WorldWideScience

Sample records for industrial process controls

  1. Interfacing industrial process control systems to LEP/LHC

    International Nuclear Information System (INIS)

    Rabany, M.

    1992-01-01

    Modern industrial process control systems have developed to meet the needs of industry to increase the production while decreasing the costs. Although particle accelerators designers have pioneered in control systems during the seventies, it has now become possible to them to profit of industrial solutions in substitution of, or in complement with the more traditional home made ones. Adapting and integrating such industrial systems to the accelerator control area will certainly benefit to the field in terms of finance, human resources and technical facilities offered off-the-shelf by the widely experienced industrial controls community; however this cannot be done without slightly affecting the overall accelerator control architecture. The paper briefly describes the industrial controls arena and takes example on an industrial process control system recently installed at CERN to discuss in detail the related choices and issues. (author)

  2. Fuzzy Control in the Process Industry

    DEFF Research Database (Denmark)

    Jantzen, Jan; Verbruggen, Henk; Østergaard, Jens-Jørgen

    1999-01-01

    Control problems in the process industry are dominated by non-linear and time-varying behaviour, many inner loops, and much interaction between the control loops. Fuzzy controllers have in some cases nevertheless mimicked the control actions of a human operator. Simple fuzzy controllers can...... be designed starting from PID controllers, and in more complex cases these can be used in connection with model-based predictive control. For high level control and supervisory control several simple controllers can be combined in a priority hierarchy such as the one developed in the cement industry...

  3. The process matters: cyber security in industrial control systems

    NARCIS (Netherlands)

    Hadziosmanovic, D.

    2014-01-01

    An industrial control system (ICS) is a computer system that controls industrial processes such as power plants, water and gas distribution, food production, etc. Since cyber-attacks on an ICS may have devastating consequences on human lives and safety in general, the security of ICS is important.

  4. Process Control Systems in the Chemical Industry: Safety vs. Security

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  5. Improving industrial process control systems security

    CERN Document Server

    Epting, U; CERN. Geneva. TS Department

    2004-01-01

    System providers are today creating process control systems based on remote connectivity using internet technology, effectively exposing these systems to the same threats as corporate computers. It is becoming increasingly difficult and costly to patch/maintain the technical infrastructure monitoring and control systems to remove these vulnerabilities. A strategy including risk assessment, security policy issues, service level agreements between the IT department and the controls engineering groups must be defined. In addition an increased awareness of IT security in the controls system engineering domain is needed. As consequence of these new factors the control system architectures have to take into account security requirements, that often have an impact on both operational aspects as well as on the project and maintenance cost. Manufacturers of industrial control system equipment do however also propose progressively security related solutions that can be used for our active projects. The paper discusses ...

  6. Industrial application of thermal image processing and thermal control

    Science.gov (United States)

    Kong, Lingxue

    2001-09-01

    Industrial application of infrared thermography is virtually boundless as it can be used in any situations where there are temperature differences. This technology has particularly been widely used in automotive industry for process evaluation and system design. In this work, thermal image processing technique will be introduced to quantitatively calculate the heat stored in a warm/hot object and consequently, a thermal control system will be proposed to accurately and actively manage the thermal distribution within the object in accordance with the heat calculated from the thermal images.

  7. Dynamic modeling and control of industrial crude terephthalic acid hydropurification process

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi; Zhong, Weimin; Liu, Yang; Luo, Na; Qian, Feng [East China University of Science and Technology, Shanghai (China)

    2015-04-15

    Purified terephthalic acid (PTA) is critical to the development of the polyester industry. PTA production consists of p-xylene oxidation reaction and crude terephthalic acid (CTA) hydropurification. The hydropurification process is necessary to eliminate 4-carboxybenzaldehyde (4-CBA), which is a harmful byproduct of the oxidation reaction process. Based on the dynamic model of the hydropurification process, two control systems are studied using Aspen Dynamics. The first system is the ratio control system, in which the mass flows of CTA and deionized water are controlled. The second system is the multivariable predictive control-proportional-integral-derivative cascade control strategy, in which the concentrations of 4-CBA and carbon monoxide are chosen as control variables and the reaction temperature and hydrogen flow are selected as manipulated variables. A detailed dynamic behavior is investigated through simulation. Results show that the developed control strategies exhibit good control performances, thereby providing theoretical guidance for advanced control of industry-scale PTA production.

  8. The application of mean control chart in managing industrial processes

    Directory of Open Access Journals (Sweden)

    Papić-Blagojević Nataša

    2013-01-01

    Full Text Available Along with the advent of mass production comes the problem of monitoring and maintaining the quality of the product, which stressed the need for the application of selected statistical and mathematical methods in the control process. The main objective of applying the methods of statistical control is continuous quality improvement through permanent monitoring of the process in order to discover the causes of errors. Shewart charts are the most popular method of statistical process control, which performs separation of controlled and uncontrolled variations along with detection of increased variations. This paper presents the example of Shewart mean control chart with application in managing industrial process.

  9. Off-Policy Reinforcement Learning: Optimal Operational Control for Two-Time-Scale Industrial Processes.

    Science.gov (United States)

    Li, Jinna; Kiumarsi, Bahare; Chai, Tianyou; Lewis, Frank L; Fan, Jialu

    2017-12-01

    Industrial flow lines are composed of unit processes operating on a fast time scale and performance measurements known as operational indices measured at a slower time scale. This paper presents a model-free optimal solution to a class of two time-scale industrial processes using off-policy reinforcement learning (RL). First, the lower-layer unit process control loop with a fast sampling period and the upper-layer operational index dynamics at a slow time scale are modeled. Second, a general optimal operational control problem is formulated to optimally prescribe the set-points for the unit industrial process. Then, a zero-sum game off-policy RL algorithm is developed to find the optimal set-points by using data measured in real-time. Finally, a simulation experiment is employed for an industrial flotation process to show the effectiveness of the proposed method.

  10. Effects of wireless packet loss in industrial process control systems.

    Science.gov (United States)

    Liu, Yongkang; Candell, Richard; Moayeri, Nader

    2017-05-01

    Timely and reliable sensing and actuation control are essential in networked control. This depends on not only the precision/quality of the sensors and actuators used but also on how well the communications links between the field instruments and the controller have been designed. Wireless networking offers simple deployment, reconfigurability, scalability, and reduced operational expenditure, and is easier to upgrade than wired solutions. However, the adoption of wireless networking has been slow in industrial process control due to the stochastic and less than 100% reliable nature of wireless communications and lack of a model to evaluate the effects of such communications imperfections on the overall control performance. In this paper, we study how control performance is affected by wireless link quality, which in turn is adversely affected by severe propagation loss in harsh industrial environments, co-channel interference, and unintended interference from other devices. We select the Tennessee Eastman Challenge Model (TE) for our study. A decentralized process control system, first proposed by N. Ricker, is adopted that employs 41 sensors and 12 actuators to manage the production process in the TE plant. We consider the scenario where wireless links are used to periodically transmit essential sensor measurement data, such as pressure, temperature and chemical composition to the controller as well as control commands to manipulate the actuators according to predetermined setpoints. We consider two models for packet loss in the wireless links, namely, an independent and identically distributed (IID) packet loss model and the two-state Gilbert-Elliot (GE) channel model. While the former is a random loss model, the latter can model bursty losses. With each channel model, the performance of the simulated decentralized controller using wireless links is compared with the one using wired links providing instant and 100% reliable communications. The sensitivity of the

  11. Industrial Applications of Image Processing

    Science.gov (United States)

    Ciora, Radu Adrian; Simion, Carmen Mihaela

    2014-11-01

    The recent advances in sensors quality and processing power provide us with excellent tools for designing more complex image processing and pattern recognition tasks. In this paper we review the existing applications of image processing and pattern recognition in industrial engineering. First we define the role of vision in an industrial. Then a dissemination of some image processing techniques, feature extraction, object recognition and industrial robotic guidance is presented. Moreover, examples of implementations of such techniques in industry are presented. Such implementations include automated visual inspection, process control, part identification, robots control. Finally, we present some conclusions regarding the investigated topics and directions for future investigation

  12. Fast engineering optimization: A novel highly effective control parameterization approach for industrial dynamic processes.

    Science.gov (United States)

    Liu, Ping; Li, Guodong; Liu, Xinggao

    2015-09-01

    Control vector parameterization (CVP) is an important approach of the engineering optimization for the industrial dynamic processes. However, its major defect, the low optimization efficiency caused by calculating the relevant differential equations in the generated nonlinear programming (NLP) problem repeatedly, limits its wide application in the engineering optimization for the industrial dynamic processes. A novel highly effective control parameterization approach, fast-CVP, is first proposed to improve the optimization efficiency for industrial dynamic processes, where the costate gradient formulae is employed and a fast approximate scheme is presented to solve the differential equations in dynamic process simulation. Three well-known engineering optimization benchmark problems of the industrial dynamic processes are demonstrated as illustration. The research results show that the proposed fast approach achieves a fine performance that at least 90% of the computation time can be saved in contrast to the traditional CVP method, which reveals the effectiveness of the proposed fast engineering optimization approach for the industrial dynamic processes. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Management of Industrial Processes with Programmable Logic Controller

    Directory of Open Access Journals (Sweden)

    Marius Tufoi

    2009-10-01

    Full Text Available In a modern economy, automation (the control is primarily to raise the competitiveness of a product, either directly through price or quality, or indirectly through the improvement of working conditions of staff productive. The control of industrial processes involves the management of dynamic systems that have continuous states. These systems are described by differential equations and, in general, analog inputs and outputs. Management of these systems is achieved, in general, with classical automation, by automation or with analog computers which contains modules with input / output analog performance. If states, inputs and outputs of a system can be modeled using binary variables, then these systems can be driven with Programmable Logic Controller.

  14. Exploring the Use of Design of Experiments in Industrial Processes Operating Under Closed-Loop Control

    DEFF Research Database (Denmark)

    Capaci, Francesca; Kulahci, Murat; Vanhatalo, Erik

    2017-01-01

    Industrial manufacturing processes often operate under closed-loop control, where automation aims to keep important process variables at their set-points. In process industries such as pulp, paper, chemical and steel plants, it is often hard to find production processes operating in open loop....... Instead, closed-loop control systems will actively attempt to minimize the impact of process disturbances. However, we argue that an implicit assumption in most experimental investigations is that the studied system is open loop, allowing the experimental factors to freely affect the important system...... responses. This scenario is typically not found in process industries. The purpose of this article is therefore to explore issues of experimental design and analysis in processes operating under closed-loop control and to illustrate how Design of Experiments can help in improving and optimizing...

  15. Performance in wireless networks and industrial wireless networks on control processes in real time under industrial environments

    Directory of Open Access Journals (Sweden)

    Juan F. Monsalve-Posada

    2015-01-01

    Full Text Available The growing use of Ethernet networks on the industrial automation pyramid has led many companies to develop new devices to operate in requirements of this level, nowadays it is called Industrial Ethernet network, on the market there are various sensors and actuators to industrial scale equipped with this technology, many of these devices are very expensive. In this paper, the performance of two wireless networks is evaluated, the first network has conventional Ethernet devices, and the second network has Industrial Ethernet devices. For the process we vary four parameters such as distance, number of bytes, the signal to noise ratio, and the packet error rate, and then we measure delays and compare with metric statistics results, Box Plot graphs were used for the analysis. Finally, we conclude that under the parameters and conditions tested, wireless networks can serve as a communication system in control applications with allowable delays of up to 50 ms, in addition, the results show a better performance of Industrial Ethernet networks over conventional networks, with differences in the RTT of milliseconds. Therefore, it is recommended to establish what risk is for the process to control these delays to determine if the equipment conventional applies, since under certain features like humidity and temperature can operate properly for a considerable time and at lower cost than devices to Industrial Ethernet.

