Heavy ion inelastic scattering with a 4π gamma detector
International Nuclear Information System (INIS)
Gross, E.E.
1989-01-01
Heavy-ion inelastic scattering with a new technique that uses a 4π γ-ray detector in coincidence with charged particle detectors is applied to 24 Mg(200 MeV) + 208 Pb scattering. In addition to differential cross sections, a complete particle-γ angular correlation is obtained for decay of the 2 1 + (1.37 MeV) state of 24 Mg. The data are analyzed in coupled-channels. The correlation data proves to be especially sensitive to the static quadrupole moment. 14 refs., 9 figs
International Nuclear Information System (INIS)
Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.
1978-01-01
An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector and an inelastic scattering gamma ray detector is moved through a borehole. The detection of inelastic gamma rays provides a measure of the fast neutron population in the vicinity of the detector. repetitive bursts of neutrons irradiate the earth formation and, during the busts, inelastic gamma rays representative of the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. the fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity
Gamma decay of pygmy states in 90,94Zr from inelastic scattering of light ions
Crespi, F. C. L.; Bracco, A.; Tamii, A.; Blasi, N.; Camera, F.; Wieland, O.; Aoi, N.; Balabanski, D.; Bassauer, S.; Brown, A. S.; Carpenter, M. P.; Carroll, J. J.; Ciemala, M.; Czeszumska, A.; Davies, P. J.; Donaldson, L.; Fang, Y.; Fujita, H.; Gey, G.; Hoang, T. H.; Ichige, N.; Ideguchi, E.; Inoue, A.; Isaak, J.; Iwamoto, C.; Jenkins, D. G.; Jin, O. H.; Klaus, T.; Kobayashi, N.; Koike, T.; Krzysiek, M.; Raju, M. Kumar; Liu, M.; Maj, A.; Montanari, D.; Morris, L.; Noji, S.; Pickstone, S. G.; Savran, D.; Spieker, M.; Steinhilber, G.; Sullivan, C.; Wasilewska, B.; Werner, V.; Yamamoto, T.; Yamamoto, Y.; Zhou, X.; Zhu, S.
2018-05-01
We performed experiments to study the low-energy part of the E1 response (Pygmy Dipole Resonance) in 90,94Zr nuclei, by measuring the (p,p’γ) and (α,α’γ) inelastic scattering reactions at energies Ebeam,p = 80 MeV and Ebeam,α = 130 MeV respectively. The inelastically scattered particles were measured by employing the high-resolution spectrometer Grand Raiden. The gamma-rays emitted following the de-excitation of the Zr target nuclei were detected using both the clover type HPGe detectors of the CAGRA array and the large volume LaBr3:Ce scintillation detectors from the HECTOR+ array. Some preliminary results are presented here.
Random pulsing of neutron source for inelastic neutron scattering gamma ray spectroscopy
International Nuclear Information System (INIS)
Hertzog, R.C.
1981-01-01
Method and apparatus are described for use in the detection of inelastic neutron scattering gamma ray spectroscopy. Data acquisition efficiency is enhanced by operating a neutron generator such that a resulting output burst of fast neutrons is maintained for as long as practicably possible until a gamma ray is detected. Upon the detection of a gamma ray the generator burst output is terminated. Pulsing of the generator may be accomplished either by controlling the burst period relative to the burst interval to achieve a constant duty cycle for the operation of the generator or by maintaining the burst period constant and controlling the burst interval such that the resulting mean burst interval corresponds to a burst time interval which reduces contributions to the detected radiation of radiation occasioned by other than the fast neutrons
Deep inelastic lepton scattering
International Nuclear Information System (INIS)
Nachtmann, O.
1977-01-01
Deep inelastic electron (muon) nucleon and neutrino nucleon scattering as well as electron positron annihilation into hadrons are reviewed from a theoretical point of view. The emphasis is placed on comparisons of quantum chromodynamics with the data. (orig.) [de
Deep inelastic neutron scattering
International Nuclear Information System (INIS)
Mayers, J.
1989-03-01
The report is based on an invited talk given at a conference on ''Neutron Scattering at ISIS: Recent Highlights in Condensed Matter Research'', which was held in Rome, 1988, and is intended as an introduction to the techniques of Deep Inelastic Neutron Scattering. The subject is discussed under the following topic headings:- the impulse approximation I.A., scaling behaviour, kinematical consequences of energy and momentum conservation, examples of measurements, derivation of the I.A., the I.A. in a harmonic system, and validity of the I.A. in neutron scattering. (U.K.)
International Nuclear Information System (INIS)
Zakharov, V.I.
1977-01-01
The present status of the quark-parton-gluon picture of deep inelastic scattering is reviewed. The general framework is mostly theoretical and covers investigations since 1970. Predictions of the parton model and of the asymptotically free field theories are compared with experimental data available. The valence quark approximation is concluded to be valid in most cases, but fails to account for the data on the total momentum transfer. On the basis of gluon corrections introduced to the parton model certain predictions concerning both the deep inelastic structure functions and form factors are made. The contributions of gluon exchanges and gluon bremsstrahlung are highlighted. Asymptotic freedom is concluded to be very attractive and provide qualitative explanation to some experimental observations (scaling violations, breaking of the Drell-Yan-West type relations). Lepton-nuclear scattering is pointed out to be helpful in probing the nature of nuclear forces and studying the space-time picture of the parton model
Inelastic Light Scattering Processes
Fouche, Daniel G.; Chang, Richard K.
1973-01-01
Five different inelastic light scattering processes will be denoted by, ordinary Raman scattering (ORS), resonance Raman scattering (RRS), off-resonance fluorescence (ORF), resonance fluorescence (RF), and broad fluorescence (BF). A distinction between fluorescence (including ORF and RF) and Raman scattering (including ORS and RRS) will be made in terms of the number of intermediate molecular states which contribute significantly to the scattered amplitude, and not in terms of excited state lifetimes or virtual versus real processes. The theory of these processes will be reviewed, including the effects of pressure, laser wavelength, and laser spectral distribution on the scattered intensity. The application of these processes to the remote sensing of atmospheric pollutants will be discussed briefly. It will be pointed out that the poor sensitivity of the ORS technique cannot be increased by going toward resonance without also compromising the advantages it has over the RF technique. Experimental results on inelastic light scattering from I(sub 2) vapor will be presented. As a single longitudinal mode 5145 A argon-ion laser line was tuned away from an I(sub 2) absorption line, the scattering was observed to change from RF to ORF. The basis, of the distinction is the different pressure dependence of the scattered intensity. Nearly three orders of magnitude enhancement of the scattered intensity was measured in going from ORF to RF. Forty-seven overtones were observed and their relative intensities measured. The ORF cross section of I(sub 2) compared to the ORS cross section of N2 was found to be 3 x 10(exp 6), with I(sub 2) at its room temperature vapor pressure.
Neutron total, scattering and inelastic gamma-ray cross sections of yttrium at few MeV energies
International Nuclear Information System (INIS)
Budtz-Joergensen, C.; Guenther, P.; Smith, A.; Whalen, J.; McMurray, W.R.; Renan, M.J.; Heerden, I.J. van
1984-01-01
Neutron total, scattering and (n; n', γ) cross sections of elemental yttrium ( 89 Y) were measured in the few-MeV region. The neutron total-cross-section measurements were made with broad resolutions from approx.=0.5 to 4.2 MeV in steps of < or approx.0.1 MeV. Neutron elastic- and inelastic-scattering cross sections were measured from approx.=1.5 to 4.0 MeV, at incident-neutron energy intervals of approx.=50 keV and at ten or more scattering angles distributed between 20 and 160 degrees using neutron detection. Inelastic-scattering cross sections were also determined using the (n; n', γ) reaction at incident energies from 1.6 to 3.8 MeV at intervals of 0.1 MeV. Gamma-rays and/or inelastically-scattered neutrons were observed corresponding to the excitation of levels at: 909.0+-0.5, 1,507.4+-0.3, 1,744.5+-0.3, 2,222.6+-0.5, 2,530+-0.8, 2,566.4+-1.0, 2,622.5+-1.0, 2,871.9+-1.5, 2,880.6+-2.0, 3,067.0+-2.0, 3,107.0+-2.0, 3,140.0+-2.0, 3,410.0+-2.0, 3,450.0+-2.0, 3,504.0+-1.5, 3,514.0+-2.0, 3,556.0+-2.0, 3,619.0+-3.0, 3,629.0+-3.0 and 3,715.0+-3.0 keV. The experimental results are discussed in terms of the spherical-optical-statistical, coupled-channels, and core-coupling models, and in the context of previously reported excited-level structure. (orig.)
Directory of Open Access Journals (Sweden)
Robert de Mello Koch
2017-05-01
Full Text Available We study the worldsheet S-matrix of a string attached to a D-brane in AdS5×S5. The D-brane is either a giant graviton or a dual giant graviton. In the gauge theory, the operators we consider belong to the su(2|3 sector of the theory. Magnon excitations of open strings can exhibit both elastic (when magnons in the bulk of the string scatter and inelastic (when magnons at the endpoint of an open string participate scattering. Both of these S-matrices are determined (up to an overall phase by the su(2|22 global symmetry of the theory. In this note we study the S-matrix for inelastic scattering. We show that it exhibits poles corresponding to boundstates of bulk and boundary magnons. A crossing equation is derived for the overall phase. It reproduces the crossing equation for maximal giant gravitons, in the appropriate limit. Finally, scattering in the su(2 sector is computed to two loops. This two loop result, which determines the overall phase to two loops, will be useful when a unique solution to the crossing equation is to be selected.
Inelastic scattering of neutrons
International Nuclear Information System (INIS)
Sal'nikov, O.A.
1984-06-01
The paper reviews the main problems concerning the mechanism of the inelastic scatterings of neutrons by nuclei, concentrating on the different models which calculate the angular distributions. In the region of overlapping levels, both the compound nucleus mechanism and the preequilibrium Griffin (exciton) model are discussed, and their contribution relative to that of a direct mechanism is considered. The parametrization of the level density and of the nuclear moment of inertia are also discussed. The excitation functions of discrete levels are also presented, and the importance of elucidating their five structure (for practical calculations, such as for shielding) is pointed out
Polarization phenomena in inelastic scattering
International Nuclear Information System (INIS)
Verhaar, B.J.
1974-01-01
An attempt is made to clarify the principles of inelastic scattering using the distorted wave Born approximation, concentrating on inelastic proton scattering. The principle aspects and merits of the microscopic description and the necessity of including the N-N spin orbit force are discussed. (7 figures) (U.S.)
Inelastic scattering and deformation parameters
International Nuclear Information System (INIS)
Ford, J.L.C. Jr.
1978-01-01
In recent years there has been extensive study of nuclear shape parameters by electron scattering, μ meson atomic transitions, Coulomb excitation and direct nuclear inelastic scattering. Inelastic scattering of strongly absorbed particles, e.g., alpha-particles and heavy ions, at energies below and above the Coulomb barrier probe the charge and mass distributions within the nucleus. This paper summarizes measurements in this field performed at Oak Ridge National Laboratory
Bassauer, Sergej; Neumann-Cosel, Peter von; Tamii, Atsushi
2017-09-01
Inelastic proton scattering at energies of a few 100 MeV and forward angles including 0∘ provides a novel method to measure gamma strength functions (GSF) in nuclei in an energy range of about 5-23 MeV. The experiments provide not only the E1 but also the M1 part of the GSF. The latter is poorly known in heavy nuclei. A case study of 208Pb indicates that the systematics proposed for the M1-GSF in RIPL-3 needs to be substantially revised. Comparison with gamma decay data (e.g. from the Oslo method) allows to test the generalised Brink-Axel (BA) hypothesis in the energy region of the pygmy dipole resonance (PDR) crucial for the modelling of (n,γ) and (γ,n) reactions in astrophysical reaction networks. A fluctuation analysis of the high-resolution data also provides a direct measure of level densities in the energy region well above the neutron threshold, where hardly any experimental information is available.
Directory of Open Access Journals (Sweden)
Bassauer Sergej
2017-01-01
Full Text Available Inelastic proton scattering at energies of a few 100 MeV and forward angles including 0∘ provides a novel method to measure gamma strength functions (GSF in nuclei in an energy range of about 5–23 MeV. The experiments provide not only the E1 but also the M1 part of the GSF. The latter is poorly known in heavy nuclei. A case study of 208Pb indicates that the systematics proposed for the M1-GSF in RIPL-3 needs to be substantially revised. Comparison with gamma decay data (e.g. from the Oslo method allows to test the generalised Brink-Axel (BA hypothesis in the energy region of the pygmy dipole resonance (PDR crucial for the modelling of (n,γ and (γ,n reactions in astrophysical reaction networks. A fluctuation analysis of the high-resolution data also provides a direct measure of level densities in the energy region well above the neutron threshold, where hardly any experimental information is available.
Inelastic light scattering in crystals
Sushchinskii, M. M.
The papers presented in this volume are concerned with a variety of problems in optics and solid state physics, such as Raman scattering of light in crystals and disperse media, Rayleigh and inelastic scattering during phase transitions, characteristics of ferroelectrics in relation to the general soft mode concept, and inelastic spectral opalescence. A group-theory approach is used to classify the vibrational spectra of the crystal lattice and to analyze the properties of idealized crystal models. Particular attention is given to surface vibrational states and to the study of the surface layers of crystals and films by light scattering methods.
Fedorov, N. A.; Grozdanov, D. N.; Bystritskiy, V. M.; Kopach, Yu. N.; Ruskov, I. N.; Skoy, V. R.; Tretyakova, T. Yu.; Zamyatin, N. I.; Wang, D.; Aliev, F. A.; Hramco, C.; Gandhi, A.; Kumar, A.; Dabylova, S.; Bogolubov, E. P.; Barmakov, Yu. N.
2018-04-01
The characteristic gamma radiation from the interaction of 14.1 MeV neutrons with a natural silicon sample is investigated with Tagged Neutron Method (TNM). The anisotropy of gamma-ray emission of 1.779 MeV was measured at 11 azimuth angles with a step of ∠15°. The present results are in good agreement with some recent experimental data.
Pulsed neutron logging system for inelastic scattering gamma rays with gain compensation
International Nuclear Information System (INIS)
Schultz, W.E.; Smith, H.D. Jr.
1976-01-01
An illustrative embodiment of the invention includes methods for linearizing the gain of borehole gamma ray energy measurement apparatus. A known energy peak (or peaks) which is prominent in the gamma ray energy spectra of borehole measurements is monitored and any drift in its apparent location in the energy spectrum is used to generate an error voltage. The error voltage is applied in an inverse feedback manner to control the gain of system amplifiers to cancel the drift
International Nuclear Information System (INIS)
Aubert, J.J.
1982-01-01
Deep inelastic lepton-nucleon interaction experiments are renewed. Singlet and non-singlet structure functions are measured and the consistency of the different results is checked. A detailed analysis of the scaling violation is performed in terms of the quantum chromodynamics predictions [fr
CdZnTe {gamma} detector for deep inelastic neutron scattering on the VESUVIO spectrometer
Energy Technology Data Exchange (ETDEWEB)
Andreani, C.; Pietropaolo, A.; Senesi, R. [Dipartimento di Fisica, Universita degli Studi di Roma ' Tor Vergata' , Via della Ricerca Scientifica 1, 00133, Roma (Italy); Istituto Nazionale per la Fisica della Materia, UdR, Tor Vergata (Italy); D' Angelo, A. [Dipartimento di Fisica, Universita degli Studi di Roma ' Tor Vergata' , Via della Ricerca Scientifica 1, 00133, Roma (Italy); Istituto Nazionale di Fisica Nucleare, Sezione, Roma II (Italy); Gorini, G.; Imberti, S.; Tardocchi, M. [Dipartimento di Fisica G. Occhialini, Universita degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano (Italy); Istituto Nazionale per la Fisica della Materia, UdR, Milano-Bicocca (Italy); Rhodes, N.J.; Schooneveld, E.M. [Isis Facility, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, Oxfordshire (United Kingdom)
2004-03-01
In this paper it is shown that solid-state cadmium-zinc-telluride (CZT) is a promising photon detector for neutron spectroscopy in a wide energy interval, ranging from thermal ({proportional_to}25 meV) to epithermal ({proportional_to}70 eV) neutron energies. In the present study two CZT detectors were tested as part of the inverse-geometry neutron spectrometer VESUVIO operating at the ISIS pulsed neutron source. The response of the CZT detector to photon emission from radiative neutron capture in {sup 238}U was determined by biparametric measurements of neutron time of flight and photon energy. The scattering response function F(y) from a Pb sample has been derived using both CZT and conventional {sup 6}Li-glass scintillator detectors. The former showed both an improved signal to background ratio and higher efficiency as compared to {sup 6}Li glass, allowing us to measure F(y) up to the fourth {sup 238}U absorption energy (E{sub r}=66.02 eV). Due to the small size of CZT detectors, their use is envisaged in arrays, with high spatial resolution, for neutron-scattering studies at high energy ({Dirac_h}{omega}>1 eV) and low wavevector (q <10 A{sup -1}) transfers. (orig.)
Polarization transfer in inelastic scattering
International Nuclear Information System (INIS)
Moss, J.M.
1980-01-01
Polarization transfer experiments are now feasible for inelastic scattering experiments on complex nuclei. Experiments thus far have dealt with the spin-flip probability; this observable is sensitive to the action of spin-spin and tensor forces in inelastic scattering. Spin-flip probabilities at E approx. 40 MeV in isoscalar transitions in 12 C(12.71 MeV) and 15 O(8.89 MeV) show considerable deviation from DWBA-shell model predictions; this deviation indicates evidence for more complex reaction mechanisms. Experiments at intermediate energies will soon be possible and will yield data of much higher precision than is possible at lower (E < 100 MeV) energies. These experiments hold exciting promise in such areas as nuclear critical opalescence. 7 figures, 1 table
Inelastic neutron scattering from clusters
International Nuclear Information System (INIS)
Gudel, H.U.
1985-01-01
Magnetic excitations in clusters of paramagnetic ions have non-vanishing cross-sections for inelastic neutron scattering (INS). Exchange splittings can be determined, the temperature dependence of exchange can be studied, intra- and intercluster effects can be separated and magnetic form factors determined. INS provides a more direct access to the molecular properties than bulk techniques. Its application is restricted to complexes with no or few (< 10%) hydrogen atoms
Solution of a simple inelastic scattering problem
International Nuclear Information System (INIS)
Knudson, S.K.
1975-01-01
Simple examples of elastic scattering, typically from square wells, serve as important pedagogical tools in discussion of the concepts and processes involved in elastic scattering events. An analytic solution of a model inelastic scattering system is presented here to serve in this role for inelastic events. The model and its solution are simple enough to be of pedagogical utility, but also retain enough of the important physical features to include most of the special characteristics of inelastic systems. The specific model chosen is the collision of an atom with a harmonic oscillator, interacting via a repulsive square well potential. Pedagogically important features of inelastic scattering, including its multistate character, convergence behavior, and dependence on an ''inelastic potential'' are emphasized as the solution is determined. Results are presented for various energies and strengths of inelastic scattering, which show that the model is capable of providing an elementary representation of vibrationally inelastic scattering
International Nuclear Information System (INIS)
Rollason, A.J.; Bell, F.; Schneider, J.R.
1989-09-01
Measurements have been made of the recoiling electron in 320 keV gamma ray inelastic scattering collisions in thin aluminium targets. The angular correlation of these electrons detected in coincidence with the scattered photon is in agreement with the kinematic requirements of the Compton effect and is correctly predicted by Monte Carlo simulations based on the impulse approximation. Further simulations of ideal-geometry experiments indicate that information about the initial electron momenta is available from an examination of those electron-photon events originating in a surface layer of one electronic mean free path depth and that elastic scattering of the recoil electrons from greater depths produces a nearly flat background to this signal. The results clearly demonstrate the feasibility of the (γ,eγ) experiment for studying electron momentum densities with synchrotron radiation. (orig.) With 23 refs., 17 figs
Topics in deep inelastic scattering
International Nuclear Information System (INIS)
Wandzura, S.M.
1977-01-01
Several topics in deep inelastic lepton--nucleon scattering are discussed, with emphasis on the structure functions appearing in polarized experiments. The major results are: infinite set of new sum rules reducing the number of independent spin dependent structure functions (for electroproduction) from two to one; the application of the techniques of Nachtmann to extract the coefficients appearing in the Wilson operator product expansion; and radiative corrections to the Wilson coefficients of free field theory. Also discussed are the use of dimensional regularization to simplify the calculation of these radiative corrections
Inelastic scattering from amorphous solids
International Nuclear Information System (INIS)
Price, D.L.
1985-08-01
The potential of inelastic neutron scattering techniques for surveying various aspects of the dynamics of amorphous solids is briefly reviewed. The recent use of the Intense Pulsed Neutron Source to provide detailed information on the optical vibrations of glasses is discussed in more detail. The density of states represents an averaged quantity which gives information about the general characteristics of the structure and bonding. More extensive information can be obtained by studying the detailed wavevector dependence of the dynamic structure factor. 15 refs., 7 figs
Jets in deep inelastic scattering
International Nuclear Information System (INIS)
Joensson, L.
1995-01-01
Jet production in deep inelastic scattering provides a basis for the investigation of various phenomena related to QCD. Two-jet production at large Q 2 has been studied and the distributions with respect to the partonic scaling variables have been compared to models and to next to leading order calculations. The first observations of azimuthal asymmetries of jets produced in first order α s processes have been obtained. The gluon initiated boson-gluon fusion process permits a direct determination of the gluon density of the proton from an analysis of the jets produced in the hard scattering process. A comparison of these results with those from indirect extractions of the gluon density provides an important test of QCD. (author)
A method to describe inelastic gamma field distribution in neutron gamma density logging.
Zhang, Feng; Zhang, Quanying; Liu, Juntao; Wang, Xinguang; Wu, He; Jia, Wenbao; Ti, Yongzhou; Qiu, Fei; Zhang, Xiaoyang
2017-11-01
Pulsed neutron gamma density logging (NGD) is of great significance for radioprotection and density measurement in LWD, however, the current methods have difficulty in quantitative calculation and single factor analysis for the inelastic gamma field distribution. In order to clarify the NGD mechanism, a new method is developed to describe the inelastic gamma field distribution. Based on the fast-neutron scattering and gamma attenuation, the inelastic gamma field distribution is characterized by the inelastic scattering cross section, fast-neutron scattering free path, formation density and other parameters. And the contribution of formation parameters on the field distribution is quantitatively analyzed. The results shows the contribution of density attenuation is opposite to that of inelastic scattering cross section and fast-neutron scattering free path. And as the detector-spacing increases, the density attenuation gradually plays a dominant role in the gamma field distribution, which means large detector-spacing is more favorable for the density measurement. Besides, the relationship of density sensitivity and detector spacing was studied according to this gamma field distribution, therefore, the spacing of near and far gamma ray detector is determined. The research provides theoretical guidance for the tool parameter design and density determination of pulsed neutron gamma density logging technique. Copyright © 2017 Elsevier Ltd. All rights reserved.
Deep inelastic electron and muon scattering
International Nuclear Information System (INIS)
Taylor, R.E.
1975-07-01
From the review of deep inelastic electron and muon scattering it is concluded that the puzzle of deep inelastic scattering versus annihilation was replaced with the challenge of the new particles, that the evidence for the simplest quark-algebra models of deep inelastic processes is weaker than a year ago. Definite evidence of scale breaking was found but the specific form of that scale breaking is difficult to extract from the data. 59 references
International Nuclear Information System (INIS)
Egan, J.J.; Menachery, J.D.; Kegel, G.H.R.; Pullen, D.J.
1980-01-01
The /sup 232/Th(n,n/prime/sub gamma/) reaction has been studied up to 2.1 MeV bombarding energy for states with excitation energies from 700 to 1700 keV. Seventy-five gamma-ray transitions from forty-three above the first excited state have been observed from a disk scatterer with a 40-cm/sup 3/ Ge(Li) detector surrounded by an anti-Compton annulus of NaI(Tl). The time-of-flight technique was employed to further reduce background. Cross sections for twenty-two states are reported here. The data have been corrected for the finite sample effects of neutron and gamma-ray attenuation, and neutron multiple scattering. The results are compared to those of McMurray et al. and to the predictions of the compound nucleus statistical model. A compound nucleus plus direct interaction calculation is also shown for the 1/sup -/ state at 714 kev. 7 refs
Deep inelastic scattering and disquarks
International Nuclear Information System (INIS)
Anselmino, M.
1993-01-01
The most comprehensive and detailed analyses of the existing data on the structure function F 2 (x, Q 2 ) of free nucleons, from the deep inelastic scattering (DIS) of charged leptons on hydrogen and deuterium targets, have proved beyond any doubt that higher twist, 1/Q 2 corrections are needed in order to obtain a perfect agreement between perturbative QCD predictions and the data. These higher twist corrections take into account two quark correlations inside the nucleon; it is then natural to try to model them in the quark-diquark model of the proton. In so doing all interactions between the two quarks inside the diquark, both perturbative and non perturbative, are supposed to be taken into account. (orig./HSI)
Benchmarking the inelastic neutron scattering soil carbon method
The herein described inelastic neutron scattering (INS) method of measuring soil carbon was based on a new procedure for extracting the net carbon signal (NCS) from the measured gamma spectra and determination of the average carbon weight percent (AvgCw%) in the upper soil layer (~8 cm). The NCS ext...
Inelastic scattering of fast electrons by crystals
International Nuclear Information System (INIS)
Allen, L.J.; Josefsson, T.W.
1995-01-01
Generalized fundamental equations for electron diffraction in crystals, which include the effect of inelastic scattering described by a nonlocal interaction, are derived. An expression is obtained for the cross section for any specific type of inelastic scattering (e.g. inner-shell ionization, Rutherford backscattering). This result takes into account all other (background) inelastic scattering in the crystal leading to absorption from the dynamical Bragg-reflected beams, in practice mainly due to thermal diffuse scattering. There is a contribution to the cross section from all absorbed electrons, which form a diffuse background, as well as from the dynamical electrons. The approximations involved, assuming that the interactions leading to inelastic scattering can be described by a local potential are discussed, together with the corresponding expression for the cross section. It is demonstrated by means of an example for K-shell electron energy loss spectroscopy that nonlocal effects can be significant. 47 refs., 4 figs
Elastic and inelastic heavy ion scattering
International Nuclear Information System (INIS)
Toepffer, C.; University of the Witwatersrand, Johannesburg; Richter, A.
1977-02-01
In the field of elastic and inelastic heavy ion scattering, the following issues are dealt with: semiclassical descriptive approximations, optical potentials, barriers, critical radii and angular momenta, excitation functions and the application to superheavy ions and high energies. (WL) [de
Leading particle in deep inelastic scattering
International Nuclear Information System (INIS)
Petrov, V.A.
1984-01-01
The leading particle effect in deep inelastic scattering is considered. The change of the characteris cs shape of the leading particle inclusive spectrum with Q 2 is estimated to be rather significant at very high Q 2
Gamma-rays from deep inelastic collisions
International Nuclear Information System (INIS)
Stephens, F.S.
1981-01-01
My objective in this talk is to consider the question: 'What can be learned about deep inelastic collisions (DIC) from studying the associated gamma-rays'. First, I discuss the origin and nature of the gamma-rays from DIC, then the kinds of information gamma-ray spectra contain, and finally come to the combination of these two subjects. (orig./HSI)
Inelastic neutron scattering from cerium under pressure
International Nuclear Information System (INIS)
Rainford, B.D.; Buras, B.; Lebech, B.
1976-01-01
Inelastic neutron scattering from Ce metal at 300K was studied both below and above the first order γ-α phase transition, using a triple axis spectrometer. It was found that (a) there is no indication of any residual magnetic scattering in the collapsed α phase and (b) the energy width of the paramagnetic scattering in the γ-phase increases with pressure. (Auth.)
Inelastic neutron scattering from glass formers
International Nuclear Information System (INIS)
Buchenau, U.
1997-01-01
Neutron spectra below and above the glass transition temperature show a pronounced difference between strong and fragile glass formers in Angell's fragility scheme. The strong anharmonic increase of the inelastic scattering with increasing temperature in fragile substances is absent in the strongest glass former SiO 2 . That difference is reflected in the temperature dependence of Brillouin sound velocities above the glass transition. Coherent inelastic neutron scattering data indicate a mixture of sound waves and local modes at the low frequency boson peak. A relation between the fragility and the temperature dependence of the transverse hypersound velocity at the glass temperature is derived. (author)
Charm production in deep-inelastic e$\\gamma$ scattering to next-to-leading order in QCD
Laenen, Eric
1995-01-01
We discuss the calculation of F_2^{\\gamma}({\\rm charm}) to next-to-leading order (NLO) in QCD, including contributions from both hadronlike and pointlike photons. We show that the former dominates strongly below x\\simeq 0.01, and the latter above this value. This fact makes F_2^{\\gamma}({\\rm charm}) for x \\geq 0.01 calculable, whereas for x \\leq 0.01 it serves to constrain the small-x gluon density in the photon. Both ranges in x are accessible at LEP2. Theoretical uncertainties are well under control. We present rates for single-tag events for the process for e^+e^- \\rightarrow e^+e^- c X for LEP2. Although these event rates are small, we believe a measurement of F_2^{\\gamma}({\\rm charm}) is feasible.
Photon diffractive dissociation in deep inelastic scattering
International Nuclear Information System (INIS)
Ryskin, M.G.
1990-01-01
The new ep-collider HERA gives us the possibility to study the diffractive dissociation of virtual photon in deep inelastic ep-collision. The process of photon dissociation in deep inelastic scattering is the most direct way to measure the value of triple-pomeron vertex G 3P . It was shown that the value of the correct bare vertex G 3P may more than 4 times exceeds its effective value measuring in the triple-reggeon region and reaches the value of about 40-50% of the elastic pp-pomeron vertex. On the contrary in deep inelastic processes the perpendicular momenta q t of the secondary particles are large enough. Thus in deep inelastic reactions one can measure the absolute value of G 3P vertex in the most direct way and compare its value and q t dependence with the leading log QCD predictions
Inelastic neutron scattering method in hard coal quality monitoring
Energy Technology Data Exchange (ETDEWEB)
Cywicka-Jakiel, T.; Loskiewicz, J.; Tracz, G. [Institute of Nuclear Physics, Cracow (Poland)
1994-07-01
Nuclear methods in mining industry and power generation plants are nowadays very important especially because of the need for optimization of combustion processes and reduction of environmental pollution. On-line analysis of coal quality not only economic benefits but contribute to environmental protection too. Neutron methods especially inelastic scattering and PGNAA are very useful for analysis of coal quality where calorific valve, ash and moisture content are the most important. Using Pu-Be or Am-Be isotopic sources and measuring carbon 4.43 MeV {gamma}-rays from neutron inelastic scattering: {sup 12}C(n,n`{gamma}){sup 12}C we can evaluate calorific valve in hard coals with precision better than in PGNAA method. This is mainly because of large cross-section for inelastic scattering and the strong correlation between carbon content and calorific value shown in the paper for different coal basins. The influence of moisture on 4.43 MeV carbon {gamma}-rays in considered in the paper in theoretical and experimental aspects and appropriate formula is introduced. Also the possibilities of determine ash, moisture, Cl, Na and Si in coal are shown. (author). 11 refs, 15 figs.
Parity violation in deep inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Souder, P. [Syracuse Univ., NY (United States)
1994-04-01
AA beam of polarized electrons at CEBAF with an energy of 8 GeV or more will be useful for performing precision measurements of parity violation in deep inelastic scattering. Possible applications include precision tests of the Standard Model, model-independent measurements of parton distribution functions, and studies of quark correlations.
Some applications of polarized inelastic neutron scattering
Indian Academy of Sciences (India)
A brief account of applications of polarized inelastic neutron scattering in condensed matter research is given. ... the itinerant antiferromagnet chromium we demonstrate that the dynamics of the longitudinal and transverse excitations are very different, resolving a long standing puzzle concerning the slope of their dispersion.
Particle Production in Deep Inelastic Muon Scattering
Energy Technology Data Exchange (ETDEWEB)
Ryan, John James [MIT
1991-01-01
The E665 spectrometer at Fermila.b measured Deep-Inelastic Scattering of 490 GeV /c muons off several targets: Hydrogen, Deuterium, and Xenon. Events were selected from the Xenon and Deuterium targets, with a range of energy exchange, $\
Coherence effects in deep inelastic scattering
International Nuclear Information System (INIS)
Andersson, B.; Gustafson, G.; Loennblad, L.; Pettersson, U.
1988-09-01
We present a framework for deep inelastic scattering, with bound state properties in accordance with a QCD force field acting like a vortex line in a colour superconducting vacuum, which implies some simple coherence effects. Within this scheme one may describe the results of present energies very well, but one obtains an appreciable depletion of gluon radiation in the HERA energy regime. (authors)
Elastic and inelastic electron and muon scattering
International Nuclear Information System (INIS)
Hand, L.N.
1977-01-01
The current status of experiments in the field of elastic and inelastic electron and muon scattering is discussed. The talk is divided into discussions of the single arm inclusive experiments at SLAC and Fermilab; the multiparticle inclusive experiments at SLAC, Fermilab und Cornell, and a description of selected results from exclusive channel measurements on electroproduced final states. (orig.) [de
Inelastic neutron scattering from superconducting rings
International Nuclear Information System (INIS)
Agafonov, A.I.
2010-01-01
For the first time the differential cross section for the inelastic magnetic neutron scattering by superconducting rings is derived taking account of the interaction of the neutron magnetic moment with the magnetic field generated by the superconducting current. Calculations of the scattering cross section are carried out for cold neutrons and thin film rings from type-II superconductors with the magnetic fields not exceeding the first critical field.
Deep Inelastic Scattering at the Amplitude Level
International Nuclear Information System (INIS)
Brodsky, Stanley J.
2005-01-01
The deep inelastic lepton scattering and deeply virtual Compton scattering cross sections can be interpreted in terms of the fundamental wavefunctions defined by the light-front Fock expansion, thus allowing tests of QCD at the amplitude level. The AdS/CFT correspondence between gauge theory and string theory provides remarkable new insights into QCD, including a model for hadronic wavefunctions which display conformal scaling at short distances and color confinement at large distances
Neutron Inelastic Scattering Study of Liquid Argon
Energy Technology Data Exchange (ETDEWEB)
Skoeld, K; Rowe, J M; Ostrowski, G [Solid State Science Div., Argonne National Laboratory, Argonne, Illinois (US); Randolph, P D [Nuclear Technology Div., Idaho Nuclear Corporation, Idaho Falls, Idaho (US)
1972-02-15
The inelastic scattering functions for liquid argon have been measured at 85.2 K. The coherent scattering function was obtained from a measurement on pure A-36 and the incoherent function was derived from the result obtained from the A-36 sample and the result obtained from a mixture of A-36 and A-40 for which the scattering is predominantly incoherent. The data, which are presented as smooth scattering functions at constant values of the wave vector transfer in the range 10 - 44/nm, are corrected for multiple scattering contributions and for resolution effects. Such corrections are shown to be essential in the derivation of reliable scattering functions from neutron scattering data. The incoherent data are compared to recent molecular dynamics results and the mean square displacement as a function of time is derived. The coherent data are compared to molecular dynamics results and also, briefly, to some recent theoretical models
Deep inelastic scattering near the Coulomb barrier
International Nuclear Information System (INIS)
Gehring, J.; Back, B.; Chan, K.
1995-01-01
Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems 124,112 Sn + 58,64 Ni by Wolfs et al. We previously extended these measurements to the system 136 Xe + 64 Ni and currently measured the system 124 Xe + 58 Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring
Deep inelastic scattering near the Coulomb barrier
Energy Technology Data Exchange (ETDEWEB)
Gehring, J.; Back, B.; Chan, K. [and others
1995-08-01
Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems {sup 124,112}Sn + {sup 58,64}Ni by Wolfs et al. We previously extended these measurements to the system {sup 136}Xe + {sup 64}Ni and currently measured the system {sup 124}Xe + {sup 58}Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring.
Parity violation in deep inelastic electron scattering
International Nuclear Information System (INIS)
Taylor, R.E.
1979-11-01
Neutral currents in electron scattering and the Weinberg-Salam model are reviewed. This generally accepted model is consistent with experimental results from neutrino interactions; an appropriate deep inelastic electron scattering experiment would measure couplings that don't involve neutrinos to see if they are also correctly described by the theory. The SLAC-Yale experiment measures a difference in the e-d inelastic cross section for right- and left-handed electrons. The polarized source, beam monitors, scattering experiment, checks of helicity dependence, and results are described. It is concluded that the data obtained are in agreement with the Weinberg-Salam model, and that the best value of sin 2 theta/sub W/ for these data is in excellent agreement with the average values of that parameter deduced from neutrino experiments. Future experiments with polarized electrons are discussed. 12 figures, 2 tables
Effective exchange potentials for electronically inelastic scattering
International Nuclear Information System (INIS)
Schwenke, D.W.; Staszewska, G.; Truhlar, D.G.
1983-01-01
We propose new methods for solving the electron scattering close coupling equations employing equivalent local exchange potentials in place of the continuum-multiconfiguration-Hartree--Fock-type exchange kernels. The local exchange potentials are Hermitian. They have the correct symmetry for any symmetries of excited electronic states included in the close coupling expansion, and they have the same limit at very high energy as previously employed exchange potentials. Comparison of numerical calculations employing the new exchange potentials with the results obtained with the standard nonlocal exchange kernels shows that the new exchange potentials are more accurate than the local exchange approximations previously available for electronically inelastic scattering. We anticipate that the new approximations will be most useful for intermediate-energy electronically inelastic electron--molecule scattering
[Inelastic electron scattering from surfaces
International Nuclear Information System (INIS)
1993-01-01
This program uses ab-initio and multiple scattering to study surface dynamical processes; high-resolution electron-energy loss spectroscopy is used in particular. Off-specular excitation cross sections are much larger if electron energies are in the LEED range (50--300 eV). The analyses have been extended to surfaces of ordered alloys. Phonon eigenvectors and eigenfrequencies were used as inputs to electron-energy-loss multiple scattering cross section calculations. Work on low-energy electron and positron holography is mentioned
International Nuclear Information System (INIS)
Sirota, S.
1987-01-01
Aspects of the nuclear structure of 100 Ru whe investigated by means of the scattering of 100 Ru (p,p') 100 Ru* with 16 MeV protons, where 21 states were investigated. The emergent protons were analysed by a magnetic spectrograph, of the enge type with a typical resolution of ≅ 9 KeV. (A.C.A.S.) [pt
Inelastic scattering. Time of flight
International Nuclear Information System (INIS)
Eccleston, R.
1999-01-01
It is the scattering function, S(Q,ω), which provides the link between the scattering data and the physical system being studied and is thereby the parameter of interest. The nature of the experiment will dictate the portions of momentum transfer - energy transfer space that is to be probed. The portions of Q-ω space that are accessible and the way it is covered determine the appropriateness of an instrument or technique to a particular experiment. One should also remember that if studying a polycrystalline of disordered material, momentum transfer need only by characterized by modulus Q whereas in studies of single crystals one is operating in four-dimensional Q x -Q y -Q z -ω space. (author)
Measurement of isolated photon production in deep inelastic ep scattering
Energy Technology Data Exchange (ETDEWEB)
Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Lab., Argonne, IL (US)] (and others)
2009-09-15
Isolated photon production in deep inelastic ep scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 320 pb{sup -1}. Measurements were made in the isolated-photon transverse-energy and pseudo- rapidity ranges 45 GeV. Differential cross sections are presented for inclusive isolated photon production as functions of Q{sup 2}, x, E{sub T}{sup {gamma}} and {eta}{sup {gamma}}. Leading-logarithm parton-shower Monte Carlo simulations and perturbative QCD predictions give a reasonable description of the data over most of the kinematic range. (orig.)
The theory of deeply inelastic scattering
International Nuclear Information System (INIS)
Bluemlein, J.
2012-01-01
The nucleon structure functions probed in deep-inelastic scattering at large virtualities form an important tool to test Quantum Chromdynamics (QCD) through precision measurements of the strong coupling constant α s (M Z 2 ) and the different parton distribution functions. The exact knowledge of these quantities is also of importance for all precision measurements at hadron colliders. During the last two decades very significant progress has been made in performing precision calculations. We review the theoretical status reached for both unpolarized and polarized lepton-hadron scattering based on perturbative QCD. (orig.)
The theory of deeply inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Bluemlein, J.
2012-08-31
The nucleon structure functions probed in deep-inelastic scattering at large virtualities form an important tool to test Quantum Chromdynamics (QCD) through precision measurements of the strong coupling constant {alpha}{sub s}(M{sub Z}{sup 2}) and the different parton distribution functions. The exact knowledge of these quantities is also of importance for all precision measurements at hadron colliders. During the last two decades very significant progress has been made in performing precision calculations. We review the theoretical status reached for both unpolarized and polarized lepton-hadron scattering based on perturbative QCD. (orig.)
[Inelastic electron scattering from surfaces
International Nuclear Information System (INIS)
1993-01-01
This program is aimed at the quantitative study of surface dynamical processes (vibrational, magnetic excitations) in crystalline slabs, ultrathin-layered materials, and chemisorbed systems on substrates, and of the geometric structure connected to these dynamical excitations. High-resolution electron-energy loss spectroscopy (HREELS) is a powerful probe. Off-specular excitation cross sections are much larger if electron energies are in the LEED range (50-300 eV). The analyses has been used to study surfaces of ordered alloys (NiAl). Ab-initio surface lattice dynamical results were combined with phonon-loss cross sections to achieve a more accurate microscopic description. First-principles phonon eigenvectors and eigenfrequencies were used as inputs to electron-energy-loss multiple scattering cross-section calculations. The combined microscopic approach was used to analyze EELS data of Cu(0001) and Ag(001) at two points. Positron diffraction is discussed as a structural and imaging tool. The relation between geometric structure of a film and its local magnetic properties will be studied in the future, along with other things
Energy Technology Data Exchange (ETDEWEB)
Hoogenboom, J.E. (Technische Hogeschool Delft (Netherlands))
1983-01-01
From the collision mechanics of inelastic discrete-level scattering several properties are derived for the secondary-neutron energy distribution (SNED) for inelastic continuum scattering, when conceived as scattering with continuously-distributed inelastic levels. Using assumptions about the level density and neutron cross section the SNED can be calculated and some examples are shown. A formula is derived to calculate from a given inelastic continuum SNED a function, which is proportional to the level density and the neutron cross section. From this relation further conditions follow for the SNED. Representations for the inelastic continuum SNED currently in use do not, in general, satisfy most of the derived conditions.
International Nuclear Information System (INIS)
Hoogenboom, J.E.
1983-01-01
From the collision mechanics of inelastic discrete-level scattering several properties are derived for the secondary-neutron energy distribution (SNED) for inelastic continuum scattering, when conceived as scattering with continuously-distributed inelastic levels. Using assumptions about the level density and neutron cross section the SNED can be calculated and some examples are shown. A formula is derived to calculate from a given inelastic continuum SNED a function, which is proportional to the level density and the neutron cross section. From this relation further conditions follow for the SNED. Representations for the inelastic continuum SNED currently in use do not, in general, satisfy most of the derived conditions. (author)
Inelastic electron scattering from a moving nucleon
Energy Technology Data Exchange (ETDEWEB)
Kuhn, S.E. [Old Dominion Univ., Norfolk, VA (United States); Griffioen, K. [College of William and Mary, Williamsburg, VA (United States)
1994-04-01
The authors propose to measure inelastically scattered electrons in coincidence with spectator protons emitted backwards relative to the virtual photon direction in the reaction d(e, e{prime}p{sub s})X. In a simple spectator model, the backward proton has equal and opposite momentum to the neutron before it is struck, allowing the authors to study the dependence on kinematics and off-shell behaviour of the electron-nucleon inelastic cross section. If the photon couples to a quark in a 6-quark bag, a different dependence of the cross section on the kinematic variables (x, Q{sup 2}, and p{sub s}) can be observed. This proposed experiment requires large acceptance and beam energies above 6 GeV. It is ideally suited for the CEBAF Large Acceptance Spectrometer (CLAS).
Theory of deep inelastic lepton-hadron scattering
International Nuclear Information System (INIS)
Geyer, B.; Robaschik, D.; Wieczorek, E.
1979-01-01
The description of deep inelastic lepton-nucleon scattering in the lowest order of the electromagnetic and weak coupling constants leads to a study of virtual Compton amplitudes and their absorptive parts. Some aspects of quantum chromodynamics are discussed. Deep inelastic scattering enables a central quantity of quantum field theory, namely the light cone behaviour of the current commutator. The moments of structure functions are used for the description of deep inelastic scattering. (author)
Deep inelastic scattering and asymptotic freedom
International Nuclear Information System (INIS)
Nachtmann, O.
1985-01-01
I recall some facets of the history of the field of deep inelastic scattering. I show how there was a very fruitful interplay between phenomenology on the one side and more abstract field theoretical considerations on the other side, where Kurt Symanzik, whose memory we honour today, made important contributions. Finally I make some remarks on the most recent developments in this field which have to do with the so-called EMC-effect, where EMC stands for European Muon Collaboration. (orig./HSI)
Radiative corrections to deep inelastic muon scattering
International Nuclear Information System (INIS)
Akhundov, A.A.; Bardin, D.Yu.; Lohman, W.
1986-01-01
A summary is given of the most recent results for the calculaion of radiative corrections to deep inelastic muon-nucleon scattering. Contributions from leptonic electromagnetic processes up to the order a 4 , vacuum polarization by leptons and hadrons, hadronic electromagnetic processes approximately a 3 and γZ interference have been taken into account. The dependence of the individual contributions on kinematical variables is studied. Contributions, not considered in earlier calculations of radiative corrections, reach in certain kinematical regions several per cent at energies above 100 GeV
Boson structure functions from inelastic electron scattering
International Nuclear Information System (INIS)
De Jager, C.W.
1986-01-01
The even /sup 104-110/Pd isotopes and /sup 196/Pt have been investigated at NIKHEF-K by high-resolution inelastic electron scattering. A new IBA-2 calculation has been performed for the Pd isotopes, in which the ratio of the proton and neutron coupling constants is taken from pion scattering. One set of boson structure functions sufficed for the description of the first and second E2-excitations in all Pd isotopes. The data showed no sensitivity for different structure functions for proton and neutron bosons. A preliminary analysis of a number of negative parity states (3/sup -/,5/sup -/ and 7/sup -/), observed in /sup 196/Pt, was performed through the introduction of an f-boson. The first E4-excitation in the palladium isotopes can be reasonably described with a β-structure function, but all other E4-excitations require the introduction of g-boson admixtures
Antinucleon-nucleus elastic and inelastic scattering
International Nuclear Information System (INIS)
Dover, C.B.; Millener, D.J.
1985-01-01
A general overview of the utility of antinucleon (anti N)-nucleus inelastic scattering studies is presented, emphasizing both the sensitivity of the cross sections to various components of the N anti N transition amplitudes and the prospects for the exploration of some novel aspects of nuclear structure. We start with an examination of the relation between NN and N anti N potentials, focusing on the coherences predicted for the central, spin-orbit and tensor components, and how these may be revealed by measurements of two-body spin observables. We next discuss the role of the nucleus as a spin and isospin filter, and show how, by a judicious choice of final state quantum numbers (natural or unnatural parity states, isospin transfer ΔT = 0 or 1) and momentum transfer q, one can isolate different components of the N anti N transition amplitude. Various models for the N anti N interaction which give reasonable fits to the available two-body data are shown to lead to strikingly different predictions for certain spin-flip nuclear transitions. We suggest several possible directions for future anti N-nucleus inelastic scattering experiments, for instance the study of spin observables which would be accessible with polarized anti N beams, charge exchange reactions, and higher resolution studies of the (anti p, anti p') reaction. We compare the antinucleon and the nucleon as a probe of nuclear modes of excitation. 40 refs., 13 figs
Dijet production in diffractive deep inelastic scattering at HERA
Energy Technology Data Exchange (ETDEWEB)
Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)
2007-08-15
The production of dijets in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 61 pb{sup -1}. The dijet cross section has been measured for virtualities of the exchanged virtual photon, 5gamma}{sup *}p centre-of-mass energies, 100
Inelastic neutron scattering and lattice dynamics of minerals
Indian Academy of Sciences (India)
We review current research on minerals using inelastic neutron scattering and lattice dynamics calculations. Inelastic neutron scattering studies in combination with first principles and atomistic calculations provide a detailed understanding of the phonon dispersion relations, density of states and their manifestations in ...
Inelastic neutron scattering and lattice dynamics of minerals
Indian Academy of Sciences (India)
Abstract. We review current research on minerals using inelastic neutron scattering and lattice dynamics calculations. Inelastic neutron scattering studies in combination with first principles and atomistic calculations provide a detailed understanding of the phonon dispersion relations, density of states and their ...
Energy Technology Data Exchange (ETDEWEB)
De Oliveira Santos, F. [Grand Accelerateur National d' Ions Lourds, UMR 6415, 14 - Caen (France)
2007-07-01
Nuclear reactions can occur at low kinetic energy. Low-energy reactions are characterized by a strong dependence on the structure of the compound nucleus. It turns out that it is possible to study the nuclear structure by measuring these reactions. In this course, three types of reactions are treated: Resonant Elastic Scattering (such as N{sup 14}(p,p)N{sup 14}), Inelastic Scattering (such as N{sup 14}(p,p')N{sup 14*}) and Astrophysical reactions (such as N{sup 14}(p,{gamma})O{sup 15}). (author)
Magnetic Dynamics of Fine Particles Studied by Inelastic Neutron Scattering
DEFF Research Database (Denmark)
Hansen, Mikkel Fougt; Bødker, Franz; Mørup, Steen
2000-01-01
We give an introduction to inelastic neutron scattering and the dynamic scattering function for magnetic nanoparticles. Differences between ferromagnetic and antiferromagnetic nanoparticles are discussed and we give a review of recent results on ferromagnetic Fe nanoparticles and canted antiferro......We give an introduction to inelastic neutron scattering and the dynamic scattering function for magnetic nanoparticles. Differences between ferromagnetic and antiferromagnetic nanoparticles are discussed and we give a review of recent results on ferromagnetic Fe nanoparticles and canted...
Current fragmentation in deep inelastic scattering
International Nuclear Information System (INIS)
Hamer, C.J.
1975-04-01
It is argued that the current fragmentation products in deep inelastic electron scattering will not be distributed in a 'one-dimensional' rapidity plateau as in the parton model picture of Feynman and Bjorken. A reaction mechanism with a multiperipheral topology, but which the above configuration might have been achieved, does not in fact populate the current fragmentation plateau; and unless partons are actually observed in the final state, it cannot lead to Bjorken scaling. The basic reason for this failure is shown to be the fact that when a particle is produced in the current fragmentation plateau, the adjacent momentum transfer in the multiperipheral chain becomes large and negative: such processes are inevitably suppressed. Instead, the current fragmentation products are likely to be generated by a fragmentation, or sequential decay process. (author)
Inelastic Neutron Scattering Study of Mn
Energy Technology Data Exchange (ETDEWEB)
Zhong, Y.; Sarachik, M.P.; Friedman, J.R.; Robinson, R.A.; Kelley, T.M.; Nakotte, H.; Christianson, A.C.; Trouw, F.; Aubin, S.M.J.; Hendrickson, D.N.
1998-11-09
The authors report zero-field inelastic neutron scattering experiments on a 14-gram deuterated sample of Mn{sub 12}-Acetate consisting of a large number of identical spin-10 magnetic clusters. Their resolution enables them to see a series of peaks corresponding to transitions between the anisotropy levels within the spin-10 manifold. A fit to the spin Hamiltonian H = {minus}DS{sub z}{sup 2} + {mu}{sub B}B{center_dot}g{center_dot}S-BS{sub z}{sup 4} + C(S{sub +}{sup 4} + S{sub {minus}}{sup 4}) yields an anisotropy constant D = (0.54 {+-} 0.02) K and a fourth-order diagonal anisotropy coefficient B = (1.2 {+-} 0.1) x 10{sup {minus}3}K. Unlike EPR measurements, their experiments do not require a magnetic field and yield parameters that do not require knowledge of the g-value.
Excitation of giant resonances through inelastic scattering
International Nuclear Information System (INIS)
Kailas, S.
1981-01-01
In the last few years, exciting developments have taken place in the study of giant resonances (GR). In addition to the already well known gjant dipole resonance (GDR), the presence of at least two more new GRs viz. giant quadrupole resonance (GQR) and giant monopole resonance (GMR) has been experimentally established. The systematics covering these GRs is found to be consistent with the theoretical expectation. Though the existence of higher multipoles has been predjcted by theory, so far only some of these have been found to be excited experimentally. Various probe particles - electrons, protons (polarized and unpolarized), light and heavy ions and pions - at different bombarding energies have been used to excite the GR region, primarily through the inelastic scattering process. Detailed experiments, looking at the decay modes of GR region, have also been performed. These studies have contributed significantly to a better understanding of the phenomenon of nuclear collective excitation. In this report, the current status of 'GR' research is reviewed. (author)
Shadowing in inelastic lepton-deuteron scattering
International Nuclear Information System (INIS)
Badelek, B.
1992-01-01
Shadowing in inelastic lepton-deuteron scattering is analysed using the double interaction formalism where we relate shadowing to inclusive diffractive processes. Both the vector meson and parton contributions are considered for low and high Q 2 values including QCD corrections with parton recombination for high Q 2 . These Q 2 values were chosen to correspond to existing experimental data and to the possible HERA measurements. Detailed discussion of various shadowing mechanisms is given. As expected the shadowing effects are found to be very small, less then 2% or so, in agreement with the recent precise measurements performed by the New Muon Collaboration. The contribution of shadowing term to the Gottfried sum the region x > 0.004 and for Q 2 = 4 GeV 2 is estimated to be equal to -0.025. (author). 10 refs, 4 figs
Mass corrections in deep-inelastic scattering
International Nuclear Information System (INIS)
Gross, D.J.; Treiman, S.B.; Wilczek, F.A.
