheme. This data was produced using a combination of aerial photograph...

  12. Natural gas marketing II

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book covers all aspects of gas marketing, from the basic regulatory structure to the latest developments in negotiating agreements and locating markets. Topics include: Federal regulation of the gas industry; Fundamentals of gas marketing contracts; FERC actions encouraging competitive markets; Marketing conditions from the pipelines' perspective; State non-utility regulation of natural gas production, transportation, and marketing; Natural gas wellhead agreements and tariffs; Natural gas processing agreements; Effective management of producer's natural gas contracts; Producer-pipeline litigation; Natural gas purchasing from the perspective of industrial gas users; Gas marketing by co-owners: problems of disproportionate sales, gas balancing, and accounting to royalty owners; Alternatives and new directions in marketing

  13. Fabrication of inert matrices for heterogeneous transmutation. EFTTRA-T2 (RAS 2) irradiation programme

    International Nuclear Information System (INIS)

    Boshoven, J.G.; Hein, H.; Konings, R.J.M.

    1996-07-01

    This report describes the fabrication of targets containing inert matrices for the heterogeneous transmutation of plutonium and minor actinides. These targets will be irradiated in the EFTTRA-T2 (RAS-2) irradiation programme. The selection, preparation and characterization of the inert matrices and fabrication and loading of the irradiation capsules are discussed. (orig.)

  14. Endotracheal tube resistance and inertance in a model of mechanical ventilation of newborns and small infants—the impact of ventilator settings on tracheal pressure swings

    International Nuclear Information System (INIS)

    Hentschel, Roland; Buntzel, Julia; Guttmann, Josef; Schumann, Stefan

    2011-01-01

    Resistive properties of endotracheal tubes (ETTs) are particularly relevant in newborns and small infants who are generally ventilated through ETTs with a small inner diameter. The ventilation rate is also high and the inspiratory time (ti) is short. These conditions effectuate high airway flows with excessive flow acceleration, so airway resistance and inertance play an important role. We carried out a model study to investigate the impact of varying ETT size, lung compliance and ventilator settings, such as peak inspiratory pressure (PIP), positive end expiratory pressure (PEEP) and inspiratory time (ti) on the pressure–flow characteristics with respect to the resistive and inertive properties of the ETT. Pressure at the Y piece was compared to direct measurement of intratracheal pressure (P trach ) at the tip of the ETT, and pressure drop (ΔP ETT ) was calculated. Applying published tube coefficients (Rohrer's constants and inertance), P trach was calculated from ventilator readings and compared to measured P trach using the root-mean-square error. The most relevant for ΔP ETT was the ETT size, followed by (in descending order) PIP, compliance, ti and PEEP, with gas flow velocity being the principle in common for all these parameters. Depending on the ventilator settings ΔP ETT exceeded 8 mbar in the smallest 2.0 mm ETT. Consideration of inertance as an additional effect in this setting yielded a better agreement of calculated versus measured P trach than Rohrer's constants alone. We speculate that exact tracheal pressure tracings calculated from ventilator readings by applying Rohrer's equation and the inertance determination to small size ETTs would be helpful. As an integral part of ventilator software this would (1) allow an estimate of work of breathing and implementation of an automatic tube compensation, and (2) be important for gentle ventilation in respiratory care, especially of small infants, since it enables the physician to

  15. One-loop contributions to neutral minima in the inert doublet model

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, P.M. [Instituto Superior de Engenharia de Lisboa - ISEL,1959-007 Lisboa (Portugal); Centro de Física Teórica e Computacional - FCUL,Universidade de Lisboa, R. Ernesto de Vasconcelos, 1749-016 Lisboa (Portugal); Świeżewska, Bogumiła [Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warsaw (Poland)

    2016-04-15

    The vacuum structure of the inert doublet model is analysed at the one-loop level using the effective potential formalism, to verify the validity of tree-level predictions for the properties of the global minimum. An inert minimum (with massive fermions) and an inert-like minimum (with massless fermions) can coexist at tree level. But the one-loop analysis reveals that the allowed parameter space for the coexistence of more than one minimum is larger than the tree-level expected one. It is also shown that for some choices of parameters, the global minimum found at the one-loop level may be inert (or inert-like), contrary to what the tree-level analysis indicates.

  16. Reduction of impurity contamination in a working gas for closed-cycle MHD power generation

    International Nuclear Information System (INIS)

    Endo, N.; Yoshikawa, K.; Shioda, S.

    1989-01-01

    The reduction of impurity contamination in a working inert gas for closed-cycle MHD power generation is examined. A conceptual operation system of regenerative heat exchangers is proposed for minimizing the amount of combustion gas which mixes in the working inert gas. Experiments have shown that this mixing can be reduced significantly by evacuating and flushing the heat exchangers after being heated by combustion gas. Calculations have shown that, among the main molecular contaminants in the working inert gas, CO 2 , H 2 O and O 2 can be removed as compounds with the seed material, while N 2 and H 2 can be reduced by a partial purification of the circulating working inert gas. (author)

  17. Methane fluxes during the cold season: distribution and mass transfer in the snow cover of bogs

    Science.gov (United States)

    Smagin, A. V.; Shnyrev, N. A.

    2015-08-01

    Fluxes and profile distribution of methane in the snow cover and different landscape elements of an oligotrophic West-Siberian bog (Mukhrino Research Station, Khanty-Mansiisk autonomous district) have been studied during a cold season. Simple models have been proposed for the description of methane distribution in the inert snow layer, which combine the transport of the gas and a source of constant intensity on the soil surface. The formation rates of stationary methane profiles in the snow cover have been estimated (characteristic time of 24 h). Theoretical equations have been derived for the calculation of small emission fluxes from bogs to the atmosphere on the basis of the stationary profile distribution parameters, the snow porosity, and the effective methane diffusion coefficient in the snow layer. The calculated values of methane emission significantly (by 2-3 to several tens of times) have exceeded the values measured under field conditions by the closed chamber method (0.008-0.25 mg C/(m2 h)), which indicates the possibility of underestimating the contribution of the cold period to the annual emission cycle of bog methane.

  18. Theories of fission gas behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Dias, J W.C. [Companhia Brasileira de Tecnologia Nuclear, Rio de Janeiro (Brazil). Diretoria de Tecnologia e Desenvolvimento; Merckx, K R

    1976-01-01

    A review is presented of the theoretical developments and experimental evidence that have helped to evolve current models used to describe the behavior of inert fission gases created during the irradiation of reactor fuel materials. The phenomena which are stressed relate primarily to steady state behavior of fuel elements but are also relevant to an understanding of transient behavior. The processes considered include gas atom solubility; gas atom diffusivity; bubble nucleation; and bubble growth by bubble coalescence.

  19. Behavioural response of Phytoseiulus persimilisin inert materials for technical application.

    Science.gov (United States)

    Wendorf, Dennis; Sermann, Helga; Katz, Peter; Lerche, Sandra; Büttner, Carmen

    2009-01-01

    A large scale application of the predatory mite Phytoseiulus persimilis Athias-Henriot for use in the biological control of spider mites in the field requires testing the behaviour of Phytoseiulus persimilis in inert materials, like millet pelts and Vermiculite (1-3 mm). In laboratory studies, the distribution of the individuals in such materials, the time of remaining in the material were proved. To examine the abiotic influences on the time of remaining in the material, the dampness of the materials was varied (0%, 5% and 10%). Moreover, the influence of attitude of materials was tested. The time of emigration from the material was noted for each individual. Emigration from all dry materials was completed 15 minutes at the latest after set up of the mites. The increase of dampness had an obvious effect on the time of remaining in the material. In this respect the material millet pelts showed the most favourable effect with 10% dampness. Increasing attitude of material the mobility of predatory mites will be influenced negatively above 75 cm. Up to 50 cm, mites have not a problem to move in the material and the time of remaining can be prolonged considerably.

  20. Inert annealing of irradiated graphite by inductive heating

    International Nuclear Information System (INIS)

    Botzem, W.; Woerner, J.

    2001-01-01

    Fission neutrons change physical properties of graphite being used in nuclear reactors as moderator and as structural material. The understanding of these effects on an atomic model is expressed by dislocations of carbon atoms within the graphite and the thereby stored energy is known as Wigner Energy. The dismantling of the Pile 1 core may necessitate the thermal treatment of the irradiated but otherwise undamaged graphite. This heat treatment - usually called annealing - initiates the release of stored Wigner Energy in a controlled manner. This energy could otherwise give rise to an increase in temperature under certain conditions during transport or preparation for final storage. In order to prevent such an effect it is intended to anneal the major part of Pile 1 graphite before it is packed into boxes suitable for final disposal. Different heating techniques have been assessed. Inductive heating in an inert atmosphere was selected for installation in the Pile 1 Waste Processing Facility built for the treatment and packaging of the dismantled Pile 1 waste. The graphite blocks will be heated up to 250 deg. C in the annealing ovens, which results in the release of significant amount of the stored energy. External heat sources in a final repository will never heat up the storage boxes to such a temperature. (author)

  1. Investigation of materials for inert electrodes in aluminum electrodeposition cells

    Energy Technology Data Exchange (ETDEWEB)

    Haggerty, J. S.; Sadoway, D. R.

    1987-09-14

    Work was divided into major efforts. The first was the growth and characterization of specimens; the second was Hall cell performance testing. Cathode and anode materials were the subject of investigation. Preparation of specimens included growth of single crystals and synthesis of ultra high purity powders. Special attention was paid to ferrites as they were considered to be the most promising anode materials. Ferrite anode corrosion rates were studied and the electrical conductivities of a set of copper-manganese ferrites were measured. Float Zone, Pendant Drop Cryolite Experiments were undertaken because unsatisfactory choices of candidate materials were being made on the basis of a flawed set of selection criteria applied to an incomplete and sometimes inaccurate data base. This experiment was then constructed to determine whether the apparatus used for float zone crystal growth could be adapted to make a variety of important based melts and their interactions with candidate inert anode materials. The third major topic was Non Consumable Anode (Data Base, Candidate Compositions), driven by our perception that the basis for prior selection of candidate materials was inadequate. Results are presented. 162 refs., 39 figs., 18 tabs.

  2. Network synthesis and parameter optimization for vehicle suspension with inerter

    Directory of Open Access Journals (Sweden)

    Long Chen

    2016-12-01

    Full Text Available In order to design a comfortable-oriented vehicle suspension structure, the network synthesis method was utilized to transfer the problem into solving a timing robust control problem and determine the structure of “inerter–spring–damper” suspension. Bilinear Matrix Inequality was utilized to obtain the timing transfer function. Then, the transfer function of suspension system can be physically implemented by passive elements such as spring, damper, and inerter. By analyzing the sensitivity and quantum genetic algorithm, the optimized parameters of inerter–spring–damper suspension were determined. A quarter-car model was established. The performance of the inerter–spring–damper suspension was verified under random input. The simulation results manifested that the dynamic performance of the proposed suspension was enhanced in contrast with traditional suspension. The root mean square of vehicle body acceleration decreases by 18.9%. The inerter–spring–damper suspension can inhibit the vertical vibration within the frequency of 1–3 Hz effectively and enhance the performance of ride comfort significantly.

  3. Thermal Analysis of Solid Fuels in an Inert Atmosphere

    Science.gov (United States)

    Kijo-Kleczkowska, Agnieszka; Szumera, Magdalena; Środa, Katarzyna

    2017-12-01

    The paper takes the analysis of thermal studies of different types of fuels. It allowed diversification of fuels depending on their composition and origin. Consideration of coal, biomass and waste (coal mule, sewage sludge) as fuel is nowadays an important aspect of energy in our country. It should be emphasized that Poland power engineering is based up to 95% on coal - the primary fuel. Mining industry, forced to deliver power engineering more and better fuel, must however, use a deeper cleaning of coal. This results in a continuous increase waste in the form of mule flotation. The best method of disposing these mule is combustion and co-combustion with other fuels. On the other hand, commonly increasing awareness state of the environment and the need to reduce CO2 emissions energy industry have committed to implement alternative solutions in order to gain power, through, i.a.: development technologies use of biomass, which is one of the most promising renewable energy sources in Poland. The paper presents the results of research TG-DTA fuels made in an inert atmosphere.

  4. Transient thermal protection of film covering circular aperture by sublimation and weak decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Havstad, Mark A.; Miles, Robin R.; Hsieh, Henry, E-mail: hsieh6@llnl.gov

    2015-03-15

    Highlights: • Precise sublimating layers can provide protection in transient thermal environments. • Sensitivity analysis shows that the uncertainty in properties has modest influence. • It is likely that methane layers are a good choice for IFE targets. - Abstract: Unwanted heating of sensitive surfaces in harsh thermal environments can be prevented by precise application of sacrificial materials such as sublimation layers and pyrolyzing films. The use of sublimation for the protection of circular polyimide membranes subjected to brief (∼100 ms) heating by infrared radiation and hot (6000 K) inert gas convection is analyzed. Selection of sublimation material and sublimation layer and membrane thickness is considered with emphasis on providing sufficient thermal protection yet negligible unwanted material remaining at the end of a specified heating period. Though the analysis here is general, the motivation is protection of the polyimide films covering the laser entrance holes on IFE (inertial fusion energy) hohlraums being injected into the hot gas (xenon) protecting IFE reactor chambers. Both one and two dimensional thermal models are used to develop a robust thermal concept. Sensitivity analyses (SA) methods are exercised to show where the design may be vulnerable and which input parameters have the greatest effect on performance and likelihood of success. For the design and conditions considered, methane sublimating layers are probably preferred over xenon or pentane.

  5. Adsorption of volatile polonium and bismuth species on metals in various gas atmospheres. Pt. I. Adsorption of volatile polonium and bismuth on gold

    Energy Technology Data Exchange (ETDEWEB)

    Maugeri, Emilio Andrea; Neuhausen, Joerg; Dressler, Rugard; Piguet, David; Voegele, Alexander; Schumann, Dorothea [Paul Scherrer Institut (PSI), Villigen (Switzerland). Lab. for Radiochemistry; Eichler, Robert [Paul Scherrer Institut (PSI), Villigen (Switzerland). Lab. for Radiochemistry; Bern Univ. (Switzerland). Dept. for Chemistry and Biochemistry; Rijpstra, Kim [Ghent Univ., Zwijnaarde (Belgium). Center for Molecular Modeling (CMM); Cottenier, Stefaan [Ghent Univ., Zwijnaarde (Belgium). Center for Molecular Modeling (CMM); Ghent Univ., Zwijnaarde (Belgium). Dept. of Materials Science and Engineering

    2016-07-01

    Polonium isotopes are considered the most hazardous radionuclides produced during the operation of accelerator driven systems (ADS) when lead-bismuth eutectic (LBE) is used as the reactor coolant and as the spallation target material. In this work the use of gold surfaces for capturing polonium from the cover gas of the ADS reactor was studied by thermochromatography. The results show that gaseous monoatomic polonium, formed in dry hydrogen, is adsorbed on gold at 1058 K. Its adsorption enthalpy was calculated as -250±7 kJ mol{sup -1}, using a Monte Carlo simulation code. Highly volatile polonium species that were observed in similar experiments in fused silica columns in the presence of moisture in both inert and reducing gas were not detected in the experiments studying adsorption on gold surfaces. PoO{sub 2} is formed in both dry and moist oxygen, and its interaction with gold is characterized by transport reactions. The interaction of bismuth, present in large amounts in the atmosphere of the ADS, with gold was also evaluated. It was found that bismuth has a higher affinity for gold, compared to polonium, in an inert, reducing, and oxidizing atmosphere. This fact must be considered when using gold as a material for filtering polonium in the cover gas of ADS.

  6. Control of degradation of spent LWR [light-water reactor] fuel during dry storage in an inert atmosphere

    International Nuclear Information System (INIS)

    Cunningham, M.E.; Simonen, E.P.; Allemann, R.T.; Levy, I.S.; Hazelton, R.F.

    1987-10-01

    Dry storage of Zircaloy-clad spent fuel in inert gas (referred to as inerted dry storage or IDS) is being developed as an alternative to water pool storage of spent fuel. The objectives of the activities described in this report are to identify potential Zircaloy degradation mechanisms and evaluate their applicability to cladding breach during IDS, develop models of the dominant Zircaloy degradation mechanisms, and recommend cladding temperature limits during IDS to control Zircaloy degradation. The principal potential Zircaloy cladding breach mechanisms during IDS have been identified as creep rupture, stress corrosion cracking (SCC), and delayed hydride cracking (DHC). Creep rupture is concluded to be the primary cladding breach mechanism during IDS. Deformation and fracture maps based on creep rupture were developed for Zircaloy. These maps were then used as the basis for developing spent fuel cladding temperature limits that would prevent cladding breach during a 40-year IDS period. The probability of cladding breach for spent fuel stored at the temperature limit is less than 0.5% per spent fuel rod. 52 refs., 7 figs., 1 tab

  7. Mass transfer between gas and particles in a gas-solid trickle flow reactor

    NARCIS (Netherlands)

    Kiel, J.H.A.; Kiel, J.H.A.; Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    Gas-solids mass transfer was studied for counter-current flow of gas and millimetre-sized solid particles over an inert packing at dilute phase or trickle flow conditions. Experimental data were obtained from the adsorption of water vapour on 640 and 2200 ¿m diameter molecular sieve spheres at

  8. Experimental Study of an On-board Fuel Tank Inerting System

    Science.gov (United States)

    Wu, Fei; Lin, Guiping; Zeng, Yu; Pan, Rui; Sun, Haoyang

    2017-03-01

    A simulated aircraft fuel tank inerting system was established and experiments were conducted to investigate the performance of the system. The system uses hollow fiber membrane which is widely used in aircraft as the air separation device and a simplified 20% scale multi compartment fuel tank as the inerting object. Experiments were carried out to investigate the influences of different operating parameters on the inerting effectiveness of the system, including NEA (nitrogen-enriched air) flow rate, NEA oxygen concentration, NEA distribution, pressure of bleeding air and fuel load of the tank. Results showed that for the multi compartment fuel tank, concentrated flow washing inerting would cause great differences throughout the distribution of oxygen concentration in the fuel tank, and inerting dead zone would exist. The inerting effectiveness was greatly improved and the ullage oxygen concentration of the tank would reduce to 12% successfully when NEA entered three compartments evenly. The time span of a complete inerting process reduced obviously with increasing NEA flow rate and decreasing NEA concentration, but the trend became weaker gradually. However, the reduction of NEA concentration will decrease the utilization efficiency of the bleeding air. In addition, the time span can also be reduced by raising the pressure of bleeding air, which will improve the bleeding air utilization efficiency at the same time. The time span decreases linearly as the fuel load increases.

