WorldWideScience

Sample records for industrial reactor mathematical

  1. ADAPTIVE CONTROL SYSTEM OF INDUSTRIAL REACTORS

    Directory of Open Access Journals (Sweden)

    Vyacheslav K. Mayevski

    2014-01-01

    Full Text Available This paper describes a mathematical model of an industrial chemical reactor for production of synthetic rubber. During reactor operation the model parameters vary considerably. To create a control algorithm performed transformation of mathematical model of the reactor in order to obtain a dependency that can be used to determine the model parameters are changing during reactor operation.

  2. Progress in Industrial Mathematics at ECMI 96

    DEFF Research Database (Denmark)

    mathematicians get inspiration from industrial demands. The European Consortium for Mathematics in Industry aims to create contact between industry and academia, and to promote research in industrial mathematics. This book contains a broad spectrum of mathematics applied to industrial problems. Applied...... mathematics, case studies, and review papers in the following fields are included: Environmental modelling, railway systems, industrial processes, electronics, ships, oil industry, optimization, machine dynamics, fluids in industry. Applied mathematicians and other professionals working in academia...

  3. European Success Stories in Industrial Mathematics

    CERN Document Server

    Esteban, Maria J; Lery, Thibaut; Maday, Yvon

    2011-01-01

    This unique book presents real world success stories of collaboration between mathematicians and industrial partners, showcasing first-hand case studies, and lessons learned from the experiences, technologies, and business challenges that led to the successful development of industrial solutions based on mathematics. It shows the crucial contribution of mathematics to innovation and to the industrial creation of value, and the key position of mathematics in the handling of complex systems, amplifying innovation. Each story describes the challenge that led to the industrial cooperation, how the

  4. Identification of Chemical Reactor Plant’s Mathematical Model

    OpenAIRE

    Pyakullya, Boris Ivanovich; Kladiev, Sergey Nikolaevich

    2015-01-01

    This work presents a solution of the identification problem of chemical reactor plant’s mathematical model. The main goal is to obtain a mathematical description of a chemical reactor plant from experimental data, which based on plant’s time response measurements. This data consists sequence of measurements for water jacket temperature and information about control input signal, which is used to govern plant’s behavior.

  5. Construction Industry Related Mathematics: Seventh Grade.

    Science.gov (United States)

    Mundell, Scott

    The field tested construction industry-related mathematics unit is intended to familiarize seventh grade students with various facets of the construction industry, including the various occupations available and the mathematical abilities and other skills and training necessary to pursue an occupation in the industry. The final set of activities…

  6. Identification of Chemical Reactor Plant’s Mathematical Model

    Directory of Open Access Journals (Sweden)

    Pyakillya Boris

    2015-01-01

    Full Text Available This work presents a solution of the identification problem of chemical reactor plant’s mathematical model. The main goal is to obtain a mathematical description of a chemical reactor plant from experimental data, which based on plant’s time response measurements. This data consists sequence of measurements for water jacket temperature and information about control input signal, which is used to govern plant’s behavior.

  7. 18th European Conference on Mathematics for Industry

    CERN Document Server

    Capasso, Vincenzo; Nicosia, Giuseppe; Romano, Vittorio

    2016-01-01

    This book presents a collection of papers emphasizing applications of mathematical models and methods to real-world problems of relevance for industry, life science, environment, finance, and so on. The biannual Conference of ECMI (the European Consortium of Mathematics in Industry) held in 2014 focused on various aspects of industrial and applied mathematics. The five main topics addressed at the conference were mathematical models in life science, material science and semiconductors, mathematical methods in the environment, design automation and industrial applications, and computational finance. Several other topics have been treated, such as, among others, optimization and inverse problems, education, numerical methods for stiff pdes, model reduction, imaging processing, multi physics simulation, mathematical models in textile industry. The conference, which brought together applied mathematicians and experts from industry, provided a unique opportunity to exchange ideas, problems and methodologies...

  8. 13th European Conference on Mathematics for Industry

    CERN Document Server

    Mattheij, RMM; Peletier, MA

    2006-01-01

    ECMI has a brand name in Industrial Mathematics and organises successful biannual conferences. This time, the conference on Industrial Mathematics held in Eindhoven in June 2004 Mathematics focused on Aerospace, Electronic Industry, Chemical Technology, Life Sciences, Materials, Geophysics, Financial Mathematics and Water flow. The majority of the invited talks on these topics can be found in these proceedings. Apart form these lectures, a large number of contributed papers and minisymposium papers are included here. They give an interesting and impressive overview of the important place mathematics has achieved in solving all kinds of problems met in industry, and commerce in particular.

  9. Innovative and collaborative industrial mathematics in Europe

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    2017-01-01

    This paper presents a brief review of how industrial mathematics, inspired by the Oxford Study Group activity, organized itself in Europe, gave rise to the European Consortium for Mathematics in Industry, the series of European Study Groups with Industry, and to new modes of productive contacts b...... between industry and applied mathematicians in academia....

  10. Forum of Mathematics for Industry 2014

    CERN Document Server

    Broadbridge, Philip; Fukumoto, Yasuhide; Kajiwara, Kenji; Takagi, Tsuyoshi; Verbitskiy, Evgeny; Wakayama, Masato

    2016-01-01

    This book is a collection of papers presented at the conference “Forum Math-for-Industry 2014” for which the unifying theme was “Applications + Practical Conceptualization + Mathematics = fruitful Innovation” in October 2014. This epigram encapsulates the dynamics of the process that takes an application through to an innovation. Industrial mathematics can be viewed as the causal engine that implements the epigram by taking an Application such as input and convolving it with a mixture of Practical Conceptualization and Mathematics to generate a fruitful Innovation as output. The book illustrates various aspects of the two-way interaction between applications and their association highlighting how practical conceptualization assists with the linking of the question that encapsulates the current application to the relevant mathematics. The contents of this volume address productive and successful interaction between industry and mathematicians, as well as the cross-fertilization and collaboration that r...

  11. Mathematical model of the reactor coolant pump

    International Nuclear Information System (INIS)

    Kozuh, M.

    1989-01-01

    The mathematical model of reactor coolant pump is described in this paper. It is based on correlations for centrifugal reactor coolant pumps. This code is one of the elements needed for the simulation of the whole NPP primary system. In subroutine developed according to this model we tried in every possible detail to incorporate plant specific data for Krsko NPP. (author)

  12. Fast reactors: the industrial perspective

    International Nuclear Information System (INIS)

    Vaughan, R.D.

    1986-01-01

    Industrial participation in the development of the fast reactor is reviewed, from the construction of PFR at Dounreay to the initial steps towards collaboration in Europe. The optimum design of the fast reactor has changed considerably from the days when it was needed urgently to forestall a shortage of uranium to today when uranium is abundant and cheap. The evolution of the reactor design over this period is described. Collaboration in Europe is shown to be the only answer to high development costs and the search for a reactor which will compete with thermal reactors in today's environment. The partner countries in this collaboration are all motivated differently, and this is leading to some delays in concluding the necessary agreements. The objective on the industrial front is now to participate in the two or three demonstration fast reactors that will be built in Europe during the remainder of the century leading, it is hoped, to a competitive reactor design by the year 2000. (author)

  13. 17th European Conference on Mathematics for Industry

    CERN Document Server

    Günther, Michael; Marheineke, Nicole

    2014-01-01

    This book contains the proceedings of the 17th European Conference on Mathematics for Industry, ECMI2012, held in Lund, Sweden, July 2012, at which ECMI celebrated its 25th anniversary. It covers mathematics in a wide range of applications and methods, from circuit and electromagnetic devices, environment, fibers, flow, medicine, robotics and automotive industry, further applications to methods and education. The book includes contributions from leading figures in business, science and academia who promote the application of mathematics to industry and emphasize industrial sectors that offer the most exciting opportunities. The contributions reinforce the role of mathematics as being a catalyst for innovation as well as an overarching resource for industry and business. The book features an accessible presentation of real-world problems in industry and finance, provides insight and tools for engineers and scientists which will help them to solve similar problems, and offers modeling and simulation techniques ...

  14. Advances in Reactor Physics, Mathematics and Computation. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    These proceedings of the international topical meeting on advances in reactor physics, mathematics and computation, Volume 2, are divided into 7 sessions bearing on: - session 7: Deterministic transport methods 1 (7 conferences), - session 8: Interpretation and analysis of reactor instrumentation (6 conferences), - session 9: High speed computing applied to reactor operations (5 conferences), - session 10: Diffusion theory and kinetics (7 conferences), - session 11: Fast reactor design, validation and operating experience (8 conferences), - session 12: Deterministic transport methods 2 (7 conferences), - session 13: Application of expert systems to physical aspects of reactor design and operation.

  15. Advances in Reactor Physics, Mathematics and Computation. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    These proceedings of the international topical meeting on advances in reactor physics, mathematics and computation, volume one, are divided into 6 sessions bearing on: - session 1: Advances in computational methods including utilization of parallel processing and vectorization (7 conferences) - session 2: Fast, epithermal, reactor physics, calculation, versus measurements (9 conferences) - session 3: New fast and thermal reactor designs (9 conferences) - session 4: Thermal radiation and charged particles transport (7 conferences) - session 5: Super computers (7 conferences) - session 6: Thermal reactor design, validation and operating experience (8 conferences).

  16. Modelling an industrial anaerobic granular reactor using a multi-scale approach

    DEFF Research Database (Denmark)

    Feldman, Hannah; Flores Alsina, Xavier; Ramin, Pedram

    2017-01-01

    The objective of this paper is to show the results of an industrial project dealing with modelling of anaerobic digesters. A multi-scale mathematical approach is developed to describe reactor hydrodynamics, granule growth/distribution and microbial competition/inhibition for substrate/space within...... the biofilm. The main biochemical and physico-chemical processes in the model are based on the Anaerobic Digestion Model No 1 (ADM1) extended with the fate of phosphorus (P), sulfur (S) and ethanol (Et-OH). Wastewater dynamic conditions are reproduced and data frequency increased using the Benchmark...... simulations show the effects on the overall process performance when operational (pH) and loading (S:COD) conditions are modified. Lastly, the effect of intra-granular precipitation on the overall organic/inorganic distribution is assessed at: 1) different times; and, 2) reactor heights. Finally...

  17. Structured Mathematical Modeling of Industrial Boiler

    Directory of Open Access Journals (Sweden)

    Abdullah Nur Aziz

    2014-04-01

    Full Text Available As a major utility system in industry, boilers consume a large portion of the total energy and costs. Significant reduction of boiler cost operation can be gained through improvements in efficiency. In accomplishing such a goal, an adequate dynamic model that comprehensively reflects boiler characteristics is required. This paper outlines the idea of developing a mathematical model of a water-tube industrial boiler based on first principles guided by the bond graph method in its derivation. The model describes the temperature dynamics of the boiler subsystems such as economizer, steam drum, desuperheater, and superheater. The mathematical model was examined using industrial boiler performance test data.It can be used to build a boiler simulator or help operators run a boiler effectively.

  18. Industrial structure at research reactor suppliers

    International Nuclear Information System (INIS)

    Roegler, H.-J.; Bogusch, E.; Friebe, T.

    2001-01-01

    Due to the recent joining of the forces of Framatome S. A. from France and the Nuclear Division of Siemens AG Power Generation (KWU) from Germany to a Joint Venture named Framatome Advanced Nuclear Power S.A.S., the issue of the necessary and of the optimal industrial structure for nuclear projects as a research reactor is, was discussed internally often and intensively. That discussion took place also in the other technical fields such as Services for NPPs but also in the field of interest here, i. e. Research Reactors. In summarizing the statements of this presentation one can about state that: Research Reactors are easier to build than NPPs, but not standardised; Research Reactors need a wide spectrum of skills and experiences; to design and build Research Reactors needs an experienced team especially in terms of management and interfaces; Research Reactors need background from built reference plants more than from operating plants; Research Reactors need knowledge of suitable experienced subsuppliers. Two more essential conclusions as industry involved in constructing and upgrading research reactors are: Research Reactors by far are more than a suitable core that generates a high neutron flux; every institution that designs and builds a Research Reactor lacks quality or causes safety problems, damages the reputation of the entire community

  19. Mathematical game type optimization of powerful fast reactors

    International Nuclear Information System (INIS)

    Pavelesku, M.; Dumitresku, Kh.; Adam, S.

    1975-01-01

    To obtain maximum speed of putting into operation fast breeders it is recommended on the initial stage of putting into operation these reactors to apply lower power which needs less fission materials. That is why there is an attempt to find a configuration of a high-power reactor providing maximum power for minimum mass of fission material. This problem has a structure of the mathematical game with two partners of non-zero-order total and is solved by means of specific aids of theory of games. Optimal distribution of fission and breeding materials in a multizone reactor first is determined by solution of competitive game and then, on its base, by solution of the cooperation game. The second problem the solution for which is searched is developed from remark on the fact that a reactor with minimum coefficient of flux heterogenity has a configuration different from the reactor with power coefficient heterogenity. Maximum burn-up of fuel needs minimum heterogenity of the flux coefficient and the highest power level needs minimum coefficient of power heterogenity. That is why it is possible to put a problem of finding of the reactor configuration having both coefficients with minimum value. This problem has a structure of a mathematical game with two partners of non-zero-order total and is solved analogously giving optimal distribution of fuel from the new point of view. In the report is shown that both these solutions are independent which is a result of the aim put in the problem of optimization. (author)

  20. Forum of Mathematics for Industry 2013

    CERN Document Server

    Anderssen, Robert; Cheng, Jin; Fukumoto, Yasuhide; McKibbin, Robert; Polthier, Konrad; Takagi, Tsuyoshi; Toh, Kim-Chuan

    2014-01-01

    This book is a collection of papers presented at the Forum “The Impact of Applications on Mathematics” in October 2013. It describes an appropriate framework in which to highlight how real-world problems, over the centuries and today, have influenced and are influencing the development of mathematics and, thereby, how mathematics is reshaped, in order to advance mathematics and its application. The contents of this book address productive and successful interaction between industry and mathematicians, as well as the cross-fertilization and collaboration that result when mathematics is involved with the advancement of science and technology.

  1. Progress in Industrial Mathematics at ECMI 2000

    CERN Document Server

    Capasso, Vincenzo; Greco, Antonio

    2002-01-01

    The European Consortium for Mathematics in Industry (ECMI) was founded in 1986 by leading groups of mathematicians in Europe for the following scopes: i) direct involvement of mathematicians in R&D activities; ii) international cooperation at a European scale; iii) education of industrial mathematicians to meet the growing demand for such experts. ECMI 2000 shows that ECMI has offered a unique example of effective international cooperation thanks to the financial support of the European Framework programmes. In particular they have helped ECMI establishing a set of Special Interest Groups to favour interaction with industry . This volume includes minisymposia about their activities, in particular microelectronics, glass, polymers, finance, traffic, and textiles. Applied mathematicians and other professionals working in academia or industry will find the book to be a useful and stimulating source of mathematical applications related to industrial problems.

  2. Mathematical Modeling and Simulation of the Dehydrogenation of Ethyl Benzene to Form Styrene Using Steady-State Fixed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Zaidon M. Shakoor

    2013-05-01

    Full Text Available In this research, two models are developed to simulate the steady state fixed bed reactor used for styrene production by ethylbenzene dehydrogenation. The first is one-dimensional model, considered axial gradient only while the second is two-dimensional model considered axial and radial gradients for same variables.The developed mathematical models consisted of nonlinear simultaneous equations in multiple dependent variables. A complete description of the reactor bed involves partial, ordinary differential and algebraic equations (PDEs, ODEs and AEs describing the temperatures, concentrations and pressure drop across the reactor was given. The model equations are solved by finite differences method. The reactor models were coded with Mat lab 6.5 program and various numerical techniques were used to obtain the desired solution.The simulation data for both models were validated with industrial reactor results with a very good concordance.

  3. Industrial and commercial applications for a Triga reactor

    International Nuclear Information System (INIS)

    Green, D.

    1986-01-01

    The Physics and Radioisotope Services Group of ICI operates a Triga Reactor in support of a commercial, Industrial Radioisotope Technology Service. The technical and commercial development of this business is discussed in the context of operating a Triga Reactor in an Industrial Environment. (author)

  4. 19th European Conference on Mathematics for Industry

    CERN Document Server

    Barral, Patricia; Gómez, Dolores; Pena, Francisco; Rodríguez, Jerónimo; Salgado, Pilar; Vázquez-Méndez, Miguel; ECMI 2016; Progress in industrial mathematics

    2017-01-01

    This book addresses mathematics in a wide variety of applications, ranging from problems in electronics, energy and the environment, to mechanics and mechatronics. Using the classification system defined in the EU Framework Programme for Research and Innovation H2020, several of the topics covered belong to the challenge climate action, environment, resource efficiency and raw materials; and some to health, demographic change and wellbeing; while others belong to Europe in a changing world – inclusive, innovative and reflective societies. The 19th European Conference on Mathematics for Industry, ECMI2016, was held in Santiago de Compostela, Spain in June 2016. The proceedings of this conference include the plenary lectures, ECMI awards and special lectures, mini-symposia (including the description of each mini-symposium) and contributed talks. The ECMI conferences are organized by the European Consortium for Mathematics in Industry with the aim of promoting interaction between academy and industry, leading...

  5. Topics in industrial mathematics

    International Nuclear Information System (INIS)

    Vatsya, S.R.

    1992-01-01

    Mathematical methods are widely used to solve practical problems arising in modern industry. This article outlines some of the topics relevant to AECL programmes. This covers the applications of transmission and neutron transport tomography to determine density distributions in rocks and two phase flow situations. Another example covered is the use of variational methods to solve the problems of aerosol migration and control theory. (author). 7 refs

  6. Utility industry evaluation of the Sodium Advanced Fast Reactor

    International Nuclear Information System (INIS)

    Burstein, S.; DelGeorge, L.O.; Tramm, T.R.; Gibbons, J.P.; High, M.D.; Neils, G.H.; Pilmer, D.F.; Tomonto, J.R.; Wells, J.T.

    1990-02-01

    A team of utility industry representatives evaluated the Sodium Advanced Fast Reactor plant design, a current liquid metal reactor design created by an industrial team led by Rockwell International under Department of Energy sponsorship. The utility industry team concluded that the plant design offers several attractive characteristics, especially in the safety arena, as well as preserving the traditional attraction of liquid metal reactors, very high fuel utilization. Specific comments and recommendations are provided as a contribution towards improving an already attractive plant design. 18 refs

  7. Mathematical formulas for industrial and mechanical engineering

    CERN Document Server

    Kadry, Seifedine

    2014-01-01

    Mathematical Formulas For Industrial and Mechanical Engineering serves the needs of students and teachers as well as professional workers in engineering who use mathematics. The contents and size make it especially convenient and portable. The widespread availability and low price of scientific calculators have greatly reduced the need for many numerical tables that make most handbooks bulky. However, most calculators do not give integrals, derivatives, series and other mathematical formulas and figures that are often needed. Accordingly, this book contains that information in an easy way to

  8. Mathematical simulation of hazardous ion retention from radioactive waste in fixed bed reactor

    International Nuclear Information System (INIS)

    Sohsah, M.A.; Gohneim, M.M.; Othman, S.H.; El-Anadouli, B.E.

    2007-01-01

    Reactor design for fluid-solid, noncatalytic reaction depends on the prediction of the performance of the reactor kinetically. The most mathematical models used to handle fixed bed reactor in which the solid bed constitute one of the reactants, while a second reactant is in the fluid phase are complex and difficult to handle. A new mathematical model which easier to handle has been developed to describe the system under investigation. The model was examined theoretically and experimentally. A column backed with chelating cloth filter to separate radionuclide form radioactive waste solution is used as a practical application for the model. Comparison of the model predictions with the experimental results gives satisfactory agreement at most of the process stages

  9. Modeling Clinic for Industrial Mathematics: A Collaborative Project Under Erasmus+ Program

    DEFF Research Database (Denmark)

    Jurlewicz, Agnieszka; Nunes, Claudia; Russo, Giovanni

    2018-01-01

    Modeling Clinic for Industrial Mathematics (MODCLIM) is a Strategic Partnership for the Development of Training Workshops and Modeling Clinic for Industrial Mathematics, funded through the European Commission under the Erasmus Plus Program, Key Action 2: Cooperation for innovation and the exchang...

  10. Mathematical modeling of water radiolysis in the Syrian MNSR reactor

    International Nuclear Information System (INIS)

    Soukieh, M.

    2009-11-01

    Because it is difficult to measure the concentration of the radiolytic species in reactors under operating conduction, they must be estimated by computer simulation techniques. This study discusses the mathematical modeling of water radiolysis modeling of the MNSR nuclear reactor cooling water. The mathematical model comprising of 13 differential equations describe 55 chemical reactions of radiolytic species e - a q H + , OH - , H, H 2 , OH, HO 2 , O 2 , HO - 2 , O - , O - 2 , O - 3 . The mathematical model have been tested and it shows a good agreement of the computed values in this work with the results cited in references [1,18] in case of only γray irradiation of pure water with dose rate of 1.18x10 19 eV/L s. The neutron fluxes and dose rates at the interface of cladding-water for the different fuel rings in the MNSR core are determined using MCNP-4C code. In addition, the time dependent of the radiolytic specie concentrations were estimated for max. and min. dose rates and at temperature of 20 degree centigrade in the MNSR. The radiolytic specie concentrations reach the steady sate after about 200-400 s. The radiolytic specie concentrations order of H 2 , O 2 , H 2 O 2 were about ppb. Also this study shows the possibility of suppressed the water radiolysis reactions by adding hydrogen to the MNSR reactor cooling water. (author)

  11. Structured Mathematical Modeling of Industrial Boiler

    OpenAIRE

    Aziz, Abdullah Nur; Nazaruddin, Yul Yunazwin; Siregar, Parsaulian; Bindar, Yazid

    2014-01-01

    As a major utility system in industry, boilers consume a large portion of the total energy and costs. Significant reduction of boiler cost operation can be gained through improvements in efficiency. In accomplishing such a goal, an adequate dynamic model that comprehensively reflects boiler characteristics is required. This paper outlines the idea of developing a mathematical model of a water-tube industrial boiler based on first principles guided by the bond graph method in its derivation. T...

  12. Modified Mathematical Model For Neutralization System In Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    Ahmmed Saadi Ibrehem

    2011-05-01

    Full Text Available A modified model for the neutralization process of Stirred Tank Reactors (CSTR reactor is presented in this study. The model accounts for the effect of strong acid [HCL] flowrate and strong base [NaOH] flowrate with the ionic concentrations of [Cl-] and [Na+] on the Ph of the system. In this work, the effect of important reactor parameters such as ionic concentrations and acid and base flowrates on the dynamic behavior of the CSTR is investigated and the behavior of mathematical model is compared with the reported models for the McAvoy model and Jutila model. Moreover, the results of the model are compared with the experimental data in terms of pH dynamic study. A good agreement is observed between our model prediction and the actual plant data. © 2011 BCREC UNDIP. All rights reserved(Received: 1st March 2011, Revised: 28th March 2011; Accepted: 7th April 2011[How to Cite: A.S. Ibrehem. (2011. Modified Mathematical Model For Neutralization System In Stirred Tank Reactor. Bulletin of Chemical Reaction Engineering & Catalysis, 6(1: 47-52. doi:10.9767/bcrec.6.1.825.47-52][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.825.47-52 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/825 ] | View in 

  13. The Role and Relevance of Mathematics in the Maritime Industry

    African Journals Online (AJOL)

    kofi.mereku

    symmetry in chemistry and physics; Calculus (differential equations) applicable in ... and engineering; and is a branch of applied mathematics. .... The maritime and offshore industries use advanced mathematical methods in the design of ships.

  14. Advances in Reactor physics, mathematics and computation. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    These proceedings of the international topical meeting on advances in reactor physics, mathematics and computation, volume 3, are divided into sessions bearing on: - poster sessions on benchmark and codes: 35 conferences - review of status of assembly spectrum codes: 9 conferences - Numerical methods in fluid mechanics and thermal hydraulics: 16 conferences - stochastic transport and methods: 7 conferences.

  15. Optimisation of gas-cooled reactors with the aid of mathematical computers

    Energy Technology Data Exchange (ETDEWEB)

    Margen, P H

    1959-04-15

    Reactor optimisation is the task of finding the combination of values of the independent variables in a reactor design producing the lowest cost of electricity. In a gas-cooled reactor the number of independent variables is particularly large and the optimisation process is, therefore, laborious. The present note describes a procedure for performing the entire optimisation procedure with the aid of a mathematical computer in a single operation, thus saving time for the design staff. Detailed equations and numerical constants are proposed for the thermal and cost relations involved. The reactor physics equations, on the other hand are merely stated as general functions of the relevant variables. The task of expressing these functions as detailed equations will be covered by separate documents prepared by the reactor physics department.

  16. Optimisation of gas-cooled reactors with the aid of mathematical computers

    International Nuclear Information System (INIS)

    Margen, P.H.

    1959-04-01

    Reactor optimisation is the task of finding the combination of values of the independent variables in a reactor design producing the lowest cost of electricity. In a gas-cooled reactor the number of independent variables is particularly large and the optimisation process is, therefore, laborious. The present note describes a procedure for performing the entire optimisation procedure with the aid of a mathematical computer in a single operation, thus saving time for the design staff. Detailed equations and numerical constants are proposed for the thermal and cost relations involved. The reactor physics equations, on the other hand are merely stated as general functions of the relevant variables. The task of expressing these functions as detailed equations will be covered by separate documents prepared by the reactor physics department

  17. Currents in industrial mathematics from concepts to research to education

    CERN Document Server

    Prätzel-Wolters, Dieter

    2015-01-01

    Mathematics has many branches: there are the pure, the applied, and the applicable; the theoretical and the practical. There is mathematics for school, for college, and for industry. All these belong to the same family and are bound together by a "mathematical way of thinking." Some mathematicians devote themselves entirely to the well being of this family by preserving it, developing it, and teaching it to the next generation. Others use the familial attributes to help outsiders by taking up their problems and transforming them into mathematical questions in order to solve them. The work of these mathematicians is thus problem driven, based on mathematical models, and oriented on the goal of offering practicable solutions. This second group is sizeable; its members include almost all college graduates working in industry, in the private sector, or in the Fraunhofer Institutes, for example. This group is hardly visible, however, and one seldom hears its voices either. This book remedies this situation by rela...

  18. Industrial applications of multi-functional, multi-phase reactors

    NARCIS (Netherlands)

    Harmsen, G.J.; Chewter, L.A.

    1999-01-01

    To reveal trends in the design and operation of multi-functional, multi-phase reactors, this paper describes, in historical sequence, three industrial applications of multi-functional, multi-phase reactors developed and operated by Shell Chemicals during the last five decades. For each case, we

  19. Mathematical foundation of the application of modal analysis to the investigation of space-time reactor behaviour

    International Nuclear Information System (INIS)

    Obradovic, D.M.

    1970-01-01

    In recent years investigations in the field of kinetics and dynamics of nuclear reactors have been directed towards overcoming an insufficiently accurate point reactor model. For that purpose different mathematical approaches have been used. This thesis is devoted to modal analysis because, from the practical point of view, it is a very promising and, from the mathematical and physical point of view, a very interesting method. Some fundamental mathematical problems connected with the application of modal analysis to the investigations of the reactor space-time behaviour are still unsolved and accordingly our purpose is to solve some of these problems. The spectral properties of the diffusion and P 1 operators are studied in some detail applying the Krein-Rutman theory of the K-positive operators, the Krasnosel'skii theory of u 0 operators, and the Keldis theory of the operator families. The formal solution to the initial value problem (as an abstract Cauchy problem), associated with the diffusion and P 1 operators is also studied. Modal analysis is identified as a set of methods in the mathematical literature known as the Galerkin methods (or projection methods). Following this idea (using the results of the mathematical investigations of the Galerkin methods) and using our results of the investigations of the properties of the diffusion and P 1 operators, the applicability of modal analysis to the approximate solution of the diffusion and P 1 equations and of the eigenvalue problems associated with the diffusion and P 1 operators is established. As an example of the application of modal analysis the Bubnov and Galerkin method is applied to a multiregion thermal nuclear reactor for the determination of: (i) frequency response, (ii) eigenvalues and eigenvectors of the stationary diffusion operator, (iii) eigenvalues and eigenvectors of the non-stationary diffusion operators. On the basis of the expressions obtained the corresponding computer programmes for radial

  20. Mathematical modelling and quality indices optimization of automatic control systems of reactor facility

    International Nuclear Information System (INIS)

    Severin, V.P.

    2007-01-01

    The mathematical modeling of automatic control systems of reactor facility WWER-1000 with various regulator types is considered. The linear and nonlinear models of neutron power control systems of nuclear reactor WWER-1000 with various group numbers of delayed neutrons are designed. The results of optimization of direct quality indexes of neutron power control systems of nuclear reactor WWER-1000 are designed. The identification and optimization of level control systems with various regulator types of steam generator are executed

  1. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor

    International Nuclear Information System (INIS)

    Bassin, Joao P.; Dezotti, Marcia; Sant'Anna, Geraldo L.

    2011-01-01

    Nitrification of saline wastewaters was investigated in bench-scale moving-bed biofilm reactors (MBBR). Wastewater from a chemical industry and domestic sewage, both treated by the activated sludge process, were fed to moving-bed reactors. The industrial wastewater contained 8000 mg Cl - /L and the salinity of the treated sewage was gradually increased until that level. Residual substances present in the treated industrial wastewater had a strong inhibitory effect on the nitrification process. Assays to determine inhibitory effects were performed with the industrial wastewater, which was submitted to ozonation and carbon adsorption pretreatments. The latter treatment was effective for dissolved organic carbon (DOC) removal and improved nitrification efficiency. Nitrification percentage of the treated domestic sewage was higher than 90% for all tested chloride concentrations up to 8000 mg/L. Results obtained in a sequencing batch reactor (SBR) were consistent with those attained in the MBBR systems, allowing tertiary nitrification and providing adequate conditions for adaptation of nitrifying microorganisms even under stressing and inhibitory conditions.

  2. Mathematical models in Slowpoke reactor internal irradiation site

    International Nuclear Information System (INIS)

    Raza, J.

    2007-01-01

    The main objective is to build representative mathematical models of neutron activation analysis in a Slowpoke internal irradiation site. Another significant objective is to correct various elements neutron activation analysis measured mass using these models. The neutron flux perturbation is responsible for the measured under-estimation of real masses. We supposed that neutron flux perturbation measurements taken during the Ecole Polytechnique de Montreal Slowpoke reactor first fuel loading were still valid after the second fuelling. .We also supposed that the thermal neutrons spatial and kinetic energies distributions as well as the absorption microscopic cross section dependence on the neutrons kinetic energies were important factors to satisfactorily represent neutron activation analysis results. In addition, we assumed that the neutron flux is isotropic in the laboratory system. We used experimental results from the Slowpoke reactor internal irradiation sites, in order to validate our mathematical models. Our models results are in close agreement with these experimental results..We established an accurate global mathematical correlation of the neutron flux perturbation in function of samples volumes and macroscopic neutron absorption cross sections. It is applicable to sample volumes ranging from 0,1 to 1,3 ml and macroscopic neutron absorption cross section up to 5 moles-b for seven (7) elements with atomic numbers (Z) ranging from 5 to 79. We first came up with a heuristic neutron transport mathematical semi-analytical model, in order to better understand neutrons behaviour in presence of one of several different nuclei samples volumes and mass. In order to well represent the neutron flux perturbation, we combined a neutron transport solution obtained from the spherical harmonics method of a finite cylinder and a mathematical expression combining two cylindrical harmonic functions..With the help of this model and the least squares method, we made extensive

  3. Building up a reactor industry

    International Nuclear Information System (INIS)

    Mattick, W.

    1977-01-01

    The reactor industry has in common with any other industry the need to meet a requirement in a specific market with a specific product. However, it is distinguished from old established industries by its origins, its young age and by the fact that most of its development costs were paid by the governments in all developed countries. A comparison of the origins and the history of companies in this field in the United Kingdom , France and the Federal Republic of Germany should merit special interest. A historical survey of this kind is presented in this contribution. If a technological project acquires international ramifications in order to diminish the market risk, national goals frequently must give way to a common objective. Problems involving practical application must be solved by joint efforts of industrial consortia. In this way, these industries can both offer a commercially viable product and take into account national characteristics or habits in such a way as to improve the overall cost-benefit situation with all parties involved. (orig.) [de

  4. The changing structure of the international commercial nuclear power reactor industry

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Hill, L.J.; Reich, W.J.; Rowan, W.J.

    1992-12-01

    The objective of this report is to provide an understanding of the international commercial nuclear power industry today and how the industry is evolving. This industry includes reactor vendors, product lines, and utility customers. The evolving structure of the international nuclear power reactor industry implies different organizations making decisions within the nuclear power industry, different outside constraints on those decisions, and different priorities than with the previous structure. At the same time, cultural factors, technical constraints, and historical business relationships allow for an understanding of the organization of the industry, what is likely, and what is unlikely. With such a frame of reference, current trends and future directions can be more readily understood

  5. Assessment of a small pressurized water reactor for industrial energy

    International Nuclear Information System (INIS)

    Klepper, O.H.; Fuller, L.C.; Myers, M.L.

    1977-01-01

    An evaluation of several recent ERDA/ORNL sponsored studies on the application of a small, 365 MW(t) pressurized water reactor for industrial energy is presented. Preliminary studies have investigated technical and reliability requirements; costs for nuclear and fossil based steam were compared, including consideration of economic inflation and financing methods. For base-load industrial steam production, small reactors appear economically attractive relative to coal fired boilers that use coal priced at $30/ton

  6. Methods of Mathematical and Computational Physics for Industry, Science, and Technology

    Science.gov (United States)

    Melnik, Roderick V. N.; Voss, Frands

    2006-11-01

    Many industrial problems provide scientists with important and challenging problems that need to be solved today rather than tomorrow. The key role of mathematical physics, modelling, and computational methodologies in addressing such problems continues to increase. Science has never been exogenous to applied research. Gigantic ships and steam engines, repeating catapult of Dionysius and the Antikythera `computer' invented around 80BC are just a few examples demonstrating a profound link between theoretical and applied science in the ancient world. Nowadays, many industrial problems are typically approached by groups of researchers who are working as a team bringing their expertise to the success of the entire enterprise. Since the late 1960s several groups of European mathematicians and scientists have started organizing regular meetings, seeking new challenges from industry and contributing to the solution of important industrial problems. In particular, this often took the format of week-long workshops originally initiated by the Oxford Study Groups with Industry in 1968. Such workshops are now held in many European countries (typically under the auspices of the European Study Groups with Industry - ESGI), as well as in Australia, Canada, the United States, and other countries around the world. Problems given by industrial partners are sometimes very difficult to complete within a week. However, during a week of brainstorming activities these problems inevitably stimulate developing fruitful new ideas, new approaches, and new collaborations. At the same time, there are cases where as soon as the problem is formulated mathematically, it is relatively easy to solve. Hence, putting the industrial problem into a mathematical framework, based on physical laws, often provides a key element to the success. In addition to this important first step, the value in such cases is the real, practical applicability of the results obtained for an industrial partner who presents

  7. Dynamic Model of an Ammonia Synthesis Reactor Based on Open Information

    OpenAIRE

    Jinasena, Asanthi; Lie, Bernt; Glemmestad, Bjørn

    2016-01-01

    Ammonia is a widely used chemical, hence the ammonia manufacturing process has become a standard case study in the scientific community. In the field of mathematical modeling of the dynamics of ammonia synthesis reactors, there is a lack of complete and well documented models. Therefore, the main aim of this work is to develop a complete and well documented mathematical model for observing the dynamic behavior of an industrial ammonia synthesis reactor system. The model is complete enough to ...

  8. Destruction of an industrial wastewater by supercritical water oxidation in a transpiring wall reactor

    International Nuclear Information System (INIS)

    Bermejo, M.D.; Cocero, M.J.

    2006-01-01

    The supercritical water oxidation (SCWO) is a technology that takes advantage of the special properties of water in the surroundings of critical point of water to completely oxidize wastes in residence times lower than 1 min. The problems caused by the harsh operational conditions of the SCWO process are being solved by new reactor designs, such as the transpiring wall reactor (TWR). In this work, the operational parameters of a TWR have been studied for the treatment of an industrial wastewater. As a result, the process has been optimized for a feed flow of 16 kg/h with feed inlet temperatures higher than 300 deg. C and transpiring flow relation (R) between 0.2 and 0.6 working with an 8% (w/w) isopropanol (IPA) as a fuel. The experimental data and a mathematical model have been applied for the destruction of an industrial waste containing acetic acid and crotonaldehyde as main compounds. As the model predicted, removal efficiencies higher than 99.9% were obtained, resulting in effluents with 2 ppm total organic carbon (TOC) at feed flow of 16 kg/h, 320 deg. C of feed temperature and R = 0.32. An effluent TOC of 35 ppm under conditions feed flow of 18 kg/h, feed inlet temperatures of 290 deg. C, reaction temperatures of 570 deg. C and R = 0.6

  9. Rotating Algal Biofilm Reactors: Mathematical Modeling and Lipid Production

    OpenAIRE

    Woolsey, Paul A.

    2011-01-01

    Harvesting of algal biomass presents a large barrier to the success of biofuels made from algae feedstock. Small cell sizes coupled with dilute concentrations of biomass in lagoon systems make separation an expensive and energy intense-process. The rotating algal biofilm reactor (RABR) has been developed at USU to provide a sustainable technology solution to this issue. Algae cells grown as a biofilm are concentrated in one location for ease of harvesting of high density biomass. A mathematic...

  10. 1st International Conference on Industrial and Applied Mathematics of the Indian Subcontinent

    CERN Document Server

    Kočvara, Michal

    2002-01-01

    An important objective of the study of mathematics is to analyze and visualize phenomena of nature and real world problems for its proper understanding. Gradually, it is also becoming the language of modem financial instruments. To project some of these developments, the conference was planned under the joint auspices of the Indian Society of Industrial and Applied mathematics (ISlAM) and Guru Nanak Dev University (G. N. D. U. ), Amritsar, India. Dr. Pammy Manchanda, chairperson of Mathematics Department, G. N. D. U. , was appointed the organizing secretary and an organizing committee was constituted. The Conference was scheduled in World Mathematics Year 2000 but, due one reason or the other, it could be held during 22. -25. January 2001. How­ ever, keeping in view the suggestion of the International Mathematics union, we organized two symposia, Role of Mathematics in industrial development and vice-versa and How image of Mathematics can be improved in public. These two symposia aroused great interest among...

  11. Virtual nuclear reactor for education of nuclear reactor physics

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Narabayashi, Takashi; Shimazu, Youichiro

    2008-01-01

    As one of projects that were programmed in the cultivation program for human resources in nuclear engineering sponsored by the Ministry of Economy, Trade and Industry, the development of a virtual reactor for education of nuclear reactor physics started in 2007. The purpose of the virtual nuclear reactor is to make nuclear reactor physics easily understood with aid of visualization. In the first year of this project, the neutron slowing down process was visualized. The data needed for visualization are provided by Monte Carlo calculations; The flights of the respective neutrons generated by nuclear fissions are traced through a reactor core until they disappear by neutron absorption or slow down to a thermal energy. With this visualization and an attached supplement textbook, it is expected that the learners can learn more clearly the physical implication of neutron slowing process that is mathematically described by the Boltzmann neutron transport equation. (author)

  12. Utility industry evaluation of the Modular High-Temperature Gas-Cooled Reactor

    International Nuclear Information System (INIS)

    Burstein, S.; Bitel, J.S.; Tramm, T.R.; High, M.D.; Neils, G.H.; Tomonto, J.R.; Weinberg, C.J.

    1990-02-01

    A team of utility industry representatives evaluated the Modular High Temperature Gas-Cooled Reactor plant design, a current design created by an industrial team led by General Atomics under Department of Energy sponsorship and with support provided by utilities through Gas-Cooled Reactor Associates. The utility industry team concluded that the plant design should be considered a viable application of an advanced nuclear concept and deserves continuing development. Specific comments and recommendations are provided as a contribution toward improving a very promising plant design. 2 refs

  13. From USA operation experience of industrial uranium-graphite reactors

    International Nuclear Information System (INIS)

    Burdakov, N.S.

    1996-01-01

    The review on materials, presented by a group of the USA specialists at the seminar in Moscow on October 9-11, 1995 is considered. The above specialists shared their experience in operation of the Hanford industrial reactors, aimed at plutonium production for atomic bombs. The purpose of the above visit consisted in providing assistance to the Russian specialists by evaluation and modernization of operational conditions safety improvement of the RBMK type reactors. Special attention is paid to the behaviour of the graphite lining and channel tubes with an account of possible channel power interaction with the reactor structural units. The information on the experience of the Hanford reactor operation may be useful for specialists, operating the RBMK type reactors

  14. Situation and role of industrial fields in nuclear fusion reactor development

    International Nuclear Information System (INIS)

    Suzuki, Gen-ichi

    1983-01-01

    Japan Atomic Industrial Forum (JAIF) established the nuclear fusion technical committee in October, 1980, and has investigated the attitude of industrial fields in progressing nuclear fusion research and development and the measures to cooperate with national development plans. Corresponding to the new long term plan and the establishment of the basic policy for nuclear fusion research and development by Atomic Energy Commission of Japan in June, 1982, JAIF has settled the policy on the situation and role of industrial fields. In this report, first the necessity of firmly grasping the position of nuclear fusion research in atomic energy development is described, next, the present status of the research and development in Japan is reported, and it is mentioned that the role of manufacturers in reinforcing engineering has become more important in industrial fields. In the stage of the construction of a nuclear fusion reactor, the experiences in the engineering safety in fission reactors, environmental safety and system engineering will be utilized. Japanese industrial fields feature that they have made larger cooperation with national projects even in the research and development stage as compared to foreign countries. When the plan of next phase system will be promoted in the future, the cooperating methods in the past should be evaluated, investigated and improved, and the experiences in fast breeder reactors and advanced heavy water reactors should be referred to. Finally, the problems and the countermeasures in nuclear fusion development are described. (Wakatsuki, Y.)

  15. VIPRE-01. a thermal-hydraulic analysis code for reactor cores. Volume 1. Mathematical modeling

    International Nuclear Information System (INIS)

    Stewart, C.W.; Cuta, J.M.; Koontz, A.S.; Kelly, J.M.; Basehore, K.L.; George, T.L.; Rowe, D.S.

    1983-04-01

    VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear reactor core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This volume (Volume 1: Mathematical Modeling) explains the major thermal hydraulic models and supporting correlations in detail

  16. A TRIGA reactor in an industrial laboratory

    International Nuclear Information System (INIS)

    Anders, Oswald U.

    1980-01-01

    The Dow TRIGA Reactor is a well established facility in its industrial environment. It is used extensively for internal Dow projects. The primary use of the TRIGA is as neutron source for NAA. It faces similar technical and organizational challenges as other TRIGA installations and over the years developed its own solutions

  17. Mathematical modelling of performance of safety rod and its drive mechanism in sodium cooled fast reactor during scram action

    International Nuclear Information System (INIS)

    Rajan Babu, V.; Thanigaiyarasu, G.; Chellapandi, P.

    2014-01-01

    Highlights: • Mathematical modelling of dynamic behaviour of safety rod during scram action in fast reactor. • Effects of hydraulics, structural interaction and geometry on drop time of safety rod are understood. • Using simplified model, drop time can be assessed replacing detailed CFD analysis. • Sensitivities of the related parameters on drop time are understood. • Experimental validation qualifies the modelling and computer software developed. - Abstract: Performance of safety rod and its drive mechanism which are parts of shutdown systems in sodium cooled fast reactor (SFR) plays a major role in ensuring safe operation of the plant during all the design basis events. The safety rods are to be inserted into the core within a stipulated time during off-normal conditions of the reactor. Mathematical modelling of dynamic behaviour of a safety rod and its drive mechanism in a typical 500 MWe SFR during scram action is considered in the present study. A full-scale prototype system has undergone qualification tests in air, water and in sodium simulating the operating conditions in the reactor. In this paper, the salient features of the safety rod and its mechanism, details related to mathematical modelling and sensitivity of the parameters having influence on drop time are presented. The outcomes of the numerical analysis are compared with the experimental results. In this process, the mathematical model and the computer software developed are validated

  18. Reactor theory and power reactors. 1. Calculational methods for reactors. 2. Reactor kinetics

    International Nuclear Information System (INIS)

    Henry, A.F.

    1980-01-01

    Various methods for calculation of neutron flux in power reactors are discussed. Some mathematical models used to describe transients in nuclear reactors and techniques for the reactor kinetics' relevant equations solution are also presented

  19. Nuclear reactor application for high temperature power industrial processes

    International Nuclear Information System (INIS)

    Dollezhal', N.A.; Zaicho, N.D.; Alexeev, A.M.; Baturov, B.B.; Karyakin, Yu.I.; Nazarov, E.K.; Ponomarev-Stepnoj, N.N.; Protzenko, A.M.; Chernyaev, V.A.

    1977-01-01

    This report gives the results of considerations on industrial heat and technology processes (in chemistry, steelmaking, etc.) from the point of view of possible ways, technical conditions and nuclear safety requirements for the use of high temperature reactors in these processes. Possible variants of energy-technological diagrams of nuclear-steelmaking, methane steam-reforming reaction and other processes, taking into account the specific character of nuclear fuel are also given. Technical possibilities and economic conditions of the usage of different types of high temperature reactors (gas cooled reactors and reactors which have other means of transport of nuclear heat) in heat processes are examined. The report has an analysis of the problem, that arises with the application of nuclear reactors in energy-technological plants and an evaluation of solutions of this problem. There is a reason to suppose that we will benefit from the use of high temperature reactors in comparison with the production based on high quality fossil fuel [ru

  20. Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment

    NARCIS (Netherlands)

    Van Lier, J.B.; Van der Zee, F.P.; Frijters, C.T.M.J.; Ersahin, M.E.

    2015-01-01

    In the last 40 years, anaerobic sludge bed reactor technology evolved from localized lab-scale trials to worldwide successful implementations at a variety of industries. High-rate sludge bed reactors are characterized by a very small foot print and high applicable volumetric loading rates. Best

  1. The industry/EPRI advanced light water reactor program

    International Nuclear Information System (INIS)

    Stahlkopf, K.E.; Noble, D.M.; Sugnet, W.R.; Bilan, W.J.

    1986-01-01

    For the United States nuclear power industry to remain viable, it must be prepared to meet the expected need for new generating capacity in the late 1990s with an improved reactor system. The best hope of meeting this requirement is with evolutionary changes in current LWR systems through system simplification and reevaluation of safety and operational design margins. The grid characteristics and the difficulty in raising capital for large projects indicate that smaller light water reactors (400 to 600 MWe) may play an important role the next generation

  2. M and c'99 : Mathematics and computation, reactor physics and environmental analysis in nuclear applications, Madrid, September 27-30, 1999

    International Nuclear Information System (INIS)

    Aragones, J. M.; Ahnert, C.; Cabellos, O.

    1999-01-01

    The international conference on mathematics and computation, reactor physics and environmental analysis in nuclear applications in the biennial topical meeting of the mathematics and computation division of the American Nuclear Society. (Author)

  3. Mathematical modeling of high-rate Anammox UASB reactor based on granular packing patterns

    International Nuclear Information System (INIS)

    Tang, Chong-Jian; He, Rui; Zheng, Ping; Chai, Li-Yuan; Min, Xiao-Bo

    2013-01-01

    Highlights: ► A novel model was conducted to estimate volumetric nitrogen conversion rates. ► The packing patterns of the granules in Anammox reactor are investigated. ► The simple cubic packing pattern was simulated in high-rate Anammox UASB reactor. ► Operational strategies concerning sludge concentration were proposed by the modeling. -- Abstract: A novel mathematical model was developed to estimate the volumetric nitrogen conversion rates of a high-rate Anammox UASB reactor based on the packing patterns of granular sludge. A series of relationships among granular packing density, sludge concentration, hydraulic retention time and volumetric conversion rate were constructed to correlate Anammox reactor performance with granular packing patterns. It was suggested that the Anammox granules packed as the equivalent simple cubic pattern in high-rate UASB reactor with packing density of 50–55%, which not only accommodated a high concentration of sludge inside the reactor, but also provided large pore volume, thus prolonging the actual substrate conversion time. Results also indicated that it was necessary to improve Anammox reactor performance by enhancing substrate loading when sludge concentration was higher than 37.8 gVSS/L. The established model was carefully calibrated and verified, and it well simulated the performance of granule-based high-rate Anammox UASB reactor

  4. Mathematical modeling of high-rate Anammox UASB reactor based on granular packing patterns

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chong-Jian, E-mail: chjtangzju@yahoo.com.cn [Department of Environmental Engineering, School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083 (China); He, Rui; Zheng, Ping [Department of Environmental Engineering, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); Chai, Li-Yuan; Min, Xiao-Bo [Department of Environmental Engineering, School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083 (China)

    2013-04-15

    Highlights: ► A novel model was conducted to estimate volumetric nitrogen conversion rates. ► The packing patterns of the granules in Anammox reactor are investigated. ► The simple cubic packing pattern was simulated in high-rate Anammox UASB reactor. ► Operational strategies concerning sludge concentration were proposed by the modeling. -- Abstract: A novel mathematical model was developed to estimate the volumetric nitrogen conversion rates of a high-rate Anammox UASB reactor based on the packing patterns of granular sludge. A series of relationships among granular packing density, sludge concentration, hydraulic retention time and volumetric conversion rate were constructed to correlate Anammox reactor performance with granular packing patterns. It was suggested that the Anammox granules packed as the equivalent simple cubic pattern in high-rate UASB reactor with packing density of 50–55%, which not only accommodated a high concentration of sludge inside the reactor, but also provided large pore volume, thus prolonging the actual substrate conversion time. Results also indicated that it was necessary to improve Anammox reactor performance by enhancing substrate loading when sludge concentration was higher than 37.8 gVSS/L. The established model was carefully calibrated and verified, and it well simulated the performance of granule-based high-rate Anammox UASB reactor.

  5. Hazards of nuclear reactors and other major industrial complexes

    International Nuclear Information System (INIS)

    Farmer, F.R.

    1982-01-01

    Some of the problems of quantified risk analysis of the hazards of nuclear reactors and other major industrial complexes are raised particularly as seen by the proponents and opponents of atomic energy. These are exemplified by discussing the chemical accidents at Flixborough and Canvey Island and the Light Water Reactor Studies. The role of risk analysis in improving knowledge of the systems studies, improving methods of analysis, identifying weaknesses in systems and in improving engineering/maintenance/operation is also stressed. (U.K.)

  6. M and c'99 : Mathematics and computation, reactor physics and environmental analysis in nuclear applications, Madrid, September 27-30, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Aragones, J. M.; Ahnert, C.; Cabellos, O.

    1999-07-01

    The international conference on mathematics and computation, reactor physics and environmental analysis in nuclear applications in the biennial topical meeting of the mathematics and computation division of the American Nuclear Society. (Author)

  7. Mathematical modeling of a three-phase trickle bed reactor

    Directory of Open Access Journals (Sweden)

    J. D. Silva

    2012-09-01

    Full Text Available The transient behavior in a three-phase trickle bed reactor system (N2/H2O-KCl/activated carbon, 298 K, 1.01 bar was evaluated using a dynamic tracer method. The system operated with liquid and gas phases flowing downward with constant gas flow Q G = 2.50 x 10-6 m³ s-1 and the liquid phase flow (Q L varying in the range from 4.25x10-6 m³ s-1 to 0.50x10-6 m³ s-1. The evolution of the KCl concentration in the aqueous liquid phase was measured at the outlet of the reactor in response to the concentration increase at reactor inlet. A mathematical model was formulated and the solutions of the equations fitted to the measured tracer concentrations. The order of magnitude of the axial dispersion, liquid-solid mass transfer and partial wetting efficiency coefficients were estimated based on a numerical optimization procedure where the initial values of these coefficients, obtained by empirical correlations, were modified by comparing experimental and calculated tracer concentrations. The final optimized values of the coefficients were calculated by the minimization of a quadratic objective function. Three correlations were proposed to estimate the parameters values under the conditions employed. By comparing experimental and predicted tracer concentration step evolutions under different operating conditions the model was validated.

  8. BR2 reactor: medical and industrial applications

    International Nuclear Information System (INIS)

    Ponsard, B.

    2005-01-01

    The radioisotopes are produced for various applications in the nuclear medicine (diagnostic, therapy, palliation of metastatic bone pain), industry (radiography of welds, ...), agriculture (radiotracers, ...) and basic research. Due to the availability of high neutron fluxes (thermal neutron flux up to 10 15 n/cm 2 .s), the BR2 reactor is considered as a major facility through its contribution for a continuous supply of products such 99 Mo ( 99 mTc), 131 I, 133 Xe, 192 Ir, 186 Re, 153 Sm, 90 Y, 32 P, 188 W ( 188 Re), 203 Hg, 82 Br, 41 Ar, 125 I, 177 Lu, 89 Sr, 60 Co, 169 Yb, 147 Nd, and others. Neutron Transmutation Doped (NTD) silicon is produced for the semiconductor industry in the SIDONIE (Silicon Doping by Neutron Irradiation Experiment) facility, which is designed to continuously rotate and traverse the silicon through the neutron flux. These combined movements produce exceptional dopant homogeneity in batches of silicon measuring 4 and 5-inches in diameter by up to 750 mm in length. The main objectives of work performed were to provide a reliable and qualitative supply of radioisotopes and NTD-silicon to the customers in accordance with a quality system that has been certified to the requirements of the EN ISO 9001: 2000. This new Quality System Certificate has been obtained in November 2003 for the Production of radioisotopes for medical and industrial applications and the Production of Neutron Transmutation Doped (NTD) Silicon in the BR2 reactor

  9. Industrial process heat from CANDU reactors

    International Nuclear Information System (INIS)

    Hilborn, J.S.; Seddon, W.A.; Barnstaple, A.G.

