WorldWideScience

Sample records for industry waste-to-energy solutions

  1. Economic analysis of waste-to-energy industry in China.

    Science.gov (United States)

    Zhao, Xin-Gang; Jiang, Gui-Wu; Li, Ang; Wang, Ling

    2016-02-01

    The generation of municipal solid waste is further increasing in China with urbanization and improvement of living standards. The "12th five-year plan" period (2011-2015) promotes waste-to-energy technologies for the harmless disposal and recycling of municipal solid waste. Waste-to-energy plant plays an important role for reaching China's energy conservation and emission reduction targets. Industrial policies and market prospect of waste-to-energy industry are described. Technology, cost and benefit of waste-to-energy plant are also discussed. Based on an economic analysis of a waste-to-energy project in China (Return on Investment, Net Present Value, Internal Rate of Return, and Sensitivity Analysis) the paper makes the conclusions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Waste-to-energy possibilities for industrial olive and grape by-products in Extremadura

    Energy Technology Data Exchange (ETDEWEB)

    Celma, A.R.; Rojas, S. [Universidad de Extremadura, Badajoz (Spain). Departamento de Ingenieria Quimica y Energetica; Lopez-Rodriguez, F. [Universidad de Extremadura, Badajoz (Spain). Area de Proyectos de Ingenieria

    2007-07-15

    The olive and grape agro-industrial sectors have a major economic importance in Extremadura. Annual production of olive oil is more than 50 x 10{sup 3} t, and of wine is more than 3 x 10{sup 6} hectolitres. The large amounts of by-products are in most cases under-used, although they could be converted into a zero cost of the waste at the point of origin. In this context, the present work describes an estimate of plant size, and an economic analysis of grate firing+steam turbine (GF/ST) and fluidized bed combustion+steam turbine (FBC/ST) waste-to-energy solutions using industrial olive and grape by-products in Extremadura. The fuel is dry olive husk waste (OH), olive mill wastewater (OMW), OH+OMW sludge, and grape waste from wineries, with total calculated specific costs of 3.28, 8.09, 2.67, and 2.05 EUR GJ{sup -1} with respect to the lower heating value (LHV), respectively. The logistics component corresponding to trucking the biomass to the power production plant is that of greatest economic importance, even when the logistics strategy includes de-centralized drying plants. For real onsite availabilities of OH 21.084 x 10{sup 3} t, OMW 37.483 x 10{sup 3} t, olive sludge 87.462 x 10{sup 3} t, and grape waste 89.486 x 10{sup 3} t, the gross power is 19.13 MW for a GF/ST plant and 20.46 MW for an FBC/ST plant. The results are compared using standard economic indices - net present value (NPV), profitability index (PI), internal rate of return (IRR), and payback time (PBT). A sensitivity and risk analysis of the proposals showed the GF/ST option to be the better suited to the studied scenario, with better values for all the indicators. (author)

  3. PLASMA GASIFICATION – THE WASTE-to-ENERGY SOLUTION FOR THE FUTURE

    Directory of Open Access Journals (Sweden)

    Birsan N.

    2014-12-01

    Full Text Available Plasma WtE is currently subject of extensive research and a number of companies across the globe are trying to develop a suitable, eco-friendly and efficient WtE technology for the future. While all of these companies are still working on concept designs or small-scale prototypes, there is one company already building large industrial scale plasma gasifiers around the globe to treat MSW, Industrial and Toxic waste all together. In 1999 in Japan, Hitachi Metals and Westinghouse Plasma Corp (“WPC” built the World’s First commercial demonstration plasma WtE plant. Hitachi Metals operated the plant for one year on municipal solid waste and obtained a certification from the Japan Waste Research Foundation (JWRF. Subsequently, Hitachi Metals leveraged this success into the two commercial plants at Mihama-Mikata and Utashinai in Japan, both having at the very core the now proven Westinghouse Plasma gasification technology. For more than 20 years, Westinghouse Plasma Corp (WPC has been leading the technology platform for converting the world’s waste into clean energy for a healthier planet. The WPC technology makes landfills obsolete and replaces Incineration as the primary process for WtE. The WPC technology already operates in three reference plants around the world and other three new commercial plants are under construction (two plants of 1000 tons/day in UK and a 650 tons/day in China, all three designed to convert municipal solid waste to electricity and district heat, in the most efficient and environmental-friendly manner.

  4. Waste to energy

    CERN Document Server

    Syngellakis, S

    2014-01-01

    Waste to Energy deals with the very topical subject of converting the calorific content of waste material into useful forms of energy. Topics included cover: Biochemical Processes; Conversions by Thermochemical Processes; Computational Fluid Dynamics Modelling; Combustion; Pyrolysis; Gasification; Biofuels; Management and Policies.

  5. Finding urban waste management solutions and policies: Waste-to-energy development and livelihood support system in Payatas, Metro Manila, Philippines.

    Science.gov (United States)

    Serrona, Kevin Roy; Yu, Jeong-Soo

    2009-01-01

    One of the potential solutions in social and environmental sustainability in municipal solid waste management (MSW) in Metro Manila is to combine community-based recycling and sound landfill management strategies. The marriage of the two puts importance on recycling as a source of livelihood while proper landfill management aims to improve the aesthetic and environmental quality of disposal facilities in urban areas. To do this, a social mapping of wastepickers, junkshops and local recycling practices needs to be undertaken and at the same time assess strategies of the national and local governments vis-à-vis existing laws on municipal solid waste. The case of Payatas controlled disposal facility was taken as a pilot study because it represents the general condition of disposal sites in Metro Manila and the social landscape that it currently has. In addition, a waste-to-energy (WTE) project has been established in Payatas to produce electricity from methane gas. Preliminary interviews with wastepickers show that development interventions in disposal sites such as WTE pose no opposition from host communities for as long as alternative livelihood opportunities are provided. Regulating the flow of wastepickers into the landfill has advantages like improved income and security. Felt needs were also articulated like provision of financial support or capital for junkshop operation and skills training. Overall, a smooth relationship between the local government and community associations pays well in a transitioning landfill management scheme such as Payatas.

  6. From Solid Waste to Energy.

    Science.gov (United States)

    Wisely, F. E.; And Others

    A project designed to convert solid waste to energy is explained in this paper. In April, 1972, an investor-owned utility began to burn municipal solid waste as fuel for the direct production of electric power. This unique venture was a cooperative effort between the City of St. Louis, Missouri, and the Union Electric Company, with financial…

  7. Waste to Energy: A Green Paradigm in Solid Waste Management

    Directory of Open Access Journals (Sweden)

    Mohamad Danish Anis

    2015-12-01

    Full Text Available The current annual generation of municipal solid waste in India is estimated to be around 42 million tones which will rise rapidly with population growth, urbanization and improving living standards of people. The municipal solid waste (MSW generation ranges from 0.25 to 0.66 kg/person/day with an average of 0.45 kg/person/day. In addition, large quantities of solid and liquid wastes are generated by industries. Most of the wastes generated find their way into land and water bodies. Without proper treatment, these wastes emit gases like Methane (CH4, Carbon Dioxide (CO2 etc, resulting in bad odor, emission of green house gases and increase in air and water pollution. This problem can be significantly mitigated through adoption of environment-friendly waste-to-energy technologies for the treatment and processing of wastes before disposal. It will not only reduce the quantity of wastes but also generate substantial quantity of energy. India at present is the world’s fifth biggest energy consumer and is predicted to surpass Japan and Russia to take the third place by 2030. Indian economy has shown a robust growth of around 8% in recent years and is trying to sustain this growth in order to reach goals of poverty alleviation. To achieve the required level of growth, India will need to at least triple its primary energy supply and quintuple its electrical capacity. This will force India, which already imports a majority of its oil, to look beyond its borders for energy resources. In India waste-to-energy has a potential of generating 1700 MW per person and this is scheduled to increase when more types of waste would be encompassed. At present hardly 50 MW power is being generated through waste-to-energy options. Waste combustion provides integrated solutions to the problems of the modern era by: recovering otherwise lost energy and thereby reducing our use of precious natural resources; by cutting down our emissions of greenhouse gases; and by both

  8. Waste to energy the carbon perspective

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders; Astrup, Thomas Fruergaard

    2015-01-01

    Waste to energy plants are key treatment facilities for municipal solid waste in Europe. The technology provides efficient volume reduction, mass reduction and hygienisation of the waste. However, the technology is highly disputed in some countries. It is crucial to understand the role of waste...... to energy with respect to potential contributions to CO2 emissions and savings....

  9. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to- Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    Mac Dougall, James [Air Products and Chemicals, Inc., Allentown, PA (United States)

    2016-02-05

    Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, and pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.

  10. Hydrothermal Gasification for Waste to Energy

    Science.gov (United States)

    Epps, Brenden; Laser, Mark; Choo, Yeunun

    2014-11-01

    Hydrothermal gasification is a promising technology for harvesting energy from waste streams. Applications range from straightforward waste-to-energy conversion (e.g. municipal waste processing, industrial waste processing), to water purification (e.g. oil spill cleanup, wastewater treatment), to biofuel energy systems (e.g. using algae as feedstock). Products of the gasification process are electricity, bottled syngas (H2 + CO), sequestered CO2, clean water, and inorganic solids; further chemical reactions can be used to create biofuels such as ethanol and biodiesel. We present a comparison of gasification system architectures, focusing on efficiency and economic performance metrics. Various system architectures are modeled computationally, using a model developed by the coauthors. The physical model tracks the mass of each chemical species, as well as energy conversions and transfers throughout the gasification process. The generic system model includes the feedstock, gasification reactor, heat recovery system, pressure reducing mechanical expanders, and electricity generation system. Sensitivity analysis of system performance to various process parameters is presented. A discussion of the key technological barriers and necessary innovations is also presented.

  11. Agriculture/municipal/industrial waste management and resource recovery feasibility study : renewable energy clusters and improved end-use efficiency : a formula for sustainable development[Prepared for the North Okanagan Waste to Energy Consortium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-10-15

    The North Okanagan Waste to Energy Consortium initiated a study that evaluated the technical, environmental and economic feasibility of a proposed biomass to renewable energy eco-system, using the technologies of anaerobic digestion (AD), cogeneration and hydroponics in a centralized waste treatment and recovery facility. The Okanagan Valley is well suited for the demonstration plant because of its concentration of food producers and processors and abundance of rich organic waste stream. The agricultural, municipal and industrial waste management consortium consisted of a dairy farm, 5 municipalities and local waste handlers. The consortium proposed to combine several organic waste streams such as dairy manure, slaughterhouse offal and source separated municipal solid waste (MSW) to produce biogas in an anaerobic digester. The methane would be processed into renewable energy (heat and electricity) for a hydroponics barley sprout operation. It is expected that the synergies resulting from this project would increase productivity, end-use efficiency and profitability. This study reviewed the basics of AD technology, technological options and evaluated several technology providers. The type and quantity of waste available in the area was determined through a waste audit and analysis. The potential to market the system by-products locally was also reviewed as well as the general economic viability of a centralized system. The study also evaluated site selection, preliminary design and costing, with reference to proximity to feedstock and markets, access to roads, impacts on neighbours and insurance of minimal environmental impact. 84 refs., 82 figs., 10 appendices.

  12. Waste to energy the carbon perspective

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders; Astrup, Thomas Fruergaard

    2015-01-01

    Waste to energy plants are key treatment facilities for municipal solid waste in Europe. The technology provides efficient volume reduction, mass reduction and hygienisation of the waste. However, the technology is highly disputed in some countries. It is crucial to understand the role of waste...

  13. Livestock waste-to-energy opportunities

    Science.gov (United States)

    The use of animal manure and other organic-based livestock wastes as feedstocks for waste-to-energy production has the potential to convert the livestock waste treatment from a liability into a profit center that can generate annual revenues and diversify farm income. This presentation introduces tw...

  14. Waste-to-energy compendium. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    A survey is made of 35 waste-to-energy recovery projects throughout the US. Included are nine refuse-derived fuel (RDF) production facilities, six RDF user facilities, two combined RDF production-user facilities, and 18 mass burning facilities with energy recovery. Only those facilities that are fully operational or those in advanced stages of startup and shakedown are surveyed. Information is provided on processing capacities, operation and maintenance problems, equipment specifications, capital and operating costs, and the current status of each facility. In addition, process flow schematics are provided for each of the nine RDF production plants and both RDF production-user plants. Unless otherwise indicated, the data in this report have been updated to October or November, 1980.

  15. Medical waste to energy: experimental study.

    Science.gov (United States)

    Arcuri, C; Luciani, F; Piva, P; Bartuli, F N; Ottria, L; Mecheri, B; Licoccia, S

    2013-04-01

    Although waste is traditionally assessed as a pollutant which needs to be reduced or lessened, its management is certainly necessary. Nowadays, biological fuel cells, through the direct conversion of organic matter to electricity using biocatalysts, represent a technology able to produce sustainable energy by means of waste treatment. This study aims to propose a mean to generate energy from blood and saliva, that are common risk-infectious medical waste. Material employed (purchased by Sigma-Aldrich) were: Glucose oxidase (GOx), Nafion perfluorinated resin solution at 5% in a mixture of lower aliphatic alcohols and water, Polyethylene oxide. Stock solutions of D (+) glucose were prepared in a 0.1 M phosphate buffer solution and stored at 4 °C for at least 24 h before use. Carbon cloth electrode ELAT HT 140 E-W with a platinum loading of 5 gm-2 was purchased by E-Tek. Electrospun Nafion fibers were obtained as follows. Scanning electron microscopy was used to characterize the electrode morphologies. In order to develop an effective immobilization strategy of GOx on the electrode surface, Nafion fibers (a fully fluorinated ion conducting polymer used as a membrane material in enzymatic fuel cells - EFC) were selected as immobilizing polymer matrix. In this work, exploiting the nafion fibers capability of being able to cathalize Gox activity, we have tried to produce an enzymatic fuel cell which could produce energy from the blood and the saliva within medical-dental waste. Medical waste refers to all those materials produced by the interaction among doctor and patient, such as blood and saliva. During our research we will try to complete an EFC prototype able to produce energy from blood and saliva inside the risk-infectious medical waste in order to contribute to the energy requirements of a consulting room.

  16. Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda.

    Science.gov (United States)

    Gumisiriza, Robert; Hawumba, Joseph Funa; Okure, Mackay; Hensel, Oliver

    2017-01-01

    Uganda's banana industry is heavily impeded by the lack of cheap, reliable and sustainable energy mainly needed for processing of banana fruit into pulp and subsequent drying into chips before milling into banana flour that has several uses in the bakery industry, among others. Uganda has one of the lowest electricity access levels, estimated at only 2-3% in rural areas where most of the banana growing is located. In addition, most banana farmers have limited financial capacity to access modern solar energy technologies that can generate sufficient energy for industrial processing. Besides energy scarcity and unreliability, banana production, marketing and industrial processing generate large quantities of organic wastes that are disposed of majorly by unregulated dumping in places such as swamps, thereby forming huge putrefying biomass that emit green house gases (methane and carbon dioxide). On the other hand, the energy content of banana waste, if harnessed through appropriate waste-to-energy technologies, would not only solve the energy requirement for processing of banana pulp, but would also offer an additional benefit of avoiding fossil fuels through the use of renewable energy. The potential waste-to-energy technologies that can be used in valorisation of banana waste can be grouped into three: Thermal (Direct combustion and Incineration), Thermo-chemical (Torrefaction, Plasma treatment, Gasification and Pyrolysis) and Biochemical (Composting, Ethanol fermentation and Anaerobic Digestion). However, due to high moisture content of banana waste, direct application of either thermal or thermo-chemical waste-to-energy technologies is challenging. Although, supercritical water gasification does not require drying of feedstock beforehand and can be a promising thermo-chemical technology for gasification of wet biomass such as banana waste, it is an expensive technology that may not be adopted by banana farmers in Uganda. Biochemical conversion technologies are

  17. Waste-to-energy: A way from renewable energy sources to sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Kothari, Richa [Babasaheb BhimRao Ambedkar University, Lucknow, U.P. (India); Tyagi, V.V.; Pathak, Ashish [Centre for Energy Studies, Indian Institute of Technology Delhi, 110016 (India)

    2010-12-15

    Nowadays, energy is key consideration in discussions of sustainable development. So, sustainable development requires a sustainable supply of clean and affordable renewable energy sources that do not cause negative societal impacts. Energy sources such as solar radiation, the winds, waves and tides are generally considered renewable and, therefore, sustainable over the relatively long term. Wastes and biomass fuels are usually viewed as sustainable energy sources. Wastes are convertible to useful energy forms like hydrogen (biohydrogen), biogas, bioalcohol, etc., through waste-to-energy technologies. In this article, possible future energy utilization patterns and related environmental impacts, potential solutions to current environmental problems and renewable energy technologies and their relation to sustainable development are discussed with great emphasis on waste-to-energy routes (WTERs). (author)

  18. Waste-to-energy technologies and project implementation

    CERN Document Server

    Rogoff, Marc J

    2011-01-01

    This book covers in detail programs and technologies for converting traditionally landfilled solid wastes into energy through waste-to-energy projects. Modern Waste-to-Energy plants are being built around the world to reduce the levels of solid waste going into landfill sites and contribute to renewable energy and carbon reduction targets. The latest technologies have also reduced the pollution levels seen from early waste incineration plants by over 99 per cent. With case studies from around the world, Rogoff and Screve provide an insight into the different approaches taken to the planning and implementation of WTE. The second edition includes coverage of the latest technologies and practical engineering challenges as well as an exploration of the economic and regulatory context for the development of WTE.

  19. Overview of Finnish waste to energy R and D programme

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K. [VTT Processes, Espoo (Finland)

    2002-10-01

    Incineration Directive for waste-to-energy operators. New technologies and concepts are needed to intensify the material recycling and energy recovery. The European trend of using additional renewable energy including biomass and waste will catalyse this development and business opportunities. In Finland, the governmental implementation plan for renewable energy will support the use of bioenergy and the biodegradable fraction of MSW for energy applications, the target being to add the use of bioenergy by 50% from the level of 1995 to 2010. In general, it can be concluded that the new markets, either created through the certificates system, the fiscal incentives from the government or the green consumer, show promise to function well in the liberalised energy market. Harmonisation at a European level is required to allow for trading at the European market of renewable energy.

  20. Waste to Energy Potential - A High Concentration Anaerobic Bioreactor

    Science.gov (United States)

    2012-05-23

    REPORT DATE 23 MAY 2012 2. REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Waste to Energy Potential - A High...and fermentative bacteria break down organic carbon to VFAs Acetogens break down VFAs to CH3CO2 − and H2 + Acetoclastic methanogens break...s -999999 999999 7 481 su -999999 999999 0 .. -999999 999999 HCA8 pti Flo$&-tdgc Tan.\\ feed su -999999 999999 0 .. -999999 999999 A-l>o -999999

  1. CFD modeling and experience of waste-to-energy plant burning waste wood

    OpenAIRE

    Rajh, B.; Yin, Chungen; Samec, N.; M. HRIBERSEK; Kokalj, F.

    2013-01-01

    Computational Fluid Dynamics (CFD) is being increasingly used in industry for in-depth understanding of the fundamental mixing, combustion, heat transfer and pollutant formation in combustion processes and for design and optimization of Waste-to-Energy (WtE) plants. In this paper, CFD modeling of waste wood combustion in a 13 MW grate-fired boiler in a WtE plant is presented. As a validation effort, the temperature profiles at a number of ports in the furnace are measured and the experimental...

  2. Waste-to-Energy Cogeneration Project, Centennial Park

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Clay; Mandon, Jim; DeGiulio, Thomas; Baker, Ryan

    2014-04-29

    The Waste-to-Energy Cogeneration Project at Centennial Park has allowed methane from the closed Centennial landfill to export excess power into the the local utility’s electric grid for resale. This project is part of a greater brownfield reclamation project to the benefit of the residents of Munster and the general public. Installation of a gas-to-electric generator and waste-heat conversion unit take methane byproduct and convert it into electricity at the rate of about 103,500 Mwh/year for resale to the local utility. The sale of the electricity will be used to reduce operating budgets by covering the expenses for streetlights and utility bills. The benefits of such a project are not simply financial. Munster’s Waste-to Energy Cogeneration Project at Centennial Park will reduce the community’s carbon footprint in an amount equivalent to removing 1,100 cars from our roads, conserving enough electricity to power 720 homes, planting 1,200 acres of trees, or recycling 2,000 tons of waste instead of sending it to a landfill.

  3. Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities.

    Science.gov (United States)

    Schwarzböck, Therese; Van Eygen, Emile; Rechberger, Helmut; Fellner, Johann

    2017-02-01

    Although thermal recovery of waste plastics is widely practiced in many European countries, reliable information on the amount of waste plastics in the feed of waste-to-energy plants is rare. In most cases the amount of plastics present in commingled waste, such as municipal solid waste, commercial, or industrial waste, is estimated based on a few waste sorting campaigns, which are of limited significance with regard to the characterisation of plastic flows. In the present study, an alternative approach, the so-called Balance Method, is used to determine the total amount of plastics thermally recovered in Austria's waste incineration facilities in 2014. The results indicate that the plastics content in the waste feed may vary considerably among different plants but also over time. Monthly averages determined range between 8 and 26 wt% of waste plastics. The study reveals an average waste plastics content in the feed of Austria's waste-to-energy plants of 16.5 wt%, which is considerably above findings from sorting campaigns conducted in Austria. In total, about 385 kt of waste plastics were thermally recovered in all Austrian waste-to-energy plants in 2014, which equals to 45 kg plastics cap(-1). In addition, the amount of plastics co-combusted in industrial plants yields a total thermal utilisation rate of 70 kg cap(-1) a(-1) for Austria. This is significantly above published rates, for example, in Germany reported rates for 2013 are in the range of only 40 kg of waste plastics combusted per capita.

  4. A review on organic waste to energy systems in India.

    Science.gov (United States)

    Dhar, Hiya; Kumar, Sunil; Kumar, Rakesh

    2017-08-31

    Waste generation is increasing day-by-day with the growth of population which directly affects the environment and economy. Organic municipal solid waste (MSW) and agriculture sectors contribute towards maximum waste generation in India. Thus, management of organic waste is very much essential with the increasing demand for energy. The present paper mainly focusses on reviewing waste to energy (WtE) potentials, its technologies, and the associated challenges. Different substrates are utilized through various technological options in India. Organic waste has good potential to attain sustainable energy yields with and without affecting the environment. A realistic scenario of WtE technologies and their challenges in line with the existing Indian condition is presented in this paper. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Waste to energy – key element for sustainable waste management

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Paul H., E-mail: paul.h.brunner@tuwien.ac.at; Rechberger, Helmut

    2015-03-15

    Highlights: • First paper on the importance of incineration from a urban metabolism point of view. • Proves that incineration is necessary for sustainable waste management. • Historical and technical overview of 100 years development of MSW incineration. - Abstract: Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of “protection of men and environment” and “resource conservation”. Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.

  6. Waste to energy--key element for sustainable waste management.

    Science.gov (United States)

    Brunner, Paul H; Rechberger, Helmut

    2015-03-01

    Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of "protection of men and environment" and "resource conservation". Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Waste-to-Energy Thermal Destruction Identification for Forward Operating Bases

    Science.gov (United States)

    2016-07-01

    Approved for public release; distribution is unlimited TECHNICAL REPORT TR-NAVFAC-EXWC-EV-1703 JULY 2016 WASTE -TO- ENERGY THERMAL DESTRUCTION...To) 2015-2016 4. TITLE AND SUBTITLE Waste -to- Energy Thermal Destruction Identification for Forward Operating Bases 5a. CONTRACT NUMBER 5b...successfully integrating the sub-processes together and meeting the expeditionary requirements of each service branch. 15. SUBJECT TERMS Waste to Energy

  8. Waste-to-Energy in China: Key Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Dongliang Zhang

    2015-12-01

    Full Text Available China—the largest developing country in the world—is experiencing both rapid economic maturation and large-scale urbanization. These situations have led to waste disposal problems, and the need to identify alternative energy sources. Waste-to-energy (WTE conversion processes, a source of renewable energy, are expected to play an increasingly important role in China’s sustainable management of municipal solid waste (MSW. The purpose of this research is to investigate the key problems and opportunities associated with WTE, to provide recommendations for the government. This paper begins by describing China’s current MSW management situation and analyzing its waste disposal problems. The major challenges associated with China’s WTE incineration are then discussed from economic, environmental and social points of view. These include the high costs associated with constructing necessary facilities, the susceptibility of facilities to corrosion, the lower heating value of China’s MSW, air pollutant emissions and especially public opposition to WTE incineration. Since discarded waste can be used to produce energy for electricity and heat—thus reducing its volume and the production of greenhouse gas (GHG emissions—with government policies and financial incentives, the use of WTE incineration as a renewable energy source and part of a sustainable waste management strategy will be of increasing importance in the future. The paper concludes by summarizing the management, economic and social benefits that could be derived from developing the country’s domestic capacity for producing the needed incineration equipment, improving source separation capabilities, standardizing regulatory and legal responsibilities and undertaking more effective public consultation processes.

  9. A review of olive mill solid wastes to energy utilization techniques.

    Science.gov (United States)

    Christoforou, Elias; Fokaides, Paris A

    2016-03-01

    In recent years, the utilization of olive industry by-products for energy purposes has gained significant research interest and many studies have been conducted focused on the exploitation of olive mill solid waste (OMSW) derived from the discontinuous or continuous processing of olive fruits. In this review study, the primary characteristics of OMSW and the techniques used to define their thermal performance are described. The theoretical background of the main waste-to-energy conversion pathways of solid olive mill wastes, as well as the basic pre-treatment techniques for upgrading solid fuels, are presented. The study aims to present the main findings and major conclusions of previously published works undertaken in the last two decades focused on the characterization of olive mill solid wastes and the utilization of different types of solid olive mill residues for energy purposes. The study also aims to highlight the research challenges in this field.

  10. CFD modeling and experience of waste-to-energy plant burning waste wood

    DEFF Research Database (Denmark)

    Rajh, B.; Yin, Chungen; Samec, N.

    2013-01-01

    Computational Fluid Dynamics (CFD) is being increasingly used in industry for in-depth understanding of the fundamental mixing, combustion, heat transfer and pollutant formation in combustion processes and for design and optimization of Waste-to-Energy (WtE) plants. In this paper, CFD modeling...... of waste wood combustion in a 13 MW grate-fired boiler in a WtE plant is presented. As a validation effort, the temperature profiles at a number of ports in the furnace are measured and the experimental results are compared with the CFD predictions. In the simulation, a 1D model is developed to simulate...... the conversion of the waste wood in the fuel bed on the grate, which provides the appropriate inlet boundary condition for the freeboard 3D CFD simulation. The CFD analysis reveals the detailed mixing and combustion characteristics in the waste wood-fired furnace, pinpointing how to improve the design...

  11. Energy Systems Analysis of Waste to Energy Technologies by use of EnergyPLAN

    DEFF Research Database (Denmark)

    Münster, Marie

    recommended to support research into gasification of waste without the addition of coal and biomass. Together, the two solutions may contribute to an alternate use of one third of the waste which is currently incinerated. The remaining fractions should still be incinerated with priority given to combined heat......Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This report asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste......-to-Energy technologies are compared with a focus on fuel efficiency, CO2 reductions and costs. The comparison is made by conducting detailed energy system analyses of the present system as well as a potential future Danish energy system with a large share of combined heat and power and wind power. The study shows...

  12. Technology and place: A geography of waste-to-energy in the United States

    Science.gov (United States)

    Howell, Jordan Patterson

    The adoption of technologies differs across space, for reasons attributed to economics, politics, and culture, but also due to limitations imposed by both the physical environment and the technology itself. This dissertation considers the case of waste-to-energy (WTE) incinerators in the United States, and asks why this technology is used in some places but rejected in others. The answer to this simple question is remarkably complex, as understandings and arguments about technology and the environment are mobilized differently by various actors to champion, oppose, or in some cases remain ambivalent about the installation and operation of WTE facilities. In this dissertation I explore the geography of WTE incineration in the United States since the 19th century. Informed by the insights of actor-network theory and the social construction of technology school, I employ the tools of discourse analysis to examine published and unpublished statements, papers, project studies, policy briefs, and archival materials generated alongside the development of WTE facilities in the United States, considering the specific case studies discussed below but also WTE technology in general. I look at federal, state, and local environmental agency documents as well as the papers of consulting firms, environmental and industry advocacy groups, and private companies. I also devote significant attention to the analysis of news media outlets in communities where WTE facilities are located or have been considered. In addition to these literal texts, I examine non-written and visual materials associated with WTE facilities, including films, websites, signage and logos, advertising campaigns, facility architecture, and artwork, as well as more abstract `texts' such as industry conferences, trade-show handouts, promotional materials, and academic and industry research programs. I build on this textual analysis with observations of WTE facilities in action. After an introductory chapter, I

  13. Application of high temperature phase change materials for improved efficiency in waste-to-energy plants.

    Science.gov (United States)

    Dal Magro, Fabio; Xu, Haoxin; Nardin, Gioacchino; Romagnoli, Alessandro

    2017-06-28

    This study reports the thermal analysis of a novel thermal energy storage based on high temperature phase change material (PCM) used to improve efficiency in waste-to-energy plants. Current waste-to-energy plants efficiency is limited by the steam generation cycle which is carried out with boilers composed by water-walls (i.e. radiant evaporators), evaporators, economizers and superheaters. Although being well established, this technology is subjected to limitations related with high temperature corrosion and fluctuation in steam production due to the non-homogenous composition of solid waste; this leads to increased maintenance costs and limited plants availability and electrical efficiency. The proposed solution in this paper consists of replacing the typical refractory brick installed in the combustion chamber with a PCM-based refractory brick capable of storing a variable heat flux and to release it on demand as a steady heat flux. By means of this technology it is possible to mitigate steam production fluctuation, to increase temperature of superheated steam over current corrosion limits (450°C) without using coated superheaters and to increase the electrical efficiency beyond 34%. In the current paper a detailed thermo-mechanical analysis has been carried out in order to compare the performance of the PCM-based refractory brick against the traditional alumina refractory bricks. The PCM considered in this paper is aluminium (and its alloys) whereas its container consists of high density ceramics (such as Al2O3, AlN and Si3N4); the different coefficient of linear thermal expansion for the different materials requires a detailed thermo-mechanical analysis to be carried out to ascertain the feasibility of the proposed technology. Copyright © 2017. Published by Elsevier Ltd.

  14. Synergetic sustainability enhancement via current biofuel infrastructure: waste-to-energy concept for biodiesel production.

    Science.gov (United States)

    Kwon, Eilhann; Yi, Haakrho; Jeon, Young Jae

    2013-03-19

    The concept of waste-to-energy (WtE) with regards to the utilization of byproducts from the bioethanol industry (e.g., distiller's dried grain with solubles: DDGS) was employed to enhance the renewability of biodiesel, which would be an initiative stage of a biorefinery due to the conjunction between bioethanol and biodiesel. For example, DDGS is a strong candidate for use as a biodiesel feedstock due to the tremendous amount that is regularly generated. On the basis of an estimation of possible lipid recovery from DDGS, ∼30% of the biodiesel feedstock demand in 2010 could be supported by the total DDGS generation in the same year. Considering the future expansion of the bioethanol industry up to 2020, the possible lipid recovery from DDGS would provide more than 6 times the biodiesel feedstock demand in 2010. In order to enhance the renewability of biodiesel, the transformation of lipid extracted from DDGS into fatty acid ethyl ester (FAEE) via a noncatalytic transesterification reaction under ambient pressure was investigated in this work. The newly introduced method reported here enables the combination of the esterification of free fatty acids (FFAs) and the transesterification of triglycerides into a single step. This was achieved in the presence of a porous material (i.e., charcoal), and the optimal conditions for transformation into biodiesel via this noncatalytic method were assessed at the fundamental level.

  15. Waste to energy plant operation under the influence of market and legislation conditioned changes

    DEFF Research Database (Denmark)

    Tomic, Tihomir; Dominkovic, Dominik Franjo; Pfeifer, Antun

    2017-01-01

    In this paper, gate-fee changes of the waste-to-energy plants are investigated in the conditions set by European Union legislation and by the introduction of the new heat market. Waste management and sustainable energy supply are core issues of sustainable development of regions, especially urban...... areas. These two energy flows logically come together in the combined heat and power facility by waste incineration. However, the implementation of new legislation influences quantity and quality of municipal waste and operation of waste-to-energy systems. Once the legislation requirements are met......, waste-to-energy plants need to be adapted to market operation. This influence is tracked by the gate-fee volatility. The operation of the waste-to-energy plant on electricity markets is simulated by using EnergyPLAN and heat market is simulated in Matlab, based on hourly marginal costs. The results have...

  16. Sewage sludge drying process integration with a waste-to-energy power plant.

    Science.gov (United States)

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Risk perception and public acceptance toward a highly protested Waste-to-Energy facility.

    Science.gov (United States)

    Ren, Xiangyu; Che, Yue; Yang, Kai; Tao, Yun

    2016-02-01

    The application of Waste-to-Energy treatment in Municipal Solid Waste faces strong protest by local communities, especially in cities with high population densities. This study introduces insight into the public awareness, acceptance and risk perception toward Waste-to-Energy through a structured questionnaire survey around a Waste-to-Energy facility in Shanghai, China. The Dichotomous-Choice contingent valuation method was applied to study the willingness to accept of residents as an indicator of risk perception and tolerance. The factors influencing risk perception and the protest response choice were analyzed. The geographical distributions of the acceptance of Waste-to-Energy facility and protest response were explored using geographical information systems. The findings of the research indicated an encouraging vision of promoting Waste-to-Energy, considering its benefits of renewable energy and the conservation of land. A high percentage of protest willingness to accept (50.94%) was highlighted with the effect of income, opinion about Waste-to-Energy, gender and perceived impact. The fuzzy classification among people with different opinions on compensation (valid 0, positive or protest willingness to accept) revealed the existing yet rejected demand of compensation among protesters. Geographical distribution in the public attitude can also be observed. Finally significant statistical relation between knowledge and risk perception indicates the need of risk communication, as well as involving public into whole management process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Co-Combustion of Animal Waste in a Commercial Waste-to-Energy BFB Boiler

    Directory of Open Access Journals (Sweden)

    Farzad Moradian

    2013-11-01

    Full Text Available Co-combustion of animal waste, in waste-to-energy boilers, is considered a method to produce both heat and power and to dispose of possibly infected animal wastes. This research conducted full-scale combustion tests to identify the impact of changed fuel composition on a fluidized-bed boiler. The impact was characterized by analyzing the deposit formation rate, deposit composition, ash composition, and emissions. Two combustion tests, denoted the reference case and animal waste case, were performed based on different fuel mixes. In the reference case, a normal solid waste fuel mix was combusted in the boiler, containing sorted industry and household waste. In the animal waste case, 20 wt% animal waste was added to the reference fuel mix. The collected samples, comprising sampling probe deposits, fuel mixes, bed ash, return sand, boiler ash, cyclone ash and filter ash, were analyzed using chemical fractionation, SEM-EDX and XRD. The results indicate decreased deposit formation due to animal waste co-combustion. SEM-EDX and chemical fractionation identified higher concentrations of P, Ca, S, and Cl in the bed materials in the animal waste case. Moreover, the risk of bed agglomeration was lower in the animal waste case and also a decreased rate of NOx and SO2 emissions were observed.

  19. Food waste-to-energy conversion technologies: current status and future directions.

    Science.gov (United States)

    Pham, Thi Phuong Thuy; Kaushik, Rajni; Parshetti, Ganesh K; Mahmood, Russell; Balasubramanian, Rajasekhar

    2015-04-01

    Food waste represents a significantly fraction of municipal solid waste. Proper management and recycling of huge volumes of food waste are required to reduce its environmental burdens and to minimize risks to human health. Food waste is indeed an untapped resource with great potential for energy production. Utilization of food waste for energy conversion currently represents a challenge due to various reasons. These include its inherent heterogeneously variable compositions, high moisture contents and low calorific value, which constitute an impediment for the development of robust, large scale, and efficient industrial processes. Although a considerable amount of research has been carried out on the conversion of food waste to renewable energy, there is a lack of comprehensive and systematic reviews of the published literature. The present review synthesizes the current knowledge available in the use of technologies for food-waste-to-energy conversion involving biological (e.g. anaerobic digestion and fermentation), thermal and thermochemical technologies (e.g. incineration, pyrolysis, gasification and hydrothermal oxidation). The competitive advantages of these technologies as well as the challenges associated with them are discussed. In addition, the future directions for more effective utilization of food waste for renewable energy generation are suggested from an interdisciplinary perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Energy systems analysis of waste to energy technologies by use of EnergyPLAN

    Energy Technology Data Exchange (ETDEWEB)

    Muenster, M.

    2009-04-15

    Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This report asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste-to-Energy technologies are compared with a focus on fuel efficiency, CO{sub 2} reductions and costs. The comparison is made by conducting detailed energy system analyses of the present system as well as a potential future Danish energy system with a large share of combined heat and power and wind power. The study shows the potential of using waste for the production of transport fuels such as upgraded biogas and petrol made from syngas. Biogas and thermal gasification technologies are interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research into gasification of waste without the addition of coal and biomass. Together, the two solutions may contribute to an alternate use of one third of the waste which is currently incinerated. The remaining fractions should still be incinerated with priority given to combined heat and power plants with high electrical efficiencies. (author)

  1. Life cycle comparison of waste-to-energy alternatives for municipal waste treatment in Chilean Patagonia.

    Science.gov (United States)

    Bezama, Alberto; Douglas, Carla; Méndez, Jacqueline; Szarka, Nóra; Muñoz, Edmundo; Navia, Rodrigo; Schock, Steffen; Konrad, Odorico; Ulloa, Claudia

    2013-10-01

    The energy system in the Region of Aysén, Chile, is characterized by a strong dependence on fossil fuels, which account for up to 51% of the installed capacity. Although the implementation of waste-to-energy concepts in municipal waste management systems could support the establishment of a more fossil-independent energy system for the region, previous studies have concluded that energy recovery systems are not suitable from an economic perspective in Chile. Therefore, this work intends to evaluate these technical options from an environmental perspective, using life cycle assessment as a tool for a comparative analysis, considering Coyhaique city as a case study. Three technical alternatives were evaluated: (i) landfill gas recovery and flaring without energy recovery; (ii) landfill gas recovery and energy use; and (iii) the implementation of an anaerobic digestion system for the organic waste fraction coupled with energy recovery from the biogas produced. Mass and energy balances of the three analyzed alternatives have been modeled. The comparative LCA considered global warming potential, abiotic depletion and ozone layer depletion as impact categories, as well as required raw energy and produced energy as comparative regional-specific indicators. According to the results, the use of the recovered landfill gas as an energy source can be identified as the most environmentally appropriate solution for Coyhaique, especially when taking into consideration the global impact categories.

  2. Incineration versus gasification: A comparison in waste to energy plants

    Energy Technology Data Exchange (ETDEWEB)

    Ghezzi, U.; Pasini, S.; Ferri, L.D.A. [Politecnico di Milano (Italy). Dipt. di Energetica

    1995-12-31

    Waste thermodestruction has obvious advantages; nevertheless, it encounters problems not very easy to solve, such as those related to gas cleaning and to restricting standards for emission control. One important aspect is the possibility of heat recovery with production of valuable energy such as electric energy. A new technology, at least as far as its application to waste disposal (mainly municipal waste) is concerned, is represented by gasification. It becomes interesting to establish a comparison between this new technology and the traditional one. This comparison does not appear, however, to be very simple, since for gasification only few documented experiments can be found, and these are often difficult to relate to a common evaluation factor. The present paper describes the state of the art of the traditional technology in the thermodestruction field to define a comparison basis. Then, a general discussion is given for the gasification technology, emphasizing different possible solutions to allow for a quantitative evaluation. At last the various aspects of the problem (related to plant, environment, energy, economics, etc.) are specifically compared for the purpose of finding elements which allow for a quantitative evaluation or for emphasizing parameters useful for a final choice.

  3. Reuse of process water in a waste-to-energy plant: An Italian case of study.

    Science.gov (United States)

    Gardoni, Davide; Catenacci, Arianna; Antonelli, Manuela

    2015-09-01

    The minimisation of water consumption in waste-to-energy (WtE) plants is an outstanding issue, especially in those regions where water supply is critical and withdrawals come from municipal waterworks. Among the various possible solutions, the most general, simple and effective one is the reuse of process water. This paper discusses the effectiveness of two different reuse options in an Italian WtE plant, starting from the analytical characterisation and the flow-rate measurement of fresh water and process water flows derived from each utility internal to the WtE plant (e.g. cooling, bottom ash quenching, flue gas wet scrubbing). This census allowed identifying the possible direct connections that optimise the reuse scheme, avoiding additional water treatments. The effluent of the physical-chemical wastewater treatment plant (WWTP), located in the WtE plant, was considered not adequate to be directly reused because of the possible deposition of mineral salts and clogging potential associated to residual suspended solids. Nevertheless, to obtain high reduction in water consumption, reverse osmosis should be installed to remove non-metallic ions (Cl(-), SO4(2-)) and residual organic and inorganic pollutants. Two efficient solutions were identified. The first, a simple reuse scheme based on a cascade configuration, allowed 45% reduction in water consumption (from 1.81 to 0.99m(3)tMSW(-1), MSW: Municipal Solid Waste) without specific water treatments. The second solution, a cascade configuration with a recycle based on a reverse osmosis process, allowed 74% reduction in water consumption (from 1.81 to 0.46m(3)tMSW(-1)). The results of the present work show that it is possible to reduce the water consumption, and in turn the wastewater production, reducing at the same time the operating cost of the WtE plant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Waste-to-energy advanced cycles and new design concepts for efficient power plants

    CERN Document Server

    Branchini, Lisa

    2015-01-01

    This book provides an overview of state-of-the-art technologies for energy conversion from waste, as well as a much-needed guide to new and advanced strategies to increase Waste-to-Energy (WTE) plant efficiency. Beginning with an overview of municipal solid waste production and disposal, basic concepts related to Waste-To-Energy conversion processes are described, highlighting the most relevant aspects impacting the thermodynamic efficiency of WTE power plants. The pervasive influences of main steam cycle parameters and plant configurations on WTE efficiency are detailed and quantified. Advanc

  5. Impact of waste-to-energy on the demand and supply relationships of recycled fibre

    Energy Technology Data Exchange (ETDEWEB)

    Ristola, P.

    2012-11-01

    Today, recycled fibre is globally the most important papermaking raw material in terms of volume. Its collection and use has tripled in absolute terms since 1990 and its market share of all fibres used in papermaking has increased by roughly 1 %-unit per year. Still, globally speaking, about a third of the volume of used paper that could potentially be used for recycling is just disposed of. Thus, recycled fibre can, and is expected to, further increase its market share of papermaking fibres. There is, however, increasing turmoil in the market for papermaking raw materials as a consequence of the political agenda aimed at mitigating global warming and decreasing the use of fossil fuels. This has already become evident in the European fuel wood market, and there is also growing interest in the efficient utilisation of the fuel component in solid wastes, including the discarded paper that currently remains outside recycling. Today in Europe, just about a third of the solid waste is recovered as energy, mostly at relatively low-efficiency waste incineration facilities. The paper industry has recently played an active role in these trends, too. Recycled- fibre-based paper mills in Europe have started to employ modern technology for the sole and co-combustion of refuse-derived fuels and process tailings. These units are dimensioned for the energy needs of the paper mills and have been found to be highly effective in cutting the energy bill for recycled-fibre-based papermaking. In continuance of this theme, proposals have been made concerning more advanced concepts that employ fibre separation techniques from different solid waste streams for further utilisation in the manufacturing of paper products, or, for instance, in ethanol conversion. This development underlines the strong technical synergies between recycled-fibre-based papermaking and modern waste-to-energy technologies. At the same time it poses serious questions concerning the expected further increase in the

  6. Risk transfer solutions for the insurance industry

    Directory of Open Access Journals (Sweden)

    Njegomir Vladimir

    2009-01-01

    Full Text Available The paper focuses on the traditional and alternative mechanisms for insurance risk transfer that are available to global as well as to domestic insurance companies. The findings suggest that traditional insurance risk transfer solutions available to insurance industry nowadays will be predominant in the foreseeable future but the increasing role of alternative solutions is to be expected as the complementary rather than supplementary solution to traditional transfer. Additionally, findings suggest that it is reasonable to expect that future development of risk transfer solutions in Serbia will follow the path that has been passed by global insurance industry.

  7. Waste-to-energy potential in the Western Province of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Omar K.M. Ouda

    2017-07-01

    Full Text Available Waste-to-energy (WTE is a viable option for municipal solid waste (MSW management and a renewable energy source. MSW is a chronic problem in Saudi Arabia and more specifically in Saudi Urban areas. The MSW practices in KSA are simply done by collecting the waste and dumping it in open landfill sites. KSA is considering WTE as a potential renewable energy source that can contribute to electricity demand in the Kingdom. This research aims to assess potential contribution of WTE facility to meet electricity demand in the three main cities in the Western Province of Saudi Arabia and to provide an alternative solution to landfills. Three scenarios for WTE utilization were developed: Mass Burn, Mass Burn with recycling, and refused derived fuel (RDF with biomethanation. The Mass Burn scenario implies full waste stream incineration; the Mass Burn with recycling scenario considers segregation of reusable materials and the waste leftover for incineration; while RDF with biomethanation considers segregation of general waste stream into inorganic and organic waste and utilizes organic waste for biomethanation and inorganic for RDF. The analyses were completed for Jeddah, Makkah, and Madina cities; with current total population of about 6.3 million. The results show that Jeddah has the potential to produce about 180 MW of electricity based on incineration scenario; about 11.25 MW based on incineration with recycling scenario; and about 87.3 MW based RDF with biomethanation scenario by the year 2032. These values and other two cities values are based on theoretical ideals and they help in identifying the optimal WTE techniques for each city.

  8. Proceedings of the 1st Army Installation Waste to Energy Workshop

    Science.gov (United States)

    2008-08-01

    Savoie is the Technical Director for the Installations business area. Dr. Thomas Hartranft is Chief, CF-E, and L. Michael Golish is Chief, CF. The...Holcomb, F., Ducey , R., Kim, B., and Louis, F. 2006. Waste- to-energy ECIP (Energy Conservation Investment Program) project, Volume I: An analysis of

  9. Exergy losses of resource recovery from a waste-to-energy plant

    DEFF Research Database (Denmark)

    Vyzinkarova, Dana; Laner, D.; Astrup, Thomas Fruergaard

    2013-01-01

    . In this study, focusing on recovery from waste-to-energy plants with basic and advanced BA treatment, the goal is to give an indication about quality of selected recovered resources (Fe, Al, and Cu) by means of exergy analysis. Metal flows are modeled through both incineration scenarios, and then chemical...

  10. Municipal solid waste to energy plants - the best technical options; Termovalorizzazione dei rifiuti solidi urbani - le scelte tecnologiche ottimali

    Energy Technology Data Exchange (ETDEWEB)

    Baldasella, P.; Brivio, S.; Carminati, A.; Cavallari, G

    2005-04-01

    After years of stagnation the municipal solid waste to energy plants is reaffirming as a valid disposal solution. The sell of the electric energy produced at an economically rewarding value and the last regulations on flue gas emissions have strongly influenced the technological development. The article proposes a plant scheme considered complete and optimal and in particular illustrates the options that inspired it and the related justifications. [Italian] Dopo anni di stasi la termovalorizzazione dei rifiuti solidi urbani si sta affermando come una valida soluzione di smaltimento. La vendita dell'energia elettrica prodotta ad un valore economicamente remunerativo e le ultime regolamentazioni sulle emissioni gassose hanno fortemente influenzato lo sviluppo tecnologico. L'articolo propone uno schema di impianto di termovalorizzazione ritenuto completo ed ottimale ed in particolare illustra le scelte che lo hanno ispirato e le relative giustificazioni.

  11. Resistance of Coatings for Boiler Components of Waste-to-Energy Plants to Salt Melts Containing Copper Compounds

    Science.gov (United States)

    Galetz, Mathias Christian; Bauer, Johannes Thomas; Schütze, Michael; Noguchi, Manabu; Cho, Hiromitsu

    2013-06-01

    The accelerating effect of heavy metal compounds on the corrosive attack of boiler components like superheaters poses a severe problem in modern waste-to-energy plants (WTPs). Coatings are a possible solution to protect cheap, low alloyed steel substrates from heavy metal chloride and sulfate salts, which have a relatively low melting point. These salts dissolve many alloys, and therefore often are the limiting factor as far as the lifetime of superheater tubes is concerned. In this work the corrosion performance under artificial salt deposits of different coatings, manufactured by overlay welding, thermal spraying of self-fluxing as well as conventional systems was investigated. The results of our studies clearly demonstrate the importance of alloying elements such as molybdenum or silicon. Additionally, the coatings have to be dense and of a certain thickness in order to resist the corrosive attack under these severe conditions.

  12. Lightweight Steel Solutions for Automotive Industry

    Science.gov (United States)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-06-01

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  13. Evaluation of the environmental sustainability of different waste-to-energy plant configurations.

    Science.gov (United States)

    Lombardi, Lidia; Carnevale, Ennio A

    2017-07-17

    Residual municipal solid waste (MSW) has an average lower heating value higher than 10GJ/Mg in the EU, and can be recovered in modern Waste-to-Energy (WtE) plants, producing combined heat and power (CHP) and reaching high levels of energy recovery. CHP is pinpointed as the best technique for energy recovery from waste. However, in some cases, heat recovery is not technically feasible - due to the absence of a thermal user (industrial plant or district heating) in the vicinity of the WtE plant - and power production remains the sole possibility. In these cases, there are some challenges involved in increasing the energy performance as much as possible. High energy recovery efficiency values are very important for the environmental sustainability of WtE plants. The more electricity and heat is produced, the better the saving of natural resources that can be achieved. Within this frame, the aim of this work is to carry out an environmental assessment, through Life Cycle Assessment, of an MSW WtE plant, considering different sizes and operated in different ways, from power production only to full cogeneration. The main assumption is that the electric conversion efficiency increases as the plant size increases, introducing technical improvements thanks to the economies of scale. Impact assessment results were calculated using ReCiPe 2008 methods. The climate change indicator is positive when the WtE plant is operated in power production only mode, with values decreasing for the increasing size. Values for the climate change are negative when cogeneration is applied, requiring increasing cogeneration ratios for decreasing size. Similarly, the fossil fuel depletion indicator benefits from increase of both the plant size and the cogeneration rate, but it is always negative, meaning that the residual MSW burning with energy recovery always provides a saving of fossil primary energy. Other indicator values are in general negative and are also beneficially affected by

  14. Waste to energy facilities. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The bibliography contains citations concerning technical, economic, and environmental evaluations of facilities that convert waste to energy. Solid waste and municipal waste conversion facilities are highlighted. Feasibility studies, technical design, emissions studies, and markets for the resulting energy are discussed. Heat and electrical generation facilities are emphasized. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  15. Distributed Waste to Energy Conversion: A Piece of the DOD’s Renewable Energy Puzzle

    Science.gov (United States)

    2011-11-30

    waste. Municipal solid waste (MSW) is an ever-present burden that, when properly managed, can become a negativecost fuel . MSW generation at DoD...FOR A CHANGING WORLD GEM Downdraft Gasification in a Nutshell Air Feed Waste or Biomass Feed Air Feed Air Feed Producer Gas Inert Ash Removal Solid ...installations is estimated to be on the order of 3000 tons per day, thus representing an abundant alternative fuel source. Introduction of waste to energy

  16. Koncepce "Waste-to-Energy" a její environmentální implikace

    OpenAIRE

    Koretz, Michal

    2012-01-01

    Summary: This work focuses on assessing the environmental implications of the concept of waste-to-energy. An integrated waste management systems are described, which are instruments for extracting energy from municipal solid waste. It compares these systems by method of life-cycle-assessment (LCA). This work describes the municipal solid waste as a raw material for combustion process with integrated treatment technology. It focuses on the global problem and reason of inventing waste managemen...

  17. Water-related environmental control requirements at municipal solid waste-to-energy conversion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Young, J C; Johnson, L D

    1980-09-01

    Water use and waste water production, water pollution control technology requirements, and water-related limitations to their design and commercialization are identified at municipal solid waste-to-energy conversion systems. In Part I, a summary of conclusions and recommendations provides concise statements of findings relative to water management and waste water treatment of each of four municipal solid waste-to-energy conversion categories investigated. These include: mass burning, with direct production of steam for use as a supplemental energy source; mechanical processing to produce a refuse-derived fuel (RDF) for co-firing in gas, coal or oil-fired power plants; pyrolysis for production of a burnable oil or gas; and biological conversion of organic wastes to methane. Part II contains a brief description of each waste-to-energy facility visited during the subject survey showing points of water use and wastewater production. One or more facilities of each type were selected for sampling of waste waters and follow-up tests to determine requirements for water-related environmental controls. A comprehensive summary of the results are presented. (MCW)

  18. Life cycle assessment of thermal Waste-to-Energy technologies: Review and recommendations

    DEFF Research Database (Denmark)

    Astrup, Thomas Fruergaard; Tonini, Davide; Turconi, Roberto

    2015-01-01

    Life cycle assessment (LCA) has been used extensively within the recent decade to evaluate the environmental performance of thermal Waste-to-Energy (WtE) technologies: incineration, co-combustion, pyrolysis and gasification. A critical review was carried out involving 250 individual case-studies ......Life cycle assessment (LCA) has been used extensively within the recent decade to evaluate the environmental performance of thermal Waste-to-Energy (WtE) technologies: incineration, co-combustion, pyrolysis and gasification. A critical review was carried out involving 250 individual case......-studies published in 136 peer-reviewed journal articles within 1995 and 2013. The studies were evaluated with respect to critical aspects such as: (i) goal and scope definitions (e.g. functional units, system boundaries, temporal and geographic scopes), (ii) detailed technology parameters (e.g. related to waste...... improved. Based on the review, a detailed overview of assumptions and modeling choices in existing literature is provided in conjunction with practical recommendations for state-of-the-art LCA of Waste-to-Energy....

  19. Modeling barriers of solid waste to energy practices: An Indian perspective

    Directory of Open Access Journals (Sweden)

    S. Bag

    2016-01-01

    Full Text Available In recent years managing solid wastes has been one of the burning problems in front of state and local municipal authorities. This is mainly due to scarcity of lands for landfill sites. In this context experts suggest that conversion of solid waste to energy and useful component is the best approach to reduce space and public health related problems. The entire process has to be managed by technologies that prevent pollution and protect the environment and at the same time minimize the cost through recovery of energy. Energy recovery in the form of electricity, heat and fuel from the waste using different technologies is possible through a variety of processes, including incineration, gasification, pyrolysis and anaerobic digestion. These processes are often grouped under “Waste to Energy technologies”. The objective of the study is twofold. First authors assessed the current status of solid waste management practices in India. Secondly the leading barriers are identified and Interpretive structural modeling technique and MICMAC analysis is performed to identify the contextual interrelationships between leading barriers influencing the solid waste to energy programs in the country. Finally the conclusions are drawn which will assist policy makers in designing sustainable waste management programs.