  9. Gas tungsten arc welder

    International Nuclear Information System (INIS)

    Christiansen, D.W.; Brown, W.F.

    1984-01-01

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable grinder, co-axial with the electrode, is provided in the enclosure for refurbishing the used electrode between welds. The specification also discloses means for loading of the cladding with fuel pellets and for placement of reflectors, gas capsules and end caps. Gravity feed conveyor and inerting means are also described. (author)

  10. Water in the presence of inert Lennard-Jones obstacles

    Science.gov (United States)

    Kurtjak, Mario; Urbic, Tomaz

    2014-04-01

    Water confined by the presence of a 'sea' of inert obstacles was examined. In the article, freely mobile two-dimensional Mercedes-Benz (MB) water put to a disordered, but fixed, matrix of Lennard-Jones disks was studied by the Monte Carlo computer simulations. For the MB water molecules in the matrix of Lennard-Jones disks, we explored the structures, hydrogen-bond-network formation and thermodynamics as a function of temperature and size and density of matrix particles. We found that the structure of model water is perturbed by the presence of the obstacles. Density of confined water, which was in equilibrium with the bulk water, was smaller than the density of the bulk water and the temperature dependence of the density of absorbed water did not show the density anomaly in the studied temperature range. The behaviour observed as a consequence of confinement is similar to that of increasing temperature, which can for a matrix lead to a process similar to capillary evaporation. At the same occupancy of space, smaller matrix molecules cause higher destruction effect on the absorbed water molecules than the bigger ones. We have also tested the hypothesis that at low matrix densities the obstacles induce an increased ordering and 'hydrogen bonding' of the MB model molecules, relative to pure fluid, while at high densities the obstacles reduce MB water structuring, as they prevent the fluid to form good 'hydrogen-bonding' networks. However, for the size of matrix molecules similar to that of water, we did not observe this effect.

  11. Inertization of galvanic sludges by its incorporation in ceramic products

    Directory of Open Access Journals (Sweden)

    Ferreira, J. M. F.

    1999-04-01

    Full Text Available Sludges produced by the physico-chemical treatments of waste waters generated by electroplating plants were physically and chemically characterised and incorporated in ceramic pastes. The influence of the amount of sludges added to a typical brick composition on the various processing steps and on the green and fired properties was studied. The environmental risks of the incorporation of these sludges rich in heavy metals such as Cr, Pb, Zn, Cu, Ni, etc. were evaluated by performing leaching tests on the fired products. The results showed that sludge contents up to 15 % could be incorporated without affecting significantly the physical characteristics of the ceramic products. Furthermore, a successful inertization of the pollutants was achieved.

    Se han caracterizado desde el punto de vista químico y físico lodos procedentes de las aguas residuales de procesos de galvanizado. Posteriormente se han incorporado a pastas cerámicas, convencionales de la industria ladrillera, estudiándose la influencia de las cantidades añadidas sobre las propiedades de los materiales tanto en verde como en el producto final y durante las distintas etapas de fabricación. Se evaluaron los riesgos medioambientales derivados de la incorporación de los metales pesados, tales como Cr, Pb, Zn, Cu, Ni etc, presentes en los lodos, mediante la realización de ensayos de lixiviado. Los resultados indican que puede incorporarse hasta un 15% en peso de dichos lodos, sin que se produzcan cambios significativos en las propiedades físicas de los materiales cerámicos obtenidos. Se ha obtenido, asimismo, un procedimiento viable de inertización de los agentes contaminantes.

  12. Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum

    Science.gov (United States)

    Ray, Siba P.; Liu, Xinghua

    2000-01-01

    An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

  13. The Multiple Inert Gas Elimination Technique: A User’s Manual

    Science.gov (United States)

    2016-02-11

    and indicates how efficiently the heart responds to metabolic demands of the body. 24 The most widely-employed method is thermodilution (TD) via...Selection of Subjects A cursory literature search reveals that the MIGET has been performed on a wide variety of subjects: healthy and diseased human... canine , equine, porcine, ovine, leporine, reptile, and avian models. The MIGET has been proven safe and widely applicable in clinical and research

  14. A contribution to the study of arc melting in inert gas atmospheres of zirconium sponge

    International Nuclear Information System (INIS)

    Julio Junior, O.

    1990-01-01

    Mettalic zirconium is a material of great interest in the nuclear industry due to its low thermal neutron cross section, high strength and corrosion resistance. The latter permits its use in the chemical industry. In this study, a critical bibliographic revision of the industrial processes used for the melting and consolidation of zirconium sponge has been carried out. A procedure for the melting of zirconium on a laboratory scale, has been established. An nonconsumable-electrode arc furnace have been used. The effect of process variables like atmosphere, melting current and getter, have been showed. The influence of sponge characteristics on the qualities of cast zirconium buttons have been studied. The present study is a contribution towards future investigations to obtain high purity cast zirconium and its alloys commercially known as zircaloy. (author)

  15. Thorium exposure during tungsten inert gas welding with thoriated tungsten electrodes

    DEFF Research Database (Denmark)

    Gäfvert, T.; Pagels, J.; Holm, E.

    2003-01-01

    from AC welding showed significant higher exposure levels, probably due to maladjustment of the TIG welding power source. Samples of the respirable fraction of Th-232 from grinding thoriated electrodes were also collected showing exposure levels of 5 mBq m(-3) or lower. A dose estimate has been made....... The contribution from grinding electrodes was lower, 10 muSv or lower in the realistic case and 63 muSv or lower based on conservative assumptions. The study does not exclude occurrence of higher exposure levels under welding conditions different from those prevailing in this study....

  16. The change of corrosion resistance of metals after bombardment by inert gas ions

    International Nuclear Information System (INIS)

    Vasil'ev, M.A.; Panarin, V.E.; Kosyachkov, A.A.

    2002-01-01

    Work functions of electrons and secondary ions of iron and oxygen from the surface of pure iron specimens pre-irradiated by argon ions were studied experimentally. One made use of the determined dependences in the experiments to passivate surface of low-carbon steel using the BULAT type commercial facilities. The designed extra device for those facilities ensured the required irradiation doses (equal to 10 17 atom x cm -2 ) resulting in improvement of steel corrosion resistance by several times [ru

  17. Welding of 316L Austenitic Stainless Steel with Activated Tungsten Inert Gas Process

    Science.gov (United States)

    Ahmadi, E.; Ebrahimi, A. R.

    2015-02-01

    The use of activating flux in TIG welding process is one of the most notable techniques which are developed recently. This technique, known as A-TIG welding, increases the penetration depth and improves the productivity of the TIG welding. In the present study, four oxide fluxes (SiO2, TiO2, Cr2O3, and CaO) were used to investigate the effect of activating flux on the depth/width ratio and mechanical property of 316L austenitic stainless steel. The effect of coating density of activating flux on the weld pool shape and oxygen content in the weld after the welding process was studied systematically. Experimental results indicated that the maximum depth/width ratio of stainless steel activated TIG weld was obtained when the coating density was 2.6, 1.3, 2, and 7.8 mg/cm2 for SiO2, TiO2, Cr2O3, and CaO, respectively. The certain range of oxygen content dissolved in the weld, led to a significant increase in the penetration capability of TIG welds. TIG welding with active fluxes can increase the delta-ferrite content and improves the mechanical strength of the welded joint.

  18. The effect of axial external magnetic field on tungsten inert gas welding of magnesium alloy

    Science.gov (United States)

    Li, Caixia; Zhang, Xiaofeng; Wang, Jing

    2018-04-01

    The influences of axial external magnetic field on the microstructure and mechanical property of the AZ31 magnesium (Mg) alloy joints were studied. The microstructure of Mg alloy joint consisted of the weld seam, heat affected zone and base metal zone. The average grain size of weld seam welded with magnetic field is 39 μm, which is 38% smaller than that of the joint welded with absence of magnetic field. And the microhardness of weld seam increases with the help of magnetic field treatment, owing to the coarse grain refinement. With coil current of 2.0A, the maximum mechanical property of joint increases 6.7% to 255 MPa over the specimen without magnetic field treatment. Furthermore, fracture location is near heat affected area and the fracture surface is characterized with ductile fracture.

  19. Angular dependence of secondary ion emission from silicon bombarded with inert gas ions

    International Nuclear Information System (INIS)

    Wittmaack, K.

    1984-01-01

    The emission of positive and negative, atomic and molecular secondary ions sputtered from silicon has been studied under ultrahigh vacuum conditions. The sample was bombarded with 2-12 keV Ar + and Xe + ions at angles of incidence between 0 0 and 60 0 to the surface normal. The angular dependence of the secondary ion intensity as well as the energy spectra of Si + and Si - were found to differ significantly. The effect is attributed mostly do differences in the rate of neutralization. The stability of molecular ions appears to be independent of the charge state. Supporting evidence is provided for the idea that multiply charged secondary ions are due to Auger de-excitation of sputtered atoms in vacuum. (orig.)

  20. The Tungsten Inert GAS (TIG) Process of Welding Aluminium in Microgravity: Technical and Economic Considerations

    Science.gov (United States)

    Ferretti, S.; Amadori, K.; Boccalatte, A.; Alessandrini, M.; Freddi, A.; Persiani, F.; Poli, G.

    2002-01-01

    The UNIBO team composed of students and professors of the University of Bologna along with technicians and engineers from Alenia Space Division and Siad Italargon Division, took part in the 3rd Student Parabolic Flight Campaign of the European Space Agency in 2000. It won the student competition and went on to take part in the Professional Parabolic Flight Campaign of May 2001. The experiment focused on "dendritic growth in aluminium alloy weldings", and investigated topics related to the welding process of aluminium in microgravity. The purpose of the research is to optimise the process and to define the areas of interest that could be improved by new conceptual designs. The team performed accurate tests in microgravity to determine which phenomena have the greatest impact on the quality of the weldings with respect to penetration, surface roughness and the microstructures that are formed during the solidification. Various parameters were considered in the economic-technical optimisation, such as the type of electrode and its tip angle. Ground and space tests have determined the optimum chemical composition of the electrodes to offer longest life while maintaining the shape of the point. Additionally, the power consumption has been optimised; this offers opportunities for promoting the product to the customer as well as being environmentally friendly. Tests performed on the Al-Li alloys showed a significant influence of some physical phenomena such as the Marangoni effect and thermal diffusion; predictions have been made on the basis of observations of the thermal flux seen in the stereophotos. Space transportation today is a key element in the construction of space stations and future planetary bases, because the volumes available for launch to space are directly related to the payload capacity of rockets or the Space Shuttle. The research performed gives engineers the opportunity to consider completely new concepts for designing structures for space applications. In fact, once the optimised parameters are defined for welding in space, it could be possible to weld different parts directly in orbit to obtain much larger sizes and volumes, for example for space tourism habitation modules. The second relevant aspect is technology transfer obtained by the optimisation of the TIG process on aluminium which is often used in the automotive industry as well as in mass production markets.

  1. Topography development on selected inert gas and self-ion bombarded Si

    International Nuclear Information System (INIS)

    Vishnyakov, V.; Carter, G.; Goddard, D.T.; Nobes, M.J.

    1995-01-01

    An AFM and SEM study of the topography induced by 20 keV Si + , Ar + and Xe + ion bombardment of Si at 45 o incidence angles and for ion fluences between 10 17 and 10 20 cm -2 has been undertaken at room temperature. All species generate an atomic scale random roughness, the magnitude of which does not increase extensively with ion fluence, suggesting the operation of a local relaxation process. This nanometre scale roughness forms, for Ar and Xe, a background for coarser micrometre scale structures such as pits, chevrons and waves. Apart from isolated etch pits Si + irradiation generates no repetitive micrometre scale structures. Xe + irradiation produces well developed transverse waves while Ar + irradiation results in isolated chevron-like etch pit trains and ripple patches. This latter pattern evolves, with increasing ion fluence, to a corrugated facet structure. The reasons for the different behaviours are still not fully clarified. (author)

  2. Aerosol and activity release from contaminated sodium pools in inert gas atomosphere

    International Nuclear Information System (INIS)

    Sauter, H.; Schuetz, W.

    1983-07-01

    A description is given of parameters and results from technical scale experiments (1 kg Na, 531 cm 2 pool surface area, 481-632 0 C pool temperature, UO 2 -, NaI-, SrO-admixtures from 0.2 up to 20 g, 2.2 m 3 vessel to be heated up to 130 0 C) and from laboratory scale experiments in a glove box (100 g Na, 38.5 cm 2 pool surface area, 550 0 C pool temperature, UO 2 and SrO admixtures from 0.2 up to 5 g, with the released quantities being sucked into cold traps and filters). The main objective of the tests was to determine the retention factors RF for U, I and Sr including their time behaviour as well as differences in local deposition. Liquid sodium has a very high retention capability for U and Sr; in the early phase (about 10% of the pool vaporized), RF (U) is of the order of 10 3 to 10 4 , and RF (Sr) of the order of 500, with increasing tendencies with time. RF (I), however, was found to be between 1 and 10. The iodine release may be explained by evaporation, whereas strong evidence exists for mechanical release processes (small particle release) in case of UO 2 and SrO. A best-fit formula is given for the specific evaporation rate of sodium, based on its proportionality to the vapor pressure. The sodium aerosol system was investigated with respect to mass concentration, particle size spectrum and deposition behaviour. Model calculations were performed using the PARDISEKO computer code. Agreement with the experiment was achieved after introducing a turbulent deposition module into the code. (orig./HP) [de

  3. Non-invasive measurements of cardiac output in atrial fibrillation: Inert gas rebreathing and impedance cardiography

    DEFF Research Database (Denmark)

    Osbak, Philip S; Henriksen, Jens Henrik Sahl; Kofoed, Klaus F

    2011-01-01

    Abstract Background. Atrial fibrillation (AF) is associated with significant morbidity and mortality. To test the effect of interventions, knowledge of cardiac output (CO) is important. However, the irregular heart rate might cause some methods for determination of CO to have inherent weaknesses....

  4. Post-irradiation examinations of inert matrix nitride fuel irradiated in JMTR (01F-51A capsule)

    International Nuclear Information System (INIS)

    Iwai, Takashi; Nakajima, Kunihisa; Kikuchi, Hironobu; Honda, Junichi; Hatakeyama, Yuichi; Ono, Katsuto; Matsui, Hiroki; Arai, Yasuo

    2007-03-01

    A plutonium nitride fuel pin containing inert matrix such as ZrN and TiN was encapsulated in 01F-51A and irradiated in JMTR. Minor actinides are surrogated by plutonium. Average linear powers and burnups were 408W/cm, 30000MWd/t(Zr+Pu) [132000MWd/t-Pu] for (Zr,Pu)N and 355W/cm, 38000MWd/t(Ti+Pu) [153000MWd/t-Pu] for (TiN,PuN). The irradiated capsule was transported to Reactor Fuel Examination Facility and subjected to non-destructive and destructive post irradiation examinations. Any failure was not observed in the irradiated fuel pin. Very low fission gas release rate of about 1.6% was measured. The inner surface of cladding tube did not show any signs of chemical interaction with fuel pellet. (author)

  5. Laser-enhanced ionization of mercury atoms in an inert atmosphere with avalanche amplification of the signal.

    Science.gov (United States)

    Clevenger, W L; Matveev, O I; Cabredo, S; Omenetto, N; Smith, B W; Winefordner, J D

    1997-07-01

    A new method for laser-enhanced ionization detection of mercury atoms in an inert gas atmosphere is described. The method, which is based on the avalanche amplification of the signal resulting from the ionization from a selected Rydberg level reached by a three-step laser excitation of mercury vapor in a simple quartz cell, can be applied to the determination of this element in various matrices by the use of conventional cold atomization techniques. The overall (collisional + photo) ionization efficiency is investigated at different temperatures, and the avalanche amplification effect is reported for Ar and P-10 gases at atmospheric pressure. It is shown that the amplified signal is related to the number of charges produced in the laser-irradiated volume. Under amplifier noise-limited conditions, a detection limit of ∼15 Hg atoms/laser pulse in the interaction region is estimated.

