WorldWideScience

Sample records for industrial robot association

  1. Industrial Robots.

    Science.gov (United States)

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  2. Robotics and Industrial Arts.

    Science.gov (United States)

    Edmison, Glenn A.; And Others

    Robots are becoming increasingly common in American industry. By l990, they will revolutionize the way industry functions, replacing hundreds of workers and doing hot, dirty jobs better and more quickly than the workers could have done them. Robotics should be taught in high school industrial arts programs as a major curriculum component. The…

  3. Vision servo of industrial robot: A review

    Science.gov (United States)

    Zhang, Yujin

    2018-04-01

    Robot technology has been implemented to various areas of production and life. With the continuous development of robot applications, requirements of the robot are also getting higher and higher. In order to get better perception of the robots, vision sensors have been widely used in industrial robots. In this paper, application directions of industrial robots are reviewed. The development, classification and application of robot vision servo technology are discussed, and the development prospect of industrial robot vision servo technology is proposed.

  4. Robot Control Overview: An Industrial Perspective

    Directory of Open Access Journals (Sweden)

    T. Brogårdh

    2009-07-01

    Full Text Available One key competence for robot manufacturers is robot control, defined as all the technologies needed to control the electromechanical system of an industrial robot. By means of modeling, identification, optimization, and model-based control it is possible to reduce robot cost, increase robot performance, and solve requirements from new automation concepts and new application processes. Model-based control, including kinematics error compensation, optimal servo reference- and feed-forward generation, and servo design, tuning, and scheduling, has meant a breakthrough for the use of robots in industry. Relying on this breakthrough, new automation concepts such as high performance multi robot collaboration and human robot collaboration can be introduced. Robot manufacturers can build robots with more compliant components and mechanical structures without loosing performance and robots can be used also in applications with very high performance requirements, e.g., in assembly, machining, and laser cutting. In the future it is expected that the importance of sensor control will increase, both with respect to sensors in the robot structure to increase the control performance of the robot itself and sensors outside the robot related to the applications and the automation systems. In this connection sensor fusion and learning functionalities will be needed together with the robot control for easy and intuitive installation, programming, and maintenance of industrial robots.

  5. Prioritization of Attributes for Palletizing Robots in Beverage Industry of Pakistan

    Directory of Open Access Journals (Sweden)

    BILAL AHMED

    2017-07-01

    Full Text Available Robots are extensively used in modern manufacturing industries to perform numerous repetitive operations. The challenge of selecting the most appropriate robot for a particular manufacturing setup is progressively becoming complex as there are numerous selection criteria and more alternatives available in market. Only a limited amount of research is available in literature which focuses on the selection of industrial robots for beverage industry. This study offers a country specific application of AHP (Analytical Hierarchy Process in problem of palletizing robot selection for beverage industry of Pakistan. The problem is structured in standard AHP hierarchy and equations. The factors initially explored from the concerned literature are prioritized by the industry experts. The available robot alternatives are evaluated for each parameter and results are computed with the help of Exert Choice, a commercial AHP software. It is observed that experts in Pakistan beverage industry are very sensitive to operating costs of the robots and they do not assign as much weightage to technical parameters like repeatability and programmability. The robots with lesser associated costs and better speed and ?manipulator reach? are higher in ranking. The findings are beneficial for the international investors and local beverage industry managers to corroborate the current trends and preferences of the said industry.

  6. Prioritization of attributes for palletizing robots in beverage industry of pakistan

    International Nuclear Information System (INIS)

    Ahmed, B.; Ali, H.M.K.; Sultan, A.; Rana, B.B.

    2017-01-01

    Robots are extensively used in modern manufacturing industries to perform numerous repetitive operations. The challenge of selecting the most appropriate robot for a particular manufacturing setup is progressively becoming complex as there are numerous selection criteria and more alternatives available in market. Only a limited amount of research is available in literature which focuses on the selection of industrial robots for beverage industry. This study offers a country specific application of AHP (Analytical Hierarchy Process) in problem of palletizing robot selection for beverage industry of Pakistan. The problem is structured in standard AHP hierarchy and equations. The factors initially explored from the concerned literature are prioritized by the industry experts. The available robot alternatives are evaluated for each parameter and results are computed with the help of Exert Choice, a commercial AHP software. It is observed that experts in Pakistan beverage industry are very sensitive to operating costs of the robots and they do not assign as much weightage to technical parameters like repeatability and programmability. The robots with lesser associated costs and better speed and 'manipulator reach' are higher in ranking. The findings are beneficial for the international investors and local beverage industry managers to corroborate the current trends and preferences of the said industry. (author)

  7. Towards Simulation of Custom Industrial Robots

    OpenAIRE

    Marcu, Cosmin; Robotin, Radu

    2008-01-01

    In order to create a simulator for custom industrial robots, it is very important to know the forward and inverse kinematics equations of the robot structure, the controller output data and the limitations of the robot mechanical components. In this paper we presented the steps for building a simulation program for a custom industrial robot. The first step was the robot modeling where we obtained the forward and inverse kinematics equations used as motion laws both for the simulated and for t...

  8. Study fidelity spatial contours of industrial robots

    Directory of Open Access Journals (Sweden)

    A. V. Ivanova

    2014-01-01

    Full Text Available The purpose of this paper to identify deviations fidelity spatial contours of industrial robots, determine the error pattern detected, and define the ways to solve the problem.The paper presents the research results of fidelity spatial contours done by Fanuc M- 710iC/50 industrial robot when moving along a predetermined path. The proposed method uses a QC20-W ballbar wireless system of Renishaw company, designed to diagnose the state of the measurement and playback linear and angular displacements of the CNC.The solutions to adapt the QC20-W ballbar system to the constructive peculiarities of industrial robots with five or more independently controlled axes are given. The stages of the preparation of diagnostic systems and software robot movements are described.According to study results of errors that arise while playing back the programmed motions of a fixed point of robot capture in three mutually perpendicular planes its practical accuracy has been defined when performing movements in a given region of the working area, thereby allowing us, eventually, to draw a conclusion on the possibility to use a robot in one technological process or another.The study has resulted in emerging the guidelines for the operation of industrial robots with five or more independently controlled axes. Using these guidelines enables us to increase the playback accuracy of the industrial robot to 0.01 mm.

  9. Dynamic photogrammetric calibration of industrial robots

    Science.gov (United States)

    Maas, Hans-Gerd

    1997-07-01

    Today's developments in industrial robots focus on aims like gain of flexibility, improvement of the interaction between robots and reduction of down-times. A very important method to achieve these goals are off-line programming techniques. In contrast to conventional teach-in-robot programming techniques, where sequences of actions are defined step-by- step via remote control on the real object, off-line programming techniques design complete robot (inter-)action programs in a CAD/CAM environment. This poses high requirements to the geometric accuracy of a robot. While the repeatability of robot poses in the teach-in mode is often better than 0.1 mm, the absolute pose accuracy potential of industrial robots is usually much worse due to tolerances, eccentricities, elasticities, play, wear-out, load, temperature and insufficient knowledge of model parameters for the transformation from poses into robot axis angles. This fact necessitates robot calibration techniques, including the formulation of a robot model describing kinematics and dynamics of the robot, and a measurement technique to provide reference data. Digital photogrammetry as an accurate, economic technique with realtime potential offers itself for this purpose. The paper analyzes the requirements posed to a measurement technique by industrial robot calibration tasks. After an overview on measurement techniques used for robot calibration purposes in the past, a photogrammetric robot calibration system based on off-the- shelf lowcost hardware components will be shown and results of pilot studies will be discussed. Besides aspects of accuracy, reliability and self-calibration in a fully automatic dynamic photogrammetric system, realtime capabilities are discussed. In the pilot studies, standard deviations of 0.05 - 0.25 mm in the three coordinate directions could be achieved over a robot work range of 1.7 X 1.5 X 1.0 m3. The realtime capabilities of the technique allow to go beyond kinematic robot

  10. The Role of Industrial Robots in the Development of Automotive Industry in China

    OpenAIRE

    Karabegović , Isak

    2016-01-01

    International audience; The world’s largest user of industrial robots in production processes is automotive industry, because global competition in the market requires continuous automation and modernization of production processes in the automotive industry. The use of robots in the world is continuously increasing year by year, so it is expected that about 414.000 robot units will be used in 2019. China is the first country in the world in the application of industrial robots, and is increa...

  11. An overview of current situations of robot industry development

    Directory of Open Access Journals (Sweden)

    Wu Qiong

    2018-01-01

    Full Text Available As an industry of emerging technology, robot industry has become one of important signs to evaluate a country’s level in science and technology innovation and high-end manufacturing, and an important strategic field to take the preemptive opportunities in development of intelligent society. Developed countries such as the USA, Germany, France and Japan have formulated their robot R&D strategies and planning in succession. China boasts good industrial foundation and has made encouraging progress in the course of development of robot technology. This paper briefly discusses the application type of robot industry and current situations of robot industry development in countries around the world, and makes detailed explanation of current situations of robot industry development in China.

  12. Industrial Robots on the Line.

    Science.gov (United States)

    Ayres, Robert; Miller, Steve

    1982-01-01

    Explores the history of robotics and its effects upon the manufacturing industry. Topics include robots' capabilities and limitations, the factory of the future, displacement of the workforce, and implications for management and labor. (SK)

  13. Prospects of robotics in food industry

    Directory of Open Access Journals (Sweden)

    Jamshed IQBAL

    Full Text Available Abstract Technological advancements in various domains have broadened the application horizon of robotics to an incredible extent. Highlighting a very recent application area, this paper presents a comprehensive review of robotics application in food industry. Robots essentially have the potential to transform the processes in food processing and handling, palletizing and packing and food serving. Therefore, recent years witnessed tremendously increased trend of robots deployment in food sector. Consequently, the aspects related with robot kinematics, dynamics, hygiene, economic efficiency, human-robot interaction, safety and protection and operation and maintenance are of critical importance and are discussed in the present review. A comparison of actual robots being used in the industry is also presented. The review reveals that the food serving sector is the new potential area in which ample research opportunities exist by integrating advancements from various technology domains. It is anticipated that wider dissemination of research developments in ‘robo-food’ will stimulate more collaborations among the research community and contribute to further developments.

  14. Kinematics Control and Analysis of Industrial Robot

    Science.gov (United States)

    Zhu, Tongbo; Cai, Fan; Li, Yongmei; Liu, Wei

    2018-03-01

    The robot’s development present situation, basic principle and control system are introduced briefly. Research is mainly focused on the study of the robot’s kinematics and motion control. The structural analysis of a planar articulated robot (SCARA) robot is presented,the coordinate system is established to obtain the position and orientation matrix of the end effector,a method of robot kinematics analysis based on homogeneous transformation method is proposed, and the kinematics solution of the robot is obtained.Establishment of industrial robot’s kinematics equation and formula for positive kinematics by example. Finally,the kinematic analysis of this robot was verified by examples.It provides a basis for structural design and motion control.It has active significance to promote the motion control of industrial robot.

  15. German robots: The impact of industrial robots on workers

    OpenAIRE

    Dauth, Wolfgang; Findeisen, Sebastian; Südekum, Jens; Wößner, Nicole

    2017-01-01

    We study the impact of rising robot exposure on the careers of individual manufacturing workers, and the equilibrium impact across industries and local labor markets in Germany. We find no evidence that robots cause total job losses, but they do affect the composition of aggregate employment. Every robot destroys two manufacturing jobs. This accounts for almost 23 percent of the overall decline of manufacturing employment in Germany over the period 1994-2014, roughly 275,000 jobs. But this lo...

  16. A Plug and Produce Framework for Industrial Collaborative Robots

    DEFF Research Database (Denmark)

    Schou, Casper; Madsen, Ole

    2017-01-01

    Collaborative robots are today ever more interesting in response to the increasing need for agile manufacturing equipment. Contrary to traditional industrial robots, collaborative robots are intended for working in dynamic environments alongside the production staff. To cope with the dynamic...... environment and workflow, new configuration and control methods are needed compared to those of traditional industrial robots. The new methods should enable shop floor operators to reconfigure the robot. This article presents a plug and produce framework for industrial collaborative robots. The article...... focuses on the control framework enabling quick and easy exchange of hardware modules as an approach to achieving plug and produce. To solve this, an agent-based system is proposed building on top of the robot operating system. The framework enables robot operating system packages to be adapted...

  17. Modelling of industrial robot in LabView Robotics

    Science.gov (United States)

    Banas, W.; Cwikła, G.; Foit, K.; Gwiazda, A.; Monica, Z.; Sekala, A.

    2017-08-01

    Currently can find many models of industrial systems including robots. These models differ from each other not only by the accuracy representation parameters, but the representation range. For example, CAD models describe the geometry of the robot and some even designate a mass parameters as mass, center of gravity, moment of inertia, etc. These models are used in the design of robotic lines and sockets. Also systems for off-line programming use these models and many of them can be exported to CAD. It is important to note that models for off-line programming describe not only the geometry but contain the information necessary to create a program for the robot. Exports from CAD to off-line programming system requires additional information. These models are used for static determination of reachability points, and testing collision. It’s enough to generate a program for the robot, and even check the interaction of elements of the production line, or robotic cell. Mathematical models allow robots to study the properties of kinematic and dynamic of robot movement. In these models the geometry is not so important, so are used only selected parameters such as the length of the robot arm, the center of gravity, moment of inertia. These parameters are introduced into the equations of motion of the robot and motion parameters are determined.

  18. Robotics

    International Nuclear Information System (INIS)

    Scheide, A.W.

    1983-01-01

    This article reviews some of the technical areas and history associated with robotics, provides information relative to the formation of a Robotics Industry Committee within the Industry Applications Society (IAS), and describes how all activities relating to robotics will be coordinated within the IEEE. Industrial robots are being used for material handling, processes such as coating and arc welding, and some mechanical and electronics assembly. An industrial robot is defined as a programmable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for a variety of tasks. The initial focus of the Robotics Industry Committee will be on the application of robotics systems to the various industries that are represented within the IAS

  19. Modelling, simulation and validation of the industrial robot

    Directory of Open Access Journals (Sweden)

    Aleksandrov Slobodan Č.

    2014-01-01

    Full Text Available In this paper, a DH model of industrial robot, with anthropomorphic configuration and five degrees of freedom - Mitsubishi RV2AJ, is developed. The model is verified on the example robot Mitsubishi RV2AJ. In paper detailed represented the complete mathematical model of the robot and the parameters of the programming. On the basis of this model, simulation of robot motion from point to point is performed, as well as the continuous movement of the pre-defined path. Also, programming of industrial robots identical to simulation programs is made, and comparative analysis of real and simulated experiment is shown. In the final section, a detailed analysis of robot motion is described.

  20. Development of Industrial High-Speed Transfer Parallel Robot

    International Nuclear Information System (INIS)

    Kim, Byung In; Kyung, Jin Ho; Do, Hyun Min; Jo, Sang Hyun

    2013-01-01

    Parallel robots used in industry require high stiffness or high speed because of their structural characteristics. Nowadays, the importance of rapid transportation has increased in the distribution industry. In this light, an industrial parallel robot has been developed for high-speed transfer. The developed parallel robot can handle a maximum payload of 3 kg. For a payload of 0.1 kg, the trajectory cycle time is 0.3 s (come and go), and the maximum velocity is 4.5 m/s (pick amp, place work, adept cycle). In this motion, its maximum acceleration is very high and reaches approximately 13g. In this paper, the design, analysis, and performance test results of the developed parallel robot system are introduced

  1. Positioning the laparoscopic camera with industrial robot arm

    DEFF Research Database (Denmark)

    Capolei, Marie Claire; Wu, Haiyan; Andersen, Nils Axel

    2017-01-01

    This paper introduces a solution for the movement control of the laparoscopic camera employing a teleoperated robotic assistant. The project propose an autonomous robotic solution based on an industrial manipulator, provided with a modular software which is applicable to large scale. The robot arm...... industrial robot arm is designated to accomplish this manipulation task. The software is implemented in ROS in order to facilitate future extensions. The experimental results shows a manipulator capable of moving fast and smoothly the surgical tool around a remote center of motion....

  2. Industrial dual arm robot manipulator for precise assembly of mechanical parts

    Science.gov (United States)

    Park, Chanhun; Kim, Doohyung; Park, Kyoungtaik; Choi, Youngjin

    2007-12-01

    A new structure of dual arm robot manipulator which consists of two industrial 6-DOF arms and one 2-DOF Torso is introduced. Each industrial 6-DOF arm is able to be used as a stand-alone industrial 6-DOF robot manipulator and as a part of dual arm manipulator at the same time. These structures help the robot maker which is willing to succeed in the emerging dual arm robot market in order to have high competition for the current industrial robot market at same time. Self-collision detection algorithm for multi-arm robot and kinematics algorithms for the developed dual arm robot manipulator which are implemented in our controller are introduced.

  3. SHORT LITERATURE REVIEW ON THE KINEMATICS AND DYNAMICS OF THE INDUSTRIAL ROBOTS

    Directory of Open Access Journals (Sweden)

    RATIU Mariana

    2016-09-01

    Full Text Available This paper is the result of a short literature review on the kinematics and dynamics of the industrial robots, a first study conducted in a wider research that will be further developed in the field of the trajectory generating mechanisms of the industrial robots. After an introduction about the importance of the robots in the industrial processes and about the necessity to streamline and optimize the robot`s motion, are presented some recent approaches related to the kinematic and dynamic analysis, the optimization of the robot`s motion, and modeling of the trajectory generating mechanism of the industrial robots.

  4. Intelligent robotics and remote systems for the nuclear industry

    International Nuclear Information System (INIS)

    Wehe, D.K.; Lee, J.C.; Martin, W.R.; Tulenko, J.

    1989-01-01

    The nuclear industry has a recognized need for intelligent, multitask robots to carry out tasks in harsh environments. From 1986 to the present, the number of robotic systems available or under development for use in the nuclear industry has more than doubled. Presently, artificial intelligence (AI) plays a relatively small role in existing robots used in the nuclear industry. Indeed, the lack of intelligence has been labeled the ''Achilles heel'' of all current robotic technology. However, larger-scale efforts are underway to make the multitask robot more sensitive to its environment, more capable to move and perform useful work, and more fully autonomous via the use of AI. In this paper, we review the terminology, the history, and the factors which are motivating the development of robotics and remove systems; discuss the applications related to the nuclear industry; and, finally, examine the state of the art of the technologies being applied to introduce more autonomous capabilities. Much of this latter work can be classified as within the artificial intelligence framework. (orig.)

  5. Human motion behavior while interacting with an industrial robot.

    Science.gov (United States)

    Bortot, Dino; Ding, Hao; Antonopolous, Alexandros; Bengler, Klaus

    2012-01-01

    Human workers and industrial robots both have specific strengths within industrial production. Advantageously they complement each other perfectly, which leads to the development of human-robot interaction (HRI) applications. Bringing humans and robots together in the same workspace may lead to potential collisions. The avoidance of such is a central safety requirement. It can be realized with sundry sensor systems, all of them decelerating the robot when the distance to the human decreases alarmingly and applying the emergency stop, when the distance becomes too small. As a consequence, the efficiency of the overall systems suffers, because the robot has high idle times. Optimized path planning algorithms have to be developed to avoid that. The following study investigates human motion behavior in the proximity of an industrial robot. Three different kinds of encounters between the two entities under three robot speed levels are prompted. A motion tracking system is used to capture the motions. Results show, that humans keep an average distance of about 0,5m to the robot, when the encounter occurs. Approximation of the workbenches is influenced by the robot in ten of 15 cases. Furthermore, an increase of participants' walking velocity with higher robot velocities is observed.

  6. Kinematic parameter calibration method for industrial robot manipulator using the relative position

    International Nuclear Information System (INIS)

    Ha, In Chul

    2008-01-01

    A new calibration method for industrial robot system calibration on a manufacturing floor is presented in this paper. To calibrate the robot system, a laser sensor to measure the distance between robot tool and measurement surface is attached to the robot end-effector and a grid is established in the floor. Given two position command pulses for a robot manipulator and using the position difference between two command pulses, the relative position measurement calibration method will find the real robot kinematic parameters. The procedures developed have been applied to an industrial robot. Finally, the effects of the models used to calibrate the robot are discussed. This calibration method represents an effective, low cost and feasible technique for the industrial robot calibration in lab. projects and industrial environments

  7. A Skill-based Robot Co-worker for Industrial Maintenance Tasks

    DEFF Research Database (Denmark)

    Koch, Paul Jacob; van Amstel, Marike Koch; Dębska, Patrycja

    2017-01-01

    This paper investigates the concept of a sensor based robot co-worker working in flexible industrial environments together with and alongside human operators. In this particular work, a realisation of a robot co-worker scenario is developed in order to demonstrate the implementation of a robot co......-worker from the starting point of an autonomous industrial mobile manipulator. The cobot is applied on the industrially relevant task of screwing by the use of a skill-based approach. The technical work on the human-robot interface and the screwing skill is described....

  8. A Secondary-Level Curriculum in Industrial Electronics and Robotics. Final Report.

    Science.gov (United States)

    Besancon, Francis E.

    A curriculum was developed to provide the electromechanical skills necessary to operate and repair industrial robots to students at the secondary and adult vocational levels. To determine requirements for entry-level positions in the robotics industry, manufacturers and employers of industrial robots were contacted. No particular entry-level…

  9. Modelling cooperation of industrial robots as multi-agent systems

    Science.gov (United States)

    Hryniewicz, P.; Banas, W.; Foit, K.; Gwiazda, A.; Sekala, A.

    2017-08-01

    Nowadays, more and more often in a cell is more than one robot, there is also a dual arm robots, because of this cooperation of two robots in the same space becomes more and more important. Programming robotic cell consisting of two or more robots are currently performed separately for each element of the robot and the cell. It is performed only synchronization programs, but no robot movements. In such situations often placed industrial robots so they do not have common space so the robots are operated separately. When industrial robots are a common space this space can occupy only one robot the other one must be outside the common space. It is very difficult to find applications where two robots are in the same workspace. It was tested but one robot did not do of movement when moving the second and waited for permission to move from the second when it sent a permit - stop the move. Such programs are very difficult and require a lot of experience from the programmer and must be tested separately at the beginning and then very slowly under control. Ideally, the operator takes care of exactly one robot during the test and it is very important to take special care.

  10. Experimental determination of dynamic parameters of an industrial robot

    Science.gov (United States)

    Banas, W.; Cwikła, G.; Foit, K.; Gwiazda, A.; Monica, Z.; Sekala, A.

    2017-08-01

    In an industry increasingly used are industrial robots. Commonly used are two basic methods of programming, on-line programming and off-line programming. In both cases, the programming consists in getting to the selected points record this position, and set the order of movement of the robot, and the introduction of logical tests. Such a program is easy to write, and it is suitable for most industrial applications. Especially when the process is known, respectively slow and unchanging. In this case, the program is being prepared for a universal model of the robot with the appropriate geometry and are checked only collisions. Is not taken into account the dynamics of the robot and how it will really behave while in motion. For this reason, the robot programmed to be tested at a reduced speed, which is raised gradually to the final value. Depending on the complexity of the move and the proximity of the elements it takes a lot of time. It is easy to notice that the robot at different speeds have different trajectories and behaves differently.

  11. SHORT LITERATURE REVIEW ON THE KINEMATICS AND DYNAMICS OF THE INDUSTRIAL ROBOTS

    OpenAIRE

    RATIU Mariana

    2016-01-01

    This paper is the result of a short literature review on the kinematics and dynamics of the industrial robots, a first study conducted in a wider research that will be further developed in the field of the trajectory generating mechanisms of the industrial robots. After an introduction about the importance of the robots in the industrial processes and about the necessity to streamline and optimize the robot`s motion, are presented some recent approaches related to the kinematic and dynamic an...

  12. Skill Based Instruction of Collaborative Robots in Industrial Settings

    DEFF Research Database (Denmark)

    Schou, Casper; Andersen, Rasmus Skovgaard; Chrysostomou, Dimitrios

    2018-01-01

    During the past decades increasing need for more flexible and agile manufacturing equipment has spawned a growing interest in collaborative robots. Contrary to traditional industrial robots, collaborative robots are intended for operating alongside the production personnel in dynamic or semi...... several user studies, the usability of SBS and the task level programming approach has been demonstrated. SBS has been utilized in several international research projects where SBS has been deployed and tested in three real manufacturing settings. Collectively, the industrial exploitations have...

  13. Controlling Kuka Industrial Robots : Flexible Communication Interface JOpenShowVar.

    OpenAIRE

    Sanfilippo, Filippo; Hatledal, Lars Ivar; Zhang, Houxiang; Fago, Massimiliano; Pettersen, Kristin Ytterstad

    2015-01-01

    JOpenShowVar is a Java open-source cross-platform communication interface to Kuka industrial robots. This novel interface allows for read-write use of the controlled manipulator variables and data structures. JOpenShowVar, which is compatible with all the Kuka industrial robots that use KUKA Robot Controller version 4 (KR C4) and KUKA Robot Controller version 2 (KR C2), runs as a client on a remote computer connected with the Kuka controller via TCP/IP. Even though only soft real-time applica...

  14. Multivariable Frequency Response Functions Estimation for Industrial Robots

    NARCIS (Netherlands)

    Hardeman, T.; Aarts, Ronald G.K.M.; Jonker, Jan B.

    2005-01-01

    The accuracy of industrial robots limits its applicability for high demanding processes, like robotised laser welding. We are working on a nonlinear exible model of the robot manipulator to predict these inaccuracies. This poster presents the experimental results on estimating the Multivariable

  15. Electric drive motors for industrial robots

    Science.gov (United States)

    Fichtner, K.

    1985-04-01

    In robotized industrial plants it is possible to use electric motors in the technological process and also for control, assembly, transport, testing, and measurements. Particularly suitable for these applications are permanent-magnet d.c. motors. A new special series was developed for industrial robots with hinge joints in kinematic pairs. The complete drive includes thyristors or transistor controls with regulators and, if necessary, a line transformer as well as a servomotor with tachometer and odometer for speed, current, and position control. The drive is coupled to a robot tong through mechanical torque and force converters. In addition to a 0 to 4000 rpm speed regulation, without wobble at low speeds, and a high torque-to-weight ratio for repetitive short-time heavy duty, these low-inertia motors develop high starting and accelerating torques over the entire speed range. They operate from a 1 to O 220 V a.c. line through a rectifier. The motors are totally enclosed, or of open construction for better ventilation. Their windings have class F insulation for operation at ambient temperatures up to 40 C.

  16. Interactive Industrial Robot Programming for the Ceramic Industry

    Directory of Open Access Journals (Sweden)

    Germano Veiga

    2013-10-01

    Full Text Available This paper presents an interactive programming method for programming industrial robots in ceramic applications. The main purpose was to develop a simple but flexible programming system that empowers the user with product driven programming without compromising flexibility. To achieve this flexibility, a two step hybrid programming model was designed: first the user sketches the desired trajectory in a spatial augmented reality programming table using the final product and then relies on an advanced 3D graphical system to tune the robot trajectory in the final workcell. The results measured by the end-user feedback show that a new level of flexibility was reached for this type of application.

  17. Robotics: A New Challenge For Industrial Arts.

    Science.gov (United States)

    Lovedahl, Gerald G.

    1983-01-01

    The author argues that jobs in the future will depend less on manual skill and more on perceptual aptitude, formal knowledge, and precision. Industrial arts classes must include robotics in their curriculum if they intend to reflect accurately American industry. (Author/SSH)

  18. A Systematic Analysis of Functional Safety Certification Practices in Industrial Robot Software Development

    Directory of Open Access Journals (Sweden)

    Tong Xie

    2017-01-01

    Full Text Available For decades, industry robotics have delivered on the promise of speed, efficiency and productivity. The last several years have seen a sharp resurgence in the orders of industrial robots in China, and the areas addressed within industrial robotics has extended into safety-critical domains. However, safety standards have not yet been implemented widely in academia and engineering applications, particularly in robot software development. This paper presents a systematic analysis of functional safety certification practices in software development for the safety-critical software of industrial robots, to identify the safety certification practices used for the development of industrial robots in China and how these practices comply with the safety standard requirements. Reviewing from Chinese academic papers, our research shows that safety standards are barely used in software development of industrial robot. The majority of the papers propose various solutions to achieve safety, but only about two thirds of the papers refer to non-standardized approaches that mainly address the systematic level rather than the software development level. In addition, our research shows that with the development of artificial intelligent, an emerging field is still on the quest for standardized and suitable approaches to develop safety-critical software.

  19. An assembly system based on industrial robot with binocular stereo vision

    Science.gov (United States)

    Tang, Hong; Xiao, Nanfeng

    2017-01-01

    This paper proposes an electronic part and component assembly system based on an industrial robot with binocular stereo vision. Firstly, binocular stereo vision with a visual attention mechanism model is used to get quickly the image regions which contain the electronic parts and components. Secondly, a deep neural network is adopted to recognize the features of the electronic parts and components. Thirdly, in order to control the end-effector of the industrial robot to grasp the electronic parts and components, a genetic algorithm (GA) is proposed to compute the transition matrix and the inverse kinematics of the industrial robot (end-effector), which plays a key role in bridging the binocular stereo vision and the industrial robot. Finally, the proposed assembly system is tested in LED component assembly experiments, and the results denote that it has high efficiency and good applicability.

  20. Designing human-robot collaborations in industry 4.0: explorative case studies

    DEFF Research Database (Denmark)

    Kadir, Bzhwen A; Broberg, Ole; Souza da Conceição, Carolina

    2018-01-01

    We are experiencing an increase in human-robot interactions and the use of collaborative robots (cobots) in industrial work systems. To make full use of cobots, it is essential to understand emerging challenges and opportunities. In this paper, we analyse three successful industrial case studies...... of cobots’ implementation. We highlight the top three challenges and opportunities, from the empirical evidence, relate them to current available literature on the topic, and use them to identify key design factor to consider when designing industrial work system with human-robot collaborations....

  1. New support impulse in the area of industrial robots

    International Nuclear Information System (INIS)

    Martin, T.

    1982-06-01

    On this workshop problems of industrial robots were discussed by suppliers, users, and scientists. Such robots are used for handling workpieces and tools in the industry producing goods. Starting out from describing the state-of-the-art and latest experiences, development deficits are identified in detail. This includes hardware and software specifics as well as handling oriented product design and methods and tools for systems planning. (orig.) [de

  2. Indigenous robotics technology in nuclear industries (Paper No. 039)

    Energy Technology Data Exchange (ETDEWEB)

    Challappa, S; Guha, S

    1987-01-01

    Robots are essential for material handling, stripping, fitting, welding and other operations in a hazardous environment as exits in nuclear industries. Adoptivity of the equipment to environment to carry out remote activity, accuracy of the performance and quality are the primordial considerations for selection of such types of robots. The essential features of a typical robot are described in this paper. As a first step towards development of such a robot, a six-axis multipurpose robot developed in Central Workshops, Bhabha Atomic Research Centre, is also described in this paper. (author). 2 figs.

  3. Indigenous robotics technology in nuclear industries (Paper No. 039)

    International Nuclear Information System (INIS)

    Challappa, S.; Guha, S.

    1987-02-01

    Robots are essential for material handling, stripping, fitting, welding and other operations in a hazardous environment as exits in nuclear industries. Adoptivity of the equipment to environment to carry out remote activity, accuracy of the performance and quality are the primordial considerations for selection of such types of robots. The essential features of a typical robot are described in this paper. As a first step towards development of such a robot, a six-axis multipurpose robot developed in Central Workshops, Bhabha Atomic Research Centre, is also described in this paper. (author). 2 figs

  4. Automation of microfactories: towards using small industrial robots

    DEFF Research Database (Denmark)

    Eriksson, Torbjörn Gerhard; Hansen, Hans Nørgaard; Mazzola, Stefano

    2005-01-01

    with tweezers under a microscope. This is tedious work for the operators and it is very hard to keep an even quality. This process would be excellent to automate, for example by using small industrial robots. There are mainly two properties that are significant for selecting a robot for micro...

  5. The research on visual industrial robot which adopts fuzzy PID control algorithm

    Science.gov (United States)

    Feng, Yifei; Lu, Guoping; Yue, Lulin; Jiang, Weifeng; Zhang, Ye

    2017-03-01

    The control system of six degrees of freedom visual industrial robot based on the control mode of multi-axis motion control cards and PC was researched. For the variable, non-linear characteristics of industrial robot`s servo system, adaptive fuzzy PID controller was adopted. It achieved better control effort. In the vision system, a CCD camera was used to acquire signals and send them to video processing card. After processing, PC controls the six joints` motion by motion control cards. By experiment, manipulator can operate with machine tool and vision system to realize the function of grasp, process and verify. It has influence on the manufacturing of the industrial robot.

  6. Industrial-Like Vehicle Platforms for Postgraduate Laboratory Courses on Robotics

    Science.gov (United States)

    Navarro, P. J.; Fernandez, C.; Sanchez, P.

    2013-01-01

    The interdisciplinary nature of robotics allows mobile robots to be used successfully in a broad range of courses at the postgraduate level and in Ph.D. research. Practical industrial-like mobile robotic demonstrations encourage students and increase their motivation by providing them with learning benefits not achieved with traditional…

  7. Parametric programming of industrial robots

    Directory of Open Access Journals (Sweden)

    Szulczyński Paweł

    2015-06-01

    Full Text Available This article proposes the use of parametric design software, commonly used by architects, in order to obtain complex trajectory and program code for industrial robots. The paper describes the drawbacks of existing solutions and proposes a new script to obtain a correct program. The result of the algorithm was verified experimentally.

  8. Force-feedback tele operation of industrial robots a cost effective solution for decontamination of nuclear plants

    International Nuclear Information System (INIS)

    Desbats, P.; Andriot, C.; Gicquel, P.; Viallesoubranne, J.P.; Souche, C.

    1998-01-01

    Decontamination and maintenance in hot cells are some new emerging applications of industrial robots in the nuclear fuel cycle plants. Industrial robots are low cost, accurate and reliable manipulator arms which are used in manufacturing industries usually. Thanks to the recent evolution of robotics technologies, some industrial robots may be adapted to nuclear environment. These robots are transportable, sealed and can be decontaminated, and they may be 'hardened' up to a level of irradiation dose sufficient for operation in low and medium irradiating/contaminating environments. Although industrial robots are usually programmed to perform specific and repetitive tasks, they may be remotely tele-operated by human operators as well. This allows industrial robots to perform usual tele-manipulation tasks encountered in the nuclear plants and more. The paper presents the computer based tele-operation control system TAO2000 TM , developed by the Tele-operation and Robotics Service of CEA, which has been applied to the RX90 TM industrial robot from ST-UBLI company. This robot has been selected in order to perform various maintenance and decontamination tasks in COGEMA plants. TAO2000 provides the overall tele-robotic and robotic functions necessary to perform any remote tele-operation application in hostile environment: force-feedback master-slave control; computer- assisted tele-operation of mechanical processes; trajectory programming as well as various robotics functions; graphical modelling of working environment and simulation; automatic path planning with obstacle avoidance; man-machine interface for tasks programming and mission execution. Experimental results reported in the paper demonstrate the feasibility of force-feedback master-slave control of standard industrial robots. Finally, the design of new, cost effective. tele-operation systems based on industrial robots may be intended for nuclear plants maintenance. (author)

  9. Artificial Immune Algorithm for Subtask Industrial Robot Scheduling in Cloud Manufacturing

    Science.gov (United States)

    Suma, T.; Murugesan, R.

    2018-04-01

    The current generation of manufacturing industry requires an intelligent scheduling model to achieve an effective utilization of distributed manufacturing resources, which motivated us to work on an Artificial Immune Algorithm for subtask robot scheduling in cloud manufacturing. This scheduling model enables a collaborative work between the industrial robots in different manufacturing centers. This paper discussed two optimizing objectives which includes minimizing the cost and load balance of industrial robots through scheduling. To solve these scheduling problems, we used the algorithm based on Artificial Immune system. The parameters are simulated with MATLAB and the results compared with the existing algorithms. The result shows better performance than existing.

  10. Future use of robots in the automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, M P

    1982-01-01

    The future will see a dramatic increase in the number of robots used in the automotive industry. Well established applications, such as resistance spot welding, will continue to grow in the short term. Longer term, the much wider use of structural adhesives will supplant the spot welding process with robots applying the adhesives. Practical perception systems will enhance robot performance in arc welding, grinding, fettling, seam sealing and assembly operations, leading again to robot growth as vital elements of truly flexible manufacturing systems (FMS). A major robotic impact will be made in automotive paint shops as the need to conserve energy increases. The development of alternative painting materials, offering improved performance will add further impetus. Robotics of the future will progressively move to a CAD/CAM orientated data base, offering off-line programming capability, which together with essential inspection elements, will provide the means for totally automatic manufacture.

  11. Industrial Robots Join the Work Force.

    Science.gov (United States)

    Martin, Gail M.

    1982-01-01

    Robots--powerful, versatile, and easily adapted to new operations--may usher in a new industrial age. Workers throughout the labor force could be affected, as well as the nature of the workplace, skill requirements of jobs, and concomitant shifts in vocational education. (SK)

  12. Towards Shop Floor Hardware Reconfiguration for Industrial Collaborative Robots

    DEFF Research Database (Denmark)

    Schou, Casper; Madsen, Ole

    2016-01-01

    In this paper we propose a roadmap for hardware reconfiguration of industrial collaborative robots. As a flexible resource, the collaborative robot will often need transitioning to a new task. Our goal is, that this transitioning should be done by the shop floor operators, not highly specialized...

  13. Introducing autonomy to robotic manipulators in the nuclear industry

    International Nuclear Information System (INIS)

    Boddy, C.L.; Webster, A.W.

    1991-01-01

    The National Advanced Robotics Research Centre was set up in 1988 to provide a forum for the development and transfer to industry of the technology of Advanced Robotics. In the area of robot manipulators, research has been carried out into increasing the low-level autonomy of such devices e.g. reactive collision avoidance, gross base disturbance rejection. This groundwork has proven the feasibility of using advanced control concepts in robotic manipulators, and, indeed, indicated new areas of robot kinematic design which can now be successfully exploited. Within the newly defined BNFL Integrated Robotics Programme a number of joint projects have been defined to demonstrate this technology in realistic environments, including the use of advanced interactive computer simulation and kinematically redundant manipulators. (author)

  14. Advanced programming languages for industrial robots

    International Nuclear Information System (INIS)

    Wolter, H.

    1983-02-01

    With this report, the sponsor of the project on automation in manufacture introduces to the public several new programming procedures for industrial robots which are still under construction. In addition to the programming systems SRL - which, as already previously reported, represent an further development of the AL and ROBEX systems - two additional programming procedures are being described. These are adjusted to perform interactive work at the production site. As introduction to this report, a survey is offered on the status and development of robot programming in the Federal Republic of Germany and in other countries. (orig.) [de

  15. Development of a Self-Stabilizing Robotic Chassis for Industry

    Directory of Open Access Journals (Sweden)

    Ryadchikov Igor

    2017-01-01

    Full Text Available Presented the description of the bipedal robotic chassis with the unique kinematic scheme which has the possibility to locomote in complicated multi-level environment. AnyWalker is equipped with the system of compensation of external impacts with motor-wheels which can self-stabilize the robotic system in 3 dimensions. Presented chassis suggests to have open software and hardware architecture in order to become the universal walking platform for service and industry robots.

  16. A concept for ubiquitous robotics in industrial environment

    Science.gov (United States)

    Sallinen, Mikko; Heilala, Juhani; Kivikunnas, Sauli

    2007-09-01

    In this paper a concept for industrial ubiquitous robotics is presented. The concept combines two different approaches to manage agile, adaptable production: firstly the human operator is strongly in the production loop and secondly, the robot workcell will be more autonomous and smarter to manage production. This kind of autonomous robot cell can be called production island. Communication to the human operator working in this kind of smart industrial environment can be divided into two levels: body area communication and operator-infrastructure communication including devices, machines and infra. Body area communication can be supportive in two directions: data is recorded by means of measuring physical actions, such as hand movements, body gestures or supportive when it will provide information to user such as guides or manuals for operation. Body area communication can be carried out using short range communication technologies such as NFC (Near Field communication) which is RFID type of communication. In the operator-infrastructure communication, WLAN or Bluetooth -communication can be used. Beyond the current Human Machine interaction HMI systems, the presented system concept is designed to fulfill the requirements for hybrid, knowledge intensive manufacturing in the future, where humans and robots operate in close co-operation.

  17. Pose estimation of industrial objects towards robot operation

    Science.gov (United States)

    Niu, Jie; Zhou, Fuqiang; Tan, Haishu; Cao, Yu

    2017-10-01

    With the advantages of wide range, non-contact and high flexibility, the visual estimation technology of target pose has been widely applied in modern industry, robot guidance and other engineering practices. However, due to the influence of complicated industrial environment, outside interference factors, lack of object characteristics, restrictions of camera and other limitations, the visual estimation technology of target pose is still faced with many challenges. Focusing on the above problems, a pose estimation method of the industrial objects is developed based on 3D models of targets. By matching the extracted shape characteristics of objects with the priori 3D model database of targets, the method realizes the recognition of target. Thus a pose estimation of objects can be determined based on the monocular vision measuring model. The experimental results show that this method can be implemented to estimate the position of rigid objects based on poor images information, and provides guiding basis for the operation of the industrial robot.

  18. INDUSTRIAL ROBOT REPEATABILITY TESTING WITH HIGH SPEED CAMERA PHANTOM V2511

    Directory of Open Access Journals (Sweden)

    Jerzy Józwik

    2016-12-01

    Full Text Available Apart from accuracy, one of the parameters describing industrial robots is positioning accuracy. The parameter in question, which is the subject of this paper, is often the decisive factor determining whether to apply a given robot to perform certain tasks or not. Articulated robots are predominantly used in such processes as: spot weld-ing, transport of materials and other welding applications, where high positioning repeatability is required. It is therefore essential to recognise the parameter in question and to control it throughout the operation of the robot. This paper presents methodology for robot positioning accuracy measurements based on vision technique. The measurements were conducted with Phantom v2511 high-speed camera and TEMA Motion software, for motion analysis. The object of the measurements was a 6-axis Yaskawa Motoman HP20F industrial robot. The results of measurements obtained in tests provided data for the calculation of positioning accuracy of the robot, which was then juxtaposed against robot specifications. Also analysed was the impact of the direction of displacement on the value of attained pose errors. Test results are given in a graphic form.

  19. Effective programming of energy consuming industrial robot systems

    International Nuclear Information System (INIS)

    Trnka, K.; Pinter, T.; Knazik, M.; Bozek, P.

    2012-01-01

    This paper discusses the problem of effective motion planning for industrial robots. The first part dealt with current method for off-line motion planning. In the second part is presented the work done with one of the simulation system with automatic trajectory generation and off-line programming capability [4]. An spot welding process is involved. The practical application of this step strongly depends on the method for robot path optimization with high accuracy, thus, transform the path into a time and energy optimal robot program for the real world, which is discussed in the third step. (Authors)

  20. Vibration Suppression for Improving the Estimation of Kinematic Parameters on Industrial Robots

    Directory of Open Access Journals (Sweden)

    David Alejandro Elvira-Ortiz

    2016-01-01

    Full Text Available Vibration is a phenomenon that is present on every industrial system such as CNC machines and industrial robots. Moreover, sensors used to estimate angular position of a joint in an industrial robot are severely affected by vibrations and lead to wrong estimations. This paper proposes a methodology for improving the estimation of kinematic parameters on industrial robots through a proper suppression of the vibration components present on signals acquired from two primary sensors: accelerometer and gyroscope. A Kalman filter is responsible for the filtering of spurious vibration. Additionally, a sensor fusion technique is used to merge information from both sensors and improve the results obtained using each sensor separately. The methodology is implemented in a proprietary hardware signal processor and tested in an ABB IRB 140 industrial robot, first by analyzing the motion profile of only one joint and then by estimating the path tracking of two welding tasks: one rectangular and another one circular. Results from this work prove that the sensor fusion technique accompanied by proper suppression of vibrations delivers better estimation than other proposed techniques.

  1. Comparative analysis of automation of production process with industrial robots in Asia/Australia and Europe

    Directory of Open Access Journals (Sweden)

    I. Karabegović

    2017-01-01

    Full Text Available The term "INDUSTRY 4.0" or "fourth industrial revolution" was first introduced at the fair in 2011 in Hannover. It comes from the high-tech strategy of the German Federal Government that promotes automation-computerization to complete smart automation, meaning the introduction of a method of self-automation, self-configuration, self-diagnosing and fixing the problem, knowledge and intelligent decision-making. Any automation, including smart, cannot be imagined without industrial robots. Along with the fourth industrial revolution, ‘’robotic revolution’’ is taking place in Japan. Robotic revolution refers to the development and research of robotic technology with the aim of using robots in all production processes, and the use of robots in real life, to be of service to a man in daily life. Knowing these facts, an analysis was conducted of the representation of industrial robots in the production processes on the two continents of Europe and Asia /Australia, as well as research that industry is ready for the introduction of intelligent automation with the goal of establishing future smart factories. The paper gives a representation of the automation of production processes in Europe and Asia/Australia, with predictions for the future.

  2. Augmented reality for industrial robot programmers: Workload analysis for task-based, augmented reality-supported robot control

    OpenAIRE

    Stadler, S.; Kain, K.; Giuliani, M.; Mirnig, N.; Stollnberger, G.; Tscheligi, M. ed

    2016-01-01

    Augmented reality (AR) can serve as a tool to provide helpful information in a direct way to industrial robot programmers throughout the teaching process. It seems obvious that AR support eases the programming process and increases the programmer's productivity and programming accuracy. However, additional information can also potentially increase the programmer's perceived workload. To explore the impact of augmented reality on robot teaching, as a first step we have chosen a Sphero robot co...

  3. Design Of A Low Cost Anthropomorphic Robot Hand For Industrial Applications

    Science.gov (United States)

    Allen, P.; Raleigh, B.

    2009-11-01

    Autonomous grasping systems using anthropomorphic robotic end effectors have many applications, and the potential of such devices has inspired researchers to develop many types of grasping systems over the past 30 years. Their research has yielded significant advances in end effector dexterity and functionality. However, due to the cost and complexity associated with such devices, their role has been largely confined to that of being research tools in laboratories. Industry, by contrast, has largely opted for simple, single task, devices. This paper presents a novel low cost anthropomorphic robotic end effector, and in particular the design characteristics that make it more applicable to industrial application. The design brief was (i) to be broadly similar to the human hand in terms of size and performance (ii) be low cost (less than €5000 for the system) and (iii) to provide sufficient performance to allow use in industrial applications. Consisting of three fingers and an opposing thumb, the robotic hand developed has a total of 12 automated degrees of freedom. Another 4 degrees of freedom can be set manually. The specific design of the fingers and thumb, together with the drive arrangement utilizing synchronous belts, yields a simplified kinematics solution for the control of movement. The modular nature of the design is extended also to the palm, which can be easily modified to produce different overall work envelopes for the hand. The drive system and grasping strategies are also detailed.

  4. Industrial robots with sensors and object recognition systems

    International Nuclear Information System (INIS)

    Koehler, G.W.

    1978-01-01

    The previous development and the present status of industrial robots equipped with sensors and object recognition systems are described. This type of equipment allows flexible automation of many work stations in which industrial robots of the first generation, which are unable to react to changes in their respective environments automatically, apart from their being linked to other machines, could not be used because of the prevailing boundary conditions. A classification system facilitates an overview of the large number of technical solutions now available. The manifold possibilities of application of this equipment are demonstrated by a number of examples. As a result of the present state of development of the components required, and in view also of economic reasons, there is a trend towards special designs for a small number of specific purposes and towards stripped-down object recognition. systems with limited applications. A fitting description is offered of the term 'robot', which is now being used in various contexts, and an indication is made of the capabilities and components a machine to be called robot should have as a minimum. Finally, reference is made to some potential lines of development serving to reduce expediture and accelerate recognition processes. (orig.) [de

  5. Interactive Industrial Robot Programming for the Ceramic Industry

    OpenAIRE

    Germano Veiga; Pedro Malaca; Rui Cancela

    2013-01-01

    This paper presents an interactive programming method for programming industrial robots in ceramic applications. The main purpose was to develop a simple but flexible programming system that empowers the user with product driven programming without compromising flexibility. To achieve this flexibility, a two step hybrid programming model was designed: first the user sketches the desired trajectory in a spatial augmented reality programming table using the final product and then relies on an a...

  6. Mapping of unknown industrial plant using ROS-based navigation mobile robot

    Science.gov (United States)

    Priyandoko, G.; Ming, T. Y.; Achmad, M. S. H.

    2017-10-01

    This research examines how humans work with teleoperated unmanned mobile robot inspection in industrial plant area resulting 2D/3D map for further critical evaluation. This experiment focuses on two parts, the way human-robot doing remote interactions using robust method and the way robot perceives the environment surround as a 2D/3D perspective map. ROS (robot operating system) as a tool was utilized in the development and implementation during the research which comes up with robust data communication method in the form of messages and topics. RGBD SLAM performs the visual mapping function to construct 2D/3D map using Kinect sensor. The results showed that the mobile robot-based teleoperated system are successful to extend human perspective in term of remote surveillance in large area of industrial plant. It was concluded that the proposed work is robust solution for large mapping within an unknown construction building.

  7. Spatial Programming for Industrial Robots through Task Demonstration

    Directory of Open Access Journals (Sweden)

    Jens Lambrecht

    2013-05-01

    Full Text Available Abstract We present an intuitive system for the programming of industrial robots using markerless gesture recognition and mobile augmented reality in terms of programming by demonstration. The approach covers gesture-based task definition and adaption by human demonstration, as well as task evaluation through augmented reality. A 3D motion tracking system and a handheld device establish the basis for the presented spatial programming system. In this publication, we present a prototype toward the programming of an assembly sequence consisting of several pick-and-place tasks. A scene reconstruction provides pose estimation of known objects with the help of the 2D camera of the handheld. Therefore, the programmer is able to define the program through natural bare-hand manipulation of these objects with the help of direct visual feedback in the augmented reality application. The program can be adapted by gestures and transmitted subsequently to an arbitrary industrial robot controller using a unified interface. Finally, we discuss an application of the presented spatial programming approach toward robot-based welding tasks.