  20. Combining plasma gasification and solid oxide cell technologies in advanced power plants for waste to energy and electric energy storage applications.

    Science.gov (United States)

    Perna, Alessandra; Minutillo, Mariagiovanna; Lubrano Lavadera, Antonio; Jannelli, Elio

    2017-09-28

    The waste to energy (WtE) facilities and the renewable energy storage systems have a strategic role in the promotion of the "eco-innovation", an emerging priority in the European Union. This paper aims to propose advanced plant configurations in which waste to energy plants and electric energy storage systems from intermittent renewable sources are combined for obtaining more efficient and clean energy solutions in accordance with the "eco-innovation" approach. The advanced plant configurations consist of an electric energy storage (EES) section based on a solid oxide electrolyzer (SOEC), a waste gasification section based on the plasma technology and a power generation section based on a solid oxide fuel cell (SOFC). The plant configurations differ for the utilization of electrolytic hydrogen and oxygen in the plasma gasification section and in the power generation section. In the first plant configuration IAPGFC (Integrated Air Plasma Gasification Fuel Cell), the renewable oxygen enriches the air stream, that is used as plasma gas in the gasification section, and the renewable hydrogen is used to enrich the anodic stream of the SOFC in the power generation section. In the second plant configuration IHPGFC (Integrated Hydrogen Plasma Gasification Fuel Cell) the renewable hydrogen is used as plasma gas in the plasma gasification section, and the renewable oxygen is used to enrich the cathodic stream of the SOFC in the power generation section. The analysis has been carried out by using numerical models for predicting and comparing the systems performances in terms of electric efficiency and capability in realizing the waste to energy and the electric energy storage of renewable sources. Results have highlighted that the electric efficiency is very high for all configurations (35-45%) and, thanks to the combination with the waste to energy technology, the storage efficiencies are very attractive (in the range 72-92%). Copyright © 2017 Elsevier Ltd. All rights

  1. Graphene for energy solutions and its industrialization

    Science.gov (United States)

    Wei, Di; Kivioja, Jani

    2013-10-01

    Graphene attracts intensive interest globally across academia and industry since the award of the Nobel Prize in Physics 2010. Within the last half decade, there has been an explosion in the number of scientific publications, patents and industry projects involved in this topic. On the other hand, energy is one of the biggest challenges of this century and related to the global sustainable economy. There are many reviews on graphene and its applications in various devices, however, few of the review articles connect the intrinsic properties of graphene with its energy. The IUPAC definition of graphene refers to a single carbon layer of graphite structure and its related superlative properties. A lot of scientific results on graphene published to date are actually dealing with multi-layer graphenes or reduced graphenes from insulating graphene oxides (GO) which contain defects and contaminants from the reactions and do not possess some of the intrinsic physical properties of pristine graphene. In this review, the focus is on the most recent advances in the study of pure graphene properties and novel energy solutions based on these properties. It also includes graphene metrology and analysis of both intellectual property and the value chain for the existing and forthcoming graphene industry that may cause a new `industry revolution' with the strong and determined support of governments and industries across the European Union, U. S., Asia and many other countries in the world.

  2. Report of the DOD-DOE Workshop on Converting Waste to Energy Using Fuel Cells

    Science.gov (United States)

    2011-10-01

    per day into clean methane gas. This waste is now a source of fuel for a 600-kilowatt (kW) solid oxide fuel cell system that provides power and...assets/documents/2009fedleader_eo_rel.pdf. Page 3 DOD-DOE Workshop Summary on Converting Waste to Energy Using Fuel Cells F igure 1. W orks...for both at current costs, when federal and state incentives are available • The integration of stationary fuel cells with biomass gasification is a

  3. Haiti: Feasibility of Waste-to-Energy Options at the Trutier Waste Site

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, M. D.; Hunsberger, R.; Ness, J. E.; Harris, T.; Raibley, T.; Ursillo, P.

    2014-08-01

    This report provides further analysis of the feasibility of a waste-to-energy (WTE) facility in the area near Port-au-Prince, Haiti. NREL's previous analysis and reports identified anaerobic digestion (AD) as the optimal WTE technology at the facility. Building on the prior analyses, this report evaluates the conceptual financial and technical viability of implementing a combined waste management and electrical power production strategy by constructing a WTE facility at the existing Trutier waste site north of Port-au-Prince.

  4. Factors governing particle number emissions in a waste-to-energy plant.

    Science.gov (United States)

    Ozgen, Senem; Cernuschi, Stefano; Giugliano, Michele

    2015-05-01

    Particle number concentration and size distribution measurements were performed on the stack gas of a waste-to-energy plant which co-incinerates municipal solid waste, sewage sludge and clinical waste in two lines. Average total number of particles was found to be 4.0·10(5)cm(-3) and 1.9·10(5)cm(-3) for the line equipped with a wet flue gas cleaning process and a dry cleaning system, respectively. Ultrafine particles (dpwaste feed and the municipal solid waste co-incineration with sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Electro-ultrafiltration of industrial enzyme solutions

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Erik Børresen; Jonsson, Gunnar Eigil

    2007-01-01

    To reduce the problems with fouling and concentration polarization during crossflow ultrafiltration of industrial enzyme solutions an electric field is applied across the membrane. The filtration performance during electro-ultrafiltration (EUF) has been tested with several enzymes. Results show...... that EUF is an effective method to filter high concentrated solutions at low crossfiow. The flux improved 3-7 times for enzymes with a significant surface charge at an electric field strength of 1600V/m compared to conventional UF. The greatest improvement is observed at high concentration. Not all enzymes...... can be filtered with EUF, mainly due to a low surface charge and impurities in the feed solution. Using a pulsed electric field did not improve the flux compared to a constant field. Gel electrophoresis experiments of the enzymes appear to be a useful method for estimating the influence...

  6. Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.; Gelman, R.; Tomberlin, G.; Bain, R.

    2014-03-01

    The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandum of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.

  7. Waste to energy opportunities and challenges for developing and transition economies

    CERN Document Server

    2012-01-01

    Solid waste management is currently a major issue worldwide with numerous areas reaching critical levels. Many developing countries and countries in transition still miss basic waste management  infrastructure and awareness. It is here that many of the solid waste management problems and challenges are currently being faced. As such, waste-to-energy (WTE) consists of a proven and continuously developing spectrum and range of technologies in a number of (mostly) developed countries. However, it’s integration in developing countries and systems in transition is often faced with scepticism and a complex set of barriers which are quite unique and differ greatly from those where WTE has been validated and applied over the years. Waste-to-Energy: Opportunities and Challenges for Developing and Transition Economies will address this issue both theoretically and using concrete examples, including: ·         contributions from numerous scholars and practitioners in the field, ·         useful less...

  8. Oxidation and waste-to-energy output of aluminium waste packaging during incineration: A laboratory study.

    Science.gov (United States)

    López, Félix A; Román, Carlos Pérez; García-Díaz, Irene; Alguacil, Francisco J

    2015-09-01

    This work reports the oxidation behaviour and waste-to-energy output of different semi-rigid and flexible aluminium packagings when incinerated at 850°C in an air atmosphere enriched with 6% oxygen, in the laboratory setting. The physical properties of the different packagings were determined, including their metallic aluminium contents. The ash contents of their combustion products were determined according to standard BS ISO 1171:2010. The net calorific value, the required energy, and the calorific gain associated with each packaging type were determined following standard BS EN 13431:2004. Packagings with an aluminium lamina thickness of >50μm did not fully oxidise. During incineration, the weight-for-weight waste-to-energy output of the packagings with thick aluminium lamina was lower than that of packagings with thin lamina. The calorific gain depended on the degree of oxidation of the metallic aluminium, but was greater than zero for all the packagings studied. Waste aluminium may therefore be said to act as an energy source in municipal solid waste incineration systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Life cycle assessment of thermal waste-to-energy technologies: review and recommendations.

    Science.gov (United States)

    Astrup, Thomas Fruergaard; Tonini, Davide; Turconi, Roberto; Boldrin, Alessio

    2015-03-01

    Life cycle assessment (LCA) has been used extensively within the recent decade to evaluate the environmental performance of thermal Waste-to-Energy (WtE) technologies: incineration, co-combustion, pyrolysis and gasification. A critical review was carried out involving 250 individual case-studies published in 136 peer-reviewed journal articles within 1995 and 2013. The studies were evaluated with respect to critical aspects such as: (i) goal and scope definitions (e.g. functional units, system boundaries, temporal and geographic scopes), (ii) detailed technology parameters (e.g. related to waste composition, technology, gas cleaning, energy recovery, residue management, and inventory data), and (iii) modeling principles (e.g. energy/mass calculation principles, energy substitution, inclusion of capital goods and uncertainty evaluation). Very few of the published studies provided full and transparent descriptions of all these aspects, in many cases preventing an evaluation of the validity of results, and limiting applicability of data and results in other contexts. The review clearly suggests that the quality of LCA studies of WtE technologies and systems including energy recovery can be significantly improved. Based on the review, a detailed overview of assumptions and modeling choices in existing literature is provided in conjunction with practical recommendations for state-of-the-art LCA of Waste-to-Energy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Socio-technical systems analysis of waste to energy from municipal solid waste in developing economies: a case for Nigeria

    Directory of Open Access Journals (Sweden)

    Iyamu Hope O.

    2017-01-01

    Full Text Available Waste generation is an inevitable by-product of human activity, and it is on the rise due to rapid urbanisation, industrialisation, increased wealth and population. The composition of municipal solid waste (MSW in developed and developing economies differ, especially with the organic fraction. Research shows that the food waste stream of MSW in developing countries is over 50%. The case study for this investigation, Nigeria, has minimal formal recycling or resource recovery programs. The average composition of waste from previous research in the country is between 50–70% putrescible and 30–50% non-putrescible, presenting significant resource recovery potential in composting and biogas production. Waste-to-energy (WtE is an important waste management solution that has been successfully implemented and operated in most developed economies. This contribution reports the conditions that would be of interest before WtE potentials of MSW is harnessed, in an efficient waste management process in a developing economy like Nigeria. The investigation presents a set of socio-technical parameters and transition strategy model that would inform a productive MSW management and resource recovery, in which WtE can be part of the solution. This model will find application in the understanding of the interactions between the socio-economic, technical and environmental system, to promote sustainable resource recovery programs in developing economies, among which is WtE.

  11. Healthcare industry problems call for cooperative solutions.

    Science.gov (United States)

    Schramm, C J

    1990-01-01

    The complexity of problems facing American health care--from extending health benefits to the uninsured to caring for people with acquired immune deficiency syndrome--require cooperative solutions involving providers, insurers, and policy makers. A spokesman for the health insurance industry presents ideas about the future of health care and discusses the role of insurers in meeting the challenges ahead. Among the items on the agenda: further growth of managed care; continued attempts to control costs and utilization; and sharing the burden of risk with consumers.

  12. Ultrasonic filtration of industrial chemical solutions

    Science.gov (United States)

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  13. Wet and dry cooling systems optimization applied to a modern waste-to-energy cogeneration heat and power plant

    Energy Technology Data Exchange (ETDEWEB)

    Barigozzi, G.; Perdichizzi, A.; Ravelli, S. [Department of Industrial Engineering, Bergamo University (Italy)

    2011-04-15

    In Brescia, Italy, heat is delivered to 70% of 200.000 city inhabitants by means of a district heating system, mainly supplied by a waste to energy plant, utilizing the non recyclable fraction of municipal and industrial solid waste (800,000 tons/year, otherwise landfilled), thus saving annually over 150,000 tons of oil equivalent and over 400,000 tons of CO{sub 2} emissions. This study shows how the performance of the waste-to-energy cogeneration plant can be improved by optimising the condensation system, with particular focus on the combination of wet and dry cooling systems. The analysis has been carried out using two subsequent steps: in the first one a schematic model of the steam cycle was accomplished in order to acquire a knowledge base about the variables that would be most influential on the performance. In the second step the electric power output for different operating conditions was predicted and optimized in a homemade program. In more details, a thermodynamic analysis of the steam cycle, according to the design operating condition, was performed by means of a commercial code (Thermoflex {sup copyright}) dedicated to power plant modelling. Then the off-design behaviour was investigated by varying not only the ambient conditions but also several parameters connected to the heat rejection rate, like the heat required from district heating and the auxiliaries load. Each of these parameters has been addressed and considered in determining the overall performance of the thermal cycle. After that, a complete prediction of the cycle behaviour was performed by simultaneously varying different operating conditions. Finally, a Matlab {sup copyright} computer code was developed in order to optimize the net electric power as a function of the way in which the condensation is operated. The result is an optimum set of variables allowing the wet and dry cooling system to be regulated in such a way that the maximum power is achieved. The best strategy consists in

  14. Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy

    DEFF Research Database (Denmark)

    Cimpan, Ciprian; Wenzel, Henrik

    2013-01-01

    Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials...... for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different...... background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJprimary/100 MJinput waste, in the different...

  15. Waste gasification vs. conventional Waste-to-Energy: a comparative evaluation of two commercial technologies.

    Science.gov (United States)

    Consonni, Stefano; Viganò, Federico

    2012-04-01

    A number of waste gasification technologies are currently proposed as an alternative to conventional Waste-to-Energy (WtE) plants. Assessing their potential is made difficult by the scarce operating experience and the fragmentary data available. After defining a conceptual framework to classify and assess waste gasification technologies, this paper compares two of the proposed technologies with conventional WtE plants. Performances are evaluated by proprietary software developed at Politecnico di Milano and compared on the basis of a coherent set of assumptions. Since the two gasification technologies are configured as "two-step oxidation" processes, their energy performances are very similar to those of conventional plants. The potential benefits that may justify their adoption relate to material recovery and operation/emission control: recovery of metals in non-oxidized form; collection of ashes in inert, vitrified form; combustion control; lower generation of some pollutants.

  16. Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal.

    Science.gov (United States)

    Margallo, M; Aldaco, R; Irabien, A; Carrillo, V; Fischer, M; Bala, A; Fullana, P

    2014-06-01

    In recent years, waste management systems have been evaluated using a life cycle assessment (LCA) approach. A main shortcoming of prior studies was the focus on a mixture of waste with different characteristics. The estimation of emissions and consumptions associated with each waste fraction in these studies presented allocation problems. Waste-to-energy (WTE) incineration is a clear example in which municipal solid waste (MSW), comprising many types of materials, is processed to produce several outputs. This paper investigates an approach to better understand incineration processes in Spain and Portugal by applying a multi-input/output allocation model. The application of this model enabled predictions of WTE inputs and outputs, including the consumption of ancillary materials and combustibles, air emissions, solid wastes, and the energy produced during the combustion of each waste fraction. © The Author(s) 2014.

  17. Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy

    Energy Technology Data Exchange (ETDEWEB)

    Cimpan, Ciprian, E-mail: cic@kbm.sdu.dk; Wenzel, Henrik

    2013-07-15

    Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat

  18. Development of a Novel Food Waste Collection Kiosk and Waste-to-Energy Business Model

    Directory of Open Access Journals (Sweden)

    Matthew Franchetti

    2016-08-01

    Full Text Available The U.S. generates more than 37 million metric tons of food waste each year, and over 95% of it is disposed of at U.S. landfills. This paper describes the development of a novel food waste collection kiosk and business model called “Greenbox” that will collect and store food waste from households and restaurants with incentives for user participation to spur food waste-to-energy production in a local community. Greenbox offers a low-cost collection point to divert food waste from landfills, reduce greenhouse gases from decomposition, and aid in generating cleaner energy. A functional prototype was successfully developed by a team of engineering students and a business model was created as part of a senior design capstone course. Each Greenbox unit has the potential to reduce 275 metric tons of food waste per year, remove 1320 kg of greenhouse gases, and create 470,000 liters of methane gas while providing a payback period of 4.2 years and a rate of return of 14.9%.

  19. A review on technological options of waste to energy for effective management of municipal solid waste.

    Science.gov (United States)

    Kumar, Atul; Samadder, S R

    2017-09-05

    Approximately one-fourth population across the world rely on traditional fuels (kerosene, natural gas, biomass residue, firewood, coal, animal dung, etc.) for domestic use despite significant socioeconomic and technological development. Fossil fuel reserves are being exploited at a very fast rate to meet the increasing energy demands, so there is a need to find alternative sources of energy before all the fossil fuel reserves are depleted. Waste to energy (WTE) can be considered as a potential alternative source of energy, which is economically viable and environmentally sustainable. The present study reviewed the current global scenario of WTE technological options (incineration, pyrolysis, gasification, anaerobic digestion, and landfilling with gas recovery) for effective energy recovery and the challenges faced by developed and developing countries. This review will provide a framework for evaluating WTE technological options based on case studies of developed and developing countries. Unsanitary landfilling is the most commonly practiced waste disposal option in the developing countries. However, developed countries have realised the potential of WTE technologies for effective municipal solid waste management (MSWM). This review will help the policy makers and the implementing authorities involved in MSWM to understand the current status, challenges and barriers for effective management of municipal solid waste. This review concluded WTE as a potential renewable source of energy, which will partly meet the energy demand and ensure effective MSWM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Optimal waste-to-energy strategy assisted by GIS For sustainable solid waste management

    Science.gov (United States)

    Tan, S. T.; Hashim, H.

    2014-02-01

    Municipal solid waste (MSW) management has become more complex and costly with the rapid socio-economic development and increased volume of waste. Planning a sustainable regional waste management strategy is a critical step for the decision maker. There is a great potential for MSW to be used for the generation of renewable energy through waste incineration or landfilling with gas capture system. However, due to high processing cost and cost of resource transportation and distribution throughout the waste collection station and power plant, MSW is mostly disposed in the landfill. This paper presents an optimization model incorporated with GIS data inputs for MSW management. The model can design the multi-period waste-to-energy (WTE) strategy to illustrate the economic potential and tradeoffs for MSW management under different scenarios. The model is capable of predicting the optimal generation, capacity, type of WTE conversion technology and location for the operation and construction of new WTE power plants to satisfy the increased energy demand by 2025 in the most profitable way. Iskandar Malaysia region was chosen as the model city for this study.

  1. Determining national greenhouse gas emissions from waste-to-energy using the Balance Method.

    Science.gov (United States)

    Schwarzböck, Therese; Rechberger, Helmut; Cencic, Oliver; Fellner, Johann

    2016-03-01

    Different directives of the European Union require operators of waste-to-energy (WTE) plants to report the amount of electricity that is produced from biomass in the waste feed, as well as the amount of fossil CO2 emissions generated by the combustion of fossil waste materials. This paper describes the application of the Balance Method for determining the overall amount of fossil and thus climate relevant CO2 emissions from waste incineration in Austria. The results of 10 Austrian WTE plants (annual waste throughput of around 2,300 kt) demonstrate large seasonal variations in the specific fossil CO2 emissions of the plants as well as large differences between the facilities (annual means range from 32±2 to 51±3 kg CO(2,foss)/GJ heating value). An overall amount of around 924 kt/yr of fossil CO2 for all 10 WTE plants is determined. In comparison biogenic (climate neutral) CO2 emissions amount to 1,187 kt/yr, which corresponds to 56% of the total CO2 emissions from waste incineration. The total energy input via waste feed to the 10 facilities is about 22,500 TJ/yr, of which around 48% can be assigned to biogenic and thus renewable sources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Performance evaluation of a full-scale innovative swine waste-to-energy system.

    Science.gov (United States)

    Xu, Jiele; Adair, Charles W; Deshusses, Marc A

    2016-09-01

    Intensive monitoring was carried out to evaluate the performance of a full-scale innovative swine waste-to-energy system at a commercial swine farm with 8640 heads of swine. Detailed mass balances over each unit of the system showed that the system, which includes a 7600m(3) anaerobic digester, a 65-kW microturbine, and a 4200m(3) aeration basin, was able to remove up to 92% of the chemical oxygen demand (COD), 99% of the biological oxygen demand (BOD), 77% of the total nitrogen (TN), and 82% of the total phosphorous (TP) discharged into the system as fresh pig waste. The overall biogas yield based on the COD input was 64% of the maximum theoretical, a value that indicates that even greater environmental benefits could be obtained with process optimization. Overall, the characterization of the materials fluxes in the system provides a greater understanding of the fate of organics and nutrients in large scale animal waste management systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Process aspects in combustion and gasification Waste-to-Energy (WtE) units.

    Science.gov (United States)

    Leckner, Bo

    2015-03-01

    The utilisation of energy in waste, Waste to Energy (WtE), has become increasingly important. Waste is a wide concept, and to focus, the feedstock dealt with here is mostly municipal solid waste. It is found that combustion in grate-fired furnaces is by far the most common mode of fuel conversion compared to fluidized beds and rotary furnaces. Combinations of pyrolysis in rotary furnace or gasification in fluidized or fixed bed with high-temperature combustion are applied particularly in Japan in systems whose purpose is to melt ashes and destroy dioxins. Recently, also in Japan more emphasis is put on WtE. In countries with high heat demand, WtE in the form of heat and power can be quite efficient even in simple grate-fired systems, whereas in warm regions only electricity is generated, and for this product the efficiency of boilers (the steam data) is limited by corrosion from the flue gas. However, combination of cleaned gas from gasification with combustion provides a means to enhance the efficiency of electricity production considerably. Finally, the impact of sorting on the properties of the waste to be fed to boilers or gasifiers is discussed. The description intends to be general, but examples are mostly taken from Europe. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Assessment of the Environmental Values of Waste-to-Energy in the Gaza Strip

    Directory of Open Access Journals (Sweden)

    Omar K. M. Ouda

    2013-12-01

    Full Text Available The Gaza Strip faces a chronic solid waste (SW management and electricity shortage problem as a result of fifty years of political instability in the area coupled with a high population growth rate, an unhealthy economic condition, and limited land and energy resources. The option to develop a waste to energy (WTE facility to manage SW and to alleviate the electricity shortage has not been previously investigated for the Gaza Strip. This paper assesses the potential environmental and economic benefit of a WTE facility on the context of two scenarios: Mass Burn and Mass Burn with Recycling up to the year 2035. The analysis shows a potential to generate approximately 77.1 Megawatts (MW of electricity based on a Mass Burn scenario and approximately 4.7 MW of electricity based on a Mass Burn with Recycling scenario. These values are approximately 10.3% and 0.63% respectively of the projected peak electricity demand of 751 MW in 2035. The research identifies the potentially significant environmental benefit of developing WTE facilities within the Gaza Strip. The Mass Burn with Recycling scenario shows a potential greenhouse gases emission reduction of approximately 92 thousand metric tons carbon equivalent (MTCE per year, and landfill area savings of about 94 % in comparison to complete landfilling in 2035. Further investigation is recommended to evaluate the socio-economic impacts and technical feasibility of the development of WTE facilities for the Gaza Strip

  5. From Animal Waste to Energy; A Study of Methane Gas converted to Energy.

    Science.gov (United States)

    Weiss, S.

    2016-12-01

    Does animal waste produce enough harvestable energy to power a household, and if so, what animal's waste can produce the most methane that is usable. What can we power using this methane and how can we power these appliances within an average household using the produced methane from animal waste. The waste product from animals is readily available all over the world, including third world countries. Using animal waste to produce green energy would allow low cost energy sources and give independence from fossil fuels. But which animal produces the most methane and how hard is it to harvest? Before starting this experiment I knew that some cow farms in the northern part of the Central California basin were using some of the methane from the waste to power their machinery as a safer, cheaper and greener source through the harnessed methane gas in a digester. The fermentation process would occur in the digester producing methane gasses as a side product. Methane that is collected can later be burned for energy. I have done a lot of research on this experiment and found that many different farm and ranch animals produce methane, but it was unclear which produced the most. I decided to focus my study on the waste from cows, horses, pig and dogs to try to find the most efficient and strongest source of methane from animal waste. I produced an affordable methane digester from plastic containers with a valve to attach a hose. By putting in the waste product and letting it ferment with water, I was able to produce and capture methane, then measure the amount with a Gaslab meter. By showing that it is possible to create energy with this simple digester, it could reduce pollution and make green energy easily available to communities all over the world. Eventually this could result into our sewer systems converting waste to energy, producing an energy source right in your home.

  6. Attitudes toward waste to energy facilities and impacts on diversion in Ontario, Canada.

    Science.gov (United States)

    Baxter, Jamie; Ho, Yvonne; Rollins, Yvonne; Maclaren, Virginia

    2016-04-01

    Despite progress in residential waste diversion, residual waste - that fraction which cannot be recycled or composted - must continue to be managed by municipalities. Zero waste and environmental groups worry that waste-to-energy (WtE) incinerators discourage diversion, while both incineration and landfill have been stigmatized in the popular consciousness such that WtE incinerators in particular are being cancelled more often than they are approved. We conducted a mail-back survey of 217 residents in Toronto, Durham and Peel, Ontario, to understand attitudes toward diversion, levels of support for WtE incineration and WtE landfill (landfill gas recovery) facilities, and predictors of facility support. Contrary to experiences elsewhere, diversion seems threatened by WtE when measured as attitudes with 18%, and 14% agreeing that they would be less inclined to divert recyclable/compostable materials if they knew materials went to a WtE landfill or incinerator. When forced to choose between four options landfill or incineration with and without energy recovery, WtE incineration is most preferred (65%) and landfill without WtE is the least preferred option (61%). However, measurement has a large influence on public opinion results in the sense that support for WtE incineration drops to 43% when asked as a "vote in favor" question and to only 36% when measured as a 4-item index of support. When the indexes of support for landfill and WtE incineration are modeled, the prominence of odor in the landfill model distinguishes it from the WtE incinerator model which is dominated more by community and concern about health effects. Implications for policy are discussed, particularly mandatory diversion targets to accompany WtE. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Sulfur recirculation for increased electricity production in Waste-to-Energy plants.

    Science.gov (United States)

    Andersson, Sven; Blomqvist, Evalena W; Bäfver, Linda; Jones, Frida; Davidsson, Kent; Froitzheim, Jan; Karlsson, Martin; Larsson, Erik; Liske, Jesper

    2014-01-01

    Sulfur recirculation is a new technology for reducing boiler corrosion and dioxin formation. It was demonstrated in full-scale tests at a Waste to Energy plant in Göteborg (Sweden) during nearly two months of operation. Sulfur was recirculated as sulfuric acid from the flue gas cleaning back to the boiler, thus creating a sulfur loop. The new technology was evaluated by extensive measurement campaigns during operation under normal conditions (reference case) and operation with sulfur recirculation. The chlorine content of both fly ash and boiler ash decreased and the sulfur content increased during the sulfur recirculation tests. The deposit growth and the particle concentration decreased with sulfur recirculation and the dioxin concentration (I-TEQ) of the flue gas was reduced by approximately 25%. Sulfuric acid dew point measurements showed that the sulfuric acid dosage did not lead to elevated SO3 concentrations, which may otherwise induce low temperature corrosion. In the sulfur recirculation corrosion probe exposures, the corrosion rate decreased for all tested materials (16Mo3, Sanicro 28 and Inconel 625) and material temperatures (450 °C and 525 °C) compared to the reference exposure. The corrosion rates were reduced by 60-90%. Sulfur recirculation prevented the formation of transition metal chlorides at the metal/oxide interface, formation of chromate and reduced the presence of zinc in the corrosion products. Furthermore, measured corrosion rates at 525 °C with sulfur recirculation in operation were similar or lower compared to those measured at 450 °C material temperature in reference conditions, which corresponds to normal operation at normal steam temperatures. This implies that sulfur recirculation allows for higher steam data and electricity production without increasing corrosion.

  8. Sustainable energy transitions in emerging economies: The formation of a palm oil biomass waste-to-energy niche in Malaysia 1990–2011

    DEFF Research Database (Denmark)

    Hansen, Ulrich Elmer; Nygaard, Ivan

    2014-01-01

    The economic development in emerging economies in Southeast Asia has significantly increased the use of fossil fuel based energy. This has severe implications for global climate change, and against this background, scholars within the sustainable transition tradition have taken an interest...... in addressing how transitions towards more sustainable development pathways in this region may be achieved. This paper contributes to the abovementioned literature by examining the conducive and limiting factors for development and proliferation of a palm oil biomass waste-to-energy niche in Malaysia during...... the period 1990–2011. Rising oil prices, strong pressure on the palm oil industry from environmental groups, and a persisting palm oil biomass waste disposal problem in Malaysia appear to have been conducive to niche proliferation, and on top of this national renewable energy policies and large-scale donor...

  9. Solar solution: the next industrial revolution

    Directory of Open Access Journals (Sweden)

    Björn A. Sandén

    2008-12-01

    Full Text Available The industrial revolution 200 years ago freed society from the limitations of bioenergy and brought tremendous growth but also huge environmental problems. Now, a new generation of modular technologies based on advanced materials enables efficient conversion of solar energy and carries the seeds of a new industrial revolution.

  10. Energy implications of mechanical and mechanical-biological treatment compared to direct waste-to-energy.

    Science.gov (United States)

    Cimpan, Ciprian; Wenzel, Henrik

    2013-07-01

    Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical-biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJprimary/100 MJinput waste, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3-9.5%, 1-18% and 1-8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full

  11. Industrial Water Waste, Problems and the Solution

    Directory of Open Access Journals (Sweden)

    Alif Noor Anna

    2004-01-01

    Full Text Available Recently, the long term development in Indonesia has changed agricultural sector to the industrial sector. This development can apparently harm our own people. This is due to the waste that is produced from factories. The waste from various factories seems to have different characteristics. This defference encourages us to be able to find out different of methods of managing waste so that cost can be reduced, especially in water treatment. In order that industrial development and environmental preservation can run together in balance, many institutions involved should be consider, especially in the industrial chain, the environment, and human resource, these three elements can be examined in terms of their tolerance to waste.

  12. Making Industry Part of the Climate Solution

    Energy Technology Data Exchange (ETDEWEB)

    Lapsa, Melissa Voss [ORNL; Brown, Dr. Marilyn Ann [Georgia Institute of Technology; Jackson, Roderick K [ORNL; Cox, Matthew [Georgia Institute of Technology; Cortes, Rodrigo [Georgia Institute of Technology; Deitchman, Benjamin H [ORNL

    2011-06-01

    Improving the energy efficiency of industry is essential for maintaining the viability of domestic manufacturing, especially in a world economy where production is shifting to low-cost, less regulated developing countries. Numerous studies have shown the potential for significant cost-effective energy-savings in U.S. industries, but the realization of this potential is hindered by regulatory, information, workforce, and financial obstacles. This report evaluates seven federal policy options aimed at improving the energy efficiency of industry, grounded in an understanding of industrial decision-making and the barriers to efficiency improvements. Detailed analysis employs the Georgia Institute of Technology's version of the National Energy Modeling System and spreadsheet calculations, generating a series of benefit/cost metrics spanning private and public costs and energy bill savings, as well as air pollution benefits and the social cost of carbon. Two of the policies would address regulatory hurdles (Output-Based Emissions Standards and a federal Energy Portfolio Standard with Combined Heat and Power); three would help to fill information gaps and workforce training needs (the Superior Energy Performance program, Implementation Support Services, and a Small Firm Energy Management program); and two would tackle financial barriers (Tax Lien Financing and Energy-Efficient Industrial Motor Rebates). The social benefit-cost ratios of these policies appear to be highly favorable based on a range of plausible assumptions. Each of the seven policy options has an appropriate federal role, broad applicability across industries, utilizes readily available technologies, and all are administratively feasible.

  13. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Meibom, Peter

    2010-01-01

    production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments...... and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO2 quota costs are analysed. It is demonstrated that the waste...... incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste...

  14. Fuel Cells in the Waste-to-Energy Chain Distributed Generation Through Non-Conventional Fuels and Fuel Cells

    CERN Document Server

    McPhail, Stephen J; Moreno, Angelo

    2012-01-01

    As the availability of fossils fuels becomes more limited, the negative impact of their consumption becomes an increasingly relevant factor in our choices with regards to primary energy sources. The exponentially increasing demand for energy is reflected in the mass generation of by-products and waste flows which characterize current society’s development and use of fossil sources. The potential for recoverable material and energy in these ever-increasing refuse flows is huge, even after the separation of hazardous constituent elements, allowing safe and sustainable further exploitation of an otherwise 'wasted' resource.  Fuel Cells in the Waste-to-Energy Chain explores the concept of waste-to-energy through a 5 step process which reflects the stages during the transformation of  refuse flows to a valuable commodity such as clean energy. By providing selected, integrated alternatives to the current centralized, wasteful, fossil-fuel based infrastructure, Fuel Cells in the Waste-to-Energy Chain explores ho...

  15. Final Scientific Report - Wireless and Sensing Solutions Advancing Industrial Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Budampati, Rama; McBrady, Adam; Nusseibeh, Fouad

    2009-09-28

    The project team's goal for the Wireless and Sensing Solution Advancing Industrial Efficiency award (DE-FC36-04GO14002) was to develop, demonstrate, and test a number of leading edge technologies that could enable the emergence of wireless sensor and sampling systems for the industrial market space. This effort combined initiatives in advanced sensor development, configurable sampling and deployment platforms, and robust wireless communications to address critical obstacles in enabling enhanced industrial efficiency.

  16. Plasma ARC/SCWO Sysems for Waste-to-Energy Applications Utilizing Milwaste Fuels

    Science.gov (United States)

    2013-07-01

    supercritical water oxidation (SCWO) technology. While SCWO is for the treatment of liquid wastes, Vitracycle was designed as a treatment technology...4 3.2. Industrial Supercritical Water Oxidation (iSCWO...6 3.2.1. Design and Build an Advanced Industrial Supercritical Water Oxidation (iSCWO

  17. Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda

    OpenAIRE

    Gumisiriza, Robert; Hawumba, Joseph Funa; Okure, Mackay; Hensel,Oliver

    2017-01-01

    Background Uganda?s banana industry is heavily impeded by the lack of cheap, reliable and sustainable energy mainly needed for processing of banana fruit into pulp and subsequent drying into chips before milling into banana flour that has several uses in the bakery industry, among others. Uganda has one of the lowest electricity access levels, estimated at only 2?3% in rural areas where most of the banana growing is located. In addition, most banana farmers have limited financial capacity to ...

  18. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis.

    Science.gov (United States)

    Münster, M; Meibom, P

    2010-12-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO(2) quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO(2) quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Improving Energy Efficiency in Industrial Solutions – Walk the Talk

    DEFF Research Database (Denmark)

    Wegener, Dieter; Finkbeiner, Matthias; Holst, Jens-Christian

    2011-01-01

    This paper describes the outline of the energy efficiency and environmental care policy and management at Siemens Industry Solutions Division. This environmental policy coherently embraces strategic planning, eco-design of energy-efficient industrial processes and solutions, design evaluation...... and finally communication of both environmental and economic performance of solutions to customers. One of the main tools supporting eco-design and evaluation & controlling of derived design solutions is the so called “Eco-Care-Matrix” (ECM). The ECM simply visualizes the eco-efficiency of solutions compared...... to a given baseline. In order to prevent from “green washing” criticism and to ensure “walk the talk” attitude the ECM should be scientifically well-founded using appropriate and consistent methodology. The vertical axis of an ECM illustrates the environmental performance and the horizontal axis describes...

  20. Quality and generation rate of solid residues in the boiler of a waste-to-energy plant

    Energy Technology Data Exchange (ETDEWEB)

    Allegrini, E., E-mail: elia@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Building 115, Lyngby 2800 (Denmark); Boldrin, A. [Technical University of Denmark, Department of Environmental Engineering, Building 115, Lyngby 2800 (Denmark); Jansson, S. [Umeå University, Department of Chemistry, Umeå SE-901 87 (Sweden); Lundtorp, K. [Babcock and Wilcox Vølund A/S, Göteborg (Sweden); Fruergaard Astrup, T. [Technical University of Denmark, Department of Environmental Engineering, Building 115, Lyngby 2800 (Denmark)

    2014-04-01

    Highlights: • Ash was sampled at 10 different points of the boiler of a waste-to-energy plant. • Samples were analysed for the chemical composition, PCDD/F and leaching behaviour. • Enrichment trends of elements were investigated in relation to boiler conditions. • No significant differences were found between boiler ash samples. - Abstract: The Danish waste management system relies significantly on waste-to-energy (WtE) plants. The ash produced at the energy recovery section (boiler ash) is classified as hazardous waste, and is commonly mixed with fly ash and air pollution control residues before disposal. In this study, a detailed characterization of boiler ash from a Danish grate-based mass burn type WtE was performed, to evaluate the potential for improving ash management. Samples were collected at 10 different points along the boiler's convective part, and analysed for grain size distribution, content of inorganic elements, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD and PCDF), and leaching of metals. For all samples, PCDD and PCDF levels were below regulatory limits, while high pH values and leaching of e.g. Cl were critical. No significant differences were found between boiler ash from individual sections of the boiler, in terms of total content and leaching, indicating that separate management of individual ash fractions may not provide significant benefits.

  1. Municipal solid waste fueled power generation in China: a case study of waste-to-energy in Changchun City.

    Science.gov (United States)

    Cheng, Hefa; Zhang, Yanguo; Meng, Aihong; Li, Qinghai

    2007-11-01

    With rapid economic growth and massive urbanization in China, many cities face the problem of municipal solid waste (MSW) disposal. With the lack of space for new landfills, waste-to-energy incineration is playing an increasingly important role in waste management. Incineration of MSW from Chinese cities presents some unique challenges because of its low calorific value (3000-6700 kJ/kg) and high water content (approximately 50%). This study reports a novel waste-to-energy incineration technology based on co-firing of MSW with coal in a grate-circulating fluidized bed (CFB) incinerator, which was implemented in the Changchun MSW power plant. In 2006, two 260 ton/day incinerators incinerated 137,325 tons, or approximately one/sixth of the MSW generated in Changchun, saving more than 0.2 million m3 landfill space. A total of 46.2 million kWh electricity was generated (38,473 tons lignite was also burned as supplementary fuel), with an overall fuel-to-electricity efficiency of 14.6%. Emission of air pollutants including particulate matters, acidic gases, heavy metals, and dioxins was low and met the emission standards for incinerators. As compared to imported incineration systems, this new technology has much lower capital and operating costs and is expected to play a role in meeting China's demands for MSW disposal and alternative energy.

  2. Developing e-learning solutions in the automotive industry

    Directory of Open Access Journals (Sweden)

    Razvan Virgil Bogdan

    2016-07-01

    Full Text Available In the rapid developing market of automotive industry, cutting-edge technologies are being introduced. One such example is the AUTOSAR standard. Companies are investing a large amount of finances for the training of their employees into the intricacies of such technologies. In order to face such an increase of the training costs, automotive corporation have started lately switching their approach to e-Learning systems. This paper presents an e-Learning approach developed in the automotive industry in order to address the demands of teaching AUTOSAR standard. The developed e-Learning project is called Academy. In order to develop the e-Learning solution we focused on the Software Development part of automotive industry. Therefore we had to gather the ideas from different trainers, come with a common approach and use specific techniques so that the trainee should get a real feeling of the material. It is presented the design, implementation and evaluation of this e-Learning solution, but more than that faced issues and learned lessons. Developing this solution has offered different insights into how to approach such a task which are useful for the further expansion of the project, but also for future researchers who might encounter such a challenge of developing e-Learning solutions for the automotive industry. These are all grouped in a set of guidelines related to following a model of implementation, getting track of participants, user interaction with the AUTOSAR standard, test and production development and so on.

  3. Designing Integrated Product- Service System Solutions in Manufacturing Industries

    DEFF Research Database (Denmark)

    Costa, Nina; Patrício, Lia; Morelli, Nicola

    2015-01-01

    Manufacturing firms are increasingly evolving towards the design of integrated product-service solutions but servitization literature does not provide specific guidance on how to design these integrated solutions. Building upon ProductService System (PSS) and Service Design (SD) approaches......, this paper proposes an integrative method that joins PSS’s systems and network approach with the creative, human-centered, value cocreation approach of SD. The paper also describes the development and application of this method to the creation of integrated solutions for the laboratory industry, highlighting...

  4. Comparing Waste-to-Energy technologies by applying energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Lund, Henrik

    2010-01-01

    potential of using waste for the production of transport fuels. Biogas and thermal gasification technologies are hence interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research...... into gasification of waste without the addition of coal and biomass. Together the two solutions may contribute to alternate use of one third of the waste which is currently incinerated. The remaining fractions should still be incinerated with priority to combined heat and power plants with high electric efficiency.......Even when policies of waste prevention, re-use and recycling are prioritised a fraction of waste will still be left which can be used for energy recovery. This article asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste...

  5. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling.

    Science.gov (United States)

    Paritosh, Kunwar; Kushwaha, Sandeep K; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash; Vivekanand, Vivekanand

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.

  6. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling

    Directory of Open Access Journals (Sweden)

    Kunwar Paritosh

    2017-01-01

    Full Text Available Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world’s ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.

  7. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling

    Science.gov (United States)

    Paritosh, Kunwar; Kushwaha, Sandeep K.; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.

  8. Comparing Waste-to-Energy technologies by applying energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Lund, Henrik

    2010-01-01

    potential of using waste for the production of transport fuels. Biogas and thermal gasification technologies are hence interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research......Even when policies of waste prevention, re-use and recycling are prioritised a fraction of waste will still be left which can be used for energy recovery. This article asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste...... into gasification of waste without the addition of coal and biomass. Together the two solutions may contribute to alternate use of one third of the waste which is currently incinerated. The remaining fractions should still be incinerated with priority to combined heat and power plants with high electric efficiency....

  9. Properties of ceramics prepared using dry discharged waste to energy bottom ash dust.

    Science.gov (United States)

    Bourtsalas, Athanasios; Vandeperre, Luc; Grimes, Sue; Themelis, Nicolas; Koralewska, Ralf; Cheeseman, Chris

    2015-09-01

    The fine dust of incinerator bottom ash generated from dry discharge systems can be transformed into an inert material suitable for the production of hard, dense ceramics. Processing involves the addition of glass, ball milling and calcining to remove volatile components from the incinerator bottom ash. This transforms the major crystalline phases present in fine incinerator bottom ash dust from quartz (SiO(2)), calcite (CaCO(3)), gehlenite (Ca(2)Al(2)SiO(7)) and hematite (Fe(2)O(3)), to the pyroxene group minerals diopside (CaMgSi(2)O(6)), clinoenstatite (MgSi(2)O(6)), wollastonite (CaSiO(3)) together with some albite (NaAlSi(3)O(8)) and andradite (Ca(3)Fe(2)Si(3)O(12)). Processed powders show minimal leaching and can be pressed and sintered to form dense (>2.5 g cm(-3)), hard ceramics that exhibit low firing shrinkage (ceramic tiles that have potential for use in a range of industrial applications.

  10. Achieving waste to energy through sewage sludge gasification using hot slags: syngas production

    Science.gov (United States)

    Sun, Yongqi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-06-01

    To relieve the environmental issues of sewage sludge (SS) disposal and greenhouse gas (GHG) emission in China, we proposed an integrated method for the first time to simultaneously deal with these two problems. The hot slags below 920 °C could act as a good heat carrier for sludge gasification and the increasing CO2 concentration in CO2/O2 atmospheres enhanced the production of CO and H2 at 400-800 °C. Three stages of syngas release were clearly identified by Gaussian fittings, i.e., volatile release, char transformation and fixed carbon reaction. Additionally, the effect of sulfur retention of slags and the synergy effect of the stabilization of toxic elements in the solid residuals were discovered in this study. Furthermore, a novel prototype of multiple industrial and urban systems was put forward, in which the produced CO + H2 could be utilized for direct reduced iron (DRI) production and the solid residuals of sludge ash and glassy slags would be applied as cementitious materials. For a steel plant with an annual production of crude steel of 10 million tons in China, the total annual energy saving and GHG emission reduction achieved are 3.31*105 tons of standard coal and 1.74*106 tons of CO2, respectively.

  11. Achieving waste to energy through sewage sludge gasification using hot slags: syngas production

    Science.gov (United States)

    Sun, Yongqi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-01-01

    To relieve the environmental issues of sewage sludge (SS) disposal and greenhouse gas (GHG) emission in China, we proposed an integrated method for the first time to simultaneously deal with these two problems. The hot slags below 920 °C could act as a good heat carrier for sludge gasification and the increasing CO2 concentration in CO2/O2 atmospheres enhanced the production of CO and H2 at 400–800 °C. Three stages of syngas release were clearly identified by Gaussian fittings, i.e., volatile release, char transformation and fixed carbon reaction. Additionally, the effect of sulfur retention of slags and the synergy effect of the stabilization of toxic elements in the solid residuals were discovered in this study. Furthermore, a novel prototype of multiple industrial and urban systems was put forward, in which the produced CO + H2 could be utilized for direct reduced iron (DRI) production and the solid residuals of sludge ash and glassy slags would be applied as cementitious materials. For a steel plant with an annual production of crude steel of 10 million tons in China, the total annual energy saving and GHG emission reduction achieved are 3.31*105 tons of standard coal and 1.74*106 tons of CO2, respectively. PMID:26074060

  12. Quality and generation rate of solid residues in the boiler of a waste-to-energy plant

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Boldrin, Alessio; Jansson, S.

    2014-01-01

    The Danish waste management system relies significantly on waste-to-energy (WtE) plants. The ash produced at the energy recovery section (boiler ash) is classified as hazardous waste, and is commonly mixed with fly ash and air pollution control residues before disposal. In this study, a detailed...... characterization of boiler ash from a Danish grate-based mass burn type WtE was performed, to evaluate the potential for improving ash management. Samples were collected at 10 different points along the boiler's convective part, and analysed for grain size distribution, content of inorganic elements...... of the boiler, in terms of total content and leaching, indicating that separate management of individual ash fractions may not provide significant benefits. © 2014 Elsevier B.V....

  13. Size fractionation of waste-to-energy boiler ash enables separation of a coarse fraction with low dioxin concentrations

    DEFF Research Database (Denmark)

    Weidemann, E.; Allegrini, Elisa; Astrup, Thomas Fruergaard

    2016-01-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) formed in modern Waste-to-Energy plants are primarily found in the generated ashes and air pollution control residues, which are usually disposed of as hazardous waste. The objective of this study was to explore the occurrence of PCDD....../F in different grain size fractions in the boiler ash, i.e. ash originating from the convection pass of the boiler. If a correlation between particle size and dioxin concentrations could be found, size fractionation of the ashes could reduce the total amount of hazardous waste. Boiler ash samples from ten...... sections of a boiler's convective part were collected over three sampling days, sieved into three different size fractions - 0.355. mm - and analysed for PCDD/F. The coarse fraction (>0.355. mm) in the first sections of the horizontal convection pass appeared to be of low toxicity with respect to dioxin...

  14. Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants.

    Science.gov (United States)

    De Greef, J; Villani, K; Goethals, J; Van Belle, H; Van Caneghem, J; Vandecasteele, C

    2013-11-01

    Due to ongoing developments in the EU waste policy, Waste-to-Energy (WtE) plants are to be optimized beyond current acceptance levels. In this paper, a non-exhaustive overview of advanced technical improvements is presented and illustrated with facts and figures from state-of-the-art combustion plants for municipal solid waste (MSW). Some of the data included originate from regular WtE plant operation - before and after optimisation - as well as from defined plant-scale research. Aspects of energy efficiency and (re-)use of chemicals, resources and materials are discussed and support, in light of best available techniques (BAT), the idea that WtE plant performance still can be improved significantly, without direct need for expensive techniques, tools or re-design. In first instance, diagnostic skills and a thorough understanding of processes and operations allow for reclaiming the silent optimisation potential.

  15. ALGORITHM OF SELECTION EFFECTIVE SOLUTIONS FOR REPROFILING OF INDUSTRIAL BUILDINGS

    Directory of Open Access Journals (Sweden)

    MENEJLJUK A. I.

    2016-08-01

    Full Text Available Raising of problem.Non-compliance requirements of today's industrial enterprises, which were built during the Soviet period, as well as significant technical progress, economic reform and transition to market principles of performance evaluation leading to necessity to change their target and functionality. The technical condition of many industrial buildings in Ukraine allows to exploit them for decades.Redesigning manufacturing enterprises allows not only to reduce the cost of construction, but also to obtain new facilities in the city. Despite the large number of industrial buildings that have lost their effectiveness and relevance, as well as a significant investor interest in these objects, the scope of redevelopment in the construction remains unexplored. Analysis researches on the topic. The problem of reconstruction of industrial buildings considered in Topchy D. [3], Travin V. [9], as well as in the work of other scientists. However, there are no rules in regulatory documents and system studies for improving the organization of the reconstruction of buildings at realigning. The purpose of this work is the development an algorithm of actions for selection of effective organizational decisions at the planning stage of a reprofiling project of industrial buildings. The proposed algorithm allows you to select an effective organizational and technological solution for the re-profiling of industrial buildings, taking into account features of the building, its location, its state of structures and existing restrictions. The most effective organizational solution allows realize the reprofiling project of an industrial building in the most possible short terms and with the lowest possible use of material resources, taking into account the available features and restrictions. Conclusion. Each object has a number of unique features that necessary for considering at choosing an effective reprofiling variant. The developed algorithm for selecting

  16. Optimal utilization of waste-to-energy in an LCA perspective.

    Science.gov (United States)

    Fruergaard, T; Astrup, T

    2011-03-01

    Energy production from two types of municipal solid waste was evaluated using life cycle assessment (LCA): (1) mixed high calorific waste suitable for production of solid recovered fuels (SRF) and (2) source separated organic waste. For SRF, co-combustion was compared with mass burn incineration. For organic waste, anaerobic digestion (AD) was compared with mass burn incineration. In the case of mass burn incineration, incineration with and without energy recovery was modelled. Biogas produced from anaerobic digestion was evaluated for use both as transportation fuel and for heat and power production. All relevant consequences for energy and resource consumptions, emissions to air, water and soil, upstream processes and downstream processes were included in the LCA. Energy substitutions were considered with respect to two different energy systems: a present-day Danish system based on fossil fuels and a potential future system based on 100% renewable energy. It was found that mass burn incineration of SRF with energy recovery provided savings in all impact categories, but co-combustion was better with respect to Global Warming (GW). If all heat from incineration could be utilized, however, the two alternatives were comparable for SRF. For organic waste, mass burn incineration with energy recovery was preferable over anaerobic digestion in most impact categories. Waste composition and flue gas cleaning at co-combustion plants were critical for the environmental performance of SRF treatment, while the impacts related to utilization of the digestate were significant for the outcome of organic waste treatment. The conclusions were robust in a present-day as well as in a future energy system. This indicated that mass burn incineration with efficient energy recovery is a very environmentally competitive solution overall. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Improving energy efficiency in industrial solutions - Walk the talk

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, D. (Siemens AG. Industry Solutions Div., Erlangen (Germany)); Finkbeiner, M. (Technische Univ. Berlin (TUB). Sustainable Engineering, Berlin (Germany)); Holst, J.-C.; Walachowicz, F. (Siemens AG. Corporate Technology, Berlin (Germany)); Irving Olsen, S. (Technical Univ. of Denmark (DTU). Management Engineering, Kgs. Lyngby (Denmark))

    2011-05-15

    This paper describes the outline of the energy efficiency and environmental care policy and management at Siemens Industry Solutions Division. This environmental policy coherently embraces strategic planning, eco-design of energy-efficient industrial processes and solutions, design evaluation and finally communication of both environmental and economic performance of solutions to customers. One of the main tools supporting eco-design and evaluation and controlling of derived design solutions is the so called 'Eco-Care-Matrix' (ECM). The ECM simply visualizes the eco-efficiency of solutions compared to a given baseline. In order to prevent from 'green washing' criticism and to ensure 'walk the talk' attitude the ECM should be scientifically well-founded using appropriate and consistent methodology. The vertical axis of an ECM illustrates the environmental performance and the horizontal axis describes the economical customer benefit of one or more green solutions compared to a defined reference solution. Different scientific approaches for quantifying the environmental performance based on life cycle assessment methodology are discussed especially considering the ISO standards 14040/14044:2006. Appropriate ECM application is illustrated using the example of the Siemens MEROS technology (Maximized Emission Reduction of Sintering) for the steel industry. MEROS is currently the most modern and powerful system for cleaning off-gas in sinter plants. As an environmental technology MEROS is binding and removing sulfur dioxide and other acidic gas components present in the off-gas stream by using dry absorbents and additional electrical power. Advantage in the impact category of acidification potential (by desulfurization) is a trade-off to disadvantages in global warming and resource depletion potential caused by use of electricity. Representing different impacts, indicator results for impact categories with different tendencies have to be

  18. Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants

    Energy Technology Data Exchange (ETDEWEB)

    De Greef, J.; Villani, K.; Goethals, J.; Van Belle, H. [Keppel Seghers, Center of Excellence, Hoofd 1, B-2830 Willebroek (Belgium); Van Caneghem, J., E-mail: jo.vancaneghem@cit.kuleuven.be [University of Leuven, Department of Chemical Engineering, ProcESS (Process Engineering for Sustainable Systems) Division, Willem De Croylaan 46, 3001 Leuven (Belgium); Group T Leuven Engineering College, Association of the University of Leuven, Andreas Vesaliusstraat 13, B-3000 Leuven (Belgium); Vandecasteele, C. [University of Leuven, Department of Chemical Engineering, ProcESS (Process Engineering for Sustainable Systems) Division, Willem De Croylaan 46, 3001 Leuven (Belgium)

    2013-11-15

    Highlights: • WtE plants are to be optimized beyond current acceptance levels. • Emission and consumption data before and after 5 technical improvements are discussed. • Plant performance can be increased without introduction of new techniques or re-design. • Diagnostic skills and a thorough understanding of processes and operation are essential. - Abstract: Due to ongoing developments in the EU waste policy, Waste-to-Energy (WtE) plants are to be optimized beyond current acceptance levels. In this paper, a non-exhaustive overview of advanced technical improvements is presented and illustrated with facts and figures from state-of-the-art combustion plants for municipal solid waste (MSW). Some of the data included originate from regular WtE plant operation – before and after optimisation – as well as from defined plant-scale research. Aspects of energy efficiency and (re-)use of chemicals, resources and materials are discussed and support, in light of best available techniques (BAT), the idea that WtE plant performance still can be improved significantly, without direct need for expensive techniques, tools or re-design. In first instance, diagnostic skills and a thorough understanding of processes and operations allow for reclaiming the silent optimisation potential.