  6. Comparative Study between Two Schemes of Active-Control-Based Mechatronic Inerter

    Directory of Open Access Journals (Sweden)

    He Lingduo

    2017-01-01

    Full Text Available Based on force-current analogy and velocity-voltage analogy in the theory of electromechanical analogy, the inerter is a device that corresponded to the capacitor completely where conquers the nature restriction of mass, what’s more, it is significant to improve the ratio of the inerter’s inertance to its mass for mechanical networks synthesis. And according to the principle of active-control-based mechatronic inerter, we present two implementation schemes. One was based on linear motor, and the other was based on the ball screw and rotary motor. We introduced the implementation methods and established theoretical model of the two schemes, then compared the ratio of the inerter’s inertance to its mass for the two schemes. Finally, we consider the scheme is better which was based on the ball screw and rotary motor.

  7. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    Science.gov (United States)

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  8. Inert Reassessment Document for Acetone - CAS No. 67-64-1

    Science.gov (United States)

    Acetone is a highly volatile chemical that is used as an inert ingredient, a solvent/co-solvent, in a variety of pesticide products (including outdoor yard, garden and turf products, and agricultural crop products).

  9. System efficiency for two-step metal oxide solar thermochemical hydrogen production – Part 2: Impact of gas heat recuperation and separation temperatures

    KAUST Repository

    Ehrhart, Brian D.; Muhich, Christopher L.; Al-Shankiti, Ibraheam; Weimer, Alan W.

    2016-01-01

    . The hydrogen and water separation temperature was also varied and the effect on STH efficiency quantified. This study shows that gas heat recuperation is critical for high efficiency cycles, especially at conditions that require high steam and inert gas

  10. The role of "inert" surface chemistry in marine biofouling prevention.

    Science.gov (United States)

    Rosenhahn, Axel; Schilp, Sören; Kreuzer, Hans Jürgen; Grunze, Michael

    2010-05-07

    The settlement and colonization of marine organisms on submerged man-made surfaces is a major economic problem for many marine industries. The most apparent detrimental effects of biofouling are increased fuel consumption of ships, clogging of membranes and heat exchangers, disabled underwater sensors, and growth of biofoulers in aquaculture systems. The presently common-but environmentally very problematic-way to deal with marine biofouling is to incorporate biocides, which use biocidal products in the surface coatings to kill the colonizing organisms, into the surface coatings. Since the implementation of the International Maritime Organization Treaty on biocides in 2008, the use of tributyltin (TBT) is restricted and thus environmentally benign but effective surface coatings are required. In this short review, we summarize the different strategies which are pursued in academia and industry to better understand the mechanisms of biofouling and to develop strategies which can be used for industrial products. Our focus will be on chemically "inert" model surface coatings, in particular oligo- and poly(ethylene glycol) (OEG and PEG) functionalized surface films. The reasons for choosing this class of chemistry as an example are three-fold: Firstly, experiments on spore settlement on OEG and PEG coatings help to understand the mechanism of non-fouling of highly hydrated interfaces; secondly, these studies defy the common assumption that surface hydrophilicity-as measured by water contact angles-is an unambiguous and predictive tool to determine the fouling behavior on the surface; and thirdly, choosing this system is a good example for "interfacial systems chemistry": it connects the behavior of unicellular marine organisms with the antifouling properties of a hydrated surface coating with structural and electronic properties as derived from ab initio quantum mechanical calculations using the electronic wave functions of oxygen, hydrogen, and carbon. This short

  11. Photoinduced C-C Cross-Coupling of Aryl Chlorides and Inert Arenes

    Directory of Open Access Journals (Sweden)

    Lele Wang

    2016-01-01

    Full Text Available Here we report a facile, efficient, and catalyst-free method to realize C-C cross-coupling of aryl chlorides and inert arenes under UV light irradiation. The aryl radical upon homolytic cleavage of C-Cl bond initiated the nucleophilic substitution reaction with inert arenes to give biaryl products. This mild reaction mode can also be applied to other synthetic reactions, such as the construction of C-N bonds and trifluoromethylated compounds.

  12. Branched polynomial covering maps

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    1999-01-01

    A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere....

  13. Relações hídricas e trocas gasosas em vinhedo sob cobertura plástica Water relations and leaf gas exchange in vineyard with plastic overhead cover

    Directory of Open Access Journals (Sweden)

    Geraldo Chavarria

    2008-12-01

    Full Text Available No presente estudo, determinaram-se as influências da cobertura plástica impermeável (CP sobre a demanda evaporativa atmosférica e o potencial da água no solo, bem como as conseqüências destas sobre as trocas gasosas foliares (fotossíntese, condutância estomática e transpiração e o potencial da água na folha da videira. As avaliações foram realizadas nos ciclos 2005/06 e 2006/07, em um vinhedo da cv. Moscato Giallo, conduzido em "Y", com cobertura plástica impermeável tipo ráfia (160 mm, em 12 fileiras com 35 m, deixando-se cinco fileiras sem cobertura (controle. Em ambas as áreas, avaliou-se o microclima quanto à temperatura do ar, umidade relativa do ar, radiação fotossinteticamente ativa e velocidade do vento, próximos ao dossel vegetativo. A CP aumentou a disponibilidade hídrica no solo nas entrelinhas e restringiu-a nas linhas, sobretudo em profundidades mais superficiais (0-10 cm. A CP também diminuiu a demanda evaporativa atmosférica, principalmente pela redução da velocidade do vento (-90%, aumentando o potencial da água na folha e a condutância estomática. De modo geral, a CP pode favorecer a condição hídrica e elevar a capacidade de assimilação de carbono em videiras.This study evaluated the plastic overhead cover (POC effect on evaporative demand of atmosphere and soil water content, as well as their consequences on gas exchange (photosynthesis, stomatal conductance and transpiration and leaf water potential in grapevine. The experiment was carried out during the 2005/06 and 2006/07 seasons, in a vineyard of 'Moscato Giallo', trained in "Y" and covered with an impermeable plastic cloth (2.65 m x 160 mm, in 12 rows with 35 m, with five rows left uncovered (control. In both areas, the microclimate was evaluated, in terms of air temperature, air relative humidity, radiation photosynthetically active and wind speed above the canopy. The POC increased the soil water content between rows and restricted it

  14. Branched polynomial covering maps

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    2002-01-01

    A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch ...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere. (C) 2001 Elsevier Science B.V. All rights reserved.......A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...

  15. Efectos de la instalación de un gasoducto sobre algunas propiedades del suelo superficial y la cobertura vegetal en el NE de Chubut Gas-pipeline installation effects on superficial soil properties and vegetation cover in Northeastern Chubut

    Directory of Open Access Journals (Sweden)

    Esteban Kowaljow

    2008-07-01

    , sobre todo, por la baja calidad de los sedimentos extraídos de los horizontes inferiores de la zanja.In this work we describe the impact of a gas-pipeline installation and the replacing of the material removed in part of the clear-cutting, on some physical and chemical properties of the soils and vegetation in three ecological sites of Northeastern Chubut. In these sites we identified four different areas: area 1, clear-cut strip, where the traffic of heavy machinery was intense; area 2, clear-cut strip, with soil and vegetation replaced; and other two areas in the undisturbed adjacent steppe: mounds associated to shrubs and mound interspaces. The highest bulk densities were recorded in area 1 and in the mound interspaces (1.43 Mg m-3. The penetrometer resistance was significantly higher in the areas 1 and 2, recording values higher than 1 MPa. The infiltration rate was much higher in the mound (261 mm h-1 than in the other areas. The infiltration rate of area 2 (85 mm h-1 was higher than that of area 1 (35 mm h-1 and the mound interspaces (50 mm h-1. Total nitrogen and organic carbon content in soils of the areas 1 and 2 were similar to those of the mound interspaces and significantly lower than those of the mound, except in the area 2 of one ecological site. Clear-cut and topsoil removal, and the subsequent traffic of heavy machinery caused by underground gas-pipeline installation produced a strong impact on the physical properties of these soils. The main limitation in the highly disturbed soils was the decrease in the infiltration rate, mainly due to high compaction and low porosity. This may in part explain the slow vegetation cover recovery in the area 1. The replacement of the stripped sediment and vegetation on the disturbed strip did not improve the recovery of the vegetation cover. It was mainly due to the low quality of the sediments extracted from the pipeline ditch.

  16. The evolution of the temperature field during cavity collapse in liquid nitromethane. Part I: inert case

    Science.gov (United States)

    Michael, L.; Nikiforakis, N.

    2018-02-01

    This work is concerned with the effect of cavity collapse in non-ideal explosives as a means of controlling their sensitivity. The main objective is to understand the origin of localised temperature peaks (hot spots) which play a leading order role at the early stages of ignition. To this end, we perform two- and three-dimensional numerical simulations of shock-induced single gas-cavity collapse in liquid nitromethane. Ignition is the result of a complex interplay between fluid dynamics and exothermic chemical reaction. In order to understand the relative contribution between these two processes, we consider in this first part of the work the evolution of the physical system in the absence of chemical reactions. We employ a multi-phase mathematical formulation which can account for the large density difference across the gas-liquid material interface without generating spurious temperature peaks. The mathematical and physical models are validated against experimental, analytic, and numerical data. Previous inert studies have identified the impact of the upwind (relative to the direction of the incident shock wave) side of the cavity wall to the downwind one as the main reason for the generation of a hot spot outside of the cavity, something which is also observed in this work. However, it is also apparent that the topology of the temperature field is more complex than previously thought and additional hot spot locations exist, which arise from the generation of Mach stems rather than jet impact. To explain the generation mechanisms and topology of the hot spots, we carefully follow the complex wave patterns generated in the collapse process and identify specifically the temperature elevation or reduction generated by each wave. This enables tracking each hot spot back to its origins. It is shown that the highest hot spot temperatures can be more than twice the post-incident shock temperature of the neat material and can thus lead to ignition. By comparing two

  17. Armored Geomembrane Cover Engineering

    Directory of Open Access Journals (Sweden)

    Kevin Foye

    2011-06-01

    Full Text Available Geomembranes are an important component of modern engineered barriers to prevent the infiltration of stormwater and runoff into contaminated soil and rock as well as waste containment facilities—a function generally described as a geomembrane cover. This paper presents a case history involving a novel implementation of a geomembrane cover system. Due to this novelty, the design engineers needed to assemble from disparate sources the design criteria for the engineering of the cover. This paper discusses the design methodologies assembled by the engineering team. This information will aid engineers designing similar cover systems as well as environmental and public health professionals selecting site improvements that involve infiltration barriers.

  18. Percent Forest Cover (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Forests provide economic and ecological value. High percentages of forest cover (FORPCTFuture) generally indicate healthier ecosystems and cleaner surface water....

  19. Percent Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — Forests provide economic and ecological value. High percentages of forest cover (FORPCT) generally indicate healthier ecosystems and cleaner surface water. More...

  20. Experimental and theoretical analysis of effects of atomic, diatomic and polyatomic inert gases in air and EGR on mixture properties, combustion, thermal efficiency and NOx emissions of a pilot-ignited NG engine

    International Nuclear Information System (INIS)

    Li, Weifeng; Liu, Zhongchang; Wang, Zhongshu; Dou, Huili

    2015-01-01

    Highlights: • The specific heat ratio of the mixture increases with increasing Ar. • The thermal efficiency increases first and then decreases with increasing Ar. • Mechanisms of reducing NOx emissions are different for different dilution gases. • A suitable inert gas should be used to meet different requirements. - Abstract: Argon (Ar), nitrogen (N_2) and carbon dioxide (CO_2), present in exhaust gas recirculation (EGR) and air, are common atomic, diatomic and polyatomic inert gases, separately. As dilution gases, they are always added into the intake charge to reduce nitrogen oxides (NOx) emissions, directly or along with EGR and air. This paper presents the effects of Ar, N_2 and CO_2 on mixture properties, combustion, thermal efficiency and NOx emissions of pilot-ignited natural gas engines. Thermodynamic properties of the air-dilution gas mixture with increasing dilution gases, including density, gas constant, specific heat ratio, specific heat capacity, heat capacity and thermal diffusivity, were analyzed theoretically using thermodynamic relations and ideal gas equations based on experimental results. The thermal and diluent effects of dilution gases on NOx emissions were investigated based on Arrhenius Law and Zeldovich Mechanism, experimentally and theoretically. The experiments were arranged based on an electronically controlled heavy-duty, 6-cylinder, turbocharged, pilot-ignited natural gas engine. The resulted show that adding different inert gases into the intake charge had different influences on the thermodynamic properties of the air-dilution gas mixture. No great change in combustion phase was found with increasing dilution ratio (DR) of Ar, while the flame development duration increased significantly and CA50 moved far away from combustion top dead center (TDC) obviously with increasing DR for both of N_2 and CO_2. Adding Ar was superior in maintaining high thermal efficiencies than CO_2 and N_2, but adding CO_2 was superior in maintaining

  1. Thermodynamic stability and kinetic inertness of a Gd-DTPA bisamide complex grafted onto gold nanoparticles.

    Science.gov (United States)

    Mogilireddy, Vijetha; Déchamps-Olivier, Isabelle; Alric, Christophe; Laurent, Gautier; Laurent, Sophie; Vander Elst, Luce; Muller, Robert; Bazzi, Rana; Roux, Stéphane; Tillement, Olivier; Chuburu, Françoise

    2015-01-01

    Gold nanoparticles coated by gadolinium (III) chelates (Au@DTDTPA) where DTDTPA is a dithiolated bisamide derivative of diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA), constituted contrast agents for both X-ray computed tomography and magnetic resonance imaging. In an MRI context, highly stable Gd(3+) complexes are needed for in vivo applications. Thus, knowledge of the thermodynamic stability and kinetic inertness of these chelates, when grafted onto gold nanoparticles, is crucial since bisamide DTPA chelates are usually less suited for Gd(3+) coordination than DTPA. Therefore, these parameters were evaluated by means of potentiometric titrations and relaxivity measurements. The results showed that, when the chelates were grafted onto the nanoparticle, not only their thermodynamic stability but also their kinetic inertness were improved. These positive effects were correlated to the chelate packing at the nanoparticle surface that stabilized the corresponding Gd(3+) complexes and greatly enhanced their kinetic inertness. Copyright © 2014 John Wiley & Sons, Ltd.

  2. A comparative study of gas-gas miscibility processes in underground gas storage reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Rafiee, M.M.; Schmitz, S. [DBI - Gastechnologisches Institut gGmbH, Freiberg (Germany)

    2013-08-01

    Intermixture of gases in underground gas reservoirs have had great weight for natural gas storage in UGS projects with substitution of cushion gas by inert gases or changing the stored gas quality or origin, as for the replacement of town gas by natural gas. It was also investigated during the last years for Enhanced Gas Recovery (EGR) and Carbon Capture and Storage (CCS) projects. The actual importance of its mechanisms is discussed for the H{sub 2} storage in Power to Gas to Power projects (PGP). In these approaches miscibility of the injected gas with the gas in place in the reservoir plays an important role in the displacement process. The conditions and parameters for the gas-gas displacement and mixing have been investigated in previous projects, as e.g. the miscibility of CO{sub 2} with natural gas (CLEAN). Furthermore the miscibility process of town gas with natural gas and sauer gas with sweet gas were also previously measured and compared in laboratory. The objective of this work is to investigate the miscibility of H{sub 2} injection into natural gas reservoirs using a compositional and a black oil reservoir simulator. Three processes of convection, dispersion and diffusion are considered precisely. The effect of gas miscibility is studied for both simulators and the results are compared to find optimum miscibility parameters. The findings of this work could be helpful for further pilot and field case studies to predict and monitor the changes in gas composition and quality. In future this monitoring might become more important when PGP together with H{sub 2}-UGS, as storage technology, will help to successfully implement the change to an energy supply from more renewable sources. Similarly the method confirms the use of the black oil simulator as an alternative for gas-gas displacement and sequestration reservoir simulation in comparison to the compositional simulator. (orig.)

  3. Covered Bridge Security Manual

    Science.gov (United States)

    Brett Phares; Terry Wipf; Ryan Sievers; Travis Hosteng

    2013-01-01

    The design, construction, and use of covered timber bridges is all but a lost art in these days of pre-stressed concrete, high-performance steel, and the significant growth both in the volume and size of vehicles. Furthermore, many of the existing covered timber bridges are preserved only because of their status on the National Registry of Historic Places or the...