    1980-08-01

    It has been demonstrated on a large scale that CANDU reactors can produce industrial process steam as well as electricity, reliably and economically. The advantages of cogeneration have led to the concept of an Industrial Energy Park adjacent to the Bruce Nuclear Power Development in the province of Ontario. For steam demands between 300,000 and 500,00 lb/h (38-63 kg/s) and an annual load factor of 80%, the estimated cost of nuclear steam at the Bruce site boundary is $3.21/MBtu ($3.04GJ), which is at least 30% cheaper than oil-fired steam at the same site. The most promising near term application of nuclear heat is likely to be found within the energy-intensive chemical industry. Nuclear energy can substitute for imported oil and coal in the eastern provinces if the price remains competitive, but low cost coal and gas in the western provinces may induce energy-intensive industries to locate near those sources of energy. In the long term it may be feasible to use nuclear heat for the mining and extraction of oil from the Alberta tar sands. (auth)

  10. Inverse modeling approach for evaluation of kinetic parameters of a biofilm reactor using tabu search.

    Science.gov (United States)

    Kumar, B Shiva; Venkateswarlu, Ch

    2014-08-01

    The complex nature of biological reactions in biofilm reactors often poses difficulties in analyzing such reactors experimentally. Mathematical models could be very useful for their design and analysis. However, application of biofilm reactor models to practical problems proves somewhat ineffective due to the lack of knowledge of accurate kinetic models and uncertainty in model parameters. In this work, we propose an inverse modeling approach based on tabu search (TS) to estimate the parameters of kinetic and film thickness models. TS is used to estimate these parameters as a consequence of the validation of the mathematical models of the process with the aid of measured data obtained from an experimental fixed-bed anaerobic biofilm reactor involving the treatment of pharmaceutical industry wastewater. The results evaluated for different modeling configurations of varying degrees of complexity illustrate the effectiveness of TS for accurate estimation of kinetic and film thickness model parameters of the biofilm process. The results show that the two-dimensional mathematical model with Edward kinetics (with its optimum parameters as mu(max)rho(s)/Y = 24.57, Ks = 1.352 and Ki = 102.36) and three-parameter film thickness expression (with its estimated parameters as a = 0.289 x 10(-5), b = 1.55 x 10(-4) and c = 15.2 x 10(-6)) better describes the biofilm reactor treating the industry wastewater.

  11. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rahayu, Suparni Setyowati, E-mail: suparnirahayu@yahoo.co.id [Doctoral Program in Environmental Science, University of Diponegoro, Semarang (Indonesia); Department of Mechanical Engineering, State Polytechnic of Semarang, Semarang Indonesia (Indonesia); Purwanto,, E-mail: p.purwanto@che.undip.ac.id; Budiyono, E-mail: budiyono@live.undip.ac.id [Doctoral Program in Environmental Science, University of Diponegoro, Semarang (Indonesia); Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang Indonesia (Indonesia)

    2015-12-29

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH{sub 4}/g COD and produce biogas containing of CH{sub 4}: 81.23% and CO{sub 2}: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  12. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    Science.gov (United States)

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-01

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH4/g COD and produce biogas containing of CH4: 81.23% and CO2: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  13. Removal of Cr(VI) from wastewaters at semi-industrial electrochemical reactors with rotating ring electrodes

    International Nuclear Information System (INIS)

    Rodriguez R, Miriam G.; Mendoza, Victor; Puebla, Hector; Martinez D, Sergio A.

    2009-01-01

    In Mexico, most of the electroplating and textile industries are small facilities and release relatively large amounts of hexavalent chromium (Cr(VI)) in surface waters. In this work, the results obtained during the operation of a batch reactor with a capacity of 170 L, and three electrochemical flow reactors-in-series system with a total capacity of 510 L (both using iron rotating ring electrodes to remove Cr(VI) from wastewaters) are presented. The reactors were scaled up from a laboratory reactor to a semi-industrial level, based on the similarity (dynamical, geometrical and electrochemical). An empirical Cr(VI) removal model was validated in batch and continuous reactors at different operating conditions. Cr(VI) concentration of the industrial wastewaters was reduced from about 500 mg/L to values lower than 0.5 mg/L. A very important parameter that affects the process is the pH, which affects the solubility of the Fe(III). Finally, the electrochemical treated wastewater can be reused

  14. Removal of Cr(VI) from wastewaters at semi-industrial electrochemical reactors with rotating ring electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez R, Miriam G. [Depto. Energia, Universidad Autonoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Azcapotzalco, CP 07740, Mexico D.F. (Mexico); Mendoza, Victor [Depto. Electronica, Universidad Autonoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Azcapotzalco, CP 07740, Mexico D.F. (Mexico); Puebla, Hector [Depto. Energia, Universidad Autonoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Azcapotzalco, CP 07740, Mexico D.F. (Mexico); Martinez D, Sergio A. [Depto. Energia, Universidad Autonoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Azcapotzalco, CP 07740, Mexico D.F. (Mexico)], E-mail: samd@correo.azc.uam.mx

    2009-04-30

    In Mexico, most of the electroplating and textile industries are small facilities and release relatively large amounts of hexavalent chromium (Cr(VI)) in surface waters. In this work, the results obtained during the operation of a batch reactor with a capacity of 170 L, and three electrochemical flow reactors-in-series system with a total capacity of 510 L (both using iron rotating ring electrodes to remove Cr(VI) from wastewaters) are presented. The reactors were scaled up from a laboratory reactor to a semi-industrial level, based on the similarity (dynamical, geometrical and electrochemical). An empirical Cr(VI) removal model was validated in batch and continuous reactors at different operating conditions. Cr(VI) concentration of the industrial wastewaters was reduced from about 500 mg/L to values lower than 0.5 mg/L. A very important parameter that affects the process is the pH, which affects the solubility of the Fe(III). Finally, the electrochemical treated wastewater can be reused.

  15. The Role and relevance of mathematics in the maritime industry ...

    African Journals Online (AJOL)

    Maritime activities occupy more than three-quarters of the world space and provide a huge occupational industry for mankind. Of late, ship construction and usage including space management onboard the vessels and the ports have brought about a great dependency on mathematical principles or models such as time ...

  16. A bibliographic review of mathematical models of packed-bed biological reactors (PBR

    Directory of Open Access Journals (Sweden)

    Deisy Corredor

    2005-09-01

    Full Text Available Several authors have sublected packed-bed biological reactors to mathematical and theoretical analysis. They have taken reaction kinetics and single-dimensional, homogeneous, pseudo-homogeneous and heterogeneous models into account. Numerical methods have provided the set of equations so developed. The effect of physically important process variables in terms of design and operation have been investigated (i.e. residence time, operating- flow, substrate conversion, bio-film area and film thickness.

  17. THE MATHEMATICAL MODEL DEVELOPMENT OF THE ETHYLBENZENE DEHYDROGENATION PROCESS KINETICS IN A TWO-STAGE ADIABATIC CONTINUOUS REACTOR

    Directory of Open Access Journals (Sweden)

    V. K. Bityukov

    2015-01-01

    Full Text Available The article is devoted to the mathematical modeling of the kinetics of ethyl benzene dehydrogenation in a two-stage adiabatic reactor with a catalytic bed functioning on continuous technology. The analysis of chemical reactions taking place parallel to the main reaction of styrene formation has been carried out on the basis of which a number of assumptions were made proceeding from which a kinetic scheme describing the mechanism of the chemical reactions during the dehydrogenation process was developed. A mathematical model of the dehydrogenation process, describing the dynamics of chemical reactions taking place in each of the two stages of the reactor block at a constant temperature is developed. The estimation of the rate constants of direct and reverse reactions of each component, formation and exhaustion of the reacted mixture was made. The dynamics of the starting material concentration variations (ethyl benzene batch was obtained as well as styrene formation dynamics and all byproducts of dehydrogenation (benzene, toluene, ethylene, carbon, hydrogen, ect.. The calculated the variations of the component composition of the reaction mixture during its passage through the first and second stages of the reactor showed that the proposed mathematical description adequately reproduces the kinetics of the process under investigation. This demonstrates the advantage of the developed model, as well as loyalty to the values found for the rate constants of reactions, which enable the use of models for calculating the kinetics of ethyl benzene dehydrogenation under nonisothermal mode in order to determine the optimal temperature trajectory of the reactor operation. In the future, it will reduce energy and resource consumption, increase the volume of produced styrene and improve the economic indexes of the process.

  18. Assessment of United States industry structural codes and standards for application to advanced nuclear power reactors: Appendices. Volume 2

    International Nuclear Information System (INIS)

    Adams, T.M.; Stevenson, J.D.

    1995-10-01

    Throughout its history, the USNRC has remained committed to the use of industry consensus standards for the design, construction, and licensing of commercial nuclear power facilities. The existing industry standards are based on the current class of light water reactors and as such may not adequately address design and construction features of the next generation of Advanced Light Water Reactors and other types of Advanced Reactors. As part of their on-going commitment to industry standards, the USNRC commissioned this study to evaluate US industry structural standards for application to Advanced Light Water Reactors and Advanced Reactors. The initial review effort included (1) the review and study of the relevant reactor design basis documentation for eight Advanced Light Water Reactors and Advanced Reactor Designs, (2) the review of the USNRCs design requirements for advanced reactors, (3) the review of the latest revisions of the relevant industry consensus structural standards, and (4) the identification of the need for changes to these standards. The results of these studies were used to develop recommended changes to industry consensus structural standards which will be used in the construction of Advanced Light Water Reactors and Advanced Reactors. Over seventy sets of proposed standard changes were recommended and the need for the development of four new structural standards was identified. In addition to the recommended standard changes, several other sets of information and data were extracted for use by USNRC in other on-going programs. This information included (1) detailed observations on the response of structures and distribution system supports to the recent Northridge, California (1994) and Kobe, Japan (1995) earthquakes, (2) comparison of versions of certain standards cited in the standard review plan to the most current versions, and (3) comparison of the seismic and wind design basis for all the subject reactor designs

  19. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Ronen, Y.; Elias, E.

    1994-01-01

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  20. Service to the Electric Utility Industry by the Ford Nuclear Reactor, University of Michigan

    International Nuclear Information System (INIS)

    Burn, R.R.; Simpson, P.A.; Cook, G.M.

    1993-01-01

    Since 1977, the staff of the University of Michigan's Ford Nuclear Reactor has been providing irradiation, testing, analytical, and training services to electric utilities and to suppliers of the nuclear electric utility industry. This paper discusses the reactor's irradiation facilities; reactor programs and utilization; materials testing programs; neutron activation analysis activities; and training programs conducted

  1. Siting study for small platform-mounted industrial energy reactors

    International Nuclear Information System (INIS)

    1975-07-01

    Utilizing an existing 313 MW(t) ship propulsion reactor design, a concept has been formulated for a floating platform-mounted nuclear plant and an evaluation has been made to determine reductions in construction time and cost achievable by repetitive platform construction in a shipyard. Concepts and estimates are presented for siting platform-mounted nuclear plants at the location of industrial facilities where the nuclear plants would furnish industrial process heat and/or electrical power. The representative industrial site designated for this study is considered typical of sites that might be used along the extensive network of navigable canals adjacent to the ocean and is similar to potential sites along the inland waterways of the United States

  2. Mathematical modelling of thermal storage systems for the food industry

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, A.; Lacarra, G. [Universidad Publica de Navarra Campus Arrosadia, Pamplona (Spain). Area de Tecnologia de Alimentos

    1999-07-01

    Dynamic mathematical models of two thermal storage systems used in the food industry to produce chilled water are presented; an ice-bank system and a holding tank system. The variability of the refrigeration demand with time was taken into account in the model. A zoned approach using mass and energy balances was applied. Heat transfer phenomena in the evaporator were modelled using empirical correlations. The experimental validation of the mathematical models on an ice-bank system at pilot plant scale, and a centralized refrigeration system with a holding tank in a winery, showed accurate prediction. Simple models are adequate to predict the dynamic behaviour of these refrigeration systems under variable heat loads. (Author)

  3. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates

    Directory of Open Access Journals (Sweden)

    Karcher Patrick

    2005-08-01

    Full Text Available Abstract This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent or form flocs/aggregates (also called granules without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL-1 can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR, packed bed reactor (PBR, fluidized bed reactor (FBR, airlift reactor (ALR, upflow anaerobic sludge blanket (UASB reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes.

  4. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates.

    Science.gov (United States)

    Qureshi, Nasib; Annous, Bassam A; Ezeji, Thaddeus C; Karcher, Patrick; Maddox, Ian S

    2005-08-25

    This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent) or form flocs/aggregates (also called granules) without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL(-1) can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR), packed bed reactor (PBR), fluidized bed reactor (FBR), airlift reactor (ALR), upflow anaerobic sludge blanket (UASB) reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes.

  5. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates

    Science.gov (United States)

    Qureshi, Nasib; Annous, Bassam A; Ezeji, Thaddeus C; Karcher, Patrick; Maddox, Ian S

    2005-01-01

    This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent) or form flocs/aggregates (also called granules) without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL-1 can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR), packed bed reactor (PBR), fluidized bed reactor (FBR), airlift reactor (ALR), upflow anaerobic sludge blanket (UASB) reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes. PMID:16122390

  6. Mathematical modelling of a continuous biomass torrefaction reactor: TORSPYDTM column

    International Nuclear Information System (INIS)

    Ratte, J.; Fardet, E.; Mateos, D.; Hery, J.-S.

    2011-01-01

    Torrefaction is a soft thermal process usually applied to cocoa or coffee beans to obtain the Maillard reaction to produce aromatics and enhance the flavour. In the case of biomass the main interest of torrefaction it is to break the fibers. To do so, Thermya company has developed and patented a biomass torrefaction/depolymerisation process called TORSPYD TM . It is a homogeneous 'soft' thermal process that takes place in an inert atmosphere. The process progressively eliminates the biomass water content transforms a portion of the biomass organic matter and breaks the biomass structure by depolymerisation of the fibers. This produces a high performance solid fuel, called Biocoal, which offers a range of benefits over and above that of normal biomass fuel. To develop such a process, this company has developed two main tools: - a continuous torrefaction laboratory pilot with a capacity to produce 3 - 8 kg/h of torrefied biomass; - a mathematical model dedicated to the design and optimisation of the TORSPYD reactor. The mathematical model is able to describe the chemical and physical processes that take place in the torrefaction column at two different scales, namely: the particle, and the surrounding gas. The model enables the gas temperature profiles inside the column to be predicted, and the results of the model are then validated through experiment in the laboratory pilot. The model also allows us to estimate the thermal power necessary to torrefy any type of biomass for a given moisture content. -- Highlights: → We model a patented torrefaction/depolymerisation biomass process: TORPSPYD. → We compare simulated results to experimental data obtained from our torrefaction pilot plant. → We describe phenomenon that occurs in our torrefaction reactor and discuss about the influence of moisture of the input biomass.

  7. Analysis of dynamic stability and safety of the reactor system by reactor simulator

    International Nuclear Information System (INIS)

    Raisic, N.

    1963-11-01

    This document defines the approximations done for establishing a mathematical model of a reactor. Since the model should be used for safety analysis, it was important to choose a mathematical model less stable than the reactor itself. The analysis was performed on the analog computer RAS. Results obtained and conclusions concerned with three possible reactor accidents are presented [sr

  8. Modelling an industrial anaerobic granular reactor using a multi-scale approach.

    Science.gov (United States)

    Feldman, H; Flores-Alsina, X; Ramin, P; Kjellberg, K; Jeppsson, U; Batstone, D J; Gernaey, K V

    2017-12-01

    The objective of this paper is to show the results of an industrial project dealing with modelling of anaerobic digesters. A multi-scale mathematical approach is developed to describe reactor hydrodynamics, granule growth/distribution and microbial competition/inhibition for substrate/space within the biofilm. The main biochemical and physico-chemical processes in the model are based on the Anaerobic Digestion Model No 1 (ADM1) extended with the fate of phosphorus (P), sulfur (S) and ethanol (Et-OH). Wastewater dynamic conditions are reproduced and data frequency increased using the Benchmark Simulation Model No 2 (BSM2) influent generator. All models are tested using two plant data sets corresponding to different operational periods (#D1, #D2). Simulation results reveal that the proposed approach can satisfactorily describe the transformation of organics, nutrients and minerals, the production of methane, carbon dioxide and sulfide and the potential formation of precipitates within the bulk (average deviation between computer simulations and measurements for both #D1, #D2 is around 10%). Model predictions suggest a stratified structure within the granule which is the result of: 1) applied loading rates, 2) mass transfer limitations and 3) specific (bacterial) affinity for substrate. Hence, inerts (X I ) and methanogens (X ac ) are situated in the inner zone, and this fraction lowers as the radius increases favouring the presence of acidogens (X su ,X aa , X fa ) and acetogens (X c4 ,X pro ). Additional simulations show the effects on the overall process performance when operational (pH) and loading (S:COD) conditions are modified. Lastly, the effect of intra-granular precipitation on the overall organic/inorganic distribution is assessed at: 1) different times; and, 2) reactor heights. Finally, the possibilities and opportunities offered by the proposed approach for conducting engineering optimization projects are discussed. Copyright © 2017 Elsevier Ltd. All

  9. Gas cooled fast reactor background, facilities, industries and programmes

    International Nuclear Information System (INIS)

    Dalle Donne, M.

    1980-05-01

    This report was prepared at the request of the OECD-NEA Coordinating Group on Gas Cooled Fast Reactor Development and it represents a contribution (Vol.II) to the jointly sponsored Vol.I (GCFR Status Report). After a chapter on background with a brief description of the early studies and the activities in the various countries involved in the collaborative programme (Austria, Belgium, France, Germany, Japan, Sweden, Switzerland, United Kingdom and United States), the report describes the facilities available in those countries and at the Gas Breeder Reactor Association and the industrial capabilities relevant to the GCFR. Finally the programmes are described briefly with programme charts, conclusions and recommendations are given. (orig.) [de

  10. Mathematical Modelling of Catalytic Fixed-Bed Reactor for Carbon Dioxide Reforming of Methane over Rh/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    New Pei Yee

    2008-04-01

    Full Text Available A one-dimensional mathematical model was developed to simulate the performance of catalytic fixed bedreactor for carbon dioxide reforming of methane over Rh/Al2O3 catalyst at atmospheric pressure. The reactionsinvolved in the system are carbon dioxide reforming of methane (CORM and reverse water gas shiftreaction (RWGS. The profiles of CH4 and CO2 conversions, CO and H2 yields, molar flow rate and molefraction of all species as well as reactor temperature along the axial bed of catalyst were simulated. In addition,the effects of different reactor temperature on the reactor performance were also studied. The modelscan also be applied to analyze the performances of lab-scale micro reactor as well as pilot-plant scale reactorwith certain modifications and model verification with experimental data. © 2008 BCREC UNDIP. All rights reserved.[Received: 20 August 2008; Accepted: 25 September 2008][How to Cite: N.A.S. Amin, I. Istadi, N.P. Yee. (2008. Mathematical Modelling of Catalytic Fixed-Bed Reactor for Carbon Dioxide Reforming of Methane over Rh/Al2O3 Catalyst. Bulletin of Chemical Reaction Engineering and Catalysis, 3 (1-3: 21-29. doi:10.9767/bcrec.3.1-3.19.21-29

  11. Iris Runge a life at the crossroads of mathematics, science, and industry

    CERN Document Server

    Tobies, Renate

    2012-01-01

    This book concerns the origins of mathematical problem solving at the internationally active Osram and Telefunken Corporations during the golden years of broadcasting and electron tube research. The woman scientist Iris Runge, who received an interdisciplinary education at the University of Göttingen, was long employed as the sole mathematical authority at these companies in Berlin. It will be shown how mathematical connections were made between statistics and quality control, and between physical-chemical models and the actual problems of mass production. The organization of industrial laboratories, the relationship between theoretical and experimental work, and the role of mathematicians in these settings will also be explained. By investigating the social, economic, and political conditions that unfolded from the time of the German Empire until the end of the Second World War, the book hopes to build a bridge between specialized fields – mathematics and engineering – and the general culture of a parti...

  12. The present status of the fast breeder reactor industrialization in western Europe

    International Nuclear Information System (INIS)

    Dievoet, J.P. van

    1987-01-01

    The development of the liquid metal fast breeder reactor in Europe started in the mid-fifties, after the successful operation of EBR-1 at ARCO, Idaho, in 1951. A more and more integrated development among the countries of the European Community culminated in 1986 with the beginning to power of the 1200 MWe SUPERPHENIX plant at Creys-Malville, France. The road is now open towards the full industrialization of the liquid metal fast breeder reactor at the moment, in 2005, when the first European thermal neutron power reactor station will have to be decommissioned and replaced. The European programme aims at providing the utilities at that time with a clear choice between thermal neutron reactors and fast breeder reactors, both economical but very different in their use of the limited natural resource that uranium is. (author)

  13. PWR reactor pressure vessel internals license renewal industry report; revision 1. Final report

    International Nuclear Information System (INIS)

    Schwirian, R.; Robison, G.

    1994-07-01

    The U.S. nuclear power industry, through coordination by the Nuclear Management and Resources Council (NUMARC), and sponsorship by the U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI), has evaluated age-related degradation effects for a number of major plant systems, structures and components, in the license renewal technical Industry Reports (IRs). License renewal applicants may choose to reference these IRs in support of their plant-specific license renewal applications, as an equivalent to the integrated plant assessment provisions of the license renewal rule (10 CFR Part 54). Pressurized water reactor (PWR) reactor pressure vessel (RPV) internals designed by all three U.S. PWR nuclear steam supply system vendors have been evaluated relative to the effects of age-related degradation mechanisms; the capability of current design limits; inservice examination, testing, repair, refurbishment, and other programs to manage these effects; and the assurance that these internals can continue to perform their intended safety functions in the license renewal term. This industry report (IR), one of a series of ten, provides a generic technical basis for evaluation of PWR reactor pressure vessel internals for license renewal

  14. Safety of nuclear reactors - Part A - unsteady state temperature history mathematical model

    International Nuclear Information System (INIS)

    El-Shayeb, M.; Yusoff, M.Z.; Boosroh, M.H.; Ideris, F.; Hasmady Abu Hassan, S.; Bondok, A.

    2004-01-01

    A nuclear reactor structure under abnormal operations of near meltdown will be exposed to a tremendous amount of heat flux in addition to the stress field applied under normal operation. Temperature encountered in such case is assumed to be beyond 1000 Celsius degrees. A 2-dimensional mathematical model based on finite difference methods, has been developed for the fire resistance calculation of a concrete-filled square steel column with respect to its temperature history. Effects due to nuclear radiation and mechanical vibrations will be explored in a later future model. The temperature rise in each element can be derived from its heat balance by applying the parabolic unsteady state, partial differential equation and numerical solution into the steel region. Calculation of the temperature of the elementary regions needs to satisfy the symmetry conditions and the relevant material properties. The developed mathematical model is capable to predict the temperature history in the column and on the surface with respect to time. (authors)

  15. Industrial opportunities on the International Thermonuclear Experimental Reactor (ITER) project

    International Nuclear Information System (INIS)

    Ellis, W.R.

    1996-01-01

    Industry has been a long-term contributor to the magnetic fusion program, playing a variety of important roles over the years. Manufacturing firms, engineering-construction companies, and the electric utility industry should all be regarded as legitimate stakeholders in the fusion energy program. In a program focused primarily on energy production, industry's future roles should follow in a natural way, leading to the commercialization of the technology. In a program focused primarily on science and technology, industry's roles, in the near term, should be, in addition to operating existing research facilities, largely devoted to providing industrial support to the International Thermonuclear Experimental Reactor (ITER) Project. Industrial opportunities on the ITER Project will be guided by the amount of funding available to magnetic fusion generally, since ITER is funded as a component of that program. The ITER Project can conveniently be discussed in terms of its phases, namely, the present Engineering Design Activities (EDA) phase, and the future (as yet not approved) construction phase. 2 refs., 3 tabs

  16. A new mathematical model for nitrogen gas production with special emphasis on the role of attached growth media in anammox hybrid reactor.

    Science.gov (United States)

    Tomar, Swati; Gupta, Sunil Kumar

    2015-11-01

    The present study emphasised on the development of new mathematical models based on mass balance and stoichiometry of nitrogen removal in anammox hybrid reactor (AHR). The performance of AHR at varying hydraulic retention times (HRTs) and nitrogen loading rates (NLRs) revealed that nitrogen removal efficiency (NRE) increases with increase in HRT and was found optimal (89 %) at HRT of 2 days. Mass balance of nitrogen revealed that major fraction (74.1 %) of input nitrogen is converted into N2 gas followed by 11.2 % utilised in biomass synthesis. Attached growth media (AGM) in AHR contributed to an additional 15.4 % ammonium removal and reduced the sludge washout rate by 29 %. This also enhanced the sludge retention capacity of AHR and thus minimised the formation of nitrate in the treated effluent, which is one of the bottlenecks of anammox process. Process kinetics was also studied using various mathematical models. The mass balance model derived from total nitrogen was found most precise and predicted N2 gas with least error (1.68 ± 4.44 %). Model validation for substrate removal kinetics dictated comparatively higher correlation for Grau second-order model (0.952) than modified Stover-Kincannon model (0.920). The study concluded that owing to features of high biomass retention, less nitrate formation and consistently higher nitrogen removal efficiency, this reactor configuration is techno-economically most efficient and viable. The study opens the door for researchers and scientists for pilot-scale testing of AHR leading to its wide industrial application.

  17. Mathematical modeling of simultaneous carbon-nitrogen-sulfur removal from industrial wastewater.

    Science.gov (United States)

    Xu, Xi-Jun; Chen, Chuan; Wang, Ai-Jie; Ni, Bing-Jie; Guo, Wan-Qian; Yuan, Ye; Huang, Cong; Zhou, Xu; Wu, Dong-Hai; Lee, Duu-Jong; Ren, Nan-Qi

    2017-01-05

    A mathematical model of carbon, nitrogen and sulfur removal (C-N-S) from industrial wastewater was constructed considering the interactions of sulfate-reducing bacteria (SRB), sulfide-oxidizing bacteria (SOB), nitrate-reducing bacteria (NRB), facultative bacteria (FB), and methane producing archaea (MPA). For the kinetic network, the bioconversion of C-N by heterotrophic denitrifiers (NO 3 - →NO 2 - →N 2 ), and that of C-S by SRB (SO 4 2- →S 2- ) and SOB (S 2- →S 0 ) was proposed and calibrated based on batch experimental data. The model closely predicted the profiles of nitrate, nitrite, sulfate, sulfide, lactate, acetate, methane and oxygen under both anaerobic and micro-aerobic conditions. The best-fit kinetic parameters had small 95% confidence regions with mean values approximately at the center. The model was further validated using independent data sets generated under different operating conditions. This work was the first successful mathematical modeling of simultaneous C-N-S removal from industrial wastewater and more importantly, the proposed model was proven feasible to simulate other relevant processes, such as sulfate-reducing, sulfide-oxidizing process (SR-SO) and denitrifying sulfide removal (DSR) process. The model developed is expected to enhance our ability to predict the treatment of carbon-nitrogen-sulfur contaminated industrial wastewater. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A small modular fast reactor as starting point for industrial deployment of fast reactors

    International Nuclear Information System (INIS)

    Chang, Yoon I.; Lo Pinto, Pierre; Konomura, Mamoru

    2006-01-01

    The current commercial reactors based on light water technology provide 17% of the electricity worldwide owing to their reliability, safety and competitive economics. In the near term, next generation reactors are expected to be evolutionary type, taking benefits of extensive LWR experience feedbacks and further improved economics and safety provisions. For the long term, however, sustainable energy production will be required due to continuous increase of the human activities, environmental concerns such as greenhouse effect and the need of alternatives to fossil fuels as long term energy resources. Therefore, future generation commercial reactors should meet some criteria of sustainability that the current generation cannot fully satisfy. In addition to the current objectives of economics and safety, waste management, resource extension and public acceptance become other major objectives among the sustainability criteria. From this perspective, two questions can be raised: what reactor type can meet the sustainability criteria, and how to proceed to an effective deployment in harmony with the high reliability and availability of the current nuclear reactor fleet. There seems to be an international consensus that the fast spectrum reactor, notably the sodium-cooled system is most promising to meet all of the long term sustainability criteria. As for the latter, we propose a small modular fast reactor project could become a base to prepare the industrial infrastructure. The paper has the following contents: - Introduction; - SMFR project; - Core design; - Supercritical CO 2 Brayton cycle; - Near-term reference plant; - Advanced designs; - Conclusions. To summarize, the sodium-cooled fast reactor is currently recognized as the technology of choice for the long term nuclear energy expansion, but some research and development are required to optimize and validate advanced design solutions. A small modular fast reactor can satisfy some existing near-term market niche

  19. Implementation of multivariable control techniques with application to Experimental Breeder Reactor II

    International Nuclear Information System (INIS)

    Berkan, R.C.

    1990-06-01

    After several successful applications to aerospace industry, the modern control theory methods have recently attracted many control engineers from other engineering disciplines. For advanced nuclear reactors, the modern control theory may provide major advantages in safety, availability, and economic aspects. This report is intended to illustrate the feasibility of applying the linear quadratic Gaussian (LQG) compensator in nuclear reactor applications. The LQG design is compared with the existing classical control schemes. Both approaches are tested using the Experimental Breeder Reactor 2 (EBR-2) as the system. The experiments are performed using a mathematical model of the EBR-2 plant. Despite the fact that the controller and plant models do not include all known physical constraints, the results are encouraging. This preliminary study provides an informative, introductory picture for future considerations of using modern control theory methods in nuclear industry. 10 refs., 25 figs

  20. Efforts of development on the next generation nuclear reactor in the Mitsubishi Heavy Industries, Ltd

    International Nuclear Information System (INIS)

    Mukai, Hiroshi

    2002-01-01

    At present, the Mitsubishi Heavy Industry, Ltd. (MHI) enters to development on APWR+ for a large-scale reactor, AP1000 and pebble bed modular reactor (PBMR) for middle- and small-scale one, and innovative one, under cooperation of power industries, manufacturers and institutes in and out of Japan. On APWR+, MHI occupies the most advanced position of conventional large-scale route, intends to carry out further upgrading of large capacity on a base of already developed 1500 MWe class APWR, and aims at further upgrading of economical efficiency. On the other reactor, as it becomes possible to perform value addition specific to the small-scale reactor with smaller output, it is planned to overcome its scale demerit by introducing more innovative techniques. And, on AP1000, it is intended to remove dynamic safety system by introducing a static one, to upgrade simplification of apparatus and reliability of safety system and to reduce its human factors. In addition, here was described on the next generation nuclear reactors under development. (G.K.)

  1. Mathematical control theory

    International Nuclear Information System (INIS)

    Agrachev, A.A.

    2002-01-01

    This volume is based on the lecture notes of the minicourses given in the frame of the school on Mathematical Control Theory held at the Abdus Salam ICTP from 3 to 28 September 2001. Mathematical Control Theory is a rapidly growing field which provides strict theoretical and computational tools for dealing with problems arising in electrical and aerospace engineering, automatics, robotics, applied chemistry, and biology etc. Control methods are also involved in questions pertaining to the development of countries in the South, such as wastewater treatment, agronomy, epidemiology, population dynamics, control of industrial and natural bio-reactors. Since most of these natural processes are highly nonlinear, the tools of nonlinear control are essential for the modelling and control of such processes. At present regular courses in Mathematical Control Theory are rarely included in the curricula of universities, and very few researchers receive enough background in the field. Therefore it is important to organize specific activities in the form of schools to provide the necessary background for those embarking on research in this field. The school at the Abdus Salam ICTP consisted of several minicourses intended to provide an introduction to various topics of Mathematical Control Theory, including Linear Control Theory (finite and infinite-dimensional), Nonlinear Control, and Optimal Control. The last week of the school was concentrated on applications of Mathematical Control Theory, in particular, those which are important for the development of non-industrialized countries. The school was intended primarily for mathematicians and mathematically oriented engineers at the beginning of their career. The typical participant was expected to be a graduate student or young post-doctoral researcher interested in Mathematical Control Theory. It was assumed that participants have sufficient background in Ordinary Differential Equations and Advanced Calculus. The volume

  2. Mathematical control theory

    Energy Technology Data Exchange (ETDEWEB)

    Agrachev, A A [Steklov Mathematical Institute, Moscow (Russian Federation); SISSA, Trieste [Italy; ed.

    2002-07-15

    This volume is based on the lecture notes of the minicourses given in the frame of the school on Mathematical Control Theory held at the Abdus Salam ICTP from 3 to 28 September 2001. Mathematical Control Theory is a rapidly growing field which provides strict theoretical and computational tools for dealing with problems arising in electrical and aerospace engineering, automatics, tics, applied chemistry, and biology etc. Control methods are also involved in questions pertaining to the development of countries in the South, such as wastewater treatment, agronomy, epidemiology, population dynamics, control of industrial and natural bio-reactors. Since most of these natural processes are highly nonlinear, the tools of nonlinear control are essential for the modelling and control of such processes. At present regular courses in Mathematical Control Theory are rarely included in the curricula of universities, and very few researchers receive enough background in the field. Therefore it is important to organize specific activities in the form of schools to provide the necessary background for those embarking on research in this field. The school at the Abdus Salam ICTP consisted of several minicourses intended to provide an introduction to various topics of Mathematical Control Theory, including Linear Control Theory (finite and infinite-dimensional), Nonlinear Control, and Optimal Control. The last week of the school was concentrated on applications of Mathematical Control Theory, in particular, those which are important for the development of non-industrialized countries. The school was intended primarily for mathematicians and mathematically oriented engineers at the beginning of their career. The typical participant was expected to be a graduate student or young post-doctoral researcher interested in Mathematical Control Theory. It was assumed that participants have sufficient background in Ordinary Differential Equations and Advanced Calculus. The volume contains

  3. Proceedings of the international conference on mathematics and computations, reactor physics, and environmental analyses. Volume 1 and 2

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The International Conference on Mathematics and Computations, Reactor Physics, and Environmental Analyses marks the sixteenth biennial topical meeting of the Mathematics and Computation (M ampersand C) Division of the American Nuclear Society (ANS). This conference combines many traditional features of M ampersand C conferences with several new aspects. The meeting is, for the first time, being held in Portland, Oregon and sponsored by the ANS Eastern Washington Section. Three of the cosponsors - the ANS Reactor Physics Division, the European Nuclear Society, and the Atomic Energy Society of Japan - have participated in a series of such meetings, with very successful results. The fourth cosponsor, the ANS Environmental Science Division, is participating for the first time as a cosponsor of a M ampersand C topical meeting, as a result of the M ampersand C Division's decision to formally include the area of environmental analyses as a major focus of the conference, another 'first.' Separate abstracts have been submitted to the energy database for contributions to this conference

  4. Industrial experience with the construction of pressurized-water reactors in France

    International Nuclear Information System (INIS)

    Leny, J.-C.

    1983-01-01

    Since 1969, the switch to light-water reactors as the basis of the French nuclear programme has led to the development of an industrial infrastructure for the manufacture of pressurized-water reactor equipment. Since the massive power plant construction programme was approved in 1974, an integrated PWR industry has been built up around and in conjunction with Framatome. The experience gathered relates to the series production of thirty-four 900 MW(e) units and eighteen 1300 MW(e) units, and it is unique. From the industrial point of view, the high rate of construction of identical equipment items has made it possible to streamline production and establish a fully integrated and complete team of constructors and sub-contractors supervised by a likewise highly integrated and comprehensive organization responsible for regulating quality. At the research and development level, the effort to improve knowledge of the product has gradually led to mastery of a French technology and to further developments proceeding therefrom. Standardized, repeated production has given rise to consistent quality, better component reliability and safer plant operation as well as reduced construction time and lower manufacturing costs. However, difficulties have inevitably had to be overcome with respect to the setting up of teams maintaining schedules and mastering the techniques used, and this has required time and money. The remarkable quality, reliability and safety of the products has led to export orders and to good co-operation with local industry in the importing countries. (author)

  5. State space modeling of reactor core in a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ashaari, A.; Ahmad, T.; M, Wan Munirah W. [Department of Mathematical Science, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Shamsuddin, Mustaffa [Institute of Ibnu Sina, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Abdullah, M. Adib [Swinburne University of Technology, Faculty of Engineering, Computing and Science, Jalan Simpang Tiga, 93350 Kuching, Sarawak (Malaysia)

    2014-07-10

    The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.

  6. Apparatus for examination of irradiated fuel elements of industrial reactors at Marcoule

    International Nuclear Information System (INIS)

    Pesenti, P.; Wallet, Ph.

    1960-01-01

    The authors describe a viewing and measurement cell for the slugs of Marcoule industrial reactors. This cell allows visual inspection, and photography of slugs. Length measurements are also made possible by horizontal motion of the slug both in translation and rotation. (author) [fr

  7. Modeling, simulation, and analysis of a reactor system for the generation of white liquor of a pulp and paper industry

    Directory of Open Access Journals (Sweden)

    Ricardo Andreola

    2011-02-01

    Full Text Available An industrial system for the production of white liquor of a pulp and paper industry, Klabin Paraná Papéis, formed by ten reactors was modeled, simulated, and analyzed. The developed model considered possible water losses by the evaporation and reaction, in addition to variations in the volumetric flow of lime mud across the reactors due to the composition variations. The model predictions agreed well with the process measurements at the plant and the results showed that the slaking reaction was nearly complete at the third causticizing reactor, while causticizing ends by the seventh reactor. Water loss due to slaking reaction and evaporation occurred more pronouncedly in the slaker reactor than in the final causticizing reactors; nevertheless, the lime mud flow remained nearly constant across the reactors.

  8. CFD Simulation of an Anaerobic Membrane BioReactor (AnMBR to Treat Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Laura C. Zuluaga

    2015-06-01

    Full Text Available A Computational Fluid Dynamics (CFD simulation has been developed for an Anaerobic Membrane BioReactor (AnMBR to treat industrial wastewater. As the process consists of a side-stream MBR, two separate simulations were created: (i reactor and (ii membrane. Different cases were conducted for each one, so the surrounding temperature and the total suspended solids (TSS concentration were checked. For the reactor, the most important aspects to consider were the dead zones and the mixing, whereas for the ceramic membrane, it was the shear stress over the membrane surface. Results show that the reactor's mixing process was adequate and that the membrane presented higher shear stress in the 'triangular' channel.

  9. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  10. N2O Catalytic Decomposition – from Laboratory Experiment to Industry Reactor

    Czech Academy of Sciences Publication Activity Database

    Obalová, L.; Jirátová, Květa; Karásková, K.; Chromčáková, Ž.

    2012-01-01

    Roč. 191, č. 1 (2012), s. 116-120 ISSN 0920-5861 R&D Projects: GA TA ČR TA01020336 Institutional support: RVO:67985858 Keywords : N2O * catalytic decomposition * fixed bed reactor Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.980, year: 2012

  11. Analysis of dynamic stability and safety of reactor system by reactor simulator

    International Nuclear Information System (INIS)

    Raisic, N.

    1963-11-01

    In order to enable qualitative analysis of dynamic properties of reactors RA and RB, mathematical models of these reactors were formulated and adapted for solution on analog computer. This report contains basic assessments for creating the model and complete equations for each reactor. Model was used to analyse three possible accidents at the RA reactor and possible hypothetical accidents at the RB reactor

  12. Development of Reactor Console Simulator for PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Mohd Idris Taib; Izhar Abu Hussin; Mohd Khairulezwan Abdul Manan; Nufarhana Ayuni Joha; Mohd Sabri Minhat

    2012-01-01

    The Reactor Console Simulator will be an interactive tool for operator training and teaching of PUSPATI TRIGA Reactor. Behaviour and characteristic for reactor console and reactor itself can be evaluated and understand. This Simulator will be used as complement for actual present reactor console. Implementation of man-machine interface is using computer screens, keyboard and mouse. Multiple screens are used to match the physical of present reactor console. LabVIEW software are using for user interface and mathematical calculation. Polynomial equation based on control rods calibration data as well as operation parameters record was used to calculate the estimated reactor console parameters. (author)

  13. Parametric Sensibility in Lixiviation Reactors

    Directory of Open Access Journals (Sweden)

    Dra. Margarita Rivera-Soto

    2015-11-01

    Full Text Available This work presents the results obtained in an analysis of the parametric sensibility, on the base of a mathematical model, which describes the behavior a lixiviation reactors battery inside the limits of the habitual work of the industrial plant, in a concrete process and of high complexity. The analysis was carried out with the purpose of determining the effect that the changes in different operation variables have on the behavior of the system and it gave as result that the most important variables are: the mineral-acid relationship, the concentration of magnesium and of nickel.

  14. Mathematical modeling of quartz particle melting process in plasma-chemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Volokitin, Oleg, E-mail: volokitin-oleg@mail.ru; Volokitin, Gennady, E-mail: vgg-tomsk@mail.ru; Skripnikova, Nelli, E-mail: nks2003@mai.ru; Shekhovtsov, Valentin, E-mail: shehovcov2010@yandex.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Vlasov, Viktor, E-mail: rector@tsuab.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Ave., 634050, Tomsk (Russian Federation)

    2016-01-15

    Among silica-based materials vitreous silica has a special place. The paper presents the melting process of a quartz particle under conditions of low-temperature plasma. A mathematical model is designed for stages of melting in the experimental plasma-chemical reactor. As calculation data show, quartz particles having the radius of 0.21≤ r{sub p} ≤0.64 mm completely melt at W = 0.65 l/s particle feed rate depending on the Nusselt number, while 0.14≤ r{sub p} ≤0.44 mm particles melt at W = 1.4 l/s. Calculation data showed that 2 mm and 0.4 mm quartz particles completely melted during and 0.1 s respectively. Thus, phase transformations occurred in silicon dioxide play the important part in its heating up to the melting temperature.

  15. Mathematical Model and Artificial Intelligent Techniques Applied to a Milk Industry through DSM

    Science.gov (United States)

    Babu, P. Ravi; Divya, V. P. Sree

    2011-08-01

    The resources for electrical energy are depleting and hence the gap between the supply and the demand is continuously increasing. Under such circumstances, the option left is optimal utilization of available energy resources. The main objective of this chapter is to discuss about the Peak load management and overcome the problems associated with it in processing industries such as Milk industry with the help of DSM techniques. The chapter presents a generalized mathematical model for minimizing the total operating cost of the industry subject to the constraints. The work presented in this chapter also deals with the results of application of Neural Network, Fuzzy Logic and Demand Side Management (DSM) techniques applied to a medium scale milk industrial consumer in India to achieve the improvement in load factor, reduction in Maximum Demand (MD) and also the consumer gets saving in the energy bill.

  16. Parametric Sensitivity Study on Continuous Reactors with Stirring

    Directory of Open Access Journals (Sweden)

    Dr. Carlos Hernández-Pedrera

    2015-11-01

    Full Text Available In this work present the results obtained in a study of sensibility, by using a mathematical model developed for the simulation of the conduct of an endless reactor with agitation, by using as data source of information of reasonable operation of the industrial plant. The study permits value the effect that the changes in the variables of operation can occasion in the results of the process and the possibility that exists or not interactions between the variables analyzed.

  17. ASTRID, Generation IV advanced sodium technological reactor for industrial demonstration

    International Nuclear Information System (INIS)

    Gauche, F.

    2013-01-01

    ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) is an integrated technology demonstrator designed to demonstrate the operability of the innovative choices enabling fast neutron reactor technology to meet the Generation IV criteria. ASTRID is a sodium-cooled fast reactor with an electricity generating power of 600 MWe. In order to meet the generation IV goals, ASTRID will incorporate the following decisive innovations: -) an improved core with a very low, even negative void coefficient; -) the possible installation of additional safety devices in the core. For example, passive anti-reactivity insertion devices are explored; -) more core instrumentation; -) an energy conversion system with modular steam generators, to limit the effects of a possible sodium-water reaction, or sodium-nitrogen exchangers; -) considerable thermal inertia combined with natural convection to deal with decay heat; -)elimination of major sodium fires by bunkerization and/or inert atmosphere in the premises; -) to take into account off-site hazards (earthquake, airplane crash,...) right from the design stage; -) a complete rethink of the reactor architecture in order to limit the risk of proliferation. ASTRID will also include systems for reducing the length of refueling outages and increasing the burn-up and the duration of the cycle. In-service inspection, maintenance and repair are also taken into account right from the start of the project. The ASTRID prototype should be operational by about 2023. (A.C.)

  18. Mathematical methods in neutronics

    International Nuclear Information System (INIS)

    Planchard, J.

    1995-01-01

    This book presents the mathematical theory of nuclear reactors. It applies to engineers in neutronics and applied mathematicians. After a recall of the elementary notions of neutronics and of diffusion-type partial derivative equations, the theory of reactors criticality calculation is described. (J.S.)

  19. Computational benchmark problems: a review of recent work within the American Nuclear Society Mathematics and Computation Division

    International Nuclear Information System (INIS)

    Dodds, H.L. Jr.

    1977-01-01

    An overview of the recent accomplishments of the Computational Benchmark Problems Committee of the American Nuclear Society Mathematics and Computation Division is presented. Solutions of computational benchmark problems in the following eight areas are presented and discussed: (a) high-temperature gas-cooled reactor neutronics, (b) pressurized water reactor (PWR) thermal hydraulics, (c) PWR neutronics, (d) neutron transport in a cylindrical ''black'' rod, (e) neutron transport in a boiling water reactor (BWR) rod bundle, (f) BWR transient neutronics with thermal feedback, (g) neutron depletion in a heavy water reactor, and (h) heavy water reactor transient neutronics. It is concluded that these problems and solutions are of considerable value to the nuclear industry because they have been and will continue to be useful in the development, evaluation, and verification of computer codes and numerical-solution methods

  20. International Conference Organized on the Occasion of the Silver Jubilee of the Indian Society of Industrial and Applied Mathematics (ISIAM)

    CERN Document Server

    Lozi, René; Siddiqi, Abul

    2017-01-01

    The book discusses essential topics in industrial and applied mathematics such as image processing with a special focus on medical imaging, biometrics and tomography. Applications of mathematical concepts to areas like national security, homeland security and law enforcement, enterprise and e-government services, personal information and business transactions, and brain-like computers are also highlighted. These contributions – all prepared by respected academicians, scientists and researchers from across the globe – are based on papers presented at the international conference organized on the occasion of the Silver Jubilee of the Indian Society of Industrial and Applied Mathematics (ISIAM) held from 29 to 31 January 2016 at Sharda University, Greater Noida, India. The book will help young scientists and engineers grasp systematic developments in those areas of mathematics that are essential to properly understand challenging contemporary problems.

  1. Plasma properties in a large-volume, cylindrical and asymmetric radio-frequency capacitively coupled industrial-prototype reactor

    International Nuclear Information System (INIS)

    Lazović, Saša; Puač, Nevena; Spasić, Kosta; Malović, Gordana; Petrović, Zoran Lj; Cvelbar, Uroš; Mozetič, Miran; Radetić, Maja

    2013-01-01

    We have developed a large-volume low-pressure cylindrical plasma reactor with a size that matches industrial reactors for treatment of textiles. It was shown that it efficiently produces plasmas with only a small increase in power as compared with a similar reactor with 50 times smaller volume. Plasma generated at 13.56 MHz was stable from transition to streamers and capable of long-term continuous operation. An industrial-scale asymmetric cylindrical reactor of simple design and construction enabled good control over a wide range of active plasma species and ion concentrations. Detailed characterization of the discharge was performed using derivative, Langmuir and catalytic probes which enabled determination of the optimal sets of plasma parameters necessary for successful industry implementation and process control. Since neutral atomic oxygen plays a major role in many of the material processing applications, its spatial profile was measured using nickel catalytic probe over a wide range of plasma parameters. The spatial profiles show diffusion profiles with particle production close to the powered electrode and significant wall losses due to surface recombination. Oxygen atom densities range from 10 19 m −3 near the powered electrode to 10 17 m −3 near the wall. The concentrations of ions at the same time are changing from 10 16 to the 10 15 m −3 at the grounded chamber wall. (paper)

  2. EUROPAIRS: The European project on coupling of High Temperature Reactors with industrial processes

    International Nuclear Information System (INIS)

    Angulo, C.; Bogusch, E.; Bredimas, A.; Delannay, N.; Viala, C.; Ruer, J.; Muguerra, Ph.; Sibaud, E.; Chauvet, V.; Hittner, D.; Fütterer, M.A.; Groot, S. de; Lensa, W. von; Verfondern, K.; Moron, R.; Baudrand, O.; Griffay, G.; Baaten, A.; Segurado-Gimenez, J.

    2012-01-01

    Developers of High Temperature Reactors (HTR) worldwide acknowledge that the main asset for market breakthrough is its unique ability to address growing needs for industrial cogeneration of heat and power (CHP) owing to its high operating temperature and flexibility, adapted power level, modularity and robust safety features. A strong alliance between nuclear and process heat user industries is a necessity for developing such a nuclear system for the conventional process heat market, just as the electro-nuclear development required a close partnership with utilities. Initiating such an alliance is one of the objectives of the EUROPAIRS project ( (www.europairs.eu)) presently on-going in the frame of the Euratom 7th Framework Programme (FP7). Although small and of short duration (21 months), EUROPAIRS is of strategic importance: it generates the boundary conditions for rapid demonstration of collocating HTR with industrial processes as proposed by the European High Temperature Reactor Technology Network (HTR-TN). This paper presents the main goals, the organization and the working approach of EUROPAIRS. It also presents the status of the viability assessment studies for coupling HTR with industrial end-user systems as one of the main pillars of the project. The main goal of the viability assessment is to identify developments required to remove the last technological and licensing barriers for a viable coupling scheme. The study is expected to result in guidelines for directing the choice of an industrial scale prototype.

  3. EUROPAIRS: The European project on coupling of High Temperature Reactors with industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Angulo, C., E-mail: carmen.angulo@gdfsuez.com [Tractebel Engineering S.A. (GDF SUEZ), Avenue Ariane 7, 1200 Brussels (Belgium); Bogusch, E. [AREVA NP GmbH, Paul-Gossen-Strasse 100, 91052 Erlangen (Germany); Bredimas, A. [LGI Consulting, 37 rue de la Grange aux Belles, 75010 Paris (France); Delannay, N. [Tractebel Engineering S.A. (GDF SUEZ), Avenue Ariane 7, 1200 Brussels (Belgium); Viala, C. [AREVA NP SAS, 10 rue Juliette Recamier, 69456 Lyon Cedex 06 (France); Ruer, J.; Muguerra, Ph.; Sibaud, E. [SAIPEM S.A., 1/7 Avenue San Fernando, 78884 Saint Quentin en Yvelines Cedex (France); Chauvet, V. [LGI Consulting, 37 rue de la Grange aux Belles, 75010 Paris (France); Hittner, D. [AREVA NP Inc., 3315 Old Forest Road, Lynchburg, VA 24501 (United States); Fuetterer, M.A. [European Commission, Joint Research Centre, 1755ZG Petten (Netherlands); Groot, S. de [Nuclear Research and Consultancy Group, 1755ZG Petten (Netherlands); Lensa, W. von; Verfondern, K. [Forschungszentrum Juelich GmbH, Leo-Brandt-Strasse,52425 Juelich (Germany); Moron, R. [Solvay SA, rue du Prince Albert 33, 1050 Brussels (Belgium); Baudrand, O. [Institut de Radioprotection et de Surete Nucleaire (IRSN), BP 17, 92262 Fontenay-aux-Roses cedex (France); Griffay, G. [Arcelor Mittal Maizieres Research SA, rue Luigi Cherubini 1A5, 39200 Saint Denis (France); Baaten, A. [USG/Baaten Energy Consulting, Burgermeester-Ceulen-Straat 78, 6212CT Maastricht (Netherlands); Segurado-Gimenez, J. [Tractebel Engineering S.A. (GDF SUEZ), Avenue Ariane 7, 1200 Brussels (Belgium)

    2012-10-15

    Developers of High Temperature Reactors (HTR) worldwide acknowledge that the main asset for market breakthrough is its unique ability to address growing needs for industrial cogeneration of heat and power (CHP) owing to its high operating temperature and flexibility, adapted power level, modularity and robust safety features. A strong alliance between nuclear and process heat user industries is a necessity for developing such a nuclear system for the conventional process heat market, just as the electro-nuclear development required a close partnership with utilities. Initiating such an alliance is one of the objectives of the EUROPAIRS project ( (www.europairs.eu)) presently on-going in the frame of the Euratom 7th Framework Programme (FP7). Although small and of short duration (21 months), EUROPAIRS is of strategic importance: it generates the boundary conditions for rapid demonstration of collocating HTR with industrial processes as proposed by the European High Temperature Reactor Technology Network (HTR-TN). This paper presents the main goals, the organization and the working approach of EUROPAIRS. It also presents the status of the viability assessment studies for coupling HTR with industrial end-user systems as one of the main pillars of the project. The main goal of the viability assessment is to identify developments required to remove the last technological and licensing barriers for a viable coupling scheme. The study is expected to result in guidelines for directing the choice of an industrial scale prototype.

  4. Intrafirm planning and mathematical modeling of owner's equity in industrial enterprises

    Science.gov (United States)

    Ponomareva, S. V.; Zheleznova, I. V.