  19. Application of High Temperature Corrosion-Resistant Materials and Coatings Under Severe Corrosive Environment in Waste-to-Energy Boilers

    Science.gov (United States)

    Kawahara, Yuuzou

    2007-06-01

    Corrosion-resistant materials (CRMs) and coatings are key technologies to increase power generation efficiency and reduce maintenance in waste-to-energy (WTE) plants. Corrosion environment became severe as steam temperatures have increased. The steam condition of more than 400 °C/3.9 MPa became possible in WTE boilers by using highly durable corrosion-resistant coatings, such as thermal spray of Al/80Ni20Cr alloy, HVOF-sprayed NiCrSiB alloy, Alloy 625 weld overlay for waterwall tubes and also superheater tubes. Also, the use of 310S type stainless steels and high Cr-high Mo-Ni base and high Si-Cr-Ni-Fe alloys have progressed because of a better understanding of corrosion mechanisms. Furthermore, high durability coatings using cermet and ceramic materials were applied to high temperature superheaters. This paper describes the major developments and the application of CRMs and coating technologies in the last 30 years in WTE plants, the corrosion mechanisms of alloys, the deterioration mechanisms of spray coating layers, and future subjects for the development of corrosion-resistant materials and coatings.

  20. Municipal Solid Waste to Energy Generation in Bangladesh: Possible Scenarios to Generate Renewable Electricity in Dhaka and Chittagong City

    Directory of Open Access Journals (Sweden)

    K. M. Nazmul Islam

    2016-01-01

    Full Text Available Increased generation of methane (CH4 from municipal solid wastes (MSW alarms the world to take proper initiative for the sustainable management of MSW, because it is 34 times stronger than carbon dioxide (CO2. Mounting land scarcity issue around the world brands the waste to energy (WtE strategy for MSW management in urban areas as a promising option, because WtE not only reduces the land pressure problem, but also generates electricity, heat, and green jobs. The goal of this study is to evaluate the renewable electricity generation potential and associated carbon reduction of MSW management in Bangladesh using WtE strategies. The study is conducted in two major cities of Bangladesh: Dhaka and Chittagong. Six different WtE scenarios are evaluated consisting of mixed MSW incineration and landfill gas (LFG recovery system. Energy potential of different WtE strategy is assessed using standard energy conversion model and subsequent GHGs emissions models. Scenario A1 results in highest economic and energy potential and net negative GHGs emission. Sensitivity analysis by varying MSW moisture content reveals higher energy potential and less GHGs emissions from MSW possessing low moisture content. The study proposes mixed MSW incineration that could be a potential WtE strategy for renewable electricity generation in Bangladesh.

  1. Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yanwen; Linville, Jessica L.; Ignacio-de Leon, Patricia Anne A.; Schoene, Robin P.; Urgun-Demirtas, Meltem

    2016-11-01

    This study presents an integrated waste-to-energy process, using two waste streams, sludge generated from the municipal wastewater treatment plants (WWTPs) and biochar generated from the biomass gasification systems, to produce fungible biomethane and nutrient-rich digestate with fertilizer value. Two woody biochar, namely pinewood (PBC) and white oak biochar (WOBC) were used as additives during anaerobic digestion (AD) of WWTP sludge to enhance methane production at mesophilic and thermophilic temperatures. The PBC and WOBC have porous structure, large surface area and desirable chemical properties to be used as AD amendment material to sequester CO2 from biogas in the digester. The biochar-amended digesters achieved average methane content in biogas of up to 92.3% and 79.0%, corresponding to CO2 sequestration by up to 66.2% and 32.4% during mesophilic and thermophilic AD, respectively. Biochar addition enhanced process stability by increasing the alkalinity, but inhibitory effects were observed at high dosage. It also alleviated free ammonia inhibition by up to 10.5%. The biochar-amended digesters generated digestate rich in macro- and micronutrients including K (up to 300 m/L), Ca (up to 750 mg/L), Mg (up to 1800 mg/L) and Fe (up to 390 mg/L), making biochar-amended digestate a potential alternative used as agricultural lime fertilizer.

  2. A financial feasibility model of gasification and anaerobic digestion waste-to-energy (WTE) plants in Saudi Arabia.

    Science.gov (United States)

    Hadidi, Laith A; Omer, Mohamed Mahmoud

    2017-01-01

    Municipal Solid Waste (MSW) generation in Saudi Arabia is increasingly growing at a fast rate, as it hurtles towards ever increasing urban development coupled with rapid developments and expanding population. Saudi Arabia's energy demands are also rising at a faster rate. Therefore, the importance of an integrated waste management system in Saudi Arabia is increasingly rising and introducing Waste to Energy (WTE) facilities is becoming an absolute necessity. This paper analyzes the current situation of MSW management in Saudi Arabia and proposes a financial model to assess the viability of WTE investments in Saudi Arabia in order to address its waste management challenges and meet its forecasted energy demands. The research develops a financial model to investigate the financial viability of WTE plants utilizing gasification and Anaerobic Digestion (AD) conversion technologies. The financial model provides a cost estimate of establishing both gasification and anaerobic digestion WTE plants in Saudi Arabia through a set of financial indicators, i.e. net present value (NPV), internal rate of return (IRR), modified internal rate of return (MIRR), profitability index (PI), payback period, discounted payback period, Levelized Cost of Electricity (LCOE) and Levelized Cost of Waste (LCOW). Finally, the analysis of the financial model reveals the main affecting factors of the gasification plants investment decision, namely: facility generation capacity, generated electricity revenue, and the capacity factor. Similarly, the paper also identifies facility waste capacity and the capacity factor as the main affecting factors on the AD plants' investment decision. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Quality and generation rate of solid residues in the boiler of a waste-to-energy plant.

    Science.gov (United States)

    Allegrini, E; Boldrin, A; Jansson, S; Lundtorp, K; Fruergaard Astrup, T

    2014-04-15

    The Danish waste management system relies significantly on waste-to-energy (WtE) plants. The ash produced at the energy recovery section (boiler ash) is classified as hazardous waste, and is commonly mixed with fly ash and air pollution control residues before disposal. In this study, a detailed characterization of boiler ash from a Danish grate-based mass burn type WtE was performed, to evaluate the potential for improving ash management. Samples were collected at 10 different points along the boiler's convective part, and analysed for grain size distribution, content of inorganic elements, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD and PCDF), and leaching of metals. For all samples, PCDD and PCDF levels were below regulatory limits, while high pH values and leaching of e.g. Cl were critical. No significant differences were found between boiler ash from individual sections of the boiler, in terms of total content and leaching, indicating that separate management of individual ash fractions may not provide significant benefits. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Use of leaching tests to quantify trace element release from waste to energy bottom ash amended pavements.

    Science.gov (United States)

    Roessler, Justin G; Townsend, Timothy G; Ferraro, Christopher C

    2015-12-30

    A series of roadway tests strips were paved on-site at a landfill in Florida, U.S. Waste to energy (WTE) bottom ash was used as a partial course aggregate replacement in a hot mix asphalt (HMA) and a Portland cement concrete (PCC) pavement, along with control HMA and PCC sections. This allowed for a comparison of the relative degree of leaching between both materials (HMA and PCC) as well as between the ash-amended and control pavements. Batch and monolithic tank leaching tests were conducted on the pavements. Testing of the PCC samples demonstrated that Mo and Al were elevated above regulatory thresholds for both the control and ash amended samples. Further leach testing demonstrated that the release of Mo was likely from the PCC and not a result of the inclusion of the BA into pavement. Batch leach testing of ash-amended HMA samples revealed Sb as a constituent of potential concern. The results of the monolith leaching test displayed leaching of Sb within the same order of magnitude as the regulatory threshold. Calculation of the leachability index (LI) for Sb found that it would have limited mobility when incorporated in the HMA matrix. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Corrosion problems and solutions in oil refining and petrochemical industry

    CERN Document Server

    Groysman, Alec

    2017-01-01

    This book addresses corrosion problems and their solutions at facilities in the oil refining and petrochemical industry, including cooling water and boiler feed water units. Further, it describes and analyzes corrosion control actions, corrosion monitoring, and corrosion management. Corrosion problems are a perennial issue in the oil refining and petrochemical industry, as they lead to a deterioration of the functional properties of metallic equipment and harm the environment – both of which need to be protected for the sake of current and future generations. Accordingly, this book examines and analyzes typical and atypical corrosion failure cases and their prevention at refineries and petrochemical facilities, including problems with: pipelines, tanks, furnaces, distillation columns, absorbers, heat exchangers, and pumps. In addition, it describes naphthenic acid corrosion, stress corrosion cracking, hydrogen damages, sulfidic corrosion, microbiologically induced corrosion, erosion-corrosion, and corrosion...

  6. Size fractionation of waste-to-energy boiler ash enables separation of a coarse fraction with low dioxin concentrations.

    Science.gov (United States)

    Weidemann, E; Allegrini, E; Fruergaard Astrup, T; Hulgaard, T; Riber, C; Jansson, S

    2016-03-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) formed in modern Waste-to-Energy plants are primarily found in the generated ashes and air pollution control residues, which are usually disposed of as hazardous waste. The objective of this study was to explore the occurrence of PCDD/F in different grain size fractions in the boiler ash, i.e. ash originating from the convection pass of the boiler. If a correlation between particle size and dioxin concentrations could be found, size fractionation of the ashes could reduce the total amount of hazardous waste. Boiler ash samples from ten sections of a boiler's convective part were collected over three sampling days, sieved into three different size fractions - 0.355 mm - and analysed for PCDD/F. The coarse fraction (>0.355 mm) in the first sections of the horizontal convection pass appeared to be of low toxicity with respect to dioxin content. While the total mass of the coarse fraction in this boiler was relatively small, sieving could reduce the amount of ash containing toxic PCDD/F by around 0.5 kg per tonne input waste or around 15% of the collected boiler ash from the convection pass. The mid-size fraction in this study covered a wide size range (0.09-0.355 mm) and possibly a low toxicity fraction could be identified by splitting this fraction into more narrow size ranges. The ashes exhibited uniform PCDD/F homologue patterns which suggests a stable and continuous generation of PCDD/F.

  7. Batch test assessment of waste-to-energy combustion residues impacts on precipitate formation in landfill leachate collection systems.

    Science.gov (United States)

    Cardoso, Antonio J; Levine, Audrey D; Rhea, Lisa R

    2008-01-01

    Disposal practices for bottom ash and fly ash from waste-to-energy (WTE) facilities include emplacement in ash monofills or co-disposal with municipal solid waste (MSW) and residues from water and wastewater treatment facilities. In some cases, WTE residues are used as daily cover in landfills that receive MSW. A recurring problem in many landfills is the development of calcium-based precipitates in leachate collection systems. Although MSW contains varying levels of calcium, WTE residues and treatment plant sludges have the potential to contribute concentrated sources of leachable minerals into landfill leachates. This study was conducted to evaluate the leachability of calcium and other minerals from residues generated by WTE combustion using residues obtained from three WTE facilities in Florida (two mass-burn and one refuse-derived fuel). Leaching potential was quantified as a function of contact time and liquid-to-solid ratios with batch tests and longer-term leaching tests using laboratory lysimeters to simulate an ash monofill containing fly ash and bottom ash. The leachate generated as a result of these tests had total dissolved solid (TDS) levels ranging from 5 to 320 mg TDS/g ash. Calcium was a major contributor to the TDS values, contributing from 20 to 105 g calcium/kg ash. Fly ash was a major contributor of leachable calcium. Precipitate formation in leachates from WTE combustion residues could be induced by adding mineral acids or through gas dissolution (carbon dioxide or air). Stabilization of residual calcium in fly ashes that are landfilled and/or the use of less leachable neutralization reagents during processing of acidic gases from WTE facilities could help to decrease the calcium levels in leachates and help to prevent precipitate formation in leachate collection systems.

  8. DEVELOPMENT OF TECHNOLOGICAL SOLUTIONS FOR THE BEVERAGE INDUSTRY PREVENTIVE ORIENTATION

    Directory of Open Access Journals (Sweden)

    N. V. Nepovinnykh

    2014-01-01

    Full Text Available Summary. Market demand for foods with low fat content has been expanding, but for low-fat foods good organoleptic properties need new food ingredients and solutions. Food hydrocolloids, polysaccharides and milk proteins, now are widely used in various industries, including the dairy industry, performing various functions: to thicken aqueous solutions, foaming and stabilizing foams and others. We studied the functional and technological properties and developed technology of new types of oxygencontaining beverages (smoothies on the basis of cheese whey, natural fruit and berry juices and purees and dietary fibres «Citri-Fi», including non-starch polysaccharides (guar gum and xanthan gum, contributing to the formation of a specific texture and drink as stabilizers oxygen foam. When creating new kinds of smoothies performed construction flavored beverage profile, the definition of rational parameters of preparation and entering dietary fibres; selection of the optimal concentration of dietary fiber for the formation of the desired consistency (texture drink; study of quality and safety of new types of drinks and justification expiration dates. Based on the studies found that the use as stabilizers structure oxygen smoothie dietary fibres «Citri-Fi» in concentrations of 0.8 – 1 % and non-starch polysaccharides at concentrations of 0.1 - 0.3 % contributes to the production of foams drinks with a sufficiently high magnification. Increasing the dose of dietary fibres in making smoothies viscosity increases and weighting system, drink bad whipped, there is separation of the product into phases, the system becomes thermodynamically unstable. Production technology and recipes for new types of smoothies with dietary fibres. Preventive orientation developed oxygenated drinks allows to include them in the diet of patients with chronic heart failure, which is confirmed by appropriate investigations.

  9. Energy, environmental and operation aspects of a SRF-fired fluidized bed waste-to-energy plant.

    Science.gov (United States)

    De Gisi, Sabino; Chiarelli, Agnese; Tagliente, Luca; Notarnicola, Michele

    2017-05-05

    A methodology based on the ISO 14031:2013 guideline has been developed and applied to a full-scale fluidized bed waste to energy plant (WtE) burning solid recovered fuel (SRF). With reference to 3years of operation, the data on energy and environmental performance, on raw materials consumptions such as sand and diesel fuel, accidental reasons of plant shutdown, have been acquired and analyzed. The obtained results have allowed to quantify the energy and environmental performance of the WtE plant under investigation by varying the amount and mixings of the inlet waste, available in form of thickened and fluff (similar to coriander) SRF. In terms of the energy performance, the fluidized bed technology applied to the SRF was able to guarantee an adequate production of electricity (satisfying the market demands), showing a relative flexibility with respect to the inlet waste. In terms of net energy production efficiency, the plant showed values in the range of 13.8-14.9% in line with similar installations. In terms of the environmental performance, the adoption of a cleaning system based on SNCR (Selective Non Catalitic Reduction)+semi-dry scrubbing+Fabric filter generated emissions usually well below the limits set by the EU Directive 2000/76/EC as well as the Italian Law 46/2014 (more restrictive) with reference to all the key parameters. In terms of the plant shutdown, the majority of problems focused on the combustion chamber and boiler due to the erosion of the refractory material of the furnace as well as to the breaking of the superheaters of the boiler. In contrast, the mechanical and electrical causes, along with those related to the control and instrumentation system, were of secondary importance. The sand bed de-fluidization was also among the leading causes of a frequent plant shutdown. In particular, results showed how although the SRF presents standard characteristics, the use of different mixtures may affect the number of plant shutdowns. The full

  10. Extractive removal of chromium (VI) from industrial waste solution.

    Science.gov (United States)

    Agrawal, Archana; Pal, Chandana; Sahu, K K

    2008-11-30

    Extractive removal of Cr (VI) was carried out from chloride solutions using cyanex 923 mixed with kerosene. The efficiency of this extractant was studied under various experimental conditions, such as concentration of different mineral acids in the aqueous phase, concentration of cyanex 923 and Cr (VI) present in the initial aqueous feed, temperature and time of extraction, organic to aqueous (O/A) phase ratio. Percentage Cr (VI) extraction decreases with the increase in temperature at varying concentration of cyanex 923. The interference of the impurities usually associated with Cr (VI) such as Cr (III), Cu, Ni, Fe (II), Zn, Chloride and sulphate, etc., were examined under the optimized conditions and only Zn was found to interfere. Under the optimum experimental conditions 98.6-99.9% of Cr (VI) was extracted in 3-5 min at O/A of 2 with the initial feed concentration of 1g/L of Cr (VI). The extracted Cr (VI) was quantitatively stripped with 1M NaOH and the organic phase obtained after the stripping of Cr (VI) was washed with dilute HCl solution to neutralize any NaOH trapped/adhered to the solvent and then with distilled water. This regenerated solvent was reused in succeeding extraction of chromium (VI). Finally a few experiments were performed with the synthetic effluent from an electroplating industry.

  11. Hot Issue and Burning Options in Waste Management: A Social Cost Benefit Analysis of Waste-to-Energy in the UK.

    OpenAIRE

    Jamasb, Tooraj; Kiamil, H.; Nepal, R.

    2008-01-01

    The growing stream of municipal solid waste requires a sustainable waste management strategy. Meanwhile, addressing climate change and security of energy supply concerns require increased use of low-carbon and domestic sources of energy. This paper assesses the economic and policy aspects of waste management options focusing on waste to energy (WtE). We conclude that high levels of WtE and recycling are compatible as waste treatment options. We also present a social cost-benefit analysis of w...

  12. Economic and environmental analysis of four different configurations of anaerobic digestion for food waste to energy conversion using LCA for: a food service provider case study.

    Science.gov (United States)

    Franchetti, Matthew

    2013-07-15

    The US disposes of more than 34 million tons of food waste in landfills per year. As this food waste decomposes it generates methane gas and negatively contributes to global warming. Diverting theses organic food wastes from landfills and to emerging technologies will prevent these wastes and greenhouse gas emissions while at the same time generating a source renewable energy by collecting the emitted gases. From a waste prevention standpoint, instead of the food waste decomposing at local landfills, it is being converted into an energy source and the by-product may be used as a fertilizer (Fine and Hadas, 2012). The purpose of this study was to compare four different configurations of anaerobic digestion of organic waste to energy technologies from an economic, energy, and emissions standpoint using LCA via a case study at a large food services provider in Northwest Ohio, USA. The technologies studied included two-stage anaerobic digestion system using ultrasound pre-treating, two stage continuous combined thermophilic acidogenic hydrogenesis and mesophilic with recirculation of the digested sludge, long-term anaerobic digestion of food waste stabilized by trace elements, and single stage anaerobic digestion. Using LCA, these scenarios were compared to landfill disposal of the food waste. The findings from the case study indicated that implementing on-site waste to energy systems will result in lower operation costs and lower environmental impacts. In addition, a standardized environmental and economic comparison of competing food waste to energy technologies is provided. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. THE TOTAL SOLUTION FOR DEVELOPING NEW PRODUCTS OF FOOTWEAR INDUSTRY

    Directory of Open Access Journals (Sweden)

    DRIŞCU Mariana

    2014-05-01

    Full Text Available This paper presents new solutions for shoemakers, for developing new products and new markets of footwear industry using the basic function of the system CRISPIN Dynamics CAD SUITE. These are the key issues - this is why CRISPIN Dynamics CAD SUITE has developed a range of quality software products to give the shoemaker a major advantage in shoe-making. This application offer functions for creating realistic looking designs of footwear products and for flattening the styles for development in 2D. There are also facilities to re-centre front and back guide lines, change foot (no need to re-digitize and set the correct heel height and roll. It is also possible to create guidelines to match with the last and extend the last for a boot design. The last type can also be changed to a type that allows the entire last surface to be used for a design. The system brings cutting-edge CAD/CAM technology to footwear designers providing benefits through all stages of their product development process. Major benefits include the ability to visualize a design for appraisal and the transfer of the design into CRISPIN 2D pattern development products. This allows increased productivity, shorter lead times, accurate interpretation of 3D designs in 2D and a reduction in the number of samples needed before approval of the design.

  14. Energy Technology Solutions: Public-Private Partnerships Transforming Industry - December 2010

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-12-01

    AMO's research and development partnerships with industry have resulted in more than 220 technologies and other solutions that can be purchased today. This document includes a description of each solution, its benefits, and vendor contact information. The document also identifies emerging technologies and other resources to help industry save energy.

  15. Long-term sampling of CO2 from waste-to-energy plants: 14C determination methodology, data variation and uncertainty

    DEFF Research Database (Denmark)

    Fuglsang, Karsten; Pedersen, Niels Hald; Larsen, Anna Warberg;

    2014-01-01

    emission of fossil CO2 from waste-to-energy plants can be monitored according to carbon trading schemes and renewable energy certificates. Weekly and monthly measurements were performed at five Danish waste incinerators. Significant variations between fractions of biogenic CO2 emitted were observed......, not only over time, but also between plants. From the results of monthly samples at one plant, the annual mean fraction of biogenic CO2 was found to be 69% of the total annual CO2 emissions. From weekly samples, taken every 3 months at the five plants, significant seasonal variations in biogenic CO2...

  16. Designing Integrated Product- Service System Solutions in Manufacturing Industries

    DEFF Research Database (Denmark)

    Costa, Nina; Patrício, Lia; Morelli, Nicola

    2015-01-01

    Manufacturing firms are increasingly evolving towards the design of integrated product-service solutions but servitization literature does not provide specific guidance on how to design these integrated solutions. Building upon ProductService System (PSS) and Service Design (SD) approaches...... how it brings new insights to manufacturing companies moving to a service, value cocreation perspective....

  17. The waste-to-energy framework for integrated multi-waste utilization: Waste cooking oil, waste lubricating oil, and waste plastics

    Energy Technology Data Exchange (ETDEWEB)

    Singhabhandhu, Ampaitepin; Tezuka, Tetsuo [Energy Economics Laboratory, Department of Socio-Environmental Energy Science, Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2010-06-15

    Energy generation by wastes is considered one method of waste management that has the benefit of energy recovery. From the waste-to-energy point of view, waste cooking oil, waste lubricating oil, and waste plastics have been considered good candidates for feedstocks for energy conversion due to their high heating values. Compared to the independent management of these three wastes, the idea of co-processing them in integration is expected to gain more benefit. The economies of scale and the synergy of co-processing these wastes results in higher quality and higher yield of the end products. In this study, we use cost-benefit analysis to evaluate the integrated management scenario of collecting the three wastes and converting them to energy. We report the total heat of combustion of pyrolytic oil at the maximum and minimum conversion rates, and conduct a sensitivity analysis in which the parameters of an increase of the electricity cost for operating the process and increase of the feedstock transportation cost are tested. We evaluate the effects of economy of scale in the case of integrated waste management. We compare four cases of waste-to-energy conversion with the business as usual (BAU) scenario, and our results show that the integrated co-processing of waste cooking oil, waste lubricating oil, and waste plastics is the most profitable from the viewpoints of energy yield and economics. (author)

  18. Long-term sampling of CO(2) from waste-to-energy plants: (14)C determination methodology, data variation and uncertainty.

    Science.gov (United States)

    Fuglsang, Karsten; Pedersen, Niels Hald; Larsen, Anna Warberg; Astrup, Thomas Fruergaard

    2014-02-01

    A dedicated sampling and measurement method was developed for long-term measurements of biogenic and fossil-derived CO(2) from thermal waste-to-energy processes. Based on long-term sampling of CO(2) and (14)C determination, plant-specific emission factors can be determined more accurately, and the annual emission of fossil CO(2) from waste-to-energy plants can be monitored according to carbon trading schemes and renewable energy certificates. Weekly and monthly measurements were performed at five Danish waste incinerators. Significant variations between fractions of biogenic CO(2) emitted were observed, not only over time, but also between plants. From the results of monthly samples at one plant, the annual mean fraction of biogenic CO(2) was found to be 69% of the total annual CO(2) emissions. From weekly samples, taken every 3 months at the five plants, significant seasonal variations in biogenic CO(2) emissions were observed (between 56% and 71% biogenic CO(2)). These variations confirmed that biomass fractions in the waste can vary considerably, not only from day to day but also from month to month. An uncertainty budget for the measurement method itself showed that the expanded uncertainty of the method was ± 4.0 pmC (95 % confidence interval) at 62 pmC. The long-term sampling method was found to be useful for waste incinerators for determination of annual fossil and biogenic CO(2) emissions with relatively low uncertainty.

  19. Developing E-Learning Solutions in the Automotive Industry

    Science.gov (United States)

    Bogdan, Razvan; Ancusa, Versavia

    2016-01-01

    In the rapid developing market of automotive industry, cutting-edge technologies are being introduced. One such example is the AUTOSAR standard. Companies are investing a large amount of finances for the training of their employees into the intricacies of such technologies. In order to face such an increase of the training costs, automotive…

  20. Waste Not, Want Not: Analyzing the Economic and Environmental Viability of Waste-to-Energy (WTE) Technology for Site-Specific Optimization of Renewable Energy Options

    Energy Technology Data Exchange (ETDEWEB)

    Funk, K.; Milford, J.; Simpkins, T.

    2013-02-01

    Waste-to-energy (WTE) technology burns municipal solid waste (MSW) in an environmentally safe combustion system to generate electricity, provide district heat, and reduce the need for landfill disposal. While this technology has gained acceptance in Europe, it has yet to be commonly recognized as an option in the United States. Section 1 of this report provides an overview of WTE as a renewable energy technology and describes a high-level model developed to assess the feasibility of WTE at a site. Section 2 reviews results from previous life cycle assessment (LCA) studies of WTE, and then uses an LCA inventory tool to perform a screening-level analysis of cost, net energy production, greenhouse gas (GHG) emissions, and conventional air pollution impacts of WTE for residual MSW in Boulder, Colorado. Section 3 of this report describes the federal regulations that govern the permitting, monitoring, and operating practices of MSW combustors and provides emissions limits for WTE projects.

  1. Industrial open source solutions for product life cycle management

    Directory of Open Access Journals (Sweden)

    Jaime Campos

    2014-12-01

    Full Text Available The authors go through the open source for product life cycle management (PLM and the efforts done from communities such as the open source initiative. The characteristics of the open source solutions are highlighted as well. Next, the authors go through the requirements for PLM. This is an area where more attention has been given as the manufacturers are competing with the quality and life cycle costs of their products. Especially, the need of companies to try to get a strong position in providing services for their products and thus to make themselves less vulnerable to changes in the market has led to high interest in product life cycle simulation. The potential of applying semantic data management to solve these problems discussed in the light of recent developments. In addition, a basic roadmap is presented as to how the above-described problems could be tackled with open software solutions.

  2. Dimensional and chemical characterization of particles at a downwind receptor site of a waste-to-energy plant.

    Science.gov (United States)

    Buonanno, G; Stabile, L; Avino, P; Vanoli, R

    2010-07-01

    In the last years numerous epidemiological studies were carried out to evaluate the effects of particulate matter on human health. In industrialized areas, anthropogenic activities highly contribute to the fine and ultrafine particle concentrations. Then, it is important to characterize the evolution of particle size distribution and chemical composition near these emission points. Waste incineration represents a favorable technique for reducing the waste volume. However, in the past, municipal waste incinerators (MWIs) had a bad reputation due to the emission of toxic combustion byproducts. Consequently, the risk perception of the people living near MWIs is very high even if in Western countries waste incineration has nowadays to be considered a relatively clean process from a technical point of view. The study here presented has an exemplary meaning for developing appropriate management and control strategies for air quality in the surrounding of MWIs and to perform exposure assessment for populations involved. Environment particles were continuously measured through a SMPS/APS system over 12 months. The monitoring site represents a downwind receptor of a typical MWI. Furthermore, elements and organic fractions were measured by means of the Instrumental Neutron Activation Analysis and using dichotomous and high volume samplers. Annual mean values of 8.6 x 10(3)+/-3.7 x 10(2)part.cm(-3) and 31.1+/-9.0 microg m(-3) were found for number and mass concentration, typical of a rural site. Most of the elements can be attributed to long-range transport from other natural and/or anthropogenic sources. Finally, the Polycyclic Aromatic Hydrocarbons present low concentrations with a mean value of 24.6 ng m(-3). Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities.

    Science.gov (United States)

    Fernández-González, J M; Grindlay, A L; Serrano-Bernardo, F; Rodríguez-Rojas, M I; Zamorano, M

    2017-09-01

    The application of Directive 2008/98/CE on Municipal Solid Waste (MSW) implies the need to introduce technologies to generate energy from waste. Incineration, the most widely used method, is difficult to implement in low populated areas because it requires a large amount of waste to be viable (100,000 tons per year). This paper analyses the economic and environmental costs of different MSW-to-Energy technologies (WtE) in an area comprising of 13 municipalities in southern Spain. We analyse anaerobic digestion (Biomethanization), the production of solid recovered fuel (SRF) and gasification, and compare these approaches to the present Biological Mechanical Treatment (BMT) with elimination of the reject in landfill, and incineration with energy recovery. From an economic standpoint the implementation of WtE systems reduces the cost of running present BMT systems and incineration; gasification presents the lowest value. From the environmental standpoint, Life Cycle Assessment shows that any WtE alternatives, including incineration, present important advantages for the environment when compared to BMT. Finally, in order to select the best alternative, a multi-criteria method is applied, showing that anaerobic digestion is the optimal solution for the area studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Social Innovation and New Industrial Contexts: Can Designers "Industrialize" Socially Responsible Solutions?

    DEFF Research Database (Denmark)

    Morelli, Nicola

    2007-01-01

      Many years ago Viktor Papanek urgently called for a radical revision of the design profession based on an exploration of new territories outside the market oriented logic. For many years Papanek's call was ignored, but the urgency of those theme is re-emerging, together with the need to overcome...... Papanek's approach, in view of the changed context in which industrial companies are now operating. While industrial production is globalising, local needs are becoming more and more complex, generating demand patterns and opportunities that are often ignored in the mainstream market-oriented perspective...... framework for this paper. An investigation is proposed beyond the traditional links between design and industry, emphasising new insights into the changes in the social role of industrial production. Furthermore, the paper proposes a methodological exploration to help designers focus on new actors and new...

  5. Social Innovation and New Industrial Contexts: Can Designers "Industrialize" Socially Responsible Solutions?

    DEFF Research Database (Denmark)

    Morelli, Nicola

    2007-01-01

      Many years ago Viktor Papanek urgently called for a radical revision of the design profession based on an exploration of new territories outside the market oriented logic. For many years Papanek's call was ignored, but the urgency of those theme is re-emerging, together with the need to overcome...... Papanek's approach, in view of the changed context in which industrial companies are now operating. While industrial production is globalising, local needs are becoming more and more complex, generating demand patterns and opportunities that are often ignored in the mainstream market-oriented perspective...... framework for this paper. An investigation is proposed beyond the traditional links between design and industry, emphasising new insights into the changes in the social role of industrial production. Furthermore, the paper proposes a methodological exploration to help designers focus on new actors and new...

  6. Oil Industry Activities in Ghana: Community Perceptions and Sustainable Solutions

    Directory of Open Access Journals (Sweden)

    George Agyei

    2012-05-01

    Full Text Available The discovery and exploitation of oil reserves in Ghana has generated different expectations and reactions from the local population about the inevitable consequences for industrialization and economic development in the oil producing area. In pursuit of the perceptions and expectations of communities closer to the offshore operations, a mixture of semi-structured, open ended questions were randomly administered. In analyzing the perceptions and reactions of the local population to the prospects created by the oil discovery in commercial quantities, insights in sustainability and Corporate Social Responsibility (CSR were considered. The study reveals that the people in the communities closer to the offshore operations share the same convictions and aspirations; that is they are comfortable with their existing sources of livelihood, afraid that these sources might be hurt from oil-related activities and demanding a just allocation of the expected economic benefits through a harmonization of local fishing, farming and oil extraction activities.

  7. Institutionalization of Organized Industrial Estates in Turkey, Problems Encountered and Proposed Solutions

    Directory of Open Access Journals (Sweden)

    Hasan DAĞLAR

    2015-12-01

    Full Text Available In the aim of the study is to determine the institutionalization degree of organized industrial estates and to identify the faced problems and to develop solutions for these problems. By using survey method, information about problems and institutionalization status of organized industrial estates were obtained from managers of the active organized industrial estates. The problems of organized industrial estates are related to the management structure, qualified staff, energy, transportation, regulation and public improvements. Formalization, professionalism, accountability, transparency and social responsibility have been identified as the factors about the institutionalization of organized industrial estates in Turkey according to factor analysis. It could be argued that organized industrial estates in Turkey have an institutional structure and they have institutionalized. However, it could be said that organized industrial estates which operate in 80 cities of Turkey and more than one are in some cities are not at the same level of institutionalization.

  8. An Ontological Solution to Support Interoperability in the Textile Industry

    Science.gov (United States)

    Duque, Arantxa; Campos, Cristina; Jiménez-Ruiz, Ernesto; Chalmeta, Ricardo

    Significant developments in information and communication technologies and challenging market conditions have forced enterprises to adapt their way of doing business. In this context, providing mechanisms to guarantee interoperability among heterogeneous organisations has become a critical issue. Even though prolific research has already been conducted in the area of enterprise interoperability, we have found that enterprises still struggle to introduce fully interoperable solutions, especially, in terms of the development and application of ontologies. Thus, the aim of this paper is to introduce basic ontology concepts in a simple manner and to explain the advantages of the use of ontologies to improve interoperability. We will also present a case study showing the implementation of an application ontology for an enterprise in the textile/clothing sector.

  9. Intelligent packaging in meat industry: An overview of existing solutions.

    Science.gov (United States)

    Mohebi, Ehsan; Marquez, Leorey

    2015-07-01

    Traditional packaging systems are refused since these systems do not provide any information about the quality of food products to the consumers and manufacturers at any stage of supply chain. The essence of a new technology to monitor the food spoilage from farm to fork is emerged to reduce hazards such as food borne diseases. Moreover, the food quality monitoring systems clarify the main factors in food wastage during supply chain. Intelligent packaging is employed to provide information about the history of food handling and storage to enhance food products quality and meet consumer satisfactions. Meat is one of the most perishable foods which causes sever illnesses in the case of spoilage. Variety of indicators and sensors have been proposed to warn about meat spoilage in meat industry. In this paper an overview of proposed approaches as well as commercial technologies to monitor the quality of meat during storage and transportation is presented. Furthermore, the existing technologies are compared in the sense of advantages and disadvantages in meat packaging applications.

  10. AN ESTIMATE OF THE DETENTION IN THE PROCESS OF REVERSE OSMOSIS SEPARATION BIOLOGICAL SOLUTIONS BIOCHEMICAL INDUSTRIES

    Directory of Open Access Journals (Sweden)

    S. I. Lazarev

    2015-01-01

    Full Text Available Retained on a membrane solute in reverse osmosis separation of biological fluids at the surface of the membrane gradually accumulates and forms a boundary layer, where its concentration is higher than in the bulk. Increased concentration of solute in the solution at the membrane surface causes a diffusive flow of solids from the membrane surface into the bulk solution. After some time in the system t is a stationary state. A convective flow of solute to the membrane surface will be balanced by the sum of the fluxes of solute through the membrane and from the membrane surface into the bulk solution, i.e. in the case of concentration polarization is formed an edge of the diffusion layer. It is established that the concentration-polarization in reverse osmosis separation of the aqueous biological fluids biochemical production is influenced by the flow rate of solvent and the mass transfer coefficient. Experimental study allowed to characterize that by using the process of reverse osmosis can effectively divided, clear, and contaravati industrial solutions biochemical industries. Data at a rate of detention allow to evaluate the influence of concentration polarization on the efficiency of the reverse osmosis separation of industrial solutions. As a result of systematization and evaluation of experimental data and dependencies at a rate of detention found that with increasing the concentration, the rate of detention of solutes decreases. Based on the analysis and modification of the proposed equation for theoretical calculation of detention. Theoretical description of the coefficient detention accurately adequately calculated the modified equation N. V. Churaev, B. V. Deryaguin and V. M. Starov. The numerical values of the empirical coefficients, to calculate and predict the odds of arrest for a similar membrane separation processes industrial solutions. Values obtained correlation coefficients. The correlation coefficients specify that the rate of

  11. Overview of Fuji Electric's industrial solutions; Sangyo solution no genjo to tenbo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, J.; Nakajima, H. [Fuji Electric Co. Ltd., Tokyo (Japan)

    2000-05-10

    Fuji Electric has systematized solutions based on the concept of 'value creation and enhancement from the standpoint of the customer,' resulting in the 'Solution{sub M}EISTER' on the market. The Solution{sub M}EISTER uses technique called framework to extract problems from the viewpoint of value chain and design a method of solving them. Based on this framework, an information system for enterprise by SCM (Supply Chain Management) and ERP (Enterprise Resource Planning), a field management/control system by MES (Manufacturing Execution System) and control systems, and logistics are realized utilizing the advanced information, network, and control technologies. (author)

  12. Increased Lifetime for Biomass and Waste to Energy Power Plant Boilers with HVOF Coatings: High Temperature Corrosion Testing Under Chlorine-Containing Molten Salt

    Science.gov (United States)

    Oksa, Maria; Tuurna, Satu; Varis, Tommi

    2013-06-01

    Heat exchanger surfaces of waste to energy and biomass power plant boilers experience often severe corrosion due to very aggressive components in the used fuels. High velocity oxy-fuel (HVOF) coatings offer excellent protection for boiler tubes against high temperature corrosion due to their high density and good adherence to the substrate material. Several thermal spray coatings with high chromium content were sprayed with HVOF technique. Their mechanical properties and high temperature corrosion resistance were tested and analyzed. The coating materials included NiCr, IN625, Ni-21Cr-10W-9Mo-4Cu, and iron-based partly amorphous alloy SHS9172 (Fe-25Cr-15W-12Nb-6Mo). High temperature corrosion testing was performed in NaCl-KCl-Na2SO4 salt with controlled H2O atmosphere at 575 and 625 °C. The corrosion test results of the coatings were compared to corrosion resistance of tube materials (X20, Alloy 263 and Sanicro 25).

  13. Separation and characterization of magnetic fractions from waste-to-energy bottom ash with an emphasis on the leachability of heavy metals.

    Science.gov (United States)

    Wei, Yunmei; Mei, Xiaoxia; Shi, Dezhi; Liu, Guotao; Li, Li; Shimaoka, Takayuki

    2017-06-01

    Magnetic fractions were extracted from pulverized waste-to-energy (WTE) bottom ashes using a combined wet-dry extraction method. The resulting magnetic and non-magnetic fractions were subjected to compositional, mineralogical, and redox state analyses by X-ray diffraction (XRD), X-ray fluorescence, and X-ray photoelectron spectroscopy (XPS), respectively. The distribution and leaching toxicity of heavy metals were assessed to evaluate potential effects on the environment. Compositional analyses revealed that Fe accounted for 35% of the magnetic fraction of pulverized ashes, which was approximately seven times that of the raw ash. In addition to Fe, elemental Ni, Mn, and Cr were also significantly enriched in the magnetic fractions. The mineralogical analysis determined that Fe was primarily present as hematite and magnetite, and metallic iron was also identified in the magnetic fraction samples. The XPS analysis further proved the existence of zero-valence Fe. However, a significant amount of Fe remained in the non-magnetic fractions, which could partially be ascribed to the intergrowth structure of the various minerals. The elevated concentrations of toxicity characteristic leaching procedure (TCLP)-extracted Mn, Ni, Cr, Cu, Pb, and Zn were primarily ascribed to the lower buffering capability of the magnetic fractions, with the enrichment of Mn, Ni, and Cr in the magnetic fractions also contributing to this elevation.

  14. Energy efficiency of the Asm Brescia Waste-to-Energy facility; Prestazioni energetiche del termoutilizzatore di rifiuti dell'Asm Brescia

    Energy Technology Data Exchange (ETDEWEB)

    Beretta, G. P. [Brescia Univ., Brescia (Italy). Dipt. di Ingegneria Meccanica; Zanelli, F. [Azienda Servizi Municipali Brescia SpA, Brescia (Italy)

    2001-09-01

    The various plant configurations in which the Brescia waste-to-energy facility can operate are analysed, performance data obtained in acceptance-tests during wintertime are given, and first law and second law efficiencies as well as other energy saving indices for configurations ranging from cogeneration with maximum thermal power production to electricity-only production are evaluated. In addition, for each acceptance-test configuration, fuel savings are estimated both with respect to the separate production of the same amounts of thermal and electrical power and with respect to the other cogeneration facilities available in the Brescia district-heating system. The first-year average waste lower heating value is estimated. [Italian] Si analizzano i vari assetti dell'impianto di termoutilizzatore di rifiuti di Brescia, si forniscono i dati reali di funzionamento durante le prove di collaudo effettuate nel periodo invernale e si calcolano i rendimenti energetici di primo e secondo principio e vari indici di risparmio energetico per ciascuno degli assetti di funzionamento, che comprendono casi di cogenerazione con massimizzazione della produzione di energia termica e casi di sola produzione di energia elettrica. Si presentano inoltre la stima del risparmio di combustibili fossili e la valutazione del poterre calorifico medio dei rifiuti bruciati nel primo anno di esercizio.

  15. Long term analysis of the biomass content in the feed of a waste-to-energy plant with oxygen-enriched combustion air.

    Science.gov (United States)

    Fellner, Johann; Cencic, Oliver; Zellinger, Günter; Rechberger, Helmut

    2011-10-01

    Thermal utilization of municipal solid waste and commercial wastes has become of increasing importance in European waste management. As waste materials are generally composed of fossil and biogenic materials, a part of the energy generated can be considered as renewable and is thus subsidized in some European countries. Analogously, CO(2) emissions of waste incinerators are only partly accounted for in greenhouse gas inventories. A novel approach for determining these fractions is the so-called balance method. In the present study, the implementation of the balance method on a waste-to-energy plant using oxygen-enriched combustion air was investigated. The findings of the 4-year application indicate on the one hand the general applicability and robustness of the method, and on the other hand the importance of reliable monitoring data. In particular, measured volume flows of the flue gas and the oxygen-enriched combustion air as well as corresponding O(2) and CO(2) contents should regularly be validated. The fraction of renewable (biogenic) energy generated throughout the investigated period amounted to between 27 and 66% for weekly averages, thereby denoting the variation in waste composition over time. The average emission factor of the plant was approximately 45 g CO(2) MJ(-1) energy input or 450 g CO(2) kg(-1) waste incinerated. The maximum error of the final result was about 16% (relative error), which was well above the error (<8%) of the balance method for plants with conventional oxygen supply.

  16. A new method to determine the ratio of electricity production from fossil and biogenic sources in waste-to-Energy plants.

    Science.gov (United States)

    Fellner, Johann; Cencic, Oliver; Rechberger, Helmut

    2007-04-01

    New directives of the European Union require operators of waste-to-energy (WTE) plants to report the amount of electricity that is produced from renewable sources in the waste feed. Until now, the standard method to determine the portion of renewable electricity is sorting the wastes into defined fractions of fossil organic and biogenic waste components and determining the lower heating value of these fractions. Out of it the amount of electricity production from renewables is calculated. This practice is labor and cost intensive. Therefore, it is usually carried out once a year which provides only a snapshot analysis of limited significance. This paper proposes a method to calculate the portion of electricity produced from renewable materials in waste continuously by solving a set of equations. All data required are either available from literature or from operating data routinely measured in WTE plants. The advantages are statistically derived uncertainty of the result, temporal resolution of the result down to daily mean values, low implementation efforts, and virtually no operational costs. An example of the implementation of the method to a 60 000 tons per year WTE plant is given.

  17. Methods for predicting properties and tailoring salt solutions for industrial processes

    Science.gov (United States)

    Ally, Moonis R.

    1993-01-01

    An algorithm developed at Oak Ridge National Laboratory accurately and quickly predicts thermodynamic properties of concentrated aqueous salt solutions. This algorithm is much simpler and much faster than other modeling schemes and is unique because it can predict solution behavior at very high concentrations and under varying conditions. Typical industrial applications of this algorithm would be in manufacture of inorganic chemicals by crystallization, thermal storage, refrigeration and cooling, extraction of metals, emissions controls, etc.

  18. Challenges in Providing e-Learning Solutions in the Regulated Pharmaceutical Industry.

    Science.gov (United States)

    Vesper, James L.

    Regulatory agencies around the world require that those involved in producing pharmaceutical products be adequately trained. E-learning can accomplish this, providing consistent delivery and learner assessment. However, there are some unique expectations that regulators and the pharmaceutical industry have of e-learning solutions. These include…

  19. Challenges in Providing e-Learning Solutions in the Regulated Pharmaceutical Industry.

    Science.gov (United States)

    Vesper, James L.

    Regulatory agencies around the world require that those involved in producing pharmaceutical products be adequately trained. E-learning can accomplish this, providing consistent delivery and learner assessment. However, there are some unique expectations that regulators and the pharmaceutical industry have of e-learning solutions. These include…

  20. Big Data Analytics Solutions: The Implementation Challenges in the Financial Services Industry

    Science.gov (United States)

    Ojo, Michael O.

    2016-01-01

    The challenges of Big Data (BD) and Big Data Analytics (BDA) have attracted disproportionately less attention than the overwhelmingly espoused benefits and game-changing promises. While many studies have examined BD challenges across multiple industry verticals, very few have focused on the challenges of implementing BDA solutions. Fewer of these…

  1. Big Data Analytics Solutions: The Implementation Challenges in the Financial Services Industry

    Science.gov (United States)

    Ojo, Michael O.

    2016-01-01

    The challenges of Big Data (BD) and Big Data Analytics (BDA) have attracted disproportionately less attention than the overwhelmingly espoused benefits and game-changing promises. While many studies have examined BD challenges across multiple industry verticals, very few have focused on the challenges of implementing BDA solutions. Fewer of these…

  2. Highly efficient treatment of industrial wastewater by solution plasma with low environmental load.

    Science.gov (United States)

    Cai, Long-fei; Wu, Yun-ying; Wu, Yun-hai; Yamauti, Siro; Saito, Nagahiro

    2013-01-01

    Advanced oxidation techniques are efficient processes to dispose of organic contaminants in industrial wastewater with low secondary pollution. The solution plasma technique was featured as an advanced oxidation technique with low secondary pollution and high efficiency. However, the solution plasma technique reported previously could only treat wastewater of less than 200 mL owing to the limited plasma generated by only one pair of electrodes. In this work, multiple pairs of electrodes were installed at the bottom of the reaction vessel to generate plasma for decomposing methylene blue trihydrate (MB) and methyl orange (MO) solutions with a batch amount of 18 L/batch. The solution plasma technique was compared with direct ozonation in decomposition of MB and MO wastewater. A surprising phenomenon is that MO was more readily decomposed than MB by using direct ozonation, whereas the removal of MO was too low, and MB was more readily decomposed than MO by using the solution plasma technique.

  3. Project-service Solutions in the Yacht Industry: a Value-Chain Analysis

    Directory of Open Access Journals (Sweden)

    Davide Aloini

    2013-10-01

    economic trend, in particular throughout the delivery of integrated project-service solutions in all project life cycle stages. Innovative value offerings encompass a complex network of suppliers and subcontractors that is not stable and is arranged in a sporadic and unpredictable manner. Multiple case studies in the yacht industry were conducted to explore the configuration of project-service solutions. The research constitutes an original contribution to studies on servitization adoption in an industrial project context from an inter-organizational perspective. It emerged that SMEs reorganize themselves, in order to provide flexible on-demand solutions to customers, by including all the capabilities within their network. Newly arising professional roles are oriented to the implementation of smart networks and are focused on service infusion in order to provide increased customer value.

  4. External costs of atmospheric lead emissions from a waste-to-energy plant: a follow-up assessment of indirect exposure via topsoil ingestion.

    Science.gov (United States)

    Pizzol, Massimo; Møller, Flemming; Thomsen, Marianne

    2013-05-30

    In this study the Impact Pathway Approach (IPA) was used to calculate the external costs associated with indirect exposure, via topsoil ingestion, to atmospheric emissions of lead (Pb) from a waste-to-energy plant in Denmark. Three metal-specific models were combined to quantify the atmospheric dispersion of lead, its deposition and accumulation in topsoil, and the increase in blood lead concentration for children resulting from lead intake via topsoil ingestion. The neurotoxic impact of lead on children was estimated using a lead-specific concentration-response function that measures impaired cognitive development in terms of IQ points lost per each incremental μg/dl of lead in blood. Since IQ loss during childhood can be associated with a percent decrease in expected lifetime earnings, the monetary value of such an impact can be quantified and the external costs per kg of lead emitted from the plant were then calculated. The costs of indirect exposure calculated over a time horizon of 100 years, for the sub-population of children of 0-3 years, and discounted at 3%, were in the range of 15-30 €/kg. Despite the continued accumulation of lead in topsoil resulting in increasing future indirect exposure, the results indicate that costs associated with this exposure pathway are of the same order of magnitude as costs associated with direct exposure via inhalation, calculated at 45-91 €/kg. Moreover, when the monetary value of future impacts is discounted to the present, the differences between the two exposure pathways are diminished. Finally, setting a short time horizon reduces the uncertainties but excludes part of the costs of indirect exposure from the assessment.

  5. State of the Art in LP-WAN Solutions for Industrial IoT Services.

    Science.gov (United States)

    Sanchez-Iborra, Ramon; Cano, Maria-Dolores

    2016-05-17

    The emergence of low-cost connected devices is enabling a new wave of sensorization services. These services can be highly leveraged in industrial applications. However, the technologies employed so far for managing this kind of system do not fully cover the strict requirements of industrial networks, especially those regarding energy efficiency. In this article a novel paradigm, called Low-Power Wide Area Networking (LP-WAN), is explored. By means of a cellular-type architecture, LP-WAN-based solutions aim at fulfilling the reliability and efficiency challenges posed by long-term industrial networks. Thus, the most prominent LP-WAN solutions are reviewed, identifying and discussing the pros and cons of each of them. The focus is also on examining the current deployment state of these platforms in Spain. Although LP-WAN systems are at early stages of development, they represent a promising alternative for boosting future industrial IIoT (Industrial Internet of Things) networks and services.

  6. State of the Art in LP-WAN Solutions for Industrial IoT Services

    Directory of Open Access Journals (Sweden)

    Ramon Sanchez-Iborra

    2016-05-01

    Full Text Available The emergence of low-cost connected devices is enabling a new wave of sensorization services. These services can be highly leveraged in industrial applications. However, the technologies employed so far for managing this kind of system do not fully cover the strict requirements of industrial networks, especially those regarding energy efficiency. In this article a novel paradigm, called Low-Power Wide Area Networking (LP-WAN, is explored. By means of a cellular-type architecture, LP-WAN–based solutions aim at fulfilling the reliability and efficiency challenges posed by long-term industrial networks. Thus, the most prominent LP-WAN solutions are reviewed, identifying and discussing the pros and cons of each of them. The focus is also on examining the current deployment state of these platforms in Spain. Although LP-WAN systems are at early stages of development, they represent a promising alternative for boosting future industrial IIoT (Industrial Internet of Things networks and services.

  7. Usefulness of Activated Carbon Prepared from Industrial Wastes in the Removal of Nickel from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    R. Rajalakshmi

    2009-01-01

    Full Text Available Elimination of heavy metals like nickel from waste water is an important subject in view of public health. In the present study, an attempt has been made to study the applicability of industrial by-products as potential metal adsorbents to remove nickel from aqueous solutions and polluted water. A direct proportionality between the percentage of Ni(II removal and adsorbent dosage was noted. Maximum removal ⁄ recovery of nickel was achieved at pH range of 10-12 for all adsorbents. An optimum temperature of 40 °C for efficient removal of Ni(II was observed. The effect of nickel adsorption was affected by salinity. The adsorption isotherm data confirmed to Freundlich and Langmuir isotherms. Conformation of data to the Lagergren᾽s rate equation indicated first order kinetics. The suitability of the industrial by-products in the successful removal of nickel from aqueous solution is quite obvious from the study.

  8. An analysis of the Illinois Retail Rate Law and the Cook County waste-to-energy siting battles, 1987--2001

    Science.gov (United States)

    Sendzik, Mark Edward

    2002-01-01

    The analysis explores the environmental justice impacts of the 1998 Illinois Retail Rate Law and Cook County waste-to-energy siting proposals on the Chicago metropolitan area. Particular attention is given to the dynamics of the grassroots environmental organizations which emerged to fight the siting proposals. The organizations are examined in the context of NIMBYism, the antitoxic movement, the environmental justice movement, and mainstream environmentalism. In addition, the underlying causes for the unintended consequences of the Retail Rate Law are analyzed against the backdrop of market and government failure. Face-to-face and telephone interviews were conducted with forty-one persons familiar with the battles over the Cook County siting proposals and the efforts to repeal the Retail Rate Law. The term "environmental justice" became controversial as siting opponents and supporters both appropriated the issue to support dueling positions on the proposed sitings. However, environmental justice did not play an instrumental role in repealing the Retail Rate Law or the siting proposals. Economic concerns led to the repeal of the legislation and demise of the original siting proposals. The circumstances of the siting battles and opposition groups raise questions about the future effectiveness of the environmental justice movement. A combination of market and government failure led to the unintended consequences from the retail Rate Law. Strategic maneuvering by state legislative leaders delayed the repeal of the legislation by several years. The resulting delay placed considerable cost on individuals, communities, corporations, and the State of Illinois. A bivariate analysis was conducted to examine whether the distribution patterns of ground level concentrations from the proposed facilities would have had a disproportionate distribution in lower-income and minority populations in the Chicago metropolitan area. The statistical analysis did discover evidence that

  9. Improvement of environmentally relevant qualities of slags from waste-to-energy plants; Verbesserung der umweltrelevanten Qualitaeten von Schlacken aus Abfallverbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Alwast, Holger [Prognos AG, Berlin (Germany); Riemann, Axel [RSP GmbH, Herne (Germany)

    2010-10-15

    This expert opinion describes options for improving slag quality (further measures for processing slag, as well as improvements of grate firing in terms of firing-technology), to ensure a slag recovery that is as sustainable as possible. In the context of this project, the term ''slag'' serves as a synonym for solid incineration residues that are generated during the incineration of wastes or of refuse derived fuels and that are separated there (e.g. from the deslagger). The term ''slags'' is also used as a synonym for grate ashes. The main focus of this expertise is on resource and climate protection issues with respect to slag processing. Resource protection refers to the saving of resources and natural raw materials, such as, for example, water and metal ores. Climate protection in this context means CO{sub 2} mitigation through a high specific net energy generation in waste incineration plants, as well as a reduced energy use due to avoided new production of metals, which can be recycled from slag processing. The main measure for improving climate and resource protection in slag processing consists therefore of separating as much metal as possible from slags. By recycling those separated slags, the energy that is needed for the extraction from ores and the raw material ore itself can be saved. This advantage in terms of energy, however, can be partially compensated by the energy use potentially needed for the improvement of slag processing. Further important aspects include the protection of water and soils, as well as the suitability of processed slag for an adequate recovery. These last criteria, however, are not central for this expertise. Currently, 69 municipal solid waste incinerators, hereinafter referred to as Waste-to-Energy (WTE) plants, and 23 refuse derived fuel (RDF) power plants with grate firing are in operation in Germany. Their total capacity amounts to more than 21 million Mg per year. Another 13 RDF

  10. Life-cycle assessment of a Waste-to-Energy plant in central Norway: Current situation and effects of changes in waste fraction composition.