1977-01-01
The moment sum rules for deep-inelastic lepton scattering are expected for asymptotically free field theories to display a characteristic pattern of logarithmic departures from scaling at large enough Q 2 . In the large-Q 2 limit these patterns do not depend on hadron or quark masses m. For modest values of Q 2 one expects corrections at the level of powers of m 2 /Q 2 . We discuss the question whether these mass effects are accessible in perturbation theory, as applied to the twist-2 Wilson coefficients and more generally. Our conclusion is that some part of the mass effects must arise from a nonperturbative origin. We also discuss the corrections which arise from higher orders in perturbation theory for very large Q 2 , where mass effects can perhaps be ignored. The emphasis here is on a characterization of the Q 2 , x domain where higher-order corrections are likely to be unimportant
Deep Inelastic Scattering in Conformal QCD
Cornalba, Lorenzo; Penedones, Joao
2010-01-01
We consider the Regge limit of a CFT correlation function of two vector and two scalar operators, as appropriate to study small-x deep inelastic scattering in N=4 SYM or in QCD assuming approximate conformal symmetry. After clarifying the nature of the Regge limit for a CFT correlator, we use its conformal partial wave expansion to obtain an impact parameter representation encoding the exchange of a spin j Reggeon for any value of the coupling constant. The CFT impact parameter space is the three-dimensional hyperbolic space H3, which is the impact parameter space for high energy scattering in the dual AdS space. We determine the small-x structure functions associated to the exchange of a Reggeon. We discuss unitarization from the point of view of scattering in AdS and comment on the validity of the eikonal approximation. We then focus on the weak coupling limit of the theory where the amplitude is dominated by the exchange of the BFKL pomeron. Conformal invariance fixes the form of the vector impact factor a...
Inclusive deep-inelastic muon scattering
This experiment aims at measuring deep-inelastic inclusive muon scattering to the highest energy and Q$^{2}$ made available by the high intensity muon beam M$^{2}$ and at investigating events in which several muons are simultaneously produced. The momentum of the incident beam is measured with momentum hodoscopes, its time and space coordinates at several positions along the target with additional hodoscopes. The beam halo is detected by an array of anticounters. The target has a length of 40 m of either graphite or liquid hydrogen or liquid deuterium and is surrounded by a magnetized torus which acts as a spectrometer for scattered muons. \\\\ \\\\This magnet has a diameter of 2.75 m and is divided into 10 separate supermodules, 8 of which are presently in use. Each supermodule consists of 8 modules (each module contains 0.44 m of steel), 8 planes of (3m x 3m) MWPC, and 2 planes of circular trigger counters subdivided in rings. The first 6 supermodules are equipped each with a 5 m long target. Muons scattered i...
Compton profiles by inelastic ion-electron scattering
International Nuclear Information System (INIS)
Boeckl, H.; Bell, F.
1983-01-01
It is shown that Compton profiles (CP) can be measured by inelastic ion-electron scattering. Within the impulse approximation the binary-encounter peak (BEP) reflects the CP of the target atom whereas the electron-loss peak (ELP) is given by projectile CP's. Evaluation of experimental data reveals that inelastic ion-electron scattering might be a promising method to supply inelastic electron or photon scattering for the determination of target CP's. The measurement of projectile CP's is unique to ion scattering since one gains knowledge about wave-function effects because of the high excitation degree of fast heavy-ion projectiles
Inelastic Proton Scattering on 21Na in Inverse Kinematics
Austin, Roby
2009-10-01
R.A.E. Austin, R. Kanungo, S. Reeve, Saint Mary's University; D.G. Jenkins, C.Aa.Diget, A. Robinson, A.G. Tuff, O. Roberts, University of York, UK; P.J. Woods, T. Davinson, G. J. Lotay, University of Edinburgh; C.-Y. Wu, Lawrence Livermore National Laboratory; H. Al Falou, G.C. Ball, M. Djongolov, A. Garnsworthy, G. Hackman, J.N. Orce, C.J. Pearson, S. Triambak, S.J. Williams, TRIUMF; C. Andreiou, D.S. Cross, N. Galinski, R. Kshetri, Simon Fraser University; C. Sumithrarachchi, M.A. Schumaker, University of Guelph; M.P. Jones, S.V. Rigby, University of Liverpool; D. Cline, A. Hayes, University of Rochester; T.E. Drake, University of Toronto; We describe an experiment and associated technique [1] to measure resonances of interest in astrophysical reactions. At the TRIUMF ISAC-II radioactive beam accelerator facility in Canada, particles inelastically scattered in inverse kinematics are detected with Bambino, a δE-E silicon telescope spanning 15-40 degrees in the lab. We use the TIGRESS to detect gamma rays in coincidence with the charged particles to cleanly select inelastic scattering events. We measured resonances above the alpha threshold in ^22Mg of relevance to the rate of break-out from the hot-CNO cycle via the reaction ^ 18Ne(α,p)^21Na. [1] PJ Woods et al. Rex-ISOLDE proposal 424 Cern (2003).
Folding models for elastic and inelastic scattering
International Nuclear Information System (INIS)
Satchler, G.R.
1982-01-01
The most widely used models are the optical model potential (OMP) for elastic scattering, and its generalization to non-spherical shapes, the deformed optical model potential (DOMP) for inelastic scattering. These models are simple and phenomenological; their parameters are adjusted so as to reproduce empirical data. Nonetheless, there are certain, not always well-defined, constraints to be imposed. The potential shapes and their parameter values must be reasonable and should vary in a smooth and systematic way with the masses of the colliding nuclei and their energy. One way of satisfying these constraints, without going back to a much more fundamental theory, is through the use of folding models. The basic justification for using potentials of the Woods-Saxon shape for nucleon-nucleus scattering, for example, is our knowledge that a nuclear density distribution is more-or-less constant in the nuclear interior with a diffuse surface. When this is folded with a short-range nucleon-nucleon interaction, the result is a similar shape with a more diffuse surface. Folding procedures allow us to incorporate many aspects of nuclear structure (although the nuclear size is one of the most important), as well as theoretical ideas about the effective interaction of two nucleons within nuclear matter. It also provides us with a means of linking information obtained from nuclear (hadronic) interactions with that from other sources, as well as correlating that from the use of different hadronic probes. Folding model potentials, single-folded potentials, and the double-folding model including applications to heavy-ion scattering are discussed
Diffractive dijet production in deep inelastic scattering at ZEUS
Energy Technology Data Exchange (ETDEWEB)
Bonato, A.
2008-03-15
This thesis presents a measurement of dijet production of diffractive deep inelastic scattering ep collisions. This type of process is specially relevant for the experimental validity of the perturbative QCD approach to diffractive physics. The measurement was based on an integrated luminosity of 61 pb{sup -1} collected at the HERA collider with the ZEUS experiment. The events were selected for virtualities of the photon, {gamma}*, 5gamma}*p centre-of-mass, 100
Quantum effects in deep inelastic neutron scattering
International Nuclear Information System (INIS)
Mayers, J.
1989-07-01
In the Impulse Approximation (IA), which is used to interpret deep inelastic neutron scattering (DINS) measurements, it is assumed both that the target system can be treated as a gas of free atoms and that the struck atom recoils freely after the collision with the neutron. Departures from the IA are generally attributed to final state effects (FSE), which are due to the inaccuracy of the latter assumption. However it is shown that even when FSE are neglected, significant departures from the IA occur at low temperatures due to inaccuracies in the former assumption. These are referred to as initial state effects (ISE) and are due to the quantum nature of the initial state. Comparison with experimental data and exactly soluble models shows that ISE largely account for observed asymmetries and peak shifts in the neutron scattering function S(q,ω), compared with the IA prediction. It is shown that when FSE are neglected, ISE can also be neglected when either the momentum transfer or the temperature is high. Finally it is shown that FSE should be negligible at high momentum transfers in systems other than quantum fluids and that therefore in this regime the IA is reached in such systems. (author)
A multislice theory of electron inelastic scattering in a solid
International Nuclear Information System (INIS)
Wang, Z.L.
1989-01-01
A multislice theory is proposed to solve Yoshioka's coupling equations for elastic and inelastic scattered high-energy electrons in a solid. This method is capable, in principle, of including the non-periodic crystal structures and the electron multiple scattering among all the excited states in the calculations. It is proved that the proposed theory for calculating the energy-filtered inelastic images, based on the physical optics approach, is equivalent to the quantum-mechanical theory under some approximations. The basic theory of simulating the energy-filtered inelastic image of core-shell losses and thermal diffuse scattering is outlined. (orig.)
New statistical model of inelastic fast neutron scattering
International Nuclear Information System (INIS)
Stancicj, V.
1975-07-01
A new statistical model for treating the fast neutron inelastic scattering has been proposed by using the general expressions of the double differential cross section in impuls approximation. The use of the Fermi-Dirac distribution of nucleons makes it possible to derive an analytical expression of the fast neutron inelastic scattering kernel including the angular momenta coupling. The obtained values of the inelastic fast neutron cross section calculated from the derived expression of the scattering kernel are in a good agreement with the experiments. A main advantage of the derived expressions is in their simplicity for the practical calculations
Resonant inelastic scattering by use of geometrical optics.
Schulte, Jörg; Schweiger, Gustav
2003-02-01
We investigate the inelastic scattering on spherical particles that contain one concentric inclusion in the case of input and output resonances, using a geometrical optics method. The excitation of resonances is included in geometrical optics by use of the concept of tunneled rays. To get a quantitative description of optical tunneling on spherical surfaces, we derive appropriate Fresnel-type reflection and transmission coefficients for the tunneled rays. We calculate the inelastic scattering cross section in the case of input and output resonances and investigate the influence of the distribution of the active material in the particle as well as the influence of the inclusion on inelastic scattering.
Scaled momentum spectra in deep inelastic scattering at HERA
Energy Technology Data Exchange (ETDEWEB)
Abramowicz, H. [Tel Aviv Univ. (Israel). Raymond and Beverly Sackler Faculty of Exact Sciences; University College London (United Kingdom); Max Planck Inst., Munich (Germany); Abt, I. [Max-Planck-Inst. fuer Physik, Muenchen (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Cracow (PL). Faculty of Physics and Applied Computer Science] (and others)
2009-12-15
Charged particle production has been studied in neutral current deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 0.44 fb{sup -1}. Distributions of scaled momenta in the Breit frame are presented for particles in the current fragmentation region. The evolution of these spectra with the photon virtuality, Q{sup 2}, is described in the kinematic region 10gamma}p system, W, are presented and interpreted in the context of the hypothesis of limiting fragmentation. (orig.)
International Nuclear Information System (INIS)
Schultz, W.E.
1976-01-01
A pulsed neutron generator of the deuterium-tritium reaction type irradiates earth formations in the vicinity of a borehole with 14 MeV neutrons. Gamma rays produced by the inelastic scattering of the fast neutrons are observed in four energy regions of the gamma ray energy spectrum corresponding to the inelastic scattering of neutrons by carbon, oxygen, silicon, and calcium. The carbon/oxygen, calcium/silicon, and carbon plus oxygen gamma rays are found and combined with a separately derived hydrogen index log to determine the quality of coal-bearing formations or oil-shale regions. The hydrogen index curve is found preferably by a dual-spaced detector epithermal neutron porosity logging technique or from a conventional thermal neutron gamma ray log
Significance of matrix diagonalization in modelling inelastic electron scattering
Energy Technology Data Exchange (ETDEWEB)
Lee, Z. [University of Ulm, Ulm 89081 (Germany); Hambach, R. [University of Ulm, Ulm 89081 (Germany); University of Jena, Jena 07743 (Germany); Kaiser, U.; Rose, H. [University of Ulm, Ulm 89081 (Germany)
2017-04-15
Electron scattering is always applied as one of the routines to investigate nanostructures. Nowadays the development of hardware offers more and more prospect for this technique. For example imaging nanostructures with inelastic scattered electrons may allow to produce component-sensitive images with atomic resolution. Modelling inelastic electron scattering is therefore essential for interpreting these images. The main obstacle to study inelastic scattering problem is its complexity. During inelastic scattering, incident electrons entangle with objects, and the description of this process involves a multidimensional array. Since the simulation usually involves fourdimensional Fourier transforms, the computation is highly inefficient. In this work we have offered one solution to handle the multidimensional problem. By transforming a high dimensional array into twodimensional array, we are able to perform matrix diagonalization and approximate the original multidimensional array with its twodimensional eigenvectors. Our procedure reduces the complicated multidimensional problem to a twodimensional problem. In addition, it minimizes the number of twodimensional problems. This method is very useful for studying multiple inelastic scattering. - Highlights: • 4D problems are involved in modelling inelastic electron scattering. • By means of matrix diagonalization, the 4D problems can be simplified as 2D problems. • The number of 2D problems is minimized by using this approach.
Electron Dynamics by Inelastic X-Ray Scattering
Schülke, Winfried
2007-01-01
The book offers the first comprehensive review of experimental methods, theory, and successful applications of synchrotron radiation based inelastic X-ray scattering (IXS) spectroscopy, which enables the investigation of electron dynamics in condensed matter (correlated motion and excitation).
Sterman-Weinberg formula in deep inelastic scattering
International Nuclear Information System (INIS)
Dzhaparidze, G.Sh.; Kartvelishvili, V.G.
1981-01-01
The jet cross-section in current fragmentation region in deep inelastic scattering is obtained. It is shown that this jet produced in ep reaction is narrower, then the one from e + e - -annihilation [ru
Analysis of inelastic neutron scattering results on model compounds ...
Indian Academy of Sciences (India)
Vibrational spectroscopy; nitrogenous bases; inelastic neutron scattering. PACS No. ... obtain good quality, high resolution results in this region. Here the .... knowledge of the character of each molecular transition as well as the calculated.
Inelastic scattering to collective states in double-magic nuclei
International Nuclear Information System (INIS)
Wambach, J.
1979-06-01
The paper discusses several aspects of inelastic scattering to collective states in the framework of the 'Shell Model RPA Approximation' with special emphasis on the analysis of giant resonance states. (orig./WL) [de
Expansions for model-independent analyses of inelastic electron scattering
International Nuclear Information System (INIS)
Jackson, D.F.; Hilton, J.M.; Roberts, A.C.M.
1977-01-01
It is noted that the commonly-used Fourier-Bessel expansion for the transition density for inelastic electron scattering depends sensitively on an arbitrary parameter and is not realistic at large distances. Alternative expansions are suggested. (author)
Structure functions in electron-nucleon deep inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Saleem, M.; Fazal-E-Aleem (University of the Punjab, Lahore (Pakistan). Dept. of Physics)
1982-06-26
The phenomenological expressions for the structure functions in electron-nucleon deep inelastic scattering are proposed and are shown to satisfy the experimental data as well as a number of sum rules.
Deep inelastic lepton scattering from nucleons and nuclei
International Nuclear Information System (INIS)
Berger, E.L.
1986-02-01
A pedagogical review is presented of results obtained from inclusive deep inelastic scattering of leptons from nucleons and nuclei, with particular emphasis on open questions to be explored in future experiments
Inelastic neutron scattering of amorphous ice
International Nuclear Information System (INIS)
Fukazawa, Hiroshi; Ikeda, Susumu; Suzuki, Yoshiharu
2001-01-01
We measured the inelastic neutron scattering from high-density amorphous (HDA) and low-density amorphous (LDA) ice produced by pressurizing and releasing the pressure. We found a clear difference between the intermolecular vibrations in HDA and those in LDA ice: LDA ice has peaks at 22 and 33 meV, which are also seen in the spectrum of lattice vibrations in ice crystal, but the spectrum of HDA ice does not have these peaks. The excitation energy of librational vibrations in HDA ice is 10 meV lower than that in LDA ice. These results imply that HDA ice includes 2- and 5-coordinated hydrogen bonds that are created by breakage of hydrogen bonds and migration of water molecules into the interstitial site, while LDA ice contains mainly 4-coordinated hydrogen bonds and large cavities. Furthermore, we report the dynamical structure factor in the amorphous ice and show that LDA ice is more closely related to the ice crystal structure than to HDA ice. (author)
Hard diffraction and deep inelastic scattering
International Nuclear Information System (INIS)
Bjorken, J.D.
1994-04-01
Since the advent of hard-collision physics, the study of diffractive processes - shadow physics - has been less prominent than before. However, there is now a renewed interest in the subject, especially in that aspect which synthesizes the short-distance, hard-collision phenomena with the classical physics of large rapidity-gaps. This is especially stimulated by the recent data on deep-inelastic scattering from HERA, as well as the theoretical work which relates to it. The word diffraction is sometimes used by high-energy physicists in a loose way. The author defines this term to mean: A diffractive process occurs if and only if there is a large rapidity gap in the produced-particle phase space which is not exponentially suppressed. Here a rapidity gap means essentially no hadrons produced into the rapidity gap (which operates in the open-quotes legoclose quotes phase-space of pseudo-rapidity and azimuthal angle). And non-exponential suppression implies that the cross-section for creating a gap with width Δη does not have a power-law decrease with increasing subenergy s=e Δη , but behaves at most like some power of pseudorapidity Δη∼log(s). The term hard diffraction shall simply refer to those diffractive process which have jets in the final-state phase-space
Dynamics of liquid N2 studied by neutron inelastic scattering
DEFF Research Database (Denmark)
Pedersen, Karen Schou; Carneiro, Kim; Hansen, Flemming Yssing
1982-01-01
Neutron inelastic-scattering data from liquid N2 at wave-vector transfer κ between 0.18 and 2.1 Å-1 and temperatures ranging from T=65-77 K are presented. The data are corrected for the contribution from multiple scattering and incoherent scattering. The resulting dynamic structure factor S (κ,ω)...
Deep inelastic scattering in spontaneously broken gauge models
International Nuclear Information System (INIS)
Goloskokov, S.V.; Mikhov, S.G.; Morozov, P.T.; Stamenov, D.B.
1975-01-01
Deep inelastic lepton hadron scattering in the simplest spontaneously broken symmetry (the Kibble model) is analyzed. A hypothesis that the invariant coupling constant of the quartic selfinteraction for large spacelike momenta tends to a finite asymptotic value without spoiling the asymptotic freedom for the invariant coupling constant of the Yang-Mills field is used. It is shown that Biorken scaling for the moments of the structure functions of the deep inelastic lepton hadron scattering is violated by powers of logarithms
Inelastic pion scattering from 3H and 3He
International Nuclear Information System (INIS)
Berman, B.L.; Anderson, G.C.; Briscoe, W.J.; Mokhtari, A.; Petrov, A.M.; Sadler, M.E.; Barlow, D.B.; Nefkens, B.M.K.; Pillai, C.
1995-01-01
Cross sections have been measured for the inelastic scattering of π + and π - mesons from 3 H and 3 He in the 10-MeV interval just above the breakup thresholds, for incident pion energies of 142, 180, and 220 MeV and scattering angles of 40 degree, 60 degree, 80 degree, 90 degree, and 110 degree. No significant departure from unity is observed for the ratios of charge-symmetric cross sections. Comparisons are made with elastic pion-scattering and inelastic electron-scattering data
Elastic and inelastic photon scattering on the atomic nuclei
International Nuclear Information System (INIS)
Piskarev, I.M.
1982-01-01
Works on investigation of elastic and inelastic scattering of photons on heavy and intermediate nuclei are briefly reviewed. Theoretical problems of nuclear and electron Tompson, Releev and Delbrueck scatterings as well as nuclear resonance scattering are briefly discussed. It is shown that differential cross section of coherent elastic scattering is expressed by means of partial amplitudes of shown processes. Experimental investigations on elastic scattering in the region of threshold energies of photonucleon reactions are described. Problems of theoretical description of elastic scattering in different variants of collective models are considered. Discussed are works, investigating channels of inelastic photon scattering with excitation of nuclear Raman effect. It is noted that to describe channels of inelastic photon scattering it is necessary to use models, that correctly regard the microscopic structure of giant resonance levels to obtain information on the nature of these levels. Investigations of processes of photon elastic and inelastic scattering connected with fundamental characteristics of atomic nucleus, permit to obtain valuable spectroscopic information on high-lying levels of nucleus. Detail investigation of photon scattering in a wide range of energies is necessary [ru
Photon diffractive dissociation in deep inelastic scattering
International Nuclear Information System (INIS)
Wuesthoff, M.
1995-09-01
The cross section of the Photon Diffractive Dissociation in Deep Inelastic Scattering is calculated in the frame work of perturbative QCD. In the triple Regge region the BFKL-approximation is used to evaluate the leading contributions of the corresponding Feynman diagrams with a subsequent resummation in terms of integral equations. These equations are partly solved leading to an effective two to four gluons transition vertex. This exhibits remarkable properties like the total symmetry under the interchange of gluons, the conformal invariance and a simple colour structure. The presence of four interacting gluons in the t-channel does not support the simple triple Pomeron picture with solely a local vertex. A dimensional conservation law is found for zero momentum transfer with the consequence that a direct coupling of the three BFKL-singularities is absent. Another consequence is the dominance of small transverse momenta at the triple Pomeron vertex. Beyond the triple Regge limit a slightly different approach is used in which the diagrams are calculated with leading log(Q 2 ) accuracy. Higher twist contributions are neglected except for the longitudinal part of the cross section which dominates at small invariant masses M in accordance with QCD-predictions and measurements for the exclusive production of vector mesons. For the comparison with the recently measured Photon Diffractive Dissociation-data from H1 and ZEUS a model for the Pomeron is introduced based on the F 2 -data. In the spirit of the k t -factorization theorem this model is inserted in place of the BFKL-Pomeron. Considering the fact that this approach does not contain free parameters the agreement between the theoretical prediction and the data is found to be good. (orig.)
Hard Distraction and Deep Inelastic Scattering
International Nuclear Information System (INIS)
BJORKEN, J.D.
1994-01-01
Since the advent of hard-collision physics, the study of diffractive processes- 'shadow physics' - has been less prominent than before. However, there is now a renewed interest in the subject, especially in that aspect which synthesizes the short-distance, hard-collision phenomena with the classical physics of large rapidity-gaps. This is especially stimulated by the recent data on deep-inelastic scattering from HERA, as well as the theoretical work which relates to it. The word 'diffraction' is sometimes used by high-energy physicists in a loose way. So I here begin by defining what I mean by the term: A diffractive process occurs if and only if there is a large rapidity gap in the produced-particle phase space which is not exponentially suppressed. Here a rapidity gap means essentially no hadrons produced into the rapidity gap (which operates in the 'lego' phase-space of pseudo-rapidity and azimuthal angle). And non-exponential suppression implies that the cross-section for creating a gap with width Δη does not have a power-law decrease with increasing sub energy Δη, but behaves at most like some power of pseudorapidity Δη∼ logs. The term 'hard diffraction' shall simply refer to those diffractive processes which have jets in the final-state phase-space. We may also distinguish, if desired, two subclasses, as suggested by Ingelman i) Diffractive hard processes have jets on only one side of the rapidity gap. ii) Hard diffractive processes have jets on both sides of the rapidity gap
Inelastic electron scattering at low momentum transfer
International Nuclear Information System (INIS)
Richter, A.
1979-01-01
Recent advances of high energy resolution (ΔE approx. 30 keV FWHM) inelastic electron scattering at low momentum transfer (q -1 ) using selected experimental data from the Darmstadt electron linear accelerator are discussed. Strong emphasis is given to a comparison of the data with theoretical nuclear model predictions. Of the low multipolarity electric transitions investigated, as examples only E1 transitions to unnatural parity states in 11 B and E2 transitions of the very fragmented isoscalar quadrupole giant resonance in 208 Pb are considered. In 11 B the role of the Os hole in the configuration of the 1/2 + , 3/2 + and 5/2 + states is quantitatively determined via an interference mechanism in the transition probability. By comparison of the high resolution data with RPA calculations the E2 EWSR in 208 Pb is found to be much less exhausted than anticipated from previous medium energy resolution (e,e) and hadron scattering experiments. In the case of M1 transitions it is shown that the simplest idealized independent particle shell-model prediction breaks down badly. In 28 Si, ground-state correlations influence largely the detected M1 strength and such ground-state correlations are also responsible for the occurence of a strong M1 transition to a state at Ex = 10.319 MeV in 40 Ca. In 90 Zr only about 10% of the theoretically expected M1 strength is seen in (e,e) and in 140 Ce and 208 Pb none (detection limit 1-2 μ 2 K). In the case of 208 Pb high resolution spectra exist now up to an excitation energy of Ex = approx. 12MeV. The continuous decrease of the M1 strength with mass number is corroborated by the behaviour of strong but very fragmented M2 transitions which are detected in 28 Si, 90 Zr, 140 Ce and 208 Pb concentrated at an excitation energy E x approx. 44A -1 / 3 MeV. In 90 Zr, the distribution of spacings and widths of the many Jπ = 2 states are consistent with a Wigner and Porter-Thomas distribution, respectively. (orig.) 891 KBE/orig. 892 ARA
Pion inelastic scattering and the pion-nucleus effective interaction
International Nuclear Information System (INIS)
Carr, J.A.
1983-01-01
This work examines pion inelastic scattering with the primary purpose of gaining a better understanding of the properties of the pion-nucleus interaction. The main conclusion of the work is that an effective interaction which incorporates the most obvious theoretical corrections to the impulse approximation does a good job of explaining pion elastic and inelastic scattering from zero to 200 MeV without significant adjustments to the strength parameters of the force. Watson's multiple scattering theory is used to develop a theoretical interaction starting from the free pion-nucleon interaction. Elastic scattering was used to calibrate the isoscalar central interaction. It was found that the impulse approximation did poorly at low energy, while the multiple scattering corrections gave good agreement with all of the data after a few minor adjustments in the force. The distorted wave approximation for the inelastic transition matrix elements are evaluated for both natural and unnatural parity excitations. The isoscalar natural parity transitions are used to test the reaction theory, and it is found that the effective interaction calibrated by elastic scattering produces good agreement with the inelastic data. Calculations are also shown for other inelastic and charge exchange reactions. It appears that the isovector central interaction is reasonable, but the importance of medium corrections cannot be determined. The unnatural parity transitions are also reasonably described by the theoretical estimate of the spin-orbit interaction, but not enough systematic data exists to reach a firm conclusion
Polarized neutron inelastic scattering experiments on spin dynamics
International Nuclear Information System (INIS)
Kakurai, Kazuhisa
2016-01-01
The principles of polarized neutron scattering are introduced and examples of polarized neutron inelastic scattering experiments on spin dynamics investigation are presented. These examples should demonstrate the importance of the polarized neutron utilization for the investigation of non-trivial magnetic ground and excited states in frustrated and low dimensional quantum spin systems. (author)
Inelastic electron scattering influence on the strong coupling oxide superconductors
International Nuclear Information System (INIS)
Gabovich, A.M.; Voitenko, A.I.
1995-01-01
The superconducting order parameters Δ and energy gap Δ g are calculated taking into account the pair-breaking inelastic quasiparticle scattering by thermal Bose-excitations, e.g., phonons. The treatment is self-consistent because the scattering amplitude depends on Δ. The superconducting transition for any strength of the inelastic scattering is the phase transition of the first kind and the dependences Δ (T) and Δ g (T) tend to rectangular curve that agrees well with the experiment for high-Tc oxides. On the basis of the developed theory the nuclear spin-lattice relaxation rate R s in the superconducting state is calculated. The Hebel-Slichter peak in R s (T) is shown to disappear for strong enough inelastic scattering
Magnon and phonon thermometry with inelastic light scattering
Olsson, Kevin S.; An, Kyongmo; Li, Xiaoqin
2018-04-01
Spin caloritronics investigates the interplay between the transport of spin and heat. In the spin Seebeck effect, a thermal gradient across a magnetic material generates a spin current. A temperature difference between the energy carriers of the spin and lattice subsystems, namely the magnons and phonons, is necessary for such thermal nonequilibrium generation of spin current. Inelastic light scattering is a powerful method that can resolve the individual temperatures of magnons and phonons. In this review, we discuss the thermometry capabilities of inelastic light scattering for measuring optical and acoustic phonons, as well as magnons. A scattering spectrum offers three temperature sensitive parameters: frequency shift, linewidth, and integrated intensity. We discuss the temperatures measured via each of these parameters for both phonon and magnons. Finally, we discuss inelastic light scattering experiments that have examined the magnon and phonon temperatures in thermal nonequilibrium which are particularly relevant to spin caloritronic phenomena.
Deep inelastic scattering in an asymptotically free gauge theory
International Nuclear Information System (INIS)
Fujiwara, Tsutomu
1977-01-01
This paper reviews the success of the asymptotically free gauge theory which describes the deep inelastic lepton-hadron scattering. The asymptotically free gauge theory was discussed as well as the reason why the parton has the nature like free particles by the aid of the field theory. The asymptotically free gauge theory (AFGT) gives the prediction that the Bjorken scaling gives rise to logarithmic violation. The theory was applied to the exchange processes of single photon and two photons. First, this paper describes the approaches to the Bjorken scaling. The approaches are the discussion of the scaling law dependent on the model and the discussion of the scaling law independent of the model. The field theoretical treatment in described. This is called the method of the renormalization group introduced by Wilson. The asymptotically free gauge theory was formed on the basis of the Callan-Symanzik equation (CSE) and of the Weinberg's power counting theorem. The exact Bjorken scaling does not hold in the quantum field theory, at least there must be logarithmic violation. The pattern of the scaling violation cannot be clarified by the present data. Discussions concerning two gamma process are presented. The measurement of the photon-photon scattering process will give the judgement whether the prediction of the AFGT is correct or not. (Kato, T.)
International Nuclear Information System (INIS)
1979-01-01
A method of borehole logging by detecting and counting gamma rays from inelastic scattering of fast neutrons by carbon, oxygen, silicon and calcium, gamma rays from capture of thermal neutrons by calcium, chlorine and silicon and comparing the former with the latter thereby deriving an estimate of the salinity of the fluids in the borehole, is given (UK)
Wines: water inelastic neutron scattering experimental study
International Nuclear Information System (INIS)
Risch, P.; Ait Abderrahim, H.; D'hondt, P.; Malabu, E.
1997-01-01
An intercomparison of calculated fast neutron flux (E > 1 MeV) traverse through a very thick water zone obtained using both S N , (DORT) and Monte-Carlo (TRIPOLI and MCBEND) codes in combination with different cross-sections libraries (based on ENDF/B-III, IV, V and VI), showed small discrepancies either between S N , and Monte-Carlo results or even between S N , or Monte-Carlo results when we consider different cross-sections libraries except for S N , calculation when using P 0 , cross-sections. In order to validate our calculations we looked for experimental data. Unfortunately no experiment, dedicated for the fast neutron transport in large thickness of water, was found in the literature. Therefore SCK-CEN and EDF decided to launch the WINES experiment which is dedicated to study this phenomenon. WINES sands for Water Inelastic Neutron scattering Experimental Study. The aim of this experiment is to provide-experimental data for validation of neutron transport codes and nuclear cross-sections libraries used for LWR surveillance dosimetry analysis. The experimental device is made of 1 m 3 cubic plexiglass container filled with demineralized water. At one face of this cube, a 235 U neutron fission source system is screwed. The source device is made of a 235 U (93 % weight enriched) 18.55 x 16 cm 2 plate cladded with aluminium which is inserted in neutron beam emerging from the graphite gas-cooled BR1 reactor. Fission chambers ( 238 U(n,f), 232 Th(n,f), 237 Np(n,f) and 235 U(n,f)) are used to measure the flux traverses on the central axis of the water cube perpendicular to the fission sources. In this paper we will compare the experimental data to the calculated results using the S N , transport code DORT with the P 3 , ELXSIR library, based on ENDF/B-V, and the P 7 -BUGLE-93 library, based on ENDF/B-VI as well as the Monte-Carlo transport code TRIPOLI with a cross-section library based on ENDF/B IV and ENDF/B-VI. (authors)
Inelastic scattering of quasifree electrons on O7+ projectiles
International Nuclear Information System (INIS)
Toth, G.; Grabbe, S.; Richard, P.; Bhalla, C.P.
1996-01-01
Absolute doubly differential cross sections (DDCS close-quote s) for the resonant inelastic scattering of quasifree target electrons on H-like projectiles have been measured. Electron spectra for 20.25-MeV O 7+ projectiles on an H 2 target were measured. The spectra contain a resonant contribution from the 3l3l ' doubly excited states of O 6+ , which decay predominantly to the 2l states of the O 7+ via autoionization, and a nonresonant contribution from the direct excitation of the projectiles to the O 7+ (2l) state by the quasifree target electrons. Close-coupling R-matrix calculations for the inelastic scattering of free electrons on O 7+ ions were performed. The relation between the electron-ion inelastic scattering calculation and the electron DDCS close-quote s for the ion-atom collision was established by using the inelastic scattering model (ISM). We found excellent agreement between the theoretical and measured resonant peak positions and relative peak heights. The calculated absolute double differential cross sections for the resonance processes are also in good agreement with the measured data. The implication is that collisions of highly charged ions on hydrogen can be used to obtain high-resolution, angle- resolved differential inelastic electron-scattering cross section. copyright 1996 The American Physical Society
Deeply inelastic scattering at small x in 20 min
International Nuclear Information System (INIS)
Levin, E.M.
1992-01-01
A status report is presented on new phenomena that are anticipated in deeply inelastic scattering in the low x→0 region. A summary of the theoretical situation in the region of small x is given, including the importance for the understanding of high energy interaction in QCD, and the low x behaviour of deep inelastic structure function. This new area of physics will be studied experimentally at HERA. (R.P.) 16 refs.; 6 figs
High resolution measurements and study of the neutron inelastic scattering reaction on 56Fe
International Nuclear Information System (INIS)
Dupont, E.
1998-01-01
High resolution measures of neutrons inelastic scattering cross section, have been performed on 56 Fe from 862 KeV to 3 MeV. The time of flight method has been used on the GELINA source of the IRMM in Geel (Belgium). Four barium fluoride scintillators, placed around the samples, recorded the gamma rays emissions coming from the iron and the boron. A study of the correlations between the partial elastic and inelastic lengths has been performed taking into account first transmission measures realized at Geel. (A.L.B.)
Application of Van Hove theory to fast neutron inelastic scattering
International Nuclear Information System (INIS)
Stanicicj, V.
1974-11-01
The Vane Hove general theory of the double differential scattering cross section has been used to derive the particular expressions of the inelastic fast neutrons scattering kernel and scattering cross section. Since the considered energies of incoming neutrons being less than 10 MeV, it enables to use the Fermi gas model of nucleons. In this case it was easy to derive an analytical expression for the time-dependent correlation function of the nucleus. Further, by using an impulse approximation and a short-collision time approach, it was possible to derive the analytical expression of the scattering kernel and scattering cross section for the fast neutron inelastic scattering. The obtained expressions have been used for Fe nucleus. It has been shown a surprising agreement with the experiments. The main advantage of this theory is in its simplicity for some practical calculations and for some theoretical investigations of nuclear processes
Fast Neutron Elastic and Inelastic Scattering of Vanadium
Energy Technology Data Exchange (ETDEWEB)
Holmqvist, B; Johansson, S G; Lodin, G; Wiedling, T
1969-11-15
Fast neutron scattering interactions with vanadium were studied using time-of-flight techniques at several energies in the interval 1.5 to 8.1 MeV. The experimental differential elastic scattering cross sections have been fitted to optical model calculations and the inelastic scattering cross sections have been compared with Hauser-Feshbach calculations, corrected for the fluctuation of compound-nuclear level widths.
Halo-independent methods for inelastic dark matter scattering
International Nuclear Information System (INIS)
Bozorgnia, Nassim; Schwetz, Thomas; Herrero-Garcia, Juan; Zupan, Jure
2013-01-01
We present halo-independent methods to analyze the results of dark matter direct detection experiments assuming inelastic scattering. We focus on the annual modulation signal reported by DAMA/LIBRA and present three different halo-independent tests. First, we compare it to the upper limit on the unmodulated rate from XENON100 using (a) the trivial requirement that the amplitude of the annual modulation has to be smaller than the bound on the unmodulated rate, and (b) a bound on the annual modulation amplitude based on an expansion in the Earth's velocity. The third test uses the special predictions of the signal shape for inelastic scattering and allows for an internal consistency check of the data without referring to any astrophysics. We conclude that a strong conflict between DAMA/LIBRA and XENON100 in the framework of spin-independent inelastic scattering can be established independently of the local properties of the dark matter halo
QCD expectations for deep inelastic scattering at small x
International Nuclear Information System (INIS)
Kwiecinski, J.
1993-01-01
The basic QCD expectations concerning the deep inelastic scattering at low x where x is the Bjorken scaling variable are reviewed. This includes discussion of the Lipatov equation which sums the leading powers of Ln(1/x) and the shadowing effects. Phenomenological implications of the theoretical expectations for the deep inelastic lepton-hadron scattering in the small x region which will be accessible at the HERA ep collider are described. We give predictions for structure functions F 2 and F L based on the k T factorization theorem and discuss jet production in deep inelastic lepton scattering. The list of other topical problems relevant for the small x physics is given. (author). 46 refs, 7 figs
Theoretical interpretation of medium energy nucleon nucleus inelastic scattering
International Nuclear Information System (INIS)
Lagrange, Christian
1970-06-01
A theoretical study is made of the medium energy nucleon-nucleus inelastic scattering (direct interaction), by applying the distorted wave Born approximation such as can be deduced from the paired equation method. It is applied to the interpretation of the inelastic scattering of 12 MeV protons by 63 Cu; this leads us to make use of different sets of wave functions to describe the various states of the target nucleus. We analyze the nature of these states and the shape of the nucleon-nucleus interaction potential, and we compare the results with those obtained from other theoretical and experimental work. (author) [fr
Solution of neutron slowing down equation including multiple inelastic scattering
International Nuclear Information System (INIS)
El-Wakil, S.A.; Saad, A.E.
1977-01-01
The present work is devoted the presentation of an analytical method for the calculation of elastically and inelastically slowed down neutrons in an infinite non absorbing homogeneous medium. On the basis of the Central limit theory (CLT) and the integral transform technique the slowing down equation including inelastic scattering in terms of the Green function of elastic scattering is solved. The Green function is decomposed according to the number of collisions. A formula for the flux at any lethargy O (u) after any number of collisions is derived. An equation for the asymptotic flux is also obtained
The lineshape of inelastic neutron scattering in the relaxor ferroelectrics
International Nuclear Information System (INIS)
Ivanov, M.A.; Kozlovski, M.; Piesiewicz, T.; Stephanovich, V.A.; Weron, A.; Wymyslowski, A.
2005-01-01
The possibilities of theoretical and experimental investigations of relaxor ferroelectrics by inelastic neutron scattering method are considered. The simple model to description of the peculiarities of inelastic neutron scattering lineshapes in ferroelectric relaxors is suggested. The essence of this model is to consider the interaction of the phonon subsystem of relaxor ferroelectrics with the ensemble of defects and impurities. The modification of the Latin Hypercube Sampling (LHS) method is presented. The optimization of planning of experiment by the modified LHS method is considered [ru
Transverse momentum in semi-inclusive deep inelastic scattering
International Nuclear Information System (INIS)
Ceccopieri, Federico Alberto; Trentadue, Luca
2006-01-01
Within the framework of perturbative quantum chromodynamics we derive the evolution equations for transverse momentum dependent distributions and apply them to the case of semi-inclusive deep inelastic scattering. The evolution equations encode the perturbative component of transverse momentum generated by collinear parton branchings. The current fragmentation is described via transverse momentum dependent parton densities and fragmentation functions. Target fragmentation instead is described via fracture functions. We present, to leading logarithmic accuracy, the corresponding semi-inclusive deep inelastic scattering cross-section, which applies to the entire phase space of the detected hadron. Some phenomenological implications and further developments are briefly outlined
An inelastic neutron scattering study of hematite nanoparticles
DEFF Research Database (Denmark)
Hansen, Mikkel Fougt; Klausen, Stine Nyborg; Lefmann, K
2003-01-01
We have studied the magnetic dynamics in nanocrystalline hematite by inelastic neutron scattering at the high-resolution time-of-flight spectrometer IRIS at ISIS. Compared to previous inelastic neutron scattering experiments an improvement of the resolution function is achieved and more detailed...... moment at the antiferromagnetic Bragg reflection. We have studied different weightings of the particle size distribution. The data and their temperature dependence can with good agreement be interpreted on the basis of the Neel-Brown theory for superparamagnetic relaxation and a model for the collective...
Higher Order Heavy Quark Corrections to Deep-Inelastic Scattering
Blümlein, Johannes; DeFreitas, Abilio; Schneider, Carsten
2015-04-01
The 3-loop heavy flavor corrections to deep-inelastic scattering are essential for consistent next-to-next-to-leading order QCD analyses. We report on the present status of the calculation of these corrections at large virtualities Q2. We also describe a series of mathematical, computer-algebraic and combinatorial methods and special function spaces, needed to perform these calculations. Finally, we briefly discuss the status of measuring αs (MZ), the charm quark mass mc, and the parton distribution functions at next-to-next-to-leading order from the world precision data on deep-inelastic scattering.
Highlights of electron-proton deep inelastic scattering at HERA
International Nuclear Information System (INIS)
Feltesse, J.
1996-02-01
Salient results on deep inelastic scattering from the H1 and ZEUS collaborations are reviewed. These include preliminary measurements of the proton structure function F 2 extending to new regimes at both high Q 2 and low Q 2 and x, studies of the hadronic final states and discussion on QCD interpretations of low x data. New determination of α s from jet rates in deep inelastic scattering based on 1994 data are presented. A consistent picture of the gluon density in the proton at low x from a variety of processes is obtained. (author)
Higher order heavy quark corrections to deep-inelastic scattering
International Nuclear Information System (INIS)
Bluemlein, J.; Freitas, A. de; Johannes Kepler Univ., Linz; Schneider, C.
2014-11-01
The 3-loop heavy flavor corrections to deep-inelastic scattering are essential for consistent next-to-next-to-leading order QCD analyses. We report on the present status of the calculation of these corrections at large virtualities Q 2 . We also describe a series of mathematical, computer-algebraic and combinatorial methods and special function spaces, needed to perform these calculations. Finally, we briefly discuss the status of measuring α s (M Z ), the charm quark mass m c , and the parton distribution functions at next-to-next-to-leading order from the world precision data on deep-inelastic scattering.
Inelastic neutron scattering reactions in fluid saturated rock as exploited in oil well logging
International Nuclear Information System (INIS)
Underwood, M.C.; Dyos, C.J.
1986-01-01
Oil saturated sandstone and limestone targets have been irradiated with 14 MeV neutrons. Gamma-ray spectra were accumulated and the γ-ray intensities arising from inelastic neutron scattering reactions upon carbon and oxygen measured. The results are compared with the predictions of a simple model. They enable some features of the response of (n,γ) tools used in oil well logging to be established and current uncertainties in understanding to be highlighted. (author)
Gamma-rays from deep inelastic collisions
International Nuclear Information System (INIS)
Stephens, F.S.
1979-01-01
The γ-rays associated with deep inelastic collisions can give information about the magnitude and orientation of the angular momentum transferred in these events. In this review, special emphasis is placed on understanding the origin and nature of these γ-rays in order to avoid some of the ambiguities that can arise. The experimental information coming from these γ-ray studies is reviewed, and compared briefly with that obtained by other methods and also with the expectations from current models for deep inelastic collisions. 15 figures
Colour coherence in deep inelastic Compton scattering
Energy Technology Data Exchange (ETDEWEB)
Lebedev, A.I.; Vazdik, J.A. (Lebedev Physical Inst., Academy of Sciences, Moscow (USSR))
1992-01-01
MC simulation of Deep Inelastic Compton on proton - both QED and QCD - was performed on the basis of LUCIFER program for HERA energies. Charged hadron flow was calculated for string and independent fragmentation with different cuts on p{sub t} and x. It is shown that interjet colour coherence leads in the case of QCD Compton to the drag effects diminishing the hadron flow in the direction between quark jet and proton remnant jet. (orig.).
Colour coherence in deep inelastic Compton scattering
International Nuclear Information System (INIS)
Lebedev, A.I.; Vazdik, J.A.
1992-01-01
MC simulation of Deep Inelastic Compton on proton - both QED and QCD - was performed on the basis of LUCIFER program for HERA energies. Charged hadron flow was calculated for string and independent fragmentation with different cuts on p t and x. It is shown that interjet colour coherence leads in the case of QCD Compton to the drag effects diminishing the hadron flow in the direction between quark jet and proton remnant jet. (orig.)
Inelastic neutron scattering cross-section measurements on 7Li and 63,65Cu
Nyman, Markus; Belloni, Francesca; Ichinkhorloo, Dagvadorj; Pirovano, Elisa; Plompen, Arjan; Rouki, Chariklia
2017-09-01
The γ-ray production cross section for the 477.6-keV transition in 7Li following inelastic neutron scattering has been measured from the reaction threshold up to 18 MeV. This cross section is interesting as a possible standard for other inelastic scattering measurements. The experiment was conducted at the Geel Electron LINear Accelerator (GELINA) pulsed white neutron source with the Gamma Array for Inelastic Neutron Scattering (GAINS) spectrometer. Previous measurements of this cross section are reviewed and compared with our results. Recently, this cross section has also been calculated using the continuum discretized coupled-channels (CDCC) method. Experiments for studying neutrinoless double-β decay (2β0ν) or other very rare processes require greatly reducing the background radiation level (both intrinsic and external). Copper is a common shielding and structural material, used extensively in experiments such as COBRA, CUORE, EXO, GERDA, and MAJORANA. Understanding the background contribution arising from neutron interactions in Cu is important when searching for very weak experimental signals. Neutron inelastic scattering on natCu was investigated with GAINS. The results are compared with previous experimental data and evaluated nuclear data libraries.
Inelastic neutron scattering cross-section measurements on 7Li and 63,65Cu
Directory of Open Access Journals (Sweden)
Nyman Markus
2017-01-01
Full Text Available The γ-ray production cross section for the 477.6-keV transition in 7Li following inelastic neutron scattering has been measured from the reaction threshold up to 18 MeV. This cross section is interesting as a possible standard for other inelastic scattering measurements. The experiment was conducted at the Geel Electron LINear Accelerator (GELINA pulsed white neutron source with the Gamma Array for Inelastic Neutron Scattering (GAINS spectrometer. Previous measurements of this cross section are reviewed and compared with our results. Recently, this cross section has also been calculated using the continuum discretized coupled-channels (CDCC method. Experiments for studying neutrinoless double-β decay (2β0ν or other very rare processes require greatly reducing the background radiation level (both intrinsic and external. Copper is a common shielding and structural material, used extensively in experiments such as COBRA, CUORE, EXO, GERDA, and MAJORANA. Understanding the background contribution arising from neutron interactions in Cu is important when searching for very weak experimental signals. Neutron inelastic scattering on natCu was investigated with GAINS. The results are compared with previous experimental data and evaluated nuclear data libraries.
Soil-Carbon Measurement System Based on Inelastic Neutron Scattering
International Nuclear Information System (INIS)
Orion, I.; Wielopolski, L.
2002-01-01
Increase in the atmospheric CO 2 is associated with concurrent increase in the amount of carbon sequestered in the soil. For better understanding of the carbon cycle it is imperative to establish a better and extensive database of the carbon concentrations in various soil types, in order to develop improved models for changes in the global climate. Non-invasive soil carbon measurement is based on Inelastic Neutron Scattering (INS). This method has been used successfully to measure total body carbon in human beings. The system consists of a pulsed neutron generator that is based on D-T reaction, which produces 14 MeV neutrons, a neutron flux monitoring detector and a couple of large NaI(Tl), 6'' diameter by 6'' high, spectrometers [4]. The threshold energy for INS reaction in carbon is 4.8 MeV. Following INS of 14 MeV neutrons in carbon 4.44 MeV photons are emitted and counted during a gate pulse period of 10 μsec. The repetition rate of the neutron generator is 104 pulses per sec. The gamma spectra are acquired only during the neutron generator gate pulses. The INS method for soil carbon content measurements provides a non-destructive, non-invasive tool, which can be optimized in order to develop a system for in field measurements
Resonant inelastic scattering at intermediate X-ray energies
Hague, C F; Journel, L; Gallet, J J; Rogalev, A; Krill, G; Kappler, J P
2000-01-01
We describe resonant inelastic X-ray scattering (RIXS) experiments and magnetic circular dichroism (MCD) in X-ray fluorescence performed in the 3-5 keV range. The examples chosen are X-ray fluorescence MCD of FeRh and RIXS experiments performed at the L/sub 3/ edge of Ce. Fe Rh is antiferromagnetic at room temperature but has a transition to the ferromagnetic state above 400 K. The Rh MCD signal is compared with an augmented spherical wave calculation. The experiment confirms the predicted spin polarization of the Rh 4d valence states. The RIXS measurements on Ce compounds and intermetallics address the problem of mixed valency especially in systems where degeneracy with the Fermi level remains small. Examples are taken from the 2p to (4f5d) /sup +1/ followed by 3d to 2p RIXS for a highly ionic compound CeF /sub 3/ and for almost gamma -like CeCuSi. (38 refs).
The inelastic scattering of medium energy α particles
International Nuclear Information System (INIS)
Crut, M.
1960-01-01
The aim of this work is to find out what are the properties of the so-called 'anomalous states' in medium weight nuclei. These states preferentially excited in the inelastic scattering of medium energy charged particles have an excitation energy at about 4 MeV for nuclei with Z ≤ 29 and in the range 2-3 MeV for high Z nuclei. From a combination of angular distribution data in the elastic and inelastic scattering of 30 MeV α particles, and correlation data between inelastic α particles and deexcitation γ rays, we show that for even-even nuclei, we can attribute spin 3 and parity minus to these 'anomalous states'. This is quite in agreement with the interpretation of these levels suggested by Lane as due to collective octupole oscillations. We give a resume of the theories used in the analysis of the data and a description of the experimental set-up. (author) [fr
Investigation of the gamma radiation from the inelastic scattering of 2.75 MeV on 203Tl and 205Tl
International Nuclear Information System (INIS)
Hegewisch, S.
1976-01-01
The experimental presupositions for the measurements of (n,n'γ) reactions with time of flight discrimination have been established. By an investigation of the isotopes 203 Tl and 205 Tl with this method 120 gamma-transitions could be determined. The exact evaluation of their energies and intensities led to a completion of the level diagrams. The enrgies could be determined with a precision nearly one order of magnitude higher than the values existing hither to. (orig./WL) [de
Quasiparticle-phonon coupling in inelastic proton scattering
International Nuclear Information System (INIS)
Weissbach, B.
1980-01-01
Multistep-processes in inelastic proton scattering from 89 Y are analyzed by using CCBA and DWBA on a quasiparticle phonon nuclear structure model. Indirect excitations caused by quasiparticle phonon coupling effects are found to be very important for the transition strengths and the shape of angular distributions. Core excitations are dominant for the higher order steps of the reaction. (author)
Measuring isospin mixing in nuclei using π+- inelastic scattering
International Nuclear Information System (INIS)
Cottingame, W.B.; Braithwaite, W.J.; Morris, C.L.
1979-01-01
A new strongly isospin-mixed doublet has been found in 12 C near 19.5 MeV. in a comparison of π - and π + inelastic scattering at 180 MeV, The present techniques may be universally employable, at least in self-conjugate nuclei, in extracting isospin-mixing matrix elements
Inelastic Neutron Scattering Investigations of the Magnetic Excitations
DEFF Research Database (Denmark)
Feile, R; Kjems, Jørgen; Hauser, A.
1984-01-01
The magnetic excitations perpendicular to the antiferromagnetic chains in CsVX3 (X = Cl, Br, I) have been measured in the ordered state by inelastic neutron scattering. The dispersion relations and intensity distributions are those expected for ordinary spin waves in a triangular xy-model....
Scaled momentum spectra in deep inelastic scattering at HERA
Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bold, T.; Boos, E. G.; Borodin, M.; Borras, K.; Boscherini, D.; Boutle, S. K.; Brock, I.; Brownson, E.; Brugnera, R.; Bruemmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Butterworth, J. M.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Pellegrino, A.
Charged particle production has been studied in neutral current deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 0.44 fb(-1). Distributions of scaled momenta in the Breit frame are presented for particles in the current fragmentation region. The evolution
Resonant inelastic x-ray scattering studies of elementary excitations
Ament, Lucas Johannes Peter (Luuk)
2010-01-01
Resonant Inelastic X-ray Scattering (RIXS) is an X-ray in, X-ray out technique that enables one to study the dispersion of excitations in solids. In this thesis, we investigated how various elementary excitations of transition metal oxides show up in RIXS spectra.
Inclusive deep inelastic scattering at HERA and related phenomenology
International Nuclear Information System (INIS)
Zomer, F.
1999-12-01
Recent measurements of inclusive deep inelastic scattering differential cross-section in the range 1.5 GeV 2 ≤ Q 2 ≤ 30000 GeV 2 and 5.10 -6 ≤ x ≤ 0.65 are presented. Phenomenological analyses performed from these measurements are also described. (author)
Studies of magnetism with inelastic scattering of cold neutrons
International Nuclear Information System (INIS)
Jacrot, B.
1964-01-01
Inelastic scattering of cold neutrons can be used to study some aspects of magnetism: spins waves, exchange integrals, vicinity of Curie point. After description of the experimental set-up, several experiments, in the fields mentioned above, are analysed. (author) [fr
Hadronic parity violation and inelastic electron-deuteron scattering
International Nuclear Information System (INIS)
Liu, C.-P.; Prezeau, G.; Ramsey-Musolf, M.J.
2003-01-01
We compute contributions to the parity-violating (PV) inelastic electron-deuteron scattering asymmetry arising from hadronic PV. While hadronic PV effects can be relatively important in PV threshold electrodisintegration, we find that they are highly suppressed at quasielastic kinematics. The interpretation of the PV quasielastic asymmetry is, thus, largely unaffected by hadronic PV
Lattice dynamics of solid deuterium by inelastic neutron scattering
DEFF Research Database (Denmark)
Nielsen, Mourits; Bjerrum Møller, Hans
1971-01-01
The dispersion relations for phonons in solid ortho-deuterium have been measured at 5 °K by inelastic neutron scattering. The results are in good agreement with recent calculations in which quantum effects are taken into account. The data have been fitted to a third-neighbor general force model...