  16. Fuel sparing: Control of industrial furnaces using process gas as supplemental fuel

    International Nuclear Information System (INIS)

    Boisvert, Patrick G.; Runstedtler, Allan

    2014-01-01

    Combustible gases from industrial processes can be used to spare purchased fuels such as natural gas and avoid wasteful flaring of the process gases. One of the challenges of incorporating these gases into other furnaces is their intermittent availability. In order to incorporate the gases into a continuously operating furnace, the furnace control system must be carefully designed so that the payload is not affected by the changing fuel. This paper presents a transient computational fluid dynamics (CFD) model of an industrial furnace that supplements natural gas with carbon monoxide during furnace operation. A realistic control system of the furnace is simulated as part of the CFD calculation. The time dependent changes in fuels and air injection on the furnace operation is observed. It is found that there is a trade-off between over-controlling the furnace, which results in too sensitive a response to normal flow oscillations, and under-controlling, which results in a lagged response to the fuel change. - Highlights: •Intermittently available process gases used in a continuously operating furnace. •Study shows a trade-off between over-controlling and under-controlling the furnace. •Over-controlling: response too sensitive to normal flow oscillations. •Under-controlling: lagged response to changing fuel composition. •Normal flow oscillations in furnace would not be apparent in steady-state model

  17. Wireless Sensing Based on RFID and Capacitive Technologies for Safety in Marble Industry Process Control

    Directory of Open Access Journals (Sweden)

    Fabrizio Iacopetti

    2013-01-01

    Full Text Available This paper presents wireless sensing systems to increase safety and robustness in industrial process control, particularly in industrial machines for marble slab working. The process is performed by abrasive or cutting heads activated independently by the machine controller when the slab, transported on a conveyer belt, is under them. Current slab detection systems are based on electromechanical or optical devices at the machine entrance stage, suffering from deterioration and from the harsh environment. Slab displacement or break inside the machine due to the working stress may result in safety issues and damages to the conveyer belt due to incorrect driving of the working tools. The experimented contactless sensing techniques are based on four RFID and two capacitive sensing technologies and on customized hardware/software. The proposed solutions aim at overcoming some limitations of current state-of-the-art detection systems, allowing for reliable slab detection, outside and/or inside the machine, while maintaining low complexity and at the same time robustness to industrial harsh conditions. The proposed sensing devices may implement a wireless or wired sensor network feeding detection data to the machine controller. Data integrity check and process control algorithms have to be implemented for the safety and reliability of the overall industrial process.

  18. Planning and control of rework in the process industries: a review

    NARCIS (Netherlands)

    Flapper, S.D.P.; Fransoo, J.C.; Broekmeulen, R.A.C.M.; Inderfurth, K.

    2002-01-01

    For all kinds of reasons, rework, i.e. the transformation of products not fulfilling preset specifications into products that do, is an important issue in process industries. Despite a considerable amount of published research on planning and control of rework, and in addition many papers referring

  19. In-line metallurgical process control in the steel industry

    International Nuclear Information System (INIS)

    Wanin, M.

    1993-01-01

    The steel products manufacturing involves a long line of complex processes: liquid metal elaboration, solidification, hot and cold transformation by rolling surface protection by coating. The Process Control aims at improving global productivity and quality of the resulting products by optimizing each elementary process as well as management of tools or workshops interfaces. Complex processes, involving generally many variables, require for their control more or less sophisticated models. These process models are either analytical when physical and thermodynamical mechanisms are known or statistical or knowledge based, according to circumstances. In any case, it is necessary to have a reliable and precise instrumentation to adjust undetermined parameters during model development and to be able to take into account external parameters variability during current working. This instrumentation concerns both running of machines and testing of manufactured materials under harsh environment conditions of Iron and Steel industry: temperature, dusts, steam, electromagnetic interferences, vibrations, .. . In this context, in-line Non Destructive Testing methods contribute efficienly because they may give directly and in real time products characteristics, integrating both drifts of machines and sensors due to their ageing and the abnormal spread of material entering the process. These methods induce the development of sophisticated inspection equipments whose strategic significance is such that their failure to operate can require production shutdown. The paper gives some representative examples of improvement of the accuracy of an in-line measurement or controlling of elementary processes or processes interfaces: temperature measurement by infrared pyrometry, thickness profile determination by X-ray array sensor, recrystallization control in continuous by X-ray and ultrasonic methods, automatic detection and indentification of surface defects by optics, cracks detection on

  20. New process modeling[sic], design, and control strategies for energy efficiency, high product quality, and improved productivity in the process industries. Final project report; FINAL

    International Nuclear Information System (INIS)

    Ray, W. Harmon

    2002-01-01

    This project was concerned with the development of process design and control strategies for improving energy efficiency, product quality, and productivity in the process industries. In particular, (i) the resilient design and control of chemical reactors, and (ii) the operation of complex processing systems, was investigated. Specific topics studied included new process modeling procedures, nonlinear controller designs, and control strategies for multiunit integrated processes. Both fundamental and immediately applicable results were obtained. The new design and operation results from this project were incorporated into computer-aided design software and disseminated to industry. The principles and design procedures have found their way into industrial practice

  1. Interated Intelligent Industrial Process Sensing and Control: Applied to and Demonstrated on Cupola Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed Abdelrahman; roger Haggard; Wagdy Mahmoud; Kevin Moore; Denis Clark; Eric Larsen; Paul King

    2003-02-12

    The final goal of this project was the development of a system that is capable of controlling an industrial process effectively through the integration of information obtained through intelligent sensor fusion and intelligent control technologies. The industry of interest in this project was the metal casting industry as represented by cupola iron-melting furnaces. However, the developed technology is of generic type and hence applicable to several other industries. The system was divided into the following four major interacting components: 1. An object oriented generic architecture to integrate the developed software and hardware components @. Generic algorithms for intelligent signal analysis and sensor and model fusion 3. Development of supervisory structure for integration of intelligent sensor fusion data into the controller 4. Hardware implementation of intelligent signal analysis and fusion algorithms

  2. Process industry properties in nuclear industry

    International Nuclear Information System (INIS)

    Zheng Hualing

    2005-01-01

    In this article the writer has described the definition of process industry, expounded the fact classifying nuclear industry as process industry, compared the differences between process industry and discrete industry, analysed process industry properties in nuclear industry and their important impact, and proposed enhancing research work on regularity of process industry in nuclear industry. (authors)

  3. Technologies to support industrial processes

    International Nuclear Information System (INIS)

    Palazzi, G.; Savelli, D.

    1989-05-01

    Control and measuring techniques applied to industry have the common aim of increasing safety, reliability and plant availability. The industrial monitoring system needs a lot of sensors, whose signals, elaborated and interpreted, allow one to define the best working condition; moreover control instruments perform a diagnosis related to damages and breakages. The Experimental Engineering Division of ENEA's Thermal Reactor Department has developed sensors and measuring apparatus and has acquired advanced control techniques. All these systems, containing an original software, have been applied to industrial process problems and/or to experimental facilities both to increase reliability and to understand better process physics. Division activities are grouped in four sectors: non-destructive examinations (ultrasonic, eddy current, thermography, holographic interpherometry, penetrant liquids and magnetoscopy); innovative sensors (heated thermocouples, optical fiber sensors); advanced measuring systems (laser technology for fluidodynamic measures, nuclear radiation techniques, infrared measuring, mass spectrometer, hot-film anemometer, chromatographic apparatus); advanced technologies for diagnosis and signal analysis (digital image processing, statistical analysis). (author)

  4. Hygienic-sanitary working practices and implementation of a Hazard Analysis and Critical Control Point (HACCP plan in lobster processing industries

    Directory of Open Access Journals (Sweden)

    Cristina Farias da Fonseca

    2013-03-01

    Full Text Available This study aimed to verify the hygienic-sanitary working practices and to create and implement a Hazard Analysis Critical Control Point (HACCP in two lobster processing industries in Pernambuco State, Brazil. The industries studied process frozen whole lobsters, frozen whole cooked lobsters, and frozen lobster tails for exportation. The application of the hygienic-sanitary checklist in the industries analyzed achieved conformity rates over 96% to the aspects evaluated. The use of the Hazard Analysis Critical Control Point (HACCP plan resulted in the detection of two critical control points (CCPs including the receiving and classification steps in the processing of frozen lobster and frozen lobster tails, and an additional critical control point (CCP was detected during the cooking step of processing of the whole frozen cooked lobster. The proper implementation of the Hazard Analysis Critical Control Point (HACCP plan in the lobster processing industries studied proved to be the safest and most cost-effective method to monitor each critical control point (CCP hazards.

  5. Industrial Control System Process-Oriented Intrusion Detection (iPoid) Algorithm

    Science.gov (United States)

    2016-08-01

    SUBJECT TERMS supervisory control and data acquisition (SCADA), Modbus, industrial control system, intrusion detection system 16. SECURITY...List of Tables iv Acknowledgments v 1. Background 1 2. iPoid Modbus Packet-Inspection Capability 2 2.1 Software Requirements 2 2.2 Startup ...Mr Curtis Arnold’s support of Industrial Control Systems–Supervisory Control and Data Acquisition research at the US Army Research Laboratory

  6. SIAM symposium on control problems in industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This symposium focused on industrial control applications that have benefited from recent mathematical and technological developments. The themes featured included: applications of control techniques in aerospace industry, automotive industry, environmental sciences, manufacturing processes, and petroleum industry; optimal shape design in aerospace applications; optimal design of micro-optics; robust control and H-infinity methods.

  7. Laboratory use of industrial control systems

    International Nuclear Information System (INIS)

    Rijllart, A.; Avot, L.; Brahy, D.; Jegou, D.; Saban, R.

    1994-01-01

    Industrial control system manufacturers supply the building blocks for the control of industrial equipment or specific process control applications. Although the laboratory environment is different in many aspects (prototyping, evolution and frequent reconfiguration), the use of these building blocks remain attractive because of their general purpose nature, their cost and the large spectrum of available types. In this paper we present three projects which have been implemented using both industrial control system building blocks (PLCs, controllers, digital and analogue plug-in I/O cards) and commercial software packages (LabView and VisualBasic) for the man-machine interface, the data acquisition and archiving, and the process control. This approach has proved to be economical, easy and fast to implement. ((orig.))

  8. Strategies for Industrial Multivariable Control

    DEFF Research Database (Denmark)

    Hangstrup, M.

    dynamics and gains strongly depend upon one or more physical parameters characterizing the operating point. This class covers many industrial systems such as airplanes, ships, robots and process control systems. Power plant boilers are representatives for process control systems in general. The dynamics...

  9. Multivariate Statistical Process Control Charts and the Problem of Interpretation: A Short Overview and Some Applications in Industry

    OpenAIRE

    Bersimis, Sotiris; Panaretos, John; Psarakis, Stelios

    2005-01-01

    Woodall and Montgomery [35] in a discussion paper, state that multivariate process control is one of the most rapidly developing sections of statistical process control. Nowadays, in industry, there are many situations in which the simultaneous monitoring or control, of two or more related quality - process characteristics is necessary. Process monitoring problems in which several related variables are of interest are collectively known as Multivariate Statistical Process Control (MSPC).This ...

  10. State and parameter estimation based on a nonlinear filter applied to an industrial process control of ethanol production

    Directory of Open Access Journals (Sweden)

    Meleiro L.A.C.

    2000-01-01

    Full Text Available Most advanced computer-aided control applications rely on good dynamics process models. The performance of the control system depends on the accuracy of the model used. Typically, such models are developed by conducting off-line identification experiments on the process. These experiments for identification often result in input-output data with small output signal-to-noise ratio, and using these data results in inaccurate model parameter estimates [1]. In this work, a multivariable adaptive self-tuning controller (STC was developed for a biotechnological process application. Due to the difficulties involving the measurements or the excessive amount of variables normally found in industrial process, it is proposed to develop "soft-sensors" which are based fundamentally on artificial neural networks (ANN. A second approach proposed was set in hybrid models, results of the association of deterministic models (which incorporates the available prior knowledge about the process being modeled with artificial neural networks. In this case, kinetic parameters - which are very hard to be accurately determined in real time industrial plants operation - were obtained using ANN predictions. These methods are especially suitable for the identification of time-varying and nonlinear models. This advanced control strategy was applied to a fermentation process to produce ethyl alcohol (ethanol in industrial scale. The reaction rate considered for substratum consumption, cells and ethanol productions are validated with industrial data for typical operating conditions. The results obtained show that the proposed procedure in this work has a great potential for application.