    Science.gov (United States)

    Lausselet, Carine; Cherubini, Francesco; Del Alamo Serrano, Gonzalo; Becidan, Michael; Strømman, Anders Hammer

    2016-12-01

    Waste-to-Energy (WtE) plants constitute one of the most common waste management options to deal with municipal solid waste. WtE plants have the dual objective to reduce the amount of waste sent to landfills and simultaneously to produce useful energy (heat and/or power). Energy from WtE is gaining steadily increasing importance in the energy mix of several countries. Norway is no exception, as energy recovered from waste currently represents the main energy source of the Norwegian district heating system. Life-cycle assessments (LCA) of WtE systems in a Norwegian context are quasi-nonexistent, and this study assesses the environmental performance of a WtE plant located in central Norway by combining detailed LCA methodology with primary data from plant operations. Mass transfer coefficients and leaching coefficients are used to trace emissions over the various life-cycle stages from waste logistics to final disposal of the ashes. We consider different fractions of input waste (current waste mix, insertion of 10% car fluff, 5% clinical waste and 10% and 50% wood waste), and find a total contribution to Climate Change Impact Potential ranging from 265 to 637gCO2eq/kg of waste and 25 to 61gCO2eq/MJ of heat. The key drivers of the environmental performances of the WtE system being assessed are the carbon biogenic fraction and the lower heating value of the incoming waste, the direct emissions at the WtE plant, the leaching of the heavy metals at the landfill sites and to a lesser extent the use of consumables. We benchmark the environmental performances of our WtE systems against those of fossil energy systems, and we find better performance for the majority of environmental impact categories, including Climate Change Impact Potential, although some trade-offs exist (e.g. higher impacts on Human Toxicity Potential than natural gas, but lower than coal). Also, the insertion of challenging new waste fractions is demonstrated to be an option both to cope with the excess

  11. The impact of climate change on the global wine industry: Challenges & solutions

    Directory of Open Access Journals (Sweden)

    Michelle Renée Mozell

    2014-12-01

    Full Text Available This paper explores the impact of climate change upon the global production of winegrapes and wine. It includes a review of the literature on the cause and effects of climate change, as well as illustrations of the specific challenges global warming may bring to the production of winegrapes and wine. More importantly, this paper provides some practical solutions that industry professionals can take to mitigate and adapt to the coming change in both vineyards and wineries.

  12. Viability analysis of heat recovery solution for industrial process of roasting coffee

    Directory of Open Access Journals (Sweden)

    Kljajić Miroslav V.

    2016-01-01

    Full Text Available Every industrial heat recovery solution is specific engineering challenge but not because predicted energy rationalization or achieved energy savings but potential unavoidable technological deviations and consequences on related processes and for sure, high investment because of delicate design and construction. Often, the energy savings in a particular segment of the industrial process is a main goal. However, in the food industry, especially roasting coffee, additional criteria has to be strictly observed and fulfilled. Such criteria may include prescribed and uniform product quality, compliance with food safety standards, stability of the processes etc., and all in the presence of key process parameters variability, inconsistency of raw material composition and quality, complexity of measurement and analytical methods etc. The paper respects all circumstances and checks viability of proposed recovery solution. The paper analyzes the possibility of using waste heat from the roasting process to ensure shortening of roasting cycle, reduction of fuel consumption and increasing capacity of roasting lines on daily basis. Analysis concludes that effects are valuable and substantial, although the complete solution is on the threshold of economic sustainability with numerous opportunities to improve of both technical and economic indicators. The analysis combines measuring and analytical methods with standard cost-benefit analysis. Conclusions are derived from measurements and calculations of key parameters in the operating conditions and checked by experimental methods. Test results deviate from 10 to 15%, in relation with parameters in main production line.

  13. Pretreatment of Isopropanol Solution from Pharmaceutical Industry and Pervaporation Dehydration by NaA Zeolite Membranes

    Institute of Scientific and Technical Information of China (English)

    余从立; 刘艳梅; 陈纲领; 顾学红; 邢卫红

    2011-01-01

    NaA zeolite membranes with 80 cm in length and 12.8 mm in outer diameter were prepared by our research group cooperating with Nanjing Jiusi Hi-Tech Co., China. The influence of dissolved inorganic salts and pH value in the feed of isopropanol (IPA) solution on NaA zeolite membranes was investigated. It was found that both factors exhibited strong influence on the stability of NaA zeolite membranes. A set of pretreatment steps such as pH adjustment and distillation of the IPA solution were proposed to improve stability for pervaporation dehydration. An industrial-scale pervaporation facility with 52 m2 membrane area was built to dehydrate IPA solution from industrial cephalosporin production. The facility was continuously operated at 368-378 K to dehydrate IPA solution from water mass content of 15%-20% to less than 2% with a feed flow rate of 400-500 L·h^-1 and an average water flux of 1-1.5 kg·m^-2·h-1. The successful application of this facility suggested a promising application of NaA zeolite mem-brane for IPA recovery from pharmaceutical production.

  14. An environmental management industrial solution for the treatment and reuse of mussel wastewaters.

    Science.gov (United States)

    Prieto, M A; Prieto, I; Vázquez, J A; Ferreira, Isabel C F R

    2015-12-15

    In the North-West of Spain, the annual production of mussel is 2×10(6)t (35% of the world). The industrial thermal treatment of mussels generates between 300 and 400L/t wastewaters that are continuously disposed into the sea without previous treatment and or further reuse. These effluents, relatively rich in organic matter (7g glycogen/L and 25g COD/L), contribute to the progressive deterioration of the marine ecosystem. We wish to suggest a biotechnological process, based on a laboratory optimization and industrial pre-scale trials, to transform these industrial effluents into a growth culture medium to produce microbial biomass. Furthermore, this biomass is isolated and treated by different optimized separation and purification processes to produce several bioproducts: 1) single cell protein; 2) cell wall material with a high content in glucans and glycoproteins 3) fractions of 1,3-β-glucans and mannoproteins from yeast cell walls hydrolysis; and 4) a potential antioxidant extract. Finally, the authors propose a scaled process for its industrial application. In consequence, we believe that this work provides an environmentally friendly, eco-designed and profitable solution that allows integrating the mussel industry into the ecosystem in a sustainable way.

  15. New solutions for industrial inspection based on 3D computer tomography

    Science.gov (United States)

    Kroll, Julia; Effenberger, Ira; Verl, Alexander

    2008-04-01

    In recent years the requirements of industrial applications relating to image processing have significantly increased. According to fast and modern production processes and optimized manufacturing of high quality products, new ways of image acquisition and analysis are needed. Here the industrial computer tomography (CT) as a non-destructive technology for 3D data generation meets this challenge by offering the possibility of complete inspection of complex industrial parts with all outer and inner geometric features. Consequently CT technology is well suited for different kinds of industrial image-based applications in the field of quality assurance like material testing or first article inspection. Moreover surface reconstruction and reverse engineering applications will benefit from CT. In this paper our new methods for efficient 3D CT-image processing are presented. This includes improved solutions for 3D surface reconstruction, innovative approaches of CAD-based segmentation in the CT volume data and the automatic geometric feature detection in complex parts. However the aspect of accuracy is essential in the field of metrology. In order to enhance precision the CT sensor can be combined with other, more accurate sensor systems generating measure points for CT data correction. All algorithms are applied to real data sets in order to demonstrate our tools.

  16. An overview of innovations and industrial solutions in Protein Microarray Technology.

    Science.gov (United States)

    Gupta, Shabarni; Manubhai, K P; Kulkarni, Vishwesh; Srivastava, Sanjeeva

    2016-04-01

    The complexity involving protein array technology reflects in the fact that instrumentation and data analysis are subject to change depending on the biological question, technical compatibility of instruments and software used in each experiment. Industry has played a pivotal role in establishing standards for future deliberations in sustenance of these technologies in the form of protein array chips, arrayers, scanning devices, and data analysis software. This has enhanced the outreach of protein microarray technology to researchers across the globe. These have encouraged a surge in the adaptation of "nonclassical" approaches such as DNA-based protein arrays, micro-contact printing, label-free protein detection, and algorithms for data analysis. This review provides a unique overview of these industrial solutions available for protein microarray based studies. It aims at assessing the developments in various commercial platforms, thus providing a holistic overview of various modalities, options, and compatibility; summarizing the journey of this powerful high-throughput technology.

  17. Adaptable and Reconfigurable LEAN Automation - a competitive solution in the western industry

    DEFF Research Database (Denmark)

    Bilberg, Arne; Hadar, Ronen

    Companies have to be innovative in the trinity of product development, manufacturing systems, and business, however; the weak link in this trinity seems to be manufacturing systems. Researchers and industry have seen a contradiction between LEAN and automation. The hypothesis in this research...... is that the right combination of LEAN and Automation can be a very competitive solution that combines the flexibility of human operators with the high precision, productivity, and endurance of automation by e.g. robotics. The manufacturing equipment has to be adaptable and reconfigurable to new situations. The key...

  18. Synthesis of hydroxy sodalite from coal fly ash using waste industrial brine solution.

    Science.gov (United States)

    Musyoka, Nicholas M; Petrik, Leslie F; Balfour, Gillian; Gitari, Wilson M; Hums, Eric

    2011-01-01

    The effect of using industrial waste brine solution instead of ultra pure water was investigated during the synthesis of zeolites using three South African coal fly ashes as Si feedstock. The high halide brine was obtained from the retentate effluent of a reverse osmosis mine water treatment plant. Synthesis conditions applied were; ageing of fly ash was at 47 ° C for 48 hours, and while the hydrothermal treatment temperature was set at 140 ° C for 48 hours. The use of brine as a solvent resulted in the formation of hydroxy sodalite zeolite although unconverted mullite and hematite from the fly ash feedstock was also found in the synthesis product.

  19. Achieving Excellence through Memorable Traveler Experience and Challenges,Opportunities and Solutions for Romanian Travel and Hospitality Industry

    Directory of Open Access Journals (Sweden)

    THEODOR VALENTIN PURCAREA

    2010-06-01

    Full Text Available Hospitality industry is probably the fastest growing one in the world. The tourism company should endeavour to shape the overall perception of value in this industry. What matters is the provision of experiences, but not services. To meet international standards the Romanian tourism should consider challenges, opportunities and solutions to cope with the specific requirements in this field.

  20. Possibility of using by-products of the steelmaking industry for removing lead from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Martín, M. I.

    2008-06-01

    Full Text Available A study is made of the use of two steelmaking industry by-products (rolling mill scale and blast furnace sludge as adsorbent materials for removing Pb2+ ions from aqueous solutions. The adsorption of Pb2+ on these materials has been studied by the determination of adsorption isotherms. Several variables that affect the process (contact time, initial lead ion concentration and temperature were evaluated. The adsorption processes are analysed using the Langmuir theory. Desorption processes for the metal from loaded by-products were also studied under different experimental conditions. This paper shows that these industrial residues are effective adsorbents for lead ions in aqueous solutions within the range of working concentrations.

    Se estudia el uso de dos subproductos de la industria del acero (cascarilla de laminación y lodo de horno alto como materiales adsorbentes para eliminar iones Pb2+ de soluciones acuosas. La adsorción de Pb2+ sobre estos materiales se ha estudiado determinando las isotermas de adsorción. Se evaluaron diferentes variables que afectan al proceso (tiempo de contacto, concentración inicial de iones plomo y temperatura. Los procesos de adsorción se estudian usando la teoría de Langmuir. Los procesos de desorción de los metales también se estudiaron bajo diferentes condiciones experimentales. Este trabajo muestra que estos residuos industriales son adsorbentes efectivos de iones plomo en soluciones acuosas en el rango de las concentraciones de trabajo utilizadas.

  1. Nature-based solutions for urban landscapes under post-industrialization and globalization: Barcelona versus Shanghai.

    Science.gov (United States)

    Fan, Peilei; Ouyang, Zutao; Basnou, Corina; Pino, Joan; Park, Hogeun; Chen, Jiquan

    2017-07-01

    Using Barcelona and Shanghai as case studies, we examined the nature-based solutions (NBS) in urban settings-specifically within cities experiencing post-industrialization and globalization. Our specific research questions are: (1) What are the spatiotemporal changes in urban built-up land and green space in Barcelona and Shanghai? (2) What are the relationships between economic development, exemplified by post-industrialization, globalization, and urban green space? Urban land use and green space change were evaluated using data derived from a variety of sources, including satellite images, landscape matrix indicators, and a land conversion matrix. The relationships between economic development, globalization, and environmental quality were analyzed through partial least squares structural equation modeling based on secondary statistical data. Both Barcelona and Shanghai have undergone rapid urbanization, with urban expansion in Barcelona beginning in the 1960s-1970s and in Shanghai in the last decade. While Barcelona's urban green space and green space per capita began declining between the 1950s and 1990s, they increased slightly over the past two decades. Shanghai, however, has consistently and significantly improved urban green space and green space per capita over the past six decades, especially since the economic reform in 1978. Economic development has a direct and significant influence on urban green space for both cities and post-industrialization had served as the main driving force for urban landscape change in Barcelona and Shanghai. Based on secondary statistical and qualitative data from on-site observations and interviews with local experts, we highlighted the institution's role in NBS planning. Furthermore, aspiration to become a global or globalizing city motivated both cities to use NBS planning as a place-making tool to attract global investment, which is reflected in various governing policies and regulations. The cities' effort to achieve a

  2. Demonstration of TEG-powered wireless autonomous transducer solution for condition monitoring in industrial environment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ziyang; Patrascu, Mihai; Su, Jiale; Vullers, Ruud J.M. [imec the Netherlands, Eindhoven (Netherlands)

    2011-07-01

    Imec/Holst Centre focuses on the development of wireless autonomous transducer solution, which is poised to bring about huge impact in the sectors of health care, machinery, transportation and energy, etc. In this paper, we first showcase a TEG-powered demonstration for condition monitoring in industrial environment. Composing of sensor-actuator, front-end interface, digital signal processing unit and radio, the developed wireless sensor node can monitor the changing operating condition, i.e. the loading on a rolling-element bearing, on a rotating shaft. The use of a specially designed TEG, working in tandem with an energy storage device, can significantly improve the energy autonomy of the condition monitoring system as a whole. The different components in the demonstration are presented. Subsequently, the experimental results of vibration signature analysis are exhibited. On one hand, the presented demonstration sheds light on the huge potential of thermoelectric energy harvesting to achieve energy autonomy. On the other hand, it also points to the aspects that are in need of further development, namely miniaturization and cost reduction of energy harvesters. Aimed at the delivery of cost-effective miniaturized thermoelectric harvesting devices, imec/Holst Centre has been tackling with the relevant challenges by resorting to, but not limited to, its expertise in micromachining. An update on the latest research results is subsequently given with regard to various micromachined thermoelectric devices, fully fledged wearable TEGs with custom designed package and thermoelectric material property optimization. (orig.)

  3. Sustainable High Quality Recycling of Aggregates from Waste-to-Energy, Treated in a Wet Bottom Ash Processing Installation, for Use in Concrete Products

    Directory of Open Access Journals (Sweden)

    Philip Van den Heede

    2015-12-01

    Full Text Available Nowadays, more efforts towards sustainability are required from the concrete industry. Replacing traditional aggregates by recycled bottom ash (BA from municipal solid waste incineration can contribute to this goal. Until now, only partial replacement has been considered to keep the concrete workability, strength and durability under control. In this research, the feasibility of a full aggregate replacement was investigated for producing prefabricated Lego bricks. It was found that the required compressive strength class for this purpose (C20/25 could be achieved. Nevertheless, a thorough understanding of the BA properties is needed to overcome other issues. As BA is highly absorptive, the concrete’s water demand is high. This workability issue can be dealt with by subjecting the fine BA fraction to a crushing operation to eliminate the porous elements and by pre-wetting the fine and coarse BA fractions in a controlled manner. In addition, a reactive NaOH washing is needed to avoid formation of longitudinal voids and the resulting expansion due to the metallic aluminum present in the BA. Regarding the long-term behavior, heavy metal leaching and freeze-thaw exposure are not problematic, though there is susceptibility to acetic and lactic acid attack and maybe increased sensitivity to alkali-silica reaction.

  4. Sustainable High Quality Recycling of Aggregates from Waste-to-Energy, Treated in a Wet Bottom Ash Processing Installation, for Use in Concrete Products

    Science.gov (United States)

    Van den Heede, Philip; Ringoot, Niels; Beirnaert, Arno; Van Brecht, Andres; Van den Brande, Erwin; De Schutter, Geert; De Belie, Nele

    2015-01-01

    Nowadays, more efforts towards sustainability are required from the concrete industry. Replacing traditional aggregates by recycled bottom ash (BA) from municipal solid waste incineration can contribute to this goal. Until now, only partial replacement has been considered to keep the concrete workability, strength and durability under control. In this research, the feasibility of a full aggregate replacement was investigated for producing prefabricated Lego bricks. It was found that the required compressive strength class for this purpose (C20/25) could be achieved. Nevertheless, a thorough understanding of the BA properties is needed to overcome other issues. As BA is highly absorptive, the concrete’s water demand is high. This workability issue can be dealt with by subjecting the fine BA fraction to a crushing operation to eliminate the porous elements and by pre-wetting the fine and coarse BA fractions in a controlled manner. In addition, a reactive NaOH washing is needed to avoid formation of longitudinal voids and the resulting expansion due to the metallic aluminum present in the BA. Regarding the long-term behavior, heavy metal leaching and freeze-thaw exposure are not problematic, though there is susceptibility to acetic and lactic acid attack and maybe increased sensitivity to alkali-silica reaction. PMID:28787809

  5. A step by step selection method for the location and the size of a waste-to-energy facility targeting the maximum output energy and minimization of gate fee.

    Science.gov (United States)

    Kyriakis, Efstathios; Psomopoulos, Constantinos; Kokkotis, Panagiotis; Bourtsalas, Athanasios; Themelis, Nikolaos

    2017-06-23

    This study attempts the development of an algorithm in order to present a step by step selection method for the location and the size of a waste-to-energy facility targeting the maximum output energy, also considering the basic obstacle which is in many cases, the gate fee. Various parameters identified and evaluated in order to formulate the proposed decision making method in the form of an algorithm. The principle simulation input is the amount of municipal solid wastes (MSW) available for incineration and along with its net calorific value are the most important factors for the feasibility of the plant. Moreover, the research is focused both on the parameters that could increase the energy production and those that affect the R1 energy efficiency factor. Estimation of the final gate fee is achieved through the economic analysis of the entire project by investigating both expenses and revenues which are expected according to the selected site and outputs of the facility. In this point, a number of commonly revenue methods were included in the algorithm. The developed algorithm has been validated using three case studies in Greece-Athens, Thessaloniki, and Central Greece, where the cities of Larisa and Volos have been selected for the application of the proposed decision making tool. These case studies were selected based on a previous publication made by two of the authors, in which these areas where examined. Results reveal that the development of a «solid» methodological approach in selecting the site and the size of waste-to-energy (WtE) facility can be feasible. However, the maximization of the energy efficiency factor R1 requires high utilization factors while the minimization of the final gate fee requires high R1 and high metals recovery from the bottom ash as well as economic exploitation of recovered raw materials if any.

  6. Secondary Industrial Minerals from Coal Fly Ash and Aluminium Anodising Waste Solutions

    NARCIS (Netherlands)

    Nugteren, H.W.

    2010-01-01

    Minerals that are extracted from the earth’s crust to be directly used for their properties are called industrial minerals. This research shows that such minerals can also be produced from industrial residues, hence the name secondary industrial minerals. In this thesis coal fly ash is chosen as on

  7. Secondary Industrial Minerals from Coal Fly Ash and Aluminium Anodising Waste Solutions

    NARCIS (Netherlands)

    Nugteren, H.W.

    2010-01-01

    Minerals that are extracted from the earth’s crust to be directly used for their properties are called industrial minerals. This research shows that such minerals can also be produced from industrial residues, hence the name secondary industrial minerals. In this thesis coal fly ash is chosen as

  8. Energy Contribution of OFMSW (Organic Fraction of Municipal Solid Waste to Energy-Environmental Sustainability in Urban Areas at Small Scale

    Directory of Open Access Journals (Sweden)

    Umberto Di Matteo

    2017-02-01

    Full Text Available Urban waste management is one of the most challenging issues in energy planning of medium and large cities. In addition to the traditional landfill method, many studies are investigating energy harvesting from waste, not as a panacea but as a foreseeable solution. Thermo-chemical conversion to biogas, or even bio-methane under certain conditions, could be an option to address this challenge. This study focuses on municipal solid waste conversion to biogas as a local energy supply for the cities. Three urban models and their subdivision into urban areas were identified along with a typical Organic Fraction of Municipal Solid Waste (OFMSW matrix for each urban area. Then, an energy analysis was carried out to provide an optimization map for an informed choice by urban policy-makers and stakeholders. The results highlighted how the urban context and its use could affect the opportunity to produce energy from waste or to convert it in fuel. So, in this case, sustainability means waste turning from a problem to a renewable resource.

  9. Finite element solution of nonlinear eddy current problems with periodic excitation and its industrial applications.

    Science.gov (United States)

    Bíró, Oszkár; Koczka, Gergely; Preis, Kurt

    2014-05-01

    An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer.

  10. CAUSES OF CRISIS SITUATION IN UKRAINE SUGAR INDUSTRY ENTERPRISES AND THEIR SOLUTIONS

    Directory of Open Access Journals (Sweden)

    G. Fyliuk

    2014-04-01

    Full Text Available Current state and major trends of functioning of the sugar industry enterprises in Ukraine are characterized. The industry's place in the structure of social production in Ukraine is highlighted. The dynamics of the number of operating sugar factories and dynamics of production and consumption of sugar in Ukraine during recent years are displayed. The performance of the sugar factories is analyzed. Forecasted assessment of the of PEST- factors on the development of the sugar industry is shown. The basic entry barriers to the industry for new players are indicated. The description of major players in the sugar market is made. Level of concentration of sugar market in Ukraine is calculated and conclusions about its dynamics are made. Factors of crisis state of sugar industry enterprises in Ukraine are determined. Suggestions on implementation of priority measures aimed at improving the efficiency of industry's management in order to drive the enterprises out of the crisis are formulated.

  11. Industry

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  12. Industrialization

    African Journals Online (AJOL)

    Lucy

    Second World era international system (1945-1990) may not have done any good to ... wedge between the capitalist and socialist blocs, not only blurred Third World .... Politics and the Stages of Economic Growth, Cambridge: Cambridge ... complex industries producing mainly for export, but also producing for local.

  13. Waste to Energy at SUNY Cobleskill

    Science.gov (United States)

    2011-05-10

    GASIFICATION Ash ENERGYWaste T ~ 800oC Partial Combustion O/C ~1/3 • Energy Production • Reduced Fuel Usage for transportation • Increased Energy...Environmental Science and Technology at SUNY Cobleskill. CEST MISSION • Reduce society’s dependency on fossil fuels. • Research conversion of biomass ...on chamber temperature) • Syngas • Char • Steam • Syngas clean up outputs • Hydrogen • Carbon Monoxide • Ash  Nitrogen  Sulfate  Precipitates 22

  14. Different methods for waste to energy transformation

    NARCIS (Netherlands)

    Koning, J. de

    1998-01-01

    In the past 25 years, many technological developments have taken place in the thermal treatment of Municipal Solid Waste (MSW). Apart from the initials goal of the technology (i.e., volume reduction and inertisation), flue gas emissions, solid residues, energy efficiency and economics became importa

  15. Military Wastes-to-Energy Applications,

    Science.gov (United States)

    1980-11-01

    Excluding Nuclear ) .... ......... 42 10 Department of Defense Energy Consumption and Costs . 43 11 DOD Petroleum Demand, FY 1976 ..... ............. 45...EQUIVALENT Source: Ref. 41 Figure 9. DOD Energy Demand (Excluding Nuclear ) 42 * BILLIONS OF DOLLARS (0) CD woIo CM wz 00 z 4) W 0...of silvicultural energy planta - tions (Refs. 103, 105, 106, and 107). The study considered short-rotation management, land availability, conversion

  16. Effective removal of tetracycline from aqueous solution using activated carbon prepared from tomato (Lycopersicon esculentum Mill.) industrial processing waste.

    Science.gov (United States)

    Sayğılı, Hasan; Güzel, Fuat

    2016-09-01

    Activated carbon (TAC) prepared under optimized conditions with ZnCl2 activation from a new precursor; tomato industrial processing waste (TW), was applied as an adsorbent to remove tetracycline (TC) from aqueous solution. The factors (TAC dosage, initial TC concentration, contact time, ionic strength and solution temperature) affecting the adsorption process were examined at natural pH (5.7) of TAC-TC system in aqueous solution. Kinetic data was found to be best complied by the pseudo-second order model. The isotherm analysis indicated that the equilibrium data could be represented by the Langmuir model. The maximum adsorption capacity was identified as 500.0mgg(-1) at 308K.

  17. ZTE IPTV Low Bit Rate High Definition Transcoding Solution Nominated for Global IPTV Industry Award

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    ZTE Corporation announced on 1 March that its innovative IPTVlowbitrate highdefinition transcoding solution has been nominated for the World's Best Component or Enabler Award by the IPTV World Forum. The ZTE solution is on display at the Mobile World Congress 2012 (MWC 2012) in Barcelona.

  18. Current Development of Meat-Processing Industry in Ukraine: Tendencies, Problems and Strategies for Solution

    Directory of Open Access Journals (Sweden)

    Kateryna Vlasova

    2015-09-01

    Full Text Available This article describes the current state of all meat-processing companies in Ukraine by using such indexes as the main measures for it: number of employees involved in this particular industry and whole processing industry, number of companies in an industry etc. An author suggests to study self-sufficiency of main products as a result of activity of meat-processing companies in domestic market and a dynamics of trade balance by different meat types as a result/ success on international market. The given analysis pay attention to main problems in the industry: negative trade balance, lack of production in strategic spheres, higher prices of imported goods compared to cheaper national product. A structure of export was compared to its import to identify most unbalanced categories in home market. An analysis of geographical structure of export/import operations showed a disproportion that can bring to constant negative transformation of meat-processing industry. A number of strategies to overcome these problems is proposed.

  19. Ultrasounds: an industrial solution to optimise costs, environmental requests and quality for textile finishing.

    Science.gov (United States)

    Vouters, Moïse; Rumeau, Pascal; Tierce, Pascal; Costes, Sandrine

    2004-01-01

    Ultrasounds are widely used at industrial scale for cleaning of mechanical pieces for example. Potential applications exist for finishing of textiles. This work aimed to improve traditional textile finishing processes thanks to ultrasound. The technical objective was to develop specific applicators of ultrasonic energy which could be adapted on jigger, a widespread textile finishing machine. Laboratory studies have allowed to define the conditions for application of ultrasounds and check their effects on fibre structure, validated by trials in dynamic conditions. Ultrasound technology makes it possible to intensify the phenomena of diffusion and washing by the effect of cavitation and improves effectiveness of traditional washing treatments. Industrial ultrasound processes need further optimisation on industrial machines.

  20. Palm oil industry: A review of the literature on the modelling approaches and potential solution

    Science.gov (United States)

    Zabid, M. Faeid M.; Abidin, Norhaslinda Zainal

    2015-12-01

    Palm oil industry plays an important role as a backbone to the economy of a country, especially in many developing countries. Various issues related to the palm oil context have been studied rigorously by previous researchers using appropriate modeling approaches. Thus, the purpose of this paper is to present an overview of existing modeling approaches used by researchers in studying several issues in the palm oil industry. However, there are still limited numbers of researches that focus to determine the impact of strategy policies on palm oil studies. Furthermore, this paper introduces an improved system dynamics and genetic algorithm technique to facilitate the policy design process in palm oil industry. The proposed method is expected to become a framework for structured policy design process to assist the policy maker in evaluating and designing appropriate policies.

  1. Scrum in Traditional Industrial Projects That Contain Internet of Things Solutions

    OpenAIRE

    Jousi, Francisco

    2016-01-01

    This thesis describes how and why companies should invest in Internet of things solutions. Two project management methods are described, the traditional Waterfall project management methodology, and the Scrum agile project management framework. Both project management methods were studied to create a manual on how to start the transition from traditional project management to agile Scrum. It is further explained why this transition is needed to start creating internet of things solutions in i...

  2. Fighting Obsolescence in the Nuclear Power Industry. Motor Control Centers-solutions and Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Portillo, J.; Torralba Piqueras, A.

    2014-07-01

    Motor Control Centers (MCCs) are vital to the operation and control of nuclear power plants. A significant and growing problem within the global nuclear industry is the aging of MCC components. Obsolescence of various components within the MCCs such as molded case circuit breakers, starters, relays, heaters, transformers, etc., are impacting the reliability of MCCs to perform their intended safety function. (Author)

  3. Colored and agroecological cotton may be a sustainable solution for future textile industry

    Directory of Open Access Journals (Sweden)

    Solimar Garcia

    2015-03-01

    Full Text Available The agribusiness topics ofcolored cottonand fashion do not have any practical scientific literature published on the subject,only when the theme is treated primarily as the aim of sustainability. Colored and agroecological cotton, despite the limitation in color,could become an industrial production with less environmental, impact using less water. The aim of this study was to present the colored fiber and organic cotton, produced by small farmers in the Northeast region of Brazil, as an alternative product to promote sustainability in cotton agribusiness and the textile industry, and to identify the lack of scientific studies related to the theme. Surveys were carried out on available national literature and international database publications on the topic, and the results of research on toxic products used for the production of white cotton and textile industry were presented. Governmental incentives through funding agencies to farmers engaged in this production are suggested, in order to improve production and distribution. It is also necessary to provide the infrastructure necessary for this product to reach the global market, including in cooperation with poorer countries in order to promote changes in environmental impact worldwide in the fashion industry

  4. Expanded Industrial Experiments of Free-alkali Recovery from Sodium Tungstate Solution by the Membrane Electrolysis Process

    Institute of Scientific and Technical Information of China (English)

    刘玉岭; 古海云; 檀柏梅; 桑建新

    2001-01-01

    The expanded industrial experiments were conducted with practical industrial liquor to separate free alkali from sodium tungstate solution by electrolysis with cation-exchange membrane. Experimental results show that on the condition that the temperature is 50-55 ℃ and the current:density is 1000 A/m2, the single electrolysis cell is operated stably and 80% free-alkali in mass fraction is separated from the anode feed liquor of sodium tungstate, with electric ef ficiency up to more than 88% and the unit energy consumption E lower than 1900 kWh/t; while three electrolysis cells in series are operated, under the condition that the temperature is 60-65 ℃ and the current density is 1000 A/m2, the elec tric efficiency can reach higher than 88% and the unit energy consumption E can be lower than 2250 kWh/t.

  5. Alkaline leaching of metal melting industry wastes dseparation of zinc and lead in the leach solution

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this work, a thorough examinations on the extractability of zinc and lead present in the steelmaking dusts using alkaline leaching process and the effectiveness of the zinc and lead separation in the resultant leaching solutions using sulfide precipitation method were made. It was found that only about 53% of zinc and over 70% of the lead could be leached out of the dusts, while the other 47% of zinc and 306 of lead were left in the leaching residues. The zinc and lead in the resultant leaching solution can be effectively and selectively separated. When the weight ratio of sodium sulfide (M. W. = 222-240) to Pb was kept at 1.8, the lead in the solution could be precipitated out quantitatively while all the zinc was remained in the solution. The zinc left in the solution can be further recovered by the addition of extra sodium sulfide with a weight ratio of sodium sulfide to the zinc over 2.6. The resultant filtrate can be recycled to the leaching of dust in the next leaching process.

  6. Researches on the Structure and Properties of Mullite Solid Solution Made from Industrial Waste

    Institute of Scientific and Technical Information of China (English)

    RUAN Yu-Zhong; YU Yan; WU Ren-Ping

    2006-01-01

    The waste slag from aluminum profile factory and silicon fine powder from ferroalloy factory were utilized as the main raw materials to synthesize mullite solid solution Al4+2xSi2-xO10-x/2, whose defect formation mechanism, crystalline phase composition, crystal cell parameters, microstructures and morphologies were characterized in detail by XRD and SEM. The results show that because of the ultrafine particle size of the materials, the content of mullite solid solution synthesized by this method is higher than that by regular method.

  7. Improving customer churn models as one of customer relationship management business solutions for the telecommunication industry

    OpenAIRE

    Slavescu, Ecaterina; Iulian PANAIT

    2012-01-01

    Nowadays, when companies are dealing with severe global competition, they are making serious investments in Customer Relationship Management (CRM) strategies. One of the cornerstones in CRM is customer churn prediction, the practice of determining a mathematical relation between customer characteristics and the likelihood to end the business contract with the company. This paper focuses on how to better support marketing decision makers in identifying risky customers in telecom industry by us...

  8. Industrial Experience with Case Hardening of Stainless Steels by Solution Nitriding

    Institute of Scientific and Technical Information of China (English)

    Hans Berns; Bernd Edenhofer; Roland Zaugg

    2004-01-01

    SolNit(R) is a novel heat treatment to case harden stainless steels with nitrogen instead of carbon. The calculated equilibrium pressure of N2 corresponds well with the nitrogen content in the steel surface. The process is carried out in vacuum furnaces with pressurized gas quenching. Numerous parts of different stainless steels have been successfully SolNit(R) treated in industry leading to superior properties in respect to hardness/strength and corrosion resistance

  9. Removal of phenol from aqueous solution and resin manufacturing industry wastewater using an agricultural waste: rubber seed coat.

    Science.gov (United States)

    Rengaraj, S; Moon, Seung-Hyeon; Sivabalan, R; Arabindoo, Banumathi; Murugesan, V

    2002-01-28

    Activated carbon prepared from rubber seed coat (RSCC), an agricultural waste by-product, has been used for the adsorption of phenol from aqueous solution. In this work, adsorption of phenol on rubber seed coat activated carbon has been studied by using batch and column studies. The equilibrium adsorption level was determined to be a function of the solution pH, adsorbent dosage and contact time. The equilibrium adsorption capacity of rubber seed coat activated carbon for phenol removal was obtained by using linear Freundlich isotherm. The adsorption of phenol on rubber seed coat activated carbon follows first order reversible kinetics. The suitability of RSCC for treating phenol based resin manufacturing industry wastewater was also tested. A comparative study with a commercial activated carbon (CAC) showed that RSCC is 2.25 times more efficient compared to CAC based on column adsorption study for phenolic wastewater treatment.

  10. Transfer of control system interface solutions from other domains to the thermal power industry.

    Science.gov (United States)

    Bligård, L-O; Andersson, J; Osvalder, A-L

    2012-01-01

    In a thermal power plant the operators' roles are to control and monitor the process to achieve efficient and safe production. To achieve this, the human-machine interfaces have a central part. The interfaces need to be updated and upgraded together with the technical functionality to maintain optimal operation. One way of achieving relevant updates is to study other domains and see how they have solved similar issues in their design solutions. The purpose of this paper is to present how interface design solution ideas can be transferred from domains with operator control to thermal power plants. In the study 15 domains were compared using a model for categorisation of human-machine systems. The result from the domain comparison showed that nuclear power, refinery and ship engine control were most similar to thermal power control. From the findings a basic interface structure and three specific display solutions were proposed for thermal power control: process parameter overview, plant overview, and feed water view. The systematic comparison of the properties of a human-machine system allowed interface designers to find suitable objects, structures and navigation logics in a range of domains that could be transferred to the thermal power domain.

  11. Organizational factors in design and implementation of technological and organizational solutions in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Macchi, L.; Reiman, T.; Savioja, P. (VTT Technical Research Centre of Finland (Finland)); Kahlbom, U. (Risk Pilot AB, Stockholm (Sweden)); Rollenhagen, C. (Vattenfall (Sweden))

    2012-03-15

    Design is often found as one of the contributing factors in accident in the nuclear industry. The design of new technological systems and organisational structures has to take into account and be driven by the future users' needs and has to consider how their role and work practices within the organisation will be affected. The SADE project explores to which extend the concepts of safety culture and resilience engineering can contribute to the prevention of design errors when no hindsight data are available. In 2011, the SADE project focused on gathering experience and clarifying the current issues and challenges related to the design process. During 2011 seventeen interviews have been conducted in Finland and Sweden to identify some of the major challenges the nuclear industry is currently facing. At the same time a literature review has been conducted to establish a sound common theoretical ground. This progress report presents some of the relevant theoretical findings and preliminary results from the interviews. (Author)

  12. The Honduran palm oil industry: Employing lessons from Malaysia in the search for economically and environmentally sustainable energy solutions

    Energy Technology Data Exchange (ETDEWEB)

    Craven, Catherine, E-mail: cec6@sfu.ca [Latin American Studies Program, Simon Fraser University, Burnaby, British Columbia (Canada)

    2011-11-15

    Honduras is actively seeking ways to expand its palm oil industry for the purpose of processing biofuels for both internal consumption and export. This would be a critical juncture for Honduras, presenting an opportunity to move beyond the export of basic agricultural commodities and a history of path dependency and weak economic indicators. In order to glean lessons on how to approach palm oil expansion in the most effective manner, I turn to the Malaysian case. Once impoverished, Malaysia expanded plantations, promoted technological innovation, and provided financial incentives and tax structures to develop one of the most sophisticated palm oil industries in the world. In this paper, the insights to be gleaned from the Malaysian case are organized into three key themes: Governance, Investing in Research and Human Capital, and The Environment. Recommendations for Honduras include: increased collaboration with funding bodies, NGOs and universities to foster research; fiscal policies that support the development of a domestic market; and key environmental controls to ensure sustainability in the long term. These insights offer practical and pragmatic solutions not only for Honduras, but also the wider community of small, tropical, developing nations seeking to develop a viable biofuels sector. - Research Highlights: > The Malaysian biofuels industry provides key lessons for Honduras as is seeks to further develop this sector. > Malaysian Governance and Investments in Human Capital provide examples for Honduras. > Malaysian environmental policy in this sector provides a cautionary tale. > Recommendations are tailored to the Honduran context.

  13. Scheduling the blended solution as industrial CO2 absorber in separation process by back-propagation artificial neural networks.

    Science.gov (United States)

    Abdollahi, Yadollah; Sairi, Nor Asrina; Said, Suhana Binti Mohd; Abouzari-lotf, Ebrahim; Zakaria, Azmi; Sabri, Mohd Faizul Bin Mohd; Islam, Aminul; Alias, Yatimah

    2015-11-05

    It is believe that 80% industrial of carbon dioxide can be controlled by separation and storage technologies which use the blended ionic liquids absorber. Among the blended absorbers, the mixture of water, N-methyldiethanolamine (MDEA) and guanidinium trifluoromethane sulfonate (gua) has presented the superior stripping qualities. However, the blended solution has illustrated high viscosity that affects the cost of separation process. In this work, the blended fabrication was scheduled with is the process arranging, controlling and optimizing. Therefore, the blend's components and operating temperature were modeled and optimized as input effective variables to minimize its viscosity as the final output by using back-propagation artificial neural network (ANN). The modeling was carried out by four mathematical algorithms with individual experimental design to obtain the optimum topology using root mean squared error (RMSE), R-squared (R(2)) and absolute average deviation (AAD). As a result, the final model (QP-4-8-1) with minimum RMSE and AAD as well as the highest R(2) was selected to navigate the fabrication of the blended solution. Therefore, the model was applied to obtain the optimum initial level of the input variables which were included temperature 303-323 K, x[gua], 0-0.033, x[MDAE], 0.3-0.4, and x[H2O], 0.7-1.0. Moreover, the model has obtained the relative importance ordered of the variables which included x[gua]>temperature>x[MDEA]>x[H2O]. Therefore, none of the variables was negligible in the fabrication. Furthermore, the model predicted the optimum points of the variables to minimize the viscosity which was validated by further experiments. The validated results confirmed the model schedulability. Accordingly, ANN succeeds to model the initial components of the blended solutions as absorber of CO2 capture in separation technologies that is able to industries scale up.

  14. A Service Architecture Solution for Mobile Enterprise Resources: A Case Study in the Banking Industry

    Science.gov (United States)

    Garcia-Gonzalez, Juan P.; Gacitua-Decar, Geronica; Pahl, Claus

    Providing mobility to participants of business processes is an increasing trend in the banking sector. Independence of a physical place to interact with clients, while been able to use the information managed in the banking applications is one, of the benefits of mobile business processes. Challenges arising from this approach include to deal with a scenario of occasionally connected communication; security issues regarding the exposition of internal information on devices-that could be lost-; and restrictions on the capacity of mobile devices. This paper presents our experience in implementing a service-based architecture solution to extend centralised resources from a financial institution to a mobile platform.

  15. INTEGRATION OF UKRAINIAN INDUSTRY SCIENTIFIC PERIODACLS INTO WORLD SCIENTIFIC INFORMATION SPACE: PROBLEMS AND SOLUTIONS

    Directory of Open Access Journals (Sweden)

    T. O. Kolesnykova

    2013-11-01

    Full Text Available Purpose. Problem of representation lack of scientists’ publications, including transport scientists, in the international scientometric databases is the urgent one for Ukrainian science. To solve the problem one should study the structure and quality of the information flow of scientific periodicals of railway universities in Ukraine and to determine the integration algorithm of scientific publications of Ukrainian scientists into the world scientific information space. Methodology. Applying the methods of scientific analysis, synthesis, analogy, comparison and prediction the author has investigated the problem of scientific knowledge distribution using formal communications. The readiness of Ukrainian railway periodicals to registration procedure in the international scientometric systems was analyzed. The level of representation of articles and authors of Ukrainian railway universities in scientometric database Scopus was studied. Findings. Monitoring of the portals of railway industry universities of Ukraine and the sites of their scientific periodicals and analysis of obtained data prove insufficient readiness of most scientific publications for submission to scientometric database. The ways providing sufficient "visibility" of industry periodicals of Ukrainian universities in the global scientific information space were proposed. Originality. The structure and quality of documentary flow of scientific periodicals in railway transport universities of Ukraine and its reflection in scientometric DB Scopus were first investigated. The basic directions of university activities to integrate the results of transport scientists research into the global scientific digital environment were outlined. It was determined the leading role of university libraries in the integration processes of scientific documentary resources of universities into the global scientific and information communicative space. Practical value. Implementation of the proposed

  16. A solution for maintenance-related problems in the power generating industry

    Energy Technology Data Exchange (ETDEWEB)

    Delamarian, C. [Institute of Welding and Material Testing, Timisoara (Romania); Kautz, H.R.

    1998-12-31

    Important political, social and economic changes in the Europe of the end of the century have had important repercussions in the field of energy generation. A general trend to an opened energy market was encountered not only in the East European (former communist) countries, but also in other West European and overseas countries. Since the continuous aging equipment is far away to be renewed (mainly because of financial reasons), people charged with maintenance responsibilities in power plants are facing with increasing problems. A solution to these problems was developed in the last years within the framework of a cooperation project between ISIM (Institute of Welding and Material Testing) of Timisoara, Romania and GKM (Mannheim Central Power Plant), Germany. A project was developed to support the O and M activities in the field of energy generation. The idea, the way of development and implementation, and estimated results will be presented. (orig.) 436 refs.

  17. Multimodal inspection in power engineering and building industries: new challenges and solutions

    Science.gov (United States)

    Kujawińska, Małgorzata; Malesa, Marcin; Malowany, Krzysztof

    2013-09-01

    Recently the demand and number of applications of full-field, optical measurement methods based on noncoherent light sources increased significantly. They include traditional image processing, thermovision, digital image correlation (DIC) and structured light methods. However, there are still numerous challenges connected with implementation of these methods to in-situ, long-term monitoring in industrial, civil engineering and cultural heritage applications, multimodal measurements of a variety of object features or simply adopting instruments to work in hard environmental conditions. In this paper we focus on 3D DIC method and present its enhancements concerning software modifications (new visualization methods and a method for automatic merging of data distributed in time) and hardware improvements. The modified 3D DIC system combined with infrared camera system is applied in many interesting cases: measurements of boiler drum during annealing and of pipelines in heat power stations and monitoring of different building steel struts at construction site and validation of numerical models of large building structures constructed of graded metal plate arches.

  18. E-learning : a high-tech solution to industry training challenges

    Energy Technology Data Exchange (ETDEWEB)

    Budd, G.

    2007-09-15

    A web-based e-learning system used to train oilsands upgrading employees was discussed in this article. While the majority of the upgrader's staff had previously worked in the oil and gas industry, many did not have adequate control system training. Use of the system avoided the need for upgrader downtime due to staff shortages during training periods, and avoided the need for on-site instructor-led classes. Savings of over $90,000 were made on a single training course by using the web-based system. A learning content management system (LCMS) was used to develop and customize learning modules so that the software could be customized for use at different facilities. Use of the e-learning system allows staff to mesh training time with regular work schedules and can save companies thousands of hours in training time. Information on the training modules is referenced in a database so that staff members can address new or additional systems, equipment, or technologies. It was concluded that a growing number of companies are using web-based learning systems. 2 figs.

  19. Contractual Solutions in Electronic Publishing Industry: A Comparative study of License Agreements

    Directory of Open Access Journals (Sweden)

    K.T. Anuradha

    2005-10-01

    Full Text Available Information Technology (IT revolution has brought global change and has impact on electronic publishing industry also. In the digital and networked environment, publishers are concerned about protecting their products from illegal use. Copyright has been proclaimed as an important weapon by the publishers to safeguard their products. In view of the increasing importance that is gained by contract law in electronic publishing, more and more libraries are engaged in signing License Agreements for getting access to all types of electronic information products. It has become imperative on the part of librarians to have knowledge of License agreements and their clauses. The body of the license agreements differs from publisher to publisher and is product dependent too. Since there is a difference between the license agreements of societal publishers and commercial publishers, an attempt is made here to carry out a comparative study of the clauses of the license agreements among commercial publishers at the first level and societal publishers at the second level. It is observed that the licensors’ rights are well protected compared to that of licensees’ rights.

  20. 5 steps to delivering safe, secure and reliable rail solutions for the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Connelly, C. [Direct Rail Services, Warrington (United Kingdom)

    2004-07-01

    Direct Rail Services (DRS) has been operating since October 1995, following the decision by parent company, British Nuclear Fuels (BNFL), to create a strategic rail transport service. The decision came after the privatisation of the rail network in the UK, when the former British Rail was superseded by a range of private organisations responsible for separate areas of the industry. Individual companies became responsible for aspects such as the operation and maintenance of the network infrastructure and for passenger and freight train services. Rather than enter into contractual arrangements with third party contractors, DRS was formed - securing both the access and reliability of transport routes and availability of the rail network, providing greater guarantees about the levels of service delivery. The strategy of bringing this area of transport in house was concurrent with that of international transport, utilising its own fleet of ships for overseas fuel movements. Freight operations began in October 1995, with the first services operating between Sellafield and the low level radioactive waste facility at Drigg.

  1. Development and industrial solutions of laser marking with a model on escutcheon of section bar

    Science.gov (United States)

    Zhang, Pu

    2000-10-01

    The section bar escutcheon is the basic mark of steel products. It contains the name of the manufacturer, material quality, standard, production date and serial number of product, which are used for recognizing the bar in the process of using, transporting and marketing it. The marking method existed cannot meet practical requirements of preserving the escutcheon for a long time. As a result of researching in this field, the author has worked out anew method of marking and invented a laser marker of the section bar escutcheon. It is a computer-controlled integrated system composed of a club-shaped Nd-doped yttrium aluminum garnet (Nd3$plu:YAG) solid laser (Kr light pump), a continuous solid laser power source, an optical scanning system, a controlling computer and a cooling system. The optical scanning system guides the output laser beam to the surface of escutcheon blank by using a special controlling system with a mechanism called the planar large pitch ball-leading screw, driven by a stepping moto. Each escutcheon blank will be sent to the pointed location of the focus plane by a pneumatic deferent mechanism composed of tow cylinders. Alternative operation of two cylinders will respectively complete the input of the aluminum escutcheon blank and output of the aluminum escutcheon. The rat cage industrial controlling computer has been applied. Apart from controlling the work of hardware and alarms, this system has many other functions such as recording, processing, transferring, inquiring the product data through a network; recording, reporting the time interval of production break or stop. The data such as the temperature, water, electricity and gas supplies at the site of marking will also be recorded. The prerequisite of running such a laser marker is that the cooling system must work well. For that reason, a hydraulic pressure annunciator has been integrated into this system.

  2. STRATEGIC SIMULATION SOLUTIONS TO THE FINANCIAL AND ECONOMIC SUPPORT OF THE INDUSTRIAL CORPORATIONS OF THE MILITARY-INDUSTRIAL COMPLEX (MIC RUSSIA

    Directory of Open Access Journals (Sweden)

    K. B. Dobrova

    2010-01-01

    Full Text Available Vital integration management matters of resource logistical support to industrial corporations of Russian defense industry are discussed. Various types of financing and optimization management models are offered.

  3. Radiation induced environmental remediation of Cr(VI) heavy metal in aerated neutral solution under simulated industrial effluent

    Energy Technology Data Exchange (ETDEWEB)

    Djouider, Fathi; Aljohani, Mohammed S. [King Abdulaziz Univ., Jeddah (Saudi Arabia). Nuclear Engineering Dept.

    2017-08-01

    Cr(VI) compounds are major water contaminants in most industrial effluents, due to their carcinogenicity, while Cr(III) is an important element for human metabolism. In a previous work, we showed that Cr(VI) was radiolytically reduced to Cr(III) by the CO{sub 2}{sup -.} radical at pH 3 N{sub 2}O-saturated solution in the presence of formate. Here in the present work, this removal was investigated by steady state irradiation and pulse radiolysis in aerated solution at neutral pH, which is close to natural conditions in most wastewaters, where the reducing agent is the superoxide radical anion O{sub 2}{sup -.} The degradation of Cr(VI) increased linearly with the absorbed dose and was significantly enhanced by the added formate but not by the radiolitically produced hydrogen peroxide at this pH. The rate constant for this reduction was found to be 1.28 x 10{sup 8} M{sup -1} s{sup -1} and the absorption spectrum of Cr(V) transient species was obtained. A partial recovery of Cr(VI) is observed over a period of ca. 5 ms following a second order kinetics with a rate constant 8.0 x 10{sup 6} M{sup -1} s{sup -1}. These outcomes suggest that gamma-irradiation of Cr(VI)-contaminated wastewaters and industrial effluents in presence of formate can be simple, effective and economical means for the remediation of this major contaminant.

  4. Retention of Organic Matter Contained in Industrial Phosphoric Acid Solution by Raw Tunisian Clays: Kinetic Equilibrium Study

    Directory of Open Access Journals (Sweden)

    Wiem Hamza

    2013-01-01

    Full Text Available Purification of industrial phosphoric acid (H3PO4 is considered a major problem and several methods have been evaluated. In this study, two different types of clay, raw bentonite clay (RBC and raw grey clay (RGC, were used for removal of SOM contained in H3PO4 at low pH. The used samples were characterized by X-ray diffraction, chemical analysis, and specific surface area and MET was also realized. The ability of clay samples to remove S.O.M from aqueous solutions of industrial phosphoric acid has been studied at different operating conditions: temperature, agitation speed, contacting time, and so on. The results indicated that adsorption is an exothermic process for lead S.O.M removal. The equilibrium adsorption data were analysed using the Langmuir and Freundlich isotherms. The results showed that the equilibrium adsorption capacities for the two adsorbents followed best the Langmuir model. Thermodynamic parameters showed that the adsorption process was spontaneous and exothermic.

  5. Dietary Determinants of and Possible Solutions to Iron Deficiency for Young Women Living in Industrialized Countries: A Review

    Directory of Open Access Journals (Sweden)

    Kathryn L. Beck

    2014-09-01

    Full Text Available Iron deficiency is a concern in both developing and developed (industrialized countries; and young women are particularly vulnerable. This review investigates dietary determinants of and possible solutions to iron deficiency in young women living in industrialized countries. Dietary factors including ascorbic acid and an elusive factor in animal protein foods (meat; fish and poultry enhance iron absorption; while phytic acid; soy protein; calcium and polyphenols inhibit iron absorption. However; the effects of these dietary factors on iron absorption do not necessarily translate into an association with iron status and iron stores (serum ferritin concentration. In cross-sectional studies; only meat intake has consistently (positively been associated with higher serum ferritin concentrations. The enhancing effects of ascorbic acid and meat on iron absorption may be negated by the simultaneous consumption of foods and nutrients which are inhibitory. Recent cross-sectional studies have considered the combination and timing of foods consumed; with mixed results. Dietary interventions using a range of focused dietary measures to improve iron status appear to be more effective than dietary approaches that focus on single nutrients or foods. Further research is needed to determine optimal dietary recommendations for both the prevention and treatment of iron deficiency.