Instantons in the QCD vacuum and in deep inelastic scattering
International Nuclear Information System (INIS)
Ringwald, A.; Schrempp, F.
1999-01-01
We give a brief status report on our on-going investigation of the prospects to discover QCD instantons in deep inelastic scattering (DIS) at HERA. A recent high-quality lattice study of the topological structure of the QCD vacuum is exploited to provide crucial support of our predictions for DIS, based on instanton perturbation theory
Spectrometer for neutron inelastic scattering investigations of microsamples
International Nuclear Information System (INIS)
Balagurov, A.M.; Kozlenko, D.P.; Platonov, S.L.; Savenko, B.N.; Glazkov, V.P.; Krasnikov, Yu.M.; Naumov, I.V.; Pukhov, A.V.; Somenkov, V.A.; Syrykh, G.F.
1997-01-01
A new neutron spectrometer for investigation of inelastic neutron scattering on polycrystal microsamples under high pressure in sapphire and diamond anvils cells is described. The spectrometer is operating at the IBR-2 pulsed reactor in JINR. Parameters and methodical peculiarities of the spectrometer and the examples of experimental studies are given. (author)
Inelastic neutron scattering from non-framework species within zeolites
International Nuclear Information System (INIS)
Newsam, J.M.; Brun, T.O.; Trouw, F.; Iton, L.E.; Curtiss, L.A.
1990-01-01
Inelastic and quasielastic neutron scattering have special advantages for studying certain of the motional properties of protonated or organic species within zeolites and related microporous materials. In this paper these advantages and various experimental methods are outlined, and illustrated by measurements of torsional vibrations and rotational diffusion of tetramethylammonium (TMA) cations occluded within zeolites TMA-sodalite, omega, ZK-4 and SAPO-20
Quantum chromodynamics and deep inelastic e - N scattering at TRISTAN
International Nuclear Information System (INIS)
Muta, Taizo
1979-04-01
An introductory survey is given on the formulation of QCD in deep inelastic lepton-hadron scatterings. Typical predictions of QCD are presented in the kinematical region of TRISTAN, including detailed descriptions of the scaling violation, QCD correction to the current algebra sum rules, problem of quark masses and higher order effects. Some suggestions for experiments at TRISTAN are made. (author)
Inelastic scattering and local heating in atomic gold wires
DEFF Research Database (Denmark)
Frederiksen, Thomas; Brandbyge, Mads; Lorente, N.
2004-01-01
We present a method for including inelastic scattering in a first-principles density-functional computational scheme for molecular electronics. As an application, we study two geometries of four-atom gold wires corresponding to two different values of strain and present results for nonlinear...
Deep inelastic scattering of heavy ions
International Nuclear Information System (INIS)
Brink, D.M.
1980-01-01
These lectures developed path integral methods for use in the theory of heavy ion reactions. The effects of internal degrees of freedom on the relative motion were contained in an influence functional which was calculated for several simple models of the internal structure. In each model the influence functional had a simple Gaussian structure suggesting that the relative motion of the nuclei in a deep inelastic collision could be described by a Langevin equation. The form of the influence functional determines the average damping force and the correlation function of the fluctuating Langevin force. (author)
Deep inelastic scattering of heavy ions
International Nuclear Information System (INIS)
Brink, D.M.
1980-01-01
These lecture notes show how path integral methods can be used in the theory of heavy ion reactions. The effects of internal degrees of freedom on the relative motion are contained in an influence functional which is calculated for several simple models of the internal structure. In each model the influence functional has a simple Gaussian structure which suggests that the relative motion of the nuclei in a deep inelastic collision can be described by a Langevin equation. The form of the influence functional determines the average damping force and the correlation function of the fluctuating Langevin force. (author)
Inclusive quasielastic and deep inelastic electron scattering at high energies
International Nuclear Information System (INIS)
Day, D.B.
1990-01-01
With high electron energies a kinematic regime can be reached where it will be possible to separate quasielastic and deep inelastic scattering. We present a short description of these processes which dominate the inclusive spectrum. Using the highest momentum transfer data available to guide our estimates, we give the kinematic requirements and the cross sections expected. These results indicate that inclusive scattering at high q has a yet unfilled potential. 18 refs., 13 figs
CHEMICAL APPLICATIONS OF INELASTIC X-RAY SCATTERING
Energy Technology Data Exchange (ETDEWEB)
HAYASHI,H.; UDAGAWA,Y.; GILLET,J.M.; CALIEBE,W.A.; KAO,C.C.
2001-08-01
Inelastic x-ray scattering (IXS), complementary to other more established inelastic scattering probes, such as light scattering, electron scattering, and neutron scattering, is becoming an important experimental technique in the study of elementary excitations in condensed matters. Over the past decade, IXS with total energy resolution of few meV has been achieved, and is being used routinely in the study of phonon dispersions in solids and liquids as well as dynamics in disordered and biological systems. In the study of electronic excitations, IXS with total energy resolution on the order of 100 meV to 1 eV is gaining wider applications also. For example, IXS has been used to study collective excitations of valence electrons, single electron excitations of valence electrons, as well as core electron excitations. In comparison with the alternative scattering techniques mentioned above, IXS has several advantages. First, IXS probes the full momentum transfer range of the dielectric response of the sample, whereas light scattering is limited to very small momentum transfers, and electron scattering suffers the effects of multiple scattering at large momentum transfers. Second, since IXS measures the bulk properties of the sample it is not surface sensitive, therefore it does not require special preparation of the sample. The greater flexibility in sample conditions and environments makes IXS an ideal probe in the study of liquids and samples under extreme temperature, pressure, and magnetic field. Third, the tunability of synchrotron radiation sources enables IXS to exploit element specificity and resonant enhancement of scattering cross sections. Fourth, IXS is unique in the study of dynamics of liquids and amorphous solids because it can probe the particular region of energy-momentum transfer phase space, which is inaccessible to inelastic neutron scattering. On the other hand, the main disadvantages of IXS are the small cross sections and the strong absorption of
Inelastic neutron scattering of H2 adsorbed in HKUST-1
International Nuclear Information System (INIS)
Liu, Y.; Brown, C.M.; Neumann, D.A.; Peterson, V.K.; Kepert, C.J.
2007-01-01
A series of inelastic neutron scattering (INS) investigations of hydrogen adsorbed in activated HKUST-1 (Cu 3 (1,3,5-benzenetricarboxylate) 2 ) result in INS spectra with rich features, even at very low loading ( 2 :Cu). The distinct inelastic features in the spectra show that there are three binding sites that are progressively populated when the H 2 loading is less than 2.0 H 2 :Cu, which is consistent with the result obtained from previous neutron powder diffraction experiments. The temperature dependence of the INS spectra reveals the relative binding enthalpies for H 2 at each site
Inelastic scattering of 275 keV neutrons by silver
International Nuclear Information System (INIS)
Litvinsky, L.L.; Zhigalov, Ya.A.; Krivenko, V.G.; Purtov, O.A.; Sabbagh, S.
1997-01-01
Neutron total, elastic and inelastic scattering cross-scattering of Ag at the E n = 275 KeV neutron energy were measured by using the filtered neutron beam of the WWR-M reactor in Kiev. The d-neutron strength function S n2 of Ag was determined from the analysis of all available data in the E n ≤ keV energy region on neutron inelastic scattering cross-sections with excitation of the first isomeric levels I π m = 7/2 + , E m ∼ 90 keV of 107,109 Ag: S n2 = (1.03 ± 0.19) · 10 -4 . (author). 10 refs, 3 figs
Magnetic inelastic scattering: Present results and future trends
Energy Technology Data Exchange (ETDEWEB)
Osborn, R.
1996-04-01
Experience over the last 15 years has shsown that pulsed neutron spectrometers are able to contribute to the field of magnetic inelastic scattering. Such spectrometers have high resolution and wide dynamic range, both of which are necessary in order to characterize the magnetic response of the complex systems of current interest, ranging from rare earth-transition metal permanent magnets to quantum critical scatterers. Howevera, all these studies have been constrained by current flux limitations. The development of more powerful spallation neutron sources, such as the JHP, is likely to transform these interesting demonstrations of the potential of pulsed neutron scattering into routine tools for the study of magnetic correlations.
Inelastic magnetic scattering of polarized neutrons by a superconducting ring
International Nuclear Information System (INIS)
Agafonov, A. I.
2011-01-01
The inelastic scattering of cold neutrons by a ring leads to quantum jumps of a superconducting current which correspond to a decrease in the fluxoid quantum number by one or several units while the change in the ring energy is transferred to the kinetic energy of the scattered neutron. The scattering cross sections of transversely polarized neutrons have been calculated for a thin type-II superconductor ring, the thickness of which is smaller than the field penetration depth but larger than the electron mean free path.
Inelastic proton scattering at medium energy
International Nuclear Information System (INIS)
Love, W.G.
1980-01-01
Some of the most essential characteristics of the nucleon-nucleon interaction for probing nuclear structure at bombarding energies between 100 and 800 MeV are considered. With a local representation of the on-shell N-N t-matrix, data for a variety of specific transitions at IUCF and LAMPF energies are discussed with an emphasis on the nuclear structure information sampled by proton scattering. The importance of incorporating constraints on nuclear structure imposed by electron scattering is stressed. Some rather unique aspects of the (p,n) reaction at intermediate energies are discussed in terms of its energy dependence and nuclear structure sum rules. 11 figures
DEEPLY INELASTIC SCATTERING OFF NUCLEI AT RHIC.
Energy Technology Data Exchange (ETDEWEB)
VENUGOPALAN, R.
2001-09-14
In this talk, we discussed the physics case for an eA collider. We emphasized the novel physics that might be studied at small x. The interesting physics at intermediate x's has been discussed elsewhere [3]. Plans for an electron-ion collider include, as a major part of the program, the possibility of doing polarized electron-polarized proton/light ion scattering. A discussion of the combined case for high energy electron nucleus and polarized electron-polarized proton scattering will be published separately [66].
DEEPLY INELASTIC SCATTERING OFF NUCLEI AT RHIC
International Nuclear Information System (INIS)
VENUGOPALAN, R.
2001-01-01
In this talk, we discussed the physics case for an eA collider. We emphasized the novel physics that might be studied at small x. The interesting physics at intermediate x's has been discussed elsewhere [3]. Plans for an electron-ion collider include, as a major part of the program, the possibility of doing polarized electron-polarized proton/light ion scattering. A discussion of the combined case for high energy electron nucleus and polarized electron-polarized proton scattering will be published separately [66
Inelastic scattering at the B K edge of hexagonal BN
Energy Technology Data Exchange (ETDEWEB)
Jia, J.J.; Callcott, T.A.; Zhou, L. [Univ. of Tennessee, Knoxville, TN (United States)] [and others
1997-04-01
Many recent soft x-ray fluorescence (SXF) studies have shown that inelastic scattering processes make important contributions to the observed spectra for excitation near the x-ray threshold. These effects are all attributed to a process, usually called an electronic Raman scattering (ERS) process, in which energy is lost to an electronic excitation. The theory has been described using second order perturbation theory by Tulkki and Aberg. In different materials, the detailed nature of the electronic excitation producing the energy loss may be very different. In crystalline Si, diamond and graphite, changes in spectral shape and dispersion of spectral features with variation of the excitation energy are observed, which are attributed to k conservation between the photoelectron generated in the excitation process and the valence hole remaining after the coupled emission process. Hence the process is strongly localized in k-space. In haxagonal boron nitride, which has a lattice and band structure very similar to graphite, inelastic scattering produces very different effects on the observed spectra. Here, the inelastic losses are coupled to a strong resonant elastic scattering process, in which the intermediate state is a localized core exciton and the final state is a localized valence exciton, so that the electronic excitation is strongly localized in real rather than reciprocal space.
Measurement of proton inelastic scattering cross sections on fluorine
Energy Technology Data Exchange (ETDEWEB)
Chiari, M., E-mail: chiari@fi.infn.it [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy); Caciolli, A. [Department of Physics and Astronomy, University of Padua and INFN Padua, Padova (Italy); Calzolai, G. [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy); Climent-Font, A. [CMAM, Universidad Autonoma de Madrid, Madrid (Spain); Lucarelli, F.; Nava, S. [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy)
2016-10-01
Differential cross-sections for proton inelastic scattering on fluorine, {sup 19}F(p,p’){sup 19}F, from the first five excited levels of {sup 19}F at 110, 197, 1346, 1459 and 1554 keV were measured for beam energies from 3 to 7 MeV at a scattering angle of 150° using a LiF thin target (50 μg/cm{sup 2}) evaporated on a self-supporting C thin film (30 μg/cm{sup 2}). Absolute differential cross-sections were calculated with a method not dependent on the absolute values of collected beam charge and detector solid angle. The validity of the measured inelastic scattering cross sections was then tested by successfully reproducing EBS spectra collected from a thick Teflon (CF{sub 2}) target. As a practical application of these measured inelastic scattering cross sections in elastic backscattering spectroscopy (EBS), the feasibility of quantitative light element (C, N and O) analysis in aerosol particulate matter samples collected on Teflon by EBS measurements and spectra simulation is demonstrated.
The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium
Roach, Daniel L.; Ross, D. Keith; Gale, Julian D.; Taylor, Jon W.
2013-01-01
A new approach to the interpretation and analysis of coherent inelastic neutron scattering from polycrystals (poly-CINS) is presented. This article describes a simulation of the one-phonon coherent inelastic scattering from a lattice model of an arbitrary crystal system. The one-phonon component is characterized by sharp features, determined, for example, by boundaries of the (Q, ω) regions where one-phonon scattering is allowed. These features may be identified with the same features apparent in the measured total coherent inelastic cross section, the other components of which (multiphonon or multiple scattering) show no sharp features. The parameters of the model can then be relaxed to improve the fit between model and experiment. This method is of particular interest where no single crystals are available. To test the approach, the poly-CINS has been measured for polycrystalline aluminium using the MARI spectrometer (ISIS), because both lattice dynamical models and measured dispersion curves are available for this material. The models used include a simple Lennard-Jones model fitted to the elastic constants of this material plus a number of embedded atom method force fields. The agreement obtained suggests that the method demonstrated should be effective in developing models for other materials where single-crystal dispersion curves are not available. PMID:24282332
Dijet production in diffractive deep inelastic scattering at HERA
International Nuclear Information System (INIS)
Chekanov, S.; Derrick, M.; Magill, S.
2007-08-01
The production of dijets in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 61 pb -1 . The dijet cross section has been measured for virtualities of the exchanged virtual photon, 5 2 2 , and γ * p centre-of-mass energies, 100 T algorithm in the γ * p frame, were required to have a transverse energy E * T,jet >4 GeV and the jet with the highest transverse energy was required to have E * T,jet >5 GeV. All jets were required to be in the pseudorapidity range -3.5 * jet <0. The differential cross sections are compared to leading-order predictions and next-to-leading- order QCD calculations based on recent diffractive parton densities extracted from inclusive diffractive deep inelastic scattering data. (orig.)
Studies in deep inelastic scattering and vector meson photoproduction
International Nuclear Information System (INIS)
Busenitz, J.K.
1985-01-01
The first part of this thesis is devoted to a space-time analysis of deep inelastic scattering from protons at rest. Techniques are developed for identifying important space-time regions. These are then applied to obtain a space-time picture of deep inelastic scattering in the leading logarithmic approximation of QCD, Physical mechanisms responsible for the space-time picture are discussed. In the second part of this thesis he reports on the observations of elastic omega photoproduction from hydrogen by Fermilab Experiment-401. The omega was detected via its decay into the π + π - π 0 channel. Measurements of the energy, momentum transfer, and angular dependence of the cross section have been made for photon energies between 60 and 225 GeV
Revealing inner shell dynamics with inelastic X-ray scattering
International Nuclear Information System (INIS)
Franck, C.
1990-01-01
One of the many opportunities provided by the Advanced Photon Source (APS) is to extend the study of intra-atomic dynamics. As a means of testing dynamic response, inelastic x-ray scattering is particularly promising since it allows us to independently vary the period of the exciting field in both space and time. As an example of this type of work, the author presents experiments performed at the Cornell High Energy Synchrotron Source (CHESS) laboratory, a prototype for the APS. This was inner shell inelastic scattering with a twist: in order to explore a new distance scale an x-ray fluorescence trigger was employed. Aside for the atomic insight gained, the experiment taught them the importance of the time structure of the synchrotron beam for coincidence experiments which are dominated by accidental events
Radiative corrections to neutrino deep inelastic scattering revisited
International Nuclear Information System (INIS)
Arbuzov, Andrej B.; Bardin, Dmitry Yu.; Kalinovskaya, Lidia V.
2005-01-01
Radiative corrections to neutrino deep inelastic scattering are revisited. One-loop electroweak corrections are re-calculated within the automatic SANC system. Terms with mass singularities are treated including higher order leading logarithmic corrections. Scheme dependence of corrections due to weak interactions is investigated. The results are implemented into the data analysis of the NOMAD experiment. The present theoretical accuracy in description of the process is discussed
Target mass effects in polarized deep-inelastic scattering
International Nuclear Information System (INIS)
Piccione, A.
1998-01-01
We present a computation of nucleon mass corrections to nucleon structure functions for polarized deep-inelastic scattering. We perform a fit to existing data including mass corrections at first order in m 2 /Q 2 and we study the effect of these corrections on physically interesting quantities. We conclude that mass corrections are generally small, and compatible with current estimates of higher twist uncertainties, when available. (orig.)
Computer Program for Inelastic Neutron Scattering by an Anharmonic Crystal
International Nuclear Information System (INIS)
Bohlin, L.; Ebbsjoe, I.; Hoegberg, T.
1969-02-01
A description is given of the program SAW (Shift and Width), which calculates the energy-dependent shift and width of the intensity peaks obtained for thermal neutrons scattered inelastically by an anharmonic crystal. The program has been coded in FORTRAN IV and may be applied to every solid with a monatomic face-centered cubic lattice where the intermolecular interactions can be described by a centro-symmetrical potential. Interactions beyond third neighbours are neglected
Simulation of a complete inelastic neutron scattering experiment
DEFF Research Database (Denmark)
Edwards, H.; Lefmann, K.; Lake, B.
2002-01-01
A simulation of an inelastic neutron scattering experiment on the high-temperature superconductor La2-xSrxCuO4 is presented. The complete experiment, including sample, is simulated using an interface between the experiment control program and the simulation software package (McStas) and is compared...... with the experimental data. Simulating the entire experiment is an attractive alternative to the usual method of convoluting the model cross section with the resolution function, especially if the resolution function is nontrivial....
Computer Program for Inelastic Neutron Scattering by an Anharmonic Crystal
Energy Technology Data Exchange (ETDEWEB)
Bohlin, L; Ebbsjoe, I; Hoegberg, T
1969-02-15
A description is given of the program SAW (Shift and Width), which calculates the energy-dependent shift and width of the intensity peaks obtained for thermal neutrons scattered inelastically by an anharmonic crystal. The program has been coded in FORTRAN IV and may be applied to every solid with a monatomic face-centered cubic lattice where the intermolecular interactions can be described by a centro-symmetrical potential. Interactions beyond third neighbours are neglected.
Future Deep Inelastic Scattering with the LHeC
Klein, Max
2018-01-01
For nearly a decade, Guido Altarelli accompanied the Large Hadron electron Collider project, as invited speaker, referee and member of the International Advisory Committee. This text summarises the status and prospects of the development of the LHeC, with admiration for a one-time scientist and singular leader whom I met first nearly 40 years ago under the sun shining for the "Herceg Novi School" in Kupari, where we both lectured about the beautiful science of Deep Inelastic Scattering and en...
Long-range correlations in deep-inelastic scattering
International Nuclear Information System (INIS)
Chekanov, S.V.
1999-01-01
Multiplicity correlations between the current and target regions of the Breit frame in deep-inelastic scattering processes are studied. It is shown that the correlations are sensitive to the first-order perturbative QCD effects and can be used to extract the behaviour of the boson-gluon fusion rates as a function of the Bjorken variable. The behaviour of the correlations is derived analytically and analyzed using a Monte Carlo simulation. (author)
Forward jet production in deep inelastic scattering at HERA
Czech Academy of Sciences Publication Activity Database
Aktas, A.; Andreev, V.; Anthonis, A.; Cvach, Jaroslav; Reimer, Petr; Sedlák, Jaroslav; Zálešák, Jaroslav
2006-01-01
Roč. 46, - (2006), s. 27-42 ISSN 1434-6044 R&D Projects: GA MŠk(CZ) LC527; GA MŠk(CZ) 1P05LA259 Institutional research plan: CEZ:AV0Z10100502 Keywords : HI experiment * ep scattering * deep inelastic * cross section * quantum chromodynamics Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.251, year: 2006
Inelastic scattering of neutrons by spin waves in terbium
DEFF Research Database (Denmark)
Bjerrum Møller, Hans; Houmann, Jens Christian Gylden
1966-01-01
Measurements of spin-wave dispersion relations for magnons propagating in symmetry directions in ferromagnetic Tb; it is first experiment to give detailed information on magnetic excitations in heavy rare earths; Tb was chosen for these measurements because it is one of few rare-earth metals which...... does not have very high thermal-neutron capture cross section, so that inelastic neutron scattering experiments can give satisfactory information on magnon dispersion relations....
On the radiative corrections to the neutrino deep inelastic scattering
International Nuclear Information System (INIS)
Bardin, D.Yu.; Dokuchaeva, V.A.
1986-01-01
A unique set of formulae is presented for the radiative corrections to the double differential cross section of deep inelastic neutrino scattering in channels of charged and neutral currents within a simple quark parton model in a renormalization scheme on mass-shell. It is shown that these cross sections when being integrated up to the one-dimensional distribution or up to the total cross section reproduce many results existing in the literature
Implications of new deep inelastic scattering data for parton distributions
International Nuclear Information System (INIS)
Martin, A.D.; Stirling, W.J.; Roberts, R.G.
1988-01-01
We perform a next-to-leading order structure function F 2 analysis of μN and νN deep inelastic data in an attempt to resolve the disagreement between recent EMC (European muon collaboration effect) and BCDMS measurements of F 2 for μp scattering. Equally acceptable QCD fits are obtained including either set of μN data, but a comparison with Drell-Yan data appears to favour the parton distributions derived from the BCDMS data. (author)
On deformed tensor potential for inelastic deuteron scattering
International Nuclear Information System (INIS)
Raynal, Jacques.
1980-08-01
Tensor analysing powers for inelastic deuteron scattering have been measured around 12 to 15 MeV. There is no problem to use such a tensor potential for the excited states in coupled channel calculations. However, for transition potentials, form factors are very different. A fit has been done with the first order vibrational model for 64 Ni(d,d') 64 Ni*, 2 + at 1,344 MeV
Uncertainty in the inelastic resonant scattering assisted by phonons
International Nuclear Information System (INIS)
Garcia, N.; Garcia-Sanz, J.; Solana, J.
1977-01-01
We have analyzed the inelastic minima observed in new results of He atoms scattered from LiF(001) surfaces. This is done considering bound state resonance processes assisted by phonons. The analysis presents large uncertainties. In the range of uncertainty, we find two ''possible'' bands associated with the vibrations of F - and Li + , respectively. Many more experimental data are necessary to confirm the existence of these processes
Inelastic scattering using the three-axis spectrometer technique
International Nuclear Information System (INIS)
Currat, R.
1999-01-01
The three-axis technique is a basic neutron scattering technique for inelastic work on single-crystal specimens. There is, at the moment, a fair degree of complementarity between TAS instruments on steady-state sources and TOF instruments on steady-state or pulsed sources. The technique is described, the issue of TAS versus TOF method is discussed, and investigations relating to the resolution functions are presented. (K.A.)
Inelastic neutron scattering method in hard coal quality monitoring
International Nuclear Information System (INIS)
Cywicka-Jakiel, T.; Loskiewicz, J.; Tracz, G.
1994-07-01
Nuclear methods in mining industry and power generation plants are nowadays very important especially because of the need for optimization of combustion processes and reduction of environmental pollution. On-line analysis of coal quality not only economic benefits but contribute to environmental protection too. Neutron methods especially inelastic scattering and PGNAA are very useful for analysis of coal quality where calorific valve, ash and moisture content are the most important. Using Pu-Be or Am-Be isotopic sources and measuring carbon 4.43 MeV γ-rays from neutron inelastic scattering: 12 C(n,n'γ) 12 C we can evaluate calorific valve in hard coals with precision better than in PGNAA method. This is mainly because of large cross-section for inelastic scattering and the strong correlation between carbon content and calorific value shown in the paper for different coal basins. The influence of moisture on 4.43 MeV carbon γ-rays in considered in the paper in theoretical and experimental aspects and appropriate formula is introduced. Also the possibilities of determine ash, moisture, Cl, Na and Si in coal are shown. (author). 11 refs, 15 figs
Inelastic neutron scattering from synthetic and biological polymers
International Nuclear Information System (INIS)
White, J.W.
1976-01-01
Neutron elastic and inelastic scattering measurements have provided many unique insights into structure, and by reviewing progress on synthetics, important differences likely to arise in biological systems are identified and a direction for studies of the latter is suggested. By neutron inelastic scattering it is possible to measure the frequency of thermally excited interatomic and intermolecular vibrations in crystals. With perfect organic and inorganic crystals the technique is now classical and has given great insight into the crystal forces responsible for the observed structures as well as the phase transitions they undergo. The study of polymer crystals immediately presents two problems of disorder: (1) Macroscopic disorder arises because the sample is a mixture of amorphous and crystalline fractions, and it may be acute enough to inhibit growth of a single crystal large enough for neutron studies. (2) Microscopic disorder in the packing of polymer chains in the ''crystalline'' regions is indicated by broadening of Bragg peaks. Both types of disorder problem arise in biological systems. The methods by which they were partially overcome to allow neutron measurements with synthetic polymers are described but first a classical example of the determination of interatomic forces by inelastic neutron scattering is given
Non-eikonal effects in high-energy scattering IV. Inelastic scattering
International Nuclear Information System (INIS)
Gurvitz, S.A.; Kok, L.P.; Rinat, A.S.
1978-01-01
Amplitudes of inelastically scattered high-energy projections were calculated. In the scattering on 12 C(Tsub(P)=1 GeV) sizeable non-eikonal corrections in diffraction extrema even for relatively small q 2 are demonstrated. At least part of the anomaly in the 3 - distribution may be due to these non-eikonal effects. (B.G.)
Inelastic neutron scattering for materials science and engineering
International Nuclear Information System (INIS)
Shapiro, S.M.
1995-01-01
The neutron is the ideal probe for studying the positions and motions of atoms in condensed matter. The main advantage of the neutron in inelastic scattering results from its heavy mass when compared to other particles which are used to probe materials such as the photon (light, x-rays, or γ-rays) or the electron. The author discusses the application of neutron scattering to study a number of different materials related problems, including, hard magnets, shape memory effects, and hydrogen distribution in metals
Dirac potentials in a coupled channel approach to inelastic scattering
International Nuclear Information System (INIS)
Mishra, V.K.; Clark, B.C.; Cooper, E.D.; Mercer, R.L.
1990-01-01
It has been shown that there exist transformations that can be used to change the Lorentz transformation character of potentials, which appear in the Dirac equation for elastic scattering. We consider the situation for inelastic scattering described by coupled channel Dirac equations. We examine a two-level problem where both the ground and excited states are assumed to have zero spin. Even in this simple case we have not found an appropriate transformation. However, if the excited state has zero excitation energy it is possible to find a transformation
Multiquark states in the deep inelastic muon-nucleus scattering
International Nuclear Information System (INIS)
Titov, A.I.
1983-01-01
The deep-inelastic muon-nucleus scattering in the region forbidden by the kinematics for the scattering on free nucleons, is analysed theoretically. The calculations have been performed under the assumption that the main contribution to the cross section in the considered region of the Bjorken scaling variable, 1 -4 -10 -5 for the nuclear structure function at x approximately equal to 1.4. As it is shown, one has to take into account the six-= ' quark states in extracting the scaling parameter of QCD from the muon-nucleus data at approximately 1
Probing lumps of wee partons in deep inelastic scattering
International Nuclear Information System (INIS)
Buchmueller, W.
1994-06-01
Recently, the ZEUS collaboration has reported on several remarkable properties of events with a large rapidity gap in deep inelastic scattering. We suggest that the mechanism underlying these events is the scattering of electrons off lumps of wee partons inside the proton. Based on an effective lagrangian approach the Q 2 -, x- and W-distributions are evaluated. For sufficiently small invariant mass of the detected hadronic system, the mechanism implies leading twist behaviour. The x- and W-distributions are determined by the Lipatov exponent which governs the behaviour of parton densities at small x. (orig.)
Inclusive and exclusive deep-inelastic electron scattering
International Nuclear Information System (INIS)
Morgenstern, J.
1985-11-01
In this talk, I will present some deep inelastic electron scattering experiments done recently at Saclay with the purpose of studying high momentum components in the nucleus, many body effects as correlations, exchange currents, and the electron-nucleon interaction inside the nuclear medium. For that purpose we have performed (e,e') and (ee'p) experiments. When we detect only the scattered electron, we get some average properties less sensitive to final state interaction; in ee'p measurements we are more specific
A local dynamic correlation function from inelastic neutron scattering
International Nuclear Information System (INIS)
McQueeney, R.J.
1997-01-01
Information about local and dynamic atomic correlations can be obtained from inelastic neutron scattering measurements by Fourier transform of the Q-dependent intensity oscillations at a particular frequency. A local dynamic structure function, S(r,ω), is defined from the dynamic scattering function, S(Q,ω), such that the elastic and frequency-integrated limits correspond to the average and instantaneous pair-distribution functions, respectively. As an example, S(r,ω) is calculated for polycrystalline aluminum in a model where atomic motions are entirely due to harmonic phonons
Studies on biological macromolecules by neutron inelastic scattering
International Nuclear Information System (INIS)
Fujiwara, Satoru; Nakagawa, Hiroshi
2013-01-01
Neutron inelastic scattering techniques, including quasielastic and elastic incoherent neutron scattering, provide unique tools to directly measure the protein dynamics at a picosecond time scale. Since the protein dynamics at this time scale is indispensable to the protein functions, elucidation of the protein dynamics is indispensable for ultimate understanding of the protein functions. There are two complementary directions of the protein dynamics studies: one is to explore the physical basis of the protein dynamics using 'model' proteins, and the other is more biology-oriented. Examples of the studies on the protein dynamics with neutron inelastic scattering are described. The examples of the studies in the former direction include the studies on the dynamical transitions of the proteins, the relationship between the protein dynamics and the hydration water dynamics, and combined analysis of the protein dynamics with molecular dynamics simulation. The examples of the studies in the latter direction include the elastic incoherent and quasielastic neutrons scattering studies of actin. Future prospects of the studies on the protein dynamics with neutron scattering are briefly described. (author)
Inelastic pion scattering by 13C at low energies
International Nuclear Information System (INIS)
Mitchell, J.H.
1987-03-01
Angular distributions for inelastically scattered pions were obtained for several states in 13 C at an incident energy of 65 MeV. The data include results from both π + and π - measurements. In addition, π - measurements were made at T/sub π/ = 50 MeV at one angle to give a two point fixed-q excitation function. The data are compared to theory and the data of others. As might be expected, medium corrections are shown to be considerably more important at low energies than at resonance. This is true for inelastic transitions of multipolarity 0,2 and 3. Parameters derived from an analysis of elastic pion scattering and SCX data also provide an adequate description of the inelastic transitions. The charge asymmetry in the cross sections for the 9/2 + state that was seen at resonance persists at these energies. This result is consistent with an impulse approximation treatment of the spin-flip amplitude. This is true even though the incoming energy of the pions is far below the range where the validity of an impulse treatment is expected. 65 refs., 45 figs
Nuclear structure of 41Ca from inelastic proton scattering
International Nuclear Information System (INIS)
Vold, P.B.; Cline, D.; Voigt, M.J.A. de
1977-01-01
Angular distributions have been measured for inelastic and elastic scattering of 19 MeV protons on 40 41 Ca. A total of 89 levels were identified below 6.4 MeV in 41 Ca with an energy resolution of 12 keV. Inelastic transition strengths have been extracted using DWBA theory with a vibrational model form factor. These transition strengths correlate well with inelastic α-scattering and electromagnetic values. The quadrupole strengths are interpreted in terms of the coexistence model and imply that the excited-core admixture in the ground states of both 40 Ca and 41 Ca are approximately 5%. The octupole strengths in 41 Ca exhibits features characteristic of the weak coupling of an fsub(7/2) neutron to the lowest 3 - state in 40 Ca. The l = 5 strength exhibits a similar weak-coupling behavior. In both cases the microscopic structure appreciably reduces the transition strength for the highest spin member of the weak-coupling multiplets. (Auth.)
In situ measurement of inelastic light scattering in natural waters
Hu, Chuanmin
Variation in the shape of solar absorption (Fraunhofer) lines are used to study the inelastic scattering in natural waters. In addition, oxygen absorption lines near 689nm are used to study the solar stimulated chlorophyll fluorescence. The prototype Oceanic Fraunhofer Line Discriminator (OFLD) has been further developed and improved by using a well protected fiber optic - wire conductor cable and underwater electronic housing. A Monte-Carlo code and a simple code have been modified to simulate the Raman scattering, DOM fluorescence and chlorophyll fluorescence. A series of in situ measurements have been conducted in clear ocean waters in the Florida Straits, in the turbid waters of Florida Bay, and in the vicinity of a coral reef in the Dry Tortugas. By comparing the reduced data with the model simulation results, the Raman scattering coefficient, b r with an excitation wavelength at 488nm, has been verified to be 2.6 × 10-4m-1 (Marshall and Smith, 1990), as opposed to 14.4 × 10- 4m-1 (Slusher and Derr, 1975). The wavelength dependence of b r cannot be accurately determined from the data set as the reported values (λ m-4 to λ m- 5) have an insignificant effect in the natural underwater light field. Generally, in clear water, the percentage of inelastic scattered light in the total light field at /lambda 510nm. At low concentrations (a y(/lambda = 380nm) less than 0.1m-1), DOM fluorescence plays a small role in the inelastic light field. However, chlorophyll fluorescence is much stronger than Raman scattering at 685nm. In shallow waters where a sea bottom affects the ambient light field, inelastic light is negligible for the whole visible band. Since Raman scattering is now well characterized, the new OFLD can be used to measure the solar stimulated in situ fluorescence. As a result, the fluorescence signals of various bottom surfaces, from coral to macrophytes, have been measured and have been found to vary with time possibly due to nonphotochemical quenching
Inelastic X-ray scattering activities in Europe
International Nuclear Information System (INIS)
Dorner, B.
1984-01-01
Inelastic X-ray scattering requires an energy determination before and after the scattering process together with a technique to vary at least one energy continuously in a controlled way. Sufficiently monochromatic beams can only be produced by Bragg reflection from single crystals. Stationary X-ray monochromators are standard equipment of conventional X-ray generators to select a particular characteristic line. Quite often they are curved to focus on the sample or the detector. Devices with variable Bragg angle have been and are used as analyzers in Compton scattering which is inelastic X-ray scattering with moderate resolution. With the rapidly increasing availability of synchrotron radiation (SR) monochromators and analyzers became more and more sophisticated improving momentum (Q) resolution and only somewhat the energy resolution ΔE which stays in the order of eV. Very high energy resolution can only be obtained with Bragg angles Theta near to 90 0 . This field is the topic of the present paper
Search for elemental and mineral biomarkers using inelastic neutron scattering spectroscopy (INSS)
Wielopolski, Lucian; Hoover, Richard B.; Mitra, Sudeep
2004-02-01
Life on Earth is characterized by a select group of low Z elements: C, H, N, O, P, K, S, Na, Cl. The presence of these elements and their ratios can provide indications of possible biogenicity and thus they may constitute valuable biomarkers that may help determine the best locations to seek more definitive evidence of life. We discuss the possible applications and significance of the inelastic neutron scattering induced gamma spectroscopy (INSGS) for future Astrobiology Missions to Mars or other solar System bodies. The general requirements and capabilities of the proposed approach are presented.
Deep inelastic muon scattering from nuclei at Fermilab
International Nuclear Information System (INIS)
Kaufman, S.B.
1992-01-01
Electron scattering experiments by Friedman, Kendall, and Taylor at SLAC first showed in 1968 that the proton was composed of point-like constituents (quarks). More recently the European Muon Collaboration (EMC) found in muon scattering experiments that the structure functions of a free nucleon are different from a heavy nucleus (open-quotes EMC effectclose quotes). Fermilab experiment E665 is now studying deep inelastic scattering of 490 GeV muons from targets ranging from hydrogen to lead, including measurements of the final state hadrons in order to learn more about these effects. The author describes this experiment and presents some initial results on the effects of the nuclear environment on the quark structure of nucleons
Resonant inelastic scattering of quasifree electrons on ions
International Nuclear Information System (INIS)
Grabbe, S.
1994-01-01
Several studies of resonant-transfer excitation (RTE) have been reported in ion-atom collisions where the doubly excited autoionizing states are produced. Such a complex collision can be approximated as the scattering of quasifree electrons of the target from the projectile ion. Most of the investigations have been restricted to the deexcitation of the autoionizing states to the ground state by Auger electron emission. It has been shown that there is a strong interference between the elastic scattering amplitude and the resonance amplitude. The authors present here the cases where the corresponding interference is between the inelastic scattering and the resonance process. Recent work on 3 ell 3 ell ' resonances that decay predominantly to n=2 states will be presented for C 5+ -molecular hydrogen collisions
International Nuclear Information System (INIS)
Perelli-Cippo, E.; Andreani, C.; Casalboni, M.; Dire, S.; Fernandez-Canoto, D.; Gorini, G.; Imberti, S.; Pietropaolo, A.; Prosposito, P.; Schutzmann, S.; Senesi, R.; Tardocchi, M.
2006-01-01
High-energy inelastic neutron scattering (HINS) employing epithermal neutrons is a new technique under development at the VESUVIO spectrometer at ISIS, aiming to access the high-energy and low wave-vector transfer region in neutron scattering experiments at eV energies. New neutron detectors have been developed for HINS based on the resonant detector (RD). These make use of the detection of prompt gammas after neutron absorption in an analyzer foil. The RD is used in the very low angle detector (VLAD) bank, which will extend the explored kinematical region to momentum transfer -1 , whilst still keeping energy transfer >300 meV. The final VLAD will cover the scattering range 1-5 o and will be installed by the end of 2005. The results obtained with prototype VLAD detectors on polycrystalline ice and liquid water in silica xerogels provide a demonstration of the feasibility of the measurements under realistic conditions
Inelastic light scattering spectroscopy of semiconductor nitride nanocolumns
Energy Technology Data Exchange (ETDEWEB)
Calleja, J.M.; Lazic, S.; Sanchez-Paramo, J. [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Agullo-Rueda, F. [Materials Science Institute of Madrid, CSIC, 28049 Madrid (Spain); Cerutti, L.; Ristic, J.; Fernandez-Garrido, S.; Sanchez-Garcia, M.A.; Grandal, J.; Calleja, E. [ISOM and Departamento de Ingenieria Electronica, ETSIT, Universidad Politecnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Trampert, A.; Jahn, U. [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)
2007-08-15
A review of inelastic light scattering measurements on group III-nitride nanocolumns grown by molecular beam epitaxy is presented. The nanocolumns are hexagonal, high quality single crystals with diameters in the range of 20 to 100 nm, with no traces of extended defects. GaN nanocolumns grown on bare Si substrates with both (111) and (100) orientation display narrow phonon peaks, indicating the absence of strain inhomogeneities. This opens the possibility of efficient integration of the nanocolumns as optoelectronic devices with the complementary metal oxide semiconductor technology. Measurements of the E{sub 2} phonon frequency on AlGaN nanocolumns indicate a linear dependence of the Al concentration on the Al relative flux, up to 60%. The E{sub 2} peak width increases with Al content due to phonon damping by alloy scattering. Inelastic light scattering measurements in InN nanocolumns display a coupled LO phonon-plasmon mode together with uncoupled phonons. The coupled mode is not observed in a reference compact sample. The origin of the coupled mode is attributed to spontaneous accumulation of electrons at the lateral surfaces of the nanocolumns. The presence of free electrons in the nanocolumns is confirmed by infrared reflectance measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Inelastic light scattering spectroscopy of semiconductor nitride nanocolumns
International Nuclear Information System (INIS)
Calleja, J.M.; Lazic, S.; Sanchez-Paramo, J.; Agullo-Rueda, F.; Cerutti, L.; Ristic, J.; Fernandez-Garrido, S.; Sanchez-Garcia, M.A.; Grandal, J.; Calleja, E.; Trampert, A.; Jahn, U.
2007-01-01
A review of inelastic light scattering measurements on group III-nitride nanocolumns grown by molecular beam epitaxy is presented. The nanocolumns are hexagonal, high quality single crystals with diameters in the range of 20 to 100 nm, with no traces of extended defects. GaN nanocolumns grown on bare Si substrates with both (111) and (100) orientation display narrow phonon peaks, indicating the absence of strain inhomogeneities. This opens the possibility of efficient integration of the nanocolumns as optoelectronic devices with the complementary metal oxide semiconductor technology. Measurements of the E 2 phonon frequency on AlGaN nanocolumns indicate a linear dependence of the Al concentration on the Al relative flux, up to 60%. The E 2 peak width increases with Al content due to phonon damping by alloy scattering. Inelastic light scattering measurements in InN nanocolumns display a coupled LO phonon-plasmon mode together with uncoupled phonons. The coupled mode is not observed in a reference compact sample. The origin of the coupled mode is attributed to spontaneous accumulation of electrons at the lateral surfaces of the nanocolumns. The presence of free electrons in the nanocolumns is confirmed by infrared reflectance measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
The Profile of Inelastic Collisions from Elastic Scattering Data
Directory of Open Access Journals (Sweden)
I. M. Dremin
2015-01-01
Full Text Available Using the unitarity relation in combination with experimental data about the elastic scattering in the diffraction cone, it is shown how the shape and the darkness of the inelastic interaction region of colliding protons change with increase of their energies. In particular, the collisions become fully absorptive at small impact parameters at LHC energies that results in some special features of inelastic processes. Possible evolution of this shape with the dark core at the LHC to the fully transparent one at higher energies is discussed that implies that the terminology of the black disk would be replaced by the black toroid. The approach to asymptotics is disputed. The ratio of the real to imaginary parts of the nonforward elastic scattering amplitude is briefly discussed. All the conclusions are only obtained in the framework of the indubitable unitarity condition using experimental data about the elastic scattering of protons in the diffraction cone without any reference to quantum chromodynamics (QCD or phenomenological approaches.
XXth international workshop on deep-inelastic scattering and related topics. DIS 2012. Proceedings
International Nuclear Information System (INIS)
Brock, Ian C.
2013-03-01
The following topics were dealt with: Structure functions, diffraction and vector mesons, electroweak interactions, hadronic final states, heavy flavours, spin physics, future of deep inelastic scattering. (HSI)
XXth international workshop on deep-inelastic scattering and related topics. DIS 2012. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Brock, Ian C. [ed.
2013-03-15
The following topics were dealt with: Structure functions, diffraction and vector mesons, electroweak interactions, hadronic final states, heavy flavours, spin physics, future of deep inelastic scattering. (HSI)
Charged particle multiplicities in deep inelastic scattering at HERA
International Nuclear Information System (INIS)
Aid, S.; Anderson, M.; Andreev, V.
1996-08-01
Using the H1 detector at HERA, charged particle multiplicity distributions in deep inelastic e + p scattering have been measured over a large kinematical region. The evolution with W and Q 2 of the multiplicity distribution and of the multiplicity moments in pseudorapidity domains of varying size is studied in the current fragmentation region of the hadronic centre-of-mass frame. The results are compared with data from fixed target lepton-nucleon interactions, e + e - annihilations and hadron-hadron collisions as well as with expectations from QCD based parton models. Fits to the negative binomial and lognormal distributions are presented. (orig.)
Departures from the impulse approximation in deep inelastic neutron scattering
International Nuclear Information System (INIS)
Mayers, J.
1989-01-01
A new formulation of the impulse approximation (IA) in deep inelastic neutron scattering is developed. It is shown that observed departures from the IA at intermediate momentum transfers are caused by the quantum nature of the initial state rather than final state effects, as has previously been assumed and that these effects become small at high temperatures. It is also argued that final state broadening is significant for He liquids in all feasible experiments, but that in other systems the IA is approached at high momentum transfers. (author)
Vibrationally inelastic electron scattering in a two-channel approximation
Czech Academy of Sciences Publication Activity Database
Čársky, Petr; Čurík, Roman
2008-01-01
Roč. 41, č. 5 (2008), , , 055203-1-6 ISSN 0953-4075 R&D Projects: GA AV ČR IAA100400501; GA AV ČR 1ET400400413; GA AV ČR KJB400400803; GA ČR GA202/08/0631; GA MŠk ME 857 Institutional research plan: CEZ:AV0Z40400503 Keywords : inelastic electron scattering * two-channel approximation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.089, year: 2008
Database for 238U inelastic scattering cross section evaluation
International Nuclear Information System (INIS)
Kanda, Yukinori; Fujikawa, Noboru; Kawano, Toshihiko
1993-10-01
There are discrepancies among evaluated neutron inelastic scattering cross sections for 238 U in the evaluated nuclear data files, JENDL-3, ENDF/B-VI, JEF-2, BROND-2 and CENDL-2. Re-evaluating them is internationally being discussed to obtain the best outcome which can be accepted in common at the present by experts in the world. This report has been compiled to review the discrepancies among the evaluations in the present data files and to provide a common database for the re-evaluation work (author)
Charged current deep-inelastic scattering at three loops
International Nuclear Information System (INIS)
Moch, S.; Rogal, M.
2007-04-01
We derive for deep-inelastic neutrino(ν)-proton(P) scattering in the combination νP- anti νP the perturbative QCD corrections to three loops for the charged current structure functions F 2 , F L and F 3 . In leading twist approximation we calculate the first five odd-integer Mellin moments in the case of F 2 and F L and the first five even-integer moments in the case of F 3 . As a new result we obtain the coefficient functions to O(α 3 s ) while the corresponding anomalous dimensions agree with known results in the literature. (orig.)
New results from deep inelastic muon-nucleon scattering
International Nuclear Information System (INIS)
Coignet, G.
1982-01-01
Focusing on the new results gained from deep inelastic muon scatterings, the author details three main topics - the Fz structure function measurements gained from hydrogen, carbon and iron targets, open and hidden charm production, from multimuon events, hardonic production with forward jets and forward protons/antiprotons. He discusses the places of experimentation where these results arose, Berkley - FNAL - Princeton, Bologna,-CERN-DubraMunich-Saclay and the European muon collaboration. Finally, he concludes by reviewing the various results and what might be concluded from them
A compilation of structure functions in deep-inelastic scattering
International Nuclear Information System (INIS)
Roberts, R.G.; Whalley, M.R.
1991-01-01
A compilation of data on the structure functions F 2 , xF 3 , and R = σ L /σ T from lepton deep-inelastic scattering off protons and nuclei is presented. The relevant experiments at CERN, Fermilab and SLAC from 1985 are covered. All the data in this review can be found in and retrieved from the Durham-RAL HEP Databases (HEPDATA on the RAL and CERN VM systems and on DURPDG VAX/VMS) together with data on a wide variety of other reactions. (author)
Application of Incoherent Inelastic Neutron Scattering in Pharmaceutical Analysis
DEFF Research Database (Denmark)
Bordallo, Heloisa N.; A. Zakharov, Boris; Boidyreva, E.V.
2012-01-01
This study centers on the use of inelastic neutron scattering as an alternative tool for physical characterization of solid pharmaceutical drugs. On the basis of such approach, relaxation processes in the pharmaceutical compound phenacetin (p-ethoxyacetanilide, C(10)H(13)NO(2)) were evidenced...... contributes to understanding the relationships between intermolecular hydrogen bonds, intramolecular dynamics, and conformational flexibility in pharmaceuticals on a molecular level, which can help in evaluating phase stability with respect to temperature variations on processing or on storage, and is related...
Initial study of deep inelastic scattering with ZEUS at HERA
Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Repond, J.; Repond, S.; Stanek, R.; Talaga, R. L.; Thron, J.; Arzarello, F.; Ayad, R.; Barbagli, G.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; D'Auria, S.; del Papa, C.; Frasconi, F.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Lin, Q.; Lisowski, B.; Maccarrone, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Crittenden, J.; Dabbous, H.; Desch, K.; Diekmann, B.; Doeker, T.; Geerts, M.; Geitz, G.; Gutjahr, B.; Hartmann, H.; Hartmann, J.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Kramarczyk, S.; Kückes, M.; Mass, A.; Mengel, S.; Mollen, J.; Monaldi, D.; Müsch, H.; Paul, E.; Schattevoy, R.; Schneider, J.-L.; Wedemeyer, R.; Cassidy, A.; Cussans, D. G.; Dyce, N.; Fawcett, H. F.; Foster, B.; Gilmore, R.; Heath, G. P.; Lancaster, M.; Llewellyn, T. J.; Malos, J.; Morgado, C. J. S.; Tapper, R. J.; Wilson, S. S.; Rau, R. R.; Barillari, T.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Gialas, I.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Burkot, W.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Borzemski, P.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zerȩbska, E.; Suszycki, L.; Zajc, J.; Kȩdzierski, T.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Coldewey, C.; Dannemann, A.; Dierks, K.; Dorth, W.; Drews, G.; Erhard, P.; Flasiński, M.; Fleck, I.; Fürtjes, A.; Gläser, R.; Göttlicher, P.; Hass, T.; Hagge, L.; Hain, W.; Hasell, D.; Hultschig, H.; Jahnen, G.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Lüke, D.; Mainusch, J.; Manczak, O.; Momayezi, M.; Ng, J. S. T.; Nicel, S.; Notz, D.; Park, I. H.; Pösnecker, K.-U.; Rohde, M.; Ros, E.; Schneekloth, S.; Schroeder, J.; Schulz, W.; Selonke, F.; Stiliaris, E.; Tscheslog, E.; Tsurugai, T.; Turkot, F.; Vogel, W.; Woeniger, T.; Wolf, G.; Youngman, C.; Grabosch, H. J.; Leich, A.; Meyer, A.; Rethfeldt, C.; Schlensthdt, S.; Casalbuoni, R.; de Curtis, S.; Dominici, D.; Francescato, A.; Nuti, M.; Pelfer, P.; Anzivino, G.; Casaccia, R.; de Pasquale, S.; Qian, S.; Votano, L.; Bamberger, A.; Freidhof, A.; Poser, T.; Söldner-Rembold, S.; Theisen, G.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Forbes, J. R.; Jamieson, V. A.; Raine, C.; Saxon, D. H.; Brückmann, H.; Gloth, G.; Holm, U.; Kammerdocher, H.; Krebs, B.; Neumann, T.; Wick, K.; Hofmann, A.; Kröger, W.; Krüger, J.; Lohrmann, E.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Salomon, R.; Seidman, A.; Schott, W.; Wiik, B. H.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Markou, C.; McQuillan, D.; Miller, D. B.; Mobayyen, M. M.; Prinias, A.; Vorvolakos, A.; Bienz, T.; Kreutzmann, H.; Mallik, U.; McCliment, E.; Roco, M.; Wang, M. Z.; Cloth, P.; Filges, D.; Chen, L.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Barreiro, F.; Cases, G.; Hervás, L.; Labarga, L.; del Peso, J.; Roldán, J.; Terrón, J.; de Trocóniz, J. F.; Ikraiam, F.; Mayer, J. K.; Smith, G. R.; Corriveau, F.; Gilkinson, D. J.; Hanna, D. S.; Hung, L. W.; Mitchell, J. W.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; Ullmann, R.; Bashindzhagyan, G. L.; Ermolov, P. F.; Golubkov, Y. A.; Kuzmin, V. A.; Kuznetsov, E. N.; Savin, A. A.; Voronin, A. G.; Zotov, N. P.; Bentvelsen, S.; Dake, A.; Engelen, J.; de Jong, P.; de Jong, S.; de Kamps, M.; Kooijman, P.; Kruse, A.; van der Lugt, H.; O'dell, V.; Straver, J.; Tenner, A.; Tiecke, H.; Uijterwaal, H.; Vermeulen, J.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Yoshida, R.; Bylsma, B.; Durkin, L. S.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, S. K.; Romanowski, T. A.; Seidlein, R.; Blair, G. A.; Butterworth, J. M.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Gingrich, D. M.; Hallam-Baker, P. M.; Harnew, N.; Khatri, T.; Long, K. R.; Luffman, P.; McArthur, I.; Morawitz, P.; Nash, J.; Smith, S. J. P.; Roocroft, N. C.; Wilson, F. F.; Abbiendi, G.; Brugnera, R.; Carlin, R.; dal Corso, F.; de Giorgi, M.; Dosselli, U.; Gasparini, F.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Field, G.; Lim, J. N.; Oh, B. Y.; Whitmore, J.; Contino, U.; D'Agostini, G.; Guida, M.; Iori, M.; Mari, S. M.; Marini, G.; Mattioli, M.; Nigro, A.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Short, T. L.; Barberis, E.; Cartiglia, N.; Heusch, C.; Hubbard, B.; Leslie, J.; O'Shaughnessy, K.; Sadrozinski, H. F.; Seiden, A.; Badura, E.; Biltzinger, J.; Chaves, H.; Rost, M.; Seifert, R. J.; Walenta, A. H.; Weihs, W.; Zech, G.; Dagan, S.; Levy, A.; Zer-Zion, D.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kasai, S.; Kuze, M.; Nagasawa, Y.; Nakao, M.; Okuno, H.; Tokushuku, K.; Watanabe, T.; Yamada, S.; Chiba, M.; Hamatsu, R.; Hirose, T.; Kitamura, S.; Nagayama, S.; Nakamitsu, Y.; Arneodo, M.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Bhadra, S.; Brkic, M.; Burow, B. D.; Chlebana, F. S.; Crombie, M. B.; Hartner, G. F.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Prentice, J. D.; Sampson, C. R.; Stairs, G. G.; Teuscher, R. J.; Yoon, T.-S.; Bullock, F. W.; Catterall, C. D.; Giddings, J. C.; Jones, T. W.; Khan, A. M.; Lane, J. B.; Makkar, P. L.; Shaw, D.; Shulman, J.; Blankenship, K.; Gibaut, D. B.; Kochocki, J.; Lu, B.; Mo, L. W.; Charchula, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Stojda, K.; Stopczyński, A.; Szwed, R.; Tymieniecka, T.; Walczak, R.; Wróblewski, A. K.; Zakrzewski, J. A.; Zarnecki, A. F.; Adamus, M.; Abramowicz, H.; Eisenberg, Y.; Glasman, C.; Karshon, U.; Montag, A.; Revel, D.; Shapira, A.; Ali, I.; Behrens, B.; Camerini, U.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Lomperski, M.; Loveless, R. J.; Nylander, P.; Ptacek, M.; Reeder, D. D.; Smith, W. H.; Silverstein, S.; Frisken, W. R.; Furutani, K. M.; Iga, Y.