  11. Dual Rate Adaptive Control for an Industrial Heat Supply Process Using Signal Compensation Approach

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Tianyou; Jia, Yao; Wang, Hong; Su, Chun-Yi

    2017-07-09

    The industrial heat supply process (HSP) is a highly nonlinear cascaded process which uses a steam valve opening as its control input, the steam flow-rate as its inner loop output and the supply water temperature as its outer loop output. The relationship between the heat exchange rate and the model parameters, such as steam density, entropy, and fouling correction factor and heat exchange efficiency are unknown and nonlinear. Moreover, these model parameters vary in line with steam pressure, ambient temperature and the residuals caused by the quality variations of the circulation water. When the steam pressure and the ambient temperature are of high values and are subjected to frequent external random disturbances, the supply water temperature and the steam flow-rate would interact with each other and fluctuate a lot. This is also true when the process exhibits unknown characteristic variations of the process dynamics caused by the unexpected changes of the heat exchange residuals. As a result, it is difficult to control the supply water temperature and the rates of changes of steam flow-rate well inside their targeted ranges. In this paper, a novel compensation signal based dual rate adaptive controller is developed by representing the unknown variations of dynamics as unmodeled dynamics. In the proposed controller design, such a compensation signal is constructed and added onto the control signal obtained from the linear deterministic model based feedback control design. Such a compensation signal aims at eliminating the unmodeled dynamics and the rate of changes of the currently sample unmodeled dynamics. A successful industrial application is carried out, where it has been shown that both the supply water temperature and the rate of the changes of the steam flow-rate can be controlled well inside their targeted ranges when the process is subjected to unknown variations of its dynamics.

  12. Statistical process control in wine industry using control cards

    OpenAIRE

    Dimitrieva, Evica; Atanasova-Pacemska, Tatjana; Pacemska, Sanja

    2013-01-01

    This paper is based on the research of the technological process of automatic filling of bottles of wine in winery in Stip, Republic of Macedonia. The statistical process control using statistical control card is created. The results and recommendations for improving the process are discussed.

  13. Remote control of the industry processes. POWERLINK protocol application

    Science.gov (United States)

    Wóbel, A.; Paruzel, D.; Paszkiewicz, B.

    2017-08-01

    The present technological development enables the use of solutions characterized by a lower failure rate, and work with greater precision. This allows you to obtain the most efficient production, high speed production and reliability of individual components. The main scope of this article was POWERLINK protocol application for communication with the controller B & R through communication Ethernet for recording process parameters. This enables control of run production cycle using an internal network connected to the PC industry. Knowledge of the most important parameters of the production in real time allows detecting of a failure immediately after occurrence. For this purpose, the position of diagnostic use driver X20CP1301 B&R to record measurement data such as pressure, temperature valve between the parties and the torque required to change the valve setting was made. The use of POWERLINK protocol allows for the transmission of information on the status of every 200 μs.

  14. Industrial influences on an accelerator control system

    International Nuclear Information System (INIS)

    Westervelt, R.

    1992-01-01

    Industrial applications of a control system package have extended from industrial research to process control. While the requirements of these applications have much in common with accelerator controls, there are always extensions, different emphases, and additional requirements. These often add to the applicability of the software in all fields and certainly keep the development team challenged. This paper discusses some of the influences that industrial applications such as power distribution monitoring, casting and rolling mills, and aircraft engine testing have on software originally designed for scientific research. We also discuss some of the differences in the software development process between development for in-house use and development for sales and industrial use. (Author) ref., fig

  15. Application of Genetic Algorithm for Tuning of a PID Controller for a Real Time Industrial Process

    Directory of Open Access Journals (Sweden)

    S. M. Giri RAJKUMAR

    2010-10-01

    Full Text Available PID (Proportional Integral Derivative controller has become inevitable in the process control industries due to its simplicity and effectiveness, but the real challenge lies in tuning them to meet the expectations. Although a host of methods already exist there is still a need for an advanced system for tuning these controllers. Computational intelligence (CI has caught the eye of the researchers due to its simplicity, low computational cost and good performance, makes it a possible choice for tuning of PID controllers, to increase their performance. This paper discusses in detail about Genetic Algorithm (GA, a CI technique, and its implementation in PID tuning for a real time industrial process which is closed loop in nature. Compared to other conventional PID tuning methods, the result shows that better performance can be achieved with the proposed method.

  16. SOFTWARE TOOL FOR LASER CUTTING PROCESS CONTROL – SOLVING REAL INDUSTRIAL CASE STUDIES

    Directory of Open Access Journals (Sweden)

    Miloš Madić

    2016-08-01

    Full Text Available Laser cutting is one of the leading non-conventional machining technologies with a wide spectrum of application in modern industry. It order to exploit a number of advantages that this technology offers for contour cutting of materials, it is necessary to carefully select laser cutting conditions for each given workpiece material, thickness and desired cut qualities. In other words, there is a need for process control of laser cutting. After a comprehensive analysis of the main laser cutting parameters and process performance characteristics, the application of the developed software tool “BRUTOMIZER” for off-line control of CO2 laser cutting process of three different workpiece materials (mild steel, stainless steel and aluminum is illustrated. Advantages and abilities of the developed software tool are also illustrated.

  17. Application of fuzzy logic control in industry

    International Nuclear Information System (INIS)

    Van der Wal, A.J.

    1994-01-01

    An overview is given of the various ways fuzzy logic can be used to improve industrial control. The application of fuzzy logic in control is illustrated by two case studies. The first example shows how fuzzy logic, incorporated in the hardware of an industrial controller, helps to finetune a PID controller, without the operator having any a priori knowledge of the system to be controlled. The second example is from process industry. Here, fuzzy logic supervisory control is implemented in software and enhances the operation of a sintering oven through a subtle combination of priority management and deviation-controlled timing

  18. Assessment Study on Sensors and Automation in the Industries of the Future. Reports on Industrial Controls, Information Processing, Automation, and Robotics

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Bonnie [Adventium Labs; Boddy, Mark [Adventium Labs; Doyle, Frank [Univ. of California, Santa Barbara, CA (United States); Jamshidi, Mo [Univ. of New Mexico, Albuquerque, NM (United States); Ogunnaike, Tunde [Univ. of Delaware, Newark, DE (United States)

    2004-11-01

    This report presents the results of an expert study to identify research opportunities for Sensors & Automation, a sub-program of the U.S. Department of Energy (DOE) Industrial Technologies Program (ITP). The research opportunities are prioritized by realizable energy savings. The study encompasses the technology areas of industrial controls, information processing, automation, and robotics. These areas have been central areas of focus of many Industries of the Future (IOF) technology roadmaps. This report identifies opportunities for energy savings as a direct result of advances in these areas and also recognizes indirect means of achieving energy savings, such as product quality improvement, productivity improvement, and reduction of recycle.

  19. A Model-based B2B (Batch to Batch) Control for An Industrial Batch Polymerization Process

    Science.gov (United States)

    Ogawa, Morimasa

    This paper describes overview of a model-based B2B (batch to batch) control for an industrial batch polymerization process. In order to control the reaction temperature precisely, several methods based on the rigorous process dynamics model are employed at all design stage of the B2B control, such as modeling and parameter estimation of the reaction kinetics which is one of the important part of the process dynamics model. The designed B2B control consists of the gain scheduled I-PD/II2-PD control (I-PD with double integral control), the feed-forward compensation at the batch start time, and the model adaptation utilizing the results of the last batch operation. Throughout the actual batch operations, the B2B control provides superior control performance compared with that of conventional control methods.

  20. Dynamic optimisation of an industrial web process

    Directory of Open Access Journals (Sweden)

    M Soufian

    2008-09-01

    Full Text Available An industrial web process has been studied and it is shown that theunderlying physics of such processes governs by the Navier-Stokes partialdifferential equations with moving boundary conditions, which in turn have tobe determined by the solution of the thermodynamics equations. Thedevelopment of a two-dimensional continuous-discrete model structurebased on this study is presented. Other models are constructed based onthis model for better identification and optimisation purposes. Theparameters of the proposed models are then estimated using real dataobtained from the identification experiments with the process plant. Varioussimulation tests for validation are accompanied with the design, developmentand real-time industrial implementation of an optimal controller for dynamicoptimisation of this web process. It is shown that in comparison with thetraditional controller, the new controller resulted in a better performance, animprovement in film quality and saving in raw materials. This demonstrates theefficiency and validation of the developed models.

  1. Industrial and process furnaces principles, design and operation

    CERN Document Server

    Jenkins, Barrie

    2014-01-01

    Furnaces sit at the core of all branches of manufacture and industry, so it is vital that these are designed and operated safely and effi-ciently. This reference provides all of the furnace theory needed to ensure that this can be executed successfully on an industrial scale. Industrial and Process Furnaces: Principles, 2nd Edition provides comprehensive coverage of all aspects of furnace operation and design, including topics essential for process engineers and operators to better understand furnaces. This includes: the combustion process and its control, furnace fuels, efficiency,

  2. Development of graphene process control by industrial optical spectroscopy setup

    Science.gov (United States)

    Fursenko, O.; Lukosius, M.; Lupina, G.; Bauer, J.; Villringer, C.; Mai, A.

    2017-06-01

    The successful integration of graphene into microelectronic devices depends strongly on the availability of fast and nondestructive characterization methods of graphene grown by CVD on large diameter production wafers [1-3] which are in the interest of the semiconductor industry. Here, a high-throughput optical metrology method for measuring the thickness and uniformity of large-area graphene sheets is demonstrated. The method is based on the combination of spectroscopic ellipsometry and normal incidence reflectometry in UV-Vis wavelength range (200-800 nm) with small light spots ( 30 μm2) realized in wafer optical metrology tool. In the first step graphene layers were transferred on a SiO2/Si substrate in order to determine the optical constants of graphene by the combination of multi-angle ellipsometry and reflectometry. Then these data were used for the development of a process control recipe of CVD graphene on 200 mm Ge(100)/Si(100) wafers. The graphene layer quality was additionally monitored by Raman spectroscopy. Atomic force microscopy measurements were performed for micro topography evaluation. In consequence, a robust recipe for unambiguous thickness monitoring of all components of a multilayer film stack, including graphene, surface residuals or interface layer underneath graphene and surface roughness is developed. Optical monitoring of graphene thickness uniformity over a wafer has shown an excellent long term stability (s=0.004 nm) regardless of the growth of interfacial GeO2 and surface roughness. The sensitivity of the optical identification of graphene during microelectronic processing was evaluated. This optical metrology technique with combined data collection exhibit a fast and highly precise method allowing one an unambiguous detection of graphene after transferring as well as after the CVD deposition process on a Ge(100)/Si(100) wafer. This approach is well suited for industrial applications due to its repeatability and flexibility.