  8. Analysis on the Workspace of Six-degrees-of-freedom Industrial Robot Based on AutoCAD

    Directory of Open Access Journals (Sweden)

    Li Jin-quan

    2017-01-01

    Full Text Available This research discusses the workspace of the industrial robot with six degrees of freedom(6-DOF based on AutoCAD platform. Based on the analysis of the overall configuration of the robot, this research establishes the kinematic mathematical model of the industrial robot by using DH parameters, and then solves the workspace of the robot consequently. In the AutoCAD, Auto Lisp language program is adopted to simulate the two-dimensional(2D and three-dimensional(3D space of the robot. Software user interface is written by using the dialog box control language of Visual LISP. At last, the research analyzes the trend of the shape and direction of the workspace when the length and angle range of the robot are changed. This research lays the foundation for the design, control and planning of industrial robots.

  9. Will robots replace us? : an Empirical analysis of the impacts of robotization on employment in the Norwegian manufacturing industry

    OpenAIRE

    Grøndahl, Fredrik; Eriksen, Gina Hegland

    2017-01-01

    Rapid advances in robotics, artificial intelligence, and digital technologies have introduced renewed concern that labor will become redundant. The aim of this thesis is to assess whether there exists a relationship between robotization and employment in the time periods 1996-2005 and 2008-2015 in Norwegian manufacturing industries. We exploit data on operational robots from the International Federation of Robotics and individual level data from the Norwegian Labour Force Surve...

  10. State of the art on construction automation and robotic system in domestic and foreign construction industry

    International Nuclear Information System (INIS)

    Lee, Sung Uk; Seo, Yong Chil; Jung, Seung Ho; Cho, Jai Wan; Choi, Young Soo

    2007-08-01

    In this report, we review the existing concept of construction automation and also survey the state of the art on construction automation and robotic system in domestic and foreign construction industry. On the basis of the result of review and survey, we want to suggest an applicable robotic technology to construction industry and points to be duly considered for activating construction automation. We investigate the state of the art on construction automation and robotic system in domestic and foreign construction industry and also applicable area and direction of domestic construction automation and robotic system. We hope that construction automation and robotic technology, which are improved rapidly nowadays, can contribute to the growth of construction industry

  11. A novel teaching system for industrial robots.

    Science.gov (United States)

    Lin, Hsien-I; Lin, Yu-Hsiang

    2014-03-27

    The most important tool for controlling an industrial robotic arm is a teach pendant, which controls the robotic arm movement in work spaces and accomplishes teaching tasks. A good teaching tool should be easy to operate and can complete teaching tasks rapidly and effortlessly. In this study, a new teaching system is proposed for enabling users to operate robotic arms and accomplish teaching tasks easily. The proposed teaching system consists of the teach pen, optical markers on the pen, a motion capture system, and the pen tip estimation algorithm. With the marker positions captured by the motion capture system, the pose of the teach pen is accurately calculated by the pen tip algorithm and used to control the robot tool frame. In addition, Fitts' Law is adopted to verify the usefulness of this new system, and the results show that the system provides high accuracy, excellent operation performance, and a stable error rate. In addition, the system maintains superior performance, even when users work on platforms with different inclination angles.

  12. Robots in the USA nuclear industry: An overview to the end of the 20th century

    International Nuclear Information System (INIS)

    Meleran, H.B.

    1993-01-01

    Stationary robotic arms, mobile robotic vehicles, ROV's and other underwater crawling robots, and pipecrawlers are beginning to play a growing role in nuclear power plants and other nuclear facilities. This paper presents an overview of the current status and availability of robots, and in particular mobile robots, in the nuclear industry in the US. Typical missions for the robots conducted upon terrestrial surfaces, underwater, inside pipelines, and above ground location will also be described. An additional focus will also be directed towards the examination of issues concerning evolving insights and new development projects which are currently underway. Successfully exploited technologies that have been developed for other non-nuclear activities the aerospace, underwater, and industrial environments are being incorporated into the new generation of robots used in the nuclear industry

  13. Industrial robots application in the construction of buildings and structures

    Directory of Open Access Journals (Sweden)

    Verzhbovskiy Gennady

    2017-01-01

    Full Text Available Proposals on the use of modernized industrial robots in the construction of low-rise buildings are formulated. The necessary parameters of such a mechanism are established. The time necessary for building the walls of a two-story house is determined. Features of the robots use on the construction site are described.

  14. Kinematics and Application of a Hybrid Industrial Robot – Delta-RST

    Directory of Open Access Journals (Sweden)

    Ning Liu

    2014-04-01

    Full Text Available Serial robots and parallel robots have their own pros and cons. While hybrid robots consisting of both of them are possible and expected to retain their merits and minimize the disadvantages. The Delta-RST presented here is such a hybrid robot built up by integrating a 3-DoFs traditional Delta parallel structure and a 3-DoFs RST robotic wrist. In this paper, we focus on its kinematics analysis and its applications in industry. Firstly, the robotic system of the Delta-RST will be described briefly. Then the complete and systemic kinematics of this kind of robot will be presented in detail, followed by simulations and applications to demonstrate the correctness of the analysis, as well as the effectiveness of the developed robotic system. The closed-form kinematic analysis results are universal for similar hybrid robots constructing with the Delta parallel mechanism and serial chains.

  15. Kinematic equations for resolved-rate control of an industrial robot arm

    Science.gov (United States)

    Barker, L. K.

    1983-01-01

    An operator can use kinematic, resolved-rate equations to dynamically control a robot arm by watching its response to commanded inputs. Known resolved-rate equations for the control of a particular six-degree-of-freedom industrial robot arm and proceeds to simplify the equations for faster computations are derived. Methods for controlling the robot arm in regions which normally cause mathematical singularities in the resolved-rate equations are discussed.

  16. A Modular Architecture for Developing Robots for Industrial Applications

    DEFF Research Database (Denmark)

    Faina, Andres; Orjales, Felix; Souto, Daniel

    2015-01-01

    addresses the problem the other way around. In this line, we start by defining the industrial settings the architecture is aimed at and then extract the main features that would be required from a modular robotic architecture to operate successfully in this context. Finally, a particular heterogeneous......This chapter is concerned with proposing ways to make feasible the use of robots in many sectors characterized by dynamic and unstructured environments. In particular, we are interested in addressing the problem through a new approach, based on modular robotics, to allow the fast deployment...... modular robotic architecture is designed from these requirements and a laboratory implementation of it is built in order to test its capabilities and show its versatility using a set of different configurations including manipulators, climbers and walkers....

  17. Application of industrial robots in automatic disassembly line of waste LCD displays

    Science.gov (United States)

    Wang, Sujuan

    2017-11-01

    In the automatic disassembly line of waste LCD displays, LCD displays are disassembled into plastic shells, metal shields, circuit boards, and LCD panels. Two industrial robots are used to cut metal shields and remove circuit boards in this automatic disassembly line. The functions of these two industrial robots, and the solutions to the critical issues of model selection, the interfaces with PLCs and the workflows were described in detail in this paper.

  18. First Application of Robot Teaching in an Existing Industry 4.0 Environment: Does It Really Work?

    Directory of Open Access Journals (Sweden)

    Astrid Weiss

    2016-07-01

    Full Text Available This article reports three case studies on the usability and acceptance of an industrial robotic prototype in the context of human-robot cooperation. The three case studies were conducted in the framework of a two-year project named AssistMe, which aims at developing different means of interaction for programming and using collaborative robots in a user-centered manner. Together with two industrial partners and a technological partner, two different application scenarios were implemented and studied with an off-the-shelf robotic system. The operators worked with the robotic prototype in laboratory conditions (two days, in a factory context (one day and in an automotive assembly line (three weeks. In the article, the project and procedures are described in detail, including the quantitative and qualitative methodology. Our results show that close human-robot cooperation in the industrial context needs adaptive pacing mechanisms in order to avoid a change of working routines for the operators and that an off-the-shelf robotic system is still limited in terms of usability and acceptance. The touch panel, which is needed for controlling the robot, had a negative impact on the overall user experience. It creates a further intermediate layer between the user, the robot and the work piece and potentially leads to a decrease in productivity. Finally, the fear of the worker of being replaced by an improved robotic system was regularly expressed and adds an additional anthropocentric dimension to the discussion of human-robot cooperation, smart factories and the upcoming Industry 4.0.

  19. Mobile robotics application in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.L.; White, J.R. [REMOTEC, Inc., Oak Ridge, TN (United States)

    1995-03-01

    Mobile robots have been developed to perform hazardous operations in place of human workers. Applications include nuclear plant inspection/maintenance, decontamination and decommissioning police/military explosive ordinance disposal (EOD), hostage/terrorist negotiations and fire fighting. Nuclear facilities have proven that robotic applications can be cost-effective solutions to reducing personnel exposure and plant downtime. The first applications of mobile robots in the nuclear industry began in the early 1980`s, with the first vehicles being one of a kind machines or adaptations of commercial EOD robots. These activities included efforts by numerous commercial companies, the U.S. Nuclear Regulatory Commission, EPRI, and several national laboratories. Some of these efforts were driven by the recovery and cleanup activities at TMI which demonstrated the potential and need for a remote means of performing surveillance and maintenance tasks in nuclear plants. The use of these machines is now becoming commonplace in nuclear facilities throughout the world. The hardware maturity and the confidence of the users has progressed to the point where the applications of mobile robots is not longer considered a novelty. These machines are being used in applications where the result is to help achieve more aggressive goals for personnel radiation exposure and plant availability, perform tasks more efficiently, and allow plant operators to retrieve information from areas previously considered inaccessible. Typical examples include surveillance in high radiation areas (during operation and outage activities), radiation surveys, waste handling, and decontamination evolutions. This paper will discuss this evolution including specific applications experiences, examples of currently available technology, and the benefits derived from the use of mobile robotic vehicles in commercial nuclear power facilities.

  20. Mobile robotics application in the nuclear industry

    International Nuclear Information System (INIS)

    Jones, S.L.; White, J.R.

    1995-01-01

    Mobile robots have been developed to perform hazardous operations in place of human workers. Applications include nuclear plant inspection/maintenance, decontamination and decommissioning police/military explosive ordinance disposal (EOD), hostage/terrorist negotiations and fire fighting. Nuclear facilities have proven that robotic applications can be cost-effective solutions to reducing personnel exposure and plant downtime. The first applications of mobile robots in the nuclear industry began in the early 1980's, with the first vehicles being one of a kind machines or adaptations of commercial EOD robots. These activities included efforts by numerous commercial companies, the U.S. Nuclear Regulatory Commission, EPRI, and several national laboratories. Some of these efforts were driven by the recovery and cleanup activities at TMI which demonstrated the potential and need for a remote means of performing surveillance and maintenance tasks in nuclear plants. The use of these machines is now becoming commonplace in nuclear facilities throughout the world. The hardware maturity and the confidence of the users has progressed to the point where the applications of mobile robots is not longer considered a novelty. These machines are being used in applications where the result is to help achieve more aggressive goals for personnel radiation exposure and plant availability, perform tasks more efficiently, and allow plant operators to retrieve information from areas previously considered inaccessible. Typical examples include surveillance in high radiation areas (during operation and outage activities), radiation surveys, waste handling, and decontamination evolutions. This paper will discuss this evolution including specific applications experiences, examples of currently available technology, and the benefits derived from the use of mobile robotic vehicles in commercial nuclear power facilities

  1. Virtual reality based support system for layout planning and programming of an industrial robotic work cell.

    Directory of Open Access Journals (Sweden)

    Hwa Jen Yap

    Full Text Available Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell, consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL and VR-based Robot Teaching System (VR-RoT. VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell.

  2. Virtual reality based support system for layout planning and programming of an industrial robotic work cell.

    Science.gov (United States)

    Yap, Hwa Jen; Taha, Zahari; Dawal, Siti Zawiah Md; Chang, Siow-Wee

    2014-01-01

    Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR) technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell), consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL) and VR-based Robot Teaching System (VR-RoT). VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell.

  3. Virtual Reality Based Support System for Layout Planning and Programming of an Industrial Robotic Work Cell

    Science.gov (United States)

    Yap, Hwa Jen; Taha, Zahari; Md Dawal, Siti Zawiah; Chang, Siow-Wee

    2014-01-01

    Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR) technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell), consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL) and VR-based Robot Teaching System (VR-RoT). VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell. PMID:25360663

  4. DOE EM industry programs robotics development

    International Nuclear Information System (INIS)

    Staubly, R.; Kothari, V.

    1998-01-01

    The Office of Science and Technology (OST) manages an aggressive program for RD and D, as well as testing and evaluation for the Department of Energy's (DOE's) Environmental Management (EM) organization. The goal is to develop new and improved environmental restoration and waste management technologies to clean up the inventory of the DOE weapons complex faster, safer, and cheaper than is possible with currently available technologies. Robotic systems reduce worker exposure to the absolute minimum, while providing proven, cost-effective, and, for some applications, the only acceptable technique for addressing challenging problems. Development of robotic systems for remote operations occurs in three main categories: tank waste characterization and retrieval; decontamination and dismantlement; and characterization, mapping, and inspection systems. In addition, the Federal Energy Technology Center (FETC) has some other projects which fall under the heading of supporting R and D. The central objective of all FETC robotic projects is to make robotic systems more attractive by reducing costs and health risks associated with the deployment of robotic technologies in the cleanup of the nuclear weapons complex. This will be accomplished through development of robots that are cheaper, faster, safer, and more reliable, as well as more straightforward to modify/adapt and more intuitive to operate with autonomous capabilities and intelligent controls that prevent accidents and optimize task execution

  5. Direct adaptive control of a PUMA 560 industrial robot

    Science.gov (United States)

    Seraji, Homayoun; Lee, Thomas; Delpech, Michel

    1989-01-01

    The implementation and experimental validation of a new direct adaptive control scheme on a PUMA 560 industrial robot is described. The testbed facility consists of a Unimation PUMA 560 six-jointed robot and controller, and a DEC MicroVAX II computer which hosts the Robot Control C Library software. The control algorithm is implemented on the MicroVAX which acts as a digital controller for the PUMA robot, and the Unimation controller is effectively bypassed and used merely as an I/O device to interface the MicroVAX to the joint motors. The control algorithm for each robot joint consists of an auxiliary signal generated by a constant-gain Proportional plus Integral plus Derivative (PID) controller, and an adaptive position-velocity (PD) feedback controller with adjustable gains. The adaptive independent joint controllers compensate for the inter-joint couplings and achieve accurate trajectory tracking without the need for the complex dynamic model and parameter values of the robot. Extensive experimental results on PUMA joint control are presented to confirm the feasibility of the proposed scheme, in spite of strong interactions between joint motions. Experimental results validate the capabilities of the proposed control scheme. The control scheme is extremely simple and computationally very fast for concurrent processing with high sampling rates.

  6. Trajectory planning and optimal tracking for an industrial mobile robot

    Science.gov (United States)

    Hu, Huosheng; Brady, J. Michael; Probert, Penelope J.

    1994-02-01

    This paper introduces a unified approach to trajectory planning and tracking for an industrial mobile robot subject to non-holonomic constraints. We show (1) how a smooth trajectory is generated that takes into account the constraints from the dynamic environment and the robot kinematics; and (2) how a general predictive controller works to provide optimal tracking capability for nonlinear systems. The tracking performance of the proposed guidance system is analyzed by simulation.

  7. A new hybrid machine design for a 6 DOF industrial robot arm

    CSIR Research Space (South Africa)

    Shaik, AA

    2012-05-01

    Full Text Available of units sold since 1960 amounted to more than 2 230 000, and the IFR (International Federation of Robotics) estimates the total number of operational industrial robots worldwide to be between 1 021 000 and 1 300 000 units at the end of 2009. [Exec sum... productivity to be competitive on the global market and the competition for market share in rising consumer markets. [IFR 1] The main drivers for the strong recovery in 2010 were automotive manufacturers and the electronics industry. In addition...

  8. Industrial robots in Europe - market, applications and developments

    Science.gov (United States)

    Schraft, R. D.

    1975-01-01

    Different companies involving a wide range of products and manufacturing processes were studied to define the requirements for industrial robots. A survey of all such automatic units offered on the world market was made to establish a data base. Principal applications include coating, spot welding, and loading and unloading operations.

  9. Framework for Developing a Multimodal Programming Interface Used on Industrial Robots

    Directory of Open Access Journals (Sweden)

    Bogdan Mocan

    2014-12-01

    Full Text Available The proposed approach within this paper shifts the focus from the coordinate based programming of an industrial robot, which currently dominates the field, to an object based programming scheme. The general framework proposed in this paper is designed to perform natural language understanding, gesture integration and semantic analysis which facilitate the development of a multimodal robot programming interface that facilitate an intuitive programming.

  10. Automated Manufacturing/Robotics Technology: Certificate and Associate Degree Programs.

    Science.gov (United States)

    McQuay, Paul L.

    A description is provided of the Automated Manufacturing/Robotics program to be offered at Delaware County Community College beginning in September 1984. Section I provides information on the use of reprogramable industrial robots in manufacturing and the rapid changes in production that can be effected through the application of automated…

  11. Fused Smart Sensor Network for Multi-Axis Forward Kinematics Estimation in Industrial Robots

    OpenAIRE

    Rodriguez-Donate, Carlos; Osornio-Rios, Roque Alfredo; Rivera-Guillen, Jesus Rooney; Romero-Troncoso, Rene de Jesus

    2011-01-01

    Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of h...

  12. Usage of industrial robots in nuclear power industry

    International Nuclear Information System (INIS)

    Matsuo, Yoshio; Hamada, Kenjiro

    1982-01-01

    Japan is now at the top level in the world in robot technology.Its application to nuclear power field is one of the most expected. However, their usage spreads over various types of nuclear power plants, their manufacture and operation, and other areas such as fuel reprocessing plants and reactor plant decommissioning. The robots as used for the operation of BWR nuclear power plants, already developed and under development, are described: features in the nuclear-power usage of robots, the robots used currently for automatic fuel exchange, the replacement of control rod drives and in-service inspection; the robots under development for travelling inspection device and the inspection of main steam-relief safety valves, future development of robots. By robot usage, necessary personnel, work period and radiation exposure can be greatly reduced, and safety and reliability are also raised. (Mori, K.)

  13. Cognitive Human-Machine Interface Applied in Remote Support for Industrial Robot Systems

    Directory of Open Access Journals (Sweden)

    Tomasz Kosicki

    2013-10-01

    Full Text Available An attempt is currently being made to widely introduce industrial robots to Small-Medium Enterprises (SMEs. Since the enterprises usually employ too small number of robot units to afford specialized departments for robot maintenance, they must be provided with inexpensive and immediate support remotely. This paper evaluates whether the support can be provided by means of Cognitive Info-communication – communication in which human cognitive capabilities are extended irrespectively of geographical distances. The evaluations are given with an aid of experimental system that consists of local and remote rooms, which are physically separated – a six-degree-of-freedom NACHI SH133-03 industrial robot is situated in the local room, while the operator, who supervises the robot by means of audio-visual Cognitive Human-Machine Interface, is situated in the remote room. The results of simple experiments show that Cognitive Info-communication is not only efficient mean to provide the support remotely, but is probably also a powerful tool to enhance interaction with any data-rich environment that require good conceptual understanding of system's state and careful attention management. Furthermore, the paper discusses data presentation and reduction methods for data-rich environments, as well as introduces the concepts of Naturally Acquired Data and Cognitive Human-Machine Interfaces.

  14. Report on the actual situations of the commercially applied, industrial robots; Sangyoyo robot ni kansuru kigyo jittai chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-08-01

    Described herein are the actual situations of industrial robots as the FY 1991 questionnaire survey results. The questionnaires were sent to 541 factories, and 74% thereof were recovered. The major machine types fall into categories of manual manipulator, stationary sequence manipulator, remote controlling robot, sequence robot, playback robot, numerically controlling robot and intelligent robot. They are mainly driven by hydraulic, pneumatic, or electrical power. Their mechanism types cover polar coordinate, cylindrical coordinate, rectangular coordinate and articulation types, among others. They are mainly controlled by electronically, electrically (hydraulic or relay), or pneumatically. The major purposes for general works include casting, forging, resin processing, heat treatment, pressing, welding, coating, machining, cutting, assembling, reception/delivery of goods, and testing/inspection. The special works they are in service include those for power/gas/water services, construction works, and research and development. By work step, they are in service, e.g., for loading/unloading goods, palletising/packing goods, supporting, screening, welding, spraying/coating, grinding, clamping, assembling, and riveting. (NEDO)

  15. Fundamental framework toward optimal design of product platform for industrial three-axis linear-type robots

    Directory of Open Access Journals (Sweden)

    Kana Sawai

    2015-07-01

    Full Text Available This paper discusses an optimization-based approach for the design of a product platform for industrial three-axis linear-type robots, which are widely used for handling objects in manufacturing lines. Since the operational specifications of these robots, such as operation speed, working distance and orientation, weight and shape of loads, etc., will vary for different applications, robotic system vendors must provide various types of robots efficiently and effectively to meet a range of market needs. A promising step toward this goal is the concept of a product platform, in which several key elements are commonly used across a series of products, which can then be customized for individual requirements. However the design of a product platform is more complicated than that of each product, due to the need to optimize the design across many products. This paper proposes an optimization-based fundamental framework toward the design of a product platform for industrial three-axis linear-type robots; this framework allows the solution of a complicated design problem and builds an optimal design method of fundamental features of robot frames that are commonly used for a wide range of robots. In this formulation, some key performance metrics of the robot are estimated by a reduced-order model which is configured with beam theory. A multi-objective optimization problem is formulated to represent the trade-offs among key design parameters using a weighted-sum form for a single product. This formulation is integrated into a mini–max type optimization problem across a series of robots as an optimal design formulation for the product platform. Some case studies of optimal platform design for industrial three-axis linear-type robots are presented to demonstrate the applications of a genetic algorithm to such mathematical models.

  16. Robot skills for manufacturing

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Rath; Nalpantidis, Lazaros; Andersen, Rasmus Skovgaard

    2016-01-01

    -asserting robot skills for manufacturing. We show how a relatively small set of skills are derived from current factory worker instructions, and how these can be transferred to industrial mobile manipulators. General robot skills can not only be implemented on these robots, but also be intuitively concatenated...... products are introduced by manufacturers. In order to compete on global markets, the factories of tomorrow need complete production lines, including automation technologies that can effortlessly be reconfigured or repurposed, when the need arises. In this paper we present the concept of general, self...... in running production facilities at an industrial partner. It follows from these experiments that the use of robot skills, and associated task-level programming framework, is a viable solution to introducing robots that can intuitively and on the fly be programmed to perform new tasks by factory workers....

  17. Soft Robotic Manipulation of Onions and Artichokes in the Food Industry

    Directory of Open Access Journals (Sweden)

    R. Morales

    2014-04-01

    Full Text Available This paper presents the development of a robotic solution for a problem of fast manipulation and handling of onions or artichokes in the food industry. The complete solution consists of a parallel robotic manipulatior, a specially designed end-effector based on a customized vacuum suction cup, and a computer vision software developed for pick and place operations. First, the selection and design process of the proposed robotic solution to fit with the initial requeriments is presented, including the customized vacuum suction cup. Then, the kinematic analysis of the parallel manipulator needed to develop the robot control system is reviewed. Moreover, computer vision application is presented inthe paper. Hardware details of the implementation of the building prototype are also shown. Finally, conclusions and future work show the current status of the project.

  18. Anthropomorphic Robot Design and User Interaction Associated with Motion

    Science.gov (United States)

    Ellis, Stephen R.

    2016-01-01

    Though in its original concept a robot was conceived to have some human-like shape, most robots now in use have specific industrial purposes and do not closely resemble humans. Nevertheless, robots that resemble human form in some way have continued to be introduced. They are called anthropomorphic robots. The fact that the user interface to all robots is now highly mediated means that the form of the user interface is not necessarily connected to the robots form, human or otherwise. Consequently, the unique way the design of anthropomorphic robots affects their user interaction is through their general appearance and the way they move. These robots human-like appearance acts as a kind of generalized predictor that gives its operators, and those with whom they may directly work, the expectation that they will behave to some extent like a human. This expectation is especially prominent for interactions with social robots, which are built to enhance it. Often interaction with them may be mainly cognitive because they are not necessarily kinematically intricate enough for complex physical interaction. Their body movement, for example, may be limited to simple wheeled locomotion. An anthropomorphic robot with human form, however, can be kinematically complex and designed, for example, to reproduce the details of human limb, torso, and head movement. Because of the mediated nature of robot control, there remains in general no necessary connection between the specific form of user interface and the anthropomorphic form of the robot. But their anthropomorphic kinematics and dynamics imply that the impact of their design shows up in the way the robot moves. The central finding of this report is that the control of this motion is a basic design element through which the anthropomorphic form can affect user interaction. In particular, designers of anthropomorphic robots can take advantage of the inherent human-like movement to 1) improve the users direct manual control over

  19. Extending an Industrial Robot Controller-Implementation and Applications of a Fast Open Sensor Interface

    OpenAIRE

    Blomdell, Anders; Bolmsjö, Gunnar; Brogårdh, Torgny; Cederberg, Per; Isaksson, Mats; Johansson, Rolf; Haage, Mathias; Nilsson, Klas; Olsson, Magnus; Olsson, Tomas; Robertsson, Anders; Wang, Jianjun

    2005-01-01

    Many promising robotics research results were obtained during the late 1970s and early 1980s. Some examples include Cartesian force control and advanced motion planning. Now, 20 years and many research projects later, many technologies still have not reached industrial usage. An important question to consider is how this situation can be improved for future deployment of necessary technologies. Today, modern robot control systems used in industry provide highly optimized motion control that w...

  20. Mobile robots for the nuclear industry - A 1990 status report

    International Nuclear Information System (INIS)

    Meieran, H.B.

    1990-01-01

    Mobile robots with and without manipulating arms have been available for use in radioactive environments for almost 30 yr. Their use commenced in the early 1960s with a family of mobile robots manufactured by the PAR Corporation (now the PAR division of CIMCORP). It was a tethered, two-tracked teleoperator-controlled vehicle that supported one master-slave manipulating arm. The durability of this device is continuing to be demonstrated by HERMAN, which is currently on standby availability at the Oak Ridge National Laboratory (ORNL) to respond to emergency situations by supporting mitigating actions at scenes of incidents that involve the release of radioactive material. Mobile robots are being employed in a spectrum of locations in many reactors and other nuclear installations. This paper presents the current status of the use of mobile robots in the nuclear industry and describes currently contemplated missions, with examples, that are being or will be conducted on terrestrial surfaces, underwater, in pipeline locations, and through the air

  1. Human centric object perception for service robots

    NARCIS (Netherlands)

    Alargarsamy Balasubramanian, A.C.

    2016-01-01

    The research interests and applicability of robotics have diversified and seen a
    tremendous growth in recent years. There has been a shift from industrial robots operating in constrained settings to consumer robots working in dynamic environments associated closely with everyday human

  2. Online absolute pose compensation and steering control of industrial robot based on six degrees of freedom laser measurement

    Science.gov (United States)

    Yang, Juqing; Wang, Dayong; Fan, Baixing; Dong, Dengfeng; Zhou, Weihu

    2017-03-01

    In-situ intelligent manufacturing for large-volume equipment requires industrial robots with absolute high-accuracy positioning and orientation steering control. Conventional robots mainly employ an offline calibration technology to identify and compensate key robotic parameters. However, the dynamic and static parameters of a robot change nonlinearly. It is not possible to acquire a robot's actual parameters and control the absolute pose of the robot with a high accuracy within a large workspace by offline calibration in real-time. This study proposes a real-time online absolute pose steering control method for an industrial robot based on six degrees of freedom laser tracking measurement, which adopts comprehensive compensation and correction of differential movement variables. First, the pose steering control system and robot kinematics error model are constructed, and then the pose error compensation mechanism and algorithm are introduced in detail. By accurately achieving the position and orientation of the robot end-tool, mapping the computed Jacobian matrix of the joint variable and correcting the joint variable, the real-time online absolute pose compensation for an industrial robot is accurately implemented in simulations and experimental tests. The average positioning error is 0.048 mm and orientation accuracy is better than 0.01 deg. The results demonstrate that the proposed method is feasible, and the online absolute accuracy of a robot is sufficiently enhanced.

  3. Calibration of Robot Reference Frames for Enhanced Robot Positioning Accuracy

    OpenAIRE

    Cheng, Frank Shaopeng

    2008-01-01

    This chapter discussed the importance and methods of conducting robot workcell calibration for enhancing the accuracy of the robot TCP positions in industrial robot applications. It shows that the robot frame transformations define the robot geometric parameters such as joint position variables, link dimensions, and joint offsets in an industrial robot system. The D-H representation allows the robot designer to model the robot motion geometry with the four standard D-H parameters. The robot k...

  4. A Study of Accuracy and Time Delay for Bilateral Master-Slave Industrial Robotic Arm Manipulator System

    Directory of Open Access Journals (Sweden)

    Mansor Nuratiqa Natrah

    2018-01-01

    Full Text Available Bilateral master-slave industrial robotic arm manipulator system is an advanced technology used to help human to interact with environments that are unreachable to human, due to its remoteness or perilous. The system has been used in different areas such as tele-surgery, autonomous tele-operation for sea and space operation and handling explosive or high radiation operation fields. It is beneficial both for science and society. Remarkably, the system is not common and generally used in Malaysia. Likewise, the number of research conducted that focused about this technology in our country manufacturing industry are not yet discovered and existent. The implementation of this bilateral manipulator system in an industrial robot could be useful for industrial imminent and development over our country and people, specifically for production yield size and human operative. Hence, the study of bilateral robotic arm manipulator system in an industrial robot and analyzation of its performance and time delay in 3 differ controllers will be discussed to attest the efficiency and its effectiveness on the said design system. The experiment conducted was on KUKA youBot arm in V-Rep simulation with three different controllers (P, PD, PID.

  5. Cooperative Path Planning and Constraints Analysis for Master-Slave Industrial Robots

    Directory of Open Access Journals (Sweden)

    Yahui Gan

    2012-09-01

    Full Text Available A strategy of cooperative path planning for a master-slave multiple robot system is presented in this paper. The path planning method is based on motion constraints between the end-effectors of cooperative robots. Cooperation motions have been classified into three types by relative motions between end-effectors of master and slave robots, which is concurrent cooperation, coupled synchronous cooperation and combined synchronous cooperation. Based on this classification, position /orientation constraints and joint velocity constraints are explored in-depth here. In order to validate the path planning method and the theoretical developments in motion constraints analysis, representative experiments based on two industrial robots, Motoman VA1400 and HP20, are provided at the end of the paper. The experimental results have proved both the effectiveness of the path planning method and the correctness of the constraints analysis.

  6. Cutting velocity accuracy as a criterion for comparing robot trajectories and manual movements for medical industry

    Science.gov (United States)

    Vorotnikov, A. A.; Klimov, D. D.; Romash, E. V.; Bashevskaya, O. S.; Poduraev, Yu. V.; Bazykyan, E. A.; Chunihin, A. A.

    2018-03-01

    Industrial robots perform technological operations, such as spot and arc welding, machining and laser cutting along different trajectories within their performance characteristics. The evaluation of these characteristics is carried out according to the criteria of the standard ISO 9283. The criteria of this standard are applicable in industrial manufacturing, but not in the medical industry, as they are not developed in the framework of medical tasks. Therefore, it is necessary to evaluate according to criteria built on different principles. In this article, the question of comparative evaluation of trajectories from program movements of a robot and manual movements of a surgeon, arising during the development of robotic medical complexes using industrial robots, is considered. A comparative evaluation is required to prove the expediency of automating medical operations in maxillofacial surgery. This study focuses on the estimation of velocity accuracy of a medical instrument. To obtain the velocity of the medical instrument, coordinates of the trajectory points from the program movements of the robot KUKA LWR4+ and trajectories from the manual movements of a professional surgeon have been measured. The measurement was carried out using a coordinate measuring machine, the laser tracker Leica LTD800. The accuracy estimation was carried out by two criteria: the criterion set out in the ISO 9283 standard, and the developed alternative criterion, the description of which is presented in this article. A quantitative comparative evaluation of the trajectories of a robot and a surgeon was obtained.

  7. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology-

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Bum; Park, Soon Yong; Cho, Jae Wan; Lee, Nam Hoh; Kim, Woong Kee; Moon, Byung Soo; Kim, Seung Hoh; Kim, Chang Heui; Kim, Byung Soo; Hwang, Suk Yong; Lee, Yung Kwang; Moon, Je Sun

    1995-07-01

    Main activity in this year is to develop both remote handling system and telepresence techniques, which can be used for people involved in extremely hazardous working area to alleviate their burden. In the robot vision technology part, KAERI-PSM system, stereo imaging camera module, stereo BOOM/MOLLY unit, and stereo HMD unit are developed. Also, autostereo TV system which falls under the category of next generation stereo imaging technology has been studied. The performance of KAERI-PSM system for remote handling task is evaluated and compared with other stereo imaging systems as well as general TV imaging system. The result shows that KAERI-PSM system is superior to the other stereo imaging systems about remote operation speedup and accuracy. The automatic recognition algorithm of instrument panel is studied and passive visual target tracking system is developed. The 5 DOF camera serving unit has been designed and fabricated. It is designed to function like human's eye. In the sensing and intelligent control research part, thermal image database system for thermal image analysis is developed and remote temperature monitoring technique using fiber optics is investigated. And also, two dimensional radioactivity sensor head for radiation profile monitoring system is designed. In the part of intelligent robotics, mobile robot is fabricated and its autonomous navigation using fuzzy control logic is studied. These remote handling and telepresence techniques developed in this project can be applied to nozzle-dam installation/removal robot system, reactor inspection unit, underwater nuclear pellet inspection and pipe abnormality inspection. And these developed remote handling and telepresence techniques will be applied in general industry, medical science, and military as well as nuclear facilities. It has been looking for these techniques to expand the working area of human, raise the working efficiencies of remote task to the highest degree, and enhance the industrial

  8. Gearing up and accelerating cross-fertilization between academic and industrial robotics research in Europe technology transfer experiments from the ECHORD project

    CERN Document Server

    Veiga, Germano; Natale, Ciro

    2014-01-01

    This monograph by Florian Röhrbein, Germano Veiga and Ciro Natale is an edited collection of 15 authoritative contributions in the area of robot technology transfer between academia and industry. It comprises three parts on Future Industrial Robotics, Robotic Grasping as well as Human-Centered Robots. The book chapters cover almost all the topics nowadays considered ‘hot’ within the robotics community, from reliable object recognition to dexterous grasping, from speech recognition to intuitive robot programming, from mobile robot navigation to aerial robotics, from safe physical human-robot interaction to body extenders. All contributions stem from the results of ECHORD – the European Clearing House for Open Robotics Development, a large-scale integrating project funded by the European Commission within the 7th Framework Programme from 2009 to 2013. ECHORD’s two main pillars were the so-called experiments, 51 small-sized industry-driven research projects, and the structured dialog, a powerful interac...

  9. Gearing up and accelerating cross-fertilization between academic and industrial robotics research in Europe technology transfer experiments from the ECHORD project

    CERN Document Server

    Veiga, Germano; Natale, Ciro

    2014-01-01

    This monograph by Florian Röhrbein, Germano Veiga and Ciro Natale is an edited collection of 15 authoritative contributions in the area of robot technology transfer between academia and industry. It comprises three parts on Future Industrial Robotics, Robotic Grasping as well as Human-Centered Robots. The book chapters cover almost all the topics nowadays considered ‘hot’ within the robotics community, from reliable object recognition to dexterous grasping, from speech recognition to intuitive robot programming, from mobile robot navigation to aerial robotics, from safe physical human-robot interaction to body extenders. All contributions stem from the results of ECHORD – the European Clearing House for Open Robotics Development, a large-scale integrating project funded by the European Commission within the 7th Framework Programme from 2009 to 2013. ECHORD’s two main pillars were the so-called experiments, 52 small-sized industry-driven research projects, and the structured dialog, a powerful interac...

  10. Industrial Robot Programming and UPnP Services Orchestration for the Automation of Factories

    Directory of Open Access Journals (Sweden)

    A. Valera

    2012-10-01

    Full Text Available The integration of equipment and other devices built into industrial robot cells with modern Ethernet interface technologies and low-cost mass produced devices (such as vision systems, laser scanners, force torque-sensors, PLCs and PDAs etc. enables integrators to offer more powerful and smarter solutions. Nevertheless, the programming of all these devices efficiently requires very specific knowledge about them, such as their hardware architectures and specific programming languages as well as details about the system's low level communication protocols. To address these issues, this paper describes and analyses the Plug-and-Play architecture. This is one of the most interesting service-oriented architectures (SOAs available, which exhibits characteristics that are well adapted to industrial robotics cells. To validate their programming features and applicability, a test bed was specially designed. This provides a new graphical service orchestration which was implemented using Workflow Foundation 4 of .NET. The obtained results allowed us to verify that the use of integration schemes based on SOAs reduces the system integration time and is better adapted to industrial robotic cell system integrators.

  11. Assembly Line Productivity Assessment by Comparing Optimization-Simulation Algorithms of Trajectory Planning for Industrial Robots

    Directory of Open Access Journals (Sweden)

    Francisco Rubio

    2015-01-01

    Full Text Available In this paper an analysis of productivity will be carried out from the resolution of the problem of trajectory planning of industrial robots. The analysis entails economic considerations, thus overcoming some limitations of the existing literature. Two methodologies based on optimization-simulation procedures are compared to calculate the time needed to perform an industrial robot task. The simulation methodology relies on the use of robotics and automation software called GRASP. The optimization methodology developed in this work is based on the kinematics and the dynamics of industrial robots. It allows us to pose a multiobjective optimization problem to assess the trade-offs between the economic variables by means of the Pareto fronts. The comparison is carried out for different examples and from a multidisciplinary point of view, thus, to determine the impact of using each method. Results have shown the opportunity costs of non using the methodology with optimized time trajectories. Furthermore, it allows companies to stay competitive because of the quick adaptation to rapidly changing markets.

  12. Facilitating Programming of Vision-Equipped Robots through Robotic Skills and Projection Mapping

    DEFF Research Database (Denmark)

    Andersen, Rasmus Skovgaard

    The field of collaborative industrial robots is currently developing fast both in the industry and in the scientific community. Companies such as Rethink Robotics and Universal Robots are redefining the concept of an industrial robot and entire new markets and use cases are becoming relevant for ...

  13. Fused Smart Sensor Network for Multi-Axis Forward Kinematics Estimation in Industrial Robots

    Directory of Open Access Journals (Sweden)

    Rene de Jesus Romero-Troncoso

    2011-04-01

    Full Text Available Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint’s angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot.

  14. Fused smart sensor network for multi-axis forward kinematics estimation in industrial robots.

    Science.gov (United States)

    Rodriguez-Donate, Carlos; Osornio-Rios, Roque Alfredo; Rivera-Guillen, Jesus Rooney; Romero-Troncoso, Rene de Jesus

    2011-01-01

    Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint's angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA) is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot.

  15. DEVELOPING INDUSTRIAL ROBOT SIMULATION MODEL TUR10-K USING “UNIVERSAL MECHANISM” SOFTWARE COMPLEX

    Directory of Open Access Journals (Sweden)

    Vadim Vladimirovich Chirkov

    2018-02-01

    Full Text Available Manipulation robots are complex spatial mechanical systems having five or six degrees of freedom, and sometimes more. For this reason, modeling manipulative robots movement, even in the kinematic formulation, is a complex mathematical task. If one moves from kinematic modeling of motion to dynamic modeling then there must be taken into account the inertial properties of the modeling object. In this case, analytical constructing of such a complex object mathematical model as a manipulation robot becomes practically impossible. Therefore, special computer-aided design systems, called CAE-systems, are used for modeling complex mechanical systems. The purpose of the paper is simulation model construction of a complex mechanical system, such as the industrial robot TUR10-K, to obtain its dynamic characteristics. Developing such models makes it possible to reduce the complexity of designing complex systems process and to obtain the necessary characteristics. Purpose. Developing the simulation model of the industrial robot TUR10-K and obtaining dynamic characteristics of the mechanism. Methodology: the article is used a computer simulation method. Results: There is obtained the simulation model of the robot and its dynamic characteristics. Practical implications: the results can be used in the mechanical systems design and various simulation models.

  16. Autonomous path planning solution for industrial robot manipulator using backpropagation algorithm

    Directory of Open Access Journals (Sweden)

    PeiJiang Yuan

    2015-12-01

    Full Text Available Here, we propose an autonomous path planning solution using backpropagation algorithm. The mechanism of movement used by humans in controlling their arms is analyzed and then applied to control a robot manipulator. Autonomous path planning solution is a numerical method. The model of industrial robot manipulator used in this article is a KUKA KR 210 R2700 EXTRA robot. In order to show the performance of the autonomous path planning solution, an experiment validation of path tracking is provided. Experiment validation consists of implementation of the autonomous path planning solution and the control of physical robot. The process of converging to target solution is provided. The mean absolute error of position for tool center point is also analyzed. Comparison between autonomous path planning solution and the numerical methods based on Newton–Raphson algorithm is provided to demonstrate the efficiency and accuracy of the autonomous path planning solution.

  17. The development of advanced robotic technology -The development of advanced robotics for the nuclear industry-

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Bum; Kim, Woong Ki; Park, Soon Yong; Kim, Seung Ho; Kim, Chang Hoi; Hwang, Suk Yeoung; Kim, Byung Soo; Lee, Young Kwang

    1994-07-01

    In this year (the second year of this project), researches and development have been carried out to establish the essential key technologies applied to robot system for nuclear industry. In the area of robot vision, in order to construct stereo vision system necessary to tele-operation, stereo image acquisition camera module and stereo image displayer have been developed. Stereo matching and storing programs have been developed to analyse stereo images. According to the result of tele-operation experiment, operation efficiency has been enhanced about 20% by using the stereo vision system. In a part of object recognition, a tele-operated robot system has been constructed to evaluate the performance of the stereo vision system and to develop the vision algorithm to automate nozzle dam operation. A nuclear fuel rod character recognition system has been developed by using neural network. As a result of perfomance evaluation of the recognition system, 99% recognition rate has been achieved. In the area of sensing and intelligent control, temperature distribution has been measured by using the analysis of thermal image histogram and the inspection algorithm has been developed to determine of the state be normal or abnormal, and the fuzzy controller has been developed to control the compact mobile robot designed for path moving on block-typed path. (Author)

  18. Using Industrial Robots to Manipulate the Measured Object in CMM

    Directory of Open Access Journals (Sweden)

    Samir Lemes

    2013-07-01

    Full Text Available Coordinate measuring machines (CMMs are widely used to check dimensions of manufactured parts, especially in the automotive industry. The major obstacles in automation of these measurements are fixturing and clamping assemblies, which are required in order to position the measured object within the CMM. This paper describes how an industrial robot can be used to manipulate the measured object within the CMM work space, in order to enable automation of complex geometry measurement.

  19. Novel Adaptive Forward Neural MIMO NARX Model for the Identification of Industrial 3-DOF Robot Arm Kinematics

    Directory of Open Access Journals (Sweden)

    Ho Pham Huy Anh

    2012-10-01

    Full Text Available In this paper, a novel forward adaptive neural MIMO NARX model is used for modelling and identifying the forward kinematics of an industrial 3-DOF robot arm system. The nonlinear features of the forward kinematics of the industrial robot arm drive are thoroughly modelled based on the forward adaptive neural NARX model-based identification process using experimental input-output training data. This paper proposes a novel use of a back propagation (BP algorithm to generate the forward neural MIMO NARX (FNMN model for the forward kinematics of the industrial 3-DOF robot arm. The results show that the proposed adaptive neural NARX model trained by a Back Propagation learning algorithm yields outstanding performance and perfect accuracy.

  20. Robotics

    Science.gov (United States)

    Popov, E. P.; Iurevich, E. I.

    The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.

  1. Spatial Programming for Industrial Robots Through Task Demonstration

    OpenAIRE

    Jens Lambrecht; Martin Kleinsorge; Martin Rosenstrauch; Jörg Krüger

    2013-01-01

    Abstract We present an intuitive system for the programming of industrial robots using markerless gesture recognition and mobile augmented reality in terms of programming by demonstration. The approach covers gesture-based task definition and adaption by human demonstration, as well as task evaluation through augmented reality. A 3D motion tracking system and a handheld device establish the basis for the presented spatial programming system. In this publication, we present a prototype toward ...

  2. Direct kinematics solution architectures for industrial robot manipulators: Bit-serial versus parallel

    Science.gov (United States)

    Lee, J.; Kim, K.

    1991-01-01

    A Very Large Scale Integration (VLSI) architecture for robot direct kinematic computation suitable for industrial robot manipulators was investigated. The Denavit-Hartenberg transformations are reviewed to exploit a proper processing element, namely an augmented CORDIC. Specifically, two distinct implementations are elaborated on, such as the bit-serial and parallel. Performance of each scheme is analyzed with respect to the time to compute one location of the end-effector of a 6-links manipulator, and the number of transistors required.

  3. Direct kinematics solution architectures for industrial robot manipulators: Bit-serial versus parallel

    Science.gov (United States)

    Lee, J.; Kim, K.

    A Very Large Scale Integration (VLSI) architecture for robot direct kinematic computation suitable for industrial robot manipulators was investigated. The Denavit-Hartenberg transformations are reviewed to exploit a proper processing element, namely an augmented CORDIC. Specifically, two distinct implementations are elaborated on, such as the bit-serial and parallel. Performance of each scheme is analyzed with respect to the time to compute one location of the end-effector of a 6-links manipulator, and the number of transistors required.

  4. Implementation of self-organizing neural networks for visuo-motor control of an industrial robot.

    Science.gov (United States)

    Walter, J A; Schulten, K I

    1993-01-01

    The implementation of two neural network algorithms for visuo-motor control of an industrial robot (Puma 562) is reported. The first algorithm uses a vector quantization technique, the ;neural-gas' network, together with an error correction scheme based on a Widrow-Hoff-type learning rule. The second algorithm employs an extended self-organizing feature map algorithm. Based on visual information provided by two cameras, the robot learns to position its end effector without an external teacher. Within only 3000 training steps, the robot-camera system is capable of reducing the positioning error of the robot's end effector to approximately 0.1% of the linear dimension of the work space. By employing adaptive feedback the robot succeeds in compensating not only slow calibration drifts, but also sudden changes in its geometry. Hardware aspects of the robot-camera system are discussed.

  5. Robots at Work

    OpenAIRE

    Graetz, Georg; Michaels, Guy

    2015-01-01

    Despite ubiquitous discussions of robots' potential impact, there is almost no systematic empirical evidence on their economic effects. In this paper we analyze for the first time the economic impact of industrial robots, using new data on a panel of industries in 17 countries from 1993-2007. We find that industrial robots increased both labor productivity and value added. Our panel identification is robust to numerous controls, and we find similar results instrumenting increased robot use wi...

  6. Robot vision

    International Nuclear Information System (INIS)

    Hall, E.L.

    1984-01-01

    Almost all industrial robots use internal sensors such as shaft encoders which measure rotary position, or tachometers which measure velocity, to control their motions. Most controllers also provide interface capabilities so that signals from conveyors, machine tools, and the robot itself may be used to accomplish a task. However, advanced external sensors, such as visual sensors, can provide a much greater degree of adaptability for robot control as well as add automatic inspection capabilities to the industrial robot. Visual and other sensors are now being used in fundamental operations such as material processing with immediate inspection, material handling with adaption, arc welding, and complex assembly tasks. A new industry of robot vision has emerged. The application of these systems is an area of great potential

  7. An Evaluation of Camera Pose Methods for an Augmented Reality System: Application to Teaching Industrial Robots

    OpenAIRE

    Maidi , Madjid; Mallem , Malik; Benchikh , Laredj; Otmane , Samir

    2013-01-01

    International audience; In automotive industry, industrial robots are widely used in production lines for many tasks such as welding, painting or assembly. Their use requires, from users, both a good manipulation and robot control. Recently, new tools have been developed to realize fast and accurate trajectories in many production sectors by using the real prototype of vehicle or a generalized design within a virtual simulation platform. However, many issues could be considered in these cases...

  8. Soft Robotics - The Next Industrial Revolution?

    OpenAIRE

    Rossiter, Jonathan M; Hauser, Helmut

    2016-01-01

    The robot dance has, since its inception in 1967, been a caricature of how robots move. Its imitation of the series of precise, linear motions with abrupt starts and stops is instantly recognizable. Despite a certain wavering in its popularity, it remains part of modern culture. What is so remarkable about the robot dance is that it mimics the movements and constraints of conventional rigid robots, a type of robot that is ubiquitous in automated manufacturing and object handling, and it could...

  9. A Sliding Mode Control-based on a RBF Neural Network for Deburring Industry Robotic Systems

    OpenAIRE

    Tao, Yong; Zheng, Jiaqi; Lin, Yuanchang

    2016-01-01

    A sliding mode control method based on radial basis function (RBF) neural network is proposed for the deburring of industry robotic systems. First, a dynamic model for deburring the robot system is established. Then, a conventional SMC scheme is introduced for the joint position tracking of robot manipulators. The RBF neural network based sliding mode control (RBFNN-SMC) has the ability to learn uncertain control actions. In the RBFNN-SMC scheme, the adaptive tuning algorithms for network par...

  10. Comparative analysis of hydraulic crane-manipulating installations transport and technological machines and industrial robots hydraulic manipulators

    Directory of Open Access Journals (Sweden)

    Lagerev I.A.