  4. Nanotoxicity of Inert Materials: The Case of Gold, Silver and Iron.

    Science.gov (United States)

    Umair, Muhammad; Javed, Ibrahim; Rehman, Mubashar; Madni, Asadullah; Javeed, Aqeel; Ghafoor, Aamir; Ashraf, Muhammad

    2016-01-01

    Nanotechnology has opened a new horizon of research in various fields including applied physics, chemistry, electronics, optics, robotics, biotechnology and medicine. In the biomedical field, nanomaterials have shown remarkable potential as theranostic agents. Materials which are considered inert are often used in nanomedicine owning to their nontoxic profile. At nanoscale, these inert materials have shown unique properties that differ from bulk and dissolved counterparts. In the case of metals, this unique behavior not only imparts paramount advantages but also confers toxicity due to their unwanted interaction with different cellular processes. In the literature, the toxicity of nanoparticles made from inert materials has been investigated and many of these have revealed toxic potential under specific conditions. The surge to understand underlying mechanism of toxicity has increased and different means have been employed to overcome toxicity problems associated with these agents. In this review, we have focused nanoparticles of three inert metallic materials i.e. gold, silver and iron as these are regarded as biologically inert in the bulk and dissolved form. These materials have gained wider research interest and studies indicating the toxicity of these materials are also emerging. Oxidative stress, physical binding and interference with intracellular signaling are the major role player in nanotoxicity and their predominance is highly dependent upon size, surface coating and administered dose of nanoparticles. Current strategies to overcome toxicity have also been reviewed in the light of recent literature. The authors also suggested that uniform testing standards and well-designed studies are needed to evaluate nanotoxicity of these materials that are otherwise considered as inert. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  5. Conversion of zircaloy to a massive chemically inert form

    International Nuclear Information System (INIS)

    Atkinson, A.; Kearsey, H.A.; Knibbs, R.H.; Mercer, A.C.; Nickerson, A.K.; Pearson, D.; Sambell, R.A.J.; Taylor, R.I.

    1985-01-01

    The report covers work carried out in the period July 1980 - December 1982 on the development and assessment of an aqueous route for the conversion of Zircaloy fuel element cladding to a stable oxide form and on alternative methods for incorporating the oxide into monolithic waste forms suitable for long-term storage and disposal. The work included two aspects, preliminary process development studies aimed at demonstrating the key steps in the process, and studies on the alternative immobilization techniques and the properties of the resulting waste forms. Experimental studies have shown that the ''hydrous zirconium oxide'' (with a residual fluoride content), following calcination at about 500 0 C, can be hot-pressed at 800-1000 0 C and 22.5 MPa to a high density ceramic waste form with good capacity for the incorporation of active species, such as U 4+ and Sr 2+ , and high leach resistance. Parallel studies have been carried out on the incorporation of the washed ''hydrous zirconium oxide'' in a range of cement matrices. A preliminary chemical engineering assessment of the overall process has been made and flowsheets for a plant to convert 250 kg Zircaloy/day have been prepared

  6. 49 CFR 192.901 - What do the regulations in this subpart cover?

    Science.gov (United States)

    2010-10-01

    ... AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Gas... pipeline covered under this part. For gas transmission pipelines constructed of plastic, only the...

  7. A steam inerting system for hydrogen disposal for the Vandenberg Shuttle

    Science.gov (United States)

    Belknap, Stuart B.

    1988-01-01

    A two-year feasibility and test program to solve the problem of unburned confined hydrogen at the Vandenberg Space Launch Complex Six (SLC-6) during Space Shuttle Main Engine (SSME) firings is discussed. A novel steam inerting design was selected for development. Available sound suppression water is superheated to flash to steam at the duct entrance. Testing, analysis, and design during 1987 showed that the steam inerting system (SIS) solves the problem and meets other flight-critical system requirements. The SIS design is complete and available for installation at SLC-6 to support shuttle or derivative vehicles.

  8. Inert dusts and their effects on the poultry red mite (Dermanyssus gallinae)

    DEFF Research Database (Denmark)

    Kilpinen, Ole; Steenberg, Tove

    2009-01-01

    commonly applied alternative control methods for poultry red mite in Europe. This development has occurred despite a lack of knowledge of the efficacy of the different types of inert dusts and how this is affected by environmental parameters, e.g. the high relative humidity found in poultry houses....... In this laboratory study the efficacy of different commercial inert dust products against D. gallinae is compared. All tested compounds killed mites, but there was a clear ranking of efficacy (measured as weight loss after 24 h and as time until 50% mortality), particularly at 75% relative humidity (RH). At 85% RH...

  9. Plastic Trash goes Biohybrid"-Rapid and Selective Functionalization of Inert Plastic Surfaces with Biomolecules

    DEFF Research Database (Denmark)

    Schiller, Stefan M; Kambhampati, Dev; Stengel, Gudrun

    2010-01-01

    The covalent functionalization of "inert" polymers such as polypropylene with biomolecules for biocompatible or biosensor surfaces is challenging. Here we present a powerful approach to covalently modify "inert" macromolecular surfaces with biomacromolecules reusing old plastic material. A special...... emphasis was placed on easily accessible materials and a process which is easy, fast, efficient, cheap, and reliable. "Plastic trash" (lids from Eppendorf® pipet tip containers) was used as a polymer substrate to demonstrate the use/reuse of commercial packing material to covalently modify this material...

  10. Gasification of the southern spread of Bolivia-Brazil gas pipeline

    International Nuclear Information System (INIS)

    Frisoli, Caetano; Senna, Ferando Jose Ennes de; Faria, Jose Aurelio Carvalho de

    2000-01-01

    As to the commissioning of the Northern spread, Inert Direct Purging was also adopted for purging the Southern Spread of Bolivia-Brazil Gas Pipeline. This section is 1191 km long and lies between the city of Paulinia in the State of Sao Paulo up to Canoas in the Sate of Rio Grande do Sul. The Inert Direct Purging is based on the principle of high gas injection flow rates at the initial point and the purging of air at the other end, separated by a nitrogen plug. A purging model, developed by The Gas Research Institute, was used in conjunction with the software Pipeline Studio for planning purposes. The arrival of gas at each valve and the size of gas/nitrogen/air interfaces were also recorded. Graphs and tables compare calculated and recorded data. Final results demonstrated model accuracy and its suitable applicability for purging, as well as the Inert Direct Purging method for gas pipelines of extensive lengths. (author)

  11. Covering folded shapes

    Directory of Open Access Journals (Sweden)

    Oswin Aichholzer

    2014-05-01

    Full Text Available Can folding a piece of paper flat make it larger? We explore whether a shape S must be scaled to cover a flat-folded copy of itself. We consider both single folds and arbitrary folds (continuous piecewise isometries \\(S\\to\\mathbb{R}^2\\. The underlying problem is motivated by computational origami, and is related to other covering and fixturing problems, such as Lebesgue's universal cover problem and force closure grasps. In addition to considering special shapes (squares, equilateral triangles, polygons and disks, we give upper and lower bounds on scale factors for single folds of convex objects and arbitrary folds of simply connected objects.

  12. Measurement of Odor-Plume Structure in a Wind Tunnel Using a Photoionization Detector and a Tracer Gas

    National Research Council Canada - National Science Library

    Justus, Kristine

    2002-01-01

    The patterns of stimulus available to moths flying along pheromone plumes in a 3-m-long wind tunnel were characterized using a high frequency photoionization detector in conjunction with an inert tracer gas...

  13. Evapotranspiration (ET) covers.

    Science.gov (United States)

    Rock, Steve; Myers, Bill; Fiedler, Linda

    2012-01-01

    Evapotranspiration (ET) cover systems are increasingly being used at municipal solid waste (MSW) landfills, hazardous waste landfills, at industrial monofills, and at mine sites. Conventional cover systems use materials with low hydraulic permeability (barrier layers) to minimize the downward migration of water from the surface to the waste (percolation), ET cover systems use water balance components to minimize percolation. These cover systems rely on soil to capture and store precipitation until it is either transpired through vegetation or evaporated from the soil surface. Compared to conventional membrane or compacted clay cover systems, ET cover systems are expected to cost less to construct. They are often aesthetic because they employ naturalized vegetation, require less maintenance once the vegetative system is established, including eliminating mowing, and may require fewer repairs than a barrier system. All cover systems should consider the goals of the cover in terms of protectiveness, including the pathways of risk from contained material, the lifecycle of the containment system. The containment system needs to be protective of direct contact of people and animals with the waste, prevent surface and groundwater water pollution, and minimize release of airborne contaminants. While most containment strategies have been based on the dry tomb strategy of keeping waste dry, there are some sites where adding or allowing moisture to help decompose organic waste is the current plan. ET covers may work well in places where complete exclusion of precipitation is not needed. The U.S. EPA Alternative Cover Assessment Program (ACAP), USDOE, the Nuclear Regulatory Commission, and others have researched ET cover design and efficacy, including the history of their use, general considerations in their design, performance, monitoring, cost, current status, limitations on their use, and project specific examples. An on-line database has been developed with information

  14. Percent of Impervious Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — High amounts of impervious cover (parking lots, rooftops, roads, etc.) can increase water runoff, which may directly enter surface water. Runoff from roads often...

  15. GAP Land Cover - Image

    Data.gov (United States)

    Minnesota Department of Natural Resources — This raster dataset is a simple image of the original detailed (1-acre minimum), hierarchically organized vegetation cover map produced by computer classification of...

  16. GAP Land Cover - Vector

    Data.gov (United States)

    Minnesota Department of Natural Resources — This vector dataset is a detailed (1-acre minimum), hierarchically organized vegetation cover map produced by computer classification of combined two-season pairs of...

  17. Percent Wetland Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — Wetlands act as filters, removing or diminishing the amount of pollutants that enter surface water. Higher values for percent of wetland cover (WETLNDSPCT) may be...

  18. Percent Wetland Cover (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Wetlands act as filters, removing or diminishing the amount of pollutants that enter surface water. Higher values for percent of wetland cover (WETLNDSPCT) may be...

  19. Mixed Inert scalar triplet dark matter, radiative neutrino masses and leptogenesis

    Directory of Open Access Journals (Sweden)

    Wen-Bin Lu

    2017-11-01

    Full Text Available The neutral component of an inert scalar multiplet with hypercharge can provide a stable dark matter particle when its real and imaginary parts have a splitting mass spectrum. Otherwise, a tree-level dark-matter-nucleon scattering mediated by the Z boson will be much above the experimental limit. In this paper we focus on a mixed inert scalar triplet dark matter scenario where a complex scalar triplet with hypercharge can mix with another real scalar triplet without hypercharge through their renormalizable coupling to the standard model Higgs doublet. We consider three specified cases that carry most of the relevant features of the full parameter space: (i the neutral component of the real triplet dominates the dark matter particle, (ii the neutral component of the complex triplet dominates the dark matter particle; and (iii the neutral components of the real and complex triplets equally constitute the dark matter particle. Subject to the dark matter relic abundance and direct detection constraint, we perform a systematic study on the allowed parameter space with particular emphasis on the interplay among triplet-doublet terms and gauge interactions. In the presence of these mixed inert scalar triplets, some heavy Dirac fermions composed of inert fermion doublets can be utilized to generate a tiny Majorana neutrino mass term at one-loop level and realize a successful leptogenesis for explaining the cosmic baryon asymmetry.

  20. Method of enhanced lithiation of doped silicon carbide via high temperature annealing in an inert atmosphere

    Science.gov (United States)

    Hersam, Mark C.; Lipson, Albert L.; Bandyopadhyay, Sudeshna; Karmel, Hunter J; Bedzyk, Michael J

    2014-05-27

    A method for enhancing the lithium-ion capacity of a doped silicon carbide is disclosed. The method utilizes heat treating the silicon carbide in an inert atmosphere. Also disclosed are anodes for lithium-ion batteries prepared by the method.

  1. Defined media and inert supports : their potential as solid-state fermentation production systems

    NARCIS (Netherlands)

    Ooijkaas, L.P.; Weber, F.J.; Buitelaar, R.M.; Tramper, J.; Rinzema, A.

    2000-01-01

    Solid-state fermentation (SSF) using inert supports impregnated with chemically defined liquid media has several potential applications in both scientific studies and in the industrial production of high-value products, such as metabolites, biological control agents and enzymes. As a result of its

  2. Does the Addition of Inert Gases at Constant Volume and Temperature Affect Chemical Equilibrium?

    Science.gov (United States)

    Paiva, Joao C. M.; Goncalves, Jorge; Fonseca, Susana

    2008-01-01

    In this article we examine three approaches, leading to different conclusions, for answering the question "Does the addition of inert gases at constant volume and temperature modify the state of equilibrium?" In the first approach, the answer is yes as a result of a common students' alternative conception; the second approach, valid only for ideal…

  3. Inert doublet dark matter with an additional scalar singlet and 125 GeV Higgs boson

    Energy Technology Data Exchange (ETDEWEB)

    Dutta Banik, Amit; Majumdar, Debasish [Saha Institute of Nuclear Physics, Astroparticle Physics and Cosmology Division, Kolkata (India)

    2014-11-15

    In this work we consider a model for particle dark matter where an extra inert Higgs doublet and an additional scalar singlet is added to the Standard Model (SM) Lagrangian. The dark matter candidate is obtained from only the inert doublet. The stability of this one component dark matter is ensured by imposing a Z{sub 2} symmetry on this additional inert doublet. The additional singlet scalar has a vacuum expectation value (VEV) and mixes with the Standard Model Higgs doublet, resulting in two CP even scalars h{sub 1} and h{sub 2}. We treat one of these scalars, h{sub 1}, to be consistent with the SM Higgs-like boson of mass around 125 GeV reported by the LHC experiment. These two CP even scalars contribute to the annihilation cross section of this inert doublet dark matter, resulting in a larger dark matter mass region that satisfies the observed relic density. We also investigate the h{sub 1} → γγ and h{sub 1} → γ Z processes and compared these with LHC results. This is also used to constrain the dark matter parameter space in the present model. We find that the dark matter candidate in the mass region 60-80 GeV (m{sub 1} = 125 GeV, mass of h{sub 1}) satisfies the recent bound from LUX direct detection experiment. (orig.)

  4. Dynamics of soluble and inert pollutant concentrations in linear and deterministic systems with time varying parameters

    International Nuclear Information System (INIS)

    Meltzer, M.

    1977-04-01

    The tracer theory in steady and non-steady systems is presented. The unsteady system was applied in the study of the concentration dynamics of the National Water Carrier in Israel. A method that uses Bromine 82 for the investigation of the transfer time distribution and of the dynamics of inert matter concentration in the system is desribed. (B.G.)

  5. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  6. Chromium liquid waste inertization in an inorganic alkali activated matrix: Leaching and NMR multinuclear approach

    International Nuclear Information System (INIS)

    Ponzoni, Chiara; Lancellotti, Isabella; Barbieri, Luisa; Spinella, Alberto; Saladino, Maria Luisa; Martino, Delia Chillura; Caponetti, Eugenio; Armetta, Francesco; Leonelli, Cristina

    2015-01-01

    Highlights: • Inertization of chromium liquid waste in aluminosilicate matrix. • Water less inertization technique exploiting the waste water content. • Liquid waste inertization without drying step. • Long term stabilization study through leaching test. • SEM analysis and 29 Si and 27 Al MAS NMR in relation with long curing time. - Abstract: A class of inorganic binders, also known as geopolymers, can be obtained by alkali activation of aluminosilicate powders at room temperature. The process is affected by many parameters (curing time, curing temperature, relative humidity etc.) and leads to a resistant matrix usable for inertization of hazardous waste. In this study an industrial liquid waste containing a high amount of chromium (≈2.3 wt%) in the form of metalorganic salts is inertized into a metakaolin based geopolymer matrix. One of the innovative aspects is the exploitation of the water contained in the waste for the geopolymerization process. This avoided any drying treatment, a common step in the management of liquid hazardous waste. The evolution of the process - from the precursor dissolution to the final geopolymer matrix hardening - of different geopolymers containing a waste amount ranging from 3 to 20% wt and their capability to inertize chromium cations were studied by: i) the leaching tests, according to the EN 12,457 regulation, at different curing times (15, 28, 90 and 540 days) monitoring releases of chromium ions (Cr(III) and Cr(VI)) and the cations constituting the aluminosilicate matrix (Na, Si, Al); ii) the humidity variation for different curing times (15 and 540 days); iii) SEM characterization at different curing times (28 and 540 days); iv) the trend of the solution conductivity and pH during the leaching test; v) the characterization of the short-range ordering in terms of T−O−T bonds (where T is Al or Si) by 29 Si and 27 Al solid state magic-angle spinning nuclear magnetic resonance (ss MAS NMR) for geopolymers

  7. Chromium liquid waste inertization in an inorganic alkali activated matrix: Leaching and NMR multinuclear approach

    Energy Technology Data Exchange (ETDEWEB)

    Ponzoni, Chiara, E-mail: chiara.ponzoni@unimore.it [University of Modena and Reggio Emilia, Department of Engineering “Enzo Ferrari”, Modena (Italy); Lancellotti, Isabella; Barbieri, Luisa [University of Modena and Reggio Emilia, Department of Engineering “Enzo Ferrari”, Modena (Italy); Spinella, Alberto; Saladino, Maria Luisa [University of Palermo CGA-UniNetLab, Palermo (Italy); Martino, Delia Chillura [University of Palermo, Department STEBICEF, Palermo (Italy); Caponetti, Eugenio [University of Palermo CGA-UniNetLab, Palermo (Italy); University of Palermo, Department STEBICEF, Palermo (Italy); Armetta, Francesco [University of Palermo, Department STEBICEF, Palermo (Italy); Leonelli, Cristina [University of Modena and Reggio Emilia, Department of Engineering “Enzo Ferrari”, Modena (Italy)

    2015-04-09

    Highlights: • Inertization of chromium liquid waste in aluminosilicate matrix. • Water less inertization technique exploiting the waste water content. • Liquid waste inertization without drying step. • Long term stabilization study through leaching test. • SEM analysis and {sup 29}Si and {sup 27}Al MAS NMR in relation with long curing time. - Abstract: A class of inorganic binders, also known as geopolymers, can be obtained by alkali activation of aluminosilicate powders at room temperature. The process is affected by many parameters (curing time, curing temperature, relative humidity etc.) and leads to a resistant matrix usable for inertization of hazardous waste. In this study an industrial liquid waste containing a high amount of chromium (≈2.3 wt%) in the form of metalorganic salts is inertized into a metakaolin based geopolymer matrix. One of the innovative aspects is the exploitation of the water contained in the waste for the geopolymerization process. This avoided any drying treatment, a common step in the management of liquid hazardous waste. The evolution of the process - from the precursor dissolution to the final geopolymer matrix hardening - of different geopolymers containing a waste amount ranging from 3 to 20% wt and their capability to inertize chromium cations were studied by: i) the leaching tests, according to the EN 12,457 regulation, at different curing times (15, 28, 90 and 540 days) monitoring releases of chromium ions (Cr(III) and Cr(VI)) and the cations constituting the aluminosilicate matrix (Na, Si, Al); ii) the humidity variation for different curing times (15 and 540 days); iii) SEM characterization at different curing times (28 and 540 days); iv) the trend of the solution conductivity and pH during the leaching test; v) the characterization of the short-range ordering in terms of T−O−T bonds (where T is Al or Si) by {sup 29}Si and {sup 27}Al solid state magic-angle spinning nuclear magnetic resonance (ss MAS NMR) for

  8. The Pliocene Yafo Formation in Israel: Hydrogeologically inert or active?

    Science.gov (United States)

    Avisar, D.; Rosenthal, E.; Shulman, H.; Zilberbrand, M.; Flexer, A.; Kronfeld, J.; Ben Avraham, Z.; Fleischer, L.