    2018-05-01

    The article aims to review the different approaches to intrafirm planning of owner's equity in industrial enterprises. Since charter capital, additional capital and reserve capital do not change in the process of enterprise activity, the main interest lies on the field of share repurchases from shareholders and retained earnings within the owner's equity of the enterprise. In order to study the effect of share repurchases on the activities of the enterprise, let us use such mathematical methods as event study and econometric modeling. This article describes the step-by-step algorithm of carrying out event study and justifies the choice of Logit model in econometric analysis. The article represents basic results of conducted regression analysis on the effect of share repurchases on the key financial indicators in industrial enterprises.

  5. Strengthening the R and D on fast reactor technology, and promoting its industrialization

    International Nuclear Information System (INIS)

    Wan Gang

    2008-01-01

    Based on the strategic thoughts of energy development in China expounded by Jiang Zemin in the article entitled 'Reflections on Energy Issues in China', the author points out in this paper that R and Ds on fast reactor technology shall be carried out timely in China by taking full advantage of international scientific resources, and overall planning in this regard shall be made as well. The point of view of strengthening fast reactor technology R and D and promoting its industrialization is also put forward in the paper. (authors)

  6. A fast linear predictive adaptive model of packed bed coupled with UASB reactor treating onion waste to produce biofuel.

    Science.gov (United States)

    Milquez-Sanabria, Harvey; Blanco-Cocom, Luis; Alzate-Gaviria, Liliana

    2016-10-03

    Agro-industrial wastes are an energy source for different industries. However, its application has not reached small industries. Previous and current research activities performed on the acidogenic phase of two-phase anaerobic digestion processes deal particularly with process optimization of the acid-phase reactors operating with a wide variety of substrates, both soluble and complex in nature. Mathematical models for anaerobic digestion have been developed to understand and improve the efficient operation of the process. At present, lineal models with the advantages of requiring less data, predicting future behavior and updating when a new set of data becomes available have been developed. The aim of this research was to contribute to the reduction of organic solid waste, generate biogas and develop a simple but accurate mathematical model to predict the behavior of the UASB reactor. The system was maintained separate for 14 days during which hydrolytic and acetogenic bacteria broke down onion waste, produced and accumulated volatile fatty acids. On this day, two reactors were coupled and the system continued for 16 days more. The biogas and methane yields and volatile solid reduction were 0.6 ± 0.05 m 3 (kg VS removed ) -1 , 0.43 ± 0.06 m 3 (kg VS removed ) -1 and 83.5 ± 9.8 %, respectively. The model application showed a good prediction of all process parameters defined; maximum error between experimental and predicted value was 1.84 % for alkalinity profile. A linear predictive adaptive model for anaerobic digestion of onion waste in a two-stage process was determined under batch-fed condition. Organic load rate (OLR) was maintained constant for the entire operation, modifying effluent hydrolysis reactor feed to UASB reactor. This condition avoids intoxication of UASB reactor and also limits external buffer addition.

  7. Industrial complex in organizing the high-speed in-line construction of reactor compartments at the Balakovo NPP

    International Nuclear Information System (INIS)

    Maksakov, A.I.; Kovrigin, Yu.K.; Zhila, V.P.

    1986-01-01

    Qualitatively new technology of reactor compartment construction presupposing organizing of an industrial-mounting in-line complex is described. Maximum level of construction industrialization and noticeable reduction of construction duration are noted to be ensured by means of this technology

  8. Scale-up and optimization of biohydrogen production reactor from laboratory-scale to industrial-scale on the basis of computational fluid dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu; Ding, Jie; Guo, Wan-Qian; Ren, Nan-Qi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 202 Haihe Road, Nangang District, Harbin, Heilongjiang 150090 (China)

    2010-10-15

    The objective of conducting experiments in a laboratory is to gain data that helps in designing and operating large-scale biological processes. However, the scale-up and design of industrial-scale biohydrogen production reactors is still uncertain. In this paper, an established and proven Eulerian-Eulerian computational fluid dynamics (CFD) model was employed to perform hydrodynamics assessments of an industrial-scale continuous stirred-tank reactor (CSTR) for biohydrogen production. The merits of the laboratory-scale CSTR and industrial-scale CSTR were compared and analyzed on the basis of CFD simulation. The outcomes demonstrated that there are many parameters that need to be optimized in the industrial-scale reactor, such as the velocity field and stagnation zone. According to the results of hydrodynamics evaluation, the structure of industrial-scale CSTR was optimized and the results are positive in terms of advancing the industrialization of biohydrogen production. (author)

  9. Industrial treatment from distilleries vinasses in UASB reactors

    International Nuclear Information System (INIS)

    Lorenzo-Acosta, Yaniris; Doménech-López, Fidel; Eng-Sánchez, Felipe; Olmo, Oscar Almazán-del; Chanfón-Curbelo, Juana Ma.

    2015-01-01

    The anaerobic digestion in UASB reactors is well known since the 80´, at industrial scale, in Latin American countries, for the treatment of liquid wastes, including the ethanol vinasses. That´s the importance to present the equations used in the design and the results of the actual potentiality of a biogas plant, using as a case of study an, the vinasses treatment of a distillery of a capacity of 500 HL of ethanol per day. The flow sheet of the technology and an explanation of the stages are also shown. The results of the mass balance confirm that to treat the whole vinasses generated with a COD of 50 kg per cubic meter, to be converted in electric energy, it´s necessary to install two UASB reactors f 1160 cubic meters each , being the production potential of this technology of 12821 cubic meters of desulphurized biogas per day, 21796 kWh of electric energy, 4.33 t per day of dry mud and 716 cubic meters of vinasses with only 15 kg of COD per cubic meters, that could be used for ferti-irrigation of the cane fields, as an option to close the treatment cycle and waste disposal . All this drive to the conclusion that the anaerobic digestion of the distillery vinasses in UASB reactors as a primary treatment option, with the use of the treated vinasses for the ferti-irrigation of the cane fields to close the cycle make the ethanol production true ecofrienly. (author)

  10. Contribution to the modelling of gas-solid reactions and reactors

    International Nuclear Information System (INIS)

    Patisson, F.

    2005-09-01

    Gas-solid reactions control a great number of major industrial processes involving matter transformation. This dissertation aims at showing that mathematical modelling is a useful tool for both understanding phenomena and optimising processes. First, the physical processes associated with a gas-solid reaction are presented in detail for a single particle, together with the corresponding available kinetic grain models. A second part is devoted to the modelling of multiparticle reactors. Different approaches, notably for coupling grain models and reactor models, are illustrated through various case studies: coal pyrolysis in a rotary kiln, production of uranium tetrafluoride in a moving bed furnace, on-grate incineration of municipal solid wastes, thermogravimetric apparatus, nuclear fuel making, steel-making electric arc furnace. (author)

  11. ASTRID: Advanced Sodium Technological Reactor for Industrial Demonstration

    International Nuclear Information System (INIS)

    Vasile, A.

    2012-01-01

    Conclusions: • R&D results [CEA-AREVA-EDF] obtained from 2007 to 2009 have contributed to ASTRID mid 2010 choice of options; • ASTRID has the objective to demonstrate at the industrial scale progress in the identified domains of SFR weakness (safety, operability, economy). and to perform transmutation demonstrations; • A lot of improvements are related to safety; • The first very important milestone is 2012 (June 2006 French Act on wastes management): – ASTRID pre-conceptual design studies: 2010-2012; – First investment cost evaluation; – First safety Authorities advice on the orientations for ASTRID safety; • With the ASTRID program funded by the French government, France has the opportunity to develop a GEN IV Sodium Fast Reactor

  12. Economic aspects of electricity and industrial heat generating reactors

    International Nuclear Information System (INIS)

    Gaussens, J.; Moulle, N.; Dutheil, F.

    1964-01-01

    The economic advantage of electricity-generating nuclear stations decreases when their size decreases. However, when a counter-pressure turbine is joined on to a reactor and the residual heat can be properly used, it can be shown that fairly low capacity nuclear equipment may compete with conventional equipment under certain realistic enough conditions. The aim of this paper is to define these special conditions under which nuclear energy can be profitable. They are connected with the location and the general economic environment of the station, the pattern of the electricity and heat demands it must meet, the level of fuel and specific capital costs, nuclear and conventional. These conditions entail certain technical and economic specifications for the reactors used in this way otherwise they are unlikely to be competitive. In addition, these results are referred to the potential steam and electricity market, which leads us to examine certain uses for the heat generated by double purpose power stations; for example, to supply combined industrial plants, various types of town heating and for removal of salt from sea water. (authors) [fr

  13. Dynamic bioconversion mathematical modelling and simulation of urban organic waste co-digestion in continuously stirred tank reactor

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Boldrin, Alessio; Dorini, G.

    of this study was to apply a dynamic mathematical model to simulate the co-digestion of different urban organic wastes (UOW). The modelling was based on experimental activities, during which two reactors (R1, R2) were operated at hydraulic retention times (HRT) of 30, 20, 15, 10 days, in thermophilic conditions......The application of anaerobic digestion (AD) as process technology is increasing worldwide: the production of biogas, a versatile form of renewable energy, from biomass and organic waste materials allows mitigating greenhouse gas emission from the energy and transportation sectors while treating...... waste. However, the successful operation of AD processes is challenged by economic and technological issues. To overcome these barriers, mathematical modelling of the bioconversion process can provide support to develop strategies for controlling and optimizing the AD process. The objective...

  14. FLUIDDYNAMIC ASPECTS OF GAS-PHASE ETHYLENE POLYMERIZATION REACTOR DESIGN

    Directory of Open Access Journals (Sweden)

    Guardani R.

    1998-01-01

    Full Text Available The relative importance of design variables affecting the fluiddynamic behavior of a fluidized bed reactor for the gas-phase ethylene polymerization is discussed, based on mathematical modeling. The three-phase bubbling fluidized bed model is based on axially distributed properties for the bubble, cloud and emulsion phases, combined with correlations for population balance and entrainment. Under the operating conditions adopted in most industrial processes, the reactor performance is affected mainly by the reaction rate and solids entrainment. Simulation results indicate that an adequate design of the freeboard and particle collecting equipment is of primary importance in order to produce polymeric particles with the desired size distribution, as well as to keep entrainment and catalyst feed rates at adequate levels.

  15. Deposition of hematite particles on alumina seal faceplates of nuclear reactor coolant pumps: Laboratory experiments and industrial feedback

    OpenAIRE

    Lefèvre, Grégory; Živković, Ljiljana S.; Jaubertie, Anne

    2012-01-01

    In the primary circuit of pressurized water reactors (PWR), the dynamic sealing system in reactor coolant pumps is ensured by mechanical seals whose ceramic parts are in contact with the cooling solution. During the stretch-out phase in reactor operation, characterized by low boric acid concentration, the leak-off flow has been observed to abnormally evolve in industrial plants. The deposition of hematite particles, originating from corrosion, on alumina seals of coolant pumps is suspec...

  16. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    OpenAIRE

    Joe A. Lemire; Marc A. Demeter; Iain George; Howard Ceri; Raymond J. Turner

    2015-01-01

    Moving bed biofilm reactors (MBBRs) are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR) carriers (biofilm support materials), allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that ...

  17. A Long-Term Mathematical Model for Mining Industries

    Energy Technology Data Exchange (ETDEWEB)

    Achdou, Yves, E-mail: achdou@ljll.univ-paris-diderot.fr [Univ. Paris Diderot, Sorbonne Paris Cité, Laboratoire Jacques-Louis Lions, UMR 7598, UPMC, CNRS (France); Giraud, Pierre-Noel [CERNA, Mines ParisTech (France); Lasry, Jean-Michel [Univ. Paris Dauphine (France); Lions, Pierre-Louis [Collège de France (France)

    2016-12-15

    A parcimonious long term model is proposed for a mining industry. Knowing the dynamics of the global reserve, the strategy of each production unit consists of an optimal control problem with two controls, first the flux invested into prospection and the building of new extraction facilities, second the production rate. In turn, the dynamics of the global reserve depends on the individual strategies of the producers, so the models leads to an equilibrium, which is described by low dimensional systems of partial differential equations. The dimensionality depends on the number of technologies that a mining producer can choose. In some cases, the systems may be reduced to a Hamilton–Jacobi equation which is degenerate at the boundary and whose right hand side may blow up at the boundary. A mathematical analysis is supplied. Then numerical simulations for models with one or two technologies are described. In particular, a numerical calibration of the model in order to fit the historical data is carried out.

  18. A Long-Term Mathematical Model for Mining Industries

    International Nuclear Information System (INIS)

    Achdou, Yves; Giraud, Pierre-Noel; Lasry, Jean-Michel; Lions, Pierre-Louis

    2016-01-01

    A parcimonious long term model is proposed for a mining industry. Knowing the dynamics of the global reserve, the strategy of each production unit consists of an optimal control problem with two controls, first the flux invested into prospection and the building of new extraction facilities, second the production rate. In turn, the dynamics of the global reserve depends on the individual strategies of the producers, so the models leads to an equilibrium, which is described by low dimensional systems of partial differential equations. The dimensionality depends on the number of technologies that a mining producer can choose. In some cases, the systems may be reduced to a Hamilton–Jacobi equation which is degenerate at the boundary and whose right hand side may blow up at the boundary. A mathematical analysis is supplied. Then numerical simulations for models with one or two technologies are described. In particular, a numerical calibration of the model in order to fit the historical data is carried out.

  19. Control system of an anaerobia reactor used in the treatment of the Industrial residual waters

    International Nuclear Information System (INIS)

    Duque, Mauricio; Giraldo, Eugenio; Bello Frank

    1995-01-01

    The technology of the anaerobia digestion, has had a wide acceptance in the Colombian means for the treatment of industrial residual waters, especially for the economic advantages that it present and the good purification results. The technology of the anaerobia digestion for the treatment of residual waters, is based in the conversion of the organic matter present in the polluted waters, in methane and carbon dioxide. These two gases are removed of the reactor by means of special structures of gathering. Microorganisms that are sensitive to the changes of the pH mediate the conversion of the organic matter to CH4 and CO2. Therefore, the control on the pH is necessary for a correct behavior of the reactor. At the moment many industries are implementing plans of contamination control, that involve treatment of residual waters for means anaerobia. The present investigation is part of a wide work program in the technology of the anaerobia digestion. It is looked for to develop a monitored system and automatic control of reactors discharge anaerobia appraises, in a combined effort among the departments of Civil and Electric Engineering of the Andes University

  20. Modeling of Hybrid Growth Wastewater Bio-reactor

    International Nuclear Information System (INIS)

    EI Nashaei, S.; Garhyan, P.; Prasad, P.; Abdel Halim, H.S.; Ibrahim, G.

    2004-01-01

    The attached/suspended growth mixed reactors are considered one of the recently tried approaches to improve the performance of the biological treatment by increasing the volume of the accumulated biomass in terms of attached growth as well as suspended growth. Moreover, the domestic WW can be easily mixed with a high strength non-hazardous industrial wastewater and treated together in these bio-reactors if the need arises. Modeling of Hybrid hybrid growth wastewater reactor addresses the need of understanding the rational of such system in order to achieve better design and operation parameters. This paper aims at developing a heterogeneous mathematical model for hybrid growth system considering the effect of diffusion, external mass transfer, and power input to the system in a rational manner. The model will be based on distinguishing between liquid/solid phase (bio-film and bio-floc). This model would be a step ahead to the fine tuning the design of hybrid systems based on the experimental data of a pilot plant to be implemented in near future

  1. Exploring mathematics anxiety and attitude: Mathematics students' experiences

    Science.gov (United States)

    Sahri, Nurul Ashikin; Kamaruzaman, Wan Nur Farahdalila Wan; Jamil, Jastini Mohd.; Shaharanee, Izwan Nizal Mohd.

    2017-11-01

    A quantitative and correlational, survey methods were used to investigate the relationships among mathematical anxiety and attitude toward student's mathematics performance. Participants were 100 students volunteer to enroll in undergraduate Industrial Statistics, Decision Sciences and Business Mathematics at one of northern university in Malaysia. Survey data consisted of demographic items and Likert scale items. The collected data was analyzed by using the idea of correlation and regression analysis. The results indicated that there was a significant positive relationship between students' attitude and mathematics anxiety. Results also indicated that a substantial positive effect of students' attitude and mathematics anxiety in students' achievement. Further study can be conducted on how mathematical anxiety and attitude toward mathematics affects can be used to predict the students' performance in the class.

  2. Tying the knot with next-generation reactors: Can the industry afford a second marriage?

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This article examines the future of nuclear power beyond the year 2000. The nuclear industry just celebrated 50 years of nuclear technology, but no new plants have been ordered in the US since 1978 and some European countries are giving up on the nuclear option. This article discusses the four US advanced light-water reactor design and safety features, specific design features and parameters for the advanced designs, advanced designs from Europe, features utilities look for in a reactor, evolutionary versus passive designs, gaining public acceptance for new designs, and what alternatives are there to installing next-generation nuclear systems?

  3. Steel heat treating: mathematical modelling and numerical simulation of a problem arising in the automotive industry

    Directory of Open Access Journals (Sweden)

    Jose Manuel Diaz Moreno

    2017-12-01

    Full Text Available We describe a mathematical model for the industrial heating and cooling processes of a steel workpiece representing the steering rack of an automobile. The goal of steel heat treating is to provide a hardened surface on critical parts of the workpiece while keeping the rest soft and ductile in order to reduce fatigue. The high hardness is due to the phase transformation of steel accompanying the rapid cooling. This work takes into account both heating-cooling stage and viscoplastic model. Once the general mathematical formulation is derived, we can perform some numerical simulations.

  4. Mathematical modeling of the integrated process of mercury bioremediation in the industrial bioreactor

    OpenAIRE

    Głuszcz, Paweł; Petera, Jerzy; Ledakowicz, Stanisław

    2010-01-01

    The mathematical model of the integrated process of mercury contaminated wastewater bioremediation in a fixed-bed industrial bioreactor is presented. An activated carbon packing in the bioreactor plays the role of an adsorbent for ionic mercury and at the same time of a carrier material for immobilization of mercury-reducing bacteria. The model includes three basic stages of the bioremediation process: mass transfer in the liquid phase, adsorption of mercury onto activated carbon and ionic me...

  5. Anaerobic treatment of wastewater with high suspended solids from a bulk drug industry using fixed film reactor (AFFR).

    Science.gov (United States)

    Gangagni Rao, A; Venkata Naidu, G; Krishna Prasad, K; Chandrasekhar Rao, N; Venkata Mohan, S; Jetty, Annapurna; Sarma, P N

    2005-01-01

    Studies were carried out on the treatment of wastewater from a bulk drug industry using an anaerobic fixed film reactor (AFFR) designed and fabricated in the laboratory. The chemical oxygen demand (COD) and total dissolved solids (TDS) of the wastewater were found to be very high with low biochemical oxygen demand (BOD) to COD ratio and high total suspended solid (TSS) concentration. Acclimatization of seed consortia and startup of the reactor was carried out by directly using the wastewater, which resulted in reducing the period of startup to 30 days. The reactor was studied at different organic loading rates (OLR) and it was found that the optimum OLR was 10 kg COD/m(3)/day. The wastewater under investigation, which had a considerable quantity of SS, was treated anaerobically without any pretreatment. COD and BOD of the reactor outlet wastewater were monitored and at steady state and optimum OLR 60-70% of COD and 80-90% of BOD were removed. The reactor was subjected to organic shock loads at two different OLR and the reaction could withstand the shocks and performance could be restored to normalcy at that OLR. The results obtained indicated that AFFR could be used efficiently for the treatment of wastewater from a bulk drug industry having high COD, TDS and TSS.

  6. Numerical simulation of urea based selective non-catalytic reduction deNOx process for industrial applications

    International Nuclear Information System (INIS)

    Baleta, Jakov; Mikulčić, Hrvoje; Vujanović, Milan; Petranović, Zvonimir; Duić, Neven

    2016-01-01

    Highlights: • SNCR is a simple method for the NOx reduction from large industrial facilities. • Capabilities of the developed mathematical framework for SNCR simulation were shown. • Model was used on the geometry of experimental reactor and municipal incinerator. • Results indicate suitability of the developed model for real industrial cases. - Abstract: Industrial processes emit large amounts of diverse pollutants into the atmosphere, among which NOx takes a significant portion. Selective non-catalytic reduction (SNCR) is a relatively simple method for the NOx reduction in large industrial facilities such as power plants, cement plants and waste incinerator plants. It consists of injecting the urea-water solution in the hot flue gas stream and its reaction with the NOx. During this process flue gas enthalpy is used for the urea-water droplet heating and for the evaporation of water content. After water evaporates, thermolysis of urea occurs, during which ammonia, a known NO_x reductant, and isocyanic acid are generated. In order to cope with the ever stringent environmental norms, equipment manufacturers need to develop energy efficient products that are at the same time benign to environment. This is becoming increasingly complicated and costly, and one way to reduce production costs together with the maintaining the same competitiveness level is to employ computational fluid dynamics (CFD) as a tool, in a process today commonly known under the term “virtual prototyping”. The aim of this paper is to show capabilities of the developed mathematical framework implemented in the commercial CFD code AVL FIRE®, to simulate physical processes of all relevant phenomena occurring during the SNCR process. First, mathematical models for description of SNCR process are presented and afterwards, models are used on the 3D geometry of an industrial reactor and a real industrial case to predict SNCR efficiency, temperature and velocity field. Influence of the main

  7. Enzyme-Embedded, Microstructural Reactors for Industrial Biocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Sarah E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knipe, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oakdale, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stolaroff, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-04

    In this project we explored enzyme-catalyzed methane conversion to methanol. Industrial biological approaches to methane conversion using whole organisms are predicted to be more energy efficient than chemical approaches, but are limited by mass transfer of the gas phase reactants, methane and oxygen, to the organisms. We demonstrated that 3D printing the enzyme particulate Methane Mono Oxygenase (pMMO) embedded in a polymer can improve the kinetics of methane to methanol conversion. This improvement was likely due to the ability to increase the surface area of the catalytic material using 3D printing. We also demonstrated the first continuous use of pMMO in a flow-through reactor. In order to understand the fundamental kinetic properties of pMMO, we conducted an in-depth study of pMMO kinetics using analytical tools developed in our lab. Finally, we developed a new copolymer system that allowed tuning of the gas permeability of the biocatalytic material.

  8. Inventory of nuclear power plants and research reactors temporary or definitively stopped in industrialized countries

    International Nuclear Information System (INIS)

    Clauzon, J.; Vaubert, B.

    1984-12-01

    This paper presents data and information on the end of the life of nuclear reactors. One deals more particularly with installations of industrialized countries. This report gives the motivations which have involved the definitive shut down of nuclear power plants and of research reactors in the concerned countries. A schedule of definitive reactor shutdowns is presented. Then, one deals with nuclear power plants of which the construction has been stopped. The reasons of these situations are also given. The temporary difficulties met during the construction or the starting of nuclear power plants these last years are mentioned. Most times, there are economical or political considerations, or safety reasons. Finally, the nuclear power plants stopped for more than two years are mentioned [fr

  9. Probabilistic risk assessment in the nuclear power industry

    International Nuclear Information System (INIS)

    Fullwood, R.R.; Hall, R.E.

    1988-01-01

    This book describes the more important improvements in risk assessment methodology developed over the last decade. The book covers the following areas - a general view of risk pertaining to nuclear power, mathematics necessary to understand the text, a concise overview of the light water reactors and their features for protecting the public, probabilities and consequences calculated to form risk assessment to the plant, and 34 applications of probabilistic risk assessment (PRA) in the power generation industry. There is a glossary of acronyms and unusual words and a list of references. (author)

  10. Systematic staging design applied to the fixed-bed reactor series for methanol and one-step methanol/dimethyl ether synthesis

    International Nuclear Information System (INIS)

    Manenti, Flavio; Leon-Garzon, Andres R.; Ravaghi-Ardebili, Zohreh; Pirola, Carlo

    2014-01-01

    This work investigates possible design advances in the series of fixed-bed reactors for methanol and dimethyl ether synthesis. Specifically, the systematic staging design proposed by Hillestad [1] is applied to the water-cooled and gas-cooled series of reactors of Lurgi's technology. The procedure leads to new design and operating conditions with respect to the current best industrial practice, with relevant benefits in terms of process yield, energy saving, and net income. The overall mathematical model for the process simulation and optimization is reported in the work together with dedicated sensitivity analysis studies. - Highlights: • Systematic staging design is applied to methanol and methanol/DME synthesis. • New configurations for the synthesis reactor network are proposed and assessed. • Comparison with the industrial best practice is provided. • Energy-process optimization is performed to improve the overall yield of the process

  11. Industrial numerical analysis

    International Nuclear Information System (INIS)

    McKee, S.; Elliott, C.M.

    1986-01-01

    The applications of mathematics to industrial problems involves the formulation of problems which are amenable to mathematical investigation, mathematical modelling, the solution of the mathematical problem and the inter-pretation of the results. There are 12 chapters describing industrial problems where mathematics and numerical analysis can be applied. These range from the numerical assessment of the flatness of engineering surfaces and plates, the design of chain links, control problems in tidal power generation and low thrust satellite trajectory optimization to mathematical models in welding. One chapter, on the ageing of stainless steels, is indexed separately. (UK)

  12. [Comparison of ciliate diversity in biodisc reactors which purify industrial wastewater].

    Science.gov (United States)

    Luna-Pabello, V M; Durán De Bazúa, C; Aladro-Lubel, M A

    1995-01-01

    The comparative study of the ciliate populations present in rotating biological reactors (biodiscs reactors) of 20 l working volume, treating three different wastewaters is the aim of this project. Wastewaters chosen were those of a maize mill, of a sugarcane/ethyl alcohol plant, and of a recycled paper mill. Its dissolved organic contents, measured as soluble chemical oxygen demand (COD) and five-day biochemical oxygen demand (BOD5), were 2040 mg COD/l and 585 mg BOD5/l for maize mill effluents (nejayote), 2000 mg COD/l and 640 mg BOD5/l for sugarcane/ethanol effluents (vinasses), and 960 mg COD/l and 120 mg BOD5/l for whitewaters of the paper industry. Results obtained indicate that ciliate proliferate in all chambers of reactors treating these wastewaters. The ciliates were more abundant in vinasses, followed by nejayote, and then whitewaters. Among protozoa, ciliates were present as follows: 19 species in total. Three of them were common for the three systems. Free swimming ciliates were in higher proportion than pedunculated ones. Its diversity was higher for the whitewaters system, next for nejayote, and the lesser, for vinasses, corroborating the fact that less polluted waters have higher organisms' diversity.

  13. Radiotracer in industry

    International Nuclear Information System (INIS)

    Jaafar Abdullah

    2005-01-01

    The use of radiotracers for troubleshooting and to investigate process phenomena in industrial plant equipment has specific advantages over conventional tracers. The main advantages of radiotracers owes to its physico-chemical compatibility, high detection sensitivity, ability of number of radiotracers for different phases, stability in harsh industrial environment and limited memory effects. This chapter covers the methodology which includes the selection of radiotracer, radioisotope generators, estimation of amount of radiotracer, injection systems, detection system and safety procedure. Leak detection, this topic discussed the detection by flowrate measurement, detection of RTD measurement, detection by direct tracer, detection in underground pipes using the static method and dynamic method. The topic namely Radiotracers for flowrate measurement discussed the following subjects: flowrate measurement, transit time methods, dilution methods, standards for flow measurement, multi-phase flow measurement. RTD measurement, this topic covers the basic flow concepts, the mathematical modelling, RTD software, bypassing or channelling, recirculation, trickle bed reactors studies, process diagnosis and analysis. Lastly, the topic cover other application of radiotracers in industry discussed the following subtopics: mixing and blending studies, measurement of volume, ventilation studies, oil field investigation, corrosion and wear studies, validation of CFD models

  14. Forum Math-for-Industry 2015

    CERN Document Server

    Broadbridge, Philip; Fukumoto, Yasuhide; Kamiyama, Naoyuki; Mizoguchi, Yoshihiro; Polthier, Konrad; Saeki, Osamu

    2017-01-01

    This book is a collection of papers presented at the “Forum Math-for-Industry 2015” for which the unifying theme was “The Role and Importance of Mathematics in Innovation”, held at the Institute of Mathematics for Industry, Kyushu University, October 26–30, 2015. The theme highlights two key roles that mathematics plays in supporting innovation in science, technology, and daily life, namely, needs-based and idea-based. For the former, mathematics assists with sorting through the possibilities and putting matters on a more rigorous foundation, and for the latter, mathematical models of the possible implementations play a key role. The book gives excellent examples of how mathematics assists with stimulating innovation and, thereby, highlights the importance and relevance of the concept Mathematics_FOR_Industry. The contents of this volume address productive and successful interaction between industry and mathematicians, as well as the cross-fertilization and collaboration that result when mathematics...

  15. Operational stability of naringinase PVA lens-shaped microparticles in batch stirred reactors and mini packed bed reactors-one step closer to industry.

    Science.gov (United States)

    Nunes, Mário A P; Rosa, M Emilia; Fernandes, Pedro C B; Ribeiro, Maria H L

    2014-07-01

    The immobilization of naringinase in PVA lens-shaped particles, a cheap and biocompatible hydrogel was shown to provide an effective biocatalyst for naringin hydrolysis, an appealing reaction in the food and pharmaceutical industries. The present work addresses the operational stability and scale-up of the bioconversion system, in various types of reactors, namely shaken microtiter plates (volume ⩽ 2 mL), batch stirred tank reactors (volume reactor (PBR, 6.8 mL). Consecutive batch runs were performed with the shaken/stirred vessels, with reproducible and encouraging results, related to operational stability. The PBR was used to establish the feasibility for continuous operation, running continuously for 54 days at 45°C. The biocatalyst activity remained constant for 40 days of continuous operation. The averaged specific productivity was 9.07 mmol h(-1) g enzyme(-1) and the half-life of 48 days. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Application of a Russian nuclear reactor simulator VVER-1000; Aplicacion de un simulador de reactor nuclear ruso VVER-1000

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Peniche S, A. [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04360 Mexico D. F. (Mexico); Salazar S, E., E-mail: alpsordo@hotmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, 62250 Jiutepec, Morelos (Mexico)

    2012-10-15

    The objective of the present work is to give to know the most important characteristics in the Russian nuclear reactor of pressurized light water VVER-1000, doing emphasis in the differences that has with the western equivalent the reactor PWR in the design and the safety systems. Therefore, a description of the computerized simulation of the reactor VVER-1000 developed by the company Eniko TSO that the International Atomic of Energy Agency distributes to the states members with academic purposes will take place. The simulator includes mathematical models that represent to the essential systems in the real nuclear power plant, for what is possible to reproduce common faults and transitory characteristic of the nuclear industry with a behavior sufficiently attached to the reality. In this work is analyzed the response of the system before a turbine shot. After the accident in the nuclear power plant of Three Mile Island (US) they have been carried out improvements in the design of the reactor PWR and their safety systems. To know the reach and the limitations of the program, the events that gave place to this accident will be reproduced in the simulator VVER-1000. With base to the results of the simulation we will conclude that so reliable is the response of the safety system of this reactor. (Author)

  17. Energy recovery from effluents of sugar processing industries in the UASB reactors seeded with granular sludge developed under low and high concentrations of calcium ion

    Energy Technology Data Exchange (ETDEWEB)

    Raphael, D M; Rubindamayugi, M S.T. [Univ. of Dar es Salaam, Dept. of Botany, Applied Microbiology Unit (Tanzania, United Republic of)

    1998-12-31

    The digestion of wastewater from sugar processing industries in a single phase UASB reactor was evaluated by a step wise increase in organic loading rate. This study was conducted to compare the treatability of effluents from sugar processing industries in a single phase UASB reactors inoculated with granular sludge developed under low and high concentrations of calcium ions. At OLR of 11.34 g COD/l/day and HRT of 16 hours, UASB reactor R2 attained a COD removal efficiency of 90% with a maximum methane production rate of 3 l/l/day. From the results, the digestion of the wastewater from sugar industries in the UASB reactor inoculated with granular sludge developed under high calcium ion concentration seem feasible with regard to COD removal efficiency and methane production rate. (au) 24 refs.

  18. Energy recovery from effluents of sugar processing industries in the UASB reactors seeded with granular sludge developed under low and high concentrations of calcium ion

    Energy Technology Data Exchange (ETDEWEB)

    Raphael, D.M.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Dept. of Botany, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    The digestion of wastewater from sugar processing industries in a single phase UASB reactor was evaluated by a step wise increase in organic loading rate. This study was conducted to compare the treatability of effluents from sugar processing industries in a single phase UASB reactors inoculated with granular sludge developed under low and high concentrations of calcium ions. At OLR of 11.34 g COD/l/day and HRT of 16 hours, UASB reactor R2 attained a COD removal efficiency of 90% with a maximum methane production rate of 3 l/l/day. From the results, the digestion of the wastewater from sugar industries in the UASB reactor inoculated with granular sludge developed under high calcium ion concentration seem feasible with regard to COD removal efficiency and methane production rate. (au) 24 refs.

  19. Engineering Physics and Mathematics Division progress report for period ending September 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-01

    This report provides an archival record of the activities of the Engineering Physics and Mathematics Division during the period June 30, 1985 through September 30, 1987. Work in Mathematical Sciences continues to include applied mathematics research, statistics research, and computer science. Nuclear-data measurements and evaluations continue for fusion reactors, fission reactors, and other nuclear systems. Also discussed are long-standing studies of fission-reactor shields through experiments and related analysis, of accelerator shielding, and of fusion-reactor neutronics. Work in Machine Intelligence continues to feature the development of an autonomous robot. The last descriptive part of this report reflects the work in our Engineering Physics Information Center, which again concentrates primarily upon radiation-shielding methods and related data.

  20. Engineering Physics and Mathematics Division progress report for period ending September 30, 1987

    International Nuclear Information System (INIS)

    1987-12-01

    This report provides an archival record of the activities of the Engineering Physics and Mathematics Division during the period June 30, 1985 through September 30, 1987. Work in Mathematical Sciences continues to include applied mathematics research, statistics research, and computer science. Nuclear-data measurements and evaluations continue for fusion reactors, fission reactors, and other nuclear systems. Also discussed are long-standing studies of fission-reactor shields through experiments and related analysis, of accelerator shielding, and of fusion-reactor neutronics. Work in Machine Intelligence continues to feature the development of an autonomous robot. The last descriptive part of this report reflects the work in our Engineering Physics Information Center, which again concentrates primarily upon radiation-shielding methods and related data

  1. Slurry reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kuerten, H; Zehner, P [BASF A.G., Ludwigshafen am Rhein (Germany, F.R.)

    1979-08-01

    Slurry reactors are designed on the basis of empirical data and model investigations. It is as yet not possible to calculate the flow behavior of such reactors. The swarm of gas bubbles and cluster formations of solid particles and their interaction in industrial reactors are not known. These effects control to a large extent the gas hold-up, the gas-liquid interface and, similarly as in bubble columns, the back-mixing of liquids and solids. These hydrodynamic problems are illustrated in slurry reactors which constructionally may be bubble columns, stirred tanks or jet loop reactors. The expected effects are predicted by means of tests with model systems modified to represent the conditions in industrial hydrogenation reactors. In his book 'Mass Transfer in Heterogeneous Catalysis' (1970) Satterfield complained of the lack of knowledge about the design of slurry reactors and hence of the impossible task of the engineer who has to design a plant according to accepted rules. There have been no fundamental changes since then. This paper presents the problems facing the engineer in designing slurry reactors, and shows new development trends.

  2. The startup performance and microbial distribution of an anaerobic baffled reactor (ABR) treating medium-strength synthetic industrial wastewater.

    Science.gov (United States)

    Jiang, Hao; Nie, Hong; Ding, Jiangtao; Stinner, Walter; Sun, Kaixuan; Zhou, Hongjun

    2018-01-02

    In this study, an anaerobic baffled reactor (ABR) with seven chambers was applied to treat medium-strength synthetic industrial wastewater (MSIW). The performance of startup and shock test on treating MSIW was investigated. During the acclimation process, the chemical oxygen demand (COD) of MSIW gradually increased from 0 to 2,000 mg L -1 , and the COD removal finally reached 90%. At shock test, the feeding COD concentration increased by one-fifth and the reactor adapted very well with a COD removal of 82%. In a stable state, Comamonas, Smithella, Syntrophomonas and Pseudomonas were the main populations of bacteria, while the predominant methanogen was Methanobacterium. The results of chemical and microbiological analysis indicated the significant advantages of ABR, including buffering shocks, separating stages with matching microorganisms and promoting syntrophism. Meanwhile, the strategies for acclimation and operation were of great importance. Further work can test reactor performance in the treatment of actual industrial wastewater.

  3. Metabolic modeling of synthesis gas fermentation in bubble column reactors.

    Science.gov (United States)

    Chen, Jin; Gomez, Jose A; Höffner, Kai; Barton, Paul I; Henson, Michael A

    2015-01-01

    A promising route to renewable liquid fuels and chemicals is the fermentation of synthesis gas (syngas) streams to synthesize desired products such as ethanol and 2,3-butanediol. While commercial development of syngas fermentation technology is underway, an unmet need is the development of integrated metabolic and transport models for industrially relevant syngas bubble column reactors. We developed and evaluated a spatiotemporal metabolic model for bubble column reactors with the syngas fermenting bacterium Clostridium ljungdahlii as the microbial catalyst. Our modeling approach involved combining a genome-scale reconstruction of C. ljungdahlii metabolism with multiphase transport equations that govern convective and dispersive processes within the spatially varying column. The reactor model was spatially discretized to yield a large set of ordinary differential equations (ODEs) in time with embedded linear programs (LPs) and solved using the MATLAB based code DFBAlab. Simulations were performed to analyze the effects of important process and cellular parameters on key measures of reactor performance including ethanol titer, ethanol-to-acetate ratio, and CO and H2 conversions. Our computational study demonstrated that mathematical modeling provides a complementary tool to experimentation for understanding, predicting, and optimizing syngas fermentation reactors. These model predictions could guide future cellular and process engineering efforts aimed at alleviating bottlenecks to biochemical production in syngas bubble column reactors.

  4. Evaluation of enzymatic reactors for large-scale panose production.

    Science.gov (United States)

    Fernandes, Fabiano A N; Rodrigues, Sueli

    2007-07-01

    Panose is a trisaccharide constituted by a maltose molecule bonded to a glucose molecule by an alpha-1,6-glycosidic bond. This trisaccharide has potential to be used in the food industry as a noncariogenic sweetener, as the oral flora does not ferment it. Panose can also be considered prebiotic for stimulating the growth of benefic microorganisms, such as lactobacillus and bifidobacteria, and for inhibiting the growth of undesired microorganisms such as E. coli and Salmonella. In this paper, the production of panose by enzymatic synthesis in a batch and a fed-batch reactor was optimized using a mathematical model developed to simulate the process. Results show that optimum production is obtained in a fed-batch process with an optimum production of 11.23 g/l h of panose, which is 51.5% higher than production with batch reactor.

  5. Journal of applied mathematics

    National Research Council Canada - National Science Library

    2001-01-01

    "[The] Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics...

  6. Advantages of Production of New Fissionable Nuclides for the Nuclear Power Industry in Hybrid Fusion-Fission Reactors

    Science.gov (United States)

    Tsibulskiy, V. F.; Andrianova, E. A.; Davidenko, V. D.; Rodionova, E. V.; Tsibulskiy, S. V.

    2017-12-01

    A concept of a large-scale nuclear power engineering system equipped with fusion and fission reactors is presented. The reactors have a joint fuel cycle, which imposes the lowest risk of the radiation impact on the environment. The formation of such a system is considered within the framework of the evolution of the current nuclear power industry with the dominance of thermal reactors, gradual transition to the thorium fuel cycle, and integration into the system of the hybrid fusion-fission reactors for breeding nuclear fuel for fission reactors. Such evolution of the nuclear power engineering system will allow preservation of the existing structure with the dominance of thermal reactors, enable the reprocessing of the spent nuclear fuel (SNF) with low burnup, and prevent the dangerous accumulation of minor actinides. The proposed structure of the nuclear power engineering system minimizes the risk of radioactive contamination of the environment and the SNF reprocessing facilities, decreasing it by more than one order of magnitude in comparison with the proposed scheme of closing the uranium-plutonium fuel cycle based on the reprocessing of SNF with high burnup from fast reactors.

  7. Mathematical modelling of plant transients in the PWR for simulator purposes

    International Nuclear Information System (INIS)

    Hartel, K.

    1984-01-01

    This chapter presents the results of the testing of anticipated and abnormal plant transients in pressurized water reactors (PWRs) of the type WWER 440 by means of the numerical simulation of 32 different, stationary and nonstationary, operational regimes. Topics considered include the formation of the PWR mathematical model, the physical approximation of the reactor core, the structure of the reactor core model, a mathematical approximation of the reactor model, the selection of numerical methods, and a computerized simulation system. The necessity of a PWR simulator in Czechoslovakia is justified by the present status and the outlook for the further development of the Czechoslovak nuclear power complex

  8. The research reactors their contribution to the reactors physics

    International Nuclear Information System (INIS)

    Barral, J.C.; Zaetta, A.; Johner, J.; Mathoniere, G.

    2000-01-01

    The 19 october 2000, the french society of nuclear energy organized a day on the research reactors. This associated report of the technical session, reactors physics, is presented in two parts. The first part deals with the annual meeting and groups general papers on the pressurized water reactors, the fast neutrons reactors and the fusion reactors industry. The second part presents more technical papers about the research programs, critical models, irradiation reactors (OSIRIS and Jules Horowitz) and computing tools. (A.L.B.)

  9. Design of an anaerobic hybrid reactor for industrial wastewater treatment; Diseno de reactores hibridos anaerobios para el tratamiento de aguas residuales industriales

    Energy Technology Data Exchange (ETDEWEB)

    Soroa del Campo, S.; Lopetegui Garnika, J.; Almandoz Peraita, A.; Garcia de las Heras, J. L.

    2005-07-01

    The application of the European legislation has promoted different strategies aimed at minimizing the biological sludge production during wastewater treatment. Anaerobic biological treatment is the clearest choice from a technical and economical point of view regarding industrial wastewater. In this context, a semi-industrial anaerobic hybrid reactor has been developed as an alternative technology to other anaerobic systems well-established in the market for the treatment of slaughterhouse wastewater. The The results have demonstrated that it is an effective, robust and easy to operate system. The sludge production has been reduced below 0.12 kg VS/kg COD removed, for COD removal efficiencies above 95%. (Author) 12 refs.

  10. Deposition of hematite particles on alumina seal faceplates of nuclear reactor coolant pumps: Laboratory experiments and industrial feedback

    Directory of Open Access Journals (Sweden)

    Lefèvre Grégory

    2012-01-01

    Full Text Available In the primary circuit of pressurized water reactors (PWR, the dynamic sealing system in reactor coolant pumps is ensured by mechanical seals whose ceramic parts are in contact with the cooling solution. During the stretch-out phase in reactor operation, characterized by low boric acid concentration, the leak-off flow has been observed to abnormally evolve in industrial plants. The deposition of hematite particles, originating from corrosion, on alumina seals of coolant pumps is suspected to be the cause. As better understanding of the adhesion mechanism is the key factor in the prevention of fouling and particle removal, an experimental study was carried out using a laboratory set-up. With model materials, hematite and sintered alumina, the adhesion rate and surface potentials of the interacting solids were measured under different chemical conditions (solution pH and composition in analogy with the PWR ones. The obtained results were in good agreement with the DLVO (Derjaguin-Landau-Verwey- Overbeek theory and used as such to interpret this industrial phenomenon.

  11. Dynamic simulation of industrial Fluidized-bed Catalytic Cracking - FCC unit

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, Argimiro R.; Neumann, Gustavo A.; Trierweiler, Jorge O. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Engenharia Quimica]. E-mail: arge@enq.ufrgs.br; gneumann@enq.ufrgs.br; jorge@enq.ufrgs.br; Santos, Marlova G. [PETROBRAS S.A., Canoas, RS (Brazil). Refinaria Alberto Pasqualini]. E-mail: marlova@petrobras.com.br

    2000-07-01

    In this work a mathematical model for the dynamic simulation of the Fluidized-bed Catalytic Cracking (FCC) Reactor, to be used in the analysis, control, and optimization of this system is developed. Based on the full range of published data in FCC performance and kinetic rates, and adapted to the industrial unit of the PETROBRAS' Alberto Pasqualini Refinery (REFAP), an integrated dynamic model is build up. The model is sufficiently complex to capture the major dynamics effects that occur in this system. The regenerator is modeled as emulsion and bubble phases that exchange mass and heat. The riser is modeled as an adiabatic plug flow reactor. The fluid dynamic is taking into account for the catalyst circulation, and the dynamics of the gas phase and the riser are also considered into the model. The model, represented by a non-linear system of differential-algebraic equations, was written in language C and implemented in MATLAB/SIMULINK. The results are compared with the data obtained from the industrial plant of REFAP. (author)

  12. Three-dimensional reactor dynamics code for VVER type nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kyrki-Rajamaeki, R. [VTT Energy, Espoo (Finland)

    1995-10-01

    A three-dimensional reactor dynamics computer code has been developed, validated and applied for transient and accident analyses of VVER type nuclear reactors. This code, HEXTRAN, is a part of the reactor physics and dynamics calculation system of the Technical Research Centre of Finland, VTT. HEXTRAN models accurately the VVER core with hexagonal fuel assemblies. The code uses advanced mathematical methods in spatial and time discretization of neutronics, heat transfer and the two-phase flow equations of hydraulics. It includes all the experience of VTT from 20 years on the accurate three-dimensional static reactor physics as well as on the one-dimensional reactor dynamics. The dynamic coupling with the thermal hydraulic system code SMABRE also allows the VVER circuit-modelling experience to be included in the analyses. (79 refs.).

  13. Three-dimensional reactor dynamics code for VVER type nuclear reactors

    International Nuclear Information System (INIS)

    Kyrki-Rajamaeki, R.

    1995-10-01

    A three-dimensional reactor dynamics computer code has been developed, validated and applied for transient and accident analyses of VVER type nuclear reactors. This code, HEXTRAN, is a part of the reactor physics and dynamics calculation system of the Technical Research Centre of Finland, VTT. HEXTRAN models accurately the VVER core with hexagonal fuel assemblies. The code uses advanced mathematical methods in spatial and time discretization of neutronics, heat transfer and the two-phase flow equations of hydraulics. It includes all the experience of VTT from 20 years on the accurate three-dimensional static reactor physics as well as on the one-dimensional reactor dynamics. The dynamic coupling with the thermal hydraulic system code SMABRE also allows the VVER circuit-modelling experience to be included in the analyses. (79 refs.)

  14. A control system for industrial plant (e.g. a pressurized water reactor)

    International Nuclear Information System (INIS)

    Spiller, C.R.L.

    1990-01-01

    A control system for an industrial plant eg. a pressurised water nuclear reactor, comprises a plurality of instrument sets and a plurality of logic sets. The instrument sets have a number of sensors which detect parameters (temperature, pressure vibration) of the industrial plant, and have two serial link controllers which supply the output signals from each sensor in the instrument set sequentially to the logic sets via conductors. The logic sets have a number of auto select logic circuits, each of which selects data from the sensors from one of the instrument sets, and a synchroniser ensures that the output signals from the sensors detecting the same parameter are supplied to a voting logic circuit at the same time. The voting logic circuit performs a voting function on the output signals to produce a series of high reliability signals which are converted to parallel high reliability signals by a series to a parallel converter. The high reliability signals are supplied to a fault logic shutdown circuit which controls the operation of shutdown mechanisms for the industrial plant. (author)

  15. Studies on modelling of bubble driven flows in chemical reactors

    Energy Technology Data Exchange (ETDEWEB)

    Grevskott, Sverre

    1997-12-31

    Multiphase reactors are widely used in the process industry, especially in the petrochemical industry. They very often are characterized by very good thermal control and high heat transfer coefficients against heating and cooling surfaces. This thesis first reviews recent advances in bubble column modelling, focusing on the fundamental flow equations, drag forces, transversal forces and added mass forces. The mathematical equations for the bubble column reactor are developed, using an Eulerian description for the continuous and dispersed phase in tensor notation. Conservation equations for mass, momentum, energy and chemical species are given, and the k-{epsilon} and Rice-Geary models for turbulence are described. The different algebraic solvers used in the model are described, as are relaxation procedures. Simulation results are presented and compared with experimental values. Attention is focused on the modelling of void fractions and gas velocities in the column. The energy conservation equation has been included in the bubble column model in order to model temperature distributions in a heated reactor. The conservation equation of chemical species has been included to simulate absorption of CO{sub 2}. Simulated axial and radial mass fraction profiles for CO{sub 2} in the gas phase are compared with measured values. Simulations of the dynamic behaviour of the column are also presented. 189 refs., 124 figs., 1 tab.

  16. Power thresholds for fast oscillatory instabilities in nuclear reactors: a simple mathematical model

    International Nuclear Information System (INIS)

    Suarez-Antola, Roberto; Uruguay)

    2007-01-01

    The cores of nuclear reactors, including its structural parts and cooling fluids, are complex mechanical systems able to vibrate in a set of normal modes and frequencies, if suitable perturbed. The cyclic variations in the strain state of the core materials may modify the reactivity, and thus thermal power, producing variations in strain due to thermal-elastic effects. If the variation of the temperature field is fast enough and if the Doppler Effect and other stabilizing prompt effects in the fuel are weak enough, a fast oscillatory instability could be produced, coupled with mechanical vibrations of small enough amplitude that they will not be excluded by the procedures of conventional mechanical design. After a careful discussion of the time scales of neutron kinetics, thermal-elastic and vibration phenomena, a simple lumped parameter mathematical model is constructed in order to study, in a first approximation, the stability of the reactor. An integro-differential equation for power kinetics is derived. Under certain conditions, fast oscillatory instabilities are found when power is greater than a threshold value, and the delay in the global power feedback loop is big enough. Approximate analytical formulae are given for the power threshold, critical delay and power oscillation frequency. It is shown that if prompt stabilizing fuel effects are strong enough, dangerous fast power oscillations due to mechanical thermal-nuclear coupling phenomena can not appear at any power level. (author)

  17. Upflow anaerobic sludge reactors for the treatment of combined industrial effluent in subtropical conditions: a comparison between UASB and UASF reactors

    International Nuclear Information System (INIS)

    Yasar, A.; Ahmad, N.; Chaudhry, M.N.; Sarwar, M.; Masood, T.; Yaqub, A.

    2005-01-01

    The performance of anaerobic biological process is heavily process conditions dependent. In this study, an attempt has been made to investigate the influence of process conditions like temperature, sludge age and hydraulic retention time (HRT) on the efficiency of an upflow anaerobic sludge blanket (UASB) reactor and upflow anaerobic sludge filter (UASF) to treat combined industrial wastewater. Reactors were operated at easing ambient temperatures (38, 30, 20 and 14 deg. C) and correspondingly increasing sludge ages (60, 90, 120 and 150 days). At temperature 38 deg. C and sludge age of 60 days, UASF showed better performance than VASE reactor. This mainly due to the enhanced filtration through well-graded sand filter and fairly good biological activity in UASF. At this stage, lack of sludge granulation in VASE reactor resulted in poor biological activity; hence, relatively poor performance. At temperatures 30 and 20 deg. C with sludge ages of 90 and 120 days, respectively, UASB gave better results than UASF. The reason was rapid biological degradation due to proper sludge granulation and favorable temperature. At temperature 14 deg. C, a substantial decrease in the efficiency of UASB reactor as compared to the UASF was evident. Drop in efficiency was because of inhabitation of methanogenic bacteria and liquidation of sludge granules. These factors mounted to a decrease in biological activity, stoppage as production and an increase in total suspended solids (TSS) in the effluent. The influence of hydraulic retention time (ranging between 3-12 hours at an increment of 3 hours) on the removal efficiency of both UASB and UASF was not significant. At favorable temperature (20 to 30 deg. C) and sludge age (90 to 120 days) UASB reactor appeared to be more efficient than UASF.(author)

  18. Analysis of dynamic stability and safety of reactor system by reactor simulator; Analiza dinamicke stabilnosti i sigurnosti reaktorskog sistema pomocu reaktorskog simulatora

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N [Boris Kidric Institute of Nuclear Sciences Vinca, Belgrade (Yugoslavia)

    1963-11-15

    In order to enable qualitative analysis of dynamic properties of reactors RA and RB, mathematical models of these reactors were formulated and adapted for solution on analog computer. This report contains basic assessments for creating the model and complete equations for each reactor. Model was used to analyse three possible accidents at the RA reactor and possible hypothetical accidents at the RB reactor.

  19. Application of a Russian nuclear reactor simulator VVER-1000

    International Nuclear Information System (INIS)

    Lopez-Peniche S, A.; Salazar S, E.

    2012-10-01

    The objective of the present work is to give to know the most important characteristics in the Russian nuclear reactor of pressurized light water VVER-1000, doing emphasis in the differences that has with the western equivalent the reactor PWR in the design and the safety systems. Therefore, a description of the computerized simulation of the reactor VVER-1000 developed by the company Eniko TSO that the International Atomic of Energy Agency distributes to the states members with academic purposes will take place. The simulator includes mathematical models that represent to the essential systems in the real nuclear power plant, for what is possible to reproduce common faults and transitory characteristic of the nuclear industry with a behavior sufficiently attached to the reality. In this work is analyzed the response of the system before a turbine shot. After the accident in the nuclear power plant of Three Mile Island (US) they have been carried out improvements in the design of the reactor PWR and their safety systems. To know the reach and the limitations of the program, the events that gave place to this accident will be reproduced in the simulator VVER-1000. With base to the results of the simulation we will conclude that so reliable is the response of the safety system of this reactor. (Author)

  20. Proceedings of the ANS/ASME/NRC international topical meeting on nuclear reactor thermal-hydraulics: LMFBR and HTGR advanced reactor concepts and analysis methods

    International Nuclear Information System (INIS)

    1980-01-01

    Separate abstracts are included for each of the papers presented concerning the thermal-hydraulics of LMFBR type reactors; mathematical methods in nuclear reactor thermal-hydraulics; heat transfer in gas-cooled reactors; and thermal-hydraulics of pebble-bed reactors. Two papers have been previously abstracted and input to the data base

  1. Small modular reactors (SMRs) - the way forward for the nuclear industry in Canada?

    International Nuclear Information System (INIS)

    Sam-Aggrey, H.