    2016-09-01

    Full Text Available The article presents results of comparative analysis of hydraulic crane-manipulator installations of mobile transport and technological machines and hydraulic manipulators of industrial robots. The comparative analysis is based on consid-eration of a wide range of types and sizes indicated technical devices of both domestic and foreign production: 1580 structures of cranes and more than 450 structures of industrial robots. It was performed in the following areas: func-tional purpose and basic technical characteristics; a design; the loading conditions of the model and failures in operation process; approaches to the design, calculation methods and mathematical modeling. The conclusions about the degree of similarity and the degree of difference hydraulic crane-manipulator installations of transport and technological ma-chines and hydraulic industrial robot manipulators from the standpoint of their design and modeling occurring in them during operation of dynamic and structural processes.

  11. Strategic Alliances in The Robotics Industry

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Bjørn

    2014-01-01

    The purpose of the master-thesis was to examine how Blue Ocean Robotics can structure its strategic alliances to gain a competitive advantage in the market development of robotics in international markets.......The purpose of the master-thesis was to examine how Blue Ocean Robotics can structure its strategic alliances to gain a competitive advantage in the market development of robotics in international markets....

  12. L'espace articulaire de la Robotique Industrielle est un espace vectorielIndustrial Robotics joint space is a vector space

    Science.gov (United States)

    Tondu, Bertrand

    2003-05-01

    The mathematical modelling of industrial robots is based on the vectorial nature of the n-dimensional joint space of the robot, defined as a kinematic chain with n degrees of freedom. However, in our opinion, the vectorial nature of the joint space has been insufficiently discussed in the literature. We establish the vectorial nature of the joint space of an industrial robot from the fundamental studies of B. Roth on screws. To cite this article: B. Tondu, C. R. Mecanique 331 (2003).

  13. Modelling and Scheduling Autonomous Mobile Robot for a Real-World Industrial Application

    DEFF Research Database (Denmark)

    Dang, Vinh Quang; Nielsen, Izabela Ewa; Bøgh, Simon

    2013-01-01

    proposes an approach composing of: a mobile robot system design (“Little Helper”), an appropriate and comprehensive industrial application (multiple-part feeding tasks), an implementation concept for industrial environments (the bartender concept), and a real-time heuristics integrated into Mission...... from the real-time heuristics. The results also demonstrated that the proposed real-time heuristics has capability of finding the best schedule in online production mode....

  14. Flexible Wi-Fi Communication among Mobile Robots in Indoor Industrial Environments

    Directory of Open Access Journals (Sweden)

    Jetmir Haxhibeqiri

    2018-01-01

    Full Text Available In order to speed up industrial processes and to improve logistics, mobile robots are getting important in industry. In this paper, we propose a flexible and configurable architecture for the mobile node that is able to operate in different network topology scenarios. The proposed solution is able to operate in presence of network infrastructure, in ad hoc mode only, or to use both possibilities. In case of mixed architecture, mesh capabilities will enable coverage problem detection and overcoming. The solution is based on real requirements from an automated guided vehicle producer. First, we evaluate the overhead introduced by our solution. Since the mobile robot communication relies in broadcast traffic, the broadcast scalability in mesh network is evaluated too. Finally, through experiments on a wireless testbed for a variety of scenarios, we analyze the impact of roaming, mobility and traffic separation, and demonstrate the advantage of our approach in handling coverage problems.

  15. An innovative approach for modeling and simulation of an automated industrial robotic arm operated electro-pneumatically

    Science.gov (United States)

    Popa, L.; Popa, V.

    2017-08-01

    The article is focused on modeling an automated industrial robotic arm operated electro-pneumatically and to simulate the robotic arm operation. It is used the graphic language FBD (Function Block Diagram) to program the robotic arm on Zelio Logic automation. The innovative modeling and simulation procedures are considered specific problems regarding the development of a new type of technical products in the field of robotics. Thus, were identified new applications of a Programmable Logic Controller (PLC) as a specialized computer performing control functions with a variety of high levels of complexit.

  16. Telerobotics: through-the-Internet teleoperation of the ABB IRB 2000 industrial robot

    Science.gov (United States)

    Alvares, Alberto J.; Caribe de Carvalho, Guilherme; Paulinyi, Luis F. d. A.; Alfaro, Sadek C. A.

    1999-11-01

    Robotic systems can be controlled remotely through the use of telerobotics. This work presents a through-the-internet teleoperation system for remotely operating the IRB2000 industrial robot. The IRB2000 controller allows external access through a RS232 serial communication link, which is based on a 42 function proprietary communication protocol. The proposed teleoperation system uses this communication capability by connecting it to a local area network based on TCP/IP (Transport Control Protocol/Internet Protocol). The system was implemented using a Client/Server architecture, having as server a UNIX (LINUX) platform.

  17. The future of Robotics Technology

    DEFF Research Database (Denmark)

    Pagliarini, Luigi; Lund, Henrik Hautop

    2017-01-01

    In the last decade the robotics industry has created millions of additional jobs led by consumer electronics and the electric vehicle industry, and by 2020, robotics will be a $100 billion worth industry, as big as the tourism industry.. For example, the rehabilitation robot market has grown 10...

  18. Compensation for positioning error of industrial robot for flexible vision measuring system

    Science.gov (United States)

    Guo, Lei; Liang, Yajun; Song, Jincheng; Sun, Zengyu; Zhu, Jigui

    2013-01-01

    Positioning error of robot is a main factor of accuracy of flexible coordinate measuring system which consists of universal industrial robot and visual sensor. Present compensation methods for positioning error based on kinematic model of robot have a significant limitation that it isn't effective in the whole measuring space. A new compensation method for positioning error of robot based on vision measuring technique is presented. One approach is setting global control points in measured field and attaching an orientation camera to vision sensor. Then global control points are measured by orientation camera to calculate the transformation relation from the current position of sensor system to global coordinate system and positioning error of robot is compensated. Another approach is setting control points on vision sensor and two large field cameras behind the sensor. Then the three dimensional coordinates of control points are measured and the pose and position of sensor is calculated real-timely. Experiment result shows the RMS of spatial positioning is 3.422mm by single camera and 0.031mm by dual cameras. Conclusion is arithmetic of single camera method needs to be improved for higher accuracy and accuracy of dual cameras method is applicable.

  19. Industrial Human-Robot Collaboration

    DEFF Research Database (Denmark)

    Philipsen, Mark Philip; Rehm, Matthias; Moeslund, Thomas B.

    2018-01-01

    In the future, robots are envisioned to work side by side with humans in dynamic environments both in production contexts but also more and more in societal context like health care, education, or commerce. This will require robots to become socially accepted, to become able to analyze human...... intentions in meaningful ways, and to become proactive. It is our conviction that this can only be achieved on the basis of a tight combination of multimodal signal processing and AI techniques in real application context....

  20. Novel Adaptive Forward Neural MIMO NARX Model for the Identification of Industrial 3-DOF Robot Arm Kinematics

    OpenAIRE

    Ho Pham Huy Anh; Nguyen Thanh Nam

    2012-01-01

    In this paper, a novel forward adaptive neural MIMO NARX model is used for modelling and identifying the forward kinematics of an industrial 3‐DOF robot arm system. The nonlinear features of the forward kinematics of the industrial robot arm drive are thoroughly modelled based on the forward adaptive neural NARX model‐based identification process using experimental input‐output training data. This paper proposes a novel use of a back propagation (BP) algorithm to generate the forward neural M...

  1. Robot engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seul

    2006-02-15

    This book deals with robot engineering, giving descriptions of robot's history, current tendency of robot field, work and characteristic of industrial robot, essential merit and vector, application of matrix, analysis of basic vector, expression of Denavit-Hartenberg, robot kinematics such as forward kinematics, inverse kinematics, cases of MATLAB program, and motion kinematics, robot kinetics like moment of inertia, centrifugal force and coriolis power, and Euler-Lagrangian equation course plan, SIMULINK position control of robots.

  2. Robot engineering

    International Nuclear Information System (INIS)

    Jung, Seul

    2006-02-01

    This book deals with robot engineering, giving descriptions of robot's history, current tendency of robot field, work and characteristic of industrial robot, essential merit and vector, application of matrix, analysis of basic vector, expression of Denavit-Hartenberg, robot kinematics such as forward kinematics, inverse kinematics, cases of MATLAB program, and motion kinematics, robot kinetics like moment of inertia, centrifugal force and coriolis power, and Euler-Lagrangian equation course plan, SIMULINK position control of robots.

  3. Novel trends in the assembly process as the results of human – the industrial robot collaboration

    Directory of Open Access Journals (Sweden)

    Holubek Radovan

    2017-01-01

    Full Text Available The contribution is focused on the creation of an idea proposal and simulation of the assembly system in cooperation of the human and the industrial robot. The aim of the research is to verify the feasibility of this cooperation between the human and the industrial robot on the basis of the created simulation in the assembly process. The important step of the design this collaboration is the determination of rules and safety of this cooperation. The paper also presents the method of working with the selected software and its functionalities and sequence of steps at the simulation creation. The objective of the research is the evaluation of the idea proposal of the collaborative assembly system on the basis of the created simulation. The analysis and evaluation of the simulation confirm the feasibility and safety of the cooperation of the man and robot and also verified the possibility of assembly made by man and robot from the disposition and dimension on point of view of the proposed workplace.

  4. Easy Reconfiguration of Modular Industrial Collaborative Robots

    DEFF Research Database (Denmark)

    Schou, Casper

    2016-01-01

    the production staff collaborating to perform common tasks. This change of environment imposes a much more dynamic lifecycle for the robot which consequently requires new ways of interacting. This thesis investigates how the changeover to a new task on a collaborative robot can be performed by the shop floor...... operators already working alongside the robot. To effectively perform this changeover, the operator must both reconfigure the hardware of the robot and reprogram the robot to match the new task. To enable shop floor operators to quickly and intuitively program the robot, this thesis proposes the use...... of parametric, task-related robot skills with a manual parameterization method. Reconfiguring the hardware entails adding, removing, or modifying some of the robot’s components. This thesis investigate how software configurator tools can aid the operator in selecting appropriate hardware modules, and how agent...

  5. Inverse Kinematics for Industrial Robots using Conformal Geometric Algebra

    Directory of Open Access Journals (Sweden)

    Adam L. Kleppe

    2016-01-01

    Full Text Available This paper shows how the recently developed formulation of conformal geometric algebra can be used for analytic inverse kinematics of two six-link industrial manipulators with revolute joints. The paper demonstrates that the solution of the inverse kinematics in this framework relies on the intersection of geometric objects like lines, circles, planes and spheres, which provides the developer with valuable geometric intuition about the problem. It is believed that this will be very useful for new robot geometries and other mechanisms like cranes and topside drilling equipment. The paper extends previous results on inverse kinematics using conformal geometric algebra by providing consistent solutions for the joint angles for the different configurations depending on shoulder left or right, elbow up or down, and wrist flipped or not. Moreover, it is shown how to relate the solution to the Denavit-Hartenberg parameters of the robot. The solutions have been successfully implemented and tested extensively over the whole workspace of the manipulators.

  6. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology-

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Yong Bum; Park, Soon Yong; Cho, Jae Wan; Lee, Nam Hoh; Kim, Woong Kee; Moon, Byung Soo; Kim, Seung Hoh; Kim, Chang Heui; Kim, Byung Soo; Hwang, Suk Yong; Lee, Yung Kwang; Moon, Je Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Main activity in this year is to develop both remote handling system and telepresence techniques, which can be used for people involved in extremely hazardous working area to alleviate their burden. In the robot vision technology part, KAERI-PSM system, stereo imaging camera module, stereo BOOM/MOLLY unit, and stereo HMD unit are developed. Also, autostereo TV system which falls under the category of next generation stereo imaging technology has been studied. The performance of KAERI-PSM system for remote handling task is evaluated and compared with other stereo imaging systems as well as general TV imaging system. The result shows that KAERI-PSM system is superior to the other stereo imaging systems about remote operation speedup and accuracy. The automatic recognition algorithm of instrument panel is studied and passive visual target tracking system is developed. The 5 DOF camera serving unit has been designed and fabricated. It is designed to function like human`s eye. In the sensing and intelligent control research part, thermal image database system for thermal image analysis is developed and remote temperature monitoring technique using fiber optics is investigated. And also, two dimensional radioactivity sensor head for radiation profile monitoring system is designed. In the part of intelligent robotics, mobile robot is fabricated and its autonomous navigation using fuzzy control logic is studied. These remote handling and telepresence techniques developed in this project can be applied to nozzle-dam installation/removal robot system, reactor inspection unit, underwater nuclear pellet inspection and pipe abnormality inspection. And these developed remote handling and telepresence techniques will be applied in general industry, medical science, and military as well as nuclear facilities. 203 figs, 12 tabs, 72 refs. (Author).

  7. Next-generation robotic surgery--from the aspect of surgical robots developed by industry.

    Science.gov (United States)

    Nakadate, Ryu; Arata, Jumpei; Hashizume, Makoto

    2015-02-01

    At present, much of the research conducted worldwide focuses on extending the ability of surgical robots. One approach is to extend robotic dexterity. For instance, accessibility and dexterity of the surgical instruments remains the largest issue for reduced port surgery such as single port surgery or natural orifice surgery. To solve this problem, a great deal of research is currently conducted in the field of robotics. Enhancing the surgeon's perception is an approach that uses advanced sensor technology. The real-time data acquired through the robotic system combined with the data stored in the robot (such as the robot's location) provide a major advantage. This paper aims at introducing state-of-the-art products and pre-market products in this technological advancement, namely the robotic challenge in extending dexterity and hopefully providing the path to robotic surgery in the near future.

  8. Robotic vision system for random bin picking with dual-arm robots

    Directory of Open Access Journals (Sweden)

    Kang Sangseung

    2016-01-01

    Full Text Available Random bin picking is one of the most challenging industrial robotics applications available. It constitutes a complicated interaction between the vision system, robot, and control system. For a packaging operation requiring a pick-and-place task, the robot system utilized should be able to perform certain functions for recognizing the applicable target object from randomized objects in a bin. In this paper, we introduce a robotic vision system for bin picking using industrial dual-arm robots. The proposed system recognizes the best object from randomized target candidates based on stereo vision, and estimates the position and orientation of the object. It then sends the result to the robot control system. The system was developed for use in the packaging process of cell phone accessories using dual-arm robots.

  9. Differential Kinematics Of Contemporary Industrial Robots

    Science.gov (United States)

    Szkodny, T.

    2014-08-01

    The paper presents a simple method of avoiding singular configurations of contemporary industrial robot manipulators of such renowned companies as ABB, Fanuc, Mitsubishi, Adept, Kawasaki, COMAU and KUKA. To determine the singular configurations of these manipulators a global form of description of the end-effector kinematics was prepared, relative to the other links. On the basis of this description , the formula for the Jacobian was defined in the end-effector coordinates. Next, a closed form of the determinant of the Jacobian was derived. From the formula, singular configurations, where the determinant's value equals zero, were determined. Additionally, geometric interpretations of these configurations were given and they were illustrated. For the exemplary manipulator, small corrections of joint variables preventing the reduction of the Jacobian order were suggested. An analysis of positional errors, caused by these corrections, was presented

  10. Robots: l'embarras de richesses [:survey of robots available

    International Nuclear Information System (INIS)

    Meieran, H.; Brittain, K.; Sturkey, R.

    1989-01-01

    A survey of robots available for use in the nuclear industry is presented. Two new categories of mobile robots have been introduced since the last survey (April 1987): pipe crawlers and underwater robots. The number of robots available has risen to double what it was two years ago and four times what it was in 1986. (U.K.)

  11. Recent advances in robotics

    International Nuclear Information System (INIS)

    Beni, G.; Hackwood, S.

    1984-01-01

    Featuring 10 contributions, this volume offers a state-of-the-art report on robotic science and technology. It covers robots in modern industry, robotic control to help the disabled, kinematics and dynamics, six-legged walking robots, a vector analysis of robot manipulators, tactile sensing in robots, and more

  12. Towards Versatile Robots Through Open Heterogeneous Modular Robots

    OpenAIRE

    Lyder, Andreas

    2010-01-01

    Robots are important tools in our everyday life. Both in industry and at the consumer level they serve the purpose of increasing our scope and extending our capabilities. Modular robots take the next step, allowing us to easily create and build various robots from a set of modules. If a problem arises, a new robot can be assembled rapidly from the existing modules, in contrast to conventional robots, which require a time consuming and expensive development process. In this thesis we define a ...

  13. Development of a teaching system for an industrial robot using stereo vision

    Science.gov (United States)

    Ikezawa, Kazuya; Konishi, Yasuo; Ishigaki, Hiroyuki

    1997-12-01

    The teaching and playback method is mainly a teaching technique for industrial robots. However, this technique takes time and effort in order to teach. In this study, a new teaching algorithm using stereo vision based on human demonstrations in front of two cameras is proposed. In the proposed teaching algorithm, a robot is controlled repetitively according to angles determined by the fuzzy sets theory until it reaches an instructed teaching point, which is relayed through cameras by an operator. The angles are recorded and used later in playback. The major advantage of this algorithm is that no calibrations are needed. This is because the fuzzy sets theory, which is able to express qualitatively the control commands to the robot, is used instead of conventional kinematic equations. Thus, a simple and easy teaching operation is realized with this teaching algorithm. Simulations and experiments have been performed on the proposed teaching system, and data from testing has confirmed the usefulness of our design.

  14. Robotic fabrication in architecture, art, and design

    CERN Document Server

    Braumann, Johannes

    2013-01-01

    Architects, artists, and designers have been fascinated by robots for many decades, from Villemard’s utopian vision of an architect building a house with robotic labor in 1910, to the design of buildings that are robots themselves, such as Archigram’s Walking City. Today, they are again approaching the topic of robotic fabrication but this time employing a different strategy: instead of utopian proposals like Archigram’s or the highly specialized robots that were used by Japan’s construction industry in the 1990s, the current focus of architectural robotics is on industrial robots. These robotic arms have six degrees of freedom and are widely used in industry, especially for automotive production lines. What makes robotic arms so interesting for the creative industry is their multi-functionality: instead of having to develop specialized machines, a multifunctional robot arm can be equipped with a wide range of end-effectors, similar to a human hand using various tools. Therefore, architectural researc...

  15. A Sliding Mode Control-Based on a RBF Neural Network for Deburring Industry Robotic Systems

    Directory of Open Access Journals (Sweden)

    Yong Tao

    2016-01-01

    Full Text Available A sliding mode control method based on radial basis function (RBF neural network is proposed for the deburring of industry robotic systems. First, a dynamic model for deburring the robot system is established. Then, a conventional SMC scheme is introduced for the joint position tracking of robot manipulators. The RBF neural network based sliding mode control (RBFNN-SMC has the ability to learn uncertain control actions. In the RBFNN-SMC scheme, the adaptive tuning algorithms for network parameters are derived by a Koski function algorithm to ensure the network convergences and enacts stable control. The simulations and experimental results of the deburring robot system are provided to illustrate the effectiveness of the proposed RBFNN-SMC control method. The advantages of the proposed RBFNN-SMC method are also evaluated by comparing it to existing control schemes.

  16. Experimental Determinations on Kinematics of a Translational Joint of an Industrial Robot

    Directory of Open Access Journals (Sweden)

    Calin-Octavian Miclosina

    2017-11-01

    Full Text Available The paper presents a 6-DOF industrial robot and the driving system of its base translational joint. By imposing certain positions of the translational joint and determining the durations in which these positions are reached, average speed is computed. The paper shows how the clearances influence the average speed, depending on the displacement value.

  17. Robotics and nuclear power. Report by the Technology Transfer Robotics Task Team

    International Nuclear Information System (INIS)

    1985-06-01

    A task team was formed at the request of the Department of Energy to evaluate and assess technology development needed for advanced robotics in the nuclear industry. The mission of these technologies is to provide the nuclear industry with the support for the application of advanced robotics to reduce nuclear power generating costs and enhance the safety of the personnel in the industry. The investigation included robotic and teleoperated systems. A robotic system is defined as a reprogrammable, multifunctional manipulator designed to move materials, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks. A teleoperated system includes an operator who remotely controls the system by direct viewing or through a vision system

  18. Individualised and adaptive upper limb rehabilitation with industrial robot using dynamic movement primitives

    DEFF Research Database (Denmark)

    Nielsen, Jacob; Sørensen, Anders Stengaard; Christensen, Thomas Søndergaard

    Stroke is a leading cause of serious long-term disability. Post-stroke rehabilitation is a demanding task for the patient and a costly challenge for both society and healthcare systems. We present a novel approach for training of upper extremities after a stroke by utilising an industrial robotic...

  19. Multi-Robot Assembly Strategies and Metrics

    Science.gov (United States)

    MARVEL, JEREMY A.; BOSTELMAN, ROGER; FALCO, JOE

    2018-01-01

    We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies. PMID:29497234

  20. Multi-Robot Assembly Strategies and Metrics.

    Science.gov (United States)

    Marvel, Jeremy A; Bostelman, Roger; Falco, Joe

    2018-02-01

    We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies.

  1. Robot Mechanisms

    CERN Document Server

    Lenarcic, Jadran; Stanišić, Michael M

    2013-01-01

    This book provides a comprehensive introduction to the area of robot mechanisms, primarily considering industrial manipulators and humanoid arms. The book is intended for both teaching and self-study. Emphasis is given to the fundamentals of kinematic analysis and the design of robot mechanisms. The coverage of topics is untypical. The focus is on robot kinematics. The book creates a balance between theoretical and practical aspects in the development and application of robot mechanisms, and includes the latest achievements and trends in robot science and technology.

  2. The Mobile Robot "Little Helper"

    DEFF Research Database (Denmark)

    Hvilshøj, Mads; Bøgh, Simon; Madsen, Ole

    2009-01-01

    Increased customer needs and intensified global competition require intelligent and flexible automation. The interaction technology mobile robotics addresses this, so it holds great potential within the industry. This paper presents the concepts, ideas and working principles of the mobile robot...... this show promising results regarding industrial integration, exploitation and maturation of mobile robotics....

  3. Intelligent robot trends for 1998

    Science.gov (United States)

    Hall, Ernest L.

    1998-10-01

    An intelligent robot is a remarkably useful combination of a manipulator, sensors and controls. The use of these machines in factory automation can improve productivity, increase product quality and improve competitiveness. This paper presents a discussion of recent technical and economic trends. Technically, the machines are faster, cheaper, more repeatable, more reliable and safer. The knowledge base of inverse kinematic and dynamic solutions and intelligent controls is increasing. More attention is being given by industry to robots, vision and motion controls. New areas of usage are emerging for service robots, remote manipulators and automated guided vehicles. Economically, the robotics industry now has a 1.1 billion-dollar market in the U.S. and is growing. Feasibility studies results are presented which also show decreasing costs for robots and unaudited healthy rates of return for a variety of robotic applications. However, the road from inspiration to successful application can be long and difficult, often taking decades to achieve a new product. A greater emphasis on mechatronics is needed in our universities. Certainly, more cooperation between government, industry and universities is needed to speed the development of intelligent robots that will benefit industry and society.

  4. Research of grasping algorithm based on scara industrial robot

    Science.gov (United States)

    Peng, Tao; Zuo, Ping; Yang, Hai

    2018-04-01

    As the tobacco industry grows, facing the challenge of the international tobacco giant, efficient logistics service is one of the key factors. How to complete the tobacco sorting task of efficient economy is the goal of tobacco sorting and optimization research. Now the cigarette distribution system uses a single line to carry out the single brand sorting task, this article adopts a single line to realize the cigarette sorting task of different brands. Using scara robot special algorithm for sorting and packaging, the optimization scheme significantly enhances the indicators of smoke sorting system. Saving labor productivity, obviously improve production efficiency.

  5. ROILA : RObot Interaction LAnguage

    NARCIS (Netherlands)

    Mubin, O.

    2011-01-01

    The number of robots in our society is increasing rapidly. The number of service robots that interact with everyday people already outnumbers industrial robots. The easiest way to communicate with these service robots, such as Roomba or Nao, would be natural speech. However, the limitations

  6. Towards Versatile Robots Through Open Heterogeneous Modular Robots

    DEFF Research Database (Denmark)

    Lyder, Andreas

    arises, a new robot can be assembled rapidly from the existing modules, in contrast to conventional robots, which require a time consuming and expensive development process. In this thesis we define a modular robot to be a robot consisting of dynamically reconfigurable modules. The goal of this thesis......Robots are important tools in our everyday life. Both in industry and at the consumer level they serve the purpose of increasing our scope and extending our capabilities. Modular robots take the next step, allowing us to easily create and build various robots from a set of modules. If a problem...... is to increase the versatility and practical usability of modular robots by introducing new conceptual designs. Until now modular robots have been based on a pre-specified set of modules, and thus, their functionality is limited. We propose an open heterogeneous design concept, which allows a modular robot...

  7. Application oriented programming and control of industrial robots

    International Nuclear Information System (INIS)

    Nilsson, Klas.

    1992-07-01

    Efficient use of industrial robots requires a strong interplay between user level commands, the motion control system, and external equipment. It should also be possible for an experienced application engineer to tailor the motion control to a specific application in a convenient way, instead of deficient utilization of the device or tricky user programming which is often the case today. A layered software architecture has been designed based on an application oriented view, considering typical hardware and software constraints. The top layers or the architecture support improved integration of off-line programming with interactive teach-in programming. The proposed solution is based on a transformation of robot programs between an on-line and an off-line representation. A central part of the architecture is an intermediate software layer, allowing the experienced user to introduce application specific motion primitives, on top of the motion control system. Flexibility during system configuration combined with computing efficiency and performance at run-time is of major importance. The solution is based on so called actions, which are methods to be passed between different software layers. Such methods can be specification of nonlinear control parameters, application specific control strategies, or treatment of external sensor signals. The actions can be implemented efficiently even in the multiprocessor case by using relocatable executable pieces of code generated from a special cross-compilation strategy. The lowest layers, comprising the motion control, have to be efficient and still fit in with the upper layers. In these layers, software solutions include an external sensor interface and a concept of motion pipelining allowing sensor based motions to be partly computed in advance. An experimental platform, built around commercially available robots, has been developed to verify the proposed solutions. (au)

  8. Situation Assessment for Mobile Robots

    DEFF Research Database (Denmark)

    Beck, Anders Billesø

    Mobile robots have become a mature technology. The first cable guided logistics robots were introduced in the industry almost 60 years ago. In this time the market for mobile robots in industry has only experienced a very modest growth and only 2.100 systems were sold worldwide in 2011. In recent...... years, many other domains have adopted the mobile robots, such as logistics robots at hospitals and the vacuum robots in our homes. However, considering the achievements in research the last 15 years within perception and operation in natural environments together with the reductions of costs in modern...... sensor systems, the growth potential for mobile robot applications are enormous. Many new technological components are available to move the limits of commercial mobile robot applications, but a key hindrance is reliability. Natural environments are complex and dynamic, and thus the risk of robots...

  9. Healthcare Robotics

    OpenAIRE

    Riek, Laurel D.

    2017-01-01

    Robots have the potential to be a game changer in healthcare: improving health and well-being, filling care gaps, supporting care givers, and aiding health care workers. However, before robots are able to be widely deployed, it is crucial that both the research and industrial communities work together to establish a strong evidence-base for healthcare robotics, and surmount likely adoption barriers. This article presents a broad contextualization of robots in healthcare by identifying key sta...

  10. 1st Latin American Congress on Automation and Robotics

    CERN Document Server

    Baca, José; Moreno, Héctor; Carrera, Isela; Cardona, Manuel

    2017-01-01

    This book contains the proceedings of the 1st Latin American Congress on Automation and Robotics held at Panama City, Panama in February 2017. It gathers research work from researchers, scientists, and engineers from academia and private industry, and presents current and exciting research applications and future challenges in Latin American. The scope of this book covers a wide range of themes associated with advances in automation and robotics research encountered in engineering and scientific research and practice. These topics are related to control algorithms, systems automation, perception, mobile robotics, computer vision, educational robotics, robotics modeling and simulation, and robotics and mechanism design. LACAR 2017 has been sponsored by SENACYT (Secretaria Nacional de Ciencia, Tecnologia e Inovacion of Panama).

  11. Associative learning for a robot intelligence

    CERN Document Server

    Andreae, John H

    1998-01-01

    The explanation of brain functioning in terms of the association of ideas has been popular since the 17th century. Recently, however, the process of association has been dismissed as computationally inadequate by prominent cognitive scientists. In this book, a sharper definition of the term "association" is used to revive the process by showing that associative learning can indeed be computationally powerful. Within an appropriate organization, associative learning can be embodied in a robot to realize a human-like intelligence, which sets its own goals, exhibits unique unformalizable behaviou

  12. A Rapid Coordinate Transformation Method Applied in Industrial Robot Calibration Based on Characteristic Line Coincidence

    Directory of Open Access Journals (Sweden)

    Bailing Liu

    2016-02-01

    Full Text Available Coordinate transformation plays an indispensable role in industrial measurements, including photogrammetry, geodesy, laser 3-D measurement and robotics. The widely applied methods of coordinate transformation are generally based on solving the equations of point clouds. Despite the high accuracy, this might result in no solution due to the use of ill conditioned matrices. In this paper, a novel coordinate transformation method is proposed, not based on the equation solution but based on the geometric transformation. We construct characteristic lines to represent the coordinate systems. According to the space geometry relation, the characteristic line scan is made to coincide by a series of rotations and translations. The transformation matrix can be obtained using matrix transformation theory. Experiments are designed to compare the proposed method with other methods. The results show that the proposed method has the same high accuracy, but the operation is more convenient and flexible. A multi-sensor combined measurement system is also presented to improve the position accuracy of a robot with the calibration of the robot kinematic parameters. Experimental verification shows that the position accuracy of robot manipulator is improved by 45.8% with the proposed method and robot calibration.

  13. A Rapid Coordinate Transformation Method Applied in Industrial Robot Calibration Based on Characteristic Line Coincidence

    Science.gov (United States)

    Liu, Bailing; Zhang, Fumin; Qu, Xinghua; Shi, Xiaojia

    2016-01-01

    Coordinate transformation plays an indispensable role in industrial measurements, including photogrammetry, geodesy, laser 3-D measurement and robotics. The widely applied methods of coordinate transformation are generally based on solving the equations of point clouds. Despite the high accuracy, this might result in no solution due to the use of ill conditioned matrices. In this paper, a novel coordinate transformation method is proposed, not based on the equation solution but based on the geometric transformation. We construct characteristic lines to represent the coordinate systems. According to the space geometry relation, the characteristic line scan is made to coincide by a series of rotations and translations. The transformation matrix can be obtained using matrix transformation theory. Experiments are designed to compare the proposed method with other methods. The results show that the proposed method has the same high accuracy, but the operation is more convenient and flexible. A multi-sensor combined measurement system is also presented to improve the position accuracy of a robot with the calibration of the robot kinematic parameters. Experimental verification shows that the position accuracy of robot manipulator is improved by 45.8% with the proposed method and robot calibration. PMID:26901203

  14. Tool wear in terms of vibration effects in milling medium-density fibreboard with an industrial robot

    International Nuclear Information System (INIS)

    Tratar, Janez; Pusavec, Franci; Kopac, Janez

    2014-01-01

    Machining with robots represents a promising, highly flexible and cost effective alternative to standard machining and hand labour applications when machining mid tolerance soft material end products. One of the most challenging issues is to know the vibration characteristics in milling with the robots which greatly affect tool life. In general the technological bases of tool life expectancy while milling with robot arms are not available or studied. That's why the purpose of this paper is to investigate the influence of attained vibrations analysis during the milling process and correlated tool wear. Primarily the study is focused on tool wear according to the distance between the milling position and the robot's base. Results show that increasing distance between the robot's base and the milling position significantly affects tool wear because of the attained vibrations in proportion to the increasing distance respectively. Tool wear has also proved to be greater in comparison to machining with CNC machine and applicable new information for woodworking industry.

  15. Present and Future of Nuclear Robotics

    International Nuclear Information System (INIS)

    Bielza Ciaz-Caneja, M.; Carmena Servet, P.; Gomez Santamaria, J.; Gonzalez Fernandez, J.; Izquierdo Mendoza, J.A.; Linares Pintos, F.; Martinez Gonzalez; Muntion Ruesgas, A.; Serna Oliveira, M.A.

    1997-01-01

    New technologies have increased the use of robotic systems in fields other than Industry. As a result, research and developers are focusing their interest in concepts like Intelligent Robotics and Robotics in Services. This paper describes the use of Robotics in Nuclear facilities, where robots can be used to protect workers in high radiation areas, to reduce total worker exposure and to minimise downtime. First, the structure of robot systems is introduced and the benefits of nuclear robots is presented. Next, the paper describes some specific nuclear applications and the families of nuclear robots present in the market. After that, a section is devoted to Nuclear Robotics in Spain, with emphasis in some of the developments being carried out at present. Finally, some reflections about the future of robots in Nuclear Industry are offered. (Author) 18 refs

  16. Robots of the Future

    Indian Academy of Sciences (India)

    two main types of robots: industrial robots, and autonomous robots. .... position); it also has a virtual CPU with two stacks and three registers that hold 32-bit strings. Each item ..... just like we can aggregate images, text, and information from.

  17. Robot Motion and Control 2011

    CERN Document Server

    2012-01-01

    Robot Motion Control 2011 presents very recent results in robot motion and control. Forty short papers have been chosen from those presented at the sixth International Workshop on Robot Motion and Control held in Poland in June 2011. The authors of these papers have been carefully selected and represent leading institutions in this field. The following recent developments are discussed: • Design of trajectory planning schemes for holonomic and nonholonomic systems with optimization of energy, torque limitations and other factors. • New control algorithms for industrial robots, nonholonomic systems and legged robots. • Different applications of robotic systems in industry and everyday life, like medicine, education, entertainment and others. • Multiagent systems consisting of mobile and flying robots with their applications The book is suitable for graduate students of automation and robotics, informatics and management, mechatronics, electronics and production engineering systems as well as scientists...

  18. Calibration of a flexible measurement system based on industrial articulated robot and structured light sensor

    Science.gov (United States)

    Mu, Nan; Wang, Kun; Xie, Zexiao; Ren, Ping

    2017-05-01

    To realize online rapid measurement for complex workpieces, a flexible measurement system based on an articulated industrial robot with a structured light sensor mounted on the end-effector is developed. A method for calibrating the system parameters is proposed in which the hand-eye transformation parameters and the robot kinematic parameters are synthesized in the calibration process. An initial hand-eye calibration is first performed using a standard sphere as the calibration target. By applying the modified complete and parametrically continuous method, we establish a synthesized kinematic model that combines the initial hand-eye transformation and distal link parameters as a whole with the sensor coordinate system as the tool frame. According to the synthesized kinematic model, an error model is constructed based on spheres' center-to-center distance errors. Consequently, the error model parameters can be identified in a calibration experiment using a three-standard-sphere target. Furthermore, the redundancy of error model parameters is eliminated to ensure the accuracy and robustness of the parameter identification. Calibration and measurement experiments are carried out based on an ER3A-C60 robot. The experimental results show that the proposed calibration method enjoys high measurement accuracy, and this efficient and flexible system is suitable for online measurement in industrial scenes.

  19. A Review of Extra-Terrestrial Mining Robot Concepts

    Science.gov (United States)

    Mueller, Robert P.; Van Susante, Paul J.

    2011-01-01

    Outer space contains a vast amount of resources that offer virtually unlimited wealth to the humans that can access and use them for commercial purposes. One of the key technologies for harvesting these resources is robotic mining of regolith, minerals, ices and metals. The harsh environment and vast distances create challenges that are handled best by robotic machines working in collaboration with human explorers. Humans will benefit from the resources that will be mined by robots. They will visit outposts and mining camps as required for exploration, commerce and scientific research, but a continuous presence is most likely to be provided by robotic mining machines that are remotely controlled by humans. There have been a variety of extra-terrestrial robotic mining concepts proposed over the last 100 years and this paper will attempt to summarize and review concepts in the public domain (government, industry and academia) to serve as an informational resource for future mining robot developers and operators. The challenges associated with these concepts will be discussed and feasibility will be assessed. Future needs associated with commercial efforts will also be investigated.

  20. Service robotics: an emergent technology field at the interface between industry and services.

    Science.gov (United States)

    Ott, Ingrid

    2012-12-01

    The paper at hand analyzes the economic implications of service robots as expected important future technology. The considerations are embedded into global trends, focusing on the interdependencies between services and industry not only in the context of the provision of services but already starting at the level of the innovation process. It is argued that due to the various interdependencies combined with heterogenous application fields, the resulting implications need to be contextualized. Concerning the net labor market effects, it is reasonable to assume that the field of service robotics will generate overall job creation that goes along with increasing skill requirements demanded from involved employees. It is analyzed which challenges arise in evaluating and further developing the new technology field and some policy recommendations are given.

  1. Assessment Study on Sensors and Automation in the Industries of the Future. Reports on Industrial Controls, Information Processing, Automation, and Robotics

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Bonnie [Adventium Labs; Boddy, Mark [Adventium Labs; Doyle, Frank [Univ. of California, Santa Barbara, CA (United States); Jamshidi, Mo [Univ. of New Mexico, Albuquerque, NM (United States); Ogunnaike, Tunde [Univ. of Delaware, Newark, DE (United States)

    2004-11-01

    This report presents the results of an expert study to identify research opportunities for Sensors & Automation, a sub-program of the U.S. Department of Energy (DOE) Industrial Technologies Program (ITP). The research opportunities are prioritized by realizable energy savings. The study encompasses the technology areas of industrial controls, information processing, automation, and robotics. These areas have been central areas of focus of many Industries of the Future (IOF) technology roadmaps. This report identifies opportunities for energy savings as a direct result of advances in these areas and also recognizes indirect means of achieving energy savings, such as product quality improvement, productivity improvement, and reduction of recycle.

  2. Test Methods for Robot Agility in Manufacturing.

    Science.gov (United States)

    Downs, Anthony; Harrison, William; Schlenoff, Craig

    2016-01-01

    The paper aims to define and describe test methods and metrics to assess industrial robot system agility in both simulation and in reality. The paper describes test methods and associated quantitative and qualitative metrics for assessing robot system efficiency and effectiveness which can then be used for the assessment of system agility. The paper describes how the test methods were implemented in a simulation environment and real world environment. It also shows how the metrics are measured and assessed as they would be in a future competition. The test methods described in this paper will push forward the state of the art in software agility for manufacturing robots, allowing small and medium manufacturers to better utilize robotic systems. The paper fulfills the identified need for standard test methods to measure and allow for improvement in software agility for manufacturing robots.

  3. Robots: An Impact on Education.

    Science.gov (United States)

    Blaesi, LaVon; Maness, Marion

    1984-01-01

    Provides background information on robotics and robots, considering impact of robots on the workplace and concerns of the work force. Discusses incorporating robotics into the educational system at all levels, exploring industry-education partnerships to fund introduction of new technology into the curriculum. New funding sources and funding…

  4. Towards Using a Generic Robot as Training Partner

    DEFF Research Database (Denmark)

    Sørensen, Anders Stengaard; Savarimuthu, Thiusius Rajeeth; Nielsen, Jacob

    2014-01-01

    In this paper, we demonstrate how a generic industrial robot can be used as a training partner, for upper limb training. The motion path and human/robot interaction of a non-generic upper-arm training robot is transferred to a generic industrial robot arm, and we demonstrate that the robot arm can...... implement the same type of interaction, but can expand the training regime to include both upper arm and shoulder training. We compare the generic robot to two affordable but custom-built training robots, and outline interesting directions for future work based on these training robots....

  5. Application of robotics in nuclear facilities

    International Nuclear Information System (INIS)

    Byrd, J.S.; Fisher, J.J.

    1986-01-01

    Industrial robots and other robotic systems have been successfully applied at the Savannah River nuclear site. These applications, new robotic systems presently under development, general techniques for the employment of robots in nuclear facilities, and future systems are discussed

  6. Device for dynamic switching of robot control points

    DEFF Research Database (Denmark)

    2015-01-01

    The invention comprises a system for switching between control points of a robotic system involving an industrial robot including a robot arm with a number of joints and provided with a tool interest point movable in a plurality of degrees of freedom.......The invention comprises a system for switching between control points of a robotic system involving an industrial robot including a robot arm with a number of joints and provided with a tool interest point movable in a plurality of degrees of freedom....

  7. Robotics: A Bridge for Education and Technology.

    Science.gov (United States)

    Warnat, Winifred I.

    Robotics (robot usage) is discussed from a historical perspective with regard to its role in employment and education. Part 1 examines the transition from an industrial to an information society and speculates what the future might hold, particularly in terms of employment. Part 2 gives a historical overview of the robotics industry and discusses…

  8. Evolution of robotic arms.

    Science.gov (United States)

    Moran, Michael E

    2007-01-01

    The foundation of surgical robotics is in the development of the robotic arm. This is a thorough review of the literature on the nature and development of this device with emphasis on surgical applications. We have reviewed the published literature and classified robotic arms by their application: show, industrial application, medical application, etc. There is a definite trend in the manufacture of robotic arms toward more dextrous devices, more degrees-of-freedom, and capabilities beyond the human arm. da Vinci designed the first sophisticated robotic arm in 1495 with four degrees-of-freedom and an analog on-board controller supplying power and programmability. von Kemplen's chess-playing automaton left arm was quite sophisticated. Unimate introduced the first industrial robotic arm in 1961, it has subsequently evolved into the PUMA arm. In 1963 the Rancho arm was designed; Minsky's Tentacle arm appeared in 1968, Scheinman's Stanford arm in 1969, and MIT's Silver arm in 1974. Aird became the first cyborg human with a robotic arm in 1993. In 2000 Miguel Nicolalis redefined possible man-machine capacity in his work on cerebral implantation in owl-monkeys directly interfacing with robotic arms both locally and at a distance. The robotic arm is the end-effector of robotic systems and currently is the hallmark feature of the da Vinci Surgical System making its entrance into surgical application. But, despite the potential advantages of this computer-controlled master-slave system, robotic arms have definite limitations. Ongoing work in robotics has many potential solutions to the drawbacks of current robotic surgical systems.

  9. Robot Skills for Transformable Manufacturing Systems

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Rath

    Efficient, transformable production systems need robots that are flexible and effortlessly repurposed or reconfigured. The present dissertation argues that this can be achieved through the implementation and use of general, object-centered robot skills. In this dissertation, we focus on the design...... autonomously, exactly when it is needed. It is the firm belief of this researcher that industrial robotics need to go in a direction towards what is outlined in this dissertation, both in academia and in the industry. In order for manufacturing companies to remain competitive, robotics is the definite way...

  10. Experimental Investigation on the Positioning Accuracy of the Translation Module of a 6-DOF Industrial Robot

    Directory of Open Access Journals (Sweden)

    Zoltan-Iosif Korka

    2016-12-01

    Full Text Available The paper presents an experimental investigation regarding the positioning accuracy and kinematical parameters of the base translation module of a 6-DOF industrial robot. The positioning error of the translation module was computed for two cases: one way movement and reversed movement.

  11. Automation, robotics and remote handling technology in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rajagopalan, C.; Venugopal, S.

    2013-01-01

    Automation and Robotics technology are making significant contributions in almost all fields of engineering and technology and their presence is felt in all spheres of human life. The importance of automation and robotics has increased rapidly in the recent years to cater to the global competitive pressures by the manufacturing industry by utilizing the increased productivity and improved quality this technology offers. Improvement of productivity, quality, profitability and, indeed, survival are the major motivating factors in the implementation of automation and robotics technology in the manufacturing sector. Robots are used extensively in the automotive industry, primarily for welding, painting and material handling applications. The electronics, aerospace, metalworking and consumer goods industries are also major potential robot users. The common uses of robots in industries mostly include the four Ps - Picking, Placing, Packaging and Painting - apart from other industrial routines like assembly and welding. As is the case with industrial tools and machineries, a properly designed robot (for the appropriate task) has almost unlimited endurance with the added benefit of precisions unmatched by human workers. With robot technology as a key element, integrated factory automation systems touch on nearly all types of manufacturing. The productivity and competitiveness in these industries will depend in large part on flexible automation through robotics

  12. IMPROVED COMMUNICATION BETWEEN MANUFACTURING ROBOTS

    Directory of Open Access Journals (Sweden)

    R. Stopforth

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Communication between manufacturing robots and autonomous vehicles in the industrial environment is important, sinceinstructions and information are crucial for communication between the control station and the robot station. Information is required between different manufacturing robots for optimal performance and dedication to industrial tasks within the environment. Failures in communication could cause robots to be a safety hazard or to perform tasks that are not required. This article shows how communication was improved with the use of the Robotics Communication Protocol (RCP and an extension of this protocol.

    AFRIKAANSE OPSOMMING: Kommunikasie tussen vervaardigingsrobotte en outonome voertuie in ‘n industriële omgewing is belangrik, aangesien opdragte en inligting krities is vir kommunikasie tussen die beheerstasie en die robotstasie. Inligting word benodig tussen verskillende vervaardigingsrobotte vir optimale werkverrigting en toewyding aan take in die omgewing. Mislukte kommunikasie mag veroorsaak dat robotte ‘n veiligheidsrisiko word of veroorsaak dat onnodige take verrig word. Hierdie artikel toon hoe kommunikasie verbeter is deur die gebruik van die “robotika-kommunikasie-protokol” en ‘n uitbreiding van die protokol.

  13. Safe Human-Robot Cooperation in an Industrial Environment

    Directory of Open Access Journals (Sweden)

    Nicola Pedrocchi

    2013-01-01

    Full Text Available The standard EN ISO10218 is fostering the implementation of hybrid production systems, i.e., production systems characterized by a close relationship among human operators and robots in cooperative tasks. Human-robot hybrid systems could have a big economic benefit in small and medium sized production, even if this new paradigm introduces mandatory, challenging safety aspects. Among various requirements for collaborative workspaces, safety-assurance involves two different application layers; the algorithms enabling safe space-sharing between humans and robots and the enabling technologies allowing acquisition data from sensor fusion and environmental data analysing. This paper addresses both the problems: a collision avoidance strategy allowing on-line re-planning of robot motion and a safe network of unsafe devices as a suggested infrastructure for functional safety achievement.

  14. Programming Robots with Associative Memories

    Energy Technology Data Exchange (ETDEWEB)

    Touzet, C

    1999-07-10

    Today, there are several drawbacks that impede the necessary and much needed use of robot learning techniques in real applications. First, the time needed to achieve the synthesis of any behavior is prohibitive. Second, the robot behavior during the learning phase is "by definition" bad, it may even be dangerous. Third, except within the lazy learning approach, a new behavior implies a new learning phase. We propose in this paper to use self-organizing maps to encode the non explicit model of the robot-world interaction sampled by the lazy memory, and then generate a robot behavior by means of situations to be achieved, i.e., points on the self-organizing maps. Any behavior can instantaneously be synthesized by the definition of a goal situation. Its performance will be minimal (not evidently bad) and will improve by the mere repetition of the behavior.

  15. Programming Robots with Associative Memories

    International Nuclear Information System (INIS)

    Touzet, C.

    1999-01-01

    Today, there are several drawbacks that impede the necessary and much needed use of robot learning techniques in real applications. First, the time needed to achieve the synthesis of any behavior is prohibitive. Second, the robot behavior during the learning phase is by definition bad, it may even be dangerous. Third, except within the lazy learning approach, a new behavior implies a new learning phase. We propose in this paper to use self-organizing maps to encode the non explicit model of the robot-world interaction sampled by the lazy memory, and then generate a robot behavior by means of situations to be achieved, i.e., points on the self-organizing maps. Any behavior can instantaneously be synthesized by the definition of a goal situation. Its performance will be minimal (not evidently bad) and will improve by the mere repetition of the behavior

  16. Application of a Perturbation Method for Realistic Dynamic Simulation of Industrial Robots

    International Nuclear Information System (INIS)

    Waiboer, R. R.; Aarts, R. G. K. M.; Jonker, J. B.

    2005-01-01

    This paper presents the application of a perturbation method for the closed-loop dynamic simulation of a rigid-link manipulator with joint friction. In this method the perturbed motion of the manipulator is modelled as a first-order perturbation of the nominal manipulator motion. A non-linear finite element method is used to formulate the dynamic equations of the manipulator mechanism. In a closed-loop simulation the driving torques are generated by the control system. Friction torques at the actuator joints are introduced at the stage of perturbed dynamics. For a mathematical model of the friction torques we implemented the LuGre friction model that accounts both for the sliding and pre-sliding regime. To illustrate the method, the motion of a six-axes industrial Staeubli robot is simulated. The manipulation task implies transferring a laser spot along a straight line with a trapezoidal velocity profile. The computed trajectory tracking errors are compared with measured values, where in both cases the tip position is computed from the joint angles using a nominal kinematic robot model. It is found that a closed-loop simulation using a non-linear finite element model of this robot is very time-consuming due to the small time step of the discrete controller. Using the perturbation method with the linearised model a substantial reduction of the computer time is achieved without loss of accuracy

  17. Robotics 101

    Science.gov (United States)

    Sultan, Alan

    2011-01-01

    Robots are used in all kinds of industrial settings. They are used to rivet bolts to cars, to move items from one conveyor belt to another, to gather information from other planets, and even to perform some very delicate types of surgery. Anyone who has watched a robot perform its tasks cannot help but be impressed by how it works. This article…

  18. Modeling and Simulation of Elementary Robot Behaviors using Associative Memories

    Directory of Open Access Journals (Sweden)

    Claude F. Touzet

    2006-06-01

    Full Text Available Today, there are several drawbacks that impede the necessary and much needed use of robot learning techniques in real applications. First, the time needed to achieve the synthesis of any behavior is prohibitive. Second, the robot behavior during the learning phase is – by definition – bad, it may even be dangerous. Third, except within the lazy learning approach, a new behavior implies a new learning phase. We propose in this paper to use associative memories (self-organizing maps to encode the non explicit model of the robot-world interaction sampled by the lazy memory, and then generate a robot behavior by means of situations to be achieved, i.e., points on the self-organizing maps. Any behavior can instantaneously be synthesized by the definition of a goal situation. Its performance will be minimal (not necessarily bad and will improve by the mere repetition of the behavior.