    For several decades the ``Saqiye beds'' (later renamed Yafo Formation) underlying the Coastal Plain aquifer (Kurkar Group) aquifer of Israel, were regarded as an extremely thick, tectonically undisturbed, and absolutely impervious aquiclude. Following intensive groundwater exploitation from the overlying Kurkar Group aquifer, brackish and saline waters were locally encountered in the lower parts of this aquifer and always at the contact with the underlying Yafo Formation aquiclude. The present study revealed that this aquiclude is not a uniform and impervious rock unit, but rather an alternation of pervious and impervious strata within the Yafo Formation containing highly pressured fluids of different - mostly high - salinities. The permeable beds are at an angular unconformity and in direct contact with the overlying Kurkar Group aquifer. The Yafo Formation and the underlying and overlying rock units are dislocated by numerous fault systems, which facilitate accessibility of brines into the Kurkar Group aquifer. The mobilization of the saline fluids and their injection into the Kurkar Group aquifer could be due either to diffusion of saline fluids occurring in the permeable horizons of the Petah Tiqva Member through the clays of the Yafo Formation or to their upconing following intensive pumping in the Coastal Plain aquifer. It could have also been caused by up-dip movement of saline water as the result of overpressure generated by major accumulation of gas in the permeable horizons. Another possible mechanism could be hydraulic contact with pressurized brines up-flowing along fault zones from deep-seated Jurassic or Cretaceous reservoirs. The squeezing of saline interstitial water from the clays of the Yafo Formation into the overlying Kurkar Group aquifer, is of secondary importance for groundwater salinization (its input is comparable with salt input from rain). Depuis longtemps, les «couches de Saqiye», nommées maintenant formation de Yafo, constituant le

  9. Comparison of three inert markers in measuring apparent nutrient digestibility of juvenile abalone under different culture condition and temperature regimes

    Science.gov (United States)

    Nur, K. U.; Adams, L.; Stone, D.; Savva, N.; Adams, M.

    2018-03-01

    A comparative research using three inert markers, chromic oxide, yttrium and ytterbium to measure the apparent nutrient digestibility of experimental feed in juvenile Hybrid abalone (Haliotis rubra X H. laevigata) and Greenlip abalone (H.laevigata) revealed that apparent digestibility of crude protein (ADCP) measured using yttrium and ytterbium in hybrid abalone were significantly different across the treatments. Protein digestibility measured in experimental tanks was higher than those measured in indoor and outdoor commercial tanks, regardless of inert marker used. Chromic oxide led to overestimated ADCP compared to when measured using yttrium and ytterbium. There were no significant interactions between temperature and inert markers when measuring ADCP and apparent digestibility of gross energy (ADGE). However, there was a significant difference of ADCP amongst inert markers when measured in greenlip abalone cultured at two temperatures. While measurements of ADge calculated using three inert markers shared the same value.

  10. Climate under cover

    CERN Document Server

    Takakura, Tadashi

    2002-01-01

    1.1. INTRODUCTION Plastic covering, either framed or floating, is now used worldwide to protect crops from unfavorable growing conditions, such as severe weather and insects and birds. Protected cultivation in the broad sense, including mulching, has been widely spread by the innovation of plastic films. Paper, straw, and glass were the main materials used before the era of plastics. Utilization of plastics in agriculture started in the developed countries and is now spreading to the developing countries. Early utilization of plastic was in cold regions, and plastic was mainly used for protection from the cold. Now plastic is used also for protection from wind, insects and diseases. The use of covering techniques started with a simple system such as mulching, then row covers and small tunnels were developed, and finally plastic houses. Floating mulch was an exception to this sequence: it was introduced rather recently, although it is a simple structure. New development of functional and inexpensive films trig...

  11. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures

    International Nuclear Information System (INIS)

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-01-01

    Highlights: • Ignition sensitivity of a highly flammable dust decreases upon addition of inert dust. • Minimum ignition temperature of a highly flammable dust increases when inert concentration increase. • Minimum ignition energy of a highly flammable dust increases when inert concentration increase. • The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. - Abstract: The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%.

  12. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Addai, Emmanuel Kwasi, E-mail: emmanueladdai41@yahoo.com; Gabel, Dieter; Krause, Ulrich

    2016-04-15

    Highlights: • Ignition sensitivity of a highly flammable dust decreases upon addition of inert dust. • Minimum ignition temperature of a highly flammable dust increases when inert concentration increase. • Minimum ignition energy of a highly flammable dust increases when inert concentration increase. • The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. - Abstract: The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%.

  13. On Covering Approximation Subspaces

    Directory of Open Access Journals (Sweden)

    Xun Ge

    2009-06-01

    Full Text Available Let (U';C' be a subspace of a covering approximation space (U;C and X⊂U'. In this paper, we show that and B'(X⊂B(X∩U'. Also, iff (U;C has Property Multiplication. Furthermore, some connections between outer (resp. inner definable subsets in (U;C and outer (resp. inner definable subsets in (U';C' are established. These results answer a question on covering approximation subspace posed by J. Li, and are helpful to obtain further applications of Pawlak rough set theory in pattern recognition and artificial intelligence.

  14. Torrefaction of empty fruit bunches under biomass combustion gas atmosphere.

    Science.gov (United States)

    Uemura, Yoshimitsu; Sellappah, Varsheta; Trinh, Thanh Hoai; Hassan, Suhaimi; Tanoue, Ken-Ichiro

    2017-11-01

    Torrefaction of oil palm empty fruit bunches (EFB) under combustion gas atmosphere was conducted in a batch reactor at 473, 523 and 573K in order to investigate the effect of real combustion gas on torrefaction behavior. The solid mass yield of torrefaction in combustion gas was smaller than that of torrefaction in nitrogen. This may be attributed to the decomposition enhancement effect by oxygen and carbon dioxide in combustion gas. Under combustion gas atmosphere, the solid yield for torrefaction of EFB became smaller as the temperature increased. The representative products of combustion gas torrefaction were carbon dioxide and carbon monoxide (gas phase) and water, phenol and acetic acid (liquid phase). By comparing torrefaction in combustion gas with torrefaction in nitrogen gas, it was found that combustion gas can be utilized as torrefaction gas to save energy and inert gas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. High Velocity Gas Gun

    Science.gov (United States)

    1988-01-01

    A video tape related to orbital debris research is presented. The video tape covers the process of loading a High Velocity Gas Gun and firing it into a mounted metal plate. The process is then repeated in slow motion.

  16. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 2: Advanced energy conversion systems. Part 1: Open-cycle gas turbines

    Science.gov (United States)

    Brown, D. H.; Corman, J. C.

    1976-01-01

    Ten energy conversion systems are defined and analyzed in terms of efficiency. These include: open-cycle gas turbine recuperative; open-cycle gas turbine; closed-cycle gas turbine; supercritical CO2 cycle; advanced steam cycle; liquid metal topping cycle; open-cycle MHD; closed-cycle inert gas MHD; closed-cycle liquid metal MHD; and fuel cells. Results are presented.

  17. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jian-Ying; Ibragimov, Rashid

    2013-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting ...

  18. Formation of Load Parameters of Destroyed Massife in Explosion of Multicharge Composition with Separation of its Parts by Profile Inert Interval

    Science.gov (United States)

    Paramonov, G. P.; Mysin, A. V.; Babkin, R. S.

    2017-10-01

    The paper introduces construction of multicharge composition with separation of parts by the profile inert interval. On the basis of the previous researches, the pulse-forming process at explosion of the borehole multicharge taking into account the offered design is considered. The physical model for definition of reflected wavelet taking into account an increment of radius of cross section of a charging cavity and the expiration of detonation products is offered. A technique is developed for numerical modeling of gas-dynamic processes in a borehole with a change in the axial channel of a profile inert interval caused by a high-temperature flow of gaseous products of an explosion. The authors obtained the dependence of the change in mean pressure on the borehole wall on time for each of the parts of the multicharge. To blast a series of charges of the proposed design, taking into account optimization of the stress fields of neighboring charges, the delay interval is determined for a short-delayed explosion.

  19. System efficiency for two-step metal oxide solar thermochemical hydrogen production – Part 2: Impact of gas heat recuperation and separation temperatures

    KAUST Repository

    Ehrhart, Brian D.

    2016-09-22

    The solar-to-hydrogen (STH) efficiency is calculated for various operating conditions for a two-step metal oxide solar thermochemical hydrogen production cycle using cerium(IV) oxide. An inert sweep gas was considered as the O2 removal method. Gas and solid heat recuperation effectiveness values were varied between 0 and 100% in order to determine the limits of the effect of these parameters. The temperature at which the inert gas is separated from oxygen for an open-loop and recycled system is varied. The hydrogen and water separation temperature was also varied and the effect on STH efficiency quantified. This study shows that gas heat recuperation is critical for high efficiency cycles, especially at conditions that require high steam and inert gas flowrates. A key area for future study is identified to be the development of ceramic heat exchangers for high temperature gas-gas heat exchange. Solid heat recuperation is more important at lower oxidation temperatures that favor temperature-swing redox processing, and the relative impact of this heat recuperation is muted if the heat can be used elsewhere in the system. A high separation temperature for the recycled inert gas has been shown to be beneficial, especially for cases of lower gas heat recuperation and increased inert gas flowrates. A higher water/hydrogen separation temperature is beneficial for most gas heat recuperation effectiveness values, though the overall impact on optimal system efficiency is relatively small for the values considered. © 2016 Hydrogen Energy Publications LLC.

  20. Gas and Gas Pains

    Science.gov (United States)

    ... to produce gas. Often, relatively simple changes in eating habits can lessen bothersome gas. Certain digestive system disorders, ... such as soda and beer, increase stomach gas. Eating habits, such as eating too quickly, drinking through a ...

  1. Determination of Heritage SSME Pogo Suppressor Resistance and Inertance from Waterflow Pulse Testing

    Science.gov (United States)

    McDougal, Chris; Eberhart, Chad; Lee, Erik

    2016-01-01

    Waterflow tests of a heritage Space Shuttle Main Engine pogo suppressor were performed to experimentally quantify the resistance and inertance provided by the suppressor. Measurements of dynamic pressure and flow rate in response to pulsing flow were made throughout the test loop. A unique system identification methodology combined all sensor measurements with a one-dimensional perturbational flow model of the complete water flow loop to spatially translate physical measurements to the device under test. Multiple techniques were then employed to extract the effective resistance and inertance for the pogo suppressor. Parameters such as steady flow rate, perturbational flow rate magnitude, and pulse frequency were investigated to assess their influence on the behavior of the pogo suppressor dynamic response. These results support validation of the RS-25 pogo suppressor performance for use on the Space Launch System Core Stage.

  2. Radiative neutrino mass and Majorana dark matter within an inert Higgs doublet model

    Science.gov (United States)

    Ahriche, Amine; Jueid, Adil; Nasri, Salah

    2018-05-01

    We consider an extension of the standard model (SM) with an inert Higgs doublet and three Majorana singlet fermions to address both origin and the smallness of neutrino masses and dark matter (DM) problems. In this setup, the lightest Majorana singlet fermion plays the role of DM candidate and the model parameter space can be accommodated to avoid different experimental constraints such as lepton flavor violating processes and electroweak precision tests. The neutrino mass is generated at one-loop level a la Scotogenic model and its smallness is ensured by the degeneracy between the C P -odd and C P -even scalar members of the inert doublet. Interesting signatures at both leptonic and hadronic colliders are discussed.

  3. Modeling the effects of size on patch dynamics of an inert tracer

    Directory of Open Access Journals (Sweden)

    P. Xiu

    2010-03-01

    Full Text Available Mesoscale iron enrichment experiments have revealed that additional iron affects the phytoplankton productivity and carbon cycle. However, the role of initial size of fertilized patch in determining the patch evolution is poorly quantified due to the limited observational capability and complex of physical processes. Using a three-dimensional ocean circulation model, we simulated different sizes of inert tracer patches that were only regulated by physical circulation and diffusion. Model results showed that during the first few days since release of inert tracer, the calculated dilution rate was found to be a linear function with time, which was sensitive to the initial patch size with steeper slope for smaller size patch. After the initial phase of rapid decay, the relationship between dilution rate and time became an exponential function, which was also size dependent. Therefore, larger initial size patches can usually last longer and ultimately affect biogeochemical processes much stronger than smaller patches.

  4. Multisized Inert Particle Loading for Solid Rocket Axial Combustion Instability Suppression

    Directory of Open Access Journals (Sweden)

    David R. Greatrix

    2012-01-01

    Full Text Available In the present investigation, various factors and trends, related to the usage of two or more sets of inert particles comprised of the same material (nominally aluminum but at different diameters for the suppression of axial shock wave development, are numerically predicted for a composite-propellant cylindrical-grain solid rocket motor. The limit pressure wave magnitudes at a later reference time in a given pulsed firing simulation run are collected for a series of runs at different particle sizes and loading distributions and mapped onto corresponding attenuation trend charts. The inert particles’ presence in the central core flow is demonstrated to be an effective means of instability symptom suppression, in correlating with past experimental successes in the usage of particles. However, the predicted results of this study suggest that one needs to be careful when selecting more than one size of particle for a given motor application.

  5. Report on the treatability study for inerting small quantities of radioactive explosives and explosive components

    International Nuclear Information System (INIS)

    Loyola, V.M.; Reber, S.D.