1993-04-01
Results are presented on neutral current, deep inelastic scattering measured in collisions of 26.7 GeV electrons and 820 GeV protons. The events typically populate a range in Q2 from 10 to 100 GeV2. The values of x extend down to x ~ 10-4 which is two orders of magnitude lower than previously measured at such Q2 values in fixed target experiments. The measured cross sections are in accord with the extrapolations of current parametrisations of parton distributions.
Neutral strange particle production in deep inelastic scattering at HERA
International Nuclear Information System (INIS)
Derrick, M.; Krakauer, D.; Magill, S.
1995-04-01
This paper presents measurements of K 0 and Λ production in neutral current, deep inelastic scattering of 26.7 GeV electrons and 820 GeV protons in the kinematic range 10 2 2 , 0.0003 0 and Λ production are determined for transverse momenta p T >0.5 GeV and pseudorapidities vertical stroke ηvertical stroke + e - experiments. The production properties of K 0 's in events with and without a large rapidity gap are compared. Within the present statistics no indication for different K 0 production properties between diffractive and non-diffractive events is observed. (orig.)
Meson exchange corrections in deep inelastic scattering on deuteron
International Nuclear Information System (INIS)
Kaptari, L.P.; Titov, A.I.
1989-01-01
Starting with the general equations of motion of the nucleons interacting with the mesons the one-particle Schroedinger-like equation for the nucleon wave function and the deep inelastic scattering amplitude with the meson-exchange currents are obtained. Effective pion-, sigma-, and omega-meson exchanges are considered. It is found that the mesonic corrections only partially (about 60%) restore the energy sum rule breaking because of the nucleon off-mass-shell effects in nuclei. This results contradicts with the prediction based on the calculation of the energy sum rule limited by the second order of the nucleon-meson vertex and static approximation. 17 refs.; 3 figs
DISCUS, Neutron Single to Double Scattering Ratio in Inelastic Scattering Experiment by Monte-Carlo
International Nuclear Information System (INIS)
Johnson, M.W.
1993-01-01
1 - Description of problem or function: DISCUS calculates the ratio of once-scattered to twice-scattered neutrons detected in an inelastic neutron scattering experiment. DISCUS also calculates the flux of once-scattered neutrons that would have been observed if there were no absorption in the sample and if, once scattered, the neutron would emerge without further re-scattering or absorption. Three types of sample geometry are used: an infinite flat plate, a finite flat plate or a finite length cylinder. (The infinite flat plate is included for comparison with other multiple scattering programs.) The program may be used for any sample for which the scattering law is of the form S(/Q/, omega). 2 - Method of solution: Monte Carlo with importance sampling is used. Neutrons are 'forced' both into useful angular trajectories, and useful energy bins. Biasing of the collision point according to the point of entry of the neutron into the sample is also utilised. The first and second order scattered neutron fluxes are calculated in independent histories. For twice-scattered neutron histories a square distribution in Q-omega space is used to sample the neutron coming from the first scattering event, whilst biasing is used for the second scattering event. (A square distribution is used so as to obtain reasonable inelastic-inelastic statistics.) 3 - Restrictions on the complexity of the problem: Unlimited number of detectors. Max. size of (Q, omega) matrix is 39*149. Max. number of points in momentum space for the scattering cross section is 199
Toward a new polyethylene scattering law determined using inelastic neutron scattering
International Nuclear Information System (INIS)
Lavelle, C.M.; Liu, C.-Y.; Stone, M.B.
2013-01-01
Monte Carlo neutron transport codes such as MCNP rely on accurate data for nuclear physics cross-sections to produce accurate results. At low energy, this takes the form of scattering laws based on the dynamic structure factor, S(Q,E). High density polyethylene (HDPE) is frequently employed as a neutron moderator at both high and low temperatures, however the only cross-sections available are for ambient temperatures (∼300K), and the evaluation has not been updated in quite some time. In this paper we describe inelastic neutron scattering measurements on HDPE at 5 and 294 K which are used to improve the scattering law for HDPE. We review some of the past HDPE scattering laws, describe the experimental methods, and compare computations using these models to the measured S(Q,E). The total cross-section is compared to available data, and the treatment of the carbon secondary scatterer as a free gas is assessed. We also discuss the use of the measurement itself as a scattering law via the one phonon approximation. We show that a scattering law computed using a more detailed model for the Generalized Density of States (GDOS) compares more favorably to this experiment, suggesting that inelastic neutron scattering can play an important role in both the development and validation of new scattering laws for Monte Carlo work. -- Highlights: ► Polyethylene at 5 K and 300 K is measured using inelastic neutron scattering (INS). ► Measurements conducted at the Wide Angular-Range Chopper Spectrometer at SNS. ► Several models for Polyethylene are compared to measurements. ► Improvements to existing models for the polyethylene scattering law are suggested. ► INS is shown to be highly valuable tool for scattering law development
Multiple scattering and attenuation corrections in Deep Inelastic Neutron Scattering experiments
International Nuclear Information System (INIS)
Dawidowski, J; Blostein, J J; Granada, J R
2006-01-01
Multiple scattering and attenuation corrections in Deep Inelastic Neutron Scattering experiments are analyzed. The theoretical basis of the method is stated, and a Monte Carlo procedure to perform the calculation is presented. The results are compared with experimental data. The importance of the accuracy in the description of the experimental parameters is tested, and the implications of the present results on the data analysis procedures is examined
On the analysis of Deep Inelastic Neutron Scattering Experiments
International Nuclear Information System (INIS)
Blostein, J.J.; Dawidowski, J.; Granada, J.R.
2001-01-01
We analyze the different steps that must be followed for data processing in Deep Inelastic Neutron Scattering Experiments. Firstly we discuss to what extent multiple scattering effects can affect the measured peak shape, concluding the an accurate calculation of these effects must be performed to extract the desired effective temperature from the experimental data. We present a Monte Carlo procedure to perform these corrections. Next, we focus our attention on experiments performed on light nuclei. We examine cases in which the desired information is obtained from the observed peak areas, and we analyze the procedure to obtain an effective temperature from the experimental peaks. As a consequence of the results emerging from those cases we trace the limits of validity of the convolution formalism usually employed, and propose a different treatment of the experimental data for this kind of measurements. (author)
On the analysis of Deep Inelastic Neutron Scattering Experiments
Energy Technology Data Exchange (ETDEWEB)
Blostein, J.J.; Dawidowski, J.; Granada, J.R. [Comision Nacional de Energia Atomica and CONICET, Centro Atomico Bariloche and Instituto Balseiro, Bariloche (Argentina)
2001-03-01
We analyze the different steps that must be followed for data processing in Deep Inelastic Neutron Scattering Experiments. Firstly we discuss to what extent multiple scattering effects can affect the measured peak shape, concluding the an accurate calculation of these effects must be performed to extract the desired effective temperature from the experimental data. We present a Monte Carlo procedure to perform these corrections. Next, we focus our attention on experiments performed on light nuclei. We examine cases in which the desired information is obtained from the observed peak areas, and we analyze the procedure to obtain an effective temperature from the experimental peaks. As a consequence of the results emerging from those cases we trace the limits of validity of the convolution formalism usually employed, and propose a different treatment of the experimental data for this kind of measurements. (author)
Exponential time-dependent perturbation theory in rotationally inelastic scattering
International Nuclear Information System (INIS)
Cross, R.J.
1983-01-01
An exponential form of time-dependent perturbation theory (the Magnus approximation) is developed for rotationally inelastic scattering. A phase-shift matrix is calculated as an integral in time over the anisotropic part of the potential. The trajectory used for this integral is specified by the diagonal part of the potential matrix and the arithmetic average of the initial and final velocities and the average orbital angular momentum. The exponential of the phase-shift matrix gives the scattering matrix and the various cross sections. A special representation is used where the orbital angular momentum is either treated classically or may be frozen out to yield the orbital sudden approximation. Calculations on Ar+N 2 and Ar+TIF show that the theory generally gives very good agreement with accurate calculations, even where the orbital sudden approximation (coupled-states) results are seriously in error
On the deep inelastic lepton-nucleus scattering
International Nuclear Information System (INIS)
Darbaidze, Ya.Z.; Garsevanishvili, V.R.; Menteshashvili, Z.R.
1979-01-01
Deep inelastic scattering of charged leptons on nuclei is considered in the lowest order in electromagnetic interaction. Expressions for the corresponding differential cross sections are obtained provided the scattered lepton and the fragment of the initial nucleus are detected in coincidence. Structure functions are analyzed by means of the automodelity principle. These functions are considered in the framework of the ''light front'' formalism for many-body systems. A hypothesis is put forward on the scale invariance of structure functions with respect to the xi-variable, which is some complicated dimensionless combination of kinematic invariants. A simple relation of this variable to the momenta of the nucleons inside the initial nucleus is pointed out
Deep inelastic scattering and forward π0 production at NLO
International Nuclear Information System (INIS)
Aurenche, P.; Basu, Rahul; Fontannaz, M.; Godbole, R.M.
2005-01-01
We present a detailed phenomenological study of forward hadron (π 0 ) production in deep inelastic scattering, with both the direct and the resolved contributions calculated to NLO accuracy. A comparison of the theoretical predictions for the various distributions with the H1 data and a study of the stability of the QCD predictions under changes of scales is the focus of this study. We obtain a very good overall description of the recent H1 data with the choice of scale Q 2 +E 2 bot , in contrast to the (Q 2 +E 2 bot )/2 required earlier when the resolved contribution was included only at LO accuracy. We find a more modest variation of the predictions, as the scale is changed from (Q 2 +E 2 bot )/2 to 2(Q 2 +E 2 bot ), as compared to the case where the resolved contribution was included only at LO accuracy. This variation is of the order of the rather large experimental errors. Unfortunately, this fact prevents us from concluding that perturbation theory gives an unambiguous prediction for forward particle production in deep inelastic scattering. However, the overall success of perturbative QCD in explaining the small x Bj data means that perhaps a full resummation of the BFKL ladder is not called for. We notice the need for rather large resolved contributions to explain the data at low x Bj even at somewhat larger Q 2 values. (orig.)
Study of inelastic proton scattering at isobaric analog resonances
International Nuclear Information System (INIS)
Davis, S.L.
1974-01-01
Inelastic proton scattering at isobaric analog resonances (IAR's) was studied using the targets 138 Ba and 92 Mo. Differential cross sections and analyzing powers were measured at the 10.00, 10.63, 11.09, 11.45, and 11.70 MeV resonances in 138 Ba + p and at the 5.89, 6.09, and 6.55 MeV resonances in 92 Mo + p. In addition, a new measurement, the spin flip asymmetry, was developed. The experiment was performed by using a polarized beam to make spin flip measurements. Angular distributions for the spin flip probability and spin flip asymmetry were measured at all of the above energies except for the lowest three resonances in 138 Ba, where only the spin flip probability was measured. A DWBA code modified to include the coherent addition of resonance amplitudes was used to analyze the 138 Ba data. The partial widths extracted from this analysis were converted to expansion coefficients for parent states in 139 Ba. The coefficients were found to be in good agreement with unified model calculations. For 92 Mo, inelastic polarizations, deduced from the spin flip and spin flip asymmetry, were found to be large. Attempts using Hauser Feshbach theory to describe both the cross section and polarization data repeatedly failed for both the 6.55 and 5.87 MeV IAR's. This failure represents strong evidence that Hauser Feshbach theory is not valid when extended to describe scattering at an IAR. The 92 Mo data were analyzed using a reaction theory modified to include channel-channel correlations. This theory predicts that the enhanced compound scattering is identical to the resonance scattering. Good fits have been obtained with the use of this modified Hauser Feshbach theory. (U.S.)
Inelastic multiple scattering of interacting bosons in weak random potentials
International Nuclear Information System (INIS)
Geiger, Tobias
2013-01-01
Within the present thesis we develop a diagrammatic scattering theory for interacting bosons in a three-dimensional, weakly disordered potential. Based on a microscopic N-body scattering theory, we identify the relevant diagrams including elastic and inelastic collision processes that are sufficient to describe quantum transport in the regime of weak disorder. By taking advantage of the statistical properties of the weak disorder potential, we demonstrate how the N-body dynamics can be reduced to a nonlinear integral equation of Boltzmann type for the single-particle diffusive flux. A presently available alternative description - based on the Gross-Pitaevskii equation - only includes elastic collisions. In contrast, we show that far from equilibrium the presence of inelastic collisions - even for weak interaction strength - must be accounted for and can induce the full thermalization of the single-particle current. In addition, we also determine the coherent corrections to the incoherent transport, leading to the effect of coherent backscattering. For the first time, we are able to analyze the influence of inelastic collisions on the coherent backscattering signal, which lead to an enhancement of the backscattered cone in a narrow spectral window, even for increasing non-linearity. With a short recollection of the presently available experimental techniques we furthermore show how an immediate implementation of our suggested setup with confined Bose-Einstein condensates can be accomplished. Thereby, the emergence of collective and/or thermodynamic behavior from fundamental, microscopic constituents can also be assessed experimentally. In a second part of this thesis, we present first results for light scattering off strongly interacting Rydberg atoms trapped in a one-dimensional, chain-like configuration. In order to monitor the time-dependence of this interacting many-body system, we devise a weak measurement scenario for which we derive a master equation for the
Excitation of the shear horizontal mode in a monolayer by inelastic helium atom scattering
DEFF Research Database (Denmark)
Bruch, L. W.; Hansen, Flemming Yssing
2005-01-01
Inelastic scattering of a low-energy atomic helium beam (HAS) by a physisorbed monolayer is treated in the one-phonon approximation using a time-dependent wave,packet formulation. The calculations show that modes with shear horizontal polarization can be excited near high symmetry azimuths....... The diffraction and inelastic processes arise from a strong coupling of the incident atom to the target and the calculated results show large departures from expectations based on analogies to inelastic thermal neutron scattering....
Inelastic scattering with Chebyshev polynomials and preconditioned conjugate gradient minimization.
Temel, Burcin; Mills, Greg; Metiu, Horia
2008-03-27
We describe and test an implementation, using a basis set of Chebyshev polynomials, of a variational method for solving scattering problems in quantum mechanics. This minimum error method (MEM) determines the wave function Psi by minimizing the least-squares error in the function (H Psi - E Psi), where E is the desired scattering energy. We compare the MEM to an alternative, the Kohn variational principle (KVP), by solving the Secrest-Johnson model of two-dimensional inelastic scattering, which has been studied previously using the KVP and for which other numerical solutions are available. We use a conjugate gradient (CG) method to minimize the error, and by preconditioning the CG search, we are able to greatly reduce the number of iterations necessary; the method is thus faster and more stable than a matrix inversion, as is required in the KVP. Also, we avoid errors due to scattering off of the boundaries, which presents substantial problems for other methods, by matching the wave function in the interaction region to the correct asymptotic states at the specified energy; the use of Chebyshev polynomials allows this boundary condition to be implemented accurately. The use of Chebyshev polynomials allows for a rapid and accurate evaluation of the kinetic energy. This basis set is as efficient as plane waves but does not impose an artificial periodicity on the system. There are problems in surface science and molecular electronics which cannot be solved if periodicity is imposed, and the Chebyshev basis set is a good alternative in such situations.
Rapporteur talks at Singapore (deep inelastic scattering) and at Hadron 90 (conference summary)
International Nuclear Information System (INIS)
Close, F.E.
1990-11-01
This talk begins by reviewing the early years of deep inelastic scattering with particular reference to some theoretical work. Current highlights include an agreed uniform set of structure functions, polarised structure functions, possible violations of the Gottfried sum rule, deep inelastic scattering off nuclei and anticipated breakdown of naive perturbative quantum chromodynamics QCD as x → 0 at HERA. (author)
Inelastic Production of J/psi Mesons in Photoproduction and Deep Inelastic Scattering at HERA
Aaron, F.D.; Andreev, V.; Antunovic, B.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; Delcourt, B.; Delvax, J.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Falkiewicz, A.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Jacquet, M.; Janssen, X.; Jonsson, L.; Jung, A.W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Knutsson, A.; Kogler, R.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, M.U.; Mudrinic, M.; Muller, K.; Murin, P.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nowak, K.; Olsson, J.E.; Osman, S.; Ozerov, D.; Pahl, P.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Radescu, V.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shaw-West, R.N.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, I.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sunar, D.; Sykora, T.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Volchinski, V.; von den Driesch, M.; Wegener, D.; Wissing, Ch.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.
2010-01-01
A measurement is presented of inelastic photo- and electroproduction of J/psi mesons in ep scattering at HERA. The data were recorded with the H1 detector in the period from 2004 to 2007. Single and double differential cross sections are determined and the helicity distributions of the J/psi mesons are analysed. The results are compared to theoretical predictions in the colour singlet model and in the framework of non-relativistic QCD. Calculations in the colour singlet model using a k_T factorisation ansatz are able to give a good description of the data, while colour singlet model calculations to next-to-leading order in collinear factorisation underestimate the data.
Inelastic production of J/{psi} mesons in photoproduction and deep inelastic scattering at HERA
Energy Technology Data Exchange (ETDEWEB)
Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Inst., Moscow (Russian Federation); Antunovic, B.; Bartel, W.; Brandt, G.; Campbell, A.J.; Cholewa, A.; Deak, M.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Haidt, D.; Helebrant, C.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Kraemer, M.; Krastev, K.; Kutak, K.; Levonian, S.; Lipka, K.; List, J.; Marti, L.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nikiforov, A.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Sunar, D.; Vargas Trevino, A.; Driesch, M. von den; Wissing, C.; Wuensch, E. [DESY, Hamburg (Germany); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [University of Montenegro, Faculty of Science, Podgorica (ME); Baghdasaryan, A.; Volchinski, V.; Zohrabyan, H. [Yerevan Physics Inst. (Armenia); Barrelet, E. [Univ. Pierre et Marie Curie Paris 6, Univ. Denis Diderot Paris 7, CNRS/IN2P3, LPNHE, Paris (France); Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B. [Inst. of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Li, G.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F. [Univ. Paris-Sud, CNRS/IN2P3, LAL, Orsay (France); Boudry, V.; Moreau, F.; Specka, A. [Ecole Polytechnique, CNRS/IN2P3, LLR, Palaiseau (France); Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I. [Vinca Inst. of Nuclear Sciences, Belgrade (RS); Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Shaw-West, R.N.; Thompson, P.D. [University of Birmingham (United Kingdom)] [and others
2010-08-15
A measurement is presented of inelastic photo- and electroproduction of J/{psi} mesons in ep scattering at HERA. The data were recorded with the H1 detector in the period from 2004 to 2007. Single and double differential cross sections are determined and the helicity distributions of the J/{psi} mesons are analysed. The results are compared to theoretical predictions in the colour singlet model and in the framework of non-relativistic QCD. Calculations in the colour singlet model using a k{sub T} factorisation ansatz are able to give a good description of the data, while colour singlet model calculations to next-to-leading order in collinear factorisation underestimate the data. (orig.)
Inelastic production of J/ψ mesons in photoproduction and deep inelastic scattering at HERA
International Nuclear Information System (INIS)
Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Antunovic, B.; Bartel, W.; Brandt, G.; Campbell, A.J.; Cholewa, A.; Deak, M.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Haidt, D.; Helebrant, C.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Kraemer, M.; Krastev, K.; Kutak, K.; Levonian, S.; Lipka, K.; List, J.; Marti, L.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nikiforov, A.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Sunar, D.; Vargas Trevino, A.; Driesch, M. von den; Wissing, C.; Wuensch, E.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Volchinski, V.; Zohrabyan, H.; Barrelet, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Li, G.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Shaw-West, R.N.; Thompson, P.D.; Brinkmann, M.; Habib, S.; List, B.; Toll, T.; Bruncko, D.; Cerny, V.; Ferencei, J.; Murin, P.; Tomasz, F.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Kogler, R.; Liptaj, A.; Raspiareza, A.; Shushkevich, S.; Bystritskaya, L.; Efremenko, V.; Fedotov, A.; Kropivnitskaya, A.; Lubimov, V.; Ozerov, D.; Petrukhin, A.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Cerny, K.; Pokorny, B.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cozzika, G.; Feltesse, J.; Perez, E.; Schoeffel, L.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Daum, K.; Meyer, H.; Delvax, J.; Wolf, E.A.De; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Mozer, M.U.; Roosen, R.; Sykora, T.; Mechelen, P. van; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Vallee, C.; Dodonov, V.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Falkiewicz, A.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Grab, C.; Zimmermann, T.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Jung, A.W.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Urban, K.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Piec, S.; Herrera, G.; Lopez-Fernandez, R.; Joensson, L.; Osman, S.; Jung, H.; Kapichine, M.; Makankine, A.; Morozov, A.; Nikitin, D.; Palichik, V.; Spaskov, V.; Landon, M.P.J.; Rizvi, E.; Thompson, G.; Traynor, D.; Martyn, H.U.; Mueller, K.; Nowak, K.; Robmann, P.; Straumann, U.; Truoel, P.; Radescu, V.; Sauter, M.; Schoening, A.; South, D.; Wegener, D.; Stella, B.; Tsakov, I.
2010-01-01
A measurement is presented of inelastic photo- and electroproduction of J/ψ mesons in ep scattering at HERA. The data were recorded with the H1 detector in the period from 2004 to 2007. Single and double differential cross sections are determined and the helicity distributions of the J/ψ mesons are analysed. The results are compared to theoretical predictions in the colour singlet model and in the framework of non-relativistic QCD. Calculations in the colour singlet model using a k T factorisation ansatz are able to give a good description of the data, while colour singlet model calculations to next-to-leading order in collinear factorisation underestimate the data. (orig.)
International Nuclear Information System (INIS)
Josefsson, T.W.; Smith, A.E.
1994-01-01
Inelastic scattering of electrons in a crystalline environment may be represented by a complex non-hermitian potential. Completed generalised expressions for this inelastic electron scattering potential matrix, including virtual inelastic scattering, are derived for outer-shell electron and plasmon excitations. The relationship between these expressions and the general anisotropic dielectric response matrix of the solid is discussed. These generalised expressions necessarily include the off-diagonal terms representing effects due to departure from translational invariance in the interaction. Results are presented for the diagonal back structure dependent inelastic and virtual inelastic scattering potentials for Si, from a calculation of the inverse dielectric matrix in the random phase approximation. Good agreement is found with experiment as a function of incident energies from 10 eV to 100 keV. Anisotropy effects and hence the interaction de localisation represented by the off-diagonal scattering potential terms, are found to be significant below 1 keV. 38 refs., 2 figs
Dichroism in resonant inelastic soft X-ray scattering
International Nuclear Information System (INIS)
Braicovich, L.
2004-01-01
Full text: The dichroism (and in particular the magnetic dichroism) has emerged in the last decade as a key method in the study of electronic states in solids. This has been largely due to the exploitation of the modern sources of Synchrotron Radiation. This approach has been extensively used in X ray Absorption Spectroscopy i.e. in a first order process giving a straightforward access, trough sum rules, to the ground state properties of the sample. On the other hand the studies of dichroism in second order processes as the photon scattering experiments has been up to now relatively limited probably due to experimental difficulties. This is too bad because, at least in principle, the scattering experiments offer unique opportunities typical of second order processes, beyond the possibilities offered by absorption spectroscopy. This requires specific scattering experiments able to give information that cannot be obtained in the absorption mode. A typical example is the circular magnetic dichroism in resonant inelastic scattering in perpendicular geometry i.e. with the light incident perpendicular to the magnetisation. In this case the circular dichroism in absorption is zero by symmetry while the detection of the scattered photons at an angle breaks the left-right symmetry and allows a dichroism to be observed. The aim of the present talk is to review critically the dichroism in resonant X-ray scattering and to show the potential of this approach. In particular it will be shown how to recover, in magnetic samples, the ground state information up to the moments of order four. In this connection original results will be presented including the demonstration of a new experimental approach. The perspectives of the field will be also discussed
Directory of Open Access Journals (Sweden)
Manvir S. Kushwaha
2012-09-01
Full Text Available The most fundamental approach to an understanding of electronic, optical, and transport phenomena which the condensed matter physics (of conventional as well as nonconventional systems offers is generally founded on two experiments: the inelastic electron scattering and the inelastic light scattering. This work embarks on providing a systematic framework for the theory of inelastic electron scattering and of inelastic light scattering from the electronic excitations in GaAs/Ga1−xAlxAs quantum wells. To this end, we start with the Kubo's correlation function to derive the generalized nonlocal, dynamic dielectric function, and the inverse dielectric function within the framework of Bohm-Pines’ random-phase approximation. This is followed by a thorough development of the theory of inelastic electron scattering and of inelastic light scattering. The methodological part is then subjected to the analytical diagnoses which allow us to sense the subtlety of the analytical results and the importance of their applications. The general analytical results, which know no bounds regarding, e.g., the subband occupancy, are then specified so as to make them applicable to practicality. After trying and testing the eigenfunctions, we compute the density of states, the Fermi energy, the full excitation spectrum made up of intrasubband and intersubband – single-particle and collective (plasmon – excitations, the loss functions for all the principal geometries envisioned for the inelastic electron scattering, and the Raman intensity, which provides a measure of the real transitions induced by the (laser probe, for the inelastic light scattering. It is found that the dominant contribution to both the loss peaks and the Raman peaks comes from the collective (plasmon excitations. As to the single-particle peaks, the analysis indicates a long-lasting lack of quantitative comparison between theory and experiments. It is inferred that the inelastic electron
Semi-inclusive deep inelastic scattering at small-x
International Nuclear Information System (INIS)
Marquet, Cyrille; Xiao, Bo-Wen; Yuan Feng
2009-01-01
We study the semi-inclusive hadron production in deep inelastic scattering at small-x. A transverse-momentum-dependent factorization is found consistent with the results calculated in the small-x approaches, such as the color-dipole framework and the color glass condensate, in the appropriate kinematic region at the lowest order. The transverse-momentum-dependent quark distribution can be studied in this process as a probe for the small-x saturation physics. Especially, the ratio of quark distributions as a function of transverse momentum at different x demonstrates strong dependence on the saturation scale. The Q 2 dependence of the same ratio is also studied by applying the Collins-Soper-Sterman resummation method.
Spectrometer magnet for experiment NA4 (deep inelastic muon scattering)
CERN PhotoLab
1977-01-01
This is one section of the toroidal-field spectrometer magnet of experiment NA4 (deep inelastic muon scattering), shown here during the installation period and later located in the North Area of the SPS. To see all 4 sections, select 7709201. Igor Savin from Dubna looks at what his lab had provided: the huge iron disks were machined at and provided by Dubna. Multi-Wire Proportional Chambers were installed in the gaps between the packs of 4 disks. When the beam from the SPS struck the target (to the right in this picture), the iron would quickly stop the hadronic shower, whilst the muons would go on, performing oscillations in the toroidal field. NA4 was a CERN-Dubna-Munich-Saclay (later also Bologna) collaboration, spokesman: Carlo Rubbia.
Hadron mass corrections in semi-inclusive deep inelastic scattering
International Nuclear Information System (INIS)
Accardi, A.; Hobbs, T.; Melnitchouk, W.
2009-01-01
We derive mass corrections for semi-inclusive deep inelastic scattering of leptons from nucleons using a collinear factorization framework which incorporates the initial state mass of the target nucleon and the final state mass of the produced hadron h. The hadron mass correction is made by introducing a generalized, finite-Q 2 scaling variable ζ h for the hadron fragmentation function, which approaches the usual energy fraction z h = E h /ν in the Bjorken limit. We systematically examine the kinematic dependencies of the mass corrections to semi-inclusive cross sections, and find that these are even larger than for inclusive structure functions. The hadron mass corrections compete with the experimental uncertainties at kinematics typical of current facilities, Q 2 2 and intermediate x B > 0.3, and will be important to efforts at extracting parton distributions from semi-inclusive processes at intermediate energies.
Probing warm dense lithium by inelastic X-ray scattering
Energy Technology Data Exchange (ETDEWEB)
Garcia Saiz, E; Riley, D [School of Mathematics and Physics, Queen' s University of Belfast, Belfast (United Kingdom); Gregori, G [Clarendon Laboratory, University of Oxford, Parks Road, Oxford (United Kingdom); Gregori, G; Clarke, R J; Neely, D; Notley, M M; Spindloe, C [Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot, OX (United Kingdom); Gericke, D O; Vorberger, J; Wunsch, K [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry (United Kingdom); Barbrel, B; Koenig, M [Laboratoire pour l' Utilisation des Laser Intenses, Ecole Polytechnique - Universite Paris-6, 91 - Palaiseau (France); Freeman, R R; Weber, R L; Van Woerkom, L [Department of Physics, The Ohio State University, Columbus, Ohio (United States); Glenzer, S H; Landen, O L; Neumayer, P; Price, D [Lawrence Livermore National Laboratory, Livermore, California (United States); Khattak, F Y [Department of Physics, Kohat University of Science and Technology, Kohat-26000, NWFP (Pakistan); Pelka, A; Roth, M; Schollmeier, M [Institut fur Kernphysik, Technische Universitat Darmstadt (Germany)
2008-10-15
One of the grand challenges of contemporary physics is understanding strongly interacting quantum systems comprising such diverse examples as ultracold atoms in traps, electrons in high-temperature superconductors and nuclear matter. Warm dense matter, defined by temperatures of a few electron volts and densities comparable with solids, is a complex state of such interacting matter. Moreover, the study of warm dense matter states has practical applications for controlled thermonuclear fusion, where it is encountered during the implosion phase, and it also represents laboratory analogues of astrophysical environments found in the core of planets and the crusts of old stars. Here we demonstrate how warm dense matter states can be diagnosed and structural properties can be obtained by inelastic X-ray scattering measurements on a compressed lithium sample. Combining experiments and ab initio simulations enables us to determine its microscopic state and to evaluate more approximate theoretical models for the ionic structure. (authors)
Parity violation in inelastic scattering of polarized electrons
International Nuclear Information System (INIS)
Prescott, C.Y.
1978-10-01
Parity nonconservation was observed in the inelastic scattering of longitudinally polarized electrons from an unpolarized deuterium target at 19.4 and 22.2 GeV. An asymmetry A = (sigma/sub R/ - sigma/sub L)/(sigma/sub R/ + sigma/sub L/) = (-9.5 +- 1.6) x 10 -5 Q 2 , Q 2 in (GeV/c) 2 was found for values of Q 2 near 1.4. The statistical and systematic errors are each about 9 percent of the measured asymmetry. This result is consistent with predictions from the standard Weinberg--Salam SU(2) x U(1) model. Using the simple quark-parton model of the nucleon, the value sin 2 theta/sub W/ = 0.20 +- 0.03 is obtained. 21 references
Bessel-Weighted Asymmetries in Semi Inclusive Deep Inelastic Scattering
International Nuclear Information System (INIS)
Boer, D.; Gamberg, L.; Musch, B.U.; Prokudin, A.
2011-01-01
The concept of weighted asymmetries is revisited for semi-inclusive deep inelastic scattering. We consider the cross section in Fourier space, conjugate to the outgoing hadron's transverse momentum, where convolutions of transverse momentum dependent parton distribution functions and fragmentation functions become simple products. Individual asymmetric terms in the cross section can be projected out by means of a generalized set of weights involving Bessel functions. Advantages of employing these Bessel weights are that they suppress (divergent) contributions from high transverse momentum and that soft factors cancel in (Bessel-) weighted asymmetries. Also, the resulting compact expressions immediately connect to previous work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions and to quantities accessible in lattice QCD. Bessel weighted asymmetries are thus model independent observables that augment the description and our understanding of correlations of spin and momentum in nucleon structure.
Scaled momentum spectra in deep inelastic scattering at HERA
International Nuclear Information System (INIS)
Abramowicz, H.; Abt, I.; Adamczyk, L.
2009-12-01
Charged particle production has been studied in neutral current deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 0.44 fb -1 . Distributions of scaled momenta in the Breit frame are presented for particles in the current fragmentation region. The evolution of these spectra with the photon virtuality, Q 2 , is described in the kinematic region 10 2 2 . Next-to-leading-order and modified leading-log-approximation QCD calculations as well as predictions from Monte Carlo models are compared to the data. The results are also compared to e + e - annihilation data. The dependences of the pseudorapidity distribution of the particles on Q 2 and on the energy in the γp system, W, are presented and interpreted in the context of the hypothesis of limiting fragmentation. (orig.)
Precise charm-quark mass from deep-inelastic scattering
International Nuclear Information System (INIS)
Alekhin, S.; Bluemlein, J.; Daum, K.; Lipka, K.; Moch, S.; Hamburg Univ.
2012-12-01
We present a determination of the charm-quark mass in the MS scheme using the data combination of charm production cross section measurements in deep-inelastic scattering at HERA. The framework of global analyses of the proton structure accounts for all correlations of the charm-quark mass with the other non-perturbative parameters, most importantly the gluon distribution function in the proton and the strong coupling constant α s (M Z ). We obtain at next-to-leading order in QCD the value m c (m c ) = 1.15 ± 0.04 (exp) +0.04 -0.00 (scale) GeV and at approximate next-to-next-to-leading order m c (m c ) = 1.24 ± 0.03 (exp) +0.03 -0.02 (scale) +0.00 -0.07 (theory) GeV with an accuracy competitive with other methods.
Nuclear spin response studies in inelastic polarized proton scattering
International Nuclear Information System (INIS)
Jones, K.W.
1988-01-01
Spin-flip probabilities S/sub nn/ have been measured for inelastic proton scattering at incident proton energies around 300 MeV from a number of nuclei. At low excitation energies S/sub nn/ is below the free value. For excitation energies above about 30 MeV for momentum transfers between about 0.35 fm/sup /minus/1/ and 0.65 fm/sup / minus/1/ S/sub nn/ exceeds free values significantly. These results suggest that the relative ΔS = 1(ΔS = 0 + ΔS = 1) nuclear spin response approaches about 90% in the region of the enhancement. Comparison of the data with slab response calculations are presented. Decomposition of the measured cross sections into σ(ΔS = 0) and σ(ΔS = 1) permit extraction of nonspin-flip and spin-flip dipole and quadrupole strengths. 29 refs., 11 figs
Inelastic x-ray scattering from polycrystalline materials
International Nuclear Information System (INIS)
Fischer, I.
2008-09-01
Inelastic X-ray scattering (IXS) is a tool to determine the phonon dispersion along high symmetry directions in single crystals. However, novel materials and crystals under extreme conditions are often only available in form of polycrystalline samples. Thus the investigation is limited to orientation-averaged properties. To overcome these limitations, a methodology to extract the single crystal phonon dispersion from polycrystalline materials was developed. The approach consists of recording IXS spectra over a large momentum transfer region and confront them with a Born - von Karman model calculation. A least-square refinement of the model IXS spectra then provides the single crystal dispersion scheme. In this work the method is developed on the test case Be. Further studies were performed on more and more complex systems, in order to explore the limitations. This novel application of IXS promises to be a valuable tool in cases where single crystalline materials are not available. (author)
Bose-Einstein Correlations in Deep-Inelastic Muon Scattering
Energy Technology Data Exchange (ETDEWEB)
Anthony, Perry Lee [MIT
1990-01-01
Bose-Einstein (B-E) correlations between like-sign pion pairs produced in deep-inelastic muon-nucleon scattering at 490 Ge V are used to measure the pion source distribution. Measuring the enhancement as a function of $M^2 =(p_1 {-p}_2 )^2$ (4-vectors) gave a source size of R=l .42 +/- 0.13 fm. Measuring this enhancement as a function of $\\Delta\\overrightarrow{p} _T\\mid^2$ gave a transverse source size of $R_T$ = 1.50 +/- 0.50 fm, while the enhancement as a function of $\\mid \\Delta\\overrightarrow{p}_{\\ell}\\mid$ gave a longitudinal source size of $R_{\\ell}$ = 2.90 +/- 1.23 fm. To check the validity of such a large longitudinal source size in the data, a thorough investigation of background and other possible sources of small $\\mid \\Delta\\overrightarrow{p} _{\\ell}\\mid$ pairs was made
Comparison of deep inelastic scattering with photoproduction interactions at HERA
International Nuclear Information System (INIS)
Aid, S.; Andrieu, B.
1995-08-01
Photon-proton (γp) interactions with Q 2 -2 GeV 2 and deep-inelastic scattering (γ * p) interactions with photon virtualities Q 2 > 5 GeV 2 are studied at the high energy electron-proton collider HERA. The transverse energy flow and relative rates of large rapidity gap events are compared in the two event samples. The observed similarity between γp and γ * p interactions can be understood in a picture where the photon develops as a hadronic object. The transverse energy density measured in the central region of the collision, at η * = 0 in the γ * p centre of mass frame, is compared with data from hadron-hadron interactions as function of the CMS energy of the collision. (orig.)
On selection rules and inelastic electron scattering at intermediate energies
International Nuclear Information System (INIS)
Nuroh, K.
1986-12-01
Correlation effects are included in the Bethe-Born theory for the generalized oscillator strength of inelastic scattering of electrons on atoms. The formulation is such as to allow for the calculation of relative line strengths of multiplets. It is used to analyze line strengths of the 4d → 4f transition in La 3+ and Ce 4+ within LS-coupling. The analysis indicates that only singlet states of the intermediate 4d 9 4f configuration are allowed. Calculated line strengths are compared with a recent core electron energy loss spectra of metallic La and tetravalent CeO 2 and there is an overall qualitative agreement between theory and experiment. (author). 11 refs, 4 figs, 2 tabs
Model-Free Views of Deep Inelastic Scattering
Schwinger, Julian
2014-11-01
Perhaps I should point out first that my choice of topic was dictated by the injunction that the nature of this symposium should revolve around subjects that might be conceivably of interest to Viki. Viki has, along with most high energy physicists been very interested in the subject of deep inelastic electron scattering. With his characteristic attention to directly visualizable approaches to physical phenomena, he has dealt with this in terms of rather specific models, attempting then to give very elementary explanations of these fascinating phenomena. I thought he might be interested to see the other side of the coin, namely, the extent to which one can correlate and comprehend these physical effects without the use of specific models. I think this may lend a certain useful balance to the way things are looked at these days. So my remarks are directed to Viki but you're all welcome to eavesdrop...
Subjet distributions in deep inelastic scattering at HERA
Energy Technology Data Exchange (ETDEWEB)
Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Lab., Argonne, IL (US)] (and others)
2008-12-15
Subjet distributions were measured in neutral current deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 81.7 pb{sup -1}. Jets were identified using the k{sub T} cluster algorithm in the laboratory frame. Sub-jets were defined as jet-like substructures identified by a reapplication of the cluster algorithm at a smaller value of the resolution parameter y{sub cut}. Measurements of subjet distributions for jets with exactly two subjets for y{sub cut}=0.05 are presented as functions of observables sensitive to the pattern of parton radiation and to the colour coherence between the initial and final states. Perturbative QCD predictions give an adequate description of the data. (orig.)
Event shapes in deep inelastic scattering at HERA
International Nuclear Information System (INIS)
Chekanov, S.; Derrick, M.; Magill, S.
2006-04-01
Mean values and differential distributions of event-shape variables have been studied in neutral current deep inelastic scattering using an integrated luminosity of 82.2 pb -1 collected with the ZEUS detector at HERA. The kinematic range was 80 2 2 and 0.0024 2 is the virtuality of the exchanged boson and x is the Bjorken variable. The data are compared with a model based on a combination of next-to-leading-order QCD calculations with next-to-leading-logarithm corrections and the Dokshitzer-Webber non-perturbative power corrections. The power-correction method provides a reasonable description of the data for all event-shape variables studied. Nevertheless, the lack of consistency of the determination of α s and of the non-perturbative parameter of the model, anti α 0 , suggests the importance of higher-order processes that are not yet included in the model. (orig.)
Subjet distributions in deep inelastic scattering at HERA
International Nuclear Information System (INIS)
Chekanov, S.; Derrick, M.; Magill, S.
2008-12-01
Subjet distributions were measured in neutral current deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 81.7 pb -1 . Jets were identified using the k T cluster algorithm in the laboratory frame. Sub-jets were defined as jet-like substructures identified by a reapplication of the cluster algorithm at a smaller value of the resolution parameter y cut . Measurements of subjet distributions for jets with exactly two subjets for y cut =0.05 are presented as functions of observables sensitive to the pattern of parton radiation and to the colour coherence between the initial and final states. Perturbative QCD predictions give an adequate description of the data. (orig.)
Measurement of isolated photon production in deep inelastic ep scattering
International Nuclear Information System (INIS)
Chekanov, S.; Derrick, M.; Magill, S.
2009-09-01
Isolated photon production in deep inelastic ep scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 320 pb -1 . Measurements were made in the isolated-photon transverse-energy and pseudo- rapidity ranges 4 T γ γ 2 , in the range 10 2 2 and for invariant masses of the hadronic system W X >5 GeV. Differential cross sections are presented for inclusive isolated photon production as functions of Q 2 , x, E T γ and η γ . Leading-logarithm parton-shower Monte Carlo simulations and perturbative QCD predictions give a reasonable description of the data over most of the kinematic range. (orig.)
QCD analysis of polarized deep inelastic scattering data
International Nuclear Information System (INIS)
Bluemlein, Johannes; Boettcher, Helmut
2010-05-01
A QCD analysis of the world data on polarized deep inelastic scattering is presented in next-to-leading order, including the heavy flavor Wilson coefficient in leading order in the fixed flavor number scheme. New parameterizations are derived for the quark and gluon distributions and the value of α s (M z 2 ) is determined. The impact of the variation of both the renormalization and factorization scales on the distributions and the value of α s is studied. We obtain α s NLO (M Z 2 )=0.1132 -0.0095 +0.0056 . The first moments of the polarized twist-2 parton distribution functions are calculated with correlated errors to allow for comparisons with results from lattice QCD simulations. Potential higher twist contributions to the structure function g 1 (x,Q 2 ) are determined and found to be compatible with zero both for proton and deuteron targets. (orig.)
Measurement of Isolated Photon Production in Deep-Inelastic Scattering at HERA
Aaron, F.D.; Alexa, C.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, A.W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, L.; Martisikova, M.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, M.U.; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Prideaux, P.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, C.; Wolf, R.; Wunsch, E.; Xella, S.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.
2008-01-01
The production of isolated photons in deep-inelastic scattering $ep\\to e \\gamma X$ is measured with the H1 detector at HERA. The measurement is performed in the kinematic range of negative four-momentum transfer squared $450$ GeV. The analysis is based on a total integrated luminosity of 227~pb$^{-1}$. The production cross section of isolatedphotons with a transverse energy in the range $3 < E_T^\\gamma < 10$ GeV and pseudorapidity range $-1.2 < \\eta^\\gamma < 1.8$ is measured as a function of $E_T^\\gamma$, $\\eta^\\gamma$ and $Q^2$. Isolated photon cross sections are also measured for events with no jets or at least one hadronic jet. The measurements are compared with predictions from Monte Carlo generators modelling the photon radiation from the quark and the electron lines, as well as with calculations at leading and next to leading order in the strong coupling. The predictions significantly underestimate the measured cross sections.
Higgs boson production in deep inelastic lepton-nucleon scattering
International Nuclear Information System (INIS)
Abdullayev, S.Q.; Qocayev, M.Sh.; Saddi, F.A.
2016-01-01
In the framework of Standard Model the process of scalar Higgs boson production in deep inelastic lepton-nucleon scattering has been investigated: lN follows lHX, lN follows v l HX, v μ N follows v μ HX, v μ N follows μHX. The ZZ-fusion and WW-fusion mechanisms are the most important mechanisms for the production if Higgs bosons in lepton-nucleon deep inelastic scattering. It is shown that, the process l q follows lqH is defined by only four helicity amplitudes: F L L, F L R, F R L and F R R (here first and second indices show the helicity of lepton and quark), which describe the following reactions: l L q L follows l L q L H, l L q R follows l L q R H, l R q L follows l R q L H, l R q R follows l R q R H.The process v μ q follows v μ q H is defined by only two helicity amplitudes F L L and F L R, which describe reactions v μ q L follows v μ q L H and v μ q R follows v μ q q R H.The mechanism W W follows H is defined by one helicity amplitude, which describes the process l L q L follows v L q' L X or v μ q L follows μL q' L H.We have calculated the cross sections for the helicity processes and detailed numerical results are presented in the quark-patron model.
Diffractive dijet production in deep inelastic scattering at ZEUS
International Nuclear Information System (INIS)
Bonato, A.
2008-03-01
This thesis presents a measurement of dijet production of diffractive deep inelastic scattering ep collisions. This type of process is specially relevant for the experimental validity of the perturbative QCD approach to diffractive physics. The measurement was based on an integrated luminosity of 61 pb -1 collected at the HERA collider with the ZEUS experiment. The events were selected for virtualities of the photon, γ*, 5 2 2 , and energies of the γ*p centre-of-mass, 100 T algorithm in the γ*p frame. The jets were required to have a transverse energy in the γ*p frame E T jet *>4 GeV. The jet with the highest transverse energy was required to have E T jet *>5 GeV. All jets were required to be in the pseudorapidity range -3.5 jet * P , was required to be x P TOT D (ep→ep jet 1 jet 2 X')=9.15±1.2 (stat.) 5.4 3.3 (syst.) -5.3 +6.4 (corr.)pb. Single and double differential cross sections were extracted and compared to leading-order predictions and next-to-leading-order QCD calculations. The latter used several diffractive parton densities extracted from inclusive diffractive deep inelastic scattering data. The agreement with the leading and next-to-leading order predictions is good and no hints of factorisation breaking are observed. The double differential measurement can be a previous input for the extraction of more accurate diffractive parton densities. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Hurst, Aaron M. [Univ. of California, Berkeley, CA (United States); Bernstein, Lee A. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chong, Su-Ann [Univ. of California, Berkeley, CA (United States)
2017-07-26
A Structured Query Language (SQL) relational database has been developed based on the original (n,n'gamma) work carried out by A.M. Demidov et al., at the Nuclear Research Institute in Baghdad, Iraq [``Atlas of Gamma-Ray Spectra from the Inelastic Scattering of Reactor Fast Neutrons'', Nuclear Research Institute, Baghdad, Iraq (Moscow, Atomizdat 1978)] for 105 independent measurements comprising 76 elemental samples of natural composition and 29 isotopically-enriched samples. The information from this ATLAS includes: gamma-ray energies and intensities; nuclide and level data corresponding to where the gamma-ray originated from; target (sample) experimental-measurement data. Taken together, this information allows for the extraction of the flux-weighted (n,n'gamma) cross sections for a given transition relative to a defined value. Currently, we are using the fast-neutron flux-weighted partial gamma-ray cross section from ENDF/B-VII.1 for the production of the 847-keV transition from the first excited 2+ state to the 0+ ground state in 56Fe, 468 mb. This value also takes into account contributions to the 847-keV transition following beta(-) decay of 56Mn formed in the 56Fe(n,p) reaction. However, this value can easily be adjusted to accommodate the user preference. The (n,n'gamma) data has been compiled into a series of ASCII comma separated value tables and a suite of Python scripts and C modules are provided to build the database. Upon building, the database can then be interacted with directly via the SQLite engine or accessed via the Jupyter Notebook Python-browser interface. Several examples exploiting these utilities are also provided with the complete software package.
γ production and neutron inelastic scattering cross sections for 76Ge
Rouki, C.; Domula, A. R.; Drohé, J. C.; Koning, A. J.; Plompen, A. J. M.; Zuber, K.
2013-11-01
The 2040.7-keV γ ray from the 69th excited state of 76Ge was investigated in the interest of Ge-based double-β-decay experiments like the Germanium Detector Array (GERDA) experiment. The predicted transition could interfere with valid 0νββ events at 2039.0 keV, creating false signals in large-volume 76Ge enriched detectors. The measurement was performed with the Gamma Array for Inelastic Neutron Scattering (GAINS) at the Geel Electron Linear Accelerator (GELINA) white neutron source, using the (n,n'γ) technique and focusing on the strongest γ rays originating from the level. Upper limits obtained for the production cross section of the 2040.7-keV γ ray showed no possible influence on GERDA data. Additional analysis of the data yielded high-resolution cross sections for the low-lying states of 76Ge and related γ rays, improving the accuracy and extending existing data for five transitions and five levels. The inelastic scattering cross section for 76Ge was determined for incident neutron energies up to 2.23 MeV, significantly increasing the energy range for which experimental data are available. Comparisons with model calculations using the talys code are presented indicating that accounting for the recently established asymmetric rotor structure should lead to an improved description of the data.
Inelastic scattering from liquid 4He in aerogel glass
International Nuclear Information System (INIS)
Snow, W.M.; Sokol, P.E.
1988-01-01
The physics of liquid and solid 4 He in restricted geometries has motivated a number of interesting experiments. Recent experiments include detailed measurements of the phase diagram for bulk liquid in vycor, showing a suppression of the superfluid transition and elevation of the melting pressure, and measurements of the superfluid fraction in vycor, aerogel, and zerogel glasses near the lambda point, in which critical exponents differ from the pure 4 He values have been observed. Many striking features in several of the experiments on helium in restricted geometries are poorly understood. We have performed inelastic neutron scattering measurements of liquid helium in aerogel glass above and below the superfluid transition for two samples of different porosities. The kinetic energy (KE) of the confined liquid is the same as that of the bulk liquid in the normal phase, but is clearly higher than the bulk values in the superfluid phase. The observed scattering in the superfluid phase is more peaked than in the normal phase: consistent with the presence of a Bose condensate. An estimate of the condensate fraction using a modification of a method due to Sears yields values consistent with those estimated for the bulk liquid. 7 refs., 2 figs., 1 tab
The hadronic final state in deep inelastic scattering at HERA
International Nuclear Information System (INIS)
Lanius, P.
1994-10-01
Global properties of the hadronic final state of deep inelastic scattering events recorded in 1992 with the H1 detector at HERA, are investigated. The data are corrected for detector effects and can be compared directly with QCD phenomenology and calculations based on BFKL dynamics. The measurement of the energy flows in the laboratory frame and in the hadronic centre of mass system reveal large discrepancies between the data and the different model predictions, indicating the failure of models based on Altarelli-Parisi evolution at low χ. However, these energy flow results are found to agree fairly well with theoretical predictions derived from Lipatov (BFKL) evolution. In the hadronic centre of mass frame the longitudinal and transverse momentum components of charged particles are measured. The longitudinal component exhibits scaling with W and allows comparison with lower energy lepton-nucleon scattering data as well as with e + e - data from LEP. For the 1993 data, studies of the charged particle energy spectra in the Breit frame are undertaken. This measurement allows a first tentative look at predictions from the Modified Leading Logarithmic Approximation for the target region, a region that to-date unexplored has been unexplored. (orig.)
Study of final states in deep inelastic muon scattering
2002-01-01
The aim of this experiment is to study the different possible final states in deep inelastic muon scattering from hydrogen in connection with the detection of the scattered muon in a forward spectrometer (Experiment NA2).\\\\ \\\\ A vertex detector will be used which extends the hadron detection capabilities into the backward hemisphere of the centre-of-mass system. Particle momenta can be measured down to 200 MeV/c in a vertex magnet, which contains a streamer chamber (SC Particle identification will be done in a series of wide angle Čerenkov counters (C$_{0}$, C$_{1}$) and at low momenta in time-of-flight counter hodoscopes (F1-F4). An 8-plane module of MWPC chambers (PV) will be used in conjunction with the streamer chamber and the drift chambers WV1 and WV2 and WV3. \\\\ \\\\ The vertex magnet is a C magnet with circular pole tips of 2 m diameter and 1 m gap width. The central magnetic field will be 1.5 T. The streamer chamber (2m x 1.2m x 0.72m) will contain a 1 m liquid H$_{2}$ target.\\\\ \\\\ As a natural extens...
Compact turnkey focussing neutron guide system for inelastic scattering investigations
Energy Technology Data Exchange (ETDEWEB)
Brandl, G., E-mail: g.brandl@fz-juelich.de [Heinz Maier-Leibnitz Zentrum (MLZ) and Physik Department E21, Technische Universität München, 85748 Garching, Germany and Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum - MLZ, Forschungszentrum Jülich GmbH, 85748 Garching (Germany); Georgii, R. [Heinz Maier-Leibnitz Zentrum (MLZ) and Physik Department E21, Technische Universität München, 85748 Garching (Germany); Dunsiger, S. R. [Physik Department E21, Technische Universität München, 85748 Garching, Germany and Center for Emergent Materials, Ohio State University, Columbus, Ohio 43210-1117 (United States); Tsurkan, V. [Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany and Institute of Applied Physics, Academy of Sciences of Moldova, MD 2028 Chisinau, Republic of Moldova (Germany); Loidl, A. [Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159 Augsburg (Germany); Adams, T.; Pfleiderer, C.; Böni, P. [Physik Department E21, Technische Universität München, 85748 Garching (Germany)
2015-12-21
We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm{sup 3}, thus enabling the investigation of materials which to date would have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr{sub 2}Se{sub 4} (V = 12.5 mm{sup 3}), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.
Inelastic neutron scattering from high-density fcc 4He
International Nuclear Information System (INIS)
Thomlinson, W.; Eckert, J.; Shirane, G.