  3. Radioscopy applied to the improvement of industrial processes of quality control in the Brazilian footwear production

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Marcela Tatiana Fernandes; Mello Filho, Mauro Otto de Cavalcanti, E-mail: mbeserra@cefet-rj.br, E-mail: maurootto@cefet-rj.br [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET-RJ), Rio de Janeiro, RJ (Brazil); Raupp, Fernanda Maria Pereira, E-mail: fraupp@puc-rio.br [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia Industrial

    2013-07-01

    According to the Ministry of Development, Industry and Foreign Trade, China has the last five years in the Brazilian footwear market for imports, representing 70% of total imports. Brazil has been recording declines in footwear exports; in 2011 there was an average reduction of 21.5% compared to 2010. Thus, Brazil has moved to the eighth position in the export market. Moreover, Asians have been improving the quality and technological level of their footwear for niche markets. It is well known that the introduction of new technologies into industrial organizations enables adding value to their products, making the organizations more competitive in the global market. In this work, we present a study on the use of radioscopy technique to improve quality control of the Brazilian footwear industry. Being already used by some international footwear manufactures, aiming at the identification of strange bodies, control jumps, among other aspects, this technique brings innovation to the referred industry, since it is a non-destructive test approach that makes use of X-rays. We also propose a tool for the application of radioscopy technique to improve quality control processes of footwear production, employing concepts of Failure Modes and Effects Analysis (FMEA). (author)

  4. Radioscopy applied to the improvement of industrial processes of quality control in the Brazilian footwear production

    International Nuclear Information System (INIS)

    Fernandes, Marcela Tatiana Fernandes; Mello Filho, Mauro Otto de Cavalcanti; Raupp, Fernanda Maria Pereira

    2013-01-01

    According to the Ministry of Development, Industry and Foreign Trade, China has the last five years in the Brazilian footwear market for imports, representing 70% of total imports. Brazil has been recording declines in footwear exports; in 2011 there was an average reduction of 21.5% compared to 2010. Thus, Brazil has moved to the eighth position in the export market. Moreover, Asians have been improving the quality and technological level of their footwear for niche markets. It is well known that the introduction of new technologies into industrial organizations enables adding value to their products, making the organizations more competitive in the global market. In this work, we present a study on the use of radioscopy technique to improve quality control of the Brazilian footwear industry. Being already used by some international footwear manufactures, aiming at the identification of strange bodies, control jumps, among other aspects, this technique brings innovation to the referred industry, since it is a non-destructive test approach that makes use of X-rays. We also propose a tool for the application of radioscopy technique to improve quality control processes of footwear production, employing concepts of Failure Modes and Effects Analysis (FMEA). (author)

  5. Nonlinear Decoupling Control With ANFIS-Based Unmodeled Dynamics Compensation for a Class of Complex Industrial Processes.

    Science.gov (United States)

    Zhang, Yajun; Chai, Tianyou; Wang, Hong; Wang, Dianhui; Chen, Xinkai

    2018-06-01

    Complex industrial processes are multivariable and generally exhibit strong coupling among their control loops with heavy nonlinear nature. These make it very difficult to obtain an accurate model. As a result, the conventional and data-driven control methods are difficult to apply. Using a twin-tank level control system as an example, a novel multivariable decoupling control algorithm with adaptive neural-fuzzy inference system (ANFIS)-based unmodeled dynamics (UD) compensation is proposed in this paper for a class of complex industrial processes. At first, a nonlinear multivariable decoupling controller with UD compensation is introduced. Different from the existing methods, the decomposition estimation algorithm using ANFIS is employed to estimate the UD, and the desired estimating and decoupling control effects are achieved. Second, the proposed method does not require the complicated switching mechanism which has been commonly used in the literature. This significantly simplifies the obtained decoupling algorithm and its realization. Third, based on some new lemmas and theorems, the conditions on the stability and convergence of the closed-loop system are analyzed to show the uniform boundedness of all the variables. This is then followed by the summary on experimental tests on a heavily coupled nonlinear twin-tank system that demonstrates the effectiveness and the practicability of the proposed method.

  6. EDITORIAL: Industrial Process Tomography

    Science.gov (United States)

    Anton Johansen, Geir; Wang, Mi

    2008-09-01

    There has been tremendous development within measurement science and technology over the past couple of decades. New sensor technologies and compact versatile signal recovery electronics are continuously expanding the limits of what can be measured and the accuracy with which this can be done. Miniaturization of sensors and the use of nanotechnology push these limits further. Also, thanks to powerful and cost-effective computer systems, sophisticated measurement and reconstruction algorithms previously only accessible in advanced laboratories are now available for in situ online measurement systems. The process industries increasingly require more process-related information, motivated by key issues such as improved process control, process utilization and process yields, ultimately driven by cost-effectiveness, quality assurance, environmental and safety demands. Industrial process tomography methods have taken advantage of the general progress in measurement science, and aim at providing more information, both quantitatively and qualitatively, on multiphase systems and their dynamics. The typical approach for such systems has been to carry out one local or bulk measurement and assume that this is representative of the whole system. In some cases, this is sufficient. However, there are many complex systems where the component distribution varies continuously and often unpredictably in space and time. The foundation of industrial tomography is to conduct several measurements around the periphery of a multiphase process, and use these measurements to unravel the cross-sectional distribution of the process components in time and space. This information is used in the design and optimization of industrial processes and process equipment, and also to improve the accuracy of multiphase system measurements in general. In this issue we are proud to present a selection of the 145 papers presented at the 5th World Congress on Industrial Process Tomography in Bergen

  7. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    International Nuclear Information System (INIS)

    Sani, Mohd Shafie; Aziz, Faieza Abdul

    2013-01-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  8. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    Science.gov (United States)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  9. A NEW PROCESS MODEL FOR EMBEDDED SYSTEMS CONTROL FOR TELECOM INDUSTRY

    OpenAIRE

    Sanjai Gupta; Mohammed Hussain

    2012-01-01

    This research deals with important issue for the embedded system in telecom industry. The rapid increase of a software and software based functionality brings various challenges for the telecom industry. As we all know for any given software product the most important thing is its cost, reliability, schedule and quality, these all can be achieve by following good software process models. And hence mostorganization and businesses put more emphasis on software processes by asking their software...

  10. The industrial processing of unidirectional fiber prepregs

    Science.gov (United States)

    Laird, B.

    1981-01-01

    Progress made in the industrial processing of preimpregnated composites with unidirectional fibers is discussed, with particular emphasis on applications within the aerospace industry. Selection of industrial materials is considered. Attention is given to the conditions justifying the use of composites and the properties required of industrial prepregs. The hardening cycle is examined for the cases of nonmodified and polymer modified resins, with attention given to the stabilization of flow, the necessary changes of state, viscosity control, and the elimination of porosity. The tooling necessary for the fabrication of a laminated plate is illustrated, and the influence of fabrication and prepreg properties on the mechanical characteristics of a laminate are indicated. Finally, the types of prepregs available and the processing procedures necessary for them are summarized.

  11. Solutions for the food processing industry; Shokuhin seizogyo solution

    Energy Technology Data Exchange (ETDEWEB)

    Toda, T; Iwami, N [Fuji Electric Co. Ltd., Tokyo (Japan)

    1999-09-10

    To improve quality control and maintain stable operation, the food processing industry requires problem solutions in total, including not only processing and operation control divisions but also quality control, design and production technology, and maintenance divisions. This paper describes solutions for HACCP (hazard analysis critical control point) support, quality control, and maintenance, in order to improve the quality level, ensure traceability and realize stable processing operations. (author)

  12. Radioactive sealed sources production process for industrial radiography

    International Nuclear Information System (INIS)

    Santos, Paulo de S.; Ngunga, Daniel M.G.; Camara, Julio R.; Vasquez, Pablo A.S.

    2017-01-01

    providing products and services to the private and governmental Brazilian users of industrial radiography and nucleonic control systems. Radioactive sealed sources are commonly used in nondestructive tests as radiography to make inspections and verify the internal structure and integrity of materials and in nucleonic gauges to control level, density, viscosity, etc. in on-line industrial processes. One of the most important activities carried out by this laboratory is related to the inspection of source projectors devices used in industrial radiography and its constituent parts as well as remote handle control assembly drive cable and guide tube systems. The laboratory also provide for the users iridium-192, cobalt-60 and selenium-75 sealed sources and performs quality control tests replacing spent or contaminated radiative sources. All discard of radioactive source is treated as radioactive waste. Additionally, administrative and commercial processes and protocols for exportation and transport of radioactive material are developed by specialized departments. In this work are presented the mean processes and procedures used by the Sealed Source Production Laboratory such as the arrival of the radioactive material to the laboratory and the source projectors, mechanical inspections, source loading, source leaking tests, etc. (author)

  13. Radioactive sealed sources production process for industrial radiography

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Paulo de S.; Ngunga, Daniel M.G.; Camara, Julio R.; Vasquez, Pablo A.S., E-mail: psantos@ipen.br, E-mail: hobeddaniel@gmail.com, E-mail: jrcamara@ipen.br, E-mail: pavsalva@ipen.br [Instituto de Pesquisas Energética s e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    providing products and services to the private and governmental Brazilian users of industrial radiography and nucleonic control systems. Radioactive sealed sources are commonly used in nondestructive tests as radiography to make inspections and verify the internal structure and integrity of materials and in nucleonic gauges to control level, density, viscosity, etc. in on-line industrial processes. One of the most important activities carried out by this laboratory is related to the inspection of source projectors devices used in industrial radiography and its constituent parts as well as remote handle control assembly drive cable and guide tube systems. The laboratory also provide for the users iridium-192, cobalt-60 and selenium-75 sealed sources and performs quality control tests replacing spent or contaminated radiative sources. All discard of radioactive source is treated as radioactive waste. Additionally, administrative and commercial processes and protocols for exportation and transport of radioactive material are developed by specialized departments. In this work are presented the mean processes and procedures used by the Sealed Source Production Laboratory such as the arrival of the radioactive material to the laboratory and the source projectors, mechanical inspections, source loading, source leaking tests, etc. (author)

  14. An Industrial Model Based Disturbance Feedback Control Scheme

    DEFF Research Database (Denmark)

    Kawai, Fukiko; Nakazawa, Chikashi; Vinther, Kasper

    2014-01-01

    This paper presents a model based disturbance feedback control scheme. Industrial process systems have been traditionally controlled by using relay and PID controller. However these controllers are affected by disturbances and model errors and these effects degrade control performance. The authors...... propose a new control method that can decrease the negative impact of disturbance and model errors. The control method is motivated by industrial practice by Fuji Electric. Simulation tests are examined with a conventional PID controller and the disturbance feedback control. The simulation results...

  15. Plug-and-play monitoring and performance optimization for industrial automation processes

    CERN Document Server

    Luo, Hao

    2017-01-01

    Dr.-Ing. Hao Luo demonstrates the developments of advanced plug-and-play (PnP) process monitoring and control systems for industrial automation processes. With aid of the so-called Youla parameterization, a novel PnP process monitoring and control architecture (PnP-PMCA) with modularized components is proposed. To validate the developments, a case study on an industrial rolling mill benchmark is performed, and the real-time implementation on a laboratory brushless DC motor is presented. Contents PnP Process Monitoring and Control Architecture Real-Time Configuration Techniques for PnP Process Monitoring Real-Time Configuration Techniques for PnP Performance Optimization Benchmark Study and Real-Time Implementation Target Groups Researchers and students of Automation and Control Engineering Practitioners in the area of Industrial and Production Engineering The Author Hao Luo received the Ph.D. degree at the Institute for Automatic Control and Complex Systems (AKS) at the University of Duisburg-Essen, Germany, ...

  16. Manual control models of industrial management

    Science.gov (United States)

    Crossman, E. R. F. W.

    1972-01-01

    The industrial engineer is often required to design and implement control systems and organization for manufacturing and service facilities, to optimize quality, delivery, and yield, and minimize cost. Despite progress in computer science most such systems still employ human operators and managers as real-time control elements. Manual control theory should therefore be applicable to at least some aspects of industrial system design and operations. Formulation of adequate model structures is an essential prerequisite to progress in this area; since real-world production systems invariably include multilevel and multiloop control, and are implemented by timeshared human effort. A modular structure incorporating certain new types of functional element, has been developed. This forms the basis for analysis of an industrial process operation. In this case it appears that managerial controllers operate in a discrete predictive mode based on fast time modelling, with sampling interval related to plant dynamics. Successive aggregation causes reduced response bandwidth and hence increased sampling interval as a function of level.

  17. Analytical design of an industrial two-term controller for optimal regulatory control of open-loop unstable processes under operational constraints.