    1996-02-01

    As a result of Sandia's radiation hardening testing on a variety of its explosive components, radioactive waste streams were generated and have to be disposed of as radioactive waste. Due to the combined hazards of explosives and radioactivity, Sandia's Radioactive and Mixed Waste Management organization did not have a mechanism for disposal of these waste streams. This report documents the study done to provide a method for the removal of the explosive hazard from those waste streams. The report includes the design of the equipment used, procedures followed, results from waste stream analog tests and the results from the actual explosive inerting tests on radioactive samples. As a result of the inerting treatment, the waste streams were rendered non-explosive and, thus, manageable through normal radioactive waste disposal channels

  6. Study on the Applicability of Electron Beam Welding Methods to Assembly a Fuel Compact and Al Cover Plate of Research Reactor Plate Type Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae In; Lee, Yoon Sang; Lee, Don Dae; Jeong, Yong Jin; Kwon, Sun Chil; Kim, Soo Sung; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Among the research reactor plate type fuel fabrication processes, there is an assembly process between fuel meat compact and Al cover plates using a welding method prior to rolling process. The assembly process is such as the Al frame and Al cover plate should be welded properly as shown in Fig. 1. For welding, TIG(Tungsten Inert Gas) welding methods has been used conventionally, but in this study an electron beam welding(EB welding) technique which uses the electron beam of a high velocity for joining two materials is introduced to the assembly. The work pieces are melted as the kinetic energy of the electron beam is transformed into heat to join the two parts of the weld. The welding is often done in the conditions in a vacuum to prevent dispersion of the electron beam. The electron beam welding process has many ad-vantages such as contamination of the welds could be prevented, the penetration of the weld is deep, and also the strain of the welding area is less than other methods. In this study, to find optimal condition of the EB welding process, a welding speed, a beam current and an acceleration voltage were changed. To analyzing the welding results, the shape of the beads and defects of welding area was used. The width and depth of the beads were measured as well

  7. Study on the Applicability of Electron Beam Welding Methods to Assembly a Fuel Compact and Al Cover Plate of Research Reactor Plate Type Fuel

    International Nuclear Information System (INIS)

    Lee, Hae In; Lee, Yoon Sang; Lee, Don Dae; Jeong, Yong Jin; Kwon, Sun Chil; Kim, Soo Sung; Park, Jong Man

    2012-01-01

    Among the research reactor plate type fuel fabrication processes, there is an assembly process between fuel meat compact and Al cover plates using a welding method prior to rolling process. The assembly process is such as the Al frame and Al cover plate should be welded properly as shown in Fig. 1. For welding, TIG(Tungsten Inert Gas) welding methods has been used conventionally, but in this study an electron beam welding(EB welding) technique which uses the electron beam of a high velocity for joining two materials is introduced to the assembly. The work pieces are melted as the kinetic energy of the electron beam is transformed into heat to join the two parts of the weld. The welding is often done in the conditions in a vacuum to prevent dispersion of the electron beam. The electron beam welding process has many ad-vantages such as contamination of the welds could be prevented, the penetration of the weld is deep, and also the strain of the welding area is less than other methods. In this study, to find optimal condition of the EB welding process, a welding speed, a beam current and an acceleration voltage were changed. To analyzing the welding results, the shape of the beads and defects of welding area was used. The width and depth of the beads were measured as well

  8. Testes de toxicidade aguda através de bioensaios no extrato solubilizado dos resíduos classe II A - não inertes e classe II B - inertes Acute toxicity tests by bioassays applied to the solubilized extracts of solid wastes class II A - non inerts and class II B - inerts

    Directory of Open Access Journals (Sweden)

    Nébora Liz Vendramin Brasil Rodrigues

    2007-03-01

    Full Text Available A grande diversidade de substâncias potencialmente tóxicas contribuem para a deterioração do meio ambiente. O objetivo deste trabalho foi propor a utilização de bioensaios, através de testes de toxicidade aguda com Daphnia magna e Vibrio fischeri, como mais um parâmetro a ser analisado no extrato solubilizado dos resíduos que, segundo a NBR 10004/04 fossem classificados como classe II A - não inertes ou classe II B - inertes. Realizaram-se, também, testes de toxicidade no drenado dos aterros classe II A e II B. Verificou-se que a toxicidade foi constatada nos extratos solubilizados dos 18 resíduos analisados e que, apenas três das amostras estariam próprias para lançamento, ou seja os resíduos 04, 14 e 15. Já, a toxicidade encontrada no drenado dos aterros, ficou muito superior do que a toxicidade de cada extrato solubilizado analisado separadamente.A great diversity of substances potencially toxic contributes to the deterioration of the environment. The aim of this research was to propose the use of bioassays using Daphnia magna and Vibrio fischeri, as another parameter to be analyzed in the solubilized extraction of waste according to NBR 10004/04 and classified as class II A - non inerts or class II B - inerts. Besides, another test was performed to measure the level of toxicity in the drainage of the landfill class II A and II B. It was verified that the toxicity found in the solubilized extracts of the 18 wastes analysed.Only 3 wastes (04, 14 and 15 were within the emission limits. On the other hand the toxicity found in the drainage of the landfill, from which all the samples came from, was much higher than the individual one.

  9. The inert doublet model: a new archetype of WIMP dark matter?

    International Nuclear Information System (INIS)

    Tytgat, M Hg

    2008-01-01

    The Inert Doublet Model (IDM) is a two doublet extension of the Higgs-Brout-Englert sector of the Standard Model with a Z2 symmetry in order to prevent FCNC. If the Z2 symmetry is not spontaneously broken, the lightest neutral extra scalar is a dark matter candidate. We briefly review the phenomenology of the model, emphasizing its relevance for the issue of Electroweak Symmetry Breaking (EWSB) and the prospects for detection of dark matter

  10. Substances inertes et plantes à effet insecticide utilisées dans la ...

    African Journals Online (AJOL)

    Les insecticides naturels tels que les plantes à effet insecticide et les substances inertes (sable, cendre, terres à diatomées,…) méritent d'être valorisées afin de réduire l'utilisation des insecticides chimiques et protéger l'environnement. Ce travail basé sur une revue documentaire fouillée et actualisée vise à faire la genèse ...

  11. Bomb radiocarbon in metabolically inert tissues from terrestrial and marine mammals

    International Nuclear Information System (INIS)

    Bada, J.L.; Vrolijk, C.D.; Brown, S.; Druffel, E.R.M.; Hedges, R.E.M.

    1987-01-01

    We report here radiocarbon measurements of monkey eye lens nucleus proteins and a narwhal tusk, biological tissues which have sampled the bomb radiocarbon signal in different ways. The results confirm the metabolic inertness of eye lens nucleus proteins and demonstrate the feasibility of measuring radiocarbon in small samples of biological tissue using accelerator mass spectrometry (AMS). The narwhal tusk provides a unique record of the radiocarbon activity in Arctic Ocean waters over most of the 20th century

  12. Dissolved helium, inert gases, radium and radon in groundwaters from the Altnabreac research site

    International Nuclear Information System (INIS)

    Andrews, J.N.; Kay, R.L.F.

    1985-01-01

    A groundwater geochemical study has been carried out at Altnabreac, Cenithness, Scotland, to investigate the feasibility of disposal of high-level radioactive wastes in crystalline rock. A groundwater flow model was constructed for sampling a section at depths up to 300 m. Measurements of inert gases dissolved in groundwaters are used, with parallel measurements of 14 C, tritium, oxygen and hydrogen isotopes to infer groundwater ages and residence times. (UK)

  13. Dark Matter candidate in Inert Doublet Model with additional local gauge symmetry U (1)

    International Nuclear Information System (INIS)

    Gaitán, R.; De Oca, J.H. Montes; Garcés, E. A.; Cabral-Rosetti, L. G.

    2016-01-01

    We consider the Inert Doublet Model (IDM) with an additional local gauge symmetry U (1) and a complex singlet scalar to break the symmetry U (1). The continuous symmetry U (1) is introduced to control the CP-conserving interaction instead of some discrete symmetries as usually. We present the mass spectrum for neutral scalar and gauge bosons and the values of the charges under U (1) for which the model could have a candidate to dark matter. (paper)

  14. Mixed PWR core loadings with inert matrix Pu-fuel assemblies

    International Nuclear Information System (INIS)

    Stanculescu, A.; Kasemeyer, U.; Paratte, J.-M.; Chawla, R.

    1999-01-01

    The most efficient way to enhance plutonium consumption in light water reactors is to eliminate the production of plutonium all together. This requirement leads to fuel concepts in which the uranium is replaced by an inert matrix. At PSI, studies have focused on employing ZrO 2 as inert matrix. Adding a burnable poison to such a fuel proves to be necessary. As a result of scoping studies, Er 2 O 3 was identified as the most suitable burnable poison material. The results of whole-core three-dimensional neutronics analyses indicated, for a present-day 1000 MW e pressurised water reactor, the feasibility of an asymptotic equilibrium four-batch cycle fuelled solely with the proposed PuO 2 -Er 2 O 3 -ZrO 2 inert matrix fuel (IMF). The present paper presents the results of more recent investigations related to 'real-life' situations, which call for transition configurations in which mixed IMF and UO 2 assembly loadings must be considered. To determine the influence of the introduction of IMF assemblies on the characteristics of a UO 2 -fuelled core, three-dimensional full-core calculations have been performed for a present-day 1000 MW e PWR containing up to 12 optimised IMF assemblies. (author)

  15. Viability of inert matrix fuel in reducing plutonium amounts in reactors

    International Nuclear Information System (INIS)

    2006-08-01

    Reactors worldwide have produced more than 2000 tonnes of plutonium, contained in spent fuel or as separated forms through reprocessing. Disposition of fissile materials has become a primary concern of nuclear non-proliferation efforts. There is a significant interest in IAEA Member States to develop proliferation resistant nuclear fuel cycles for incineration of plutonium such as inert matrix fuels (IMFs). The present report summarises R and D work on inert matrix fuel for plutonium and (to a lesser extent) minor actinide stock-pile reduction, and discusses the possible strategies to include inert matrix fuel approaches to the nuclear fuel cycle. The publication reviews the status of potential IMF candidates and describes several identified candidate materials for both fast and thermal reactors: MgO, ZrO2, SiC, Zr alloy, SiAl, ZrN; some of these have undergone test irradiations and post-irradiation examination. Also discussed are modelling of IMF fuel performance and safety analysis. System studies have identified strategies for both implementation of IMF fuel as homogeneous or heterogeneous phases, as assemblies or core loadings and in existing reactors in the shorter term, as well as in new reactors in the longer term

  16. AGENTES INERTES PARA CONTOLE DE TOMBAMENTO EM SEMENTEIRAS DE OLERÍCOLAS

    Directory of Open Access Journals (Sweden)

    Ricardo Silveiro Balardin

    1994-01-01

    Full Text Available RESUMO Este trabalho foi conduzido com o objetivo de avaliar o comportamento de materiais inertes para controle de tombamento durante a emergência. Os tratamentos foram cobertura do sulco de semeadura com areia e serragem, tratamento químico com brometo de metila e uma testemunha. Os parâmetros avaliados foram percentagem e velocidade de emergência, percentagem de tombamento de pré e pós-emergência. Os dados obtidos permitiram concluir que, dentre os materiais inertes testados, a areia pode constituir-se em uma alternativa eficiente no controle do tombamento em sementeiras de repolho e beterraba, pois permitiu o maior número de plântulas emergidas e o menor número de plântulas tombadas não alterando a velocidade de emergência, enquanto que nas sementeiras de alface a utilização dos materiais inertes prejudicou a emergência normal das plântulas, não se constituindo em agente de controle eficiente.

  17. Alternative cover design

    International Nuclear Information System (INIS)

    1988-11-01

    The special study on Alternative Cover Designs is one of several studies initiated by the US Department of Energy (DOE) in response to the proposed US Environmental Protection Agency (EPA) groundwater standards. The objective of this study is to investigate the possibility of minimizing the infiltration of precipitation through stabilized tailings piles by altering the standard design of covers currently used on the Uranium Mill Tailings Remedial Action (UMTRA) Project. Prior. to the issuance of the proposed standards, UMTRA Project piles had common design elements to meet the required criteria, the most important of which were for radon diffusion, long-term stability, erosion protection, and groundwater protection. The standard pile covers consisted of three distinct layers. From top to bottom they were: rock for erosion protection; a sand bedding layer; and the radon barrier, usually consisting of a clayey sand material, which also functioned to limit infiltration into the tailings. The piles generally had topslopes from 2 to 4 percent and sideslopes of 20 percent

  18. Method of making composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    Science.gov (United States)

    Ray, S.P.; Rapp, R.A.

    1986-04-22

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily. 8 figs.

  19. Correlation between hydrogen release and degradation of limestone concrete exposed to hot liquid sodium in inert atmosphere

    International Nuclear Information System (INIS)

    Parida, F.C.; Das, S.K.; Sharma, A.K.; Ramesh, S.S.; Somayajulu, P.A.; Kannan, S.E.

    2005-01-01

    Full text of publication follows: Concrete is used as a structural material in a Fast Breeder Reactor (FBR) plant for the construction of its foundation, containment, radiation shield and equipment support structures. An accidental leakage of hot sodium on these civil structures can bring about thermo-chemical reactions, with concrete producing hydrogen gas and causing structural degradation. The concrete damage and hydrogen generation take place concurrently due to conduction of heat from sodium into the concrete and migration of steam / moisture in counter current direction towards sodium. In a series of experiments conducted with limestone concrete for two different types of design corresponding to composition and geometry, were exposed to liquid sodium (∼2 kg) at initial temperatures varying from 180 deg. C to 500 deg. C in an inerted test vessel (Capacity = 203 L). Immersion heater was employed to heat the sodium pool on the concrete cavity during the test period in some test runs. On-line continuous measurement of pressure, temperature, hydrogen gas and oxygen gas was carried out. Pre- and post- test nondestructive testing such as colour photography, spatial profiling of ultrasonic pulse velocity and measurement of dimensions were also conducted. Solid samples were collected from sodium debris by manual core drilling machine and from concrete block by hand held electric drilling machine. These samples were subjected to chemical analysis for the determination of free and bound water along with unburnt and burnt sodium. The hydrogen generation parameters such as average and peak release rate as well as release efficiency are derived from measured test variables. These test variables include temperature, pressure and hydrogen concentration in the argon atmosphere contained in the test vessel. The concrete degradation parameters encompass percentage reduction in ultrasonic pulse velocity, depth of physical and chemical dehydration and sodium penetration. These

  20. Natural gas marketing and transportation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This book covers: Overview of the natural gas industry; Federal regulation of marketing and transportation; State regulation of transportation; Fundamentals of gas marketing contracts; Gas marketing options and strategies; End user agreements; Transportation on interstate pipelines; Administration of natural gas contracts; Structuring transactions with the nonconventional source fuels credit; Take-or-pay wars- a cautionary analysis for the future; Antitrust pitfalls in the natural gas industry; Producer imbalances; Natural gas futures for the complete novice; State non-utility regulation of production, transportation and marketing; Natural gas processing agreements and Disproportionate sales, gas balancing, and accounting to royalty owners

  1. The repair of ground cover of Bolivia-Brazil gas pipeline near Paraguay River crossing, in a swamp soft soil region, using geo synthetics reinforced backfilling; Reparo da cobertura do gasoduto Bolivia-Brasil junto ao Rio Paraguai, em trecho com solo mole, utilizando aterro reforcado com geosinteticos

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Cesar Augusto; Jorge, Kemal Vieira; Bechuate Filho, Pedro [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Campo Grande, MS (Brazil). Gerencia Regional Centro Oeste (CRGO); Teixeira, Sidnei H.C. [Geohydrotech Engenharia S.C. Ltda., Braganca Paulista, SP (Brazil)

    2005-07-01

    TBG - Transportadora Gasoduto Bolivia-Brasil S.A, executes routine maintenance works at the Gas Pipeline Right of Way, seeking its integrity. In the wetlands of Pantanal, near the Paraguay river crossing, the organic-alluvial soil was submitted to the process of subsidence. This process, associated with the river water flow erosion, shrank the soil volume and diminished or extinguished the pipeline land cover. The pipeline was exposed to the environment, and submitted to tension stresses and the risk of low cycle fatigue during the floods. The cathodic protection system also had to be evaluated, specially in the drought. To mitigate the problem, the embankment technique was adopted using sandy soil, reinforced with polyester geo-webs and with woven polipropene geo-textiles. The solution also used geo-webs with soil-cement as protection elements against the degradation of the geo-textiles blankets. Some monitoring works are associated with those interventions: monitoring of cathodic protection; topographical verification of horizontal and vertical displacements of the pipeline; levels of land covering, and rainfalls and flood measurement. The base of the embankment was built with hydraulic transported soil, and at the end consistently supported the gas pipeline. (author)

  2. Landfill gas: development guidelines

    International Nuclear Information System (INIS)

    1996-11-01

    A Guide produced as part of the UK DTI's New and Renewable Energy Programme provides information which forms a framework enabling landfill gas to be exploited fully as a renewable energy resource. The eight chapters cover the resource base of landfill gas in the UK in the wider context, the technology for energy recovery from landfill gas, the utilisation options for landfill gas, the various project development arrangements and their implementation, the assessment of a site's landfill gas resource, the factors which influence the project economies, financing aspects and the management of project liabilities and finally the national waste disposal policy and required consents followed by the overall process for project mobilisation. (UK)

  3. The elastic scattering of electrons from inert gases: 5. Argon and Krypton in the vicinity of Ramsauer-Townsend minima and on the choice of pseudo-states

    International Nuclear Information System (INIS)

    Fon, W.C.

    1986-07-01

    Recently, several electron scattering experiments using improved experimental techniques have been reported for Ar and Kr in the region of Ramsauer-Townsend minima. The calculations of Fon et al. on electrons colliding with inert-gas atoms are extended to examine these experimental data. These calculations using a single pseudo-state to account for the dipole polarisability of the ground state atom while ignoring a whole host of excitation mechanisms, have been the subject of considerable controversy (e.g. Reinhardt 1981; Walters 1981). The answers to the questions raised by Walters (1981) may well lie in the present calculation and those of Fon et al. (1983, 1984) in which the 1 P pseudo-states used in these calculations give polarisabilities at least 15% larger than the experimental values. (author)

  4. The influence of the gaseous by-products from detonation and inert additives to explosives on the efficiency of mining rock breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Komir, V.M.; Chebenko, V.N.; Napadailo, V.I.; Rodak, S.N.

    1981-01-01

    Results are given from experiments to determine the influence of inert additives to explosives on the intensity of crushing mining rock. The mechanism of the blast action during the destruction of the samples using carbonic acid and sand as the additives is examined. An analysis of the experimental results demonstrated that the disjoining action of the detonation products is the result of the determinate role of the radial cracks in increasing the radius of the zone--these waves are generated by the shock wave. The efficiency of the blast may be increased by using easily-decomposing additives in the explosive that during explosion, evaporate, and both give off a large amount of gas and decrease the temperature of the detonation products, and consequently, the intensity of heat exchange with the rock.

  5. Core-in-shell sorbent for hot coal gas desulfurization

    Science.gov (United States)

    Wheelock, Thomas D.; Akiti, Jr., Tetteh T.

    2004-02-10

    A core-in-shell sorbent is described herein. The core is reactive to the compounds of interest, and is preferably calcium-based, such as limestone for hot gas desulfurization. The shell is a porous protective layer, preferably inert, which allows the reactive core to remove the desired compounds while maintaining the desired physical characteristics to withstand the conditions of use.