  6. Wind Energy Industry Eagle Detection and Deterrents: Research Gaps and Solutions Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Karin [National Renewable Energy Lab. (NREL), Golden, CO (United States); DeGeorge, Elise [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-13

    The Bald and Golden Eagle Protection Act (BGEPA) prohibits the 'take' of these birds. The act defines take as to 'pursue, shoot, shoot at, poison, wound, kill, capture, trap, collect, destroy, molest or disturb.' The 2009 Eagle Permit Rule (74 FR 46836) authorizes the U.S. Fish and Wildlife Service (USFWS) to issue nonpurposeful (i.e., incidental) take permits, and the USFWS 2013 Eagle Conservation Plan Guidance provides a voluntary framework for issuing programmatic take permits to wind facilities that incorporate scientifically supportable advanced conservation practices (ACPs). Under these rules, the Service can issue permits that authorize individual instances of take of bald and golden eagles when the take is associated with, but not the purpose of, an otherwise lawful activity, and cannot practicably be avoided. To date, the USFWS has not approved any ACPs, citing the lack of evidence for 'scientifically supportable measures.' The Eagle Detection and Deterrents Research Gaps and Solutions Workshop was convened at the National Renewable Energy Laboratory in December 2015 with a goal to comprehensively assess the current state of technologies to detect and deter eagles from wind energy sites and the key gaps concerning reducing eagle fatalities and facilitating permitting under the BGEPA. During the workshop, presentations and discussions focused primarily on existing knowledge (and limitations) about the biology of eagles as well as technologies and emerging or novel ideas, including innovative applications of tools developed for use in other sectors, such as the U.S. Department of Defense and aviation. The main activity of the workshop was the breakout sessions, which focused on the current state of detection and deterrent technologies and novel concepts/applications for detecting and minimizing eagle collisions with wind turbines. Following the breakout sessions, participants were asked about their individual impressions of the

  7. Educated consumers don’t believe artiifcial meat is the solution to the problems with the meat industry

    Institute of Scientific and Technical Information of China (English)

    Aurlie Hocquette; Carla Lambert; Clmentine Sinquin; Laure Peterolff; Zo Wagner; Sarah P F Bonny; Andr Lebert; Jean-Franois Hocquette

    2015-01-01

    The production of in vitro meat by cel culture has been suggested by some scientists as one solution to address the major chal enges facing our society. Firstly, consumers would like the meat industry to reduce potential discomfort of animals on modern farms, or even to avoid kil ing animals to eat them. Secondly, citizens would like meat producers to reduce potential environmental deterioration by livestock and ifnal y, there is a need to reduce world hunger by increasing protein resources while the global population is predicted to grow rapidly. According to its promoters, artiifcial meat has a potential to make eating animals unnecessary, to reduce carbon footprint of meat production and to satisfy al the nutritional needs and desires of consumers and citizens. To check these assumptions, a total of 817 educated people (mainly scientists and students) were interviewed worldwide by internet in addition to 865 French educated people. We also interviewed 208 persons (mainly scientists) after an oral presentation regarding artiifcial meat. Results of the three surveys were similar, but differed between males and females. More than half of the respondents believed that“artiifcial meat”was feasible and realistic. However, there was no majority to think that artiifcial meat wil be healthy and tasty, except respondents who were in favour of artiifcial meat. A large majority of the respondents believed that the meat industry is facing important problems related to the protection of the environment, animal welfare or inefifcient meat production to feed humanity. However, respondents did not believe that artiifcial meat wil be the solution to solve the mentioned problems with the meat industry, especial y respondents who were against artiifcial meat. The vast majority of consumers wished to continue to eat meat even they would accept to consume less meat in a context of increasing food needs. Only a minority of respondents (from 5 to 11%) would recommend or accept to

  8. RESEARCH SPECIFIC FLUX OF SOLVENT IN THE PROCESSES OF ULTRAFILTRATION AND REVERSE OSMOSIS OF BIOLOGICAL SOLUTIONS SEPARATION IN BIOCHEMICAL INDUSTRY

    Directory of Open Access Journals (Sweden)

    S. I. Lazarev

    2015-01-01

    Full Text Available This work is devoted to the study of specific solvent stream in baro membrane separation processes in the biochemical industry. The main indicators, which characterize baromembranes technology, are productivity and quality division. Performance of baromembrane separation is estimated by the specific output or specific solvent stream, which is equal to the permeate flow per unit working area of the membrane per unit of time, and also determines the speed of the process of baromembrane division. This parameter depends on the material of the membrane, the nature of the solutes and their concentrations in the solution, the operating pressure, temperature and hydrodynamic processes. The article analyzed the specific solvent flow, which mathematically described by the equation based on Darcy's Law. This law establishes proportional dependence on the driving force of the process, the concentration and type of membrane. For the research was used following technique. The initial stage was to preliminary cleaning of membranes from impurities, checking the integrity of individual units, launching in work mode for a time period of 18 hours. Then there was a preliminary experience for the establishment of a permanent performance with a factor of retention membranes. After that was done a series of basic experiments, the results of which were used for calculate of specific solvent stream. As a result of investigations made certain conclusions. Specific solvent stream decreases with increasing concentration. In ultrafiltration membranes the specific solvent stream is higher than in reverse osmosis membranes. This phenomenon depends on the type of membrane. When the pressure increases the flow of the solvent and performance of baromembrane separation of solutions increases too. Specific solvent stream are influenced by concentrating polarization, gelation and sedimentation, which are formed as a result of increasing pressure and adsorption on the membrane

  9. SOLUTIONING

    Directory of Open Access Journals (Sweden)

    Maria de Hoyos Guajardo, Ph.D. Candidate, M.Sc., B.Eng.

    2004-11-01

    Full Text Available The theory that is presented below aims to conceptualise how a group of undergraduate students tackle non-routine mathematical problems during a problem-solving course. The aim of the course is to allow students to experience mathematics as a creative process and to reflect on their own experience. During the course, students are required to produce a written ‘rubric’ of their work, i.e., to document their thoughts as they occur as well as their emotionsduring the process. These ‘rubrics’ were used as the main source of data.Students’ problem-solving processes can be explained as a three-stage process that has been called ‘solutioning’. This process is presented in the six sections below. The first three refer to a common area of concern that can be called‘generating knowledge’. In this way, generating knowledge also includes issues related to ‘key ideas’ and ‘gaining understanding’. The third and the fourth sections refer to ‘generating’ and ‘validating a solution’, respectively. Finally, once solutions are generated and validated, students usually try to improve them further before presenting them as final results. Thus, the last section deals with‘improving a solution’. Although not all students go through all of the stages, it may be said that ‘solutioning’ considers students’ main concerns as they tackle non-routine mathematical problems.

  10. Degradation of industrial waste waters on Fe/C-fabrics. Optimization of the solution parameters during reactor operation.

    Science.gov (United States)

    Bozzi, A; Yuranova, T; Lais, P; Kiwi, J

    2005-04-01

    This study addresses the pre-treatment of toxic and recalcitrant compounds found in the waste waters arriving at a treating station for industrial effluents containing chlorinated aromatics and non-aromatic compounds, anilines, phenols, methyl-tert-butyl-ether (MTBE). By reducing the total organic carbon (TOC) of these waste waters the hydraulic load for the further bacterial processing in the secondary biological treatment is decreased. The TOC decrease and discoloration of the waste waters was observed only under light irradiation in the reactor by immobilized Fenton processes on Fe/C-fabrics but not in the dark. The energy of activation for the degradation of the waste waters was of 4.2 kcal/mol. The degradation of the waste waters was studied in the reactor as a function of (a) the amount of oxidant used (H2O2), (b) the recirculation rate, (c) the solution pH and (d) the applied temperature. With these parameters taken as input factors, statistical modeling allows one to estimate the most economic use of the oxidant and electrical energy to degrade these waste waters. The concentration of the most abundant organic pollutants during waste waters degradation was followed by gas chromatography/mass spectrometry (GC-MS). The ratio of the biological oxygen demand to the total organic carbon BOD5/TOC increased significantly due to the Fe/C-fabric catalyzed treatment from an initial value of 2.03 to 2.71 (2 h). The reactor results show that the recirculation rate has no influence on the TOC decrease of the treated waters but affects the BOD increase of these solutions.

  11. Analysis of an Air Conditioning Coolant Solution for Metal Contamination Using Atomic Absorption Spectroscopy: An Undergraduate Instrumental Analysis Exercise Simulating an Industrial Assignment

    Science.gov (United States)

    Baird, Michael J.

    2004-01-01

    A real-life analytical assignment is presented to students, who had to examine an air conditioning coolant solution for metal contamination using an atomic absorption spectroscopy (AAS). This hands-on access to a real problem exposed the undergraduate students to the mechanism of AAS, and promoted participation in a simulated industrial activity.

  12. Analysis of an Air Conditioning Coolant Solution for Metal Contamination Using Atomic Absorption Spectroscopy: An Undergraduate Instrumental Analysis Exercise Simulating an Industrial Assignment

    Science.gov (United States)

    Baird, Michael J.

    2004-01-01

    A real-life analytical assignment is presented to students, who had to examine an air conditioning coolant solution for metal contamination using an atomic absorption spectroscopy (AAS). This hands-on access to a real problem exposed the undergraduate students to the mechanism of AAS, and promoted participation in a simulated industrial activity.

  13. Building a Comprehensive Mill-Level Database for the Industrial Sectors Integrated Solutions (ISIS) Model of the U.S. Pulp and Paper Sector

    Science.gov (United States)

    The Industrial Sectors Integrated Solutions (ISIS) model for the pulp and paper sector is currently under development at the U.S. Environmental Protection Agency (EPA), and can be utilized to facilitate multi-pollutant sector-based analyses that are performed in conjunction with ...

  14. Comprehensive Approach to Energy and Environment in the EcoCare Program for Design, Engineering and Operation of Siemens Industry Solutions

    DEFF Research Database (Denmark)

    Wegener, Dieter; Finkbeiner, Matthias; Geiger, Dieter

    2009-01-01

    or benefits. To meet these requirements the main challenge is to simplify the assessment methodology as far as reliability and accuracy of results is preserved. To present results in both dimensions of economical performance and environmental impact the paper introduces the concept of the “eco care matrix......This paper intends to describe the outline of the Eco Care Program (ECP) at the Siemens-Division Industry Solutions and its implementation. ECP aims to embrace and to coordinate main activities within the product lifecycle management (PLM) process considering both economic targets in terms......” (ECM). Environmental sound industrial solutions have advantages in both “eco” dimensions (eco-nomical + eco-logical). The analytical approach presented is further on implemented in two complementary and independent industrial application fields: in order to exemplify usability of the approach in quite...

  15. Enzymatically mediated bioprecipitation of heavy metals from industrial wastes and single ion solutions by mammalian alkaline phosphatase.

    Science.gov (United States)

    Chaudhuri, Gouri; Shah, Gaurav A; Dey, Pritam; S, Ganesh; Venu-Babu, P; Thilagaraj, W Richard

    2013-01-01

    The study was aimed at investigating the potential use of calf intestinal alkaline phosphatase (CIAP) enzyme in the removal of heavy metals (Cd(2+), Ni(2+), Co(2+) and Cr(3+/6+)) from single ion solutions as well as tannery and electroplating effluents. CIAP mediated bioremediation (white biotechnology) is a novel technique that is eco-friendly and cost effective unlike the conventional chemical technologies. Typical reactions containing the enzyme (CIAP) and p-nitrophenyl phosphate (pNPP) as substrate in Tris-HCl buffer (pH 8 and 11) and either single ion metal solutions (250 ppm and 1000 ppm) or effluents from tannery or electroplating industry were incubated at 37°C for 30 min, 60 min and 120 min. The inorganic phosphate (P(i)) generated due to catalytic breakdown of pNPP complexes free metal ions as metal-phosphate and the amount of metal precipitated was derived by estimating the reduction in the free metal ion present in the supernatant of reactions employing atomic absorption spectrophotometer (AAS). Better precipitation of metal was obtained at pH 11 than at pH 8 and between the two concentrations of different metals tested, an initial metal concentration of 250 ppm in the reaction gave more precipitation than with 1000 ppm. Experimental data showed that at pH 11, the percentage of removal of metal ions (for an initial concentration of 250 ppm) was in the following order: Cd(2+) (80.99%) > Ni(2+) (64.78%) > Cr(3+) > (46.15%) > Co(2+) (36.47%) > Cr(6+) (32.33%). The overall removal of Cr(3+) and Cr(6+) from tannery effluent was 32.77% and 37.39% respectively in 120 min at pH 11. Likewise, the overall removal of Cd(2+), Co(2+) and Ni(2+) from electroplating effluent was 50.42%, 13.93% and 38.64% respectively in 120 min at pH 11. The study demonstrates that bioprecipitation by CIAP may be a viable and environmental friendly method for clean-up of heavy metals from tannery and electroplating effluents.

  16. 中国软件产业:问题与对策%China Software Industry: Problem and Solution

    Institute of Scientific and Technical Information of China (English)

    崔晶炜

    2004-01-01

    CCID Consulting Company Limited Senior Consultant: Cui Jingwei The present problems in China software industry include:1) The industryscale is small and its effect is too limited 2) The industry base is weak and thestructure of its human resource is in urgent need to be improved. 3) The indus

  17. Gerber Technology Showcases Latest Automation Solutions for the Apparel Industry at China's Dongguan Fair 2012

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    During the 13th China (D.ongguan) International Textile and Clothing Industry Fair (DTC 2012) being held March 28-31, Gerber Technology showcased its software and hardware systems under the theme Take Comfort in Qur Experience.

  18. Relevance of a combined process coupling electro-Fenton and biological treatment for the remediation of sulfamethazine solutions – Application to an industrial pharmaceutical effluent

    OpenAIRE

    Mansour, Dorsaf; Fourcade, Florence; Soutrel, Isabelle; Hauchard, Didier; Bellakhal, Nizar; Amrane, Abdeltif

    2014-01-01

    International audience; A combined process coupling an electro-Fenton pretreatment and a biological degradation was implemented in order to mineralize synthetic and industrial pharmaceutical effluents, containing a veterinary antibiotic, sulfamethazine (SMT). The electro-Fenton pretreatment of SMT synthetic solution was first examined and the obtained results showed total SMT degradation after 30 min of electrolysis at pH 3, 18°C, 500 mA and an initial SMT concentration of 0.2 mM, while the l...

  19. Absolute assignment in takāful industry: Sharī‘ah contracts, issues and solutions

    Directory of Open Access Journals (Sweden)

    Ahmad Basri Ibrahim

    2015-12-01

    Full Text Available This article deliberates on the Islamic contracts used in absolute assignment in takāful industry and identifies Sharī‘ah issues that might accrue from it. The article studies the market practice of absolute assignment in takāful industry in Malaysia and proposes the adequate Islamic contracts that can be used in absolute assignment and at the same time resolve any Sharī‘ah issues that might occur from it. This research consists of both library-based research and fieldwork research. The researchers interviewed some practitioners and studied the related documents and acts used in executing absolute assignment in takāful industry in Malaysia. The study infers that there are two types of absolute assignments. The first one is between an individual to an individual on the basis of hibah and the second one is between an individual and a financier/bank on the basis of kafālah.

  20. Phenanthrene removal from aqueous solutions using well-characterized, raw, chemically treated, and charred malt spent rootlets, a food industry by-product.

    Science.gov (United States)

    Valili, Styliani; Siavalas, George; Karapanagioti, Hrissi K; Manariotis, Ioannis D; Christanis, Kimon

    2013-10-15

    Malt spent rootlets (MSR) are biomaterials produced in big quantities by beer industry as by-products. A sustainable solution is required for their management. In the present study, MSR are examined as sorbents of a hydrophobic organic compound, phenanthrene, from aqueous solutions. Raw MSR sorb phenanthrene but their sorptive properties are not competitive with the respective properties of commercial sorbents (e.g., activated carbons). Organic petrography is used as a tool to characterize MSR after treatment in order to produce an effective sorbent for phenanthrene. Chemical and thermal (at low temperature under nitrogen atmosphere) treatments of MSR did not result in highly effective sorbents. Based on organic petrography characterization, the pores of the treated materials were filled with humic colloids. When pyrolysis at 800 °C was used to treat MSR, a sorbent with new and empty pores was produced. Phenanthrene sorption capacity was 2 orders of magnitude higher for the pyrolized MSR than for raw MSR.

  1. Characteristics and Influencing Factors of the NIMBYism:A Case Study of the Waste-to-Energy Plant in Panyu, Guangzhou%"邻避主义"的特征及影响因素研究要要以番禺垃圾焚烧发电厂为例

    Institute of Scientific and Technical Information of China (English)

    杨槿; 朱竑

    2013-01-01

    NIMBYism refers to residents’objections to the location of urban public fa-cilities which have negative externalities in the community. These phenomena which e-merged in China accompanied with the development and transformation of city economy and society have caught domestic scholars’attention. Adopting analytic perspectives based on a combination of geographical distance and residents’social-economic attributes, this research takes residents’resist to waste-to-energy plants in Panyu Guangzhou as an ex-ample to discuss the features of NIMBYism under the context of China and explore which factors play parts in influencing residents’perception and behavior in NIMBY syn-drome. Firstly, the study finds that the attitudes of community residents showed in the media change from "not in my backyard" which is just against specific facility to "not in anyone's backyard" which oppose the technology applied in such facility, however, the essence of residents’objections is still NIMBYism. Secondly, under spatial scales of ur-ban and communities which have similar characteristics, residents' NIMBY attitudes are in line with the "proximity hypothesis". That means in certain spatial distance, the degree of residents’ objection has an inverse relationship with the distance. However, there are significant differences of residents’ attitudes which are adjacent on the geographical location but different in the community natures. Thirdly, distance has fundamental impact on residents’ NIMBYism attitudes. Distance affects residents’ perception approaches to the NIMBY facility. Besides, it plays an important role in the weighing of interests stage. Based on that, microscopic individual socio-economic properties interact with macro socio-economic and political systems through a complex reconstruction process and this ultimately decide residents’ NIMBYism attitude and response. This research riches the interpretation of NIMBYism in different historical and

  2. Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry.

    Science.gov (United States)

    Parashar, Archana; Jin, Yiqiong; Mason, Beth; Chae, Michael; Bressler, David C

    2016-03-01

    This study proposes a novel alternative for utilization of whey permeate, a by-product stream from the dairy industry, in wheat fermentation for ethanol production using Saccharomyces cerevisiae. Whey permeates were hydrolyzed using enzymes to release fermentable sugars. Hydrolyzed whey permeates were integrated into wheat fermentation as a co-substrate or to partially replace process water. Cold starch hydrolysis-based simultaneous saccharification and fermentation was done as per the current industrial protocol for commercial wheat-to-ethanol production. Ethanol production was not affected; ethanol yield efficiency did not change when up to 10% of process water was replaced. Lactic acid bacteria in whey permeate did not negatively affect the co-fermentation or reduce ethanol yield. Whey permeate could be effectively stored for up to 4 wk at 4 °C with little change in lactose and lactic acid content. Considering the global abundance and nutrient value of whey permeate, the proposed strategy could improve economics of the dairy and biofuel sectors, and reduce environmental pollution. Furthermore, our research may be applied to fermentation strategies designed to produce value-added products other than ethanol. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Walking between academia and industry to find successful solutions to biomedical challenges: an interview with Geoffrey Smith

    Directory of Open Access Journals (Sweden)

    2015-10-01

    Full Text Available Geoffrey W. Smith is currently the Managing Director of Mars Ventures. He actually started his studies with a Bachelor of Arts degree and a Doctorate in Law but then, in part by chance and in part by following in his family footsteps, he stepped into the healthcare and biotech field. Since then, he has successfully contributed to the birth of a number of healthcare companies and has also held academic positions at the Icahn School of Medicine at Mount Sinai and at The Rockefeller University in New York, teaching about the interface between science and business. During 2014 he served as Senior Editor on Disease Models & Mechanisms, bringing to the editorial team his valuable experience in drug development and discovery. In this interview, Geoff talks to Ross Cagan, Editor-in-Chief of Disease Models & Mechanisms, about how he developed his incredibly varied career, sharing his views about industry, academia and science publishing, and discussing how academia and industry can fruitfully meet to advance bioscience, train the scientists and stakeholders of the future, and drive the successful discovery of new therapeutics to treat human disease.

  4. An IoT application solution for textile industry%智能物联网在纺织行业的应用解决方案

    Institute of Scientific and Technical Information of China (English)

    胡首锋

    2016-01-01

    介绍了一个智能物联网在纺织行业的应用方案。利用智能物联网和云数据技术,使多种岗位的工作人员能在计算机上完成大部分工作;利用网络把相应数据传输到纺织机器,并通过软件系统对机器实时运行状态进行监控管理等,从而飞跃式地提高工作效率,降低人工成本,实现纺织行业的产业升级。%This paper introduces an intelligent IoT application solution in textile industry. The system uses intelligent IoT and cloud data technology to help staff complete most work on the computer, and send corresponding data to the textile machines via network, while monitoring and managing real-time running state of machines, so as to improve efficiency, reduce labor costs, achieve the textile industry industrial upgrading.

  5. Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions.

    Science.gov (United States)

    Angin, Dilek

    2014-09-01

    The use of activated carbon obtained from sour cherry (Prunus cerasus L.) stones for the removal of a basic textile dye, which is Yellow 18, from aqueous solutions at different contact times, pH values and solution temperatures was investigated. The surface area and micropore volume of chemically modified activated carbon were 1704 m(2) g(-1) and 0.984 cm(3) g(-1), respectively. The experimental data indicated that the adsorption isotherms were well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity was 75.76 mg g(-1) at 318 K. The adsorption kinetic of Yellow 18 obeys the pseudo-second-order kinetic model. The thermodynamic parameters were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 0.71-2.36 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal of Yellow 18 from wastewater.

  6. Usefulness of ANN-based model for copper removal from aqueous solutions using agro industrial waste materials

    Directory of Open Access Journals (Sweden)

    Petrović Marija S.

    2015-01-01

    Full Text Available The purpose of this study was to investigate the adsorption properties of locally available lignocelluloses biomaterials as biosorbents for the removal of copper ions from aqueous solution. Materials are generated from juice production (apricot stones and from the corn milling process (corn cob. Such solid wastes have little or no economic value and very often present a disposal problem. Using batch adsorption techniques the effects of initial Cu(II ions concentration (Ci, amount of biomass (m and volume of metal solution (V, on biosorption efficiency and capacity were studied for both materials, without any pre-treatments. The optimal parameters for both biosorbents were selected depending on a highest sorption capability of biosorbent, in removal of Cu(II. Experimental data were compared with second order polynomial regression models (SOPs and artificial neural networks (ANNs. SOPs showed acceptable coefficients of determination (0.842 - 0.997, while ANNs performed high prediction accuracy (0.980-0.986 in comparison to experimental results. [Projekat Ministarstva nauke Republike Srbije, br. TR 31003, TR 31055

  7. Biomass energy conversion workshop for industrial executives

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The rising costs of energy and the risks of uncertain energy supplies are increasingly familiar problems in industry. Bottom line profits and even the simple ability to operate can be affected by spiralling energy costs. An often overlooked alternative is the potential to turn industrial waste or residue into an energy source. On April 9 and 10, 1979, in Claremont, California, the Solar Energy Research Institute (SERI), the California Energy Commission (CEC), and the Western Solar Utilization Network (WSUN) held a workshop which provided industrial managers with current information on using residues and wastes as industrial energy sources. Successful industrial experiences were described by managers from the food processing and forest product industries, and direct combustion and low-Btu gasification equipment was described in detail. These speakers' presentations are contained in this document. Some major conclusions of the conference were: numerous current industrial applications of wastes and residues as fuels are economic and reliable; off-the-shelf technologies exist for converting biomass wastes and residues to energy; a variety of financial (tax credits) and institutional (PUC rate structures) incentives can help make these waste-to-energy projects more attractive to industry. However, many of these incentives are still being developed and their precise impact must be evaluated on a case-by-case basis.

  8. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study.

    Science.gov (United States)

    Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri; Soylak, Mustafa

    2009-07-30

    The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g(-1) for 10 g L(-1) of a-WM concentration. Thermodynamic parameters including the Gibbs free energy (Delta G degrees), enthalpy (Delta H degrees), and entropy (DeltaS degrees) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 degrees C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.

  9. Advances in integrated and sustainable supply chain planning concepts, methods, tools and solution approaches toward a platform for industrial practice

    CERN Document Server

    Laínez-Aguirre, José Miguel

    2015-01-01

    Decision making at the enterprise level often encompass not only production operations and  product R&D, but other strategic functions such as financial planning and marketing. With the aim of maximizing growth and a firm’s value, companies often focus on co-ordinating these functional components as well as traditional hierarchical decision levels. Understanding this interplay can enhance enterprise capabilities of adaptation and response to uncertainties arising from internal processes as well as the external environment. This book presents concepts, methods, tools and solutions based on mathematical programming, which provides the quantitative support needed for integrated decision-making and ultimately for improving the allocation of overall corporate resources (e.g., materials, cash and personnel). Through a systems perspective, the integrated planning of the supply chain also promotes activities of reuse, reduction and recycling for achieving more sustainable environmental impacts of production/di...

  10. The use of artificial neural network for modeling the decolourization of acid orange 7 solution of industrial by ozonation process

    Science.gov (United States)

    Fatimah, S.; Wiharto, W.

    2017-02-01

    Acid Orange 7 (AO7) is one of the synthetic dye in the dyeing process in the textile industry. The use of this dye can produce wastewater which will be endangered if not treated well. Ozonation method is one technique to solve this problem. Ozonation is a waste processing techniques using ozone as an oxidizing agent. Variables used in this research is the ozone concentration, the initial concentration of AO7, temperature, and pH. Based on the experimental result that the optimum value decolourization percentage is 80% when the ozone concentration is 560 mg/L, the initial concentration AO7 is 14 mg/L, the temperature is 390 °C, and pH is 7,6. Decolourization efficiency of experimental results and predictions successfully modelled by the neural network architecture. The data used to construct a neural network architecture quasi newton one step secant as many as 31 data. A comparison between the predicted results of the designed ANN models and experiment was conducted. From the modeling results obtained MAPE value of 0.7763%. From the results of this artificial neural network architecture obtained the optimum value decolourization percentage in 80,64% when the concentration of ozone is 550 mg/L, the initial concentration AO7 is 11 mg/L, the temperature is 41 °C, and the pH is 7.9.

  11. Waste to Energy Power Production at DOE and DOD Sites

    Science.gov (United States)

    2011-01-13

    BiomassHeat and Power USAF: Hill Air Force Base • Landfill Gasto Energy Generation Ameresco independent...coal each year. DOESR– Project Benefits Ameresco independent Hill AFBLandfill Gasto Energy Ameresco independent...AFBRenewable Energy Initiatives Landfill Gasto Energy Electrical Generation (LFGTE) • First of itskind in the USAF/ DOD/ Utah • First Project Under

  12. Waste-to-energy: Dehalogenation of plastic-containing wastes.

    Science.gov (United States)

    Shen, Yafei; Zhao, Rong; Wang, Junfeng; Chen, Xingming; Ge, Xinlei; Chen, Mindong

    2016-03-01

    The dehalogenation measurements could be carried out with the decomposition of plastic wastes simultaneously or successively. This paper reviewed the progresses in dehalogenation followed by thermochemical conversion of plastic-containing wastes for clean energy production. The pre-treatment method of MCT or HTT can eliminate the halogen in plastic wastes. The additives such as alkali-based metal oxides (e.g., CaO, NaOH), iron powders and minerals (e.g., quartz) can work as reaction mediums and accelerators with the objective of enhancing the mechanochemical reaction. The dehalogenation of waste plastics could be achieved by co-grinding with sustainable additives such as bio-wastes (e.g., rice husk), recyclable minerals (e.g., red mud) via MCT for solid fuels production. Interestingly, the solid fuel properties (e.g., particle size) could be significantly improved by HTT in addition with lignocellulosic biomass. Furthermore, the halogenated compounds in downstream thermal process could be eliminated by using catalysts and adsorbents. Most dehalogenation of plastic wastes primarily focuses on the transformation of organic halogen into inorganic halogen in terms of halogen hydrides or salts. The integrated process of MCT or HTT with the catalytic thermal decomposition is a promising way for clean energy production. The low-cost additives (e.g., red mud) used in the pre-treatment by MCT or HTT lead to a considerable synergistic effects including catalytic effect contributing to the follow-up thermal decomposition.

  13. Test Standards for Contingency Base Waste-to-Energy Technologies

    Science.gov (United States)

    2015-08-01

    the recommended materials and the proportion of those materials that can be used to simulate contingency base waste and identify universal criteria...recipes. The specific approach includes the following: 1) Develop a universal test concept that can be applied to waste destruction and/or WTE... Food waste 32% 640 162$ Item 1 21% 133 Gravy Train® Beef Dry Dog Food (~four 35-lb bags) 120$ Item 2 6% 40 Crisco Pure

  14. The Louisiana State University waste-to-energy incinerator

    Science.gov (United States)

    1994-10-01

    This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes are produced on campus. Until recently, these wastes were disposed of in the Devil's Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University's non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building.

  15. adaptation of plastic waste to energy development in lagos

    African Journals Online (AJOL)

    user

    specific months were primarily used as a case study to portray the fact that all measures put in place by ... people. Nigeria seems to have been in energy deficit for a long time and successive .... Aluminium (%) .... process involves core use of Simpson's rule for the ... possible way to inject sanity into waste management.

  16. Modeling of waste to energy systems for rural applications

    Energy Technology Data Exchange (ETDEWEB)

    Namuli, Rachel; Pragasen, Pillay

    2010-09-15

    A system to convert waste into heat and electricity is presented, where biogas is generated from anaerobic digestion of manure, and fed to an internal combustion engine and generator. An overall system model that would meet annual heating and electrical loads, is formulated. The model is suited to rural farms that have no access to electricity or are connected to a diesel grid. The system is applicable to warm and cold climates. The sizing of the engines is such that they will adequately meet the annual heating and electrical load profile according to a given biogas sharing ratio.

  17. The Louisiana State University waste-to-energy incinerator

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-26

    This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes are produced on campus. Until recently, these wastes were disposed of in the Devil`s Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University`s non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building.

  18. PSO 5806 Material development for waste-to-energy plants

    DEFF Research Database (Denmark)

    Beck, Jørgen; Frederiksen, Jens; Larsen, Ole Hede;

    2010-01-01

    The vision of this project (PSO 5806) is to throw light and focus on some of the refractory material characteristics of major importance to predictable service.......The vision of this project (PSO 5806) is to throw light and focus on some of the refractory material characteristics of major importance to predictable service....

  19. Waste-to-energy conversion from a microfluidic device

    Science.gov (United States)

    López-González, B.; Jiménez-Valdés, R. J.; Moreno-Zuria, A.; Cuevas-Muñiz, F. M.; Ledesma-García, J.; García-Cordero, J. L.; Arriaga, L. G.

    2017-08-01

    This work reports the successful harvesting of energy from waste produced in a microfluidic device using a fuel cell. A miniaturized glucose air-breathing microfluidic fuel cell (ABμFFC) was designed, fabricated and tested with three different configurations according to their electrode nature: inorganic, hybrid and biofuel cell. Each ABμFFC was characterized using an ideal medium, with sterile cell culture medium, and with waste produced on a microfluidic device. The inorganic-ABμFFC exhibited the highest performance compared to the rest of the configurations. As a proof-of-concept, cancer cells were cultured on a microfluidic device and the consumed cell culture media (glucose concentration energy source without further treatment, into the inorganic-ABμFFC. The fuel cell generated a maximum total power of 5.2 μW, which is enough energy to power low-consumption microelectronic chips. This application demonstrates that the waste produced by microfluidic applications could be potentially scavenged to produce electrical energy. It also opens the possibility to develop truly energy self-sufficient portable devices.

  20. Waste-to-Energy Laboratory. Grades 8-12.

    Science.gov (United States)

    HAZWRAP, The Hazardous Waste Remedial Actions Program.

    This brochure contains an activity for grades 8-12 students that focuses on the reuse of waste as an energy source by burning and converting it into energy. For this experiment students construct a calorimeter from simple recyclable material. The calorimeter is used to measure the amount of energy stored in paper and yard waste that could be used…

  1. Administrative Order -- Lake County Waste To Energy Facility Okahumpka, Florida

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  2. Order Denying Review -- Spokane Regional Waste to Energy

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  3. Waste-to-Energy and Fuel Cell Technologies Overview

    Science.gov (United States)

    2011-01-13

    Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Global Approach for Using Biogas Innovation for Our Energy Future Source Production I...Cleanup Distribution I Utilization Dairy Waste Water Treat Plant Anaerobic Digester Reformation I Fuel Cell Systems ... • Biogas .... ,-1...8217 / ----------- Grid Anaerobic Digestion of Organic Wastes is a Good Source of Methane. Organic waste + methanogenic bacteria → methane (CH4) Issues

  4. Application of atmospheric solution precursor plasma spray to photocatalytic devices for small and medium industries in developing countries

    Science.gov (United States)

    Kindole, Dickson; Ando, Yasutaka

    2017-01-01

    For development of a functional film deposition process with high deposition rate, as a basic study, TiO2 films were deposited by atmospheric solution precursor plasma spray (ASPPS) process. Ethanol-diluted titanium tetraisobutoxide [TTIB: Ti(OC4H9)4] was used as a feedstock. To achieve a high plasma thermal energy at a low discharge power, N2-dominant Ar/N2 as the plasma working gas was used, for film deposition at various deposition distances. Consequently, photocatalytic TiO2 with a rutile/anatase mixture film structure was deposited evenly in this case. By conducting methylene blue decomposition and wettability tests, photocatalytic properties of the film were confirmed. When a TiO2 film was applied to photocatalytic dye-sensitized solar cells (DSSCs), the cells generated an electromotive force of 0.143V oc, which is close to those of commercial DSSCs. From these results, the ASPPS process was found to have high potential for high rate functional film deposition and was cost effective, making it suitable for developing countries.

  5. The Solution of Disaster Recovery for Government and Enterprise Industry%政企行业容灾系统解决方案

    Institute of Scientific and Technical Information of China (English)

    赵雷霆

    2012-01-01

    对政企客户容灾系统建设的意义及方针进行了总结,对信息系统灾难恢复规范标准的六级体系进行了概括,对容灾系统建设的方法论及由此衍生的系统实施步骤进行了阐述;针对国标的六级灾备体系,提出了不同容灾级别实现的技术方案,并对技术方案中的关键技术进行了分析;最后对政企客户的容灾系统的建设提出了建议。%The guidelines of .building disaster recovery system for government and enterprise Industry were summarized. The six level system of information system disaster recovery standard was discussed. The methodology and system implementation procedure for building disaster recovery system were interpreted. In accordance with the six level system of disaster recovery, technical solutions for different level of disaster recovery and their key technology were analyzed. At last, the suggestion for building disaster recovery system for government and enterprise Industry was provided.

  6. Building a Comprehensive Mill-Level Database for the Industrial Sectors Integrated Solutions (ISIS) Model of the U.S. Pulp and Paper Sector

    Science.gov (United States)

    Modak, Nabanita; Spence, Kelley; Sood, Saloni; Rosati, Jacky Ann

    2015-01-01

    Air emissions from the U.S. pulp and paper sector have been federally regulated since 1978; however, regulations are periodically reviewed and revised to improve efficiency and effectiveness of existing emission standards. The Industrial Sectors Integrated Solutions (ISIS) model for the pulp and paper sector is currently under development at the U.S. Environmental Protection Agency (EPA), and can be utilized to facilitate multi-pollutant, sector-based analyses that are performed in conjunction with regulatory development. The model utilizes a multi-sector, multi-product dynamic linear modeling framework that evaluates the economic impact of emission reduction strategies for multiple air pollutants. The ISIS model considers facility-level economic, environmental, and technical parameters, as well as sector-level market data, to estimate the impacts of environmental regulations on the pulp and paper industry. Specifically, the model can be used to estimate U.S. and global market impacts of new or more stringent air regulations, such as impacts on product price, exports and imports, market demands, capital investment, and mill closures. One major challenge to developing a representative model is the need for an extensive amount of data. This article discusses the collection and processing of data for use in the model, as well as the methods used for building the ISIS pulp and paper database that facilitates the required analyses to support the air quality management of the pulp and paper sector. PMID:25806516

  7. Building a comprehensive mill-level database for the Industrial Sectors Integrated Solutions (ISIS model of the U.S. pulp and paper sector.

    Directory of Open Access Journals (Sweden)

    Nabanita Modak

    Full Text Available Air emissions from the U.S. pulp and paper sector have been federally regulated since 1978; however, regulations are periodically reviewed and revised to improve efficiency and effectiveness of existing emission standards. The Industrial Sectors Integrated Solutions (ISIS model for the pulp and paper sector is currently under development at the U.S. Environmental Protection Agency (EPA, and can be utilized to facilitate multi-pollutant, sector-based analyses that are performed in conjunction with regulatory development. The model utilizes a multi-sector, multi-product dynamic linear modeling framework that evaluates the economic impact of emission reduction strategies for multiple air pollutants. The ISIS model considers facility-level economic, environmental, and technical parameters, as well as sector-level market data, to estimate the impacts of environmental regulations on the pulp and paper industry. Specifically, the model can be used to estimate U.S. and global market impacts of new or more stringent air regulations, such as impacts on product price, exports and imports, market demands, capital investment, and mill closures. One major challenge to developing a representative model is the need for an extensive amount of data. This article discusses the collection and processing of data for use in the model, as well as the methods used for building the ISIS pulp and paper database that facilitates the required analyses to support the air quality management of the pulp and paper sector.

  8. Chemical process research and development in the 21st century: challenges, strategies, and solutions from a pharmaceutical industry perspective.

    Science.gov (United States)

    Federsel, Hans-Jürgen

    2009-05-19

    In process research and development (PR&D), the generation and manipulation of small-molecule drugs ranges from bench-scale (laboratory) chemistry to pilot plant manufacture to commercial production. A broad range of disciplines, including process chemistry (organic synthesis), analytical chemistry, process engineering (mass and heat transfer, unit operations), process safety (chemical risk assessment), regulatory compliance, and plant operation, must be effectively applied. In the critical handover between medicinal chemistry and PR&D, compound production is typically scaled up from a few hundred grams to several kilograms. Can the methodologies applied to the former also satisfy the technical, safety, and scalability aspects that come into play in the latter? Occasionally, the transition might occur smoothly, but more often the situation is the opposite: much work and resources must be invested to design a process that is feasible for manufacturing on pilot scale and, eventually, for commercial production. Authentic examples provide enlightening illustrations of dos and don'ts for developing syntheses designed for round-flask operation into production-scale processes. Factors that are easily underestimated or even neglected in the laboratory, such as method robustness, chemical hazards, safety concerns, environmental impact, availability of starting materials and building blocks in bulk quantities, intellectual property (IP) issues, and the final cost of the product, will come into play and need to be addressed appropriately. The decision on which route will be the best for further development is a crucial event and should come into focus early on the R&D timeline. In addition to scientific and technical concerns, the parameter of speed has come to the forefront in the pharmaceutical arena. Although historically the drug industry has tolerated a total time investment of far more than 10 years from idea to market, the current worldwide paradigm requires a

  9. Evaluation of laboratory and industrial meat and bone meal combustion residue as cadmium immobilizing material for remediation of polluted aqueous solutions: "chemical and ecotoxicological studies".

    Science.gov (United States)

    Coutand, M; Deydier, E; Cyr, M; Mouchet, F; Gauthier, L; Guilet, R; Savaete, L Bernues; Cren, S; Clastres, P

    2009-07-30

    Meat and Bone Meals (MBM) combustion residues (ashes) are calcium and phosphate-rich materials. The aim of this work is to evaluate ashes efficiency for remediation of cadmium-contaminated aqueous solutions, and to assess the bioavailability of cadmium on Xenopus laevis larvae. In this study both industrial (MBM-BA) and laboratory (MBM-LA) ashes are compared regarding their efficiency. Kinetic investigations reveal that cadmium ions are quickly immobilized, with a maximum cadmium uptake at 57 mg Cd(2+)/g of ashes for MBM-LA, two times higher than metal uptake quantity of MBM-BA, in our experimental conditions. Chemical and X-ray diffraction analysis (XRD) reveal that Cd(2+) is mainly immobilized as Ca(10-x)Cd(x)(PO(4))(6)(OH)(2) by both ashes, whereas otavite, Cd(CO(3)), is also involved for MBM-LA in cadmium uptake. Otavite formation could be explained by the presence of carbonates in MBM-LA, as observed by IR. Genotoxicity of cadmium solution on Xenopus larvae is observed at 0.02, 0.2 and 2mg Cd(2+)/L. However addition of only 0.1g/L MBM-LA inhibits these effects for the above concentration values whereas Cd(2+) bioaccumulation in larvae's liver is similar for both experiments, with and without ashes.

  10. 移动技术在快速消费品行业的全球化营销应用%Mobile Solution Architecture of FMCG Industry

    Institute of Scientific and Technical Information of China (English)

    王鸣

    2012-01-01

    Information system has become increasingly prominent on the enterprise applications. Along with the deepening development of business logic, the more sensitive information systems support is needed. Especially, the large multinational corporations face an even more complex market environment; hence it demands higher information system requirements. Furthermore, in recent years, mobile technology has greatly developed, as well as communication speed, terminal storage, and interfaces have a profound transformation. These mature technical schemes have prepared for enterprises to control the terminal market timely, especially for the fast-moving consumer goods industry, which is more sensitive to the market data-these mature applications have become even more critical. This paper is to test the proposed business models and the framework of mobile technology solutions for the fast-moving consumer goods industry and to forecast and complete this model and framework by illustrating an example of a fast-moving consumer goods industry, which has already successfully applied mobile technology to control its overseas markets.%在当今全球化背景下,信息系统在企业级应用中的作用已日益突出,伴随业务的不断发展,企业需要更加敏锐的信息系统来支持,尤其是具有海外机构的大型企业,面对的市场环境更加复杂,对信息系统的要求也就更高.此外,近几年的移动技术有了很大程度的发展,通信速度、终端存储、交互界面都有了巨大的变革,这些成熟的技术方案为企业及时控制终端市场做好了充分的准备,尤其是在对市场数据较为敏感的快速消费品(以下简称快消品)行业,这样的成熟应用就显得更为关键.本文将结合一个快速消费品企业成功应用移动技术开展海外市场营销的实例,来验证所提出的适合该行业的业务模型和移动技术解决方案架构,并对此模型和方案架构做新的展望和完善.

  11. Self-assembly of mesoporous Bi-S-TiO2 composites for degradation of industrial dinitrotoluene solution under UV light.

    Science.gov (United States)

    Gan, Qiang; Feng, Guoqi; Liu, Xia; Shang, Hairu; Feng, Changgen

    2017-04-01

    Mesoporous Bi-S-TiO2 composites were synthesized by the method combining evaporation-induced self-assembly (EISA) method with impregnation process. Characterization shows mesoporous Bi-S-TiO2 was a highly crystalline anatase, with relatively high thermal stability, large surface area (75-120 m(2)/g), and large mesopore (10-20 nm). The results also revealed that Bi and S species existed in Bi(4+), S(2-), S and S(6+) forms in the mesoporous TiO2, which allow the mesoporous Bi-S-TiO2 illustrating strong absorption in the ultraviolet region, and the absorption edge shifts to the visible-light region. Photodegradation tests shown that, about 92.3% industrial aqueous dinitrotoluene (DNT) solution could be degraded by 1.5%Bi-S-TiO2 under UV irradiation for 5 h. Concentration of Bi ions and calcination temperature were found to play important roles in its mesoporous properties and photocatalytic activity.

  12. Physico-chemical characteristics of activated carbons based on a copolymer of furfural and mineral raw materials of the Republic of Kazakhstan and their application in extracting gold from industrial solutions

    Directory of Open Access Journals (Sweden)

    Kanagat Kishibayev

    2013-09-01

    Full Text Available Activated carbons are widely used in different industries for cleaning a variety of natural objects from of technogenic pollutants. In the article presents the results of physico-chemical investigations of activated carbons. The investigations on the sorption of gold in cyanide solutions activated sorbent based on furfural and sorbent based on shungit.

  13. 浅谈莱钢能源管控中心工业网络安全问题及解决方案%The Problems and the Solutions of Laigang Energy Control Center Industrial Network Security

    Institute of Scientific and Technical Information of China (English)

    李青

    2013-01-01

      随着IT技术快速进入工业自动化系统的各个层面,工业网络信息安全日益显得十分重要。本文较深入分析了工业网络安全的主要威胁,较全面论述了工业网络信息安全中涉及的主要技术和解决方案。%With the IT technology into industrial automation system at all levels rapidly, the industry network information security is more and more important. This paper analyzes the main threat of the industry network security, comprehensively discusses the main technology and the solutions for the industrial network information security.

  14. Industry leading satellite based GNSS (Global Navigation Satellite System) positioning and monitoring solutions with real-time CORS (Continuously Operating Reference Station) networks

    Science.gov (United States)

    Janousek, Martin

    2010-05-01

    Real-Time CORS (Continuously Operating Reference Station Networks) today are typically GNSS networks for positioning and monitoring purposes. Real-Time networks can consist of a few stations for a local network up to nation- or continental wide networks with several hundred CORS stations. Such networks use wide area modeling of GNSS error sources including ionospheric, tropospheric and satellite orbit correction parameters to produce highest precision and efficiency method of positioning using GNSS. In 1998 Trimble Navigation Ltd. introduced a method of surveying with a non-physical or computed base station, called VRS (Virtual Reference Station). It is the most widely supported method of producing a network solution for precise carrier phase positioning in the industry. Surveying historically required one base as the fixed point of reference, and one or multiple rovers using that point of reference to compute their location by processing a vector result, either in real-time or in a postprocessed sense. Real-time survey is often referred to as RTK, short for real-time kinematic, and as the name suggests the results are in real time and you can move. The power of VRS is in the ability to compute a real-time wide-area solution to the factors that cause single base methods to degrade with distance. Namely, ionospheric and tropospheric modeling, and satellite orbit corrections. This is achieved by the reference network of CORS. A wide scattering of CORS across a state, typically 50-70km in mid-latitudes, creates a ground based sampling which significantly reduces the distance dependent errors that accumulate in the single base-rover relationship described early. Furthermore, GNSS networks can be used for real-time monitoring purposes at various distance range. Trimble Integrity Manager software provides a suite of motion engines designed to detect and quantify any movement in a range of scales from slow, creeping movement like subsidence, through sudden events such as

  15. Polyacrylamido-2-methyl-1-propane sulfonic acid-grafted-natural rubber as bio-adsorbent for heavy metal removal from aqueous standard solution and industrial wastewater.

    Science.gov (United States)

    Phetphaisit, Chor Wayakron; Yuanyang, Siriwan; Chaiyasith, Wipharat Chuachuad

    2016-01-15

    Bio-adsorbent modified natural rubber (modified NR) was prepared, by placing the sulfonic acid functional group on the isoprene chain. This modification was carried out with the aim to prepare material capable to remove heavy metals from aqueous solution. The structures of modified NR materials were characterized by FT-IR and NMR spectroscopies. Thermal gravimetric analysis of modified NR showed that the initial degradation temperature of rubber decreases with increasing amount of polyacrylamido-2-methyl-1-propane sulfonic acid (PAMPS) in the structure. In addition, water uptake of the rubber based materials was studied as a function of time and content of PAMPS. The influence of the amount of PAMPS grafted onto NR, time, pH, concentration of metal ions, temperature, and regeneration were studied in terms of their influence on the adsorption of heavy metals (Pb(2+), Cd(2+) and Cu(2+)). The adsorption isotherms of Pb(2+) and Cd(2+) were fitted to the Freundlich isotherm model, while Cu(2+) was fitted to the Langmuir isotherm. However, the results from these two isotherms resulted in a similar behavior. The adsorption capacity of the modified NR for the various heavy metals was in the following order: Pb(2+)∼Cd(2+)>Cu(2+). The maximum adsorption capacities of Pb(2+), Cd(2+), and Cu(2+) were 272.7, 267.2, and 89.7 mg/g of modified rubber, respectively. Moreover, the modified natural rubber was used for the removal of metal ions in real samples of industrial effluents where the efficiency and regeneration were also investigated.

  16. Soil Solution

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.

    2009-01-01

    The characteristics of the soil solution in the root environment in the greenhouse industry differ much from those for field grown crops. This is caused firstly by the growing conditions in the greenhouse, which strongly differ from those in the field and secondly the function attributed to the soil

  17. 物联网在工业4.0中的应用研究%Research the Application Solution of Internet of Things in Industry 4.0

    Institute of Scientific and Technical Information of China (English)

    肖枫; 王世昌

    2015-01-01

    本文介绍了物联网、工业4.0的相关概念,在研究物联网和工业4.0发展现状的基础上,提出了物联网在工业4.0中的应用,为物联网技术在工业4.0中的应用研究提供了参考.%This paper introduces the concept of the Internet of things and industry 4.0, then analyzes the development of the Internet of things and industry 4.0. Finally it proposes the application solution of Internet of things in Industry 4.0.

  18. Change Requires Change! Information Technology, Student Preparedness and Industry Collaboration: Supporting the Bridging Process between Education and Training with Innovative Solutions

    Directory of Open Access Journals (Sweden)

    Jill Anne O'Sullivan

    2016-06-01

    Full Text Available This paper, Change Requires Change: will relate that bridging the gap between education: of what we teach and training: of what industry looks for in prepared skills for students, needs to be relevant to today's situations. We need to re-evaluate traditional industry academic partnerships which have been relatively successful including; internships, work-study programs, curriculum advisory boards, guest lectures and capstone courses, to identify gaps and opportunities for what is needed to support our future. Do we want to continue with the status-quo or enhance education? Should we be cognizant of emerging trends? What could be the implications on changing academic-industry partnerships? How can we improve? This paper proposes several new approaches to academics and industry practitioner's towards greater successful collaborations towards student preparation.

  19. All-Russia Thermal Engineering Institute experience in using difficult to burn fuels in the power industry

    Science.gov (United States)

    Tugov, A. N.; Ryabov, G. A.; Shtegman, A. V.; Ryzhii, I. A.; Litun, D. S.

    2016-07-01

    This article presents the results of the research carried out at the All-Russia Thermal Engineering Institute (VTI) aimed at using saline coal, municipal solid waste and bark waste, sunflower husk, and nesting/ manure materials from poultry farms. The results of saline coal burning experience in Troitsk and Verkhny Tagil thermal power plants (TPP) show that when switching the boiler to this coal, it is necessary to take into account its operating reliability and environmental safety. Due to increased chlorine content in saline coal, the concentration of hydrogen chloride can make over 500 mg/m3. That this very fact causes the sharp increase of acidity in sludge and the resulting damage of hydraulic ash removal system equipment at these power stations has been proven. High concentration of HCl can trigger damage of the steam superheater due to high-temperature corrosion and result in a danger of low-temperature corrosion of air heating surfaces. Besides, increased HCl emissions worsen the environmental characteristics of the boiler operation on the whole. The data on waste-to-energy research for municipal solid waste (MSW) has been generalized. Based on the results of mastering various technologies of MSW thermal processing at special plants nos. 2 and 4 in Moscow, as well as laboratory, bench, and industrial studies, the principal technical solutions to be implemented in the modern domestic thermal power plant with the installed capacity of 24 MW and MSW as the primary fuel type has been developed. The experience of the VTI in burning various kinds of organic waste—bark waste, sunflower husk, and nesting/manure materials from poultry farms—has been analyzed.

  20. From materials characterisation to pre-production validation; the role of the research centre in enabling new approaches to providing processing solutions to industry

    Directory of Open Access Journals (Sweden)

    Blackwell Paul L.

    2015-01-01

    Full Text Available Centres such as the AFRC are targeted at bridging the gap between fundamental University research and the needs of industry. The paper describes some of the elements in the process of translating the products of basic scientific research into useful outcomes for industrial manufacturing companies within the metal shaping sector. This commences with a sound knowledge of material mechanical and physical properties within the relevant forming or forging window. This data will then generally be incorporated into a finite element based process model. More sophisticated models will facilitate the prediction of microstructural development during and after forming. However, such models generally still require validation, and in order for such validation to be reflective of industrial practice then full scale or close to full scale trials may be carried out. The AFRC has a range of industrial scale manufacturing equipment which allows such validation to be performed. The net effect of this is that from a manufacturer's point of view a new process may be significantly de-risked prior to introduction into a production environment. The paper will examine some of the approaches used, with specific reference to some of the specialised testing and processing equipment used to translate research into outputs useful to industry.

  1. 湖南矿业可持续发展面临的问题及对策%Problems and Solutions Regarding Sustainable Development of Huuan Mineral Industry

    Institute of Scientific and Technical Information of China (English)

    吴爱祥; 张卫锋

    2001-01-01

    通过广泛的调查和研究,对湖南矿业发展中存在的问题进行了较为全面的分析,指出并论证了基于科技创新体系的可持续发展之路是湖南矿业的必然选择。%Through extensive investigation and study, the authors made a deep insight into Hunan' s mineral industry, concluding that sustainable development road based on technical innovation is the only way out for Hunan's mineral industry.

  2. Comprehensive Approach to Energy and Environment in the EcoCare Program for Design, Engineering and Operation of Siemens Industry Solutions

    DEFF Research Database (Denmark)

    Wegener, Dieter; Finkbeiner, Matthias; Geiger, Dieter;

    2009-01-01

    complex process technology different hot metal producing technologies (blast furnace route vs. smelting reduction routes COREX / FINEX). The second pilot application is targeted on the assessment of infrastructure solutions especially focusing on the comparison of environmental and financial effects...

  3. Industry Service - Technology Centre

    DEFF Research Database (Denmark)

    Hollensen, Svend; Grünbaum, Niels Nolsøe

    2011-01-01

    The chapter describes and explains the development of an Industry Service Technology (IS-T) portal solution at Danfoss for testing of products, including booking system for standardised 'service packages' in order to reduce waiting time.......The chapter describes and explains the development of an Industry Service Technology (IS-T) portal solution at Danfoss for testing of products, including booking system for standardised 'service packages' in order to reduce waiting time....

  4. 香精香料行业ERP实施的管理困扰及解决方案%The Management Problems and Solutions of ERP Implementation in Flavor&Fragrance Industry

    Institute of Scientific and Technical Information of China (English)

    殷小勇

    2011-01-01

    本文介绍了香精香料行业的基本知识,并结合该行业的ERP实施经验,总结了香精香料行业ERP实施中常见的管理困扰和解决方案,以抛砖引玉请大家共同研讨该行业信息化过程中碰到的问题和困扰,以提高该行业ERP实施的成功率和质量。%This article describes the basics of flavor and flagrance industry, combined with the industry's ERP implementation experience, summed up the flavor and fragrance industry, the management of ERP implementation in the common problems and solutions,to start a discussion please to discuss the process of the collision industry information to the problems and difficulties,in order to improve the industry success rate of ERP implementation and quality.

  5. Requirements analysis and data model design for the development of vertical ERP solutions for the ceramic industry; Analisis de requerimientos y diseno de modelo de datos para el desarrollo de una solucion ERP vertical adaptada al sector ceramico

    Energy Technology Data Exchange (ETDEWEB)

    Oltra-Bandenes, R. F.; Gil-gomez, H.; Belver-Lopez, R.; Asensio-Cuesta, S.

    2013-05-01

    Currently, the existing information systems, and specifically the ERP, can not give adequate support to the management of manufacturing companies of ceramic tile, because, among other reasons, not to contemplate the existence of tone, size and quality within the same product. This feature, caused by the lack of homogeneity of the product (LHP), generates various problems in managing the product through the different business processes, such as, stocks management, order management, the production management, etc. Thus, it is necessary to develop an ERP solution that is able to manage adequately the ceramic product, including tone, size and quality. In this paper we analyze the requirements of the ceramic sector, in terms of product identification, and propose a data model to meet these requirements. The model arises as a basic guide for the development of vertical ERP solutions tailored to the ceramic industry. (Author) 30 refs.

  6. Requirements analysis and data model design for the development of vertical ERP solutions for the ceramic industry; Analisis de requerimientos y diseno de modelo de datos para el desarrollo de una solucion ERP vertical adaptada al sector ceramico

    Energy Technology Data Exchange (ETDEWEB)

    Oltra-Badenes, R. F.; Gil-Gomez, H.; Bellver-Lopez, R.; Asensio-Cuenta, S.

    2013-06-01

    Currently, the existing information systems, and specifically the ERP, can not give adequate support to the management of manufacturing companies of ceramic tile, because, among other reasons, not to contemplate the existence of tone, size and quality within the same product. This feature, caused by the lack of homogeneity of the product (LHP), generates various problems in managing the product through the different business processes, such as, stocks management, order management, the production management, etc. Thus, it is necessary to develop an ERP solution that is able to manage adequately the ceramic product, including tone, size and quality. In this paper we analyze the requirements of the ceramic sector, in terms of product identification, and propose a data model to meet these requirements. The model arises as a basic guide for the development of vertical ERP solutions tailored to the ceramic industry. (Author)

  7. The Tree of Industrial Life

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    2002-01-01

    The purpose of this paper is to bring forth an interaction between evolutionary economics and industrial systematics. The suggested solution is to reconstruct the "family tree" of the industries. Such a tree is based on similarities, but it may also reflect the evolutionary history in industries...... finding of optimal industrial trees. The results are presented as taxonomic trees that can easily be compared with the hierarchical structure of existing systems of industrial classification....