    2014-01-01

    Small Modular Reactors (SMRs) are being touted as safer, more cost effective and more flexible than traditional nuclear power plants (NPPs). Consequently, it has been argued that SMR technology is pivotal to the revitalization of the nuclear industry at the national and global levels. Drawing mainly on previously published literature, this paper explores the suitability of SMRs for various niche market applications in Canada. The paper examines the potential role of SMRs in providing an opportunity for remote mines and communities in northern Canada to reduce their vulnerability and dependence on costly, high-carbon diesel fuel. Other niche market applications of SMRs explored include: SMRs deployment in Saskatchewan for grid augmentation and as replacement options for Saskatchewan's ageing coal plants; the use of SMRs for bitumen extraction in the Oil Sands, and the potential use of SMRs in Canadian-owned foreign based mines. The socio-economic benefits of SMR deployments are also discussed. Building an SMR industry in Canada could complement the country's extensive expertise in uranium mining, reactor technology, plant operation, nuclear research, and environmental and safety standards, thereby enhancing Canada's ability to offer services throughout the entire nuclear life cycle. The paper also outlines some of the technical, economic and social barriers that could impede the successful introduction of SMRs in Canada. (author)

  2. A mathematical approach to research problems of science and technology theoretical basis and developments in mathematical modeling

    CERN Document Server

    Ei, Shin-ichiro; Koiso, Miyuki; Ochiai, Hiroyuki; Okada, Kanzo; Saito, Shingo; Shirai, Tomoyuki

    2014-01-01

    This book deals with one of the most novel advances in mathematical modeling for applied scientific technology, including computer graphics, public-key encryption, data visualization, statistical data analysis, symbolic calculation, encryption, error correcting codes, and risk management. It also shows that mathematics can be used to solve problems from nature, e.g., slime mold algorithms. One of the unique features of this book is that it shows readers how to use pure and applied mathematics, especially those mathematical theory/techniques developed in the twentieth century, and developing now, to solve applied problems in several fields of industry. Each chapter includes clues on how to use "mathematics" to solve concrete problems faced in industry as well as practical applications. The target audience is not limited to researchers working in applied mathematics and includes those in engineering, material sciences, economics, and life sciences.

  3. Development task of compact reactor

    International Nuclear Information System (INIS)

    Kurushima, Morihiro

    1982-01-01

    In the Ministry of International Trade and Industry, studies proceed on the usage of compact medium and small LWRs. As such, the reactors from 100 to 200 MW may meet varieties of demands in scale and kind in view of the saving of petroleum and the economy of nuclear power. In this case, the technology of light water reactors with already established safety will be suitable for the development of compact reactors. The concept of ''nuclear power community'' using the compact reactors in local society and industrial zones was investigated. The following matters are described: need for the introduction of compact reactors, the survey on the compact reactor systems, and the present status and future problems for compact reactor usage. (J.P.N.)

  4. Modeling of an immobilized lipase tubular reactor for the production of glycerol and fatty acids from oils; Modelado de un reactor tubular de lipasas inmovilizadas para la produccion de glicerol y acidos grasos a partir de aceites

    Energy Technology Data Exchange (ETDEWEB)

    Oddone, S.; Grasselli, M.; Cuellas, A.

    2010-07-01

    Advances in the design of a bioreactor in the fats and oils industry have permitted the hydrolysis of triglycerides in mild conditions and improved productivity while avoiding the formation of unwanted byproducts. The present work develops a mathematical model that describes the hydrolytic activity of a tubular reactor with immobilized lipases for the production of glycerol and fatty acids from the oil trade. Runge Kuttas numerical method of high order has been applied, considering that there is no accumulation of the substratum in the surface of the membrane, where the enzyme is. At the same time, different equations based on the kinetic model of Michaelis Mentens and the Ping-Pong bi-bi mechanism were examined. Experimental data in discontinuous systems are the basis for the development of the quantitative mathematical model that was used to simulate the process computationally. The obtained results allow for optimizing both the operative variables and the economic aspects of industrial processes. (Author)

  5. Adapting Dynamic Mathematical Models to a Pilot Anaerobic Digestion Reactor

    Directory of Open Access Journals (Sweden)

    F. Haugen, R. Bakke, and B. Lie

    2013-04-01

    Full Text Available A dynamic model has been adapted to a pilot anaerobic reactor fed diarymanure. Both steady-state data from online sensors and laboratory analysis anddynamic operational data from online sensors are used in the model adaptation.The model is based on material balances, and comprises four state variables,namely biodegradable volatile solids, volatile fatty acids, acid generatingmicrobes (acidogens, and methane generating microbes (methanogens. The modelcan predict the methane gas flow produced in the reactor. The model may beused for optimal reactor design and operation, state-estimation and control.Also, a dynamic model for the reactor temperature based on energy balance ofthe liquid in the reactor is adapted. This model may be used for optimizationand control when energy and economy are taken into account.

  6. Use of reactor plants of enhanced safety for sea water desalination, industrial and district heating

    International Nuclear Information System (INIS)

    Panov, Yu.; Polunichev, V.; Zverev, K.

    1997-01-01

    Russian designers have developed and can deliver nuclear complexes to provide sea water desalination, industrial and district heating. This paper provides an overview of these designs utilizing the ABV, KLT-40 and ATETS-80 reactor plants of enhanced safety. The most advanced nuclear powered water desalination project is the APVS-80. This design consists of a special ship equipped with the distillation desalination plant powered at a level of 160 MW(th) utilizing the type KLT-40 reactor plant. More than 20 years of experience with water desalination and reactor plants has been achieved in Aktau and Russian nuclear ships without radioactive contamination of desalinated water. Design is also proceeding on a two structure complex consisting of a floating nuclear power station and a reverse osmosis desalination plant. This new technology for sea water desalination provides the opportunity to considerably reduce the specific consumption of power for the desalination of sea water. The ABV reactor is utilized in the ''Volnolom'' type floating nuclear power stations. This design also features a desalinator ship which provides sea water desalination by the reverse osmosis process. The ATETS-80 is a nuclear two-reactor cogeneration complex which incorporates the integral vessel-type PWR which can be used in the production of electricity, steam, hot and desalinated water. (author). 9 figs

  7. Free surface flows in industry

    OpenAIRE

    Murphy, Ellen

    2014-01-01

    peer-reviewed Applied mathematicians have long sourced problems from industrial processes. The relationship between mathematics and industry is mutually beneficial. Mathematical models provide industry with invaluable insights into the fundamental physical processes at play in a system and give mathematicians the opportunity to apply known techniques to new problems. In this thesis, two independent problems originating in industrial processes are studied, with a common featu...

  8. Mathematical modelling

    CERN Document Server

    2016-01-01

    This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.

  9. Mathematical modelling of fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Werther, J [BASF A.G., Ludwigshafen am Rhein (Germany, F.R.)

    1978-11-01

    Among the many fluidized bed models to be found in the literature, the two-phase model originally proposed by May has proved most suitable for accomodation of recent advances in flow mechanics: this model resolves the gas/solids fluidized bed into a bubble phase and a suspension phase surrounding the bubbles. Its limitation to slow reactions is a disadvantage. On the basis of the analogy between fluidized beds and gas/liquid systems, a general two-phase model that is valid for fast reactions has therefore been developed and its validity is confirmed by comparison with the experimental results obtained by others. The model describes mass transfer across the phase interface with the aid of the film theory known from gas/liquid reactor technology, and the reaction occurring in the suspension phase as a pseudo-homogeneous reaction. Since the dependence of the performance of fluidized bed reactors upon geometry is accounted for, the model can also be used for scale-up calculations. Its use is illustrated with the aid of design diagrams.

  10. Fuel management of mixed reactor type power plant systems

    International Nuclear Information System (INIS)

    Csom, Gyula

    1988-01-01

    In equilibrium symbiotic power plant system containing both thermal reactors and fast breeders, excess plutonium produced by the fast breeders is used to enrich the fuel of the thermal reactors. In plutonium deficient symbiotic power plant system plutonium is supplied both by thermal plants and fast breeders. Mathematical models were constructed and different equations solved to characterize the fuel utilization of both systems if they contain only a single thermal type and a single fast type reactor. The more plutonium is produced in the system, the higher output ratio of thermal to fast reactors is achieved in equilibrium symbiotic power plant system. Mathematical equations were derived to calculate the doubling time and the breeding gain of the equilibrium symbiotic system. (V.N.) 2 figs.; 2 tabs

  11. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    Directory of Open Access Journals (Sweden)

    Joe A. Lemire

    2015-10-01

    Full Text Available Moving bed biofilm reactors (MBBRs are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR carriers (biofilm support materials, allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that mixed-species biofilms can be harvested from an industrial wastewater inoculum [oil sands process water (OSPW] using the Calgary Biofilm Device (CBD. Moreover, the resultant biofilm communities had the capacity to degrade organic toxins (naphthenic acids—NAs that are found in OSPW. Therefore, we hypothesized that harnessing microbial communities from industrial wastewater, as biofilms, on MBBR carriers may be an effective method to bioremediate industrial wastewater.Here, we detail our methodology adapting the workflow employed for using the CBD, to generate inoculant carriers to seed an MBBR.In this study, OSPW-derived biofilm communities were successfully grown, and their efficacy evaluated, on commercially available MBBR carriers affixed within a modified CBD system. The resultant biofilms demonstrated the capacity to transfer biomass to recipient carriers within a scaled MBBR. Moreover, MBBR systems inoculated in this manner were fully active 2 days post-inoculation, and readily degraded a select population of NAs. Together, these findings suggest that harnessing microbial communities on carriers affixed within a modified CBD system may represent a facile and rapid method for obtaining functional inoculants for use in wastewater MBBR treatment systems.

  12. Mathematical Modeling in the High School Curriculum

    Science.gov (United States)

    Hernández, Maria L.; Levy, Rachel; Felton-Koestler, Mathew D.; Zbiek, Rose Mary

    2016-01-01

    In 2015, mathematics leaders and instructors from the Society for Industrial and Applied Mathematics (SIAM) and the Consortium for Mathematics and Its Applications (COMAP), with input from NCTM, came together to write the "Guidelines for Assessment and Instruction in Mathematical Modeling Education" (GAIMME) report as a resource for…

  13. Acid mine drainage neutralization in a pilot sequencing batch reactor using limestone from a paper and pulp industry

    CSIR Research Space (South Africa)

    Vadapalli, VRK

    2015-10-01

    Full Text Available This study investigated the implications of using two grades of limestone from a paper and pulp industry for neutralization of acid mine drainage (AMD) in a pilot sequencing batch reactor (SBR). In this regard, two grades of calcium carbonate were...

  14. Problems of space-time behaviour of nuclear reactors

    International Nuclear Information System (INIS)

    Obradovic, D.

    1966-01-01

    This paper covers a review of literature and mathematical methods applied for space-time behaviour of nuclear reactors. The review of literature is limited to unresolved problems and trends of actual research in the field of reactor physics [sr

  15. Aerial radiological survey of the Industrial Reactor Laboratory and surrounding area Plainsboro, New Jersey

    International Nuclear Information System (INIS)

    1980-12-01

    An airborne radiological survey of a 6 km 2 area centered over the Industrial Reactor Laboratory was made 25-27 July 1979. Detected radioisotopes and their associated gamma ray exposure rates were consistent with that expected from normal background emitters, except at two locations described in this report. Count rates observed at 46 m altitude were converted to exposure rates at 1 m above the ground and are presented in the form of an isopleth map

  16. Tracing the role of endogenous carbon in denitrification using wine industry by-product as an external electron donor: Coupling isotopic tools with mathematical modeling.

    Science.gov (United States)

    Carrey, R; Rodríguez-Escales, P; Soler, A; Otero, N

    2018-02-01

    Nitrate removal through enhanced biological denitrification (EBD), consisting of the inoculation of an external electron donor, is a feasible solution for the recovery of groundwater quality. In this context, liquid waste from wine industries (wine industry by-products, WIB) may be feasible for use as a reactant to enhance heterotrophic denitrification. To address the feasibility of WIB as electron donor to promote denitrification, as well as to evaluate the role of biomass as a secondary organic C source, a flow-through experiment was carried out. Chemical and isotopic characterization was performed and coupled with mathematical modeling. Complete nitrate attenuation with no nitrite accumulation was successfully achieved after 10 days. Four different C/N molar ratios (7.0, 2.0, 1.0 and 0) were tested. Progressive decrease of the C/N ratio reduced the remaining C in the outflow and favored biomass migration, producing significant changes in dispersivity in the reactor, which favored efficient nitrate degradation. The applied mathematical model described the general trends for nitrate, ethanol, dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) concentrations. This model shows how the biomass present in the system is degraded to dissolved organic C (DOC en ) and becomes the main source of DOC for a C/N ratio between 1.0 and 0. The isotopic model developed for organic and inorganic carbon also describes the general trends of δ 13 C of ethanol, DOC and DIC in the outflow water. The study of the evolution of the isotopic fractionation of organic C using a Rayleigh distillation model shows the shift in the organic carbon source from the WIB to the biomass and is in agreement with the isotopic fractionation values used to calibrate the model. Isotopic fractionations (ε) of C-ethanol and C-DOC en were -1‰ and -5‰ (model) and -3.3‰ and -4.8‰ (Rayleigh), respectively. In addition, an inverse isotopic fractionation of +10‰ was observed for

  17. Automatic optimization of constants and special mathematic ensuring algorithms SKALA-micro system of RBMK-1000 reactor self-certification in operation

    International Nuclear Information System (INIS)

    Aleksandrov, S.I.; Dmitrenko, V.V.; Postnikov, V.V.; Sviridenkov, A.N.; Yurkin, G.V.; Yakunin, I.S.

    2007-01-01

    Paper dwells upon problems dealing with accuracy improvement of the energy release distribution and the safety margin of the RBMK-1000 operation. The accuracy is improved through the automatic optimization of some constants used in the SKALA-micro system special mathematic ensuring program and the regular self-validation of the algorithm to determine the energy release distribution calculation error. The validation based on the regular scanning of the reactor core by a calibrating detector and through the sequence disabling of the internal detectors is shown to give the close results [ru

  18. Ratio Analysis: Where Investments Meet Mathematics.

    Science.gov (United States)

    Barton, Susan D.; Woodbury, Denise

    2002-01-01

    Discusses ratio analysis by which investments may be evaluated. Requires the use of fundamental mathematics, problem solving, and a comparison of the mathematical results within the framework of industry. (Author/NB)

  19. How to Introduce Mathematic Modeling in Industrial Design Education

    NARCIS (Netherlands)

    Langereis, G.R.; Hu, J.; Feijs, L.M.G.; Stillmann, G.A.; Kaiser, G.; Blum, W.B.; Brown, J.P.

    2013-01-01

    With competency based learning in a project driven environment, we are facing a different perspective of how students perceive mathematical modelling. In this chapter, a model is proposed where conventional education is seen as a process from mathematics to design, while competency driven approaches

  20. A mathematical model of the accumulation of radionuclides by oysters (C. virginica) aquacultured in the effluent of a nuclear power reactor to include major biological parameters

    International Nuclear Information System (INIS)

    Hess, C.T.; Smith, C.W.; Price, A.H.

    1977-01-01

    The uptake, accumulation and loss of radionuclides by the American oyster (C. virginica) aquacultured in the effluent of a nuclear power reactor has been measured monthly for 3 yr at four field stations in the Montsweag Estuary of the Sheepscot River and at a control station in the nearby Damariscotta River Estuary, southern central coastal Maine, U.S.A. A mathematical model for the time variation of the specific activity of the oysters has been developed to include the physical half-lives of the various radionuclides, the biological half-lives of the various radionuclides (biological depuration), the water temperature (oyster hibernation) and shell growth. The resulting first order linear differential equation incorporating these phenomena is driven by the liquid radionuclide effluent release of the Maine Yankee Nuclear Reactor. Comparison of the monthly measurements of the specific activity for 58 Co, 60 Co, 54 Mn, 134 Cs and 137 Cs in oysters with model calculations show close agreement over all ranges of variation observed. A special feature of this mathematical model is its ability to describe the non-chemostatic field situation. (author)

  1. The utility industry and reactor surveillance

    International Nuclear Information System (INIS)

    Jenkins, R.B.

    1983-01-01

    Every commercial nuclear power reactor pressure vessel (RPV) is required to have a reactor vessel surveillance program at the time of plant licensing. The program is part of a continuing structural integrity assessment of the RPV. As such, the surveillance program supplements Section III of the American Society of Mechanical Engineers (ASME) Code (1), which is the design basis for nuclear power plant component pressure boundaries. The Code assumes that the materials of construction are ductile in the evaluation and design of all components. The surveillance program for each RPV is intended to provide assurance of continued applicability of the ASME Code, Appendix G, assessment of that RPV's operating limits. This assessment ensures that the RPV is always in a condition which precludes the unstable propagation of flaws in the vessel wall material. The potential presence of flaws and the desire to ensure ductility are significant considerations in ferritic steels such as those used to fabricate nuclear reactor pressure vessels. These materials are known to exhibit transition from ductile-to-brittle fracture behavior over a determined temperature range. Neutron irradiation tends to shift this ductile-to-brittle behavior transition zone to a temperature higher than unirradiated materials

  2. Rotating reactors : a review

    NARCIS (Netherlands)

    Visscher, F.; Schaaf, van der J.; Nijhuis, T.A.; Schouten, J.C.

    2013-01-01

    This review-perspective paper describes the current state-of-the-art in the field of rotating reactors. The paper has a focus on rotating reactor technology with applications at lab scale, pilot scale and industrial scale. Rotating reactors are classified and discussed according to their geometry:

  3. Application of cost mathematical models to the determination of investments in the petroleum industry

    International Nuclear Information System (INIS)

    Fournier, G.

    1997-05-01

    It is today of paramount importance to realistically forecast the cost and time required to design and manufacture a given product, from the very first phase of the project. Furthermore, with the increasingly rapid development of technology, it is often impossible to draw a direct parallel with existing, well known products Mathematical models of cost, and MAP models in particular, have been developed to meet this need. Although one may still refer to former products, they do not automatically have to be 'analogous' to the product under consideration, because these methods use 'universal relationship' between cost, weight, technology, performance and reliability, and also the nature and experience of the firm manufacturing the product. The purpose of this thesis is to demonstrate the pertinence, and more importantly the potential, of mathematical models of cost for the oil and gas industry, from exploration and production to refining, petrochemicals, and internal combustion engines. After a theoretical examination of estimation methods and a classification of existing ones, emphasis is placed on the logical aspect of these models. In addition, the complementarity between these tools and certain fields such as project management is pointed out, for example with respect to value control. The last chapter of the thesis is devoted to case studies. It aims chiefly at comparing theory with practice in order to identify the limits of mathematical models of cost so that they can be used judiciously. (author)

  4. Power efficiency improvements of the industrial processes at application of thermochemical recuperation of heath of the leaving gases with use of microchannel reactors

    Science.gov (United States)

    Tararykov, A. V.; Garyaev, A. B.

    2017-11-01

    The possibility of increasing the energy efficiency of production processes by converting the initial fuel - natural gas to synthesized fuel using the heat of the exhaust gases of plants involved in production is considered. Possible applications of this technology are given. A mathematical model of the processes of heat and mass transfer occurring in a thermochemical reactor is developed taking into account the nonequilibrium nature of the course of chemical reactions of fuel conversion. The possibility of using microchannel reaction elements and facilities for methane conversion in order to intensify the process and reduce the overall dimensions of plants is considered. The features of the course of heat and mass transfer processes under flow conditions in microchannel reaction elements are described. Additions have been made to the mathematical model, which makes it possible to use it for microchannel installations. With the help of a mathematical model, distribution of the parameters of mixtures along the length of the reaction element of the reactor-temperature, the concentration of the reacting components, the velocity, and the values of the heat fluxes are obtained. The calculations take into account the change in the thermophysical properties of the mix-ture, the type of the catalytic element, the rate of the reactions, the heat exchange processes by radiation, and the lon-gitudinal heat transfer along the flow of the reacting mixture. The reliability of the results of the application of the mathematical model is confirmed by their comparison with the experimental data obtained by Grasso G., Schaefer G., Schuurman Y., Mirodatos C., Kuznetsov V.V., Vitovsky O.V. on similar installations.

  5. Mathematical foundations of transport theory

    International Nuclear Information System (INIS)

    Ershov, Yu.I.; Shikhov, S.B.

    1985-01-01

    Main items of application of the operator equations analyzing method in transport theory problems are considered. The mathematical theory of a reactor critical state is presented. Theorems of existence of positive solutions of non-linear non-stationary equations taking into account the temperature and xenon feedbacks are proved. Conditions for stability and asymptotic stability of steady-state regimes for different distributed models of a nuclear reactor are obtained on the basis of the modern operator perturbation theory, certain problems on control using an absorber are considered

  6. Biofilm reactors for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Vega, J L; Clausen, E C; Gaddy, J L

    1988-07-01

    Whole cell immobilization has been studied in the laboratory during the last few years as a method to improve the performance and economics of most fermentation processes. Among the various techniques available for cell immobilization, methods that provide generation of a biofilm offer reduced diffusional resistance, high productivities, and simple operation. This paper reviews some of the important aspects of biofilm reactors for ethanol production, including reactor start-up, steady state behavior, process stability, and mathematical modeling. Special emphasis is placed on covalently bonded Saccharomyces cerevisiae in packed bed reactors.

  7. Mechanical core coupling and reactors stability

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2006-01-01

    Structural parts of nuclear reactors are complex mechanical systems, able to vibrate with a set of proper frequencies when suitably excited. Cyclical variations in the strain state of the materials, including density perturbations, are produced. This periodic changes may affect reactor reactivity. But a variation in reactivity affects reactor thermal power, thus modifying the temperature field of the abovementiones materials. If the variation in temperature fields is fast enough, thermal-mechanical coupling may produce fast variations in strain states, and this, at its turn, modifies the reactivity, and so on. This coupling between mechanical vibrations of the structure and the materials of the core, with power oscillations of the reactor, not only may not be excluded a priori, but it seems that it has been present in some stage of the incidents or accidents that happened during the development of nuclear reactor technology. The purpose of the present communication is: (a) To review and generalize some mathematical models that were proposed in order to describe thermal-mechanical coupling in nuclear reactors. (b) To discuss some conditions in which significant instabilities could arise, including large amplitude power oscillations coupled with mechanical vibrations whose amplitudes are too small to be excluded by conventional criteria of mechanical design. Enough Certain aspects of thr physical safety of nuclear power reactors, that are objected by people that opposes to the renaissance of nucleoelectric generation, are discussed in the framework of the mathematical model proposed in this paper [es

  8. Modeling and Control of a Large Nuclear Reactor A Three-Time-Scale Approach

    CERN Document Server

    Shimjith, S R; Bandyopadhyay, B

    2013-01-01

    Control analysis and design of large nuclear reactors requires a suitable mathematical model representing the steady state and dynamic behavior of the reactor with reasonable accuracy. This task is, however, quite challenging because of several complex dynamic phenomena existing in a reactor. Quite often, the models developed would be of prohibitively large order, non-linear and of complex structure not readily amenable for control studies. Moreover, the existence of simultaneously occurring dynamic variations at different speeds makes the mathematical model susceptible to numerical ill-conditioning, inhibiting direct application of standard control techniques. This monograph introduces a technique for mathematical modeling of large nuclear reactors in the framework of multi-point kinetics, to obtain a comparatively smaller order model in standard state space form thus overcoming these difficulties. It further brings in innovative methods for controller design for systems exhibiting multi-time-scale property,...

  9. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  10. Nuclear Reactor Physics

    Science.gov (United States)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  11. Mathematical modeling of swirled flows in industrial applications

    Science.gov (United States)

    Dekterev, A. A.; Gavrilov, A. A.; Sentyabov, A. V.

    2018-03-01

    Swirled flows are widely used in technological devices. Swirling flows are characterized by a wide range of flow regimes. 3D mathematical modeling of flows is widely used in research and design. For correct mathematical modeling of such a flow, it is necessary to use turbulence models, which take into account important features of the flow. Based on the experience of computational modeling of a wide class of problems with swirling flows, recommendations on the use of turbulence models for calculating the applied problems are proposed.

  12. Mathematical modeling of CANDU-PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, F.A.; Aly, R.A.; El-Shal, A.O. [Atomic Energy Authority, Cairo (Egypt)

    2003-07-01

    The paper deals with the transient studies of CANDU 600 pressurized Heavy Water Reactor (PHWR). This study involved mathematical modeling of CANDU-PHWR to study its thermodynamic performances. Modeling of CANDU-PHWR was based on lumped parameter technique. The reactor model includes the neutronic, reactivity, and fuel channel heat transfer. The nuclear reactor power was modelled using the point kinetics equations with six groups of delayed neutrons and the reactivity feed back due to the changes in the fuel temperature and coolant temperature. The CANDU-PHWR model was coded in FORTRAN language and solved by using a standard numerical technique. The adequacy of the model was tested by assessing the physical plausibility of the obtained results. (author)

  13. Nuclear reactors. Introduction

    International Nuclear Information System (INIS)

    Boiron, P.

    1997-01-01

    This paper is an introduction to the 'nuclear reactors' volume of the Engineers Techniques collection. It gives a general presentation of the different articles of the volume which deal with: the physical basis (neutron physics and ionizing radiations-matter interactions, neutron moderation and diffusion), the basic concepts and functioning of nuclear reactors (possible fuel-moderator-coolant-structure combinations, research and materials testing reactors, reactors theory and neutron characteristics, neutron calculations for reactor cores, thermo-hydraulics, fluid-structure interactions and thermomechanical behaviour of fuels in PWRs and fast breeder reactors, thermal and mechanical effects on reactors structure), the industrial reactors (light water, pressurized water, boiling water, graphite moderated, fast breeder, high temperature and heavy water reactors), and the technology of PWRs (conceiving and building rules, nuclear parks and safety, reactor components and site selection). (J.S.)

  14. Food industrial wastewater reuse by membrane bio-reactor

    Directory of Open Access Journals (Sweden)

    Patthanant Natpinit

    2007-11-01

    Full Text Available The objective of this investigation was to study the possibility and performance of treating food industrial wastewater by Membrane BioReactor (MBR. In addition, the effluent of MBR was treated by Reverse Osmosis system (RO to reuse in boiler or cooling tower. The membranes of hollow fiber type were filled in the aerobic tank with aerobe bacteria. The total area of membrane 6 units was 630 m2 so the flux of the operation was 0.25 m/d or 150 m3/d. The spiral wound RO was operated at 100 m3/d of influent and received 72 m3/d of permeate. The sludge volume (MLSS of MBR was maintained at 8,000-10,000 mg/l. The average COD and SS of MBR influent were 600 mg/l and 300 mg/l respectively. After treating by MBR, COD and SS of effluent were maintained at less than 100 mg/l and less than 10 mg/l respectively. In the same way, COD and SS of RO permeate were less than 10 mg/l and less than 5 mg/l respectively.

  15. Application of computer mathematical modeling in nuclear well-logging industry

    International Nuclear Information System (INIS)

    Cai Shaohui

    1994-01-01

    Nuclear well logging techniques have made rapid progress since the first well log calibration facility (the API pits) was dedicated in 1959. Then came the first computer mathematical model in the late 70's. Mathematical modeling can now minimize design and experiment time, as well as provide new information and idea on tool design, environmental effects and result interpretation. The author gives a brief review on the achievements of mathematical modeling on nuclear logging problems

  16. Light-water nuclear reactors

    International Nuclear Information System (INIS)

    Drevon, G.

    1983-01-01

    This work gives basic information on light-water reactors which is advanced enough for the reader to become familiar with the essential objectives and aspects of their design, their operation and their insertion in the industrial, economic and human environment. In view of the capital role of electric energy in the modern economy a significant place is given to electron-nuclear power stations, particularly those of the type adopted for the French programme. The work includes sixteen chapters. The first chapter relates the history and presents the various applications of light water reactors. The second refers to the general elementary knowledge of reactor physics. The third chapter deals with the high power light-water nuclear power station and thereby introduces the ensuing chapters which, up to and including chapter 13, are devoted to the components and the various aspects of the operation of power stations, in particular safety and the relationship with the environment. Chapter 14 provides information on the reactors adapted to applications other than the generation of electricity on an industrial scale. Chapter 15 shows the extent of the industrial effort devoted to light-water reactors and chapter 16 indicates the paths along which the present work is preparing the future of these reactors. The various chapters have been written to allow for separate consultation. An index of the main technical terms and a bibliography complete the work [fr

  17. Physics and kinetics of TRIGA reactor

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2007-01-01

    This training module is written as an introduction to reactor physics for reactor operators. It assumes the reader has a basic, fundamental knowledge of physics, materials and mathematics. The objective is to provide enough reactor theory knowledge to safely operate a typical research reactor. At this level, it does not necessarily provide enough information to evaluate the safety aspects of experiment or non-standard operation reviews. The material provides a survey of basic reactor physics and kinetics of TRIGA type reactors. Subjects such as the multiplication factor, reactivity, temperature coefficients, poisoning, delayed neutrons and criticality are discussed in such a manner that even someone not familiar with reactor physics and kinetics can easily follow. A minimum of equations are used and several tables and graphs illustrate the text. (author)

  18. The mathematics of nuclear engineering

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1982-01-01

    The mathematics of nuclear engineering is considered with especial reference to the problems of; the representation of the transformation of matter at the nuclear level by radioactive decay and neutron transmutation, the problem of the distribution of neutrons and other particles as a transport theory problem including some of the approximation methods used in this problem, particularly diffusion theory with particular emphasis on steady-state problems, time-dependent reactor kinetic and control, and the longer term changes involved with the nuclear fuel cycle both within and without the reactor itself. (U.K.)

  19. Nuclear reactor PBMR and cogeneration; Reactor nuclear PBMR y cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Alonso V, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  20. Dynamic behaviour of CANDU reactor

    International Nuclear Information System (INIS)

    Subramanian, M.G.; Srikantiah, G.; Pai, M.A.

    1976-01-01

    Understanding of the dynamic behaviour of a reactor system in a power station is essential for evolving control stragies as well as design modifications. The dynamic behaviour of Rajasthan Atomic Power Station is studied. Mathematical models for the reactor, the steam generator and the steam drum with the natural circulation loop are developed from physical principles like conservation of mass, momentum and energy. Each of these models is then simulated on a digital computer to obtain the characteristics during transients. The models are then combined to yield a dynamic mathematical model of the system comprising the reactor, the steam generator and the steam drum and this results in a nonlinear model. Using this model, responses of the system for various disturbances like step change in the area of the steam valve, step change in the temperature of feed water are obtained and are discussed. These models could be used to devise new control laws using optimal control theory or to evaluate the performance of existing control schemes. (author)

  1. DIAGRAM SOLVE THE USE OF SIMULINK BLOCK DIAGRAM TO SOLVE MATHEMA THEMATICAL CONTROL EQU MATHEMATICAL MODELS AND CONTROL EQUATIONS

    Directory of Open Access Journals (Sweden)

    N.M. Ghasem

    2003-12-01

    Full Text Available In this paper, the simulink block diagram is used to solve a model consists of a set of ordinary differential and algebraic equations to control the temperature inside a simple stirred tank heater. The flexibility of simulink block diagram gives students a better understanding of the control systems. The simulink also allows solution of mathematical models and easy visualization of the system variables. A polyethylene fluidized bed reactor is considered as an industrial example and the effect of the Proportional, Integral and Derivative control policy is presented for comparison.

  2. Treatment and Energy Valorisation of an Agro-Industrial Effluent in Upflow Anaerobic Sludge Reactor (UASB)

    Science.gov (United States)

    Martins, Ramiro; Boaventura, Rui; Paulista, Larissa

    2017-12-01

    The accelerated growth of the population brings with it an increase in the generation of agro-industrial effluents. The inadequate discharge of these effluents significantly affects the quality of water resources. In this way, it becomes important to invest in treatment processes for agro-industrial effluents, particularly low-cost ones. In this context, the present study includes the design and construction of an UASB reactor and optimization of the anaerobic digestion treatment of the raw effluent from sweet chestnut production in the agro-industrial company Sortegel. The efficiency of the system was evaluated through the determination / monitoring of oxygen chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total suspended solids (TSS), biogas production rate and quality (% methane). The reactor was fed for 25 weeks and operated under mesophilic conditions (temperature 30-40 °C). Different values were tested for the hydraulic retention time (HRT) and volumetric flow rate (VF): 0.66 days (VF=1509 L.m-3.d-1); 1.33 days (VF=755 L.m-3.d-1); 2.41 d days (VF=415 L.m-3.d-1). The average COD removal efficiency reached values of 69%, 82% and 75%, respectively, and simultaneously the associated BOD5 removal efficiency was 84%, 91% and 70%. As regards TSS, removal values were 78%, 94% and 63%. In addition, high methane production rates were obtained, between 2500 and 4800 L CH4.kg-1 COD removed d-1. For all the hydraulic retention times tested, high concentrations of methane in the biogas were recorded: 66-75%, 70% and 75% for HRT of 0.66, 1.33 and 2.41 days, respectively.

  3. Development of the Mathematics of Learning Curve Models for Evaluating Small Modular Reactor Economics

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, T. J. [ORNL

    2014-02-01

    The cost of nuclear power is a straightforward yet complicated topic. It is straightforward in that the cost of nuclear power is a function of the cost to build the nuclear power plant, the cost to operate and maintain it, and the cost to provide fuel for it. It is complicated in that some of those costs are not necessarily known, introducing uncertainty into the analysis. For large light water reactor (LWR)-based nuclear power plants, the uncertainty is mainly contained within the cost of construction. The typical costs of operations and maintenance (O&M), as well as fuel, are well known based on the current fleet of LWRs. However, the last currently operating reactor to come online was Watts Bar 1 in May 1996; thus, the expected construction costs for gigawatt (GW)-class reactors in the United States are based on information nearly two decades old. Extrapolating construction, O&M, and fuel costs from GW-class LWRs to LWR-based small modular reactors (SMRs) introduces even more complication. The per-installed-kilowatt construction costs for SMRs are likely to be higher than those for the GW-class reactors based on the property of the economy of scale. Generally speaking, the economy of scale is the tendency for overall costs to increase slower than the overall production capacity. For power plants, this means that doubling the power production capacity would be expected to cost less than twice as much. Applying this property in the opposite direction, halving the power production capacity would be expected to cost more than half as much. This can potentially make the SMRs less competitive in the electricity market against the GW-class reactors, as well as against other power sources such as natural gas and subsidized renewables. One factor that can potentially aid the SMRs in achieving economic competitiveness is an economy of numbers, as opposed to the economy of scale, associated with learning curves. The basic concept of the learning curve is that the more a

  4. Performance evaluation of functioning of natural-industrial system of mining-processing complex with help of analytical and mathematical models

    Science.gov (United States)

    Bosikov, I. I.; Klyuev, R. V.; Revazov, V. Ch; Pilieva, D. E.

    2018-03-01

    The article describes research and analysis of hazardous processes occurring in the natural-industrial system and effectiveness assessment of its functioning using mathematical models. Studies of the functioning regularities of the natural and industrial system are becoming increasingly relevant in connection with the formulation of the task of modernizing production and the economy of Russia as a whole. In connection with a significant amount of poorly structured data, it is complicated by regulations for the effective functioning of production processes, social and natural complexes, under which a sustainable development of the natural-industrial system of the mining and processing complex would be ensured. Therefore, the scientific and applied problems, the solution of which allows one to formalize the hidden structural functioning patterns of the natural-industrial system and to make managerial decisions of organizational and technological nature to improve the efficiency of the system, are very relevant.

  5. Accident transient processes at NPPs with the WWER type reactors

    International Nuclear Information System (INIS)

    Bukrinskij, A.M.

    1982-01-01

    Thermal-physical and nuclear-physical transient processes at NPPs with the WWER type reactors during accidents with the main technological equipment failures and the accidents with loss of coolant in the primary and secondary coolant circuits are considered. Mathematical methods used for these processes modelling is described. Examples of concrete calculations for accidents with different failures are given. Comparative analysis of the results of dynamic tests at the Novo-Voronezh-3 reactor is presented. It is concluded that the modern NPP design is impossible without application of mathematical modelling methods. The mathematical modelling of transients is also necessary for proper and safe NPP operation. Mathematical modelling of accidents at NPPs is a comparatively new method of investigation. Its success and development are completely based on the progress in modern computer development. With their improvement the mathematical models will become more complicate and adequacy of real physical process representation by their means will increase

  6. Modeling and control of a large nuclear reactor. A three-time-scale approach

    Energy Technology Data Exchange (ETDEWEB)

    Shimjith, S.R. [Indian Institute of Technology Bombay, Mumbai (India); Bhabha Atomic Research Centre, Mumbai (India); Tiwari, A.P. [Bhabha Atomic Research Centre, Mumbai (India); Bandyopadhyay, B. [Indian Institute of Technology Bombay, Mumbai (India). IDP in Systems and Control Engineering

    2013-07-01

    Recent research on Modeling and Control of a Large Nuclear Reactor. Presents a three-time-scale approach. Written by leading experts in the field. Control analysis and design of large nuclear reactors requires a suitable mathematical model representing the steady state and dynamic behavior of the reactor with reasonable accuracy. This task is, however, quite challenging because of several complex dynamic phenomena existing in a reactor. Quite often, the models developed would be of prohibitively large order, non-linear and of complex structure not readily amenable for control studies. Moreover, the existence of simultaneously occurring dynamic variations at different speeds makes the mathematical model susceptible to numerical ill-conditioning, inhibiting direct application of standard control techniques. This monograph introduces a technique for mathematical modeling of large nuclear reactors in the framework of multi-point kinetics, to obtain a comparatively smaller order model in standard state space form thus overcoming these difficulties. It further brings in innovative methods for controller design for systems exhibiting multi-time-scale property, with emphasis on three-time-scale systems.

  7. Dimensioning of aerated submerged fixed bed biofilm reactors based on a mathematical biofilm model applied to petrochemical wastewater - the link between theory and practice

    OpenAIRE

    Trojanowicz, Karol; Wójcik, Wtodzimierz

    2014-01-01

    The description of a biofilm mathematical model application for dimensioning an aerated fixed bed biofilm reactor (ASFBBR) for petrochemical wastewater polishing is presented. A simple one-dimensional model of biofilm, developed by P Harremöes, was chosen for this purpose. The model was calibrated and verified under conditions of oil-refinery effluent. The results of ASFBBR dimensioning on the basis of the biofilm model were compared with the bioreactor dimensions determined by application of...

  8. Contribution to the modelling of gas-solid reactions and reactors; Contribution a la modelisation des reactions et des reacteurs gaz-solide

    Energy Technology Data Exchange (ETDEWEB)

    Patisson, F

    2005-09-15

    Gas-solid reactions control a great number of major industrial processes involving matter transformation. This dissertation aims at showing that mathematical modelling is a useful tool for both understanding phenomena and optimising processes. First, the physical processes associated with a gas-solid reaction are presented in detail for a single particle, together with the corresponding available kinetic grain models. A second part is devoted to the modelling of multiparticle reactors. Different approaches, notably for coupling grain models and reactor models, are illustrated through various case studies: coal pyrolysis in a rotary kiln, production of uranium tetrafluoride in a moving bed furnace, on-grate incineration of municipal solid wastes, thermogravimetric apparatus, nuclear fuel making, steel-making electric arc furnace. (author)

  9. IAEA/CRP for decommissioning techniques for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Won, H. J.; Kim, K. N.; Lee, K. W.; Jung, C. H

    2001-03-01

    The following were studied through the project entitled 'IAEA/CRP for decommissioning techniques for research reactors 1. Decontamination technology development for TRIGA radioactive soil waste - Electrokinetic soil decontamination experimental results and its mathematical simulation 2. The 2nd IAEA/CRP for decommissioning techniques for research reactors - Meeting results and program 3. Hosting the 2001 IAEA/RCA D and D training course for research reactors and small nuclear facilities.

  10. IAEA/CRP for decommissioning techniques for research reactors

    International Nuclear Information System (INIS)

    Oh, Won Zin; Won, H. J.; Kim, K. N.; Lee, K. W.; Jung, C. H.

    2001-03-01

    The following were studied through the project entitled 'IAEA/CRP for decommissioning techniques for research reactors 1. Decontamination technology development for TRIGA radioactive soil waste - Electrokinetic soil decontamination experimental results and its mathematical simulation 2. The 2nd IAEA/CRP for decommissioning techniques for research reactors - Meeting results and program 3. Hosting the 2001 IAEA/RCA D and D training course for research reactors and small nuclear facilities

  11. Gas-liquid reactor / separator: dynamics and operability characteristics

    NARCIS (Netherlands)

    Ranade, V.; Kuipers, J.A.M.; Versteeg, Geert

    1999-01-01

    A comprehensive mathematical model is developed to simulate gas¿liquid reactor in which both, reactants as well as products enter or leave the reactor in gas phase while the reactions take place in liquid phase. A case of first-order reaction (isothermal) was investigated in detail using the dynamic

  12. Proceedings of the 6. National Meeting of Reactor Physics and Thermohydraulic

    International Nuclear Information System (INIS)

    1986-01-01

    The proceedings of the 6. National Meeting of Reactor Physics and Thermohydraulic - 6. ENFIR - allow to evaluate the present status of development in reactor physics and thermohydraulic fields. The mathematical models and methods for calculating neutronic of nuclear reactors, safety reactor analysis, measuring methods of neutronic parameters, computerized simulation of accidents, transients and thermohydraulic analysis are presented. (M.C.K.) [pt

  13. Milestones of mathematical model for business process management related to cost estimate documentation in petroleum industry

    Science.gov (United States)

    Khamidullin, R. I.

    2018-05-01

    The paper is devoted to milestones of the optimal mathematical model for a business process related to cost estimate documentation compiled during construction and reconstruction of oil and gas facilities. It describes the study and analysis of fundamental issues in petroleum industry, which are caused by economic instability and deterioration of a business strategy. Business process management is presented as business process modeling aimed at the improvement of the studied business process, namely main criteria of optimization and recommendations for the improvement of the above-mentioned business model.

  14. Stochastic model of energetic nuclear reactor

    International Nuclear Information System (INIS)

    Bojko, R.V.; Ryazanov, V.V.

    2002-01-01

    Behaviour of nuclear reactor was treated using the theory of branching processes. As mathematical model descriptive the neutron number in time the Markov occasional process is proposed. Application of branching occasional processes with variable regime to the description of neutron behaviour in the reactor makes possible conducting strong description of critical operation regime and demonstrates the severity of the process. Three regimes of the critical behaviour depending on the sign of manipulated variables and feedbacks were discovered. Probability regularities peculiar to the behaviour of the reactor are embodied to the suggested stochastic model [ru

  15. Mathematical Optimiation in Economics

    CERN Document Server

    De Finetti, Bruno

    2011-01-01

    Preface by B. de Finetti.- G.Th. Guilbaud: Les equilibres dans les modeles economiques.-H.W. Kuhn: Locational problems and mathematical programming.- M. Morishima: The multi-sectoral theory of economic growth.- B. Martos, J. Kornai: Experiments in Hungary with industry-wide and economy wide programming.- A. Prekopa: Probability distribution problems concerning stochastic programming problems.- R. Frisch: General principles and mathematical techniques of macroeconomic programming.

  16. Multi-objective optimization of the reactor coolant system

    International Nuclear Information System (INIS)

    Chen Lei; Yan Changqi; Wang Jianjun

    2014-01-01

    Background: Weight and size are important criteria in evaluating the performance of a nuclear power plant. It is of great theoretical value and engineering significance to reduce the weight and volume of the components for a nuclear power plant by the optimization methodology. Purpose: In order to provide a new method for the optimization of nuclear power plant multi-objective, the concept of the non-dominated solution was introduced. Methods: Based on the parameters of Qinshan I nuclear power plant, the mathematical models of the reactor core, the reactor vessel, the main pipe, the pressurizer and the steam generator were built and verified. The sensitivity analyses were carried out to study the influences of the design variables on the objectives. A modified non-dominated sorting genetic algorithm was proposed and employed to optimize the weight and the volume of the reactor coolant system. Results: The results show that the component mathematical models are reliable, the modified non-dominated sorting generic algorithm is effective, and the reactor inlet temperature is the most important variable which influences the distribution of the non-dominated solutions. Conclusion: The optimization results could provide a reference to the design of such reactor coolant system. (authors)

  17. Heat extraction from HTGR reactor

    International Nuclear Information System (INIS)

    Balajka, J.; Princova, H.

    1986-01-01

    The analysis of an HTGR reactor energy balance showed that steam reforming of natural gas or methane is the most suitable process of utilizing the high-temperature heat. Basic mathematical relations are derived allowing to perform a general energy balance of the link between steam reforming and reactor heat output. The results of the calculation show that the efficiency of the entire reactor system increases with increasing proportion of heat output for steam reforming as against heat output for the steam generator. This proportion, however, is limited with the output helium temperature from steam reforming. It is thus always necessary to use part of the reactor heat output for the steam cycle involving electric power generation or low-potential heat generation. (Z.M.)

  18. Safety of next generation power reactors

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book is organized under the following headings: Future needs of utilities regulators, government, and other energy users, PRA and reliability, LMR concepts, LWR design, Advanced reactor technology, What the industry can deliver: advanced LWRs, High temperature gas-cooled reactors, LMR whole-core experiments, Advanced LWR concepts, LWR technology, Forum: public perceptions, What the industry can deliver: LMRs and HTGRs, Criteria and licensing, LMR modeling, Light water reactor thermal-hydraulics, LMR technology, Working together to revitalize nuclear power, Appendix A, luncheon address, Appendix B, banquet address

  19. Reactor training simulator for the Replacement Research Reactor (RRR)

    International Nuclear Information System (INIS)

    Etchepareborda, A; Flury, C.A; Lema, F; Maciel, F; Alegrechi, D; Damico, M; Ibarra, G; Muguiro, M; Gimenez, M; Schlamp, M; Vertullo, A

    2004-01-01

    The main features of the ANSTO Replacement Research Reactor (RRR) Reactor Training Simulator (RTS) are presented.The RTS is a full-scope and partial replica simulator.Its scope includes a complete set of plant normal evolutions and malfunctions obtained from the plant design basis accidents list.All the systems necessary to implement the operating procedures associated to these transients are included.Within these systems both the variables connected to the plant SCADA and the local variables are modelled, leading to several thousands input-output variables in the plant mathematical model (PMM).The trainee interacts with the same plant SCADA, a Foxboro I/A Series system.Control room hardware is emulated through graphical displays with touch-screen.The main system models were tested against RELAP outputs.The RTS includes several modules: a model manager (MM) that encapsulates the plant mathematical model; a simulator human machine interface, where the trainee interacts with the plant SCADA; and an instructor console (IC), where the instructor commands the simulation.The PMM is built using Matlab-Simulink with specific libraries of components designed to facilitate the development of the nuclear, hydraulic, ventilation and electrical plant systems models [es

  20. Characteristics of a reactor with power reactivity feedback

    International Nuclear Information System (INIS)

    Li Fengyu; Zhang Yusheng; Zhang Guangfu; Liu Ying

    2008-01-01

    The point-reactor model with power reactivity feedback becomes a nonlinear system. Its dynamic characteristic shows great complexity. According to the mathematic definition of stability in differential equation qualitative theory, the model of a reactor with power reactivity feedback is judged unstable. The equilibrium point is a saddle-node point. A portion of the trajectory in the neighborhood of the equilibrium point is parabolic fan curve, and the other is hyperbolic fan curve. Based on phase locus near the equilibrium point, it is pointed out that the model is still stable within physical limits. The difference between stabilities in the mathematical sense and in the physical sense is indicated. (authors)

  1. Final Stage Development of Reactor Console Simulator

    International Nuclear Information System (INIS)

    Mohamad Idris Taib; Ridzuan Abdul Mutalib; Zareen Khan Abdul Jalil Khan; Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat; Nurfarhana Ayuni Joha

    2013-01-01

    The Reactor Console Simulator PUSPATI TRIGA Reactor was developed since end of 2011 and now in the final stage of development. It is will be an interactive tool for operator training and teaching of PUSPATI TRIGA Reactor. Behavior and characteristic for reactor console and reactor itself can be evaluated and understand. This Simulator will be used as complement for actual present reactor console. Implementation of human system interface (HSI) is using computer screens, keyboard and mouse. Multiple screens are used to match the physical of present reactor console. LabVIEW software are using for user interface and mathematical calculation. Polynomial equation based on control rods calibration data as well as operation parameters record was used to calculate and estimated reactor console parameters. The capabilities in user interface, reactor physics and thermal-hydraulics can be expanded and explored to simulation as well as modeling for New Reactor Console, Research Reactor and Nuclear Power Plant. (author)

  2. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1993-11-01

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards

  3. Theory of neutron slowing down in nuclear reactors

    CERN Document Server

    Ferziger, Joel H; Dunworth, J V

    2013-01-01

    The Theory of Neutron Slowing Down in Nuclear Reactors focuses on one facet of nuclear reactor design: the slowing down (or moderation) of neutrons from the high energies with which they are born in fission to the energies at which they are ultimately absorbed. In conjunction with the study of neutron moderation, calculations of reactor criticality are presented. A mathematical description of the slowing-down process is given, with particular emphasis on the problems encountered in the design of thermal reactors. This volume is comprised of four chapters and begins by considering the problems

  4. Passive cooling of a fixed bed nuclear reactor

    International Nuclear Information System (INIS)

    Petry, V.J.; Bortoli, A.L. de; Sefidwash, F.

    2005-01-01

    Small nuclear reactors without the need for on-site refuelling have greater simplicity, better compliance with passive safety systems, and are more adequate for countries with small electric grids and limited investment capabilities. Here the passive cooling characteristic of the fixed bed nuclear reactor (FBNR), that is being developed under the International Atomic Energy Agency (IAEA) Coordinated Research Project, is studied. A mathematical model is developed to calculate the temperature distribution in the fuel chamber of the reactor. The results demonstrate the passive cooling of this nuclear reactor concept. (authors)

  5. REACTOR: an expert system for diagnosis and treatment of nuclear reactor accidents

    International Nuclear Information System (INIS)

    Nelson, W.R.

    1982-01-01

    REACTOR is an expert system under development at EG and G Idaho, Inc., that will assist operators in the diagnosis and treatment of nuclear reactor accidents. This paper covers the background of the nuclear industry and why expert system technology may prove valuable in the reactor control room. Some of the basic features of the REACTOR system are discussed, and future plans for validation and evaluation of REACTOR are presented. The concept of using both event-oriented and function-oriented strategies for accident diagnosis is discussed. The response tree concept for representing expert knowledge is also introduced

  6. Economic feasibility of high-temperature reactors for industrial cogeneration. An investor's perspective

    International Nuclear Information System (INIS)

    Hampe, Jona; Madlener, Reinhard

    2016-01-01

    This paper studies the economic potential of using high-temperature nuclear reactors (HTRs) for cogeneration of industrial process heat and electricity. A reference case HTR is found to deliver cost-competitive process heat with temperatures of ≥200°C, rendering the chemical and pulp and paper industries potential candidates. The reference case investment yields a positive net present value of €304 million. Real options analysis is employed to account for the uncertain environment and the resulting managerial flexibilities of the project. A real option model for optimal investment timing is adapted to HTRs for industrial cogeneration. The value of the option to invest in an HTR is determined at €667 million and the electricity price threshold for an optimal investment at 79 €/MWh. Though the option to invest in an HTR represents a significant value for a utility, the investment should be delayed until the electricity price has reached the threshold value. We also propose a model to calculate the option value of switching between two different operating modes (cogeneration vs. electricity only). For the reference case, this option value turns out to be €85 million. (author)

  7. 5th Conference on Advanced Mathematical and Computational Tools in Metrology

    CERN Document Server

    Cox, M G; Filipe, E; Pavese, F; Richter, D

    2001-01-01

    Advances in metrology depend on improvements in scientific and technical knowledge and in instrumentation quality, as well as on better use of advanced mathematical tools and development of new ones. In this volume, scientists from both the mathematical and the metrological fields exchange their experiences. Industrial sectors, such as instrumentation and software, will benefit from this exchange, since metrology has a high impact on the overall quality of industrial products, and applied mathematics is becoming more and more important in industrial processes.This book is of interest to people

  8. An analysis of the falling film gas-liquid reactor

    NARCIS (Netherlands)

    Davis, E.J.; Ouwerkerk-Dijkers, van M.P.; Venkatesh, S.

    1979-01-01

    A mathematical model of the falling film reactor is developed to predict the conversion and temperature distribution in the reactor as a function of the gas and liquid flow rates, physical properties, the feed composition of the reactive gas and carrier gas and other parameters of the system.