  6. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jiong; Ibragimov, Rashid

    2015-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting...... tree is isomorphic to T? We prove that in the general setting, CST is NP-complete, which implies that the tree edit distance considered here is also NP-hard, even when both input trees having diameters bounded by 10. We also show that, when the number of distinct stars is bounded by a constant k, CTS...

  7. Alternate cover materials

    International Nuclear Information System (INIS)

    1988-09-01

    As an effort to enhance compliance with the proposed US Environmental Protection Agency (EPA) groundwater standards, several special studies are being performed by the Technical Assistance Contractor (TAC) to identify and evaluate various design features that may reduce groundwater-related releases from tailings piles. The objective of this special study is to assess the suitability of using alternate cover materials (other than geomembranes) as infiltration barriers in Uranium Mill Tailings Remedial Action (UMTRA) Project piles to minimize leachate generation. The materials evaluated in this study include various types of asphalts, concretes, and a sodium bentonite clay/polypropylene liner system

  8. High enthalpy gas dynamics

    CERN Document Server

    Rathakrishnan, Ethirajan

    2014-01-01

    This is an introductory level textbook which explains the elements of high temperature and high-speed gas dynamics. written in a clear and easy to follow style, the author covers all the latest developments in the field including basic thermodynamic principles, compressible flow regimes and waves propagation in one volume covers theoretical modeling of High Enthalpy Flows, with particular focus on problems in internal and external gas-dynamic flows, of interest in the fields of rockets propulsion and hypersonic aerodynamics High enthalpy gas dynamics is a compulsory course for aerospace engine

  9. Fundamentals of gas dynamics

    CERN Document Server

    Babu, V

    2014-01-01

    Fundamentals of Gas Dynamics, Second Edition isa comprehensively updated new edition and now includes a chapter on the gas dynamics of steam. It covers the fundamental concepts and governing equations of different flows, and includes end of chapter exercises based on the practical applications. A number of useful tables on the thermodynamic properties of steam are also included.Fundamentals of Gas Dynamics, Second Edition begins with an introduction to compressible and incompressible flows before covering the fundamentals of one dimensional flows and normal shock wav

  10. Annual survey 2013 - Natural gas in the World 2013

    International Nuclear Information System (INIS)

    2013-01-01

    The 2013 Edition of 'Natural Gas in the World' by CEDIGAZ is built on CEDIGAZ's unique natural gas statistical database. This 170-page study, published since 1983, provides an in-depth analysis of the latest developments in the gas markets along with the most complete set of statistical data on the whole gas chain covering close to 130 countries. Topics covered by Natural Gas in the World 2013 include: proved natural gas reserves; unconventional gas status in the world; gross and marketed natural gas production; the international gas trade; existing and planned underground gas storage facilities in the world; natural gas consumption; natural gas prices

  11. Covering all the bases

    Energy Technology Data Exchange (ETDEWEB)

    Offen, G.; Shick, N.; Chang, R. (and others) [EPRI (US)

    2004-10-01

    Mercury control technologies offering sustainable performance and known applicability, impact, and cost are still in the future. Cooperative funding for long-term, full-scale tests of developed technologies and support for merging ones, promises to close this gap. The goal is to learn how to tailor mercury control technologies to the flue gas environments of individual coal-fired power plants. The article describes the current performance of mercury control technologies and discusses the research needed to support their success. 4 figs.

  12. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures.

    Science.gov (United States)

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-04-15

    The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Landfill gas in the Dutch perspective

    International Nuclear Information System (INIS)

    Scheepers, M.J.J.

    1991-01-01

    Until 1986 landfill gas had a considerable value because of the relative high energy prices. It appeared also that landfill gas was formed in large quantities. However after the collapse of the energy prices in 1986 many new landfill gas projects were delayed or stopped. Recently, the gas emissions on landfills have attracted attention again, but now because of various environmental aspects. With respect to landfill management a well controlled gas extraction seems to be necessary. Utilisation of the gas is still favourable for economic reasons and because of energy savings. The Dutch policy for the next ten years will be reduction of the amount of waste by prevention and recycling. The organic fraction of the municipal solid waste (refuse from vegetables, fruit and garden), obtained by separation in households, will be composted. The other part will be burnt in incinerators. Only the remaining inert refuse will be deposited on landfills. (author)

  14. Kinetics of thermal decomposition of aluminium hydride: I-non-isothermal decomposition under vacuum and in inert atmosphere (argon)

    International Nuclear Information System (INIS)

    Ismail, I.M.K.; Hawkins, T.

    2005-01-01

    Recently, interest in aluminium hydride (alane) as a rocket propulsion ingredient has been renewed due to improvements in its manufacturing process and an increase in thermal stability. When alane is added to solid propellant formulations, rocket performance is enhanced and the specific impulse increases. Preliminary work was performed at AFRL on the characterization and evaluation of two alane samples. Decomposition kinetics were determined from gravimetric TGA data and volumetric vacuum thermal stability (VTS) results. Chemical analysis showed the samples had 88.30% (by weight) aluminium and 9.96% hydrogen. The average density, as measured by helium pycnometery, was 1.486 g/cc. Scanning electron microscopy showed that the particles were mostly composed of sharp edged crystallographic polyhedral such as simple cubes, cubic octahedrons and hexagonal prisms. Thermogravimetric analysis was utilized to investigate the decomposition kinetics of alane in argon atmosphere and to shed light on the mechanism of alane decomposition. Two kinetic models were successfully developed and used to propose a mechanism for the complete decomposition of alane and to predict its shelf-life during storage. Alane decomposes in two steps. The slowest (rate-determining) step is solely controlled by solid state nucleation of aluminium crystals; the fastest step is due to growth of the crystals. Thus, during decomposition, hydrogen gas is liberated and the initial polyhedral AlH 3 crystals yield a final mix of amorphous aluminium and aluminium crystals. After establishing the kinetic model, prediction calculations indicated that alane can be stored in inert atmosphere at temperatures below 10 deg. C for long periods of time (e.g., 15 years) without significant decomposition. After 15 years of storage, the kinetic model predicts ∼0.1% decomposition, but storage at higher temperatures (e.g. 30 deg. C) is not recommended

  15. Inert materials for the GFR fuel. Characterizations, chemical interactions and irradiation damage

    International Nuclear Information System (INIS)

    Audubert, Fabienne; Carlot, Gaoelle; Lechelle, Jacques; David, Laurent; Gomes, Severine

    2005-01-01

    In the framework of an extensive R and D Program on GFR fuel, studies on inert materials have been performed at the French Atomic Energy Commission (CEA). The inert materials would be associated with the fuel with the aim of featuring an efficient barrier to radiotoxic species with regard to the cooling circuit of the reactor. Potential matrices identified for dispersion fuels or particles fuels are SiC, TiN, ZrN, ZrC, TiC. Physical microstructural and thermal properties have been determined in order to evaluate elaboration process effects. The evolution under irradiation of thermal properties (such as conductivity, diffusivity) of the materials has been studied using heavy ions to simulate fission product irradiation. After irradiation, scanning thermal microscopy is used to investigate the thermal degradation of the materials. Thermal conductivity variations were obtained on TiC irradiated with krypton ion at an energy of 86 MeV and a fluence of 5.10 15 ions.cm -2 . They are quantified at 19 W.m -1 .K -1 . On other materials such as SiC, ZrC, TiN, no thermal conductivity contrast was shown. Reactivity between the inert matrix (SiC or TiN) and the fuel (U, Pu)N have been evaluated on powders and on ceramic samples in contact by a thermal treatment under several atmospheres. It was shown that SiC reacts with (U, Pu)N in various atmospheres making secondary phases as PuSi 2 , USi 2 , U 20 Si 16 C 3 . TiN behaviour seems to be better: the only reactivity which may take place would be a variation of the nitrogen stoichiometry in TiN and (U, Pu)N at the interface. (author)

  16. Compound forming extractants, solvating solvents and inert solvents IUPAC chemical data series

    CERN Document Server

    Marcus, Y; Kertes, A S

    2013-01-01

    Equilibrium Constants of Liquid-Liquid Distribution Reactions, Part III: Compound Forming Extractants, Solvating Solvents, and Inert Solvents focuses on the compilation of equilibrium constants of various compounds, such as acids, ions, salts, and aqueous solutions. The manuscript presents tables that show the distribution reactions of carboxylic and sulfonic acid extractants and their dimerization and other reactions in the organic phase and extraction reactions of metal ions from aqueous solutions. The book also states that the inorganic anions in these solutions are irrelevant, since they d

  17. Innovative inert matrix-thoria fuels for in-reactor plutonium disposition

    International Nuclear Information System (INIS)

    Vettraino, F.; Padovani, E.; Luzzi, L.; Lombardi, C.; Thoresen, H.; Oberlander, B.; Iversen, G.; Espeland, M.

    1999-01-01

    The present leading option for plutonium disposition, either civilian or weapons Pu, is to burn it in LWRs after having converted it to MOX fuel. However, among the possible types of fuel which can be envisaged to burn plutonium in LWRs, innovative U-free fuels such as inert matrix and thoria fuel are novel concept in view of a more effective and ultimate solution from both security and safety standpoint. Inert matrix fuel is an non-fertile oxide fuel consisting of PuO 2 , either weapon-grade or reactor-grade, diluted in inert oxides such as for ex. stabilized ZrO 2 or MgAl 2 O 4 , its primary advantage consisting in no-production of new plutonium during irradiation, because it does not contain uranium (U-free fuel) whose U-238 isotope is the departure nuclide for breeding Pu-239. Some thoria addition in the matrix (thoria-doped fuel) may be required for coping with reactivity feedback needs. The full thoria-plutonia fuel though still a U-free variant cannot be defined non-fertile any more because the U-233 generation. The advantage of such a fuel option consisting basically on a remarkable already existing technological background and a potential acceleration in getting rid of the Pu stocks. All U-free fuels are envisaged to be operated under a once-through cycle scheme being the spent fuel outlooked to be sent directly to the final disposal in deep geological formations without requiring any further reprocessing treatment, thanks to the quality-poor residual Pu and a very high chemical stability under the current fuel reprocessing techniques. Besides, inert matrix-thoria fuel technology is suitable for in-reactor MAs transmutation. An additional interest in Th containing fuel refers to applicability in ADS, the innovative accelerated driven subcritical systems, specifically aimed at plutonium, minor actnides and long lived fission products transmutation in a Th-fuel cycle scheme which enables to avoid generations of new TRUs. A first common irradiation experiment

  18. Allowable spent LWR fuel storage temperatures in inert gases, nitrogen, and air

    International Nuclear Information System (INIS)

    Gilbert, E.R.; Cunningham, M.E.; Simonen, E.P.; Thomas, L.E.; Campbell, T.K.; Barnhart, D.M.

    1990-01-01

    Spent fuel in inert dry storage is now a reality in the US; recommended maximum temperature-time conditions are specified in an IBM PC-compatible code. However, spent fuel cannot yet be stored in air because the data and theory needed for predicting allowable temperatures are still being developed. Tests to determine the behavior of spent UO 2 fragments and breached rod specimens in air are providing data that will be used to determine the temperatures that can be allowed for fuel stored in air. 13 refs., 5 figs

  19. Optimal dual-fuel propulsion for minimum inert weight or minimum fuel cost

    Science.gov (United States)

    Martin, J. A.

    1973-01-01

    An analytical investigation of single-stage vehicles with multiple propulsion phases has been conducted with the phasing optimized to minimize a general cost function. Some results are presented for linearized sizing relationships which indicate that single-stage-to-orbit, dual-fuel rocket vehicles can have lower inert weight than similar single-fuel rocket vehicles and that the advantage of dual-fuel vehicles can be increased if a dual-fuel engine is developed. The results also indicate that the optimum split can vary considerably with the choice of cost function to be minimized.

  20. A method for making an inert porous electrode for a chemical current source

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzhek, O.S.; Litvinova, V.I.; Martynenko, T.L.; Raykhelson, L.B.; Shembel, Ye.M.; Sokolov, L.A.

    1983-01-01

    A method is proposed for making an inert, porous electrode for chemical current sources (KhIT) with a nonaqueous electrolyte on the basis of aprotonic solvents and an active cathode substance which is dissolved in the electrolyte. The method includes preparing an electrode mass from the starting material and subsequent formation of the electrode. To increase the energy capacity, after formation, the electrode is subjected to electrochemical anode polarization to potentials which correspond to the potential of electrochemical breakdown of the background electrolyte.

  1. Regenerable mixed copper-iron-inert support oxygen carriers for solid fuel chemical looping combustion process

    Energy Technology Data Exchange (ETDEWEB)

    Siriwardane, Ranjani V.; Tian, Hanjing

    2016-12-20

    The disclosure provides an oxygen carrier for a chemical looping cycle, such as the chemical looping combustion of solid carbonaceous fuels, such as coal, coke, coal and biomass char, and the like. The oxygen carrier is comprised of at least 24 weight % (wt %) CuO, at least 10 wt % Fe2O3, and an inert support, and is typically a calcine. The oxygen carrier exhibits a CuO crystalline structure and an absence of iron oxide crystalline structures under XRD crystallography, and provides an improved and sustained combustion reactivity in the temperature range of 600.degree. C.-1000.degree. C. particularly for solid fuels such as carbon and coal.

  2. National Land Cover Database (NLCD) Land Cover Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National Land Cover Database (NLCD) Land Cover Collection is produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC)...

  3. Allegheny County Land Cover Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Land Cover dataset demarcates 14 land cover types by area; such as Residential, Commercial, Industrial, Forest, Agriculture, etc. If viewing this description on...

  4. An Inert Continuous Microreactor for the Isolation and Analysis of a Single Microbial Cell

    Directory of Open Access Journals (Sweden)

    Katrin Rosenthal

    2015-11-01

    Full Text Available Studying biological phenomena of individual cells is enabled by matching the scales of microbes and cultivation devices. We present a versatile, chemically inert microfluidic lab-on-a-chip (LOC device for biological and chemical analyses of isolated microorganisms. It is based on the Envirostat concept and guarantees constant environmental conditions. A new manufacturing process for direct fusion bonding chips with functional microelectrodes for selective and gentle cell manipulation via negative dielectrophoresis (nDEP was generated. The resulting LOC system offered a defined surface chemistry and exceptional operational stability, maintaining its structural integrity even after harsh chemical treatment. The microelectrode structures remained fully functional after thermal bonding and were proven to be efficient for single-cell trapping via nDEP. The microfluidic network consisted solely of glass, which led to enhanced chip reusability and minimized interaction of the material with chemical and biological compounds. We validated the LOC for single-cell studies with the amino acid secreting bacterium Corynebacterium glutamicum. Intracellular l-lysine production dynamics of individual bacteria were monitored based on a genetically encoded fluorescent nanosensor. The results demonstrate the applicability of the presented LOC for pioneering chemical and biological studies, where robustness and chemically inert surfaces are crucial parameters for approaching fundamental biological questions at a single-cell level.

  5. New viable region of an inert Higgs doublet dark matter model with scotogenic extension

    Science.gov (United States)

    Borah, Debasish; Gupta, Aritra

    2017-12-01

    We explore the intermediate dark matter mass regime of the inert Higgs doublet model, approximately between 400 and 550 GeV, which is allowed by latest constraints from direct and indirect detection experiments, but the thermal relic abundance remains suppressed. We extend the model by three copies of right-handed neutrinos, odd under the built-in Z2 symmetry of the model. This discrete Z2 symmetry of the model allows these right-handed neutrinos to couple to the usual lepton doublets through the inert Higgs doublet allowing the possibility of radiative neutrino mass in the scotogenic fashion. Apart from generating nonzero neutrino mass, such an extension can also revive the intermediate dark matter mass regime. The late decay of the lightest right-handed neutrino to dark matter makes it possible for the usual thermally underabundant dark matter in this intermediate mass regime to satisfy the correct relic abundance limit. The revival of this wide intermediate mass range can have relevance not only for direct and indirect search experiments but also for neutrino experiments as the long lifetime of the lightest right-handed neutrino also results in almost vanishing lightest neutrino mass.

  6. Collider and dark matter searches in the inert doublet model from Peccei-Quinn symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Alexandre [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo,Diadema-SP, 09972-270 (Brazil); Camargo, Daniel A.; Dias, Alex G. [Universidade Federal do ABC, Centro de Ciências Naturais e Humanas,09210-580, Santo André-SP (Brazil); Longas, Robinson [Instituto de Física, Universidad de Antioquia,Calle 70 No. 52-21, Medellín (Colombia); Nishi, Celso C. [Universidade Federal do ABC, Centro de Matemática, Computação e Cognição Naturais,09210-580, Santo André-SP (Brazil); Queiroz, Farinaldo S. [Max-Planck-Institut fur Kernphysik,Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2016-10-04

    Weakly Interacting Massive Particles (WIMPs) and axions are arguably the most compelling dark matter candidates in the literature. Could they coexist as dark matter particles? More importantly, can they be incorporated in a well motivated framework in agreement with experimental data? In this work, we show that this two component dark matter can be realized in the Inert Doublet Model in an elegant and natural manner by virtue of the spontaneous breaking of a Peccei-Quinn U(1){sub PQ} symmetry into a residual ℤ{sub 2} symmetry. The WIMP stability is guaranteed by the ℤ{sub 2} symmetry and a new dark matter component, the axion, arises. There are two interesting outcomes: (i) vector-like quarks needed to implement the Peccei-Quinn symmetry in the model may act as a portal between the dark sector and the SM fields with a supersymmetry-type phenomenology at colliders; (ii) two-component Inert Doublet Model re-opens the phenomenologically interesting 100–500 GeV mass region. We show that the model can successfully realize a two component dark matter framework and at the same time avoid low and high energy physics constraints such as monojet and dijet plus missing energy, as well as indirect and direct dark matter detection bounds.