    Science.gov (United States)

    Tchamna, Rodrigue; Lee, Moonyong

    2018-01-01

    This paper proposes a novel optimization-based approach for the design of an industrial two-term proportional-integral (PI) controller for the optimal regulatory control of unstable processes subjected to three common operational constraints related to the process variable, manipulated variable and its rate of change. To derive analytical design relations, the constrained optimal control problem in the time domain was transformed into an unconstrained optimization problem in a new parameter space via an effective parameterization. The resulting optimal PI controller has been verified to yield optimal performance and stability of an open-loop unstable first-order process under operational constraints. The proposed analytical design method explicitly takes into account the operational constraints in the controller design stage and also provides useful insights into the optimal controller design. Practical procedures for designing optimal PI parameters and a feasible constraint set exclusive of complex optimization steps are also proposed. The proposed controller was compared with several other PI controllers to illustrate its performance. The robustness of the proposed controller against plant-model mismatch has also been investigated. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Wobbe index control system in gas industry processes; Systeme de controle de l'index de Wobbe du gaz naturel dans les processus industriels

    Energy Technology Data Exchange (ETDEWEB)

    Cassibba, M.; Bertani, M. [SNAM, (Italy)

    2000-07-01

    Natural gas supplied to industry for process utilizations originates from different sources and that can cause fluctuations in gas composition. Changing gas composition may lead to production problems in industry with sensitive thermal processes (particularly glass industry and thermal metal treatments), such as efficiency and product quality. An equipment suitable to control and adjust such variations has been developed. Experimental tests in laboratory were carried out in order to investigate the control system accuracy and reliability. In particular five different settings were tested: at a preset thermal input by adjusting the natural gas flow rate in respect to Wobbe Index variations; at a set furnace temperature and stack oxygen level with variable thermal input by monitoring the Wobbe Index value; at constant Wobbe Index value by adding air to natural gas; at constant thermal input and prefixed Wobbe Index value by adding air to natural gas and varying the air and gas mixture flow rate; gross calorific value control by adding air or LPG to natural gas. All the tested settings gave good results. This report illustrates these results and the main features of the control system. The control and regulation system was installed in two glass factories for field tests. (authors)

  19. Advanced Process Control Application and Optimization in Industrial Facilities

    Directory of Open Access Journals (Sweden)

    Howes S.

    2015-01-01

    Full Text Available This paper describes application of the new method and tool for system identification and PID tuning/advanced process control (APC optimization using the new 3G (geometric, gradient, gravity optimization method. It helps to design and implement control schemes directly inside the distributed control system (DCS or programmable logic controller (PLC. Also, the algorithm helps to identify process dynamics in closed-loop mode, optimizes controller parameters, and helps to develop adaptive control and model-based control (MBC. Application of the new 3G algorithm for designing and implementing APC schemes is presented. Optimization of primary and advanced control schemes stabilizes the process and allows the plant to run closer to process, equipment and economic constraints. This increases production rates, minimizes operating costs and improves product quality.

  20. The research on visual industrial robot which adopts fuzzy PID control algorithm

    Science.gov (United States)

    Feng, Yifei; Lu, Guoping; Yue, Lulin; Jiang, Weifeng; Zhang, Ye

    2017-03-01

    The control system of six degrees of freedom visual industrial robot based on the control mode of multi-axis motion control cards and PC was researched. For the variable, non-linear characteristics of industrial robot`s servo system, adaptive fuzzy PID controller was adopted. It achieved better control effort. In the vision system, a CCD camera was used to acquire signals and send them to video processing card. After processing, PC controls the six joints` motion by motion control cards. By experiment, manipulator can operate with machine tool and vision system to realize the function of grasp, process and verify. It has influence on the manufacturing of the industrial robot.

  1. Alarm management for process control a best-practice guide for design, implementation, and use of industrial alarm systems

    CERN Document Server

    Rothenberg, Douglas H

    2014-01-01

    No modern industrial enterprise, particularly in such areas as chemical processing, can operate without a secure, and reliable, network of automated monitors and controls. And those operations need alarm systems to alert engineers and managers the moment anything goes wrong or needs attention. This book, by one of the world's leading experts on industrial alarm systems, will provide A to Z coverage of designing, implementing, and maintaining an effective alarm network.

  2. Accelerators in industrial electron beam processing

    International Nuclear Information System (INIS)

    Becker, R.C.

    1984-01-01

    High power electron beam accelerators are being used for a variety of industrial processes. Such machines can process a wide range of products at very high thruput rates and at very low unit processing costs. These industrial accelerators are now capable of producing up to 200 kW of electron beam power at 4.0 MV and 100 kW at 5.0 MV. At this writing, even larger units are contemplated. The reliability of these high power devices also makes it feasible to consider bremsstrahlung (x-ray) processing as well. In addition to the advance of accelerator technology, microprocessor control systems now provide the capability to coordinate all the operations of the irradiation facility, including the accelerator, the material handling system, the personnel safety system and various auxiliary services. Facility designs can be adapted to many different industrial processes, including use of the dual purpose electron/x-ray accelerator, to ensure satisfactory product treatment with good dose uniformity, high energy efficiency and operational safety and simplicity. In addition, equipment manufacturers like RDI are looking beyond their conventional DC accelerator technology; looking at high power 10-12 MeV linear accelerators with power levels up to 25 kW or more. These high power linear accelerators could be the ideal processing tool for many sterilization and food irradiation applications. (author)

  3. Cyber Security of Industrial Control Systems

    NARCIS (Netherlands)

    Luiijf, H.A.M.; Paske, B.J. te

    2015-01-01

    Our society and its citizens depend on the undisturbed functioning of (critical) infrastructures and their services. Crucial processes in most critical infrastructures, and in many other organisations, rely on the correct and undisturbed functioning of Industrial Control Systems (ICS). A failure of

  4. Radiometric installations for automatic control of industrial processes and some possibilities of the specialized computers application

    International Nuclear Information System (INIS)

    Kuzino, S.; Shandru, P.

    1979-01-01

    It is noted that application of radioisotope devices in circuits for automation of some industrial processes permits to obtain the on-line information about some parameters of these processes. This information being passed to a computer, controlling the process, permits to obtain and maintain some optimum technological perameters of this process. Some elements of the automation stem projecting are given from the poin of wiev of the radiometric devices tuning, calibration of the radiometric devices with the purpose to get a digital answer in the on-line regime with the preset accuracy and thrustworthyness levels for supplying them to the controlling computer; determination of the system's reaction on the base of the preset statistical criteria; development, on the base of the data obtained from the computer, of an algorithm for the functional checking of radiometric devices' characteristics, - stability and reproductibility of readings in the operation regime as well as determination of the value threshold of an answer, depending on the measured parameter [ru

  5. DEVELOPING THE ORGANIZATIONAL CONTROL STRUCTURE BY MONITORING THE TECHNOLOGICAL PROCESSES IN THE TEXTILE GARMENT INDUSTRY

    Directory of Open Access Journals (Sweden)

    OANA Ioan Pavel

    2017-08-01

    Full Text Available In order to improve quality, any activity performed in garment production enterprises, must adhere to the following principles: the technical documentation must be observed first, and also all resources necessary for the proper functioning of the production process; conformity check must be carried out to fulfill production goals in advance; the technical specifications and documentation must be implemented and for proper execution there must exist a control method, consisting in discovering defects and correct them. In the garment industry, the situation is more difficult because of the large number of features present in its complex products, and the problems that may arise must be estimated. Thus, for different activities in quality assurance, experiments have been carried out which show that even the measurement results can be affected by human error. The training of inspectors is important inspection requires a high level of judgment in specific cases, which can be acquired only by experience. In many inspection situations, judgment is essential. Therefore, garment manufacturers must boost inspections, in order to keep the technological process under control. This paper focuses on meeting certain objectives in establishing certain control structures for compliance of processes, by presenting a few criteria. After analyzing quality problems along the process flow, both in terms of the manufacturing process and product quality, we propose customized solutions by product type, to prevent and solve quality issues. This analysis of the control plan for the conformity of the technological processes will improve the production of garment manufacturers, from a technical as well as economical standpoint.

  6. Control Performance Management in Industrial Automation Assessment, Diagnosis and Improvement of Control Loop Performance

    CERN Document Server

    Jelali, Mohieddine

    2013-01-01

    Control Performance Management in Industrial Automation provides a coherent and self-contained treatment of a group of methods and applications of burgeoning importance to the detection and solution of problems with control loops that are vital in maintaining product quality, operational safety, and efficiency of material and energy consumption in the process industries. The monograph deals with all aspects of control performance management (CPM), from controller assessment (minimum-variance-control-based and advanced methods), to detection and diagnosis of control loop problems (process non-linearities, oscillations, actuator faults), to the improvement of control performance (maintenance, re-design of loop components, automatic controller re-tuning). It provides a contribution towards the development and application of completely self-contained and automatic methodologies in the field. Moreover, within this work, many CPM tools have been developed that goes far beyond available CPM packages. Control Perform...

  7. Formal verification of industrial control systems

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Verification of critical software is a high priority but a challenging task for industrial control systems. For many kinds of problems, testing is not an efficient method. Formal methods, such as model checking appears to be an appropriate complementary method. However, it is not common to use model checking in industry yet, as this method needs typically formal methods expertise and huge computing power. In the EN-ICE-PLC section, we are working on a [methodology][1] and a tool ([PLCverif][2]) to overcome these challenges and to integrate formal verification in the development process of our PLC-based control systems. [1]: http://cern.ch/project-plc-formalmethods [2]: http://cern.ch/plcverif

  8. Robot Control Overview: An Industrial Perspective

    Directory of Open Access Journals (Sweden)

    T. Brogårdh

    2009-07-01

    Full Text Available One key competence for robot manufacturers is robot control, defined as all the technologies needed to control the electromechanical system of an industrial robot. By means of modeling, identification, optimization, and model-based control it is possible to reduce robot cost, increase robot performance, and solve requirements from new automation concepts and new application processes. Model-based control, including kinematics error compensation, optimal servo reference- and feed-forward generation, and servo design, tuning, and scheduling, has meant a breakthrough for the use of robots in industry. Relying on this breakthrough, new automation concepts such as high performance multi robot collaboration and human robot collaboration can be introduced. Robot manufacturers can build robots with more compliant components and mechanical structures without loosing performance and robots can be used also in applications with very high performance requirements, e.g., in assembly, machining, and laser cutting. In the future it is expected that the importance of sensor control will increase, both with respect to sensors in the robot structure to increase the control performance of the robot itself and sensors outside the robot related to the applications and the automation systems. In this connection sensor fusion and learning functionalities will be needed together with the robot control for easy and intuitive installation, programming, and maintenance of industrial robots.

  9. Industrial processes inventory. Sector 2

    International Nuclear Information System (INIS)

    1994-01-01

    The work objective is to conduct a greenhouse gas emission inventory of the industrial processes in Lebanon for the year 1994. The Lebanese industry has emitted 1924.063 Gg (1.924.063 tons) of Carbon dioxide CO 2 ; 0.0003 Gg (0.3 tons) of carbon monoxide CO; 0.01112 Gg of nitrogen oxide NO; 273.888 tons of non-methane volatile organic compounds and 3.382 Gg (3.382 tons) of sulphur dioxide SO 2 . The cement industry is the major source of CO 2 emissions among the industrial processes in Lebanon. The cement industry is responsible for 76.1% of the total emissions followed by the iron and steel industry which produces 21.68% of the total CO 2 emissions from industrial processes. The NMVOC emissions are mainly produced by the use of asphalt for road paving (98.5% of total emissions by industry) followed by the food and beverage industry (1.2%). The emissions of sulphur dioxide SO 2 come from three industrial sources: the first come from the production of sulphuric acid (69.9% of total industrial emissions), the second from the cement industry (26.4% of total industrial emissions) and the third from the iron and steel mills (3.7% of total industrial emissions). Figures are presented to show the percentage distribution of various industrial sources contributions to CO 2 , NMVOC and SO 2 emissions in Lebanon. Carbon monoxide CO emissions in the industrial sector are very small. The major source is iron and steel mills and the minor source is asphalt-roofing production

  10. Model Predictive Control for an Industrial SAG Mill

    DEFF Research Database (Denmark)

    Ohan, Valeriu; Steinke, Florian; Metzger, Michael

    2012-01-01

    identication. When applied to MIMO systems we call this controller a MIMO-ARX based MPC. We use an industrial Semi-Autogenous Grinding (SAG) mill to illustrate the performance of this controller. SAG mills are the primary units in a grinding chain and also the most power consuming units. Therefore, improved...... control of SAG mills has the potential to signicantly improve eciency and reduce the specic energy consumption for mineral processes. Grinding circuits involving SAG mills are multivariate processes. Commissioning of a control system based on a classical single-loop controllers with logic is time...