  9. Industrial Hygiene Concerns during the Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    CERN Document Server

    Lumia, M E

    2002-01-01

    A significant industrial hygiene concern during the Decontamination and Decommissioning (D and D) of the Tokamak Fusion Test Reactor (TFTR) was the oxidation of the lead bricks' surface, which were utilized for radiation shielding. This presented both airborne exposure and surface contamination issues for the workers in the field removing this material. This paper will detail the various protection and control methods tested and implemented to protect the workers, including those technologies deployed to decontaminate the work surfaces. In addition, those techniques employed to recycle the lead for additional use at the site will be discussed.

  10. Industrial Hygiene Concerns during the Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    M.E. Lumia; C.A. Gentile

    2002-01-01

    A significant industrial hygiene concern during the Decontamination and Decommissioning (D and D) of the Tokamak Fusion Test Reactor (TFTR) was the oxidation of the lead bricks' surface, which were utilized for radiation shielding. This presented both airborne exposure and surface contamination issues for the workers in the field removing this material. This paper will detail the various protection and control methods tested and implemented to protect the workers, including those technologies deployed to decontaminate the work surfaces. In addition, those techniques employed to recycle the lead for additional use at the site will be discussed

  11. Design and scale-up of a semi-industrial downer-reactor for the rounding of irregular polymer particles

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, Marius; Schmidt, Jochen; Peukert, Wolfgang; Wirth, Karl-Ernst [Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Particle Technology, Cauerstr. 4, D-91058 Erlangen (Germany)

    2016-03-09

    The recent development of rapid prototyping technologies towards additive manufacturing reveals some major drawbacks of processes such as laser beam melting (LBM). This contribution focuses on the lack of suitable polymer material with a fine particle size and good flowability. Polymer particles obtained by a wet grinding process 1 are treated in a heated downer reactor. This treatment changes the particles’ morphology from a chiselled state towards a spherical form by surface tension forces in a molten state 2 and leads to an improved flowability. To reach the required amount of rounded polymer powder, a downer reactor in semi-industrial scale has been established and will be characterized in this article. For the purpose of particle rounding it is necessary to avoid contact of molten particles with each other and with the hot reactor walls. Furthermore, the heat distribution has been investigated as one of the key parameters of the process. Finally, a proof of concept by rounding wet grinded PBT material was successfully conducted. The product was examined to obtain data about a change in particle size and flowability.

  12. Mathematical Modelling to Predict Oxidative Behaviour of Conjugated Linoleic Acid in the Food Processing Industry

    Directory of Open Access Journals (Sweden)

    Aitziber Ojanguren

    2013-06-01

    Full Text Available Industrial processes that apply high temperatures in the presence of oxygen may compromise the stability of conjugated linoleic acid (CLA bioactive isomers. Statistical techniques are used in this study to model and predict, on a laboratory scale, the oxidative behaviour of oil with high CLA content, controlling the limiting factors of food processing. This modelling aims to estimate the impact of an industrial frying process (140 °C, 7 L/h air on the oxidation of CLA oil for use as frying oil instead of sunflower oil. A factorial design was constructed within a temperature (80–200 °C and air flow (7–20 L/h range. Oil stability index (Rancimat method was used as a measure of oxidation. Three-level full factorial design was used to obtain a quadratic model for CLA oil, enabling the oxidative behaviour to be predicted under predetermined process conditions (temperature and air flow. It is deduced that temperatures applied in food processes affect the oxidation of CLA to a greater extent than air flow. As a result, it is estimated that the oxidative stability of CLA oil is less resistant to industrial frying than sunflower oil. In conclusion, thanks to the mathematical model, a good choice of the appropriate industrial food process can be selected to avoid the oxidation of the bioactive isomers of CLA, ensuring its functionality in novel applications.

  13. ECORA - Evaluation of Computational Methods for Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Scheuerer, Martina

    2002-01-01

    There were three motivations behind the ECORA Project: - the shortcomings of 0-D system codes in the simulation of 3-D, local flow and heat transfer phenomena, - increased interest in the application of 3-D CFD software as supplement to system codes, - high safety requirements in the nuclear industry required consistent standards for the use and assessment of CFD software. The purpose of ECORA was therefore: - to establish performance criteria for the assessment of CFD software, - to establish Best Practice Guidelines for application and use of CFD software, with the following objectives: - assessment of CFD applications in reactor safety: flows in containment (PANDA experiments) and flows in primary system (UPTF experiments) - Best Practice Guidelines for reactor safety: starting point (ERCOFTAC Best Practice Guidelines), adaptation to CFD application for nuclear safety, extension to assessment of experimental data - recommendations for improvements of CFD software, - network of European 'Centres of Competence for CFD Applications in Reactor Safety'. Currently, there were twelve partners in the ECORA Project, representing nine European countries. The Project was scheduled to last until September 2004. Ms Scheuerer then described the work programme and project structure, the Best Practice Guidelines for CFD simulations, the procedures for quantifying errors, applications of Best Practice Guidelines, Best Practice Guidelines for experimental data, applications to primary system, UPTF and PANDA data. Her conclusions were the following: - the Project had led to the improvement of the quality of CFD calculations in reactor safety, through: the ECORA Best Practice Guidelines, the assessment of shortcomings and the improvement of mathematical models. - It had also led to higher acceptance of CFD in reactor safety. - The next step was the establishment of European 'Centres of Competence for CFD Applications in reactor Safety'

  14. Roles of plasma neutron source reactor in development of fusion reactor engineering: Comparison with fission reactor engineering

    International Nuclear Information System (INIS)

    Hirayama, Shoichi; Kawabe, Takaya

    1995-01-01

    The history of development of fusion power reactor has come to a turning point, where the main research target is now shifting from the plasma heating and confinement physics toward the burning plasma physics and reactor engineering. Although the development of fusion reactor system is the first time for human beings, engineers have experience of development of fission power reactor. The common feature between them is that both are plants used for the generation of nuclear reactions for the production of energy, nucleon, and radiation on an industrial scale. By studying the history of the development of the fission reactor, one can find the existence of experimental neutron reactors including irradiation facilities for fission reactor materials. These research neutron reactors played very important roles in the development of fission power reactors. When one considers the strategy of development of fusion power reactors from the points of fusion reactor engineering, one finds that the fusion neutron source corresponds to the neutron reactor in fission reactor development. In this paper, the authors discuss the roles of the plasma-based neutron source reactors in the development of fusion reactor engineering, by comparing it with the neutron reactors in the history of fission power development, and make proposals for the strategy of the fusion reactor development. 21 refs., 6 figs

  15. Simulation of styrene polymerization reactors: kinetic and thermodynamic modeling

    Directory of Open Access Journals (Sweden)

    A. S. Almeida

    2008-06-01

    Full Text Available A mathematical model for the free radical polymerization of styrene is developed to predict the steady-state and dynamic behavior of a continuous process. Special emphasis is given for the kinetic and thermodynamic models, where the most sensitive parameters were estimated using data from an industrial plant. The thermodynamic model is based on a cubic equation of state and a mixing rule applied to the low-pressure vapor-liquid equilibrium of polymeric solutions, suitable for modeling the auto-refrigerated polymerization reactors, which use the vaporization rate to remove the reaction heat from the exothermic reactions. The simulation results show the high predictive capability of the proposed model when compared with plant data for conversion, average molecular weights, polydispersity, melt flow index, and thermal properties for different polymer grades.

  16. Mathematical models in nuclear safety and radiation protection of nuclear energy

    International Nuclear Information System (INIS)

    1993-01-01

    This collection of papers contains the full texts of 33 reports presented at the Seminar, all of which are indexed and abstracted separately for the INIS database. The topics of the reports cover the mathematical models and computer codes for risk analysis, reactor reliability simulating, safety-related benchmarks, thermohydraulic studies, reactor kinetics, hypothetical accidents and their radiological consequences, etc. The investigations refer mainly to WWER-440 and WWER-1000 type reactors of the Kozloduy NPP

  17. Applied geometry and discrete mathematics

    CERN Document Server

    Sturm; Gritzmann, Peter; Sturmfels, Bernd

    1991-01-01

    This volume, published jointly with the Association for Computing Machinery, comprises a collection of research articles celebrating the occasion of Victor Klee's sixty-fifth birthday in September 1990. During his long career, Klee has made contributions to a wide variety of areas, such as discrete and computational geometry, convexity, combinatorics, graph theory, functional analysis, mathematical programming and optimization, and theoretical computer science. In addition, Klee made important contributions to mathematics education, mathematical methods in economics and the decision sciences, applications of discrete mathematics in the biological and social sciences, and the transfer of knowledge from applied mathematics to industry. In honor of Klee's achievements, this volume presents more than forty papers on topics related to Klee's research. While the majority of the papers are research articles, a number of survey articles are also included. Mirroring the breadth of Klee's mathematical contributions, th...

  18. Modern problems in insurance mathematics

    CERN Document Server

    Martin-Löf, Anders

    2014-01-01

    This book is a compilation of 21 papers presented at the International Cramér Symposium on Insurance Mathematics (ICSIM) held at Stockholm University in June, 2013. The book comprises selected contributions from several large research communities in modern insurance mathematics and its applications. The main topics represented in the book are modern risk theory and its applications, stochastic modelling of insurance business, new mathematical problems in life and non-life insurance, and related topics in applied and financial mathematics. The book is an original and useful source of inspiration and essential reference for a broad spectrum of theoretical and applied researchers, research students and experts from the insurance business. In this way, Modern Problems in Insurance Mathematics will contribute to the development of research and academy–industry co-operation in the area of insurance mathematics and its applications.

  19. RHTF 2, a 1200 MWe high temperature reactor

    International Nuclear Information System (INIS)

    Brisbois, Jacques

    1978-01-01

    After having adapted to French conditions the 1160 MWe G.A.C. reactor, Commissariat a l'Energie Atomique and French Industry have decided to design an High Temperature Reactor 1200 MWe based on the G.A.C. technology and taking into account the point of view of Electricite de France and the experience of C.E.A. and industry on the gas cooled reactor technology. The main objective of this work is to produce a reactor design having a low technical risk, good operability, with an emphasis on the safety aspects easing the licensing problems

  20. Applications: fission, nuclear reactors. Fission: the various ways for reactors and cycles

    International Nuclear Information System (INIS)

    Bacher, P.

    1997-01-01

    A historical review is presented concerning the various nuclear reactor systems developed in France by the CEA: the UNGG (graphite-gas) system with higher CO 2 pressures, bigger fuel assemblies and powers higher than 500 MW e, allowed by studies on reactor physics, cladding material developments and reactor optimization; the fast neutron reactor system, following the graphite-gas development, led to the Superphenix reactor and important progress in simulation based on experiment and return of experience; and the PWR system, based on the american license, which has been successfully accommodated to the french industry and generates up to 75% of the electric power in France

  1. Chemical reactor development : from laboratory synthesis to industrial production

    NARCIS (Netherlands)

    Thoenes, D.

    1998-01-01

    Chemical Reactor Development is written primarily for chemists and chemical engineers who are concerned with the development of a chemical synthesis from the laboratory bench scale, where the first successful experiments are performed, to the design desk, where the first commercial reactor is

  2. Small reactors and the 'second nuclear era'

    International Nuclear Information System (INIS)

    Egan, J.R.

    1984-01-01

    Predictions of the nuclear industry's demise are premature and distort both history and politics. The industry is reemerging in a form commensurate with the priorities of those people and nations controlling the global forces of production. The current lull in plant orders is due primarily to the world recession and to factors related specifically to reactor size. Traditional economies of scale for nuclear plants have been greatly exaggerated. Reactor vendors and governments in Great Britain, France, West Germany, Japan, the United States, Sweden, Canada, and the Soviet Union are developing small reactors for both domestic applications and export to the Third World. The prefabricated, factory-assembled plants under 500 MWe may alleviate many of the existing socioeconomic constraints on nuclear manufacturing, construction, and operation. In the industrialized world, small reactors could furnish a qualitatively new energy option for utilities. But developing nations hold the largest potential market for small reactors due to the modest size of their electrical systems. These units could double or triple the market potential for nuclear power in this century. Small reactors will both qualitatively and quantitatively change the nature of nuclear technology transfers, offering unique advantages and problems vis-a-vis conventional arrangements. (author)

  3. Dynamic problems of power reactors and analogic devices

    International Nuclear Information System (INIS)

    Braffort, P.

    1955-01-01

    The raise of the nuclear physics came with heavy mathematical developments. The analogical installations became especially useful for precise calculations of parameters which depend the running of a reactor. They permit between other to study of kinetic problems and especially ''cybernetics'' of nuclear reactors. It doesn't make a doubt that their use will become widespread, not only in the calculations laboratories, in services for servo-mechanisms study, but also in the control panels of the reactors themselves. (M.B.) [fr

  4. Evaluation of Pressure Changes in HANARO Reactor Hall after a Reactor Shutdown

    International Nuclear Information System (INIS)

    Han, Geeyang; Han, Jaesam; Ahn, Gukhoon; Jung, Hoansung

    2013-01-01

    The major objective of this work is intended to evaluate the characteristics of the thermal behavior regarding how the decay heat will be affected by the reactor hall pressure change and the increase of pool water temperature induced in the primary coolant after a reactor shutdown. The particular reactor pool water temperature at the surface where it is evaporated owing to the decay heat resulting in the local heat transfer rate is related to the pressure change response in the reactor hall associated with the primary cooling system because of the reduction of the heat exchanger to remove the heat. The increase in the pool water temperature is proportional to the heat transfer rate in the reactor pool. Consequently, any limit on the reactor pool water temperature imposes a corresponding limit on the reactor hall pressure. At HANARO, the decay heat after a reactor shutdown is mainly removed by the natural circulation cooling in the reactor pool. This paper is written for the safety feature of the pressure change related leakage rate from the reactor hall. The calculation results show that the increase of pressure in the reactor hall will not cause any serious problems to the safety limits although the reactor hall pressure is slightly increased. Therefore, it was concluded that the pool water temperature increase is not so rapid as to cause the pressure to vary significantly in the reactor hall. Furthermore, the mathematical model developed in this work can be a useful analytical tool for scoping and parametric studies in the area of thermal transient analysis, with its proper representation of the interaction between the temperature and pressure in the reactor hall

  5. Markets for reactor-produced non-fission radioisotopes

    International Nuclear Information System (INIS)

    Bennett, R.G.

    1995-01-01

    Current market segments for reactor produced radioisotopes are developed and reported from a review of current literature. Specific radioisotopes studied in is report are the primarily selected from those with major medical or industrial markets, or those expected to have strongly emerging markets. Relative market sizes are indicated. Special emphasis is given to those radioisotopes that are best matched to production in high flux reactors such as the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory or the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory. A general bibliography of medical and industrial radioisotope applications, trends, and historical notes is included

  6. Jules Horowitz Reactor, basic design

    International Nuclear Information System (INIS)

    Bergamaschi, Y.; Bouilloux, Y.; Chantoin, P.; Guigon, B.; Bravo, X.; Germain, C.; Rommens, M.; Tremodeux, P.

    2003-01-01

    Since the shutdown of the SILOE reactor in 1997, the OSIRIS reactor has ensured the needs regarding technological irradiation at CEA including those of its industrial partners and customers. The Jules Horowitz Reactor will replace it. It has the ambition to provide the necessary nuclear data and maintain a fission research capacity in Europe after 2010. This capacity should be service-oriented. It will be established in Cadarache. The Jules Horowitz reactor will also: - represent a significant step in term of performances and experimental capabilities, - be designed with a high flexibility, in order to satisfy the current demand from European industry, research and be able to accommodate future requirements, - reach a high level of safety, according to the best current practice. This paper will present the main functionalities and the design options resulting from the 'preliminary design' studies. (authors)

  7. Jules Horowitz reactor, basic design

    International Nuclear Information System (INIS)

    Bergamaschi, Y.; Bouilloux, Y.; Chantoin, P.; Guigon, B.; Bravo, X.; Germain, C.; Rommens, M.; Tremodeux, P.

    2002-01-01

    Since the shutdown of the SILOE reactor in 1997, the OSIRIS reactor has ensured the needs regarding technological irradiation at CEA including those of its industrial partners and customers. The Jules Horowitz Reactor will replace it. It has the ambition to provide the necessary nuclear data and maintain a fission research capacity in Europe after 2010. This capacity should be service-oriented. It will be established in Cadarache. The Jules Horowitz reactor will also: represent a significant step in term of performances and experimental capabilities; be designed with a high flexibility, in order to satisfy the current demand from European industry, research and be able to accommodate future requirements; reach a high level of safety, according to the best current practice. This paper will present the main functionalities and the design options resulting from the 'preliminary design' studies. (author)

  8. Evaluation of TRIGA Mark II reactor in Turkey

    International Nuclear Information System (INIS)

    Bilge, Ali Nezihi

    1990-01-01

    There are two research reactors in Turkey and one of them is the university Triga Mark II reactor which was in service since 1979 both for education and industrial application purposes. The main aim of this paper is to evaluate the spectrum of the services carried by Turkish Triga Mark II reactor. In this work, statistical distribution of the graduate works and applications, by using Triga Mark II reactor is examined and evaluated. In addition to this, technical and scientific uses of this above mentioned reactor are also investigated. It was already showed that the uses and benefits of this reactor can not be limited. If the sufficient work and service is given, NDT and industrial applications can also be carried economically. (orig.)

  9. Mathematical Modelling of Surfactant Self-assembly at Interfaces

    KAUST Repository

    Morgan, C. E.; Breward, C. J. W.; Griffiths, I. M.; Howell, P. D.

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. We present a mathematical model to describe the distribution of surfactant pairs in a multilayer structure beneath an adsorbed monolayer. A mesoscopic model comprising a set of ordinary

  10. Gap and impact of LMR [Liquid Metal Reactor] piping systems and reactor components

    International Nuclear Information System (INIS)

    Ma, D.C.; Gvildys, J.; Chang, Y.W.

    1987-01-01

    Because of high operation temperature, the LMR (Liquid Metal Reactor) plant is characterized by the thin-walled piping and components. Gaps are often present to allow free thermal expansion during normal plant operation. Under dynamic loadings, such as seismic excitation, if the relative displacement between the components exceeds the gap distance, impacts will occur. Since the components and piping become brittle over their design lifetime, impact is of important concern for it may lead to fractures of components and other serious effects. This paper deals with gap and impact problems in the LMR reactor components and piping systems. Emphasis is on the impacts due to seismic motion. Eight sections are contained in this paper. The gap and impact problems in LMR piping systems are described and a parametric study is performed on the effects of gap-induced support nonlinearity on the dynamics characteristics of the LMR piping systems. Gap and impact problems in the LMR reactor components are identified and their mathematical models are illustrated, and the gap and impact problems in the seismic reactor scram are discussed. The mathematical treatments of various impact models are also described. The uncertainties in the current seismic impact analyses of LMR components and structures are presented. An impact test on a 1/10-scale LMR thermal liner is described. The test results indicated that several clusters of natural modes can be excited by the impact force. The frequency content of the excited modes depends on the duration of the impact force; the shorter the duration, the higher the frequency content

  11. Extension of the technical scope of the Paris and Vienna Conventions: fusion reactors and reactors in means of transport

    International Nuclear Information System (INIS)

    Reye, S.

    1993-01-01

    This paper examines the possibility of extending the technical scope of the Vienna and Paris Conventions to two types of nuclear installation presently excluded. Industrial use of fusion reactors is not expected for several decades, but the present revision of the liability regime provides a useful opportunity to ensure in advance that future industrial reactors will be covered, as well as covering risks arising from existing research reactors. Inclusion of nuclear reactors comprised in means of transport (in practice, in ships) in the liability regime would have certain advantages, but given their almost exclusively military use, such a proposal would be politically controversial. 18 refs

  12. International Conference on Applied Mathematics, Modeling and Computational Science & Annual meeting of the Canadian Applied and Industrial Mathematics

    CERN Document Server

    Bélair, Jacques; Kunze, Herb; Makarov, Roman; Melnik, Roderick; Spiteri, Raymond J

    2016-01-01

    Focusing on five main groups of interdisciplinary problems, this book covers a wide range of topics in mathematical modeling, computational science and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines. The book offers a valuable source of methods, ideas, and tools developed for a variety of disciplines, including the natural and social sciences, medicine, engineering, and technology. Original results are presented on both the fundamental and applied level, accompanied by an ample number of real-world problems and examples emphasizing the interdisciplinary nature and universality of mathematical modeling, and providing an excellent outline of today’s challenges. Mathematical modeling, with applied and computational methods and tools, plays a fundamental role in modern science a...

  13. OECD Halden reactor project

    International Nuclear Information System (INIS)

    1979-01-01

    This is the nineteenth annual Report on the OECD Halden Reactor Project, describing activities at the Project during 1978, the last year of the 1976-1978 Halden Agreement. Work continued in two main fields: test fuel irradiation and fuel research, and computer-based process supervision and control. Project research on water reactor fuel focusses on various aspects of fuel behavior under normal, and off-normal transient conditions. In 1978, participating organisations continued to submit test fuel for irradiation in the Halden boiling heavy-water reactor, in instrumented test assemblies designed and manufactured by the Project. Work included analysis of the impact of fuel design and reactor operating conditions on fuel cladding behavior. Fuel performance modelling included characterization of thermal and mechanical behavior at high burn-up, of fuel failure modes, and improvement of data qualification procedures to reduce and quantify error bands on in-reactor measurements. Instrument development yielded new or improved designs for measuring rod temperature, internal pressure, axial neutron flux shape determination, and for detecting cladding defects. Work on computer-based methods of reactor supervision and control included continued development of a system for predictive core surveillance, and of special mathematical methods for core power distribution control

  14. Towards EPR (European pressurized reactor)

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    According to the French industry minister, it is nonsense continuing delaying the construction of an EPR prototype because France needs it in order to renew timely its park of nuclear reactors. The renewing is expected to begin in 2020 and will be assured with third generation reactors like EPR. A quick launching of the EPR prototype is necessary to have it being in service by 2012, the feedback operating experience that will be accumulated over the 8 years that will follow will be necessary to optimize the industrial version and to have it ready by 2020. The EPR reactor has indisputable assets: modern, safer, more competitive and it will produce less wastes than present nuclear reactors. The construction cost of an EPR prototype is estimated to 3 milliard Euros and the nuclear industry operators propose to finance it completely. The EPR prototype does not jeopardize the ambitious French program about renewable energy sources, France is committed to produce 21% of its electricity from renewable energies by 2010 and 10 milliard Euros will be invested over this period on wind energy. Nuclear energy and alternative energies must be considered as 2 aspects of a diversified energy policy. (A.C.)

  15. Reactor core simulations in Canada

    International Nuclear Information System (INIS)

    Roy, R.; Koclas, J.; Shen, W.; Jenkins, D. A.; Altiparmakov, D.; Rouben, B.

    2004-01-01

    This review will address the current simulation flow-chart currently used for reactor-physics simulations in the Canadian industry. The neutron behaviour in heavy-water moderated power reactors is quite different from that in other power reactors, thus the core physics approximations are somewhat different Some codes used are particular to the context of heavy-water reactors, and the paper focuses on this aspect. The paper also shows simulations involving new design features of the Advanced Candu Reactor TM (ACR TM), and provides insight into future development, expected in the coming years. (authors)

  16. Mathematical Modelling at Secondary School: The MACSI-Clongowes Wood College Experience

    Science.gov (United States)

    Charpin, J. P. F.; O'Hara, S.; Mackey, D.

    2013-01-01

    In Ireland, to encourage the study of STEM (science, technology, engineering and mathematics) subjects and particularly mathematics, the Mathematics Applications Consortium for Science and Industry (MACSI) and Clongowes Wood College (County Kildare, Ireland) organized a mathematical modelling workshop for senior cycle secondary school students.…

  17. Generalities about nuclear reactors

    International Nuclear Information System (INIS)

    Jaouen, C.; Beroux, P.

    2012-01-01

    From Zoe, the first nuclear reactor, till the current EPR, the French nuclear industry has always advanced by profiting from the feedback from dozens of years of experience and operations, in particular by drawing lessons from the most significant events in its history, such as the Fukushima accident. The new generations of reactors must improve safety and economic performance so that the industry maintain its legitimacy and its share in the production of electricity. This article draws the history of nuclear power in France, gives a brief description of the pressurized water reactor design, lists the technical features of the different versions of PWR that operate in France and compares them with other types of reactors. The feedback experience concerning safety, learnt from the major nuclear accidents Three Miles Island (1979), Chernobyl (1986) and Fukushima (2011) is also detailed. Today there are 26 third generation reactors being built in the world: 4 EPR (1 in Finland, 1 in France and 2 in China); 2 VVER-1200 in Russia, 8 AP-1000 (4 in China and 4 in the Usa), 8 APR-1400 (4 in Korea and 4 in UAE), and 4 ABWR (2 in Japan and 2 in Taiwan)

  18. Research reactors

    International Nuclear Information System (INIS)

    Merchie, Francois

    2015-10-01

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  19. Nitrification of an industrial wastewater in a moving-bed biofilm reactor: effect of salt concentration.

    Science.gov (United States)

    Vendramel, Simone; Dezotti, Marcia; Sant'Anna, Geraldo L

    2011-01-01

    Nitrification of wastewaters from chemical industries can pose some challenges due to the presence of inhibitory compounds. Some wastewaters, besides their organic complexity present variable levels of salt concentration. In order to investigate the effect of salt (NaCl) content on the nitrification of a conventional biologically treated industrial wastewater, a bench scale moving-bed biofilm reactor was operated on a sequencing batch mode. The wastewater presenting a chloride content of 0.05 g l(-1) was supplemented with NaCl up to 12 g Cl(-) l(-1). The reactor operation cycle was: filling (5 min), aeration (12 or 24h), settling (5 min) and drawing (5 min). Each experimental run was conducted for 3 to 6 months to address problems related to the inherent wastewater variability and process stabilization. A PLC system assured automatic operation and control of the pertinent process variables. Data obtained from selected batch experiments were adjusted by a kinetic model, which considered ammonia, nitrite and nitrate variations. The average performance results indicated that nitrification efficiency was not influenced by chloride content in the range of 0.05 to 6 g Cl(-) l(-1) and remained around 90%. When the chloride content was 12 g Cl(-) l(-1), a significant drop in the nitrification efficiency was observed, even operating with a reaction period of 24 h. Also, a negative effect of the wastewater organic matter content on nitrification efficiency was observed, which was probably caused by growth of heterotrophs in detriment of autotrophs and nitrification inhibition by residual chemicals.

  20. Dynamic analysis of reactor containment building using axisymmetric finite element model

    International Nuclear Information System (INIS)

    Thakkar, S.K.; Dubey, R.N.

    1989-01-01

    The structural safety of nuclear reactor building during earthquake is of great importance in view of possibility of radiation hazards. The rational evaluation of forces and displacements in various portions of structure and foundation during strong ground motion is most important for safe performance and economic design of the reactor building. The accuracy of results of dynamic analysis is naturally dependent on the type of mathematical model employed. Three types of mathematical models are employed for dynamic analysis of reactor building beam model axisymmetric finite element model and three dimensional model. In this paper emphasis is laid on axisymmetric model. This model of containment building is considered a reinfinement over conventional beam model of the structure. The nuclear reactor building on a rocky foundation is considered herein. The foundation-structure interaction is relatively less in this condition. The objective of the paper is to highlight the significance of modelling of non-axisymmetric portion of building, such as reactor internals by equivalent axisymmetric body, on the structural response of the building

  1. Neutron activation analysis in an industrial laboratory using an off-site nuclear reactor

    International Nuclear Information System (INIS)

    Osborn, T.W.; Broering, W.B.

    1977-01-01

    A multifunctional research laboratory, such as Procter and Gamble's Miami Valley Laboratories, requires elemental analyses on many materials. A general survey technique is important even if the information it provides is incomplete or is less precise than single element analyses. Procter and Gamble has developed neutron activation analysis (NAA) capabilities using a nuclear reactor several hundred miles away. The concentration of 40 to 50 elements can be determined in a variety of matrices. We have found NAA to be a powerful supplement to some of the more classical analytical techniques even without having an on-site neutron source. We have also found an automated data acquisition system to be essential for the successful application of NAA in an industrial laboratory

  2. X-ray digital industrial radiography (DIR) for local liquid velocity (VLL) measurement in trickle bed reactors (TBRs): Validation of the technique

    Science.gov (United States)

    Mohd Salleh, Khairul Anuar; Rahman, Mohd Fitri Abdul; Lee, Hyoung Koo; Al Dahhan, Muthanna H.

    2014-06-01

    Local liquid velocity measurements in Trickle Bed Reactors (TBRs) are one of the essential components in its hydrodynamic studies. These measurements are used to effectively determine a reactor's operating condition. This study was conducted to validate a newly developed technique that combines Digital Industrial Radiography (DIR) with Particle Tracking Velocimetry (PTV) to measure the Local Liquid Velocity (VLL) inside TBRs. Three millimeter-sized Expanded Polystyrene (EPS) beads were used as packing material. Three validation procedures were designed to test the newly developed technique. All procedures and statistical approaches provided strong evidence that the technique can be used to measure the VLL within TBRs.

  3. Review of the current status of linear hybrid reactor concepts

    International Nuclear Information System (INIS)

    Schultz, K.R.

    1977-07-01

    A review was made of the current status of linear fusion-fission hybrid reactor design studies in the USA. The linear hybrid reactor concepts reviewed include the linear theta-pinch hybrid reactor being studied at Los Alamos Scientific Laboratory, the electron beam-heated solenoid hybrid reactor under development at Physics International Co., the laser-heated solenoid hybrid reactor being investigated at Mathematical Sciences Northwest, Inc., and the linear fusion waste burning reactor being studied at General Atomic Company. The discussion addresses confinement and heating mechanisms for each concept, as well as the hybrid blanket designs. The current state of the four reactor designs is summarized and the performance of the various concepts compared

  4. Oscillatory flow chemical reactors

    Directory of Open Access Journals (Sweden)

    Slavnić Danijela S.

    2014-01-01

    Full Text Available Global market competition, increase in energy and other production costs, demands for high quality products and reduction of waste are forcing pharmaceutical, fine chemicals and biochemical industries, to search for radical solutions. One of the most effective ways to improve the overall production (cost reduction and better control of reactions is a transition from batch to continuous processes. However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat and mass transfer and narrow residence time distribution. The oscillatory flow reactors (OFR are newer type of tube reactors which can offer solution by providing continuous operation with approximately plug flow pattern, low shear stress rates and enhanced mass and heat transfer. These benefits are the result of very good mixing in OFR achieved by vortex generation. OFR consists of cylindrical tube containing equally spaced orifice baffles. Fluid oscillations are superimposed on a net (laminar flow. Eddies are generated when oscillating fluid collides with baffles and passes through orifices. Generation and propagation of vortices create uniform mixing in each reactor cavity (between baffles, providing an overall flow pattern which is close to plug flow. Oscillations can be created by direct action of a piston or a diaphragm on fluid (or alternatively on baffles. This article provides an overview of oscillatory flow reactor technology, its operating principles and basic design and scale - up characteristics. Further, the article reviews the key research findings in heat and mass transfer, shear stress, residence time distribution in OFR, presenting their advantages over the conventional reactors. Finally, relevant process intensification examples from pharmaceutical, polymer and biofuels industries are presented.

  5. RSMASS: A simple model for estimating reactor and shield masses

    International Nuclear Information System (INIS)

    Marshall, A.C.; Aragon, J.; Gallup, D.

    1987-01-01

    A simple mathematical model (RSMASS) has been developed to provide rapid estimates of reactor and shield masses for space-based reactor power systems. Approximations are used rather than correlations or detailed calculations to estimate the reactor fuel mass and the masses of the moderator, structure, reflector, pressure vessel, miscellaneous components, and the reactor shield. The fuel mass is determined either by neutronics limits, thermal/hydraulic limits, or fuel damage limits, whichever yields the largest mass. RSMASS requires the reactor power and energy, 24 reactor parameters, and 20 shield parameters to be specified. This parametric approach should be applicable to a very broad range of reactor types. Reactor and shield masses calculated by RSMASS were found to be in good agreement with the masses obtained from detailed calculations

  6. Mathematical modeling of methyl ester concentration distribution in a continuous membrane tubular reactor and comparison with conventional tubular reactor

    Science.gov (United States)

    Talaghat, M. R.; Jokar, S. M.; Modarres, E.

    2017-10-01

    The reduction of fossil fuel resources and environmental issues made researchers find alternative fuels include biodiesels. One of the most widely used methods for production of biodiesel on a commercial scale is transesterification method. In this work, the biodiesel production by a transesterification method was modeled. Sodium hydroxide was considered as a catalyst to produce biodiesel from canola oil and methanol in a continuous tubular ceramic membranes reactor. As the Biodiesel production reaction from triglycerides is an equilibrium reaction, the reaction rate constants depend on temperature and related linearly to catalyst concentration. By using the mass balance for a membrane tubular reactor and considering the variation of raw materials and products concentration with time, the set of governing equations were solved by numerical methods. The results clearly show the superiority of membrane reactor than conventional tubular reactors. Afterward, the influences of molar ratio of alcohol to oil, weight percentage of the catalyst, and residence time on the performance of biodiesel production reactor were investigated.

  7. Improving nuclear safety at international research reactors: The Integrated Research Reactor Safety Enhancement Program (IRRSEP)

    International Nuclear Information System (INIS)

    Huizenga, David; Newton, Douglas; Connery, Joyce

    2002-01-01

    Nuclear energy continues to play a major role in the world's energy economy. Research and test reactors are an important component of a nation's nuclear power infrastructure as they provide training, experiments and operating experience vital to developing and sustaining the industry. Indeed, nations with aspirations for nuclear power development usually begin their programs with a research reactor program. Research reactors also are vital to international science and technology development. It is important to keep them safe from both accident and sabotage, not only because of our obligation to prevent human and environmental consequence but also to prevent corresponding damage to science and industry. For example, an incident at a research reactor could cause a political and public backlash that would do irreparable harm to national nuclear programs. Following the accidents at Three Mile Island and Chernobyl, considerable efforts and resources were committed to improving the safety posture of the world's nuclear power plants. Unsafe operation of research reactors will have an amplifying effect throughout a country or region's entire nuclear programs due to political, economic and nuclear infrastructure consequences. (author)

  8. Applied mathematics

    International Nuclear Information System (INIS)

    Nedelec, J.C.

    1988-01-01

    The 1988 progress report of the Applied Mathematics center (Polytechnic School, France), is presented. The research fields of the Center are the scientific calculus, the probabilities and statistics and the video image synthesis. The research topics developed are: the analysis of numerical methods, the mathematical analysis of the physics and mechanics fundamental models, the numerical solution of complex models related to the industrial problems, the stochastic calculus and the brownian movement, the stochastic partial differential equations, the identification of the adaptive filtering parameters, the discrete element systems, statistics, the stochastic control and the development, the image synthesis techniques for education and research programs. The published papers, the congress communications and the thesis are listed [fr

  9. New Books for Industrial Educators

    Science.gov (United States)

    School Shop, 1975

    1975-01-01

    The most recent book releases in the field of industrial-technical education are listed alphabetically under: automotive/power mechanics; building trades; drafting; electricity/electronics; graphic arts, industrial arts, vocational, technical and career education; industrial mathematics; machine shop/metalworking; metrics; radio/television;…

  10. Maximum neutron flux in thermal reactors

    International Nuclear Information System (INIS)

    Strugar, P.V.

    1968-12-01

    Direct approach to the problem is to calculate spatial distribution of fuel concentration if the reactor core directly using the condition of maximum neutron flux and comply with thermal limitations. This paper proved that the problem can be solved by applying the variational calculus, i.e. by using the maximum principle of Pontryagin. Mathematical model of reactor core is based on the two-group neutron diffusion theory with some simplifications which make it appropriate from maximum principle point of view. Here applied theory of maximum principle are suitable for application. The solution of optimum distribution of fuel concentration in the reactor core is obtained in explicit analytical form. The reactor critical dimensions are roots of a system of nonlinear equations and verification of optimum conditions can be done only for specific examples

  11. Study of PWR reactor efficiency as a function of turbine steam extractions

    International Nuclear Information System (INIS)

    Rocha, Janine Gandolpho da; Alvim, Antonio Carlos Marques; Martinez, Aquilino Senra

    2002-01-01

    The objective of this work is to optimize the extractions of the low-pressure turbine of a PWR nuclear reactor, in order to obtain the best thermodynamic cycle efficiency. We have analyzed typical data of a 1300 MW PWR reactor, operating at 25%, 50%, 75% and 100% capacities, respectively. The first stage of this study consists of generating a mathematical model capable of describing the reactor behavior and efficiency at any power level. The second stage of this study consists of to combine the generated mathematical model in an optimization computer program that optimize the extractions flow of the low-pressure turbine until it finds the optimal system efficiency. This work does not alter the nuclear facility project in any way. (author)

  12. High deposition rate of low resistive and transparent ZnO:Al on glass with an industrial moving belt APCVD reactor

    NARCIS (Netherlands)

    Illiberi, A.; Kniknie, B.; Steijvers, H.L.A.H.; Habets, D.; Simons, P.J.P.M.; Beckers, E.H.A.; Deelen, J. van

    2012-01-01

    Aluminum doped ZnOx (ZnOx:Al) films have been deposited on glass in an in-line industrial-type reactor by a metalorganic chemical vapor deposition process at atmospheric pressure. ZnOx:Al films can be grown at very high deposition rates of ~ 14 nm/s for a substrate speed from 150 mm/min to 500

  13. Status on potential of advanced fission reactors

    International Nuclear Information System (INIS)

    L-Zaleski, C.P.

    1978-01-01

    In this short lecture, only two types of reactors will be discussed: the liquid metal fast breeder reactors (LMFBR) and the high temperature reactors (HTR). This does not mean that other very interesting concepts do not exist, but there are or proven light water reactors and heavy water reactors or has not reached the state of industrial development like molten-salt or gas breeder reactors. In discussing any types of industrial development, it seems to me useful, first to indicate the reasons or motivations for this development. Then I will give a short historical review and analysis of what has been done up to now. For HTR's a very brief status report will be presented. For LMFBR's, I will give indications of experience gained with demonstration plants and more specifically with Phenix, before listing the most important technical problems which still need more work to be fully solved. Finally, I will briefly discuss the economic status and perspectives of LMFBR's and will mention the public acceptance problem

  14. Model based design of biochemical micro-reactors

    Directory of Open Access Journals (Sweden)

    Tobias eElbinger

    2016-02-01

    Full Text Available Mathematical modelling of biochemical pathways is an important resource in Synthetic Biology, as the predictive power of simulating synthetic pathways represents an important step in the design of synthetic metabolons. In this paper, we are concerned with the mathematical modeling, simulation and optimization of metabolic processes in biochemical micro-reactors able to carry out enzymatic reactions and to exchange metabolites with their surrounding medium. The results of the reported modeling approach are incorporated in the design of the first micro-reactor prototypes that are under construction. These microreactors consist of compartments separated by membranes carrying specific transporters for the input of substrates and export of products. Inside the compartments multi-enzyme complexes assembled on nano-beads by peptide adapters are used to carry out metabolic reactions.The spatially resolved mathematical model describing the ongoing processes consists of a system of diffusion equations together with boundary and initial conditions. The boundary conditions model the exchange of metabolites with the neighboring compartments and the reactions at the surface of the nano-beads carrying the multi-enzyme complexes. Efficient and accurate approaches for numerical simulation of the mathematical model and for optimal design of the micro-reactor are developed. As a proof-of-concept scenario, a synthetic pathway for the conversion of sucrose to glucose-6-phosphate (G6P was chosen. In this context, the mathematical model is employed to compute the spatio-temporal distributions of the metabolite concentrations, as well as application relevant quantities like the outflow rate of G6P. These computations are performed for different scenarios, where the number of beads as well as their loading capacity are varied. The computed metabolite distributions show spatial patterns which differ for different experimental arrangements. Furthermore, the total output

  15. MOX recycling-an industrial reality

    International Nuclear Information System (INIS)

    Shallo, G.D.F.

    1996-01-01

    Reprocessing and plutonium recycling have now attained industrial maturity in France and Europe. Specifically, mixed-oxide (MOX) fuel is fabricated and used in light water reactors (LWRs) in satisfactory operating conditions. The utilities and the fuel cycle industry experience no technical difficulties, and European recycling programs are growing steadily, from 18 reactors in operation today up to 50 expected around the year 2000, putting the system reprocessing-recycling in coherence: 25 t of plutonium will then be used each year to produce the electricity equivalence of 25 millions tons of oil. Plutonium recycling in MOX fuel in current LWRs proves to be technically safe and economically competitive and meets natural resource savings and environmental protection objectives. And recycling responds properly to the nonproliferation concerns. Such an industrial experience gives a unique reference for weapons plutonium disposition through MOX use in reactors

  16. Generation III+ Reactor Portfolio

    International Nuclear Information System (INIS)

    2010-03-01

    While the power generation needs of utilities are unique and diverse, they are all faced with the double challenge of meeting growing electricity needs while curbing CO 2 emissions. To answer these diverse needs and help tackle this challenge, AREVA has developed several reactor models which are briefly described in this document: The EPR TM Reactor: designed on the basis of the Konvoi (Germany) and N4 (France) reactors, the EPRTM reactor is an evolutionary model designed to achieve best-in-class safety and operational performance levels. The ATMEA1 TM reactor: jointly designed by Mitsubishi Heavy Industries and AREVA through ATMEA, their common company. This reactor design benefits from the competencies and expertise of the two mother companies, which have commissioned close to 130 reactor units. The KERENA TM reactor: Designed on the basis of the most recent German BWR reactors (Gundremmingen) the KERENA TM reactor relies on proven technology while also including innovative, yet thoroughly tested, features. The optimal combination of active and passive safety systems for a boiling water reactor achieves a very low probability of severe accident

  17. Treatment of a chocolate industry wastewater in a pilot-scale low-temperature UASB reactor operated at short hydraulic and sludge retention time.

    Science.gov (United States)

    Esparza-Soto, M; Arzate-Archundia, O; Solís-Morelos, C; Fall, C

    2013-01-01

    The aim of this work was to evaluate the performance of a 244-L pilot-scale upflow anaerobic sludge blanket (UASB) reactor during the treatment of chocolate-processing industry wastewater under low-temperature conditions (18 ± 0.6 °C) for approximately 250 d. The applied organic loading rate (OLR) was varied between 4 and 7 kg/m(3)/d by varying the influent soluble chemical oxygen demand (CODsol), while keeping the hydraulic retention time constant (6.4 ± 0.3 h). The CODsol removal efficiency was low (59-78%). The measured biogas production increased from 240 ± 54 to 431 ± 61 L/d during the experiments. A significant linear correlation between the measured biogas production and removed OLR indicated that 81.69 L of biogas were produced per kg/m(3) of CODsol removed. Low average reactor volatile suspended solids (VSS) (2,700-4,800 mg/L) and high effluent VSS (177-313 mg/L) were derived in a short sludge retention time (SRT) (4.9 d). The calculated SRT was shorter than those reported in the literature, but did not affect the reactor's performance. Average sludge yield was 0.20 kg-VSS/kg-CODsol. The low-temperature anaerobic treatment was a good option for the pre-treatment of chocolate-processing industry wastewater.

  18. The diversity and unity of reactor noise theory

    International Nuclear Information System (INIS)

    Kuang, Zhifeng

    2001-01-01

    The study of reactor noise theory concerns questions about cause and effect relationships, and the utilisation of random noise in nuclear reactor systems. The diversity of reactor noise theory arises from the variety of noise sources, the various mathematical treatments applied and the various practical purposes. The neutron noise in zero-energy systems arises from the fluctuations in the number of neutrons per fission, the time between nuclear events, and the type of reactions. It can be used to evaluate system parameters. The mathematical treatment is based on the master equation of stochastic branching processes. The noise in power reactor systems is given rise by random processes of technological origin such as vibration of mechanical parts, boiling of the coolant, fluctuations of temperature and pressure. It can be used to monitor the reactor behaviour with the possibility of detecting malfunctions at an early stage. The mathematical treatment is based on the Langevin equation. The unity of reactor noise theory arises from the fact that the useful information from noise is embedded in the second moments of random variables, which lends the possibility of building up a unified mathematical description and analysis of the various reactor noise sources. Exploring such possibilities is the main subject among the three major topics reported in this thesis. The first subject is within the zero power noise in steady media, and we reported on the extension of the existing theory to more general cases. In Paper I, by use of the master equation approach, we have derived the most general Feynman- and Rossi-alpha formulae so far by taking the full joint statistics of the prompt and all the six groups of delayed neutron precursors, and a multiple emission source into account. The involved problems are solved with a combination of effective analytical techniques and symbolic algebra codes. Paper II gives a numerical evaluation of these formulae. An assessment of the

  19. The diversity and unit of reactor noise theory

    Science.gov (United States)

    Kuang, Zhifeng

    The study of reactor noise theory concerns questions about cause and effect relationships, and utilisation of random noise in nuclear reactor systems. The diversity of reactor noise theory arises from the variety of noise sources, the various mathematical treatments applied and various practical purposes. The neutron noise in zero- energy systems arises from the fluctuations in the number of neutrons per fission, the time between nuclear events, and the type of reactions. It can be used to evaluate system parameters. The mathematical treatment is based on the master equation of stochastic branching processes. The noise in power reactor systems is given rise by random processes of technological origin such as vibration of mechanical parts, boiling of the coolant, fluctuations of temperature and pressure. It can be used to monitor reactor behaviour with the possibility of detecting malfunctions at an early stage. The mathematical treatment is based on the Langevin equation. The unity of reactor noise theory arises from the fact that useful information from noise is embedded in the second moments of random variables, which lends the possibility of building up a unified mathematical description and analysis of the various reactor noise sources. Exploring such possibilities is the main subject among the three major topics reported in this thesis. The first subject is within the zero power noise in steady media, and we reported on the extension of the existing theory to more general cases. In Paper I, by use of the master equation approach, we have derived the most general Feynman- and Rossi-alpha formulae so far by taking the full joint statistics of the prompt and all the six groups of delayed neutron precursors, and a multiple emission source into account. The involved problems are solved with a combination of effective analytical techniques and symbolic algebra codes (Mathematica). Paper II gives a numerical evaluation of these formulae. An assessment of the

  20. Reactor and process design in sustainable energy technology

    CERN Document Server

    Shi, Fan

    2014-01-01

    Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. Emphasis on reactor engineering in sustainable energy techn...

  1. Mathematical modeling of a fast-breeder-reactor generating unit

    International Nuclear Information System (INIS)

    Kim, V.E.; Golovach, E.A.; Senkin, V.I.

    1984-01-01

    Dynamics equations are given for a reactor, intermediate heat exchanger, steam generator, and turbogenerator. The dynamic characteristics of the generating unit are described when perturbations occur in grid frequency, turbine valves, and feedwater consumption

  2. The chemical energy unit partial oxidation reactor operation simulation modeling

    Science.gov (United States)

    Mrakin, A. N.; Selivanov, A. A.; Batrakov, P. A.; Sotnikov, D. G.

    2018-01-01

    The chemical energy unit scheme for synthesis gas, electric and heat energy production which is possible to be used both for the chemical industry on-site facilities and under field conditions is represented in the paper. The partial oxidation reactor gasification process mathematical model is described and reaction products composition and temperature determining algorithm flow diagram is shown. The developed software product verification showed good convergence of the experimental values and calculations according to the other programmes: the temperature determining relative discrepancy amounted from 4 to 5 %, while the absolute composition discrepancy ranged from 1 to 3%. The synthesis gas composition was found out practically not to depend on the supplied into the partial oxidation reactor (POR) water vapour enthalpy and compressor air pressure increase ratio. Moreover, air consumption coefficient α increase from 0.7 to 0.9 was found out to decrease synthesis gas target components (carbon and hydrogen oxides) specific yield by nearly 2 times and synthesis gas target components required ratio was revealed to be seen in the water vapour specific consumption area (from 5 to 6 kg/kg of fuel).

  3. Research and proposal on selective catalytic reduction reactor optimization for industrial boiler.

    Science.gov (United States)

    Yang, Yiming; Li, Jian; He, Hong

    2017-08-24

    The advanced computational fluid dynamics (CFD) software STAR-CCM+ was used to simulate a denitrification (De-NOx) project for a boiler in this paper, and the simulation result was verified based on a physical model. Two selective catalytic reduction (SCR) reactors were developed: reactor 1 was optimized and reactor 2 was developed based on reactor 1. Various indicators, including gas flow field, ammonia concentration distribution, temperature distribution, gas incident angle, and system pressure drop were analyzed. The analysis indicated that reactor 2 was of outstanding performance and could simplify developing greatly. Ammonia injection grid (AIG), the core component of the reactor, was studied; three AIGs were developed and their performances were compared and analyzed. The result indicated that AIG 3 was of the best performance. The technical indicators were proposed for SCR reactor based on the study. Flow filed distribution, gas incident angle, and temperature distribution are subjected to SCR reactor shape to a great extent, and reactor 2 proposed in this paper was of outstanding performance; ammonia concentration distribution is subjected to ammonia injection grid (AIG) shape, and AIG 3 could meet the technical indicator of ammonia concentration without mounting ammonia mixer. The developments above on the reactor and the AIG are both of great application value and social efficiency.

  4. Modeling and performance of the MHTGR [Modular High-Temperature Gas-Cooled Reactor] reactor cavity cooling system

    International Nuclear Information System (INIS)

    Conklin, J.C.

    1990-04-01

    The Reactor Cavity Cooling System (RCCS) of the Modular High- Temperature Gas-Cooled Reactor (MHTGR) proposed by the U.S. Department of Energy is designed to remove the nuclear afterheat passively in the event that neither the heat transport system nor the shutdown cooling circulator subsystem is available. A computer dynamic simulation for the physical and mathematical modeling of and RCCS is described here. Two conclusions can be made form computations performed under the assumption of a uniform reactor vessel temperature. First, the heat transferred across the annulus from the reactor vessel and then to ambient conditions is very dependent on the surface emissivities of the reactor vessel and RCCS panels. These emissivities should be periodically checked to ensure the safety function of the RCCS. Second, the heat transfer from the reactor vessel is reduced by a maximum of 10% by the presence of steam at 1 atm in the reactor cavity annulus for an assumed constant in the transmission of radiant energy across the annulus can be expected to result in an increase in the reactor vessel temperature for the MHTGR. Further investigation of participating radiation media, including small particles, in the reactor cavity annulus is warranted. 26 refs., 7 figs., 1 tab

  5. Assessment of Smart Reactor Utilization for Barelang

    International Nuclear Information System (INIS)

    Sahala-M-Lumbanraja; Yuliastuti

    2007-01-01

    This paper assesses the feasibility of SMART reactor utilization in BARELANG region. BARELANG region is an industrial area located in Riau Islands Province. The need of electricity and fresh water, whether for industry growth or people, are the main problem of this region. Until now, the National Electricity Company (PLN) has not able to supply the electricity needed by industrial sector. The use of oil as a main electricity generation resource of the entire power plant has caused a tremendous generation cost. On dry seasons, the fresh water supplied by PDAM is reducing drastically. This situation occurs because water source of PDAM extremely depends on the water storage during rainy seasons. SMART reactor is a modular light reactor developed by KAERI for dual purposes, producing electricity and fresh water at the same time. The total thermal power generated by this type of reactor is about 330 M Wth with 33 % efficiency, as 90 M We connected to the electricity grid and rest is used in producing potable water with capacity 40,000 m 3 /day. Compare to the conventional reactor, SMART reactor is based on simple operation and maintenance principles, enhanced safety, easy to inspect, a relatively short construction time, small investment cost, competitive generation cost, and a flexible design to fit with the existing infrastructure. The main characteristic of SMART reactor is an integral design concept where the entire main cooling system components are located in the pressurize vessel. (author)

  6. PARR-2: reactor description and experiments

    International Nuclear Information System (INIS)

    Wyne, M.F.; Meghji, J.H.

    1990-12-01

    PARR-2 is a miniature neutron source reactor (MNSR) research reactor has been designed at the rate of 27 kW. Reactor assembly comprises of peaking characteristics with a self limiting flux. In this report reactor description with its assembly and instrumentation control system has been explained. The reactor engineering and physics experiments which can be performed on this reactor are explained in this report. PARR-2 is fueled with HEU fuel pins which are about 90% enriched in U-235. Specific requirements for the safety of the reactor, its building and the personnel, normal instrumentation as required in an industrial environment is sufficient. (A.B.)

  7. Dynamic Behavior of Reverse Flow Reactor for Lean Methane Combustion

    OpenAIRE

    Yogi W. Budhi; M. Effendy; Yazid Bindar; Subagjo

    2014-01-01

    The stability of reactor operation for catalytic oxidation of lean CH4 has been investigated through modeling and simulation, particularly the influence of switching time and heat extraction on reverse flow reactor (RFR) performance. A mathematical model of the RFR was developed, based on one-dimensional pseudo-homogeneous model for mass and heat balances, incorporating heat loss through the reactor wall. The configuration of the RFR consisted of inert-catalyst-inert, with or without heat ext...

  8. Nuclear reactor PBMR and cogeneration

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Alonso V, G.

    2013-10-01

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  9. Breeding description for fast reactors and symbiotic reactor systems

    International Nuclear Information System (INIS)

    Hanan, N.A.