  7. Efficiency of inert mineral dusts in the control of corn weevil

    Directory of Open Access Journals (Sweden)

    Carlos F. Jairoce

    2016-02-01

    Full Text Available ABSTRACT Corn weevil (Sitophilus zeamais may cause great losses in the crop and in stored corn grains. This insect is controlled with the use of chemical insecticides, which may cause serious damage to human health. One alternative of control is the use of inert dusts. The objective of this study was to evaluate the efficiency of inert dusts in the control of S. zeamais under laboratory conditions. The experiment was conducted in 2014, in a completely randomized design, and the treatments consisted of basalt dust with three different granulometries (A, B and C and diatomaceous earth, each of which at the doses of 2 and 4 kg t-1 and a control (no application. Each treatment had four replicates, and the sample unit consisted of 20 g of corn grains infected with 10 adults of S. zeamais kept in temperature-controlled chamber at 25 °C, 70% RH and photophase of 12 h. The dust efficiency was calculated using the equation of Abbott. The mortality rate was higher with the use of diatomaceous earth, reaching 100% after 5 days of exposure and the percentage of control for basalt dusts, 29 days after treatment, was above 80%.

  8. Design and validation of inert homemade explosive simulants for ground penetrating radar

    Science.gov (United States)

    VanderGaast, Brian W.; McFee, John E.; Russell, Kevin L.; Faust, Anthony A.

    2015-05-01

    The Canadian Armed Forces (CAF) identified a requirement for inert simulants to act as improvised, or homemade, explosives (IEs) when training on, or evaluating, ground penetrating radar (GPR) systems commonly used in the detection of buried landmines and improvised explosive devices (IEDs). In response, Defence R and D Canada (DRDC) initiated a project to develop IE simulant formulations using commonly available inert materials. These simulants are intended to approximate the expected GPR response of common ammonium nitrate-based IEs, in particular ammonium nitrate/fuel oil (ANFO) and ammonium nitrate/aluminum (ANAl). The complex permittivity over the range of electromagnetic frequencies relevant to standard GPR systems was measured for bulk quantities of these three IEs that had been fabricated at DRDC Suffield Research Centre. Following these measurements, published literature was examined to find benign materials with both a similar complex permittivity, as well as other physical properties deemed desirable - such as low-toxicity, thermal stability, and commercial availability - in order to select candidates for subsequent simulant formulation. Suitable simulant formulations were identified for ANFO, with resulting complex permittivities measured to be within acceptable limits of target values. These IE formulations will now undergo end-user trials with CAF operators in order to confirm their utility. Investigations into ANAl simulants continues. This progress report outlines the development program, simulant design, and current validation results.

  9. Demand-Based Optimal Design of Storage Tank with Inerter System

    Directory of Open Access Journals (Sweden)

    Shiming Zhang

    2017-01-01

    Full Text Available A parameter optimal design method for a tank with an inerter system is proposed in this study based on the requirements of tank vibration control to improve the effectiveness and efficiency of vibration control. Moreover, a response indicator and a cost control indicator are selected based on the control targets for liquid storage tanks for simultaneously minimizing the dynamic response and controlling costs. These indicators are reformulated through a random vibration analysis under virtual excitation. The problem is then transformed from a multiobjective optimization problem to a single-objective nonlinear problem using the ε-constraint method, which is consistent with the demand-based method. White noise excitation can be used to design the tank with the inerter system under seismic excitation to simplify the calculation. Subsequently, a MATLAB-based calculation program is compiled, and several optimization cases are examined under different excitation conditions. The effectiveness of the demand-based method is proven through a time history analysis. The results show that specific vibration control requirements can be met at the lowest cost with a simultaneous reduction in base shears and overturning base moments.

  10. Adsorption of volatile polonium species on metals in various gas atmospheres. Pt. II. Adsorption of volatile polonium on platinum, silver and palladium

    Energy Technology Data Exchange (ETDEWEB)

    Maugeri, Emilio Andrea; Joerg Neuhausen; Dressler, Rugard; Piguet, David; Voegele, Alexander; Schumann, Dorothea [Paul Scherrer Institut (PSI), Villigen (Switzerland). Lab. for Radiochemistry; Misiak, Ryszard [The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Eichler, Robert [Paul Scherrer Institut (PSI), Villigen (Switzerland). Lab. for Radiochemistry; Bern Univ. (Switzerland). Dept. for Chemistry and Biochemistry

    2016-07-01

    This work presents the results obtained from studying the interaction between polonium compounds formed in different atmospheres and platinum, palladium and silver surfaces obtained by thermochromatography. These results are of crucial importance for the design of cover gas filter systems for lead-bismuth eutectic (LBE)-based nuclear facilities such as accelerator driven systems (ADS). The results obtained from studying the interaction of polonium and platinum under inert atmosphere and reducing atmospheres with and without addition of moisture show that polonium is deposited at temperatures between 993 and 1221 K, with adsorption enthalpies ranging from -235 to -291 kJ mol{sup -1}, indicating a very strong adsorption of the polonium species present on platinum surfaces. The interaction between polonium and silver was investigated using purified inert, reducing and oxidizing carrier gases. Results show a deposition temperature between 867 and 990 K, with adsorption enthalpies ranging from -205 to -234 kJ mol{sup -1}. The interaction of polonium and palladium was studied in purified helium and purified hydrogen. For both conditions a deposition temperature of 1221 K was observed corresponding to an adsorption enthalpy of -340 kJ mol{sup -1}. No highly volatile polonium species was formed at any of the applied experimental conditions.

  11. On approximating restricted cycle covers

    NARCIS (Netherlands)

    Manthey, Bodo

    2008-01-01

    A cycle cover of a graph is a set of cycles such that every vertex is part of exactly one cycle. An $L$-cycle cover is a cycle cover in which the length of every cycle is in the set $L$. The weight of a cycle cover of an edge-weighted graph is the sum of the weights of its edges. We come close to

  12. Gainesville's urban forest canopy cover

    Science.gov (United States)

    Francisco Escobedo; Jennifer A. Seitz; Wayne Zipperer

    2009-01-01

    Ecosystem benefits from trees are linked directly to the amount of healthy urban forest canopy cover. Urban forest cover is dynamic and changes over time due to factors such as urban development, windstorms, tree removals, and growth. The amount of a city's canopy cover depends on its land use, climate, and people's preferences. This fact sheet examines how...

  13. Method for high temperature mercury capture from gas streams

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2006-04-25

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  14. A gas thermometer for vapor pressure measurements

    Science.gov (United States)

    Rusin, A. D.

    2008-08-01

    The pressure of an inert gas over the range 400 1000 K was measured on a tensimetric unit with a quartz membrane pressure gauge of enhanced sensitivity. It was shown that a reactor with a membrane null gauge could be used as a gas thermometer. The experimental confidence pressure and temperature intervals were 0.07 torr and 0.1 K at a significance level of 0.05. A Pt-Pt/10% Rh thermocouple was calibrated; the results were approximated by a polynomial of degree five. The error in temperature calculations was 0.25 K.

  15. Modification of Structure and Tribological Properties of the Surface Layer of Metal-Ceramic Composite under Electron Irradiation in the Plasmas of Inert Gases

    Science.gov (United States)

    Ovcharenko, V. E.; Ivanov, K. V.; Mohovikov, A. A.; Yu, B.; Xu, Yu; Zhong, L.

    2018-01-01

    Metal-ceramic composites are the main materials for high-load parts in tribomechanical systems. Modern approaches to extend the operation life of tribomechanical systems are based on increasing the strength and tribological properties of the surface layer having 100 to 200 microns in depth. The essential improvement of the properties occurs when high dispersed structure is formed in the surface layer using high-energy processing. As a result of the dispersed structure formation the more uniform distribution of elastic stresses takes place under mechanical or thermal action, the energy of stress concentrators emergence significantly increases and the probability of internal defects formation reduces. The promising method to form the dispersed structure in the surface layer is pulse electron irradiation in the plasmas of inert gases combining electron irradiation and ion bombardment in one process. The present work reports upon the effect of pulse electron irradiation in plasmas of different inert gases with different atomic mass and ionization energy on the structure and tribological properties of the surface layer of TiC/(Ni-Cr) metal-ceramic composite with the volume ratio of the component being 50:50. It is experimentally shown that high-dispersed heterophase structure with a fraction of nanosized particles is formed during the irradiation. Electron microscopy study reveals that refining of the initial coarse TiC particles occurs via their dissolution in the molten metal binder followed by the precipitation of secondary fine particles in the interparticle layers of the binder. The depth of modified layer and the fraction of nanosized particles increase when the atomic number of the plasma gas increases and ionization energy decreases. The wear resistance of metal-ceramic composite improves in accordance to the formation of nanocrystalline structure in the surface layer.

  16. Influence of HPPMS pulse length and inert gas mixture on the properties of (Cr,Al)N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bagcivan, N.; Bobzin, K. [Surface Engineering Institute, RWTH Aachen University, Kackertstr. 15, D-52072 Aachen (Germany); Grundmeier, G.; Wiesing, M.; Ozcan, O.; Kunze, C. [University of Paderborn, Technical and Macromolecular Chemistry, Warburger Str. 100, D-33098 Paderborn (Germany); Brugnara, R.H., E-mail: brugnara@iot.rwth-aachen.de [Surface Engineering Institute, RWTH Aachen University, Kackertstr. 15, D-52072 Aachen (Germany)

    2013-12-31

    During the production of plastic products by injection molding processes adhesion and abrasion wear as well as corrosion take place in the molding tools. Concerning this, (Cr,Al)N coatings deposited via physical vapor deposition (PVD) have a good potential to be used as protective coatings on injection tools. For an effective protection of coated tools a uniform layer of coating material is also required. In this regard, the HPPMS (high power pulse magnetron sputtering) technology offers possibilities to improve coating thickness uniformity as well as to adapt the chemical and mechanical properties. The present work deals with the investigation of influence of HPPMS pulse length and the argon/krypton ratio in the deposition process on (Cr,Al)N coating properties. For this reason, (Cr,Al)N coatings were deposited with HPPMS pulse length of 40, 80 and 200 μs at constant Ar/Kr ratio (120/80 sccm). The results were compared with a coating deposited with DC Magnetron Sputtering (DC-MS) with the same Ar/Kr ratio. Afterwards, a (Cr,Al)N coating was deposited with constant pulse length (200 μs) without Kr. The chemical composition, morphology and phase composition of the coatings were analyzed by means of EDS (Energy Dispersive Spectroscopy), SEM (Scanning Electron Microscopy) and XRD (X-ray Diffraction), respectively. The composition of the surface near region in the samples was investigated by means of XPS (X-ray Photoelectron Spectroscopy). Mechanical properties were measured by means of nanoindentation. Decreasing of pulse length at constant mean power leads to a considerable increase of cathode current. It could be observed that the deposition rate of the HPPMS process reduces with decreasing pulse length. Nevertheless, short HPPMS pulse lengths and high peak currents lead to an increase of hardness from 25 GPa to 32 GPa while the DC-MS coating displays a hardness of 18 GPa. The use of krypton within the sputter process leads to a marginal increase of the deposition rate while the mechanical properties are not significantly changed. In addition, EIS (electrochemical impedance spectroscopy) was employed to investigate the defect structure of the coatings. - Highlights: • Short HPPMS pulse and high peak current lead to a fine grained (Cr,Al)N morphology. • The (Cr,Al)N deposited with short pulse is less sensitive to surface oxidation. • The (Cr,Al)N deposited with short pulse showed high hardness up to 32 GPa. • By using a Ar/Kr mixture an increase of the deposition rate was achieved. • EIS analysis indicated a defect rich structure in the DC compared to HPPMS coating.

  17. Unified model to the Tungsten inert Gas welding process including the cathode, the plasma and the anode

    International Nuclear Information System (INIS)

    Brochard, M.

    2009-06-01

    During this work, a 2D axially symmetric model of a TIG arc welding process had been developed in order to predict for given welding parameters, the needed variables for a designer of welded assembly: the heat input on the work piece, the weld pool geometry,... The developed model, using the Cast3M finite elements software, deals with the physical phenomena acting in each part of the process: the cathode, the plasma, the work piece with a weld pool, and the interfaces between these parts. To solve this model, the thermohydraulics equations are coupled with the electromagnetic equations that are calculated in part using the least squares finite element method. The beginning of the model validation consisted in comparing the results obtained with the ones available in the scientific literature. Thus, this step points out the action of each force in the weld pool, the contribution of each heat flux in the energy balance. Finally, to validate the model predictiveness, experimental and numerical sensitivity analyses were conducted using a design of experiments approach. The effects of the process current, the arc gap and the electrode tip angle on the weld pool geometry and the energy transferred to the work piece and the arc efficiency were studied. The good agreement obtained by the developed model for these outputs shows the good reproduction of the process physics. (author)

  18. Body burden of aluminum in relation to central nervous system function among metal inert-gas welders.

    Science.gov (United States)

    Riihimäki, V; Hänninen, H; Akila, R; Kovala, T; Kuosma, E; Paakkulainen, H; Valkonen, S; Engström, B

    2000-04-01

    The relationship between elevated internal aluminum loads and central nervous system function was studied among aluminum welders, and the threshold level for adverse effect was defined. For 65 aluminum welders and 25 current mild steel welders body burden was estimated, and the aluminum concentrations in serum (S-Al) and urine (U-Al) were analyzed with graphite furnace atomic absorption spectrometry with Zeeman background correction. Referents and low-exposure and high-exposure groups were defined according to an aggregated measure of aluminum body burden, the group median S-Al levels being 0.08, 0.14, and 0.46 micromol/l, respectively, and the corresponding values for U-Al being 0.4, 1.8, and 7.1 micromol/l. Central nervous system functions were assessed with a neuropsychological test battery, symptom and mood questionnaires, a visual and quantitative analysis of electroencephalography (EEG), and P3 event-related potentials with pitch and duration paradigms. Subjective symptoms showed exposure-related increases in fatigue, mild depression, and memory and concentration problems. Neuropsychological testing revealed a circumscribed effect of aluminum, mainly in tasks demanding complex attention and the processing of information in the working memory system and in the analysis and recall of abstract visual patterns. The visual EEG analysis revealed pathological findings only for aluminum welders. Mild, diffuse abnormalities were found in 17% of the low-exposure group and 27% of the high-exposure group, and mild to moderate epileptiform abnormalities at a frequency of 7% and 17%, respectively. Both objective neurophysiological and neuropsychological measures and subjective symptomatology indicated mild but unequivocal findings dose-dependently associated with increased aluminum body burden. The study indicates that the body burden threshold for adverse effect approximates an U-Al value of 4-6 micromol/l and an S-Al value of 0.25-0.35 micromol/l among aluminum welders.

  19. Blood flow in the small intestine of cat and man as analyzed by an inert gas washout technique

    International Nuclear Information System (INIS)

    Hulten, L.; Jodal, M.; Lindhagen, J.; Lundgren, O.

    1976-01-01

    Using a recently developed 85 Kr-elimination technique, blood flow and flow distribution of the human small intestine have been investigated in patients during abdominal surgery. Total intestinal blood flow was estimated to be 38 +- 4 ml per min and 100 g of intestinal tissue (mean +- SE: n = 19), jejunal blood flow being slightly higher than ileal. In 14 of these patients muscularis blood flow was determined to be 21 +- 2 ml per min and 100 g of muscularis tissue and mucosal-submucosal blood flow was calculated to be 51 +- 6 ml per min and 100 g of mucosal-submucosal tissue. Seventy-five +-3 percent of total blood flow was distributed to the mucosa-submucosa and the remaining 25 +- 3 percent to the muscularis. It was demonstrated that an increasing fraction of flow was diverted to the mucosa-submucosa with enhanced total intestinal blood flow. The human gut exhibited great qualitative and quantitative circulatory similarities with the feline small intestine

  20. Inert gas annealing effect in solution-processed amorphous indium-gallium-zinc-oxide thin-film transistors

    Science.gov (United States)

    Lee, Seungwoon; Jeong, Jaewook

    2017-08-01

    In this paper, the annealing effect of solution-processed amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs), under ambient He (He-device), is systematically analyzed by comparison with those under ambient O2 (O2-device) and N2 (N2-device), respectively. The He-device shows high field-effect mobility and low subthreshold slope owing to the minimization of the ambient effect. The degradation of the O2- and N2-device performances originate from their respective deep acceptor-like and shallow donor-like characteristics, which can be verified by comparison with the He-device. However, the three devices show similar threshold voltage instability under prolonged positive bias stress due to the effect of excess oxygen. Therefore, annealing in ambient He is the most suitable method for the fabrication of reference TFTs to study the various effects of the ambient during the annealing process in solution-processed a-IGZO TFTs.