1978-01-01
The phonon dispersion relations in high-density crystals of fcc 4 He have been measured along high-symmetry directions by the neutron-inelastic-scattering technique. A recent study of the lattice dynamics of fcc 4 He by Eckert et al. has been extended to cover the fcc phase diagram at pressures below 5 kbar. Molar volumes of 9.03, 9.43, and 9.97 cm 3 /mole have been studied in the temperature range from near the melting curve to near the fcc-hcp transition line. The phonon dispersion relations are in good agreement with a first-order self-consistent phonon theory calculation by Goldman. The observed phonon-group line shapes at large energy and momentum transfers show evidence for multiphonon scattering in agreement with calculations by Glyde. Eckert et al. reported extremely large anharmonic isochoric temperature shifts of the phonon energies. The present work studied the shifts as a function of molar volume and temperature. Mode-Grueneisen-parameter dispersion curves have been measured using the present data and earlier measurements at lower density in the fcc phase by Traylor et al. Macroscopic Grueneisen parameters have been calculated from the phonon density of states obtained from the data
Diffractive vector meson production in deep inelastic scattering
International Nuclear Information System (INIS)
Kamps, M. de.
1997-01-01
This thesis seeks to bring comfort to those who are appalled by the usual high level of violence in high energy physics. Although also here we engage in the customary vandalistic smashing together of two particles, the reaction we will study has a happy end in store for both of them. The subject of this thesis will be the reaction: e + p→e + pV where V is one of the vector mesons ρ, ω, φ, J/ψ. We will investigate the situation where the final state positron enters the ZEUS main detector, which indicates that a violent reaction has taken place between the initial state particles, but nevertheless the proton does not break up. The violence with which the positron is scattered characterises the reaction as a Deep Inelastic Scattering (DIS), the fact that the proton does not break up characterises the reaction as diffractive which explains the title of the thesis. Both DIS and diffractive physics will be defined and discussed in the context of this thesis. (orig./WL)
Energy Technology Data Exchange (ETDEWEB)
Zagatto, V.A.B.; Oliveira, J.R.B.; Pereira, D.; Allegro, P.R.P.; Chamon, L.C.; Cybulska, E.W.; Medina, N.H.; Ribas, R.V.; Rossi Junior, E.S.; Seale, W.A.; Silva, C.P.; Gasques, L. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Toufen, D.L. [Instituto Federal de Educacao, Ciencia e Tecnologia, Guarulhos, SP (Brazil); Silveira, M.A.G. [Centro Universitario da FEI, Sao Bernardo do Campo, SP (Brazil); Zahn, G.S.; Genezini, F.A.; Shorto, J.M.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Lubian, J.; Linares, R. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Nobre, G.P. [Lawrence Livermore National Laboratory, Livermore (United States)
2012-07-01
Full text: A new method was developed in Pelletron laboratory to measure gamma-particle coincidences and the chosen experiment to test this method was the {sup 18}O +{sup 110} Pd in the 46-60 MeV range. The following work aims to obtain experimental cross sections of inelastic excitation 0{sup +} {yields} 2{sup +} of {sup 110}Pd and transfer to excited states reactions (both measured by gamma-particle coincidences). The measurements were made at the Pelletron accelerator laboratory of the University of Sao Paulo with the Saci-Perere spectrometer [1], which consists of 4 GeHP Compton suppressed gamma detectors and a 4{pi} charged particle ancillary system with 11{Delta}E-E plastic phoswich scintillators (further details about the experimental procedure may be found in [2]). Calculations were performed with a new model based on the Sao Paulo Potential, specifically developed for the inclusion of dissipative processes like deep-inelastic collisions (DIC) [3,4] considering the Coulomb plus nuclear potential (with the aid of FRESCO code [5]). The experimental cross sections were obtained such as described in [6] including particle-gamma angular correlations, finite size of gamma and particle detectors as the vacuum de-alignment effects [7] (caused by hyperfine interaction) for the {sup 110}Pd inelastic reaction and for the {sup 110}Pd 2n transfer reaction. Also the effects of the beam spot size and energy loss in the target were included in these calculations. For these purposes a new code has been developed to assist in the data analysis. The gamma-particle angular correlations are calculated using the scattering amplitudes given by FRESCO. The theoretical predictions still consider 2 different types of normalization factors in its the real part: 1:0, and 0:6 as proposed in [3] for the weakly bound projectile cases. The analyses indicate that the 0:6 factor describes better the experimental data possible due to the large density of states in the transitional region. [1
Double difference method in deep inelastic neutron scattering on the VESUVIO spectrometer
Energy Technology Data Exchange (ETDEWEB)
Andreani, C.; Colognesi, D.; Degiorgi, E.; Filabozzi, A.; Nardone, M.; Pace, E.; Pietropaolo, A. E-mail: antonino.pietropaolo@roma2.infn.it; Senesi, R
2003-02-01
The principles of the Double Difference (DD) method, applied to the neutron spectrometer VESUVIO, are discussed. VESUVIO, an inverse geometry spectrometer operating at the ISIS pulsed neutron source in the eV energy region, has been specifically designed to measure the single particle dynamical properties in condensed matter. The width of the nuclear resonance of the absorbing filter, used for the neutron energy analysis, provides the most important contribution to the energy resolution of the inverse geometry instruments. In this paper, the DD method, which is based on a linear combination of two measurements recorded with filter foils of the same resonance material but of different thickness, is shown to improve significantly the instrumental energy resolution, as compared with the Single Difference (SD) method. The asymptotic response functions, derived through Monte-Carlo simulations for polycrystalline Pb and ZrH{sub 2} samples, are analysed in both DD and SD methods, and compared with the experimental ones for Pb sample. The response functions have been modelled for two distinct experimental configurations of the VESUVIO spectrometer, employing {sup 6}Li-glass neutron detectors and NaI {gamma} detectors revealing the {gamma}-ray cascade from the (n,{gamma}) reaction, respectively. The DD method appears to be an effective experimental procedure for Deep Inelastic Neutron Scattering measurements on VESUVIO spectrometer, since it reduces the experimental resolution of the instrument in both {sup 6}Li-glass neutron detector and {gamma} detector configurations.
A dynamic elastic and inelastic scattering theory of high-energy electrons
International Nuclear Information System (INIS)
Wang Zhonglin
1990-01-01
A review is given on the applications of elastic multislice theory for simulating the images and diffractions of reflection electron microscopy. The limitation of this theory is illustrated according to some experimental observations. A generalized elastic and inelastic multislice theory is then introduced from quantum mechanics; its applications for approaching inelastic plasmon excitation and phonon excitation (or thermal diffuse scattering) are discussed. The energy-filtered inelastic high resolution images can be simulated based on this theory
Inelastic scattering in condensed matter with high intensity moessbauer radiation
International Nuclear Information System (INIS)
Yelon, W.B.; Schupp, G.
1991-05-01
We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is not fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using Bragg scattering filters to suppress unwanted radiation. These have led to a Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to make a novel independent determination of interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na metal and the charge density wave satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. Using a specially constructed sample cell which enables us to vary temperatures from -10 C to 110 C, we have begun quasielastic diffusion studies in viscous liquids and current results are summarized. Included are the temperature and Q dependence of the scattering in pentadecane and diffusion in glycerol
Pion elastic and inelastic scattering from 15N
International Nuclear Information System (INIS)
Saunders, D.P.
1991-12-01
Data were obtained on the Clinton P. Anderson Los Alamos Meson Physics Facility Energetic Pion Channel and Spectrometer for elastic and inelastic pion scattering from ground state 15 N nuclei. States observed here included those of 0.0, 5.27, 6.32, 7.16, 7.30, 7.57, 8.31, 8.57, 9.15, 9.76, 9.9, 10.7, 11.3, 11.9, 12.5, 12.9, 13.1, 14.1, 14.4, 14.6, 15.0, 16.5, 16.9, 17.2, 17.6, 18.3, 18.7, and 18.9 MeV excitation energies. Angular distributions were obtained for scattering at angles from 25 degree to 90 degree in 5 degree increments with an incident pion energy of 164 MeV. Optical model analyses of the elastic (0 MeV) angular distributions with equal point proton and neutron densities in both momentum and coordinate space formulations accurately predict the data, although the two formulations require different energy shifts to do so. This difference is thought to be a result of the more accurate nonlocal representation of the nuclear potential in the momentum space code. Additional spectra were obtained for scattering at constant momentum transfers of .94 and 1.57 fm -1 in order to generate constant momentum transfer excitation functions. Use of these excitation functions, σ(π + )/σ(π - ) ratios, and shell model DWIA calculations allowed identification of several excited states having shell-model-like, single particle-hole, pure spin-flip excitations. Shell model and collective model DWIA calculations, as well as the q = .94 and 1.57 fm -1 excitation functions and the σ(π + )/σ(π - ) ratios indicate that the other states are generally well represented by a shell model description with collective enhancements
Inclusive measurements of pion double charge exchange and inelastic scattering on 3He
International Nuclear Information System (INIS)
Yuly, M.E.
1993-06-01
A measurement was made at the Los Alamos Meson Physics Facility (LAMPF) of the doubly differential cross sections for three inclusive pion reactions on 3 He: π - double charge exchange (DCX), and π + and π - inelastic scattering. The cross sections for DCX were measured at incident energies of 120, 180, 210, and 240 MeV, and at angles of 25, 50, 80, 105, and 130 degrees, while inelastic scattering cross sections were measured at 120, 180, and 240 MeV and scattering angles of 50, 80, 105, and 130 degrees. The final pion energy spectrum was measured from 10 MeV up to the kinematic limit. In the Δ resonance region, where the isospin T = 3/2 channel dominates, the inelastic π - scattering should be almost entirely from the lone neutron in 3 He. The π + inelastic scattering was expected to have significant contributions from both single and double scattering, because the T = 3/2 channel favors π + -p scattering from the two protons in 3 He. The 3 He DCX spectra are similar to those observed for DCX in 4 He. The forward angle double peaks can be understood as a consequence of sequential single charge exchange (SSCX). Calculations using the SSCX model are in rough agreement with the measured shape of the 3 He DCX spectra. The doubly differential cross sections measured for the inelastic scattering reactions exhibit a strong enhancement near the kinematics for free π - -p scattering. The ratios of π + to π - scattering cross sections may indicate multiple scattering, as well as the agreement of the low outgoing energy part of the π + inelastic scattering spectra with the corresponding properly scaled DCX spectra. A distorted-wave impulse-approximation (DWIA) calculation of the quasielastic cross sections has been performed and a comparison made with the measured inelastic cross sections
Jet shapes in charm photoproduction and deeply inelastic scattering at HERA
Energy Technology Data Exchange (ETDEWEB)
Grell, Brian Rosenvold
2010-09-15
This analysis investigates charm production processes in photoproduction and deeply inelastic scattering. The analysed data was collected with the H1 detector at the HERA accelerator in the years 1999-2000 for photoproduction and 2004-2007 for deeply inelastic scattering, corresponding to integrated luminosities of 83 pb{sup -1}, respectively 348 pb{sup -1}. Dijet events are selected with jet transverse momenta of at least 5 GeV, respectively 4 GeV, in the central rapidity region. One jet is tagged by a D{sup *} meson to be initiated by a charm quark. The other is studied with respect to its mean integrated jet shape in order to deduce to which fraction it is initiated by a quark or a gluon. The jet shape is described by the fraction {psi}(r) of the jet energy inside a cone of radius r around the jet axis; it is found that for r=0:6, {psi}(r) is most sensitive to differences between charm and light quark or gluon jets. The shape is measured as a function of various kinematic variables such as the jet energy and pseudorapidity, photon virtuality and x{sub {gamma}}{sup obs}, the fraction of the photon momentum entering the hard interaction. The photoproduction data is compared to Pythia, the DIS data to RapGap Monte Carlo simulations. In the Monte Carlo calculation, direct and resolved photon processes are simulated separately to compare samples with an enriched fraction of quark, respectively gluon initiated jets. Deviations at low x{sub {gamma}}{sup obs} are observed for higher values of Q{sup 2}, where direct and resolved expectations are nearly identical, hinting at an overestimation of gluon initiated jets. In most regions of phase space though, the resolution of the measurement excels the difference between direct and resolved predictions, allowing a distinction of such event samples. (orig.)
Inelastic scattering in condensed matter with high intensity Moessbauer radiation
International Nuclear Information System (INIS)
Yelon, W.B.; Schupp, G.
1990-10-01
We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support
Bessel-weighted asymmetries in semi-inclusive deep inelastic scattering
Boer, D.; Gamberg, L.; Musch, B. U.; Prokudin, A.
2011-01-01
The concept of weighted asymmetries is revisited for semi-inclusive deep inelastic scattering. We consider the cross section in Fourier space, conjugate to the outgoing hadron's transverse momentum, where convolutions of transverse momentum dependent parton distribution functions and fragmentation
Contribution of alpha cluster exchange to elastic and inelastic 16O--20Ne scattering
International Nuclear Information System (INIS)
Stock, R.; Schneider, W.F.W.; Jahnke, U.; Hendrie, D.L.; Mahoney, J.; Maguire, C.F.; Scott, D.K.; Wolschin, G.
1975-01-01
The cluster structure of the ground state rotational band of 20 Ne was studied via the elastic and inelastic scattering of 50 MeV 20 Ne from 16 O. Angular distributions are compared with microscopic calculations
Inelastic scattering of 9Be of 27 MeV/A to giant resonances
International Nuclear Information System (INIS)
Lebrun, D.; Buenerd, M.; Bini, M.; Harvey, B.G.; Legrain, R.; Mahoney, J.; Symons, T.J.M.; Van Bibber, K.
1980-07-01
Inelastic scattering spectra have been measured with 245 MeV incident energy 9 Be ions, on 208 Pb target. They show large excitation of the 208 Pb giant quadrupole resonance. DWBA calculations are reported and compared with the data
Unified quantum theory of elastic and inelastic atomic scattering from a physisorbed monolayer solid
DEFF Research Database (Denmark)
Bruch, L. W.; Hansen, Flemming Yssing; Dammann, Bernd
2017-01-01
A unified quantum theory of the elastic and inelastic scattering of low energy He atoms by a physisorbed monolayer solid in the one-phonon approximation is given. It uses a time-dependent wave packet with phonon creation and annihilation components and has a self-consistent feedback between...... the wave functions for elastic and inelastic scattered atoms. An attenuation of diffraction scattering by inelastic processes thus is inherent in the theory. The atomic motion and monolayer vibrations in the harmonic approximation are treated quantum mechanically and unitarity is preserved. The evaluation...... of specific one-phonon events includes contributions from diffuse inelastic scattering in other phonon modes. Effects of thermally excited phonons are included using a mean field approximation. The theory is applied to an incommensurate Xe/Pt(111) monolayer (incident energy Ei = 4-16 meV), a commensurate Xe...
Hadron transverse momentum distributions in muon deep inelastic scattering at 160 GeV/c
Czech Academy of Sciences Publication Activity Database
Adolph, C.; Alekseev, M.; Alexakhin, V. Yu.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Austregisilio, A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bertini, R.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Crespo, M.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O.; Donskov, S.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.V.; Elia, C.; Eversheim, P.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger jr., M.; Fischer, H.; Franco, C.; Fresne von Hohenesche, N.; Friedrich, J.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmüller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Guthörl, T.; Haas, F.; von Harrach, D.; Heinsius, F.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Höppner, Ch.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Joosten, R.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.; Khokhlov, Y.; Kisselev, Y.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.; Kolosov, V.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V.; Kotzinian, A.; Kouznetsov, O.; Krämer, M.; Kroumchtein, Z.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G.; Mann, A.; Marchand, C.; Martin, A.; Marzec, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Y.; Morreale, A.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.; Nový, J.; Nowak, W. D.; Nunes, A.S.; Olshevsky, A.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.; Pretz, J.; Quaresma, M.; Quintans, C.; Rajotte, J.; Ramos, S.; Reicherz, G.; Rocco, E.; Rodionov, V. K.; Rondio, E.; Rossiyskaya, N. S.; Ryabchikov, D.; Samoylenko, V.; Sandacz, A.; Sapozhnikov, M.; Sarkar, S.; Savin, I.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlütter, T.; Schmidt, A.; Schmidt, K.; Schmiden, H.; Schmitt, L.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, Aleš; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Sznajder, P.; Takekawa, S.; Ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.
2013-01-01
Roč. 73, č. 8 (2013), 2531:1-15 ISSN 1434-6044 Institutional support: RVO:68081731 Keywords : hadron * inelastic scattering Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 5.436, year: 2013
Diffractive Deep-Inelastic Scattering with a Leading Proton at HERA
Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.
2006-01-01
The cross section for the diffractive deep-inelastic scattering process $ep \\to e X p$ is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data analysed cover the range \\xpom
Dynamic radial distribution function from inelastic neutron scattering
International Nuclear Information System (INIS)
McQueeney, R.J.
1998-01-01
A real-space, local dynamic structure function g(r,ω) is defined from the dynamic structure function S(Q,ω), which can be measured using inelastic neutron scattering. At any particular frequency ω, S(Q,ω) contains Q-dependent intensity oscillations which reflect the spatial distribution and relative displacement directions for the atoms vibrating at that frequency. Information about local and dynamic atomic correlations is obtained from the Fourier transform of these oscillations g(r,ω) at the particular frequency. g(r,ω) can be formulated such that the elastic and frequency-summed limits correspond to the average and instantaneous radial distribution function, respectively, and is thus called the dynamic radial distribution function. As an example, the dynamic radial distribution function is calculated for fcc nickel in a model which considers only the harmonic atomic displacements due to phonons. The results of these calculations demonstrate that the magnitude of the atomic correlations can be quantified and g(r,ω) is a well-defined correlation function. This leads to a simple prescription for investigating local lattice dynamics. copyright 1998 The American Physical Society
Systematic analysis of scaling properties in deep inelastic scattering
International Nuclear Information System (INIS)
Beuf, Guillaume; Peschanski, Robi; Royon, Christophe; Salek, David
2008-01-01
Using the 'quality factor' method, we analyze the scaling properties of deep inelastic processes at the accelerator HERA and fixed target experiments for x≤10 -2 . We look for scaling formulas of the form σ γ * p (τ), where τ(L=logQ 2 ,Y) is a scaling variable suggested by the asymptotic properties of QCD evolution equations with rapidity Y. We consider four cases: 'fixed coupling', corresponding to the original geometric scaling proposal and motivated by the asymptotic properties of the Balitsky-Kovchegov equation with fixed QCD coupling constant; two versions, 'running coupling I, II,' of the scaling suggested by the Balitsky-Kovchegov equation with running coupling; and 'diffusive scaling' suggested by the QCD evolution equation with Pomeron loops. The quality factors, quantifying the phenomenological validity of the candidate scaling variables, are fitted on the total and deeply virtual Compton scattering cross-section data from HERA and predictions are made for the elastic vector meson and for the diffractive cross sections at fixed small x P or β. The first three scaling formulas have comparably good quality factors while the fourth one is disfavored. Adjusting initial conditions gives a significant improvement of the running coupling II scaling.
High energy deep inelastic scattering in perturbative quantum chromodynamics
International Nuclear Information System (INIS)
Wallon, S.
1996-01-01
In this PhD thesis, we deal with high energy Deep Inelastic Scattering in Perturbative Quantum Chromodynamics (QCD). In this work, two main topics are emphasized: The first one deals with dynamics based on perturbative renormalization group, and on perturbative Regge approaches. We discuss the applicability of these predictions, the possibility of distinguishing them in the HERA experiments, and their unification. We prove that the perturbative Regge dynamic can be successfully applied to describe the HERA data. Different observables are proposed for distinguishing these two approaches. We show that these two predictions can be unified in a system of equations. In the second one, unitarization and saturation problems in high energy QCD are discussed. In the multi-Regge approach, equivalent to the integrable one-dimensional XXX Heisenberg spin chain, we develop methods in order to solve this system, based on the Functional Bethe Ansatz. In the dipole model context, we propose a new formulation of unitarity and saturation effects, using Wilson loops. (author)
Transverse spin effects in polarized semi inclusive deep inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Pappalardo, Luciano Libero
2008-10-15
The theoretical framework for the inclusive and semi-inclusive deep inelastic scattering is provided in Chapters 2 and 3, respectively. While a phenomenological and historical perspective is adopted in Chapter 2 for the description of the inclusive processes, a detailed treatment of the formalism concerning the physics of the transverse degrees of freedom of the nucleon is presented in Chapter 3. In Chapter 4 the main components of the HERMES experimental apparatus are presented. The extraction of the Collins and Sivers moments is discussed in Chapter 5 after a brief overview of the main steps of the data analysis. A selection of systematic studies is also reported at the end of the chapter. Chapter 6 is completely devoted to the estimate of the acceptance and smearing effects on the extracted azimuthal moments. A crucial role in the studies presented is played by a newly developed Monte Carlo generator which simulates azimuthal asymmetries arising from intrinsic quark momenta. A novel approach for the estimate of the acceptance effects is presented at the end of the chapter. The extracted Collins and Sivers moments, corrected for the acceptance effects, are shown in Chapter 7. The discussion and the interpretation of the results, together with a preliminary extraction of the Sivers polarization, are also treated in Chapter 7. Final conclusions and a brief summary are reported in Chapter 8. (orig.)
Event shapes in deep inelastic scattering at HERA
Energy Technology Data Exchange (ETDEWEB)
Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)
2006-04-15
Mean values and differential distributions of event-shape variables have been studied in neutral current deep inelastic scattering using an integrated luminosity of 82.2 pb{sup -1} collected with the ZEUS detector at HERA. The kinematic range was 80
Lattice modes of hexamethylbenzene studied by inelastic neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Stride, J.A. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France)], E-mail: stride@ill.fr; Adams, J.M. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Johnson, M.R. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France)
2005-10-31
The combination of inelastic neutron scattering and detailed ab initio calculations has been used to arrive at accurate assignments of the low energy lattice mode region of hexamethylbenzene (HMB) across the low temperature first order phase transition at 117.5 K. This was also extended well into the mid-infrared spectral region and a good agreement was found between observed and calculated frequencies, which were also confirmed with isotopically substituted d-HMB. At low temperature, the lattice region is dominated by the methyl group torsions around 15 and 20 meV, which soften dramatically on passing into the higher temperature phase. The lowest energy methyl torsion corresponds to a coherent gear wheel motion, observed here for the first time and predicted in previous numerical studies of HMB. The three acoustic phonons lie to lower energy, centered around 6-7 meV, whilst the three optic phonons are very close in energy to the lowest methyl torsions. Other assignments are found to be in accord with literature values and so an unambiguous assignment of all spectral modes has been obtained for the first time. We conclude that due to the behaviour of the lattice modes either side of the phase transition, its nature is predominantly that of a thermally activated dynamic order-disorder transition.
Lattice modes of hexamethylbenzene studied by inelastic neutron scattering
International Nuclear Information System (INIS)
Stride, J.A.; Adams, J.M.; Johnson, M.R.
2005-01-01
The combination of inelastic neutron scattering and detailed ab initio calculations has been used to arrive at accurate assignments of the low energy lattice mode region of hexamethylbenzene (HMB) across the low temperature first order phase transition at 117.5 K. This was also extended well into the mid-infrared spectral region and a good agreement was found between observed and calculated frequencies, which were also confirmed with isotopically substituted d-HMB. At low temperature, the lattice region is dominated by the methyl group torsions around 15 and 20 meV, which soften dramatically on passing into the higher temperature phase. The lowest energy methyl torsion corresponds to a coherent gear wheel motion, observed here for the first time and predicted in previous numerical studies of HMB. The three acoustic phonons lie to lower energy, centered around 6-7 meV, whilst the three optic phonons are very close in energy to the lowest methyl torsions. Other assignments are found to be in accord with literature values and so an unambiguous assignment of all spectral modes has been obtained for the first time. We conclude that due to the behaviour of the lattice modes either side of the phase transition, its nature is predominantly that of a thermally activated dynamic order-disorder transition
Perturbative quantum chromodynamic analysis of deep inelastic scattering
International Nuclear Information System (INIS)
Herrod, R.T.
1982-01-01
This is an account of the field theoretic description of the deep inelastic scattering of leptons from nucleons. Starting from simple parton model description, using the assumption of an SU(3) colour confining field theory, for the quarks comprising hadronic matter, the well known prediction of Bjorken scaling is obtained. Field theoretic predictions for deviations from Bjorken scaling are formally introduced, with particular reference to quantum chromodynamics (QCD). This treatment is purely perturbative, although the renormalisation group is used to improve convergence. Scaling violations at both leading order, and next-to-leading order are discussed, and it is shown how these lead to predictions regarding the dependence of the moments of observable structure functions, on the square of the 4-momentum transferred (Q 2 ). Evolution equations for the moments of structure functions are then derived. The intuitive approach of Altarelli and Parisi (AP), which leads to predictions for the Q 2 dependence of the structure functions themselves, is introduced. The corresponding equations are derived to next-to-leading order. The results of an extensive analysis of current data are presented.. Both weak and electromagnetic structure functions are compared with the predictions of leading order, and higher order formulae. Methods for incorporating heavy quark flavours into the AP equations are discussed. (author)
A compilation of structure functions in deep inelastic scattering
International Nuclear Information System (INIS)
Gehrmann, T.; Roberts, R.G.; Whalley, M.R.
1999-01-01
A compilation of all the available data on the unpolarized structure functions F 2 and xF 3 , R=(σ L /σ T ), the virtual photon asymmetries A 1 and A 2 and the polarized structure functions g 1 and g 2 , from deep inelastic lepton scattering off protons, deuterium and nuclei is presented. The relevant experiments at CERN, DESY, Fermilab and SLAC from 1991, the date of our earlier review [1], to the present day are covered. A brief general theoretical introduction is given followed by the data presented both in tabular and graphical form and, for the F 2 and xF 3 data, the predictions based on the MRST98 and CTEQ4 parton distribution functions are also displayed. All the data in this review, together with data on a wide variety of other reactions, can be found in and retrieved from the Durham-RAL HEP Databases on the World-Wide-Web (http://durpdg.dur.ac.uk/HEPDATA). (author)
Transverse spin effects in polarized semi inclusive deep inelastic scattering
International Nuclear Information System (INIS)
Pappalardo, Luciano Libero
2008-03-01
The theoretical framework for the inclusive and semi-inclusive deep inelastic scattering is provided in Chapters 2 and 3, respectively. While a phenomenological and historical perspective is adopted in Chapter 2 for the description of the inclusive processes, a detailed treatment of the formalism concerning the physics of the transverse degrees of freedom of the nucleon is presented in Chapter 3. In Chapter 4 the main components of the HERMES experimental apparatus are presented. The extraction of the Collins and Sivers moments is discussed in Chapter 5 after a brief overview of the main steps of the data analysis. A selection of systematic studies is also reported at the end of the chapter. Chapter 6 is completely devoted to the estimate of the acceptance and smearing effects on the extracted azimuthal moments. A crucial role in the studies presented is played by a newly developed Monte Carlo generator which simulates azimuthal asymmetries arising from intrinsic quark momenta. A novel approach for the estimate of the acceptance effects is presented at the end of the chapter. The extracted Collins and Sivers moments, corrected for the acceptance effects, are shown in Chapter 7. The discussion and the interpretation of the results, together with a preliminary extraction of the Sivers polarization, are also treated in Chapter 7. Final conclusions and a brief summary are reported in Chapter 8. (orig.)
Diffractive production in deep inelastic scattering and hadronic interactions
International Nuclear Information System (INIS)
Kaidalow, A.
1996-01-01
Diffractive processes in hadronic interactions are considered and important role of multi-Pomeron exchanges is emphasized. It is argued that in deep inelastic scattering these contributions are much less important and energy behavior of structure functions at Q 2 ≥ 1 GeV 2 is determined mostly by bare Pomeron intercept. It is shown that the model based on these ideas is in a perfect agreement with recent results from HERA. Diffractive production in DIS is discussed and theoretical predictions for the structure function of the Pomeron are compared with experimental observations. It is emphasized that both quarks and gluons in the Pomeron have hard distributions. Shadowing corrections to structure function of a nucleon are calculated and found to small in the region of x > 10 -4 . A good agreement with experimental data on the shadowing of structure functions of nuclei is obtained. Energy dependence for the cross sections of the diffractive production of vector mesons by real and virtual photons is calculated in the same approach and is found to be in an excellent agreement with experiment. (author)
International Nuclear Information System (INIS)
Chow, P.; Xiao, Y. M.; Rod, E.; Bai, L. G.; Shen, G. Y.; Sinogeikin, S.; Gao, N.; Ding, Y.; Mao, H.-K.
2015-01-01
The double-differential scattering cross-section for the inelastic scattering of x-ray photons from electrons is typically orders of magnitude smaller than that of elastic scattering. With samples 10-100 μm size in a diamond anvil cell at high pressure, the inelastic x-ray scattering signals from samples are obscured by scattering from the cell gasket and diamonds. One major experimental challenge is to measure a clean inelastic signal from the sample in a diamond anvil cell. Among the many strategies for doing this, we have used a focusing polycapillary as a post-sample optic, which allows essentially only scattered photons within its input field of view to be refocused and transmitted to the backscattering energy analyzer of the spectrometer. We describe the modified inelastic x-ray spectrometer and its alignment. With a focused incident beam which matches the sample size and the field of view of polycapillary, at relatively large scattering angles, the polycapillary effectively reduces parasitic scattering from the diamond anvil cell gasket and diamonds. Raw data collected from the helium exciton measured by x-ray inelastic scattering at high pressure using the polycapillary method are compared with those using conventional post-sample slit collimation
Progress on calculation of direct inelastic scattering cross section of neutron
Energy Technology Data Exchange (ETDEWEB)
Zhenpeng, Chen [Qinghua Univ., Beijing, BJ (China). Dept. of Physics
1996-06-01
For n+ {sup 238}U inelastic scattering cross, there exist discrepancies among the available evaluations in various libraries. This is partly duo to the difference of direct inelastic scattering cross section calculated with coupled channel optical model (CCOM). The research on the level frame used in CCOM calculation, the research on used parameters of spherical optical model in CCOM calculation and the research on the amplitude of octupole phonon {beta}{sub 3} were presented. (2 figs.).
Observation of events with an energetic forward neutron in deep inelastic scattering at HERA
International Nuclear Information System (INIS)
Derrick, M.; Krakauer, D.; Magill, S.
1996-05-01
In deep inelastic neutral current scattering of positrons and protons at the center of mass energy of 300 GeV, we observe, with the ZEUS detector, events with a high energy neutron produced at very small scattering angles with respect to the proton direction. The events constitute a fixed fraction of the deep inelastic, neutral current event sample independent of Bjorken x and Q 2 in the range 3.10 -4 BJ -3 and 10 2 2 . (orig.)
International Nuclear Information System (INIS)
Zagatto, V.A.B.; Oliveira, J.R.B.; Pereira, D.; Allegro, P.R.P.; Chamon, L.C.; Cybulska, E.W.; Medina, N.H.; Ribas, R.V.; Rossi Junior, E.S.; Seale, W.A.; Silva, C.P.; Gasques, L.; Toufen, D.L.; Silveira, M.A.G.; Zahn, G.S.; Genezini, F.A.; Shorto, J.M.B.; Lubian, J.; Linares, R.
2011-01-01
Full text: The following work aims to obtain experimental reaction cross sections of inelastic excitation and transfer to excited states reactions (both measured by gamma-particle coincidences) and its comparison with theoretical predictions based in a new model based on the Sao Paulo Potential. The measurements were made at the Pelletron accelerator laboratory of the University of Sao Paulo with the Saci-Perere spectrometer, which consists of 4 a GeHP Compton suppressed gamma detectors and a 4 π charged particle ancillary system with 11ΔΕ - Ε plastic phoswich scintillators (further details about the experimental procedure may be found in: J.R.B. Oliveira et al., XVIII International School on Nuclear Physics, Neutron Physics and Applications (2009). Theoretical angular distribution calculations (using code GOSIA) were performed with a new model based on the Sao Paulo Potential, specifically developed for the inclusion of dissipative processes like deep-inelastic collisions (DIC) considering the Coulomb plus nuclear potential (with the aid of code FRESCO). The experimental cross sections were obtained such as described in J.R.B. Oliveira et al however, in this work, the particle-gamma angular correlations and the vacuum de-alignment effects (caused by hyperfine interaction) were finally added for the 110 Pd inelastic reaction and for the 112 Pd transfer reaction. For these purposes a new code has been developed to assist in the data analysis. We take into account the particle-gamma angular correlations using the scattering amplitudes given by FRESCO, considering the vacuum de-alignment effects as proposed by A. Abragam and R. V. Pound, Phys. Rev. 92, 943 (1953). The theoretical predictions still consider 2 different types of Sao Paulo Potential, the first one has a multiplying factor equals to 1.0 in the real part of the potential and the second considers this factor equals to 0.6, as proposed in D. Pereira, J. Lubian, J.R.B. Oliveira, D.P. de Sousa and L
Medium energy inelastic proton-nucleus scattering with spin dependent NN interaction
International Nuclear Information System (INIS)
Ahmad, I.; Auger, J.P.
1981-12-01
The previously proposed effective profile expansion method for the Glauber multiple scattering model calculation has been extended to the case of proton-nucleus inelastic scattering with spin dependent NN interaction. Using the method which turns out to be computationally simple and of relatively wider applicability, a study of sensitivity of proton-nucleus inelastic scattering calculation to the sometimes neglected momentum transfer dependence of the NN scattering amplitude has been made. We find that the calculated polarization is particularly sensitive in this respect. (author)
Sensitivity of the elastic scattering matrix elements to the range of the inelastic potentials
International Nuclear Information System (INIS)
Rawitscher, G.H.; Rasoanaivo, R.Y.
1983-01-01
The solution to a system of coupled equations is examined with regard to the effect of the long range part of the inelastic potentials upon the elastic phase shifts. It is found that those parts of the inelastic potentials which occur beyond the range of the elastic to inelastic transition potentials affect the elastic phase shifts in only a minor way. The proof is given theoretically by means of a Green's function formulation which includes the long range part of the inelastic potentials perturbatively. When applied to the calculation of the effect of breakup on the deuteron-nucleus elastic scattering, the argument confirms the finding that errors in the long range part of the potentials in the breakup channels do not sensitively affect the elastic deuteron scattering cross section. This result explains why the elastic scattering is not very sensitive to the choice of the discretization procedure of the breakup space
Diffraction and absorption of inelastically scattered electrons for K-shell ionization
International Nuclear Information System (INIS)
Josefsson, T.W.; Allen, L.J.
1995-01-01
An expression for the nonlocal inelastic scattering cross section for fast electrons in a crystalline environment, which explicitly includes diffraction as well as absorption for the inelastically scattered electrons, is used to carry out realistic calculations of K-shell electron energy loss spectroscopy (EELS) and energy dispersive x-ray (EDX) analysis cross sections. The calculations demonstrate quantitatively why, in EDX spectroscopy, integration over the dynamical states of the inelastically scattered electron averages in such a way that an effective plane wave representation of the scattered electrons is a good approximation. This is only the case for large enough acceptance angles of the detector in an EELS experiment. For EELS with smaller detector apertures, explicit integration over the dynamical final states is necessary and inclusion of absorption for the scattered electrons is important, particularly for thicker crystals. 50 refs., 7 figs
International Nuclear Information System (INIS)
Nkoma, J.S.
1982-08-01
A quantum-mechanical theory for the inelastic scattering of slow electrons (ISSE) by surface excitations in a thin film is developed. The scattered wave function inside the thin film is obtained by solving the inhomogeneous Schroedinger equation, and it is found to contain terms which show that the back scattered intensity is smaller than the forward scattered intensity. A scattering cross-section for forward scattering is derived and is found to be dependent on transmission factors, wavevectors and fluctuations of the scattering potential. (author)
Gamma camera scatter suppression unit WAM
International Nuclear Information System (INIS)
Kishi, Haruo; Shibahara, Noriyuki; Hirose, Yoshiharu; Shimonishi, Yoshihiro; Oumura, Masahiro; Ikeda, Hozumi; Hamada, Kunio; Ochi, Hironobu; Itagane, Hiroshi.
1990-01-01
In gamma camera imaging, scattered radiation is one of big factors to decrease image contrast. Simply, scatter suppression makes signal to noise ratio larger, but it makes statistics error because of radionuclide injection limit to the human body. EWA is a new method that suppresses scattered radiation and improves image contrast. In this article, WAM which is commercialized EWA method by Siemens Gammasonics Inc. is presented. (author)
Diffractive open charm production in deep-inelastic scattering and photoproduction at HERA
Energy Technology Data Exchange (ETDEWEB)
Aktas, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Andreev, V. [Lebedev Physical Institute, Moscow (Russian Federation); Anthonis, T. [Inter-Univ. Institute for High Energies ULB-VUB, Brussels (Belgium)]|[Antwerp Univ. (BE)] (and others)
2006-10-15
Measurements are presented of diffractive open charm production at HERA. The event topology is given by ep{yields}eXY where the system X contains at least one charmed hadron and is well separated by a large rapidity gap from a leading low-mass proton remnant system Y. Two analysis techniques are used for the cross section measurements. In the first, the charm quark is tagged by the reconstruction of a D{sup *{+-}}(2010) meson. This technique is used in deep-inelastic scattering (DIS) and photoproduction ({gamma}p). In the second, a method based on the displacement of tracks from the primary vertex is used to measure the open charm contribution to the inclusive diffractive cross section in DIS. The measurements are compared with next-to-leading order QCD predictions based on diffractive parton density functions previously obtained from a QCD analysis of the inclusive diffractive cross section at H1. A good agreement is observed in the full kinematic regime, which supports the validity of QCD factorization for open charm production in diffractive DIS and {gamma}p. (orig.)
Inclusive Deep Inelastic Scattering at High Q2 with Longitudinally Polarised Lepton Beams at HERA
Aaron, F.D.; Andreev, V.; Backovic, S.; Baghdasaryan, A.; Baghdasaryan, S.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Belov, P.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Bruncko, D.; Bunyatyan, A.; Bylinkin, A.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Ceccopieri, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cvach, J.; Dainton, J.B.; Daum, K.; Delcourt, B.; Delvax, J.; De Wolf, E.A.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Egli, S.; Eliseev, A.; Elsen, E.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Habib, S.; Haidt, D.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hladky, J.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jonsson, L.; Jung, H.; Kapichine, M.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kogler, R.; Kostka, P.; Kramer, M.; Kretzschmar, J.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Lopez-Fernandez, R.; Lubimov, V.; Malinovski, E.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nowak, K.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Palichik, V.; Pandurovic, M.; Pascaud, C.; Patel, G.D.; Perez, E.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sykora, T.; Thompson, P.D.; Tran, T.H.; Traynor, D.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zlebcik, R.; Zohrabyan, H.; Zomer, F.
2012-01-01
Inclusive e\\pmp single and double differential cross sections for neutral and charged current deep inelastic scattering processes are measured with the H1 detector at HERA. The data were taken at a centre-of-mass energy of \\surds = 319GeV with a total integrated luminosity of 333.7 pb-1 shared between two lepton beam charges and two longitudinal lepton polarisation modes. The differential cross sections are measured in the range of negative fourmomentum transfer squared, Q2, between 60 and 50 000GeV2, and Bjorken x between 0.0008 and 0.65. The measurements are combined with earlier published unpolarised H1 data to improve statistical precision and used to determine the structure function xF_3^gammaZ. A measurement of the neutral current parity violating structure function F_2^gammaZ is presented for the first time. The polarisation dependence of the charged current total cross section is also measured. The new measurements are well described by a next-to-leading order QCD fit based on all published H1 inclusi...
Measurement of isolated photons accompained by jets in deep inelastic ep scattering
Energy Technology Data Exchange (ETDEWEB)
Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Abt, I. [Max Planck Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (PL). Faculty of Physics and Applied Computer Science] (and others)
2012-06-15
The production of isolated high-energy photons accompanied by jets has been measured in deep inelastic ep scattering with the ZEUS detector at HERA, using an integrated luminosity of 326 pb{sup -1}. Measurements were made for exchanged photon virtualities, Q{sup 2}, in the range 10 to 350 GeV{sup 2}. The photons were measured in the transverse-energy and pseudorapidity ranges 4
Angular dependence of resonant inelastic x-ray scattering : A spherical tensor expansion
Juhin, Amelie; Brouder, Christian; de Groot, Frank
A spherical tensor expansion is carried out to express the resonant inelastic scattering cross-section as a sum of products of fundamental spectra with tensors involving wavevectors and polarization vectors of incident and scattered photons. The expression presented in this paper differs from that
Coupling effects of giant resonances on the elastic and inelastic scattering of fast neutrons
International Nuclear Information System (INIS)
Delaroche, J.P.; Tornow, W.
1983-01-01
While the inelastic scattering of high energy hadrons is commonly used for the study of giant resonances in nuclei, it is just recently that one has thought to take into account these states in the analysis of proton scattering at low incident energies (E 0 and S 1 . (Auth.)
Macroscopic folded form factors for 12C + 12C inelastic scattering
International Nuclear Information System (INIS)
Rickertsen, L.D.; Satchler, G.R.; Stokstad, R.G.; Wieland, R.M.
1976-01-01
The angular distributions for the scattering of carbon-12 from carbon-12 at 117.1 MeV are shown as is also the result of coupled-channel calculations for the elastic and inelastic scattering using these folded form factors
Selected topics of deep inelastic scattering from the sixties to HERA
International Nuclear Information System (INIS)
Gayler, J.
1995-07-01
This talk reports on important steps in deep inelastic scattering, starting in the sixties before scaling violations were observed, and ending with most recent results from HERA. The selection is rather subjective and no systematic review was attempted. The emphasis is on structure functions, QCD effects in the hadronic final states and electroweak effects in electron scattering. (orig.)
Elastic scattering of gamma radiation in solids
International Nuclear Information System (INIS)
Goncalves, O.D.
1987-01-01
The elastic scattering of gamma rays in solids is studied: Rayleigh scattering as well as Bragg scattering in Laue geometries. We measured Rayleigh cross sections for U, Pb, Pt, W, Sn, Ag, Mo, Cd, Zn, and Cu with gamma energies ranging from 60 to 660 KeV and angles between 5 0 and 140 0 . The experimental data are compared with form factor theories and second order perturbation theories and the limits of validity of both are established. In the 60 KeV experiment, a competition between Rayleigh and Bragg effects is found in the region of low momentum transfer. The Bragg experiments were performed using the gamma ray diffractometer from the Hahn-Meitner Institut (Berlin) with gammas of 317 KeV and angles up to 2 0 . In particular, we studied the effect of annealing in nearly perfect Czochralski Silicon crystals with high perfection in the crystallographic structure. The results are compared with Kinematical and Dynamical theories. (author)
Resonant inelastic X-ray scattering of liquid water
International Nuclear Information System (INIS)
Nilsson, Anders; Tokushima, Takashi; Horikawa, Yuka; Harada, Yoshihisa; Ljungberg, Mathias P.; Shin, Shik; Pettersson, Lars G.M.
2013-01-01
Highlights: ► Two peaks are observed in the lone pair region of the XES spectrum of water assigned to tetrahedral and distorted hydrogen bonding configurations. ► The isotope effect observed as different relative peak heights is due to spectral line shape differences. ► The two different hydrogen bonding environments can be related to local structures mimicking either low density water or high density water. -- Abstract: We review recent studies using resonant inelastic X-ray scattering (RIXS) or also here denoted X-ray emission spectroscopy (XES) on liquid water and the assignment of the two sharp peaks in the lone-pair region. Using the excitation energy dependence we connect the two peaks to specific features in the X-ray absorption (XAS) spectrum which have independently been assigned to molecules in tetrahedral or distorted configurations. The polarization dependence shows that both peaks are of 1b 1 origin supporting an interpretation in terms of two structural species, tetrahedral or disordered, which is furthermore consistent with the temperature-dependence of the two peaks. We discuss effects of life-time vibrational interference and how this affects the two components differently and also leads to differences in the relative peak heights for H 2 O and D 2 O. We show furthermore that the inherent structure in molecular dynamics simulations contain the structural bimodality suggested by XES, but this is smeared out in the real structure when temperature is included. We present a discussion around alternative interpretations suggesting that the origin of the two peaks is related to ultrafast dissociation and show evidence that such a model is inconsistent with several experimental observations and theoretical concepts. We conclude that the peaks reflect a temperature-dependent balance in fluctuations between tetrahedral and disordered structures in the liquid. This is well-aligned with theories of water under supercooled conditions and higher pressures
Resonant inelastic X-ray scattering of liquid water
Energy Technology Data Exchange (ETDEWEB)
Nilsson, Anders, E-mail: nilsson@slac.stanford.edu [SUNCAT Ctr Interface Sci and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 (Sweden); Tokushima, Takashi [RIKEN/Spring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); Horikawa, Yuka [RIKEN/Spring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Harada, Yoshihisa [RIKEN/Spring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Synchrotron Radiation Research Organization, The University of Tokyo, Sayo-cho, Sayo, Hyogo 679-5165 (Japan); Ljungberg, Mathias P. [Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 (Sweden); Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193 Bellaterra (Spain); Shin, Shik [RIKEN/Spring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Synchrotron Radiation Research Organization, The University of Tokyo, Sayo-cho, Sayo, Hyogo 679-5165 (Japan); Pettersson, Lars G.M. [Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 (Sweden)
2013-06-15
Highlights: ► Two peaks are observed in the lone pair region of the XES spectrum of water assigned to tetrahedral and distorted hydrogen bonding configurations. ► The isotope effect observed as different relative peak heights is due to spectral line shape differences. ► The two different hydrogen bonding environments can be related to local structures mimicking either low density water or high density water. -- Abstract: We review recent studies using resonant inelastic X-ray scattering (RIXS) or also here denoted X-ray emission spectroscopy (XES) on liquid water and the assignment of the two sharp peaks in the lone-pair region. Using the excitation energy dependence we connect the two peaks to specific features in the X-ray absorption (XAS) spectrum which have independently been assigned to molecules in tetrahedral or distorted configurations. The polarization dependence shows that both peaks are of 1b{sub 1} origin supporting an interpretation in terms of two structural species, tetrahedral or disordered, which is furthermore consistent with the temperature-dependence of the two peaks. We discuss effects of life-time vibrational interference and how this affects the two components differently and also leads to differences in the relative peak heights for H{sub 2}O and D{sub 2}O. We show furthermore that the inherent structure in molecular dynamics simulations contain the structural bimodality suggested by XES, but this is smeared out in the real structure when temperature is included. We present a discussion around alternative interpretations suggesting that the origin of the two peaks is related to ultrafast dissociation and show evidence that such a model is inconsistent with several experimental observations and theoretical concepts. We conclude that the peaks reflect a temperature-dependent balance in fluctuations between tetrahedral and disordered structures in the liquid. This is well-aligned with theories of water under supercooled conditions and
International Nuclear Information System (INIS)
Kunwar, B.; Bhadra, A.; Gupta, S.K. Sen
2014-01-01
A preliminary, and perhaps the first, study of astrophysical applications of Delbrück scattering in a gamma-ray emitting celestial object like a gamma-ray burst (GRB) has been made. At energies≥100 MeV the elastic scattering of gamma-ray photons off the molecular dust surrounding the GRB site is dominated by Delbrück scattering. Expressions for Delbrück-scattered gamma-ray flux as a function of time has been obtained for a few selected energies by assuming a simple model of GRB. These are compared with Compton-scattered flux. At certain situations, interestingly, the former is found to exceed the latter for the first few milliseconds of the burst. The issue of detectability of Delbrück-scattered gamma-ray echo from the cloud of a GRB is discussed. Although it is observed that the detection of such an echo is not within the capability of the presently operating gamma-ray missions such as Fermi LAT, a rough estimate shows that one can be optimistic that future generation gamma-ray telescopes might be able to see such photons' contribution to the total flux. - Highlights: ► Astrophysical application of Delbrück scattering in a GRB has been made. ► Initially, the Delbrück scattering may dominate the scattering of GeV γ-rays. ► The issue of detectability of such radiations is discussed
International Nuclear Information System (INIS)
Meinders, Melanie; Schnabel, Roman
2015-01-01
Inelastic back-scattering of stray light is a long-standing and fundamental problem in high-sensitivity interferometric measurements and a potential limitation for advanced gravitational-wave (GW) detectors. The emerging parasitic interferences cannot be distinguished from a scientific signal via conventional single readout. In this work, we propose the subtraction of inelastic back-scatter signals by employing dual homodyne detection on the output light, and demonstrate it for a table-top Michelson interferometer. The additional readout contains solely parasitic signals and is used to model the scatter source. Subtraction of the scatter signal reduces the noise spectral density and thus improves the measurement sensitivity. Our scheme is qualitatively different from the previously demonstrated vetoing of scatter signals and opens a new path for improving the sensitivity of future GW detectors and other back-scatter limited devices. (paper)
Path integral theory and deep inelastic scattering of nuclei
International Nuclear Information System (INIS)
Neto, J.L.
1981-10-01
A formalism, based on Feynman's path integral, is developed and used in the theory of deep inelastic collisions of nuclei. Having shown how to express the propagator of the Wigner function of an isolated system as a (double) path integral in phase space, random processes are considered and the influence functional in interacting systems is discussed. A semi-classical description for the reduced Wigner and a generalized Langevin equation are given. Finally, the formalism is used in a random matrix model for deep inelastic collisions. (U.K.)
Fingerprints of orbital physics in magnetic resonant inelastic X-ray scattering
Marra, Pasquale
2012-09-01
Orbital degrees of freedom play a major role in the physics of many strongly correlated transition metal compounds. However, they are still very difficult to access experimentally, in particular by neutron scattering. We propose here how to reveal orbital occupancies of the system ground state by magnetic resonant inelastic x-ray scattering (RIXS). This is possible because, unlike in neutron scattering, the intensity of the magnetic excitations in RIXS depends essentially on the symmetry of the orbitals where the spins are in.
International Nuclear Information System (INIS)
Dawidowski, J.; Rodríguez Palomino, L.A.; Márquez Damián, J.I.; Blostein, J.J.; Cuello, G.J.
2016-01-01
Highlights: • Effective temperatures of atoms can be determined by the DINS technique. • This is the first time that such application of this experimental technique is made. • This technique is able to measure the known cross sections of the atoms. • No anomalous cross section was found, at variance with Dreissmann’s et al. claims. - Abstract: The present work shows a series of results of Deep Inelastic Neutron Scattering (DINS) experiments on light and heavy water mixtures performed at the spectrometer VESUVIO (Rutherford Appleton Laboratory, UK) employing an analysis method based on the information provided by individual detectors in forward and backward scattering positions. We investigated the effective temperatures of the different atoms composing the samples, a magnitude of considerable interest for Nuclear Engineering. The peak intensities and their relation with the bound-atom cross sections is analyzed, showing a good agreement with tabulated values which supports the use of this technique as non-destructive mass spectrometry. Previous results in the determination of scattering cross sections by this technique (known in the literature) that were at variance with the present findings are commented.
International Nuclear Information System (INIS)
Kwiecinski, J.
1994-05-01
The basic QCD expectations concerning the deep inelastic scattering at low x where x is the Bjorken scaling variable are reviewed. This includes discussion of the BFKL equation which sums the leading powers of ln (1/x) and the shadowing effects. Phenomenological implications of the theoretical expectations for the deep inelastic lepton-hadron scattering in the small x region which has become accessible at the HERA ep collider are described. We give predictions for structure functions F 2 which are based on the BFKL equation and the high energy k T factorization theorem. These predictions are compared with the results of structure function analysis based on Altarelli-Parisi evolution equations and confronted with the recent data from HERA. We discuss jet production and transverse energy flow in deep inelastic lepton scattering as the measurements which may be particularly suitable for revealing the QCD dynamics at small x. (author). 37 refs, 4 figs
Deep inelastic lepton-nucleus scattering from the light-cone quantum field theory
International Nuclear Information System (INIS)
Boqiang Ma; Ji Sun
1990-01-01
We show that for deep inelastic lepton-nucleus scattering, the conditions which validate the impulse approximation are hardly satisfied when using ordinary instant form dynamics in the rest frame of the nucleus, whereas they are well satisfied when using instant form dynamics in the infinite-momentum frame, or using light-front form dynamics in an ordinary frame. Therefore a reliable theoretical treatment of deep inelastic lepton-nucleus scattering should be performed in the time-ordered perturbation theory in the infinite-momentum frame, or its equivalent, the light-cone perturbation theory in an ordinary frame. To this end, we extend the light-cone quantum field theory to the baryon-meson field to establish a relativistic composite model of nuclei. We then apply the impulse approximation to deep inelastic lepton-nucleus scattering in this model.(author)
Spin flip in inelastic scattering of protons on 28Si nuclei
International Nuclear Information System (INIS)
Wang Syn Chan; Komsan, M.N.Kh.; Osetinskij, G.M.; Golubev, S.L.; Kurepin, A.B.; Likhosherstov, V.N.
1975-01-01
We measured the energy and angular dependences of the spin-flip probability and of the differential cross section for inelastic scattering of protons in the resonance region of the reaction 28 Si(p,p') 23 Si* (2 + , 1.78 MeV) at E sub(p) = 3.095 and 3.34 MeV. The energy dependence of the spin-flip probability was found to have a resonance character. The angular distribution of the inelastic scattering and of the spin-flip probability is asymmetrical with respect to 90 deg in the c.m.s
Value of αs from deep-inelastic-scattering data
International Nuclear Information System (INIS)
Alekhin, S.I.
2003-01-01
We report the value of α s obtained from QCD analysis of existing data on deep-inelastic scattering of charged leptons off proton and deuterium and estimate its theoretical uncertainties with particular attention paid to impact of the high-twist contribution to the deep-inelastic-scattering structure functions. Taking into account the major uncertainties the value αNNLO s (M Z )=0.1143±0.0014(exp.)±0.0013(theor.) is obtained. An extrapolation of the LO-NLO-NNLO results to the higher orders makes it possible to estimate αN 3 LO s (M Z )∼0.113. (author)
High energy resolution inelastic x-ray scattering at the SRI-CAT
International Nuclear Information System (INIS)
Macrander, A.T.