    1979-01-01

    A mathematical model was developed to provide a breeding description for fast reactors and symbiotic reactor systems by means of figures of merit type quantities. The model was used to investigate the effect of several parameters and different fuel usage strategies on the figures of merit which provide the breeding description. The integrated fuel cycle model for a single-reactor is reviewed. The excess discharge is automatically used to fuel identical reactors. The resulting model describes the accumulation of fuel in a system of identical reactors. Finite burnup and out-of-pile delays and losses are treated in the model. The model is then extended from fast breeder park to symbiotic reactor systems. The asymptotic behavior of the fuel accumulation is analyzed. The asymptotic growth rate appears as the largest eigenvalue in the solution of the characteristic equations of the time dependent differential balance equations for the system. The eigenvector corresponding to the growth rate is the core equilibrium composition. The analogy of the long-term fuel cycle equations, in the framework of this model, and the neutron balance equations is explored. An eigenvalue problem adjoint to the one generated by the characteristic equations of the system is defined. The eigenvector corresponding to the largest eigenvalue, i.e. to the growth rate, represents the ''isotopic breeding worths.'' Analogously to the neutron adjoint flux it is shown that the isotopic breeding worths represent the importance of an isotope for breeding, i.e. for the growth rate of a system

  10. Engineering of systems for application of scientific computing in industry

    OpenAIRE

    Loeve, W.; Loeve, W.

    1992-01-01

    Mathematics software is of growing importance for computer simulation in industrial computer aided engineering. To be applicable in industry the mathematics software and supporting software must be structured in such a way that functions and performance can be maintained easily. In the present paper a method is described for development of mathematics software in such a way that this requirement can be met.

  11. Productivity of a nuclear chemical reactor with gamma radioisotopic sources; Rendimiento de un reactor quimico-nuclear con fuentes radioisotopicas gamma

    Energy Technology Data Exchange (ETDEWEB)

    Anguis T, C

    1975-07-01

    According to an established mathematical model of successive Compton interaction processes the made calculations for major distances are extended checking the acceptability of the spheric geometry model for the experimental data for radioisotopic sources of Co-60 and Cs-137. Parameters such as the increasing factor and the absorbed dose served as comparative base. calculations for the case of a punctual source succession inside a determined volume cylinder are made to obtain the total dose, the deposited energy by each photons energetic group and the total absorbed energy inside the reactor. Varying adequately the height/radius relation for different cylinders, the distinct energy depositions are compared in each one of them once a time standardized toward a standard value of energy emitted by the reactor volume. A relation between the quantity of deposited energy in each point of the reactor and the conversion values of chemical species is established. They are induced by electromagnetic radiation and that are reported as ''G'' in the scientific literature (number of molecules formed or disappeared by each 100 e.v. of energy). Once obtained the molecular performance inside the reactor for each type of geometry, it is optimized the height/radius relation according to the maximum production of molecules by unity of time. It is completed a bibliographical review of ''G'' values reported by different types of aqueous solutions with the purpose to determine the maximum performance of molecular hydrogen as a function of pH of the solution and of the used type of solute among other factors. Calculations for the ethyl bromide production as an example of one of the industrial processes which actually work using the gamma radiation as reactions inductor are realized. (Author)

  12. Productivity of a nuclear chemical reactor with gamma radioisotopic sources; Rendimiento de un reactor quimico-nuclear con fuentes radioisotopicas gamma

    Energy Technology Data Exchange (ETDEWEB)

    Anguis T, C

    1975-07-01

    According to an established mathematical model of successive Compton interaction processes the made calculations for major distances are extended checking the acceptability of the spheric geometry model for the experimental data for radioisotopic sources of Co-60 and Cs-137. Parameters such as the increasing factor and the absorbed dose served as comparative base. calculations for the case of a punctual source succession inside a determined volume cylinder are made to obtain the total dose, the deposited energy by each photons energetic group and the total absorbed energy inside the reactor. Varying adequately the height/radius relation for different cylinders, the distinct energy depositions are compared in each one of them once a time standardized toward a standard value of energy emitted by the reactor volume. A relation between the quantity of deposited energy in each point of the reactor and the conversion values of chemical species is established. They are induced by electromagnetic radiation and that are reported as ''G'' in the scientific literature (number of molecules formed or disappeared by each 100 e.v. of energy). Once obtained the molecular performance inside the reactor for each type of geometry, it is optimized the height/radius relation according to the maximum production of molecules by unity of time. It is completed a bibliographical review of ''G'' values reported by different types of aqueous solutions with the purpose to determine the maximum performance of molecular hydrogen as a function of pH of the solution and of the used type of solute among other factors. Calculations for the ethyl bromide production as an example of one of the industrial processes which actually work using the gamma radiation as reactions inductor are realized. (Author)

  13. X-ray digital industrial radiography (DIR) for local liquid velocity (VLL) measurement in trickle bed reactors (TBRs): Validation of the technique

    International Nuclear Information System (INIS)

    Mohd Salleh, Khairul Anuar; Lee, Hyoung Koo; Rahman, Mohd Fitri Abdul; Al Dahhan, Muthanna H.

    2014-01-01

    Local liquid velocity measurements in Trickle Bed Reactors (TBRs) are one of the essential components in its hydrodynamic studies. These measurements are used to effectively determine a reactor's operating condition. This study was conducted to validate a newly developed technique that combines Digital Industrial Radiography (DIR) with Particle Tracking Velocimetry (PTV) to measure the Local Liquid Velocity (V LL ) inside TBRs. Three millimeter-sized Expanded Polystyrene (EPS) beads were used as packing material. Three validation procedures were designed to test the newly developed technique. All procedures and statistical approaches provided strong evidence that the technique can be used to measure the V LL within TBRs

  14. Industrial tomography applied to reactor safety

    International Nuclear Information System (INIS)

    Kruger, R.P.

    1977-01-01

    Work has begun which explores the use of Computed Axial Tomography (CAT), boundary detection, and internal surface reconstruction techniques in industrial nondestructive testing applications. This initial work is intended to inform the reader of the existence and interrelated nature of these techniques through the use of a realistic simulation of an industrial inspection problem

  15. Modeling and simulation of ammonia removal from purge gases of ammonia plants using a catalytic Pd-Ag membrane reactor

    International Nuclear Information System (INIS)

    Rahimpour, M.R.; Asgari, A.

    2008-01-01

    In this work, the removal of ammonia from synthesis purge gas of an ammonia plant has been investigated. Since the ammonia decomposition is thermodynamically limited, a membrane reactor is used for complete decomposition. A double pipe catalytic membrane reactor is used to remove ammonia from purge gas. The purge gas is flowing in the reaction side and is converted to hydrogen and nitrogen over nickel-alumina catalyst. The hydrogen is transferred through the Pd-Ag membrane of tube side to the shell side. A mathematical model including conservation of mass in the tube and shell side of reactor is proposed. The proposed model was solved numerically and the effects of different parameters on the rector performance were investigated. The effects of pressure, temperature, flow rate (sweep ratio), membrane thickness and reactor diameter have been investigated in the present study. Increasing ammonia conversion was observed by raising the temperature, sweep ratio and reducing membrane thickness. When the pressure increases, the decomposition is gone toward completion but, at low pressure the ammonia conversion in the outset of reactor is higher than other pressures, but complete destruction of the ammonia cannot be achieved. The proposed model can be used for design of an industrial catalytic membrane reactor for removal of ammonia from ammonia plant and reducing NO x emissions

  16. The sequencing batch reactor as an excellent configuration to treat wastewater from the petrochemical industry.

    Science.gov (United States)

    Caluwé, Michel; Daens, Dominique; Blust, Ronny; Geuens, Luc; Dries, Jan

    2017-02-01

    In the present study, the influence of a changing feeding pattern from continuous to pulse feeding on the characteristics of activated sludge was investigated with a wastewater from the petrochemical industry from the harbour of Antwerp. Continuous seed sludge, adapted to the industrial wastewater, was used to start up three laboratory-scale sequencing batch reactors. After an adaptation period from the shift to pulse feeding, the effect of an increasing organic loading rate (OLR) and volume exchange ratio (VER) were investigated one after another. Remarkable changes of the specific oxygen uptake rate (sOUR), microscopic structure, sludge volume index (SVI), SVI 30 /SVI 5 ratio, and settling rate were observed during adaptation. sOUR increased two to five times and treatment time decreased 43.9% in 15 days. Stabilization of the SVI occurred after a period of 20 days and improved significantly from 300 mL·g -1 to 80 mL·g -1 . Triplication of the OLR and VER had no negative influence on sludge settling and effluent quality. Adaptation time of the microorganisms to a new feeding pattern, OLR and VER was relatively short and sludge characteristics related to aerobic granular sludge were obtained. This study indicates significant potential of the batch activated sludge system for the treatment of this industrial petrochemical wastewater.

  17. The industrial impact of Sizewell 'B'

    International Nuclear Information System (INIS)

    1988-01-01

    The paper is a report on the industrial impact of post-Sizewell nuclear reactor policy, as presented by a Working Group set up by the United Kingdom Advisory Council on Applied Research and Development. The primary objective of the Working Group was the quantification of the effects of the introduction of a non-UK design of reactor upon employment, the availability of skilled resources, and on imports and exports. The subject is discussed under the topic headings:-the effect of Sizewell-'B' on UK manufacturing industry, skilled resources, safety, reactor design choice, and replication of the PWR. (U.K.)

  18. An integrated mathematical model for chemical oxygen demand (COD) removal in moving bed biofilm reactors (MBBR) including predation and hydrolysis.

    Science.gov (United States)

    Revilla, Marta; Galán, Berta; Viguri, Javier R

    2016-07-01

    An integrated mathematical model is proposed for modelling a moving bed biofilm reactor (MBBR) for removal of chemical oxygen demand (COD) under aerobic conditions. The composite model combines the following: (i) a one-dimensional biofilm model, (ii) a bulk liquid model, and (iii) biological processes in the bulk liquid and biofilm considering the interactions among autotrophic, heterotrophic and predator microorganisms. Depending on the values for the soluble biodegradable COD loading rate (SCLR), the model takes into account a) the hydrolysis of slowly biodegradable compounds in the bulk liquid, and b) the growth of predator microorganisms in the bulk liquid and in the biofilm. The integration of the model and the SCLR allows a general description of the behaviour of COD removal by the MBBR under various conditions. The model is applied for two in-series MBBR wastewater plant from an integrated cellulose and viscose production and accurately describes the experimental concentrations of COD, total suspended solids (TSS), nitrogen and phosphorous obtained during 14 months working at different SCLRs and nutrient dosages. The representation of the microorganism group distribution in the biofilm and in the bulk liquid allow for verification of the presence of predator microorganisms in the second reactor under some operational conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Job Prospects for Industrial Engineers.

    Science.gov (United States)

    Basta, Nicholas

    1988-01-01

    Discusses 1987 statistics from the College Placement Council regarding new job offers to graduating industrial engineers. Identifies trends in hiring in the field. Describes several issues that will face industrial engineers. States that the industrial engineers most likely to win jobs are those with good basic mathematics and communications…

  20. Reactor kinetics methods development. Final report

    International Nuclear Information System (INIS)

    Hansen, K.F.; Henry, A.F.

    1978-01-01

    This report is a qualitative summary of research conducted at MIT from 1967 to 1977 in the area of reactor kinetics methods. The objectives of the research were to find methods of integration of various mathematical models of nuclear reactor transients. From the beginning the work was aimed at numerical integration methods. Specific areas of research, discussed in more detail following, included: integration of multigroup diffusion theory models by finite difference and finite element methods; response matrix and nodal methods; coarse-mesh homogenization; and special treatment of boundary conditions

  1. Undergraduate Training for Industrial Careers.

    Science.gov (United States)

    Stehney, Ann K.

    1983-01-01

    Forty-eight mathematicians in industry, business, and government replied to a questionnaire on the relative merits of the traditional undergraduate curriculum, advanced topics in pure mathematics, computer programing, additional computer science, and specialized or applied topics. They favored programing and applied mathematics, along with a…

  2. Training reactor deployment. Advanced experimental course on designing new reactor cores

    International Nuclear Information System (INIS)

    Skoda, Radek

    2009-01-01

    Czech Technical University in Prague (CTU) operating its training nuclear reactor VR1, in cooperation with the North West University of South Africa (NWU), is applying for accreditation of the experimental training course ''Advanced experimental course on designing the new reactor core'' that will guide the students, young nuclear engineering professionals, through designing, calculating, approval, and assembling a new nuclear reactor core. Students, young professionals from the South African nuclear industry, face the situation when a new nuclear reactor core is to be build from scratch. Several reactor core design options are pre-calculated. The selected design is re-calculated by the students, the result is then scrutinized by the regulator and, once all the analysis is approved, physical dismantling of the current core and assembling of the new core is done by the students, under a close supervision of the CTU staff. Finally the reactor is made critical with the new core. The presentation focuses on practical issues of such a course, desired reactor features and namely pedagogical and safety aspects. (orig.)

  3. Investigation of the possibility of a calculative reactor safety estimation in the licence procedure for nuclear reactors

    International Nuclear Information System (INIS)

    Adler, B.; Kampf, T.

    1975-12-01

    Up to now it is impossible to calculate completely the safety of nuclear reactors. Therefore the authors have collected and employed a number of at a high degree independent safety parameters for mathematical evaluation of the reactor safety. By means of computer programs such parameters from about 400 research reactors have been analysed and the fluctuation ranges of their greatest density were determined. The limits of these fluctuation ranges are quickly available and can be used as recommended values for the layout and for the safety estimation of research reactors. A comparison of the existing layout recommendations and the determined fluctuation ranges in most cases shows a good agreement. In some cases corrections and new layout recommendations have been proposed. The determined fluctuation ranges found their first practical application in the estimation of the Rossendorf Equipment for Critical Experiments (RAKE). (author)

  4. Development of Mathematical Model and Analysis Code for Estimating Drop Behavior of the Control Rod Assembly in the Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Oh, Se-Hong; Kang, SeungHoon; Choi, Choengryul; Yoon, Kyung Ho; Cheon, Jin Sik

    2016-01-01

    On receiving the scram signal, the control rod assemblies are released to fall into the reactor core by its weight. Thus drop time and falling velocity of the control rod assembly must be estimated for the safety evaluation. There are three typical ways to estimate the drop behavior of the control rod assembly in scram action: Experimental, numerical and theoretical methods. But experimental and numerical(CFD) method require a lot of cost and time. Thus, these methods are difficult to apply to the initial design process. In this study, mathematical model and theoretical analysis code have been developed in order to estimate drop behavior of the control rod assembly to provide the underlying data for the design optimization. Mathematical model and theoretical analysis code have been developed in order to estimate drop behavior of the control rod assembly to provide the underlying data for the design optimization. A simplified control rod assembly model is considered to minimize the uncertainty in the development process. And the hydraulic circuit analysis technique is adopted to evaluate the internal/external flow distribution of the control rod assembly. Finally, the theoretical analysis code(named as HEXCON) has been developed based on the mathematical model. To verify the reliability of the developed code, CFD analysis has been conducted. And a calculation using the developed analysis code was carried out under the same condition, and both results were compared

  5. Proceedings of 2. Yugoslav symposium on reactor physics, Part 3, Herceg Novi (Yugoslavia), 27-29 Sep 1966

    International Nuclear Information System (INIS)

    1966-01-01

    This Volume 3 of the Proceedings of 2. Yugoslav symposium on reactor physics includes three papers describing the following: model for spatial synthesis of automated control system of the GCR type reactor; model for analysis of hydrodynamic processes at the BHWR type reactors; mathematical model for safety analysis of heavy water power reactor

  6. The research reactors their contribution to the reactors physics; Les reacteurs de recherche leur apport sur la physique des reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Barral, J C [Electricite de France (EDF), 75 - Paris (France); Zaetta, A [CEA/Cadarache, Direction des Reacteurs Nucleaires, DRN, 13 - Saint-Paul-lez-Durance (France); Johner, J [CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint Paul lez Durance (France); Mathoniere, G [CEA/Saclay, DEN, 91 - Gif sur Yvette (France); and others

    2000-07-01

    The 19 october 2000, the french society of nuclear energy organized a day on the research reactors. This associated report of the technical session, reactors physics, is presented in two parts. The first part deals with the annual meeting and groups general papers on the pressurized water reactors, the fast neutrons reactors and the fusion reactors industry. The second part presents more technical papers about the research programs, critical models, irradiation reactors (OSIRIS and Jules Horowitz) and computing tools. (A.L.B.)

  7. Nuclear reactor unit shutdown planning

    International Nuclear Information System (INIS)

    Gardais, J.P.

    1994-01-01

    In order to optimize the reactor maintenance shutdown efficiency and the reactor availability, an audit had been performed on the shutdown organization at EDF: management, skills, methods and experience feedback have been evaluated; several improvement paths have been identified: project management, introduction of shutdown management professionals, shutdown permanent industrialization, and experience feedback engineering

  8. Advanced converters and reactors

    International Nuclear Information System (INIS)

    Haefele, W.; Kessler, G.

    1984-01-01

    As Western Europe and most countries of the Asia-Pacific region (except Australia) have only small natural uranium resources, they must import nuclear fuel from the major uranium supplier countries. The introduction of advanced converter and breeder reactor technology allows a fuel utilization of a factor of 4 to 100 higher than with present low converters (LWRs) and will make uranium-importing countries less vulnerable to price jumps and supply stops in the uranium market. In addition, breeder-reactor technology will open up a potential that can cover world energy requirements for several thousand years. The enormous development costs of advanced converter and breeder technologies can probably be raised only by highly industrialized countries. Those highly industrialized countries that have little or no uranium resources (Western Europe, Japan) will probably be the first to introduce this advanced reactor technology on a commercial scale. A number of small countries and islands will need only small power reactors with inherent safety capabilities, especially in the beginning of their nuclear energy programs. For economic reasons, the fuel cycle services should come from large reprocessing centers of countries having sufficiently large nuclear power programs or from international fuel cycle centers. (author)

  9. Thermal-hydraulic interfacing code modules for CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.S.; Gold, M.; Sills, H. [Ontario Hydro Nuclear, Toronto (Canada)] [and others

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  10. Thermal-hydraulic interfacing code modules for CANDU reactors

    International Nuclear Information System (INIS)

    Liu, W.S.; Gold, M.; Sills, H.

    1997-01-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis

  11. Protection of semiconductor converters for controlled bypass reactors

    International Nuclear Information System (INIS)

    Dolgopolov, A. G.; Akhmetzhanov, N. G.; Karmanov, V. F.

    2010-01-01

    Possible ways of protecting thyristor converters in systems for magnetizing 110 - 500 kV controlled bypass reactors during switching and automatic reclosing are examined based on experience with the development of equipment, line tests, and mathematical modelling.

  12. Nuclear Burning Wave Modular Fast Reactor Concept

    International Nuclear Information System (INIS)

    Kodochigov, N.G.; Sukharev, Yu.P.

    2014-01-01

    The necessity to provide nuclear power industry, comparable in a scope with power industry based on a traditional fuel, inspired studies of an open-cycle fast reactor aimed at: - solution of the problem of fuel provision by implementing the highest breeding characteristics of new fissile materials of raw isotopes in a fast reactor and applying accumulated fissile isotopes in the same reactor, independently on a spent fuel reprocessing rate in the external fuel cycle; - application of natural or depleted uranium for makeup fuel, which, with no spent fuel reprocessing, forms the most favorable non-proliferation conditions; - application of inherent properties of the core and reactor for safety provision. The present report, based on previously published papers, gives the theoretical backgrounds of the concept of the reactor with a nuclear burning wave, in which an enriched-fuel core (driver) is replaced by a blanket, and basic conditions for nuclear burning wave initiating and keeping are shown. (author)

  13. A nodal Grean's function method of reactor core fuel management code, NGCFM2D

    International Nuclear Information System (INIS)

    Li Dongsheng; Yao Dong.

    1987-01-01

    This paper presents the mathematical model and program structure of the nodal Green's function method of reactor core fuel management code, NGCFM2D. Computing results of some reactor cores by NGCFM2D are analysed and compared with other codes

  14. Practice and Conceptions: Communicating Mathematics in the Workplace

    Science.gov (United States)

    Wood, Leigh N.

    2012-01-01

    The study examined the experience of communication in the workplace for mathematics graduates with a view to enriching university curriculum. I broaden the work of Burton and Morgan (2000), who investigated the discourse practices of academic mathematicians to examine the discourse used by new mathematics graduates in industry and their…

  15. 2015 Association for Women in Mathematics Symposium

    CERN Document Server

    Lauter, Kristin; Chambers, Erin; Flournoy, Nancy; Grigsby, Julia; Martin, Carla; Ryan, Kathleen; Trivisa, Konstantina

    2016-01-01

    Presenting the latest findings in topics from across the mathematical spectrum, this volume includes results in pure mathematics along with a range of new advances and novel applications to other fields such as probability, statistics, biology, and computer science. All contributions feature authors who attended the Association for Women in Mathematics Research Symposium in 2015: this conference, the third in a series of biennial conferences organized by the Association, attracted over 330 participants and showcased the research of women mathematicians from academia, industry, and government.

  16. Global Journal of Mathematical Sciences

    African Journals Online (AJOL)

    Global Journal of Mathematical Sciences publishes research work in all areas of ... of new theories, techniques and application to science, industry and society. The journal aims to promote the exchange of information and ideas between all ...

  17. MATLAB/SIMULINK platform for simulation of CANDU reactor control system

    International Nuclear Information System (INIS)

    Javidnia, H.; Jiang, J.

    2007-01-01

    In this paper a simulation platform for CANDU reactors' control system is presented. The platform is built on MATLAB/SIMULINK interactive graphical interface. Since MATLAB/SIMULINK are powerful tools to describe systems mathematically, all the subsystems in a CANDU reactor are represented in MATLAB's language and are implemented in SIMULINK graphical representation. The focus of the paper is on the flux control loop of CANDU reactors. However, the ideas can be extended to include other parts in CANDU power plants and the same technique can be applied to other types of nuclear reactors and their control systems. The CANDU reactor model and xenon feedback model are also discussed in this paper. (author)

  18. New competition in the world market of nuclear reactors

    International Nuclear Information System (INIS)

    Finon, D.

    2005-01-01

    As nuclear orders are picking up a little, there are strengths competing against one another in the world industry of reactors, an industry that has been deeply affected for twenty years, by the smallness of the market and the reorganization of the electromechanical industry. Competition remains particularly difficult, even though, in terms of exports, national markets in industrialized countries such as the American market and European market are now open to foreign newcomers. One of the reasons of the difficulty is the increased commercial competition based on advanced reactor techniques untested due to strong faith in technology leading to forget the learning difficulties of older reactor types. On a narrow market, demanding and with very specific political interference, the reasoning is not like on an ordinary capital equipment market. Each builder tries to sell by relying on the assets it has in addition to the offered price and related services: industrial reputation and experience that play confusedly when untested advanced reactors are competing with one another, credit terms offered by the State and the government's influence on the market of emerging economies, the backing o the State's financial insurance in the event of risks taken in the sale of turnkey untested reactors. In the competition of the five manufacturers in the export market, American builders do not seem to have the best place, though even the leading position of Framatome ANP shows some limits. (author)

  19. Industrial ceramics

    International Nuclear Information System (INIS)

    Mengelle, Ch.

    1999-04-01

    After having given the definition of the term 'ceramics', the author describes the different manufacturing processes of these compounds. These materials are particularly used in the fields of 1)petroleum industry (in primary and secondary reforming units, in carbon black reactors and ethylene furnaces). 2)nuclear industry (for instance UO 2 and PuO 2 as fuels; SiC for encapsulation; boron carbides for control systems..)

  20. Research reactor spent fuel in Ukraine

    International Nuclear Information System (INIS)

    Trofimenko, A.P.

    1996-01-01

    This paper describes the research reactors in Ukraine, their spent fuel facilities and spent fuel management problems. Nuclear sciences, technology and industry are highly developed in Ukraine. There are 5 NPPs in the country with 14 operating reactors which have total power capacity of 12,800 MW

  1. Generation-IV nuclear reactors, SFR concept

    International Nuclear Information System (INIS)

    Dufour, P.

    2010-01-01

    In this presentation author deals with development of sodium-cooled fast reactors and lead-cooled fast reactors. He concluded that: - SFR is a proved concept that has never achieved industrial deployment; - The GEN IV objectives need to reconsider the design of both the core and the reactor design : innovations are being analysed; Future design will benefit from considerable feedback of design, licensing, construction and operation of PX, SPX, etc.

  2. Rotating bed reactor for CLC: Bed characteristics dependencies on internal gas mixing

    International Nuclear Information System (INIS)

    Håkonsen, Silje Fosse; Grande, Carlos A.; Blom, Richard

    2014-01-01

    Highlights: • A mathematical model for the rotating CLC reactor has been developed. • The model reflects the gas distribution in the reactor during CLC operation. • Radial dispersion in the rotating bed is the main cause for internal gas mixing. • The model can be used to optimize the reactor design and particle characteristics. - Abstract: A newly designed continuous lab-scale rotating bed reactor for chemical looping combustion using CuO/Al 2 O 3 oxygen carrier spheres and methane as fuel gives around 90% CH 4 conversion and >90% CO 2 capture efficiency based on converted methane at 800 °C. However, from a series of experiments using a broad range of operating conditions potential CO 2 purities only in the range 20–65% were yielded, mostly due to nitrogen slip from the air side of the reactor into the effluent CO 2 stream. A mathematical model was developed intending to understand the air-mixing phenomena. The model clearly reflects the gas slippage tendencies observed when varying the process conditions such as rotation frequency, gas flow and the flow if inert gas in the two sectors dividing the air and fuel side of the reactor. Based on the results, it is believed that significant improvements can be made to reduce gas mixing in future modified and scaled-up reactor versions

  3. X-ray digital industrial radiography (DIR) for local liquid velocity (V(LL)) measurement in trickle bed reactors (TBRs): validation of the technique.

    Science.gov (United States)

    Mohd Salleh, Khairul Anuar; Rahman, Mohd Fitri Abdul; Lee, Hyoung Koo; Al Dahhan, Muthanna H

    2014-06-01

    Local liquid velocity measurements in Trickle Bed Reactors (TBRs) are one of the essential components in its hydrodynamic studies. These measurements are used to effectively determine a reactor's operating condition. This study was conducted to validate a newly developed technique that combines Digital Industrial Radiography (DIR) with Particle Tracking Velocimetry (PTV) to measure the Local Liquid Velocity (V(LL)) inside TBRs. Three millimeter-sized Expanded Polystyrene (EPS) beads were used as packing material. Three validation procedures were designed to test the newly developed technique. All procedures and statistical approaches provided strong evidence that the technique can be used to measure the V(LL) within TBRs.

  4. Situation of nuclear industry in Japan

    International Nuclear Information System (INIS)

    2004-03-01

    This document presents the situation of nuclear industry in Japan: cooperation with France in the domain of the fuel cycle (in particular the back-end) and of for the industrial R and D about fast reactors and nuclear safety; present day situation characterized by a series of incidents in the domain of nuclear safety and by an administrative reorganization of the research and safety organizations; power of local representatives, results of April 2003 elections, liberalization of the electric power sector, impact of the TEPCO affair (falsification of safety reports) on the nuclear credibility, re-start up of the Monju reactor delayed by judicial procedures, stopping of the program of MOX fuel loading in Tepco's reactors, discovery of weld defects in the newly built Rokkasho-mura reprocessing plant, an ambitious program of reactors construction, the opportunity of Russian weapons dismantling for the re-launching of sodium-cooled fast reactors; the competition between France and Japan for the setting up of ITER reactor and its impact of the French/Japanese partnership. (J.S.)

  5. Studies of a small PWR for onsite industrial power

    International Nuclear Information System (INIS)

    Klepper, O.H.; Smith, W.R.

    1977-01-01

    Information on the use of a 300 to 400 MW(t) PWR type reactor for industrial applications is presented concerning the potential market, reliability considerations, reactor plant description, construction techniques, comparison between nuclear and fossil-fired process steam costs, alternative fossil-fired steam supplies, and industrial application

  6. Multigroup perturbation model for kinetic analysis of nuclear reactors

    International Nuclear Information System (INIS)

    Souza, G.M.

    1989-01-01

    The scope of this work is the development of a multigroup perturbation theory for the purpose of Kinetic and dynamic analysis of nuclear reactors. The equations that describe the reactor behavior were presented in all generality and written in the shorthand notation of matrices and vectors. In the derivation of those equations indetermined operators and discretizing factors were introduced and then determined by comparision with conventional equations. Fick's Law was developed in higher orders for neutron and importance current density. The solution of the direct and adjoint fields were represented by combination of the eigenfunctions of the B and B* operators and the eigenvalue modulus equality was established mathematically. In the derivation of the reactivity expression the B operator perturbation was split in two non coupled to the flux form and level. The prompt neutrons effective mean life was derived from reactor equations and importance conservation. The establishment of the Nordheim's equation, although modified, was based on Gandini. Finally, a mathematical interpretation of the flux-trap region was avented. (author)

  7. Independent assessment for new nuclear reactor safety

    Directory of Open Access Journals (Sweden)

    D'Auria Francesco

    2017-01-01

    Full Text Available A rigorous framework for safety assessment is established in all countries where nuclear technology is used for the production of electricity. On the one side, industry, i.e. reactor designers, vendors and utilities perform safety analysis and demonstrate consistency between results of safety analyses and requirements. On the other side, regulatory authorities perform independent assessment of safety and confirm the acceptability of safety of individual reactor units. The process of comparing results from analyses by reactor utilities and regulators is very complex. The process is also highly dependent upon mandatory approaches pursued for the analysis and from very many details which required the knowledge of sensitive proprietary data (e.g. spacer designs. Furthermore, all data available for the design, construction and operation of reactors produced by the nuclear industry are available to regulators. Two areas for improving the process of safety assessment for individual Nuclear Power Plant Units are identified: New details introduced by industry are not always and systematically requested by regulators for the independent assessment; New analytical techniques and capabilities are not necessarily used in the analyses by regulators (and by the industry. The established concept of independent assessment constitutes the way for improving the process of safety assessment. This is possible, or is largely facilitated, by the recent availability of the so-called Best Estimate Plus Uncertainty approach.

  8. Independent assessment for new nuclear reactor safety

    International Nuclear Information System (INIS)

    D'Auria, F.; Glaeser, H.; Debrecin, N.

    2017-01-01

    A rigorous framework for safety assessment is established in all countries where nuclear technology is used for the production of electricity. On one side, industry, i.e. reactor designers, vendors and utilities perform safety analysis and demonstrate consistency between results of safety analyses and requirements. On the other side, regulatory authorities perform independent assessment of safety and confirm the acceptability of safety of individual reactor units. The process of comparing results from analyses by reactor utilities and regulators is very complex. The process is also highly dependent upon mandatory approaches pursued for the analysis and from very many details which required the knowledge of sensitive proprietary data (e.g. spacer designs). Furthermore, all data available for the design, construction and operation of reactors produced by the nuclear industry are available to regulators. Two areas for improving the process of safety assessment for individual Nuclear Power Plant Units are identified: New details introduced by industry are not always and systematically requested by regulators for the independent assessment; New analytical techniques and capabilities are not necessarily used in the analyses by regulators (and by the industry). The established concept of independent assessment constitutes the way for improving the process of safety assessment. This is possible, or is largely facilitated, by the recent availability of the so-called Best Estimate Plus Uncertainty (BEPU) approach. (authors)

  9. mathematical modelling of atmospheric dispersion of pollutants

    International Nuclear Information System (INIS)

    Mohamed, M.E.

    2002-01-01

    the main objectives of this thesis are dealing with environmental problems adopting mathematical techniques. in this respect, atmospheric dispersion processes have been investigated by improving the analytical models to realize the realistic physical phenomena. to achieve these aims, the skeleton of this work contained both mathematical and environmental topics,performed in six chapters. in chapter one we presented a comprehensive review study of most important informations related to our work such as thermal stability , plume rise, inversion, advection , dispersion of pollutants, gaussian plume models dealing with both radioactive and industrial contaminants. chapter two deals with estimating the decay distance as well as the decay time of either industrial or radioactive airborne pollutant. further, highly turbulent atmosphere has been investigated as a special case in the three main thermal stability classes namely, neutral, stable, and unstable atmosphere. chapter three is concerned with obtaining maximum ground level concentration of air pollutant. the variable effective height of pollutants has been considered throughout the mathematical treatment. as a special case the constancy of effective height has been derived mathematically and the maximum ground level concentration as well as its location have been established

  10. Effect of Using Scientific Calculators in Learning Mathematics by ...

    African Journals Online (AJOL)

    Mathematics plays a crucial role in technological development of any country; attainment in the subject determines the rate of adoption of appropriate technology and industrialization. In Kenya mathematics is compulsory in primary and at secondary school level. Use of scientific calculators was introduced in Kenya ...

  11. Estimation in the Primary School: Developing a Key Mathematical Skill for Life

    Science.gov (United States)

    Mildenhall, Paula

    2016-01-01

    Very recently, in the "Australian Association of Mathematics Teachers (AAMT)/Australian Industry Group quantitative report" (2014), concerns were raised that school mathematics is lacking real world application. This report highlighted the gaps between school mathematics and the requirements of the workplace. After interviewing industry…

  12. Theoretical Basics of Teaching Discrete Mathematics

    Directory of Open Access Journals (Sweden)

    Y. A. Perminov

    2012-01-01

    Full Text Available  The paper deals with the research findings concerning the process of mastering the theoretical basics of discrete mathematics by the students of vocational pedagogic profile. The methodological analysis is based on the subject and functions of the modern discrete mathematics and its role in mathematical modeling and computing. The modern discrete mathematics (i.e. mathematics of the finite type structures plays the important role in modernization of vocational training. It is especially rele- vant to training students for vocational pedagogic qualifications, as in the future they will be responsible for training the middle and the senior level specialists in engineer- ing and technical spheres. Nowadays in different industries, there arise the problems which require for their solving both continual – based on the classical mathematical methods – and discrete modeling. The teaching course of discrete mathematics for the future vocational teachers should be relevant to the target qualification and aimed at mastering the mathematical modeling, systems of computer mathematics and computer technologies. The author emphasizes the fundamental role of mastering the language of algebraic and serial structures, as well as the logical, algorithmic, combinatory schemes dominating in dis- crete mathematics. The guidelines for selecting the content of the course in discrete mathematics are specified. The theoretical findings of the research can be put into practice whilst developing curricula and working programs for bachelors and masters’ training. 

  13. Development of a new virtual nuclear reactor laboratory

    International Nuclear Information System (INIS)

    Ahmad Abrishami; Ali Pazirandeh

    2009-01-01

    Full text: Nowadays the education industry benefits from computer programs and software in various ways as well as many other industries. Here the e-learning technology uses some forms of software platform to present its contents. Virtual laboratories are superior tools in this technology. A virtual laboratory is interactive graphical user interface software that is based on known scientific laws of its virtual elements, which responses to user acts as desired in the real case. There are some known commercial and non-commercial ones. There are also some simulation software in the field of nuclear industry that has some uses in operator learning and some other applications such as analyzing the effects of human mistakes on plant safety. In this paper we discuss more about the ways to develop a virtual nuclear reactor laboratory and propose our first release of such tool. Our target reactor is Tehran Research Reactor (TRR), which is a pool type reactor. We used WIMS and COSTANZA to develop the simulator kernel of virtual laboratory. (Author)

  14. Apcom 87. Proceedings of the twentieth international symposium on the application of computers and mathematics in the mineral industries V. 2

    International Nuclear Information System (INIS)

    King, R.P.; Barker, I.J.

    1987-01-01

    APCOM symposia provide a medium of exchange of technical expertise and experience for practitioners in the general field of applications of computers, operations research, mathematical and geostatistical techniques in the mineral industries. Contributors represent mine and plant personnel, academic and government or semi-government representatives, and the topics covered range from mining and metallurgical techniques and planning to financial analysis, project valuation, information systems, computer graphics, geostatistics, etc. For the 20th APCOM, the Proceedings have been divided into the three broad categories of mining, metallurgy and geostatistics, and are grouped accordingly into the three published volumes. APCOM '87, the twentieth in this series of international meetings, places major emphasis on the practical application of computers in the workplace to implement the theoretical techniques. Modelling, simulation and process control still seem to attract the major research efforts. Modelling of milling and flotation have a long history but are still active areas for research. Pyrometallurgy, gold recovery, separation processes with distributed partition functions like screening and gravity separation, and electrowinning, are also attracting attention. Computeraided design (CAD) is becoming a lot more usable and available throughout the industry. Process control is at the door of a new era, with the combination of sensor technology, reliable on-plant computers and viable theoretical techniques now becoming available as never before. CAD and process control have also given new impetus to the need to develop and test computer-based models of a wider range of unit operations. APCOM remains the most important forum for the discussion of new developments in the application of computer methods and mathematical techniques in the metallurgical industry

  15. Mathematical modeling of a continuous alcoholic fermentation process in a two-stage tower reactor cascade with flocculating yeast recycle.

    Science.gov (United States)

    de Oliveira, Samuel Conceição; de Castro, Heizir Ferreira; Visconti, Alexandre Eliseu Stourdze; Giudici, Reinaldo

    2015-03-01

    Experiments of continuous alcoholic fermentation of sugarcane juice with flocculating yeast recycle were conducted in a system of two 0.22-L tower bioreactors in series, operated at a range of dilution rates (D 1 = D 2 = 0.27-0.95 h(-1)), constant recycle ratio (α = F R /F = 4.0) and a sugar concentration in the feed stream (S 0) around 150 g/L. The data obtained in these experimental conditions were used to adjust the parameters of a mathematical model previously developed for the single-stage process. This model considers each of the tower bioreactors as a perfectly mixed continuous reactor and the kinetics of cell growth and product formation takes into account the limitation by substrate and the inhibition by ethanol and biomass, as well as the substrate consumption for cellular maintenance. The model predictions agreed satisfactorily with the measurements taken in both stages of the cascade. The major differences with respect to the kinetic parameters previously estimated for a single-stage system were observed for the maximum specific growth rate, for the inhibition constants of cell growth and for the specific rate of substrate consumption for cell maintenance. Mathematical models were validated and used to simulate alternative operating conditions as well as to analyze the performance of the two-stage process against that of the single-stage process.

  16. Utility industry evaluation of the metal fuel facility and metal fuel performance for liquid metal reactors

    International Nuclear Information System (INIS)

    Burstein, S.; Gibbons, J.P.; High, M.D.; O'Boyle, D.R.; Pickens, T.A.; Pilmer, D.F.; Tomonto, J.R.; Weinberg, C.J.

    1990-02-01

    A team of utility industry representatives evaluated the liquid metal reactor metal fuel process and facility conceptual design being developed by Argonne National Laboratory (ANL) under Department of Energy sponsorship. The utility team concluded that a highly competent ANL team was making impressive progress in developing high performance advanced metal fuel and an economic processing and fabrication technology. The utility team concluded that the potential benefits of advanced metal fuel justified the development program, but that, at this early stage, there are considerable uncertainties in predicting the net overall economic benefit of metal fuel. Specific comments and recommendations are provided as a contribution towards enhancing the development program. 6 refs

  17. Monolithic reactor : Higher yield, less energy

    NARCIS (Netherlands)

    Kreutzer, M.T.; Moulijn, J.A.; Kapteijn, F.; Mols, B.

    2004-01-01

    The production of margarine, the desulphurisation of crude oil, and the manufacture of synthetic diesel fuel, these are only three of the many industrial processes in which a three-phase reactor is used. Traditionally, this type of reactor is rather ill-defined. Success with a lab scale set-up is no

  18. Mathematical modeling of an in-line low-NOx calciner

    DEFF Research Database (Denmark)

    Iliuta, Ion; Dam-Johansen, Kim; Jensen, Lars Skaarup

    2002-01-01

    The reduction of the NOx content in in-line-calciner-type kiln systems can be made by optimization of the primary filing in the rotary kiln and of the secondary firing in the calciner. Because the optimization of calciner offers greater opportunities the mathematical modeling of this reactor...

  19. Organizing the Canadian nuclear industry to meet the challenge

    International Nuclear Information System (INIS)

    Lortie, Pierre.

    1983-06-01

    The CANDU reactor is struggling for a share of the dwindling reactor market against formidable and well-established competition. The Canadian nuclear industry has historically depended upon two crown corporations, Atomic Energy of Canada Ltd. and Ontario Hydro, which have taken the lead in designing and engineering the reactor. Crown corporations are not notably successful in marketing, however, and the time has come for the industry to organize itself in preparation for an aggressive export drive

  20. A modular approach to lead-cooled reactors modelling

    Energy Technology Data Exchange (ETDEWEB)

    Casamassima, V. [CESI RICERCA, via Rubattino 54, I-20134 Milano (Italy)], E-mail: casamassima@cesiricerca.it; Guagliardi, A. [CESI RICERCA, via Rubattino 54, I-20134 Milano (Italy)], E-mail: guagliardi@cesiricerca.it

    2008-06-15

    After an overview of the lego plant simulation tools (LegoPST), the paper gives some details about the ongoing LegoPST extension for modelling lead fast reactor plants. It refers to a simple mathematical model of the liquid lead channel dynamic process and shows the preliminary results of its application in dynamic simulation of the BREST 300 liquid lead steam generator. Steady state results agree with reference data [IAEA-TECDOC 1531, Fast Reactor Database, 2006 Update] both for water and lead.

  1. A modular approach to lead-cooled reactors modelling

    International Nuclear Information System (INIS)

    Casamassima, V.; Guagliardi, A.

    2008-01-01

    After an overview of the lego plant simulation tools (LegoPST), the paper gives some details about the ongoing LegoPST extension for modelling lead fast reactor plants. It refers to a simple mathematical model of the liquid lead channel dynamic process and shows the preliminary results of its application in dynamic simulation of the BREST 300 liquid lead steam generator. Steady state results agree with reference data [IAEA-TECDOC 1531, Fast Reactor Database, 2006 Update] both for water and lead

  2. The mathematics of banking and finance

    CERN Document Server

    Cox, Dennis

    2006-01-01

    Throughout banking, mathematical techniques are used. Some of these are within software products or models; mathematicians use others to analyse data. The current literature on the subject is either very basic or very advanced. The Mathematics of Banking offers an intermediate guide to the various techniques used in the industry, and a consideration of how each one should be approached. Written in a practical style, it will enable readers to quickly appreciate the purpose of the techniques and, through illustrations, see how they can be applied in practice. Coverage is extensive and includes techniques such as VaR analysis, Monte Carlo simulation, extreme value theory, variance and many others.A practical review of mathematical techniques needed in banking which does not expect a high level of mathematical competence from the reader

  3. Inherent safety characteristics of innovative reactors

    International Nuclear Information System (INIS)

    Heil, J.A.

    1995-11-01

    The added safety value of innovative or third generation reactor designs has been evaluated in order to determine the most suitable candidate for Dutch government funded research and development support. To this end, four innovative reactor concepts, viz. PIUS (Process Inherent Ultimate Safety), PRISM (Power Reactor Innovative Small), HTR-M (High Temperature Reactor Module) and MHTGR (Modular High Temperature Gas-cooled Reactor), have been studied and their passive and inherent safety characteristics have been outlined. Also the outlook for further technological and industrial development has been considered. The results of the study confirm the perspective of the innovative reactors for reduced dependence on active safety provisions and for a further reduced vulnerability to technical failures and human errors. The accident responses to generic accident initiators, viz. reactivity and cooling accidents, and also to reactor specific accidents show that neither active safety systems nor short term operator actions are required for maintaining the reactor core in a controlled and coolable condition. Whether this gives rise to a higher total safety of the innovative reactor designs, compared to evolutionary or advanced reactors, cannot be concluded. Supplementary experimental and analytical analyses of reactor specific accidents are required to be able to assess the safety of these innovative designs in a more quantitative manner. It is believed that the safety case of innovative reactors, which are less dependent on active safety systems, can be communicated with the general public in a more transparent way. Considering the perspective for further technological and industrial development it is not expected that any of the considered innovative reactor concepts will become commercially available within the next one to two decades. However, they could be made available earlier if they would receive sufficient financial backing. Considering the added safety perspectives

  4. Engineering Physics and Mathematics Division progress report for period ending June 30, 1985

    International Nuclear Information System (INIS)

    1986-02-01

    The report is divided into eight sections: (1) nuclear data measurements and evaluation; (2) systems analysis and shielding; (3) applied physics and fusion reactor analysis; (4) mathematical modeling and intelligent control; (5) reliability and human factors research; (6) applied risk and decision analysis; (7) information analysis and data management; and (8) mathematical sciences. Each section then consists of abstracts of presented or published papers

  5. Engineering Physics and Mathematics Division progress report for period ending June 30, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    The report is divided into eight sections: (1) nuclear data measurements and evaluation; (2) systems analysis and shielding; (3) applied physics and fusion reactor analysis; (4) mathematical modeling and intelligent control; (5) reliability and human factors research; (6) applied risk and decision analysis; (7) information analysis and data management; and (8) mathematical sciences. Each section then consists of abstracts of presented or published papers. (WRF)

  6. International breeder reactor development

    International Nuclear Information System (INIS)

    Traube, K.

    1976-01-01

    For more than a decade, sodium cooled breeder reactors have now been in the focus of advanced nuclear power development in the major industrialized countries. In the sixties, a total of seven small experimental nuclear power stations were commissioned. Two of these have been shut down in the meantime, the others continue to work satisfactorily, their main purpose being the development of fuel elements. The years 1972-1974 saw the commissioning of the prototype power stations in the 300 MWe power category in France, the United Kingdom and the Soviet Union. Presently, other experimental reactors are under construction in the Federal Republic of Germany, Italy, Japan, the United States, plus another Soviet 600 MWe prototype reactor and the SNR 300 DeBeNeLux prototype at Kalkar. A comparison of the technological features either implemented or planned in the prototype and experimental power plants and of their fuel elements reveals a remarkable similarity in the basic concepts pursued in different countries. The two types of breeder reactors, viz. the loop and the pool types, show a closer resemblance to each other than do pressurized and boilling water reactors. The growing awareness of administrative problems emerging in the approaching phase of the introduction of large breeder power stations in a number of European countries has recently led to a streamlining effort in the structure of industries and to tentative steps towards international cooperation on a broad basis. (orig.) [de

  7. Hamiltonian circuited simulations in reactor physics

    International Nuclear Information System (INIS)

    Rio Hirowati Shariffudin

    2002-01-01

    In the assessment of suitability of reactor designs and in the investigations into reactor safety, the steady state of a nuclear reactor has to be studied carefully. The analysis can be done through mockup designs but this approach costs a lot of money and consumes a lot of time. A less expensive approach is via simulations where the reactor and its neutron interactions are modelled mathematically. Finite difference discretization of the diffusion operator has been used to approximate the steady state multigroup neutron diffusion equations. The steps include the outer scheme which estimates the resulting right hand side of the matrix equation, the group scheme which calculates the upscatter problem and the inner scheme which solves for the flux for a particular group. The Hamiltonian circuited simulations for the inner iterations of the said neutron diffusion equation enable the effective use of parallel computing, especially where the solutions of multigroup neutron diffusion equations involving two or more space dimensions are required. (Author)

  8. Mathematics and Statistics Research Department progress report for period ending June 30, 1976

    International Nuclear Information System (INIS)

    Gosslee, D.G.; Shelton, B.K.; Ward, R.C.; Wilson, D.G.

    1976-10-01

    Brief summaries of work done in mathematics and related fields are presented. Research in mathematics and statistics concerned statistical estimation, statistical testing, experiment design, probability, continuum mechanics, functional integration, matrices and other operators, and mathematical software. More applied studies were conducted in the areas of analytical chemistry, biological research, chemistry and physics research, energy research, environmental research, health physics research, materials research, reactor and thermonuclear research, sampling inspection, quality control, and life testing, and uranium resource evaluation research. Additional sections deal with educational activities, presentation of research results, and professional activities. 7 figures, 9 tables

  9. Kinetics of two phase fuel reflected reactors

    International Nuclear Information System (INIS)

    Buzano, M.L.; Corno, S.E.; Mattioda, F.

    2000-01-01

    In the present work a self-consistent mathematical model for the local dynamics of a quite particular class of fission reactors has been developed and solved. These devices consist of an innermost multiplying region, in which a significant fraction of the fissile fuel is diluted into a liquid phase, while the complementary fuel fraction operates as a standing solid matrix. This unconventional active region is surrounded by a standard peripheral reflector. For cooling purposes, the fluid fraction of the fuel needs to be circulated through external heat exchangers. The pump driven circulation causes the delayed neutron precursors, dissolved inside the fluid phase, to be spatially homogenized in the core volume well before decaying, while a continuous removal of precursor nuclei from the core takes place as a consequence of the outside circulation. Furthermore, the fraction of the extracted precursors still surviving after the solenoidal trip through the heat exchangers is continuously reinserted into the core. A new type of dynamical model is required to account for these unusual technological features. The mathematical structure of the evolution model presented in this paper consists of a system of integro-differential-difference equations, whose solution is derived in closed-form, by means of fully analytical techniques. Many dynamics and safety features of reactors of this type can be clarified a priori, upon inspection of the mathematical properties of the solution of the model. The rigorous time-eigenvalue generating equation can be explicitly established in the present theoretical context, together with the evaluation of any kind of transients. A short survey on the possible fields of application of these reactors is also presented

  10. Development of an educational nuclear research reactor simulator

    International Nuclear Information System (INIS)

    Arafa, Amany Abdel Aziz; Saleh, Hassan Ibrahim; Ashoub, Nagieb

    2014-01-01

    This paper introduces the development of a research reactor educational simulator based on LabVIEW that allows the training of operators and studying different accident scenarios and the effects of operational parameters on the reactor behavior. Using this simulator, the trainee can test the interaction between the input parameters and the reactor activities. The LabVIEW acts as an engine implements the reactor mathematical models. In addition, it is used as a tool for implementing the animated graphical user interface. This simulator provides the training requirements for both of the reactor staff and the nuclear engineering students. Therefore, it uses dynamic animation to enhance learning and interest for a trainee on real system problems and provides better visual effects, improved communications, and higher interest levels. The benefits of conducting such projects are to develop the expertise in this field and save costs of both operators training and simulation courses.

  11. Development of an educational nuclear research reactor simulator

    Energy Technology Data Exchange (ETDEWEB)

    Arafa, Amany Abdel Aziz; Saleh, Hassan Ibrahim [Atomic Energy Authority, Cairo (Egypt). Radiation Engineering Dept.; Ashoub, Nagieb [Atomic Energy Authority, Cairo (Egypt). Reactor Physics Dept.

    2014-12-15

    This paper introduces the development of a research reactor educational simulator based on LabVIEW that allows the training of operators and studying different accident scenarios and the effects of operational parameters on the reactor behavior. Using this simulator, the trainee can test the interaction between the input parameters and the reactor activities. The LabVIEW acts as an engine implements the reactor mathematical models. In addition, it is used as a tool for implementing the animated graphical user interface. This simulator provides the training requirements for both of the reactor staff and the nuclear engineering students. Therefore, it uses dynamic animation to enhance learning and interest for a trainee on real system problems and provides better visual effects, improved communications, and higher interest levels. The benefits of conducting such projects are to develop the expertise in this field and save costs of both operators training and simulation courses.

  12. Mathematics delivering the advantage: the role of mathematicians in manufacturing and beyond.

    Science.gov (United States)

    Saward, Vicki

    2017-05-01

    Much has been written about the benefits that mathematics can bring to the UK economy and the manufacturing sector in particular, but less on the value of mathematicians and a mathematical training. This article, written from an industry perspective, considers the value of mathematicians to the UK's industrial base and the importance to the UK economy of encouraging young people in the UK to choose to study mathematics at school as a gateway to a wide range of careers. The points are illustrated using examples from the author's 20 years' experience in the security and intelligence and manufacturing sectors.

  13. Influence of ultrasound power on acoustic streaming and micro-bubbles formations in a low frequency sono-reactor: mathematical and 3D computational simulation.

    Science.gov (United States)

    Sajjadi, Baharak; Raman, Abdul Aziz Abdul; Ibrahim, Shaliza

    2015-05-01

    This paper aims at investigating the influence of ultrasound power amplitude on liquid behaviour in a low-frequency (24 kHz) sono-reactor. Three types of analysis were employed: (i) mechanical analysis of micro-bubbles formation and their activities/characteristics using mathematical modelling. (ii) Numerical analysis of acoustic streaming, fluid flow pattern, volume fraction of micro-bubbles and turbulence using 3D CFD simulation. (iii) Practical analysis of fluid flow pattern and acoustic streaming under ultrasound irradiation using Particle Image Velocimetry (PIV). In mathematical modelling, a lone micro bubble generated under power ultrasound irradiation was mechanistically analysed. Its characteristics were illustrated as a function of bubble radius, internal temperature and pressure (hot spot conditions) and oscillation (pulsation) velocity. The results showed that ultrasound power significantly affected the conditions of hotspots and bubbles oscillation velocity. From the CFD results, it was observed that the total volume of the micro-bubbles increased by about 4.95% with each 100 W-increase in power amplitude. Furthermore, velocity of acoustic streaming increased from 29 to 119 cm/s as power increased, which was in good agreement with the PIV analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Implementation into a CFD code of neutron kinetics and fuel pin models for nuclear reactor transient analyses

    International Nuclear Information System (INIS)

    Chen Zhao; Chen, Xue-Nong; Rineiski, Andrei; Zhao Pengcheng; Chen Hongli

    2014-01-01

    Safety analysis is an important tool for justifying the safety of nuclear reactors. The traditional method for nuclear reactor safety analysis is performed by means of system codes, which use one-dimensional lumped-parameter method to model real reactor systems. However, there are many multi-dimensional thermal-hydraulic phenomena cannot be predicated using traditional one-dimensional system codes. This problem is extremely important for pool-type nuclear systems. Computational fluid dynamics (CFD) codes are powerful numerical simulation tools to solve multi-dimensional thermal-hydraulics problems, which are widely used in industrial applications for single phase flows. In order to use general CFD codes to solve nuclear reactor transient problems, some additional models beyond general ones are required. Neutron kinetics model for power calculation and fuel pin model for fuel pin temperature calculation are two important models of these additional models. The motivation of this work is to develop an advance numerical simulation method for nuclear reactor safety analysis by implementing neutron kinetics model and fuel pin model into general CFD codes. In this paper, the Point Kinetics Model (PKM) and Fuel Pin Model (FPM) are implemented into a general CFD code FLUENT. The improved FLUENT was called as FLUENT/PK. The mathematical models and implementary method of FLUENT/PK are descripted and two demonstration application cases, e.g. the unprotected transient overpower (UTOP) accident of a Liquid Metal cooled Fast Reactor (LMFR) and the unprotected beam overpower (UBOP) accident of an Accelerator Driven System (ADS), are presented. (author)

  15. A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors.

    Science.gov (United States)

    Trujillo, Francisco Javier; Knoerzer, Kai

    2011-11-01

    High power ultrasound reactors have gained a lot of interest in the food industry given the effects that can arise from ultrasonic-induced cavitation in liquid foods. However, most of the new food processing developments have been based on empirical approaches. Thus, there is a need for mathematical models which help to understand, optimize, and scale up ultrasonic reactors. In this work, a computational fluid dynamics (CFD) model was developed to predict the acoustic streaming and induced heat generated by an ultrasonic horn reactor. In the model it is assumed that the horn tip is a fluid inlet, where a turbulent jet flow is injected into the vessel. The hydrodynamic momentum rate of the incoming jet is assumed to be equal to the total acoustic momentum rate emitted by the acoustic power source. CFD velocity predictions show excellent agreement with the experimental data for power densities higher than W(0)/V ≥ 25kWm(-3). This model successfully describes hydrodynamic fields (streaming) generated by low-frequency-high-power ultrasound. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  16. Jordan Research and Training Reactor (JRTR) Utilization Facilities

    International Nuclear Information System (INIS)

    Xoubi, N.