  19. The identification of potential applications for robotics and remote control systems in Canadian mining. 2 Volumes

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This report presents a preliminary overview of potential applications for robotics and remote control in the Canadian mining industry. The first of two volumes, summarizes the industry awareness and interest in using these technologies. Also included is a look at factors playing a major role in the development of the mining robotics industry, such as safety, productivity, labour and the economic climate. The role of Energy, Mines and Resources Canada (EMR)/CANMET is also discussed. Finally, recommendations are made as to how Canada, through EMR, can ensure Canada's participation in the development of robotics in the mining industry. Volume two is comprised of the contact records. These are abbreviated notes of conversations which took place between the interviewers and their contacts in a number of Canadian and US mines and associated government and private agencies. (The interviews represent the opinions of the respondents, not necessarily that of their companies). The survey indicated that the industry is essentially negative to the idea of robotics in mining, but they were able to suggest many potential areas of application, especially at the short term level.

  20. Evidence for robots.

    Science.gov (United States)

    Shenoy, Ravikiran; Nathwani, Dinesh

    2017-01-01

    Robots have been successfully used in commercial industry and have enabled humans to perform tasks which are repetitive, dangerous and requiring extreme force. Their role has evolved and now includes many aspects of surgery to improve safety and precision. Orthopaedic surgery is largely performed on bones which are rigid immobile structures which can easily be performed by robots with great precision. Robots have been designed for use in orthopaedic surgery including joint arthroplasty and spine surgery. Experimental studies have been published evaluating the role of robots in arthroscopy and trauma surgery. In this article, we will review the incorporation of robots in orthopaedic surgery looking into the evidence in their use. © The Authors, published by EDP Sciences, 2017.

  1. Next generation light robotic

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Palima, Darwin; Banas, Andrew Rafael

    2017-01-01

    -assisted surgery imbibes surgeons with superhuman abilities and gives the expression “surgical precision” a whole new meaning. Still in its infancy, much remains to be done to improve human-robot collaboration both in realizing robots that can operate safely with humans and in training personnel that can work......Conventional robotics provides machines and robots that can replace and surpass human performance in repetitive, difficult, and even dangerous tasks at industrial assembly lines, hazardous environments, or even at remote planets. A new class of robotic systems no longer aims to replace humans...... with so-called automatons but, rather, to create robots that can work alongside human operators. These new robots are intended to collaborate with humans—extending their abilities—from assisting workers on the factory floor to rehabilitating patients in their homes. In medical robotics, robot...

  2. Automated Trajectory Planner of Industrial Robot for Pick-and-Place Task

    Directory of Open Access Journals (Sweden)

    S. Saravana Perumaal

    2013-02-01

    Full Text Available Industrial robots, due to their great speed, precision and cost-effectiveness in repetitive tasks, now tend to be used in place of human workers in automated manufacturing systems. In particular, they perform the pick-and-place operation, a non-value-added activity which at the same time cannot be eliminated. Hence, minimum time is an important consideration for economic reasons in the trajectory planning system of the manipulator. The trajectory should also be smooth to handle parts precisely in applications such as semiconductor manufacturing, processing and handling of chemicals and medicines, and fluid and aerosol deposition. In this paper, an automated trajectory planner is proposed to determine a smooth, minimum-time and collision-free trajectory for the pick-and-place operations of a 6-DOF robotic manipulator in the presence of an obstacle. Subsequently, it also proposes an algorithm for the jerk-bounded Synchronized Trigonometric S-curve Trajectory (STST and the ‘forbidden-sphere’ technique to avoid the obstacle. The proposed planner is demonstrated with suitable examples and comparisons. The experiments show that the proposed planner is capable of providing a smoother trajectory than the cubic spline based trajectory.

  3. Design of Piano -playing Robotic Hand

    OpenAIRE

    Lin Jen-Chang; Hsin-Cheng Li; Kuo-Cheng Huang; Shu-Wei Lin

    2013-01-01

    Unlike the market slowdown of industrial robots, service & entertainment robots have been highly regarded by most robotics reseach and market research agencies. In this study we developed a music playing robot (which can also work as a service robot) for public performance. The research is mainly focused on the mechanical and electrical control of piano-playing robot, the exploration of correlations among music theory, rhythm and piano keys, and eventually the research on playing skill of...

  4. Robotics research in Chile

    Directory of Open Access Journals (Sweden)

    Javier Ruiz-del-Solar

    2016-12-01

    Full Text Available The development of research in robotics in a developing country is a challenging task. Factors such as low research funds, low trust from local companies and the government, and a small number of qualified researchers hinder the development of strong, local research groups. In this article, and as a case of study, we present our research group in robotics at the Advanced Mining Technology Center of the Universidad de Chile, and the way in which we have addressed these challenges. In 2008, we decided to focus our research efforts in mining, which is the main industry in Chile. We observed that this industry has needs in terms of safety, productivity, operational continuity, and environmental care. All these needs could be addressed with robotics and automation technology. In a first stage, we concentrate ourselves in building capabilities in field robotics, starting with the automation of a commercial vehicle. An important outcome of this project was the earn of the local mining industry confidence. Then, in a second stage started in 2012, we began working with the local mining industry in technological projects. In this article, we describe three of the technological projects that we have developed with industry support: (i an autonomous vehicle for mining environments without global positioning system coverage; (ii the inspection of the irrigation flow in heap leach piles using unmanned aerial vehicles and thermal cameras; and (iii an enhanced vision system for vehicle teleoperation in adverse climatic conditions.

  5. Robots niet langer Science Fiction: scenario's voor de samenwerking met robots

    NARCIS (Netherlands)

    Popma, J.

    2015-01-01

    Hoewel industriële robots al jaren bestaan, lijkt hun opmars nu toch echt begonnen. Diverse scenario's buitelen over elkaar: hoeveel banen gaat dit kosten? Maar zeker zo interessant is wat de robotisering betekent voor de werknemers die wél hun baan houden. Hoe gaan die samenwerken met robots? En

  6. Robotic system for glovebox size reduction

    International Nuclear Information System (INIS)

    KWOK, KWAN S.; MCDONALD, MICHAEL J.

    2000-01-01

    The Intelligent Systems and Robotics Center (ISRC) at Sandia National Laboratories (SNL) is developing technologies for glovebox size reduction in the DOE nuclear complex. A study was performed for Kaiser-Hill (KH) at the Rocky Flats Environmental Technology Site (RFETS) on the available technologies for size reducing the glovebox lines that require size reduction in place. Currently, the baseline approach to these glovebox lines is manual operations using conventional mechanical cutting methods. The study has been completed and resulted in a concept of the robotic system for in-situ size reduction. The concept makes use of commercially available robots that are used in the automotive industry. The commercially available industrial robots provide high reliability and availability that are required for environmental remediation in the DOE complex. Additionally, the costs of commercial robots are about one-fourth that of the custom made robots for environmental remediation. The reason for the lower costs and the higher reliability is that there are thousands of commercial robots made annually, whereas there are only a few custom robots made for environmental remediation every year. This paper will describe the engineering analysis approach used in the design of the robotic system for glovebox size reduction

  7. Advanced robot vision system for nuclear power plants

    International Nuclear Information System (INIS)

    Onoguchi, Kazunori; Kawamura, Atsuro; Nakayama, Ryoichi.

    1991-01-01

    We have developed a robot vision system for advanced robots used in nuclear power plants, under a contract with the Agency of Industrial Science and Technology of the Ministry of International Trade and Industry. This work is part of the large-scale 'advanced robot technology' project. The robot vision system consists of self-location measurement, obstacle detection, and object recognition subsystems, which are activated by a total control subsystem. This paper presents details of these subsystems and the experimental results obtained. (author)

  8. Optimalisasi Ukuran Manipulabilitas Robot Stanford Menggunakan Metode Pseudo-inverse

    OpenAIRE

    admin, Gina Fahrina

    2013-01-01

    Robot is one of the most important element in the industrial world which has been growing very rapidly. Stanford robot arm is one of robot that use in industry, it has five degrees of freedom (DOF). Movement of the robot arm in his workspace called manipulability or manipulability measure. More the optimal manipulability measure manipulator, the more movement of the robotic arm will be more flexible in his workspace. The purpose of this research are to get knowledge and learn how to solve inv...

  9. Innovation in Robotic Surgery: The Indian Scenario

    Directory of Open Access Journals (Sweden)

    Suresh V Deshpande

    2015-01-01

    Full Text Available Robotics is the science. In scientific words a "Robot" is an electromechanical arm device with a computer interface, a combination of electrical, mechanical, and computer engineering. It is a mechanical arm that performs tasks in Industries, space exploration, and science. One such idea was to make an automated arm - A robot - In laparoscopy to control the telescope-camera unit electromechanically and then with a computer interface using voice control. It took us 5 long years from 2004 to bring it to the level of obtaining a patent. That was the birth of the Swarup Robotic Arm (SWARM which is the first and the only Indian contribution in the field of robotics in laparoscopy as a total voice controlled camera holding robotic arm developed without any support by industry or research institutes.

  10. Innovation in robotic surgery: the Indian scenario.

    Science.gov (United States)

    Deshpande, Suresh V

    2015-01-01

    Robotics is the science. In scientific words a "Robot" is an electromechanical arm device with a computer interface, a combination of electrical, mechanical, and computer engineering. It is a mechanical arm that performs tasks in Industries, space exploration, and science. One such idea was to make an automated arm - A robot - In laparoscopy to control the telescope-camera unit electromechanically and then with a computer interface using voice control. It took us 5 long years from 2004 to bring it to the level of obtaining a patent. That was the birth of the Swarup Robotic Arm (SWARM) which is the first and the only Indian contribution in the field of robotics in laparoscopy as a total voice controlled camera holding robotic arm developed without any support by industry or research institutes.

  11. Mobile robotics for CANDU maintenance

    International Nuclear Information System (INIS)

    Lipsett, M.G.; Rody, K.H.

    1996-01-01

    Although robotics researchers have been promising that robotics would soon be performing tasks in hazardous environments, the reality has yet to live up to the hype. The presently available crop of robots suitable for deployment in industrial situations are remotely operated, requiring skilled users. This talk describes cases where mobile robots have been used successfully in CANDU stations, discusses the difficulties in using mobile robots for reactor maintenance, and provides near-term goals for achievable improvements in performance and usefulness. (author) 5 refs., 2 ills

  12. From self-observation to imitation: visuomotor association on a robotic hand.

    Science.gov (United States)

    Chaminade, Thierry; Oztop, Erhan; Cheng, Gordon; Kawato, Mitsuo

    2008-04-15

    Being at the crux of human cognition and behaviour, imitation has become the target of investigations ranging from experimental psychology and neurophysiology to computational sciences and robotics. It is often assumed that the imitation is innate, but it has more recently been argued, both theoretically and experimentally, that basic forms of imitation could emerge as a result of self-observation. Here, we tested this proposal on a realistic experimental platform, comprising an associative network linking a 16 degrees of freedom robotic hand and a simple visual system. We report that this minimal visuomotor association is sufficient to bootstrap basic imitation. Our results indicate that crucial features of human imitation, such as generalization to new actions, may emerge from a connectionist associative network. Therefore, we suggest that a behaviour as complex as imitation could be, at the neuronal level, founded on basic mechanisms of associative learning, a notion supported by a recent proposal on the developmental origin of mirror neurons. Our approach can be applied to the development of realistic cognitive architectures for humanoid robots as well as to shed new light on the cognitive processes at play in early human cognitive development.

  13. Development of five axis robotic system for an industrial neutron tomography imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, R J; Radke, M G; Mishra, J K; Arunkumar, G V.D.; Ramakumar, M S [Bhabha Atomic Research Centre, Mumbai (India). Div. of Remote Handling and Robotics

    1994-12-31

    Tomography is one of the latest techniques in the field of nondestructive testing. X-rays, gamma rays or neutrons are used as an energy source whereas five axis manipulator is designed to move the specimen across the beam. The 5 axis robotic system has been indigenously developed, designed, manufactured and tested to move up to 10 kg payload. Computer is necessary to process and store data and retrieve it for processing. The same computer is used for control of manipulator. Computer aided tomography is carried out for research and industrial use. Neutron beam will be used either for evaluation of organic materials in attenuation based measurements or for evaluation on the basis of neutron activation of materials like nuclear fuels. The paper describes the indigenously developed 5-axis robotic system as a part of a facility built around Kamini reactor at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam. (author). 4 figs.

  14. CISM Course on Basics of Robotics : Theory and Components of Manipulators and Robots

    CERN Document Server

    Knapczyk, Józef

    1999-01-01

    This volume contains the basic concepts of modern robotics, basic definitions, systematics of robots in industry, service, medicine and underwater activity. Important information on walking and mili-walking machines are included as well as possible applications of microrobots in medicine, agriculture, underwater activity.

  15. Grasping in Robotics

    CERN Document Server

    2013-01-01

    Grasping in Robotics contains original contributions in the field of grasping in robotics with a broad multidisciplinary approach. This gives the possibility of addressing all the major issues related to robotized grasping, including milestones in grasping through the centuries, mechanical design issues, control issues, modelling achievements and issues, formulations and software for simulation purposes, sensors and vision integration, applications in industrial field and non-conventional applications (including service robotics and agriculture).   The contributors to this book are experts in their own diverse and wide ranging fields. This multidisciplinary approach can help make Grasping in Robotics of interest to a very wide audience. In particular, it can be a useful reference book for researchers, students and users in the wide field of grasping in robotics from many different disciplines including mechanical design, hardware design, control design, user interfaces, modelling, simulation, sensors and hum...

  16. Reasoning on the Self-Organizing Incremental Associative Memory for Online Robot Path Planning

    Science.gov (United States)

    Kawewong, Aram; Honda, Yutaro; Tsuboyama, Manabu; Hasegawa, Osamu

    Robot path-planning is one of the important issues in robotic navigation. This paper presents a novel robot path-planning approach based on the associative memory using Self-Organizing Incremental Neural Networks (SOINN). By the proposed method, an environment is first autonomously divided into a set of path-fragments by junctions. Each fragment is represented by a sequence of preliminarily generated common patterns (CPs). In an online manner, a robot regards the current path as the associative path-fragments, each connected by junctions. The reasoning technique is additionally proposed for decision making at each junction to speed up the exploration time. Distinct from other methods, our method does not ignore the important information about the regions between junctions (path-fragments). The resultant number of path-fragments is also less than other method. Evaluation is done via Webots physical 3D-simulated and real robot experiments, where only distance sensors are available. Results show that our method can represent the environment effectively; it enables the robot to solve the goal-oriented navigation problem in only one episode, which is actually less than that necessary for most of the Reinforcement Learning (RL) based methods. The running time is proved finite and scales well with the environment. The resultant number of path-fragments matches well to the environment.

  17. Intelligent robot trends and predictions for the first year of the new millennium

    Science.gov (United States)

    Hall, Ernest L.

    2000-10-01

    An intelligent robot is a remarkably useful combination of a manipulator, sensors and controls. The current use of these machines in outer space, medicine, hazardous materials, defense applications and industry is being pursued with vigor. In factory automation, industrial robots can improve productivity, increase product quality and improve competitiveness. The computer and the robot have both been developed during recent times. The intelligent robot combines both technologies and requires a thorough understanding and knowledge of mechatronics. Today's robotic machines are faster, cheaper, more repeatable, more reliable and safer than ever. The knowledge base of inverse kinematic and dynamic solutions and intelligent controls is increasing. More attention is being given by industry to robots, vision and motion controls. New areas of usage are emerging for service robots, remote manipulators and automated guided vehicles. Economically, the robotics industry now has more than a billion-dollar market in the U.S. and is growing. Feasibility studies show decreasing costs for robots and unaudited healthy rates of return for a variety of robotic applications. However, the road from inspiration to successful application can be long and difficult, often taking decades to achieve a new product. A greater emphasis on mechatronics is needed in our universities. Certainly, more cooperation between government, industry and universities is needed to speed the development of intelligent robots that will benefit industry and society. The fearful robot stories may help us prevent future disaster. The inspirational robot ideas may inspire the scientists of tomorrow. However, the intelligent robot ideas, which can be reduced to practice, will change the world.

  18. Kinematics analysis on hinges of robot arm gripper for harmful chemical handling

    Science.gov (United States)

    Razali, Zol Bahri; Kader, Mohamed Mydin M. Abdul; Mustafa, Nurul Fahimah; Daud, Mohd Hisam

    2017-09-01

    The development of manufacturing industry is booming the application of industrial robot, and proportional to the use of robot arm. Some of the purpose of robot arm gripper is to sort things and place to the proper place. And some of the things are harmful to human, such as harmful chemical. By using robot arm to do picking and placing, it is expected to replace human tasks, as well as to reduce human from the harmful job. The problem of the robot arm gripper, most likely the problem of hinge, thus the analysis on the hinges of robot arm gripper to prevent claw is essential. By using robot arm, instead of human, is labored to do the harmful tasks and unexpected accident happen, costs and expenses in handling injured employee due to the harmful chemicals can be minimized. Thus the objective of this project is to make a kinematics analysis on the hinges of the robot arm gripper. Suitable material such as steel structure has also been selected for the construction of this hinges. This material has properties associated with compressive strength, fire resistance, corrosion and has a shape that is easy to move. Solid Works and ANSYS software is used to create animated movement on the design model and to detect deficiencies in the hinges. Detail methodology is described in this paper.

  19. Intelligent robotics can boost America's economic growth

    Science.gov (United States)

    Erickson, Jon D.

    1994-01-01

    A case is made for strategic investment in intelligent robotics as a part of the solution to the problem of improved global competitiveness for U.S. manufacturing, a critical industrial sector. Similar cases are made for strategic investments in intelligent robotics for field applications, construction, and service industries such as health care. The scope of the country's problems and needs is beyond the capability of the private sector alone, government alone, or academia alone to solve independently of the others. National cooperative programs in intelligent robotics are needed with the private sector supplying leadership direction and aerospace and non-aerospace industries conducting the development. Some necessary elements of such programs are outlined. The National Aeronautics and Space Administration (NASA) and the Lyndon B. Johnson Space Center (JSC) can be key players in such national cooperative programs in intelligent robotics for several reasons: (1) human space exploration missions require supervised intelligent robotics as enabling tools and, hence must develop supervised intelligent robotic systems; (2) intelligent robotic technology is being developed for space applications at JSC (but has a strong crosscutting or generic flavor) that is advancing the state of the art and is producing both skilled personnel and adaptable developmental infrastructure such as integrated testbeds; and (3) a NASA JSC Technology Investment Program in Robotics has been proposed based on commercial partnerships and collaborations for precompetitive, dual-use developments.

  20. Dynamic modelling, identification and simulation of industrial robots – for off-line programming of robotised laser welding –

    NARCIS (Netherlands)

    Waiboer, R.R.

    2007-01-01

    Robotised laser welding is an innovative joining technique which is increasingly finding applications, especially in the automotive industry. In order to reduce the time needed to prepare and programthe laser welding robot, off-line programming systems are used. The off-line programming systems

  1. Modular Platform for Commercial Mobile Robots

    DEFF Research Database (Denmark)

    Kjærgaard, Morten

    , and not on putting the robots on the commercial market. At the time when this research project was started in May 2010, the amount of successful commercial applications based on mobile robots was very limited. The most known applications were vacuum cleaners, lawn mowers, and few examples of specialized transport...... by the individual groups and perhaps a few close industrial partners. This research project addresses the problem of increasing the potential for more commercial applications based on mobile wheeled robots. Therefore the main focus is not on inventing new ground-breaking robotics technology, but instead...... period, a signicant research community was created around one specific robot control framework called ROS. From the very beginning,this research project acknowledged the value of such a community, and put a significant eort into in uencing the ROS framework to become usable also for industry...

  2. Parametric Synthesis of Automatic Control System of Industrial Robot Manipulator in Compliance with Requirements of Robust Quality

    Directory of Open Access Journals (Sweden)

    A. A. Nesenchuk

    2004-01-01

    Full Text Available The paper considers an application of a root-locus method for synthesis of dynamic systems with uncertainty that meet the requirements of pre-set quality. This method is used for parametric synthesis of automatic control system of industrial robot manipulator that is used for transportation of engineering products. The synthesis takes place under conditions of substantial changes in inertia moment of robot load. As a result of investigations it is possible to determine range of values of variable parameter that ensures the required quality of control system operation. A system of computer programs has been developed in order to solve the problem.

  3. Robots in the nuclear industry: conference report

    International Nuclear Information System (INIS)

    Kochan, Anna.

    1992-01-01

    Current robotic technology is severely challenged by the conditions which nuclear environments present. In such applications, reliability demands are stringent; the environment is highly unstructured; and the ionizing radiation field is extremely hazardous to equipment. But an international conference, held recently in Marseille, indicated clearly that there is no shortage of robotic solutions adapted to these special needs. Organized by the Institut International de Robotique et d'Intelligence Artificelle in Marseille, the conference focused on telerobotics in hostile environments, including sessions on Perception of Environment; Man/machine Interface; and Technologies and Components. (Author)

  4. Current trend of robotics application in medical

    International Nuclear Information System (INIS)

    Olanrewaju, O A; Faieza, A A; Syakirah, K

    2013-01-01

    The applications of robotics in recent years has emerged beyond the field of manufacturing or industrial robots itself. Robotics applications are now widely used in medical, transport, underwater, entertainment and military sector. In medical field, these applications should be emphasized in view of the increasing challenges due to the variety of findings in the field of medicine which requires new inventions to ease work process. The objective of this review paper is to study and presents the past and on-going research in medical robotics with emphasis on rehabilitation (assistive care) and surgery robotics which are certainly the two main practical fields where robots application are commonly used presently. The study found that, rehabilitation and surgery robotics applications grow extensively with the finding of new invention, as well as research that is being undertaken and to be undertaken. The importance of medical robot in medical industry is intended to offer positive outcomes to assist human business through a complicated task that involves a long period, accuracy, focus and other routines that cannot be accomplished by human ability alone.

  5. Development of constrained motion control for robot handling of hazardous waste

    International Nuclear Information System (INIS)

    Starr, G.P.

    1993-01-01

    Handling and archiving of hazardous waste is an area where automation and robotics can be of significant benefit, by removing the human operator from the workplace and its associated hazards. For reasons of safety, throughput, and reduced setup time, force-controlled robots are well-suited for hazardous materials handling. The focus of this investigation is the development of advanced force control techniques for commercial industrial robots in the surface sampling of hazardous waste containers. Two particular control strategies are considered, (1) preview control, and (2) adaptive control. Preview control uses a sensor which can ''look ahead'' and thereby reduce the effect of surface irregularity on contact force control. Adaptive control allows the robot controller to compensate for changes in the robot characteristics as it changes position, and likewise improves performance. The resulting control algorithms will be applied to a two-dimensional contour-following task using a PUMA robot at the Robotics Research Laboratory at The University of New Mexico. (author) 9 figs., 13 refs

  6. Odico Formwork Robotics

    DEFF Research Database (Denmark)

    Søndergaard, Asbjørn

    2014-01-01

    In the next decade or so, the widespread adoption of robotics is set to transform the construction industry: building techniques will become increasingly automated both on– and off–site, dispensing with manual labour and enabling greater cost and operational efficiencies. What unique opportunities......, however, does robotics afford beyond operational effectiveness explicitly for the practice of architecture? What is the potential for the serial production of non–standard elements as well as for varied construction processes? In order to scale up and advance the application of robotics, for both...

  7. Robotics education

    International Nuclear Information System (INIS)

    Benton, O.

    1984-01-01

    Robotics education courses are rapidly spreading throughout the nation's colleges and universities. Engineering schools are offering robotics courses as part of their mechanical or manufacturing engineering degree program. Two year colleges are developing an Associate Degree in robotics. In addition to regular courses, colleges are offering seminars in robotics and related fields. These seminars draw excellent participation at costs running up to $200 per day for each participant. The last one drew 275 people from Texas to Virginia. Seminars are also offered by trade associations, private consulting firms, and robot vendors. IBM, for example, has the Robotic Assembly Institute in Boca Raton and charges about $1,000 per week for course. This is basically for owners of IBM robots. Education (and training) can be as short as one day or as long as two years. Here is the educational pattern that is developing now

  8. View graph presentations of the sixth DOE industry/university/lab forum on robotics for environmental restoration and waste management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The mission of the Robotics Technology Development Program involves the following: develop robotic systems where justified by safety, cost, and/or efficiency arguments; integrate the best talent from National Labs, industry, and universities in focused teams addressing complex-wide problems; and involve customers in the identification and development of needs driven technologies. This presentation focuses on five areas. They are: radioactive tank waste remediation (Richland); mixed waste characterization, treatment, and disposal (Idaho Falls); decontamination and decommissioning (Morgantown); landfill stabilization (Savannah River); and contaminant plumes containment and remediation (Savannah River).

  9. View graph presentations of the sixth DOE industry/university/lab forum on robotics for environmental restoration and waste management

    International Nuclear Information System (INIS)

    1995-10-01

    The mission of the Robotics Technology Development Program involves the following: develop robotic systems where justified by safety, cost, and/or efficiency arguments; integrate the best talent from National Labs, industry, and universities in focused teams addressing complex-wide problems; and involve customers in the identification and development of needs driven technologies. This presentation focuses on five areas. They are: radioactive tank waste remediation (Richland); mixed waste characterization, treatment, and disposal (Idaho Falls); decontamination and decommissioning (Morgantown); landfill stabilization (Savannah River); and contaminant plumes containment and remediation (Savannah River)

  10. Learning for intelligent mobile robots

    Science.gov (United States)

    Hall, Ernest L.; Liao, Xiaoqun; Alhaj Ali, Souma M.

    2003-10-01

    Unlike intelligent industrial robots which often work in a structured factory setting, intelligent mobile robots must often operate in an unstructured environment cluttered with obstacles and with many possible action paths. However, such machines have many potential applications in medicine, defense, industry and even the home that make their study important. Sensors such as vision are needed. However, in many applications some form of learning is also required. The purpose of this paper is to present a discussion of recent technical advances in learning for intelligent mobile robots. During the past 20 years, the use of intelligent industrial robots that are equipped not only with motion control systems but also with sensors such as cameras, laser scanners, or tactile sensors that permit adaptation to a changing environment has increased dramatically. However, relatively little has been done concerning learning. Adaptive and robust control permits one to achieve point to point and controlled path operation in a changing environment. This problem can be solved with a learning control. In the unstructured environment, the terrain and consequently the load on the robot"s motors are constantly changing. Learning the parameters of a proportional, integral and derivative controller (PID) and artificial neural network provides an adaptive and robust control. Learning may also be used for path following. Simulations that include learning may be conducted to see if a robot can learn its way through a cluttered array of obstacles. If a situation is performed repetitively, then learning can also be used in the actual application. To reach an even higher degree of autonomous operation, a new level of learning is required. Recently learning theories such as the adaptive critic have been proposed. In this type of learning a critic provides a grade to the controller of an action module such as a robot. The creative control process is used that is "beyond the adaptive critic." A

  11. Sensor based real-time control of robots

    DEFF Research Database (Denmark)

    Andersen, Thomas Timm

    in the sensor to actuation delays in the robot. To that end a method for measuring the actuation and response delay of an industrial robot manipulator, relative to the joint configuration of the robot, is presented. It is also shown how modern machine learning algorithms can be trained to build model based......As robots are becoming more and more widespread in manufacturing, the desire and need for more advanced robotic solutions are increasingly expressed. This is especially the case in Denmark where products with natural variances like agricultural products takes up a large share of the produced goods....... For such production lines, it is often not possible to use primitive preprogrammed industrial robots to handle the otherwise repetitive tasks due to the uniqueness of each product. To handle such products it is necessary to use sensors to determine the size, shape, and position of the product before a proper...

  12. Intelligent Sensing for Robotic Re-Manufacturing in Aerospace - An Industry 4.0 Design Based Prototype

    OpenAIRE

    French, R.; Benakis, M.; Marin-Reyes, H.

    2018-01-01

    Emerging through an industry-academia\\ud collaboration between the University of Sheffield and VBC\\ud Instrument Engineering Ltd, a proposed robotic solution for remanufacturing\\ud of jet engine compressor blades is under ongoing\\ud development, producing the first tangible results for evaluation.\\ud Having successfully overcome concept adaptation, funding\\ud mechanisms, design processes, with research and development\\ud trials, the stage of concept optimization and end-user application\\ud ha...

  13. Implementation of robots in the nuclear industry, luxury or necessity?

    International Nuclear Information System (INIS)

    Angulo S, P.; Segovia de los Rios, A.

    2004-01-01

    The safety is primordial factor in the development of nuclear tasks, the risks of exhibition to radioactive doses is imminent, in occasions to such a grade that procedures and techniques seem insufficient to control this exhibition. The present article shows to the nuclear industry as an area of suitable opportunity for the implementation of advanced technology, taking like base that the inter relation direct between human personnel and radioactive material it is of high risk for the health and in occasions mortal, due to this situation, the robotic systems like solution alternative arise to diverse problems related with this environment: management of radioactive materials, inspection and monitoring, decontamination; in each one of which it is looked for the speed and practicability in the processes and mainly the security of the personnel. (Author)

  14. European regulatory framework for person carrier robots

    NARCIS (Netherlands)

    Fosch Villaronga, E.; Roig, A.

    The aim of this paper is to establish the grounds for a future regulatory framework for Person Carrier Robots, which includes legal and ethical aspects. Current industrial standards focus on physical human–robot interaction, i.e. on the prevention of harm. Current robot technology nonetheless

  15. Safe human-robot cooperation in an industrial environment

    OpenAIRE

    Pedrocchi N.; Vicentini F.; Matteo M.; Tosatti L.M.

    2013-01-01

    The standard EN ISO10218 is fostering the implementation of hybrid production systems, i.e., production systems characterized by a close relationship among human operators and robots in cooperative tasks. Human‐robot hybrid systems could have a big economic benefit in small and medium sized production, even if this new paradigm introduces mandatory, challenging safety aspects. Among various requirements for collaborative workspaces, safety‐assurance involves two different application layers; ...

  16. Operator-centered control of a semi-autonomous industrial robot

    International Nuclear Information System (INIS)

    Spelt, P.F.; Jones, S.L.

    1994-01-01

    This paper presents work done by Oak Ridge National Laboratory and Remotec, Inc., to develop a new operator-centered control system for Remotec's Andros telerobot. Andros robots are presently used by numerous electric utilities, the armed forces, and numerous law enforcement agencies to perform tasks which are hazardous for human operators. This project has automated task components and enhanced the video graphics display of the robot's position in the environment to significantly reduce operator workload. The procedure of automating a telerobot requires the addition of computer power to the robot, along with a variety of sensors and encoders to provide information about the robots performance in and relationship to its environment The resulting vehicle serves as a platform for research on strategies to integrate automated tasks with those performed by a human operator. The addition of these capabilities will greatly enhance the safety and efficiency of performance in hazardous environments

  17. Selection of industrial robots using the Polygons area method

    Directory of Open Access Journals (Sweden)

    Mortaza Honarmande Azimi

    2014-08-01

    Full Text Available Selection of robots from the several proposed alternatives is a very important and tedious task. Decision makers are not limited to one method and several methods have been proposed for solving this problem. This study presents Polygons Area Method (PAM as a multi attribute decision making method for robot selection problem. In this method, the maximum polygons area obtained from the attributes of an alternative robot on the radar chart is introduced as a decision-making criterion. The results of this method are compared with other typical multiple attribute decision-making methods (SAW, WPM, TOPSIS, and VIKOR by giving two examples. To find similarity in ranking given by different methods, Spearman’s rank correlation coefficients are obtained for different pairs of MADM methods. It was observed that the introduced method is in good agreement with other well-known MADM methods in the robot selection problem.

  18. Measurement of the robot motor capability of a robot motor system: a Fitts's-law-inspired approach.

    Science.gov (United States)

    Lin, Hsien-I; Lee, C S George

    2013-07-02

    Robot motor capability is a crucial factor for a robot, because it affects how accurately and rapidly a robot can perform a motion to accomplish a task constrained by spatial and temporal conditions. In this paper, we propose and derive a pseudo-index of motor performance (pIp) to characterize robot motor capability with robot kinematics, dynamics and control taken into consideration. The proposed pIp provides a quantitative measure for a robot with revolute joints, which is inspired from an index of performance in Fitts's law of human skills. Computer simulations and experiments on a PUMA 560 industrial robot were conducted to validate the proposed pIp for performing a motion accurately and rapidly.

  19. Long-reach articulated robots for inspection and mini-invasive interventions in hazardous environments: Recent robotics research, qualification testing, and tool developments

    International Nuclear Information System (INIS)

    Perrot, Yann; Kammerer, Nolwenn; Measson, Yvan; Verney, Alexandre; Gargiulo, Laurent; Houry, Michael; Keller, Delphine; Piolain, Gerard

    2012-01-01

    The Interactive Robotics Laboratory of CEA LIST is in charge of the development of remote handling technologies to meet energy industry requirements. This paper reports the research and development activities in advanced robotics systems for inspection or light intervention in hazardous environments with limited access such as blind hot cells in the nuclear industry or the thermonuclear experimental Tokamak fusion reactor. A long-reach carrier robot called the articulated inspection arm (AIA) and diagnostics and tools for inspection or intervention are described. Finally experimental field tests are presented and actual challenges in modeling the robot's flexibilities are discussed. (authors)

  20. Tele-operated service robots for household and care

    NARCIS (Netherlands)

    Osch, van M.P.W.J.; Bera, D.; Koks, Y.; Hee, van K.M.; Bronswijk, van J.E.M.H.; Maas, G.J.; Gassel, van F.J.M.

    2012-01-01

    Purpose: Service robots are a relatively new branch of robotics after the successful industry robots and the experimental humanoids. Service robots are supposed to perform tasks that normally are done by humans in particular daily life activities. However they do not have to do it in the same way as

  1. Fiscal 2000 achievement report on the venture business assisting type regional consortium - Core industry creation type. Research and development of polisher robot system using intelligent force control; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo seika hokokusho. Intelligent ryoku seigyo wo mochiita kenma robot system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The effort aims to automatize the manufacture of wooden furniture by robotizing the polishing work in the field of wooden furniture manufacturing, making use of the seeds provided by intelligent force control technologies. The intelligent force control technologies ('Delicate control of force for the open architecture type industrial robot' and 'Method for target orbit generation not requiring joystick teaching') of Saga University and the interior laboratory of Fukuoka Prefectural Industrial Research Institute are evolved and applied, and are integrated with the 3-dimensional object modelling technology developed by the mechanical and electronic laboratory, Fukuoka Prefectural Industrial Research Institute, and the CAD (computer aided design) data conversion technology developed by ASA Systems Inc. The result was a polisher robot system experimentally fabricated to satisfy the need of an automated polishing process in the wooden furniture manufacturing industry. The robot was tested, and achieved a surface coarseness level of 5{mu}m or less. As for the manufacturing rate, it attained a rate of approximately 100mm/s which was two times higher than the rate to be expected from a skilled worker. (NEDO)

  2. Robots Are Taking Over--Who Does What.

    Science.gov (United States)

    Garrison, H. Don

    Robots are machines designed to replace human labor. A fear of vast unemployment due to robots seems unfounded, however, since industrialization creates many more jobs and automation requires technologists to build, program, maintain, and operate sophisticated equipment. Robots possess an intelligence unit, a manipulator, and an end effector.…

  3. Real-time networked control of an industrial robot manipulator via discrete-time second-order sliding modes

    Science.gov (United States)

    Massimiliano Capisani, Luca; Facchinetti, Tullio; Ferrara, Antonella

    2010-08-01

    This article presents the networked control of a robotic anthropomorphic manipulator based on a second-order sliding mode technique, where the control objective is to track a desired trajectory for the manipulator. The adopted control scheme allows an easy and effective distribution of the control algorithm over two networked machines. While the predictability of real-time tasks execution is achieved by the Soft Hard Real-Time Kernel (S.Ha.R.K.) real-time operating system, the communication is established via a standard Ethernet network. The performances of the control system are evaluated under different experimental system configurations using, to perform the experiments, a COMAU SMART3-S2 industrial robot, and the results are analysed to put into evidence the robustness of the proposed approach against possible network delays, packet losses and unmodelled effects.

  4. Perancangan Lengan Robot 5 Derajat Kebebasan Dengan Pendekatan Kinematika

    Directory of Open Access Journals (Sweden)

    - Firmansyah

    2014-10-01

    Full Text Available This study discusses the design of arm robot model with 5 degree of freedom that is designed to be a small-scale model of the articulated robot industry to simulate the movement of the robots industry. The objective of this research is to build a real arm robot based on kinematic aspects with the movement of waist, shoulder, elbow, wrist pitch, wrist roll and gripper, and to analyze the robot movement. The design includes building the real arm robot based on Arduino Uno board controller and the movement of the robot using servo motor DC. The robot  can be controlled automatically from the computer with the RS-232 or USB port interface and it learns about the kinematic of the robot’s arm when an experiment on the forward kinematic is accomplished. The robot was running well, with the maximum distance that can be reached by the robot on the coordinate axis  x = 425 mm, y = 425 mm and  z = 480 mm.

  5. Functional Modeling for Monitoring of Robotic System

    DEFF Research Database (Denmark)

    Wu, Haiyan; Bateman, Rikke R.; Zhang, Xinxin

    2018-01-01

    With the expansion of robotic applications in the industrial domain, it is important that the robots can execute their tasks in a safe and reliable way. A monitoring system can be implemented to ensure the detection of abnormal situations of the robots and report the abnormality to their human su...

  6. Measurement of the Robot Motor Capability of a Robot Motor System: A Fitts’s-Law-Inspired Approach

    Directory of Open Access Journals (Sweden)

    C. S. George Lee

    2013-07-01

    Full Text Available Robot motor capability is a crucial factor for a robot, because it affects how accurately and rapidly a robot can perform a motion to accomplish a task constrained by spatial and temporal conditions. In this paper, we propose and derive a pseudo-index of motor performance (pIp to characterize robot motor capability with robot kinematics, dynamics and control taken into consideration. The proposed pIp provides a quantitative measure for a robot with revolute joints, which is inspired from an index of performance in Fitts’s law of human skills. Computer simulations and experiments on a PUMA 560 industrial robot were conducted to validate the proposed pIp for performing a motion accurately and rapidly.

  7. On Robot Modelling using Maple

    OpenAIRE

    Wallén, Johanna

    2007-01-01

    This report studies robot modelling by means of the computer algebra tool Maple. First coordinate systems are described, and the more general way with transformation matrices is chosen in the further work. The position kinematics of the robot are then described by homogeneous transformations. The Denavit-Hartenberg representation is used, which is a systematic way to develop the forward kinematics for rigid robots. The velocity kinematics is then described by the Jacobian. The industrial robo...

  8. 24th International Conference on Robotics in Alpe-Adria-Danube Region

    CERN Document Server

    2016-01-01

    This volume includes the Proceedings of the 24th International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2015, which was held in Bucharest, Romania, on May 27-29, 2015. The Conference brought together academic and industry researchers in robotics from the 11 countries affiliated to the Alpe-Adria-Danube space: Austria, Croatia, Czech Republic, Germany, Greece, Hungary, Italy, Romania, Serbia, Slovakia and Slovenia, and their worldwide partners. According to its tradition, RAAD 2015 covered all important areas of research, development and innovation in robotics, including new trends such as: bio-inspired and cognitive robots, visual servoing of robot motion, human-robot interaction, and personal robots for ambient assisted living. The accepted papers have been grouped in nine sessions: Robot integration in industrial applications; Grasping analysis, dexterous grippers and component design; Advanced robot motion control; Robot vision and sensory control; Human-robot interaction and collaboration;...

  9. A novel method of freeform surface grinding with a soft wheel based on industrial robots

    Science.gov (United States)

    Sha, Sheng-chun; Guo, Xiao-ling

    2011-08-01

    In order to meet the growing demand for high-quality images, optical elements of freeform surface are more and more applied to imaging system. However the fabrication of freeform surface optical elements is much more difficult than that of traditional spherical ones. Recent research on freeform surface manufacture often deals with precision machine tools which have limitations on dimensions and are always expensive. Little has been researched on industrial robots. In this paper, a new method of freeform surface grinding based on industrial robots was found. This method could be applied to both whole surface grinding as well as partial surface grinding. The diameter of lenses to be ground would not be restricted to the machine tool's size. In this method a high-speed-rotating soft wheel was used. The relation between removing amount and grinding time which could be called removing function was established and measured. The machining precision was achieved by means of controlling the grinding time instead of the machine tool or industrial robot itself. There are two main factors affecting the removing function: i).rotating speed of the soft wheel; ii).pressure between the wheel and the work piece. In this paper, two groups of experiments have been conducted. One is the removing function tested at constant rotating speed while under different pressure. The other is that tested under a certain pressure with variable speed. Tables and curves which can show the effect of speed and pressure on the removing efficiency have been obtained. Cause for inaccuracy between experiment data and calculated result according to the theory and the non-linearity in the curves was analyzed. Through these analyses the removing function could be concluded under certain condition including rotating speed and pressure. Finally several experiments were performed to verify the appropriateness of the removing function. It could also be concluded that this method was more efficient in comparison

  10. Automated Mounting of Pole-Shoe Wedges in Linear Wave Power Generators—Using Industrial Robotics and Proximity Sensors

    Directory of Open Access Journals (Sweden)

    Tobias Kamf

    2017-03-01

    Full Text Available A system for automatic mounting of high tolerance wedges inside a wave power linear generator is proposed. As for any renewable energy concept utilising numerous smaller generation units, minimising the production cost per unit is vital for commercialization. The linear generator in question uses self-locking wedges, which are challenging to mount using industrial robots due to the high tolerances used, and because of the fact that any angular error remaining after calibration risks damaging the equipment. Using two types of probes, mechanical touch probes and inductive proximity sensors, combined with a flexible robot tool and iterative calibration routines, an automatic mounting system that overcomes the challenges of high tolerance wedge mounting is presented. The system is experimentally verified to work at mounting speeds of up to 50mm/s, and calibration accuracies of 0.25mmand 0.1 ∘ are achieved. The use of a flexible robot tool, able to move freely in one Cartesian plane, was found to be essential for making the system work.

  11. Approaches to probabilistic model learning for mobile manipulation robots

    CERN Document Server

    Sturm, Jürgen

    2013-01-01

    Mobile manipulation robots are envisioned to provide many useful services both in domestic environments as well as in the industrial context. Examples include domestic service robots that implement large parts of the housework, and versatile industrial assistants that provide automation, transportation, inspection, and monitoring services. The challenge in these applications is that the robots have to function under changing, real-world conditions, be able to deal with considerable amounts of noise and uncertainty, and operate without the supervision of an expert. This book presents novel learning techniques that enable mobile manipulation robots, i.e., mobile platforms with one or more robotic manipulators, to autonomously adapt to new or changing situations. The approaches presented in this book cover the following topics: (1) learning the robot's kinematic structure and properties using actuation and visual feedback, (2) learning about articulated objects in the environment in which the robot is operating,...

  12. Utility/Manufacturers Robots Users Group: a partnership promoting the applications of robots in all utility industries

    International Nuclear Information System (INIS)

    Meieran, H.B.; Roman, H.T.

    1988-01-01

    The purpose of this presentation is to describe the roles and the goals of the recently established Utility/Manufacturers Robots Users Group (U/M RUG), an organization which is dedicated to promoting the employment of robots in all utility facilities. This group is composed of volunteer representatives from the utilities, robot manufacturers, service organizations/consulting groups, academia, national and non-government funding agencies, and national laboratories. Although the Group primarily serves as a forum and a guide for technology transfer, exchanging ideas, and promoting philosophies of applications among its members, it also provides this type of assistance to external groups and agencies. (author)

  13. Calibration of robotic drilling systems with a moving rail

    Directory of Open Access Journals (Sweden)

    Tian Wei

    2014-12-01

    Full Text Available Industrial robots are widely used in aircraft assembly systems such as robotic drilling systems. It is necessary to expand a robot’s working range with a moving rail. A method for improving the position accuracy of an automated assembly system with an industrial robot mounted on a moving rail is proposed. A multi-station method is used to control the robot in this study. The robot only works at stations which are certain positions defined on the moving rail. The calibration of the robot system is composed by the calibration of the robot and the calibration of the stations. The calibration of the robot is based on error similarity and inverse distance weighted interpolation. The calibration of the stations is based on a magnetic strip and a magnetic sensor. Validation tests were performed in this study, which showed that the accuracy of the robot system gained significant improvement using the proposed method. The absolute position errors were reduced by about 85% to less than 0.3 mm compared with the maximum nearly 2 mm before calibration.

  14. RoboEarth: connecting robots worldwide

    NARCIS (Netherlands)

    Zweigle, O.; Molengraft, van de M.J.G.; D'Andrea, R.; Häussermann, K.

    2009-01-01

    In this paper, we present the core concept and the benefits of an approach called RoboEarth which will be highly beneficial for future robotic applications in science and industry. RoboEarth is a world-wide platform which robots can use to exchange position and map information as well as

  15. Development of commercial robots for radwaste handling

    International Nuclear Information System (INIS)

    Colborn, K.A.

    1988-01-01

    The cost and dose burden associated with low level radwaste handling activities is a matter of increasing concern to the commercial nuclear power industry. This concern is evidenced by the fact that many utilities have begun to revaluate waste generation, handling, and disposal activities at their plants in an effort to improve their overall radwaste handling operations. This paper reports on the project Robots for Radwaste Handling, to identify the potential of robots to improve radwaste handling operations. The project has focussed on the potential of remote or automated technology to improve well defined, recognizable radwaste operations. The project focussed on repetitive, low skill level radwaste handling and decontamination tasks which involve significant radiation exposure

  16. Intelligent robots for nuclear power plant inspection and surveillance

    International Nuclear Information System (INIS)

    Miyazawa, Tatsuo; Suzuki, Kazumi; Fujie, Hideo; Fujii, Masaaki; Asai, Takashi; Sugimoto, Hiroshi.

    1986-01-01

    Recently, the research and development of robotizing the patrol and works in nuclear power plants have been actively carried out since the TMI-2 accident in March, 1979. In this paper, among these robots, six examples of the movable robots, of which the working and movement were intellectualized by using information processing techniques and others, are reported, and their intellectualization is concretely discussed. In Japan, the development of the supporting system for nuclear power generation was carried out for five years from fiscal year 1980 as the project subsidized by the Ministry of International Trade and Industry, and during this period, the inspection robots for LWR plants were developed. The development of the robots for ultimate working as the large scale project of the Agency of Industrial Science and Technology aiming at further heightening the function is in progress as the eight-year project from fiscal year 1983. Monorail type automatic surveillance robots, system maintenance robots 'AMOOTY', variable crawler type intelligent movable robots, hybrid running type intelligent movable robots, monorail running type small checkup robots, and floor running type checkup and light work robots are reported. Sense information processing control and a robot language processor for expanding the function of autonomous control are outlined. (Kako, I.)

  17. Underground mining robot: a CSIR project

    CSIR Research Space (South Africa)

    Green, JJ

    2012-11-01

    Full Text Available The Council for Scientific and Industrial Research (CSIR) in South Africa is currently developing a robot for the inspection of the ceiling (hanging-wall) in an underground gold mine. The robot autonomously navigates the 30 meter long by 3 meter...

  18. Mobile robotics research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  19. The use of robotics in surgery: a review.

    Science.gov (United States)

    Hussain, A; Malik, A; Halim, M U; Ali, A M

    2014-11-01

    There is an ever-increasing drive to improve surgical patient outcomes. Given the benefits which robotics has bestowed upon a wide range of industries, from vehicle manufacturing to space exploration, robots have been highlighted by many as essential for continued improvements in surgery. The goal of this review is to outline the history of robotic surgery, and detail the key studies which have investigated its effects on surgical outcomes. Issues of cost-effectiveness and patient acceptability will also be discussed. Robotic surgery has been shown to shorten hospital stays, decrease complication rates and allow surgeons to perform finer tasks, when compared to the traditional laparoscopic and open approaches. These benefits, however, must be balanced against increased intraoperative times, vast financial costs and the increased training burden associated with robotic techniques. The outcome of such a cost-benefit analysis appears to vary depending on the procedure being conducted; indeed the strongest evidence in favour of its use comes from the fields of urology and gynaecology. It is hoped that with the large-scale, randomised, prospective clinical trials underway, and an ever-expanding research base, many of the outstanding questions surrounding robotic surgery will be answered in the near future. © 2014 John Wiley & Sons Ltd.

  20. A telerobot for the nuclear industry

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Industrial robots are not widely used in the nuclear industry. More use is made of telemanipulators, in which tasks are performed under total human control via a master-slave actuation system. AEA Technology have developed a Nuclear Engineered Advanced TEle Robot (NEATER), a telerobot which combines industrial robot technology with the skills of a human operator. It has been designed for use in radioactive decommissioning work and has a number of radiation tolerant properties. NEATER can be operated in a pure robotic mode using a standard computer controller and software. Or it can operate as a telerobot in a remote control mode via a television input. In this mode the operator controls the robot's movement by using a joystick or a simple six degrees of freedom input device. (UK)

  1. The Use of Industrial Robot Arms for High Precision Patient Positioning

    International Nuclear Information System (INIS)

    Katuin, J.E.; Schreuder, A.N.; Starks, W.M.; Doskow, J.