1996-08-01
This report is a combination of vugraphs and two papers. The vugraphs give information on the beamline at the APS for IXS and the science addressable by IXS. They also cover the 10 milli-eV resolution spectrometer and the 200 milli-eV resolution spectrometer. The first paper covers the performance of the focusing Ge(444) backscattering analyzers for the inelastic x-ray scattering. The second paper discusses inelastic x-ray scattering from TiC and Ti single crystals
A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves
International Nuclear Information System (INIS)
Erofeev, V. I.
2015-01-01
The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves in a weakly turbulent inhomogeneous plasma is developed with consideration of possible changes in wave polarization. In addition, a new formula for wave drift in spatial positions and wave vectors is derived. New scenarios of the respective wave drift and inelastic scattering are compared with the previous visions. The results indicate the need for further revision of the traditional understanding of nonlinear plasma phenomena
Deep inelastic scattering of electrons on 12C in the δ(1236) region
International Nuclear Information System (INIS)
Meziani, Zein-Eddine.
1982-06-01
An experiment involving inclusive deep inelastic scattering of 700 MeV electrons on 12 C is presented. A broad energy transfer region (20 to 500 MeV) was examined enabling various different reaction mechanisms occurring in the nucleus to be studied. Attention was given to electroproduction processes in the δ(1236) resonance region. Measurements of deep inelastic scattering cross sections and radiative correction problems are discussed. A theoretical treatment of the cross section in the framework of a virtual photon exchange approximation is presented [fr
Nucleon-nucleus inelastic scattering using a relativistic impulse approximation with exchange
International Nuclear Information System (INIS)
Rost, E.; Shepard, J.R.
1987-01-01
We formulate a microscopic relativistic treatment of nucleon-nucleus inelastic scattering in a distorted wave impulse approximation. The interaction is taken from a Lorentz invariant formulation with explicit direct and exchange terms constrained by fitting to experimental NN amplitudes. This procedure allows us to apply the theory in the lower range of intermediate energies (100--400 MeV) where exchange effects are likely to be important. Application to inelastic scattering uses this interaction for both the distorting potentials and the transition interaction. Effects of explicit exchange are studied and a preliminary analysis of /sup 12/C(p,p') data is presented
Inelastic scattering of polarized protons and nuclear deformation in 16O, 18O
International Nuclear Information System (INIS)
de Swiniarski, R.; Pham, D.L.
1984-01-01
Many data concerning inelastic scattering of polarized protons at intermediate energy are now available. We have analyzed some of these data coming from LAMPF at 800 MeV for 16 O (6) and 18 O (7) in order to further study nuclear deformations for these light nuclei. Analyzing powers (A(theta)) and cross-sections ((σ/theta)) for elastic and inelastic scattering of 800 MeV polarized protons from 16 O and 18 O have been analyzed in the coupled-channels (CC) collective model using the code ECIS from Raynal
Inelastic scattering in a local polaron model with quadratic coupling to bosons
DEFF Research Database (Denmark)
Olsen, Thomas
2009-01-01
We calculate the inelastic scattering probabilities in the wide band limit of a local polaron model with quadratic coupling to bosons. The central object is a two-particle Green's function which is calculated exactly using a purely algebraic approach. Compared with the usual linear interaction term...... a quadratic interaction term gives higher probabilities for inelastic scattering involving a large number of bosons. As an application we consider the problem hot-electron-mediated energy transfer at surfaces and use the delta self-consistent field extension of density-functional theory to calculate...
Partonic transverse motion in unpolarized semi-inclusive deep inelastic scattering processes
International Nuclear Information System (INIS)
Boglione, M.; Melis, S.; Prokudin, A.
2011-01-01
We analyze the role of partonic transverse motion in unpolarized semi-inclusive deep inelastic scattering processes. Imposing appropriate kinematical conditions, we find some constraints which fix an upper limit to the range of allowed k perpendicular values. We show that, applying these additional requirements on the partonic kinematics, we obtain different results with respect to the usual phenomenological approach based on the Gaussian smearing with analytical integration over an unlimited range of k perpendicular values. These variations are particularly interesting for some observables, like the h > azimuthal modulation of the unpolarized semi-inclusive deep inelastic scattering cross section or the average transverse momentum of the final, detected hadron.
Adams, D; Adeva, B; Akdogan, T; Arik, E; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin, Dimitri Yuri; Bardin, G; Baum, G; Berglund, P; Betev, L; Bird, I G; Birsa, R; Björkholm, P; Bonner, B E; De Botton, N R; Boutemeur, M; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Frois, Bernard; Gallas, A; Garzón, J A; Gaussiran, T; Giorgi, M A; von Goeler, E; Gómez, F; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Kalinovskaya, L V; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kukhtin, V V; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Van Middelkoop, G; Miller, D; Mori, K; Moromisato, J H; Nagaitsev, A P; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Parks, D P; Perrot-Kunne, F; Peshekhonov, V D; Piegaia, R; Pinsky, L; Platchkov, S K; Pló, M; Polec, J; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Pussieux, T; Pyrlik, J; Rädel, G; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, Ewa; Rosado, A; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schüler, K P; Seitz, R; Semertzidis, Y K; Sever, F; Shanahan, P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Steigler, U; Stuhrmann, H B; Szleper, M; Teichert, K M; Tessarotto, F; Tlaczala, W; Trentalange, S; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Weinstein, R; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Yañez, A; Ylöstalo, J; Zanetti, A M; Zaremba, K; Zhao, J
1997-01-01
We present a new measurement of the spin-dependent structure function $g_{1}^{\\rm d}$ of the deuteron from deep inelastic scattering of 190 GeV polarized muons on polarized deuterons. The results are combined with our previous measurements of $g_{1}^{\\rm d}$. A perturbative QCD evolution in next-to-leading order is used to compute $g_{1}^{\\rm d}(x)$ at a constant $Q^{2}$. At $Q^{2} = 10$ GeV$^{2}$, we obtain a first moment $\\Gamma_{1}^{\\rm d} = \\int_{0}^{1} g_{1}^{\\rm d}{\\rm d}x = 0.041 \\pm 0.008$, a flavour-singlet axial charge of the nucleon $a_{0} = 0.30 \\pm 0.08$, and an axial charge of the strange quark $a_{s} = -0.09 \\pm 0.03$. Using our earlier determination of $\\Gamma_{1}^{\\rm p}$, we obtain $\\Gamma_1^{\\rm p} - \\Gamma_1^{\\rm n} = 0.183 \\pm 0.035$ at $Q^2 = 10\\,\\mbox{GeV}^2$. This result is in agreement with the Bjorken sum rule which predicts $\\Gamma_1^{\\rm p} - \\Gamma_1^{\\rm n} = 0.186 \\pm 0.002$ at the same $Q^2$.
State-to-state inelastic and reactive molecular beam scattering from surfaces
International Nuclear Information System (INIS)
Lykke, K.R.; Kay, B.D.
1990-01-01
Resonantly enhanced multiphoton ionization (REMPI) laser spectroscopic and molecular beam-surface scattering techniques are coupled to study inelastic and reactive gas-surface scattering with state-to-state specificity. Rotational, vibrational, translational and angular distributions have been measured for the inelastic scattering of HCI and N 2 from Au(111). In both cases the scattering is direct-inelastic in nature and exhibits interesting dynamical features such as rotational rainbow scattering. In an effort to elucidate the dynamics of chemical reactions occurring on surfaces we have extended our quantum-resolved scattering studies to include the reactive scattering of a beam of gas phase H-atoms from a chlorinated metal surface M-CI. The nascent rotational and vibrational distributions of the HCI product are determined using REMPI. The thermochemistry for this reaction on Au indicates that the product formation proceeding through chemisorbed H-atoms is slightly endothermic while direct reaction of a has phase H-atom with M-CI is highly exothermic (ca. 50 kcal/mole). Details of the experimental techniques, results and implications regarding the scattering dynamics are discussed. 55 ref., 8 fig
Deep-inelastic scattering in 124,136Xe+58,64Ni at energies near the Coulomb barrier
International Nuclear Information System (INIS)
Gehring, J.; Back, B.B.; Chan, K.C.; Freer, M.; Henderson, D.; Jiang, C.L.; Rehm, K.E.; Schiffer, J.P.; Wolanski, M.; Wuosmaa, A.H.; Gehring, J.; Wolanski, M.
1997-01-01
Cross sections, angular distributions, and mass distributions have been measured for deep-inelastic scattering in 124 Xe+ 58 Ni and 136 Xe+ 64 Ni at laboratory energies in the vicinity of the Coulomb barrier. The mass distributions show distinct components due to deep-inelastic and fissionlike processes. The strength of deep-inelastic scattering is similar in the two systems measured and comparable to previous measurements in 58 Ni+ 112,124 Sn. copyright 1997 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Wuosmaa, A.H.; Wiedenhoever, I.; Caggiano, J.; Carpenter, M.P.; Devlin, M.; Heinz, A.; Janssens, R.V.F.; Kondev, F.; Lauritsen, T.; Sarantites, D.G.; Sobotka, L.G.; Battacharyya, P
2003-10-09
Particle gamma-ray angular correlation measurements have been used to study the spin alignment and magnetic-substate population parameters for the 2{sup +}{sub 1} (4.443 MeV) state in {sup 12}C, populated in the {sup 12}C({sup 12}C,{sup 12}C[0{sup +}{sub 2}]){sup 12}C(2{sup +}{sub 1}) inelastic scattering reaction in the vicinity of a prominent, narrow peak in the scattering excitation function. The data show a strong alignment of the spin with the orbital angular momentum, and suggest that the cross section peak corresponds to a spin 14{sup +} resonance at E{sub c.m.}=28.0 MeV. This energy is close to that where a strong peak is also observed in the 0{sup +}{sub 1}+0{sup +}{sub 2} excitation function. A comparison between the data for these two channels lends some support to recent theoretical calculations of resonance behavior for angular-momentum-mismatched channels in {sup 12}C+{sup 12}C inelastic scattering.
Comparison of the elastic and inelastic scattering between 152Sm + 12C and 148Nd + 16O
International Nuclear Information System (INIS)
Zhao Kui; Lu Xiuqin; Cheng Yehao; Li Qingli; Li Min; Li Zhichang; Guo Jiyu; Li Shuyuan; Zhang Qinghua; Song Xiaobin; Jiang Chenglie
1994-01-01
Angular distributions of elastic and inelastic scattering have been measured for 152 Sm+ 12 C at 63.2 MeV and 148 Nd+ 16 O at 90.9 MeV. An evident interference pattern in the inelastic scattering has been observed for the first time in a strong Coulomb coupling system. (orig.)
DEFF Research Database (Denmark)
Hansen, Flemming Yssing; Bruch, Ludwig Walter
2007-01-01
Conditions likely to lead to enhanced inelastic atomic scattering that creates shear horizontal (SH) and longitudinal acoustic (LA) monolayer phonons are identified, specifically examining the inelastic scattering of He-4 atoms by a monolayer solid of Xe/Pt(111) at incident energies of 2-25 meV. ...
Microscopic study of elastic and inelastic ALPHA-nucleus scattering at medium energies
International Nuclear Information System (INIS)
Dao Tien Khoa; Hoang Si Than; Do Cong Cuong; Ngo Van Luyen; Nguyen Ngoc Quynh; Nguyen Tuan Anh
2007-01-01
Analyses of the inelastic α + 12 C scattering at medium energies have indicated that the strength of the Hoyle state (the isoscalar O 2 + excitation at 7.65 MeV in 12 C) seems to exhaust only 7 to 9% of the monopole energy weighted sum rule (EWSR), compared to about 15% of the EWSR extracted from inelastic electron scattering data. The full monopole transition strength predicted by realistic microscopic α-cluster models of the Hoyle state can be shown to exhaust up to 22% of the EWSR. To explore the missing monopole strength in the inelastic α + 12 C scattering, we have performed a fully microscopic folding model analysis of the inelastic α + 12 C scattering at E lab =104 to 240 MeV using the 3-α resonating group wave function of the Hoyle state obtained by Kamimura, and a complex density-dependent M3Y interaction newly parametrized based on the Brueckner Hartree Fock results for nuclear matter. Our folding model analysis has shown consistently that the missing monopole strength of the Hoyle state is not associated with the uncertainties in the analysis of the α + 12 C scattering, but is most likely due to the short lifetime and weakly bound structure of this state which significantly enhances absorption in the exit α + 12 C * (O 2 + ) channel. (author)
Amplitude correlations for inelastic proton scattering from 48Ti
International Nuclear Information System (INIS)
Chou, B.H.; Mitchell, G.E.; Bilpuch, E.G.; Westerfeldt, C.R.
1981-01-01
The magnitudes and relative signs of inelastic proton channel amplitudes were determined for three decay channels for 45 5/2 + resonances in 49 V. The reduced widths in each channel follow a Porter-Thomas distribution, but extremely large amplitude correlations are observed - for one pair of channel amplitudes the relative sign is positive for 43 of 45 resonances. These results provide the first direct test of the Krieger-Porter reduced width amplitude distribution. (orig.)
Quark antisymmetrization and deep-inelastic scattering. Pt. 2
International Nuclear Information System (INIS)
Meyer, H.; Mulders, P.J.; Spit, W.F.M.
1994-01-01
We consider the effects of quark antisymmetrization for nuclear structure functions. Antisymmetrizing the naive folding of nuclear wave functions in terms of nucleons and the nucleon wave function in terms of quarks, introduces additional contributions. Using the calculated results on quark three-momentum distributions, we calculate the effects on the deep-inelastic structure functions for s- and p-wave nuclei. The effects of quark antisymmetrization turn out to be small. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Crut, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1960-07-01
The aim of this work is to find out what are the properties of the so-called 'anomalous states' in medium weight nuclei. These states preferentially excited in the inelastic scattering of medium energy charged particles have an excitation energy at about 4 MeV for nuclei with Z {<=} 29 and in the range 2-3 MeV for high Z nuclei. From a combination of angular distribution data in the elastic and inelastic scattering of 30 MeV {alpha} particles, and correlation data between inelastic {alpha} particles and deexcitation {gamma} rays, we show that for even-even nuclei, we can attribute spin 3 and parity minus to these 'anomalous states'. This is quite in agreement with the interpretation of these levels suggested by Lane as due to collective octupole oscillations. We give a resume of the theories used in the analysis of the data and a description of the experimental set-up. (author) [French] Le but de cette etude est de determiner les proprietes des niveaux dits 'anormalement excites' lors de la diffusion inelastique des particules chargees de moyenne energie sur des noyaux de masse moyenne et lourde. L'energie de ces niveaux est de l'ordre de 4 MeV pour les noyaux avec Z {<=} 29 et de 2 a 3 MeV pour les noyaux de Z plus eleve. De l'examen des courbes de distribution angulaire des particules {alpha} de 30 MeV diffusees elastiquement et inelastiquement, et de la correlation angulaire entre {alpha} excitant ces niveaux 'anormaux' et {gamma} de desexcitation, on deduit que, dans le cas des pair-pair, on peut attribuer a ces niveaux spin 3 et parite moins. Ceci renforce l'hypothese emise par Lane qui attribue ces niveaux a des oscillations octupolaires de la surface du noyau. On donne un apercu des theories utilisees dans l'analyse des resultats et une description des dispositifs experimentaux. (auteur)
Gamma holography from multiple scattering
International Nuclear Information System (INIS)
Coussement, R.
2007-01-01
Since the introduction of heterodyne methods for synchrotron radiation (Cousesement et al. in Phys. Rev. B 54:16003, 1996; Callens et al. in Phys. Rev. 67:104423, 2003) one observes interferences between two scattering amplitudes; the scattering amplitude of resonant nuclei in a reference sample and the scattering amplitude of nuclei in the sample under investigation. Theses interferences can easily been observed as resonances in velocity spectra when one uses a time integrated method. They can also been observed as quantum beats, when one would use the time differential method. For both methods it is important that one uses a reference sample and therefore both methods disserved the name 'heterodyne methods.' As theses interferences are a product of two scattering amplitudes, the amplitude of a wave scattered form the investigated sample can be known with its phase. But it is assumed that the reference wave is known in advance by a proper choice of the reference sample. At first sight it is very likely that multiple scattering would add more complexity but in this paper it is claimed that on the contrary it provide a bonus, especially for single crystals. It provokes only a line broadening and a line shift of the resonances in the velocity spectra (or a change in the damping and frequency of the quantum beats when the time spectra are registered). Moreover these changes in the line shapes can easily be measured and they provide all the information needed to reconstruct a 3-D picture of the atomic arrangement of resonant nuclei and moreover they distinguish between different hyperfine sites. The method may be more practical for measurements on synchrotron radiation but it does also apply to velocity spectra obtained from resonant scattering with strong sources. The use of radioactive sources suffer from the disadvantage of poorer statistics or much longer accumulation times but they enjoy the advantage to be table-top and at-home experiments. As strong sources are
Resolution function in deep inelastic neutron scattering using the Foil Cycling Technique
International Nuclear Information System (INIS)
Pietropaolo, A.; Andreani, C.; Filabozzi, A.; Pace, E.; Senesi, R.
2007-01-01
New perspectives for epithermal neutron spectroscopy are being opened up by the development of the Resonance Detector (RD) and its use on inverse geometry time of flight (TOF) spectrometers at spallation sources. The most recent result is the Foil Cycling Technique (FCT), which has been developed and applied on the VESUVIO spectrometer operating in the RD configuration. This technique has demonstrated its capability to improve the resolution function of the spectrometer and to provide an effective neutron and gamma background subtraction method. This paper reports a detailed analysis of the line shape of the resolution function in Deep Inelastic Neutron Scattering (DINS) measurements on VESUVIO spectrometer, operating in the RD configuration and employing the FCT. The aim is to provide an analytical approximation for the analyzer energy transfer function, an useful tool for data analysis on VESUVIO. Simulated and experimental results of DINS measurements on a lead sample are compared. The line shape analysis shows that the most reliable analytical approximation of the energy transfer function is a sum of a Gaussian and a power of a Lorentzian. A comparison with the Double Difference Method (DDM) is also discussed. It is shown that the energy resolution improvement for the FCT and the DDM is almost the same, while the counting efficiency is a factor of about 1.4 higher for the FCT
Neutron Inelastic Scattering on 134Xe at En = 5 - 8 MeV
Kidd, Mary; Tornow, Werner; Finch, Sean; Krishichayan, Fnu; Bhike, Megha
2017-09-01
Neutrinoless double-beta decay (0 νββ) studies are both the best way to determine the Majorana nature of the neutrino and determine its effective mass. The two main experiments searching for 0 νββ -decay of 136Xe (Q value = 2457.8 keV) are Kamland-Zen and EXO-200. Though both experiments have enriched 136Xe targets, these targets still contain significant quantities of 134Xe. Recently, a new nuclear level was discovered in 134Xe that decays to the ground state emitting a 2485.7 keV gamma ray. The γ-ray production cross section for this branch was found to be on the order of 10 mb for incident neutron energies of 2.5-4.5 MeV. Here, we have extended the investigation of this level to higher incident neutron energies, and further explore the potential neutron-induced backgrounds on both 134Xe and 136Xe for extended neutron energies. We will report our preliminary results for neutron inelastic scattering on 134Xe in applications to 0 νββ decay searches. NSF PHY-1614348, DE-FG02-97ER41033.
High resolution inelastic gamma-ray measurements with a white neutron source from 1 to 200 MeV
Energy Technology Data Exchange (ETDEWEB)
Nelson, R.O.; Laymon, C.M.; Wender, S.A.
1990-01-01
Measurements of prompt gamma rays following neutron-induced reactions have recently been made at the spallation neutron source at the WNR target area of LAMPF using germanium detectors. These experiments provide extensive excitation function data for inelastic neutron scattering as well as for other reactions such as (n,{alpha}), (n,n{alpha}), (n,p), (n,np), (n,nnp) and (n,xn) for 1 {le} {times} {le} 11. The continuous energy coverage available from 1 MeV to over 200 MeV is ideal for excitation function measurements and greatly extends the energy range for such data. The results of these measurements will provide a database for interpretation of gamma-ray spectra from the planned Mars Observer mission, aid in radiation transport calculations, allow verification of nuclear reaction models, and improve the evaluated neutron reaction data base.
High resolution inelastic gamma-ray measurements with a white neutron source from 1 to 200 MeV
International Nuclear Information System (INIS)
Nelson, R.O.; Laymon, C.M.; Wender, S.A.
1990-01-01
Measurements of prompt gamma rays following neutron-induced reactions have recently been made at the spallation neutron source at the WNR target area of LAMPF using germanium detectors. These experiments provide extensive excitation function data for inelastic neutron scattering as well as for other reactions such as (n,α), (n,nα), (n,p), (n,np), (n,nnp) and (n,xn) for 1 ≤ x ≤ 11. The continuous energy coverage available from 1 MeV to over 200 MeV is ideal for excitation function measurements and greatly extends the energy range for such data. The results of these measurements will provide a database for interpretation of gamma-ray spectra from the planned Mars Observer mission, aid in radiation transport calculations, allow verification of nuclear reaction models, and improve the evaluated neutron reaction data base
Energy Technology Data Exchange (ETDEWEB)
Brown, P J [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1996-11-01
A semi-quantitative analysis is given of some of the ways in which spin-lattice interactions can modify the cross-sections observable in neutron scattering experiments. This analysis is applied to the scattering from the invar alloy Fe{sub 65}Ni{sub 35} using a model in which the magnetic moment is a function of the near neighbour separation. This model has been applied to clarify the results of inelastic scattering experiments carried out on Fe{sub 65}Ni{sub 35} using both polarised and unpolarised neutrons. The extra information obtainable using polarised neutrons as well as the difficulties and limitations of the technique for inelastic scattering are discussed. (author) 8 figs., 14 refs.
Gamma-ray multiplicity moments from deeply inelastic collisions of 86Kr and 144Sm
International Nuclear Information System (INIS)
Christensen, P.R.; Folkmann, F.; Hansen, O.; Nathan, O.; Trautner, N.; Videlbaek, F.; Werf, S.Y.v.d.; Britt, H.C.; Chestnut, R.P.; Freiesleben, H.; Puehlhofer, F.
1978-01-01
First, second, and third moments of gamma-ray multiplicity distributions from deeply inelastic collisions have been measured for the system 8 6Kr on 1 44Sm at 490-MeV Kr energy. The average gamma-ray multiplicities are approx. = 21, independent of reaction angle and fragment charge. The multiplicity distributions are broad, with standard deviations of ν approx. = 10, and they have a negative skewness
Model of homogeneous nucleus. Total and inelastic cross sections of nucleon-nucleus scattering
International Nuclear Information System (INIS)
Ponomarev, L.A.; Smorodinskaya, N.Ya.
1985-01-01
It is shown that the nucleon-nuckleus scattering amplitude at high energy can be easily calculated by generalization of the nucleon-nucleon scattering amplitude and satisfies a simple factorization relation. As distinct from the Glauber model, the suggested approach makes no use of the nucleonic structure of the nucleus and the hadron-nucleus scattering amplitude is not expressed in terms of hadron-nucleon scattering amplitudes. The energy dependence of total and inelastic cross sections is successfully described for a number of nuclei
Single spin asymmetries in semi-inclusive deep inelastic scattering
International Nuclear Information System (INIS)
Mulders, P.J.
1998-01-01
In this talk I want to illustrate the many possibilities for studying the structure of hadrons in hard scattering processes by giving a number of examples involving increasing complexity in the demands for particle polarization, particle identification or polarimetry. In particular the single spin asymmetries will be discussed. The measurements discussed in this talk are restricted to lepton-hadron scattering, but can be found in various other hard processes such as Drell-Yan scattering or e + e - annihilation. (author)
Inelastic scattering of {sup 9}Li and excitation mechanism of its first excited state
Energy Technology Data Exchange (ETDEWEB)
Al Falou, H. [Astronomy and Physics Department, Saint Mary' s University, Halifax, Nova Scotia B3H 3C3 (Canada); TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Kanungo, R., E-mail: ritu@triumf.ca [Astronomy and Physics Department, Saint Mary' s University, Halifax, Nova Scotia B3H 3C3 (Canada); Andreoiu, C.; Cross, D.S. [Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Davids, B.; Djongolov, M. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Gallant, A.T. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics, University of British Columbia, British Columbia V6T 1Z4 (Canada); Galinski, N.; Howell, D. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Kshetri, R.; Niamir, D. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Orce, J.N. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics, University of the Western Cape, P/B X17, Bellville, ZA-7535 (South Africa); Shotter, A.C. [Department of Physics and Astronomy, University of Edinburgh, Edinburgh (United Kingdom); Sjue, S. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Tanihata, I. [Research Center for Nuclear Physics, Osaka University, Mihogaoka, Ibaraki, Osaka 567 0047 (Japan); Thompson, I.J. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Triambak, S. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Uchida, M. [Astronomy and Physics Department, Saint Mary' s University, Halifax, Nova Scotia B3H 3C3 (Canada); Walden, P. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Wiringa, R.B. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)
2013-04-25
The first measurement of inelastic scattering of {sup 9}Li from deuterons at the ISAC facility is reported. The measured angular distribution for the first excited state confirms the nature of excitation to be an E2 transition. The quadrupole deformation parameter is extracted from an analysis of the angular distribution.
Inelastic scattering of 9Li and excitation mechanism of its first excited state
International Nuclear Information System (INIS)
Al Falou, H.; Kanungo, R.; Andreoiu, C.; Cross, D.S.; Davids, B.; Djongolov, M.; Gallant, A.T.; Galinski, N.; Howell, D.; Kshetri, R.; Niamir, D.; Orce, J.N.; Shotter, A.C.; Sjue, S.; Tanihata, I.; Thompson, I.J.; Triambak, S.; Uchida, M.; Walden, P.; Wiringa, R.B.
2013-01-01
The first measurement of inelastic scattering of 9 Li from deuterons at the ISAC facility is reported. The measured angular distribution for the first excited state confirms the nature of excitation to be an E2 transition. The quadrupole deformation parameter is extracted from an analysis of the angular distribution
Coherence effects and average multiplicity in deep inelastic scattering at small χ
International Nuclear Information System (INIS)
Kisselev, A.V.; Petrov, V.A.
1988-01-01
The average hadron multiplicity in deep inelastic scattering at small χ is calculated in this paper. Its relationship with the average multiplicity in e + e - annihilation is established. As shown the results do not depend on a choice of the gauge vector. The important role of coherence effects in both space-like and time-like jet evolution is clarified. (orig.)
Multiplicities of charged kaons from deep-inelastic muon scattering off an isoscalar target
Czech Academy of Sciences Publication Activity Database
Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anfimov, N. V.; Anosov, V.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.; Badelek, B.; Balestra, F.; Ball, M.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bodlák, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Capozza, L.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, A.; Chung, S. U.; Cicuttin, A.; Crespo, M.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O.; Dhara, L.; Donskov, S. V.; Doshita, N.; Dreisbach, Ch.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger jr., M.; Fischer, H.; Franco, C.; Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse-Perdekapm, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; Hamar, G.; von Harrach, D.; Heinsius, F. H.; Heitz, R.; Herrmann, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Yu.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jarý, V.; Joosten, R.; Jörg, P.; Kabuss, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Y.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, R.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, M.; Meyer, W.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nový, J.; Nowak, W. D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Rossiyskaya, N. S.; Ryabchikov, D.; Rybnikov, A.; Rychter, A.; Salač, R.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sawada, H.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Seder, E.; Selyunin, A.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolík, J.; Sozzi, F.; Srnka, Aleš; Steffen, D.; Stolarski, M.; Subrt, O.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Thiel, A.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Vondra, J.; Wallner, S.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Ter Wolbeek, J.; Zaremba, K.; Závada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.; Zink, A.
2017-01-01
Roč. 767, 10 APRIL (2017), s. 133-141 ISSN 0370-2693 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : deep inelastic scattering * kaon multiplicities * quark fragmentation functions * strange quark Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Nuclear physics Impact factor: 4.807, year: 2016
Polarized parton distributions from charged-current deep-inelastic scattering
International Nuclear Information System (INIS)
Ridolfi, G
2003-01-01
We investigate the capabilities of a neutrino factory in the determination of polarized parton distributions from charged-current deep-inelastic scattering experiments, with special attention to the accuracy of this kind of measurements. We show that a neutrino factory would allow to distinguish between different theoretical scenarios for the proton spin structure
Time reversal odd effects in semi-inclusive deep inelastic scattering
International Nuclear Information System (INIS)
Schlegel, M.
2006-04-01
In this thesis the semi-iclusive deep inelastic scattering l+h→l'+h+X is studied in the framework of the parton model. Especially sum rules are checked which contain transverse-momentum dependent parton distributions. Furthermore the influence of T-odd effects on the subleading order of a twist expansion are investigated. (HSI)
QED corrections in deep-inelastic scattering from tensor polarized deuteron target
Gakh, G I
2001-01-01
The QED correction in the deep inelastic scattering from the polarized tensor of the deuteron target is considered. The calculations are based on the covariant parametrization of the deuteron quadrupole polarization tensor. The Drell-Yan representations in the electrodynamics are used for describing the radiation real and virtual particles
Recent results on the 3-loop heavy flavor Wilson coefficients in deep-inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Bluemlein, J.; Freitas A. de; Raab, C.; Wissbrock, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Ablinger, J.; Hasselhuhn, A.; Round, M.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Manteuffel, A. von [Mainz Univ. (Germany). PRISMA Cluster of Excellence; Mainz Univ. (Germany). Inst. fuer Physik
2013-07-15
We report on recent progress in the calculation of the 3-loop massive Wilson coefficients in deep-inelastic scattering at general values of N for neutral and charged current reactions in the asymptotic region Q{sup 2}>>m{sup 2}.
Lattice and Molecular Vibrations in Single Crystal I2 at 77 K by Inelastic Neutron Scattering
DEFF Research Database (Denmark)
Smith, H. G.; Nielsen, Mourits; Clark, C. B.
1975-01-01
Phonon dispersion curves of single crystal iodine at 77 K have been measured by one-phonon coherent inelastic neutron scattering techniques. The data are analysed in terms of two Buckingham-six intermolecular potentials; one to represent the shortest intermolecular interaction (3.5 Å) and the other...
QCD coherence in deep inelastic scattering at small x at HERA
International Nuclear Information System (INIS)
Golec-Biernat, K.
1998-01-01
QCD coherence effects in initial state radiation at small x in deep inelastic scattering in HERA kinematics are studied with the help of the Monte Carlo model SMALLX. Theoretical assumptions based on the CCFM evolution equation are reviewed and the basic properties of the partonic final states are investigated. The results are compared with those obtained in the conventional DGLAP evolution scheme. (orig.)
Formal analysis of inelastic scattering in the coulomb-projected eikonal approximation
Qian, W J; Yan, S; Yang, Z S; Bo, D Y
1998-01-01
A formal procedure within the frame-work of the eikonal approximation for the inelastic scattering of many-electron atoms is formulated on the basis of the Racah algebra in the non-partial wave version, where an arbitrary complex wavefunction, including the contribution from all partial waves, can be used for the process calculations.
Deep-inelastic lepton scattering in an SU(3) x U(1) gauge model
International Nuclear Information System (INIS)
Maharana, K.; Sastry, C.V.
1976-01-01
Linear relations and sum rules for deep-inelastic lepton scattering are derived in the light-cone algebra approach from a set of weak, neutral, and electromagnetic currents based on an SU(3) x U(1) gauge model proposed by Schechter and Ueda
Application of one body dissipation to deep inelastic heavy ion scattering
International Nuclear Information System (INIS)
Beck, F.; Blocki, J.; Dworzecka, M.; Wolschin, G.
1978-01-01
The one body dissipation mechanism is employed to couple the relative motion of two heavy ions to the internal degrees of freedom. Trajectories, energy and angular momentum losses are calculated, and compared with experimental data on deep inelastic scattering. (orig.) [de
Statistical distribution of resonance parameters for inelastic scattering of fast neutrons
International Nuclear Information System (INIS)
Radunovic, J.
1973-01-01
This paper deals with the application of statistical method for the analysis of nuclear reactions related to complex nuclei. It is shown that inelastic neutron scattering which occurs by creation of a complex nucleus in the higher energy range can be treated by statistical approach
What do we learn from polarization measurements in deep-inelastic electron-nucleon scattering
International Nuclear Information System (INIS)
Anselmino, M.
1979-01-01
We examine what can be learned from deep-inelastic electron-nucleon scattering with polarized initial electrons and measurement of the polarization of the final electrons. A direct evaluation of the separate structure functions W 1 and W 2 is shown to be possible
Adolph, C.; Akhunzyanov, R.; Alexeev, M. G.; Alexandrov, Yu; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badełek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bertini, R.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, Jr; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grube, B.; Guskov, A.; Guthörl, T.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F. H.; Herrmann, F.; Hinterberger, F.; Höppner, Ch; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Joerg, P.; Joosten, R.; Kabuß, E.; Kang, D.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu A.; Kisselev, Yu; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Kral, Z.; Krämer, M.; Kroumchtein, Z. V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V. I.; Novy, J.; Nowak, W. D.; Nunes, A. S.; Orlov, I.; Olshevsky, A. G.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pesek, M.; Peshekhonov, D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Reicherz, G.; Rocco, E.; Rodionov, V.; Rondio, E.; Rychter, A.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Samoylenko, V. D.; Sandacz, A.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, A.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Yu; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szableski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Vondra, J.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wiślicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.
2014-01-01
Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS longitudinally polarised muon beam at 160GeV/c and a 6LiD target. The amplitudes of the three azimuthal modulations cos φh, cos 2φh and sin
H1 contributions to the workshop on deep inelastic scattering and QCD, Paris'95
International Nuclear Information System (INIS)
Roeck, A. de; Jung, H.; Phillips, J.P.; Zomer, F.
1995-08-01
The following topics were dealt with: Forward jets in deep inelastic scattering at HERA, diffractive interactions, rapidity gap events at HERA and the structure of the pomeron, new results on the proton structure function from H1, extraction of the gluon density at low-x from F 2 proton data
Inelastic neutron scattering and lattice dynamics of GaPO4
Indian Academy of Sciences (India)
The measurements in low-cristobalite phase of GaPO4 are car- ried out using high-resolution ... energy transfer range 0–160 meV. Semiempirical interatomic ... Inelastic neutron scattering; phonons; thermal expansion. PACS Nos 78.70.
International Nuclear Information System (INIS)
Bluemlein, J.
1993-08-01
The possibilities to measure structure functions, to extract parton distributions, and to measure α s and Λ QCD in current and future high energy deep inelastic scattering experiments are reviewed. A comparison is given for experiments at HERA, an ep option at LEP xLHC, and a high energy neutrino experiment. (orig.)
Reply to comment by Thomas on ''On rainbow scattering in inelastic molecular collisions''
International Nuclear Information System (INIS)
Bowman, J.M.; Lee, K.T.
1981-01-01
The comments of Thomas 1 on the location of rainbows in inelastic molecular scattering of Ref. 2 are discussed and evaluated. It is contended that more insight into the nature of reainbows in rotatinally inelstic collisions is obtained by using the arguments in ref. 2
The A-dependence of deep inelastic lepton-nuclear scattering from 6-quark clustering
International Nuclear Information System (INIS)
Chemtob, M.; Peschanszi, R.
1984-03-01
The correction to the nucleon valence quark structure functions implied by 6-quark clustering in nuclei are found to be in remarkable agreement with recent data from S.L.A.C. on the A-dependence of electron-nucleus deep inelastic scattering
Measurement of dijet cross sections in deep inelastic ep scattering at HERA
Energy Technology Data Exchange (ETDEWEB)
Theedt, Thorben
2009-11-15
Dijet cross sections have been measured in deep inelastic neutral current electron-proton scattering at HERA. Cross sections have been measured differentially as functions of the photon virtuality, Q{sup 2}, the scaling variable, Bjorken x, the mean transverse jet energy, E{sub T}, the invariant dijet mass, M{sub jj}, the difference in jet pseudorapidity, {eta}'= vertical stroke {eta}{sup jet{sub 1}}-{eta}{sup jet{sub 2}} vertical stroke and the momentum fraction, {xi}. Cross sections as function of {xi} have also been measured in different regions of the photon virtuality. The analysed data were recorded at a centre-of-mass energy of 318 GeV with the ZEUS detector in the years 1998, 1999, and 2000 and correspond to an integrated luminosity of 81.74 pb{sup -1}. The phase space of the analysis is defined by 125gamma}{sub h} vertical stroke <0.65, where {gamma}{sub h} is the polar angle of the hadronic final state. In 2007 a detailed study of multiplicities and energy flows based on NC low-Q{sup 2} DIS jet data showed that the energy flow in the upgraded ZEUS detector was not described by the HERA II Monte Carlo predictions. The results triggered the so called single pion study, in which single pion events were used to investigate the response of the simulated detector. (orig.)
International Nuclear Information System (INIS)
Lychagin, E.V.; Muzychka, A.Yu.; Nekhaev, G.V.; Strelkov, A.V.; Shvetsov, V.N.; Nesvizhevskij, V.V.; Tal'daev, R.R.
2001-01-01
Inelastic scattering of neutrons with small energy transfer of ∼10 -7 eV was investigated using gravitational UCN spectrometer. The probability of such a process at stainless steel and beryllium surfaces was measured. It was also estimated at copper surface. The measurement showed that the detected flux of neutrons scattered at beryllium and copper surfaces is ∼ 2 times higher at room temperature compared to that at the liquid nitrogen temperature. (author)
Thermal neutron inelastic scattering and it's application to the material science
International Nuclear Information System (INIS)
Li Zhuqi
1986-01-01
A brief description of the elementary scattering theory of the interaction between the thermal neutrons and the condensed matter is given and the characteristics related to the experimental method of the thermal neutrons inelastic scattering is described. Expressions of the phonons dispersion, density of the phonon state and the self-diffusion coefficient at the some conditions are also introduced. Some examples of describing diagram of the phonon dispersion, density of the phonons state and selfdiffusion coefficient measured by different authors are given
Spin-flip inelastic scattering in electron energy loss spectroscopy of a ferromagnetic metal
International Nuclear Information System (INIS)
Yin, S.; Tosatti, E.
1981-08-01
We calculate the spin polarization occuring during electron inelastic scattering from electron-hole pairs in a model ferromagnetic metal. The polarization is found to have contributions from unequal spin flip as well as non-flip energy loss rates. Our results indicate an asymmetry of the order of a few percent with parameters roughly modeling Fsub(e). The possibilities of comparison with experiments in the presence of simultaneous spin-polarizing elastic scattering are discussed. (author)
A unified model for diffractive and inelastic scattering of a light atom from a solid surface
International Nuclear Information System (INIS)
Adams, J.E.; Miller, W.H.
1979-01-01
A simple model for gas-surface scattering is presented which permits treatment of inelastic effects in diffractive systems. The model, founded on an impulsive collision assumption, leads to an intensity distribution which is just a sum of contributions from n-phonon scattering events. Furthemore, by using a convenient form for the repulsive interaction potential, analytic expressions are obtained for the elastic and one-phonon intensities that are in qualitative agreement with experimental results. (Auth.)
Inelastic two composite particle systems scattering at high energy
International Nuclear Information System (INIS)
Zhang Yushun.
1986-11-01
In this paper, by using the collective coordinate of Bohr and phenomenological deformed optical potentials, the scattering amplitudes of two composite particle systems can be obtained and the collective excitation for two composite particle systems in the scattering process is discussed. (author). 10 refs, 6 figs, 2 tabs
Microscopic description of elastic and direct inelastic nucleon scattering off spherical nuclei
Energy Technology Data Exchange (ETDEWEB)
Dupuis, M. [CEA, DAM, DIF, Arpajon (France)
2017-05-15
The purpose of this study is to improve the modeling of nucleon direct inelastic scattering to the continuum using a microscopic and parameter-free approach. For the first time, direct elastic scattering, inelastic scattering to discrete excitations and to the continuum are described within a microscopic approach without adjustable parameters. Proton scattering off {sup 90}Zr and {sup 208}Pb are the reactions used as test case examples of the calculations. The model uses the Melbourne g-matrix and the Random Phase Approximation description of nuclear states, implemented with the Gogny D1S interaction. The relevant optical and transition potentials in a finite nucleus are calculated within a local density approximation. As we use the nuclear matter approach we limit our study to incident energies above 40 MeV. We first checked that this model provides an accurate account of measured cross sections for elastic scattering and inelastic scattering to discrete states. It is then applied to the direct inelastic scattering to the continuum considering all one-phonon excitations predicted within the RPA approach. This accounts for a part of the direct pre-equilibrium emission, often labeled as the one-step direct process in quantum-based approaches. Our approach provides a very accurate description of angular distributions where the one-step process dominates. The impact of collective excitations is shown to be non negligible for energy transfer to the target up to 20 MeV, decreasing as the incident energy increases. For incident energies above 80 MeV, our modeling provides a good account of direct proton emission for an energy transfer to the target up to 30 MeV. However, the proton emission we predict underestimates the measured cross sections for incident energies below 80 MeV. We compare our prediction to those of the phenomenological exciton model to help interpret this result. Directions that may improve our modeling are discussed. (orig.)
Microscopic description of elastic and direct inelastic nucleon scattering off spherical nuclei
Dupuis, M.
2017-05-01
The purpose of this study is to improve the modeling of nucleon direct inelastic scattering to the continuum using a microscopic and parameter-free approach. For the first time, direct elastic scattering, inelastic scattering to discrete excitations and to the continuum are described within a microscopic approach without adjustable parameters. Proton scattering off 90Zr and 208Pb are the reactions used as test case examples of the calculations. The model uses the Melbourne g-matrix and the Random Phase Approximation description of nuclear states, implemented with the Gogny D1S interaction. The relevant optical and transition potentials in a finite nucleus are calculated within a local density approximation. As we use the nuclear matter approach we limit our study to incident energies above 40 MeV. We first checked that this model provides an accurate account of measured cross sections for elastic scattering and inelastic scattering to discrete states. It is then applied to the direct inelastic scattering to the continuum considering all one-phonon excitations predicted within the RPA approach. This accounts for a part of the direct pre-equilibrium emission, often labeled as the one-step direct process in quantum-based approaches. Our approach provides a very accurate description of angular distributions where the one-step process dominates. The impact of collective excitations is shown to be non negligible for energy transfer to the target up to 20 MeV, decreasing as the incident energy increases. For incident energies above 80 MeV, our modeling provides a good account of direct proton emission for an energy transfer to the target up to 30 MeV. However, the proton emission we predict underestimates the measured cross sections for incident energies below 80 MeV. We compare our prediction to those of the phenomenological exciton model to help interpret this result. Directions that may improve our modeling are discussed.
International Nuclear Information System (INIS)
Bahl, C.R.H.; Lefmann, K.; Abrahamsen, A.B.; Ronnow, H.M.; Saxild, F.; Jensen, T.B.S.; Udby, L.; Andersen, N.H.; Christensen, N.B.; Jakobsen, H.S.; Larsen, T.; Haefliger, P.S.; Streule, S.; Niedermayer, Ch.
2006-01-01
Recently a monochromatic multiple data taking mode has been demonstrated for diffraction experiments using a RITA type cold neutron spectrometer with a multi-bladed analyser and a position-sensitive detector. Here, we show how this mode can be used in combination with a flexible radial collimator to perform real inelastic neutron scattering experiments. We present the results from inelastic powder, single crystal dispersion and single crystal constant energy mapping experiments. The advantages and complications of performing these experiments are discussed along with a comparison between the imaging mode and the traditional monochromatic focussing mode
Energy Technology Data Exchange (ETDEWEB)
Bahl, C.R.H. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark) and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark)]. E-mail: christian.bahl@risoe.dk; Lefmann, K. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)]. E-mail: kim.lefmann@risoe.dk; Abrahamsen, A.B. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Ronnow, H.M. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Saxild, F. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Jensen, T.B.S. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Udby, L. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Andersen, N.H. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Christensen, N.B. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Jakobsen, H.S. [Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, DK-2100 Copenhagen (Denmark); Larsen, T. [Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, DK-2100 Copenhagen (Denmark); Haefliger, P.S. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Streule, S.; Niedermayer, Ch. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland)
2006-05-15
Recently a monochromatic multiple data taking mode has been demonstrated for diffraction experiments using a RITA type cold neutron spectrometer with a multi-bladed analyser and a position-sensitive detector. Here, we show how this mode can be used in combination with a flexible radial collimator to perform real inelastic neutron scattering experiments. We present the results from inelastic powder, single crystal dispersion and single crystal constant energy mapping experiments. The advantages and complications of performing these experiments are discussed along with a comparison between the imaging mode and the traditional monochromatic focussing mode.
Nuclear inelastic scattering of synchrotron radiation on solutions of 57Fe complexes
International Nuclear Information System (INIS)
Vanko, Gy.; Vertes, A.; Bottyan, L.; Nagy, D.L.; Szilagyi, E.
2000-01-01
Nuclear inelastic resonant scattering of synchrotron radiation was applied to the study solutions of 57 Fe complexes. In order to reveal different inelastic contributions solutions of two different 57 Fe complexes of different molecular dimensions with solvents of substantially different viscosities were studied. We argue that the only former experiment available in the literature overestimates the role of the diffusivity in affecting the spectrum. The first direct observation of an intramolecular vibrational transition assisting the nuclear resonance absorption in a liquid is reported. (author)
Strangeness production at low Q2 in deep-inelastic ep scattering at HERA
International Nuclear Information System (INIS)
Aaron, F.D.; Alexa, C.; Preda, T.; Rotaru, M.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Sheviakov, I.; Shtarkov, L.N.; Smirnov, P.; Soloviev, Y.; Vazdik, Y.; Antunovic, B.; Aplin, S.; Bacchetta, A.; Bartel, W.; Beckingham, M.; Brandt, G.; Brinkmann, M.; Campbell, A.J.; Cholewa, A.; Deak, M.; Boer, Y. de; Roeck, A. de; Eckerlin, G.; Elsen, E.; Felst, R.; Fleischer, M.; Gayler, J.; Glazov, A.; Grell, B.R.; Haidt, D.; Helebrant, C.; Janssen, M.E.; Jung, H.; Katzy, J.; Kleinwort, C.; Klimkovich, T.; Knutsson, A.; Korbel, V.; Kraemer, M.; Krastev, K.; Kutak, K.; Levonian, S.; List, J.; Lucaci-Timoce, A.I.; Marti, Ll.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Niebuhr, C.; Nikiforov, A.; Nozicka, M.; Olsson, J.E.; Panagoulias, I.; Papadopoulou, T.; Peng, H.; Pitzl, D.; Placakyte, R.; Radescu, V.; Rurikova, Z.; Salvaire, F.; Schmidt, S.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Toll, T.; Vargas Trevino, A.; Vinokurova, S.; Wessels, M.; Wissing, C.; Wuensch, E.; Zhu, Y.C.; Asmone, A.; Stella, B.; Astvatsatourov, A.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Mozer, M.U.; Roland, B.; Roosen, R.; Sunar, D.; Sykora, T.; Mechelen, P. van; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Ghazaryan, S.; Hovhannisyan, A.; Volchinski, V.; Yeganov, V.; Zohrabyan, H.; Barrelet, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Behnke, O.; Berger, N.; Del Degan, M.; Eichler, R.; Grab, C.; Leibenguth, G.; Sauter, M.; Zimmermann, T.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Li, G.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boenig, M.O.; South, D.; Wegener, D.; Boudry, V.; Gouzevitch, M.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Faulkner, P.J.W.; Kenyon, I.R.; Newman, P.R.; Shaw-West, R.N.; Thompson, P.D.; Bruncko, D.; Cerny, V.; Ferencei, J.; Murin, P.; Tomasz, F.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Kogler, R.; Liptaj, A.; Olivier, B.; Raspiareza, A.; Shushkevich, S.; Tzamariudaki, E.; Bystritskaya, L.; Efremenko, V.; Essenov, S.; Fedotov, A.; Kropivnitskaya, A.; Lubimov, V.; Ozerov, D.; Petrukhin, A.; Rostovtsev, A.; Zhelezov, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Cassol-Brunner, F.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Trinh, T.N.; Vallee, C.; Cerny, K.; Pejchal, O.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cozzika, G.; Feltesse, J.; Perez, E.; Schoeffel, L.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Rahmat, A.J.; Daum, K.; Meyer, H.; Dodonov, V.; Lytkin, L.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Falkiewicz, A.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Glushkov, I.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Piec, S.; Tsurin, I.; Goettlich, M.; Habib, S.; Jemanov, V.; Lipka, K.; List, B.; Naroska, B.; Hansson, M.; Joensson, L.; Osman, S.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Jung, A.W.; Krueger, K.; Lendermann, V.; Meier, K.; Schultz-Coulon, H.C.; Urban, K.; Herrera, G.; Lopez-Fernandez, R.; Kapichine, M.; Makankine, A.; Morozov, A.; Palichik, V.; Spaskov, V.; Tchoulakov, V.; Landon, M.P.J.; Rizvi, E.; Thompson, G.; Traynor, D.; Martyn, H.U.; Mueller, K.; Nowak, K.; Robmann, P.; Schmitz, C.; Straumann, U.; Truoel, P.; Nankov, K.; Tsakov, I.; Schoening, A.
2009-01-01
The production of neutral strange hadrons is investigated using deep-inelastic scattering events measured with the H1 detector at HERA. The measurements are made in the phase space defined by the negative four-momentum transfer squared of the photon 2 2 2 and the inelasticity 0.1 s 0 and Λ(anti Λ) production cross sections and their ratios are determined. K s 0 production is compared to the production of charged particles in the same region of phase space. The Λ- anti Λ asymmetry is also measured and found to be consistent with zero. Predictions of leading order Monte Carlo programs are compared to the data. (orig.)
Forward jet production in deep inelastic scattering at HERA
International Nuclear Information System (INIS)
Aktas, A.; Andreev, V.; Anthonis, T.
2005-08-01
The production of forward jets has been measured in deep inelastic ep collisions at HERA. The results are presented in terms of single differential cross sections as a function of the Bjorken scaling variable (x Bj ) and as triple differential cross sections d 3 σ/dx Bj dQ 2 dp t,jet 2 , where Q 2 is the four momentum transfer squared and p t,jet 2 is the squared transverse momentum of the forward jet. Also cross sections for events with a di-jet system in addition to the forward jet are measured as a function of the rapidity separation between the forward jet and the two additional jets. The measurements are compared with next-to-leading order QCD calculations and with the predictions of various QCD-based models. (orig.)
Forward Jet Production in Deep Inelastic Scattering at HERA
Aktas, A.; Anthonis, T.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; de Boer, Y.; Delcourt, B.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, W.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Finke, L.; Fleischer, M.; Fleischmann, P.; Flucke, G.; Fomenko, A.; Foresti, I.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Goyon, C.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, Guenter; Gwilliam, C.; Haidt, D.; Hajduk, L.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kuckens, J.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxeld, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A.J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sedlak, K.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, Marcel; Usik, A.; Utkin, D.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Vujicic, B.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wigmore, C.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.
2006-01-01
The production of forward jets has been measured in deep inelastic ep collisions at HERA. The results are presented in terms of single differential cross sections as a function of the Bjorken scaling variable (x_{Bj}) and as triple differential cross sections d^3 \\sigma / dx_{Bj} dQ^2 dp_{t,jet}^2, where Q^2 is the four momentum transfer squared and p_{t,jet}^2 is the squared transverse momentum of the forward jet. Also cross sections for events with a di-jet system in addition to the forward jet are measured as a function of the rapidity separation between the forward jet and the two additional jets. The measurements are compared with next-to-leading order QCD calculations and with the predictions of various QCD-based models.
Extension of the HAL QCD approach to inelastic and multi-particle scatterings in lattice QCD
Aoki, S.
We extend the HAL QCD approach, with which potentials between two hadrons can be obtained in QCD at energy below inelastic thresholds, to inelastic and multi-particle scatterings. We first derive asymptotic behaviors of the Nambu-Bethe-Salpeter (NBS) wave function at large space separations for systems with more than 2 particles, in terms of the one-shell $T$-matrix consrainted by the unitarity of quantum field theories. We show that its asymptotic behavior contains phase shifts and mixing angles of $n$ particle scatterings. This property is one of the essential ingredients of the HAL QCD scheme to define "potential" from the NBS wave function in quantum field theories such as QCD. We next construct energy independent but non-local potentials above inelastic thresholds, in terms of these NBS wave functions. We demonstrate an existence of energy-independent coupled channel potentials with a non-relativistic approximation, where momenta of all particles are small compared with their own masses. Combining these two results, we can employ the HAL QCD approach also to investigate inelastic and multi-particle scatterings.
Measurement of photon production in the very forward direction in deep-inelastic scattering at HERA
Energy Technology Data Exchange (ETDEWEB)
Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)
2011-06-15
The production of photons at very small angles with respect to the proton beam direction is studied in deep-inelastic positron-proton scattering at HERA. The data are taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of 126 pb{sup -1}. The analysis covers the range of negative four momentum transfer squared at the positron vertex 6inelasticity 0.05
Measurement of photon production in the very forward direction in deep-inelastic scattering at HERA
Energy Technology Data Exchange (ETDEWEB)
Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Inst., Moscow (Russian Federation); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Podgorica (ME); Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H. [Yerevan Physics Inst. (Armenia); Barrelet, E. [Univ. Pierre et Marie Curie Paris 6, LPNHE, Paris (France); Univ. Denis Diderot Paris 7, CNRS/IN2P3, Paris (France); Bartel, W.; Belov, P.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Kleinwort, C.; Kogler, R.; Kraemer, M.; Levonian, S.; Lipka, K.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Schmitt, S.; Sefkow, F.; South, D.; Steder, M.; Wuensch, E. [DESY, Hamburg (Germany); Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B. [Inst. of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F. [Univ. Paris-Sud, CNRS/IN2P3, LAL, Orsay (France); Boudry, V.; Moreau, F.; Specka, A. [Ecole Polytechnique, CNRS/IN2P3, LLR, Palaiseau (France); Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I. [Univ. of Belgrade, Vinca Institute of Nuclear Sciences, Belgrade (RS); Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D. [Univ. of Birmingham (United Kingdom); Bruncko, D.; Cerny, V.; Ferencei, J. [Slovak Academy of Sciences, Inst. of Experimental Physics, Kosice (Slovakia)] [and others
2011-10-15
The production of photons at very small angles with respect to the proton beam direction is studied in deep-inelastic positron-proton scattering at HERA. The data are taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of 126 pb{sup -1}. The analysis covers the range of negative four momentum transfer squared at the positron vertex 6inelasticity 0.05
Inelastic electron photon scattering at moderate four momentum transfers
International Nuclear Information System (INIS)
Berger, C.; Genzel, H.; Grigull, R.; Lackas, W.; Raupach, F.; Klovning, A.; Lillestoel, E.; Skard, J.A.; Ackermann, H.; Buerger, J.