  11. SPS/LEP beam transfer equipment control using industrial automation components

    International Nuclear Information System (INIS)

    Aimar, A.; Berard, G.; Bretin, J.L.; Carlier, E.; Dieperink, J.H.; Laffin, M.; Mertens, V.; Verhagen, H.

    1992-01-01

    Several control systems for SPS and LEP beam transfer equipment have to be commissioned in the near future. Tools for fast software development, easy maintenance and modifications, compliance with industrial standards, and independence of specific suppliers are considered to be essential. A large fraction of the systems can be realized using off-the-shelf industrial automation components like industrial I/O systems, programmable logic controllers, or diskless PCs. Specific electronics built up in G-64 can be integrated. Diskless systems running UNIX and X Windows are foreseen as process controllers and local access media. (author)

  12. Automatización de procesos de control de calidad en sofware industrial

    OpenAIRE

    Carmona Sanz, Artur

    2017-01-01

    Elaborate a procedure for quality assurance processes automation in industrial software Elaboración de un procedimiento para la automatización de procesos de control de calidad en software industrial Elaboració d'un procedimient per l'automatizació de processos de control de qualitat en software industrial

  13. Modeling of an industrial drying process by artificial neural networks

    Directory of Open Access Journals (Sweden)

    E. Assidjo

    2008-09-01

    Full Text Available A suitable method is needed to solve the nonquality problem in the grated coconut industry due to the poor control of product humidity during the process. In this study the possibility of using an artificial neural network (ANN, precisely a Multilayer Perceptron, for modeling the drying step of the production of grated coconut process is highlighted. Drying must confer to the product a final moisture of 3%. Unfortunately, under industrial conditions, this moisture varies from 1.9 to 4.8 %. In order to control this parameter and consequently reduce the proportion of the product that does not meet the humidity specification, a 9-4-1 neural network architecture was established using data gathered from an industrial plant. This Multilayer Perceptron can satisfactorily model the process with less bias, ranging from -0.35 to 0.34%, and can reduce the rate of rejected products from 92% to 3% during the first cycle of drying.

  14. A NEW BENCHMARK FOR PLANTWIDE PROCESS CONTROL

    Directory of Open Access Journals (Sweden)

    N. Klafke

    Full Text Available Abstract The hydrodealkylation process of toluene (HDA has been used as a case study in a large number of control studies. However, in terms of industrial application, this process has become obsolete and is nowadays superseded by new technologies capable of processing heavy aromatic compounds, which increase the added value of the raw materials, such as the process of transalkylation and disproportionation of toluene (TADP. TADP also presents more complex feed and product streams and challenging operational characteristics both in the reactor and separator sections than in HDA. This work is aimed at proposing the TADP process as a new benchmark for plantwide control studies in lieu of the HAD process. For this purpose, a nonlinear dynamic rigorous model for the TADP process was developed using Aspen Plus™ and Aspen Dynamics™ and industrial conditions. Plantwide control structures (oriented to control and to the process were adapted and applied for the first time for this process. The results show that, even though both strategies are similar in terms of control performance, the optimization of economic factors must still be sought.

  15. Radioisotope techniques for process optimisation and control in the offshore oil and gas industries

    International Nuclear Information System (INIS)

    Charlton, J.S.

    2002-01-01

    For over fifty years, radioisotope technology has been used by the oil industry to solve problems and to help optimise process operations. The widespread development of offshore oil and gas fields has brought, and continues to bring, new challenges and, in response, new or modified applications of radioisotope technology have been introduced. This paper presents case studies, which illustrate the use of radioisotopes, both in the sub-sea environment and on the offshore production platforms. On the platform, radioisotope techniques applied singly or in combination, have been applied to the performance assessment of oil/gas separation and gas dehydration units. Novel nucleonic instrumentation has been developed for the control of three-phase separators. Sub-sea, radioactive tracers and/or sealed sources have been used to investigate the integrity of submerged structures and to troubleshoot pipeline problems. The continuing expansion in the use of this technology stems from industry increasing awareness of its versatility and from the fact that the benefits it confers can be obtained at a relatively modest cost. Examples of economic benefit described in the paper are associated with production enhancements derived from the ability of radioisotope technology to measure performance and diagnose problems on line, without disrupting process operations in any way. (Author)

  16. Precooking as a Control for Histamine Formation during the Processing of Tuna: An Industrial Process Validation.

    Science.gov (United States)

    Adams, Farzana; Nolte, Fred; Colton, James; De Beer, John; Weddig, Lisa

    2018-02-23

    An experiment to validate the precooking of tuna as a control for histamine formation was carried out at a commercial tuna factory in Fiji. Albacore tuna ( Thunnus alalunga) were brought on board long-line catcher vessels alive, immediately chilled but never frozen, and delivered to an on-shore facility within 3 to 13 days. These fish were then allowed to spoil at 25 to 30°C for 21 to 25 h to induce high levels of histamine (>50 ppm), as a simulation of "worst-case" postharvest conditions, and subsequently frozen. These spoiled fish later were thawed normally and then precooked at a commercial tuna processing facility to a target maximum core temperature of 60°C. These tuna were then held at ambient temperatures of 19 to 37°C for up to 30 h, and samples were collected every 6 h for histamine analysis. After precooking, no further histamine formation was observed for 12 to 18 h, indicating that a conservative minimum core temperature of 60°C pauses subsequent histamine formation for 12 to 18 h. Using the maximum core temperature of 60°C provided a challenge study to validate a recommended minimum core temperature of 60°C, and 12 to 18 h was sufficient to convert precooked tuna into frozen loins or canned tuna. This industrial-scale process validation study provides support at a high confidence level for the preventive histamine control associated with precooking. This study was conducted with tuna deliberately allowed to spoil to induce high concentrations of histamine and histamine-forming capacity and to fail standard organoleptic evaluations, and the critical limits for precooking were validated. Thus, these limits can be used in a hazard analysis critical control point plan in which precooking is identified as a critical control point.

  17. Materials contamination control in the microelectronic industry

    International Nuclear Information System (INIS)

    Tardif, F.

    1993-01-01

    This paper deals with many aspects of the contamination of materials in the microelectronic industry. The contamination's control of chemicals, process gases, silicon and the survey of the ions free water's purity are treated. (TEC). 29 figs., 7 tabs

  18. Security of the data transmission in the industrial control system

    Directory of Open Access Journals (Sweden)

    Marcin Bednarek

    2015-12-01

    Full Text Available The theme of this paper is to present the data transmission security system between the stations of the industrial control system. The possible options for secure communications between process stations, as well as between process and operator station are described. Transmission security mechanism is based on algorithms for symmetric and asymmetric encryption. The authentication process uses a software token algorithm and a one-way hash function. The algorithm for establishing a secured connection between the stations, including the authentication process and encryption of data transmission is given. The process of securing the transmission consists of 4 sub-processes: (I authentication; (II asymmetric, public keys transmission; (III symmetric key transmission; (IV data transmission. The presented process of securing the transmission was realized in the industrial controller and emulator. For this purpose, programming languages in accordance with EN 61131 were used. The functions were implemented as user function blocks. This allows us to include a mixed code in the structure of the block (both: ST and FBD. Available function categories: support of the asymmetric encryption; asymmetric encryption utility functions; support of the symmetric encryption; symmetric encryption utility functions; support of the hash value calculations; utility functions of conversion.[b]Keywords[/b]: transmission security, encryption, authentication, industrial control system

  19. Model Oriented Application Generation for Industrial Control Systems

    CERN Document Server

    Copy, B; Blanco Vinuela, E; Fernandez Adiego, B; Nogueira Ferandes, R; Prieto Barreiro, I

    2011-01-01

    The CERN Unified Industrial Control Systems framework (UNICOS) is a software generation methodology and a collection of development tools that standardizes the design of industrial control applications [1]. A Software Factory, named the UNICOS Application Builder (UAB) [2], was introduced to ease extensibility and maintenance of the framework, introducing a stable metamodel, a set of platformindependent models and platformspecific configurations against which code generation plugins and configuration generation plugins can be written. Such plugins currently target PLC programming environments (Schneider and SIEMENS PLCs) as well as SIEMENS WinCC Open Architecture SCADA (previously known as ETM PVSS) but are being expanded to cover more and more aspects of process control systems. We present what constitutes the UNICOS metamodel and the models in use, how these models can be used to capture knowledge about industrial control systems and how this knowledge can be leveraged to generate both code and configuratio...

  20. Fractional Order Models of Industrial Pneumatic Controllers

    Directory of Open Access Journals (Sweden)

    Abolhassan Razminia

    2014-01-01

    Full Text Available This paper addresses a new approach for modeling of versatile controllers in industrial automation and process control systems such as pneumatic controllers. Some fractional order dynamical models are developed for pressure and pneumatic systems with bellows-nozzle-flapper configuration. In the light of fractional calculus, a fractional order derivative-derivative (FrDD controller and integral-derivative (FrID are remodeled. Numerical simulations illustrate the application of the obtained theoretical results in simple examples.

  1. Industrial processing versus home processing of tomato sauce

    NARCIS (Netherlands)

    Tomas, Merve; Beekwilder, Jules; Hall, Robert D.; Sagdic, Osman; Boyacioglu, Dilek; Capanoglu, Esra

    2017-01-01

    The effect of industrial and home processing, in vitro gastrointestinal digestion, individual phenolic content, and antioxidant capacity of tomato into tomato sauce were investigated. Industrial processing of tomato fruit into sauce had an overall positive effect on the total antioxidant capacity

  2. Process Industry and Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Over a period of two years the NAP's Special Interest Group Energy (SIG-E) has dedicated itself to studying the way in which the process industry and its supply chain has been dealing with energy as a theme. In the past it was strongly believed that many opportunities were left unused and that different forms of cooperation inside the chain should contribute to accelerated improvement of energy efficiency in the process industry. Sixteen companies that are actively involved in the entire value chain have scrutinised their daily situation wondering how to operate more successfully. With approximately one quarter of total energy consumption the Dutch process industry is a major player in reaching national energy and climate objectives by 2020. The objective (improve energy efficiency by 2% annually) is as ambitious as that 'business as usual' is insufficient. A drastic change in how matters are approached is thus essential. The question is how to proceed? By analysing energy projects, in-depth interviews with decision makers in the industry, through literature searches and by organising lectures inside and outside the sector, SlG-E has been able to develop a true picture of the mechanisms concerning energy-related investments. Two major points of interest have been energy-oriented tendering (demand side) and the market introduction of innovations (supply side). The main problems of 'how to do more in the energy domain' is: (a) the process industry is insufficiently familiar with the capabilities of the supply chain, and (b) the supply chain is insufficiently aware of the questions that exist in the process industry. Therefore, the links in the value chain understand each other poorly. The answer to this problem is compound and consists of more interaction between the process industry and the supply chain (machine constructors, engineering firms and consultancies, education and research). As for the process industry: (a) Make improved energy

  3. Improved energy efficiency in the process industries

    Energy Technology Data Exchange (ETDEWEB)

    Pilavachi, P A [Commission of the European Communities, Brussels (Belgium)

    1992-12-31

    The European Commission, through the JOULE Programme, is promoting energy efficient technologies in the process industries; the topics of the various R and D activities are: heat exchangers (enhanced evaporation, shell and tube heat exchangers including distribution of fluids, and fouling), low energy separation processes (adsorption, melt-crystallization and supercritical extraction), chemical reactors (methanol synthesis and reactors with integral heat exchangers), other unit operations (evaporators, glass-melting furnaces, cement kilns and baking ovens, dryers and packed columns and replacements for R12 in refrigeration), energy and system process models (batch processes, simulation and control of transients and energy synthesis), development of advanced sensors.