    2003-01-01

    The Indiana University Cyclotron Facility (IUCF) is in the process of designing and building the Midwest Proton Radiation Institute (MPRI) [1]. The design process includes the development of several patient treatment systems. This paper discusses the use of two such systems that provide for the high precision positioning of a patient. They are the Patient Positioner System and the X-ray system. The Patient Positioner System positions an immobilized patient on a support device to a treatment position based on a prescribed Treatment Plan. The X-ray system uses an industrial robot arm to position a Digital Radiography Panel to acquire an X-ray image to verify the location of the prescribed treatment volume in a patient by comparing the acquired images with reference images obtained from the patient's Treatment plan

  2. Computer Aided Design of a Low-Cost Painting Robot

    Directory of Open Access Journals (Sweden)

    SYEDA MARIA KHATOON ZAIDI

    2017-10-01

    Full Text Available The application of robots or robotic systems for painting parts is becoming increasingly conventional; to improve reliability, productivity, consistency and to decrease waste. However, in Pakistan only highend Industries are able to afford the luxury of a robotic system for various purposes. In this study we propose an economical Painting Robot that a small-scale industry can install in their plant with ease. The importance of this robot is that being cost effective, it can easily be replaced in small manufacturing industries and therefore, eliminate health problems occurring to the individual in charge of painting parts on an everyday basis. To achieve this aim, the robot is made with local parts with only few exceptions, to cut costs; and the programming language is kept at a mediocre level. Image processing is used to establish object recognition and it can be programmed to paint various simple geometries. The robot is placed on a conveyer belt to maximize productivity. A four DoF (Degree of Freedom arm increases the working envelope and accessibility of painting different shaped parts with ease. This robot is capable of painting up, front, back, left and right sides of the part with a single colour. Initially CAD (Computer Aided Design models of the robot were developed which were analyzed, modified and improved to withstand loading condition and perform its task efficiently. After design selection, appropriate motors and materials were selected and the robot was developed. Throughout the development phase, minor problems and errors were fixed accordingly as they arose. Lastly the robot was integrated with the computer and image processing for autonomous control. The final results demonstrated that the robot is economical and reduces paint wastage.

  3. Computer aided design of a low-cost painting robot

    International Nuclear Information System (INIS)

    Zaidi, S.M.; Janejo, F.; Mujtaba, S.B.

    2017-01-01

    The application of robots or robotic systems for painting parts is becoming increasingly conventional; to improve reliability, productivity, consistency and to decrease waste. However, in Pakistan only highend Industries are able to afford the luxury of a robotic system for various purposes. In this study we propose an economical Painting Robot that a small-scale industry can install in their plant with ease. The importance of this robot is that being cost effective, it can easily be replaced in small manufacturing industries and therefore, eliminate health problems occurring to the individual in charge of painting parts on an everyday basis. To achieve this aim, the robot is made with local parts with only few exceptions, to cut costs; and the programming language is kept at a mediocre level. Image processing is used to establish object recognition and it can be programmed to paint various simple geometries. The robot is placed on a conveyer belt to maximize productivity. A four DoF (Degree of Freedom) arm increases the working envelope and accessibility of painting different shaped parts with ease. This robot is capable of painting up, front, back, left and right sides of the part with a single colour. Initially CAD (Computer Aided Design) models of the robot were developed which were analyzed, modified and improved to withstand loading condition and perform its task efficiently. After design selection, appropriate motors and materials were selected and the robot was developed. Throughout the development phase, minor problems and errors were fixed accordingly as they arose. Lastly the robot was integrated with the computer and image processing for autonomous control. The final results demonstrated that the robot is economical and reduces paint wastage. (author)

  4. Laser speckle velocimetry for robot manufacturing

    Science.gov (United States)

    Charrett, Thomas O. H.; Bandari, Yashwanth K.; Michel, Florent; Ding, Jialuo; Williams, Stewart W.; Tatam, Ralph P.

    2017-06-01

    A non-contact speckle correlation sensor for the measurement of robotic tool speed is presented for use in robotic manufacturing and is capable of measuring the in-plane relative velocities between a robot end-effector and the workpiece or other surface. The sensor performance was assessed in the laboratory with the sensor accuracies found to be better than 0:01 mm/s over a 70 mm/s velocity range. Finally an example of the sensors application to robotic manufacturing is presented where the sensor was applied to tool speed measurement for path planning in the wire and arc additive manufacturing process using a KUKA KR150 L110/2 industrial robot.

  5. Bridging the Gap in Military Robotics : Report on the Requirements and Gaps in Short-Term Military Robotics as identified during the IST-032 Workshop held in Bonn, Germany, September 2004.

    NARCIS (Netherlands)

    Roning, J.; Zijderveld, E.J.A. van; Walle, L.; Castelli, R.

    2008-01-01

    There appears to exist a gap between the ideas of the military on the use of ground robotics for their purposes and the technical possibilities offered by industry and research. In many cases the military are offered robots created by industry, but to a lesser degree robots developed to explicitly

  6. An investigation of highly accurate and precise robotic hole measurements using non-contact devices

    Directory of Open Access Journals (Sweden)

    Usman Zahid

    2016-01-01

    Full Text Available Industrial robots arms are widely used in manufacturing industry because of their support for automation. However, in metrology, robots have had limited application due to their insufficient accuracy. Even using error compensation and calibration methods, robots are not effective for micrometre (μm level metrology. Non-contact measurement devices can potentially enable the use of robots for highly accurate metrology. However, the use of such devices on robots has not been investigated. The research work reported in this paper explores the use of different non-contact measurement devices on an industrial robot. The aim is to experimentally investigate the effects of robot movements on the accuracy and precision of measurements. The focus has been on assessing the ability to accurately measure various geometric and surface parameters of holes despite the inherent inaccuracies of industrial robot. This involves the measurement of diameter, roundness and surface roughness. The study also includes scanning of holes for measuring internal features such as start and end point of a taper. Two different non-contact measurement devices based on different technologies are investigated. Furthermore, effects of eccentricity, vibrations and thermal variations are also assessed. The research contributes towards the use of robots for highly accurate and precise robotic metrology.

  7. Modelling reversible execution of robotic assembly

    DEFF Research Database (Denmark)

    Laursen, Johan Sund; Ellekilde, Lars Peter; Schultz, Ulrik Pagh

    2018-01-01

    Programming robotic assembly for industrial small-batch production is challenging; hence, it is vital to increase robustness and reduce development effort in order to achieve flexible robotic automation. A human who has made an assembly error will often simply undo the process until the error is ...

  8. Robustness inembedded software for autonomous robots

    NARCIS (Netherlands)

    Broenink, Johannes F.; Brodskiy, Y.; Dresscher, Douwe; Stramigioli, Stefano

    2014-01-01

    The European BRICS project aims to bring about a long-lasting change in robotics research and development in industry as well as in academia. It wants to change the current situation of non-interoperable, monolithic and single-sourcing robotic components into a situation that other domains have

  9. Locally optimal control under unknown dynamics with learnt cost function: application to industrial robot positioning

    Science.gov (United States)

    Guérin, Joris; Gibaru, Olivier; Thiery, Stéphane; Nyiri, Eric

    2017-01-01

    Recent methods of Reinforcement Learning have enabled to solve difficult, high dimensional, robotic tasks under unknown dynamics using iterative Linear Quadratic Gaussian control theory. These algorithms are based on building a local time-varying linear model of the dynamics from data gathered through interaction with the environment. In such tasks, the cost function is often expressed directly in terms of the state and control variables so that it can be locally quadratized to run the algorithm. If the cost is expressed in terms of other variables, a model is required to compute the cost function from the variables manipulated. We propose a method to learn the cost function directly from the data, in the same way as for the dynamics. This way, the cost function can be defined in terms of any measurable quantity and thus can be chosen more appropriately for the task to be carried out. With our method, any sensor information can be used to design the cost function. We demonstrate the efficiency of this method through simulating, with the V-REP software, the learning of a Cartesian positioning task on several industrial robots with different characteristics. The robots are controlled in joint space and no model is provided a priori. Our results are compared with another model free technique, consisting in writing the cost function as a state variable.

  10. Delineated Analysis of Robotic Process Automation Tools

    OpenAIRE

    Ruchi Isaac; Riya Muni; Kenali Desai

    2017-01-01

    In this age and time when celerity is expected out of all the sectors of the country, the speed of execution of various processes and hence efficiency, becomes a prominent factor. To facilitate the speeding demands of these diverse platforms, Robotic Process Automation (RPA) is used. Robotic Process Automation can expedite back-office tasks in commercial industries, remote management tasks in IT industries and conservation of resources in multiple sectors. To implement RPA, many software ...

  11. An overview of the 2009 Fort Hood Robotics Rodeo

    Science.gov (United States)

    Norberg, Seth

    2010-04-01

    The Robotics Rodeo held from 31 August to 3 September 2009 at Fort Hood, Texas, had three stated goals: educate key decision makers and align the robotics industry; educate Soldiers and developers; and perform a live market survey of the current state of technologies to encourage the development of robotic systems to support operational needs. Both events that comprised the Robotics Rodeo, the Extravaganza and the robotic technology observation, demonstration and discussion (RTOD2) addressed these stated goals. The Extravaganza was designed to foster interaction between the vendors and the visitors who included the media, Soldiers, others in the robotics industry and key decision makers. The RTOD2 allowed the vendors a more private and focused interaction with the subject matter experts teams, this was the forum for the vendors to demonstrate their robotic systems that supported the III Corps operational needs statements that are focused on route clearance, convoy operations, persistent stare, and robotic wingman. While the goals of the Rodeo were achieved, the underlying success from the event is the development of a new business model that is focused on collapsing the current model to get technologies into the hands of our warfighters quicker. This new model takes the real time data collection from the Rodeo, the Warfighter Needs from TRADOC, the emerging requirements from our current engagements, and assistance from industry partners to develop a future Army strategy for the rapid fielding of unmanned systems technologies.

  12. A focused bibliography on robotics

    Science.gov (United States)

    Mergler, H. W.

    1983-08-01

    The present bibliography focuses on eight robotics-related topics believed by the author to be of special interest to researchers in the field of industrial electronics: robots, sensors, kinematics, dynamics, control systems, actuators, vision, economics, and robot applications. This literature search was conducted through the 1970-present COMPENDEX data base, which provides world-wide coverage of nearly 3500 journals, conference proceedings and reports, and the 1969-1981 INSPEC data base, which is the largest for the English language in the fields of physics, electrotechnology, computers, and control.

  13. Model-based systems engineering to design collaborative robotics applications

    NARCIS (Netherlands)

    Hernandez Corbato, Carlos; Fernandez-Sanchez, Jose Luis; Rassa, Bob; Carbone, Paolo

    2017-01-01

    Novel robot technologies are becoming available to automate more complex tasks, more flexibly, and collaborating with humans. Methods and tools are needed in the automation and robotics industry to develop and integrate this new breed of robotic systems. In this paper, the ISE&PPOOA

  14. Lazy motion planning for robotic manipulators

    NARCIS (Netherlands)

    Andrien, A.R.P.; van de Molengraft, M.J.G.; Bruyninckx, H.P.J.

    2017-01-01

    Robotic manipulators are making a shift towards mobile bases in both industry and domestic environments, which puts high demands on efficient use of the robot’s limited energy resources. In this work, the problem of reducing energy usage of a robot manipulator during a task is investigated. We

  15. Towards Service Robots for Everyday Environments Recent Advances in Designing Service Robots for Complex Tasks in Everyday Environments

    CERN Document Server

    Zöllner, Marius; Bischoff, Rainer; Burgard, Wolfram; Haschke, Robert; Hägele, Martin; Lawitzky, Gisbert; Nebel, Bernhard; Plöger, Paul; Reiser, Ulrich

    2012-01-01

    People have dreamed of machines, which would free them from unpleasant, dull, dirty and dangerous tasks and work for them as servants, for centuries if not millennia. Service robots seem to finally let these dreams come true. But where are all these robots that eventually serve us all day long, day for day? A few service robots have entered the market: domestic and professional cleaning robots, lawnmowers, milking robots, or entertainment robots. Some of these robots look more like toys or gadgets rather than real robots. But where is the rest? This is a question, which is asked not only by customers, but also by service providers, care organizations, politicians, and funding agencies. The answer is not very satisfying. Today’s service robots have their problems operating in everyday environments. This is by far more challenging than operating an industrial robot behind a fence. There is a comprehensive list of technical and scientific problems, which still need to be solved. To advance the state of the art...

  16. Intuitive Robot Tasks with Augmented Reality and Virtual Obstacles

    OpenAIRE

    Gaschler, Andre;Springer, Maximilian;Rickert, Markus;Knoll, Alois

    2017-01-01

    Today's industrial robots require expert knowledge and are not profitable for small and medium sized enterprises with their small lot sizes. It is our strong belief that more intuitive robot programming in an augmented reality robot work cell can dramatically simplify re-programming and leverage robotics technology in short production cycles. In this paper, we present a novel augmented reality system for defining virtual obstacles, specifying tool positions, and specifying robot tasks. We eva...

  17. International Conference on Robot Ethics

    CERN Document Server

    Sequeira, Joao; Tokhi, Mohammad; Kadar, Endre; Virk, Gurvinder

    2017-01-01

    This book contains the Proceedings of the International Conference on Robot Ethics, held in Lisbon on October 23 and 24, 2015. The conference provided a multidisciplinary forum for discussing central and evolving issues concerning safety and ethics that have arisen in various contexts where robotic technologies are being applied. The papers are intended to promote the formulation of more precise safety standards and ethical frameworks for the rapidly changing field of robotic applications. The conference was held at Pavilhão do Conhecimento/Ciência Viva in Lisbon and brought together leading researchers and industry representatives, promoting a dialogue that combines different perspectives and experiences to arrive at viable solutions for ethical problems in the context of robotics. The conference topics included but were not limited to emerging ethical, safety, legal and societal problems in the following domains: • Service/Social Robots: Robots performing tasks in human environments and involving close ...

  18. Present and Future of Nuclear Robotics; Presente y futuro de la robotica nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Bielza Ciaz-Caneja, M [ENDESA, (Spain); Carmena Servet, P [AMYS, (Spain); Gomez Santamaria, J [IBERDROLA, (Spain); Gonzalez Fernandez, J [NUCLENOR, (Spain); Izquierdo Mendoza, J A [C.N. COFRENTES, (Spain); Linares Pintos, F [ENSA, (Spain); Gonzalez, Martinez [CASA, (Spain); Muntion Ruesgas, A [C.N. STA Maria de Garona, (Spain); Serna Oliveira, M A [CEIT, (Spain)

    1997-10-01

    New technologies have increased the use of robotic systems in fields other than Industry. As a result, research and developers are focusing their interest in concepts like Intelligent Robotics and Robotics in Services. This paper describes the use of Robotics in Nuclear facilities, where robots can be used to protect workers in high radiation areas, to reduce total worker exposure and to minimise downtime. First, the structure of robot systems is introduced and the benefits of nuclear robots is presented. Next, the paper describes some specific nuclear applications and the families of nuclear robots present in the market. After that, a section is devoted to Nuclear Robotics in Spain, with emphasis in some of the developments being carried out at present. Finally, some reflections about the future of robots in Nuclear Industry are offered. (Author) 18 refs.

  19. SpRoUTS (Space Robot Universal Truss System): Reversible Robotic Assembly of Deployable Truss Structures of Reconfigurable Length

    Science.gov (United States)

    Jenett, Benjamin; Cellucci, Daniel; Cheung, Kenneth

    2015-01-01

    Automatic deployment of structures has been a focus of much academic and industrial work on infrastructure applications and robotics in general. This paper presents a robotic truss assembler designed for space applications - the Space Robot Universal Truss System (SpRoUTS) - that reversibly assembles a truss from a feedstock of hinged andflat-packed components, by folding the sides of each component up and locking onto the assembled structure. We describe the design and implementation of the robot and show that the assembled truss compares favorably with prior truss deployment systems.

  20. The development of fire detection robot

    OpenAIRE

    Sucuoğlu, Hilmi Saygın

    2015-01-01

    The aim of this thesis is to design and manufacture a fire detection robot that especially operates in industrial areas for fire inspection and early detection. Robot is designed and implemented to track prescribed paths with obstacle avoidance function through obstacle avoidance and motion planning units and to scan the environment in order to detect fire source using fire detection unit. Robot is able to track patrolling routes using virtual lines that defined to the motion planning unit. ...

  1. Analyzing Robotic Kinematics Via Computed Simulations

    Science.gov (United States)

    Carnahan, Timothy M.

    1992-01-01

    Computing system assists in evaluation of kinematics of conceptual robot. Displays positions and motions of robotic manipulator within work cell. Also displays interactions between robotic manipulator and other objects. Results of simulation displayed on graphical computer workstation. System includes both off-the-shelf software originally developed for automotive industry and specially developed software. Simulation system also used to design human-equivalent hand, to model optical train in infrared system, and to develop graphical interface for teleoperator simulation system.

  2. Interoperability of Standards for Robotics in CIME

    DEFF Research Database (Denmark)

    Sørensen, Torben

    1996-01-01

    geometry, kinematics, robotics, dynamics, and control, hence on a coherent neutral information model of the process chain from design to manufacturing. The second main goal was to increase the accuracy of off-line programmed robots. The results were demonstrated in industrial applications....

  3. Social robots from a human perspective

    CERN Document Server

    Taipale, Sakari; Sapio, Bartolomeo; Lugano, Giuseppe; Fortunati, Leopoldina

    2015-01-01

    Addressing several issues that explore the human side of social robots, this book asks from a social and human scientific perspective what a social robot is and how we might come to think about social robots in the different areas of everyday life. Organized around three sections that deal with Perceptions and Attitudes to Social Robots, Human Interaction with Social Robots, and Social Robots in Everyday Life, the book explores the idea that even if technical problems related to robot technologies can be continuously solved from a machine perspective, what kind of machine do we want to have and use in our daily lives? Experiences from previously widely adopted technologies, such smartphones, hint that robot technologies could potentially be absorbed into the everyday lives of humans in such a way that it is the human that determines the human-machine interaction. In a similar way to how today’s information and communication technologies were first designed for professional/industrial use, but which soon wer...

  4. Cleaning Robot for Solar Panels in Solar Power Station

    Science.gov (United States)

    Hang, Lu-Bin; Shen, Cheng-Wei; Bian, Huai-Qiang; Wang, Yan

    2016-05-01

    The dust particles on solar panel surface have been a serious problem for the photovoltaic industry, a new monorail-tracked robot used for automatic cleaning of solar panel is presented in this paper. To meet the requirement of comprehensive and stable cleaning of PV array, the monorail-tracked pattern of robot is introduced based on the monorail structure technique. The running and striding mechanism are designed for mobility of robot on the solar panels. According to the carrying capacity and water circulation mechanism, a type of self-cleaning device with filtering system is developed. Combined with the computer software and communications technology, the control system is built in this robot, which can realize the functions of autonomous operation, positioning and monitoring. The application of this developed cleaning robot can actualize the Industrialization of automatic cleaning for PV components and have wide market prospect.

  5. Robotics in medicine

    Science.gov (United States)

    Kuznetsov, D. N.; Syryamkin, V. I.

    2015-11-01

    Modern technologies play a very important role in our lives. It is hard to imagine how people can get along without personal computers, and companies - without powerful computer centers. Nowadays, many devices make modern medicine more effective. Medicine is developing constantly, so introduction of robots in this sector is a very promising activity. Advances in technology have influenced medicine greatly. Robotic surgery is now actively developing worldwide. Scientists have been carrying out research and practical attempts to create robotic surgeons for more than 20 years, since the mid-80s of the last century. Robotic assistants play an important role in modern medicine. This industry is new enough and is at the early stage of development; despite this, some developments already have worldwide application; they function successfully and bring invaluable help to employees of medical institutions. Today, doctors can perform operations that seemed impossible a few years ago. Such progress in medicine is due to many factors. First, modern operating rooms are equipped with up-to-date equipment, allowing doctors to make operations more accurately and with less risk to the patient. Second, technology has enabled to improve the quality of doctors' training. Various types of robots exist now: assistants, military robots, space, household and medical, of course. Further, we should make a detailed analysis of existing types of robots and their application. The purpose of the article is to illustrate the most popular types of robots used in medicine.

  6. Path-Constrained Motion Planning for Robotics Based on Kinematic Constraints

    NARCIS (Netherlands)

    Dijk, van N.J.M.; Wouw, van de N.; Pancras, W.C.M.; Nijmeijer, H.

    2007-01-01

    Common robotic tracking tasks consist of motions along predefined paths. The design of time-optimal path-constrained trajectories for robotic applications is discussed in this paper. To increase industrial applicability, the proposed method accounts for robot kinematics together with actuator

  7. European Association of Endoscopic Surgeons (EAES) consensus statement on the use of robotics in general surgery.

    Science.gov (United States)

    Szold, Amir; Bergamaschi, Roberto; Broeders, Ivo; Dankelman, Jenny; Forgione, Antonello; Langø, Thomas; Melzer, Andreas; Mintz, Yoav; Morales-Conde, Salvador; Rhodes, Michael; Satava, Richard; Tang, Chung-Ngai; Vilallonga, Ramon

    2015-02-01

    Following an extensive literature search and a consensus conference with subject matter experts the following conclusions can be drawn: 1. Robotic surgery is still at its infancy, and there is a great potential in sophisticated electromechanical systems to perform complex surgical tasks when these systems evolve. 2. To date, in the vast majority of clinical settings, there is little or no advantage in using robotic systems in general surgery in terms of clinical outcome. Dedicated parameters should be addressed, and high quality research should focus on quality of care instead of routine parameters, where a clear advantage is not to be expected. 3. Preliminary data demonstrates that robotic system have a clinical benefit in performing complex procedures in confined spaces, especially in those that are located in unfavorable anatomical locations. 4. There is a severe lack of high quality data on robotic surgery, and there is a great need for rigorously controlled, unbiased clinical trials. These trials should be urged to address the cost-effectiveness issues as well. 5. Specific areas of research should include complex hepatobiliary surgery, surgery for gastric and esophageal cancer, revisional surgery in bariatric and upper GI surgery, surgery for large adrenal masses, and rectal surgery. All these fields show some potential for a true benefit of using current robotic systems. 6. Robotic surgery requires a specific set of skills, and needs to be trained using a dedicated, structured training program that addresses the specific knowledge, safety issues and skills essential to perform this type of surgery safely and with good outcomes. It is the responsibility of the corresponding professional organizations, not the industry, to define the training and credentialing of robotic basic skills and specific procedures. 7. Due to the special economic environment in which robotic surgery is currently employed special care should be taken in the decision making process when

  8. A Multidisciplinary Industrial Robot Approach for Teaching Mechatronics-Related Courses

    Science.gov (United States)

    Garduño-Aparicio, Mariano; Rodríguez-Reséndiz, Juvenal; Macias-Bobadilla, Gonzalo; Thenozhi, Suresh

    2018-01-01

    This paper presents a robot prototype for an undergraduate laboratory program designed to fulfill the criteria laid out by ABET. The main objective of the program is for students to learn some basic concepts of embedded systems and robotics, and apply them in practice. For that purpose, various practical laboratory exercises were prepared to teach…

  9. Sensor integration for robotic laser welding processes

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Ostendorf, A; Hoult, A.; Lu, Y.

    2005-01-01

    The use of robotic laser welding is increasing among industrial applications, because of its ability to weld objects in three dimensions. Robotic laser welding involves three sub-processes: seam detection and tracking, welding process control, and weld seam inspection. Usually, for each sub-process,

  10. A flexible, computer-integrated robotic transfer system

    International Nuclear Information System (INIS)

    Lewis, W.I. III; Taylor, R.M.

    1987-01-01

    This paper reviews a robotic system used to transport materials across a radiation control zone and into a row of shielded cells. The robot used is a five-axis GCA 600 industrial robot mounted on a 50-ft ESAB welding track. Custom software incorporates the track as the sixth axis of motion. An IBM-PC integrates robot control, force sensing, and the operator interface. Multiple end-effectors and a quick exchange mechanism are used to handle a variety of materials and tasks. Automatic error detection and recovery is a key aspect of this system

  11. Haptic Control with a Robotic Gripper

    OpenAIRE

    Rody, Morgan

    2011-01-01

    The Novint Falcon is a low cost, 3-axis, haptic device primarily designed and built for the gaming industry. Meant to replace the conventional mouse, the Novint Falcon has sub- millimeter accuracy and is capable of real time updates. The device itself has the potential to be used in telerobotics applications when coupled with a robotic gripper for example. Recently, the Intelligent Control Lab at Örebro University in Sweden built such a robotic gripper. The robotic gripper has three fingers a...

  12. Automatic Operation For A Robot Lawn Mower

    Science.gov (United States)

    Huang, Y. Y.; Cao, Z. L.; Oh, S. J.; Kattan, E. U.; Hall, E. L.

    1987-02-01

    A domestic mobile robot, lawn mower, which performs the automatic operation mode, has been built up in the Center of Robotics Research, University of Cincinnati. The robot lawn mower automatically completes its work with the region filling operation, a new kind of path planning for mobile robots. Some strategies for region filling of path planning have been developed for a partly-known or a unknown environment. Also, an advanced omnidirectional navigation system and a multisensor-based control system are used in the automatic operation. Research on the robot lawn mower, especially on the region filling of path planning, is significant in industrial and agricultural applications.

  13. Design of Piano -playing Robotic Hand

    Directory of Open Access Journals (Sweden)

    Lin Jen-Chang

    2013-09-01

    Full Text Available Unlike the market slowdown of industrial robots, service & entertainment robots have been highly regarded by most robotics reseach and market research agencies. In this study we developed a music playing robot (which can also work as a service robot for public performance. The research is mainly focused on the mechanical and electrical control of piano-playing robot, the exploration of correlations among music theory, rhythm and piano keys, and eventually the research on playing skill of keyboard instrument. The piano-playing robot is capable of control linear motor, servo-motor and pneumatic devices in accordance with the notes and rhythm in order to drive the mechanical structure to proper positions for pressing the keys and generating music. The devices used for this robot are mainly crucial components produced by HIWIN Technology Corp. The design of robotic hand is based on the direction of anthropomorphic hand such that five fingers will be used for playing piano. The finger actuations include actions of finger rotation, finger pressing, and finger lifting; time required for these 3 stages must meet the requirement of rhythm. The purpose of entertainment robot can be achieved by playing electric piano with robotic hand, and we hope this research can contribute to the development of domestic entertainment music playing robots.

  14. Interactive Exploration Robots: Human-Robotic Collaboration and Interactions

    Science.gov (United States)

    Fong, Terry

    2017-01-01

    For decades, NASA has employed different operational approaches for human and robotic missions. Human spaceflight missions to the Moon and in low Earth orbit have relied upon near-continuous communication with minimal time delays. During these missions, astronauts and mission control communicate interactively to perform tasks and resolve problems in real-time. In contrast, deep-space robotic missions are designed for operations in the presence of significant communication delay - from tens of minutes to hours. Consequently, robotic missions typically employ meticulously scripted and validated command sequences that are intermittently uplinked to the robot for independent execution over long periods. Over the next few years, however, we will see increasing use of robots that blend these two operational approaches. These interactive exploration robots will be remotely operated by humans on Earth or from a spacecraft. These robots will be used to support astronauts on the International Space Station (ISS), to conduct new missions to the Moon, and potentially to enable remote exploration of planetary surfaces in real-time. In this talk, I will discuss the technical challenges associated with building and operating robots in this manner, along with lessons learned from research conducted with the ISS and in the field.

  15. SPECIAL ROBOTS FOR ENERGETICS

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2014-04-01

    Full Text Available An overview of robots used in the power industry for diagnostics of power lines, cable lines, for the control, monitoring and maintenance of wind turbines, in nuclear energy, for optimum orientation of solar photovoltaic plants and solar panels for cleaning. Equations of statics and dynamics of robotic car which lifts along the vertical flexible rope are considered. It is presented the design which is made on the basis of "Lego Mindstorms" to solve the problem.

  16. Inverse Kinematic Analysis Of A Quadruped Robot

    Directory of Open Access Journals (Sweden)

    Muhammed Arif Sen

    2017-09-01

    Full Text Available This paper presents an inverse kinematics program of a quadruped robot. The kinematics analysis is main problem in the manipulators and robots. Dynamic and kinematic structures of quadruped robots are very complex compared to industrial and wheeled robots. In this study inverse kinematics solutions for a quadruped robot with 3 degrees of freedom on each leg are presented. Denavit-Hartenberg D-H method are used for the forward kinematic. The inverse kinematic equations obtained by the geometrical and mathematical methods are coded in MATLAB. And thus a program is obtained that calculate the legs joint angles corresponding to desired various orientations of robot and endpoints of legs. Also the program provides the body orientations of robot in graphical form. The angular positions of joints obtained corresponding to desired different orientations of robot and endpoints of legs are given in this study.

  17. Rehabilitation Robots: Concepts and Applications in Stroke Rehabilitation

    OpenAIRE

    Mohammad Ali Ahmadi-Pajouh

    2017-01-01

    Robotics is a tool to assist human in different applications from industry to medicine. There are many reasons that human tends to use these machines. They are very reliable in repetitive, high precision, preprogrammed and high risk jobs in which human is not too good enough. In medicine, robotic applications are evolving so fast that in near future nobody can imagine a surgery without a robot involved. In Rehabilitation we have the same scenario; there are commercialized robots to assist dis...

  18. Robots accelerate into new roles

    International Nuclear Information System (INIS)

    Meieran, H.B.

    1993-01-01

    Although robotics and remote controlled devices have been employed in the nuclear industry for more than 30 years, the rate of their application is beginning to increase rapidly. The largest group of prospective robotic activities will be those supporting Environmental Restoration and Waste Management (ER and WM) programmes to be conducted at several of the US DoE's national laboratories and facilities. Robots can assist in: transferring hazardous radioactive chemicals from older into newer storage tanks; decontaminating and decommissioning hundreds of obsolete facilities and buildings; and determining the specific locations of buried wastes before removal. (Author)

  19. Archaic man meets a marvellous automaton: posthumanism, social robots, archetypes.

    Science.gov (United States)

    Jones, Raya

    2017-06-01

    Posthumanism is associated with critical explorations of how new technologies are rewriting our understanding of what it means to be human and how they might alter human existence itself. Intersections with analytical psychology vary depending on which technologies are held in focus. Social robotics promises to populate everyday settings with entities that have populated the imagination for millennia. A legend of A Marvellous Automaton appears as early as 350 B.C. in a book of Taoist teachings, and is joined by ancient and medieval legends of manmade humanoids coming to life, as well as the familiar robots of modern science fiction. However, while the robotics industry seems to be realizing an archetypal fantasy, the technology creates new social realities that generate distinctive issues of potential relevance for the theory and practice of analytical psychology. © 2017, The Society of Analytical Psychology.

  20. Integrating Soft Robotics with the Robot Operating System: A Hybrid Pick and Place Arm

    Directory of Open Access Journals (Sweden)

    Ross M. McKenzie

    2017-08-01

    Full Text Available Soft robotic systems present a variety of new opportunities for solving complex problems. The use of soft robotic grippers, for example, can simplify the complexity in tasks such as the grasping of irregular and delicate objects. Adoption of soft robotics by the informatics community and industry, however, has been slow and this is, in-part, due to the amount of hardware and software that must be developed from scratch for each use of soft system components. In this paper, we detail the design, fabrication, and validation of an open-source framework that we designed to lower the barrier to entry for integrating soft robotic subsystems. This framework is built on the robot operating system (ROS, and we use it to demonstrate a modular, soft–hard hybrid system, which is capable of completing pick and place tasks. By lowering this barrier to entry through our open sourced hardware and software, we hope that system designers and Informatics researchers will find it easy to integrate soft components into their existing ROS-enabled robotic systems.

  1. Mobile robots and remote systems in nuclear applications; Robots moviles y sistemas remotos en aplicaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Segovia de los Rios, J. A.; Benitez R, J. S., E-mail: armando.segovia@inin.gob.m [ININ, Departamento de Automatizacion e Instrumentacion, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    Traditionally, the robots have been used in the industry for the colored to the spray, welding, schemed, assemble and handling of materials. However, these devices have had a deep impact in the nuclear industry where the first objective has been to reduce the exhibition and the personnel contact with radioactive materials. Knowing the utility of the mobile robots and remote systems in nuclear facilities in the world, the Department of Automation and Instrumentation of the Instituto Nacional de Investigaciones Nucleares (ININ) has carried out some researches and applications that they have facilitated the work of the researches and professionals of the ININ involved in the handling of radioactive materials, as the system with monorail for the introduction of irradiated materials in a production cell of Iodine-131 and the robot vehicle for the radioactive materials transport TRASMAR (contraction of Transportacion Asistida de Materiales Radiactivos). (Author)

  2. Implementation of robots in the nuclear industry, luxury or necessity?; Implementacion de robots en la industria nuclear - lujo o necesidad?

    Energy Technology Data Exchange (ETDEWEB)

    Angulo S, P. [Instituto Tecnologico de Durango, Boulevard Felipe Pescador No. 1830 Ote., Durango (Mexico)]. E-mail: pedrynteam@hotmail.com; Segovia de los Rios, A. [ININ, Km. 36.5 Carretera Mexico-Toluca, 52045 Estado de Mexico (Mexico)

    2004-07-01

    The safety is primordial factor in the development of nuclear tasks, the risks of exhibition to radioactive doses is imminent, in occasions to such a grade that procedures and techniques seem insufficient to control this exhibition. The present article shows to the nuclear industry as an area of suitable opportunity for the implementation of advanced technology, taking like base that the inter relation direct between human personnel and radioactive material it is of high risk for the health and in occasions mortal, due to this situation, the robotic systems like solution alternative arise to diverse problems related with this environment: management of radioactive materials, inspection and monitoring, decontamination; in each one of which it is looked for the speed and practicability in the processes and mainly the security of the personnel. (Author)

  3. Kinematics of Hooke universal joint robot wrists

    Science.gov (United States)

    Mckinney, William S., Jr.

    1988-01-01

    The singularity problem associated with wrist mechanisms commonly found on industrial manipulators can be alleviated by redesigning the wrist so that it functions as a three-axis gimbal system. This paper discussess the kinematics of gimbal robot wrists made of one and two Hooke universal joints. Derivations of the resolved rate motion control equations for the single and double Hooke universal joint wrists are presented using the three-axis gimbal system as a theoretical wrist model.

  4. Robot-borne fault tolerant calculators for nuclear use

    International Nuclear Information System (INIS)

    Giraud, A.; Robiolle, M.

    1995-01-01

    The use of robots has become a necessity in civil nuclear industry. Electronic systems of such robots must tolerate cumulative ionizing radiation dose effects. Today's objective is to reach a 3 kGy dose resistance. Difficulties and costs involved during on-site maintenance imply to warrant at least one functioning mode in the case of system failure. To improve the behaviour of robot-borne systems, the CEA Department for Nuclear Engineering Studies (DEIN) has developed a method for the selection of industrial electronic components and has built computer architectures which allows to break free from some cumulative dose sensitive parameters. This paper presents the MICADO and CADMOS architectures developed at the DEIN. (J.S.). 15 refs., 5 figs

  5. Vision-based robotic system for object agnostic placing operations

    DEFF Research Database (Denmark)

    Rofalis, Nikolaos; Nalpantidis, Lazaros; Andersen, Nils Axel

    2016-01-01

    Industrial robots are part of almost all modern factories. Even though, industrial robots nowadays manipulate objects of a huge variety in different environments, exact knowledge about both of them is generally assumed. The aim of this work is to investigate the ability of a robotic system to ope...... to the system, neither for the objects nor for the placing box. The experimental evaluation of the developed robotic system shows that a combination of seemingly simple modules and strategies can provide effective solution to the targeted problem....... to operate within an unknown environment manipulating unknown objects. The developed system detects objects, finds matching compartments in a placing box, and ultimately grasps and places the objects there. The developed system exploits 3D sensing and visual feature extraction. No prior knowledge is provided...

  6. Reducing the uncertainty in robotic machining by modal analysis

    Science.gov (United States)

    Alberdi, Iñigo; Pelegay, Jose Angel; Arrazola, Pedro Jose; Ørskov, Klaus Bonde

    2017-10-01

    The use of industrial robots for machining could lead to high cost and energy savings for the manufacturing industry. Machining robots offer several advantages respect to CNC machines such as flexibility, wide working space, adaptability and relatively low cost. However, there are some drawbacks that are preventing a widespread adoption of robotic solutions namely lower stiffness, vibration/chatter problems and lower accuracy and repeatability. Normally due to these issues conservative cutting parameters are chosen, resulting in a low material removal rate (MRR). In this article, an example of a modal analysis of a robot is presented. For that purpose the Tap-testing technology is introduced, which aims at maximizing productivity, reducing the uncertainty in the selection of cutting parameters and offering a stable process free from chatter vibrations.

  7. Robot, human and communication; Robotto/ningen/comyunikeshon

    Energy Technology Data Exchange (ETDEWEB)

    Suehiro, T.

    1996-04-10

    Recently, some interests on the robots working with human beings under the same environment as the human beings and living with the human beings were promoting. In such robots, more suitability for environment and more robustness of system are required than those in conventional robots. Above all, communication of both the human beings and the robots on their cooperations is becoming a new problem. Hitherto, for the industrial robot, cooperation between human beings and robot was limited on its programming. As this was better for repeated operation of the same motion, its adoptable work was limited to some comparatively simpler one in factory and was difficult to change its content partially or to apply the other work. Furthermore, on the remote-controlled intelligent work robot represented by the critical work robot, its cooperation between the human beings and the robot can be conducted with the operation at remote location. In this paper, the communication of the robots lived with the human beings was examined. 17 refs., 1 fig.

  8. Simplified Human-Robot Interaction: Modeling and Evaluation

    Directory of Open Access Journals (Sweden)

    Balazs Daniel

    2013-10-01

    Full Text Available In this paper a novel concept of human-robot interaction (HRI modeling is proposed. Including factors like trust in automation, situational awareness, expertise and expectations a new user experience framework is formed for industrial robots. Service Oriented Robot Operation, proposed in a previous paper, creates an abstract level in HRI and it is also included in the framework. This concept is evaluated with exhaustive tests. Results prove that significant improvement in task execution may be achieved and the new system is more usable for operators with less experience with robotics; personnel specific for small and medium enterprises (SMEs.

  9. The robotics divide a new frontier in the 21st century?

    CERN Document Server

    López Peláez, Antonio

    2013-01-01

    Analyzes how robotics will shape our societies in the twenty-first century; a time when industrial and service robotics, particularly for military and aerospace purposes, will become an essential technology Examines an emerging divide: the "robotics divide"; a phenomenon linked to the model to integrate advanced robotics in economic, social and military spheres Focuses on the main technological trends in the field of robotics, and the impact that robotics will have on different facets of social life

  10. Trend of development of robots for nuclear facilities

    International Nuclear Information System (INIS)

    Maki, Hideo; Sasaki, Masayoshi

    1984-01-01

    Robot technology becomes more and more important in the field of atomic energy industries. Hitachi Ltd. has energetically engaged in the development of the robot technology for nuclear facilities, recognizing these situations. The course of the development of robot technology and the robots for nuclear facilities is described. As the practical examples of the robots for nuclear facilities, there have been automatic fuel exchangers, the remotely operated automatic exchangers for control rod driving mechanism, automatic and semi-automatic ultrasonic flaw detectors and so on. As the robots for nuclear facilities under development, control rod driving mechanism disassembling and cleaning system, the volume reduction device for spent fuel channel boxes and control rods and others are reported. (Kako, I.)

  11. Robotic devices for nuclear plant

    Energy Technology Data Exchange (ETDEWEB)

    Abel, E

    1986-05-01

    The article surveys the background of nuclear remote handling and its associated technology, robotics. Manipulators, robots, robot applications, extending the range of applications, and future developments, are all discussed.

  12. Procedure for definition of end-effector orientation in planar surfaces robot applications

    Directory of Open Access Journals (Sweden)

    Vidaković Jelena Z.

    2017-01-01

    Full Text Available Design of user-friendly and at the same time powerful robot programming methods is the subject of significant efforts undertaken by the international robotics community. For the purpose of facilitating robot programming, with regard to the most common present-day applications in industry, it would be useful to develop programming procedures for frequently used manipulator tasks which could be easily implemented and used as ready-made application software. Important class of industrial robot applications involves end-effector trajectories in planar surfaces. Development of robot programming language procedure intended for determination of object plane normal with respect to frame of interest, as well as programming of end-effector orientation is presented in this paper. This procedure can be used as integral part of task oriented robot programing applications as well as a procedure for explicit programming languages, and it is illustrated in practical example with the robot Lola 15.

  13. NOSC/ONR Robotics Bibliography (1961-1981).

    Science.gov (United States)

    1982-09-01

    28, 6 Dec., 1979 @, p4 "DEFENSE EQUIPMENT FIRM TRAINS ROBOT TO PERFORM CRAFTSMAN-SKILLED TASK", Industrial Engineering, vol 13, no 5, May 1981 @, p90...1974 @, pCI-I-8 Gupton, J. A. Jr., "BUILD THIS UNICORN -i ROBOT PART I", Radio-Electronics, vol 51, no 8, 1980 @, p 3 7 ,4 1 ,76 Gupton, J. A. Jr...34BUILD THIS UNICORN -i ROBOT PART II", Radio-Electronics, vol 51, no 9, Sept. 1980 @, p55-8 Gupton, J. A., Jr., "TALK TO A TURTLE; BUILD A COMPUTER

  14. A Hybrid Method of Analyzing Patents for Sustainable Technology Management in Humanoid Robot Industry

    Directory of Open Access Journals (Sweden)

    Jongchan Kim

    2016-05-01

    Full Text Available A humanoid, which refers to a robot that resembles a human body, imitates a human’s intelligence, behavior, sense, and interaction in order to provide various types of services to human beings. Humanoids have been studied and developed constantly in order to improve their performance. Humanoids were previously developed for simple repetitive or hard work that required significant human power. However, intelligent service robots have been developed actively these days to provide necessary information and enjoyment; these include robots manufactured for home, entertainment, and personal use. It has become generally known that artificial intelligence humanoid technology will significantly benefit civilization. On the other hand, Successful Research and Development (R & D on humanoids is possible only if they are developed in a proper direction in accordance with changes in markets and society. Therefore, it is necessary to analyze changes in technology markets and society for developing sustainable Management of Technology (MOT strategies. In this study, patent data related to humanoids are analyzed by various data mining techniques, including topic modeling, cross-impact analysis, association rule mining, and social network analysis, to suggest sustainable strategies and methodologies for MOT.

  15. Handling uncertainty and networked structure in robot control

    CERN Document Server

    Tamás, Levente

    2015-01-01

    This book focuses on two challenges posed in robot control by the increasing adoption of robots in the everyday human environment: uncertainty and networked communication. Part I of the book describes learning control to address environmental uncertainty. Part II discusses state estimation, active sensing, and complex scenario perception to tackle sensing uncertainty. Part III completes the book with control of networked robots and multi-robot teams. Each chapter features in-depth technical coverage and case studies highlighting the applicability of the techniques, with real robots or in simulation. Platforms include mobile ground, aerial, and underwater robots, as well as humanoid robots and robot arms. Source code and experimental data are available at http://extras.springer.com. The text gathers contributions from academic and industry experts, and offers a valuable resource for researchers or graduate students in robot control and perception. It also benefits researchers in related areas, such as computer...

  16. Multi-robots to micro-surgery: Selected robotic applications at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.C. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Systems and Robotics Center

    1996-11-01

    The Intelligent Systems and Robotics Center (ISRC) at Sandia National Laboratories is a multi-program organization, pursuing research, development and applications in a wide range of field. Activities range from large-scale applications such as nuclear facility dismantlement for the US Department of Energy (DOE), to aircraft inspection and refurbishment, to automated script and program generation for robotic manufacturing and assembly, to miniature robotic devices and sensors for remote sensing and micro-surgery. This paper describes six activities in the large and small scale that are underway and either nearing technology transfer stage or seeking industrial partners to continue application development. The topics of the applications include multiple arm coordination for intuitively maneuvering large, ungainly work pieces; simulation, analysis and graphical training capability for CP-5 research reactor dismantlement; miniature robots with volumes of 16 cubic centimeters and less developed for inspection and sensor deployment; and biomedical sensors to enhance automated prosthetic device production and fill laparoscopic surgery information gap.

  17. The Computer Industry. High Technology Industries: Profiles and Outlooks.

    Science.gov (United States)

    International Trade Administration (DOC), Washington, DC.

    A series of meetings was held to assess future problems in United States high technology, particularly in the fields of robotics, computers, semiconductors, and telecommunications. This report, which focuses on the computer industry, includes a profile of this industry and the papers presented by industry speakers during the meetings. The profile…

  18. Towards Competitive Commercial Autonomous Robots: The Configuration Problem

    DEFF Research Database (Denmark)

    Kjærgaard, Morten; Andersen, Nils Axel; Ravn, Ole

    2011-01-01

    knowledge about the underlying algorithms. The framework also makes it possible for the robot to autonomously calibrate itself, resulting in higher stability of the robot and less development time required. The work is a result of an industrial research project aimed at lowering development costs...

  19. The New Robotics-towards human-centered machines.

    Science.gov (United States)

    Schaal, Stefan

    2007-07-01

    Research in robotics has moved away from its primary focus on industrial applications. The New Robotics is a vision that has been developed in past years by our own university and many other national and international research institutions and addresses how increasingly more human-like robots can live among us and take over tasks where our current society has shortcomings. Elder care, physical therapy, child education, search and rescue, and general assistance in daily life situations are some of the examples that will benefit from the New Robotics in the near future. With these goals in mind, research for the New Robotics has to embrace a broad interdisciplinary approach, ranging from traditional mathematical issues of robotics to novel issues in psychology, neuroscience, and ethics. This paper outlines some of the important research problems that will need to be resolved to make the New Robotics a reality.

  20. An Adaptive Approach for Precise Underwater Vehicle Control in Combined Robot-Diver Operations

    Science.gov (United States)

    2015-03-01

    and Nicosia and Tomei [13] focused on industrial applications involving robotic manipulator arms carrying various loads. The application of...1987. 94 [13] S. Nicosia and P. Tomei, “Model reference adaptive control algorithms for industrial robots ,” Automatica, vol. 20, pp. 635–644, 9... kinematic and dynamic properties,” The International Journal of Robotics Research, vol. 25, pp. 283–296, March 01, 2006. [17] A. Sanei and M. French

  1. Robotics at Savannah River site: activity report

    International Nuclear Information System (INIS)

    Byrd, J.S.

    1984-09-01

    The objectives of the Robotics Technology Group at the Savannah River Laboratory are to employ modern industrial robots and to develop unique automation and robotic systems to enhance process operations at the Savannah River site (SRP and SRL). The incentives are to improve safety, reduce personnel radiation exposure, improve product quality and productivity, and to reduce operating costs. During the past year robotic systems have been installed to fill chemical dilution vials in a SRP laboratory at 772-F and remove radioactive waste materials in the SRL Californium Production Facility at 773-A. A robotic system to lubricate an extrusion press has been developed and demonstrated in the SRL robotics laboratory and is scheduled for installation at the 321-M fuel fabrication area. A mobile robot was employed by SRP for a radiation monitoring task at a waste tank top in H-Area. Several other robots are installed in the SRL robotics laboratories and application development programs are underway. The status of these applications is presented in this report

  2. Construction typification as the tool for optimizing the functioning of a robotized manufacturing system

    Science.gov (United States)

    Gwiazda, A.; Banas, W.; Sekala, A.; Foit, K.; Hryniewicz, P.; Kost, G.

    2015-11-01

    Process of workcell designing is limited by different constructional requirements. They are related to technological parameters of manufactured element, to specifications of purchased elements of a workcell and to technical characteristics of a workcell scene. This shows the complexity of the design-constructional process itself. The results of such approach are individually designed workcell suitable to the specific location and specific production cycle. Changing this parameters one must rebuild the whole configuration of a workcell. Taking into consideration this it is important to elaborate the base of typical elements of a robot kinematic chain that could be used as the tool for building Virtual modelling of kinematic chains of industrial robots requires several preparatory phase. Firstly, it is important to create a database element, which will be models of industrial robot arms. These models could be described as functional primitives that represent elements between components of the kinematic pairs and structural members of industrial robots. A database with following elements is created: the base kinematic pairs, the base robot structural elements, the base of the robot work scenes. The first of these databases includes kinematic pairs being the key component of the manipulator actuator modules. Accordingly, as mentioned previously, it includes the first stage rotary pair of fifth stage. This type of kinematic pairs was chosen due to the fact that it occurs most frequently in the structures of industrial robots. Second base consists of structural robot elements therefore it allows for the conversion of schematic structures of kinematic chains in the structural elements of the arm of industrial robots. It contains, inter alia, the structural elements such as base, stiff members - simple or angular units. They allow converting recorded schematic three-dimensional elements. Last database is a database of scenes. It includes elements of both simple and complex

  3. Identifying Factors Reinforcing Robotization: Interactive Forces of Employment, Working Hour and Wage

    OpenAIRE

    Joonmo Cho; Jinha Kim

    2018-01-01

    Unlike previous studies on robotization approaching the future based on the cutting-edge technologies and adopting a framework where robotization is considered as an exogenous variable, this study considers that robotization occurs endogenously and uses it as a dependent variable for an objective examination of the effect of robotization on the labor market. To this end, a robotization indicator is created based on the actual number of industrial robots currently deployed in workplaces, and a...

  4. Automatic Modeling and Simulation of Modular Robots

    Science.gov (United States)

    Jiang, C.; Wei, H.; Zhang, Y.

    2018-03-01

    The ability of reconfiguration makes modular robots have the ability of adaptable, low-cost, self-healing and fault-tolerant. It can also be applied to a variety of mission situations. In this manuscript, a robot platform which relied on the module library was designed, based on the screw theory and module theory. Then, the configuration design method of the modular robot was proposed. And the different configurations of modular robot system have been built, including industrial mechanical arms, the mobile platform, six-legged robot and 3D exoskeleton manipulator. Finally, the simulation and verification of one system among them have been made, using the analyses of screw kinematics and polynomial planning. The results of experiments demonstrate the feasibility and superiority of this modular system.

  5. Knowledge based systems for intelligent robotics

    Science.gov (United States)

    Rajaram, N. S.

    1982-01-01

    It is pointed out that the construction of large space platforms, such as space stations, has to be carried out in the outer space environment. As it is extremely expensive to support human workers in space for large periods, the only feasible solution appears to be related to the development and deployment of highly capable robots for most of the tasks. Robots for space applications will have to possess characteristics which are very different from those needed by robots in industry. The present investigation is concerned with the needs of space robotics and the technologies which can be of assistance to meet these needs, giving particular attention to knowledge bases. 'Intelligent' robots are required for the solution of arising problems. The collection of facts and rules needed for accomplishing such solutions form the 'knowledge base' of the system.