    2013-01-01

    Jordan Research and Training Reactor (JRTR) is a 5 MW light water open pool multipurpose reactor that serves as the focal point for Jordan National Nuclear Centre, and is designed to be utilized in three main areas: Education and training, nuclear research, and radioisotopes production and other commercial and industrial services. The reactor core is composed of 18 fuel assemblies, MTR plate type 19.75% enriched uranium silicide (U 3 Si 2 ) in aluminium matrix, and is reflected on all sides by beryllium and graphite. The reactor power is upgradable to 10 MW with a maximum thermal flux of 1.45×10 14 cm -2 s -1 , and is controlled by a Hafnium control absorber rod and B 4 C shutdown rod. The reactor is designed to include laboratories and classrooms that will support the establishment of a nuclear reactor school for educating and training students in disciplines like nuclear engineering, reactor physics, radiochemistry, nuclear technology, radiation protection, and other related scientific fields where classroom instruction and laboratory experiments will be related in a very practical and realistic manner to the actual operation of the reactor. JRTR is designed to support advanced nuclear research as well as commercial and industrial services, which can be preformed utilizing any of its 35 experimental facilities. (author)

  17. The emphasis is on reactor safety research

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    For the second time the Association for Reactor Safety mbH (GRS), Koeln, organised on behalf of the BMFT the conference 'Reactor safety research'. About 400 visitors took part. The public who were interested were given a review of the activities which are being undertaken by the BMFT in the programme 'Research and safety of light-water reactors'. The series of conference papers initiated by the BMFT is to be developed into a permanent information source which will be of interest to those working on nuclear questions such as official quarters, industry and high schools, and experts who have to give judgements. The most important statements by various research groups in industry, high schools and also associations of experts, are summarised. (orig.) [de

  18. HTGR type reactors in West Germany. Realizations and prospects

    International Nuclear Information System (INIS)

    Dauenert, U.

    1978-01-01

    The framework within which the research studies on high temperature reactors have been pursued in West Germany since 1960 is recalled. The principles guiding the present policy of the country in this domain are given: choice of a single technical conception that be applied both to reactors generating electricity and reactors producing high temperature heat for industrial processes such as coal gasification; to group the technical and industrial potentials of West Germany in this domain; financial and technical participation of electricity producers in the expected realizations; international cooperation. In this technique, West Germany is at present among the most advanced nations with the realization of a prototype 300 MWe reactor, financed by the electricity producers and a contribution of government [fr

  19. X-ray digital industrial radiography (DIR) for local liquid velocity (V{sub LL}) measurement in trickle bed reactors (TBRs): Validation of the technique

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Salleh, Khairul Anuar, E-mail: kmfgf@mst.edu; Lee, Hyoung Koo [Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Fulton Hall, 310 W. 14th St., Rolla, Missouri 65409 (United States); Rahman, Mohd Fitri Abdul [Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 143 Schrenk Hall, 400 W. 11th St., Rolla, Missouri 65409 (United States); Al Dahhan, Muthanna H. [Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Fulton Hall, 310 W. 14th St., Rolla, Missouri 65409 (United States); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 143 Schrenk Hall, 400 W. 11th St., Rolla, Missouri 65409 (United States)

    2014-06-15

    Local liquid velocity measurements in Trickle Bed Reactors (TBRs) are one of the essential components in its hydrodynamic studies. These measurements are used to effectively determine a reactor's operating condition. This study was conducted to validate a newly developed technique that combines Digital Industrial Radiography (DIR) with Particle Tracking Velocimetry (PTV) to measure the Local Liquid Velocity (V{sub LL}) inside TBRs. Three millimeter-sized Expanded Polystyrene (EPS) beads were used as packing material. Three validation procedures were designed to test the newly developed technique. All procedures and statistical approaches provided strong evidence that the technique can be used to measure the V{sub LL} within TBRs.

  20. Active disturbance rejection controller for chemical reactor

    International Nuclear Information System (INIS)

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I.

    2015-01-01

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method

  1. Active disturbance rejection controller for chemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I., E-mail: roxana.both@aut.utcluj.ro [Technical University of Cluj-Napoca, 400114 Cluj-Napoca (Romania)

    2015-03-10

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method.

  2. Simulation of emulsion copolymerization reactions in a continuous pulsed sieve-plate column reactor

    OpenAIRE

    C. Sayer; R. Giudici

    2004-01-01

    This work addressed the viability of using a pulsed sieve-plate column reactor to carry out continuous vinyl acetate/butyl acrylate emulsion copolymerization reactions. A rigorous mathematical model of emulsion copolymerization reactions in a tubular reactor with axial dispersion was used for this purpose. Operational conditions were defined to attain high monomer conversions at the reactor outlet in a relatively short residence time and, at the same time, produce a copolymer with a more homo...

  3. SIAM symposium on control problems in industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This symposium focused on industrial control applications that have benefited from recent mathematical and technological developments. The themes featured included: applications of control techniques in aerospace industry, automotive industry, environmental sciences, manufacturing processes, and petroleum industry; optimal shape design in aerospace applications; optimal design of micro-optics; robust control and H-infinity methods.

  4. Reactor Coolant Pump seal issues and their applicability to new reactor designs

    International Nuclear Information System (INIS)

    Ruger, C.J.; Higgins, J.C.

    1993-01-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at US operating plants during the 1970's and early 1980's raised concerns from the US Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants

  5. Reactor coolant pump seal issues and their applicability to new reactor designs

    International Nuclear Information System (INIS)

    Ruger, C.J.; Higgins, J.C.

    1993-01-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at U.S. operating plants during the 1970's and early 1980's raised concerns from the U.S. Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants

  6. Pretreatment of vinasse from the sugar refinery industry under non-sterile conditions by Trametes versicolor in a fluidized bed bioreactor and its effect when coupled to an UASB reactor.

    Science.gov (United States)

    España-Gamboa, Elda; Vicent, Teresa; Font, Xavier; Dominguez-Maldonado, Jorge; Canto-Canché, Blondy; Alzate-Gaviria, Liliana

    2017-01-01

    During hydrous ethanol production from the sugar refinery industry in Mexico, vinasse is generated. Phenolic compounds and melanoidins contribute to its color and make degradation of the vinasse a difficult task. Although anaerobic digestion (AD) is feasible for vinasse treatment, the presence of recalcitrant compounds can be toxic or inhibitory for anaerobic microorganism. Therefore, this study presents new data on the coupled of the FBR (Fluidized Bed Bioreactor) to the UASB (Upflow Anaerobic Sludge Blanket) reactor under non-sterile conditions by T. versicolor . Nevertheless, for an industrial application, it is necessary to evaluate the performance in this kind of proposal system. Therefore, this study used a FBR for the removal of phenolic compounds (67%) and COD (38%) at non-sterile conditions. Continuous operation of the FBR was successfully for 26 days according to the literature. When the FBR was coupled to the UASB reactor, we obtained a better quality of effluent, furthermore methane content and yield were 74% and 0.18 m 3 CH 4 / kg COD removal respectively. This study demonstrated the possibility of using for an industrial application the coupled of the FBR to the UASB reactor under non-sterile conditions. Continuous operation of the FBR was carried out successfully for 26 days, which is the highest value found in the literature.

  7. The Integration Of Process Heat Applications To High Temperature Gas Reactors

    International Nuclear Information System (INIS)

    McKellar, Michael G.

    2011-01-01

    A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

  8. Next Generation Reactors in Korea

    International Nuclear Information System (INIS)

    Oh, Yongshick; Choi, Youngsang; Park, Keecheol

    1990-01-01

    In Korea, nuclear power will be continuously needed to meet the trend of steady increase in electricity demand. But in relation to the further development of nuclear energy, there are still many uncertainties to be solved such as power demand forecast, site availability, thermal energy utilization and technology enhancement for economic and safety. To cope with those uncertainties effectively and to proceed the nuclear projects uninterruptedly, KEPCO decided to initiate two research project. i. e., one is 'the outlook and developmental strategy of nuclear energy for the early 21st century in the R. O. K' and the other is 'the feasibility study on the advanced reactors in Korea. Prospects of nuclear energy in Korea was overviewed and recommendations from the industry were introduced. It is strong opinion of Korea nuclear industry that nuclear policy should be changed from the support policy to the target management policy. In the point of reactor strategy, the life of light water reactor technology might be longer than expected before in Korea and it is emphasized that good maintenance of light water reactor technology and smooth transition program to the advanced technologies should be carefully considered. There are differences in the opinions between preferences to the evolutionary and/or passive, inherently safe reactors but, in the long-term point of view, it is judged to be desirable to have alternatives

  9. The chemical industry - a danger to nuclear power plants

    International Nuclear Information System (INIS)

    Voigtsberger, P.

    1976-01-01

    Nuclear power stations could contaminate large areas with radioactivity when destroyed by strong external influences. In Germany, authorities try to cope with this danger firstly by making certain demands on the strength of the reactor shell and secondly by imposing strict safety regulations on dangerous industrial plants in the surroundings of the reactor. In the case of chemical industry, this means: If a chemical plant and a nuclear reactor lie closely together, special stress is given to explosion pretection measures in the form of primary explosion protection, e.g. strong sealing of inflammable gases and liquids handled in the immediate neighbourhood of the reactor. (orig.) [de

  10. Gas pollutant cleaning by a membrane reactor

    Directory of Open Access Journals (Sweden)

    Kaldis Sotiris

    2006-01-01

    Full Text Available An alternative technology for the removal of gas pollutants at the integrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with a simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al2O3 catalyst was prepared by the dry and wet impregnation method and characterized by the inductively coupled plasma method, scanning electron microscopy, X-ray diffraction, and N2 adsorption before and after activation. Commercially available a-Al2O3 membranes were also characterized and the permeabilities and permselectivities of H2, N2, and CO2 were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. .

  11. Modular helium reactor for non-electric applications

    International Nuclear Information System (INIS)

    Shenoy, A.

    1997-01-01

    The high temperature gas-cooled Modular Helium Reactor (MHR) is an advanced, high efficiency reactor system which can play a vital role in meeting the future energy needs of the world by contributing not only to the generation of electric power, but also the non-electric energy traditionally served by fossil fuels. This paper summarizes work done over 20 years, by several people at General Atomics, how the Modular Helium Reactor can be integrated to provide different non-electric applications during Process Steam/Cogeneration for industrial application, Process Heat for transportation fuel development and Hydrogen Production for various energy applications. The MHR integrates favorably into present petrochemical and primary metal process industries, heavy oil recovery, and future shale oil recovery and synfuel processes. The technical fit of the Process Steam/Cogeneration Modular Helium Reactor (PS/C-MHR) into these processes is excellent, since it can supply the required quantity and high quality of steam without fossil superheating. 12 refs, 25 figs, 2 tabs

  12. Reactor protection systems for the Replacement Research Reactor, ANSTO

    International Nuclear Information System (INIS)

    Morris, C.R.

    2003-01-01

    The 20-MW Replacement Research Reactor Project which is currently under construction at ANSTO will have a combination of a state of the art triplicated computer based reactor protection system, and a fully independent, and diverse, triplicated analogue reactor protection system, that has been in use in the nuclear industry, for many decades. The First Reactor Protection System (FRPS) consists of a Triconex triplicated modular redundant system that has recently been approved by the USNRC for use in the USA?s power reactor program. The Second Reactor Protection System is a hardwired analogue system supplied by Foxboro, the Spec 200 system, which is also Class1E qualified. The FRPS is used to drop the control rods when its safety parameter setpoints have been reached. The SRPS is used to drain the reflector tank and since this operation would result in a reactor poison out due to the time it would take to refill the tank the FRPS trip setpoints are more limiting. The FRPS and SRPS have limited hardwired indications on the control panels in the main control room (MCR) and emergency control centre (ECC), however all FRPS and SRPS parameters are capable of being displayed on the reactor control and monitoring system (RCMS) video display units. The RCMS is a Foxboro Series I/A control system which is used for plant control and monitoring and as a protection system for the cold neutron source. This paper will provide technical information on both systems, their trip logics, their interconnections with each other, and their integration into the reactor control and monitoring system and control panels. (author)

  13. 9th Annual Conference of the North East Polytechnics Mathematical Modelling & Computer Simulation Group

    CERN Document Server

    Bradley, R

    1987-01-01

    In recent years, mathematical modelling allied to computer simulation has emerged as en effective and invaluable design tool for industry and a discipline in its own right. This has been reflected in the popularity of the growing number of courses and conferences devoted to the area. The North East Polytechnics Mathematical Modelling and Computer Simulation Group has a balanced representation of academics and industrialists and, as a Group, has the objective of promoting a continuing partnership between the Polytechnics in the North East and local industry. Prior to the present conference the Group has organised eight conferences with a variety of themes related to mathematical modelling and computer simulation. The theme chosen for the Polymodel 9 Conference held in Newcastle upon Tyne in May 1986 was Industrial Vibration Modelling, which is particularly approp riate for 'Industry Year' and is an area which continues to present industry and academics with new and challenging problems. The aim of the Conferen...

  14. A long term radiological risk model for plutonium-fueled and fission reactor space nuclear system

    International Nuclear Information System (INIS)

    Bartram, B.W.; Dougherty, D.K.

    1987-01-01

    This report describes the optimization of the RISK III mathematical model, which provides risk assessment for the use of a plutonium-fueled, fission reactor in space systems. The report discusses possible scenarios leading to radiation releases on the ground; distinctions are made for an intact reactor and a dispersed reactor. Also included are projected dose equivalents for various accident situations. 54 refs., 31 figs., 11 tabs

  15. CFD Model of HDS Catalyst Tests in Trickle-Bed Reactor

    OpenAIRE

    Tukač, V.

    2014-01-01

    The goal of this study was to evaluate hydrodynamic influence on experimental HDS catalyst activity measurement carried out in pilot scale trickle-bed reactor. Hydrodynamic data were evaluated by RTD method in laboratory glass model of pilot reactor. Mathematical models of the process were formulated both like 1D pseudohomogeneou and 3D heterogeneous ones. The aim of this work was to forecast interaction between intrinsic reaction kinetic, hydrodynamics and mass transfer.

  16. Efficiency factor of a chemical nuclear reactor with gamma sources

    International Nuclear Information System (INIS)

    Anguis T, C.

    1975-01-01

    A chemonuclear reactor is simulated in order to calculate the efficiency factor of molecular species in chemical reactions induced by gamma radiation, with the purpose to obtain information for its design and consider the electromagnetic energy as a possible solution to the present problem of energy. The research is based on a mathematical model of succesive Compton processes applied to spherical and cylindrical geometry and corroborated through the absorbed dose and the experimental date of the increase factor, for the radioisotopic sources Co-60 and Cs-137 relating the quantity of energy deposited into various cylinders with the G value, the relation radius/height of the reactor is optimized according to the molecular production. This is illustrated with the radiolysis of a solution of CH 3 OH/H 2 O which forms H 2 and with the obtainment of C 2 H 5 Br that represents and industrial process induced radioactively. The results show a greater energy deposition with Cs-137 but a larger production of H 2 /hr with Co-60, and besides we can find high production values of C 2 H 5 Br. The cylinder with more advantages is that whose relation R/H is of 0.5. It can be concluded that the final selection of the reactor should be made after a more intense study of the used isotope and the source activity. The efficiency factor of H 2 can be increased selecting the appropriate type and concentration of solute of the irradiated aqueous solutions

  17. Mathematical simulation of oil reservoir properties

    International Nuclear Information System (INIS)

    Ramirez, A.; Romero, A.; Chavez, F.; Carrillo, F.; Lopez, S.

    2008-01-01

    The study and computational representation of porous media properties are very important for many industries where problems of fluid flow, percolation phenomena and liquid movement and stagnation are involved, for example, in building constructions, ore processing, chemical industries, mining, corrosion sciences, etc. Nevertheless, these kinds of processes present a noneasy behavior to be predicted and mathematical models must include statistical analysis, fractal and/or stochastic procedures to do it. This work shows the characterization of sandstone berea core samples which can be found as a porous media (PM) in natural oil reservoirs, rock formations, etc. and the development of a mathematical algorithm for simulating the anisotropic characteristics of a PM based on a stochastic distribution of some of their most important properties like porosity, permeability, pressure and saturation. Finally a stochastic process is used again to simulated the topography of an oil reservoir

  18. Productivity of a nuclear chemical reactor with gamma radioisotopic sources

    International Nuclear Information System (INIS)

    Anguis T, C.

    1975-01-01

    According to an established mathematical model of successive Compton interaction processes the made calculations for major distances are extended checking the acceptability of the spheric geometry model for the experimental data for radioisotopic sources of Co-60 and Cs-137. Parameters such as the increasing factor and the absorbed dose served as comparative base. calculations for the case of a punctual source succession inside a determined volume cylinder are made to obtain the total dose, the deposited energy by each photons energetic group and the total absorbed energy inside the reactor. Varying adequately the height/radius relation for different cylinders, the distinct energy depositions are compared in each one of them once a time standardized toward a standard value of energy emitted by the reactor volume. A relation between the quantity of deposited energy in each point of the reactor and the conversion values of chemical species is established. They are induced by electromagnetic radiation and that are reported as ''G'' in the scientific literature (number of molecules formed or disappeared by each 100 e.v. of energy). Once obtained the molecular performance inside the reactor for each type of geometry, it is optimized the height/radius relation according to the maximum production of molecules by unity of time. It is completed a bibliographical review of ''G'' values reported by different types of aqueous solutions with the purpose to determine the maximum performance of molecular hydrogen as a function of pH of the solution and of the used type of solute among other factors. Calculations for the ethyl bromide production as an example of one of the industrial processes which actually work using the gamma radiation as reactions inductor are realized. (Author)

  19. Simulation and control of the site-dependent neutron density in a nuclear reactor

    International Nuclear Information System (INIS)

    Stark, K.

    1974-01-01

    The present work deals with the simulation and control of a pressurized-water reactor such as is used in nuclear power plants today. In the first part of the work, the mathematical model equations of the reactor are set up. They take into consideration the local distribution of the various reactor parameters as far as seems necessary for further investigations. Taking the given approximations, the mathematical model is locally one-dimensional; it is valid for the period of time in which a power control of the reactor must work. The model equations set up are calculated on an analog/hybride computer according to the modal simulation method in true time. The method is distinguished in the present problem here through good convergence and enables the observation of the simulation results as a stationary picture on an oscillograph screen. For this reason, a simulation of this type seems particularly suitable for the training of operational personnel. The aim of the second part of the work is the development of a simple control concept which enables the control of the total power of the reactor as well as of the distribution of the power density in the reactor core. The fundamentals of the control design are the non-linear system equations of the nuclear reactor. The developed control is based on the controlling of eigenfunctions; it controls the total power of the reactor as well as the distribution of the power density in the reactor core where a uniform burn-up of the nuclear fuel is seen to. Part-absorbing control rods amongst others are used as actuators like they are already used in that type of reactors. (orig./LH) [de

  20. Would the re-structuration of the French nuclear industry be necessary?

    International Nuclear Information System (INIS)

    Finon, D.

    2011-04-01

    In this paper we analyze the recent propositions to reorganize the French industry of reactors in view to increase its efficiency on the export markets. Based on a critic of the choices of reactor technologies offered to export market, the Roussely report published on June 2010 recommends to crown the French electricity utility as the leader of a so-called 'French team' and to let him free to negotiate the sale of reactor of any technology that it would prefer as a Gen-2 reactor for example, and to place the French nuclear reactor constructor in a position of sub-contractor. The government has not followed this recommendation rightly. Based on an analysis of the changing world market of reactors, we defuse the criticism addressed to Areva on his choice, as well as the recommendation to open the present catalog of reactors to other models. The analysis leads to underline the importance of Areva's technological and industrial resources and the limited advantages of the EDF's skills in matter of architect-engineering and nuclear operation for winning export contracts. At the end of the day the mercantile approach which motivates the promoters of this tentative reform for competing with entrants prosing low cost nuclear reactors has been disapproved by the government, and that before the Fukushima accidents. We conclude by observing that only a flexible coordination between French industrial players would be useful for improving export performances of the French nuclear industry. (author)

  1. Simulation of emulsion copolymerization reactions in a continuous pulsed sieve-plate column reactor

    Directory of Open Access Journals (Sweden)

    Sayer C.

    2004-01-01

    Full Text Available This work addressed the viability of using a pulsed sieve-plate column reactor to carry out continuous vinyl acetate/butyl acrylate emulsion copolymerization reactions. A rigorous mathematical model of emulsion copolymerization reactions in a tubular reactor with axial dispersion was used for this purpose. Operational conditions were defined to attain high monomer conversions at the reactor outlet in a relatively short residence time and, at the same time, produce a copolymer with a more homogeneous composition.

  2. The secure heating reactor

    International Nuclear Information System (INIS)

    Pind, C.

    1987-01-01

    The SECURE heating reactor was designed by ASEA-ATOM as a realistic alternative for district heating in urban areas and for supplying heat to process industries. SECURE has unique safety characteristics, that are based on fundamental laws of physics. The safety does not depend on active components or operator intervention for shutdown and cooling of the reactor. The inherent safety characteristics of the plant cannot be affected by operator errors. Due to its very low environment impact, it can be sited close to heat consumers. The SECURE heating reactor has been shown to be competitive in comparison with other alternatives for heating Helsinki and Seoul. The SECURE heating reactor forms a basis for the power-producing SECURE-P reactor known as PIUS (Process Inherent Ultimate Safety), which is based on the same inherent safety principles. The thermohydraulic function and transient response have been demonstrated in a large electrically heated loop at the ASEA-ATOM laboratories

  3. Time-optimal control of reactor power

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1987-01-01

    Control laws that permit adjustments in reactor power to be made in minimum time and without overshoot have been formulated and demonstrated. These control laws which are derived from the standard and alternate dynamic period equations, are closed-form expressions of general applicability. These laws were deduced by noting that if a system is subject to one or more operating constraints, then the time-optimal response is to move the system along these constraints. Given that nuclear reactors are subject to limitations on the allowed reactor period, a time-optimal control law would step the period from infinity to the minimum allowed value, hold the period at that value for the duration of the transient, and then step the period back to infinity. The change in reactor would therefore be accomplished in minimum time. The resulting control laws are superior to other forms of time-optimal control because they are general-purpose, closed-form expressions that are both mathematically tractable and readily implanted. Moreover, these laws include provisions for the use of feedback. The results of simulation studies and actual experiments on the 5 MWt MIT Research Reactor in which these time-optimal control laws were used successfully to adjust the reactor power are presented

  4. Critical evaluation of the experiments and mathematical models for the determination of fission product release from the spherical fuel elements in cases of core heating accidents in modular HTR's

    International Nuclear Information System (INIS)

    Bailly, H.W.

    1987-01-01

    In this work, the thermal behaviour of modular reactors in cases of core heating accidents and the physical phenomena relevant for a release of radioactive materials from HTR fuel elements are explained as far as is necessary for understanding the work. The present mathematical models by which the release of radioactive materials from HTR fuel elements due to diffusion or breaking particles in cases of core heating accidents are also described, examined and evaluated with regard to their applicability to module reactors. The experiments used to verify the mathematical models are also evaluated. The mathematical models are in nearly all cases computer programs, which describe the complicated process of releasing radioactive materials quantitative mathematically. One should point out that these models are constantly being developed further, in line with the increasing amount of knowledge. To conclude the work, proposals are made for improving the certainty of information from experiments and mathematical models to determine the release behaviour of modular reactors. (orig./GL) [de

  5. Application of cost mathematical models to the determination of investments in the petroleum industry; Application des modeles mathematiques de cout a la determination des investissements dans l`industrie petroliere

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, G; Ecole Nationale Superieure du Petrole et des Moteurs (ENSPM), 92 -Rueil-Malmaison (France); Univ. de Bourgogne, 21- Dijon (France)

    1997-05-01

    It is today of paramount importance to realistically forecast the cost and time required to design and manufacture a given product, from the very first phase of the project. Furthermore, with the increasingly rapid development of technology, it is often impossible to draw a direct parallel with existing, well known products Mathematical models of cost, and MAP models in particular, have been developed to meet this need. Although one may still refer to former products, they do not automatically have to be `analogous` to the product under consideration, because these methods use `universal relationship` between cost, weight, technology, performance and reliability, and also the nature and experience of the firm manufacturing the product. The purpose of this thesis is to demonstrate the pertinence, and more importantly the potential, of mathematical models of cost for the oil and gas industry, from exploration and production to refining, petrochemicals, and internal combustion engines. After a theoretical examination of estimation methods and a classification of existing ones, emphasis is placed on the logical aspect of these models. In addition, the complementarity between these tools and certain fields such as project management is pointed out, for example with respect to value control. The last chapter of the thesis is devoted to case studies. It aims chiefly at comparing theory with practice in order to identify the limits of mathematical models of cost so that they can be used judiciously. (author). 159 refs.

  6. New ceramics for nuclear industry. Case of fission and fusion reactors

    International Nuclear Information System (INIS)

    Yvars, M.

    1979-10-01

    The ceramics used in the nuclear field are described as is their behaviour under radiation. 1) Power reactors - nuclear fission. Ceramics enter into the fabrication of nuclear fuels: oxides, carbides, uranium or plutonium nitrides or oxy-nitrides. Silicon carbide SiC is used for preparing the fuels of helium cooled high temperature reactors. Its use is foreseen in the design of gas high temperature gas thermal exchangers, as is silicon nitride (Si 3 N 4 ). In the materials for safety or control rods, the intense neutron flows induce nuclear reactions which increase the temperature of the neutron absorbing material. Boron carbide B 4 C, rare earth oxides Ln 2 O 3 , or B 4 C-Cu or B 4 C-Al cermets are employed. Burnable poison materials are formed of Al 2 O 3 -B 4 C or Al 2 O 3 -Ln 2 O 3 cermets. The moderators of thermal neutron reactors are in high purety polycrystalline graphite. For the thermal insulation of reactor vessels and jackets, honeycomb ceramics are used as well as ceramic fibres on an increasing scale (kaolin, alumina and other fibres). 2) fusion reactors (Tokomak). These require refractory materials with a low atomic number. Carbon fibres, boron carbide, some borons (Al B 12 ), silicon nitrides and oxy-nitrides and high density alumina are the substances considered [fr

  7. Present status and perspective of Japanese atomic energy industry

    International Nuclear Information System (INIS)

    Miura, Kenzo

    1990-01-01

    Already 35 years are going to elapse since atomic energy industry was founded in Japan, and the positive development has been carried out in the nuclear power generation mainly with light water reactors as the base energy, as the result, now both the result of electric power generation and the technology have reached the highest level in the world. These are due to the accumulation of efforts, the preponderant assignment of able men and the positive investment for the research and development of the atomic energy industry. However, since 1985, the slowdown of power reactor development, the practical use of new type power reactors such as fast breeder reactors and the establishment of nuclear fuel cycle such as uranium enrichment and fuel reprocessing have been the new situation to be dealt with. In order to properly and flexibly cope with such change of situation, the healthy development of the atomic energy industry so as to secure the market on a certain scale and develop the business with responsibility is indispensable. The outlay of electric power industry related to atomic energy, the development of atomic energy market and the sales of mining and manufacturing industries, the trend of research and development and personnel, and the perspective and subjects of hereafter are reported. (K.I.)

  8. Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering - M and C 2013

    International Nuclear Information System (INIS)

    2013-01-01

    The Mathematics and Computation Division of the American Nuclear (ANS) and the Idaho Section of the ANS hosted the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M and C 2013). This proceedings contains over 250 full papers with topics ranging from reactor physics; radiation transport; materials science; nuclear fuels; core performance and optimization; reactor systems and safety; fluid dynamics; medical applications; analytical and numerical methods; algorithms for advanced architectures; and validation verification, and uncertainty quantification

  9. Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering - M and C 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The Mathematics and Computation Division of the American Nuclear (ANS) and the Idaho Section of the ANS hosted the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M and C 2013). This proceedings contains over 250 full papers with topics ranging from reactor physics; radiation transport; materials science; nuclear fuels; core performance and optimization; reactor systems and safety; fluid dynamics; medical applications; analytical and numerical methods; algorithms for advanced architectures; and validation verification, and uncertainty quantification.

  10. A PWR reactor downcomer modification for reduction of ECC bypass flow during LOCA

    International Nuclear Information System (INIS)

    Popov, N.; Bosevski, T.

    1986-01-01

    The ECC bypass phenomenon in the PWR reactor down-comer, which delays the reactor vessel refilling, after cold leg large break LOCA accident, has been subject of analysis in this paper. In the paper, a particular construction modification of the reactor down-comer has been suggested by inserting vertical ribs, aimed to intensify the reactor ECC refilling following the LOCA accident, and to advance the thermal-hydraulics safety of post-accidental cooling of the PWR reactors. To verify the effectiveness of the suggested down-comer construction modification, some properly selected results, obtained by corresponding verified mathematical model, have been presented in this paper. (author)

  11. DEVELOPMENT OF MATHEMATICAL MODELS FOR OPTIMAL PREVENTIVE MAINTENANCE POLICY IN A STEEL INDUSTRY : SIX SIGMA APPROACH

    Directory of Open Access Journals (Sweden)

    N. V. R. Naidu

    2011-09-01

    Full Text Available This paper deals with a critical evaluation of the Preventive Maintenance system in steel industry. This study helps in implementing Six Sigma solutions to reduce the down time of two critical machines i.e., Electric Arc Furnace (EAF and Billet Casting Machine (BCM. It is clear from the analysis of EAF and BCM respectively that, variations in output are quite possible because the machines output not only depend on maintenance time but also on several other variables. Further, the objective is to design a preventive maintenance programme on the same equipment situated in the plant using Six Sigma. The breakdown of these equipments could very well affect the production rate. For this, the mathematical models have been developed and these models are used to obtain the optimum preventive maintenance frequency for minimizing the down time and maximizing the profits.

  12. Experts' discussion on reactor safety research

    International Nuclear Information System (INIS)

    1980-01-01

    The experts' discussion on reactor safety research deals with risk analysis, political realization, man and technics, as well as with the international state of affairs. Inspite of a controversy on individual issues and on the proportion of governmental and industrial involvment in reactor safety research, the continuation and intensification of corresponding research work is said to be necessary. Several participants demanded to consider possible 'conventional accidents' as well as a stronger financial commitment by the industry in this sector. The ratio 'man and technics' being an interface decisive for the proper functioning or failure of complex technical systems requires even more research work to be done. (GL) [de

  13. Industrial and natural nuclear reactors; Industrielle und natuerliche Kernreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Binnewies, Michael [Hannover Univ. (Germany); Willner, Helge; Woenckhaus, Juergen

    2015-08-15

    As described in the preceding article, all elements with atomic masses above that of iron and also the radioactive elements thorium and uranium have been formed by a supernova star explosion. Their long-lived isotopes of thorium and uranium are now distributed in the earth crust. The chemistry of uranium and thorium is of less importance, but these elements can be used to produce enormous amounts of energy in nuclear power stations. It will be described how it works. Surprisingly, small natural nuclear reactors were producing heat during hundreds of thousand years. Subsequently, we are dealing with this phenomenon, the principle of nuclear fission, the different types of nuclear reactors, security aspects and new developments.

  14. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Slack, J.; Norton, J.L.; Malkoske, G.R.

    2003-01-01

    MDS Nordion has been supplying cobalt-60 sources to industry for industrial and medical purposes since 1946. These cobalt-60 sources are used in many market and product segments. The major application is in the health care industry where irradiators are used to sterilize single use medical products. These irradiators are designed and built by MDS Nordion and are used by manufacturers of surgical kits, gloves, gowns, drapes and other medical products. The irradiator is a large shielded room with a storage pool for the cobalt-60 sources. The medical products are circulated through the shielded room and exposed to the cobalt-60 sources. This treatment sterilizes the medical products which can then be shipped to hospitals for immediate use. Other applications for this irradiation technology include sanitisation of cosmetics, microbial reduction of pharmaceutical raw materials and food irradiation. The cobalt-60 sources are manufactured by MDS Nordion in their Cobalt Operations Facility in Kanata. More than 75,000 cobalt-60 sources for use in irradiators have been manufactured by MDS Nordion. The cobalt-60 sources are double encapsulated in stainless steel capsules, seal welded and helium leak tested. Each source may contain up to 14,000 curies. These sources are shipped to over 170 industrial irradiators around the world. This paper will focus on the MDS Nordion proprietary technology used to produce the cobalt-60 isotope in CANDU reactors. Almost 55 years ago MDS Nordion and Atomic Energy of Canada developed the process for manufacturing cobalt-60 at the Chalk River Labs, in Ontario, Canada. A cobalt-59 target was introduced into a research reactor where the cobalt-59 atom absorbed one neutron to become cobalt-60. Once the cobalt-60 material was removed from the research reactor it was encapsulated in stainless steel and seal welded using a Tungsten Inert Gas weld. The first cobalt-60 sources manufactured using material from the Chalk River Labs were used in cancer

  15. Fuel Fabrication and Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF6. UF6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF6 is converted into UO2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  16. Experiences with fast breeder reactor education in laboratory and short course settings

    International Nuclear Information System (INIS)

    Waltar, A.E.

    1983-01-01

    The breeder reactor industry throughout the world has grown impressively over the last two decades. Despite the uncertainties in some national programs, breeder reactor technology is well established on a global scale. Given the magnitude of this technological undertaking, there has been surprisingly little emphasis on general breeder reactor education - either at the university or laboratory level. Many universities assume the topic too specialized for including appropriate courses in their curriculum - thus leaving students entering the breeder reactor industry to learn almost exclusively from on-the-job experience. The evaluation of four course presentations utilizing visual aids is presented

  17. Nuclear energy and the steel industry

    International Nuclear Information System (INIS)

    Barnes, R.S.

    1977-01-01

    Fossil fuels represent a large part of the cost of iron and steel making and their increasing cost has stimulated investigation of methods to reduce the use of fossil fuels in the steel industry. Various iron and steel making routes have been studied by the European Nuclear Steelmaking Club (ENSEC) and others to determine to what extent they could use energy derived from a nuclear reactor to reduce the amount of fossil fuel consumed. The most promising concept is a High-Temperature Gas-Cooled Nuclear Reactor heating helium to a temperature sufficient to steam reform hydrocarbons into reducing gases for the direct reduction of iron ores. It is proposed that the reactor/reformer complex should be separate from the direct-reduction plant/steelworks and should provide reducing gas by pipeline, not only to a number of steel works but to other industrial users. The composition of suitable reducing gases and the methods of producing them from various feedstocks are discussed. Highly industrialised countries with large steel and chemical industries have shown greatest interest in the concept, but those countries with large iron-ore reserves and growing direct capacity should consider the future value of the High-Temperature Gas-Cooled Reactor as a means of extending the life of their gas reserves. (author)

  18. Mathematics and physics of neutron radiography

    International Nuclear Information System (INIS)

    Harms, A.A.; Wyman, D.R.

    1985-01-01

    This book provides detailed descriptions and analyses of selected experiments and their mathematical characterization. Also included are illustrative and quantitative procedures for applications. This book also discusses the radiography, nondestructive testing and nuclear reactor utilization. The contents discussed are: I: Introduction. II: Component Characterization. III: Object-Image Relations. IV: Rectangular Geometry. V: Cylindrical Geometry. VI: Two-Dimensional Analysis. VII: Object Scattering. VIII: Linear Systems Formulation. IX: Selected Topics. X: Neutron Radiographs. XI: Bibliography and References. Subject Index

  19. Dimensioning of aerated submerged fixed bed biofilm reactors ...

    African Journals Online (AJOL)

    The description of a biofilm mathematical model application for dimensioning an aerated fixed bed biofilm reactor (ASFBBR) for petrochemical wastewater polishing is presented. A simple one-dimensional model of biofilm, developed by P Harremöes, was chosen for this purpose. The model was calibrated and verified ...

  20. Mathematical model for safety analysis of heavy water power reactor

    International Nuclear Information System (INIS)

    Milovanovic, M.; Humo, E.; Mitrovic, S.

    1966-01-01

    Fundamental information in formulating the mathematical model for accident analysis is concerned with reactivity changes of the system. These parameters are: changes of fuel and moderator temperature, changes of the upper reflector thickness, reactivity changes due to moderator density variation dependent on the steam quantity and neutron flux distribution in the core

  1. Potential role of the Romanian research and industry on the small and medium reactors market

    International Nuclear Information System (INIS)

    Rapeanu, S.N.; Bujor, A.; Comsa, O.

    1998-01-01

    The need of diversifying the energy sources, independence from foreign supplies and modernization of economy have constituted the major factors in implementation of nuclear energy in Romania. The choice of the heavy water reactor CANDU-600 was made on grounds of advanced safety features, proven efficient economic operation as well as on the technologic feasibility for manufacturing of components, equipment, instrumentation, heavy water and natural uranium fuel in Romania. Unlike turn-key acquisition approaches, the Romanian option provided an active national participation in construction the Cernavoda NPP. As consequence, important support was being given to development of the industries involved in the nuclear fuel cycle, manufacturing of equipment and nuclear materials, construction-montage, engineering, consulting, services, etc. This was done based on technology transfer, implementation of advanced design and execution standards, quality assurance procedures and modern nuclear safety requirements at international level. The efforts materialized in an important national participation in the construction of the Cernavoda NPP and all related programs are successful. Now, Romanian firms are also involved in supplying components, equipment and services to NPP's in other eastern and central Europeans countries. The paper presents the achievements of the Romanian economy in this field and the effort of the Romanian companies on the small and medium power reactors market. Lists with main R and D institutes, nuclear fuel cycle facilities as well as potential equipment suppliers are attached. (author)

  2. Radiolysis of the VVER-1000 reactor coolant: An experimental study and mathematical modeling

    International Nuclear Information System (INIS)

    Arkhipov, O.P.; Bugaenko, V.L.; Kabakchi, S.A.

    1995-01-01

    Variations in the composition of the coolant for the primary circuit of a VVER-1000 reactor of the Kalinin nuclear power plant upon transition from power-level operation to shutdown was studied experimentally. The data obtained were used for verification of the MORAVA-H2 program developed earlier for simulation of the coolant state in pressurized-water power reactors

  3. Light Water Reactor Sustainability Program Reactor Safety Technologies Pathway Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M. L. [Univ. of Wisconsin, Madison, WI (United States); Peko, D. [US Dept. of Energy, Washington, DC (United States); Farmer, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Rempe, J. [Rempe and Associates LLC, Idaho Falls, ID (United States); Humrickhouse, P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Robb, K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauntt, R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Osborn, D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-01

    In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safety initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary

  4. Light Water Reactor Sustainability Program: Reactor Safety Technologies Pathway Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M. L. [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-01

    In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safety initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary

  5. Parameters Investigation of Mathematical Model of Productivity for Automated Line with Availability by DMAIC Methodology

    Directory of Open Access Journals (Sweden)

    Tan Chan Sin

    2014-01-01

    Full Text Available Automated line is widely applied in industry especially for mass production with less variety product. Productivity is one of the important criteria in automated line as well as industry which directly present the outputs and profits. Forecast of productivity in industry accurately in order to achieve the customer demand and the forecast result is calculated by using mathematical model. Mathematical model of productivity with availability for automated line has been introduced to express the productivity in terms of single level of reliability for stations and mechanisms. Since this mathematical model of productivity with availability cannot achieve close enough productivity compared to actual one due to lack of parameters consideration, the enhancement of mathematical model is required to consider and add the loss parameters that is not considered in current model. This paper presents the investigation parameters of productivity losses investigated by using DMAIC (Define, Measure, Analyze, Improve, and Control concept and PACE Prioritization Matrix (Priority, Action, Consider, and Eliminate. The investigated parameters are important for further improvement of mathematical model of productivity with availability to develop robust mathematical model of productivity in automated line.

  6. Gas pollutant cleaning by a membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Topis, S.; Koutsonikolas, D.; Kaldis, S. (and others) [Aristotle University of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering

    2005-07-01

    An alternative technology for the removal of gas pollutants at the integrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al{sub 2}O{sub 3} catalyst was prepared by the dry and wet impregnation method and characterized by ICP, SEM, XRD and N{sub 2} adsorption before and after activation. Commercially available {alpha}-Al{sub 2}O{sub 3} membranes were also characterized and the permeabilities and selectivities of H{sub 2}, N{sub 2} and CO{sub 2} were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. 5 refs., 6 figs., 1 tab.

  7. Gas pollutant cleaning by a membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    George E. Skodras; Sotiris Kaldis; Savas G. Topis; Dimitris Koutsonikolas; George P. Sakellaropoulos [Aristotle University of Thessaloniki, Thessaloniki (Greece). Chemical Process Engineering Laboratory, Dept. of Chemical Engineering

    2006-07-01

    An alternative technology for the removal of gas pollutants at the intergrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with a simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al{sub 2}O{sub 3} catalyst was prepared by the dry and wet impregnation method and characterized by ICP, SEM, XRD and N{sub 2} adsorption before and after activation. Commercially available {alpha}-Al{sub 2}O{sub 3} membranes were also characterized and the permeabilities and permselectivities of H{sub 2}, N{sub 2} and CO{sub 2} were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. 9 refs., 6 figs., 1 tab.

  8. Ad hoc committee on reactor physics benchmarks

    International Nuclear Information System (INIS)

    Diamond, D.J.; Mosteller, R.D.; Gehin, J.C.

    1996-01-01

    In the spring of 1994, an ad hoc committee on reactor physics benchmarks was formed under the leadership of two American Nuclear Society (ANS) organizations. The ANS-19 Standards Subcommittee of the Reactor Physics Division and the Computational Benchmark Problem Committee of the Mathematics and Computation Division had both seen a need for additional benchmarks to help validate computer codes used for light water reactor (LWR) neutronics calculations. Although individual organizations had employed various means to validate the reactor physics methods that they used for fuel management, operations, and safety, additional work in code development and refinement is under way, and to increase accuracy, there is a need for a corresponding increase in validation. Both organizations thought that there was a need to promulgate benchmarks based on measured data to supplement the LWR computational benchmarks that have been published in the past. By having an organized benchmark activity, the participants also gain by being able to discuss their problems and achievements with others traveling the same route

  9. Control aid for xenon vibration in reactor

    International Nuclear Information System (INIS)

    Kanekawa, Takashi.

    1990-01-01

    In the present invention, the control operation for suppressing xenon vibrations in a reactor is aided for saving forecasting analysis and operator's skills. That is, parameters to be controlled for the suppression of xenon vibrations are power distribution, iodine distribution and xenon distribution. But what can be observed by operaters by the conventional fast overtone method is only the output distribution. In the present invention, the output level of the reactor core is always observed. Then, mathematical processings are conducted for the iodine distribution, the xenon distribution and the power distribution in the reactor core based on the histeresis of the parameters obtained by the measurement using physical constants and reactor design data. The xenon vibration control is aided by displaying the change with time of the distortion in axial direction. Accordingly, operators can always recognize the axial distortion of the power distribution, the iodine distribution and the xenon distribution. (I.S.)

  10. Denitrification of high strength nitrate waste from a nuclear industry using acclimatized biomass in a pilot scale reactor.

    Science.gov (United States)

    Dhamole, Pradip B; Nair, Rashmi R; D'Souza, Stanislaus F; Pandit, Aniruddha B; Lele, S S

    2015-01-01

    This work investigates the performance of acclimatized biomass for denitrification of high strength nitrate waste (10,000 mg/L NO3) from a nuclear industry in a continuous laboratory scale (32 L) and pilot scale reactor (330 L) operated over a period of 4 and 5 months, respectively. Effect of substrate fluctuations (mainly C/NO3-N) on denitrification was studied in a laboratory scale reactor. Incomplete denitrification (95-96 %) was observed at low C/NO3-N (≤2), whereas at high C/NO3-N (≥2.25) led to ammonia formation. Ammonia production increased from 1 to 9 % with an increase in C/NO3-N from 2.25 to 6. Complete denitrification and no ammonia formation were observed at an optimum C/NO3-N of 2.0. Microbiological studies showed decrease in denitrifiers and increase in nitrite-oxidizing bacteria and ammonia-oxidizing bacteria at high C/NO3-N (≥2.25). Pilot scale studies were carried out with optimum C/NO3-N, and sustainability of the process was checked on the pilot scale for 5 months.

  11. The Oklo reactor

    International Nuclear Information System (INIS)

    McNeil, Russell

    1986-01-01

    The construction of a reactor, capable of producing a controlled nuclear chain reaction, has been one of the most complex achievements of modern science. That a similar reaction might take place in nature did not play a role in the thinking of the nuclear scientists responsible for it. Yet, 14 years ago, French scientists discovered that just such a phenomenon apparently occurred in western Africa almost 2 billion years ago. In this article Russell McNeil describes this fascinating curiosity and a recent attempt to model it mathematically

  12. ALIBABA, an assistance system for the detection of confinement leaks in a PWR reactor

    International Nuclear Information System (INIS)

    Bedier, P.O.; Libmann, M.

    1995-01-01

    The objective of the Crisis Technical Center (CTC) of the French Institute for Nuclear Protection and Safety (IPSN) is to estimates the consequences of a given nuclear accident on the populations and the environment. ALIBABA is a data processing tool available at the CTC and devoted to the detection of confinement leaks in 900 MWe PWR reactors using the activity values measured by the captors of the installation. The heart of this expert system is a structural and functional representation of the different components directly involved in the leak detection (isolating valves, ventilation systems, electric boards etc..). This tool can manage the availability of each component to make qualitative and quantitative balance-sheets. This paper presents the ALIBABA software, an industrial prototype realized with the SPIRAL knowledge base systems generator at the CEA Reactor Studies and Applied Mathematics Service (SERMA) and commercialized by CRIL-Ingenierie Society. It describes the techniques used for the modeling of PWR systems and for the visualization of the survey. The functionality of the man-machine interface is discussed and the means used for the validation of the software are summarized. (J.S.). 6 refs

  13. Variational methods in the kinetic modeling of nuclear reactors: Recent advances

    International Nuclear Information System (INIS)

    Dulla, S.; Picca, P.; Ravetto, P.

    2009-01-01

    The variational approach can be very useful in the study of approximate methods, giving a sound mathematical background to numerical algorithms and computational techniques. The variational approach has been applied to nuclear reactor kinetic equations, to obtain a formulation of standard methods such as point kinetics and quasi-statics. more recently, the multipoint method has also been proposed for the efficient simulation of space-energy transients in nuclear reactors and in source-driven subcritical systems. The method is now founded on a variational basis that allows a consistent definition of integral parameters. The mathematical structure of multipoint and modal methods is also investigated, evidencing merits and shortcomings of both techniques. Some numerical results for simple systems are presented and the errors with respect to reference calculations are reported and discussed. (authors)

  14. Digital control of research reactors

    International Nuclear Information System (INIS)

    Crump, J.C. III.; Richards, W.J.; Heidel, C.C.

    1991-01-01

    Research reactors provide an important service for the nuclear industry. Developments and innovations used for research reactors can be later applied to larger power reactors. Their relatively inexpensive cost allows research reactors to be an excellent testing ground for the reactors of tomorrow. One area of current interest is digital control of research reactor systems. Digital control systems offer the benefits of implementation and superior system response over their analog counterparts. At McClellan Air Force Base in Sacramento, California, the Stationary Neutron Radiography System (SNRS) uses a 1,000-kW TRIGA reactor for neutron radiography and other nuclear research missions. The neutron radiography beams generated by the reactor are used to detect corrosion in aircraft structures. While the use of the reactor to inspect intact F-111 wings is in itself noteworthy, there is another area in which the facility has applied new technology: the instrumentation and control system (ICS). The ICS developed by General Atomics (GA) contains several new and significant items: (a) the ability to servocontrol on three rods, (b) the ability to produce a square wave, and (c) the use of a software configurator to tune parameters affected by the actual reactor core dynamics. These items will probably be present in most, if not all, future research reactors. They were developed with increased control and overall usefulness of the reactor in mind

  15. Data fusion mathematics theory and practice

    CERN Document Server

    Raol, Jitendra R

    2015-01-01

    Fills the Existing Gap of Mathematics for Data FusionData fusion (DF) combines large amounts of information from a variety of sources and fuses this data algorithmically, logically and, if required intelligently, using artificial intelligence (AI). Also, known as sensor data fusion (SDF), the DF fusion system is an important component for use in various applications that include the monitoring of vehicles, aerospace systems, large-scale structures, and large industrial automation plants. Data Fusion Mathematics: Theory and Practice offers a comprehensive overview of data fusion, and provides a

  16. Modern electrochemistry and industry

    International Nuclear Information System (INIS)

    Kim, Sun Yong

    1985-04-01

    This book is divided into fifteen chapters on modern electrochemistry and industry. The contents of this book are electrochemistry and industry, electrochemistry for electrolyte like ionic mobility quantity of activity of electrolyte, potential balance system like cell potential, concentration cell and membrane potential, electrochemical kinetics, electrochemistry for surfactant, electrochemistry for electrolysis test such as polarography, chronopotentiometry and Cyclic voltametry, electrolysis reactor NaOH electrolysis industry, H 2 O electrolysis, molten metal electrolysis, copper electrolysis, battery and electro-organic chemistry.

  17. Identification of reactor failure states using noise methods, and spatial power distribution

    International Nuclear Information System (INIS)

    Vavrin, J.; Blazek, J.

    1981-01-01

    A survey is given of the results achieved. Methodical means and programs were developed for the control computer which may be used in noise diagnostics and in the control of reactor power distribution. Statistical methods of processing the noise components of the signals of measured variables were used for identifying failures of reactors. The method of the synthesis of the neutron flux was used for modelling and evaluating the reactor power distribution. For monitoring and controlling the power distribution a mathematical model of the reactor was constructed suitable for control computers. The uses of noise analysis methods are recommended and directions of further development shown. (J.P.)

  18. Advanced Reactor Development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Giessing, D. F.; Griffith, J. D.; McGoff, D. J.; Rosen, Sol [U. S. Department of Energy, Texas (United States)

    1990-04-15

    In the United States, three technologies are employed for the new generation of advanced reactors. These technologies are Advanced Light Water Reactors (A LWRs) for the 1990s and beyond, the Modular High Temperature Gas Reactor (M HTGR) for commercial use after the turn of the century, and Liquid Metal Reactors (LWRs) to provide energy production and to convert reactor fission waste to a more manageable waste product. Each technology contributes to the energy solution. Light Water Reactors For The 1990s And Beyond--The U. S. Program The economic and national security of the United States requires a diversified energy supply base built primarily upon adequate, domestic resources that are relatively free from international pressures. Nuclear energy is a vital component of this supply and is essential to meet current and future national energy demands. It is a safe, economically continues to contribute to national energy stability, and strength. The Light Water Reactor (LWR) has been a major and successful contributor to the electrical generating needs of many nations throughout the world. It is being counted upon in the United States as a key to revitalizing nuclear energy option in the 1990s. In recent years, DOE joined with the industry to ensure the availability and future viability of the LWR option. This national program has the participation of the Nation's utility industry, the Electric Power Research Institute (EPRI), and several of the major reactor manufacturers and architect-engineers. Separate but coordinated parts of this program are managed by EPRI and DOE.

  19. International Conference on Research and Education in Mathematics

    CERN Document Server

    Srivastava, Hari; Mursaleen, M; Majid, Zanariah

    2016-01-01

    This book features selected papers from The Seventh International Conference on Research and Education in Mathematics that was held in Kuala Lumpur, Malaysia from 25 - 27th August 2015. With chapters devoted to the most recent discoveries in mathematics and statistics and serve as a platform for knowledge and information exchange between experts from academic and industrial sectors, it covers a wide range of topics, including numerical analysis, fluid mechanics, operation research, optimization, statistics and game theory. It is a valuable resource for pure and applied mathematicians, statisticians, engineers and scientists, and provides an excellent overview of the latest research in mathematical sciences.