1980-10-01
We present new high statistics data on hadron production in photon photon reactions. The data are analyzed in terms of an electron photon scattering formalism. The dependence of the total cross section on Q 2 , the four momentum transfer squared of the scattered electron, and on the mass W of the hadronic system is investigated. The data are compared to predictions from Vector Dominance and the quark model. (orig.)
Proposed measurement of tagged deep inelastic scattering in Hall A of Jefferson lab
Energy Technology Data Exchange (ETDEWEB)
Montgomery, Rachel [Univ. of Glasgow, Scotland (United Kingdom); Annand, John [Univ. of Glasgow, Scotland (United Kingdom); Dutta, Dipangkar [Mississippi State Univ., Mississippi State, MS (United States); Keppel, Cynthia E. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); King, Paul [The Ohio State Univ., Columbus, OH (United States). Dept of Physics; Wojtsekhowski, Bogdan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Jixie [Univ. of Virginia, Charlottesville, VA (United States)
2017-03-01
A tagged deep inelastic scattering (TDIS) experiment is planned for Hall A of Jefferson Lab, which will probe the mesonic content of the nucleon directly. Low momentum recoiling (and spectator) protons will be measured in coincidence with electrons scattered in a deep inelastic regime from hydrogen (and deuterium) targets, covering kinematics of 8 < W2 < 18 GeV2, 1 < Q2 < 3 (GeV/c)2 and 0:05 < x < 0:2. The tagging technique will help identify scattering from partons in the meson cloud and provide access to the pion structure function via the Sullivan process. The experiment will yield the first TDIS results in the valence regime, for both proton and neutron targets. We present here an overview of the experiment.
Observation of events with a large rapidity gap in deep inelastic scattering at HERA
International Nuclear Information System (INIS)
Derrick, M.; Krakauer, D.; Magill, S.
1993-07-01
In deep inelastic, neutral current scattering of electrons and protons at √s=296 GeV, we observe in the ZEUS detector events with a large rapidity gap in the hadronic final state. They occur in the region of small Bjorken x and are observed up to Q 2 of 100 GeV 2 . They account for about 5% of the events with Q 2 ≥10 GeV 2 . Their general properties are inconsistent with the dominant mechanism of deep inelastic scattering, where color is transferred between the scattered quark and the proton remnant, and suggest that the underlying production mechanism is the diffractive dissociation of the virtual photon. (orig.)
Interference of Coulomb and nuclear excitation in inelastic scattering of 20Ne from 40Ca
International Nuclear Information System (INIS)
Ratel, Guy.
1976-01-01
Angular distributions at 54 and 63MeV and excitation functions from 35 to 95MeV for the elastic and inelastic scattering of 20 Ne by 40 Ca have been measured. Experimental data for the inelastic scattering leading to the 20 Ne (2 + , 1.63MeV) state show a characteristic minimum for the angular distributions and excitation functions. This phenomenon was explained by an interference effect between Coulomb and nuclear excitation amplitudes with the DWBA and the coupled-channel formalism. The existence of this interference minimum could be explained only by assuming a nuclear deformation stronger than these obtained with light ion scattering. However a small shift between the experimental data and theoretical curves suggests that effects of a stronger complex coupling or nuclear reorientation due to the large quadrupole moment of 20 Ne must be included [fr
Semenov, Alexander; Babikov, Dmitri
2014-01-16
For computational treatment of rotationally inelastic scattering of molecules, we propose to use the mixed quantum/classical theory, MQCT. The old idea of treating translational motion classically, while quantum mechanics is used for rotational degrees of freedom, is developed to the new level and is applied to Na + N2 collisions in a broad range of energies. Comparison with full-quantum calculations shows that MQCT accurately reproduces all, even minor, features of energy dependence of cross sections, except scattering resonances at very low energies. The remarkable success of MQCT opens up wide opportunities for computational predictions of inelastic scattering cross sections at higher temperatures and/or for polyatomic molecules and heavier quenchers, which is computationally close to impossible within the full-quantum framework.
Measurement of inelastic J/ψ production in deep inelastic ep scattering at HERA
International Nuclear Information System (INIS)
Antonov, A.
2007-08-01
This thesis presents a measurement of the inelastic production of J/ψ mesons in ep collisions with the ZEUS detector at HERA using an integrated luminosity of 109 pb -1 . The J/ψ mesons were identified using the decay channel J/ψ → μ + μ - . The measurements were performed in the kinematic range 2 2 2 , 50 lab 2 is the virtuality of the exchanged photon, W is the photon-proton centre-of-mass energy, z is the fraction of the photon energy carried by the J/ψ meson in the proton rest frame and Y lab is the rapidity of the J/ψ in the laboratory frame. The measured cross sections are compared to theoretical predictions within the non-relativistic QCD framework including colour-singlet and colour-octet contributions, as well as to predictions based on the k T -factorisation approach. Calculations of the colour-singlet process generally agree with the data, whereas inclusion of colour-octet terms spoils this agreement. As a technical part of this thesis, the Straw-Tube Tracker (STT) GEANT simulation and track reconstruction software developed. Studies of the STT performance with MC data and real data presented. (orig.)
Measurement of inelastic J/{psi} production in deep inelastic ep scattering at HERA
Energy Technology Data Exchange (ETDEWEB)
Antonov, A.
2007-08-15
This thesis presents a measurement of the inelastic production of J/{psi} mesons in ep collisions with the ZEUS detector at HERA using an integrated luminosity of 109 pb{sup -1}. The J/{psi} mesons were identified using the decay channel J/{psi} {yields} {mu}{sup +}{mu}{sup -}. The measurements were performed in the kinematic range 2
Toroidal silicon polarization analyzer for resonant inelastic x-ray scattering
Energy Technology Data Exchange (ETDEWEB)
Gao, Xuan [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States); Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Casa, Diego; Kim, Jungho; Gog, Thomas [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Li, Chengyang [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States); Department of Physics, South University of Science and Technology of China, Shenzhen 518055 (China); Burns, Clement [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States)
2016-08-15
Resonant Inelastic X-ray Scattering (RIXS) is a powerful probe for studying electronic excitations in materials. Standard high energy RIXS measurements do not measure the polarization of the scattered x-rays, which is unfortunate since it carries information about the nature and symmetry of the excitations involved in the scattering process. Here we report the fabrication of thin Si-based polarization analyzers with a double-concave toroidal surface, useful for L-edge RIXS studies in heavier atoms such as the 5-d transition metals.
An orthogonality condition model treatment of elastic and inelastic (α, 12C) scattering
International Nuclear Information System (INIS)
Suzuki, Y.; Imanishi, B.
1981-02-01
Elastic and inelastic scattering of α-particles on the deformed nucleus 12 C are investigated in the range of incident α-particle energies of 9 to 11 MeV by using the coupled-channel method with orthogonality condition. A doubly folded potential generated by the shell model wave functions of the α-particle and the deformed nucleus 12 C is employed for the relative motion between the α-particle and 12 C. Good agreement between theory and experiment is obtained for the elastic and inelastic angular distributions and the resonance structures. It is found, from the Born series expansion of the T-matrix, that the orthogonality constraint stresses the effects of the channel-coupling between the elastic and inelastic processes, and it indicates that the DWBA does not work well in this system. (author)
Energy Technology Data Exchange (ETDEWEB)
Patel, D.; Garg, U. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Itoh, M. [Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan); Akimune, H. [Department of Physics, Konan University, Kobe 568-8501 (Japan); Berg, G.P.A. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Fujiwara, M. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); Harakeh, M.N. [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA Groningen (Netherlands); GANIL, CEA/DSM-CNRS/IN2P3, 14076 Caen (France); Iwamoto, C. [Department of Physics, Konan University, Kobe 568-8501 (Japan); Kawabata, T. [Division of Physics and Astronomy, Kyoto University, Kyoto 606-8502 (Japan); Kawase, K. [Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); Matta, J.T. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Murakami, T. [Division of Physics and Astronomy, Kyoto University, Kyoto 606-8502 (Japan); Okamoto, A. [Department of Physics, Konan University, Kobe 568-8501 (Japan); Sako, T. [Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); Schlax, K.W. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Takahashi, F. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); White, M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Yosoi, M. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan)
2014-07-30
The excitation of the isoscalar giant monopole resonance (ISGMR) in {sup 208}Pb and {sup 116}Sn has been investigated using small-angle (including 0°) inelastic scattering of 100 MeV/u deuteron and multipole-decomposition analysis (MDA). The extracted strength distributions agree well with those from inelastic scattering of 100 MeV/u α particles. These measurements establish deuteron inelastic scattering at E{sub d}∼100 MeV/u as a suitable probe for extraction of the ISGMR strength with MDA, making feasible the investigation of this resonance in radioactive isotopes in inverse kinematics.
International Nuclear Information System (INIS)
Spicer, B.M.; Koutsoliotas, S.
1995-01-01
The excitation function for emission of 2.30 MeV gamma rays from the 4.51 MeV state of 27 Al formed in inelastic proton scattering has been measured for proton energies from 5.6 to 7.3 MeV. A resonance previously seen in both inelastic electron and proton scattering from 28 Si at 17.35 MeV has been observed as a resonance in the excitation function, as well as seven other resonances, all of which are narrow (i.e., less than 100 keV wide). It is suggested that these may represent fragments of 6 - strength in 28 Si. 6 refs., 1 tab., 2 figs
Magnetoconductivity of quantum wires with elastic and inelastic scattering
DEFF Research Database (Denmark)
Bruus, Henrik; Flensberg, Karsten; Smith
1993-01-01
We use a Boltzmann equation to determine the magnetoconductivity of quantum wires. The presence of a confining potential in addtion to the magnetic field removes the degeneracy of the Landau levels and allows one to associate a group velocity with each single-particle state. The distribution...... function describing the occupation of these single-particle states satisfies a Boltzmann equation, which may be solved exactly in the case of impurity scattering. In the case where the electrons scatter against both phonons and impurities we solve numerically—and in certain limits analytically—the integral...
Experimental study of inclusive deep inelastic neutrino--proton scattering
International Nuclear Information System (INIS)
Berge, J.P.; Bogert, D.; DiBianca, F.A.; Cundy, D.C.; Dunaitsev, A.; Efremenko, V.; Ermolov, P.; Fowler, W.; Hanft, R.; Harigel, G.; Huson, F.R.; Kolganov, V.; Mukhin, A.; Nezrick, F.A.; Rjabov, Y.; Scott, W.G.; Smart, W.; Coffin, C.T.; Diamond, R.N.; French, H.; Louis, W.; Roe, B.P.; Seidl, A.A.; Velde, J.C.V.
1976-01-01
A neutrino--proton scattering experiment has been performed at Fermilab by using a wide-band horn-focused neutrino beam and the 15-ft bubble chamber filled with hydrogen. For the inclusive reaction ν/sub μ/ + p → μ - + hadrons, the mean value of Q 2 is found to increase linearly with energy, as is expected from Bjorken scaling, and a fit to the data gives 2 > = (0.18 +- 0.01) E. The distribution in the Bjorken scaling variable x shows evidence for deviations from predictions based on electron-scattering data and the quark-parton model
Inelastic Neutron Scattering Cross Sections of Cu-63 and Cu-65 in the Energy Region 0.7 to 1.4 MeV
Energy Technology Data Exchange (ETDEWEB)
Holmqvist, B; Wiedling, T
1964-08-15
The gamma ray spectra from, the {sup 63}Cu (n, n'{gamma}) and {sup 65}Cu (n, n'{gamma}) reactions have been studied for seven neutron energies in the energy range 0.7 - 1.4 MeV using a Nal(Tl) scintillation spectrometer and time-of-flight techniques. Scatterers of natural copper have been used. Experimental excitation curves have been obtained for the two lowest excited levels in each of the Cu and Cu isotopes. The experimental (n, n') cross sections for the individual levels at 668 keV and 961 keV in {sup 63}Cu and 764 keV and 1114 keV in {sup 65}Cu have been compared to a modified Hauser-Feshbach theory for inelastic neutron scattering. This experiment has confirmed by other methods determined spins of these levels, i.e. 1/2{sup -} and 5/2{sup -} respectively.
A collection of formulas for spin dependent deep inelastic scattering
International Nuclear Information System (INIS)
Pussieux, T.
1995-03-01
The analysis of the longitudinal spin structure functions of the proton, neutron and deuteron requires the use of a large number of formulas and numerical inputs taken from various unpolarized experiments. The aim of this report is to collect this information which is usually scattered in the literature. (author). 26 refs., 3 figs., 1 tab
Inelastic scattering in condensed matter with high intensity Moessbauer radiation
International Nuclear Information System (INIS)
Yelon, W.B.; Schupp, G.
1993-02-01
The QUEGS facility at MURR has produced a number of new results and demonstrated the range of potential applications of high resolution, high intensity Moessbauer scattering. This work has been carried out by both MU and Purdue researchers and includes published results on Na, W, pentadecane, polydimethylsiloxane and other systems, manuscripts submitted on alkali halides (Phys. Rev. B) and accurate Moessbauer lineshape measurements (Phys. Rev. C), and manuscripts in preparation on glycerol, NiAl and Moessbauer spectra obtained by modulating a scattering crystal. Recently, new collaborations have been initiated which will substantially enhance our efforts. These are with W. Steiner (Vienna), G. Coddens (Saclay), and R. D. Taylor (Los Alamos). Steiner is experienced with Fe-57 Moessbauer scattering, while Coddens specializes in quasielastic neutron scattering; both of these areas naturally complement our work. R. D. Taylor has pioneered Moessbauer spectroscopy from the time of its discovery and has already made important contributions to our study of lattice dynamics and superconductivity for lead alloyed with small quantities of tin. At the same time, a significant instrument upgrade is underway, funded in part by the DOE-URIP program
Theory of inelastic effects in resonant atom-surface scattering
International Nuclear Information System (INIS)
Evans, D.K.
1983-01-01
The progress of theoretical and experimental developments in atom-surface scattering is briefly reviewed. The formal theory of atom-surface resonant scattering is reviewed and expanded, with both S and T matrix approaches being explained. The two-potential formalism is shown to be useful for dealing with the problem in question. A detailed theory based on the S-matrix and the two-potential formalism is presented. This theory takes account of interactions between the incident atoms and the surface phonons, with resonant effects being displayed explicitly. The Debye-Waller attenuation is also studied. The case in which the atom-surface potential is divided into an attractive part V/sub a/ and a repulsive part V/sub r/ is considered at length. Several techniques are presented for handling the scattering due to V/sub r/, for the case in which V/sub r/ is taken to be the hard corrugated surface potential. The theory is used to calculate the scattered intensities for the system 4 He/LiF(001). A detailed comparison with experiment is made, with polar scans, azimuthal scans, and time-of-flight measurements being considered. The theory is seen to explain the location and signature of resonant features, and to provide reasonable overall agreement with the experimental results
Inelastic scattering and neutron polarimetry. Application to a few low-dimensioned magnetic systems
International Nuclear Information System (INIS)
Boullier, C.
2005-10-01
This work introduces the spherical polarization analysis used in the case of the inelastic scattering of polarized neutrons. With this kind of analysis, we are able to access some non-trivial dynamical correlation functions. Those correlation functions are related to nuclear and magnetic degrees of freedom. To study these correlations in the case of inelastic scattering, we used an optimized version of the experimental set-up called CRYOPAD (Cryogenic Polarisation Analysis Device) for which we will introduce a new calibration process. To illustrate the importance of such analysis, we will use it on two low-dimensional systems: the first one is BaCo 2 (AsO 4 ) 2 with a planar spin system and the second one is Sr 14 Cu 24 O 41 showing both chain and ladder spin systems. The spherical polarization analysis of both elastic and inelastic signal on the compound BaCo 2 (AsO 4 ) 2 has allowed us to determine its low temperature magnetic structure and the nature of its magnetic excitations. With the compound Sr 14 Cu 24 O 41 we demonstrated the evidence of a big anisotropy between the out-of-plane and the in-plane magnetic dynamical correlation functions for both the chain and ladder subsystems. Finally, studying the inelastic signal of the chains under a magnetic field, we tried to better understand the 'dynamical chirality' associated with clockwise and anti-clockwise precessions of a magnetic triplet. (author)
Electron inelastic scattering by compound nuclei and giant multipole resonances
International Nuclear Information System (INIS)
Dzhavadov, A.V.; Mukhtarov, A.I.; Mirabutalybov, M.M.
1980-01-01
Multipole giant resonances in heavy nuclei have been investigated with the application of the Danos-Greiner dynamic collective theory to the Tassi model. The monopole giant resonance has been studied in 158 Gd, 166 Er, 184 W, 232 Th and 238 V nuclei at the incident electron energy E=200 MeV. Dependences of the form factor square of electron scattering by a 166 Er nucleus on the scattering angle obtained in the distorted-wave high-energy approximation (DWHEA) are presented. Giant dipole and quadrupole resonances in 60 Ni and 90 Zr nuclei have been studied. A comparison has been made of theoretical results obtained in the DWHEA for the dependence of the form factor square on the effective momentum transfer with the experimental data. The analysis of the obtained results led to the following conclusions. To draw a conclusion about the validity of one or another nuclear model and methods for calculating form factors, it is necessary to investigate, both theoretically and experimentally, electron scattering at great angles (THETA>=70 deg). To obtain a good agreement it is necessary to take account of the actual proton and neutron distributions in the ground state and their dynamic properties in an excited state [ru
The role transverse momentum and spin in unpolarised semi inclusive deep inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Giordano, Francesca
2008-10-15
The azimuthal modulations of hadron production has been measured in Semi Inclusive Deep Inelastic Scattering processes at HERMES, and the results, compatible between different data taking periods, have been presented. Several systematic checks were performed in order to estimate possible biases, and finally the results are corrected for acceptance and QED higher order contributions. The corrected cosine moments are provided in 500 independent kinematical bins providing for the first time a full differential description of the cross-section azimuthal dependent terms. Their projections in the relevant kinematical variables have been presented for comparison with expectations. The results extracted for hydrogen and deuterium data do not show significative discrepancies, and this can be explained taking into account the u-dominance hypothesis in deep inelastic scattering. (orig.)
Forte, Stefano; Ridolfi, G; Forte, Stefano; Mangano, Michelangelo L.; Ridolfi, Giovanni
2001-01-01
We discuss the determination of polarized parton distributions from charged-current deep-inelastic scattering experiments. We summarize the next-to-leading order treatment of charged-current polarized structure functions, their relation to polarized parton distributions and scale dependence, and discuss their description by means of a next-to-leading order evolution code. We discuss current theoretical expectations and positivity constraints on the unmeasured C-odd combinations Delta q-Delta qbar of polarized quark distributions, and their determination in charged-current deep-inelastic scattering experiments. We give estimates of the expected errors on charged-current structure functions at a future neutrino factory, and perform a study of the accuracy in the determination of polarized parton distributions that would be possible at such a facility. We show that these measurements have the potential to distinguish between different theoretical scenarios for the proton spin structure.
International Nuclear Information System (INIS)
Forte, Stefano; Mangano, Michelangelo L.; Ridolfi, Giovanni
2001-01-01
We discuss the determination of polarized parton distributions from charged-current deep-inelastic scattering experiments. We summarize the next-to-leading-order treatment of charged-current polarized structure functions, their relation to polarized parton distributions and scale dependence, and discuss their description by means of a next-to-leading-order evolution code. We discuss current theoretical expectations and positivity constraints on the unmeasured C-odd combinations Δq-Δq-bar of polarized quark distributions, and their determination in charged-current deep-inelastic scattering experiments. We give estimates of the expected errors on charged-current structure functions at a future neutrino factory, and perform a study of the accuracy in the determination of polarized parton distributions that would be possible at such a facility. We show that these measurements have the potential to distinguish between different theoretical scenarios for the proton spin structure
Elastic and inelastic scattering of 18O ions on 12C nuclei
Directory of Open Access Journals (Sweden)
A. T. Rudchik
2009-12-01
Full Text Available Angular distributions of the 12C + 18O elastic and inelastic scattering were measured at the energy Elab(18O = 105 MeV (Ec.m. = 42 MeV. These data and data known from the literature at the energies Ec.m. = 12.9 - 56 МеV were analysed within the optical model and coupled-reactionchannels method. The sets of the Woods-Saxon (12С + 18O-potential parameters were deduced and their energy dependence was studied. It was found the isotopic differences in the (12С + 16O- and (12С + 18O-potentials parameters and in their surface forms. The mechanisms of elastic and inelastic (12С + 18O-scattering and role of transfer reactions were studied.
The role transverse momentum and spin in unpolarised semi inclusive deep inelastic scattering
International Nuclear Information System (INIS)
Giordano, Francesca
2008-10-01
The azimuthal modulations of hadron production has been measured in Semi Inclusive Deep Inelastic Scattering processes at HERMES, and the results, compatible between different data taking periods, have been presented. Several systematic checks were performed in order to estimate possible biases, and finally the results are corrected for acceptance and QED higher order contributions. The corrected cosine moments are provided in 500 independent kinematical bins providing for the first time a full differential description of the cross-section azimuthal dependent terms. Their projections in the relevant kinematical variables have been presented for comparison with expectations. The results extracted for hydrogen and deuterium data do not show significative discrepancies, and this can be explained taking into account the u-dominance hypothesis in deep inelastic scattering. (orig.)
Aaron, F.D.
2012-04-18
The cross section of diffractive deep-inelastic scattering ep \\rightarrow eXp is measured, where the system X contains at least two jets and the leading final state proton is detected in the H1 Forward Proton Spectrometer. The measurement is performed for fractional proton longitudinal momentum loss xIP < 0.1 and covers the range 0.1 < |t| < 0.7 GeV2 in squared four-momentum transfer at the proton vertex and 4 < Q2 < 110 GeV2 in photon virtuality. The differential cross sections extrapolated to |t| < 1 GeV2 are in agreement with next-toleading order QCD predictions based on diffractive parton distribution functions extracted from measurements of inclusive and dijet cross sections in diffractive deep-inelastic scattering. The data are also compared with leading order Monte Carlo models.
Calculation of inelastic helium atom scattering from H2/ NaCl(001)
DEFF Research Database (Denmark)
Bruch, L.W.; Hansen, Flemming Yssing; Traeger, F.
2011-01-01
The one-phonon inelastic low energy helium atom scattering theory is adapted to cases where the target monolayer is a p(1 × 1) commensurate square lattice. Experimental data for para-H2/NaCl(001) are re-analyzed and the relative intensities of energy loss peaks in the range 6 to 9 meV are determi......The one-phonon inelastic low energy helium atom scattering theory is adapted to cases where the target monolayer is a p(1 × 1) commensurate square lattice. Experimental data for para-H2/NaCl(001) are re-analyzed and the relative intensities of energy loss peaks in the range 6 to 9 me...
Study of the nuclear continuum of 28Si after excitation by inelastic 6Li scattering
International Nuclear Information System (INIS)
Seegert, G.
1985-01-01
For the study of the direct reaction mechanisms which contribute in the inelastic 6 Li scattering to the nuclear continuum of 28 Si at the Karlsruhe Isochronous Cyclotron particle-particle coincidence experiments were performed at an incident 6 Li energy of 156 MeV. Thereby the inelastically scattered 6 Li ions were measured in Si semiconductor telescopes under an angle of THETA=11 0 respectively 10 0 , while the coincident charged particles, mainly α particles with an energy of 70 MeV and protons with an energy up to 50 MeV could be detected in an angular range of -85 0 0 and three angles beyond the reaction plane. For a limited angular range simultaneously the α and 3 He fragments produced by the breakup of the 6 Li particle were taken up in coincidence with all light charged particles. (orig./HSI) [de
International Nuclear Information System (INIS)
Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H.; Barrelet, E.; Bartel, W.; Belov, P.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Kleinwort, C.; Kogler, R.; Kraemer, M.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Schmitt, S.; Sefkow, F.; Shushkevich, S.; South, D.; Steder, M.; Wuensch, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D.; Bruncko, D.; Cerny, V.; Ferencei, J.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Bystritskaya, L.; Fedotov, A.; Lubimov, V.; Ozerov, D.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Ceccopieri, F.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Roosen, R.; Staykova, Z.; Mechelen, P. van; Cerny, K.; Pokorny, B.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Daum, K.; Meyer, H.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Vallee, C.; Dobre, M.; Placakyte, R.; Dodonov, V.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Feltesse, J.; Perez, E.; Schoeffel, L.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Grab, C.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Herrera, G.; Lopez-Fernandez, R.; Huber, F.; Pirumov, H.; Radescu, V.; Sauter, M.; Schoening, A.; Joensson, L.; Jung, H.; Kapichine, M.; Makankine, A.; Morozov, A.; Nikitin, D.; Palichik, V.; Spaskov, V.; Landon, M.P.J.; Rizvi, E.; Traynor, D.; Martyn, H.U.; Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P.; Stella, B.; Sykora, T.; Tsakov, I.; Wegener, D.
2012-01-01
The cross section of diffractive deep-inelastic scattering ep→eXp is measured, where the system X contains at least two jets and the leading final state proton is detected in the H1 Forward Proton Spectrometer. The measurement is performed for fractional proton longitudinal momentum loss x P 2 in squared four-momentum transfer at the proton vertex and 4 2 2 in photon virtuality. The differential cross sections extrapolated to vertical stroke t vertical stroke 2 are in agreement with next-to-leading order QCD predictions based on diffractive parton distribution functions extracted from measurements of inclusive and dijet cross sections in diffractive deep-inelastic scattering. The data are also compared with leading order Monte Carlo models. (orig.)
Atomic motions in solid and liquid methanol by neutron inelastic scattering
International Nuclear Information System (INIS)
Figueiredo Neto, A.M.; Vinhas, L.A.
1979-01-01
The frequency spectra of methanol in three phases liquid, crystal I and crystal II were determined by incoherent inelastic neutron scattering. The measurements were performed using a Beryllium Filter Time-of-Flight Spectrometer. Neutron inelastic scattering spectra and frequency spectra allowed assignments of five peaks, corresponding to frequencies: 420 cm -1 attributed to vibrational modes of crystalline lattice, 240 and 160 cm -1 associated to stretching of hydrogen bonds, 82 and 50 cm -1 interpreted as vibrational and torsional modes of CH 3 OH units in dimers, trimers, tetramers and pentames. The results suggest crystal I phase as an intermediate phase between liquid and crystal II, concerning the structural and dynamical properties of molecules and their correlation. The plastic character of crystal I is discussed. (Author) [pt
A semiclassical distorted wave theory of inclusive nucleon inelastic scattering to continuum
International Nuclear Information System (INIS)
Kawai, M.; Luo, Y.L.
1989-01-01
A semiclassical model is presented for the one step process of the inclusive nucleon inelastic scattering to the continuum. In the model, we use distorted waves for describing the motion of the incident and the exit nucleon, and the Thomas-Fermi model for the initial and the final states of the target nucleus. The averaged two-body cross section inside the nucleus is given by Kikuchi-Kawai expression. The model gives a closed form formula for the double differential cross section. No free parameter is included. We apply the model to the inclusive nucleon inelastic scattering from Al, Sn and Bi at 62 MeV, and Ni at 164 MeV. The angular distribution experimental data are reproduced very well except for small and large angle regions. The calculated energy spectra agree with the experimental data very well in the middle angle region and at high exit energies. (author)
Energy Technology Data Exchange (ETDEWEB)
Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Inst., Moscow (Russian Federation); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Faculty of Science, Podgorica (ME); Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H. [Yerevan Physics Inst., Yerevan (Armenia); Barrelet, E. [CNRS/IN2P3, LPNHE, Univ. Pierre et Marie Curie Paris 6, Univ. Denis Diderot Paris 7, Paris (France); Bartel, W.; Belov, P.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Kleinwort, C.; Kogler, R.; Kraemer, M.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Schmitt, S.; Sefkow, F.; Shushkevich, S.; South, D.; Steder, M.; Wuensch, E. [DESY, Hamburg (Germany); Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B. [Inst. of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F. [CNRS/IN2P3, LAL, Univ. Paris-Sud, Orsay (France); Boudry, V.; Moreau, F.; Specka, A. [CNRS/IN2P3, LLR, Ecole Polytechnique, Palaiseau (France); Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I. [Univ. of Belgrade, Vinca Inst. of Nuclear Sciences, Belgrade (RS); Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D. [Univ. of Birmingham (United Kingdom); Bruncko, D.; Cerny, V.; Ferencei, J. [Slovak Academy of Sciences, Kosice (Slovakia)] [and others
2012-04-15
The cross section of diffractive deep-inelastic scattering ep{yields}eXp is measured, where the system X contains at least two jets and the leading final state proton is detected in the H1 Forward Proton Spectrometer. The measurement is performed for fractional proton longitudinal momentum loss x{sub P}<0.1 and covers the range 0.1< vertical stroke t vertical stroke <0.7 GeV{sup 2} in squared four-momentum transfer at the proton vertex and 4inelastic scattering. The data are also compared with leading order Monte Carlo models. (orig.)
Measurement of leading neutron production in deep-inelastic scattering at HERA
International Nuclear Information System (INIS)
Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Antunovic, B.; Bartel, W.; Brandt, G.; Campbell, A.J.; Cholewa, A.; Deak, M.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grell, B.R.; Haidt, D.; Helebrant, C.; Jung, H.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Kraemer, M.; Krastev, K.; Kutak, K.; Levonian, S.; Lipka, K.; List, J.; Marti, L.; Meyer, A.B.; Meyer, H.; Meyer, J.; Niebuhr, C.; Nikiforov, A.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Sunar, D.; Vargas Trevino, A.; Vinokurova, S.; Driesch, M. von den; Wissing, C.; Wuensch, E.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Volchinski, V.; Zohrabyan, H.; Barrelet, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Li, G.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Shaw-West, R.N.; Thompson, P.D.; Brinkmann, M.; Habib, S.; List, B.; Toll, T.; Bruncko, D.; Cerny, V.; Ferencei, J.; Murin, P.; Tomasz, F.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Kogler, R.; Liptaj, A.; Raspiareza, A.; Shushkevich, S.; Bystritskaya, L.; Efremenko, V.; Fedotov, A.; Kropivnitskaya, A.; Lubimov, V.; Ozerov, D.; Petrukhin, A.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Cerny, K.; Pejchal, O.; Pokorny, B.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cozzika, G.; Feltesse, J.; Perez, E.; Schoeffel, L.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Rahmat, A.J.; Daum, K.; Meyer, H.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Mozer, M.U.; Roland, B.; Roosen, R.; Sykora, T.; Mechelen, P. van; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Trinh, T.N.; Vallee, C.; Dodonov, V.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Falkiewicz, A.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Glushkov, I.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Piec, S.; Grab, C.; Zimmermann, T.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Jung, A.W.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Urban, K.; Herrera, G.; Lopez-Fernandez, R.; Joensson, L.; Osman, S.; Kapichine, M.; Lytkin, L.; Makankine, A.; Morozov, A.; Nikitin, D.; Palichik, V.; Spaskov, V.; Tchoulakov, V.; Landon, M.P.J.; Rizvi, E.; Thompson, G.; Traynor, D.; Martyn, H.U.; Mueller, K.; Nowak, K.; Robmann, P.; Straumann, U.; Truoel, P.; Radescu, V.; Sauter, M.; Schoening, A.; South, D.; Wegener, D.; Stella, B.; Tsakov, I.
2010-01-01
The production of leading neutrons, where the neutron carries a large fraction x L of the incoming proton's longitudinal momentum, is studied in deep-inelastic positron-proton scattering at HERA. The data were taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of 122 pb -1 . The semi-inclusive cross section is measured in the phase space defined by the photon virtuality 6 2 2 , Bjorken scaling variable 1.5 .10 -4 -2 , longitudinal momentum fraction 0.32 L T 2 LN(3) (Q 2 ,x,x L ), and the fraction of deep-inelastic scattering events containing a leading neutron are studied as a function of Q 2 , x and x L . Assuming that the pion exchange mechanism dominates leading neutron production, the data provide constraints on the shape of the pion structure function. (orig.)
Spin flip inelastic scattering in electron energy loss spectroscopy of a ferromagnetic metal
International Nuclear Information System (INIS)
Bocchetta, C.J.; Tosatti, E.; Yin, S.
1986-11-01
A model ferromagnetic metal is used to calculate the spin-polarization which occurs during inelastic electron-metal scattering with the production of an electron-hole pair. The polarization is found to have contributions from unequal spin-flip as well as non-flip energy loss rates. Our results indicate an asymmetry of the order of a few percent with parameters roughly modelling iron. (author)
Inelastic neutron scattering on a mixed-valence dodecanuclear polyoxovanadate cluster
Basler, R; Andrés, H; Güdel, H U; Koegerler, P; Krickemeier, E; Bögge, H; Müller, A; Mutka, H
2002-01-01
The magnetic exchange interactions in the mixed-valence dodecanuclear polyoxovanadate cluster compound (NHEt sub 3) sub 4 [V sub 1 sub 2 As sub 8 O sub 4 sub 0 (H sub 2 O)] x H sub 2 O were investigated by a detailed inelastic neutron scattering study using cold neutrons. The data show clear evidence for the presence of a magnetic anisotropy within the cluster. Exchange parameters are accurately determined. (orig.)
Elastic and inelastic scattering of 180 MeV π+- on 24Mg
International Nuclear Information System (INIS)
Gmitro, M.; Kvasil, J.; Mach, R.
1982-01-01
Equations of the coupled channel method written in the momentum space are solved for the scattering of 180 MeV pions on 24 Mg. The elastic and inelastic differential cross sections are calculated by using the nuclear ground-state- and transition-densities, which describe correctly the (e, e') data for the same nuclear states. The results agree well with the recent (π, π') data [ru
Elastic and inelastic scattering of the 14C + 18O nuclei
Directory of Open Access Journals (Sweden)
A. T. Rudchik
2010-12-01
Full Text Available New angular-distribution data of 14С + 18О elastic and inelastic scattering at the energy Elab(18O = 105 MeV were obtained firstly. The data were analysed within the optical model and coupled-reaction-channels methods including contributions from most simple transfer reactions. The 14С + 18О potential parameters were deduced. Isotopic differenc-es of the 12, 13, 14С + 18О and 14С + 16, 18О potentials were investigated.
Inelastic light scattering and the excited states of many-electron quantum dots
Energy Technology Data Exchange (ETDEWEB)
Delgado, Alain [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear, Calle 30 No 502, Miramar, Havana (Cuba); Gonzalez, Augusto [Instituto de Cibernetica, Matematica y Fisica, Calle E 309, Vedado, Havana (Cuba)
2003-06-25
A consistent calculation of resonant inelastic (Raman) scattering amplitudes for relatively large quantum dots, which takes account of valence band mixing, the discrete character of the spectrum in intermediate and final states, and interference effects, is presented. Raman peaks in charge and spin channels are compared with multipole strengths and with the density of energy levels in final states. A qualitative comparison with the available experimental results is given.
International Nuclear Information System (INIS)
Dias, S.A.
1985-01-01
The transformation law of truncated pertubation theory observables under changes of renormalization scheme is deduced. Based on this, a criticism of the calculus of the moments of structure functions in deep inelastic scattering, obtaining that the A 2 coefficient not renormalization group invariant is done. The PMS criterion is used to optimize the perturbative productions of the moments, truncated to 2nd order. (author) [pt
High count problems in elemental analysis using pulsed neutron inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Vartsky, D; Wielopolski, L; Ellis, K J; Cohn, S H [Brookhaven National Lab., Upton, NY (USA). Medical Dept.
1983-03-01
Elemental analysis by neutron inelastic scattering using a miniature intense pulsed neutron source ('Zetatron') was evaluated. The particular problems associated with detector pulse-pile-up during the neutron burst and the limited ability of the analyzer to process on average more than one detector pulse per neutron burst were examined. The severity of these problems is described and a solution using a multiple ADC system is proposed.
Inelastic light scattering and the excited states of many-electron quantum dots
International Nuclear Information System (INIS)
Delgado, Alain; Gonzalez, Augusto
2003-01-01
A consistent calculation of resonant inelastic (Raman) scattering amplitudes for relatively large quantum dots, which takes account of valence band mixing, the discrete character of the spectrum in intermediate and final states, and interference effects, is presented. Raman peaks in charge and spin channels are compared with multipole strengths and with the density of energy levels in final states. A qualitative comparison with the available experimental results is given
International Nuclear Information System (INIS)
Batiz, Zoltan; Gross, Franz
2000-01-01
The momentum conservation sum rule for deep inelastic scattering (DIS) from composite particles is investigated using the general theory of relativity. For two (1+1)-dimensional examples, it is shown that covariant theories automatically satisy the DIS momentum conservation sum rule provided the bound state is covariantly normalized. Therefore, in these cases the two DIS sum rules for baryon conservation and momentum conservation are equivalent. (c) 2000 The American Physical Society
Horsewill, A J; Panesar, K S; Rols, S; Johnson, M R; Murata, Y; Komatsu, K; Mamone, S; Danquigny, A; Cuda, F; Maltsev, S; Grossel, M C; Carravetta, M; Levitt, M H
2009-01-09
We report an inelastic neutron scattering investigation of the quantum dynamics of hydrogen molecules trapped inside anisotropic fullerene cages. Transitions among the manifold of quantized rotational and translational states are directly observed. The spectra recorded as a function of energy and momentum transfer are interpreted in terms of the rotational potential and the cage dimensions. The thermodynamics of orthohydrogen and parahydrogen are investigated through temperature dependence measurements.
Measurement of event shape variables in deep-inelastic scattering at HERA
Czech Academy of Sciences Publication Activity Database
Aktas, A.; Andreev, V.; Anthonis, A.; Cvach, Jaroslav; Reimer, Petr; Sedlák, Jaroslav; Zálešák, Jaroslav
2006-01-01
Roč. 46, - (2006), s. 343-356 ISSN 1434-6044 R&D Projects: GA MŠk(CZ) LC527; GA MŠk(CZ) 1P05LA259 Institutional research plan: CEZ:AV0Z10100502 Keywords : HI experiment * ep scattering * deep inelastic Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.251, year: 2006
International Nuclear Information System (INIS)
Arzumanov, S.S; Bondarenko, L.N.; Gel'tenbort, P.; Morozov, V.I.; Nesvizhevskij, V.V.; Panin, Yu.N.; Strepetov, A.N.
2007-01-01
The experimental setup and the method of measuring the neutron lifetime with a precision less then 1 s is described. The measurements will be carried out by storage of ultracold neutrons (UCN) into vessels with inner walls coated with fluorine polymer oil with simultaneous registration of inelastically scattered UCN leaving storage vessels. The analysis of statistical and methodical errors is carried out. The calculated estimation of the measurement accuracy is presented [ru
Revisit the spin-FET: Multiple reflection, inelastic scattering, and lateral size effects
Xu, Luting; Li, Xin-Qi; Sun, Qing-feng
2014-01-01
We revisit the spin-injected field effect transistor (spin-FET) by simulating a lattice model based on recursive lattice Green's function approach. In the one-dimensional case and coherent regime, the simulated results reveal noticeable differences from the celebrated Datta-Das model, which motivate thus an improved treatment and lead to analytic and generalized result. The simulation also allows us to address inelastic scattering (using B\\"uttiker's fictitious reservoir approach) and lateral...
Inelastic and quasielastic neutron scattering studies on soft matter and biomolecules
International Nuclear Information System (INIS)
Kanaya, Toshiji
2015-01-01
Some characteristic features of soft matter and biomolecules in the inelastic and quasielastic neutron scattering (INS and QENS) studies are described. In order to clarify the current situation of the studies the research history on soft matter and biomolecules by INS and QENS are described. As examples of the studies of slow dynamics of soft matter, neutron spin echo studies on breathing mode of polymer micelle and static and dynamics fluctuations in polymer gels. (author)
Anomalous vibrational modes in acetanilide as studied by inelastic neutron scattering
Barthes, Mariette; Eckert, Juegen; Johnson, Susanna W.; Moret, Jacques; Swanson, Basil I.; Unkefer, Clifford J.
1992-10-01
A study of the anomalous modes in acetanilide and five deuterated derivatives by incoherent inelastic neutron scattering is reported. These data show that the dynamics of the amide and methyl groups influence each other. In addition, the anomalous temperature behaviour of the NH out-of-plane bending mode is confirmed. These observations suggest that the self-trapping mechanism in ACN may be more complex than hitherto assumed.
On the radiative corrections of deep inelastic scattering of muon neutrino on nucleon
International Nuclear Information System (INIS)
So Sang Guk
1986-01-01
The radiative corrections of deep inelastic scattering process VΜP→ ΜN are considered. Matrix element which takes Feynman one photon exchange diagrams into account at high transfer momentum are used. Based on calculation of the matrix element one can obtain matrix element for given process. It is shown that the effective cross section which takes one photon exchange into account is obtained. (author)
Inelastic X-ray Scattering Beamline Collaborative Development Team Final Report
International Nuclear Information System (INIS)
Burns, Clement
2008-01-01
This is the final report for the project to create a beam line for inelastic x-ray scattering at the Advanced Photon Source. The facility is complete and operating well, with spectrometers for both high resolution and medium resolution measurements. With the advent of third generation synchrotron sources, inelastic x-ray scattering (IXS) has become a valuable technique to probe the electronic and vibrational states of a wide variety of systems of interest in physics, chemistry, and biology. IXS is a weak probe, and experimental setups are complex and require well-optimized spectrometers which need a dedicated beamline to function efficiently. This project was the result of a proposal to provide a world-class, user friendly beamline for IXS at the Advanced Photon Source. The IXS Collaborative Development Team (IXS-CDT) was formed from groups at the national laboratories and a number of different universities. The beamline was designed from the front end to the experimental stations. Two different experimental stations were provided, one for medium resolution inelastic x-ray scattering (MERIX) and a spectrometer for high resolution inelastic x-ray scattering (HERIX). Funding for this project came from several sources as well as the DOE. The beamline is complete with both spectrometers operating well. The facility is now open to the general user community and there has been a tremendous demand to take advantage of the beamline's capabilities. A large number of different experiments have already been carried out on the beamline. A detailed description of the beamline has been given in the final design report (FDR) for the beamline from which much of the material in this report came. The first part of this report contains a general overview of the project with more technical details given later.
A method for accurate computation of elastic and discrete inelastic scattering transfer matrix
International Nuclear Information System (INIS)
Garcia, R.D.M.; Santina, M.D.
1986-05-01
A method for accurate computation of elastic and discrete inelastic scattering transfer matrices is discussed. In particular, a partition scheme for the source energy range that avoids integration over intervals containing points where the integrand has discontinuous derivative is developed. Five-figure accurate numerical results are obtained for several test problems with the TRAMA program which incorporates the porposed method. A comparison with numerical results from existing processing codes is also presented. (author) [pt
Alpha particles-and 3He inelastic scattering by 124Sn in the coulomb barrier region
International Nuclear Information System (INIS)
Appoloni, C.R.
1976-01-01
Angular distributions for inelastic scattering of α and 3 He particles in 124 Sn at the incident energies around Coulomb barrier were measured using the 8UD Pelletron Tandem Accelerator of The University of Sao Paulo. The results were analysed by DWBA with a collective form factor including the effects due to the interference between coulomb and nuclear excitations with the code PATIWEN (Ba75). The nuclear deformation parameters for the one phonon levels (2 + and 3 - ) have been obtained. (Author) [pt
Revision of the inelastic scattering cross section evaluation of 238U for CENDL-2.1
International Nuclear Information System (INIS)
Tang Guoyou; Zhang Guohui; Shi Zhaomin; Chen Jinxiang
1995-11-01
Revised evaluated data for the inelastic neutron scattering cross-section and the secondary neutron spectrum are presented for U-238 in graphical form, compared with the earlier data that exist in the evaluated nuclear data libraries ENDF/B-6 and JENDL-3. The new data will be included in the Chinese evaluated nuclear data library CENDL-2.1. (author). 14 refs, 9 figs
A study of the dynamics of hydrogen in yttrium using inelastic neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Bennington, S M; Benham, M J; Ross, D K [Birmingham Univ. (UK). School of Physics and Space Research; Taylor, A D; Bowden, Z A [Rutherford Appleton Lab., Chilton (UK)
1989-01-01
The results of several high resolution inelastic scattering experiments on {alpha}-phase yttrium-hydrogen are presented including measurements of energy levels up to the fourth and a study of the splitting of certain states due to hydrogen-hydrogen interactions. An attempt is made to model the energy levels by using perturbed simple harmonic oscillator wavefunctions. This can account for most of the major features of the spectrum. (orig.).
Nazarov, Vladimir U.; Silkin, Vyacheslav M.; Krasovskii, Eugene E.
2017-12-01
Inelastic scattering of the medium-energy (˜10 -100 eV) electrons underlies the method of the high-resolution electron energy-loss spectroscopy (HREELS), which has been successfully used for decades to characterize pure and adsorbate-covered surfaces of solids. With the emergence of graphene and other quasi-two-dimensional (Q2D) crystals, HREELS could be expected to become the major experimental tool to study this class of materials. We, however, identify a critical flaw in the theoretical picture of the HREELS of Q2D crystals in the context of the inelastic scattering only ("energy-loss functions" formalism), in contrast to its justifiable use for bulk solids and surfaces. The shortcoming is the neglect of the elastic scattering, which we show is inseparable from the inelastic one, and which, affecting the spectra dramatically, must be taken into account for the meaningful interpretation of the experiment. With this motivation, using the time-dependent density functional theory for excitations, we build a theory of the simultaneous inelastic and elastic electron scattering at Q2D crystals. We apply this theory to HREELS of graphene, revealing an effect of the strongly coupled excitation of the π +σ plasmon and elastic diffraction resonances. Our results open a path to the theoretically interpretable study of the excitation processes in crystalline mesoscopic materials by means of HREELS, with its supreme resolution on the meV energy scale, which is far beyond the capacity of the now overwhelmingly used EELS in transmission electron microscopy.
Inelastic neutron scattering studies of the phonon spectra of Chevrel-phase superconductors
International Nuclear Information System (INIS)
Bader, S.D.; Sinha, S.K.; Shelton, R.N.
1976-01-01
Phonon spectra are obtained using inelastic neutron scattering by polycrystals of the Chevrel-phase superconductors SnMo 6 S 8 , PbMo 6 S 8 , Mo 6 Se 8 , and Pb 1 . 2 Mo 6 Se 8 . Modes associated primarily with Sn (or Pb) atomic displacements are clearly identified. Acoustic softening on cooling is noted for SnMo 6 S 8 . Anharmonicity and the superconductivity are discussed utilizing the molecular-crystal concept
International Nuclear Information System (INIS)
Clement, H.; Frick, R.; Graw, G.; Schiemenz, P.; Seichert, N.
1983-01-01
The 2 1 + -excitation of deformed nuclei by tensor polarized deuterons provides an alignment of both nuclei and thus a means to study specifically the quadrupole-quadrupole interaction between both nuclei. The tensor analyzing power Asub(xz)(theta) has been measured for the elastic and inelastic scattering on 24 Mg and 28 Si. The coupled channel analysis including a deformed tensor potential reveals a clear signature of the quadrupole-quadrupole part of the nuclear projectile-target interaction. (orig.)
Comparison of inelastic electron and positron scattering cross sections on 12C and 27Al
International Nuclear Information System (INIS)
Hartwig, S.; Heimlich, F.H.; Huber, G.; Roessle, E.; Koebberling, M.; Moritz, J.; Schmidt, K.H.; Wegener, D.; Zeller, D.; Bleckwenn, J.
1977-06-01
The +/- ratio R of the cross sections for inelastic positron and electron scattering on 12 C and 27 Al has been measured for four momentum transfers (0.08 - 0.45) GeV 2 /c 2 of the virtual photon and invariant masses 0.95 GeV +- 0.0007), no q 2 respectively W dependence of the ratio is observed. (orig.) [de
Measurement of jet production cross sections in deep-inelastic ep scattering at HERA
Czech Academy of Sciences Publication Activity Database
Andreev, V.; Baghdasaryan, A.; Begzsuren, K.; Cvach, Jaroslav; Ferencei, Jozef; Hladký, Jan; Reimer, Petr
2017-01-01
Roč. 77, č. 4 (2017), s. 1-41, č. článku 215. ISSN 1434-6044 R&D Projects: GA MŠk LG14033 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : jet cross sections * neutral current deep-inelastic scattering * perturbative QCD Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 5.331, year: 2016
Measurement of D* production in diffractive deep inelastic scattering at HERA
Czech Academy of Sciences Publication Activity Database
Andreev, V.; Baghdasaryan, A.; Begzsuren, K.; Cvach, Jaroslav; Ferencei, Jozef; Hladký, Jan; Reimer, Petr
2017-01-01
Roč. 77, č. 5 (2017), s. 1-14, č. článku 340. ISSN 1434-6044 R&D Projects: GA MŠk LG14033 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : diffractive deep inelastic scattering * charm meson production * boson-gluon fusion * next-to- leading order QCD Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 5.331, year: 2016
Quarkonia propagation in QGP: study of elastic and inelastic scattering processes
International Nuclear Information System (INIS)
Berrehrah, H; Aichelin, J; Gossiaux, P B
2011-01-01
We propose to study the quarkonia (φ) propagation in the QGP. We are especially interested in the elastic and inelastic scattering process of these quarkonia in the medium. We developed the Bethe-Salpeter formalism to calculate the elastic cross section (σ elas ) for φ - gluon/hadron. Results obtained in this work show that σ elas (φ - gluon/hadron) might have non negligible effects in the study of Q Q-bar propagation.
Block, Martin M
2002-01-01
Using an eikonal structure for the scattering amplitude, factorization theorems for nucleon-nucleon, gamma p and gamma gamma scattering at high energies have been derived, using only some very general assumptions. Using a QCD-inspired eikonal analysis of nucleon-nucleon scattering, we present here experimental confirmation for factorization of cross sections, nuclear slope parameters B and rho -values (ratio of real to imaginary portion of forward scattering amplitudes), showing that: 1) the three factorization theorems of Block and Kaidalov [2000] hold, 2) the additive quark model holds to approximately=1%, and 3) vector dominance holds to better than approximately=4%. Predictions for the total cross section, elastic cross section and other forward scattering parameters at the LHC (14 TeV) are given. (12 refs).
International Nuclear Information System (INIS)
Hansl-Kozanecka, T.
1992-01-01
In this set of lectures the author examines phenomenological aspects of quantum chromodynamics (QCD) which are relevant for lepton-hadron, electron-positron, and hadron-hadron collisions. He points how the strength of the strong coupling constant, αs, makes QCD calculations converge much more slowly in powers of αs, and missing higher order terms must be carefully estimated. The most stringent test of QCD can be performed in deep inelastic lepton scattering and in e + e - annihilation. In deep inelastic scattering the virtual γ or W/Z are used as a probe of the nucleon structure. They couple to quarks, not gluons. Only the incoming and outgoing lepton have to be measured. The hadronic fluid state does not have to be analyzed. In e + e - annihilation the virtual γ or Z 0 decays to lepton and quark pairs. The branching ratio into quarks is a counter for the number of colours available, the detailed structure of the final state reflects the radiation of gluons as the initial quark-antiquark separate from each other. Quarks and gluons are observed here, though in the presence of hadron formation. Hard hadron-hadron, or parton-parton collisions provide cross sections dominated by the gluon component, which is only weakly measured in deep inelastic collisions. Recent experimental results in these three areas are reviewed, and compared to QCD calculations. Scaling violations and analysis of structure functions in deep inelastic scattering are reviewed. QCD in e + e - branching to hadrons is reviewed near the Z 0 resonance, and a number of cross sections and jet related properties which can be calculated as a function of the single parameter αs are reviewed. Hadron-hadron collisions are reviewed for three processes; jet production, direct photon production, and high p perpendicular W/Z boson production
Measurement of Photon Production in the Very Forward Direction in Deep-Inelastic Scattering at HERA
Aaron, F.D.; Andreev, V.; Backovic, S.; Baghdasaryan, A.; Baghdasaryan, S.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Belov, P.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Bruncko, D.; Bunyatyan, A.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Ceccopieri, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cvach, J.; Dainton, J.B.; Daum, K.; Delcourt, B.; Delvax, J.; De Wolf, E.A.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Egli, S.; Eliseev, A.; Elsen, E.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jonsson, L.; Jung, H.; Kapichine, M.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Kogler, R.; Kostka, P.; Kraemer, M.; Kretzschmar, J.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lendermann, V.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lopez-Fernandez, R.; Lubimov, V.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mudrinic, M.; Muller, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikitin, D.; Nowak, G.; Nowak, K.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Tabasco, J.E.Ruiz; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, I.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sykora, T.; Thompson, P.D.; Tran, T.H.; Traynor, D.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zohrabyan, H.; Zomer, F.
2011-01-01
The production of photons at very small angles with respect to the proton beam direction is studied in deep-inelastic positron-proton scattering at HERA. The data are taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of $126 \\mathrm{pb}^{-1}$. The analysis covers the range of negative four momentum transfer squared at the positron vertex $67.9$ as a function of its transverse momentum $p_T^{lead}$ and longitudinal momentum fraction of the incoming proton $x_L^{lead}$. In addition, the cross sections are studied as a function of the sum of the longitudinal momentum fraction $x_L^{sum}$ of all photons in the pseudorapidity range $\\eta>7.9$. The cross sections are normalised to the inclusive deep-inelastic scattering cross section and compared to the predictions of models of deep-inelastic scattering and models of the hadronic interactions of high energy cosmic rays.
Large acceptance magnetic spectrometers for polarized deep inelastic electron scattering
International Nuclear Information System (INIS)
Petratos, G.G.; Eisele, R.L.; Gearhart, R.A.; Hughes, E.W.; Young, C.C.