  6. Environmental restoration and waste management: Robotics technology development program: Robotics 5-year program plan

    International Nuclear Information System (INIS)

    1991-01-01

    This plan covers robotics Research, Development, Demonstration, Testing and Evaluation activities in the Program for the next five years. These activities range from bench-scale R ampersand D to full-scale hot demonstrations at DOE sites. This plan outlines applications of existing technology to near-term needs, the development and application of enhanced technology for longer-term needs, and initiation of advanced technology development to meet those needs beyond the five-year plan. The objective of the Robotic Technology Development Program (RTDP) is to develop and apply robotics technologies that will enable Environmental Restoration and Waste Management (ER ampersand WM) operations at DOE sites to be safer, faster and cheaper. Five priority DOE sites were visited in March 1990 to identify needs for robotics technology in ER ampersand WM operations. This 5-Year Program Plan for the RTDP detailed annual plans for robotics technology development based on identified needs. In July 1990 a forum was held announcing the robotics program. Over 60 organizations (industrial, university, and federal laboratory) made presentations on their robotics capabilities. To stimulate early interactions with the ER ampersand WM activities at DOE sites, as well as with the robotics community, the RTDP sponsored four technology demonstrations related to ER ampersand WM needs. These demonstrations integrated commercial technology with robotics technology developed by DOE in support of areas such as nuclear reactor maintenance and the civilian reactor waste program. 2 figs

  7. 3rd IFToMM Symposium on Mechanism Design for Robotics

    CERN Document Server

    Ceccarelli, Marco

    2015-01-01

    This volume contains the Proceedings of the 3rd IFToMM Symposium on Mechanism Design for Robotics, held in Aalborg, Denmark, 2-4 June, 2015. The book contains papers on recent advances in the design of mechanisms and their robotic applications. It treats the following topics: mechanism design, mechanics of robots, parallel manipulators, actuators and their control, linkage and industrial manipulators, innovative mechanisms/robots and their applications, among others. The book can be used by researchers and engineers in the relevant areas of mechanisms, machines and robotics.

  8. Pipe robots for internal inspection, non-destructive testing and machining of pipelines

    International Nuclear Information System (INIS)

    Reiss, Alexander

    2016-01-01

    Inspector Systems is a specialist in manufacturing of tethered self-propelled pipe robots for internal inspection, non-destructive testing and machining of pipeline systems. Our industrial sectors, which originates from 30 year experience in the nuclear industry, are Gas and Oil (On-/Offshore, Refineries), Chemical, Petrochemical, Water etc. The pipe robots are able to get inserted through poor access points (e.g. valves) and to pass in bi-directional travelling vertical sections and numerous bends with small arc radius. The paper describes the system concept and performance of the pipe robot technology. A modular construction allows to equip the robots with different operational elements for the respective application.

  9. Survey of advanced general-purpose software for robot manipulators

    International Nuclear Information System (INIS)

    Latombe, J.C.

    1983-01-01

    Computer-controlled sensor-based robots will more and more common in industry. This paper attempts to survey the main trends of the development of advanced general-purpose software for robot manipulators. It is intended to make clear that robots are not only mechanical devices. They are truly programmable machines, and their programming, which occurs in an imperfectly modelled world,is somewhat different from conventional computer programming. (orig.)

  10. Human-Robot Interaction: Status and Challenges.

    Science.gov (United States)

    Sheridan, Thomas B

    2016-06-01

    The current status of human-robot interaction (HRI) is reviewed, and key current research challenges for the human factors community are described. Robots have evolved from continuous human-controlled master-slave servomechanisms for handling nuclear waste to a broad range of robots incorporating artificial intelligence for many applications and under human supervisory control. This mini-review describes HRI developments in four application areas and what are the challenges for human factors research. In addition to a plethora of research papers, evidence of success is manifest in live demonstrations of robot capability under various forms of human control. HRI is a rapidly evolving field. Specialized robots under human teleoperation have proven successful in hazardous environments and medical application, as have specialized telerobots under human supervisory control for space and repetitive industrial tasks. Research in areas of self-driving cars, intimate collaboration with humans in manipulation tasks, human control of humanoid robots for hazardous environments, and social interaction with robots is at initial stages. The efficacy of humanoid general-purpose robots has yet to be proven. HRI is now applied in almost all robot tasks, including manufacturing, space, aviation, undersea, surgery, rehabilitation, agriculture, education, package fetch and delivery, policing, and military operations. © 2016, Human Factors and Ergonomics Society.

  11. Multi-agent System for Off-line Coordinated Motion Planning of Multiple Industrial Robots

    Directory of Open Access Journals (Sweden)

    Shital S. Chiddarwar

    2011-03-01

    Full Text Available This article presents an agent based framework for coordinated motion planning of multiple robots. The emerging paradigm of agent based systems is implemented to address various issues related to safe and fast task execution when multiple robots share a common workspace. In the proposed agent based framework, each issue vital for coordinated motion planning of multiple robots and every robot participating in coordinated task is considered as an agent. The identified agents are interfaced with each other in order to incorporate the desired flexibility in the developed framework. This framework gives a complete strategy for determination of optimal trajectories of robots working in coordination with due consideration to their kinematic, dynamic and payload constraint. The complete architecture of the proposed framework and the detailed discussion on various modules are covered in this paper.

  12. Framework to Implement Collaborative Robots in Manual Assembly: A Lean Automation Approach

    DEFF Research Database (Denmark)

    Malik, Ali Ahmad; Bilberg, Arne

    The recent proliferation of smart manufacturing technologies has emerged the concept of hybrid automation for assembly systems utilizing the best of humans and robots in a combination. Based on the ability to work alongside human-workers the next generation of industrial robots (or robotics 2...... of virtual simulations is discussed for validation and optimization of human-robot work environment....

  13. Autonomous Industrial Mobile Manipulation (AIMM)

    DEFF Research Database (Denmark)

    Hvilshøj, Mads; Bøgh, Simon; Nielsen, Oluf Skov

    2012-01-01

    Purpose - The purpose of this paper is to provide a review of the interdisciplinary research field Autonomous Industrial Mobile Manipulation (AIMM), with an emphasis on physical implementations and applications. Design/methodology/approach - Following an introduction to AIMM, this paper investiga......Purpose - The purpose of this paper is to provide a review of the interdisciplinary research field Autonomous Industrial Mobile Manipulation (AIMM), with an emphasis on physical implementations and applications. Design/methodology/approach - Following an introduction to AIMM, this paper......; sustainability, configuration, adaptation, autonomy, positioning, manipulation and grasping, robot-robot interaction, human-robot interaction, process quality, dependability, and physical properties. Findings - The concise yet comprehensive review provides both researchers (academia) and practitioners (industry......) with a quick and gentle overview of AIMM. Furthermore, the paper identifies key open issues and promising research directions to realize real-world integration and maturation of the AIMM technology. Originality/value - This paper reviews the interdisciplinary research field Autonomous Industrial Mobile...

  14. Human capital gains associated with robotic assisted laparoscopic pyeloplasty in children compared to open pyeloplasty.

    Science.gov (United States)

    Behan, James W; Kim, Steve S; Dorey, Frederick; De Filippo, Roger E; Chang, Andy Y; Hardy, Brian E; Koh, Chester J

    2011-10-01

    Robotic assisted laparoscopic pyeloplasty is an emerging, minimally invasive alternative to open pyeloplasty in children for ureteropelvic junction obstruction. The procedure is associated with smaller incisions and shorter hospital stays. To our knowledge previous outcome analyses have not included human capital calculations, especially regarding loss of parental workdays. We compared perioperative factors in patients who underwent robotic assisted laparoscopic and open pyeloplasty at a single institution, especially in regard to human capital changes, in an institutional cost analysis. A total of 44 patients 2 years old or older from a single institution underwent robotic assisted (37) or open (7) pyeloplasty from 2008 to 2010. We retrospectively reviewed the charts to collect demographic and perioperative data. The human capital approach was used to calculate parental productivity losses. Patients who underwent robotic assisted laparoscopic pyeloplasty had a significantly shorter average hospital length of stay (1.6 vs 2.8 days, p human capital gains, eg decreased lost parental wages, and lower hospitalization expenses. Future comparative outcome analyses in children should include financial factors such as human capital loss, which can be especially important for families with young children. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  15. 1st AAU Workshop on Human-Centered Robotics

    DEFF Research Database (Denmark)

    The 2012 AAU Workshop on Human-Centered Robotics took place on 15 Nov. 2012, at Aalborg University, Aalborg. The workshop provides a platform for robotics researchers, including professors, PhD and Master students to exchange their ideas and latest results. The objective is to foster closer...... interaction among researchers from multiple relevant disciplines in the human-centered robotics, and consequently, to promote collaborations across departments of all faculties towards making our center a center of excellence in robotics. The workshop becomes a great success, with 13 presentations, attracting...... more than 45 participants from AAU, SDU, DTI and industrial companies as well. The proceedings contain 7 full papers selected out from the full papers submitted afterwards on the basis of workshop abstracts. The papers represent major research development of robotics at AAU, including medical robots...

  16. FY 1998 Report on research and development project. Research and development of human-cooperative/coexisting robot systems; 1998 nendo ningen kyocho kyozongata robot system kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This R and D project is aimed at development of the human-cooperative/coexisting robot systems with high safety and reliability, capable of performing complicated works cooperatively and in a coexisting manner with humans in human working and living spaces, in order to help improve safety and efficiency in various industrial areas, improve services and convenience in manufacturing and service areas, and create new industries. The trend surveys cover humanoid robot systems, remote control systems and simulators, and the application surveys cover services for humans, basic humanoids and entertainment communication. The 1998 R and D efforts include research and development, fabrication and surveys for the following themes; (1) fabrication of robot platforms for supporting manual works, (2) development of surrounded visual display systems, (3) development of robot arm manipulation and force displaying systems, (4) development of a dynamic simulator, (5) development of a distributed software platform, (6) researches and development of computation algorithm for kinematic chain dynamics, (7) development of motion teaching system for multi-functional robots, (8) investigation of trends in robotics technology, and (9) researches and surveys of robot application. (NEDO)

  17. Industrial Applications of Image Processing

    Science.gov (United States)

    Ciora, Radu Adrian; Simion, Carmen Mihaela

    2014-11-01

    The recent advances in sensors quality and processing power provide us with excellent tools for designing more complex image processing and pattern recognition tasks. In this paper we review the existing applications of image processing and pattern recognition in industrial engineering. First we define the role of vision in an industrial. Then a dissemination of some image processing techniques, feature extraction, object recognition and industrial robotic guidance is presented. Moreover, examples of implementations of such techniques in industry are presented. Such implementations include automated visual inspection, process control, part identification, robots control. Finally, we present some conclusions regarding the investigated topics and directions for future investigation

  18. Towards Plug-n-Play robot guidance: Advanced 3D estimation and pose estimation in Robotic applications

    DEFF Research Database (Denmark)

    Sølund, Thomas

    and move objects, which are physical located at the same positions. In order to place objects in the same position each time, custom-made mechanical fixtures and aligners are constructed to ensure that objects are not moving. It is expensive to design and build these fixtures and it is difficult to quickly...... change to a novel task. In some cases where objects are placed in bins and boxes it is not possible to position the objects in the same location each time. To avoid designing expensive mechanical solutions and to be able to pick objects from boxes and bins, a sensor is necessary to guide the robot. Today...... while the robot motion programming is easily handled with the new collaborative robots. This thesis deals with robot vision technologies and how these are made easier for production workers program in order to get robots to recognize and compute the position of objects in the industry. This thesis...

  19. Principles of designing mobile robots for nuclear applications: Some Soviet development projects

    International Nuclear Information System (INIS)

    Adamov, E.O.; Ivanov, V.G.; Meieran, H.B.

    1990-01-01

    The I.V. Kurchatov Institute of Atomic Energy and the Research and Design Institute of Power Engineering, both designers of nuclear power plant systems and located in Moscow, USSR, have collectively recognized the positive merits of utilizing mobile robots in the nuclear industry. They have given authority to their subsidiary agency CENOTECH to mount an active campaign to program the development of new generations of mobile robots that will support routine and emergency situation operations in the nuclear industry. CENOTECH's rationale for design and performance requirements of mobile robot units to be utilized in the nuclear industry is presented in this paper. A description of design, performance requirements, and operational characteristics of four mobile robots that have been developed at CENOTECH within the past 3 yr is also presented: the 2-tracked KURSOR; the 4 hybrid-wheeled TELER; the 12-wheeled BUGGY with articulated platforms; and the 2-tracked SADKO

  20. Multicenter review of robotic versus laparoscopic ventral hernia repair: is there a role for robotics?

    Science.gov (United States)

    Walker, Peter A; May, Audriene C; Mo, Jiandi; Cherla, Deepa V; Santillan, Monica Rosales; Kim, Steven; Ryan, Heidi; Shah, Shinil K; Wilson, Erik B; Tsuda, Shawn

    2018-04-01

    The utilization of robotic platforms for general surgery procedures such as hernia repair is growing rapidly in the United States. A limited amount of data are available evaluating operative outcomes in comparison to standard laparoscopic surgery. We completed a retrospective review comparing robotic and laparoscopic ventral hernia repair to provide safety and outcomes data to help design a future prospective trial design. A retrospective review of 215 patients undergoing ventral hernia repair (142 robotic and 73 laparoscopic) was completed at two large academic centers. Primary outcome measure evaluated was recurrence. Secondary outcomes included incidence of primary fascial closure, and surgical site occurrences. Propensity for treatment match comparison demonstrated that robotic repair was associated with a decreased incidence of recurrence (2.1 versus 4.2%, p robotic repair was associated with increased incidence of primary fascial closure (77.1 versus 66.7%, p robotic repairs were completed on patients with lower body mass index (28.1 ± 3.6 versus 34.2 ± 6.4, p robotic repair was associated with decreased recurrence and surgical site occurrence. However, the differences noted in the patient populations limit the interpretability of these results. As adoption of robotic ventral hernia repair increases, prospective trials need to be designed in order to investigate the efficacy, safety, and cost effectiveness of this evolving technique.

  1. ASBESTOS PIPE-INSULATION REMOVAL ROBOT SYSTEM; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2000-01-01

    This final topical report details the development, experimentation and field-testing activities for a robotic asbestos pipe-insulation removal robot system developed for use within the DOE's weapon complex as part of their ER and WM program, as well as in industrial abatement. The engineering development, regulatory compliance, cost-benefit and field-trial experiences gathered through this program are summarized

  2. A Practical Solution Using A New Approach To Robot Vision

    Science.gov (United States)

    Hudson, David L.

    1984-01-01

    Up to now, robot vision systems have been designed to serve both application development and operational needs in inspection, assembly and material handling. This universal approach to robot vision is too costly for many practical applications. A new industrial vision system separates the function of application program development from on-line operation. A Vision Development System (VDS) is equipped with facilities designed to simplify and accelerate the application program development process. A complimentary but lower cost Target Application System (TASK) runs the application program developed with the VDS. This concept is presented in the context of an actual robot vision application that improves inspection and assembly for a manufacturer of electronic terminal keyboards. Applications developed with a VDS experience lower development cost when compared with conventional vision systems. Since the TASK processor is not burdened with development tools, it can be installed at a lower cost than comparable "universal" vision systems that are intended to be used for both development and on-line operation. The VDS/TASK approach opens more industrial applications to robot vision that previously were not practical because of the high cost of vision systems. Although robot vision is a new technology, it has been applied successfully to a variety of industrial needs in inspection, manufacturing, and material handling. New developments in robot vision technology are creating practical, cost effective solutions for a variety of industrial needs. A year or two ago, researchers and robot manufacturers interested in implementing a robot vision application could take one of two approaches. The first approach was to purchase all the necessary vision components from various sources. That meant buying an image processor from one company, a camera from another and lens and light sources from yet others. The user then had to assemble the pieces, and in most instances he had to write

  3. The NMBU Phenotyping Robot; A Modified Version of Thorvald

    OpenAIRE

    Skattum, Kristine

    2017-01-01

    Soil compaction is a big problem in farming industry. This is why Pål Johan From in 2014, along with four master students, designed and built the agricultural robot Thorvald I. A light weighted robot that avoids soil compaction. Two years later, a new team of master students designed and built Thorvald II, where the goal was to make the robot module based. The modularity formed the basis of this thesis, where the goal was to design a modified version of Thorvald. The modified robot is ord...

  4. A Novel Robot of Manufacturing Space Solar Cell Arrays

    Directory of Open Access Journals (Sweden)

    Wu Yuexin

    2008-11-01

    Full Text Available This paper presents a novel robot employed to manufacture space solar cell arrays. First of all including the mechanical configuration and control system, the architecture of the robot is described. Then the flow velocity field of adhesive in the dispensing needles is acquired based on hydrodynamics. The accurate section form model of adhesive dispensed on the solar cells is obtained, which is essential for the robot to control the uniformity of dispensing adhesive. Finally the experiment validates the feasibility and reliability of the robot system. The application of robots instead of manual work in manufacturing space solar cell arrays will enhance the development of space industry.

  5. A Novel Robot of Manufacturing Space Solar Cell Arrays

    Directory of Open Access Journals (Sweden)

    Wu Yuexin

    2007-03-01

    Full Text Available This paper presents a novel robot employed to manufacture space solar cell arrays. First of all including the mechanical configuration and control system, the architecture of the robot is described. Then the flow velocity field of adhesive in the dispensing needles is acquired based on hydrodynamics. The accurate section form model of adhesive dispensed on the solar cells is obtained, which is essential for the robot to control the uniformity of dispensing adhesive. Finally the experiment validates the feasibility and reliability of the robot system. The application of robots instead of manual work in manufacturing space solar cell arrays will enhance the development of space industry.

  6. Prior video game utilization is associated with improved performance on a robotic skills simulator.

    Science.gov (United States)

    Harbin, Andrew C; Nadhan, Kumar S; Mooney, James H; Yu, Daohai; Kaplan, Joshua; McGinley-Hence, Nora; Kim, Andrew; Gu, Yiming; Eun, Daniel D

    2017-09-01

    Laparoscopic surgery and robotic surgery, two forms of minimally invasive surgery (MIS), have recently experienced a large increase in utilization. Prior studies have shown that video game experience (VGE) may be associated with improved laparoscopic surgery skills; however, similar data supporting a link between VGE and proficiency on a robotic skills simulator (RSS) are lacking. The objective of our study is to determine whether volume or timing of VGE had any impact on RSS performance. Pre-clinical medical students completed a comprehensive questionnaire detailing previous VGE across several time periods. Seventy-five subjects were ultimately evaluated in 11 training exercises on the daVinci Si Skills Simulator. RSS skill was measured by overall score, time to completion, economy of motion, average instrument collision, and improvement in Ring Walk 3 score. Using the nonparametric tests and linear regression, these metrics were analyzed for systematic differences between non-users, light, and heavy video game users based on their volume of use in each of the following four time periods: past 3 months, past year, past 3 years, and high school. Univariate analyses revealed significant differences between heavy and non-users in all five performance metrics. These trends disappeared as the period of VGE went further back. Our study showed a positive association between video game experience and robotic skills simulator performance that is stronger for more recent periods of video game use. The findings may have important implications for the evolution of robotic surgery training.

  7. ROS (Robot Operating System) für Automotive

    OpenAIRE

    Bubeck, Alexander

    2014-01-01

    - Introduction into the Robot Operating System - Open Source in the automotive industries - Application of ROS in the automotive industry - ROS navigation - ROS with real time control - ROS in the embedded world - Outlook: ROS 2.0 - Summary

  8. Robotics: a way to link the "islands of automation".

    Science.gov (United States)

    O'Bryan, D

    1994-01-01

    This article looks at what the natural evolution of robots can do for the clinical testing industry, from performing simple functions to becoming the prime labor force of the clinical laboratory. Until now, robots have been applied to instrument processes as somewhat of an upgrade to accomplish a variety of laboratory tasks. Over the next 10 years, however, robotics development will respond to the internal and external influences expected to challenge the industry. A limited supply of human workers and the increased demands of testing volumes and cost-effectiveness will herald a new phase of robotics to link, as well as develop, technological capabilities. Since science fiction was invented, robots have teased the imagination-alternately as mindless automatons or as clones of their inventors endowed with minds of their own. The appeal in the first case was the seemingly infinite capacity for performing menial tasks too boring, complex, or dangerous for mankind. The appeal in the second was the fantasy of artificial intelligence. In both cases, the fictional concept has become reality--and, by the 21st century, should even be commonplace. Financial encouragement of robotics development might even be a mission for laboratories themselves, as they prepare for potential competition from even more complex technology.

  9. A Layered Middleware Architecture for Automated Robot Services

    OpenAIRE

    Choi, Jongsun; Cho, Yongseong; Choi, Jaeyoung; Choi, Jongmyung

    2014-01-01

    These days, using robots has gradually been extending from the limited industrial areas in factories to service areas for the general public in everyday life. It is possible to imagine that end users easily control robots and they define new services by themselves as they wish in the near future. However, there are three issues to resolve to realize the future. Firstly, it is required to abstract robots’ behaviors from primitive robot functions, and secondly, we need context awareness in orde...

  10. Quantifying and Maximizing Performance of a Human-Centric Robot under Precision, Safety, and Robot Specification Constraints

    Data.gov (United States)

    National Aeronautics and Space Administration — The research project is an effort towards achieving 99.99% safety of mobile robots working alongside humans while matching the precision performance of industrial...

  11. The Virtual Robotics Laboratory

    International Nuclear Information System (INIS)

    Kress, R.L.; Love, L.J.

    1997-01-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory equipment to outside universities, industrial researchers, and elementary and secondary education programs. In the past, the ORNL Robotics and Process Systems Division (RPSD) has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics, but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations

  12. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Bum; Park, Soon Woong; Cho, Jae Wan; Lee, Nam Ho; Kim, Woong Ki; Moon, Byung Soo; Lee, Young Jae; Kim, Chang Hoi; Kim, Seung Ho; Hwang, Seok Yong; Kim, Byung Soo; Moon, Jae Sun; Lee, Young Kwang; Choi, Kap Joo

    1996-07-01

    The comparison study of 3 kinds of stereo camera modules done in this final year of 4 year's longterm project shows that regenerating characteristics of stereo image of stereo camera using horizontally moving lens axis method is superior to the other two modules. Base on this comparison result, stereo camera module using horizontally moving lens method is developed. Also, stereo-Boom unit, high definition polarized stereo monitor(KAERI-PSM II) and 10.4sec. auto-stereogram TV using parallax barrier method are developed. These developed systems can be used for people involved in extremely hazardous working area to give vivid reality image of work environment. In the recognition and tracking section, auto-vergencing technology using focus fixation and cepstral filter, stereo camera calibration, range measurement technology using stereo camera module are developed. And active target tracking technology is developed also. In the sensing and intelligent control research part, active radioactivity image monitoring unit is developed. The spatial resolution of monitoring unit is 10cm at 1m distance, FOV is 60x40 deg [HXV], and radioactivity detection limit is 1mR/hr. Also, radiation-resistant inspection camera for nuclear facilities is designed. In the intelligent control section, fuzzy control algorithm for obstacle detouring navigation of mobile robot is developed. The smoothing techniques by fuzzy set is adapted to raise the pliability of obstacle detouring navigation of mobile robot. In order to raise robustness of developed fuzzy algorithm, fuzzy control algorithm is applied to 'Truck Backer Upper' problem and tuned. These advanced critical robot technology and telepresence techniques developed in this project can be applied to nozzle-dam installation/removal robot system, can be used to realize unmanned remotelization of nozzle-dam installation/removal task in steam generator of nuclear power plant, which can be contributed for people involved in extremely hazardous

  13. Dynamic Modelling Of A SCARA Robot

    Science.gov (United States)

    Turiel, J. Perez; Calleja, R. Grossi; Diez, V. Gutierrez

    1987-10-01

    This paper describes a method for modelling industrial robots that considers dynamic approach to manipulation systems motion generation, obtaining the complete dynamic model for the mechanic part of the robot and taking into account the dynamic effect of actuators acting at the joints. For a four degree of freedom SCARA robot we obtain the dynamic model for the basic (minimal) configuration, that is, the three degrees of freedom that allow us to place the robot end effector in a desired point, using the Lagrange Method to obtain the dynamic equations in matrix form. The manipulator is considered to be a set of rigid bodies inter-connected by joints in the form of simple kinematic pairs. Then, the state space model is obtained for the actuators that move the robot joints, uniting the models of the single actuators, that is, two DC permanent magnet servomotors and an electrohydraulic actuator. Finally, using a computer simulation program written in FORTRAN language, we can compute the matrices of the complete model.

  14. The universal robot

    Science.gov (United States)

    Moravec, Hans

    1993-12-01

    Our artifacts are getting smarter, and a loose parallel with the evolution of animal intelligence suggests one future course for them. Computerless industrial machinery exhibits the behavioral flexibility of single-celled organisms. Today's best computer-controlled robots are like the simpler invertebrates. A thousand-fold increase in computer power in the next decade should make possible machines with reptile-like sensory and motor competence. Properly configured, such robots could do in the physical world what personal computers now do in the world of data - act on our behalf as literal-minded slaves. Growing computer power over the next half-century will allow this reptile stage to be surpassed, in stages producing robots that learn like mammals, model their world like primates, and eventually reason like humans. Depending on your point of view, humanity will then have produced a worthy successor, or transcended some of its inherited limitations and so transformed itself into something quite new.

  15. Dialogues with social robots enablements, analyses, and evaluation

    CERN Document Server

    Wilcock, Graham

    2017-01-01

    This book explores novel aspects of social robotics, spoken dialogue systems, human-robot interaction, spoken language understanding, multimodal communication, and system evaluation. It offers a variety of perspectives on and solutions to the most important questions about advanced techniques for social robots and chat systems. Chapters by leading researchers address key research and development topics in the field of spoken dialogue systems, focusing in particular on three special themes: dialogue state tracking, evaluation of human-robot dialogue in social robotics, and socio-cognitive language processing. The book offers a valuable resource for researchers and practitioners in both academia and industry whose work involves advanced interaction technology and who are seeking an up-to-date overview of the key topics. It also provides supplementary educational material for courses on state-of-the-art dialogue system technologies, social robotics, and related research fields.

  16. National project : advanced robot for nuclear power plant

    International Nuclear Information System (INIS)

    Tsunemi, T.; Takehara, K.; Hayashi, T.; Okano, H.; Sugiyama, S.

    1993-01-01

    The national project 'Advanced Robot' has been promoted by the Agency of Industrial science and Technology, MITI for eight years since 1983. The robot for a nuclear plant is one of the projects, and is a prototype intelligent one that also has a three dimensional vision system to generate an environmental model, a quadrupedal walking mechanism to work on stairs and four fingered manipulators to disassemble a valve with a hand tool. Many basic technologies such as an actuator, a tactile sensor, autonomous control and so on progress to high level. The prototype robot succeeded functionally in official demonstration in 1990. More refining such as downsizing and higher intelligence is necessary to realize a commercial robot, while basic technologies are useful to improve conventional robots and systems. This paper presents application studies on the advanced robot technologies. (author)

  17. Robotics for mining control

    Energy Technology Data Exchange (ETDEWEB)

    1986-11-01

    In 1982 surveys of the mining industry revealed no applications of robotics existed and none were planned. This report provides a general overview of automation in the mining industry since this point in time. Roof control electronics, gas monitoring, jumbo drill automation, remote and sensor- controlled continuous miners, automated trolley trucks, roof bolting and screening machines are examples of technology available today. The report concludes with recommendations as to six potential research areas. 25 refs.

  18. Sistem kontrol gerak kinematika robot gripper manipulator

    Directory of Open Access Journals (Sweden)

    Wayan Widhiada

    2018-01-01

    Full Text Available Abstrak Sistem robot manipulator ini merupakan mekanisme lengan yang terdiri dari serangkaian segmen yang digunakan untuk menangkap dan memindahkan benda dengan beberapa derajat kebebasan. Dalam perkembangannya, robot manipulator telah digunakan dalam melaksanakan misi tertentu dan membantu operasi di ruang angkasa. Robot biasanya berinteraksi dengan sistem tangan, dan dalam kegiatan industri tangan biasanya disebut sebagai gripper. Penulis menggunakan metode simulasi teknik yang dapat menentukan sistem gerak kinematika robot. Simulasi teknik adalah metode yang digunakan untuk mendesain dan menganalisa gerakan robot dimana hasil dari respon gerakan robot yang didapat mendekati hasil dalam keadaan sebenarnya. Simulasi juga dapat menghemat waktu dan biaya yang digunakan dalam mendesain robot gripper manipulator lima jari dengan elemen prismatik. Dengan menggunakan kontrol PID diharapkan respon gerak kinematik dari setiap joint robot manipulator mencapai perfomance yang terbaik seperti overshoot yang kecil, dan kondisi tenang (steady state dalam waktu yang singkat disertai dengan keselahan penggerak yang kecil. Melalui proses Advance tuning pada PID kontrol selesai didapatkan parameter penguat pada PID kontrol yaitu Kp = 0.7194, Ki = 8.306 dan Kd = 0.0061sehingga tercapai performance gerakan kinematika robot gripper manipulator yang terbaik sesuai yang dikehendaki oleh user dengan rise time yang singkat 0.52 detik, waktu puncak yang singkat 0.52 detik, maksimum overshoot yang kecil 1,8%, kesetebailan response dicapai pada 0.76 detik dan kesalahan penggerak yang sangat kecil 0.32%. Kata kunci: Robot gripper manipulator, PID control, gerakan kinematika Abstract A robot gripper manipulator system mechanism comprising a series of segments that are used to capture and move objects with multiple degrees of freedom. In the process, the robot manipulator has been used in carrying out the specific mission and assist operations in space. Robot manipulator

  19. Springer handbook of robotics

    CERN Document Server

    Khatib, Oussama

    2016-01-01

    The second edition of this handbook provides a state-of-the-art cover view on the various aspects in the rapidly developing field of robotics. Reaching for the human frontier, robotics is vigorously engaged in the growing challenges of new emerging domains. Interacting, exploring, and working with humans, the new generation of robots will increasingly touch people and their lives. The credible prospect of practical robots among humans is the result of the scientific endeavour of a half a century of robotic developments that established robotics as a modern scientific discipline. The ongoing vibrant expansion and strong growth of the field during the last decade has fueled this second edition of the Springer Handbook of Robotics. The first edition of the handbook soon became a landmark in robotics publishing and won the American Association of Publishers PROSE Award for Excellence in Physical Sciences & Mathematics as well as the organization’s Award for Engineering & Technology. The second edition o...

  20. Toward understanding social cues and signals in human-robot interaction: effects of robot gaze and proxemic behavior.

    Science.gov (United States)

    Fiore, Stephen M; Wiltshire, Travis J; Lobato, Emilio J C; Jentsch, Florian G; Huang, Wesley H; Axelrod, Benjamin

    2013-01-01

    As robots are increasingly deployed in settings requiring social interaction, research is needed to examine the social signals perceived by humans when robots display certain social cues. In this paper, we report a study designed to examine how humans interpret social cues exhibited by robots. We first provide a brief overview of perspectives from social cognition in humans and how these processes are applicable to human-robot interaction (HRI). We then discuss the need to examine the relationship between social cues and signals as a function of the degree to which a robot is perceived as a socially present agent. We describe an experiment in which social cues were manipulated on an iRobot Ava(TM) mobile robotics platform in a hallway navigation scenario. Cues associated with the robot's proxemic behavior were found to significantly affect participant perceptions of the robot's social presence and emotional state while cues associated with the robot's gaze behavior were not found to be significant. Further, regardless of the proxemic behavior, participants attributed more social presence and emotional states to the robot over repeated interactions than when they first interacted with it. Generally, these results indicate the importance for HRI research to consider how social cues expressed by a robot can differentially affect perceptions of the robot's mental states and intentions. The discussion focuses on implications for the design of robotic systems and future directions for research on the relationship between social cues and signals.

  1. A Robot with Complex Facial Expressions

    Directory of Open Access Journals (Sweden)

    J. Takeno

    2009-08-01

    Full Text Available The authors believe that the consciousness of humans basically originates from languages and their association-like flow of consciousness, and that feelings are generated accompanying respective languages. We incorporated artificial consciousness into a robot; achieved an association flow of language like flow of consciousness; and developed a robot called Kansei that expresses its feelings according to the associations occurring in the robot. To be able to fully communicate with humans, robots must be able to display complex expressions, such as a sense of being thrilled. We therefore added to the Kansei robot a device to express complex feelings through its facial expressions. The Kansei robot is actually an artificial skull made of aluminum, with servomotors built into it. The face is made of relatively soft polyethylene, which is formed to appear like a human face. Facial expressions are generated using 19 servomotors built into the skull, which pull metal wires attached to the facial “skin” to create expressions. The robot at present is capable of making six basic expressions as well as complex expressions, such as happiness and fear combined.

  2. Automated gravimetric sample pretreatment using an industrial robot for the high-precision determination of plutonium by isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Surugaya, Naoki; Hiyama, Toshiaki; Watahiki, Masaru

    2008-01-01

    A robotized sample-preparation method for the determination of Pu, which is recovered by extraction reprocessing of spent nuclear fuel, by isotope dilution mass spectrometry (IDMS) is described. The automated system uses a six-axis industrial robot, whose motility is very fast, accurate, and flexible, installed in a glove box. The automation of the weighing and dilution steps enables operator-unattended sample pretreatment for the high-precision analysis of Pu in aqueous solutions. Using the developed system, the Pu concentration in a HNO 3 medium was successfully determined using a set of subsequent mass spectrometric measurements. The relative uncertainty in determining the Pu concentration by IDMS using this system was estimated to be less than 0.1% (k=2), which is equal to that expected of a talented analysis. The operation time required was the same as that for a skilled operator. (author)

  3. Overview of NASA's In Space Robotic Servicing

    Science.gov (United States)

    Reed, Benjamin B.

    2015-01-01

    The panel discussion will start with a presentation of the work of the Satellite Servicing Capabilities Office (SSCO), a team responsible for the overall management, coordination, and implementation of satellite servicing technologies and capabilities for NASA. Born from the team that executed the five Hubble servicing missions, SSCO is now maturing a core set of technologies that support both servicing goals and NASA's exploration and science objectives, including: autonomous rendezvous and docking systems; dexterous robotics; high-speed, fault-tolerant computing; advanced robotic tools, and propellant transfer systems. SSCOs proposed Restore-L mission, under development since 2009, is rapidly advancing the core capabilities the fledgling satellite-servicing industry needs to jumpstart a new national industry. Restore-L is also providing key technologies and core expertise to the Asteroid Redirect Robotic Mission (ARRM), with SSCO serving as the capture module lead for the ARRM effort. Reed will present a brief overview of SSCOs history, capabilities and technologies.

  4. Enhanced Flexibility and Reusability through State Machine-Based Architectures for Multisensor Intelligent Robotics

    Directory of Open Access Journals (Sweden)

    Héctor Herrero

    2017-05-01

    Full Text Available This paper presents a state machine-based architecture, which enhances the flexibility and reusability of industrial robots, more concretely dual-arm multisensor robots. The proposed architecture, in addition to allowing absolute control of the execution, eases the programming of new applications by increasing the reusability of the developed modules. Through an easy-to-use graphical user interface, operators are able to create, modify, reuse and maintain industrial processes, increasing the flexibility of the cell. Moreover, the proposed approach is applied in a real use case in order to demonstrate its capabilities and feasibility in industrial environments. A comparative analysis is presented for evaluating the presented approach versus traditional robot programming techniques.

  5. Elastic Inflatable Actuators for Soft Robotic Applications.

    Science.gov (United States)

    Gorissen, Benjamin; Reynaerts, Dominiek; Konishi, Satoshi; Yoshida, Kazuhiro; Kim, Joon-Wan; De Volder, Michael

    2017-11-01

    The 20th century's robotic systems have been made from stiff materials, and much of the developments have pursued ever more accurate and dynamic robots, which thrive in industrial automation, and will probably continue to do so for decades to come. However, the 21st century's robotic legacy may very well become that of soft robots. This emerging domain is characterized by continuous soft structures that simultaneously fulfill the role of robotic link and actuator, where prime focus is on design and fabrication of robotic hardware instead of software control. These robots are anticipated to take a prominent role in delicate tasks where classic robots fail, such as in minimally invasive surgery, active prosthetics, and automation tasks involving delicate irregular objects. Central to the development of these robots is the fabrication of soft actuators. This article reviews a particularly attractive type of soft actuators that are driven by pressurized fluids. These actuators have recently gained traction on the one hand due to the technology push from better simulation tools and new manufacturing technologies, and on the other hand by a market pull from applications. This paper provides an overview of the different advanced soft actuator configurations, their design, fabrication, and applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Soft Robotic Grippers for Biological Sampling on Deep Reefs.

    Science.gov (United States)

    Galloway, Kevin C; Becker, Kaitlyn P; Phillips, Brennan; Kirby, Jordan; Licht, Stephen; Tchernov, Dan; Wood, Robert J; Gruber, David F

    2016-03-01

    This article presents the development of an underwater gripper that utilizes soft robotics technology to delicately manipulate and sample fragile species on the deep reef. Existing solutions for deep sea robotic manipulation have historically been driven by the oil industry, resulting in destructive interactions with undersea life. Soft material robotics relies on compliant materials that are inherently impedance matched to natural environments and to soft or fragile organisms. We demonstrate design principles for soft robot end effectors, bench-top characterization of their grasping performance, and conclude by describing in situ testing at mesophotic depths. The result is the first use of soft robotics in the deep sea for the nondestructive sampling of benthic fauna.

  7. An automated miniature robotic vehicle inspection system

    Energy Technology Data Exchange (ETDEWEB)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter [Centre for Ultrasonic Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom)

    2014-02-18

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software.

  8. An automated miniature robotic vehicle inspection system

    International Nuclear Information System (INIS)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter

    2014-01-01

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software

  9. Mobile robotics for CANDU reactor maintenance: case studies and near-term improvements

    International Nuclear Information System (INIS)

    Lipsett, M. G.; Rody, K.H.

    1995-01-01

    Although robotics researchers have been promising that robotics would soon be performing tasks in hazardous environments, the reality has yet to live up to the hype. The presently available crop of robots suitable for deployment in industrial situations are remotely operated, requiring skilled users. This talk describes cases where mobile robots have been used successfully in CANDU stations, discusses the difficulties in using mobile robots for reactor maintenance, and provides near-term goals for achievable improvements in performance and usefulness. (author)

  10. INDUSTRIAL ROBOT ARM SIMULATION SOFTWARE DEVELOPMENT USING JAVA-3D AND MATLAB SIMULINK PROGRAMMING LANGUAGE

    OpenAIRE

    Wirabhuana, Arya

    2011-01-01

    Robot Arms Simulation Software development using Structured Programming Languages, Third Party Language, and Artificial Intelligence Programming Language are the common techniques in simulating robot arms movement. Those three techniques are having its strengths and weaknesses depend on several constraints such as robot type, degree of operation complexity to be simulated, operator skills, and also computer capability. This paper will discuss on Robot Arms Simulation Software (RSS) developmen...

  11. Training Engineering Disciplines and Skills through Robot Projects

    DEFF Research Database (Denmark)

    Friesel, Anna

    The popularity of robots in educational activities increased the last 10-15 years. Engineering education all over the world includes courses and projects involving design, use and programming of robots in a variety of programs at technical colleges and universities. At the same time there is a gr......The popularity of robots in educational activities increased the last 10-15 years. Engineering education all over the world includes courses and projects involving design, use and programming of robots in a variety of programs at technical colleges and universities. At the same time...... there is a growing interest to work with robots. Robotic skills are also highly requested in industrial companies. At the Technical University of Denmark, DTU Diplom, we have several projects involving building and programing robots in our bachelor programs in Electronics, Computer Science, IT and Mechanical...... Engineering. This presentation deals with our experience in robotic activities in different programs in order to enhance understanding of mathematics, physics and different technical disciplines in the named programs. We also observed the increased motivation for learning theory when we combine traditional...

  12. A Motion System for Social and Animated Robots

    Directory of Open Access Journals (Sweden)

    Jelle Saldien

    2014-05-01

    Full Text Available This paper presents an innovative motion system that is used to control the motions and animations of a social robot. The social robot Probo is used to study Human-Robot Interactions (HRI, with a special focus on Robot Assisted Therapy (RAT. When used for therapy it is important that a social robot is able to create an “illusion of life” so as to become a believable character that can communicate with humans. The design of the motion system in this paper is based on insights from the animation industry. It combines operator-controlled animations with low-level autonomous reactions such as attention and emotional state. The motion system has a Combination Engine, which combines motion commands that are triggered by a human operator with motions that originate from different units of the cognitive control architecture of the robot. This results in an interactive robot that seems alive and has a certain degree of “likeability”. The Godspeed Questionnaire Series is used to evaluate the animacy and likeability of the robot in China, Romania and Belgium.

  13. The difficulties of writing procurement specifications for robots in nuclear applications

    International Nuclear Information System (INIS)

    Moore, F.W.; Bowen, W.W.

    1986-01-01

    The commercial robots available today were developed to primarily support the automotive or electronics industries. The adaptation of these robots and the current robotic technology to handle and manufacture nuclear materials has had its problems. The operational space and maintenance constraints have special consideration. The robotic systems of today tend to not have the payload capability for nuclear applications or, if the payload is sufficient, the system is very large and has several operating and maintenance accessibility requirements. The process of specifying, purchasing, and modifying a robotic system is an expensive and time-consuming process. The procurement specification is critical to obtaining competitive quotations on robots for nuclear applications resulting in the most economical robotic system

  14. Security robots for nuclear materials management

    International Nuclear Information System (INIS)

    Deming, R.

    1986-01-01

    Robots have successfully invaded industry where they have replaced costly personnel performing their tasks cheaper and better in most cases. There may be a place for a unique class of robots, security robots, in nuclear materials management. Robots could be employed in the functions of general response, patrol and neutralizing dangerous situations. The last is perhaps most important. Ion Track Instruments of Burlington, Massachusetts has designed an excellent unit to protect life in hazardous situations. The unit can detect, disrupt or remove explosives. It can enter dangerous areas to reconnoiter the extent of danger. It can communicate with those in a dangerous area. It can fight fires or clean an area using a 2 1/2 inch, two man hose. If necessary, it can engage an adversary in a fire fight using a twelve gauge shot gun

  15. Laboratorio remoto para la enseñanza de la programación de un robot industrial

    Directory of Open Access Journals (Sweden)

    Carlos Ariza L.

    2011-06-01

    Full Text Available El presente artículo describe la evolución del desarrollo y funcionamiento de un laboratorio remoto para la enseñanza de la automatización. Por medio de una aplicación Web, un software de acceso remoto que permite una conexión multiusuario independiente y archivos que contienen código con comandos del símbolo del sistema. Con esto se logra administrar el laboratorio evitando conflictos de uso entre los usuarios. Con este desarrollo se busca incrementar el tiempo de productividad y eliminar las restricciones de espacio y tiempo para la utilización de un robot manipulador de tipo industrial.

  16. Towards safe robots approaching Asimov’s 1st law

    CERN Document Server

    Haddadin, Sami

    2014-01-01

    The vision of seamless human-robot interaction in our everyday life that allows for tight cooperation between human and robot has not become reality yet. However, the recent increase in technology maturity finally made it possible to realize systems of high integration, advanced sensorial capabilities and enhanced power to cross this barrier and merge living spaces of humans and robot workspaces to at least a certain extent. Together with the increasing industrial effort to realize first commercial service robotics products this makes it necessary to properly address one of the most fundamental questions of Human-Robot Interaction: How to ensure safety in human-robot coexistence? In this authoritative monograph, the essential question about the necessary requirements for a safe robot is addressed in depth and from various perspectives. The approach taken in this book focuses on the biomechanical level of injury assessment, addresses the physical evaluation of robot-human impacts, and isolates the major factor...

  17. Robotics and remote systems for hazardous environments

    International Nuclear Information System (INIS)

    Jamshidi, M.; Eicker, P.

    1993-01-01

    This is the first volume in a series of books to be published by Prentice Hall on Environmental and Intelligent Manufacturing Systems. The editors have assembled an interdisciplinary collection of authors from industry, government, and academia, that provide a broad range of expertise on robotics and remote systems. Readily accessible to practicing engineers, the book provides case studies and introduces new technology applicable to remote operations in unstructured and/or hazardous environments. Chapter 1 gives an overview of the US Environmental Protection Agency's efforts to apply robotic technology to assist in the operations at hazardous waste sites. The next chapter focuses on the theory and implementation of robust impedance control for robotic manipulators. Chapter 3 presents a discussion on the integration of failure tolerance into robotic systems. The next two chapters address the issue of sensory feedback and its indispensable role in remote and/or hazardous environments. Chapter 6 presents numerous examples of robots and telemanipulators that have been applied for various tasks at the DOE's Savannah River Site. The following chapter picks up on this theme and discusses the fundamental paradigm shifts that are required in artificial intelligence for robots to deal with hazardous, unstructured, and dynamic environments. Chapter 8 returns to the issue of impedance control first raised in Chapter 2. While the majority of the applications discussed in this book are related to the nuclear industry, chapter 9 considers applying telerobotics for the control of traditional heavy machinery that is widely used in forestry, mining, and construction. The final chapter of the book returns to the topic of artificial intelligence's role in producing increased autonomy for robotic systems and provides an interesting counterpoint to the philosophy of reactive control discussed earlier

  18. 2nd International Conference on Mechatronics and Robotics Engineering

    CERN Document Server

    Wei, Bin

    2017-01-01

    Featuring selected contributions from the 2nd International Conference on Mechatronics and Robotics Engineering, held in Nice, France, February 18–19, 2016, this book introduces recent advances and state-of-the-art technologies in the field of advanced intelligent manufacturing. This systematic and carefully detailed collection provides a valuable reference source for mechanical engineering researchers who want to learn about the latest developments in advanced manufacturing and automation, readers from industry seeking potential solutions for their own applications, and those involved in the robotics and mechatronics industry.

  19. Application of Joint Error Maximal Mutual Compensation to hexapod robots

    DEFF Research Database (Denmark)

    Veryha, Yauheni; Petersen, Henrik Gordon

    2008-01-01

    A good practice to ensure high-positioning accuracy in industrial robots is to use joint error maximum mutual compensation (JEMMC). This paper presents an application of JEMMC for positioning of hexapod robots to improve end-effector positioning accuracy. We developed an algorithm and simulation ...

  20. ESPRIT Project 6457: Interoperability of Standards for Robotics in CIME

    DEFF Research Database (Denmark)

    Haenisch, Jorchen; Kroszynski, Uri; Ludwig, Arnold

    The groving need for accurate information about manufacturing data (models of robots and other mechanisms)in diverse industrial applications has initiated ESPRIT Project 6457 InterRob.This InterRob "Specification of a STEP Based Reference Model for Exchange of Robotics Models" act as a basis...

  1. Robotics Offer Newfound Surgical Capabilities

    Science.gov (United States)

    2008-01-01

    Barrett Technology Inc., of Cambridge, Massachusetts, completed three Phase II Small Business Innovation Research (SBIR) contracts with Johnson Space Center, during which the company developed and commercialized three core technologies: a robotic arm, a hand that functions atop the arm, and a motor driver to operate the robotics. Among many industry uses, recently, an adaptation of the arm has been cleared by the U.S. Food and Drug Administration (FDA) for use in a minimally invasive knee surgery procedure, where its precision control makes it ideal for inserting a very small implant.

  2. Soft Robotics: from scientific challenges to technological applications

    Science.gov (United States)

    Laschi, C.

    2016-05-01

    Soft robotics is a recent and rapidly growing field of research, which aims at unveiling the principles for building robots that include soft materials and compliance in the interaction with the environment, so as to exploit so-called embodied intelligence and negotiate natural environment more effectively. Using soft materials for building robots poses new technological challenges: the technologies for actuating soft materials, for embedding sensors into soft robot parts, for controlling soft robots are among the main ones. This is stimulating research in many disciplines and many countries, such that a wide community is gathering around initiatives like the IEEE TAS TC on Soft Robotics and the RoboSoft CA - A Coordination Action for Soft Robotics, funded by the European Commission. Though still in its early stages of development, soft robotics is finding its way in a variety of applications, where safe contact is a main issue, in the biomedical field, as well as in exploration tasks and in the manufacturing industry. And though the development of the enabling technologies is still a priority, a fruitful loop is growing between basic research and application-oriented research in soft robotics.

  3. Robotics in Arthroplasty: A Comprehensive Review.

    Science.gov (United States)

    Jacofsky, David J; Allen, Mark

    2016-10-01

    Robotic-assisted orthopedic surgery has been available clinically in some form for over 2 decades, claiming to improve total joint arthroplasty by enhancing the surgeon's ability to reproduce alignment and therefore better restore normal kinematics. Various current systems include a robotic arm, robotic-guided cutting jigs, and robotic milling systems with a diversity of different navigation strategies using active, semiactive, or passive control systems. Semiactive systems have become dominant, providing a haptic window through which the surgeon is able to consistently prepare an arthroplasty based on preoperative planning. A review of previous designs and clinical studies demonstrate that these robotic systems decrease variability and increase precision, primarily focusing on component positioning and alignment. Some early clinical results indicate decreased revision rates and improved patient satisfaction with robotic-assisted arthroplasty. The future design objectives include precise planning and even further improved consistent intraoperative execution. Despite this cautious optimism, many still wonder whether robotics will ultimately increase cost and operative time without objectively improving outcomes. Over the long term, every industry that has seen robotic technology be introduced, ultimately has shown an increase in production capacity, improved accuracy and precision, and lower cost. A new generation of robotic systems is now being introduced into the arthroplasty arena, and early results with unicompartmental knee arthroplasty and total hip arthroplasty have demonstrated improved accuracy of placement, improved satisfaction, and reduced complications. Further studies are needed to confirm the cost effectiveness of these technologies. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Mobile robots and remote systems in nuclear applications

    International Nuclear Information System (INIS)

    Segovia de los Rios, J. A.; Benitez R, J. S.