  4. Model oriented application generation for industrial control systems

    International Nuclear Information System (INIS)

    Copy, B.; Barillere, R.; Blanco, E.; Fernandez Adiego, B.; Nogueira Fernandes, R.; Prieto Barreiro, I.

    2012-01-01

    The CERN Unified Industrial Control Systems framework (UNICOS) is a software generation methodology and a collection of development tools that standardizes the design of industrial control applications. A Software Factory, named the UNICOS Application Builder (UAB), was introduced to ease extensibility and maintenance of the framework, introducing a stable meta-model, a set of platform-independent models and platform-specific configurations against which code generation plug-ins and configuration generation plug-ins can be written. Such plug-ins currently target PLC programming environments (Schneider and SIEMENS PLCs) as well as SIEMENS WinCC Open Architecture SCADA (previously known as ETM PVSS) but are being expanded to cover more and more aspects of process control systems. We present what constitutes the UNICOS meta-model and the models in use, how these models can be used to capture knowledge about industrial control systems and how this knowledge can be used to generate both code and configuration for a variety of target usages. (authors)

  5. Simulation modeling of quality assurance processes in an industrial plant

    Directory of Open Access Journals (Sweden)

    Gumerov Anwar Vazykhovich

    2013-11-01

    Full Text Available Quality management and the need for continuous improvement requires the development of methods of analysis and diagnostic parameters. The use of simulation techniques and statistical quality control methods will provide the basis for process control of industrial enterprises.

  6. Processes subject to integrated pollution control. Petroleum processes: oil refining and associated processes

    International Nuclear Information System (INIS)

    1995-01-01

    This document, part of a series offering guidance on pollution control regulations issued by Her Majesty's Inspectorate of Pollution, (HMIP) focuses on petroleum processes such as oil refining and other associated processes. The various industrial processes used, their associated pollution release routes into the environment and techniques for controlling these releases are all discussed. Environmental quality standards are related to national and international agreements on pollution control and abatement. HMIP's work on air, water and land pollution monitoring is also reported. (UK)

  7. Hierarchical Nanoceramics for Industrial Process Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang

    2011-07-15

    This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.

  8. Functional graphical languages for process control

    International Nuclear Information System (INIS)

    1996-01-01

    A wide variety of safety systems are in use today in the process industries. Most of these systems rely on control software using procedural programming languages. This study investigates the use of functional graphical languages for controls in the process industry. Different vendor proprietary software and languages are investigated and evaluation criteria are outlined based on ability to meet regulatory requirements, reference sites involving applications with similar safety concerns, QA/QC procedures, community of users, type and user-friendliness of the man-machine interface, performance of operational code, and degree of flexibility. (author) 16 refs., 4 tabs

  9. Radiation process control, study and acceptance of dosimetric methods

    International Nuclear Information System (INIS)

    Radak, B.B.

    1984-01-01

    The methods of primary dosimetric standardization and the calibration of dosimetric monitors suitable for radiation process control were outlined in the form of a logical pattern in which they are in current use on industrial scale in Yugoslavia. The reliability of the process control of industrial sterilization of medical supplies for the last four years was discussed. The preparatory works for the intermittent use of electron beams in cable industry were described. (author)

  10. Process control for sheet-metal stamping process modeling, controller design and shop-floor implementation

    CERN Document Server

    Lim, Yongseob; Ulsoy, A Galip

    2014-01-01

    Process Control for Sheet-Metal Stamping presents a comprehensive and structured approach to the design and implementation of controllers for the sheet metal stamping process. The use of process control for sheet-metal stamping greatly reduces defects in deep-drawn parts and can also yield large material savings from reduced scrap. Sheet-metal forming is a complex process and most often characterized by partial differential equations that are numerically solved using finite-element techniques. In this book, twenty years of academic research are reviewed and the resulting technology transitioned to the industrial environment. The sheet-metal stamping process is modeled in a manner suitable for multiple-input multiple-output control system design, with commercially available sensors and actuators. These models are then used to design adaptive controllers and real-time controller implementation is discussed. Finally, experimental results from actual shopfloor deployment are presented along with ideas for further...

  11. Radiation processing for environmental-friendly industrial applications

    International Nuclear Information System (INIS)

    Majali, A.B.; Sabharwal, S.

    1997-01-01

    The Isotope Division of BARC is equipped with a 2-MeV electron beam (EB) accelerator and a 70,000 Ci Cobalt-60 source: these are mainly utilized to develop technologies of interest to our industries and needs. These include development of polyethylene 'O' rings having dimensional stability above the melting point, radiation degradation of PTFE and enhancement of colour in diamonds. The viscose rayon industry is an important industry in India. This industry faces stiff regulations from environmental pollution control agencies primarily due to the emission of toxic sulphur containing gases, and is in search of ways to reduce the pollution levels associated with the process. The irradiation of cellulose with ionizing radiation results in cellulose activation and reduction in the degree of polymerization (DP). There is a keen interest in utilizing radiation technology in viscose rayon production. We have utilized the 2-MeV electron beam accelerator for reducing the degree of polymerization (DP) of paper pulp. Laboratory scale tests have been carried out to standardize the conditions for processing of pulp having desired degree of polymerization. Our studies show that the use of irradiated pulp can significantly reduce the consumption of CS 2 and be beneficial in reducing pollution associated with the process. An electron-beam irradiation based process has been developed to convert the PTFE waste into a low molecular weight (1x10 4 -1x10 5 ) PTFE powder that can be easily processed into a fine micropowder having industrial demand. Even carbon or metal filled PTFE has been recycled using this process. The conventional method of crosslinking linear polymers by thermo-clinical method leads to the formation of homogeneously crosslinked materials which are extremely slow for industrial applications. Electron beam irradiation has been used to create inhomogeneous crosslinking of a temperature-sensitive polymer- poly(vinyl methyl ether)(PVME) so as to produce a fast response

  12. Expert systems in process control systems

    International Nuclear Information System (INIS)

    Wittig, T.

    1987-01-01

    To illustrate where the fundamental difference between expert systems in classical diagnosis and in industrial control lie, the work of process control instrumentation is used as an example for the job of expert systems. Starting from the general process of problem-solving, two classes of expert systems can be defined accordingly. (orig.) [de

  13. Statistical process control for residential treated wood

    Science.gov (United States)

    Patricia K. Lebow; Timothy M. Young; Stan Lebow

    2017-01-01

    This paper is the first stage of a study that attempts to improve the process of manufacturing treated lumber through the use of statistical process control (SPC). Analysis of industrial and auditing agency data sets revealed there are differences between the industry and agency probability density functions (pdf) for normalized retention data. Resampling of batches of...

  14. Materials contamination control in the microelectronic industry; Controle de la contamination des materiaux dans l`industrie de la micro-electronique

    Energy Technology Data Exchange (ETDEWEB)

    Tardif, F

    1994-12-31

    This paper deals with many aspects of the contamination of materials in the microelectronic industry. The contamination`s control of chemicals, process gases, silicon and the survey of the ions free water`s purity are treated. (TEC). 29 figs., 7 tabs.

  15. Fundamental Theories and Key Technologies for Smart and Optimal Manufacturing in the Process Industry

    Directory of Open Access Journals (Sweden)

    Feng Qian

    2017-04-01

    Full Text Available Given the significant requirements for transforming and promoting the process industry, we present the major limitations of current petrochemical enterprises, including limitations in decision-making, production operation, efficiency and security, information integration, and so forth. To promote a vision of the process industry with efficient, green, and smart production, modern information technology should be utilized throughout the entire optimization process for production, management, and marketing. To focus on smart equipment in manufacturing processes, as well as on the adaptive intelligent optimization of the manufacturing process, operating mode, and supply chain management, we put forward several key scientific problems in engineering in a demand-driven and application-oriented manner, namely: ① intelligent sensing and integration of all process information, including production and management information; ② collaborative decision-making in the supply chain, industry chain, and value chain, driven by knowledge; ③ cooperative control and optimization of plant-wide production processes via human-cyber-physical interaction; and ④ life-cycle assessments for safety and environmental footprint monitoring, in addition to tracing analysis and risk control. In order to solve these limitations and core scientific problems, we further present fundamental theories and key technologies for smart and optimal manufacturing in the process industry. Although this paper discusses the process industry in China, the conclusions in this paper can be extended to the process industry around the world.

  16. Case Studies in Modelling, Control in Food Processes.

    Science.gov (United States)

    Glassey, J; Barone, A; Montague, G A; Sabou, V

    This chapter discusses the importance of modelling and control in increasing food process efficiency and ensuring product quality. Various approaches to both modelling and control in food processing are set in the context of the specific challenges in this industrial sector and latest developments in each area are discussed. Three industrial case studies are used to demonstrate the benefits of advanced measurement, modelling and control in food processes. The first case study illustrates the use of knowledge elicitation from expert operators in the process for the manufacture of potato chips (French fries) and the consequent improvements in process control to increase the consistency of the resulting product. The second case study highlights the economic benefits of tighter control of an important process parameter, moisture content, in potato crisp (chips) manufacture. The final case study describes the use of NIR spectroscopy in ensuring effective mixing of dry multicomponent mixtures and pastes. Practical implementation tips and infrastructure requirements are also discussed.

  17. Through the eye of the PLC: semantic security monitoring for industrial processes

    NARCIS (Netherlands)

    Hadziosmanovic, D.; Sommer, Robin; Zambon, Emmanuele; Hartel, Pieter H.

    2014-01-01

    Off-the-shelf intrusion detection systems prove an ill fit for protecting industrial control systems, as they do not take their process semantics into account. Specifically, current systems fail to detect recent process control attacks that manifest as unauthorized changes to the configuration of a

  18. The research on information security technology for the industrial control system of special equipment

    International Nuclear Information System (INIS)

    Chen Ligang; Liu Hongye; Zhang Wei; Sun Jianying; Lan Peng; Dai Sidan

    2014-01-01

    With the rapid development of information technology in enterprise application, industrial control network and management network is becoming more and more closely linked. Development and application of special equipment control system from the traditional industrial control system, not considered when designing communication security problem mainly, therefore, the industrial control system opened at the same time, isolation control system and the outside was weakened, the safety problems of industrial control system had become more and more serious. The practical application combined with the special equipment control system, analysis and elaboration in view of security problems for the control network, also, provide appropriate security solutions for professional characteristics of industrial control network, design on process control system specially, provide security partition protection scheme, in order to improve security ability of industrial control system information. (authors)

  19. IT Security Aspects of Industrial Control Systems

    Directory of Open Access Journals (Sweden)

    Peter Holecko

    2006-01-01

    Full Text Available This paper discusses a set of general network system architectures for industrial process control systems as well as vulnerabilities related to these systems and the IT threats these systems are exposed to from the point of view of Common Criteria methodology and ITU-T recommendation X.805.

  20. Modularization of Industrial Service Processes

    DEFF Research Database (Denmark)

    Frandsen, Thomas; Hsuan, Juliana

    In this paper we examine how complex service processes can be dealt with through the lenses of modularization strategies. Through an illustrative case study of a manufacturer of industrial equipment for process industries we propose the use of the service modularity function to conceptualize...... and assess the service modularity of service offerings. The measured degree of modularity would allow us to sharpen our understanding of modularity in the context of industrial services, such as the role of standardization and component reuse on architecture flexibility. It would also provide a foundation...

  1. Startup of the experimental physics industrial control system at NSTX

    International Nuclear Information System (INIS)

    Sichta, P.; Dong, J.