1991-10-01
The design of two magnetic spectrometers for the measurement of the spin-dependent structure function g 1 n of the neutron and a test of the Bjorken sum rule is described. The measurement will consist of scattering 23 GeV polarized electrons off a polarized 3 He target and detecting scattered electrons of 7 to 18 GeV at 4.5 degree and 7 degree. Each spectrometer is based on two large aperture dipole magnets bending in opposite directions. This ''reverse'' deflection design doubles the solid angle as compared to the conventional design of same direction bends used in previous experiments. Proper choice of the deflection angles and the distance between the two dipoles in each spectrometer allows background photons from radiative processes to reach the detectors only after at least two bounces off the spectrometer vacuum walls, resulting in an expected tolerable background. Each spectrometer is equipped with a pair of Cerenkov detectors, a pair of scintillation hodoscopes and a lead-glass shower calorimeter providing electron and pion identification with angular and momentum resolutions sufficient for the experimental measurement. 7 refs., 8 figs., 1 tab
Elastic and inelastic scattering of pions from oxygen-16
International Nuclear Information System (INIS)
Holtkamp, D.B.
1980-02-01
Positive and negative pions of an energy of 164 MeV were used in a scattering experiment at EPICS in a study of the atomic nucleus of 16 O. Angular distributions for the ground state and several excited states are presented for an angular range of 45 0 to 89 0 (lab). Of particular importance in this study is the observation of large asymmetries in the ratio sigma(π + )/sigma(π - ) for excitations of particle-hole states at 17.79 MeV (4 - ,0) and 19.80 MeV (4 - ,0), while the ratio for scattering to the state at 18.98 MeV (4 - ,1) is unity. These results are interpreted in terms of isospin mixing among these three states, yielding off-diagonal charge dependent mixing matrix elements of 188 +- 29 keV and 140 +- 21 keV. DWIA calculations using collective form factors yield deformation lengths in agreement with studies using other probes. Microscopic DWIA calculations for the 4 - states are also presented, which reproduce the π + /π - ratios well be reflect the shape of the angular distributions poorly
International Nuclear Information System (INIS)
Bardin, D.Yu.
1979-01-01
Basing on the simple quark-parton model of strong interaction and on the Weinberg-Salam theory compact formulae are derived for the radiative correction to the charged current induced deep inelastic scattering of neutrinos on nucleons. The radiative correction is found to be around 20-30%, i.e., the value typical for deep inelastic lN-scattering. The results obtained are rather different from the presently available estimations of the effect under consideration
DWPI: a computer program to calculate the inelastic scattering of pions from nuclei
Energy Technology Data Exchange (ETDEWEB)
Eisenstein, R A; Miller, G A [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Physics
1976-02-01
Angular distributions for the inelastic scattering of pions are generated using the distorted wave impulse approximation (DWIA). The cross section for a given transition is calculated by summing a partial wave expansion. The T-matrix elements are calculated using distorted pion waves from the program PIRK, and therefore include elastic scattering to all orders. The excitation is treated in first order only. Several optical potentials and nuclear densities are available in the program. The transition form factor may be uncoupled from the ground-state density. Coulomb excitation, which interferes coherently with the strong interaction, is a program option.
Hydrogen potential in β-V2H studied by deep inelastic neutron scattering
International Nuclear Information System (INIS)
Hempelmann, R.; Price, D.L.; Reiter, G.; Richter, D.
1989-02-01
Two complementary techniques of deep inelastic neutron scattering were used to study hydrogen in β-V 2 H: (i) by means of neutron vibrational spectroscopy we measured hydrogen vibrations up to the fourteenth order; from these data we derived the effective single-particle potential, the shape of which is a parabola with a flattened bottom, and the hydrogen wave functions. (ii) By means of neutron Compton scattering we determined the kinetic of energy of the hydrogen; the value agrees with that calculated from the vibrational ground-state wave function. 6 refs., 5 figs
International Nuclear Information System (INIS)
Boros, C.
1999-01-01
Recent measurement of the structure function F 2 υ in neutrino deep inelastic scattering allows us to compare structure functions measured in neutrino and charged lepton scattering for the first time with reasonable precision. The comparison between neutrino and muon structure functions made by the CCFR Collaboration indicates that there is a discrepancy between these structure functions at small Bjorken x values. In this talk I examine two effects which might account for this experimental discrepancy: nuclear shadowing corrections for neutrinos and contributions from strange and anti-strange quarks. Copyright (1999) World Scientific Publishing Co. Pte. Ltd
Spiegelberg, Jakob; Rusz, Ján
2015-12-01
In the framework of the slice transition operator technique, a general multislice theory for electron scattering in crystals is developed. To achieve this generalization, we combine the approaches for inelastic scattering derived by Yoshioka [J. Phys. Soc. Jpn. 12, 6 (1957)] and backscattering based on the formalism of Chen and Van Dyck [Ultramicroscopy 70, 29-44 (1997)]. A computational realization of the obtained equations is suggested. The proposed computational scheme is tested on elastic backscattering of electrons, where we consider single backscattering in analogy to the computational scheme proposed by Chen and Van Dyck. Copyright © 2015 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Rusz, Ján, E-mail: jan.rusz@fysik.uu.se
2017-06-15
Highlights: • New algorithm for calculating double differential scattering cross-section. • Shown good convergence properties. • Outperforms older MATS algorithm, particularly in zone axis calculations. - Abstract: We present a new algorithm for calculating inelastic scattering cross-section for fast electrons. Compared to the previous Modified Automatic Term Selection (MATS) algorithm (Rusz et al. [18]), it has far better convergence properties in zone axis calculations and it allows to identify contributions of individual atoms. One can think of it as a blend of MATS algorithm and a method described by Weickenmeier and Kohl [10].
Theory of inelastic scattering and absorption of X-rays
Veenendaal, Michel van
2015-01-01
This comprehensive, self-contained guide to X-ray spectroscopy will equip you with everything you need to begin extracting the maximum amount of information available from X-ray spectra. Key topics such as the interaction between X-rays and matter, the basic theory of spectroscopy, and selection and sum rules, are introduced from the ground up, providing a solid theoretical grounding. The book also introduces core underlying concepts such as atomic structure, solid-state effects, the fundamentals of tensor algebra and group theory, many-body interactions, scattering theory, and response functions, placing spectroscopy within a broader conceptual framework, and encouraging a deep understanding of this essential theoretical background. Suitable for graduate students, researchers, materials scientists and optical engineers, this is the definitive guide to the theory behind this powerful and widely used technique.
Elastic and inelastic electron scattering on tensor polarized deuteron
International Nuclear Information System (INIS)
Zevakov, S.A.; Barkov, L.M.; Arenkhovel', Kh.
2006-01-01
The components T 20 and T 21 of the tensor analysis capability of the elastic electron scattering on deuteron are measured in the momentum transfer range of 8.4-21.6 fm -2 . The form factors of deuteron G C and G Q are defined in the momentum transfer range where the monopole charge form factor G C turns into zero. The preliminary measuring results of T 20 , T 21 and T 22 of the deuteron photodisintegration reaction in the photon energy range of 25-500 MeV and the proton departure angles equal to 20 deg-40 deg and 75 deg-105 deg are presented. The experimental results are compared with the theoretical predictions [ru
Study of K-π- inelastic scattering from K-p interactions at 4.2 GeV/c
International Nuclear Information System (INIS)
Voorthuis, H.; Groot, A.J. de; Jongejans, B.; Kluyver, J.C.; Kittel, E.W.; Schotanus, D.J.
1976-01-01
The isospin I=3/2K - π - inelastic scattering cross section is determined from the reactions K - p→Δ ++ (K+pions) -- at 4.2 GeV/c incident K - momentum, using a Chew-Low extrapolation method. The available statistics also allowed a determination of the cross sections for individual K - π - reactions by this method. The total inelastic K - π - scattering cross section is found to increase almost linearly with K - π - mass from - π - →(Kππ) -- contribute to the inelastic cross section; higher multiplicity K - π - interactions start to play a role above this mass. (Auth.)
Microscopic description of inelastic proton scattering from 88Sr
International Nuclear Information System (INIS)
Kouw, L.R.
1987-01-01
A microscopic description of the 88 Sr(p,p') reaction at 25 and 31 MeV, 200 MeV and 65 MeV is given. In the analysis several excited states are considered. For the nuclear structure of these states wave functions calculated from a one broken-pair model in a 4hw model space are used which give in general a good description of the shape of the transition charge and current densities as measured in (e,e') scattering. Also a macroscopic analysis has been made of some collective transitions. For 24, 31 and 65 MeV the effective HJ and the JLM interaction were employed, the effective Paris interaction was used at 200 MeV and the M3YP interaction at 65 MeV. At 65 and 200 MeV some calibration factors were needed. It is shown that the nonlocality of the distortion potential is closely related to the nonlocality of the transition potential. The influence of a spin-orbit potential and nonlocality in the single-particle potential on the electromagnetic current operator is discussed. In an impulse approximation of the electromagnetic coupling the presence of these terms would lead to violation of charge conservation. Starting from a Lagrangian formulation a current operator is derived that conserves explicitly electric charge. (Auth.)
International Nuclear Information System (INIS)
Prokopenko, V.S.; Sklyarenko, V.; Chernievskij, V.K.; Shustov, A.V.
1980-01-01
Spin-orbital effects of inelastic scattering of protons by nuclei with mean atomic weight are investigated along with the mechanisms of the reaction course by measuring proton spin flip. The experiment consists in measuring proton-gamma coincidences in mutually perpendicular planes by the technique of quick-slow coincidences. The excitation function of the 56 Fe(P,P 1 ) reaction is measured in the 3.5-6.2 MeV energy range. Angular dependences of probability of proton spin flip (a level of 2 + , 0.847 MeV) are measured at energies of incident protons of 4.96; 5.58 and 5.88 MeV. Measurements of probabilities of proton spin flipping at inelastic scattering by sup(54,56)Fe nuclei are performed in the process of studying spin-orbital effects and mechanisms of the reaction course. A conclusion is made that the inelastic scattering process in the energy range under investigation is mainly realized by two equivalent mechanisms: direct interaction and formation of a compound nucleus. Angular dependences for 54 Fe and 56 Fe noticeably differ in the values of probability of spin flip in the angular range of 50-150 deg
Energy Technology Data Exchange (ETDEWEB)
Arnold, R G; Bosted, P E; Dunne, J; Fellbaum, J; Keppel, C; Rock, S E; Spengos, M; Szalata, Z M; White, J L [Washington State Univ., Pullman, WA (United States); Breton, V; Fonvieille, H; Roblin, Y [Clermont-Ferrand-2 Univ., 63 - Aubiere (France); Shapiro, G [Lawrence Berkeley Lab., CA (United States); Hughes, E W [California Inst. of Tech., Pasadena, CA (United States); Borel, H; Lombard-Nelsen, R M; Marroncle, J; Morgenstern, J; Staley, F; Terrien, Y [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d` Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l` Instrumentation Associee; Petratos, G G [Kent State Univ., OH (United States); Anthony, P L; Dietrich, F S [Lawrence Livermore National Lab., CA (United States); Chupp, T E; Smith, T [Michigan Univ., Dearborn, MI (United States); Thompson, A K [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Kuhn, S E [Norfolk State Univ., VA (United States); Cates, G D; Middleton, H; Newbury, N R [Princeton Univ., NJ (United States); Anthony, P L; Gearhart, R; Hughes, E W; Maruyama, T; Meyer, W; Petratos, G G; Pitthan, R; Rokni, S H; Stuart, L M; White, J L; Woods, M; Young, C C [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Erbacher, R; Kawall, D; Kuhn, S E; Meziani, Z E [Stanford Univ., CA (United States); Holmes, R; Souder, P A; Xu, J [Syracuse Univ., NY (United States); Meziani, Z E [Temple Univ., Philadelphia, PA (United States); Band, H R; Johnson, J R; Maruyama, T; Prepost, R; Zapala, G [Wisconsin Univ., Madison, WI (United States)
1997-12-31
The neutron longitudinal and transverse asymmetries A{sub 1}{sup n} and A{sub 2}{sup n} have been extracted from deep inelastic scattering of polarized electrons by a polarized {sup 3}He target at incident energies of 19.42, 22.66 and 25.51 GeV. The measurement allows for the determination of the neutron spin structure functions g{sub 1}{sup n}(x, Q{sup 2}) and g{sub 2}{sup n} (x, Q{sup 2}) over the range 0.03 < x < 0.6 at an average Q{sup 2} of 2 (GeV/c){sup 2}. The data are used for the evaluation of the Ellis-Jaffe and Bjorken sum rules. The neutron spin structure function g{sub 1}{sup n} (x, Q{sup 2}) is small and negative within the range of our measurement, yielding an integral {integral}{sub 0.03}{sup 0.6} g{sub 1}{sup n} (x)dx - 0.028 {+-} 0.006 (stat) {+-} 0.006 (syst). Assuming Regge behavior at low x, we extract {Gamma}{sub 1}{sup n} {integral}{sub 0}{sup 1} g{sub 1}{sup n} (x)dx = - 0.031 {+-} 0.006 (stat) {+-} 0.009 (syst). Combined with previous proton integral results from SLAC experiment E143, we find {Gamma}{sub 1}{sup p} - {Gamma}{sub 1}{sup n} = 0.160 {+-} 0.015 in agreement with the Bjorken sum rule prediction {Gamma}{sub 1}{sup p} - {Gamma}{sub 1}{sup p} 0.176 {+-} 0.008 at a Q{sup 2} value of 3 (GeV/c){sup 2} evaluated using {alpha}{sub s} 0.32 {+-} 0.05. (authors). 109 refs.
Measurement of the diffractive cross section in deep inelastic scattering
International Nuclear Information System (INIS)
Derrick, M.; Krakauer, D.; Magill, S.
1996-02-01
Diffractive scattering of γ*p→X+N, where N is either a proton or a nucleonic system with M N X of the system X up to 15 GeV at average Q 2 values of 14 and 31 GeV 2 . The diffractive cross section dσ diff /dM X is, within errors, found to rise linearly with W. Parameterizing the W dependence by the form dσ diff /dM X ∝(W 2 )sup((2 anti α IP -2)) the DIS data yield for the pomeron trajectory anti α IP =1.23±0.02(stat)±0.04(syst) averaged over t in the measured kinematic range assuming the longitudinal photon contribution to be zero. This value for the pomeron trajectory is substantially larger than anti α IP extracted from soft interactions. The value of anti α IP measured in this analysis suggests that a substantial part of the diffractive DIS cross section originates form processes which can be described by perturbative QCD. From the measured diffractive cross sections the diffractive structure function of the proton F 2 D(3) (β, Q 2 , x IP ) has been determined, where β is the momentum fraction of the struck quark in the pomeron. The form F 2 D(3) =constant. (1/x IP ) a gives a good fit to the data in all β and Q 2 intervals with a=1.46±0.04(stat)±0.08(syst). (orig.)
Babikov, Dmitri; Semenov, Alexander
2016-01-28
A mixed quantum/classical approach to inelastic scattering (MQCT) is developed in which the relative motion of two collision partners is treated classically, and the rotational and vibrational motion of each molecule is treated quantum mechanically. The cases of molecule + atom and molecule + molecule are considered including diatomics, symmetric-top rotors, and asymmetric-top rotor molecules. Phase information is taken into consideration, permitting calculations of elastic and inelastic, total and differential cross sections for excitation and quenching. The method is numerically efficient and intrinsically parallel. The scaling law of MQCT is favorable, which enables calculations at high collision energies and for complicated molecules. Benchmark studies are carried out for several quite different molecular systems (N2 + Na, H2 + He, CO + He, CH3 + He, H2O + He, HCOOCH3 + He, and H2 + N2) in a broad range of collision energies, which demonstrates that MQCT is a viable approach to inelastic scattering. At higher collision energies it can confidently replace the computationally expensive full-quantum calculations. At low collision energies and for low-mass systems results of MQCT are less accurate but are still reasonable. A proposal is made for blending MQCT calculations at higher energies with full-quantum calculations at low energies.
Isotopic effects in elastic and inelastic 12,13C + 16,18O scattering
Directory of Open Access Journals (Sweden)
A. T. Rudchik
2010-09-01
Full Text Available New angular-distribution data of 13С + 18О elastic and inelastic scattering at the energy Elab(18O = 105 MeV were obtained for the transitions to the ground and excited states 3.088 MeV(1/2+, 3.555 MeV (1/2-, 3.854 MeV (5/2+ of 13С and 1.982 MeV (2+, 3.555 MeV (4+, 3.921 MeV (2+, 4.456 MeV (1-, 5.098 MeV (3-, 5.260 MeV (2+ of 18O. These and the 13С + 18О elastic scattering data taken from the literature at the energies Elab(18O = 15, 20, 24, 31 MeV and Elab(13С = 24 MeV were analysed within the optical model and coupled-reaction-channels methods. Sets of 13С + 18О optical potential parameters and their energy dependence were obtained. Contributions of potential scattering and transfer reactions to the elastic and inelastic channels of 13С + 18О scattering were studied. Isotopic differences (effects in 12, 13С + 16, 18О optical potential parameters were investigated.
[Gamma scattering in condensed matter with high intensity Moessbauer radiation
International Nuclear Information System (INIS)
1992-01-01
This report discusses: quasielastic scattering studies on glycerol; gamma-ray scattering from alkali halides; lattice dynamics in metals; Moessbauer neutron scattering, x-ray diffraction, and macroscopic studies of high T c superconductors containing tungsten; NiAl scattering studies; and atomic interference factors and nuclear Casimir effect
Energy Technology Data Exchange (ETDEWEB)
NONE
1963-01-15
The Chalk River Symposium on Inelastic Scattering of Neutrons in Solids and Liquids was the International Atomic Energy Agency's second symposium held on this subject. The previous one was held in 1960 in Vienna and the very first international meeting in this field took place in 1957 in Stockholm. At the Stockholm meeting only 11 papers from six countries were presented; this was the very beginning of a rapidly developing new branch of physics. At the Vienna Symposium there were 50 papers from 12 countries. At Chalk River 67 papers from 13 countries and three international organizations, the European Atomic Energy Community, the Joint Institute for Nuclear Research and the International Atomic Energy Agency, were presented and discussed. In several other countries, either research in this field has already begun or preparations to start it are under way. This is an indication that the interest in using inelastic scattering of neutrons as a method to study the internal dynamics of solids, liquids and molecules is continuously increasing. On the other hand, a deeper knowledge of the dynamic properties of moderators plays an important role in the understanding of the process of thermalization of neutrons. The latter study is of special importance in promoting advances in nuclear reactor technology. In the light of these developments the International Atomic Energy Agency, with the co-sponsorship of the United Nations Educational, Scientific and Cultural Organization, organized the Symposium at Chalk River from 10 to 14 September 1962 on the generous invitation of the Government of Canada and Atomic Energy of Canada Limited.
Inelastic scattering of low-energy electrons in metals: the role of kinematics in screening
International Nuclear Information System (INIS)
Alducin, M.; Juaristi, J.I.; Nagy, I.; Echenique, P.M.
2002-01-01
The inelastic scattering of low-energy electrons with the mobile part of the electron density of free-electron-like materials is investigated. Based on the dielectric theory for the homogeneous electron gas, the concept of Bohm and Pines is adopted in order to separate the single-particle and collective basic channels of the total inelastic rate. An effective screened potential is introduced to describe the separated single-particle part. The role of the relative motion of electrons, a kind of dynamical correlation effect, is modelled in this potential via a physical argument. The results obtained show that the nontrivial correlated motion of electrons may have a measurable influence on the result of dynamical probing of a degenerate electron gas. (author)
Measurement and QCD Interpretation of the Inclusive Deep-Inelastic Scattering Cross Section by H1
CERN. Geneva
2001-01-01
Deep inelastic electron proton collisions are a straightforward tool to study the QCD dynamics between quarks and gluons in the proton. A recent measurement and QCD analysis of the deep inelastic scattering cross section by the H1 experiment at HERA are presented. In a NLO QCD analysis of H1 structure function data, the gluon distribution in the proton is extracted to typically 3% experimental accuracy at low Bjorken x.. In a combined analysis of H1 and high precision µp data by the CERN muon experiment BCDMS, the gluon distribution at low x and the strong coupling constant as were for the first time extracted simultaneously.The strong coupling constant is determined with about 1% experimental accuracy, and QCD at NLO is confirmed over 5 orders of magnitude of Bjorken x at a new level of precision.
Production of D* Mesons with Dijets in Deep-Inelastic Scattering at HERA
Aktas, A.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Povh, B.; Prideaux, P.; Rahmat, A.J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Usik, A.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.
2007-01-01
Inclusive D* production is measured in deep-inelastic ep scattering at HERA with the H1 detector. In addition, the production of dijets in events with a D* meson is investigated. The analysis covers values of photon virtuality 2< Q^2 <=100 GeV^2 and of inelasticity 0.05<= y <= 0.7. Differential cross sections are measured as a function of Q^2 and x and of various D* meson and jet observables. Within the experimental and theoretical uncertainties all measured cross sections are found to be adequately described by next-to-leading order (NLO) QCD calculations, based on the photon-gluon fusion process and DGLAP evolution, without the need for an additional resolved component of the photon beyond what is included at NLO. A reasonable description of the data is also achieved by a prediction based on the CCFM evolution of partons involving the k_T-unintegrated gluon distribution of the proton.
Strangeness Production at low $Q^2$ in Deep-Inelastic ep Scattering at HERA
Aaron, F.D.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Bacchetta, A.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Kogler, R.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Mudrinic, M.; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Pejchal, O.; Peng, H.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wegener, D.; Wessels, M.; Wissing, Ch.; Wunsch, E.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.
2009-01-01
The production of neutral strange hadrons is investigated using deep-inelastic scattering events measured with the H1 detector at HERA. The measurements are made in the phase space defined by the negative four-momentum transfer squared of the photon 2 < Q^2 < 100 GeV^2 and the inelasticity 0.1 < y < 0.6. The K_s and Lambda production cross sections and their ratios are determined. K_s production is compared to the production of charged particles in the same region of phase space. The Lambda - anti-Lambda asymmetry is also measured and found to be consistent with zero. Predictions of leading order Monte Carlo programs are compared to the data.
Measurement of Charm and Beauty Jets in Deep Inelastic Scattering at HERA
Aaron, F.D.; Andreev, V.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Ceccopieri, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; Delcourt, B.; Delvax, J.; De Wolf, E.A.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jonsson, L.; Jung, A.W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Knutsson, A.; Kogler, R.; Kostka, P.; Kraemer, M.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lendermann, V.; Levonian, S.; Lipka, K.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Makankine, A.; Malinovski, E.; Marage, P.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, M.U.; Mudrinic, M.; Muller, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nowak, K.; Olsson, J.E.; Osman, S.; Ozerov, D.; Pahl, P.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Tabasco, J.E.Ruiz; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, I.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sunar, D.; Sykora, T.; Thompson, G.; Thompson, P.D.; Toll, T.; Tran, T.H.; Traynor, D.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Trevino, A.Vargas; Vazdik, Y.; von den Driesch, M.; Wegener, D.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zohrabyan, H.; Zomer, F.
2011-01-01
Measurements of cross sections for events with charm and beauty jets in deep inelastic scattering at HERA are presented. Events with jets of transverse energy E_T^jet > 6 GeV and pseudorapidity -1.0 6 GeV^2 and inelasticity variable 0.07 6 GeV. The data were collected with the H1 detector in the years 2006 and 2007 corresponding to an integrated luminosity of 189 pb^-1. The numbers of charm and beauty jets are determined using variables reconstructed using the H1 vertex detector with which the impact parameters of the tracks to the primary vertex and the position of secondary vertices are measured. The measurements are compared with QCD predictions and with previous measurements where heavy flavours are identified using muons.
Inelastic neutron scattering of H{sub 2} adsorbed in HKUST-1
Energy Technology Data Exchange (ETDEWEB)
Liu, Y. [Department of Materials and Engineering, University of Maryland, College Park, MD 20742 (United States); NIST Center for Neutron Research, 100 Bureau Drive, Gaithersburg, MD 20899-8562 (United States); Brown, C.M. [NIST Center for Neutron Research, 100 Bureau Drive, Gaithersburg, MD 20899-8562 (United States); Indiana University Cyclotron Facility, Indiana University, 2401 Milo B. Sampson Lane, Bloomington, IN 47408 (United States)], E-mail: craig.brown@nist.gov; Neumann, D.A. [NIST Center for Neutron Research, 100 Bureau Drive, Gaithersburg, MD 20899-8562 (United States); Peterson, V.K.; Kepert, C.J. [School of Chemistry, University of Sydney, NSW 2006 (Australia)
2007-10-31
A series of inelastic neutron scattering (INS) investigations of hydrogen adsorbed in activated HKUST-1 (Cu{sub 3}(1,3,5-benzenetricarboxylate){sub 2}) result in INS spectra with rich features, even at very low loading (<1.0 H{sub 2}:Cu). The distinct inelastic features in the spectra show that there are three binding sites that are progressively populated when the H{sub 2} loading is less than 2.0 H{sub 2}:Cu, which is consistent with the result obtained from previous neutron powder diffraction experiments. The temperature dependence of the INS spectra reveals the relative binding enthalpies for H{sub 2} at each site.
Microscopic approach in Inelastic Heavy-Ions Scattering with Excitation of Nuclear Collective States
International Nuclear Information System (INIS)
Lukyanov, K.V.; Zemlyanya, E.V.; Khtina, I.N.; Lukyanov, V.K; Metawe, Z.; Hanna, K.M.
2008-01-01
In the density distribution of a deformed target-nucleus,the spherical λ = 0 and the deformed λ = 2 parts were considered. On this basis, the corresponding potential parts U 0 and U i nt(2) of a double-folding microscopic nucleus-nucleus optical potential are obtained. Then, for these potentials and by using the coupled- channel technique (ECIS), the elastic and inelastic amplitudes are calculated for 17 O heavy ions scattering on 2 + collective excited stat of various target nuclei. Besides,the same cross-sections are calculated in the frame of an adiabatic approach of the eikonal approximation, where the inelastic amplitude is the linear function of U i nt (2).Both the obtained results are compared with the experimental data, and also discus their efficiency in predicting the deformation parameters of nuclei
Strangeness production at low Q{sup 2} in deep-inelastic ep scattering at HERA
Energy Technology Data Exchange (ETDEWEB)
Aaron, F.D.; Alexa, C.; Preda, T.; Rotaru, M. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Sheviakov, I.; Shtarkov, L.N.; Smirnov, P.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Institute, Moscow (Russian Federation); Antunovic, B.; Aplin, S.; Bacchetta, A.; Bartel, W.; Beckingham, M.; Brandt, G.; Brinkmann, M.; Campbell, A.J.; Cholewa, A.; Deak, M.; Boer, Y. de; Roeck, A. de; Eckerlin, G.; Elsen, E.; Felst, R.; Fleischer, M.; Gayler, J.; Glazov, A.; Grell, B.R.; Haidt, D.; Helebrant, C.; Janssen, M.E.; Jung, H.; Katzy, J.; Kleinwort, C.; Klimkovich, T.; Knutsson, A.; Korbel, V.; Kraemer, M.; Krastev, K.; Kutak, K.; Levonian, S.; List, J.; Lucaci-Timoce, A.I.; Marti, Ll.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Niebuhr, C.; Nikiforov, A.; Nozicka, M.; Olsson, J.E.; Panagoulias, I.; Papadopoulou, T.; Peng, H.; Pitzl, D.; Placakyte, R.; Radescu, V.; Rurikova, Z.; Salvaire, F.; Schmidt, S.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Toll, T.; Vargas Trevino, A.; Vinokurova, S.; Wessels, M.; Wissing, C.; Wuensch, E.; Zhu, Y.C. [DESY, Hamburg (Germany); Asmone, A.; Stella, B. [Dipt. di Fisica Universita di Roma Tre (Italy); INFN Roma 3, Roma (Italy); Astvatsatourov, A.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Mozer, M.U.; Roland, B.; Roosen, R.; Sunar, D.; Sykora, T.; Mechelen, P. van [Inter-University Inst. for High Energies ULB-VUB, Brussels (Belgium); Univ. Antwerpen, Antwerpen (Belgium); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Faculty of Science, Podgorica (ME); Baghdasaryan, A.; Ghazaryan, S.; Hovhannisyan, A.; Volchinski, V.; Yeganov, V.; Zohrabyan, H. [Yerevan Physics Inst., Yerevan (Armenia); Barrelet, E. [Universites Paris VI et VII, IN2P3-CNRS, LPNHE, Paris (France)] [and others
2009-05-15
The production of neutral strange hadrons is investigated using deep-inelastic scattering events measured with the H1 detector at HERA. The measurements are made in the phase space defined by the negative four-momentum transfer squared of the photon 2inelasticity 0.1
Strangeness production at low Q 2 in deep-inelastic ep scattering at HERA
Aaron, F. D.; Alexa, C.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Bacchetta, A.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J. G.; Coughlan, J. A.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Daum, K.; Deák, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B. R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Helebrant, C.; Henderson, R. C. W.; Hennekemper, E.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M. E.; Janssen, X.; Jemanov, V.; Jönsson, L.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Kogler, R.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Kutak, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Mudrinic, M.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G. D.; Pejchal, O.; Peng, H.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Plačakytė, R.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A. J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J. E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Shushkevich, S.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Tran, T. H.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wegener, D.; Wessels, M.; Wissing, Ch.; Wünsch, E.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.
2009-05-01
The production of neutral strange hadrons is investigated using deep-inelastic scattering events measured with the H1 detector at HERA. The measurements are made in the phase space defined by the negative four-momentum transfer squared of the photon 2< Q 2<100 GeV2 and the inelasticity 0.1< y<0.6. The K {/s 0} and \\varLambda(bar{\\varLambda}) production cross sections and their ratios are determined. K {/s 0} production is compared to the production of charged particles in the same region of phase space. The Λ- bar{\\varLambda} asymmetry is also measured and found to be consistent with zero. Predictions of leading order Monte Carlo programs are compared to the data.
Unified description of H-atom-induced chemicurrents and inelastic scattering.
Kandratsenka, Alexander; Jiang, Hongyan; Dorenkamp, Yvonne; Janke, Svenja M; Kammler, Marvin; Wodtke, Alec M; Bünermann, Oliver
2018-01-23
The Born-Oppenheimer approximation (BOA) provides the foundation for virtually all computational studies of chemical binding and reactivity, and it is the justification for the widely used "balls and springs" picture of molecules. The BOA assumes that nuclei effectively stand still on the timescale of electronic motion, due to their large masses relative to electrons. This implies electrons never change their energy quantum state. When molecules react, atoms must move, meaning that electrons may become excited in violation of the BOA. Such electronic excitation is clearly seen for: ( i ) Schottky diodes where H adsorption at Ag surfaces produces electrical "chemicurrent;" ( ii ) Au-based metal-insulator-metal (MIM) devices, where chemicurrents arise from H-H surface recombination; and ( iii ) Inelastic energy transfer, where H collisions with Au surfaces show H-atom translation excites the metal's electrons. As part of this work, we report isotopically selective hydrogen/deuterium (H/D) translational inelasticity measurements in collisions with Ag and Au. Together, these experiments provide an opportunity to test new theories that simultaneously describe both nuclear and electronic motion, a standing challenge to the field. Here, we show results of a recently developed first-principles theory that quantitatively explains both inelastic scattering experiments that probe nuclear motion and chemicurrent experiments that probe electronic excitation. The theory explains the magnitude of chemicurrents on Ag Schottky diodes and resolves an apparent paradox--chemicurrents exhibit a much larger isotope effect than does H/D inelastic scattering. It also explains why, unlike Ag-based Schottky diodes, Au-based MIM devices are insensitive to H adsorption.
International Nuclear Information System (INIS)
Belier, G.; Roig, O.; Meot, V.; Daugas, J.M.; Aupiais, J.; Jutier, Ch.; Le Petit, G.; Veyssiere, Ch.
2008-01-01
When neutrons interact with isomers, these isomers can de-excite and in such a reaction the outgoing neutron has an energy greater than the in-going one. This process is referred as Inelastic Neutron Acceleration or Super-elastic Scattering. Up to now this process was observed for only two nucleus, 152m Eu and 180m Hf by measuring the number of fast neutrons produced by isomeric targets irradiated with thermal neutrons. In these experiments the energies of the accelerated neutrons were not measured. This report presents an indirect measurement of inelastic neutron acceleration on 177m Lu, based on the burn-up and the radiative capture cross sections measurements. Since at thermal energies the inelastic scattering and the radiative capture are the only processes that contribute to the isomer burn-up, the inelastic cross section can be deduced from the difference between the two measured quantities. Applying this method for the 177 Lu isomer with different neutron fluxes we obtained a value of (257 ± 50) barns (for a temperature of 323 K) and determined that there is no integral resonance for this process. In addition the radiative capture cross section on 177g Lu was measured with a much better accuracy than the accepted value. Since the acceleration cross section is quite high, a direct measurement of this process was undertaken, sending thermal neutrons and measuring the fast neutrons. The main goal now is to measure the outgoing neutron energies in order to identify the neutron transitions in the exit channel. In particular the K conservation question can be addressed by such a measurement. (author)
Geometric Scaling Analysis of Deep Inelastic Scattering Data Including Heavy Quarks
International Nuclear Information System (INIS)
Wu Qing-Dong; Zeng Ji; Hu Yuan-Yuan; Li Quan-Bo; Xiang Wen-Chang; Zhou Dai-Cui
2016-01-01
An analytic massive total cross section of photon-proton scattering is derived, which has geometric scaling. A geometric scaling is used to perform a global analysis of the deep inelastic scattering data on inclusive structure function F_2 measured in lepton–hadron scattering experiments at small values of Bjorken x. It is shown that the descriptions of the inclusive structure function F_2 and longitudinal structure function F_L are improved with the massive analytic structure function, which may imply the gluon saturation effect dominating the parton evolution process at HERA. The inclusion of the heavy quarks prevent the divergence of the lepton–hadron cross section, which plays a significant role in the description of the photoproduction region. (paper)
Observation of jet production in deep inelastic scattering with a large rapidity gap at HERA
International Nuclear Information System (INIS)
Doeker, T.
1994-01-01
Events with a large rapidity gap in deep inelastic scattering with Q 2 ≥ 10 GeV 2 have been studied in the ZEUS detector. The properties of these events with W > 140 GeV are consistent with a leading twist diffractive production mechanism. In the laboratory frame, with E jet t ≥ 4 GeV, 159% of the events are of the 1-jet type with negligible 2-jet production. The single jet is back-to-back in azimuth with the scattered electron. No energy now is observed between the jet and the proton direction. With a lower jet transverse energy cut 2-jet production is observed both in the laboratory and the γ * P centre-of-mass systems, demonstrating the presence of hard scattering in the virtual photon proton interactions that give rise to large rapidity gap events
Observation of jet production in deep inelastic scattering with a large rapidity gap a HERA
International Nuclear Information System (INIS)
Derrick, M.; Krakauer, D.; Magill, S.
1994-04-01
Events with a large rapidity gap in deep inelastic scattering with Q 2 ≥10 GeV 2 have been studied in the ZEUS detector. The properties of these events with W>140 GeV are consistent with a leading twist diffractive mechanism. In the laboratory frame, with E T jet ≥4 GeV, 15% of the events are of the 1-jet type with negligible 2-jet production. The single jet is back-to-back in azimuth with the scattered electron. No energy flow is observed between the jet and the proton direction. With a lower jet transverse energy cut 2-jet production is observed both in the laboratory and the γ * p centre-of-mass systems demonstrating the presence of hard scattering in the virtual photon interactions that give rise to large rapidity gap events. (orig.)
Inelastic light scattering by low-lying excitations of electrons in low-dimensional semiconductors
Energy Technology Data Exchange (ETDEWEB)
Pellegrini, V. [NEST CNR-INFM and Scuola Normale Superiore, Pisa (Italy); Pinczuk, A. [Department of Physics, Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey (United States)
2006-11-15
The low-dimensional electron systems that reside in artificial semiconductor heterostructures of great perfection are a contemporary materials base for explorations of collective phenomena. Studies of low-lying elementary excitations by inelastic light scattering offer insights on properties such energetics, interactions and spin magnetization. We review here recent light scattering results obtained from two-dimensional (2D) quantum fluids in semiconductor heterostructures under extreme conditions of low temperature and large magnetic field, where the quantum Hall phases are archetypes of novel behaviors. We also consider recent light scattering experiments that have probed the excitation spectra of few-electron states in semiconductor quantum dots. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Experimental determination of the berilium phonon spectra using inelastic neutro scattering
International Nuclear Information System (INIS)
Sirota, N.N.; Bulat, I.A.
1976-01-01
A study has been made of in elastic scattering of cold neutrons with energies between 0.0022 and 0.00523 eV by polycrystalline beryllium and restoration of its phonon spectrum. The specimen studied is a block of polycrystalline beryllium. In the case of beryllium the averaging of coherent effects upon scattering on a thick specimen takes place as a result of multiple internal Bragg-type reflections of neutrons which undergo inelastic scattering with absorption of phonons. The thickness of the spheric averaging layer for Esub(6) = 0.00523 eV is almost equal to the maximum dimension of the Brillouin band. The phonon spectrum of beryllium for three mean energies used of incident neutrons has been demonstrated. The phonon spectrum of beryllium, measured for the first time, is of interest for quantitative calculations of a number of its physical properties
Direct inelastic scattering of oriented NO from Ag(111) and Pt(111)
International Nuclear Information System (INIS)
Tenner, M.G.; Kuipers, E.W.; Kleyn, A.W.; Stolte, S.
1991-01-01
A pulsed supersonic and cold oriented beam of NO molecules is incident upon the (111) face of clean Ag and Pt single crystal surfaces. The steric effect in the scattered density distributions is determined by a quadrupole mass spectrometer. It is found that the steric effect in the peak in the distribution of direct inelastically scattered molecules depends linearly on the reflection angle. In all circumstances O-end collisions lead to scattering angles more inclined towards the surface than N-end collisions. For the Pt(111) surface a much stronger steric effect is measured than for the Ag(111) surface. The steric effect seems to scale with the incident normal velocity. These strong steric effects can be explained by the larger trapping probability for the N-end orientation and a leverage effect due to the high trapping probability
Theory of deep inelastic neutron scattering: Hard-core perturbation theory
International Nuclear Information System (INIS)
Silver, R.N.
1988-01-01
Details are presented of a new many-body theory for deep inelastic neutron scattering (DINS) experiments to measure momentum distributions in quantum fluids and solids. The high-momentum and energy-transfer scattering law in helium is shown to be a convolution of the impulse approximation with a final-state broadening function which depends on the scattering phase shifts and the radial distribution function. The predicted broadening satisfies approximate Y scaling, is neither Lorentzian nor Gaussian, and obeys the f, ω 2 , and ω 3 sum rules. The derivation uses a combination of Liouville perturbation theory, projection superoperators, and semiclassical methods which I term ''hard-core perturbation theory.'' A review is presented of the predictions of prior theories for DINS experiments in relation to the present work. A subsequent paper will present massive numerical predictions and a discussion of DINS experiments on superfluid 4 He
AUTHOR|(CDS)2067425; Arvidson, A; Badelek, B; Bardin, G; Baum, G; Berglund, P; Betev, L; Birsa, R; De Botton, N R; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Eichblatt, S; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gilly, H; Giorgi, M A; Görtz, S; Gracia, G; De Groot, N; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Ketel, T; Kiryluk, J; Kiselev, Yu F; Krivokhizhin, V G; Kröger, W; Kukhtin, V V; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Litmaath, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Grosse-Perdekamp, M; Pereira, H; Perrot-Kunne, F; Peshekhonov, V D; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Rädel, G; Rijllart, A; Reicherz, G; Rodríguez, M; Rondio, Ewa; Roscherr, B; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Tessarotto, F; Thers, D; Tlaczala, W; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Whitten, C; Windmolders, R; Wislicki, W; Witzmann, A; Ylöstalo, J; Zanetti, A M; Zaremba, K
1997-01-01
We present a new measurement of the virtual photon proton asymmetry $A_1^{\\rm p}$ from deep inelastic scattering of polarized muons on polarized protons in the kinematic range $0.0008 1$ GeV$^{2}$. A perturbative QCD evolution in next-to-leading order is used to determine $g_1^{\\rm p}(x)$ at a constant $Q^2$. At $Q^{2} = 10$ GeV$^{2}$ we find, in the measured range, $\\int_{0.003}^{0.7} g_{1}^{\\rm p}(x){\\rm d}x = 0.139 \\pm 0.006~({\\rm stat})\\pm 0.008~({\\rm syst)} \\pm 0.006~({\\rm evol})$. The value of the first moment $\\Gamma_{1}^{\\rm p} = \\int_{0}^{1} g_{1}^{\\rm p}(x){\\rm d}x$ of $g_{1}^{\\rm p}$ depends on the approach used to describe the behaviour of $g_{1}^{\\rm p}$ at low $x$. We find that the Ellis-Jaffe sum rule is violated. With our published result for $\\Gamma_{1}^{\\rm d}$ we confirm the Bjorken sum rule with an accuracy of $\\approx 15\\%$ at the one standard deviation level.
Energy Technology Data Exchange (ETDEWEB)
Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)
2012-06-15
Inclusive e{sup {+-}}p single and double differential cross sections for neutral and charged current deep inelastic scattering processes are measured with the H1 detector at HERA. The data were taken at a centre-of-mass energy of {radical}(s)=319 GeV with a total integrated luminosity of 333.7 pb{sup -1} shared between two lepton beam charges and two longitudinal lepton polarisation modes. The differential cross sections are measured in the range of negative four-momentum transfer squared, Q{sup 2}, between 60 and 50000 GeV{sup 2}, and Bjorken x between 0.0008 and 0.65. The measurements are combined with earlier published unpolarised H1 data to improve statistical precision and used to determine the structure function xF{sup {gamma}}{sup Z}{sub 3}. A measurement of the neutral current parity violating structure function F{sup {gamma}}{sup Z}{sub 2} is presented for the first time. The polarisation dependence of the charged current total cross section is also measured. The new measurements are well described by a next-to-leading order QCD fit based on all published H1 inclusive cross section data which are used to extract the parton distribution functions of the proton.
International Nuclear Information System (INIS)
Yasumasa, Joti; Nobuhiro, Go; Akio, Kitao; Nobuhiro, Go
2003-01-01
Inelastic and quasielastic neutron scattering gives the information on the dynamics of biological macromolecules. The combination of computer simulation with neutron scattering experiments allows us to characterize a wide range of dynamical phenomena in condensed phase bio-molecular systems. In this work, the dynamic structure factors in (Q,ω)-space were calculated by using the results of bio-molecular simulations. From the simulated inelastic neutron scattering spectra, we discuss the (Q,ω)-range and the resolution of a detector needed to observe function-related protein dynamics. (authors)
We intend to measure the structure of the unbound nucleus $^{21}$Al via resonance elastic and inelastic scattering with an active target. There are many goals: \\\\ a) to locate the 1/2$^{+}$ level in $^{21}$Al that brings information on the Thomas-Ehrman shift, \\\\ b) to measure the energy spectrum of $^{21}$Al which is a N=8 isotone with the resonance elastic scattering reaction, \\\\ c) to investigate via inelastic scattering the strength of core excitations in the existence of narrow unbound resonances beyond the proton drip-line.
Holmes, Jesse Curtis
Nuclear data libraries provide fundamental reaction information required by nuclear system simulation codes. The inclusion of data covariances in these libraries allows the user to assess uncertainties in system response parameters as a function of uncertainties in the nuclear data. Formats and procedures are currently established for representing covariances for various types of reaction data in ENDF libraries. This covariance data is typically generated utilizing experimental measurements and empirical models, consistent with the method of parent data production. However, ENDF File 7 thermal neutron scattering library data is, by convention, produced theoretically through fundamental scattering physics model calculations. Currently, there is no published covariance data for ENDF File 7 thermal libraries. Furthermore, no accepted methodology exists for quantifying or representing uncertainty information associated with this thermal library data. The quality of thermal neutron inelastic scattering cross section data can be of high importance in reactor analysis and criticality safety applications. These cross sections depend on the material's structure and dynamics. The double-differential scattering law, S(alpha, beta), tabulated in ENDF File 7 libraries contains this information. For crystalline solids, S(alpha, beta) is primarily a function of the material's phonon density of states (DOS). Published ENDF File 7 libraries are commonly produced by calculation and processing codes, such as the LEAPR module of NJOY, which utilize the phonon DOS as the fundamental input for inelastic scattering calculations to directly output an S(alpha, beta) matrix. To determine covariances for the S(alpha, beta) data generated by this process, information about uncertainties in the DOS is required. The phonon DOS may be viewed as a probability density function of atomic vibrational energy states that exist in a material. Probable variation in the shape of this spectrum may be
International Nuclear Information System (INIS)
Korovin, P.P.; Malinina, L.V.; Strokovskij, E.A.
1998-01-01
We suggest a new dimensionless relativistic invariant variable R Δm X / ν which may be interpreted as the ratio of the excitation energy to the full transferred energy; therefore this variable measures a 'degree of inelasticity' of the scattering. Existing data on the tensor analyzing power of the p(d polarized, d ' )X and 12 C(d polarized, d ' )X inelastic scattering at momenta from 4.2 to 9 GeV/c are analyzed in terms of this variable. We observe that A yy taken as a function of R does not depend upon the incident energy, the scattering angle (up to the angles of θ cm ∼ 30 deg), and there is no noticeable difference between the proton and nuclear targets as well. It is remarkable that A yy is maximal (of ∼ 0.5) when R ∼ 0.5 - 0.6 and is small in absolute value when R is close to its limiting values of 0 and 1
Resolution of the VESUVIO spectrometer for High-energy Inelastic Neutron Scattering experiments
Energy Technology Data Exchange (ETDEWEB)
Imberti, S. [Universita degli Studi di Roma Tre, Dipartimento di Fisica ' E.Amaldi' , Rome (Italy) and CNR-INFM, Rome (Italy)]. E-mail: silvia.imberti@roma2.infn.it; Andreani, C. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Garbuio, V. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Gorini, G. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G.Occhialini' , Milan (Italy); CNR-INFM, Milan (Italy); Pietropaolo, A. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Senesi, R. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Tardocchi, M. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G.Occhialini' , Milan (Italy); CNR-INFM, Milan (Italy)
2005-11-01
New perspectives for epithermal neutron spectroscopy have been opened up as a result of the development of the Resonance Detector and its use on inverse geometry time-of-flight spectrometers at spallation sources. A special application of the Resonance Detector is the Very Low Angle Detector Bank (VLAD) for the VESUVIO spectrometer at ISIS, operating in the angular range 1 deg. <2{theta}<5 deg. This equipment allows High-energy Inelastic Neutron Scattering (HINS) measurements to be performed in the (q,{omega}) kinematical region at low wavevector (q<10A{sup -1}) and high energy (unlimited) transfer -bar {omega}>500meV, a regime so far inaccessible to experimental studies on condensed matter systems. The HINS measurements complement the Deep Inelastic Neutron Scattering (DINS) measurements performed on VESUVIO in the high wavevector q(20A{sup -1}1eV), where the short-time single-particle dynamics can be sampled. This paper will revise the main components of the resolution for HINS measurements of VESUVIO. Instrument performances and examples of applications for neutron scattering processes at high energy and at low wavevector transfer are discussed.
Higher-twist effects in QCD, deep inelastic scattering, and the Drell-Yan process
International Nuclear Information System (INIS)
Berger, E.L.; Stanford Univ., CA
1980-01-01
Inclusion of specific effects associated with constituent binding in hadronic wave functions is shown to lead to important non-scaling, non-factorizing 1/Q 2 contributions to cross sections for semi-inclusive deep-inelastic scattering, the Drell-Yan process, and other hard scattering reactions. These 1/Q 2 higher-twist terms are predicted to be dominant in well defined kinematic regions such as large x and/or large z. The provide angular distributions typical of longitudinally polarized virtual photons and W's, including sin 2 theta terms in meson induced Drell-Yan processes and in e + e - → πX, as well as unusual (1-γ) terms in deep-inelastic scattering. Calculations are also presented of the quark structure functions of the pion qsub(π)(x,Q 2 ) and for the quark to pion fragmentation function Dsub(π)(z,Q 2 ). Predictions are made for the azimuthal angle dependence of the cross sections for πN → μ anti μX and IN → l'πX. (orig.)
International Nuclear Information System (INIS)
Inokuti, M.; Manson, S.T.
1982-01-01
We begin with a resume of the Bethe theory, which provides a general framework for discussing the inelastic scattering of fast electrons and leads to powerful criteria for judging the reliability of cross-section data. The central notion of the theory is the generalized oscillator strength as a function of both the energy transfer and the momentum transfer, and is the only non-trivial factor in the inelastic-scattering cross section. Although the Bethe theory was initially conceived for free atoms, its basic ideas apply to solids, with suitable generalizations; in this respect, the notion of the dielectric response function is the most fundamental. Topics selected for discussion include the generalized oscillator strengths for the K-shell and L-shell ionization for all atoms with Z less than or equal to 30, evaluated by use of the Hartree-Slater potential. As a function of the energy transfer, the generalized oscillator strength most often shows a non-monotonic structure near the K-shell and L-shell thresholds, which has been interpreted as manifestations of electron-wave propagation through atomic fields. For molecules and solids, there are additional structures due to the scattering of ejected electrons by the fields of other atoms
Vibrationally elastic and inelastic scattering of electrons by hydrogen sulphide molecules
International Nuclear Information System (INIS)
Nishimura, Tamio; Itikawa, Yukikazu
1996-01-01
Vibrationally elastic and inelastic cross sections (differential and integral ones) are calculated for electron scattering from hydrogen sulphide (H 2 S) at the collision energies 3-30 eV. Vibrational excitation of all three fundamental modes is considered. The calculation is based on the rotationally sudden and a vibrationally close-coupling method using an ab initio electrostatic potential. The effects of electron exchange and target polarization are taken into account approximately. The resulting cross sections are compared with the experimental data available. The present differential cross sections (DCS) for the elastic scattering reproduce the experimental data well. For the inelastic scattering, the present DCS is too small at 3 eV, compared with the experimental data. This is probably due to a shape resonance, which the present calculation would not be sufficiently accurate to produce. In the higher energy region (i.e. above about 10 eV), the present vibrational cross section should be more reliable, but no experimental data are available so far. (Author)
Photoexcitation by gamma-ray scattering near threshold and giant dipole resonance
International Nuclear Information System (INIS)
Lakosi, L.; Safar, J.; Veres, A.; Sekine, T.; Kaji, H.; Yoshihara, K.
1993-01-01
Photoexcitation of 4.5 h half-life 115m In and 56 min half-life 103m Rh isomers by inelastic gamma-ray scattering near threshold and in the giant dipole resonance region has been reviewed. In disagreement with earlier experimental results available in the literature, but in good agreement with our experiments published recently, present calculations indicate that above the photoneutron emission threshold the isomer excitation drops abruptly and remains orders of magnitude smaller than at the threshold, even around resonance maximum. (author)
Inclusive gluon production in deep inelastic scattering at high parton density
International Nuclear Information System (INIS)
Kovchegov, Yuri V.; Tuchin, Kirill
2002-01-01
We calculate the cross section of single inclusive gluon production in deep inelastic scattering at very high energies in the saturation regime, where the parton densities inside hadrons and nuclei are large and the evolution of structure functions with energy is nonlinear. The expression we obtain for the inclusive gluon production cross section is generated by this nonlinear evolution. We analyze the rapidity distribution of the produced gluons as well as their transverse momentum spectrum given by the derived expression for the inclusive cross section. We propose an ansatz for the multiplicity distribution of gluons produced in nuclear collisions which includes the effects of nonlinear evolution in both colliding nuclei
Running of the charm-quark mass from HERA deep-inelastic scattering data
International Nuclear Information System (INIS)
Gizhko, A.; Geiser, A.; Moch, S.
2017-04-01
Combined HERA data on charm production in deep-inelastic scattering have previously been used to determine the charm-quark running mass m_c(m_c) in the MS renormalisation scheme. Here, the same data are used as a function of the photon virtuality Q"2 to evaluate the charm-quark running mass at different scales to one-loop order, in the context of a next-to-leading order QCD analysis. The scale dependence of the mass is found to be consistent with QCD expectations.
On the kinematic reconstruction of deep inelastic scattering at HERA: the Σmethod
International Nuclear Information System (INIS)
Bassler, U.; Bernardi, G.
1994-12-01
We review and compare the reconstruction methods of the inclusive deep inelastic scattering variables used at HERA. We introduce a new prescription, the Sigma (Σ) method, which allows to measure the structure function of the proton F 2 (x, Q 2 ) in a large kinematic domain, and in particular in the low x-low Q 2 region, with small systematic errors and small radiative corrections. A detailed comparison between the Σ method and the other methods is shown. Extensions of the Σ method are presented. The effect of QED radiation on the kinematic reconstruction and on the structure function measurement is discussed. (orig.)
Non-factorizable contributions to deep inelastic scattering at large x
International Nuclear Information System (INIS)
Pecjak, Ben D.
2005-01-01
We use soft-collinear effective theory (SCET) to study the factorization properties of deep inelastic scattering in the region of phase space where (1-x) ∼ Λ QCD /Q. By applying a regions analysis to loop diagrams in the Breit frame, we show that the appropriate version of SCET includes anti-hard-collinear, collinear, and soft-collinear fields. We find that the effects of the soft-collinear fields spoil perturbative factorization even at leading order in the 1/Q expansion
International Nuclear Information System (INIS)
Johnson, M.R.; Trommsdorff, H.P.
2009-01-01
Vibrational spectra of crystalline powder of four isotopologues of formic acid (HCOOH, HCOOD, DCOOH, DCOOD) and of acetic acid (CH 3 COOH, CH 3 COOD, CD 3 COOH, CD 3 COOD) were recorded at 20 K by inelastic neutron scattering. These spectra are compared with computed spectra based on harmonic force fields derived from periodic density functional theory (DFT) calculations. The assignment of all internal vibrations is obvious from the spectral changes under isotopic substitution. Discrepancies between calculation and experiment expose the over evaluation of the strength of the hydrogen bond by these standard DFT calculations