    2010-01-01

    Traditionally, the robots have been used in the industry for the colored to the spray, welding, schemed, assemble and handling of materials. However, these devices have had a deep impact in the nuclear industry where the first objective has been to reduce the exhibition and the personnel contact with radioactive materials. Knowing the utility of the mobile robots and remote systems in nuclear facilities in the world, the Department of Automation and Instrumentation of the Instituto Nacional de Investigaciones Nucleares (ININ) has carried out some researches and applications that they have facilitated the work of the researches and professionals of the ININ involved in the handling of radioactive materials, as the system with monorail for the introduction of irradiated materials in a production cell of Iodine-131 and the robot vehicle for the radioactive materials transport TRASMAR (contraction of Transportacion Asistida de Materiales Radiactivos). (Author)

  5. Detección Eficiente de Elipses en Imágenes. Aplicación al Posicionamiento 3D de un Robot Industrial

    Directory of Open Access Journals (Sweden)

    Eusebio de la Fuente López

    2012-10-01

    Full Text Available Resumen: En este artículo se presenta un algoritmo para la detección de elipses en imágenes, cuyo objetivo es el cálculo d e la posición 3D de una característica circular en una aplicación robótica. El algoritmo emplea un procedimiento estocástico RANSAC cuya eficiencia ha sido mejorada. El muestreo aleatorio ha sido sustituido por un muestreo guiado sobre las cadenas de contorno de la imagen, que son ordenadas de acuerdo a un criterio de probabilidad de formar parte de la elipse buscada. Esta estrategia disminuye notablemente la cantidad de muestras necesarias, permitiendo que el algoritmo sea adecuado para tiempo real. Abstract: In this paper, we present a ellipse detection algorithm developed to measure the 3-D position of a circular feature in a robotic application. The algorithm uses a RANSAC stochastic procedure whose efficiency has been significantly improved, substituting the random sampling with a guided sampling on the curve segments in the image. The contours of the image are first split analyzing their curvature. Then the curve segments are sorted according to their likelihood to be part of the ellipse. We have used the length as a prior indicator of this likelihood. The RANSAC algorithm starts considering only the longer curve segments whilst shorter curve segments are progressively incorporated. This strategy notably diminishes the amount of samples needed and makes the algorithm suitable for real time. Palabras clave: Reconocimiento de Patrones, Estimación Robusta, Visión para Robots, Robots Industriales, Keywords: Visual Pattern Recognition, Robust Estimation, Robot Vision, Industrial Robots

  6. Service Robots for Hospitals

    DEFF Research Database (Denmark)

    Özkil, Ali Gürcan

    services to maintain the quality of healthcare provided. This thesis and the Industrial PhD project aim to address logistics, which is the most resource demanding service in a hospital. The scale of the transportation tasks is huge and the material flow in a hospital is comparable to that of a factory. We......Hospitals are complex and dynamic organisms that are vital to the well-being of societies. Providing good quality healthcare is the ultimate goal of a hospital, and it is what most of us are only concerned with. A hospital, on the other hand, has to orchestrate a great deal of supplementary...... believe that these transportation tasks, to a great extent, can be and will be automated using mobile robots. This thesis consequently addresses the key technical issues of implementing service robots in hospitals. In simple terms, a robotic system for automating hospital logistics has to be reliable...

  7. Developing sensor-driven robots for hazardous environments

    International Nuclear Information System (INIS)

    Trivedi, M.M.; Gonzalez, R.C.; Abidi, M.A.

    1987-01-01

    Advancements in robotic technology are sought to provide enhanced personnel safety and reduced costs of operation associated with nuclear power plant manufacture, construction, maintenance, operation, and decommissioning. The authors describe main characteristics of advanced robotic systems for such applications and suggest utilization of sensor-driven robots. Research efforts described in the paper are directed towards developing robotic systems for automatic inspection and manipulation of various tasks associated with a test panel mounted with a variety of switches, controls, displays, meters, and valves

  8. Developing concepts for improved efficiency of robot work preparation

    OpenAIRE

    Essers, M.S.; Vaneker, Thomas H.J.

    2013-01-01

    SInBot[1] is a large research project that focuses on maximizing the efficient use of mobile industrial robots during medium sized production runs. The system that will be described in this paper will focusses on the development and validation of concepts for efficient work preparation for cells of intelligent mobile robots that execute medium sized production runs. For a wide range of products, the machining tasks will be defined on an appropriate level, enabling control over the robots beha...

  9. Mine rescue robots requirements: Outcomes from an industry workshop

    CSIR Research Space (South Africa)

    Green, J

    2013-10-01

    Full Text Available and internationally. The paper identifies three definite robot deployments in South Africa as a) box hole deployment (vertical tunnels), b) flying drone reconnaissance and c) proto (rescue) team assistance. These represent applications where there is a market need...

  10. Velocity-curvature patterns limit human-robot physical interaction.

    Science.gov (United States)

    Maurice, Pauline; Huber, Meghan E; Hogan, Neville; Sternad, Dagmar

    2018-01-01

    Physical human-robot collaboration is becoming more common, both in industrial and service robotics. Cooperative execution of a task requires intuitive and efficient interaction between both actors. For humans, this means being able to predict and adapt to robot movements. Given that natural human movement exhibits several robust features, we examined whether human-robot physical interaction is facilitated when these features are considered in robot control. The present study investigated how humans adapt to biological and non-biological velocity patterns in robot movements. Participants held the end-effector of a robot that traced an elliptic path with either biological (two-thirds power law) or non-biological velocity profiles. Participants were instructed to minimize the force applied on the robot end-effector. Results showed that the applied force was significantly lower when the robot moved with a biological velocity pattern. With extensive practice and enhanced feedback, participants were able to decrease their force when following a non-biological velocity pattern, but never reached forces below those obtained with the 2/3 power law profile. These results suggest that some robust features observed in natural human movements are also a strong preference in guided movements. Therefore, such features should be considered in human-robot physical collaboration.

  11. Advance of Hazardous Operation Robot and its Application in Special Equipment Accident Rescue

    Science.gov (United States)

    Zeng, Qin-Da; Zhou, Wei; Zheng, Geng-Feng

    A survey of hazardous operation robot is given out in this article. Firstly, the latest researches such as nuclear industry robot, fire-fighting robot and explosive-handling robot are shown. Secondly, existing key technologies and their shortcomings are summarized, including moving mechanism, control system, perceptive technology and power technology. Thirdly, the trend of hazardous operation robot is predicted according to current situation. Finally, characteristics and hazards of special equipment accident, as well as feasibility of hazardous operation robot in the area of special equipment accident rescue are analyzed.

  12. Robots that can adapt like animals.

    Science.gov (United States)

    Cully, Antoine; Clune, Jeff; Tarapore, Danesh; Mouret, Jean-Baptiste

    2015-05-28

    Robots have transformed many industries, most notably manufacturing, and have the power to deliver tremendous benefits to society, such as in search and rescue, disaster response, health care and transportation. They are also invaluable tools for scientific exploration in environments inaccessible to humans, from distant planets to deep oceans. A major obstacle to their widespread adoption in more complex environments outside factories is their fragility. Whereas animals can quickly adapt to injuries, current robots cannot 'think outside the box' to find a compensatory behaviour when they are damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes, and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots. A promising approach to reducing robot fragility involves having robots learn appropriate behaviours in response to damage, but current techniques are slow even with small, constrained search spaces. Here we introduce an intelligent trial-and-error algorithm that allows robots to adapt to damage in less than two minutes in large search spaces without requiring self-diagnosis or pre-specified contingency plans. Before the robot is deployed, it uses a novel technique to create a detailed map of the space of high-performing behaviours. This map represents the robot's prior knowledge about what behaviours it can perform and their value. When the robot is damaged, it uses this prior knowledge to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a behaviour that compensates for the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new algorithm will enable more robust, effective, autonomous robots, and may shed light on the principles

  13. Adding intelligence to conventional industrial robots

    International Nuclear Information System (INIS)

    Harrigan, R.W.

    1993-01-01

    Remote systems are needed to accomplish many tasks such as the clean up of waste sites in which the exposure of personnel to radiation, chemical, explosive, and other hazardous constituents is unacceptable. In addition, hazardous operations which in the past have been completed by technicians are under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. Traditional remote operations have, unfortunately, proven to also have very low productivity when compare with unencumbered human operators. However, recent advances in the integration of sensors and computing into the control of conventional remotely operated industrial equipment has shown great promise for providing systems capable of solving difficult problems

  14. Interoperability of Standards for Robotics in CIME

    DEFF Research Database (Denmark)

    Kroszynski, Uri; Sørensen, Torben; Ludwig, Arnold

    1997-01-01

    Esprit Project 6457 "Interoperability of Standards for Robotics in CIME (InterRob)" belongs to the Subprogramme "Integration in Manufacturing" of Esprit, the European Specific Programme for Research and Development in Information Technology supported by the European Commision.The first main goal...... of InterRob was to close the information chain between product design, simulation, programming, and robot control by developing standardized interfaces and their software implementation for standards STEP (International Standard for the Exchange of Product model data, ISO 10303) and IRL (Industrial Robot...... Language, DIN 66312). This is a continuation of the previous Esprit projects CAD*I and NIRO, which developed substantial basics of STEP.The InterRob approach is based on standardized models for product geometry, kinematics, robotics, dynamics and control, hence on a coherent neutral information model...

  15. Robotics and remote handling in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This book presents the papers given at a conference on the use of remote handling equipment in nuclear facilities. Topics considered at the conference included dose reduction, artificial intelligence in nuclear plant maintenance, robotic welding, uncertainty covariances, reactor operation and inspection, reactor maintenance and repair, uranium mining, fuel fabrication, reactor component manufacture, irradiated fuel and radioactive waste management, and radioisotope handling.

  16. 3D printing for soft robotics - a review.

    Science.gov (United States)

    Gul, Jahan Zeb; Sajid, Memoon; Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Shah, Imran; Kim, Kyung-Hwan; Lee, Jae-Wook; Choi, Kyung Hyun

    2018-01-01

    Soft robots have received an increasing attention due to their advantages of high flexibility and safety for human operators but the fabrication is a challenge. Recently, 3D printing has been used as a key technology to fabricate soft robots because of high quality and printing multiple materials at the same time. Functional soft materials are particularly well suited for soft robotics due to a wide range of stimulants and sensitive demonstration of large deformations, high motion complexities and varied multi-functionalities. This review comprises a detailed survey of 3D printing in soft robotics. The development of key 3D printing technologies and new materials along with composites for soft robotic applications is investigated. A brief summary of 3D-printed soft devices suitable for medical to industrial applications is also included. The growing research on both 3D printing and soft robotics needs a summary of the major reported studies and the authors believe that this review article serves the purpose.

  17. A Web-Based Integration Procedure for the Development of Reconfigurable Robotic Work-Cells

    Directory of Open Access Journals (Sweden)

    Paulo Ferreira

    2013-07-01

    Full Text Available Concepts related to the development of reconfigurable manufacturing systems (RMS and methodologies to provide the best practices in the processing industry and factory automation, such as system integration and web-based technology, are major issues in designing next-generation manufacturing systems (NGMS. Adaptable and integrable devices are crucial for the success of NGMS. In robotic cells the integration of manufacturing components is essential to accelerate system adaptability. Sensors, control architectures and communication technologies have contributed to achieving further agility in reconfigurable factories. In this work a web-based robotic cell integration procedure is proposed to aid the identification of reconfigurable issues and requirements. This methodology is applied to an industrial robot manipulator to enhance system flexibility towards the development of a reconfigurable robotic platform.

  18. Laws on Robots, Laws by Robots, Laws in Robots : Regulating Robot Behaviour by Design

    NARCIS (Netherlands)

    Leenes, R.E.; Lucivero, F.

    2015-01-01

    Speculation about robot morality is almost as old as the concept of a robot itself. Asimov’s three laws of robotics provide an early and well-discussed example of moral rules robots should observe. Despite the widespread influence of the three laws of robotics and their role in shaping visions of

  19. Adaptive Robotic Fabrication for Conditions of Material Inconsistency

    DEFF Research Database (Denmark)

    Nicholas, Paul; Zwierzycki, Mateusz; Clausen Nørgaard, Esben

    2017-01-01

    This paper describes research that addresses the variable behaviour of industrial quality metals and the extension of computational techniques into the fabrication process. It describes the context of robotic incremental sheet metal forming, a freeform method for imparting 3D form onto a 2D thin ...... is an offline predictive strategy based on machine learning. Rigidisation of thin metal skins......This paper describes research that addresses the variable behaviour of industrial quality metals and the extension of computational techniques into the fabrication process. It describes the context of robotic incremental sheet metal forming, a freeform method for imparting 3D form onto a 2D thin...

  20. Nozzle Mounting Method Optimization Based on Robot Kinematic Analysis

    Science.gov (United States)

    Chen, Chaoyue; Liao, Hanlin; Montavon, Ghislain; Deng, Sihao

    2016-08-01

    Nowadays, the application of industrial robots in thermal spray is gaining more and more importance. A desired coating quality depends on factors such as a balanced robot performance, a uniform scanning trajectory and stable parameters (e.g. nozzle speed, scanning step, spray angle, standoff distance). These factors also affect the mass and heat transfer as well as the coating formation. Thus, the kinematic optimization of all these aspects plays a key role in order to obtain an optimal coating quality. In this study, the robot performance was optimized from the aspect of nozzle mounting on the robot. An optimized nozzle mounting for a type F4 nozzle was designed, based on the conventional mounting method from the point of view of robot kinematics validated on a virtual robot. Robot kinematic parameters were obtained from the simulation by offline programming software and analyzed by statistical methods. The energy consumptions of different nozzle mounting methods were also compared. The results showed that it was possible to reasonably assign the amount of robot motion to each axis during the process, so achieving a constant nozzle speed. Thus, it is possible optimize robot performance and to economize robot energy.

  1. CSIR Centre for Mining Innovation and the mine safety platform robot

    CSIR Research Space (South Africa)

    Green, JJ

    2012-11-01

    Full Text Available The Council for Scientific and Industrial Research (CSIR) in South Africa is currently developing a robot for the inspection of the ceiling (hanging wall) in an underground gold mine. The robot autonomously navigates the 30 meter long by 3 meter...

  2. Inventing Japan's 'robotics culture': the repeated assembly of science, technology, and culture in social robotics.

    Science.gov (United States)

    Sabanović, Selma

    2014-06-01

    Using interviews, participant observation, and published documents, this article analyzes the co-construction of robotics and culture in Japan through the technical discourse and practices of robotics researchers. Three cases from current robotics research--the seal-like robot PARO, the Humanoid Robotics Project HRP-2 humanoid, and 'kansei robotics' - show the different ways in which scientists invoke culture to provide epistemological grounding and possibilities for social acceptance of their work. These examples show how the production and consumption of social robotic technologies are associated with traditional crafts and values, how roboticists negotiate among social, technical, and cultural constraints while designing robots, and how humans and robots are constructed as cultural subjects in social robotics discourse. The conceptual focus is on the repeated assembly of cultural models of social behavior, organization, cognition, and technology through roboticists' narratives about the development of advanced robotic technologies. This article provides a picture of robotics as the dynamic construction of technology and culture and concludes with a discussion of the limits and possibilities of this vision in promoting a culturally situated understanding of technology and a multicultural view of science.

  3. A literature review on new robotics : automation from love to war

    OpenAIRE

    Royakkers, L.M.M.; Est, van, Q.C.

    2015-01-01

    This article investigates the social significance of robotics for the years to come in Europe and the US by studying robotics developments in five different areas: the home, health care, traffic, the police force, and the army. Our society accepts the use of robots to perform dull, dangerous, and dirty industrial jobs. But now that robotics is moving out of the factory, the relevant question is how far do we want to go with the automation of care for children and the elderly, of killing terro...

  4. Vision Guided Intelligent Robot Design And Experiments

    Science.gov (United States)

    Slutzky, G. D.; Hall, E. L.

    1988-02-01

    The concept of an intelligent robot is an important topic combining sensors, manipulators, and artificial intelligence to design a useful machine. Vision systems, tactile sensors, proximity switches and other sensors provide the elements necessary for simple game playing as well as industrial applications. These sensors permit adaption to a changing environment. The AI techniques permit advanced forms of decision making, adaptive responses, and learning while the manipulator provides the ability to perform various tasks. Computer languages such as LISP and OPS5, have been utilized to achieve expert systems approaches in solving real world problems. The purpose of this paper is to describe several examples of visually guided intelligent robots including both stationary and mobile robots. Demonstrations will be presented of a system for constructing and solving a popular peg game, a robot lawn mower, and a box stacking robot. The experience gained from these and other systems provide insight into what may be realistically expected from the next generation of intelligent machines.

  5. 4th International Conference on Advanced Robotics

    CERN Document Server

    1989-01-01

    The Fourth International Conference on Advanced Robotics was held in Columbus, Ohio, U. S. A. on June 13th to 15th, 1989. The first two conferences in this series were held in Tokyo. The third was held in Versailles, France in October 1987. The International Conference on Advanced Robotics is affiliated with the International Federation of Robotics. This conference was sponsored by The Ohio State University. The American Society of Mechanical Engineers was a cooperating co-sponsor. The objective of the International Conference on Advanced Robotics is to provide an international exchange of information on the topic of advanced robotics. This was adopted as one of the themes for international research cooperation at a meeting of representatives of seven industrialized countries held in Williamsburg, U. S. A. in May 1983. The present conference is truly international in character with contributions from authors of twelve countries. (Bulgaria, Canada, France, Great Britain, India, Italy, Japan, Peoples Republic o...

  6. Desarrollo de un Banco de Pruebas Experimental mediante Control de Fuerza con Robot Industrial para el Análisis de la Respuesta Mecánica de Asientos de Coche

    Directory of Open Access Journals (Sweden)

    A. Valera

    2009-04-01

    Full Text Available Resumen: Este trabajo presenta el desarrollo de un banco de pruebas experimental para el análisis de la respuesta mecánica de los asientos de vehículos durante la entrada y salida de pasajeros. Para realizar este desarrollo, se consideran dos fases: la primera fase es la captura de datos, realizada mediante una manta sensorizada con una red de galgas de presión y un sistema de fotogrametría a fin de capturar el movimiento realizado por una persona al sentarse en el asiento de un automóvil. La segunda fase consiste en reproducir dicho movimiento de forma automática mediante un maniquí acoplado a un robot, controlando la fuerza que ejerce el maniquí sobre el asiento.El desarrollo debe permitir aplicar diferentes estrategias de control de fuerza con robots industriales, utilizando para ello una plataforma de prueba consistente en el robot IRB140 de ABB y un sensor de fuerza industrial JR3 de 6 grados de libertad. Como arquitectura de control, se presentan dos alternativas. La primera utiliza la aplicación software WebWare SDK de ABB. En la segunda solución, se ha modificado el controlador original S4CPlus del robot, proporcionando una arquitectura abierta de control que permite la implementación de nuevos algoritmos de control de movimiento y fuerza en el robot industrial.Con esta aplicación, se simula el proceso realizado por una persona al sentarse y levantarse del asiento de un automóvil, monitorizándose y controlándose la fuerza que ejerce un maniquí sobre un asiento para garantizar igualdad de condiciones con el caso real. El sistema desarrollado tiene numerosas aplicaciones prácticas, como por ejemplo la de poder analizar el desgaste que estos movimientos ocasionan en la tapicería de los asientos. Palabras clave: control de fuerza, control de robots, simulación de movimientos humanos, control por computador, aplicaciones digitales de computación, robots manipuladores

  7. Getting to grips with remote handling and robotics

    Energy Technology Data Exchange (ETDEWEB)

    Mosey, D [Ontario Hydro, Toronto (Canada)

    1984-12-01

    A report on the Canadian Nuclear Society Conference on robotics and remote handling in the nuclear industry, September 1984. Remote handling in reactor operations, particularly in the Candu reactors is discussed, and the costs and benefits of use of remote handling equipment are considered. Steam generator inspection and repair is an area in which practical application of robotic technology has made a major advance.

  8. Advanced robotic technologies for transfer at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Bennett, P.C.

    1994-01-01

    Hazardous operations which have in the past been completed by technicians are under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. As a result, remote systems are needed to accomplish many hazardous materials handling tasks such as the clean-up of waste sites in which the exposure of personnel to radiation, chemical, explosive and other hazardous constituents is unacceptable. Computer models augmented by sensing, and structured, modular computing environments are proving effective in automating many unstructured hazardous tasks. Work at Sandia National Laboratories (SNL) has focused on applying flexible automation (robotics) to meet the needs of the U.S. Department of Energy (USDOE). Dismantling facilities, environmental remediation, and materials handling in changing, hazardous environments lead to many technical challenges. Computer planning, monitoring and operator assistance shorten training cycles, reduce errors, and speed execution of operations. Robotic systems that re-use well-understood generic technologies can be much better characterized than robotic systems developed for a particular application, leading to a more reliable and safer systems. Further safety in robotic operations results from use of environmental sensors and knowledge of the task and environment. Collision detection and avoidance is achieved from such sensor integration and model-based control. This paper discusses selected technologies developed at SNL for use within the USDOE complex that have been or are ready for transfer to government and industrial suppliers. These technologies include sensors, sub-systems, and the design philosophy applied to quickly integrate them into a working robotic system. This paper represents the work of many people at the Intelligent Systems and Robotics Center at SNL, to whom the credit belongs

  9. Kinematic simulation and analysis of robot based on MATLAB

    Science.gov (United States)

    Liao, Shuhua; Li, Jiong

    2018-03-01

    The history of industrial automation is characterized by quick update technology, however, without a doubt, the industrial robot is a kind of special equipment. With the help of MATLAB matrix and drawing capacity in the MATLAB environment each link coordinate system set up by using the d-h parameters method and equation of motion of the structure. Robotics, Toolbox programming Toolbox and GUIDE to the joint application is the analysis of inverse kinematics and path planning and simulation, preliminary solve the problem of college students the car mechanical arm positioning theory, so as to achieve the aim of reservation.

  10. Hydro-Quebec inspection robot RIT-LRG

    International Nuclear Information System (INIS)

    Champagne, D.; Rinfret, F.; Bourgault, Y.G.

    2008-01-01

    Hydro Quebec's Research Centre (IREQ), has developed a variety of inspection tools over the years. The Metar bracelet for the feeder tubes, the REC robot for the heat exchanger and the RIT robot for the Delayed Neutron system just to name a few. This paper discusses with the successful deployment of the Camera Probe Positioning robot for Visual Inspection of the sample lines of the delayed neutron system of CANDU power plants. This RIT robot has three possible configurations (Face, Cabinet and LRG configurations) and has remained a prototype version although it has been used over the years in many outage inspection campaigns since 1997. The main advantages of using this robot are: the significant reduction in radiation exposure, the high quality of the data collected and the archiving of inspection data for further analysis and reports. In 2007, Gentilly-2 (G-2), decided to industrialize the LRG configuration of the RIT robot and to designate it the standard tool for the inspection of the Delayed Neutron System. An improved RIT-LRG robot, along with its control box and command station was developed. The software had to be rewritten requiring an ergonomics analysis of user tasks, work station and interface display. These issues included both physical and cognitive requirements aspects. The two principal topics of this paper will be on the Inspection Robot Technology developed and highlights of the 2008 outage inspection campaign. (author)

  11. Hydro-Quebec inspection robot RIT-LRG

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, D., E-mail: champagne.dominique@ireq.ca [Inst. de recherche d' Hydro-Quebec, Quebec (Canada); Rinfret, F.; Bourgault, Y.G., E-mail: rinfret.francois@hydro.qc.ca, E-mail: bourgault.yves.g@hydro.qc.ca [Hydro-Quebec, Becancour, Quebec (Canada)

    2008-07-01

    Hydro Quebec's Research Centre (IREQ), has developed a variety of inspection tools over the years. The Metar bracelet for the feeder tubes, the REC robot for the heat exchanger and the RIT robot for the Delayed Neutron system just to name a few. This paper discusses with the successful deployment of the Camera Probe Positioning robot for Visual Inspection of the sample lines of the delayed neutron system of CANDU power plants. This RIT robot has three possible configurations (Face, Cabinet and LRG configurations) and has remained a prototype version although it has been used over the years in many outage inspection campaigns since 1997. The main advantages of using this robot are: the significant reduction in radiation exposure, the high quality of the data collected and the archiving of inspection data for further analysis and reports. In 2007, Gentilly-2 (G-2), decided to industrialize the LRG configuration of the RIT robot and to designate it the standard tool for the inspection of the Delayed Neutron System. An improved RIT-LRG robot, along with its control box and command station was developed. The software had to be rewritten requiring an ergonomics analysis of user tasks, work station and interface display. These issues included both physical and cognitive requirements aspects. The two principal topics of this paper will be on the Inspection Robot Technology developed and highlights of the 2008 outage inspection campaign. (author)

  12. Rad-hard embedded computers for nuclear robotics

    International Nuclear Information System (INIS)

    Giraud, A.; Joffre, F.; Marceau, M.; Robiolle, M.; Brunet, J.P.; Mijuin, D.

    1994-01-01

    Nuclear industries require robots with embedded rad hard electronics and high reliability. The SYROCO research program allowed to perform efficient industrial prototypes, build according to MICADO architecture, and to design CADMOS architecture. MICADO architecture uses the auto healing property that have CMOS circuits when being switched off during irradiation. (D.L.). 8 refs., 5 figs

  13. EAP artificial muscle actuators for bio-inspired intelligent social robotics (Conference Presentation)

    Science.gov (United States)

    Hanson, David F.

    2017-04-01

    Bio-inspired intelligent robots are coming of age in both research and industry, propelling market growth for robots and A.I. However, conventional motors limit bio-inspired robotics. EAP actuators and sensors could improve the simplicity, compliance, physical scaling, and offer bio-inspired advantages in robotic locomotion, grasping and manipulation, and social expressions. For EAP actuators to realize their transformative potential, further innovations are needed: the actuators must be robust, fast, powerful, manufacturable, and affordable. This presentation surveys progress, opportunities, and challenges in the author's latest work in social robots and EAP actuators, and proposes a roadmap for EAP actuators in bio-inspired intelligent robotics.

  14. Industrial robot

    Science.gov (United States)

    Prakashan, A.; Mukunda, H. S.; Samuel, S. D.; Colaco, J. C.

    1992-11-01

    This paper addresses the design and development of a four degree of freedom industrial manipulator, with three liner axes in the positioning mechanism and one rotary axis in the orientation mechanism. The positioning mechanism joints are driven with dc servo motors fitted with incremental shaft encoders. The rotary joint of the orientation mechanism is driven by a stepping motor. The manipulator is controlled by an IBM 386 PC/AT. Microcomputer based interface cards have been developed for independent joint control. PID controllers for dc motors have been designed. Kinematic modeling, dynamic modeling, and path planning have been carried out to generate the control sequence to accomplish a given task with reference to source and destination state constraints. This project has been sponsored by the Department of Science and Technology, Government of India, New Delhi, and has been executed in collaboration with M/s Larsen & Toubro Ltd, Mysore, India.

  15. THE PERSPECTIVES AND THE CONDITIONS OF THE ROBOTICS DEVELOPMENT IN RUSSIA

    Directory of Open Access Journals (Sweden)

    Nikolay Ivanovich Komkov

    2016-01-01

    Full Text Available The article investigates the evolution of the attitude of the state, business and the population to automation and robotics problems in the period of the USSR and till the modern period – from the reserved and declarative and political attitude to the current integrated programmed and project -based approach. The analysis of the Government’s decisions and documents in the  eld of robotics development in the Russian Federation, including «Strategy – 2020» have been made, the conditions, restrictions and challenges of the environment applicable for the solution of the problems as well as the mass robotization task in the Russian Federation have been de ned with consideration of the best international experience. Forecasts of robotics market growth are provided for the Russian Federation and its participants, and the new requirements and the prospects of the new robotic market growth have been characterized. The reasons of low competitiveness of the Russian Federation robotic  eld including the market demand problems from the state and business for «the  fth and sixth technological shift» innovative products and services have been analysed. The low speed of a transfer of the breaking scienti c technologies to industry, restrictions for the mass introduction of robots in the Russian Federation for robotization processes acceleration are established. The Russian state integrated support of the robotic platform key participants, including a growth of investments into fundamental and applied researches in the  eld of robotization and the adaptation of the best international experience are presented as the progressive methods of the Russian Federation competitiveness increase in all  eld of economy and military industrial complex.

  16. A CORBA Wrapper for Applications with Multiple Robots

    Directory of Open Access Journals (Sweden)

    Ekaitz Zulueta

    2011-11-01

    Full Text Available This paper presents a CORBA wrapper which encapsulates a generic anthropomorphic industrial robot. Since this wrapper abstracts the communications, building applications that require remote manipulation or coordination of several devices may be easily achieved by using it. This article describes an implementation of this wrapper over a real-time operating system (RTOS, namely RTAI. This type of OS ensures determinism in the movement operations of the robot. Also, a low resource consuming implementation of the CORBA specification, namely ORBit, has been used to wrap the robot and implement the communications with other devices. Finally, as a matter of example, we present how this wrapper is used to coordinate the operation of several robots in a typical 'pick & place' operation.

  17. An Innovative 3D Ultrasonic Actuator with Multidegree of Freedom for Machine Vision and Robot Guidance Industrial Applications Using a Single Vibration Ring Transducer

    Directory of Open Access Journals (Sweden)

    M. Shafik

    2013-07-01

    Full Text Available This paper presents an innovative 3D piezoelectric ultrasonic actuator using a single flexural vibration ring transducer, for machine vision and robot guidance industrial applications. The proposed actuator is principally aiming to overcome the visual spotlight focus angle of digital visual data capture transducer, digital cameras and enhance the machine vision system ability to perceive and move in 3D. The actuator Design, structures, working principles and finite element analysis are discussed in this paper. A prototype of the actuator was fabricated. Experimental tests and measurements showed the ability of the developed prototype to provide 3D motions of Multidegree of freedom, with typical speed of movement equal to 35 revolutions per minute, a resolution of less than 5μm and maximum load of 3.5 Newton. These initial characteristics illustrate, the potential of the developed 3D micro actuator to gear the spotlight focus angle issue of digital visual data capture transducers and possible improvement that such technology could bring to the machine vision and robot guidance industrial applications.

  18. Kinematic-Kinetic-Rigidity Evaluation of a Six Axis Robot Performing a Task

    Directory of Open Access Journals (Sweden)

    H. Karagulle

    2012-11-01

    Full Text Available Six axis serial robots of different sizes are widely used for pick and place, welding and various other operations in industry. Developments in mechatronics, which is the synergistic integration of mechanism, electronics and computer control to achieve a functional system, offer effective solutions for the design of such robots. The integrated analysis of robots is usually used in the design stage. In this study, it is offered that the integrated analysis of robots can also be used at the application stage. SolidWorks, CosmosMotion and ABAQUS programs are used with an integrated approach. Integration software (IS is developed in Visual Basic by using the application programming interface (API capabilities of these programs. An ABB-IRB1400 industrial robot is considered for the study. Different trajectories are considered. Each task is first evaluated by a kinematic analysis. If the task is out of the workspace, then the task is cancelled. This evaluation can also be done by robot programs like Robot Studio. It is proposed that the task must be evaluated by considering the limits for velocities, motor actuation torques, reaction forces, natural frequencies, displacements and stresses due to the flexibility. The evaluation is done using kinematic, kinetic and rigidity evaluation charts. The approach given in this work can be used for the optimal usage of robots.

  19. Mobile Robot and Mobile Manipulator Research Towards ASTM Standards Development.

    Science.gov (United States)

    Bostelman, Roger; Hong, Tsai; Legowik, Steven

    2016-01-01

    Performance standards for industrial mobile robots and mobile manipulators (robot arms onboard mobile robots) have only recently begun development. Low cost and standardized measurement techniques are needed to characterize system performance, compare different systems, and to determine if recalibration is required. This paper discusses work at the National Institute of Standards and Technology (NIST) and within the ASTM Committee F45 on Driverless Automatic Guided Industrial Vehicles. This includes standards for both terminology, F45.91, and for navigation performance test methods, F45.02. The paper defines terms that are being considered. Additionally, the paper describes navigation test methods that are near ballot and docking test methods being designed for consideration within F45.02. This includes the use of low cost artifacts that can provide alternatives to using relatively expensive measurement systems.

  20. Comparative assessment of physical and cognitive ergonomics associated with robotic and traditional laparoscopic surgeries.

    Science.gov (United States)

    Lee, Gyusung I; Lee, Mija R; Clanton, Tameka; Clanton, Tamera; Sutton, Erica; Park, Adrian E; Marohn, Michael R

    2014-02-01

    We conducted this study to investigate how physical and cognitive ergonomic workloads would differ between robotic and laparoscopic surgeries and whether any ergonomic differences would be related to surgeons' robotic surgery skill level. Our hypothesis is that the unique features in robotic surgery will demonstrate skill-related results both in substantially less physical and cognitive workload and uncompromised task performance. Thirteen MIS surgeons were recruited for this institutional review board-approved study and divided into three groups based on their robotic surgery experiences: laparoscopy experts with no robotic experience, novices with no or little robotic experience, and robotic experts. Each participant performed six surgical training tasks using traditional laparoscopy and robotic surgery. Physical workload was assessed by using surface electromyography from eight muscles (biceps, triceps, deltoid, trapezius, flexor carpi ulnaris, extensor digitorum, thenar compartment, and erector spinae). Mental workload assessment was conducted using the NASA-TLX. The cumulative muscular workload (CMW) from the biceps and the flexor carpi ulnaris with robotic surgery was significantly lower than with laparoscopy (p NASA-TLX analysis showed that both robotic surgery novices and experts expressed lower global workloads with robotic surgery than with laparoscopy, whereas LEs showed higher global workload with robotic surgery (p > 0.05). Robotic surgery experts and novices had significantly higher performance scores with robotic surgery than with laparoscopy (p < 0.05). This study demonstrated that the physical and cognitive ergonomics with robotic surgery were significantly less challenging. Additionally, several ergonomic components were skill-related. Robotic experts could benefit the most from the ergonomic advantages in robotic surgery. These results emphasize the need for well-structured training and well-defined ergonomics guidelines to maximize the

  1. Development of inspection robots for bridge cables.

    Science.gov (United States)

    Yun, Hae-Bum; Kim, Se-Hoon; Wu, Liuliu; Lee, Jong-Jae

    2013-01-01

    This paper presents the bridge cable inspection robot developed in Korea. Two types of the cable inspection robots were developed for cable-suspension bridges and cable-stayed bridge. The design of the robot system and performance of the NDT techniques associated with the cable inspection robot are discussed. A review on recent advances in emerging robot-based inspection technologies for bridge cables and current bridge cable inspection methods is also presented.

  2. Robot vs. tax inspector or how the fourth industrial revolution will change the tax system: a review of problems and solutions

    OpenAIRE

    Vishnevsky, Valentine P.; Chekina, Viktoriia D.

    2018-01-01

    The Fourth Industrial Revolution and the accelerated development of cyber-physical technologies lead to essential changes in national tax systems and international taxation. The main areas in which taxation meets cyber-physical technologies are digitalization, robotization, M2M and blockchain technologies. Each of these areas has its own opportunities and problems. Three main approaches towards possible solutions for these new problems are identified. The first is to try to apply taxation to ...

  3. Robotics in agriculture and forestry

    NARCIS (Netherlands)

    Bergerman, M.; Billingsley, J.; Reid, J.; Henten, van E.J.

    2016-01-01

    Robotics for agriculture and forestry (A&F) represents the ultimate application of one of our society’s latest and most advanced innovations to its most ancient and important industries. Over the course of history, mechanization and automation increased crop output several orders of magnitude,

  4. Mobile robot for hazardous environments

    International Nuclear Information System (INIS)

    Bains, N.

    1995-01-01

    This paper describes the architecture and potential applications of the autonomous robot for a known environment (ARK). The ARK project has developed an autonomous mobile robot that can move around by itself in a complicated nuclear environment utilizing a number of sensors for navigation. The primary sensor system is computer vision. The ARK has the intelligence to determine its position utilizing open-quotes natural landmarks,close quotes such as ordinary building features at any point along its path. It is this feature that gives ARK its uniqueness to operate in an industrial type of environment. The prime motivation to develop ARK was the potential application of mobile robots in radioactive areas within nuclear generating stations and for nuclear waste sites. The project budget is $9 million over 4 yr and will be completed in October 1995

  5. Cultural Robotics: The Culture of Robotics and Robotics in Culture

    Directory of Open Access Journals (Sweden)

    Hooman Samani

    2013-12-01

    Full Text Available In this paper, we have investigated the concept of “Cultural Robotics” with regard to the evolution of social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of a culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. According to the importance of the embodiment of robots in the sense of presence, the influence of robots in communication culture is anticipated. The sustainability of robotics culture based on diversity for cultural communities for various acceptance modalities is explored in order to anticipate the creation of different attributes of culture between robots and humans in the future.

  6. Repetitive motion planning and control of redundant robot manipulators

    CERN Document Server

    Zhang, Yunong

    2013-01-01

    Repetitive Motion Planning and Control of Redundant Robot Manipulators presents four typical motion planning schemes based on optimization techniques, including the fundamental RMP scheme and its extensions. These schemes are unified as quadratic programs (QPs), which are solved by neural networks or numerical algorithms. The RMP schemes are demonstrated effectively by the simulation results based on various robotic models; the experiments applying the fundamental RMP scheme to a physical robot manipulator are also presented. As the schemes and the corresponding solvers presented in the book have solved the non-repetitive motion problems existing in redundant robot manipulators, it is of particular use in applying theoretical research based on the quadratic program for redundant robot manipulators in industrial situations. This book will be a valuable reference work for engineers, researchers, advanced undergraduate and graduate students in robotics fields. Yunong Zhang is a professor at The School of Informa...

  7. Monte Carlo Registration and Its Application with Autonomous Robots

    Directory of Open Access Journals (Sweden)

    Christian Rink

    2016-01-01

    Full Text Available This work focuses on Monte Carlo registration methods and their application with autonomous robots. A streaming and an offline variant are developed, both based on a particle filter. The streaming registration is performed in real-time during data acquisition with a laser striper allowing for on-the-fly pose estimation. Thus, the acquired data can be instantly utilized, for example, for object modeling or robot manipulation, and the laser scan can be aborted after convergence. Curvature features are calculated online and the estimated poses are optimized in the particle weighting step. For sampling the pose particles, uniform, normal, and Bingham distributions are compared. The methods are evaluated with a high-precision laser striper attached to an industrial robot and with a noisy Time-of-Flight camera attached to service robots. The shown applications range from robot assisted teleoperation, over autonomous object modeling, to mobile robot localization.

  8. Fuzzy Logic and PID control of a 3 DOF Robotic Arm

    Directory of Open Access Journals (Sweden)

    Korhan Kayışlı

    2017-12-01

    Full Text Available The robotic arms are used in many industrial applications at the present time. At this point, high precision control is required for robotics used in fields such as healthcare area. Therefore, the control method applied to robots is also important. In this study, a force was applied to the end function of a three degree-of-freedom robot and the robustness of the controllers are tested. PID and Fuzzy Logic control method are used for this process. The control process of robotic arm which is designed and simulated is obtained by using Fuzzy Logic and classical PID controllers and the results are presented comparatively

  9. Calibration technology in application of robot-laser scanning system

    Science.gov (United States)

    Ren, YongJie; Yin, ShiBin; Zhu, JiGui

    2012-11-01

    A system composed of laser sensor and 6-DOF industrial robot is proposed to obtain complete three-dimensional (3-D) information of the object surface. Suitable for the different combining ways of laser sensor and robot, a new method to calibrate the position and pose between sensor and robot is presented. By using a standard sphere with known radius as a reference tool, the rotation and translation matrices between the laser sensor and robot are computed, respectively in two steps, so that many unstable factors introduced in conventional optimization methods can be avoided. The experimental results show that the accuracy of the proposed calibration method can be achieved up to 0.062 mm. The calibration method is also implemented into the automated robot scanning system to reconstruct a car door panel.

  10. [Robot-assisted pancreatic resection].

    Science.gov (United States)

    Müssle, B; Distler, M; Weitz, J; Welsch, T

    2017-06-01

    Although robot-assisted pancreatic surgery has been considered critically in the past, it is nowadays an established standard technique in some centers, for distal pancreatectomy and pancreatic head resection. Compared with the laparoscopic approach, the use of robot-assisted surgery seems to be advantageous for acquiring the skills for pancreatic, bile duct and vascular anastomoses during pancreatic head resection and total pancreatectomy. On the other hand, the use of the robot is associated with increased costs and only highly effective and professional robotic programs in centers for pancreatic surgery will achieve top surgical and oncological quality, acceptable operation times and a reduction in duration of hospital stay. Moreover, new technologies, such as intraoperative fluorescence guidance and augmented reality will define additional indications for robot-assisted pancreatic surgery.

  11. Friendly network robotics; Friendly network robotics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper summarizes the research results on the friendly network robotics in fiscal 1996. This research assumes an android robot as an ultimate robot and the future robot system utilizing computer network technology. The robot aiming at human daily work activities in factories or under extreme environments is required to work under usual human work environments. The human robot with similar size, shape and functions to human being is desirable. Such robot having a head with two eyes, two ears and mouth can hold a conversation with human being, can walk with two legs by autonomous adaptive control, and has a behavior intelligence. Remote operation of such robot is also possible through high-speed computer network. As a key technology to use this robot under coexistence with human being, establishment of human coexistent robotics was studied. As network based robotics, use of robots connected with computer networks was also studied. In addition, the R-cube (R{sup 3}) plan (realtime remote control robot technology) was proposed. 82 refs., 86 figs., 12 tabs.

  12. Ubiquitous Robotic Technology for Smart Manufacturing System.

    Science.gov (United States)

    Wang, Wenshan; Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods.

  13. Development of a remote inspection robot for high pressure structures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae C.; Kim, Jae H.; Choi, Yu R.; Moon, Soon S

    1999-10-01

    The high pressure structures in industrial plants must be periodically inspected for ensure their safety. Currently, the examination of them is manually performed by human inspectors, and there are many restrictions to examine the large containers which enclose dangerous chemicals or radioactive materials. We developed a remotely operated robot to examine these structures using recent mobile robot and computer technologies. Our robot has two magnetic caterpillars that make the robot can adhere to the structures made of steel like materials. The robot moves to the position for examination, and scans that position using ultrasonic probes equipped on it's arm, and transmits the result to the inspector according to his/her commands. Without building any auxiliary structures the robot can inspect the places where manual inspection can't reach. Therefore the robot can make shortening the inspection time as well as preventing the inspector from an accident. (author)

  14. Development of a remote inspection robot for high pressure structures

    International Nuclear Information System (INIS)

    Lee, Jae C.; Kim, Jae H.; Choi, Yu R.; Moon, Soon S.

    1999-10-01

    The high pressure structures in industrial plants must be periodically inspected for ensure their safety. Currently, the examination of them is manually performed by human inspectors, and there are many restrictions to examine the large containers which enclose dangerous chemicals or radioactive materials. We developed a remotely operated robot to examine these structures using recent mobile robot and computer technologies. Our robot has two magnetic caterpillars that make the robot can adhere to the structures made of steel like materials. The robot moves to the position for examination, and scans that position using ultrasonic probes equipped on it's arm, and transmits the result to the inspector according to his/her commands. Without building any auxiliary structures the robot can inspect the places where manual inspection can't reach. Therefore the robot can make shortening the inspection time as well as preventing the inspector from an accident. (author)

  15. Autonomous Military Robotics: Risk, Ethics, and Design

    Science.gov (United States)

    2008-12-20

    close scrutiny of the robotics industry with respect to those ethical issues, e.g., the book Love and Sex with Robots published late last year that...thank and credit Wendell Wallach and Colin Allen for their contribution to many of the discussions here, drawn from their new book Moral Machines... secondhand smoke is more objectionable than firsthand, because the passive smoker did not consent to the risk even if ▌64 A u t o n o m o

  16. ROBOSIM, a simulator for robotic systems

    Science.gov (United States)

    Hinman, Elaine M.; Fernandez, Ken; Cook, George E.

    1991-01-01

    ROBOSIM, a simulator for robotic systems, was developed by NASA to aid in the rapid prototyping of automation. ROBOSIM has allowed the development of improved robotic systems concepts for both earth-based and proposed on-orbit applications while significantly reducing development costs. In a cooperative effort with an area university, ROBOSIM was further developed for use in the classroom as a safe and cost-effective way of allowing students to study robotic systems. Students have used ROBOSIM to study existing robotic systems and systems which they have designed in the classroom. Since an advanced simulator/trainer of this type is beneficial not only to NASA projects and programs but industry and academia as well, NASA is in the process of developing this technology for wider public use. An update on the simulators's new application areas, the improvements made to the simulator's design, and current efforts to ensure the timely transfer of this technology are presented.

  17. Robotized Surface Mounting of Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Erik Hultman

    2014-10-01

    Full Text Available Using permanent magnets on a rotor can both simplify the design and increase the efficiency of electric machines compared to using electromagnets. A drawback, however, is the lack of existing automated assembly methods for large machines. This paper presents and motivates a method for robotized surface mounting of permanent magnets on electric machine rotors. The translator of the Uppsala University Wave Energy Converter generator is used as an example of a rotor. The robot cell layout, equipment design and assembly process are presented and validated through computer simulations and experiments with prototype equipment. A comparison with manual assembly indicates substantial cost savings and an improved work environment. By using the flexibility of industrial robots and a scalable equipment design, it is possible for this assembly method to be adjusted for other rotor geometries and sizes. Finally, there is a discussion on the work that remains to be done on improving and integrating the robot cell into a production line.

  18. Automating the Incremental Evolution of Controllers for Physical Robots

    DEFF Research Database (Denmark)

    Faina, Andres; Jacobsen, Lars Toft; Risi, Sebastian

    2017-01-01

    the evolution of digital objects.…” The work presented here investigates how fully autonomous evolution of robot controllers can be realized in hardware, using an industrial robot and a marker-based computer vision system. In particular, this article presents an approach to automate the reconfiguration...... of the test environment and shows that it is possible, for the first time, to incrementally evolve a neural robot controller for different obstacle avoidance tasks with no human intervention. Importantly, the system offers a high level of robustness and precision that could potentially open up the range...

  19. Scheduling a Single Mobile Robot Incorporated into Production Environment

    DEFF Research Database (Denmark)

    Dang, Vinh Quang; Nielsen, Izabela Ewa; Steger-Jensen, Kenn

    2013-01-01

    to the challenges of issues such as energy conservation and pollution preventions. Facing the central tension between manufacturing and environmental drivers is difficult, but critical to develop new technologies, particularly mobile robots, that can be incorporated into production to achieve holistic solutions....... This chapter deals with the problem of finding optimal operating sequence in a manufacturing cell of a mobile robot with manipulation arm that feeds materials to feeders. The “Bartender Concept” is discussed to show the cooperation between the mobile robot and industrial environment. The performance criterion...

  20. Robot vision for nuclear advanced robot

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi; Okano, Hideharu; Kuno, Yoshinori; Miyazawa, Tatsuo; Shimada, Hideo; Okada, Satoshi; Kawamura, Astuo

    1991-01-01

    This paper describes Robot Vision and Operation System for Nuclear Advanced Robot. This Robot Vision consists of robot position detection, obstacle detection and object recognition. With these vision techniques, a mobile robot can make a path and move autonomously along the planned path. The authors implemented the above robot vision system on the 'Advanced Robot for Nuclear Power Plant' and tested in an environment mocked up as nuclear power plant facilities. Since the operation system for this robot consists of operator's console and a large stereo monitor, this system can be easily operated by one person. Experimental tests were made using the Advanced Robot (nuclear robot). Results indicate that the proposed operation system is very useful, and can be operate by only person. (author)

  1. Habituation: a non-associative learning rule design for spiking neurons and an autonomous mobile robots implementation

    International Nuclear Information System (INIS)

    Cyr, André; Boukadoum, Mounir

    2013-01-01

    This paper presents a novel bio-inspired habituation function for robots under control by an artificial spiking neural network. This non-associative learning rule is modelled at the synaptic level and validated through robotic behaviours in reaction to different stimuli patterns in a dynamical virtual 3D world. Habituation is minimally represented to show an attenuated response after exposure to and perception of persistent external stimuli. Based on current neurosciences research, the originality of this rule includes modulated response to variable frequencies of the captured stimuli. Filtering out repetitive data from the natural habituation mechanism has been demonstrated to be a key factor in the attention phenomenon, and inserting such a rule operating at multiple temporal dimensions of stimuli increases a robot's adaptive behaviours by ignoring broader contextual irrelevant information. (paper)

  2. Habituation: a non-associative learning rule design for spiking neurons and an autonomous mobile robots implementation.

    Science.gov (United States)

    Cyr, André; Boukadoum, Mounir

    2013-03-01

    This paper presents a novel bio-inspired habituation function for robots under control by an artificial spiking neural network. This non-associative learning rule is modelled at the synaptic level and validated through robotic behaviours in reaction to different stimuli patterns in a dynamical virtual 3D world. Habituation is minimally represented to show an attenuated response after exposure to and perception of persistent external stimuli. Based on current neurosciences research, the originality of this rule includes modulated response to variable frequencies of the captured stimuli. Filtering out repetitive data from the natural habituation mechanism has been demonstrated to be a key factor in the attention phenomenon, and inserting such a rule operating at multiple temporal dimensions of stimuli increases a robot's adaptive behaviours by ignoring broader contextual irrelevant information.

  3. The blockchain: a new framework for robotic swarm systems

    OpenAIRE

    Ferrer, Eduardo Castelló

    2016-01-01

    Swarms of robots will revolutionize many industrial applications, from targeted material delivery to precision farming. However, several of the heterogeneous characteristics that make them ideal for certain future applications --- robot autonomy, decentralized control, collective emergent behavior, etc. --- hinder the evolution of the technology from academic institutions to real-world problems. Blockchain, an emerging technology originated in the Bitcoin field, demonstrates that by combining...