  8. 中国钛工业发展的原料问题及对策%Material Problem and Solutions about Further Development of Titanium Industry in China

    Institute of Scientific and Technical Information of China (English)

    韩志彪; 常福增

    2012-01-01

    Titanium series products are widely used in numerous fields of the national economy. The industry of titanium dioxide and sponge titanium have got significant progress in recent years, so stable provision of titanium material is urgently need to sustain the development of titanium industry. However, the current provision of domestic titanium raw material can not meet the increasing demand. At the same time, the price of the import material has been soaring. Consequently, the weak provision of titanium material has severely restricted the further development of titanium industry. The current situation of titanium dioxide and sponge titanium are introduced in this article. Then some measures to solve the problem of acquiring stable provision of titanium material are proposed based on the current situation of domestic titanium resources.%近几年中国钛白及海绵钛产业取得了巨大发展,但国内钛矿原料难以满足生产需求,同时进口钛精矿价格上涨,这给国内钛白和海绵钛生产企业带来了较大的成本压力,也不利于钛产品的进一步推广应用.因此,我国钛工业发展迫切需要稳定的钛矿原料作为支撑.基于国内钛矿资源及其开采利用现状,提出了获得稳定钛原料供应的一些对策.

  9. Failed solutions to the energy crises: nuclear power, coal conversion, and the chemical industry in West Germany since the 1960s

    OpenAIRE

    Marx, Christian

    2014-01-01

    By the end of the economic boom in the 1960s, the oil crisis caused an enormous rise in energy prices. Chemical companies, especially, faced a huge challenge due to their dependency on oil as an energy resource and raw material. This paper explores the reaction of West German chemical corporations to the energy crises of the 1970s and their attempts to anticipate future energy crises. First, the companies tried to implement their own industrial nuclear power stations to cut costs and to becom...

  10. Industrial diamond

    Science.gov (United States)

    Olson, D.W.

    2001-01-01

    An overview of the industrial diamond industry is provided. More than 90 percent of the industrial diamond consumed in the U.S. and the rest of the world is manufactured diamond. Ireland, Japan, Russia, and the U.S. produce 75 percent of the global industrial diamond output. In 2000, the U.S. was the largest market for industrial diamond. Industrial diamond applications, prices for industrial diamonds, imports and exports of industrial diamonds, the National Defense Stockpile of industrial diamonds, and the outlook for the industrial diamond market are discussed.

  11. District energy: an important factor in the socially and environmentally responsible solution for the electric power industry; (requiring greater accelerated capital cost allowance treatment for income tax purposes)

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, P. [HSBC James Capel Canada Inc. (Canada); Stevens, S. [Business Development Consumers Utilities (Canada)

    1996-09-01

    The considerable amount of risk associated with the investment in district energy systems was discussed. It was explained that district energy projects frequently require additional capital allowances, particularly in the initial years of a typical project, in order to attract private capital investments to the industry. Advantages of district energy systems were reviewed, among them reduction in CO{sub 2} and NO{sub x} emissions, enhancing energy conservation through the use of high efficiency boilers or thermal waste energy, increasing tax revenue at various levels of government, providing much-needed capital injection into communities, providing construction and operation jobs, and allowing electric utilities to offer cogeneration from older plants helping to avoid stranded investments. 1 tab.

  12. The Tree of Industrial Life

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    2002-01-01

    The purpose of this paper is to bring forth an interaction between evolutionary economics and industrial systematics. The suggested solution is to reconstruct the "family tree" of the industries. Such a tree is based on similarities, but it may also reflect the evolutionary history in industries ...

  13. Quantum chemical calculations and spectroscopic measurements of spectroscopic and thermodynamic properties of given uranyl complexes in aqueous solutions with possible environmental and industrial applications

    Directory of Open Access Journals (Sweden)

    Višňak Jakub

    2016-01-01

    Full Text Available A brief introduction into computational methodology and preliminary results for spectroscopic (excitation energies, vibrational frequencies in ground and excited electronic states and thermodynamic (stability constants, standard enthalpies and entropies of complexation reactions properties of some 1:1, 1:2 and 1:3 uranyl sulphato- and selenato- complexes in aqueos solutions will be given. The relativistic effects are included via Effective Core Potential (ECP, electron correlation via (TDDFT/B3LYP (dispersion interaction corrected and solvation is described via explicit inclusion of one hydration sphere beyond the coordinated water molecules. We acknowledge limits of this approximate description – more accurate calculations (ranging from semi-phenomenological two-component spin-orbit coupling up to four-component Dirac-Coulomb-Breit hamiltonian and Molecular Dynamics simulations are in preparation. The computational results are compared with the experimental results from Time-resolved Laser-induced Fluorescence Spectroscopy (TRLFS and UV-VIS spectroscopic studies (including our original experimental research on this topic. In case of the TRLFS and UV-VIS speciation studies, the problem of complex solution spectra decomposition into individual components is ill-conditioned and hints from theoretical chemistry could be very important. Qualitative agreement between our quantum chemical calculations of the spectroscopic properties and experimental data was achieved. Possible applications for geochemical modelling (e.g. safety studies of nuclear waste repositories, modelling of a future mining site and analytical chemical studies (including natural samples are discussed.

  14. Quantum chemical calculations and spectroscopic measurements of spectroscopic and thermodynamic properties of given uranyl complexes in aqueous solutions with possible environmental and industrial applications

    Science.gov (United States)

    Višňak, Jakub; Sobek, Lukáš

    2016-11-01

    A brief introduction into computational methodology and preliminary results for spectroscopic (excitation energies, vibrational frequencies in ground and excited electronic states) and thermodynamic (stability constants, standard enthalpies and entropies of complexation reactions) properties of some 1:1, 1:2 and 1:3 uranyl sulphato- and selenato- complexes in aqueos solutions will be given. The relativistic effects are included via Effective Core Potential (ECP), electron correlation via (TD)DFT/B3LYP (dispersion interaction corrected) and solvation is described via explicit inclusion of one hydration sphere beyond the coordinated water molecules. We acknowledge limits of this approximate description - more accurate calculations (ranging from semi-phenomenological two-component spin-orbit coupling up to four-component Dirac-Coulomb-Breit hamiltonian) and Molecular Dynamics simulations are in preparation. The computational results are compared with the experimental results from Time-resolved Laser-induced Fluorescence Spectroscopy (TRLFS) and UV-VIS spectroscopic studies (including our original experimental research on this topic). In case of the TRLFS and UV-VIS speciation studies, the problem of complex solution spectra decomposition into individual components is ill-conditioned and hints from theoretical chemistry could be very important. Qualitative agreement between our quantum chemical calculations of the spectroscopic properties and experimental data was achieved. Possible applications for geochemical modelling (e.g. safety studies of nuclear waste repositories, modelling of a future mining site) and analytical chemical studies (including natural samples) are discussed.

  15. Effect of gamma irradiation in the viscosity of gelatin and pectin solutions used in food industry; Efeito da radiacao gama sobre a viscosidade de solucoes de gelatina e pectina utilizadas na industria de alimentos

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, Patricia Yoko

    2008-07-01

    Pectin is a polysaccharide substance of plant origin that may be used as gelling agent, stabilizer in jams, in yogurt drinks and lactic acid beverages. Gelatin, a protein from bovine origin, in this case, is mainly used as gelling agent due to hydrogel formation during cooling. The {sup 60} Co-irradiation process may cause various modifications in macromolecules, some with industrial application, as reticulation. The dynamic response of viscoelastic materials can be used in order to give information about the structural aspect of a system at molecular level. In the present work samples of pectin with different degree of methoxylation, gelatin and the mixture of both were employed to study the radiation sensitivity by means of viscosity measurements. Solutions prepared with citric pectin with high methoxylation content (ATM) 1 por cent, pectin with low content (BTM) 1 por cent, gelatin 0.5 por cent, 1 por cent and 2 por cent, and the mixture 1 por cent and 2 por cent were irradiated with gamma rays at different doses, up to 15 kGy with dose rate about 2 kGy/h. After irradiation the viscosity was measured within a period of 48 h. The viscosity of ATM and BTM pectin solutions decreased sharply with the radiation dose. However, the gelatin sample presented a great radiation resistance. When pectin and gelatin solutions were mixed a predominance of pectin behavior was found. (author)

  16. Valorization of the eastern waste biogas. Biogas converted in electricity: clean industrial proceeding and energy solution of the city of oujda from a pilot experience of controlled discharge.

    Science.gov (United States)

    Belhaj, Siham; Bahi, Lahcen; Akhssas, Ahmed

    2017-04-01

    The city of Oujda is located in the eastern region of Morocco. As a result of population and industrial growth, the town of Oujda produces annually 140,000 tons of very humid waste, rich in organic matter, about 73%. These wastes were stored in the uncontrolled Sidi Yahya landfill and contaminated by the leachate Surface and subterranean waters of the city, this leachate formed into son-in-law 12 million Nm3 of biogas annually. This large volume of biogas is transformed into an energy source that is part of the sustainable development agenda while transferring the landfill from Sidi Yahya to a controlled landfill in international standards, the latter is located to the south of the city. This landfill is the first in Morocco to treat and recycle all waste and is used to produce electricity, it is the second in Africa. Thus, electricity production in the eastern region will increase from 700 KWh to 3 Mwh. In this work we will show the problems that the city of Oujda was experiencing in the presence of the uncontrolled dump of Sidi Yahya and then we will show the process of harvesting biogas and its transformation into electricity. Keywords: Biogas, Landfill, Oujda, Sustainable Development, Energy

  17. Final Technical Report HFC Concrete: A Low­Energy, Carbon-Dioxide­Negative Solution for reducing Industrial Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Larry McCandlish, Principal Investigator; Dr. Richard Riman, Co-Principal Investigator

    2012-05-14

    Solidia/CCSM received funding for further research and development of its Low Temperature Solidification Process (LTS), which is used to create hydrate-free concrete (HFC). LTS/HFC is a technology/materials platform that offers wide applicability in the built infrastructure. Most importantly, it provides a means of making concrete without Portland cement. Cement and concrete production is a major consumer of energy and source of industrial greenhouse gas (GHG) emissions. The primary goal of this project was to develop and commercialize a novel material, HFC, which by replacing traditional concrete and cement, reduces both energy use and GHG emissions in the built infrastructure. Traditional concrete uses Portland Cement (PC) as a binder. PC production involves calcination of limestone at {approx}1450 C, which releases significant amounts of CO{sub 2} gas to the atmosphere and consumes a large amount of energy due to the high temperature required. In contrast, HFC is a carbonate-based hydrate-free concrete (HFC) that consumes CO{sub 2} gas in its production. HFC is made by reaction of silicate minerals with CO{sub 2} at temperatures below 100 C, more than an order-of-magnitude below the temperature required to make PC. Because of this significant difference in temperature, it is estimated that we will be able to reduce energy use in the cement and concrete industry by up to 30 trillion Btu by 2020. Because of the insulating properties of HFC, we believe we will also be able to significantly reduce energy use in the Building sector, though the extent of this saving is not yet quantified. It is estimated that production of a tonne of PC-based concrete requires about 6.2 million Btu of energy and produces over 1 tonne of CO{sub 2} emissions (Choate, 2003). These can be reduced to 1.9 million Btu and 0.025 tonnes of CO{sub 2} emissions per tonne of HFC (with overall CO{sub 2}-negativity possible by increasing carbonation yield). In this way, by replacing PC

  18. Solid Adsorbents for Low Temperature CO2 Capture with Low Energy Penalties Leading to More Effective Integrated Solutions for Power Generation and Industrial Processes

    Directory of Open Access Journals (Sweden)

    Nannan eSun

    2015-03-01

    Full Text Available CO2 capture represents the key technology for CO2 reduction within the framework of CO2 capture, utilization, and storage (CCUS. In fact, the implementation of CO2 capture extends far beyond CCUS since it will link the CO2 emission and recycling sectors, and when renewables are used to provide necessary energy input, CO2 capture would enable a profitable zero- or even negative-emitting and integrated energy-chemical solution. To this end, highly efficient CO2 capture technologies are needed, and adsorption using solid adsorbents has the potential to be one of the ideal options. Currently, the greatest challenge in this area is the development of adsorbents with high performance that balances a range of optimization-needed factors, those including costs, efficiency, and engineering feasibility. In this review, recent advances on the development of carbon-based and immobilized organic amines-based CO2 adsorbents are summarized, the selection of these particular categories of materials is because they are among the most developed low temperature (<100 oC CO2 adsorbents up to date, which showed important potential for practical deployment at pilot-scale in the near future. Preparation protocols, adsorption behaviors as well as pros and cons of each type of the adsorbents are presented, it was concluded that encouraging results have been achieved already, however, the development of more effective adsorbents for CO2 capture remains challenging and further innovations in the design and synthesis of adsorbents are needed.

  19. Spectrometric analysis of process etching solutions of the photovoltaic industry--determination of HNO3, HF, and H2SiF6 using high-resolution continuum source absorption spectrometry of diatomic molecules and atoms.

    Science.gov (United States)

    Bücker, Stefan; Acker, Jörg

    2012-05-30

    The surface of raw multicrystalline silicon wafers is treated with HF-HNO(3) mixtures in order to remove the saw damage and to obtain a well-like structured surface of low reflectivity, the so-called texture. The industrial production of solar cells requires a consistent level of texturization for tens of thousands of wafers. Therefore, knowing the actual composition of the etch bath is a key element in process control in order to maintain a certain etch rate through replenishment of the consumed acids. The present paper describes a novel approach to quantify nitric acid (HNO(3)), hydrofluoric acid (HF), and hexafluosilicic acid (H(2)SiF(6)) using a high-resolution continuum source graphite furnace absorption spectrometer. The concentrations of Si (via Si atom absorption at the wavelength 251.611 nm, m(0),(Si)=130 pg), of nitrate (via molecular absorption of NO at the wavelength 214.803 nm, [Formula: see text] ), and of total fluoride (via molecular absorption of AlF at the wavelength 227.46 nm, m(0,F)=13 pg) were measured against aqueous standard solutions. The concentrations of H(2)SiF(6) and HNO(3) are directly obtained from the measurements. The HF concentration is calculated from the difference between the total fluoride content, and the amount of fluoride bound as H(2)SiF(6). H(2)SiF(6) and HNO(3) can be determined with a relative uncertainty of less than 5% and recoveries of 97-103% and 96-105%, respectively. With regards to HF, acceptable results in terms of recovery and uncertainty are obtained for HF concentrations that are typical for the photovoltaic industry. The presented procedure has the unique advantage that the concentration of both, acids and metal impurities in etch solutions, can be routinely determined by a single analytical instrument. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. 广播电视闽南语节目播音主持存在的问题及对策%The Study of the Problems and Solutions of Broadcasting and Hosting in Taiwanese Media Industry

    Institute of Scientific and Technical Information of China (English)

    周秀杰

    2015-01-01

    The prosperous development of Taiwanese media industry calls for the talents of broadcasting and hosting who master Taiwan-ese. Based on the theoretical analysis of the art of broadcasting and Taiwanese adaptation, there are academic problems existing in the Taiwanese media industry, particularly of Taiwanese broadcasting and hosting. In order to raise the first-class Taiwanese broadcasters and hosts and to promote Taiwanese media culture influence, the discussion of the sources and existing problems of Taiwanese broadcast-ers and hosts is necessary. Furthermore, this academic paper proposes the solutions to these problems.%闽南语广播电视节目的蓬勃发展亟需闽南语播音主持人才。从播音主持艺术学的理论角度以及从闽南语改译角度分析,现今业界的闽南语播音员主持人在业务上存在一定问题。本文对闽南语播音员主持人的来源以及存在问题进行探讨,并提出解决方案。

  1. Analysis on the Problems of China Photovoltaic Power Industry and Corresponding Solutions%我国光伏发电产业存在的问题及对策建议

    Institute of Scientific and Technical Information of China (English)

    张伟波; 崔志强

    2011-01-01

    Solar energy is an important renewable energy. Developing photovoltaic power will not only relieve the supply- demand contradiction in energy and optimize the energy structure, but also help to restructure this industry. This paper analyzes the status quo, development prospects, and problems of China photovoltaic power industry, and puts forward some suggestions and solutions for its healthy and orderly development.%太阳能是重要的可再生能源。积极发展光伏发电,既缓解能源供需矛盾、优化能源结构,又有利于产业结构调整。对我国光伏发电产业现状、发展趋势、存在的问题等进行了分析,提出了我国光伏发电产业健康有序发展的对策和措施建议。

  2. Financing Difficulties and Solutions of Real Estate Industry%房地产开发行业融资困境及解决渠道的探讨

    Institute of Scientific and Technical Information of China (English)

    周晓娟

    2015-01-01

    随着2014年房市的走低,银行贷款难度的加大,房地产企业紧绷起了资金链条,特别是一些中小型的房地产企业更是举步维艰。通过对房地产行业资金状况问题进行分析,归纳和总结当前房地产这一行业资金筹集所遇到的问题,找出原因所在,最后提出房地产企业加强融资管理的途径:建立健全房地产法律法规,加强金融管理协调配合;拓宽房地产企业融资渠道,建立多元化的投资模式;进一步夯实财务管理基础,提升自身资金积累能力。%With the decline of the housing market in 2014,it becomes more difficult to obtain bank loans,and real estate companies have tightened up the chain of funds;especially some small and medium real estate companies are struggling for the survival.Through the analysis of the financing situation of real estate industry,the paper summarizes current real estate financing problems,finds out the causes for these problems,and puts forward several approaches for real estate enterprises to strengthen financing management:building sound real estate laws and regulations,and strengthening the coordination and cooperation of financial management;broadening finan-cing channels of real estate enterprises,and establishing diversified investment patterns;enhancing the foundation of financial manage-ment,and promoting the accumulation ability of their own capital.

  3. A balanced solution to the cumulative threat of industrialized wind farm development on cinereous vultures (Aegypius monachus) in south-eastern Europe.

    Science.gov (United States)

    Vasilakis, Dimitris P; Whitfield, D Philip; Kati, Vassiliki

    2017-01-01

    Wind farm development can combat climate change but may also threaten bird populations' persistence through collision with wind turbine blades if such development is improperly planned strategically and cumulatively. Such improper planning may often occur. Numerous wind farms are planned in a region hosting the only cinereous vulture population in south-eastern Europe. We combined range use modelling and a Collision Risk Model (CRM) to predict the cumulative collision mortality for cinereous vulture under all operating and proposed wind farms. Four different vulture avoidance rates were considered in the CRM. Cumulative collision mortality was expected to be eight to ten times greater in the future (proposed and operating wind farms) than currently (operating wind farms), equivalent to 44% of the current population (103 individuals) if all proposals are authorized (2744 MW). Even under the most optimistic scenario whereby authorized proposals will not collectively exceed the national target for wind harnessing in the study area (960 MW), cumulative collision mortality would still be high (17% of current population) and likely lead to population extinction. Under any wind farm proposal scenario, over 92% of expected deaths would occur in the core area of the population, further implying inadequate spatial planning and implementation of relevant European legislation with scant regard for governmental obligations to protect key species. On the basis of a sensitivity map we derive a spatially explicit solution that could meet the national target of wind harnessing with a minimum conservation cost of less than 1% population loss providing that the population mortality (5.2%) caused by the operating wind farms in the core area would be totally mitigated. Under other scenarios, the vulture population would probably be at serious risk of extinction. Our 'win-win' approach is appropriate to other potential conflicts where wind farms may cumulatively threaten wildlife

  4. A balanced solution to the cumulative threat of industrialized wind farm development on cinereous vultures (Aegypius monachus) in south-eastern Europe

    Science.gov (United States)

    Whitfield, D. Philip; Kati, Vassiliki

    2017-01-01

    Wind farm development can combat climate change but may also threaten bird populations’ persistence through collision with wind turbine blades if such development is improperly planned strategically and cumulatively. Such improper planning may often occur. Numerous wind farms are planned in a region hosting the only cinereous vulture population in south-eastern Europe. We combined range use modelling and a Collision Risk Model (CRM) to predict the cumulative collision mortality for cinereous vulture under all operating and proposed wind farms. Four different vulture avoidance rates were considered in the CRM. Cumulative collision mortality was expected to be eight to ten times greater in the future (proposed and operating wind farms) than currently (operating wind farms), equivalent to 44% of the current population (103 individuals) if all proposals are authorized (2744 MW). Even under the most optimistic scenario whereby authorized proposals will not collectively exceed the national target for wind harnessing in the study area (960 MW), cumulative collision mortality would still be high (17% of current population) and likely lead to population extinction. Under any wind farm proposal scenario, over 92% of expected deaths would occur in the core area of the population, further implying inadequate spatial planning and implementation of relevant European legislation with scant regard for governmental obligations to protect key species. On the basis of a sensitivity map we derive a spatially explicit solution that could meet the national target of wind harnessing with a minimum conservation cost of less than 1% population loss providing that the population mortality (5.2%) caused by the operating wind farms in the core area would be totally mitigated. Under other scenarios, the vulture population would probably be at serious risk of extinction. Our ‘win-win’ approach is appropriate to other potential conflicts where wind farms may cumulatively threaten wildlife

  5. Industry Employment

    Science.gov (United States)

    Occupational Outlook Quarterly, 2012

    2012-01-01

    This article illustrates projected employment change by industry and industry sector over 2010-20 decade. Workers are grouped into an industry according to the type of good produced or service provided by the establishment for which they work. Industry employment projections are shown in terms of numeric change (growth or decline in the total…

  6. Study on Poplar Industrialization in Jiangsu:(3)Conclusions and Recommendations on Poplar Industrialization Management

    Institute of Scientific and Technical Information of China (English)

    SHEN Wenxing; ZHOU Dingguo; XU Xinping

    2006-01-01

    This article concludes that the creation of a new industrial management,including the innovation of management institution,operation system,industrial policies and industrial technology,is a solution to the management optimization of the poplar industry.The further development of the poplar industry is beneficial to the sustainable development of the society,economy and ecological environment in Jiangsu province.

  7. Industrial technology of preparing sodium sulfide from absorption of hydrogen sulfide with sodium hydroxide solution%用氢氧化钠溶液吸收硫化氢制取硫化钠工业技术

    Institute of Scientific and Technical Information of China (English)

    尚方毓

    2012-01-01

    An industrial technology of using sodium hydroxide solution to absorb hydrogen sulfide generated from barium chloride production to produce sodium sulfide was introduced and its feasibility was discussed from technical and economic perspectives respectively:sodium hydroxide solution with 380-420 g/L absorbed hydrogen sulfide in the packed tower,the reaction was end when mass concentration of sodium sulfide was at 330~350 g/L and the absorption rate of hydrogen sulfide reached at 95%~98%.It not only protects the environment, but also creates benefits for enterprises.%详细阐述了在氯化钡生产过程中,将产生的硫化氢用氢氧化钠溶液吸收并制取硫化钠的生产工艺,分别从技术和经济的角度讨论其可行性:用380~420 g/L氢氧化钠溶液在填料塔中吸收硫化氢,反应终点控制硫化钠质量浓度为330~350 g/L,硫化氢吸收率达95%~98%.该工艺不仅可有效保护环境,而且可为企业创造效益.

  8. Evaluation of laboratory and industrial meat and bone meal combustion residue as cadmium immobilizing material for remediation of polluted aqueous solutions: 'Chemical and ecotoxicological studies'

    Energy Technology Data Exchange (ETDEWEB)

    Coutand, M., E-mail: marie.coutand@iut-tlse3.fr [Universite de Toulouse (France); UPS, INSA (France); LMDC - Laboratoire Materiaux et Durabilite des Constructions, 135, avenue de Rangueil, F-31 077 Toulouse Cedex 04 (France); Deydier, E., E-mail: eric.deydier@iut-tlse3.fr [Universite de Toulouse, Laboratoire de Chimie de Coordination du CNRS (UPR 8241), lie par convention a l' Universite Paul Sabatier - IUT A, Avenue Georges Pompidou, BP258, 81104 Castres (France); Cyr, M. [Universite de Toulouse (France); UPS, INSA (France); LMDC - Laboratoire Materiaux et Durabilite des Constructions, 135, avenue de Rangueil, F-31 077 Toulouse Cedex 04 (France); and others

    2009-07-30

    Meat and Bone Meals (MBM) combustion residues (ashes) are calcium and phosphate-rich materials. The aim of this work is to evaluate ashes efficiency for remediation of cadmium-contaminated aqueous solutions, and to assess the bioavailability of cadmium on Xenopuslaevis larvae. In this study both industrial (MBM-BA) and laboratory (MBM-LA) ashes are compared regarding their efficiency. Kinetic investigations reveal that cadmium ions are quickly immobilized, with a maximum cadmium uptake at 57 mg Cd{sup 2+}/g of ashes for MBM-LA, two times higher than metal uptake quantity of MBM-BA, in our experimental conditions. Chemical and X-ray diffraction analysis (XRD) reveal that Cd{sup 2+} is mainly immobilized as Ca{sub 10-x}Cd{sub x}(PO{sub 4}){sub 6}(OH){sub 2} by both ashes, whereas otavite, Cd(CO{sub 3}), is also involved for MBM-LA in cadmium uptake. Otavite formation could be explained by the presence of carbonates in MBM-LA, as observed by IR. Genotoxicity of cadmium solution on Xenopus larvae is observed at 0.02, 0.2 and 2 mg Cd{sup 2+}/L. However addition of only 0.1 g/L MBM-LA inhibits these effects for the above concentration values whereas Cd{sup 2+} bioaccumulation in larvae's liver is similar for both experiments, with and without ashes.

  9. Bioanalysis: challenges and solutions seminar.

    Science.gov (United States)

    Roberts, Andrew

    2011-09-01

    Industry challenges and solutions for bioanalysis were top of the agenda for the Spring Seminar organized by Quotient Bioresearch in Munich, Germany. The seminar was attended by representatives from pharmaceutical and biotechnology organisations across Europe and featured debates and panel discussions from leading industry speakers on new techniques and hot topics, including the latest industry guidelines.

  10. Energetic use of the urban solid wastes (waste-to-energy); Aproveitamento energetico de residuos solidos urbanos (waste-to-energy)

    Energy Technology Data Exchange (ETDEWEB)

    Dodde, Paula Arrais Moreira; Fonseca, Zilton Jose Sa da [Universidade Federal do Rio de Janeiro (PPE/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Planejamento Energetico], Emails: pauladodde@yahoo.com.br, ziltonfonseca@ig.com.br

    2010-07-01

    This paper approaches the advantages and disadvantages of energetic using of biomass present in the garbage (the urban solid residue is composed by average 65% of organic material)This paper effluents technologically.

  11. H2020 EU Research & Innovation Program Boost the Transfer of Technological Breakthroughs, Enable New Solutions for Personalised Health and Impact the Industry and Healthcare Systems.

    Science.gov (United States)

    Smit, Paul H; Lymberis, Andreas

    2015-01-01

    Our Healthcare systems worldwide are facing grand challenges that can be addressed by intelligent, miniaturized and interconnected devices. Many of today's pharmaceutical drugs create bigger problems than solutions, as drugs help only 40% of the patients and kill, in the USA alone, over 100,000 people per year. The widespread use of antibiotics has led to new strands of bacteria that defy all known antibiotics and kill well over 100,000 people yearly in the world. Outbreaks of infections by new viruses and anti-resistant bacteria are expected with even more grave consequences. The quality of food around the world is steadily deteriorating, as the soils are becoming depleted of essential nutrients and contain increasing amounts of pesticides, herbicides and fungicides. Our environment is burdened with 2.5 billion tonnes of chemicals per year that accumulate in the soil, groundwater, rivers and seas, and eventually end up in our food and our drinking water. As a consequence, there is a strong increase in the incidence of diseases hardly known fifty years ago. In parallel, an increasing number of people are taking the responsibility for their health and well-being in their own hands and are looking for mobile and in-obtrusive ways to objectively monitor their health status. The development of intelligent, miniaturized systems, by the heterogeneous integration of technologies such as micro- and nano-electronics, photonics, biotechnology, materials and information & communication, addresses these issues and has received intensive public support in the EU over the past two decades in the FP6 and FP7 programs. Proven concepts and functional prototypes exist with the potential to create new opportunities to improve our healthcare systems, in particular personalized or precision medicine. These device concepts offer unique abilities to sense, detect, analyze, communicate, respond, and monitor phenomena from the macro (e.g. body, tissues) to the nano scale (e.g. molecules

  12. Industrial Chain: Industrial Vertical Definition

    Institute of Scientific and Technical Information of China (English)

    YifeiDu; GuojunJiang; ShimingLi

    2004-01-01

    Like value chain and supply chain, “industrial chain” becomes the focus of attention. The implication of “industrial chain” has gained a large range of extension. It not only expresses the industrial “chain” structure and relationship of “back and forward”in order or “up and down” in direction, but also it represents a cluster of large scale of firms in an area or colony. It is a network, or a community. Consequently, we conclude that “industrial chain” is a synthesis of industrial chain, industrial cluster, or industrial network.In this article, firstly we will distinguish industry chain from industry. An industry is the collection of firms that have the same attribute, so an industry can be defined by firm collection of certain attribute. We indicate that industrial chain is a kind of vertical and orderly industrial link. It is defined according to a series of specific product or service created. Secondly we analyze the vertical orderly defiinition process from the aspects of social division of labor and requirement division, self-organization system, and value analysis.Non-symmetry and depending on system or community of large scale of industrial units lead to entire industry to “orderly” structure. On the other hand, the draught of diversity and complexity of requirement simultaneously lead to entire industry to be more “orderly”. Along with processes of self-organization, industrial will appi'oach the state of more orderly and steady, and constantly make industrial chain upgrade. Each firm or unit, who will gain the value, has to establish channels of value, which we called “industrial value chain”. Lastly,we discuss the consequence of vertical and orderly definition, which is exhibited by a certain relationship body. The typical forms of industrial chain include industrial cluster, strategy alliance and vertical integration etc.

  13. Management post-treatment of sewage plant sludge. The UE directives affect its re-use and encourage waste-to-energy recovery; Gestion y postratamientos de fangos de EDAR. Las directivas de la UE condicionan su reutilizacion e inducen a la valoracion energetica

    Energy Technology Data Exchange (ETDEWEB)

    Elias, X.

    2004-07-01

    As the number of urban waste-water treatment plants increases, so does the amount of sludge generated and this sludge must be treated so that it can be finally disposed of as a by-product or waste. This article examines and classifies the various different post-treatment techniques and processes for sludge, including the most recent, especially in regard to its use in energy production. It also looks at the major conditions laid downs by European Union (EU) legislation and points out that long-term planning of sludge waste management is required, as the choice of a particular treatment process, which generally involves a large capital outlay, must take into consideration the legal, technical and financial aspects based on a forecasts of how they are likely to perform over time in order to guarantee its future viability. Characterisation of biodegradation in waste water from the canning industry in sequencing batch reactors. (Author) 23 refs.

  14. Identifying potential environmental impacts of waste handling strategies in textile industry.

    Science.gov (United States)

    Yacout, Dalia M M; Hassouna, M S

    2016-08-01

    Waste management is a successful instrument to minimize generated waste and improve environmental conditions. In spite of the large share of developing countries in the textile industry, limited information is available concerning the waste management strategies implemented for textiles on those countries and their environmental impacts. In the current study, two waste management approaches for hazardous solid waste treatment of acrylic fibers (landfill and incineration) were investigated. The main research questions were: What are the different impacts of each waste management strategy? Which waste management strategy is more ecofriendly? Life cycle assessment was employed in order to model the environmental impacts of each waste streaming approach separately then compare them together. Results revealed that incineration was the more ecofriendly approach. Highest impacts of both approaches were on ecotoxicity and carcinogenic potentials due to release of metals from pigment wastes. Landfill had an impact of 46.8 % on human health as compared to 28 % by incineration. Incineration impact on ecosystem quality was higher than landfill impact (68.4 and 51.3 %, respectively). As for resources category, incineration had a higher impact than landfill (3.5 and 2.0 %, respectively). Those impacts could be mitigated if state-of-the-art landfill or incinerator were used and could be reduced by applying waste to energy approaches for both management systems In conclusion, shifting waste treatment from landfill to incineration would decrease the overall environmental impacts and allow energy recovery. The potential of waste to energy approach by incineration with heat recovery could be considered in further studies. Future research is needed in order to assess the implementation of waste management systems and the preferable waste management strategies in the textile industry on developing countries.

  15. 萃取法脱除工业级硫酸锰溶液中钙和镁离子%Removal of Ca and Mg Ions from Industrial Manganese Sulfate Solution by Solvent Extraction

    Institute of Scientific and Technical Information of China (English)

    戴冬阳; 刘志雄; 孙琳; 汤连东; 邹晓勇

    2016-01-01

    以P507和羧酸 A混合物为萃取剂,从工业级硫酸锰溶液中选择性萃取脱除钙和镁离子.考察硫酸锰溶液初始pH值、混合萃取剂(x(P507)∶x(羧酸型 A)=1∶1)的体积分数、皂化率和相比等因素对萃取脱除钙、镁杂质的影响.实验结果表明,在硫酸锰溶液初始 pH值2.3、混合萃取剂体积分数20%、皂化率20%、相比(O/A)2∶1、萃取温度30℃条件下,选择性地萃取脱除钙和镁离子,锰回收率为83.9%.脱除钙和镁的硫酸锰溶液用活性吸附,浓缩结晶并干燥,获得的一水硫酸锰产品符合电池级高纯硫酸锰的要求,钙和镁质量分数分别为38.4×10-6和41.7×10-6.%Ca and Mg ions were selectively removed from industrial manganese sulfate solution with mix-ture extractant of P507 and carboxylic acid A.The effects of parameters including initial pH of manga-nese sulfate solution,concentration and saponification of mixture extractant with mol ratio 1∶1 of P507 and carboxylic acid A,and phase ratio (O/A)were determined.The results showed that Ca and Mg ions were selectively removed under the following conditions of initial pH 2.3 of manganese sulfate solution, 20% volume concentration of mixture extractant,20% saponification ratio,O/A=2∶1 phase ratio at 30 ℃,and the yield of manganese reached 83.9%.By treating the solution with carbon adsorption,con-densation crystallization and desiccation,manganese sulfate monohydrate with Ca content 38.4 ppm and Mg content 41.7 ppm,which meets requirement of high-purity manganese sulfate,is obtained.

  16. Industrial Engineering

    DEFF Research Database (Denmark)

    Karlsson, Christer

    2015-01-01

    Industrial engineering is a discipline that is concerned with increasing the effectiveness of (primarily) manufacturing and (occasionally).......Industrial engineering is a discipline that is concerned with increasing the effectiveness of (primarily) manufacturing and (occasionally)....

  17. Industrial Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Industrial waste is waste from industrial production and manufacturing. Industry covers many industrial sectors and within each sector large variations are found in terms of which raw materials are used, which production technology is used and which products are produced. Available data on unit...... generation rates and material composition as well as determining factors are discussed in this chapter. Characterizing industrial waste is faced with the problem that often only a part of the waste is handled in the municipal waste system, where information is easily accessible. In addition part...... of the industrial waste may in periods, depending on market opportunities and prices, be traded as secondary rawmaterials. Production-specificwaste from primary production, for example steel slag, is not included in the current presentation. In some countries industries must be approved or licensed and as part...

  18. Industrial Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    of the system industry has to inform at the planning stage and afterwards in yearly reports on their waste arising and how the waste is managed. If available such information is very helpful in obtaining information about that specific industry. However, in many countries there is very little information......Industrial waste is waste from industrial production and manufacturing. Industry covers many industrial sectors and within each sector large variations are found in terms of which raw materials are used, which production technology is used and which products are produced. Available data on unit...... generation rates and material composition as well as determining factors are discussed in this chapter. Characterizing industrial waste is faced with the problem that often only a part of the waste is handled in the municipal waste system, where information is easily accessible. In addition part...

  19. Longshoring Industry

    Science.gov (United States)

    2001-01-01

    a)(1). (5) ANSI Z-89.1-1986, Personnel Protection-Protective Headwear for Industrial Workers-Requirements; IBR approved for 1917.93(b). (6) ANSI Z-41... Headwear for Industrial Workers-Requirements.” (c) Protective hats previously worn shall be cleaned and disinfected before issuance by the employer to... Headwear for Industrial Workers-Requirements; IBR approved for §1918.103(b). (6) ANSI Z-41-1991, American National Standard for Personal Protection

  20. Biotechnology Industry

    Science.gov (United States)

    2007-01-01

    Countries Growing GMO , 2007). Herbicide and insect resistance traits will continue to be pursued since 25% of food crops are lost each year to insect...daily lives from the clothing we wear, the fuel we use, the food we eat, and the medicines we take. From the earliest days, humans have used the...industry is very broad and includes health care, food , agriculture, industrial, and environmental industries. It is one of the fastest growing sciences

  1. Canadian construction industry

    Energy Technology Data Exchange (ETDEWEB)

    Rich, M.

    2001-07-01

    The principal sectors of the Canadian construction industry - commercial, industrial, institutional and residential - are examined with regard to their technical considerations concerning the subject of sustainability. Apart from the different needs of each of the sectors of the industry there are also regional differences caused by population distribution, and differences in climate, that have to be identified and accommodated in considering attitudes to recycling and sustainable development. Some indications that there is growing awareness of recycling and reuse are: the increasing frequency of life cycle costing in the commercial and institutional sectors, the use of recycled or otherwise waste materials in concrete, examples of using steel supporting structures and roof joists salvaged from previous uncompleted projects in the industrial sector, improved building envelope and indoor air quality concerns, collective ground source heating, and new basement and framing technologies and construction materials in the residential sector. These improvements notwithstanding, there remains much to be done. The new objective-based National Building Code, for which comments are now being solicited across the country, is expected to identify new and innovative solutions and to kick-start serious efforts to come up with solutions towards increasing overall sustainability in all sectors of the Canadian construction industry.

  2. The Transformation of Radio, Film and Television Industry Preferred---Cloud Media Solutions%广电产业的转型首选--云媒体解决方案

    Institute of Scientific and Technical Information of China (English)

    高志平; 黄金尧

    2014-01-01

    当前广播电视正处于十字街头,大部制的改革、三网融合、移动(无线)互联网、全媒体等构成了广播电视所需面对的复杂格局。广电的机构重组将带来怎样的政策走向?如何留住收视群体?产业如何转型拓展?这是每个广电人共同关心的话题。高锐视讯云媒体解决方案,致力于“跨媒体、跨网络、跨应用”的创新发展,改变广电目前的盈利模式,提升ARPU值,抵御IPTV对广电的冲击,防止数字电视用户流失,使广电网络由传输广播电视业务的专网变成信息公网,迅速提升广电网络价值,促进广电网络文化产业大发展、大繁荣。%At present, the radio and TV is in the midst of the cross street .The super-ministries reform, triple play, mobile ( wireless), the Internet, all media constitutes a complex structure required to broadcast TV . What kind of policy-orientation will Radio and television institution reorganization bring? How to hold audi-ences?How to transform the expand industry? All of these are the common topics interested by each radio and television.Gao Rui video cloud media solutions commit to the “cross-media, across a network, across applica-tion” innovation and development ,change the present profit pattern of radio , film and television , promote the value of ARPU, resist the shock of IPTV, hold digital TV users, Change the radio and television networks from radio and television business private network to public information resources , rapidly promote the value of radio and television networks , accelerate the wide heavy network culture industry big development and pros-perity .

  3. From rumen to industry

    Directory of Open Access Journals (Sweden)

    Sauer Michael

    2012-09-01

    Full Text Available Abstract The rumen is one of the most complicated and most fascinating microbial ecosystems in nature. A wide variety of microbial species, including bacteria, fungi and protozoa act together to bioconvert (lignocellulosic plant material into compounds, which can be taken up and metabolized by the ruminant. Thus, the rumen perfectly resembles a solution to a current industrial problem: the biorefinery, which aims at the bioconversion of lignocellulosic material into fuels and chemicals. We suggest to intensify the studies of the ruminal microbial ecosystem from an industrial microbiologists point of view in order to make use of this rich source of organisms and enzymes.

  4. Industrial Communications.

    Science.gov (United States)

    Lindsay, Dan

    Intended for seniors planning a career in industry as skilled laborers, this specialized course in Industrial Communications offers the student basic communications skills which he will need in his work and in his daily life. Since class activities center around short, factual oral reports, class size will be limited to 20, providing a maximum of…

  5. The Research and Implementation of Enterprise GIS Application Solutions Facing Communications Industry%面向通信行业的企业级GIS应用解决方案研究及实现

    Institute of Scientific and Technical Information of China (English)

    赵楚莹

    2013-01-01

    随着通信业务的快速发展以及通信客户服务标准的提高,通信运营商企业越来越广泛地使用各种GIS先进技术,目前GIS应用范围已覆盖到诸如公司管理决策、网络规划分析、网络资源管理、业务运营分析和一线市场推广等通信运营管理中的几乎所有领域。但在企业级 GIS应用解决方案未提出之前,各类GIS应用建设时间和技术手段发展极为不均衡,从而导致一个企业内部存在的多个GIS应用系统均会出现地图数据不一致、地图应用功能重复建设和业务数据存储分散等系列问题。为此,本文提出了“面向通信行业的企业级GIS应用”解决方案思路,旨在通过构建企业级GIS应用支撑平台,最终实现GIS服务的标准化,有效整合企业各类空间应用信息,以便企业内部产业链各环节能发挥更大作用。%With the rapid development of communication businesses as well as the improvement of customer service standard , the com-munications companies increasingly use a variety of GIS advanced technology .Currently GIS application scope has covered almost all areas of the communications industry such as corporate management decisions , network planning analysis , network resource manage-ment , business operations analysis and front -line marketing .But before the enterprise GIS application solutions are provided the con-struction time and development techniques of all kinds of GIS applications are extremely unbalanced , leading to a series of problems such as the map data of different GIS applications is inconsistent , many map application functions are duplicated to be constructed , and the business data storage is dispersive in a corporate .In this case , the article proposes an enterprise GIS application solution ori-ented the communications industry , aiming to build enterprise -class GIS application platform and eventually to achieve the standardi-zation of GIS services

  6. Industry honoured

    CERN Multimedia

    2008-01-01

    CERN has organised a day to thank industry for its exceptional contributions to the LHC project. Lucio Rossi addresses CERN’s industrial partners in the Main Auditorium.The LHC inauguration provided an opportunity for CERN to thank all those who have contributed to transforming this technological dream into reality. Industry has been a major player in this adventure. Over the last decade it has lent its support to CERN’s teams and participating institutes in developing, building and assembling the machine, its experiments and the computing infrastructure. CERN involved its industrial partners in the LHC inauguration by organising a special industry prize-giving day on 20 October. Over 70 firms accepted the invitation. The firms not only made fundamental contributions to the project, but some have also supported LHC events in 2008 and the inauguration ceremony through generous donations, which have been coordinated by Carmen Dell’Erba, who is responsible for secu...

  7. Design in new industrial contexts

    DEFF Research Database (Denmark)

    Morelli, Nicola

    2005-01-01

    The output of industrial process is becoming more and more complex as a result of saturation of markets and the fine segmentation of the demand, which follows the multiplication of needs, lifestyles and behaviours. Services addressing such needs, are replacing material products as an object...... of exchange in modern markets. This context is addressing industrial production towards new models, characterised by highly personalised and localised solutions, to be developed by a network of actors, rather than a single company. New solution oriented partnerships (SOP) need to be created, involving...... and localised solutions should be expressed according to an industrial logic. The cooperation, within the production system of companies, local actors and even users may address this problem, however the industrialisation of such solutions is a methodological approach that has not yet generated an appropriate...

  8. Contradictions of industrial policy

    Energy Technology Data Exchange (ETDEWEB)

    Levitan, S.A.; Johnson, C.M.

    1983-01-01

    The authors feel that proposals for a new industrial policy have remained unfocused and their most constructive elements have been ignored. If industrial policy arguments emerged from another political context - as a vindication of government intervention instead of an alternative to it - the potential of such arguments for improving economic performance and industrial competitiveness would be considerably greater. Instead, industrial policy has sprouted from a neoliberal movement which in large measure accepts the notion that government intervention has contributed to our social and economic problems. The authors conclude that a constructive approach requires that we abandon the popular widsom that claims our social programs have failed. On the contrary, it requires that we heed evidence demonstrating that societal investments in education, training, and employment pay off. Further, concrete solutions to our economic and social problems will emerge only if proponents of industrial policy acknowledge - openly, vocally, and unabashedly - the importance of an expanded role for government. When industrial policy advocates address this underlying issue, they will build support for necessary public investments that could capture the returns associated with an adaptable workforce, a strong scientific base, and a sound infrastructure for commerce and trade.

  9. Transportable Waste-to-Energy System (TWES) Energy Recovery From Bare Base Waste

    Science.gov (United States)

    2008-02-01

    removed and/or partially burned. Instead the furnace, coupled with a shredder , will completely burn the waste and provide heat for water or other...Photos from Ali Al Salem, AF bare base Nov 1998, FOUO-for official use only 8 8 TWES Fuel Processing Bulk Trash Shredder Shredded Fuel TWES Furnace...Program (FEMP) to initiate the conversion. • Will install and test electricity production at Tyndall AFB 15 15 TWES Process Diagram Shredders Useful

  10. Technology Evaluation of Army-Scale Waste-to-Energy Systems

    Science.gov (United States)

    1977-07-01

    by the so burning is relatively poor and grate surface area reciprocating action of each grate and by tumbling must be large to achieve burnout. These...Ipressure jets and tumbled to a reciprocating grate. some excess oxygen after completion of its conbus- tion process. No credit has been taken in th...BALLISTIC HEAVY GRIT BALLISTIC DRYER REJECT S FRACTION REJECTS l I 1 PELLETAIZEk TO OPT"DAL ",ETAL ECOERY [DENSIFIED RDF i Figure 22. Process flow for

  11. Investigating Efficient Tar Management from Biomass and Waste to Energy Gasification Processes

    Science.gov (United States)

    2015-04-01

    1.0 mL/minute – Split Ratio: 20.0 • Detector 25 – Mass Spectroscopy (MS) – Ion Source Temp:300C – Interface temp = 285C – Solvent cut Time...manuals that allow 35% aromatic, and the JP-8 Spec that allows 25% aromatic hydrocarbon . The stalagmite poses another interesting source of liquid fuel...of Waste Energy into Electricity There are 3 sources of chemical energy coming from a gasifier: Syngas, light tars and heavy tars. The syngas

  12. Life Cycle Comparison of Waste-to-Energy to Sanitary Landfill

    Science.gov (United States)

    Life cycle assessment (LCA) can be used to evaluate the environmental footprint of products, processes, and services. An LCA allows decision makers to compare products and processes through systematic evaluation of supply chains. Also known as a “cradle-to-grave” approach, LCA ev...

  13. Waste-to-Energy Decision Support Method for Forward Deployed Forces

    Science.gov (United States)

    2014-03-27

    values can be seen in Table 3 below. Based on the predominant plastic wastes of PET , HDPE, and LDPE/LLDPE, an average of these energy contents was...may be better suited for other roles including recycling (glass, metal) or construction filling materials (rocks, concrete, dirt, etc.) One category

  14. Optimal utilization of waste-to-energy in an LCA perspective

    DEFF Research Database (Denmark)

    Fruergaard, Thilde; Astrup, Thomas

    2011-01-01

    alternatives were comparable for SRF. For organic waste, mass burn incineration with energy recovery was preferable over anaerobic digestion in most impact categories. Waste composition and flue gas cleaning at co-combustion plants were critical for the environmental performance of SRF treatment, while...... the impacts related to utilization of the digestate were significant for the outcome of organic waste treatment. The conclusions were robust in a present-day as well as in a future energy system. This indicated that mass burn incineration with efficient energy recovery is a very environmentally competitive......Energy production from two types of municipal solid waste was evaluated using life cycle assessment (LCA): (1) mixed high calorific waste suitable for production of solid recovered fuels (SRF) and (2) source separated organic waste. For SRF, co-combustion was compared with mass burn incineration...

  15. Achieving waste to energy through sewage sludge gasification using hot slags: syngas production

    National Research Council Canada - National Science Library

    Sun, Yongqi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-01-01

    .... The hot slags below 920 °C could act as a good heat carrier for sludge gasification and the increasing CO2 concentration in CO2/O2 atmospheres enhanced the production of CO and H2 at 400-800 °C...

  16. Waste-to-Energy Plant Environmental Assessment, Dyess Air Force Base, Texas

    Science.gov (United States)

    2011-09-01

    2006b). Geology at Dyess AFB can be divided into two groups: the Permian Clear Fork Group and Quaternary Alluvium. The Permian Clear Fork Group...resource that cannot be restored as a result of the action (e.g., extinction of a threatened or endangered species or the disturbance of a cultural...States List of Endangered Native Fish and Wildlife or the list of fish or wildJife threatened with statewide extinction as filed by the director of

  17. Power Sources Focus Group - Evaluation of Plasma Gasification for Waste-to-Energy Conversion

    Science.gov (United States)

    2012-09-21

    syngas”) without combustion by using a controlled amount of air and/or steam, leading to partial oxidation of the feedstock. The syngas can be...carbon black, graphite, coke, coal, biomass ), gaseous fuels, and liquid fuels • Effort completed without meeting DARPA energy density goals Past...controls to optimize the process • Reduces dry feedstock to fuel gas and char /ash – The clean producer gas can be used in an internal combustion engine

  18. Research and Development for Robotic Transportable Waste to Energy System (TWES)

    Science.gov (United States)

    2012-01-01

    include respiratory depression, tremors or convulsions , loss of consciousness, coma or death. DELAYED OR OTHER HEALTH EFFECTS: Cancer: Prolonged or...evaporates and forms vapor (fumes) which can catch fire and burn with explosive force. Invisible vapor spreads easily and can be set on fire by many sources

  19. High-Performance Flexible Supercapacitors obtained via Recycled Jute: Bio-Waste to Energy Storage Approach.

    Science.gov (United States)

    Zequine, Camila; Ranaweera, C K; Wang, Z; Dvornic, Petar R; Kahol, P K; Singh, Sweta; Tripathi, Prashant; Srivastava, O N; Singh, Satbir; Gupta, Bipin Kumar; Gupta, Gautam; Gupta, Ram K

    2017-04-26

    In search of affordable, flexible, lightweight, efficient and stable supercapacitors, metal oxides have been shown to provide high charge storage capacity but with poor cyclic stability due to structural damage occurring during the redox process. Here, we develop an efficient flexible supercapacitor obtained by carbonizing abundantly available and recyclable jute. The active material was synthesized from jute by a facile hydrothermal method and its electrochemical performance was further enhanced by chemical activation. Specific capacitance of 408 F/g at 1 mV/s using CV and 185 F/g at 500 mA/g using charge-discharge measurements with excellent flexibility (~100% retention in charge storage capacity on bending) were observed. The cyclic stability test confirmed no loss in the charge storage capacity of the electrode even after 5,000 charge-discharge measurements. In addition, a supercapacitor device fabricated using this carbonized jute showed promising specific capacitance of about 51 F/g, and improvement of over 60% in the charge storage capacity on increasing temperature from 5 to 75 °C. Based on these results, we propose that recycled jute should be considered for fabrication of high-performance flexible energy storage devices at extremely low cost.

  20. Thermal Catalytic Syngas Cleanup for High-Efficiency Waste-to-Energy Converters

    Science.gov (United States)

    2015-12-01

    countercurrent gasifier (right). Despite these desirable operating characteristics, the key disadvantage of updraft gasifiers, and the reason they are not...R.Q.; Monfort, S.M.; Arkenberg, G.B.; Matter, P.H.; Swartz, S.L. Sulfur Tolerant Magnesium Nickel Silicate Catalyst for Reforming of Biomass

  1. Shredded Waste Downdraft Gasifier for Overseas Contingency Operations Waste-to-Energy Conversion

    Science.gov (United States)

    2015-06-01

    is commonly used for this scenario. A pressure sensor should be located just before the suction side of the blower to measure the full vacuum ...focused need to reduce the logistics tail associated with forward operations. Activities associated with mission sustainment at forward operating...Department of Defense (DOD) has a strong interest and focused need to reduce the logistics tail associated with forward operations. Activities

  2. Municipal Waste-to-Energy plants in Poland – current projects

    Directory of Open Access Journals (Sweden)

    Cyranka Maciej

    2016-01-01

    Conclusions show why in the current situation development of Polish WtE infrastructure is right, i.e. operation of aforementioned plants that will ensure benefits associated with energy production, reduction of landfilling and informing public opinion regarding modern waste management models. Additionally, the article draws attention on the high responsibility that will be put on WtE plants operators and that experience gained during WtE implementation can be used to improve even further for future Polish Waste Management Systems.

  3. Waste to Energy : The Waste Incineration Directive and its Implementation in the Netherlands

    NARCIS (Netherlands)

    Duman, Murat; Boels, Luciaan

    2007-01-01

    Essent operates a coal-fired power plant, called AC-9, in Geertruidenberg. A gasifier connected to AC-9 thermally treats waste wood through gasification. The waste wood Essent used is demolition and construction wood, the so-called B-wood. The gas produced through gasification is fed into the

  4. Material development for waste-to-energy plants. Refractory linings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O.

    2010-10-15

    Evaluation and SEM analysis of plant exposed, failed linings confirm over and again that failure in broad lines is linked to excess porosity, inferior quality on raw materials, detrimental reactions between raw materials and other mix constituents, volume growth reactions between base material and salt depositions, thermal stress induced crack formation, and uncontrolled craftsmanship. Extensive evaluations, calculations and considerations revealed numerous ways to execute the formulation of experimental castable mixes, of which some formed a broad base for phase I trials. Three mixes of the experimental castable phase II batches reached apparent porosities of {approx} 10% measured with alcohol, estimated to less than 8%-9% if measured in water. These results compare favourably to the open porosities measure with water of generally applied LCCs in the Danish marketplace of 15.5-16.0%. Converted to bonding phase porosities the low levels realised in experiments look rather good: 28% vs 55-57%. Salt cup tests confirm state of the art resistance. Experiments and assessment of surface oxidation of Silicon Carbide grains of three levels of purity confirm that it is impossible to stabilise SiC by pre-oxydation for the purpose of creating a thicker, protective surface layer of SiO{sub 2}. It is evident from the literature and qualified assessment that free Si, as a remnant surplus from SiC manufacture, does indeed hydrolyse in the castable basic environment under development of H{sub 2} gas bubbles adding on to unwanted porosity. Heat conductivity measurements of six different, representative products conducted by the Danish Technological Institute from 300 dec. C to 750 dec. C according to their credited calorimetric method confirm that the pre-firing to excess temperatures and subsequent measurement according to the DIN/EUN norm does indeed give misleading data of up to 45% for a castable containing {approx} 55% Silicon Carbide. Finite Element analysis confirms the stress levels between steel and refractory with the higher stress level at the top of the panel wall tube. As, however, no intimate and solid bond exists in the finite border layer between the two, the expected cracking may not occur. At least it has not been observed in reality. Experiments with forced, vigorous heating of dried and wet castable blocks, respectively, confirm that spalling and cracking at initial lining heat-up are caused by reversible thermal expansion below boiling point of free, unbonded water left in the micro and capillary porosity, and not by decomposition of hydrates. (Author)

  5. Waste to Energy : The Waste Incineration Directive and its Implementation in the Netherlands

    NARCIS (Netherlands)

    Duman, Murat; Boels, Luciaan

    2007-01-01

    Essent operates a coal-fired power plant, called AC-9, in Geertruidenberg. A gasifier connected to AC-9 thermally treats waste wood through gasification. The waste wood Essent used is demolition and construction wood, the so-called B-wood. The gas produced through gasification is fed into the connec

  6. Small-Scale Waste-to-Energy Technology for Contingency Bases

    Science.gov (United States)

    2012-05-24

    combustion temperature possible with this technology. These variables are important for improved tar conversion, increased tolerance for high moisture...Solid waste volume reduction − Response to waste streams  biomass , refuse-derived fuel, shredded waste − Operation and maintenance requirements

  7. Developing a Decision Support Tool for Waste to Energy Calculations Using Energy Return on Investment

    Science.gov (United States)

    2016-12-01

    that consume the waste and turn it into methane and carbon dioxide, the internal chemistry of the process described in Figure 2. Figure 2... decision about a WTE facility. Figure 5 is the generalized process model that will assist with further development of a formal economic model for WTE...that our model must meet to be an effective and useful tool from which to glean information for decision - making . B. DEVELOPING SYSTEM REQUIREMENTS

  8. From organic waste to energy: A feasible option in South Africa?

    CSIR Research Space (South Africa)

    Greben, HA

    2008-11-01

    Full Text Available Waste in South Africa is disposed of in landfills, which produces unwanted landfill gas (CH4) and leachate emissions. Biological treatment of the Organic Fraction of Municipal Solid Waste (OFMSW) is an established technology in Europe, applying...