  20. ADVANCED CONTROL FOR A ETHYLENE REACTOR

    Directory of Open Access Journals (Sweden)

    Dumitru POPESCU

    2017-06-01

    Full Text Available The main objective of this work is the design and implementation of control solutions for petrochemical processes, namely the control and optimization of a pyrolysis reactor, the key-installation in the petrochemical industry. We present the technological characteristics of this petrochemical process and some aspects about the proposed control system solution for the ethylene plant. Finally, an optimal operating point for the reactor is found, considering that the process has a nonlinear multi-variable structure. The results have been implemented on an assembly of pyrolysis reactors on a petrochemical platform from Romania.

  1. Analytical chemistry requirements for advanced reactors

    International Nuclear Information System (INIS)

    Jayashree, S.; Velmurugan, S.

    2015-01-01

    The nuclear power industry has been developing and improving reactor technology for more than five decades. Newer advanced reactors now being built have simpler designs which reduce capital cost. The greatest departure from most designs now in operation is that many incorporate passive or inherent safety features which require no active controls or operational intervention to avoid accidents in the event of malfunction, and may rely on gravity, natural convection or resistance to high temperatures. India is developing the Advanced Heavy Water Reactor (AHWR) in its plan to utilise thorium in nuclear power program

  2. Reactor antineutrino detector iDREAM.

    Science.gov (United States)

    Gromov, M. B.; Lukyanchenko, G. A.; Novikova, G. J.; Obinyakov, B. A.; Oralbaev, A. Y.; Skorokhvatov, M. D.; Sukhotin, S. V.; Chepurnov, A. S.; Etenko, A. V.

    2017-09-01

    Industrial Detector for Reactor Antineutrino Monitoring (iDREAM) is a compact (≈ 3.5m 2) industrial electron antineutrino spectrometer. It is dedicated for remote monitoring of PWR reactor operational modes by neutrino method in real-time. Measurements of antineutrino flux from PWR allow to estimate a fuel mixture in active zone and to check the status of the reactor campaign for non-proliferation purposes. LAB-based gadolinium doped scintillator is exploited as a target. Multizone architecture of the detector with gamma-catcher surrounding fiducial volume and plastic muon veto above and below ensure high efficiency of IBD detection and background suppression. DAQ is based on Flash ADC with PSD discrimination algorithms while digital trigger is programmable and flexible due to FPGA. The prototype detector was started up in 2014. Preliminary works on registration Cerenkov radiation produced by cosmic muons were established with distilled water inside the detector in order to test electronic and slow control systems. Also in parallel a long-term measurements with different scintillator samples were conducted.

  3. Further optimization studies of experimental dynamic responses measured on the HTGC Dragon reactor

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1968-04-01

    This report considers some measurements made of the dynamics of the HTGC Dragon reactor and the optimization of a mathematical model which represents the reactor, by altering the parameters until a least squares fit between the experimental responses and the mathematical model is obtained. The experimental information was processed in various ways. The experimental response to an impulse, step or periodic sine wave change in reactivity was processed as an impulse, step or periodic sine wave response respectively and compared with a similar response from the model. In other studies the result of a binary cross correlation experiment (effectively an impulse response input) was processed as a frequency response and this experimental frequency response was compared with the frequency response from the mathematical model. It was possible therefore to compare the optimum values of parameters, obtained for different forms of perturbing signal and for different methods of processing and to relate the optima obtained to the problem of parameter estimation. (author)

  4. Exergy analysis of an industrial unit of catalyst regeneration based on the results of modeling and simulation

    International Nuclear Information System (INIS)

    Toghyani, Mahboubeh; Rahimi, Amir

    2015-01-01

    An industrial process is synthesized and developed for decoking of de-hydrogenation catalyst, used in LAB (Linear Alkyl Benzene) production. A multi-tube fixed bed reactor, with short length tubes is designed for decoking of catalyst as the main equipment of the process. This study provides a microscopic exergy analysis for decoking reactor and a macroscopic exergy analysis for synthesized regeneration process. The dynamic mathematical modeling technique and the simulation of process by a commercial software are applied simultaneously. The used model was previously developed for performance analysis of decoking reactor. An appropriate exergy model is developed and adopted to estimate the enthalpy, exergetic efficiency and irreversibility. The model is validated with respect to some operating data measured in a commercial regeneration unit for variations in gas and particle characteristics along the reactor. In coke-combustion period, in spite of high reaction rate, the reactor has low exergetic efficiency due to entropy production during heat and mass transfer processes. The effects of inlet gas flow rate, temperature and oxygen concentration are investigated on the exergetic efficiency and irreversibilities. Macroscopic results indicate that the fan has the highest irreversibilities among the other equipment. Applying proper operating variables reduces the cycle irreversibilities at least by 20%. - Highlights: • A microscopic exergy analysis for a multi-tube fixed bed reactor is conducted. • Controlling the O_2 concentration upgrades the reactor exergetic performance. • A macroscopic exergy analysis for synthesized regeneration process is conducted. • The fan is one of the main sources of the regeneration cycle irreversibility. • The proposed strategies can reduce the cycle irreversibilities at least by 20%.

  5. Experience and prospects for developing research reactors of different types

    International Nuclear Information System (INIS)

    Kuatbekov, R.P.; Tretyakov, I.T.; Romanov, N.V.; Lukasevich, I.B.

    2015-01-01

    NIKIET has a 60-year experience in the development of research reactors. Altogether, there have been more than 25 NIKIET-designed plants of different types built in Russia and 20 more in other countries, including pool-type water-cooled and water moderated research reactors, tank-type and pressure-tube research reactors, pressurized high-flux, heavy-water, pulsed and other research reactors. Most of the research reactors were designed as multipurpose plants for operation at research centers in a broad range of applications. Besides, unique research reactors were developed for specific application fields. Apart from the experience in the development of research reactor designs and the participation in the reactor construction, a unique amount of knowledge has been gained on the operation of research reactors. This makes it possible to use highly reliable technical solutions in the designs of new research reactors to ensure increased safety, greater economic efficiency and maintainability of the reactor systems. A multipurpose pool-type research reactor of a new generation is planned to be built at the Center for Nuclear Energy Science & Technology (CNEST) in the Socialist Republic of Vietnam to be used to support a spectrum of research activities, training of skilled personnel for Vietnam nuclear industry and efficient production of isotopes. It is exactly the applications a research reactor is designed for that defines the reactor type, design and capacity, and the selection of fuel and components subject to all requirements of industry regulations. The design of the new research reactor has a great potential in terms of upgrading and installation of extra experimental devices. (author)

  6. Development of intelligent physical start-up system for nuclear reactor

    International Nuclear Information System (INIS)

    Wang Canhui; Li Xiang; Huang Liyuan; Fu Guoen; Hu Hai

    2008-01-01

    In this paper, the Intelligent physical start-up system for nuclear reactor introduced the system composing, hardware design and software design. The system has some merits such as handy operation, fast and accurate mathematic and nicer human-machine interface. (authors)

  7. A modified indirect mathematical model for evaluation of ethanol production efficiency in industrial-scale continuous fermentation processes.

    Science.gov (United States)

    Canseco Grellet, M A; Castagnaro, A; Dantur, K I; De Boeck, G; Ahmed, P M; Cárdenas, G J; Welin, B; Ruiz, R M

    2016-10-01

    To calculate fermentation efficiency in a continuous ethanol production process, we aimed to develop a robust mathematical method based on the analysis of metabolic by-product formation. This method is in contrast to the traditional way of calculating ethanol fermentation efficiency, where the ratio between the ethanol produced and the sugar consumed is expressed as a percentage of the theoretical conversion yield. Comparison between the two methods, at industrial scale and in sensitivity studies, showed that the indirect method was more robust and gave slightly higher fermentation efficiency values, although fermentation efficiency of the industrial process was found to be low (~75%). The traditional calculation method is simpler than the indirect method as it only requires a few chemical determinations in samples collected. However, a minor error in any measured parameter will have an important impact on the calculated efficiency. In contrast, the indirect method of calculation requires a greater number of determinations but is much more robust since an error in any parameter will only have a minor effect on the fermentation efficiency value. The application of the indirect calculation methodology in order to evaluate the real situation of the process and to reach an optimum fermentation yield for an industrial-scale ethanol production is recommended. Once a high fermentation yield has been reached the traditional method should be used to maintain the control of the process. Upon detection of lower yields in an optimized process the indirect method should be employed as it permits a more accurate diagnosis of causes of yield losses in order to correct the problem rapidly. The low fermentation efficiency obtained in this study shows an urgent need for industrial process optimization where the indirect calculation methodology will be an important tool to determine process losses. © 2016 The Society for Applied Microbiology.

  8. Progress, Wealth, and Mathematics Achievement

    DEFF Research Database (Denmark)

    Valero, Paola

    2013-01-01

    I am interested in discussing the historical conditions that make it possible to formulate the idea that the mathematical qualifications of citizens in modern states is connected to the progress and economic development of nations. I interconnect apparently unrelated areas in an attempt to shed l......, H. (1899). Préface. L' Enseignement Mathématique, 1(1), 1-5. Popkewitz, T. S. (2008). Cosmopolitanism and the age of school reform: Science, education, and making society by making the child. New York: Routledge....... to the end of the 19th century. During the second half of the 19th century, mathematics teachers in different countries struggled to make mathematics part of the classic school curricula. During the second industrialization, the justification for the need for mathematics education was formulated in the first...... as a result, among others, of the growing series of comparative information on educational achievement and development. Such reports can be seen as performances of the comparative logic of Modernity that operates differential positioning, not only among individuals but also among nations, with respect to what...

  9. Selection of nuclear reactor coolant materials

    International Nuclear Information System (INIS)

    Shi Lisheng; Wang Bairong

    2012-01-01

    Nuclear material is nuclear material or materials used in nuclear industry, the general term, it is the material basis for the construction of nuclear power, but also a leader in nuclear energy development, the two interdependent and mutually reinforcing. At the same time, nuclear materials research, development and application of the depth and breadth of science and technology reflects a nation and the level of the nuclear power industry. Coolant also known as heat-carrier agent, is an important part of the heart nuclear reactor, its role is to secure as much as possible to the economic output in the form fission energy to heat the reactor to be used: the same time cooling the core, is controlled by the various structural components allowable temperature. This paper described the definition of nuclear reactor coolant and characteristics, and then addressed the requirements of the coolant material, and finally were introduced several useful properties of the coolant and chemical control. (authors)

  10. Microchannel Reactor System for Catalytic Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  11. Safety features of the MAPLE-X10 reactor design

    International Nuclear Information System (INIS)

    Lee, A.G.; Bishop, W.E.; Heeds, W.

    1990-09-01

    The MAPLE-X10 reactor is a D 2 0-reflected, H 2 0-cooled and -moderated pool-type reactor under construction at the Chalk River Nuclear Laboratories. This 10-MW reactor will produce key medical and industrial radio-isotopes such as 99 Mo, 125 I, and 192 Ir. As the prototype for the MAPLE research reactor concept, the reactor incorporates diverse safety features both inherent in the design and in the added engineered systems. The safety requirements are analogous to those of the Canadian CANDU power reactor since standards for the licensing of new research reactors have not been developed yet by the licensing authority in Canada

  12. Radioisotope applications in industry and environment: Indian scenario

    International Nuclear Information System (INIS)

    Pant, H.J.

    2016-01-01

    Applications of radioisotopes and radiation technology in industry, medicine and agriculture form an important part of India's programme of using nuclear technology for societal benefits. Radioisotope production in India started on a modest scale soon after 1 MW APSARA reactor at Trombay, Mumbai became critical in 1956. The scope of activities expanded thereafter. With the commissioning of 40 MW CIRUS reactor in 1960, the setting up of modern radioisotope processing laboratories in late sixties and the production of cobalt-60 in power reactors in megacurie quantities in late seventies made India self-sufficient in radioisotope production. The radioisotope production received a major boost in 1985 with the commissioning of high flux 100 MW DHRUVA reactor, which provided opportunity to extend the range of radioisotopes available in the country both in quantity as well in specific activity. The CIRUS reactor has been shutdown in year 2010 and 1 MW APSARA reactor is presently being upgraded to 5 MW. Today, The DHRUVA reactor operating at its full capacity is being used for production of 100 different radioisotopes those are used in industry, agriculture and medicine. (author)

  13. Astrid (fast breeder nuclear reactor)

    International Nuclear Information System (INIS)

    2014-01-01

    This document presents ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), a French project of sodium-cooled fast breeder reactor, fourth generation reactor which should be fuelled by uranium 238 rather than uranium 235, and should therefore need less extracted natural uranium to produce electricity. The operation principle of fast breeder reactors is described. They notably directly consume plutonium, allow an easier radioactive waste management as they transform long life radioactive elements into shorter life elements by transmutation. The regeneration process is briefly described, and the various operation modes are evoked (iso-generator, sub-generator, and breeder). Some peculiarities of sodium-cooled reactors are outlined. The Astrid operation principle is described, its main design innovations outlined. Various challenges are discussed regarding safety of supply and waste processing, and the safety of future reactors. Major actors are indicated: CEA, Areva, EDF, SEIV Alcen, Toshiba, Rolls Royce, and Comex. Some key data are indicated: expected lifetime, expected availability rate, cost. The projected site is Marcoule and fast breeder reactors operated or under construction in the world are indicated. The document also proposes an overview of the background and evolution of reactors of 4. generation

  14. Reactor calculations in aid of isotope production at SAFARI-1

    International Nuclear Information System (INIS)

    Ball, G.

    2003-01-01

    Varying levels of reactor physics support is given to the isotope production industry. As the pressures on both the safety limits and economical production of reactor produced isotopes mount, reactor physics calculational support is playing an ever increasing role. Detailed modelling of the reactor, irradiation rigs and target material enables isotope production in reactors to be maximised with respect to yields and quality. NECSA's methodology in this field is described and some examples are given. (author)

  15. Safety and licensing for small and medium power reactors

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1987-01-01

    Proposed new concepts for small and medium power reactors differ substantially from traditional Light Water Reactors (LWRs). Although designers have a large base of experience in safety and licensing, much of it is not relevant to new concepts. It can be a disadvantage if regulators apply LWR rules directly. A fresh start is appropriate. The extensive interactions between industry, regulators, and the public complicates but may enhance safety. It is basic to recognize the features that distinguish nuclear energy safety from that for other industries. These features include: nuclear reactivity, fission product radiation, and radioactive decay heat. Small and medium power reactors offer potential advantages over LWRs, particularly for reactivity and decay heat

  16. The safety characteristics of the HTR 500 reactor plant

    International Nuclear Information System (INIS)

    Wachholz, W.

    1987-01-01

    The HTR is a reactor having a passive safety. It is equipped with the usual active engineered safety systems in simplified form. Due to its inherent safety characteristics and the burst-safe prestressed concrete reactor vessel activity containment is ensured even without the effect of active safety systems. Even in the event of extremely hypothetical accidents the effect on the environment is low enough so that evacuation or relocation of the population is not required. Therefore large-scale damage of agricultural land and industrially used areas is safely ruled out. Thus the site selection for this type of reactor is not restricted i.e. an HTR can be constructed near industrial and urban center. (author)

  17. Safety and licensing for small and medium power reactors

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1988-01-01

    Proposed new concepts for small and medium power reactors differ substantially from traditional Light Water Reactors (LWRs). Although designers have a large base of experience in safety and licensing, much of it is not relevant to new concepts. It can be a disadvantage if regulators apply LWR rules directly. A fresh start is appropriate. The extensive interactions between industry, regulators, and the public complicate but may enhance safety. It is basic to recognize the features that distinguish nuclear energy safety from that for other industries. These features include: Nuclear reactivity, fission product radiation, and radioactive decay heat. Small and medium power reactors offer potential advantages over LWRs, particularly for reactivity and decay heat. (orig.)

  18. Structural analysis of reactor fuel elements

    International Nuclear Information System (INIS)

    Weeks, R.W.

    1977-01-01

    An overview of fuel-element modeling is presented that traces the development of codes for the prediction of light-water-reactor and fast-breeder-reactor fuel-element performance. It is concluded that although the mathematical analysis is now far advanced, the development and incorporation of mechanistic constitutive equations has not kept pace. The resultant reliance on empirical correlations severely limits the physical insight that can be gained from code extrapolations. Current efforts include modeling of alternate fuel systems, analysis of local fuel-cladding interactions, and development of a predictive capability for off-normal behavior. Future work should help remedy the current constitutive deficiencies and should include the development of deterministic failure criteria for use in design

  19. European Conference on Numerical Mathematics and Advanced Applications

    CERN Document Server

    Manguoğlu, Murat; Tezer-Sezgin, Münevver; Göktepe, Serdar; Uğur, Ömür

    2016-01-01

    The European Conference on Numerical Mathematics and Advanced Applications (ENUMATH), held every 2 years, provides a forum for discussing recent advances in and aspects of numerical mathematics and scientific and industrial applications. The previous ENUMATH meetings took place in Paris (1995), Heidelberg (1997), Jyvaskyla (1999), Ischia (2001), Prague (2003), Santiago de Compostela (2005), Graz (2007), Uppsala (2009), Leicester (2011) and Lausanne (2013). This book presents a selection of invited and contributed lectures from the ENUMATH 2015 conference, which was organised by the Institute of Applied Mathematics (IAM), Middle East Technical University, Ankara, Turkey, from September 14 to 18, 2015. It offers an overview of central recent developments in numerical analysis, computational mathematics, and applications in the form of contributions by leading experts in the field.

  20. Co-current and counter-current configurations for ethanol steam reforming in a dense Pd-Ag membrane reactor

    NARCIS (Netherlands)

    Gallucci, F.; de Falco, M.; Tosti, S.; Marrelli, L; Basile, A.

    2008-01-01

    The ethanol steam-reforming reaction to produce pure hydrogen has been studied theoretically. A mathematical model has been formulated for a traditional system and a palladium membrane reactor packed with a Co-based catalyst and the simulation results related to the membrane reactor for both

  1. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Malkoske, G.R.; Norton, J.L.; Slack, J.

    2002-01-01

    MDS Nordion has been supplying cobalt-60 sources to industry for industrial and medical purposes since 1946. These cobalt-60 sources are used in many market and product segments, but are primarily used to sterilize single-use medical products including; surgical kits, gloves, gowns, drapes, and cotton swabs. Other applications include sanitization of cosmetics, microbial reduction of pharmaceutical raw materials, and food irradiation. The technology for producing the cobalt-60 isotope was developed by MDS Nordion and Atomic Energy of Canada Limited (AECL) almost 55 years ago using research reactors at the AECL Chalk River Laboratories in Ontario, Canada. The first cobalt-60 source produced for medical applications was manufactured by MDS Nordion and used in cancer therapy. The benefits of cobalt-60 as applied to medical product manufacturing, were quickly realized and the demand for this radioisotope quickly grew. The same technology for producing cobalt-60 in research reactors was then designed and packaged such that it could be conveniently transferred to a utility/power reactor. In the early 1970's, in co-operation with Ontario Power Generation (formerly Ontario Hydro), bulk cobalt-60 production for industrial irradiation applications was initiated in the four Pickering A CANDU reactors. As the demand and acceptance of sterilization of medical products grew, MDS Nordion expanded its bulk supply by installing the proprietary Canadian technology for producing cobalt-60 in additional CANDU reactors. CANDU is unique among the power reactors of the world, being heavy water moderated and fuelled with natural uranium. They are also designed and supplied with stainless steel adjusters, the primary function of which is to shape the neutron flux to optimize reactor power and fuel bum-up, and to provide excess reactivity needed to overcome xenon-135 poisoning following a reduction of power. The reactor is designed to develop full power output with all of the adjuster

  2. Application of fuzzy synthetic assessment to assess human factors design level on reactor control panel

    International Nuclear Information System (INIS)

    Peng Xuecheng

    1999-01-01

    Reactor control panel design level on human factors must be considered by designer. The author evaluated the human factor design level of arrangement and combinations including the switch buttons, meter dials and indication lamps on Minjiang Reactor and High-Flux Engineer Test Reactor (HFETR) critical device by application of fuzzy synthetic assessment method in mathematics. From the assessment results, the advantages and shortcomings are fount, and some modification suggestions have also been proposed

  3. On some control problems of dynamic of reactor

    Science.gov (United States)

    Baskakov, A. V.; Volkov, N. P.

    2017-12-01

    The paper analyzes controllability of the transient processes in some problems of nuclear reactor dynamics. In this case, the mathematical model of nuclear reactor dynamics is described by a system of integro-differential equations consisting of the non-stationary anisotropic multi-velocity kinetic equation of neutron transport and the balance equation of delayed neutrons. The paper defines the formulation of the linear problem on control of transient processes in nuclear reactors with application of spatially distributed actions on internal neutron sources, and the formulation of the nonlinear problems on control of transient processes with application of spatially distributed actions on the neutron absorption coefficient and the neutron scattering indicatrix. The required control actions depend on the spatial and velocity coordinates. The theorems on existence and uniqueness of these control actions are proved in the paper. To do this, the control problems mentioned above are reduced to equivalent systems of integral equations. Existence and uniqueness of the solution for this system of integral equations is proved by the method of successive approximations, which makes it possible to construct an iterative scheme for numerical analyses of transient processes in a given nuclear reactor with application of the developed mathematical model. Sufficient conditions for controllability of transient processes are also obtained. In conclusion, a connection is made between the control problems and the observation problems, which, by to the given information, allow us to reconstruct either the function of internal neutron sources, or the neutron absorption coefficient, or the neutron scattering indicatrix....

  4. State-space representation of the reactor dynamics equations

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1995-01-01

    This paper describes a novel formulation of the reactor space-independent kinetics equations. The intent is to present these equations in a form that is both compatible with modern control theory and mathematically rigorous. It is desired to write the kinetics equations in the standard state variable representation, x = Ax, where x is the state vector and A is the system matrix and, at the same time, avoid mathematical compromises such as the linearization of an equation about a particular operating point. The advantage to this proposed formulation is that it may allow the lateral transfer of existing control concepts, some that have been developed for other fields, to the operation of nuclear reactors. For example, sliding mode control has been developed to allow robots to function in a robust manner in the presence of changes in the system model. This is necessary because a robot is expected to be capable of picking up an object of unknown mass and moving that object along a specified trajectory. The variability of the object's mass introduces an uncertainty into the system model that is used to deduce the appropriate control action. Thus, the robot controller must be made robust against such variations. Sliding mode control is one means of accomplishing this. A reactor controller might benefit from the same concept if its objective were to cause the reactor power to move along a demanded trajectory despite the presence of some uncertainty in the net amount of reactivity that is present

  5. Advances in U.S. reactor physics standards

    International Nuclear Information System (INIS)

    Cokinos, Dimitrios

    2008-01-01

    The standards for Reactor Design, widely used in the nuclear industry, provide guidance and criteria for performing and validating a wide range of nuclear reactor calculations and measurements. Advances, over the past decades in reactor technology, nuclear data and infrastructure in the data handling field, led to major improvements in the development and application of reactor physics standards. A wide variety of reactor physics methods and techniques are being used by reactor physicists for the design and analysis of modern reactors. ANSI (American National Standards Institute) reactor physics standards, covering such areas as nuclear data, reactor design, startup testing, decay heat and fast neutron fluence in the pressure vessel, are summarized and discussed. These standards are regularly undergoing review to respond to an evolving nuclear technology and are being successfully used in the U.S and abroad contributing to improvements in reactor design, safe operation and quality assurance. An overview of the overall program of reactor physics standards is presented. New standards currently under development are also discussed. (authors)

  6. Industrial applications of neutron activation analysis

    International Nuclear Information System (INIS)

    Hossain, T.Z.

    2001-01-01

    Neutron activation analysis has been widely used in the industry and over the years played a key role in the development of manufacturing process as well as monitoring of the process flow. In this context NAA has been utilized both in R and D, and in the factory as a flexible analytical tool. It has been used successfully in numerous industries including broad categories such as Chemical, Pharmaceutical, Mining, Photographic, Oil and Gas, Automobile, Defense, Semiconductor and Electronic industries. Dow Chemical owns and operates a research reactor for analytical measurements of samples generated in both R and D, and manufacturing area in its plant in Midland, Michigan. Although most industries do not have reactors on their campus but use an off site reactor regularly, and often have in-house neutron sources such as a 252 Cf used primarily for NAA. In most industrial materials analysis laboratory NAA is part of a number of analytical techniques such as ICP-MS, AA, SIMS, FTIR, XRF, TXRF etc. Analysis of complex industrial samples may require data from each of these methods to provide a clear picture of the materials issues involved. With the improvement of classical analytical techniques, and the introduction of new techniques, e.g. TXRF, the role of NAA continues to be a key bench mark technique that provides accurate and reliable data. The strength of the NAA in bulk analysis is balanced by its weakness in providing surface sensitive or spatially resolved analysis as is required by many applications. (author)

  7. Potential market and characteristics of low-temperature reactors

    International Nuclear Information System (INIS)

    Lerouge, B.

    1975-01-01

    The low-temperature (100 to 200 deg C) heat market for industrial applications and district heating is very important. Two main studies have been developed: a swimming pool reactor delivering water at 110 deg C and a prestressed concrete vessel reactor delivering water at 200 deg C [fr

  8. The fuel of nuclear reactors

    International Nuclear Information System (INIS)

    1995-03-01

    This booklet is a presentation of the different steps of the preparation of nuclear fuels performed by Cogema. The documents starts with a presentation of the different French reactor types: graphite moderated reactors, PWRs using MOX fuel, fast breeder reactors and research reactors. The second part describes the fuel manufacturing process: conditioning of nuclear materials and fabrication of fuel assemblies. The third part lists the different companies involved in the French nuclear fuel industry while part 4 gives a short presentation of the two Cogema's fuel fabrication plants at Cadarache and Marcoule. Part 5 and 6 concern the quality assurance, the safety and reliability aspects of fuel elements and the R and D programs. The last part presents some aspects of the environmental and personnel protection performed by Cogema. (J.S.)

  9. International Conference on Mathematical Sciences and Statistics 2013 : Selected Papers

    CERN Document Server

    Leong, Wah; Eshkuvatov, Zainidin

    2014-01-01

    This volume is devoted to the most recent discoveries in mathematics and statistics. It also serves as a platform for knowledge and information exchange between experts from industrial and academic sectors. The book covers a wide range of topics, including mathematical analyses, probability, statistics, algebra, geometry, mathematical physics, wave propagation, stochastic processes, ordinary and partial differential equations, boundary value problems, linear operators, cybernetics and number and functional theory. It is a valuable resource for pure and applied mathematicians, statisticians, engineers and scientists.

  10. Non-electric applications of pool-type nuclear reactors

    International Nuclear Information System (INIS)

    Adamov, E.O.; Cherkashov, Yu.M.; Romenkov, A.A.

    1997-01-01

    This paper recommends the use of pool-type light water reactors for thermal energy production. Safety and reliability of these reactors were already demonstrated to the public by the long-term operation of swimming pool research reactors. The paper presents the design experience of two projects: Apatity Underground Nuclear Heating Plant and Nuclear Sea-Water Desalination Plant. The simplicity of pool-type reactors, the ease of their manufacturing and maintenance make this type of a heat source attractive to the countries without a developed nuclear industry. (author). 6 figs, 1 tab

  11. Fixed-bed Reactor Dynamics and Control - A Review

    DEFF Research Database (Denmark)

    Jørgensen, S. B.

    1986-01-01

    The industrial diversity of fixed bed reactors offers a challenging and relevant set of control problems. These intricate problems arise due to the rather complex dynamics of fixed bed reactors and to the complexity of actual reactor configurations. Many of these control problems are nonlinear...... and multi-variable. During the last decade fixed bed reactor control strategies have been proposed and investigated experimentally. This paper reviews research on these complex control problems with an emphasis upon solutions which have been demon-strated to work in the laboratory and hold promise...

  12. Development of industrial utilization of metallic sodium

    International Nuclear Information System (INIS)

    Yuhara, Shunichi

    1995-01-01

    Sodium exists in large quantity, being ranked to 6th in the existence proportion of elements, and takes 2.83% of the matters composing earth crust. Sodium is an alkali metal which is light weight, chemically very active and a strong reducing substance. It is excellent in the compatibility with iron and steel materials, and it possesses good heat conduction and flow characteristics and stable nuclear characteristics. Since the industrial production of sodium became practical, its utilization was developed as the reducing agent and catalyst in chemical industry, the core coolant and heat transport medium for nuclear reactors, the material composing the secondary batteries for storing electric power, and the auxiliaries for metal refining and so on. The industrial production of metallic sodium is carried out by the electrolysis of melted salt, namely Downs process. The production of metallic sodium in Japan is 3000-6000 t yearly, and its import is 300-350 t. Its main use is for organic chemical industry including dye production. The grades of metallic sodium products and their uses are shown. The utilization of sodium for large fast reactors, the utilization of NaK as the heat transport and cooling medium for space use nuclear reactors and deep sea fast reactor system, and the utilization of sodium as the catalyst in dye production, for silicon carbide fiber production and for agricultural and medical chemical production are reported. (K.I.)

  13. Nuclear heat for industrial purposes and district heating

    International Nuclear Information System (INIS)

    1974-01-01

    Studies on the various possibilities for the application of heat from nuclear reactors in the form of district heat or process steam for industrial purposes had been made long before the present energy crisis. Although these studies have indicated technical feasibility and economical justification of such utilization, the availability of relatively cheap oil and difficulties in locating a nuclear heat source inside industrial areas did not stimulate much further development. Since the increase of oil prices, the interest in nuclear heat application is reawakened, and a number of new potential areas have been identified. It now seems generally recognized that the heat from nuclear reactors should play an important role in primary energy supply, not only for electricity production but also as direct heat. At present three broad areas of nuclear heat application are identified: Direct heat utilization in industrial processing requiring a temperature above 800 deg. C; Process steam utilization in various industries, requiring a temperature mainly in the range of 200-300 deg. C; Low temperature and waste heat utilization from nuclear power plants for desalination of sea water and district heating. Such classification is mainly related to the type and characteristics of the heat source or nuclear reactor which could be used for a particular application. Modified high temperature reactor types (HTR) are the candidates for direct heat application, while the LWR reactors can satisfy most of the demands for process steam. Production of waste heat is a characteristic of all thermal power plants, and its utilization is a major challenge in the field of power production

  14. Netherlands Interuniversity Reactor Institut

    International Nuclear Information System (INIS)

    1978-01-01

    This is the annual report of the Interuniversity Reactor Institute in the Netherlands for the Academic Year 1977-78. Activities of the general committee, the daily committee and the scientific advice board are presented. Detailed reports of the scientific studies performed are given under five subjects - radiation physics, reactor physics, radiation chemistry, radiochemistry and radiation hygiene and dosimetry. Summarised reports of the various industrial groups are also presented. Training and education, publications and reports, courses, visits and cooperation with other institutes in the area of scientific research are mentioned. (C.F.)

  15. Mathematical finance theory review and exercises from binomial model to risk measures

    CERN Document Server

    Gianin, Emanuela Rosazza

    2013-01-01

    The book collects over 120 exercises on different subjects of Mathematical Finance, including Option Pricing, Risk Theory, and Interest Rate Models. Many of the exercises are solved, while others are only proposed. Every chapter contains an introductory section illustrating the main theoretical results necessary to solve the exercises. The book is intended as an exercise textbook to accompany graduate courses in mathematical finance offered at many universities as part of degree programs in Applied and Industrial Mathematics, Mathematical Engineering, and Quantitative Finance.

  16. Mathematical and numerical models for eddy currents and magnetostatics with selected applications

    CERN Document Server

    Rappaz, Jacques

    2013-01-01

    This monograph addresses fundamental aspects of mathematical modeling and numerical solution methods of electromagnetic problems involving low frequencies, i.e. magnetostatic and eddy current problems which are rarely presented in the applied mathematics literature. In the first part, the authors introduce the mathematical models in a realistic context in view of their use for industrial applications. Several geometric configurations of electric conductors leading to different mathematical models are carefully derived and analyzed, and numerical methods for the solution of the obtained problem

  17. BR2 Reactor: Introduction

    International Nuclear Information System (INIS)

    Moons, F.

    2007-01-01

    The irradiations in the BR2 reactor are in collaboration with or at the request of third parties such as the European Commission, the IAEA, research centres and utilities, reactor vendors or fuel manufacturers. The reactor also contributes significantly to the production of radioisotopes for medical and industrial applications, to neutron silicon doping for the semiconductor industry and to scientific irradiations for universities. Along the ongoing programmes on fuel and materials development, several new irradiation devices are in use or in design. Amongst others a loop providing enhanced cooling for novel materials testing reactor fuel, a device for high temperature gas cooled fuel as well as a rig for the irradiation of metallurgical samples in a Pb-Bi environment. A full scale 3-D heterogeneous model of BR2 is available. The model describes the real hyperbolic arrangement of the reactor and includes the detailed 3-D space dependent distribution of the isotopic fuel depletion in the fuel elements. The model is validated on the reactivity measurements of several tens of BR2 operation cycles. The accurate calculations of the axial and radial distributions of the poisoning of the beryllium matrix by 3 He, 6 Li and 3T are verified on the measured reactivity losses used to predict the reactivity behavior for the coming decades. The model calculates the main functionals in reactor physics like: conventional thermal and equivalent fission neutron fluxes, number of displacements per atom, fission rate, thermal power characteristics as heat flux and linear power density, neutron/gamma heating, determination of the fission energy deposited in fuel plates/rods, neutron multiplication factor and fuel burn-up. For each reactor irradiation project, a detailed geometry model of the experimental device and of its neighborhood is developed. Neutron fluxes are predicted within approximately 10 percent in comparison with the dosimetry measurements. Fission rate, heat flux and

  18. Development of Reactor Protection System (RPS) in Reactor Digital Instrumentation and Control System (ReDICS)

    International Nuclear Information System (INIS)

    Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat; Ridzuan Abdul Mutalib

    2013-01-01

    RTP Research Reactor are in the process upgraded from analogue control console system to a digital control console system . Upgrade process requires a statistical study to improve safety during reactor operation. RPS was developed to meet the needs of operational safety and at the same time comply with the guidelines set by the IAEA. RPS is in analog and hardware with industry standard interfaced with digital DAC (Data Acquisition and Control) and OWS (Operator Work Station). (author)

  19. Modelling of a falling sludge bed reactor using AQUASIM

    African Journals Online (AJOL)

    drinie

    2001-10-04

    Oct 4, 2001 ... products are then used for the biological treatment of acid mine drainage. A mathematical ... solid matter into three valleys inside the reactor, as opposed to an ... conversion of PSS in the presence of sulphate-reducing bacteria ... indicate substrate flow (stoichiometrically) in the form of COD ..... fermentation.

  20. Thermal-hydraulic analysis techniques for axisymmetric pebble bed nuclear reactor cores

    International Nuclear Information System (INIS)

    Stroh, K.R.

    1979-03-01

    The pebble bed reactor's cylindrical core volume contains a random bed of small, spherical fuel-moderator elements. These graphite spheres, containing a central region of dispersed coated-particle fissile and fertile material, are cooled by high pressure helium flowing through the connected interstitial voids. A mathematical model and numerical solution technique have been developed which allow calculation of macroscopic values of thermal-hydraulic variables in an axisymmetric pebble bed nuclear reactor core. The computer program PEBBLE is based on a mathematical model which treats the bed macroscopically as a generating, conducting porous medium. The steady-state model uses a nonlinear Forchheimer-type relation between the coolant pressure gradient and mass flux, with newly derived coefficients for the linear and quadratic resistance terms. The remaining equations in the model make use of mass continuity, and thermal energy balances for the solid and fluid phases

  1. Power reactor noise studies and applications

    Energy Technology Data Exchange (ETDEWEB)

    Arzhanov, V

    2002-03-01

    The present thesis deals with the neutron noise arising in power reactor systems. Generally, it can be divided into two major parts: first, neutron noise diagnostics, or more specifically, novel methods and algorithms to monitor nuclear industrial reactors; and second, contributions to neutron noise theory as applied to power reactor systems. Neutron noise diagnostics is presented by two topics. The first one is a theoretical study on the possibility to use a newly proposed current-flux (C/F) detector in Pressurised Water Reactors (PWR) for the localisation of anomalies. The second topic concerns various methods to detect guide tube impacting in Boiling Water Reactors (BWR). The significance of these problems comes from the operational experience. The thesis describes a novel method to localise vibrating control rods in a PWR by using only one C/F detector. Another novel method, based on wavelet analysis, is put forward to detect impacting guide tubes in a BWR. Neutron noise theory is developed for both Accelerator Driven Systems (ADS) and traditional reactors. By design the accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and methods that have been developed for traditional reactors and also it poses a number of new problems. As for the latter, the thesis investigates the space-dependent neutron noise caused by a fluctuating source. It is shown that the frequency-dependent spatial behaviour exhibits some new properties that are different from those known in traditional critical systems. On the other hand, various reactor physics approximations (point kinetic, adiabatic etc.) have not been defined yet for the subcritical systems. In this respect the thesis presents a systematic formulation of the above mentioned approximations as well as investigations of their properties. Another important problem in neutron noise theory is the treatment of moving boundaries. In this case one

  2. Power reactor noise studies and applications

    International Nuclear Information System (INIS)

    Arzhanov, V.

    2002-03-01

    The present thesis deals with the neutron noise arising in power reactor systems. Generally, it can be divided into two major parts: first, neutron noise diagnostics, or more specifically, novel methods and algorithms to monitor nuclear industrial reactors; and second, contributions to neutron noise theory as applied to power reactor systems. Neutron noise diagnostics is presented by two topics. The first one is a theoretical study on the possibility to use a newly proposed current-flux (C/F) detector in Pressurised Water Reactors (PWR) for the localisation of anomalies. The second topic concerns various methods to detect guide tube impacting in Boiling Water Reactors (BWR). The significance of these problems comes from the operational experience. The thesis describes a novel method to localise vibrating control rods in a PWR by using only one C/F detector. Another novel method, based on wavelet analysis, is put forward to detect impacting guide tubes in a BWR. Neutron noise theory is developed for both Accelerator Driven Systems (ADS) and traditional reactors. By design the accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and methods that have been developed for traditional reactors and also it poses a number of new problems. As for the latter, the thesis investigates the space-dependent neutron noise caused by a fluctuating source. It is shown that the frequency-dependent spatial behaviour exhibits some new properties that are different from those known in traditional critical systems. On the other hand, various reactor physics approximations (point kinetic, adiabatic etc.) have not been defined yet for the subcritical systems. In this respect the thesis presents a systematic formulation of the above mentioned approximations as well as investigations of their properties. Another important problem in neutron noise theory is the treatment of moving boundaries. In this case one

  3. Physical security at research reactors

    International Nuclear Information System (INIS)

    Clark, R.A.

    1977-01-01

    Of the 84 non-power research facilities licensed under 10 CFR Part 50, 73 are active (two test reactors, 68 research reactors and three critical facilities) and are required by 10 CFR Part 73.40 to provide physical protection against theft of SNM and against industrial sabotage. Each licensee has developed a security plan required by 10 CFR Part 50.34(c) to demonstrate the means of compliance with the applicable requirements of 10 CFR Part 73. In 1974, the Commission provided interim guidance for the organization and content of security plans for (a) test reactors, (b) medium power research and training reactors, and (c) low power research and training reactors. Eleven TRIGA reactors, with power levels greater than 250 kW and all other research and training reactors with power levels greater than 100 kW and less than or equal to 5,000 kW are designated as medium power research and training reactors. Thirteen TRIGA reactors with authorized power levels less than 250 kW are considered to be low power research and training reactors. Additional guidance for complying with the requirements of 73.50 and 73.60, if applicable, is provided in the Commission's Regulatory Guides. The Commission's Office of Inspection and Enforcement inspects each licensed facility to assure that an approved security plan is properly implemented with appropriate procedures and physical protection systems

  4. Fluidized-bed reactors processes and operating conditions

    CERN Document Server

    Yates, John G

    2016-01-01

    The fluidized-bed reactor is the centerpiece of industrial fluidization processes. This book focuses on the design and operation of fluidized beds in many different industrial processes, emphasizing the rationale for choosing fluidized beds for each particular process. The book starts with a brief history of fluidization from its inception in the 1940’s. The authors present both the fluid dynamics of gas-solid fluidized beds and the extensive experimental studies of operating systems and they set them in the context of operating processes that use fluid-bed reactors. Chemical engineering students and postdocs as well as practicing engineers will find great interest in this book.

  5. Minority and female training programs at the Ford Nuclear Reactor, University of Michigan

    International Nuclear Information System (INIS)

    Burn, R.R.

    1992-01-01

    Nuclear power industry operations staffs are composed predominantly of white males because most of the personnel come from the nuclear submarine and surface branches of the U.S. Navy. The purpose of the minority and female training programs sponsored by the Ford Nuclear Reactor at the University of Michigan is to provide a path for minorities and women to enter the nuclear industry as operators, technicians, and, in the long term, as graduate engineers. The training programs are aimed at high school students, preferably juniors. While the training is directed toward operation of a nuclear reactor, it is equally applicable to careers in most other technical fields. It is hoped that some of the participants will remain at the Ford Nuclear Reactor as reactor operators, enter college, and obtain college degrees, after which they will enter the nuclear industry as graduate engineers

  6. Thermal-hydraulic methods in fast reactor safety

    International Nuclear Information System (INIS)

    Weber, D.P.; Briggs, L.L.

    1985-01-01

    Methods for the solution of thermal-hydraulic problems in liquid metal fast breeder reactors (LMFBRs) arising primarily from transient accident analysis are reviewed. Principal emphasis is given to the important phenomenological issues of sodium boiling and fuel motion. Descriptions of representative phenomenological and mathematical models, computational algorithms, advantages and limitations of the approaches, and current research needs and directions are provided

  7. Removal of toxic Cr(VI) ions from tannery industrial wastewater using a newly designed three-phase three-dimensional electrode reactor

    Science.gov (United States)

    Grace Pavithra, K.; Senthil Kumar, P.; Carolin Christopher, Femina; Saravanan, A.

    2017-11-01

    In this research, the wastewater samples were collected from leather tanning industry at different time intervals. The parameters like pH, electrical conductivity, temperature, turbidity, chromium and chemical oxygen demand (COD) of the samples were analyzed. A three-phase three-dimensional fluidized type electrode reactor (FTER) was newly designed for the effective removal of toxic pollutants from wastewater. The influencing parameters were optimized for the maximum removal of toxic pollutants from wastewater. The optimum condition for the present system was calculated as: contact time of 30 min, applied voltage of 3 V and the particle electrodes of 15 g. The particle electrode was characterized by using FT-IR analysis. Langmuir-Hinshelwood and pseudo-second order kinetic models were fits well with the experimental data. The results showed that the FTER can be successfully employed for the treatment of industrial wastewater.

  8. Potential role of the Romanian research and industry on the small and medium reactors market

    Energy Technology Data Exchange (ETDEWEB)

    Rapeanu, S N; Bujor, A [National Agency for Atomic Energy, Bucharest (Romania); Comsa, O [Center of Technology and Engineering for Nuclear Projects, Bucharest (Romania)

    1998-02-01

    The need of diversifying the energy sources, independence from foreign supplies and modernization of economy have constituted the major factors in implementation of nuclear energy in Romania. The choice of the heavy water reactor CANDU-600 was made on grounds of advanced safety features, proven efficient economic operation as well as on the technologic feasibility for manufacturing of components, equipment, instrumentation, heavy water and natural uranium fuel in Romania. Unlike turn-key acquisition approaches, the Romanian option provided an active national participation in construction the Cernavoda NPP. As consequence, important support was being given to development of the industries involved in the nuclear fuel cycle, manufacturing of equipment and nuclear materials, construction-montage, engineering, consulting, services, etc. This was done based on technology transfer, implementation of advanced design and execution standards, quality assurance procedures and modern nuclear safety requirements at international level. The efforts materialized in an important national participation in the construction of the Cernavoda NPP and all related programs are successful. Now, Romanian firms are also involved in supplying components, equipment and services to NPP`s in other eastern and central Europeans countries. The paper presents the achievements of the Romanian economy in this field and the effort of the Romanian companies on the small and medium power reactors market. Lists with main R and D institutes, nuclear fuel cycle facilities as well as potential equipment suppliers are attached. (author). 9 refs, 3 figs.

  9. The industrial point of view

    International Nuclear Information System (INIS)

    Rozenholc, M.

    1984-01-01

    After a brief note on the successive designs of breeder reactors in France and in the world, this article analyzes the industrial experience acquired during the construction of the nuclear boiler Super Phenix of the power station at Creys-Malville. This experience, added to the remarkable continuity of the French programm, puts the industry in a position to approach the following phase of the deployment of breeder reactors. The international collaboration which has already been widely applied in the case of Creys-Malville must be continued. The common efforts will thus make it possible at less cost to set up this source of energy which is not dependent on natural ressources [fr

  10. Peptidolytic microbial community of methanogenic reactors from two modified UASBs of brewery industries

    Directory of Open Access Journals (Sweden)

    C. Díaz

    2010-10-01

    Full Text Available We studied the peptide-degrading anaerobic communities of methanogenic reactors from two mesophilic full-scale modified upflow anaerobic sludge blanket (UASB reactors treating brewery wastewater in Colombia. Most probable number (MPN counts varied between 7.1 x 10(8 and 6.6 x 10(9 bacteria/g volatile suspended solids VSS (Methanogenic Reactor 1 and 7.2 x 10(6 and 6.4 x 10(7 bacteria/g (VSS (Methanogenic Reactor 2. Metabolites detected in the highest positive MPN dilutions in both reactors were mostly acetate, propionate, isovalerate and, in some cases, negligible concentrations of butyrate. Using the highest positive dilutions of MPN counts, 50 dominant strains were isolated from both reactors, and 12 strains were selected for sequencing their 16S rRNA gene based on their phenotypic characteristics. The small-subunit rRNA gene sequences indicated that these strains were affiliated to the families Propionibacteriaceae, Clostridiaceae and Syntrophomonadaceae in the low G + C gram-positive group and Desulfovibrio spp. in the class d-Proteobacteria. The main metabolites detected in the highest positive dilutions of MPN and the presence of Syntrophomonadaceae indicate the effect of the syntrophic associations on the bioconversion of these substrates in methanogenic reactors. Additionally, the potential utilization of external electron acceptors for the complete degradation of amino acids by Clostridium strains confirms the relevance of these acceptors in the transformation of peptides and amino acids in these systems.

  11. Applied research into direct numerical control of A-1 reactor temperature

    International Nuclear Information System (INIS)

    Karpeta, C.; Volf, K.

    1974-01-01

    Partial results of research efforts aimed at applying modern control theory in the control of the reactor of the A-1 nuclear power station are presented. A mathematical model of the process dynamics was developed. Some parameters of the model were determined using the results of an experimentally performed reactor scram. The optimal stochastic discrete regulator was determined and closed-loop transients were studied. The possibilities of implementing control routines were investigated using the RPP-16 computer. (author)

  12. Characterization of aerosols from industrial fabrication of mixed-oxide nuclear reactor fuels

    International Nuclear Information System (INIS)

    Hoover, M.D.; Newton, G.J.

    1997-01-01

    Recycling plutonium into mixed-oxide (MOX) fuel for nuclear reactors is being given serious consideration as a safe and environmentally sound method of managing plutonium from weapons programs. Planning for the proper design and safe operation of the MOX fuel fabrication facilities can take advantage of studies done in the 1970s, when recycling of plutonium from nuclear fuel was under serious consideration. At that time, it was recognized that the recycle of plutonium and uranium in irradiated fuel could provide a significant energy source and that the use of 239 Pu in light water reactor fuel would reduce the requirements for enriched 235 U as a reactor fuel. It was also recognized that the fabrication of uranium and plutonium reactor fuels would not be risk-free. Despite engineered safety precautions such as the handling of uranium and plutonium in glove-box enclosures, accidental releases of radioactive aerosols from normal containment might occur. Workers might then be exposed to the released materials by inhalation

  13. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  14. Reactor Materials Research

    International Nuclear Information System (INIS)

    Van Walle, E.

    2002-01-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel

  15. Safety features of the MAPLE-X10 reactor design

    International Nuclear Information System (INIS)

    Lee, A.G.; Bishop, W.E.; Heeds, W.

    1990-01-01

    This paper reports on the MAPLE-X10 reactor D 2 O-reflected, H 2 O-cooled and -moderated pool- type reactor, under construction at the Chalk River Nuclear Laboratories. This 10-MW will produce key medical and industrial radioisotopes such as 99 Mo, 125 I, and 192 Ir. The prototype for the MAPLE research reactor concept, the reactor incorporates diverse safety features both inherent in the design and in the added engineered systems. The safety requirements are analogous to those of the Canadian CANDU power reactor as standards for the licensing of new research reactors have not been developed by the licensing authority in Canada

  16. The fishing industry - toward supply chain modelling

    DEFF Research Database (Denmark)

    Jensen, Toke Koldborg; Nielsen, Jette; Larsen, Erling P.

    Mathematical models for simulating and optimizing supply chain aspects such as distribution planning and optimal use of raw materials are widely used. However, modelling based on a holistic chain view is less studied, and food-related aspects such as quality and shelf life issues enforce additional...... requirements onto the chains. In this paper, we consider the supply chain structure of the Danish fishing industry and illustrate the potential of using mathematical models to identify quality and value-adding activities. This is a first step toward innovative supply chain modelling aimed to identify benefits...... for actors along chains in the fishing industry....

  17. Potential industrial market for process heat from nuclear reactors

    International Nuclear Information System (INIS)

    Barnes, R.W.

    1976-07-01

    A specific segment of industrial process heat use has been examined in detail to identify individual plant locations throughout the United states where nuclear generated steam may be a viable alternative. Five major industries have been studied: paper, chemicals, petroleum, rubber, and primary metals. For these industries, representing 75 percent of the total industrial steam consumption, the individual plant locations within the U.S. using steam in large quantities have been located and characterized as to fuel requirements

  18. Implementation of digital control and protection systems of China advanced research reactor

    International Nuclear Information System (INIS)

    Zeng Hai; Jin Huajin; Xu Qiguo; Zhang Mingkui

    2005-01-01

    China Advanced Research Reactor (CARR), a reactor of the 21st century with high performance is being constructed in China. The requirements of reliability and stability on the control and protection (c and p) system are the main points raised. Especially, with the development of digital technology, the c and p system of CARR is demanded to match the trend of digitization in the field of reactor control. The c and p system, including reactor protection system, reactor monitoring and control system, reactor power regulating system, and the mitigation system for ATWS (Anticipate Transient Without Scram), adopts digital technology, and the digital display screen will replace the analog panels in the main control room. The c and p system of CARR adopts redundant technology with 2 or 3 redundant channels to improve the system reliability. The 10/100 Mbps self-adaptive redundant optic fiber industry Ethernet ring network is used to interlink operator workstations, supervisor workstation, and I/O control stations. Commercial grade equipment with mature experience in industrial application are applied to the c and p system of CARR, which have high reliability, good interchangeability, and is easily purchased, the software-developing tools fully match the international industry standards. The realization of digital c and p system of CARR will promote the progress of digital control technology for reactors in China, and certainly become a technical basic platform for developing informational and intelligent reactors in China. (authors)

  19. Nuclear science. U.S. electricity needs and DOE's civilian reactor development program

    International Nuclear Information System (INIS)

    England-Joseph, Judy; Allen, Robert E. Jr.; Fitzgerald, Duane; Young, Edward E. Jr.; Leavens, William P.; Bell, Jacqueline

    1990-05-01

    Electricity projections developed by the North American Electric Reliability Council (NERC) appear to be the best available estimates of future U.S. electricity needs. NERC, which represents all segments of the utility industry, forecasts that before 1998 certain regions of the country, particularly in the more heavily populated eastern half of the United States, may experience shortfalls during summer peak demand periods. These forecasts considered the utility companies' plans, as of 1989, to meet electricity needs during the period; these plans include such measures as constructing additional generators and conducting demand management programs. Working closely with the nuclear industry, DOE is supporting the development of several reactor technologies to ensure that nuclear power remains a viable electricity supply option. In fiscal year 1990, DOE's Civilian Reactor Development Program was funded at $253 million. DOE is using these funds to support industry-led efforts to develop light water reactors (LWR), advanced liquid-metal reactors (LMR), and modular high-temperature gas-cooled reactors (MHTGR) that are safe, environmentally acceptable, and economically competitive. The utility company officials we spoke with, all of whom were in the Southeast, generally supported DOE's efforts in developing these technologies. However, most of the officials do not plan to purchase nuclear reactors until after 2000 because of the high costs of constructing nuclear reactors and current public opposition to nuclear power

  20. Nuclear power reactor physics

    International Nuclear Information System (INIS)

    Barjon, Robert

    1975-01-01

    The purpose of this book is to explain the physical working conditions of nuclear reactors for the benefit of non-specialized engineers and engineering students. One of the leading ideas of this course is to distinguish between two fundamentally different concepts: - a science which could be called neutrodynamics (as distinct from neutron physics which covers the knowledge of the neutron considered as an elementary particle and the study of its interactions with nuclei); the aim of this science is to study the interaction of the neutron gas with real material media; the introduction will however be restricted to its simplified expression, the theory and equation of diffusion; - a special application: reactor physics, which is introduced when the diffusing and absorbing material medium is also multiplying. For this reason the chapter on fission is used to introduce this section. In practice the section on reactor physics is much longer than that devoted to neutrodynamics and it is developed in what seemed to be the most relevant direction: nuclear power reactors. Every effort was made to meet the following three requirements: to define the physical bases of neutron interaction with different materials, to give a correct mathematical treatment within the limit of necessary simplifying hypotheses clearly explained; to propose, whenever possible, numerical applications in order to fix orders of magnitude [fr