  4. Determination of optimal samples for robot calibration based on error similarity

    Directory of Open Access Journals (Sweden)

    Tian Wei

    2015-06-01

    Full Text Available Industrial robots are used for automatic drilling and riveting. The absolute position accuracy of an industrial robot is one of the key performance indexes in aircraft assembly, and can be improved through error compensation to meet aircraft assembly requirements. The achievable accuracy and the difficulty of accuracy compensation implementation are closely related to the choice of sampling points. Therefore, based on the error similarity error compensation method, a method for choosing sampling points on a uniform grid is proposed. A simulation is conducted to analyze the influence of the sample point locations on error compensation. In addition, the grid steps of the sampling points are optimized using a statistical analysis method. The method is used to generate grids and optimize the grid steps of a Kuka KR-210 robot. The experimental results show that the method for planning sampling data can be used to effectively optimize the sampling grid. After error compensation, the position accuracy of the robot meets the position accuracy requirements.

  5. Toward understanding social cues and signals in human–robot interaction: effects of robot gaze and proxemic behavior

    Science.gov (United States)

    Fiore, Stephen M.; Wiltshire, Travis J.; Lobato, Emilio J. C.; Jentsch, Florian G.; Huang, Wesley H.; Axelrod, Benjamin

    2013-01-01

    As robots are increasingly deployed in settings requiring social interaction, research is needed to examine the social signals perceived by humans when robots display certain social cues. In this paper, we report a study designed to examine how humans interpret social cues exhibited by robots. We first provide a brief overview of perspectives from social cognition in humans and how these processes are applicable to human–robot interaction (HRI). We then discuss the need to examine the relationship between social cues and signals as a function of the degree to which a robot is perceived as a socially present agent. We describe an experiment in which social cues were manipulated on an iRobot AvaTM mobile robotics platform in a hallway navigation scenario. Cues associated with the robot’s proxemic behavior were found to significantly affect participant perceptions of the robot’s social presence and emotional state while cues associated with the robot’s gaze behavior were not found to be significant. Further, regardless of the proxemic behavior, participants attributed more social presence and emotional states to the robot over repeated interactions than when they first interacted with it. Generally, these results indicate the importance for HRI research to consider how social cues expressed by a robot can differentially affect perceptions of the robot’s mental states and intentions. The discussion focuses on implications for the design of robotic systems and future directions for research on the relationship between social cues and signals. PMID:24348434

  6. Towards understanding social cues and signals in human-robot interaction: Effects of robot gaze and proxemic behavior

    Directory of Open Access Journals (Sweden)

    Stephen M. Fiore

    2013-11-01

    Full Text Available As robots are increasingly deployed in settings requiring social interaction, research is needed to examine the social signals perceived by humans when robots display certain social cues. In this paper, we report a study designed to examine how humans interpret social cues exhibited by robots. We first provide a brief overview of perspectives from social cognition in humans and how these processes are applicable to human-robot interaction (HRI. We then discuss the need to examine the relationship between social cues and signals as a function of the degree to which a robot is perceived as a socially present agent. We describe an experiment in which social cues were manipulated on an iRobot Ava™ Mobile Robotics Platform in a hallway navigation scenario. Cues associated with the robot’s proxemic behavior were found to significantly affect participant perceptions of the robot’s social presence and emotional state while cues associated with the robot’s gaze behavior were not found to be significant. Further, regardless of the proxemic behavior, participants attributed more social presence and emotional states to the robot over repeated interactions than when they first interacted with it. Generally, these results indicate the importance for HRI research to consider how social cues expressed by a robot can differentially affect perceptions of the robot’s mental states and intentions. The discussion focuses on implications for the design of robotic systems and future directions for research on the relationship between social cues and signals.

  7. Development of Inspection Robots for Bridge Cables

    Directory of Open Access Journals (Sweden)

    Hae-Bum Yun

    2013-01-01

    Full Text Available This paper presents the bridge cable inspection robot developed in Korea. Two types of the cable inspection robots were developed for cable-suspension bridges and cable-stayed bridge. The design of the robot system and performance of the NDT techniques associated with the cable inspection robot are discussed. A review on recent advances in emerging robot-based inspection technologies for bridge cables and current bridge cable inspection methods is also presented.

  8. A survey on dielectric elastomer actuators for soft robots.

    Science.gov (United States)

    Gu, Guo-Ying; Zhu, Jian; Zhu, Li-Min; Zhu, Xiangyang

    2017-01-23

    Conventional industrial robots with the rigid actuation technology have made great progress for humans in the fields of automation assembly and manufacturing. With an increasing number of robots needing to interact with humans and unstructured environments, there is a need for soft robots capable of sustaining large deformation while inducing little pressure or damage when maneuvering through confined spaces. The emergence of soft robotics offers the prospect of applying soft actuators as artificial muscles in robots, replacing traditional rigid actuators. Dielectric elastomer actuators (DEAs) are recognized as one of the most promising soft actuation technologies due to the facts that: i) dielectric elastomers are kind of soft, motion-generating materials that resemble natural muscle of humans in terms of force, strain (displacement per unit length or area) and actuation pressure/density; ii) dielectric elastomers can produce large voltage-induced deformation. In this survey, we first introduce the so-called DEAs emphasizing the key points of working principle, key components and electromechanical modeling approaches. Then, different DEA-driven soft robots, including wearable/humanoid robots, walking/serpentine robots, flying robots and swimming robots, are reviewed. Lastly, we summarize the challenges and opportunities for the further studies in terms of mechanism design, dynamics modeling and autonomous control.

  9. 8th International Conference on Robotic, Vision, Signal Processing & Power Applications

    CERN Document Server

    Mustaffa, Mohd

    2014-01-01

    The proceeding is a collection of research papers presented, at the 8th International Conference on Robotics, Vision, Signal Processing and Power Applications (ROVISP 2013), by researchers, scientists, engineers, academicians as well as industrial professionals from all around the globe. The topics of interest are as follows but are not limited to: • Robotics, Control, Mechatronics and Automation • Vision, Image, and Signal Processing • Artificial Intelligence and Computer Applications • Electronic Design and Applications • Telecommunication Systems and Applications • Power System and Industrial Applications  

  10. Air Force construction automation/robotics

    Science.gov (United States)

    Nease, AL; Dusseault, Christopher

    1994-01-01

    The Air Force has several unique requirements that are being met through the development of construction robotic technology. The missions associated with these requirements place construction/repair equipment operators in potentially harmful situations. Additionally, force reductions require that human resources be leveraged to the maximum extent possible and that more stringent construction repair requirements push for increased automation. To solve these problems, the U.S. Air Force is undertaking a research and development effort at Tyndall AFB, FL to develop robotic teleoperation, telerobotics, robotic vehicle communications, automated damage assessment, vehicle navigation, mission/vehicle task control architecture, and associated computing environment. The ultimate goal is the fielding of robotic repair capability operating at the level of supervised autonomy. The authors of this paper will discuss current and planned efforts in construction/repair, explosive ordnance disposal, hazardous waste cleanup, fire fighting, and space construction.

  11. Swarming Robot Design, Construction and Software Implementation

    Science.gov (United States)

    Stolleis, Karl A.

    2014-01-01

    In this paper is presented an overview of the hardware design, construction overview, software design and software implementation for a small, low-cost robot to be used for swarming robot development. In addition to the work done on the robot, a full simulation of the robotic system was developed using Robot Operating System (ROS) and its associated simulation. The eventual use of the robots will be exploration of evolving behaviors via genetic algorithms and builds on the work done at the University of New Mexico Biological Computation Lab.

  12. A Review on Energy-Saving Optimization Methods for Robotic and Automatic Systems

    Directory of Open Access Journals (Sweden)

    Giovanni Carabin

    2017-12-01

    Full Text Available In the last decades, increasing energy prices and growing environmental awareness have driven engineers and scientists to find new solutions for reducing energy consumption in manufacturing. Although many processes of a high energy consumption (e.g., chemical, heating, etc. are considered to have reached high levels of efficiency, this is not the case for many other industrial manufacturing activities. Indeed, this is the case for robotic and automatic systems, for which, in the past, the minimization of energy demand was not considered a design objective. The proper design and operation of industrial robots and automation systems represent a great opportunity for reducing energy consumption in the industry, for example, by the substitution with more efficient systems and the energy optimization of operation. This review paper classifies and analyses several methodologies and technologies that have been developed with the aim of providing a reference of existing methods, techniques and technologies for enhancing the energy performance of industrial robotic and mechatronic systems. Hardware and software methods, including several subcategories, are considered and compared, and emerging ideas and possible future perspectives are discussed.

  13. Thermal Tracking in Mobile Robots for Leak Inspection Activities

    Directory of Open Access Journals (Sweden)

    Iñaki Maurtua

    2013-10-01

    Full Text Available Maintenance tasks are crucial for all kind of industries, especially in extensive industrial plants, like solar thermal power plants. The incorporation of robots is a key issue for automating inspection activities, as it will allow a constant and regular control over the whole plant. This paper presents an autonomous robotic system to perform pipeline inspection for early detection and prevention of leakages in thermal power plants, based on the work developed within the MAINBOT (http://www.mainbot.eu European project. Based on the information provided by a thermographic camera, the system is able to detect leakages in the collectors and pipelines. Beside the leakage detection algorithms, the system includes a particle filter-based tracking algorithm to keep the target in the field of view of the camera and to avoid the irregularities of the terrain while the robot patrols the plant. The information provided by the particle filter is further used to command a robot arm, which handles the camera and ensures that the target is always within the image. The obtained results show the suitability of the proposed approach, adding a tracking algorithm to improve the performance of the leakage detection system.

  14. Thermal tracking in mobile robots for leak inspection activities.

    Science.gov (United States)

    Ibarguren, Aitor; Molina, Jorge; Susperregi, Loreto; Maurtua, Iñaki

    2013-10-09

    Maintenance tasks are crucial for all kind of industries, especially in extensive industrial plants, like solar thermal power plants. The incorporation of robots is a key issue for automating inspection activities, as it will allow a constant and regular control over the whole plant. This paper presents an autonomous robotic system to perform pipeline inspection for early detection and prevention of leakages in thermal power plants, based on the work developed within the MAINBOT (http://www.mainbot.eu) European project. Based on the information provided by a thermographic camera, the system is able to detect leakages in the collectors and pipelines. Beside the leakage detection algorithms, the system includes a particle filter-based tracking algorithm to keep the target in the field of view of the camera and to avoid the irregularities of the terrain while the robot patrols the plant. The information provided by the particle filter is further used to command a robot arm, which handles the camera and ensures that the target is always within the image. The obtained results show the suitability of the proposed approach, adding a tracking algorithm to improve the performance of the leakage detection system.

  15. 3D printing for soft robotics – a review

    Science.gov (United States)

    Gul, Jahan Zeb; Sajid, Memoon; Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Shah, Imran; Kim, Kyung-Hwan; Lee, Jae-Wook; Choi, Kyung Hyun

    2018-01-01

    Abstract Soft robots have received an increasing attention due to their advantages of high flexibility and safety for human operators but the fabrication is a challenge. Recently, 3D printing has been used as a key technology to fabricate soft robots because of high quality and printing multiple materials at the same time. Functional soft materials are particularly well suited for soft robotics due to a wide range of stimulants and sensitive demonstration of large deformations, high motion complexities and varied multi-functionalities. This review comprises a detailed survey of 3D printing in soft robotics. The development of key 3D printing technologies and new materials along with composites for soft robotic applications is investigated. A brief summary of 3D-printed soft devices suitable for medical to industrial applications is also included. The growing research on both 3D printing and soft robotics needs a summary of the major reported studies and the authors believe that this review article serves the purpose. PMID:29707065

  16. Application of robotic systems to nuclear power plant maintenance tasks

    International Nuclear Information System (INIS)

    Kok, K.D.; Bartilson, B.M.; Rosen, K.L.; Renner, G.F.; Law, T.M.

    1984-01-01

    Robotics technology has developed to where it can provide consistent performance of well-defined tasks. Although nuclear power plant maintenance tasks are characteristically unique, there are some common subtasks which have the consistency required for robots. Several maintenance activities were selected for further study. Concepts for robotic devices and rough scenarios for their use were developed and analyzed for their effect on maintenance costs. The results of the analysis, which was performed using a 10-year life and conservative estimates and procedures, indicate cost savings ranging from $100,000 to $1.5 M in net present value per robot. Projected purchase prices for the robots were less than $200,000. Although the robot concepts used commercially available technology, they are unlike any products either in use or widely required. Robot manufacturers are concentrating on mainstream applications in production, and are unlikely to develop such specialized products. The potential for cost savings indicates that developments should be funded by the nuclear industry

  17. Kinematic Optimization of Robot Trajectories for Thermal Spray Coating Application

    Science.gov (United States)

    Deng, Sihao; Liang, Hong; Cai, Zhenhua; Liao, Hanlin; Montavon, Ghislain

    2014-12-01

    Industrial robots are widely used in the field of thermal spray nowadays. Due to their characteristics of high-accuracy and programmable flexibility, spraying on complex geometrical workpieces can be realized in the equipped spray room. However, in some cases, the robots cannot guarantee the process parameters defined by the robot movement, such as the scanning trajectory, spray angle, relative speed between the torch and the substrate, etc., which have distinct influences on heat and mass transfer during the generation of any thermally sprayed coatings. In this study, an investigation on the robot kinematics was proposed to find the rules of motion in a common case. The results showed that the motion behavior of each axis of robot permits to identify the motion problems in the trajectory. This approach allows to optimize the robot trajectory generation in a limited working envelop. It also minimizes the influence of robot performance to achieve a more constant relative scanning speed which is represented as a key parameter in thermal spraying.

  18. Kinematics analysis and simulation of a new underactuated parallel robot

    Directory of Open Access Journals (Sweden)

    Wenxu YAN

    2017-04-01

    Full Text Available The number of degrees of freedom is equal to the number of the traditional robot driving motors, which causes defects such as low efficiency. To overcome that problem, based on the traditional parallel robot, a new underactuated parallel robot is presented. The structure characteristics and working principles of the underactuated parallel robot are analyzed. The forward and inverse solutions are derived by way of space analytic geometry and vector algebra. The kinematics model is established, and MATLAB is implied to verify the accuracy of forward and inverse solutions and identify the optimal work space. The simulation results show that the robot can realize the function of robot switch with three or four degrees of freedom when the number of driving motors is three, improving the efficiency of robot grasping, with the characteristics of large working space, high speed operation, high positioning accuracy, low manufacturing cost and so on, and it will have a wide range of industrial applications.

  19. CuriousMind photographer: distract the robot from its initial task

    Directory of Open Access Journals (Sweden)

    Vincent Courboulay

    2015-02-01

    Full Text Available Mainly present in industry, robots begin to invade our every-day lives for very precise tasks. In order to reach a level where more general robots get involved in our lives, the robots' abilities to communicate and to react to unexpected situations must be improved. This paper introduces an attentive computational model for robots as attention can help both in reacting to unexpected situations and to help improving human-robot communication. We propose to enhance and implement an existing real time computational model. Intensity, color and orientation are usually used but we have added information related to depth and isolation. We have built a robotic system based on LEGO Mindstorm platform and the Kinect RGB-D sensor. This robot, called CuriousMind, is able to take a picture of the most interesting part of the scene and it can also be distracted from its first goal by novel situations mimicking in that way the human (and more precisely small children behaviour.

  20. Design of an Infrared Imaging System for Robotic Inspection of Gas Leaks in Industrial Environments

    Directory of Open Access Journals (Sweden)

    Ramon Barber

    2015-03-01

    Full Text Available Gas detection can become a critical task in dangerous environments that involve hazardous or contaminant gases, and the use of imaging sensors provides an important tool for leakage location. This paper presents a new design for remote sensing of gas leaks based on infrared (IR imaging techniques. The inspection system uses an uncooled microbolometer detector, operating over a wide spectral bandwidth, that features both low size and low power consumption. This equipment is boarded on a robotic platform, so that wide objects or areas can be scanned. The detection principle is based on the use of active imaging techniques, where the use of external IR illumination enhances the detection limit and allows the proposed system to operate in most cases independently from environmental conditions, unlike passive commercial approaches. To illustrate this concept, a fully radiometric description of the detection problem has been developed; CO2 detection has been demonstrated; and simulations of typical gas detection scenarios have been performed, showing that typical industrial leaks of CH4 are well within the detection limits. The mobile platform where the gas sensing system is going to be implemented is a robot called TurtleBot. The control of the mobile base and of the inspection device is integrated in ROS architecture. The exploration system is based on the technique of Simultaneous Localization and Mapping (SLAM that makes it possible to locate the gas leak in the map.

  1. Monocular-Based 6-Degree of Freedom Pose Estimation Technology for Robotic Intelligent Grasping Systems

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2017-02-01

    Full Text Available Industrial robots are expected to undertake ever more advanced tasks in the modern manufacturing industry, such as intelligent grasping, in which robots should be capable of recognizing the position and orientation of a part before grasping it. In this paper, a monocular-based 6-degree of freedom (DOF pose estimation technology to enable robots to grasp large-size parts at informal poses is proposed. A camera was mounted on the robot end-flange and oriented to measure several featured points on the part before the robot moved to grasp it. In order to estimate the part pose, a nonlinear optimization model based on the camera object space collinearity error in different poses is established, and the initial iteration value is estimated with the differential transformation. Measuring poses of the camera are optimized based on uncertainty analysis. Also, the principle of the robotic intelligent grasping system was developed, with which the robot could adjust its pose to grasp the part. In experimental tests, the part poses estimated with the method described in this paper were compared with those produced by a laser tracker, and results show the RMS angle and position error are about 0.0228° and 0.4603 mm. Robotic intelligent grasping tests were also successfully performed in the experiments.

  2. Improving mobile robot localization: grid-based approach

    Science.gov (United States)

    Yan, Junchi

    2012-02-01

    Autonomous mobile robots have been widely studied not only as advanced facilities for industrial and daily life automation, but also as a testbed in robotics competitions for extending the frontier of current artificial intelligence. In many of such contests, the robot is supposed to navigate on the ground with a grid layout. Based on this observation, we present a localization error correction method by exploring the geometric feature of the tile patterns. On top of the classical inertia-based positioning, our approach employs three fiber-optic sensors that are assembled under the bottom of the robot, presenting an equilateral triangle layout. The sensor apparatus, together with the proposed supporting algorithm, are designed to detect a line's direction (vertical or horizontal) by monitoring the grid crossing events. As a result, the line coordinate information can be fused to rectify the cumulative localization deviation from inertia positioning. The proposed method is analyzed theoretically in terms of its error bound and also has been implemented and tested on a customary developed two-wheel autonomous mobile robot.

  3. MODELADO, SIMULACIÓN Y CONTROL DEL ROBOT PARA CIRUGÍA LAPAROSCÓPICA 'LAPBOT' MODELING, SIMULATION AND CONTROL OF SURGICAL LAPAROSCOPIC ROBOT 'LAPBOT'

    Directory of Open Access Journals (Sweden)

    Sergio Alexander Salinas

    2009-12-01

    Full Text Available Este artículo presenta el modelado matemático y estructural, la simulación por computador y el control por par calculado del robot para cirugía laparoscópica ‘LapBot’, que ha sido desarrollado en el Grupo de Investigación de Automática Industrial de la Universidad del Cauca, Colombia. Inicialmente se muestra un resumen de los principales robots utilizados como asistentes para cirugías de laparoscopia en el mundo, y de cómo tratan ellos el problema del paso por la incisión practicada en la cavidad abdominal. Con base en lo anterior se describen los requerimientos que deben cumplir los robots de este tipo y a partir de éstos se diseña el robot LapBot. Se muestra el modelo cinemático y dinámico del robot LapBot, así como el modelo de la restricción espacial que representa el punto de incisión abdominal. Se implementa una estrategia de control basada en el modelo del robot (control por par calculado. Diversas trayectorias en un plano y en un espacio de tres dimensiones son utilizadas para validar tanto el modelo como el controlador.This paper presents the mathematical and structural model, simulation and computed torque control of the LapBot robot, developed by the Group of Investigation of Industrial Automatics, of the University of Cauca, Colombia. First, a summary of the principal surgery assistant robots of the world is presented, and how they solve the problem of passing through the incision into the abdominal cavity. Based on this, the conditions that must be fulfilled by the robots of this type is exposed, and from these conditions the LapBot robot is designed. Its kinematics and dynamics model is shown, as well as the mathematical spatial restriction that incision represents. A control strategy based on the model (computed torque control is implemented. Several trajectories defined in a plane and in a three dimensions space are used to validate the model and the control.

  4. Control and robotics remote laboratory for engineering education

    Directory of Open Access Journals (Sweden)

    Gregor Pačnik

    2005-06-01

    Full Text Available The new tools for education of engineering emerged and one of the most promising is a remote rapid control prototyping (RRCP, which is very useful also for control and robotics development in industry and in education. Examples of introductory remote control and simple robotics courses with integrated hands on experiments are presented in the paper. The aim of integration of remote hands on experiments into control and/or robotics course is to minimize the gap between the theory and practice to teach students the use of RRCP and to decrease the education costs. Developed RRCP experiments are based on MATLAB/Simulink, xPC target, custom developed embedded target

  5. Live video monitoring robot controlled by web over internet

    Science.gov (United States)

    Lokanath, M.; Akhil Sai, Guruju

    2017-11-01

    Future is all about robots, robot can perform tasks where humans cannot, Robots have huge applications in military and industrial area for lifting heavy weights, for accurate placements, for repeating the same task number of times, where human are not efficient. Generally robot is a mix of electronic, electrical and mechanical engineering and can do the tasks automatically on its own or under the supervision of humans. The camera is the eye for robot, call as robovision helps in monitoring security system and also can reach into the places where the human eye cannot reach. This paper presents about developing a live video streaming robot controlled from the website. We designed the web, controlling for the robot to move left, right, front and back while streaming video. As we move to the smart environment or IoT (Internet of Things) by smart devices the system we developed here connects over the internet and can be operated with smart mobile phone using a web browser. The Raspberry Pi model B chip acts as heart for this system robot, the sufficient motors, surveillance camera R pi 2 are connected to Raspberry pi.

  6. Étude des conditions d'acceptabilité de la collaboration homme-robot en utilisant la réalité virtuelle

    OpenAIRE

    Weistroffer , Vincent

    2014-01-01

    Either in the context of the industry or of the everyday life, robots are becoming more and more present in our environment and are nowadays able to interact with humans. In industrial environments, robots now assist operators on the assembly lines for difficult and dangerous tasks. Then, robots and operators need to share the same physical space (copresence) and to manage common tasks (collaboration). On the one side, the safety of humans working near robots has to be guaranteed at all time....

  7. Welding robot package; Arc yosetsu robot package

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, S. [Yaskawa Electric Corp., Kitakyushu (Japan)

    1998-09-01

    For the conventional high-speed welding robot, the welding current was controlled mainly for reducing the spatters during short circuits and for stabilizing the beads by the periodic short circuits. However, an increase of deposition amount in response to the speed is required for the high-speed welding. Large-current low-spatter welding current region control was added. Units were integrated into a package by which the arc length is kept in short without dispersion of arc length for welding without defects such as undercut and unequal beads. In automobile industry, use of aluminum parts is extended for the light weight. The welding is very difficult, and automation is not so progressing in spite of the poor environment. Buckling of welding wire is easy to occur, and supply of wire is obstructed by the deposition of chipped powders on the torch cable, which stay within the contact chip resulting in the deposition. Dislocation of locus is easy to occur at the corner of rectangular pipe during the welding. By improving these troubles, an aluminum MIG welding robot package has been developed. 13 figs.

  8. Robotics in hazardous waste management

    International Nuclear Information System (INIS)

    Mahalingam, R.J.; Jayaraman, K.M.; Cunningham, A.J.; Meieran, H.B.; Zafrir, H.; Kroitoru, L.

    1994-01-01

    This paper addresses the advent of mobile robotic systems into the earth sciences and environmental studies. It presents issues surrounding the rationale for employing stationary and mobile robots to assist in waste chemical site remediation and cleanup activities, missions that could be conducted, and the current availability status for these devices. This rationale is an extension of that being promoted by the US Department of Energy (DOE) to assist in resolving environmental restoration and waste management (ER and WM) issues associated with several DOE national laboratories, facilities, and other sites. DOE has also committed to restore the environment surrounding the existing storage facilities and sites to a safe state. Technologies that are expected to play a major role in these activities are stationary and mobile robotic devices, and in particular, mobile robots. Specific topics discussed in this article include: introduction to robotics: motivations for considering robots in HWM: incorporation of robotics into HWM methods--this subsection includes a rationale for performing a ''screening test'' to determine the advantages of using a robot; safety and performance factors; illustrations for robots in action and current and future trends

  9. Optimization and design of a laser-cutting machine using delta robot

    OpenAIRE

    Moharana, B.; Gupta, Rakesh; Kushwaha, Bashishth Kumar

    2014-01-01

    Industrial high speed laser operations the use of delta parallel robots potentially offers many benefits due to their structural stiffness and limited moving masses. This paper deals with a particular Delta, developed for high speed laser cutting. Parallel delta robot has numerous advantages in comparison with serial robots Higher stiffness and connected with that a lower mass of links the possibility of transporting heavier loads, and higher accuracy. The main drawback is however a smaller w...

  10. The trials and tribulations of purchasing robots for nuclear applications

    International Nuclear Information System (INIS)

    Moore, F.W.; Bowen, W.W.

    1986-01-01

    The adaptation of commercial robots using current robotic technology to handle and manufacture nuclear materials has had its problems. The robots available today were developed primarily to support the automotive or electronics industries. Nuclear material is very heavy, abrasive material with stringent accountability and nuclear safety requirements. The operational space and maintenance constraints have special consideration where the robotic system must operate and be maintained in an environmentally controlled area. The robotic systems of today tend to have limited payload capability for nuclear applications or, if the payload is sufficient, the system is very large and has several operating and maintenance accessibility requirements. The process of specifying, purchasing, and modifying a robotic system is an expensive and time-consuming process at best. The process of product evaluation, operation envelop, design maintenance concepts, and special nuclear materials handling requirements are essential in the development of a procurement specification. The procurement specification is critical to getting an economical robotic system and successfully enticing robotic vendors to quote for nuclear applications

  11. The development of functional fail-safe control for advanced robots

    International Nuclear Information System (INIS)

    Hosaka, Shigetaka; Shimizu, Yujiro; Hayashi, Tetsuji

    1990-01-01

    Advanced robots for the nuclear power plant maintenance are increasing the complexity in comparison with industrial robots, and severe in condition of use, and are increasing the importance of safety and reliability. In this paper, as a high reliability technology for Advanced Robot, Functional Failsafe control (FFC) is described. FFC isolates the faults, and keeps the minimum function of robot, using the remained potential redundancy of robot, with minimizing of additional parts to robot, at the occurrence of faults. We suggest the three reliability evaluation principles for Advanced robot, then define the FFC in these principles. In the proposed FFC, the method of using an amplifier between two servosystems in common, and the method of stucking the degrees of freedom of robot arm are studied and proved by experiments on the design of FFC. And, a new design method is showed, based on not only the reliability of time, but also the reliability of amount of working. So, we clarified some remained subjects to develop for the FFC. (author)

  12. Mechanized hyperbaric welding by robots

    International Nuclear Information System (INIS)

    Aust, E.; Santos, J.F. dos; Bohm, K.H.; Hensel, H.D.

    1988-01-01

    At the GKSS-Forschungszentrum investigations are carried out on mechanized welded test plates produced under working pressure between 10 to 110 bar in breathable TRIMIX-5-atmosphere. The welds are performed by a modified industrial robot, which was adapted in its components to withstand these severe conditions. Variations on the welding parameters were made to maintain a stable arc as well as to provide on indication of the effect of the variables on the mechanical properties of the welded joint. During all tests the robot showed a very good function. Good reliable welds were achieved meeting the requirements according API II04 or BS 4515-1984. (orig.) [de

  13. Future of robots

    International Nuclear Information System (INIS)

    Stauffer, R.

    1984-01-01

    A decade ago, the United States was creating about 75% of the world's technology. Today, it is something like 50%. A decade from now, the figure could be down to 30%. The deteriorating condition of the U.S. competitive position in the world marketplace has become painfully evident to our government, the business community, and to labor. As with the energy crisis of several years ago, there has been a rude awakening to the critical need for a turnaround in our efforts to improve both productivity and quality. Industrial robots represent one of the most promising approaches to achieving both objectives. Today's top buzzword is, indeed, ''robot.'' The attention is well deserved. These versatile forms of flexible automation can improve productivity and quality through their consistent performance under the most difficult of working conditions. They are building an excellent track record in terms of dependability and uptime. The robot population in the U.S. now stands at around 7000, with sales growing at an annual rate of about 30%. By 1990, the total number of these machines on the plant floor could reach 100,000

  14. The 4th industrial revolution's challenges at the wood industrial manufactories

    OpenAIRE

    Attila, Gludovatz; László, Bacsárdi

    2016-01-01

    Substantial technological advances appeared in the industrial sector in the last years. Developments are based on the “Internet of things” idea, called as “Industry 4.0” in Europe. The name is referring to the phenomena that many experts think this is the fourth industrial revolution. The goal of these projects are to create live connections among all industrial machines, tools and the central units. Some techniques and tools, e.g., sensors, big data, cloud computing, 3D printing, robotics an...

  15. Intelligent robot trends and predictions for the new millennium

    Science.gov (United States)

    Hall, Ernest L.; Mundhenk, Terrell N.

    1999-08-01

    An intelligent robot is a remarkably useful combination of a manipulator, sensors and controls. The current use of these machines in outer space, medicine, hazardous materials, defense applications and industry is being pursued with vigor but little funding. In factory automation such robotics machines can improve productivity, increase product quality and improve competitiveness. The computer and the robot have both been developed during recent times. The intelligent robot combines both technologies and requires a thorough understanding and knowledge of mechatronics. In honor of the new millennium, this paper will present a discussion of futuristic trends and predictions. However, in keeping with technical tradition, a new technique for 'Follow the Leader' will also be presented in the hope of it becoming a new, useful and non-obvious technique.

  16. Robot 2015 : Second Iberian Robotics Conference : Advances in Robotics

    CERN Document Server

    Moreira, António; Lima, Pedro; Montano, Luis; Muñoz-Martinez, Victor

    2016-01-01

    This book contains a selection of papers accepted for presentation and discussion at ROBOT 2015: Second Iberian Robotics Conference, held in Lisbon, Portugal, November 19th-21th, 2015. ROBOT 2015 is part of a series of conferences that are a joint organization of SPR – “Sociedade Portuguesa de Robótica/ Portuguese Society for Robotics”, SEIDROB – Sociedad Española para la Investigación y Desarrollo de la Robótica/ Spanish Society for Research and Development in Robotics and CEA-GTRob – Grupo Temático de Robótica/ Robotics Thematic Group. The conference organization had also the collaboration of several universities and research institutes, including: University of Minho, University of Porto, University of Lisbon, Polytechnic Institute of Porto, University of Aveiro, University of Zaragoza, University of Malaga, LIACC, INESC-TEC and LARSyS. Robot 2015 was focussed on the Robotics scientific and technological activities in the Iberian Peninsula, although open to research and delegates from other...

  17. 21 reports of future industry

    International Nuclear Information System (INIS)

    2001-02-01

    This book deals with 21 reports on future industry, which contain revolution of digital educations, genetic engineering, the newest medical device, environmental industry, artificial intelligence, virtual reality, bio-green revolution, energy of the future, advanced concept computer, e-commerce, digital cash, game industry, information technology for future, next DRAM, information protection industry, robot to replace manpower, medium for information display, navigation systems, a space development, design industry and, home automation.

  18. Architectural setup for online monitoring and control of process parameters in robot-based ISF

    Science.gov (United States)

    Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd

    2017-10-01

    This article describes new developments in an incremental, robot-based sheet metal forming process (Roboforming) for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet forming (ISF) machines, this system offers high geometrical design flexibility without the need of any part-dependent tools. However, the industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors introduce a new architectural setup extending the current one by a superordinate process control. This sophisticated control consists of two modules, i.e. the compensation of the two industrial robots' low structural stiffness as well as a combined force/torque control. It is assumed that this contribution will lead to future research and development projects in which the authors will thoroughly investigate ISF process parameters influencing the geometric accuracy of the forming results.

  19. Microscale soft robotics motivations, progress, and outlook

    CERN Document Server

    Kim, Jaeyoun (Jay)

    2017-01-01

    This book presents the technological basics and applications of small-scale (mm to sub-mm in length-scales) soft robots and devices, written for researchers in both academia and industry. Author Jaeyoun Kim presents technological motivations, enabling factors, and examples in an inter-linked fashion, making it easy for readers to understand and explore how microscale soft robots are a solution to researchers in search of technological platforms for safe, human-friendly biomedical devices. A compact and timely introduction, this book summarizes not only the enabling factors for soft robots and MEMS devices, but also provides a survey of progress in the field and looks to the future in terms of the material, design, and application aspects this new technology demonstrates.

  20. Learning Semantics of Gestural Instructions for Human-Robot Collaboration

    Science.gov (United States)

    Shukla, Dadhichi; Erkent, Özgür; Piater, Justus

    2018-01-01

    Designed to work safely alongside humans, collaborative robots need to be capable partners in human-robot teams. Besides having key capabilities like detecting gestures, recognizing objects, grasping them, and handing them over, these robots need to seamlessly adapt their behavior for efficient human-robot collaboration. In this context we present the fast, supervised Proactive Incremental Learning (PIL) framework for learning associations between human hand gestures and the intended robotic manipulation actions. With the proactive aspect, the robot is competent to predict the human's intent and perform an action without waiting for an instruction. The incremental aspect enables the robot to learn associations on the fly while performing a task. It is a probabilistic, statistically-driven approach. As a proof of concept, we focus on a table assembly task where the robot assists its human partner. We investigate how the accuracy of gesture detection affects the number of interactions required to complete the task. We also conducted a human-robot interaction study with non-roboticist users comparing a proactive with a reactive robot that waits for instructions. PMID:29615888

  1. Learning Semantics of Gestural Instructions for Human-Robot Collaboration.

    Science.gov (United States)

    Shukla, Dadhichi; Erkent, Özgür; Piater, Justus

    2018-01-01

    Designed to work safely alongside humans, collaborative robots need to be capable partners in human-robot teams. Besides having key capabilities like detecting gestures, recognizing objects, grasping them, and handing them over, these robots need to seamlessly adapt their behavior for efficient human-robot collaboration. In this context we present the fast, supervised Proactive Incremental Learning (PIL) framework for learning associations between human hand gestures and the intended robotic manipulation actions. With the proactive aspect, the robot is competent to predict the human's intent and perform an action without waiting for an instruction. The incremental aspect enables the robot to learn associations on the fly while performing a task. It is a probabilistic, statistically-driven approach. As a proof of concept, we focus on a table assembly task where the robot assists its human partner. We investigate how the accuracy of gesture detection affects the number of interactions required to complete the task. We also conducted a human-robot interaction study with non-roboticist users comparing a proactive with a reactive robot that waits for instructions.

  2. Experiences with an application of industrial robotics for accurate patient positioning in proton radiotherapy.

    Science.gov (United States)

    Allgower, C E; Schreuder, A N; Farr, J B; Mascia, A E

    2007-03-01

    Protons beams deliver targeted radiation doses with greater precision than is possible with electrons or megavoltage X-ray photons, but to retain this advantage, patient positioning systems at proton clinics must meet tighter accuracy requirements. For this and other reasons, robots were incorporated into the treatment room systems at MPRI. The Midwest Proton Radiotherapy Institute (MPRI) is the first radiotherapy facility in the United States to use commercial robots with six degrees of freedom for patient positioning, rather than a traditional bed with four degrees of freedom. This paper outlines the ways in which robots are used at MPRI and attempts to distil insights from the experience of treating over 200 radiotherapy patients with a robotic system from February 2004 to late 2006. The system has performed well, and with great reliability, but there is room for future improvement, especially in ease of use and in reducing the time to get patients into position. Copyright 2006 John Wiley & Sons, Ltd.

  3. Cultural Robotics: The Culture of Robotics and Robotics in Culture

    OpenAIRE

    Hooman Samani; Elham Saadatian; Natalie Pang; Doros Polydorou; Owen Noel Newton Fernando; Ryohei Nakatsu; Jeffrey Tzu Kwan Valino Koh

    2013-01-01

    In this paper, we have investigated the concept of “Cultural Robotics” with regard to the evolution of social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of a culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. Ac...

  4. The methods and algorithms for designing complex three-dimensional robots

    International Nuclear Information System (INIS)

    Solovjev, A.E.; Naumov, V.B.

    1996-01-01

    For automation designing by the Robotics laboratory were executed some fundamental and applied researches. This researching allowed to create rational mathematical model for numeric modeling with real-time simulation. In the mathematical model used set of equations of rigid body's motion in Lagrange's form and set of Appel's equations taking into consideration holonomic and non-holonomic connections. In present article are considered methods and algorithms of dynamic modeling of a system of rigid bodies for robotics task and brief description of the package Computer Aided Engineering for Industrial Robots, based on considered algorithms. So far as, in researching of robots the dynamic tasks (direct and inverse) are more interesting than another tasks, authors pay attention just on these problems

  5. Four Degree Freedom Robot Arm with Fuzzy Neural Network Control

    Directory of Open Access Journals (Sweden)

    Şinasi Arslan

    2013-01-01

    Full Text Available In this study, the control of four degree freedom robot arm has been realized with the computed torque control method.. It is usually required that the four jointed robot arm has high precision capability and good maneuverability for using in industrial applications. Besides, high speed working and external applied loads have been acting as important roles. For those purposes, the computed torque control method has been developed in a good manner that the robot arm can track the given trajectory, which has been able to enhance the feedback control together with fuzzy neural network control. The simulation results have proved that the computed torque control with the neural network has been so successful in robot control.

  6. Robotics for radioactive waste management in AEA technology facilities

    International Nuclear Information System (INIS)

    Legg, S.A.; Watson, C.J.H.; Staples, A.

    1992-01-01

    This paper describes the use of robotic technology in two AEA Technology facilities. In the first application, the task is standardized and repetitive, and is undertaken using a conventional industrial robot, operating in teach-and-repeat mode. In the second application, the task is non-repetitive, and requires the use of a variety of different tools. it is therefore undertaken by a nuclear engineered telerobot, with a tool change station

  7. DARC: Next generation decentralized control framework for robot applications

    DEFF Research Database (Denmark)

    Kjærgaard, Morten; Andersen, Nils Axel; Ravn, Ole

    2013-01-01

    This paper presents DARC, a next generation control framework for robot applications. It is designed to be equally powerful in prototyping research projects and for building serious commercial robots running on low powered embedded hardware, thus closing the gab between research and industry....... It incorporates several new techniques such as a decentralized peer-to-peer architecture, transparent network distribution of the control system, and automatic run-time supervision to guarantee robustness....

  8. Robot Actors, Robot Dramaturgies

    DEFF Research Database (Denmark)

    Jochum, Elizabeth

    This paper considers the use of tele-operated robots in live performance. Robots and performance have long been linked, from the working androids and automata staged in popular exhibitions during the nineteenth century and the robots featured at Cybernetic Serendipity (1968) and the World Expo...

  9. Robotics in surgery: is a robot necessary? For what?

    Science.gov (United States)

    Ross, Sharona B; Downs, Darrell; Saeed, Sabrina M; Dolce, John K; Rosemurgy, Alexander S

    2017-02-01

    Every operation can be categorized along a spectrum from "most invasive" to "least invasive", based on the approach(es) through which it is commonly undertaken. Operations that are considered "most invasive" are characterized by "open" approaches with a relatively high degree of morbidity, while operations that are considered "least invasive" are undertaken with minimally invasive techniques and are associated with relatively improved patient outcomes, including faster recovery times and fewer complications. Because of the potential for reduced morbidity, movement along the spectrum towards minimally invasive surgery (MIS) is associated with a host of salutary benefits and, as well, lower costs of patient care. Accordingly, the goal of all stakeholders in surgery should be to attain universal application of the most minimally invasive approaches. Yet the difficulty of performing minimally invasive operations has largely limited its widespread application in surgery, particularly in the context of complex operations (i.e., those requiring complex extirpation and/or reconstruction). Robotic surgery, however, may facilitate application of minimally invasive techniques requisite for particular operations. Enhancements in visualization and dexterity offered by robotic surgical systems allow busy surgeons to quickly gain proficiency in demanding techniques (e.g., pancreaticojejunostomy), within a short learning curve. That is not to say, however, that all operations undertaken with minimally invasive techniques require robotic technology. Herein, we attempt to define how surgeon skill, operative difficulty, patient outcomes, and cost factors determine when robotic technology should be reasonably applied to patient care in surgery.

  10. Underwater Robots Surface in Utah

    Science.gov (United States)

    Hurd, Randy C.; Hacking, Kip S.; Damarjian, Jennifer L.; Wright, Geoffrey A.; Truscott, Tadd

    2015-01-01

    Underwater robots (or ROVs: Remotely Operated Vehicles as they are typically called in industry) have recently become a very popular instructional STEM activity. Nationally, ROVs have been used in science and technology classrooms for several years in cities such as Seattle, San Diego, Virginia Beach, and other coastal areas. In the past two…

  11. Robot calibration with a photogrammetric on-line system using reseau scanning cameras

    Science.gov (United States)

    Diewald, Bernd; Godding, Robert; Henrich, Andreas

    1994-03-01

    The possibility for testing and calibration of industrial robots becomes more and more important for manufacturers and users of such systems. Exacting applications in connection with the off-line programming techniques or the use of robots as measuring machines are impossible without a preceding robot calibration. At the LPA an efficient calibration technique has been developed. Instead of modeling the kinematic behavior of a robot, the new method describes the pose deviations within a user-defined section of the robot's working space. High- precision determination of 3D coordinates of defined path positions is necessary for calibration and can be done by digital photogrammetric systems. For the calibration of a robot at the LPA a digital photogrammetric system with three Rollei Reseau Scanning Cameras was used. This system allows an automatic measurement of a large number of robot poses with high accuracy.

  12. Magnetic resonant wireless power transfer for propulsion of implantable micro-robot

    Science.gov (United States)

    Kim, D.; Kim, M.; Yoo, J.; Park, H.-H.; Ahn, S.

    2015-05-01

    Recently, various types of mobile micro-robots have been proposed for medical and industrial applications. Especially in medical applications, a motor system for propulsion cannot easily be used in a micro-robot due to their small size. Therefore, micro-robots are usually actuated by controlling the magnitude and direction of an external magnetic field. However, for micro-robots, these methods in general are only applicable for moving and drilling operations, but not for the undertaking of various missions. In this paper, we propose a new micro-robot concept, which uses wireless power transfer to deliver the propulsion force and electric power simultaneously. The mechanism of Lorentz force generation and the coil design methodologies are explained, and validation of the proposed propulsion system for a micro-robot is discussed thorough a simulation and with actual measurements with up-scaled test vehicles.

  13. Does a robotic surgery approach offer optimal ergonomics to gynecologic surgeons?: a comprehensive ergonomics survey study in gynecologic robotic surgery.

    Science.gov (United States)

    Lee, Mija Ruth; Lee, Gyusung Isaiah

    2017-09-01

    To better understand the ergonomics associated with robotic surgery including physical discomfort and symptoms, factors influencing symptom reporting, and robotic surgery systems components recommended to be improved. The anonymous survey included 20 questions regarding demographics, systems, ergonomics, and physical symptoms and was completed by experienced robotic surgeons online through American Association of Gynecologic Laparoscopists (AAGL) and Society of Robotic Surgery (SRS). There were 289 (260 gynecology, 22 gynecology-oncology, and 7 urogynecology) gynecologic surgeon respondents regularly practicing robotic surgery. Statistical data analysis was performed using the t-test, χ² test, and logistic regression. One hundred fifty-six surgeons (54.0%) reported experiencing physical symptoms or discomfort. Participants with higher robotic case volume reported significantly lower physical symptom report rates (pergonomic settings not only acknowledged that the adjustments were helpful for better ergonomics but also reported a lower physical symptom rate (pergonomic settings (32.7%), took a break (33.3%) or simply ignored the problem (34%). Fingers and neck were the most common body parts with symptoms. Eye symptom complaints were significantly decreased with the Si robot (pergonomics were microphone/speaker, pedal design, and finger clutch. More than half of participants reported physical symptoms which were found to be primarily associated with confidence in managing ergonomic settings and familiarity with the system depending on the volume of robotic cases. Optimal guidelines and education on managing ergonomic settings should be implemented to maximize the ergonomic benefits of robotic surgery. Copyright © 2017. Asian Society of Gynecologic Oncology, Korean Society of Gynecologic Oncology

  14. Compensation of kinematic geometric parameters error and comparative study of accuracy testing for robot

    Science.gov (United States)

    Du, Liang; Shi, Guangming; Guan, Weibin; Zhong, Yuansheng; Li, Jin

    2014-12-01

    Geometric error is the main error of the industrial robot, and it plays a more significantly important fact than other error facts for robot. The compensation model of kinematic error is proposed in this article. Many methods can be used to test the robot accuracy, therefore, how to compare which method is better one. In this article, a method is used to compare two methods for robot accuracy testing. It used Laser Tracker System (LTS) and Three Coordinate Measuring instrument (TCM) to test the robot accuracy according to standard. According to the compensation result, it gets the better method which can improve the robot accuracy apparently.

  15. Rad-hard embedded computers for nuclear robotics

    International Nuclear Information System (INIS)

    Giraud, A.; Joffre, F.; Marceau, M.; Robiolle, M.; Brunet, J.P.; Mijuin, D.

    1993-01-01

    For requirements of nuclear industries, it is necessary to use robots with embedded rad hard electronics and high level safety. The computer developed for french research program SYROCO is presented in this paper. (authors). 8 refs., 5 figs

  16. Development of Methodologies, Metrics, and Tools for Investigating Human-Robot Interaction in Space Robotics

    Science.gov (United States)

    Ezer, Neta; Zumbado, Jennifer Rochlis; Sandor, Aniko; Boyer, Jennifer

    2011-01-01

    Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator (SPDM), Robonaut, and Space Exploration Vehicle (SEV), as well as interviews with robotics trainers, robot operators, and developers of gesture interfaces. A survey of methods and metrics used in HRI was completed to identify those most applicable to space robotics. These methods and metrics included techniques and tools associated with task performance, the quantification of human-robot interactions and communication, usability, human workload, and situation awareness. The need for more research in areas such as natural interfaces, compensations for loss of signal and poor video quality, psycho-physiological feedback, and common HRI testbeds were identified. The initial findings from these activities and planned future research are discussed. Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator

  17. A cargo-sorting DNA robot.

    Science.gov (United States)

    Thubagere, Anupama J; Li, Wei; Johnson, Robert F; Chen, Zibo; Doroudi, Shayan; Lee, Yae Lim; Izatt, Gregory; Wittman, Sarah; Srinivas, Niranjan; Woods, Damien; Winfree, Erik; Qian, Lulu

    2017-09-15

    Two critical challenges in the design and synthesis of molecular robots are modularity and algorithm simplicity. We demonstrate three modular building blocks for a DNA robot that performs cargo sorting at the molecular level. A simple algorithm encoding recognition between cargos and their destinations allows for a simple robot design: a single-stranded DNA with one leg and two foot domains for walking, and one arm and one hand domain for picking up and dropping off cargos. The robot explores a two-dimensional testing ground on the surface of DNA origami, picks up multiple cargos of two types that are initially at unordered locations, and delivers them to specified destinations until all molecules are sorted into two distinct piles. The robot is designed to perform a random walk without any energy supply. Exploiting this feature, a single robot can repeatedly sort multiple cargos. Localization on DNA origami allows for distinct cargo-sorting tasks to take place simultaneously in one test tube or for multiple robots to collectively perform the same task. Copyright © 2017, American Association for the Advancement of Science.

  18. Hazardous-environment problems: Mobile robots to the rescue

    International Nuclear Information System (INIS)

    Meieran, H.B.

    1992-01-01

    This paper presents a rationale for employing a spectrum of similar mobile robots to conduct appropriate common missions for the following five hazardous-environment issues: (1) dismantlement of nuclear weapons; (2) environmental restoration and waste management of US Department of Energy weapons sites; (3) operations in nuclear power plants and other facilities; (4) waste chemical site remediation and cleanup activities; and (5) assistance in handling toxic chemical/radiation accidents. Mobile robots have been developed for several hazardous-environment industries, the most visible ones being construction/excavation/tunneling, explosive ordnance/bomb disposal (EOD), fire-fighting, military operations, mining, nuclear, and security. A summary of the range of functions that mobile robots are currently capable of conducting is presented

  19. Case studies in configuration control for redundant robots

    Science.gov (United States)

    Seraji, H.; Lee, T.; Colbaugh, R.; Glass, K.

    1989-01-01

    A simple approach to configuration control of redundant robots is presented. The redundancy is utilized to control the robot configuration directly in task space, where the task will be performed. A number of task-related kinematic functions are defined and combined with the end-effector coordinates to form a set of configuration variables. An adaptive control scheme is then utilized to ensure that the configuration variables track the desired reference trajectories as closely as possible. Simulation results are presented to illustrate the control scheme. The scheme has also been implemented for direct online control of a PUMA industrial robot, and experimental results are presented. The simulation and experimental results validate the configuration control scheme for performing various realistic tasks.

  20. Use of robotics in colon and rectal surgery.

    Science.gov (United States)

    Pucci, Michael J; Beekley, Alec C

    2013-03-01

    The pace of innovation in the field of surgery continues to accelerate. As new technologies are developed in combination with industry and clinicians, specialized patient care improves. In the field of colon and rectal surgery, robotic systems offer clinicians many alternative ways to care for patients. From having the ability to round remotely to improved visualization and dissection in the operating room, robotic assistance can greatly benefit clinical outcomes. Although the field of robotics in surgery is still in its infancy, many groups are actively investigating technologies that will assist clinicians in caring for their patients. As these technologies evolve, surgeons will continue to find new and innovative ways to utilize the systems for improved patient care and comfort.