  9. Chemistry and Thermodynamics of Solid Waste Streams used in Waste-to-Energy (WTE) Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In spite of our best efforts to minimize the amount of disposable supplies (and the associated packaging) used during space missions, the accumulation of solid...

  10. Classification of waste-to-energy plants in terms of energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, M. [Bauhaus-Universitaet Weimar (Germany); Kleppmann, F. [Confederation of European Waste-to-Energy Plants (CEWEP), Brussels (Belgium); Martin, J.J.E. [Martin GmbH fuer Umwelt- und Energietechnik, Muenchen (Germany); Scholz, R. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany); Seifert, H. [Forschungszentrum Karlsruhe GmbH (Germany)

    2007-07-01

    Just recently there have been some intense discussions on when a waste incineration plant is to be classified as an energy recovery plant from a political/legal point of view. The issue is dealt with here from a technical and formal point of view and the conclusions are summarised. (orig.)

  11. Management of solid residues in waste-to-energy and biomass systems

    Energy Technology Data Exchange (ETDEWEB)

    Vehlow, J.; Bergfeldt, B. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Technische Chemie; Wilen, C.; Ranta, J. [VTT Technical Research Centre of Finland, Espoo (Finland); Schwaiger, H. [Forschungsgesellschaft Joanneum mbH, Graz (Austria); Visser, H.J.M. [ECN Energy Research Centre of the Netherlands, Petten (Netherlands); Gu, S.; Gyftopoulou, E.; Brammer, J. [Aston Univ., Birmingham (United Kingdom)

    2007-12-15

    A literature review has been performed for getting in-depth information about quality of residues from thermal processes for waste and biomass as well as their disposal or utilisation options and current practices. Residues from waste incineration have been subject to intense research programs for many years and it can be concluded that the quality of bottom ashes has meanwhile a high standard. The question whether an utilisation as secondary building material is accepted or not depends on the definition of acceptable economic impac. For filter ashes and gas cleaning residues the situation is more complex. Their quality is known: due to their high inventory of heavy metals and organic micro-pollutants they are classified as hazardous waste which means they require specific measures for their safe long-term disposal. A number of stabilisation and treatment processes for filter ashes and gas cleaning residues including the recovery of species out of these materials have been developed but none has been implemented in full scale due to economic constraints. There is reason to speculate that even recovery processes which are not profitable for private companies might point out economically useful if future and long-term costs which have to be covered of the society, e.g. for rehabilitation of contaminated sites, are taken into account. Their quality as well as that of residues from combustion of contaminated biomass is mainly depending on the quality of the fuel. The inventory of critical ingredients in fuel produced from waste or waste fractions, especially of halogens and heavy metals, is often rather high and shows typically a wide range of variation. A reliable quality control for such fuels is very difficult. Other residues can - like gas cleaning residues from waste incineration - be inertised in order to meet the criteria for the access to cheaper landfills than those for hazardous waste. A similar conclusion can be drawn for the quality and management of residues from pyrolysis or carbonisation of biomass. A high potential of application of such charcoal is theoretically possible but the ecological compatibility of some of the proposed scenarios has not yet been shown. An open question is also the potential of such residues for the recovery of ingredients with fertiliser capabilities like potassium of phosphorous. Limited sound information, too, was found for residues from anaerobic digestion of agricultural and other biomass and organic waste fractions. There are two main issues concerning their environmental compatibility: the potential pollution in case materials originated from waste is treated respectively co-treated and the inventory of nutrients in case 'clean' biomass from the agricultural sector only was used. A final conclusion can be drawn that there is need for further research on long-term reliable management strategies, especially for all types of residues from gas cleaning in all processes.

  12. A Computer Program for Modeling the Conversion of Organic Waste to Energy

    Directory of Open Access Journals (Sweden)

    Pragasen Pillay

    2011-11-01

    Full Text Available This paper presents a tool for the analysis of conversion of organic waste into energy. The tool is a program that uses waste characterization parameters and mass flow rates at each stage of the waste treatment process to predict the given products. The specific waste treatment process analysed in this paper is anaerobic digestion. The different waste treatment stages of the anaerobic digestion process are: conditioning of input waste, secondary treatment, drying of sludge, conditioning of digestate, treatment of digestate, storage of liquid and solid effluent, disposal of liquid and solid effluents, purification, utilization and storage of combustible gas. The program uses mass balance equations to compute the amount of CH4, NH3, CO2 and H2S produced from anaerobic digestion of organic waste, and hence the energy available. Case studies are also presented.

  13. Deficient Permit Notification Notice For Lake County Waste to Energy Facility

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  14. Bioethanol Production from Waste Potatoes as a Sustainable Waste-to-energy Resource via Enzymatic Hydrolysis

    Science.gov (United States)

    Memon, A. A.; Shah, F. A.; Kumar, N.

    2017-07-01

    Ever increasing demand of energy and corresponding looming depletion of fossil fuels have transpired into a burning need of time to vie for alternative energy resources before the traditional energy sources are completely exhausted. Scientists are continuously working on sustainable energy production as an alternate source of energy to meet the present and future requirements. This research deals with conversion of the starch to fermentable carbon source (sugars) by fermentation through liquefaction by using yeast and alpha- amylase. The results show that the significant bioethanol production was achieved while using the parameters like temperature (30 °C) pH (6) and incubation time of 84 hrs. About 90 ml of bioethanol was produced from potato intake of 800 g. Pakistan being an agricultural country is rich in potato crop and this research bodes well to open new vistas to arrest the energy shortage in this part of the world

  15. PSD Applicability Determination for AEG Bovoni Power's Waste-to-Energy Project

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  16. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling

    OpenAIRE

    Kunwar Paritosh; Kushwaha, Sandeep K.; Monika Yadav; Nidhi Pareek; Aakash Chawade; Vivekanand Vivekanand

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and ...

  17. Industrial pioneers

    NARCIS (Netherlands)

    Wassink, J.

    2014-01-01

    With their knowledge of metallurgy, mechanics and thermodynamics, mechanical engineers had to give shape to the industrial revolution in the Netherlands 150 years ago. This revolution only slowly gathered momentum, however, especially in comparison with England.

  18. Industrial Chemistry.

    Science.gov (United States)

    Gumprecht, Donald L.; Thrasher, Joseph S.

    1990-01-01

    Described is a course designed to better prepare students for employment in chemical industries. A course schedule for this interim course and a list of sources of speakers and speaker credentials is provided. (CW)

  19. Electronics Industry

    Science.gov (United States)

    2006-01-01

    companies to begin listing stock options as expenses on financial reports (Chappell, 2005). The industry had used stock options extensively to help... stock options (Chappell, 2005). Industry representatives interviewed by the group argued against the requirement since they predict U.S. companies...may be less inclined now to offer stock options , and subsequently talent may be lost to aggressive foreign competition (Anonymous interviews, 2006

  20. 焦炉煤气-甲醇产业链延伸技术方案的经济分析%Economic evaluation of industrial chain extension solutions for coke oven gas to methanol and chemicals

    Institute of Scientific and Technical Information of China (English)

    易群; 吴彦丽; 范洋; 胡长淳; 褚琦; 冯杰; 李文英

    2014-01-01

    与煤制甲醇和天然气制甲醇工艺相比,焦炉煤气制甲醇不仅可以有效利用焦炉煤气中的氢,而且具有低成本的优势。在焦炉煤气制甲醇工艺基础上,文中提出了3种具有发展潜力的焦炉煤气综合利用方案:①气化煤气-焦炉煤气制甲醇生产方案;②焦炉煤气-乙炔-甲醇下游产品方案;③气化煤气-焦炉煤气-乙炔-甲醇下游产品方案。以200×104 t焦炭的生产规模分析了3种方案经济性,其毛利润分别为24.21亿元,18.92亿元和28.74亿元;内部收益率分别为28.29%、24.34%和27.11%。气化煤气-焦炉煤气-乙炔-甲醇下游产品方案充分发挥了规模效应和产品高附加值的特点,具有明显的经济优势;系统灵活性高,抵御市场风险能力强。%Production cost of methanol from abundant and cheap coke oven gas (COG) is about 800-1000 CNY·t-1 lower than that from coal or natural gas. With expansion of international methanol production capacity and production scale, methanol market competition becomes more intense and cost advantage of coke oven gas to methanol is reduced evidently. It is significant to improve technology and extend industrial chains to use coke oven gas and obtain maximal benefits on the basis of coke oven gas to methanol production. One technical solution is combining coke oven gas with coal gasified gas (CGG) to produce methanol. CH4/CO2 reforming technology is used to convert CO2+CH4 into H2+CO, and adjust H2/CO ratio of syngas in this scheme. With this scheme, methanol production can increase by 30%. Another option is to extend methanol industrial chain to obtain high-value-added downstream products, such as vinyl acetate, polyvinyl alcohol, and 1,4-butanediol. In this design, CH4 is separated from COG to make acetylene, which is used to synthesize methanol downstream products by methane partial oxidation technology. However, 0.07 billion m3 H2 surplus and small scale of methanol production

  1. Viscoelasticity of mixed polyacrylamide solution

    Institute of Scientific and Technical Information of China (English)

    徐丽娜

    2008-01-01

    The viscoelastic behavior of polyacrylamide solution is crucial for its application in various industries.The mixed polyacrylamide solution was prepared by mixing polyacrylamide with different relative molecular masses according to the defined mass fraction.The viscosity and elasticity of mixed polyacrylamide solution were separately tested with RS150 rheometer and capillary breakup extensional rheometer and compared with those of the single polyacrylamide solution which is directly provided by manufacturer without any mixing.The results indicate that the mixed and single polyacrylamide solutions have the same shear viscosity and intrinsic viscosity.However,some mixed polyacrylamide solutions have higher elasticity than single polyacrylamide solution.The flow resistance of mixed polyacrylamide with higher elasticity is also greater than that of single polyacrylamide solution in porous medium.This paper presents an effective method of mixing polyacrylamides with different relative molecular masses,which can enhance the elasticity of polyacrylamide solution and flowing resistance through porous medium.

  2. Industrial diamond

    Science.gov (United States)

    Olson, D.W.

    2013-01-01

    Estimated 2012 world production of natural and synthetic industrial diamond was about 4.45 billion carats. During 2012, natural industrial diamonds were produced in at least 20 countries, and synthetic industrial diamond was produced in at least 12 countries. About 99 percent of the combined natural and synthetic global output was produced in Belarus, China, Ireland, Japan, Russia, South Africa and the United States. During 2012, China was the world’s leading producer of synthetic industrial diamond followed by the United States and Russia. In 2012, the two U.S. synthetic producers, one in Pennsylvania and the other in Ohio, had an estimated output of 103 million carats, valued at about $70.6 million. This was an estimated 43.7 million carats of synthetic diamond bort, grit, and dust and powder with a value of $14.5 million combined with an estimated 59.7 million carats of synthetic diamond stone with a value of $56.1 million. Also in 2012, nine U.S. firms manufactured polycrystalline diamond (PCD) from synthetic diamond grit and powder. The United States government does not collect or maintain data for either domestic PCD producers or domestic chemical vapor deposition (CVD) diamond producers for quantity or value of annual production. Current trade and consumption quantity data are not available for PCD or for CVD diamond. For these reasons, PCD and CVD diamond are not included in the industrial diamond quantitative data reported here.

  3. Game of Competition between Governments during Industrial Transfer and Solutions to It——An Empirical Analysis Based on Regional Industrial Transfer between Guangdong and Guangxi%产业转移中的政府间竞争博弈及其化解策略——基于两广地区间产业转移的实证分析

    Institute of Scientific and Technical Information of China (English)

    吴方

    2012-01-01

    There is an intense competition between governments of Guangdong and Guangxi during the course of regional indus- trial transfer and cooperation. According to the game theory of “Prisoner' s Dilemma” model, being in lack of external solutions, or by implementing mandatory external mechanisms, intergovernmental competition will inevitably reduce governments' performance in industrial cooperation. In order to break through the “ Prisoner' s Dilemma” and achieve collaboration and co-existence in the competition, it is necessary to change the utility structure of the game, to increase the players' “threat” and “will” , form and perfect a cooperation mechanism of mutual benefit between the players.%当前两广地区间产业转移与合作的竞争博弈激烈,根据博弈论中的“囚徒困境”模型,缺少外部化解途径即通过强制性的外部机制的存在,政府间竞争博弈必然降低产业合作绩效。为突破这种“囚徒困境”并实现竞争中的协作共存,需要切实地改变博弈者的效用结构,即加大未来对博弈者的“威胁”与“利诱”,进一步形成与完善博弈者之间的互惠协作机制。

  4. Hospitality Industry

    Directory of Open Access Journals (Sweden)

    Marian Ionel

    2017-03-01

    Full Text Available Development of accommodation, as basic services offered to tourists, led to the creation of a genuine hospitality industry. Currently, the hospitality industry is no longer just the accommodation service itself but also requires an atmosphere that ensures leisure tourists in the hotel. Thus, hospitable unit manager offers its service in addition to accommodation and catering services, leisure services, treatment services, business services required.. The existence of factors such as revenue growth, increasing leisure time, the development of transport services, the emergence of new tourist attractions have caused increasing international flows of tourists, with consequent development of units hospitable, and therefore a strong hospitality industry. In Romania, after 1990, the tourism sector experienced a true expansion, both through the development of the hotel sector, but also by developing rural hospitality units.

  5. Fiabilidad industrial

    OpenAIRE

    Griful Ponsati, Eulàlia

    2001-01-01

    El presente libro ha sido escrito y editado para los estudios de segundo ciclo de Ingeniería de Organización Industrial que se imparten en la ETSEIT de la UPC. La materia de fiabilidad que se imparte en este texto es una introducción a las técnicas estadísticas para resolver cuestiones de fiabilidad industrial. Se estudian distintos modelos probabilísticos del tiempo de vida y se presentan distintas formas de recabar información y de estimar, en cada caso, la fiabilidad de los componentes y s...

  6. Industrial Networks

    DEFF Research Database (Denmark)

    Karlsson, Christer

    2015-01-01

    the focus of operations management from managing the own organization to continuously developing and managing a network of external and internal resources forming a production system. This perspective may be called managing an “extraprise” rather than an “enterprise.” It should be noted that “an industrial...... network” should not be seen as an organizational form but as a perspective that can be used to enrich one's understanding of organizations. The industrial network perspective has three basic building blocks: actors, resources, and activities. The three building blocks and their relations constitute...

  7. Industrial Design and Ecological Balance

    Directory of Open Access Journals (Sweden)

    Dan-Horia Chinda

    2009-12-01

    Full Text Available This work presents the direct link between the Industrial Production process of prodfucts ad the Ecological disaster we are witnessing today. The main contribution is the definition of the industrial designer's role in this process and the multiple ways the designer can influence and avoid the ecological imbalance. From the design concept to materials and processing, from packing and recycling to transportation, the author clearly defines the designer's complex involvement and offers solutions.

  8. 江西省生物医药产业发展对策研究%Study on Problems and Solutions in the Development of Bio-pharmaceutical Industry in Jiangxi

    Institute of Scientific and Technical Information of China (English)

    黄晓萍; 陈俊; 蔡汝林; 邱小忠

    2012-01-01

    生物医药产业是江西的重点发展产业和我国的战略性新兴产业,也是一个新兴产业,在金融危机中表现出较强的抗风险力和高增长率,已成为世界各国竞相争夺的产业战略制高点;分析江西省生物医药产业发展现状,深入分析制约江西生物医药产业进一步发展的因素在于研发投入不足、产学研合作不够紧密、缺乏技术市场中介和高素质的技术经营人等方面,并针对存在问题提出相应对策建议,以为实现江西经济的平稳较快发展创造有利条件。%Bio-pharmaceutical industry is one of the key industries in Jiangxi, it is also an emerging industries in China. Bio-pharmaceutical Industry is burgeoning industry, Its ability to guard against fi- nancial risks and high growth is powerful, has become the strategic industry in the world. The paper has analyzed status quo of bio-pharmaceutical Industry. It was pointed out the reasons restricting fur- ther development of the bio-pharmaceutical industry in Jiangxi, that is, inadequate investment in R&D,divorced between Production,learning and research, lack of effective technology market inter- mediary and high-quality technology intermediary. Last the paper has put forward the corresponding countermeasures and suggestions.

  9. Other solutions for the plastic residue from the automobile industry and used as additives in the asphaltic bitumens; Alternativas de los residuos plasticos de la automocion y su empleo como aditivos de los betunes asfalticos. Parte I

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Vidriero, E.; Castillo, F. [CEDEX. Ministerio de Fomento. Madrid (Spain)

    1999-08-01

    This article forms part of an investigation which aims to achieve two adjectives. The first is to cooperate in the improvement of the environment by decreasing the amount of plastic residue from the automobile industry. The second is to improve the characteristics of asphaltic bitumens used in roofing and waterproofing in civil engineering, through the addition of plastic residue from the automobile industry. (Author) 4 refs.

  10. Mechatronics ideas for industrial application

    CERN Document Server

    Szewczyk, Roman; Trojnacki, Maciej; Kaliczyńska, Małgorzata

    2015-01-01

    This book presents recent advances and developments in control, automation, robotics, and measuring techniques. It presents contributions of top experts in the fields, focused on both theory and industrial practice. The particular chapters present a deep analysis of a specific technical problem which is in general followed by a numerical analysis and simulation, and results of an implementation for the solution of a real world problem. The presented theoretical results, practical solutions and guidelines will be useful for both researchers working in the area of engineering sciences and for practitioners solving industrial problems.  

  11. Fermentation Industry.

    Science.gov (United States)

    Grady, C. P. L., Jr.; Grady, J. K.

    1978-01-01

    Presents a literature review of wastes from the fermentation industry, covering publications of 1976-77. This review focuses on: (1) alcoholic beverage production; (2) pharmaceuticals and biochemicals production; and (3) biomass production. A list of 62 references is also presented. (HM)

  12. Fermentation Industry.

    Science.gov (United States)

    Grady, C. P. L., Jr.; Grady, J. K.

    1978-01-01

    Presents a literature review of wastes from the fermentation industry, covering publications of 1976-77. This review focuses on: (1) alcoholic beverage production; (2) pharmaceuticals and biochemicals production; and (3) biomass production. A list of 62 references is also presented. (HM)

  13. Shifting Industries

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Coastal city Beihai aspires to revive its economy by developing its electronic information industry Against a clear sky,the blue sea hums along a shining beach,with villas in the distance.This beautiful scene is in Beihai,in south China’s Guangxi Zhuang Autonomous Region.

  14. 电动汽车产业发展总体方案探索与实践--以普天公司运营为例%Investigation and Practice on the Overall Solution for the Development of New Energy Vehicles Industry--Taking Potevio Co. for Example

    Institute of Scientific and Technical Information of China (English)

    邢炜

    2014-01-01

    Using Business Ecosystem hTeory, this paper put forward the overall solution for the development of new energy vehicles industry as basing on enterprise itself, relying on the government, and orient towards the market to create an integral new energy vehicle industry ecosystem and accelerate its sound development. hTis solution, which was already veriifed in the innovation of practice of the popularization of new energy vehicles by Potevio, aimed at creating an orderly and sound ecology chain in new energy vehicles industry, as well as providing a successful business model for the new energy vehicles operation service.%借用商业生态系统理论,提出立足企业、依托政府和面向市场,打造完整的电动汽车商业生态系统,促进电动汽车产业健康发展的总体解决方案,并在中国普天电动汽车应用领域进行的创新实践中得到了验证。本文探索提出的总体解决方案,为打造电动汽车产业有序健康发展的生态链提供一个新的商业模式。

  15. Multipolar Solutions

    CERN Document Server

    Quevedo, Hernando

    2012-01-01

    A class of exact solutions of the Einstein-Maxwell equations is presented which contains infinite sets of gravitoelectric, gravitomagnetic and electromagnetic multipole moments. The multipolar structure of the solutions indicates that they can be used to describe the exterior gravitational field of an arbitrarily rotating mass distribution endowed with an electromagnetic field. The presence of gravitational multipoles completely changes the structure of the spacetime because of the appearance of naked singularities in a confined spatial region. The possibility of covering this region with interior solutions is analyzed in the case of a particular solution with quadrupole moment.

  16. Parametric programming of industrial robots

    Directory of Open Access Journals (Sweden)

    Szulczyński Paweł

    2015-06-01

    Full Text Available This article proposes the use of parametric design software, commonly used by architects, in order to obtain complex trajectory and program code for industrial robots. The paper describes the drawbacks of existing solutions and proposes a new script to obtain a correct program. The result of the algorithm was verified experimentally.

  17. AC尼尔森中国连锁业的解决方案简析%AC Nielsen: A brief analysis of the solution to the Chinese chain industry

    Institute of Scientific and Technical Information of China (English)

    AC尼尔森

    2004-01-01

    The consumer loyalty to the modem chain industry of supermarket,hypermarket and convenience store etc. in China is generally lower than the level of the foreign markets, and the consumer unit price lowers a little bit than that in 2002.

  18. Industrial chemistry engineering

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-01-15

    This book on industrial chemistry engineering is divided in two parts. The first part deals with industrial chemistry, inorganic industrial chemistry, organic industrial chemistry, analytical chemistry and practical questions. The last parts explain the chemical industry, a unit parts and thermodynamics in chemical industry and reference. It reveals the test subjects for the industrial chemistry engineering with a written examination and practical skill.

  19. Electronic business in the home medical equipment industry.

    Science.gov (United States)

    Wei, June; Graham, Michael J; Liu, Lai C

    2011-01-01

    This paper aims at developing electronic business solutions to increase value for the home medical equipment industry. First, an electronic strategic value chain model was developed for the home medical equipment industry. Second, electronic business solutions were mapped from this model. Third, the top 20 dominant companies in the home medical equipment industry were investigated to see the current adoption patterns of these electronic business solutions. The solutions will be beneficial to decision-makers in the information technology adoptions in the home medical equipment industry to increase the business values.

  20. Linux in Industrial Control Systems

    CERN Document Server

    Riesco, T

    2001-01-01

    Today the Linux operating system has become a real alternative for industrial control systems. Linux supports all layers in control systems starting with Real-Time or embedded systems for data acquisition, following with treatment, storage, communication and data adaptation, and finally, with supervision and user interfaces. In the last years the Linux development has grown being incorporated in several industrial systems demonstrating high performance, availability and stability for complex processes in chemical, automobile or petrol industries. In many of these industries Linux architectures have been tested and validated successfully. The new CERN policy supporting Linux, as well as the emergence of cheap and robust Linux solutions, motivates its implementation in our safety control and supervision systems in the near future.

  1. Solution preparation

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.G.

    1982-01-01

    Reviewed in this statement are methods of preparing solutions to be used in laboratory experiments to examine technical issues related to the safe disposal of nuclear waste from power generation. Each approach currently used to prepare solutions has advantages and any one approach may be preferred over the others in particular situations, depending upon the goals of the experimental program. These advantages are highlighted herein for three approaches to solution preparation that are currently used most in studies of nuclear waste disposal. Discussion of the disadvantages of each approach is presented to help a user select a preparation method for his particular studies. Also presented in this statement are general observations regarding solution preparation. These observations are used as examples of the types of concerns that need to be addressed regarding solution preparation. As shown by these examples, prior to experimentation or chemical analyses, laboratory techniques based on scientific knowledge of solutions can be applied to solutions, often resulting in great improvement in the usefulness of results.

  2. Industrial and applied mathematics in China

    CERN Document Server

    Li,Tatsien

    2014-01-01

    This new volume introduces readers to the current topics of industrial and applied mathematics in China, with applications to material science, information science, mathematical finance and engineering. The authors utilize mathematics for the solution of problems. The purposes of the volume are to promote research in applied mathematics and computational science; further the application of mathematics to new methods and techniques useful in industry and science; and provide for the exchange of information between the mathematical, industrial, and scientific communities.

  3. Business case for industrial DSM maintenance

    OpenAIRE

    Groenewald, H.J.; Van Rensburg, J.F.; Marais, J.H.

    2014-01-01

    The performance of industrial DSM projects often deteriorates without proper maintenance. Underperforming DSM projects waste money and increase the demand for electricity from Eskom. A solution to this problem is dedicated maintenance on industrial DSM projects. This ensures maximum performance and maximum electricity cost savings. In this paper, the business case for industrial DSM maintenance is presented. Results show that the benefits significantly outweigh the cost of DSM maintenance ...

  4. ENVIRONMENT DEGRADATION BASIS FOR INDUSTRIAL SYSTEMS RENGINEERING

    Directory of Open Access Journals (Sweden)

    Rade Milićević

    2007-06-01

    Full Text Available Presently, the most environmental pressure in Serbia comes from urban areas and associated industries,with collection, treatment and disposal all kinds of hazardous waste, non hazardous waste, and waste water being among the most challenging issues.There is an urgency to prevent further environmental degradation and to initiate new environmental and industrial management practices. Industrial systems reingeneering is one of possible solutions, from the authors stand point.

  5. Industrial and Applied Mathematics in China

    CERN Document Server

    Li, Ta-Tsien

    2009-01-01

    This new volume introduces readers to the current topics of industrial and applied mathematics in China, with applications to material science, information science, mathematical finance and engineering. The authors utilize mathematics for the solution of problems. The purposes of the volume are to promote research in applied mathematics and computational science; further the application of mathematics to new methods and techniques useful in industry and science; and provide for the exchange of information between the mathematical, industrial, and scientific communities.

  6. The Development of Old-age Care Service Industry in Hunan Province:Dilemma and Its Solutions%湖南省养老服务业发展:困境与破解

    Institute of Scientific and Technical Information of China (English)

    李时华

    2015-01-01

    湖南省老年人口规模迅速膨胀,高龄、空巢现象日益严重,养老服务潜在需求旺盛。但是,有效需求和供给不足。养老服务支付能力不足、行业标准缺失、长期护理服务和专业护理人员欠缺、投资运营效率不高诸多因素严重制约着目前湖南养老服务业的发展。因此,面对发展困境,我们应从提高老年人收入水平、完善行业标准、构建长期护理保险制度以及提高养老服务业的市场化程度等方面来寻求突破口。%In Hunan province, the potential demand of old-age care service is increasingly growing due to the elderly population scale expanded rapidly and serious phenomena of older age, empty nest of people. However, in fact, effective demand and supply are insufficient. Many factors seriously restrict the development of old-age care service industry, such as lacking of the ability to pay pension services, industry standards, long-term care services and professional nurses and the low efficiency of investment operating. Therefore, faced with a dilemma, we should improve the level of income in the elderly, improve industry standards, build long-term care insurance system, and increase the degree of marketization for old-age care services in order to boost the development of old-age service industry.

  7. Industrious Landscaping

    DEFF Research Database (Denmark)

    Brichet, Nathalia Sofie; Hastrup, Frida

    2017-01-01

    This article offers a history of landscaping at Søby brown coal beds – a former mining site in western Denmark. Exploring this industrial landscape through a series of projects that have made different natural resources appear, we argue that what is even recognized as resources shifts over time...... according to radically different and unpredictable agendas. Natural resources emerge as feats of particular political and historical landscape configurations, rather than fixed dormant sediments waiting to be exploited. This indicates that the Søby landscape is fundamentally volatile, as its resourcefulness...... such as Søby both natural resources and historical developments are made through particular ad hoc perspectives, somehow providing their own argument on the basis of the ends they are seen to meet.. This view of natural resources and development processes as perspectival accomplishments calls for a detailed...

  8. The Present Situation,Problems and Solutions of Chinese Prickly Ash Industry in Longnan Wudu District%陇南武都区花椒产业发展现状、问题及对策

    Institute of Scientific and Technical Information of China (English)

    张芳芳

    2012-01-01

    The natural conditions in Wudu are suitable for growth of Chinese prickly ash,where the production of Chinese prickly ash has a long history and excellent quality.In this paper,the author analyzes and discusses present situation of Chinese prickly ash industry in Longnan Wudu District.It revolves around a series of problems as follows : low technology popularization rate of Chinese prickly ash industry,extensive management,low level of mechanization,harvesting and drying difficulties;backward infrastructure construction of Chinese prickly ash industry,the immature market system;short Chinese prickly ash industry chain,low machining and processing level and added value,poor industry driven ability;at the same time those who understand technology and have fine management in agricultural areas are less,so science promotion is difficult.Among the farmers,few have the brand recognition;among the product,none is regarded as fist brand;in addition,there is low survival of Chinese prickly ash tree.At last the author put forward some measures to solve these problems.%武都区自然条件适宜花椒生长,花椒栽培历史悠久,花椒品质优异.本文主要分析论述了陇南武都区花椒产业发展现状;重点阐述了花椒产业中存在"技术推广普及率不高,管理粗放;生产机械化程度低,采收制干困难;花椒产业基础设施建设落后,市场体系不健全;花椒产业链短,加工水平低,附加值不高,产业带动能力弱;懂技术、精管理的农业人员少,科技成果推广难度大;品牌认知度低,缺乏拳头花椒品牌;椒树补植成活率低"等问题,并提出了解决对策.

  9. Analysis of a wet scrubber network in the air remediation of industrial workplaces: benefit for the city air quality

    CERN Document Server

    Avveduto, Alessandro; Pace, Lorenzo; Curci, Gabriele; Monaco, Alessio; De Giovanni, Marina; Giammaria, Franco; Spanto, Giuseppe; Tripodi, Paolo

    2015-01-01

    Industrial activities carried out in confined spaces are characterized by a very specific type of air pollution. The extended exposure to this kind of pollution is often highly harmful, resulting in dramatic effects both on health and safety aspects. The indoor industrial abatement systems, adopted to purify the air, are typically applied to the emission points. The processed air is subsequently emitted outside. In this study we present the experimental results of three-stage wet scrubber systems installed in the industrial workplace of a (i) fiberglass processing plant, where the highest exposure levels to volatile compounds are nowadays today monitored,and of a (ii) waste-to-energy plant, characterized by a very high particulate matter level. The adopted technology, to be used as complementing strategy,does not require special disposal procedures and the processed air is re-emitted in the same work environment for the benefit of the work operators. The operation of the scrubbers network during the working a...

  10. 南宁市房地产业对经济发展的影响及应对措施%The Impact of Nanning's Real Estate Industry on the Economy and the Possible Problem Solutions

    Institute of Scientific and Technical Information of China (English)

    余伯意

    2015-01-01

    房地产业的运行不仅关系到国民经济的发展,还和人民群众生活息息相关.近几年来,我国很多地区房价快速飙升,远远超过了居民收入的增长,南宁市亦不例外.虽政府多有调控,但因刚需的存在,房地产价格仍只升不降.诚然,房地产能通过拉动建筑行业、金属业、家电业、金融业、建材行业等多行业的发展短期内极大的刺激经济的快速增长,但长期来说,房价的高涨挤压了人们的消费能力,不利于经济的稳健运行,同时,房价过高存在泡沫的风险,一旦泡沫破灭,经济和社会都会产生动荡.所以,政府应维持房地产的健康运行,将住房价格控制在与人均可支配收入水平相适应的程度,打击房地产投机炒作,挤出泡沫,引导房价回归理性,实现经济社会的长期稳定.%The operation of the real estate industry is not only related to the development of national economy, and people's life is closely linked. In recent years, The real estate prices grow rapid in many areas in our country, far more than the income growth, Nanning City is no exception . Although the government has a regulation, but because of the existence of just need, real estate prices are still only go up. It is true that real estate can pass the heavy metal industry, industry, construction industry, the development of financial industry, building materials industry and other industries more greatly the rapid growth of economic stimulus in the short term, but in the long run, soaring house prices squeezed the spending power of people, is not conducive to economic stable operation, at the same time, the price is too high the risk of a bubble, once the bubble burst, economic and social unrest. So, the government should maintain the health of the real estate operation, to control the housing price the degree of adaptation to the level of per capita disposable income, against real estate speculation, extrusion foam, guide prices return

  11. Design in new industrial contexts

    DEFF Research Database (Denmark)

    Morelli, Nicola

    2005-01-01

    The output of industrial process is becoming more and more complex as a result of saturation of markets and the fine segmentation of the demand, which follows the multiplication of needs, lifestyles and behaviours. Services addressing such needs, are replacing material products as an object of ex...... operative paradigm to address concrete design solutions. This paper focuses on the development of such and operative paradigm, which should include methods and tools to develop innovative product service systems (PSS) for the new industrial context.......The output of industrial process is becoming more and more complex as a result of saturation of markets and the fine segmentation of the demand, which follows the multiplication of needs, lifestyles and behaviours. Services addressing such needs, are replacing material products as an object...... of exchange in modern markets. This context is addressing industrial production towards new models, characterised by highly personalised and localised solutions, to be developed by a network of actors, rather than a single company. New solution oriented partnerships (SOP) need to be created, involving...

  12. Phospholipases and their industrial applications.

    Science.gov (United States)

    De Maria, L; Vind, J; Oxenbøll, K M; Svendsen, A; Patkar, S

    2007-02-01

    Phospholipids are present in all living organisms. They are a major component of all biological membranes, along with glycolipids and cholesterol. Enzymes aimed at modifying phospholipids, namely, phospholipases, are consequently widespread in nature, playing very diverse roles from aggression in snake venom to signal transduction and digestion in humans. In this review, we give a general overview of phospholipases A1, A2, C and D from a sequence and structural perspective and their industrial application. The use of phospholipases in industrial processes has grown hand-in-hand with our ability to clone and express the genes in microbial hosts with commercially attractive amounts. Further, the use in industrial processes is increasing by optimizing the enzymes by protein engineering. Here, we give a perspective on the work done to date to express phospholipases in heterologous hosts and the efforts to optimize them by protein engineering. We will draw attention to the industrial processes where phospholipases play a key role and show how the use of a phospholipase for oil degumming leads to substantial environmental benefits. This illustrates a very general trend: the use of enzymes as an alternative to chemical processes to make products often provides a cleaner solution for the industrial processes. In a world with great demands on non-polluting, energy saving technical solutions--white biotechnology is a strong alternative.

  13. Industrial radiographies

    CERN Multimedia

    2005-01-01

    The Radiation Protection group wishes to remind CERN staff responsible for contractors performing X-ray inspections on the CERN sites that the firms must apply the legislation in force in their country of origin, in particular with regard to the prevention of risks relating to ionizing radiation. Industrial radiography firms called on to work on the CERN sites must also comply with the rules laid down in CERN's Radiation Safety Manual and be registered in the relevant CERN database. Since CERN is responsible for safety on its own site, a number of additional rules have been laid down for this kind of work, as set out in Radiation Protection Procedure PRP30 https://edms.cern.ch/file/346848/LAST_RELEASED/PRP30.pdf The CERN Staff Member responsible for the contract shall register the company and issue notification that an X-ray inspection is to be performed via the web interface at the following address: http://cern.ch/rp-radio

  14. Wave Solutions

    CERN Document Server

    Christov, Ivan C

    2012-01-01

    In classical continuum physics, a wave is a mechanical disturbance. Whether the disturbance is stationary or traveling and whether it is caused by the motion of atoms and molecules or the vibration of a lattice structure, a wave can be understood as a specific type of solution of an appropriate mathematical equation modeling the underlying physics. Typical models consist of partial differential equations that exhibit certain general properties, e.g., hyperbolicity. This, in turn, leads to the possibility of wave solutions. Various analytical techniques (integral transforms, complex variables, reduction to ordinary differential equations, etc.) are available to find wave solutions of linear partial differential equations. Furthermore, linear hyperbolic equations with higher-order derivatives provide the mathematical underpinning of the phenomenon of dispersion, i.e., the dependence of a wave's phase speed on its wavenumber. For systems of nonlinear first-order hyperbolic equations, there also exists a general ...

  15. Solution Prototype

    DEFF Research Database (Denmark)

    Efeoglu, Arkin; Møller, Charles; Serie, Michel

    2013-01-01

    This paper outlines an artifact building and evaluation proposal. Design Science Research (DSR) studies usually consider encapsulated artifact that have relationships with other artifacts. The solution prototype as a composed artifact demands for a more comprehensive consideration in its systematic...... environment. The solution prototype that is composed from blending product and service prototype has particular impacts on the dualism of DSR’s “Build” and “Evaluate”. Since the mix between product and service prototyping can be varied, there is a demand for a more agile and iterative framework. Van de Ven...

  16. European Success Stories in Industrial Mathematics

    CERN Document Server

    Esteban, Maria J; Lery, Thibaut; Maday, Yvon

    2011-01-01

    This unique book presents real world success stories of collaboration between mathematicians and industrial partners, showcasing first-hand case studies, and lessons learned from the experiences, technologies, and business challenges that led to the successful development of industrial solutions based on mathematics. It shows the crucial contribution of mathematics to innovation and to the industrial creation of value, and the key position of mathematics in the handling of complex systems, amplifying innovation. Each story describes the challenge that led to the industrial cooperation, how the

  17. Research and application of guar gum solution mixing equipment in food industry%食品工业中瓜尔胶溶液配制设备的研究与应用

    Institute of Scientific and Technical Information of China (English)

    罗彤彤

    2011-01-01

    为解决食品工业瓜尔胶溶液的配制问题,本文开展了影响溶液配制因素的研究,考察搅拌时间、静止时间、温度对溶液配制的影响;研制了专利溶液配制设备,采用集成化设计、模块化配置和自动化控制.主体设备包括高效混合器、静态分散器、快速释放机;辅助设备有多级上料装置、精密给料装置等;以及自动控制系统.该设备特点是溶液浓度准确,水粉高效混合,粘度快速释放,瞬间达到最佳分散状态,不产生水包粉现象.胶粉用量在0.2%~1.0%之间连续可调,粘度波动范围小,自动配液粘度波动±1%,手动配液粘度波动±2%.配液设备出口粘度达到标称粘度80%以上,静止10min即达到标称粘度.%The research is carried out on the influencial factors of guar gum solution mixing, such as agitating time,static time and temperature. Efficient - mixing and rapid - releasing equipment has been developed, adopting integration design, modularized allocation, automatic control. Main parts consist of efficient mixing set, static dispersing set,rapid releasing set; auxiliary parts consist of multistage feeding set, precision feeding set and automatic control system.The chief characteristics are as follows, solution concentrate is correct, guar gum and water mix efficiently without lump, solution viscosity increases rapidly, guar gum dosage is adjustable between 0.2%~ 1.0% successively, viscosity has a small fluctuation, auto mode 1%, manual mode 2%. Solution viscosity at equipment outlet is 80% of nominal viscosity, achieving nominal viscosity after 10min releasing.

  18. PROBLEMS OF UKRAINIAN ENERGY AND THEIR SOLUTIONS

    Directory of Open Access Journals (Sweden)

    G. Fyliuk

    2016-04-01

    Full Text Available The paper studies current situation at the Ukrainian electric power industry. The problems which prevent development of the industry under current conditions are analyzed. The problems of the cross-subsidization are exposed. The ways of the problems solutions are offered.

  19. Podcast solutions

    CERN Document Server

    Geoghegan, Michael W

    2005-01-01

    Podcasting is the art of recording radio show style audio tracks, then distributing them to listeners on the Web via podcasting software such as iPodder. From downloading podcasts to producing a track for fun or profit, ""Podcast Solutions"" covers the entire world of podcasting with insight, humor, and the unmatched wisdom of experience.

  20. PACSPLUS Solutions

    Directory of Open Access Journals (Sweden)

    Reza A Zoroofi

    2007-08-01

    Full Text Available Medal Electronic (ME Engineering Company provides high quality systems, software and services in medical image management, processing and visualization. We assist health care professionals to improve and extend the efficiency of their practices with cost effective solutions. ME is the developer of several medical software including MEDAL-PACS, 3D-Sonosoft, Analytical-Electrophoresis, CBONE and Rhino-Plus. ME is also the exclusive distributor of PACSPLUS in Iran. PACSPLUS is an international, standard, scalable and enterprise PACS solution. PACSPLUS is of ISO, CE and FDA-510 approvals. It is now operational in more than 1000 clinical environment throughout the globe. We discuss about the key features of PACSPLUS system for dealing with real world challenge in PACS as well as the PACS solu-tions needed to fulfill the demands of the clinicians in Iran. Our experience in developing high-end medical software confirms our capability in providing the PACSPLUS as an ultimate PACS solution in Iran.

  1. Plugging solution

    Energy Technology Data Exchange (ETDEWEB)

    Tomashevskiy, L.P.; Boldin, V.M.; Borovikov, P.A.; Fedorova, G.G.; Koshelova, I.F.; Krivoshchekova, N.P.; Prokhorevich, L.D.; Prudnikova, N.N.; Vin, L.R.

    1982-01-01

    This solution is designed to quickly harden in a cool environment. Phenoformaldyhyde tar is used as a hardening agent along with a modified diethyleneglycol in the amounts of (part by weight): phenoformaldyhyde tar and diethyleneglycol=1oo; acidic hardener=8-16; water=2-4.

  2. Green Solutions

    Institute of Scientific and Technical Information of China (English)

    LU LING

    2010-01-01

    @@ World Expo's China Pavilion is a large crimson building,but it's green at heart.The pavilion,a magnificent symbol of Chinese culture,is also a "green landmark" on the world stage,thanks to German company Siemens' energy-saving solutions.

  3. Wavelets in oil industry

    Science.gov (United States)

    Siddiqi, A. H.

    2012-07-01

    In this chapter, the role of wavelet methods applied to identification and characterization of oil reservoir is elaborated. The market rate of petroleum product is very much related to exploration, drilling and production cost. The main goal of researchers working in oil industry is to develop tools and techniques for minimizing cost of exploration and production. Efforts of researchers working in applications of wavelet methods in different parts of the world to achieve this goal is reviewed. Wavelet based solution of Buckley-Leverett equation modelling reservoir is discussed. Variants of Buckley-Leverett equations including its higher dimension versions are introduced. Wavelet methods for inverse problems associated with Buckley-Leverett equation, which are quite useful for oil recovery, are also explained in this chapter.

  4. Application of novel Polypyrrole/thiol-functionalized zeolite Beta/MCM-41 type mesoporous silica nanocomposite for adsorption of Hg2+ from aqueous solution and industrial wastewater: Kinetic, isotherm and thermodynamic studies

    Science.gov (United States)

    Javadian, Hamedreza; Taghavi, Mehdi

    2014-01-01

    Hierarchical zeolite consists of both microporous and unordered mesoporous structures. A composite of Polypyrrole/thiol-functionalized Beta/MCM-41 (PPy/SH-Beta/MCM-41) was prepared, characterized by FE-SEM, FT-IR, XRD, TGA and BET analysis and applied in the investigation of its adsorption characteristics for the removal of Hg2+ ions from aqueous solutions. Thiol-functionalized Beta/MCM-41 (SH-Beta/MCM-41) was prepared by 3-mercaptopropyltrimethoxysilane (MPTMS) in the presence of aerosil-200 as a silica source by two-step hydrothermal crystallization procedure. Batch mode experiments were conducted and three kinetic models were used to describe the adsorption process. The experimental data fitted very well with the Pseudo-second-order kinetic model. The calculated thermodynamic parameters (ΔH, ΔS and ΔG) revealed that the adsorption of Hg2+ onto PPy/SH-Beta/MCM-41 is an endothermic and spontaneous process. It was found that temperature has a positive effect on the removal efficiency and that PPy/SH-Beta/MCM-41 is potentially able to remove Hg2+ ions from aqueous solutions at even high concentrations (400 mg L-1). The recovery of Hg2+ from the PPy/SH-Beta/MCM-41 adsorbent was found to be more than 90% using 0.5 M H2SO4, and the ability of the absorbent to be reused for removal of Hg2+ was investigated.

  5. [Preface for special issue on industrial biotechnology (2014)].

    Science.gov (United States)

    Zhu, Dunming; Tian, Chaoguang

    2014-01-01

    Industrial biotechnology provides practical solutions to the challenges in the areas of resources, energy and environment. Based on the 7th China Summit Forum on Industrial Biotechnology Development, this special issue reports the latest advances in the fields of bioinformatics, microbial cell factories, fermentation engineering, industrial enzymes and high throughput screening methods.

  6. Design of Manufacturing Execution System for FMCG Industries

    Directory of Open Access Journals (Sweden)

    Arindam Banerjee

    2013-06-01

    Full Text Available Manufacturing Execution System (MES has been evolved as an effective solution for today’s high performance, mass production industrial automation system. MES acts like a bridge between managerial level ERP solution and shop floor level control systems hardwares. MES solutions are highly flexible which are developed and customized targeting some particular industry. In this paper we plan to design an MES architecture aiming FMCG (Fast Moving Consumer Goods industries. The proposed solution keeps the basic MES architecture intact while improves production data capturing process based on batch event detection approach. It also accelerates the 2-way communication between ERP and MES for exchanging batch production data.

  7. ENVIRONMENTAL SUSTAINABILITY OF OIL INDUSTRY

    Directory of Open Access Journals (Sweden)

    Vera Rocca

    2013-01-01

    Full Text Available Similarly to most industrial activities, the oil industry can affect the environment at several stages. The greatest impact is the release of waste into the environment in concentrations that are not natural. Virtually in all cases, the adverse impact can be minimized or eliminated through the implementation of a proper waste management plan. Over the past few years the oil industry has placed greater emphasis on minimizing the environmental impact of its operations in all the main phases of a hydrocarbon reservoir life: from appraisal to field development, from production and recovery to reservoir decommissioning. As a consequence, the oil industry is facing important technical challenges, approaching with great interest and expectation new emerging technologies, such as nanotechnologies and alternative solutions, like CO2 underground storage. This study provides an overview of the most interesting solutions that have been proposed and critically highlights their potential benefits and drawbacks. The following paper focuses on some of the new approaches that have already changed the routine operation workflow, while others are currently being tested and may yet require further improvement.

  8. Study on the Development Status of Outward Industry in Baoji City and the Solution%宝鸡市拓展训练行业发展现状与对策研究

    Institute of Scientific and Technical Information of China (English)

    崔谦

    2011-01-01

    本文以拓展培训师和拓展培训公司负责人为调查对象,采用问卷调查法,文献资料法,访谈等研究方法,总结宝鸡市拓展训练开展情况及存在的问题并提出今后的发展对策,旨在为拓展训练在宝鸡市更好的发展提供相应的理论依据.%The outward bound trainers and training company head are the survey characters. Adopting the questionnaire survey, literature, interview and other research methods, the paper summarized the implementation situation of outward bound in Baoji and the main problems existed and the development solutions are proposed to provide the related theoretical basis for better development of Baoji.

  9. 硫酸钴浸出液中用N902萃取铜生产试验研究%Industrial Experimental Research on Extraction of Copper by N902 in Cobalt Sulfate Leaching Solution

    Institute of Scientific and Technical Information of China (English)

    罗凤灵

    2011-01-01

    采用N902对硫酸钴浸出液中铜的萃取进行了研究,考察了萃取相比(0∶A)、萃原液中铜含量、萃取时间对铜萃取率的影响,以及反萃相比(O∶A)、反萃时间、酸度、反萃液铜浓度对铜反萃率的影响,确定了适宜的铜萃取生产条件,当铜离子浓度为6~7g/L时,用15%的N902萃取硫酸介质中的铜,1级铜萃取率可达95%;用新配制的200 g/L的硫酸对负载铜有机相进行循环反萃,1级铜反萃率可达95%.%In the research, N902 is adopted for extraction of the copper in cobalt sulfate leaching solution, the following items are also investigated: effect of extraction phase ratio (O:A) , copper content in original solution and extraction time on copper extraction rate, as well as the effect of stripping phase ratio (0: A), stripping time, acidity and strip liquor's copper concentration on copper stripping rate, and then the proper production conditions for copper extraction is determined, when the concentration of copper ion is 6 ~7 g/L, it is better to use 15% N902 to extract copper in sulfuric acid medium, so the first stage extraction rate of copper can be 95% ; if new prepared 200 g/L sulfuric acid is used for circular stripping of copper loaded organic phase, the first stage stripping rate of copper can reach 95%.

  10. Application of novel Polypyrrole/thiol-functionalized zeolite Beta/MCM-41 type mesoporous silica nanocomposite for adsorption of Hg{sup 2+} from aqueous solution and industrial wastewater: Kinetic, isotherm and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Javadian, Hamedreza, E-mail: Hamedreza.Javadian@yahoo.com [Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Islamic Republic of Iran (Iran, Islamic Republic of); Taghavi, Mehdi [Polymer Chemistry Research Laboratory, Department of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Islamic Republic of Iran (Iran, Islamic Republic of)

    2014-01-15

    Hierarchical zeolite consists of both microporous and unordered mesoporous structures. A composite of Polypyrrole/thiol-functionalized Beta/MCM-41 (PPy/SH-Beta/MCM-41) was prepared, characterized by FE-SEM, FT-IR, XRD, TGA and BET analysis and applied in the investigation of its adsorption characteristics for the removal of Hg{sup 2+} ions from aqueous solutions. Thiol-functionalized Beta/MCM-41 (SH-Beta/MCM-41) was prepared by 3-mercaptopropyltrimethoxysilane (MPTMS) in the presence of aerosil-200 as a silica source by two-step hydrothermal crystallization procedure. Batch mode experiments were conducted and three kinetic models were used to describe the adsorption process. The experimental data fitted very well with the Pseudo-second-order kinetic model. The calculated thermodynamic parameters (ΔH, ΔS and ΔG) revealed that the adsorption of Hg{sup 2+} onto PPy/SH-Beta/MCM-41 is an endothermic and spontaneous process. It was found that temperature has a positive effect on the removal efficiency and that PPy/SH-Beta/MCM-41 is potentially able to remove Hg{sup 2+} ions from aqueous solutions at even high concentrations (400 mg L{sup −1}). The recovery of Hg{sup 2+} from the PPy/SH-Beta/MCM-41 adsorbent was found to be more than 90% using 0.5 M H{sub 2}SO{sub 4}, and the ability of the absorbent to be reused for removal of Hg{sup 2+} was investigated.

  11. Chemicals Industry Vision

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  12. Boosting Cultural Industry

    Institute of Scientific and Technical Information of China (English)

    Li Zhen

    2009-01-01

    @@ On July 22 of 2009, the State Council released the Revitalization Plan of Cultural Industry, which is the 11th revitalization plan for an industry following plans for steel, auto, textile, equipment manufacturing, ship-making, IT and other industries.

  13. Trajectory for Industrial Upgrade

    Institute of Scientific and Technical Information of China (English)

    LIU YUNYUN

    2010-01-01

    @@ The Ministry of Industry and Information Technology (MIIT) ordered the closure of outdated production lines in 18 industries as part of the country's plan to upgrade its industrial structure and move up the value chain.

  14. Business-to-business electronic commerce systems and services. Smart EC solution; Kigyoka nrenkei system solution system. Smart EC solution

    Energy Technology Data Exchange (ETDEWEB)

    Setoguchi, T.; Manchu, Y.; Katsumata, M. [Toshiba Corp., Tokyo (Japan)

    2000-04-01

    Toshiba provides a range of information technology (IT) solutions called SmartEC Solution, which includes business-to-business electronic commerce systems and services based on international standards and industrial know-how, especially our electronic data interchange (EDI) know-how as a manufacturer. These IT solutions are supplied as services covering strategy planning, system integration, and application service provider based on five types of business-to-business electronic commerce. (author)

  15. Solid recovered fuels in the cement industry with special respect to hazardous waste.

    Science.gov (United States)

    Thomanetz, Erwin

    2012-04-01

    Cements with good technical properties have been produced in Europe since the nineteenth century and are now worldwide standardized high-quality mass products with enormous production numbers. The basic component for cement is the so-called clinker which is produced mainly from raw meal (limestone plus clay plus sands) in a rotary kiln with preheater and progressively with integrated calciner, at temperatures up to 1450 °C. This process requires large amounts of fossil fuels and is CO₂-intensive. But most CO₂ is released by lime decomposition during the burning process. In the 1980s the use of alternative fuels began--firstly in the form of used oil and waste tyres and then increasingly by pre-conditioned materials from commercial waste and from high calorific industrial waste (i.e. solid recovered fuel (SRF))--as well as organic hazardous waste materials such as solvents, pre-conditioned with sawdust. Therefore the cement industry is more and more a competitor in the waste-to-energy market--be it for municipal waste or for hazardous waste, especially concerning waste incineration, but also for other co-incineration plants. There are still no binding EU rules identifying which types of SRF or hazardous waste could be incinerated in cement kilns, but there are some well-made country-specific 'positive lists', for example in Switzerland and Austria. Thus, for proper planning in the cement industry as well as in the waste management field, waste disposal routes should be considered properly, in order to avoid surplus capacities on one side and shortage on the other.

  16. Industrial noise control: Some case histories, volume 1

    Science.gov (United States)

    Hart, F. D.; Neal, C. L.; Smetana, F. O.

    1974-01-01

    A collection of solutions to industrial noise problems is presented. Each problem is described in simple terms, with noise measurements where available, and the solution is given, often with explanatory figures. Where the solution rationale is not obvious, an explanatory paragraph is usually appended. As a preface to these solutions, a short exposition is provided of some of the guiding concepts used by noise control engineers in devising their solutions.

  17. H 2 O2湿式氧化法脱除铝酸钠溶液中的有机物%Removal of Organics From Industrial Sodium Aluminate Solution by Hydrogen Peroxide Wet Oxidation

    Institute of Scientific and Technical Information of China (English)

    杜振华; 李军旗; 金会心; 米秋秋

    2014-01-01

    By wet hydrogen peroxide oxidation ,the effects of alkali concentration ,oxidation time ,the amount of hydrogen peroxide and oxidation temperature on the removal of organics in Bayer liquor were investigated .The experiment results show that wet hydrogen peroxide oxidation method can effectively eliminate most of the organics in the sodium aluminate solution .T he better oxidation conditions is alkali concentration of 280 g/L ,oxidation temperature of 80 ℃ ,the amount of hydrogen peroxide of 80 mL ,oxidation time of 120 min for sodium aluminate solution of 80 mL .The removal rate of sodium oxalate is 65 .31% and the removal rate of total organic carbon is 60 .86% at the best conditions .T he process is simple ,no impurity is introduced in the system .%研究了采用 H2 O2湿式氧化法脱除某铝厂分解母液中的有机物,考察了母液苛性碱浓度、氧化时间、双氧水用量、温度对脱除有机物的影响。结果表明:H2 O2湿式氧化法可有效脱除铝酸钠溶液中的大部分有机物;试验获得的适宜工艺条件为苛性碱质量浓度280 g/L ,氧化时间120 min ,氧化温度80℃,双氧水用量80 mL。适宜条件下,草酸钠脱除率为65.31%,总有机物脱除率为60.86%。H2 O2湿式氧化法脱除铝酸钠溶液中有机物工艺简单,系统中不引入杂质。

  18. The Solution to the Edge Figuring of Optical Fabrication Based on Industrial Robots%工业机器人光学加工中边缘问题的解决方法

    Institute of Scientific and Technical Information of China (English)

    沙晟春; 郭晓凌

    2012-01-01

    现代光学系统发展到了自由曲面时代,也对其加工提出了更高要求.在镜面尺寸越来越大的背景下,工业机器人被逐步利用,但加工中的“边缘问题”依旧是难点之一.以进动气囊抛光头为原型设计并制作的柔性旋转抛光轮结构简单,能方便地搭载于工业机器人上,实现镜面边缘区域的加工,解决“边缘问题”.介绍了其原理、模型以及运动方式、下压距离、实物验证三个有关实验,展示了实验结果,并得到结论:合适的控制参数为下压距离小于1.5 mm,转速小于240 r/min.%Modem optical systems now have stepped into the freeform age. Higher demands have been made on its fabrication. Industrial robots have been put to use under the background of the more and more large diameter of the lens. However the edge figuring is still a difficult problem. The soft polishing wheel which is based on the bonnet polishing tool can easily installed on the robot to process the edge part of the lens and solve the edge figuring problem. The principle, model and three experiments ( movement, pressure and verification) were described . The results are shown and concluded which are the proper parameters; pressing distance is less than 1. 5 mm; rotating speed is lower than 240 r/min.

  19. Upstream petroleum industry flaring and venting report : industry performance for year ending December 31, 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    Solution gas, gas from oil and bitumen batteries, is the largest source of flaring and venting in Alberta. A summary of solution gas conserved, flared and vented in Alberta during the year ending December 31, 2001 was presented along with flared volumes for the various oil and gas industry sectors such as gas plants, gas gathering systems, well tests and oil, bitumen and gas batteries. The report identifies the sources of flaring and venting in Alberta and monitors the progress the industry has made in reducing the volume of solution gas flared since 1996. Operators were ranked provincially, as well as within each field centre of the Alberta Energy and Utilities Board, based on solution gas flared, vented, total solution gas produced, and total oil from crude oil and bitumen batteries. The report demonstrates the significant progress industry has made towards reducing solution flare gas and vent volumes in the province. In 2001, the industry decreased overall flared and vented volumes by 16 per cent compared to year 2000 from all sources. Two new tables in this year's report indicate the top 25 solution gas producers in Alberta and the top 25 companies venting solution gas. The table provides information regarding each company's conservation performance and production volumes as a percentage of the provincial total.

  20. Mechatronics ideas, challenges, solutions and applications

    CERN Document Server

    Kaliński, Krzysztof; Szewczyk, Roman; Kaliczyńska, Małgorzata

    2016-01-01

    This book presents recent advances and developments in control, automation, robotics, and measuring techniques. It presents contributions of top experts in the fields, focused on both theory and industrial practice. In particular the book is devoted to new ideas, challenges, solutions and applications of Mechatronics. The particular chapters present a deep analysis of a specific technical problem which is in general followed by a numerical analysis and simulation, and results of an implementation for the solution of a real world problem. The presented theoretical results, practical solutions and guidelines will be useful for both researchers working in the area of engineering sciences and for practitioners solving industrial problems. .

  1. Evolutionary engineering for industrial microbiology.

    Science.gov (United States)

    Vanee, Niti; Fisher, Adam B; Fong, Stephen S

    2012-01-01

    Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.

  2. Study on the Reasons and Solutions of the Disputes of China-Korea Fishery Industry%中韩渔业纠纷的原因和对策探析

    Institute of Scientific and Technical Information of China (English)

    熊涛; 车斌

    2009-01-01

    自2001年6月30日生效以来,我国渔船与韩国海警经常发生纠纷,主要体现在渔船纠纷规模庞大、暴力冲突时有发生、韩海警将带枪盘查、渔业纠纷更为激化等方面.中韩渔业纠纷的主要原因是渔民生存的压力很大,渔民转产难度大;渔民文化水平普遍较低,纠纷多是技术违规所致;韩警执法严格冷漠,甚至违法办事.针对以上现状和原因,对解决中韩渔业纠纷的对策和原因进行了深入分析,提出解决问题的建议,以实现中韩渔业关系的健康发展.%Since China Korea Fishery Agreement came into effect on June 30th of 2001, China and Korean maritime police vessels often had disputes, mainly embodied in large scale fishing disputes, and violent conflicts had regular occurred.Korea maritime police interrogate and exam with gun, more intensified fisheries disputes and so on.The major conflicts between China and Korea were made up by the following aspects: first, the survival pressure among fishermen was high.Second, the difficulty in fishermen industry converts was great.Third, the education level of fishermen was low.Many disputes were mainly caused by technical violation.Fourth, the Korea police execute the law with a strict and indifference manner, or even perform illegal matters.According to the above status and reasons, a deep analysis on China-Korea fishing disputes was performed, thereby the essence of the problem was found, in order to make the fishery relationship between China and Korea to develop healthily.

  3. ANALYSING ROMANIAN INDUSTRIAL COMPETITIVENESS REGARDING THE RECENT DYNAMICS OF THE INTERNATIONAL INDUSTRIAL TRADE BALANCE

    Directory of Open Access Journals (Sweden)

    Felea Adrian Ioan

    2015-07-01

    Full Text Available The industry remains the most important sector of the national economy, although in the other member states the services have a more important share of GDP. In this context, the level of industrial competitiveness is essential for the national competitiveness. This is a characteristic feature for Romania, where the industry has an important share in the GDP, in comparison with the other member states. The international trade balance is an important indicator for measuring the economic competitiveness, especially the industrial competitiveness. Our country has an obvious deficit regarding the international trade balance and thus the analysis of this subject is very relevant at a sectorial level and at national economy’s branches level, when identifying solutions for raising the competitiveness. This paper is dedicated to studying Romania’s industrial competitiveness analysis throughout the recent values of the imports and exports, generated by the industry and its branches. After identifying this concern utility, this article presents the methodology used, defining and experiencing the indicators proposed for characterising the level of industrial competitiveness and also the level and dynamic of the industrial trade. In the practical part of this paper, we presented the recent evolution of the values of imports and exports for the industrial products, the share of industrial sectors in the international trade balance, particularizing the manufacturing industry – the most important industrial sector – at branch level. In the analysis of the manufacturing industry we proposed a classifying methodology divided in six levels of competitiveness, associating and characterizing the branches. The conclusions present the possible solutions for improving the Romanian international industrial trade balance.

  4. Refuse derived fuel (RDF) plasma torch gasification as a feasible route to produce low environmental impact syngas for the cement industry.

    Science.gov (United States)

    López-Sabirón, Ana M; Fleiger, Kristina; Schäfer, Stefan; Antoñanzas, Javier; Irazustabarrena, Ane; Aranda-Usón, Alfonso; Ferreira, Germán A

    2015-08-01

    Plasma torch gasification (PTG) is currently researched as a technology for solid waste recovery. However, scientific studies based on evaluating its environmental implications considering the life cycle assessment (LCA) methodology are lacking. Therefore, this work is focused on comparing the environmental effect of the emissions of syngas combustion produced by refuse derived fuel (RDF) and PTG as alternative fuels, with that related to fossil fuel combustion in the cement industry. To obtain real data, a semi-industrial scale pilot plant was used to perform experimental trials on RDF-PTG.The results highlight that PTG for waste to energy recovery in the cement industry is environmentally feasible considering its current state of development. A reduction in every impact category was found when a total or partial substitution of alternative fuel for conventional fuel in the calciner firing (60 % of total thermal energy input) was performed. Furthermore, the results revealed that electrical energy consumption in PTG is also an important parameter from the LCA approach.

  5. INDUSTRI KREATIF INDONESIA: PENDEKATAN ANALISIS KINERJA INDUSTRI

    Directory of Open Access Journals (Sweden)

    Ahmad Kamil

    2015-10-01

    Full Text Available In 2008, the Department of Commerce of the Republic of Indonesia has launched a creative economic development documents interpreted the 2025 Indonesia became the starting point and guide the development of the creative economy in Indonesia. With the existence of this document, the industry and its stakeholders or other stakeholders can readily develop the creative economy in Indonesia. Economic development in the direction of the creative industries is one manifestation of optimism aspiration to support the Master Plan for the Acceleration and Expansion of Indonesia's Economic Development in realizing the vision of Indonesia are being developed nation. The main objective of this study is the first to analyze the role of the creative industries in Indonesia for labor, value added and productivity, secondly, to analyze the performance trend of the creative industries sector, and third, to analyze the factors affecting the performance of the creative industries sector in Indonesia. Under Indonesia Standard Industrial Classification (ISIC and codes 151-372 (manufacturing industries category identified 18 industry groups belonging to the creative industries, showed that the performance of the national creative industries has been relatively high (in terms of trend analysis of the performance of the industrial creative. Furthermore, regression analysis of panel data (econometrics indicates that company size (SIZE, wages for workers (WAGE and the content of local inputs (LOCAL has a significant impact on the performance of Indonesia's creative industry. Meanwhile, the concentration ratio (CR4 no consequences but have koresi significantly positive effect on the performance of Indonesia’s creative industry.

  6. Healthcare Industry Improvement with Business Intelligence

    Directory of Open Access Journals (Sweden)

    Mihaela-Laura IVAN

    2015-01-01

    Full Text Available The current paper highlights the advantages of big data analytics and business intelligence in the healthcare industry. In the paper are reviewed the Real-Time Healthcare Analytics Solutions for Preventative Medicine provided by SAP and the different ideas realized by possible customers for new applications in Healthcare industry in order to demonstrate that the healthcare system can and should benefit from the new opportunities provided by ITC in general and big data analytics in particular.

  7. Biosorption of Metals from Multi-Component Bacterial Solutions

    CERN Document Server

    Tsertsvadze, L A; Petriashvili, Sh G; Chutkerashvili, D G; Kirkesali, E I; Frontasyeva, M V; Pavlov, S S; Gundorina, S F

    2002-01-01

    The method of extraction of metals from industrial solutions by means of economical and easy to apply biosorbents in subtropics such as products of tea manufacturing, moss, microorganisms is described. The multi-component solutions obtained in the process of leaching of ores, rocks and industrial wastes by peat suspension were used in the experiments. The element composition of sorbent biomass and solutions was investigated by epithermal neutron activation analysis and by atomic absorption spectrometry. The results obtained evidence that the used biosorbents are applicable for extraction of the whole set of heavy metals and actinides (U, Th, Cu, Mn, Fe, Pb, Li, Rb, Sr, Cd, As, Co and others) from industrial solutions.

  8. Athletic Apparel Industry Analysis

    Institute of Scientific and Technical Information of China (English)

    JIE; TAN; NAFISUL; ISLAM; MILAN; MITRASINOVIC

    2015-01-01

    Industry Overview The athletic apparel industry is the fastest growing segment of global clothing industry differentiated by offering high quality athletic apparel made of technically advanced fabrics.The athletic apparel is made for a variety of sports and physical activities for children,men and women and enhances comfort and performance of athletes.The industry consists of companies that design and market

  9. 2001 Industry Studies: Munitions

    Science.gov (United States)

    2001-01-01

    industry can pay, and the munitions industry has difficulty providing the lucrative stock options and other equity attractions that other industries...improve the financial strength of the munitions industry, and result in an enhanced ability to provide stock options and equity attractions to both

  10. Teaching sustainable solutions in engineering

    DEFF Research Database (Denmark)

    Olsen, Stig Irving; Nielsen, Susanne Balslev; Ejlertsen, Marina;

    2015-01-01

    The increasing societal and industrial emphasis on sustainability requests that the next generation engineers needs to be trained in the context of sustainability. One of the means to address students at DTU is the establishment of a course aimed at bachelor students from all of the university......'s study lines. The objectives of the course 'Sustainability in engineering solutions', is for the participants to understand the basic concept of sustainability and its three dimensions (people, profit, planet), as well as to analyse problems and synthesise solutions that are sustainable throughout...

  11. Energy Management in Industrial Plants

    Directory of Open Access Journals (Sweden)

    Dario Bruneo

    2012-09-01

    Full Text Available The Smart Grid vision imposes a new approach towards energy supply that is more affordable, reliable and sustainable. The core of this new vision is the use of advanced technology to monitor power system dynamics in real time and identify system in stability. In order to implement strategic vision for energy management, it is possible to identify three main areas of investigation such as smart generation, smart grid and smart customer. Focusing on the latter topic, in this paper we present an application specifically designed to monitor an industrial site with particular attention to power consumption. This solution is a real time analysis tool, able to produce useful results to have a strategic approach in the energy market and to provide statistic analysis useful for the future choices of the industrial company. The application is based on a three layers architecture. The technological layer uses a Wireless Sensor Network (WSN to acquire data from the electrical substations. The middleware layer faces the integration problems by processing the raw data. The application layer manages the data acquired from the sensors. This WSN based architecture represents an interesting example of a low cost and non-invasive monitoring application to keep the energy consumption of an industrial site under control. Some of the added value features of the proposed solution are the routing network protocol, selected in order to have an high availability of the WSN, and the use of the WhereX middleware, able to easily implement integration among the different architectural parts.

  12. Uranium industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

  13. Tangible Interaction in Industrial Plants

    DEFF Research Database (Denmark)

    Jensen, Mads Vedel

    With this dissertation, I answer the overall research question, which has been my focus through my research activities: How can interaction designers design user interfaces that invite, and allow interaction based on skilled practice in industrial contexts? My assumption is that the rapid invasion...... of technological solutions in industry has happened without respect for, and at cost of the skilled practice of operators and technicians. Under the heading “Tangible Interaction” I have answered the question through the work with three sub-questions: What is the nature of skills, what constitutes skilled practice......? What are the possible methods that can support the design for skilled practice? How can knowledge about skills be fed into the design process? In the dissertation, I first give an overview of Tangible Interaction as a research field. It is a new and wide field that in general is researched...

  14. Synthesis of Industrial Water Networks

    DEFF Research Database (Denmark)

    Pennati, A.; Quaglia, Alberto; Gani, Rafiqul

    of the water networks proposed comprise few contaminants and do not consider critical parameters for wastewater treatment equipment, such as limiting inlet concentrations, flow rates, and other specific design constraints. Thus, these networks are arguably not fit to manage the complexity of a real industrial......Water is a valuable resource of great relevance for industrial activities. As water will become scarcer, optimization of its use is of key importance. The issue of water allocation and reuse through mathematical optimization has been addressed in various literature works [1, 2]. However most...... case (in terms of number of contaminants, number of processing options, design constraints etc.). In this work, a systematic framework for the formulation and solution of water networks problems is proposed, based on the modification of an earlier work [3]. The optimization problem is formulated...

  15. Industrial communication technology handbook

    CERN Document Server

    Zurawski, Richard

    2005-01-01

    The Industrial Communication Technology Handbook focuses on current and newly emerging communication technologies and systems that are evolving in response to the needs of industry and the demands of industry-led consortia and organizations.Organized into two parts, the text first summarizes the basics of data communications and IP networks, then presents a comprehensive overview of the field of industrial communications. This book extensively covers the areas of fieldbus technology, industrial Ethernet and real-time extensions, wireless and mobile technologies in industrial applications, the

  16. Studies on sulfur poisoning and development of advanced anodic materials for waste-to-energy fuel cells applications

    Science.gov (United States)

    Zaza, Fabio; Paoletti, Claudia; LoPresti, Roberto; Simonetti, Elisabetta; Pasquali, Mauro

    Biomass is the renewable energy source with the most potential penetration in energy market for its positive environmental and socio-economic consequences: biomass live cycles for energy production is carbon neutral; energy crops promote alternative and productive utilizations of rural sites creating new economic opportunities; bioenergy productions promote local energy independence and global energy security defined as availability of energy resource supply. Different technologies are currently available for energy production from biomass, but a key role is played by fuel cells which have both low environmental impacts and high efficiencies. High temperature fuel cells, such as molten carbonate fuel cells (MCFC), are particularly suitable for bioenergy production because it can be directly fed with biogas: in fact, among its principal constituents, methane can be transformed to hydrogen by internal reforming; carbon dioxide is a safe diluent; carbon monoxide is not a poison, but both a fuel, because it can be discharged at the anode, and a hydrogen supplier, because it can produce hydrogen via the water-gas shift reaction. However, the utilization of biomass derived fuels in MCFC presents different problems not yet solved, such as the poisoning of the anode due to byproducts of biofuel chemical processing. The chemical compound with the major negative effects on cell performances is hydrogen sulfide. It reacts with nickel, the main anodic constituent, forming sulfides and blocking catalytic sites for electrode reactions. The aim of this work is to study the hydrogen sulfide effects on MCFC performances for defining the poisoning mechanisms of conventional nickel-based anode, recommending selection criteria of sulfur-tolerant materials, and selecting advanced anodes for MCFC fed with biogas.

  17. Demonstration and Validation of a Waste-to-Energy Conversion System for Fixed DoD Installations

    Science.gov (United States)

    2013-09-01

    Because the metal going through this process was copper, nickel , steel, steel with chrome plating, brass, and stainless steel primarily, IST and MSW...Concentration SWP Solid Waste Preprocessor TCLP Toxicity Characteristic Leaching Procedure TTLC Total Threshold Limit Concentration UGR unitized group...Molybdenum 350 3500 13 7.4 9.0 7.0 2.8 4.3 5.5 7.6 Nickel 20 2000 300 160 200 86 140 130 68 72 Selenium 1.0 1.0 100 ND ND ND ND 0.65 0.34 0.37

  18. Cost Benefit Analysis of a Utility Scale Waste-to-Energy/Concentrating Solar Power Hybrid Facility at Fort Bliss

    Science.gov (United States)

    2012-06-01

    Bailey Hutchinson Desalination plant, located on the installation. The desalination plant represents a public-public partnership that provides... removing the annual emissions of over 51,000 passenger vehicles or conserving over 29 million gallons of gasoline. MTCO2E is a common measurement used

  19. Food Waste to Energy: How Six Water Resource Recovery Facilities are Boosting Biogas Production and the Bottom Line

    Science.gov (United States)

    Water Resource Recovery Facilities (WRRFs) with anaerobic digestion have been harnessing biogas for heat and power since at least the 1920’s. A few are approaching “energy neutrality” and some are becoming “energy positive” through a combination of energy efficiency measures and...

  20. Anaerobic co-digestion of food waste and septage – A waste to energy project in Nashik city

    Directory of Open Access Journals (Sweden)

    Meghanath Prabhu

    2015-04-01

    Full Text Available The samples for food waste (FW and septage were collected from six localities of Nashik city. Physical and chemical characterizations of the wastes were carried out. A Biomethanation potential (BMP assay was developed to determine the ultimate biodegradability and associated methane yield during the anaerobic methanogenic fermentation of organic substrates. BMP assays of individual substrate, FW and septage were carried out by taking into account the volatile solids/total solids (VS/TS ratio of each while keeping the inoculum’s VS constant. BMP of FW and septage mixture was carried out in different ratios (1:1, 1.5:1, 2:1, 1:1.5 and 1:2 to find the optimum mixing ratio for maximum biogas production. The average methane yield for different locality FW was found to be 503±17.6 ml/g VS and for septage it was 56 ±10.8 ml/g VS. Based on the above results, the total biogas yield and total methane yield for 10 tons of FW would be 2178 m3/d and 1306 m3/d respectively. The total biogas yield and total methane yield for 20 m3 of septage would be 65m3/d and 39m3/d respectively. From our co-digestion studies we also conclude that the mixture of FW to septage at 1:2 ratio gives 2896 m3/day of biogas. The role of septage is to provide essential trace elements that are required for methanogens.

  1. Food Waste to Energy: How Six Water Resource Recovery Facilities are Boosting Biogas Production and the Bottom Line

    Science.gov (United States)

    Water Resource Recovery Facilities (WRRFs) with anaerobic digestion have been harnessing biogas for heat and power since at least the 1920’s. A few are approaching “energy neutrality” and some are becoming “energy positive” through a combination of energy efficiency measures and...

  2. Demonstration and Validation of a Waste-to-Energy Conversion System for Fixed DoD Installations

    Science.gov (United States)

    2013-08-01

    Ease of use Ability of a technician-level individual to operate GEM WEC system† Feedback from the technician on usability of the technology and...the set points for the flow, monitor operating conditions, and analyze performance information. The feedback control loop passed through the PLC...Apr 04, zou. (; efl l:r.ltllo" pll’foorN ,.,., • I’Uil’lltllnllK w.!h " p-... J~ll’f ~tiiHIP’t . 1110PJ’ Ill ngtll• •KIIr P!OC~I’e!!l l~do.lil’:a Gil

  3. Enhancing Science Teaching through Performing Marbling Art Using Basic Solutions and Base Indicators

    Science.gov (United States)

    Çil, Emine; Çelik, Kevser; Maçin, Tuba; Demirbas, Gülay; Gökçimen, Özlem

    2014-01-01

    Basic solutions are an indispensable part of our daily life. Basic solutions are commonly used in industries such as the textile industry, oil refineries, the fertilizer industry, and pharmaceutical products. Most cleaning agents, such as soap, detergent, and bleach, and some of our foods, such as chocolate and eggs, include bases. Bases are the…

  4. Enhancing Science Teaching through Performing Marbling Art Using Basic Solutions and Base Indicators

    Science.gov (United States)

    Çil, Emine; Çelik, Kevser; Maçin, Tuba; Demirbas, Gülay; Gökçimen, Özlem

    2014-01-01

    Basic solutions are an indispensable part of our daily life. Basic solutions are commonly used in industries such as the textile industry, oil refineries, the fertilizer industry, and pharmaceutical products. Most cleaning agents, such as soap, detergent, and bleach, and some of our foods, such as chocolate and eggs, include bases. Bases are the…

  5. Positioning technology development in the South African construction industry: a technology foresight study

    CSIR Research Space (South Africa)

    Rust, FC

    2011-04-01

    Full Text Available to year. One response to this situation is to position the construction industry with advanced technological solutions. However, the construction industry is renowned for low levels of innovation and the South African government has also underfunded...

  6. Teaching Teachers Industrial Organic

    Science.gov (United States)

    Chemical and Engineering News, 1977

    1977-01-01

    Describes a teacher seminar held at the University of Minnesota to introduce the addition of courses of industrial chemistry into higher education science curriculums in order to better prepare college science graduates for positions in industry. (SL)

  7. Industry Lecture 2010

    DEFF Research Database (Denmark)

    Kragh, Helge

    2010-01-01

    Sammendrag af "Industry Lecture", Norsk Kjemisk Selskap, Universitetet i Oslo, givet 15/10 2010.......Sammendrag af "Industry Lecture", Norsk Kjemisk Selskap, Universitetet i Oslo, givet 15/10 2010....

  8. Industry Lecture 2010

    DEFF Research Database (Denmark)

    Kragh, Helge

    2010-01-01

    Sammendrag af "Industry Lecture", Norsk Kjemisk Selskap, Universitetet i Oslo, givet 15/10 2010.......Sammendrag af "Industry Lecture", Norsk Kjemisk Selskap, Universitetet i Oslo, givet 15/10 2010....

  9. An Emerging Pillar Industry

    Institute of Scientific and Technical Information of China (English)

    LI ZHENYU

    2010-01-01

    @@ The Fifth Beijing International Cultural and Creative Industry Exposition (ICCIE), held November 17-21 in Beijing, was a feast for the eyes and mind. It showcased the enormous glamour and commercial opportunities promised by the cultural and creative industry.

  10. The Industry That Can.

    Science.gov (United States)

    Aguirre, Edward

    This speech by the U.S. Commissioner of Education reviews the education industry and education-industry relations. Examples illustrate the effective partnership that can be created to fashion and achieve successful vocational and career education programs. (MML)

  11. Functional Materials Produced On An Industrial Scale

    Directory of Open Access Journals (Sweden)

    Barska Justyna

    2015-08-01

    Full Text Available The article presents a wide range of applications of functional materials and a scale of their current industrial production. These are the materials which have specific characteristics, thanks to which they became virtually indispensable in certain constructional solutions. Their basic characteristics, properties, methods of production and use as smart materials were described.

  12. Last gasp of the coal industry?

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, F.

    2007-06-15

    Methods for collecting and trapping carbon dioxide produced by burning fossil fuels are often put forward as an important part of the solution to climate change. In fact, it is the coal industry that benefits most from interest in such carbon capture and storage (CCS) schemes.

  13. Auto Industry Faces Change

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A number of indicators show that China's auto industry is facing a new round of large-scale restructuring. When the global auto industry was undergoing reorganization 10 years ago, China's auto industry was in its early stages, acting in a relatively closed market, and thus it missed out on that important event. However, the situation is different today. In the past decade, China's auto industry has grown at a rapid pace. While the world's major transnational companies are

  14. Conditions for industrial production

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe; Brauer, H.

    1996-01-01

    The possibility of an industrial aerogel glazing production is discussed with respect to sample size, sales volume and prices. Different ways of an industrial assembling line is outlined and the total costs of a 1 square meter aerogel glazing is calculated.......The possibility of an industrial aerogel glazing production is discussed with respect to sample size, sales volume and prices. Different ways of an industrial assembling line is outlined and the total costs of a 1 square meter aerogel glazing is calculated....

  15. Conditions for industrial production

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe; Brauer, H.

    1996-01-01

    The possibility of an industrial aerogel glazing production is discussed with respect to sample size, sales volume and prices. Different ways of an industrial assembling line is outlined and the total costs of a 1 square meter aerogel glazing is calculated.......The possibility of an industrial aerogel glazing production is discussed with respect to sample size, sales volume and prices. Different ways of an industrial assembling line is outlined and the total costs of a 1 square meter aerogel glazing is calculated....

  16. Robotics and Industrial Arts.

    Science.gov (United States)

    Edmison, Glenn A.; And Others

    Robots are becoming increasingly common in American industry. By l990, they will revolutionize the way industry functions, replacing hundreds of workers and doing hot, dirty jobs better and more quickly than the workers could have done them. Robotics should be taught in high school industrial arts programs as a major curriculum component. The…

  17. Creative industries for society

    NARCIS (Netherlands)

    Dr. P. Rutten

    2014-01-01

    Rise of creative industries. Recognition of the importance of the creative industries is one of the notable developments of the fi rst 14 years of the twenty-fi rst century. The realisation has struck that, as the industrial share of the world economy dwindles, other forms of business are gaining in

  18. Blueprinting the Industry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Industrial development plans indicate China will provide more opportunities for global investors China might embrace a new round of investment in 2012 thanks tothe industrial development blue-prints which have been or will be issued by government departments such as the Ministry of Industry and Information Technology(MIIT),Ministry of Commerce,and the National Development and Reform

  19. Photovoltaics industry profile

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  20. Creative industries for society

    NARCIS (Netherlands)

    Rutten, P.

    2014-01-01

    Rise of creative industries. Recognition of the importance of the creative industries is one of the notable developments of the fi rst 14 years of the twenty-fi rst century. The realisation has struck that, as the industrial share of the world economy dwindles, other forms of business are gaining in

  1. Functions of Industry.

    Science.gov (United States)

    Georgia Southern Coll., Statesboro.

    Intended for teachers of industrial arts in teaching the functions of industry, this course of study was compiled as a result of the EPDA Institute in Industrial and Career Development at Georgia Southern College. Contents are: (1) Introduction, (2) Organization, (3) Research and Development, (4) Production, (5) Marketing, (6) Finance and Control,…

  2. University-Industry Relations: Is There a Conflict?

    Science.gov (United States)

    Brown, Theodore L.

    1985-01-01

    The forms of university-industry relationships, the advantages to the various parties involved, and the potential conflicts and tensions are outlined. Some guidelines for finding solutions and new modes of interaction are suggested. (MSE)

  3. Health Care Evolution Is Driving Staffing Industry Transformation.

    Science.gov (United States)

    Faller, Marcia; Gogek, Jim

    2016-01-01

    The powerful transformation in the health care industry is reshaping not only patient care delivery and the business of health care but also demanding new strategies from vendors who support the health care system. These new strategies may be most evident in workforce solutions and health care staffing services. Consolidation of the health care industry has created increased demand for these types of services. Accommodating a changing workforce and related pressures resulting from health care industry transformation has produced major change within the workforce solutions and staffing services sector. The effect of the growth strategy of mergers, acquisitions, and organic development has revealed organizational opportunities such as expanding capacity for placing physicians, nurses, and allied professionals, among other workforce solutions. This article shares insights into workforce challenges and solutions throughout the health care industry.

  4. Industrial image processing visual quality control in manufacturing

    CERN Document Server

    Demant, Christian; Garnica, Carsten

    2013-01-01

    This practical introduction focuses on how to build integrated solutions to industrial vision problems from individual algorithms. It gives a hands-on guide for setting up automated visual inspection systems using the NeuroCheck software package.

  5. Integrated occupational safety and health management solutions and industrial cases

    CERN Document Server

    Häkkinen, Kari; Niskanen, Toivo

    2015-01-01

    Maximizing reader insights into a new movement toward leadership approaches that are collaborated and shared,  and which views Occupational Safety and Health (OSH) and performance excellence within the wider examination of leadership relationships and practices, this book argues that these relationships and processes are so central to the establishment of OSH functioning that studying them warrants a broad, cross-disciplinary, multiple method analysis. Exploring the complexity of leadership by the impact that contexts (e.g., national and organizational culture) may have on leaders, this book discusses the related literature, then moves forward to show how a more comprehensive practical approach to Occupational Safety and Health and performance excellence can function on levels pertaining to events, individuals, groups, and organizations. This book proposes that greater clarity in understanding leadership in Occupational Safety and Health and performance excellence can be developed from addressing two fundame...

  6. The UK Casting Industry

    Institute of Scientific and Technical Information of China (English)

    Jincheng Liu

    2006-01-01

    The casting production in the UK in 2004 is presented and analysed. The UK casting industry has played an important role in world casting and manufacturing production. However recent years the rapid development of some developing countries has been shifting the casting production from the western industrialized countries including the UK. The UK casting industry and associated research and technology organizations, universities have been working together very hard to face the serious competition to make the UK casting industry have a sustainable future. The UK casting industry remains strong and plays an important role in world casting and manufacturing production.

  7. Industrial statistics with Minitab

    CERN Document Server

    Cintas, Pere Grima; Llabres, Xavier Tort-Martorell

    2012-01-01

    Industrial Statistics with MINITAB demonstrates the use of MINITAB as a tool for performing statistical analysis in an industrial context. This book covers introductory industrial statistics, exploring the most commonly used techniques alongside those that serve to give an overview of more complex issues. A plethora of examples in MINITAB are featured along with case studies for each of the statistical techniques presented. Industrial Statistics with MINITAB: Provides comprehensive coverage of user-friendly practical guidance to the essential statistical methods applied in industry.Explores

  8. Historicism and Industry Emergence

    DEFF Research Database (Denmark)

    Kirsch, David; Moeen, Mahka; Wadhwani, Dan

    2014-01-01

    Management and organization scholars have increasingly turned to historical sources to examine the emergence and evolution of industries over time. This scholarship has typically used historical evidence as observations for testing theoretically relevant processes of industry emergence....... In this chapter, an alternative approach is explored that focuses on reconstructing causes and processes that time and theory have erased. The emergence of three industries—plant biotechnology, savings banking, and the automobile—shows how time, along with prevailing functional models of industry evolution, leads...... excluded phenomena and explanations, reconstructing uncertainty and alternative paths of industry emergence, and studying the processes of information elision and exclusion in the formation of industry knowledge....

  9. Electrodialysis of Phosphates in Industrial-Grade Phosphoric Acid

    OpenAIRE

    Machorro, J. J.; Olvera, J. C.; Larios, A.; Hernández-Hernández, H. M.; Alcantara-Garduño, M. E.; Orozco, G.

    2013-01-01

    The objective of this research was to study the purification of industrial-grade phosphoric acid (P2O5) by conventional electrodialysis. The experiments were conducted using a three-compartment cell with anion and cation membranes, and industrial acid solution was introduced into the central compartment. The elemental analysis of the diluted solution indicated that the composition of magnesium, phosphates, and sodium was reduced in the central compartment. The ratios of the concentration of t...

  10. Uranium industry annual 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  11. Uranium industry annual 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-22

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  12. Project Management Software for Distributed Industrial Companies

    Science.gov (United States)

    Dobrojević, M.; Medjo, B.; Rakin, M.; Sedmak, A.

    This paper gives an overview of the development of a new software solution for project management, intended mainly to use in industrial environment. The main concern of the proposed solution is application in everyday engineering practice in various, mainly distributed industrial companies. Having this in mind, special care has been devoted to development of appropriate tools for tracking, storing and analysis of the information about the project, and in-time delivering to the right team members or other responsible persons. The proposed solution is Internet-based and uses LAMP/WAMP (Linux or Windows - Apache - MySQL - PHP) platform, because of its stability, versatility, open source technology and simple maintenance. Modular structure of the software makes it easy for customization according to client specific needs, with a very short implementation period. Its main advantages are simple usage, quick implementation, easy system maintenance, short training and only basic computer skills needed for operators.

  13. Automotive Industry in Malaysia

    DEFF Research Database (Denmark)

    Wad, Peter; Govindaraju, V.G.R. Chandran

    2011-01-01

    expanded in terms of sales, production, employment and local content, but failed in industrial upgrading and international competitiveness. The failures can be attributed to (a) lack of political promotion for high challenge-high support environment, (b) low technological and marketing capabilities and (c......This paper explains the evolution and assesses the development of the Malaysian automotive industry within the premise of infant industry and trade protection framework as well as extended arguments of infant industry using a global value chain perspective. The Malaysian automotive industry......) limited participation in the global value chain. Although the Malaysian infant industry protection policy comprised many promising initiatives, the national and the overall domestic automobile industry ended up as a captive of the regionalised Japanese keiretsu system in automobile manufacturing. A new...

  14. Metalcasting Industry Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1998-01-01

    The Roadmap sets out the strategy for pursuing near-, mid-, and long-term goals set out by industry and for carrying out the cooperative agreement between the U.S. Department of Energy and industry. The Roadmap outlines key goals for products and markets, materials technology, manufacturing technology, environmental technology, human resources, and industry health programs. The Roadmap sets out the strategy for pursuing near-, mid-, and long-term goals set out by industry and for carrying out the cooperative agreement between the U.S. Department of Energy and industry. The Roadmap sets out the strategy for pursuing near-, mid-, and long-term goals set out by industry and for carrying out the cooperative agreement between the U.S. Department of Energy and industry.

  15. 面心立方固溶体合金的团簇加连接原子几何模型及典型工业合金成分解析∗%Cluster-plus-glue-atom mo del of FCC solid solutions and comp osition explanation of typical industrial alloys

    Institute of Scientific and Technical Information of China (English)

    洪海莲; 董闯; 王清; 张宇; 耿遥祥

    2016-01-01

    It was found previously by us that the compositions of industrial alloy specializations are related to the chemical short-range ordering in solid solution alloys, which is in accordance with the cluster-plus-glue-atom model. This model identifies short-range-ordered chemical building units in solid solutions, which the specific alloy compositions rely on. For instance, substitutional-type FCC solid solution alloys are described by cluster-based units formulated as [cluster](glue atom)1—6, where the bracketed cluster is the nearest-neighbor coordination polyhedral cluster, cuboctahedron in this case, and one-to-six glue atoms occupy the inter-cluster sites at the outer-shell of the cluster. In the present paper, we investigate the atomic configurations of these local units in substitutional-type FCC solid solutions by exhausting all possible cluster packing geometries and relevant cluster formulas. The structural model of stable FCC solid solutions is first reviewed. Then, solute distribution configurations in FCC lattice are analyzed by idealizing the measured chemical short-range orders within the first and second neighborhoods. Two key assumptions are made with regards to the cluster distribution in FCC lattice. First, the clusters are isolated to avoid the short-range orders from extending to longer range ones. Second, the clusters are at most separated by one glue atom to confine the inter-cluster distances. Accordingly, only a few structural unit packing modes are identified. Among them, the configurations with glue atoms 0, 1, 3, and 6 show good homogeneities which indicate special structural stabilities. Finally, compositions of FCC Cu-Zn (representative of negative enthalpy systems) and Cu-Ni (positive enthalpy ones) industrial alloys are explained by using the structure units of cluster packing and the cluster formulas, expressed as [Zn-Cu12]Zn1–6 and [Zn-Cu12](Cu, Zn)6, where the cluster is Zn-centered, shelled with Cu atoms, and glued with one to six

  16. Electrochemical Assay of Gold-Plating Solutions

    Science.gov (United States)

    Chiodo, R.

    1982-01-01

    Gold content of plating solution is assayed by simple method that required only ordinary electrochemical laboratory equipment and materials. Technique involves electrodeposition of gold from solution onto electrode, the weight gain of which is measured. Suitable fast assay methods are economically and practically necessary in electronics and decorative-plating industries. If gold content in plating bath is too low, poor plating may result, with consequent economic loss to user.

  17. The Research of Japanese Animation Industry Chain

    Institute of Scientific and Technical Information of China (English)

    徐海光

    2013-01-01

    China owns the largest animation audience group in the world, while our native animation market had been long occupied by Japanese and American animation products. After researching some assuming solutions of that embarrassing situation on Chinese animation industry, this one continues to state the proved successful mode of Japanese animation industry. After many decades of improvement, a mature and healthy industry chain had been built up. Nowadays, there is no doubt that Japanese animation industry is the most successful mode in the world. So we are looking forward to find some valuable successful experiences and make better change accordingly. And dur-ing the following research, writer of this thesis would show some visiting on Japanese local animation companies, and more details on their business mode.

  18. [Preface for special issue on industrial biotechnology. Preface].

    Science.gov (United States)

    Cai, Zhen; Li, Yin

    2011-07-01

    Industrial biotechnology, which employs microorganisms or enzymes to produce industrial useful products, has been considered as a promising solution for the sustainable development of society and economy. This special issue collects some recent research progresses on industrial biotechnology in China, including research articles in the field of genetic engineering, metabolic engineering and synthetic biology, physiological engineering, fermentation engineering and biochemical engineering, biocatalysis and biotransformation, as well as new biotechniques and methods.

  19. Landscape of Industry: Transformation of (Eco Industrial Park through history

    Directory of Open Access Journals (Sweden)

    Archana Sharma

    2013-11-01

    Full Text Available The landscape of industry has been changing over time. Industry has transformed and many tangents have emerged from the sporadic home-based cottage industries to geographically scattered large manufacturing industries to co-located industrial parks to environment friendly eco-industrial parks. Curiosity about the catalysts that bring about the transformation of industrial landscape is the motivation of this article. Through the narrative on Industrial Park and the gradual shift towards Eco-Industrial Park, this article aims to shed light on the context and conditions that act as catalysts for industrial transformations, so as to serve as a reference for predicting future changes in industrial landscape.

  20. Nucleation of Crystals in Solution

    Science.gov (United States)

    Vekilov, Peter G.

    2010-07-01

    Solution crystallization is an essential part of processes in the chemical and pharmaceutical industries and a major step in physiological and pathological phenomena. Crystallization starts with nucleation and control of nucleation is crucial for the control of the number, size, perfection, polymorphism and other characteristics of the crystalline materials. Recently, there have been significant advances in the understanding of the mechanism of nucleation of crystals in solution. The most significant of these is the two-step mechanism of nucleation, according to which the crystalline nucleus appears inside pre-existing metastable clusters of size several hundred nanometers, which consist of dense liquid and are suspended in the solution. While initially proposed for protein crystals, the applicability of this mechanism has been demonstrated for small molecule organic materials, colloids, and biominerals. This mechanism helps to explain several long-standing puzzles of crystal nucleation in solution: nucleation rates which are many orders of magnitude lower than theoretical predictions, nucleation kinetic dependencies with steady or receding parts at increasing supersaturation, the role of heterogeneous substrates for polymorph selection, the significance of the dense protein liquid, and others. More importantly, this mechanism provides powerful tools for control of the nucleation process by varying the solution thermodynamic parameters so that the volume occupied by the dense liquid shrinks or expands.

  1. Upstream petroleum industry flaring and venting report : industry performance for year ending December 31, 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    The Energy Resources Conservation Board (ERCB) has developed recommendations for a flaring and venting management framework for the province of Alberta. This report fulfilled the ERCB's information mandate regarding flaring and venting as part of a commitment made in Directive 060 for upstream petroleum industry flaring, incineration, and venting to make flaring and venting data more accessible. It included data on upstream petroleum industry flaring and venting with particular reference to solution gas conserved, flared and vented, from 1996 to 2008; solution gas flaring and venting performance; flaring from all upstream oil and gas sources, from 2000 to 2008; venting from all upstream oil and gas sources, from 2000 to 2008; solution gas flaring and venting maps; and solution gas emissions ranking of operators for 2007. The report also provided a summary of flaring and venting from various oil and gas industry sources, such as well tests, gas plants, gas gathering systems, transmission lines, and batteries. Ranking of companies was established based on solution gas flared plus vented; solution gas flared; and solution gas vented from crude oil and bitumen batteries. The data used in the preparation of this report was submitted by companies. The report revealed that considerable progress has been made in the reduction of flaring and venting volumes for all upstream oil and gas sources. The reduction can be attributed to the decline in new conventional oil production. It can also be correlated to the decline in volumes of solution gas formerly being flared, and now being vented. Solution gas vented in 2008 was 40.7 per cent less than the 2000 venting baseline. However, in 2008, there was a 25.9 per cent increase in venting from crude bitumen batteries which can be correlated to the increase in crude bitumen production. The ERCB is continuing to work with the Clean Air Strategic Alliance to examine options to further address solution gas venting. tabs., figs.

  2. Industry in growth poles of Romania

    Directory of Open Access Journals (Sweden)

    Cristina Iacoboaea

    2015-03-01

    Full Text Available A competitive industry can reduce costs and prices, can create new products, thus contributing significantly to productivity growth throughout the economy. The industry is also the main source of innovation necessary for society to meet the challenges faced. Growth poles have the ability to spread economic development in adjacent areas and contributes significantly to the territorial development of the country. This article aims to analyze the current state of industry growth poles of Romania, in terms of number of employees, distribution of sub-industries and density of firms in industry. It also highlights business structures and industry clusters located in the growth poles, as solutions for boosting economic growth and creation of added value. Analysis performed leads to the conclusion that all growth poles are engines of economical development in the industry for the regios of origin. We distinguish growth poles Timişoara and Cluj-Napoca whose economic advantage is given by the favorable position close to the markets of the European Union.

  3. Polish food industry 2008-2013

    OpenAIRE

    Mroczek, Robert; Drożdż, Jadwiga; Tereszczuk, Mirosława; Urban, Roman

    2014-01-01

    The aim of the study is to evaluate the functioning of the food industry and its various sectors in 2008-2013. Meat and poultry industry. Dairy industry. Fishing industry. Milling industry. Sugar industry. Oil-mill industry. Processing of fruit, vegetables and potatoes. Bakery industry. Confectionery industry. Feed industry. Production of other food products. Production of alcoholic beverages.Tobacco industry. Food industry.

  4. Polish food industry 2008-2013

    OpenAIRE

    Mroczek, Robert; Drożdż, Jadwiga; Tereszczuk, Mirosława; Roman URBAN

    2014-01-01

    The aim of the study is to evaluate the functioning of the food industry and its various sectors in 2008-2013. Meat and poultry industry. Dairy industry. Fishing industry. Milling industry. Sugar industry. Oil-mill industry. Processing of fruit, vegetables and potatoes. Bakery industry. Confectionery industry. Feed industry. Production of other food products. Production of alcoholic beverages.Tobacco industry. Food industry.

  5. Globally Oriented Chinese Plastics Industry

    Institute of Scientific and Technical Information of China (English)

    Liao Zhengpin

    2004-01-01

    @@ Through continued endeavor and persistent opening to the whole world the Chinese plastics industry has been developed into a comprehensive industrial system that forms the basic material industries side by side with the steel, cement and the timber industry.

  6. SHANGHAI INTERNATIONAL INDUSTRIAL FAIR

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Third Shanghai International Industrial Fair was held in New International Fair Center in Pudong Area in late November. This industrial fair titled "Information and Industrialization" aimed at highlighting China's high technology and industrial achievements in the new century. The sponsors for this session of industrial fair include China State Economic and Trade Commission, Ministry of Foreign Economic and Trade Relations, Ministry of Information Industry, Ministry of Science and Technology, Ministry of Education, Chinese Academy of Sciences and Shanghai Government.CNPC and Sinopec participated in the exhibition displaying a number of the latest technologies such as PetroChina's model for state land resources and Sinopec's model for 300,000-ton ethylene project.

  7. Upstream petroleum industry flaring and venting report : industry performance for year ending December 31, 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-10-15

    This report provided statistical data concerning solution gas flaring and venting in the upstream petroleum industry in Alberta. In their 2003 Upstream Petroleum Industry Flaring and Venting Report, the Alberta Energy and Utilities Board (EUB) made commitments to identify and implement a number of conservation measures aimed at reducing the volumes of solution gas vented from crude bitumen operations. As a result of the measures, venting from crude bitumen batteries decreased by 18.9 per cent in 2005. Solution gas conservation for 2005 was 96.3 per cent, the highest conservation level achieved to date. Solution gas flaring for 2005 was 71.9 per cent less than the 1996 baseline. A slight increase in solution gas flaring was attributed to crude bitumen operations. Solution gas venting for 2005 was 58.6 per cent less than the 2000 venting baseline. An analysis of the data suggested that significant progress has been made in reducing solution gas flaring in Alberta, and that venting reductions realized in 2005 continue the trend of significant reductions since 2000. Although the downward trend in the reduction of venting since 2000 is encouraging, the EUB continues to be concerned about solution gas venting associated with crude bitumen projects. It was concluded that the EUB will continue to work with all stakeholders to identify additional venting reduction strategies. 5 tabs., 3 figs.

  8. Industry and energy; Industrie et energie

    Energy Technology Data Exchange (ETDEWEB)

    Birules y Bertran, A.M. [Ministere des Sciences et de la Technologie (Spain); Folgado Blanco, J. [Secretariat d' Etat a l' Economie, a l' Energie et aux PME du Royaume d' Espagne (Spain)

    2002-07-01

    This document is the provisional version of the summary of the debates of the 2433. session of the European Union Council about various topics relative to the industry and the energy. The energy-related topics that have been debated concern: the government helps in coal industry, the internal electricity and gas market, the trans-European energy networks, the bio-fuels in transportation systems, the energy charter, the pluri-annual energy program, and the green book on the security of energy supplies. (J.S.)

  9. MINING INDUSTRY IN CROATIA

    Directory of Open Access Journals (Sweden)

    Slavko Vujec

    1996-12-01

    Full Text Available The trends of World and European mine industry is presented with introductory short review. The mining industry is very important in economy of Croatia, because of cover most of needed petroleum and natural gas quantity, total construction raw materials and industrial non-metallic raw minerals. Detail quantitative presentation of mineral raw material production is compared with pre-war situation. The value of annual production is represented for each raw mineral (the paper is published in Croatian.

  10. Wastewater Industrial Contributors

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Industrial contributors to municipal wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES) program.

  11. The Danish Industrial Foundations

    DEFF Research Database (Denmark)

    Thomsen, Steen

    Industrial foundations are foundations that own companies. Typically, they combine charitable and business goals. This book is about industrial foundation ownership of business companies and what we can learn about it from the Danish evidence. It is about how foundation ownership is ruled, taxed...... and governed, what role it plays in the Danish economy, and how industrial foundation-owned companies perform. The book is the result of a large collaborative research project, led by the author, on industrial foundations. Some global companies such as IKEA, Robert Bosch or the Tata Group are foundation...

  12. Booming Ranufacturing industry

    Institute of Scientific and Technical Information of China (English)

    WUXINYI; WANGNAN

    2004-01-01

    SHAOXING, with its 80,000 manufacturing enterprises, is well known in the Yangtze River Delta area for its strong manufacturing capacity.Township enterprises laid the foundation for industrial development two decades ago, but the disadvantages of small rural enterprises, like low production capacity and quality and low standards of technology,soon emerged. In order to advance industrial development, in the late 1990s the Shaoxing municipal government decided to build the Township Industrial Zone. In the following five years, several industrial parks opened in Shaoxing.

  13. Miscellaneous Industrial Mineral Operations

    Data.gov (United States)

    Department of Homeland Security — This map layer includes miscellaneous industrial minerals operations in the United States. The data represent commodities covered by the Minerals Information Team...

  14. Industrial Economics in Scandinavia

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul; Møllgaard, Peter

    2004-01-01

    Based on diverse research methods, we trace and map industrial economics research in Denmark, Norway and Sweden in the periode of 1880 to 1908. After describing this research in terms of key contributors, we argue that industrial economics developed rather unevenly in the Scandinavian countries....... Danish research was mainly theoretical and strongly oriented towards the international context, whereas Norwegian research was largely industry analysis with a strong leaning towards managerial economics. Swedish research in industrial economics is very scant until the end of the 1960s.JEL Code: B1, B2...

  15. Marketing Communication Strategies of the Industrial Companies

    Directory of Open Access Journals (Sweden)

    Wojciech Wodyński

    2007-07-01

    Full Text Available Industrial market, created by companies, which buy and sell goods which are not directly for consumption, but are used in production process, communicates with the environment in a specific way. Many industrial companies supply only the customers of non consumption goods market and hence they do not enter into direct contact with a final consumer. In such cases recognizing the customers needs is even more difficult. Such environment requires efficiently functioning and planned communication of the company with the market. This study presents methods and strategies of marketing communication really used in industrial companies. While analysing marketing strategies of industrial companies, the author draws the attention to the fact that even though there was system transformation, the state still has significant impact on functioning and development of industry and that in a way directs and created barriers in companies functioning. Such conditions force even more active marketing communication as well as searching new solutions. As there are more and more sophisticated marketing techniques related to digital media, there is also a growing demand for strategic solutions in marketing communication. Digital media, first of all the Internet, provide so far unavailable possibilities of researching consumers behaviours and ways of using media. They also give a chance to follow the behaviour of smaller, unique and often social groups of consumers.

  16. A jungle of possibilities; Solutions to climate challenges; Mulighetenes jungel

    Energy Technology Data Exchange (ETDEWEB)

    Rasen, Bjoern

    2008-07-01

    The climate challenges are here, and they are not disappearing by themselves. Some ideas and technological solutions to meet the situation are presented, including carbon storage, climate quotas and carbon cleaning. The new technologies may become billion dollar industries

  17. Maritime shipping as a high reliability industry: A qualitative analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mannarelli, T.; Roberts, K.; Bea, R.

    1994-10-01

    The maritime oil shipping industry has great public demands for safe and reliable organizational performance. Researchers have identified a set of organizations and industries that operate at extremely high levels of reliability, and have labelled them High Reliability Organizations (HRO). Following the Exxon Valdez oil spill disaster of 1989, public demands for HRO-level operations were placed on the oil industry. It will be demonstrated that, despite enormous improvements in safety and reliability, maritime shipping is not operating as an HRO industry. An analysis of the organizational, environmental, and cultural history of the oil industry will help to provide justification and explanation. The oil industry will be contrasted with other HRO industries and the differences will inform the shortfalls maritime shipping experiences with regard to maximizing reliability. Finally, possible solutions for the achievement of HRO status will be offered.

  18. Integration of the management of urban solid residues and muds: a symbiotic solution; Integracion de la gestion de residuos solidos urbanos y lodos: una solucion simbiotica

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, T.; Mulder, M.; Van Berlo, M.

    2008-07-01

    Linking a sewage treatment plant and a waste-to-energy plant brings energy efficiency benefits to both. The combined plant minimizes environmental impact and maximizes energy production, putting Amsterdam at the forefront of urban waste management. (Author)

  19. Pharmacist-industry relationships.

    Science.gov (United States)

    Saavedra, Keene; O'Connor, Bonnie; Fugh-Berman, Adriane

    2017-01-18

    The purpose of this study was to document, in their own words, beliefs and attitudes that American pharmacists have towards the pharmaceutical industry and pharmacists' interactions with industry. An ethnographic-style qualitative study was conducted utilizing open-ended interviews with four hospital pharmacists, two independent pharmacists, two retail pharmacists and one administrative pharmacist in the Washington, DC, metropolitan area to elicit descriptions of and attitudes towards pharmacists' relationships with industry. Analysis of the qualitative material followed established ethnographic conventions of narrative thematic analysis. All pharmacists reported interactions with pharmaceutical company representatives. Most had received free resources or services from industry, including educational courses. Respondents uniformly believed that industry promotional efforts are primarily directed towards physicians. Although respondents felt strongly that drug prices were excessive and that 'me-too' drugs were of limited use, they generally had a neutral-to-positive view of industry-funded adherence/compliance programmes, coupons, vouchers, and copay payment programmes. Interviewees viewed direct-to-consumer advertising negatively, but had a generally positive view of industry-funded drug information. Pharmacists may represent a hitherto under-identified cohort of health professionals who are targeted for industry influence; expanding roles for pharmacists may make them even more attractive targets for future industry attention. Pharmacy schools should ensure that students learn to rely on unbiased information sources and should teach students about conflicts of interest and the risks of interacting with industry. Further research should be conducted on the extent to which pharmacists' attitudes towards their duties and towards drug assessment and recommendation are influenced by the pharmaceutical industry. © 2017 Royal Pharmaceutical Society.

  20. RESTRUCTURING OF INDUSTRIAL ENTERPRISE

    Directory of Open Access Journals (Sweden)

    L. I. Podderegina

    2009-01-01

    Full Text Available The paper presents main principles for execution of current and strategic restructuring of national enterprises while using experience of countries with developed market economy. The principles contribute to higher efficiency in internal industrial relations at national industrial enterprises.