    1999-01-01

    The Experimental Physics Industrial Control System (EPICS) is a set of software which is being used as the basis of the National Spherical Torus Experiment's (NSTX) Process Control System, a major element of the NSTX's Central Instrumentation and Control System. EPICS is a result of a co-development effort started by several US Department of Energy National Laboratories. EPICS is actively supported through an international collaboration made up of government and industrial users. EPICS' good points include portability, scalability, and extensibility. A drawback for small experiments is that a wide range of software skills are necessary to get the software tools running for the process engineers. The authors' experience in designing, developing, operating, and maintaining NSTX's EPICS (system) will be reviewed

  2. Policy-based secure communication with automatic key management for industrial control and automation systems

    Science.gov (United States)

    Chernoguzov, Alexander; Markham, Thomas R.; Haridas, Harshal S.

    2016-11-22

    A method includes generating at least one access vector associated with a specified device in an industrial process control and automation system. The specified device has one of multiple device roles. The at least one access vector is generated based on one or more communication policies defining communications between one or more pairs of devices roles in the industrial process control and automation system, where each pair of device roles includes the device role of the specified device. The method also includes providing the at least one access vector to at least one of the specified device and one or more other devices in the industrial process control and automation system in order to control communications to or from the specified device.

  3. A concept of environmental controlling for industrial enterprises

    International Nuclear Information System (INIS)

    Poelzl, U.

    1992-01-01

    The protection of nature is seen as a global challenge to mankind. Industrial enterprises are confronted with the question of how to contribute to the solution of environmental problems. In this study possibilities and concepts are printed out that would enable industrial enterprises to recognize and as a consequence reduce environmental pollution and risks caused by their products and production processes by means of organization. After a description of recent developments in the entrepreneur's surroundings brought about by environmental problems, and a characterization of environmental management, which can be seen as a reaction to the above mentioned developments, a concept of environmental controlling for industrial enterprises is developed deductively. Environmental controlling is here regarded as a sub-system of environmental management that supports the determination of environmental aims, the analysis, the planning and the control of environmental pollution, as well as the use of material and energy by installing and coordinating a specific environment information system. The main functions of environmental controlling are planning, controlling, informing, advising and some special functions. The specific functional instruments for carrying out these tasks are described in a special chapter. (author)

  4. A novel back-up control structure to manage nonroutine steam upsets in industrial methanol distillation columns

    DEFF Research Database (Denmark)

    Udugama, Isuru A.; Zander, Cornina; Mansouri, Seyed Soheil

    2017-01-01

    Industrial methanol production plants have extensive heat integration to achieve energy efficient operations where steam generated from these heat integration operations are used to provide reboiler duty for methanol distillation columns that purify crude methanol produced into industrial AA grade...... supervisory layer to control the column during these non-routine process upsets. These control schemes were tested against realistic reboiler duty disturbances that can occur in an industrial process. The tests revealed that both the MPC and supervisory systems control structures are able to regulate...... the process, even during sudden drops in reboiler duty. However, the cost of implementation and the relative simplicity will likely favour the implementation of the supervisory control structure in an industrial environment....

  5. Industrial processing of canned beans

    Directory of Open Access Journals (Sweden)

    Vanderleia Schoeninger

    Full Text Available ABSTRACT: Beans are popular as a protein-filled legume of high nutritional value, being one of the most planted species in the world. However, recent years have seen a decrease in the consumption of beans, owing to the time necessary to cook it domestically. Thus, it is being replaced in people’s diets by other foods. An alternative preparation that supplies modern consumers’ demands is industrially processed beans. This article aimed to provide a literature review on the processing of canned beans. Few recent studies have been performed in Brazil on this subject, as most studies have focused instead on the technological quality of dry bean grains processing. In this article industrial processing concepts and features, production unit operations, and canned beans quality standards will be discussed. These efforts are expected to contribute to the Brazilian beans production chain, and consequently to increase consumption of canned beans and the demand for industrial processing of beans in both the domestic market and future product exports.

  6. Control System Design for Cylindrical Tank Process Using Neural Model Predictive Control Technique

    Directory of Open Access Journals (Sweden)

    M. Sridevi

    2010-10-01

    Full Text Available Chemical manufacturing and process industry requires innovative technologies for process identification. This paper deals with model identification and control of cylindrical process. Model identification of the process was done using ARMAX technique. A neural model predictive controller was designed for the identified model. The performance of the controllers was evaluated using MATLAB software. The performance of NMPC controller was compared with Smith Predictor controller and IMC controller based on rise time, settling time, overshoot and ISE and it was found that the NMPC controller is better suited for this process.

  7. Control assessment for heat integrated systems. An industrial case study for ethanol recovery

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Huusom, Jakob Kjøbsted; Sin, Gürkan

    2013-01-01

    Heat integration is essential for reducing the energy consumption of process industries. However, it may render the dynamic operation more interactive and difficult to control. This paper assesses the implications of heat integration in controllability and performance in energy reduction....... The assessment, both on open loop and closed loop, was carried out based on an industrial case study and compared to a modified case without heat integration. Although the heat integrated system displayed a certain deterioration of controllability, the control system made possible an efficient operation....... The reduction of energy consumption achieved thanks to heat integration was considerably larger than the losses due to poor control of the process, confirming the importance of heat integration in energy intensive processes....

  8. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Chapas, Richard B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colwell, Jeffery A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  9. Pollution control -- Recovery of uranium from phosphatic fertilizer industry

    International Nuclear Information System (INIS)

    Trivedi, R.N.; Pachaiyappan, V.

    1979-01-01

    Various uranium recovery processes, viz. Brazilian process (HCL leaching), selective extraction of U, Japanese process, ORNL process and the Indian methods, recently developed, pertaining to the fertilizer industry are reviewed and their relative merits are discussed. Special attention has been paid to the recovery of uranium from the Indian and imported phosphatic rocks, showing the advantages, both from the pollution control and nuclear energy aspects. (K.B.)

  10. Related regulation of quality control of industrial products

    International Nuclear Information System (INIS)

    1983-04-01

    This book introduce related regulation of quality control of industrial products, which includes regulations of industrial products quality control, enforcement ordinance of industrial products quality control, enforcement regulation of quality control of industrial products, designated items with industrial production quality indication, industrial production quality test, and industrial production quality test organization and management tips of factory quality by grade.

  11. Application of digital image processing to industrial radiography

    International Nuclear Information System (INIS)

    Bodson; Varcin; Crescenzo; Theulot

    1985-01-01

    Radiography is widely used for quality control of fabrication of large reactor components. Image processing methods are applied to industrial radiographs in order to help to take a decision as well as to reduce costs and delays for examination. Films, performed in representative operating conditions, are used to test results obtained with algorithms for the restauration of images and for the detection, characterisation of indications in order to determine the possibility of an automatic radiographs processing [fr

  12. Comparison Analysis of Model Predictive Controller with Classical PID Controller For pH Control Process

    Directory of Open Access Journals (Sweden)

    V. Balaji

    2016-12-01

    Full Text Available pH control plays a important role in any chemical plant and process industries. For the past four decades the classical PID controller has been occupied by the industries. Due to the faster computing   technology in the industry demands a tighter advanced control strategy. To fulfill the needs and requirements Model Predictive Control (MPC is the best among all the advanced control algorithms available in the present scenario. The study and analysis has been done for First Order plus Delay Time (FOPDT model controlled by Proportional Integral Derivative (PID and MPC using the Matlab software. This paper explores the capability of the MPC strategy, analyze and compare the control effects with conventional control strategy in pH control. A comparison results between the PID and MPC is plotted using the software. The results clearly show that MPC provide better performance than the classical controller.

  13. Materials of the Regional Training Course on Validation and Process Control for Electron Beam Radiation Processing

    International Nuclear Information System (INIS)

    Kaluska, I.; Gluszewski, W.

    2007-01-01

    Irradiation with electron beams is used in the polymer industry, food, pharmaceutical and medical device industries for sterilization of surfaces. About 20 lectures presented during the Course were devoted to all aspects of control and validation of low energy electron beam processes. They should help the product manufacturers better understand the application of the ANSI/AAMI/ISO 11137 norm, which defines the requirements and standard practices for validation of the irradiation process and the process controls required during routine processing

  14. Industrial separation processes : fundamentals

    NARCIS (Netherlands)

    Haan, de A.B.; Bosch, Hans

    2013-01-01

    Separation processes on an industrial scale comprise well over half of the capital and operating costs. They are basic knowledge in every chemical engineering and process engineering study. This book provides comprehensive and fundamental knowledge of university teaching in this discipline,

  15. Cyber (In-)security of Industrial Control Systems : A Societal Challenge

    NARCIS (Netherlands)

    Luiijf, H.A.M.

    2015-01-01

    Our society and its citizens increasingly depend on the undisturbed functioning of critical infrastructures (CI), their products and services. Many of the CI services as well as other organizations use Industrial Control Systems (ICS) to monitor and control their mission-critical processes.

  16. A process industry perspective. Chapter 6

    Energy Technology Data Exchange (ETDEWEB)

    Kettunen, J. [Metsae-Serla Oyj (Finland)

    2000-07-01

    Process industries, whether they are base metals, chemicals, plastics or wood-processing, have certain common features that influence their potential to adapt to changing requirements: - The products are primarily business-to-business commodities. - The proportion of invested capital to turnover is high. - The operating life of equipment is long, 15-40 years, and the basic technology is selected when the equipment is designed. - In free competition an individual operator cannot acquire a dominating market share. Thus, competitiveness is determined by cost-effectiveness. - The preference for the mass production paradigm has increased the plant size so that every new investment project leads to an over-capacity situation at least for the continent in question. The above outlines the starting point for this article, which explores the common future of the process industry and energy. The article mainly focuses on Finland and Europe, with the time span of 5 to 15 years. It is sensible to study the future of the process industry primarily on the basis of various scenarios. However, we have not tried to create new scenario sets but have utilised the excellent material accumulated in recent years in this field. The applied sustainable development scenarios Jazz and Geo are in true conflict in almost all issues related to ecological studies. The process industry on the whole, not to mention individual companies, has relatively little influence on the decision of a specific economic region regarding the scheme it selects. The global trend appears to be leaning more towards the Jazz scenario even though the existing structures are strongly attracted to the Geo scenario. With the exception of some local operators, it appears that customers are not likely to present challenges regarding carbon dioxide to the process industry. As both equipment and phenomena have longterm influences, the importance of a sustainable energy strategy is emphasised at the level of both companies

  17. Advances in statistical monitoring of complex multivariate processes with applications in industrial process control

    CERN Document Server

    Kruger, Uwe

    2012-01-01

    The development and application of multivariate statistical techniques in process monitoring has gained substantial interest over the past two decades in academia and industry alike.  Initially developed for monitoring and fault diagnosis in complex systems, such techniques have been refined and applied in various engineering areas, for example mechanical and manufacturing, chemical, electrical and electronic, and power engineering.  The recipe for the tremendous interest in multivariate statistical techniques lies in its simplicity and adaptability for developing monitoring applica

  18. Monitoring a PVC batch process with multivariate statistical process control charts

    NARCIS (Netherlands)

    Tates, A. A.; Louwerse, D. J.; Smilde, A. K.; Koot, G. L. M.; Berndt, H.

    1999-01-01

    Multivariate statistical process control charts (MSPC charts) are developed for the industrial batch production process of poly(vinyl chloride) (PVC). With these MSPC charts different types of abnormal batch behavior were detected on-line. With batch contribution plots, the probable causes of these

  19. Maintenance Free and Sustainable High-Level Control in Cement and Mining Industry

    DEFF Research Database (Denmark)

    Hansen, Ole Fink

    2009-01-01

    High-level control systems have been utilized in the process industry for decades, and also in cement production their use is well established. In comparison to manual control their ability to increase production and quality of end product, while reducing energy consumption and emission, is well...... but nevertheless still require maintenance. For the 10% of the algorithm that is control related, the maintenance issue is to some extent addressed by research topics such as adaptive control, which aim at retuning the parameters of the algorithm to match the changing process. In this project however, it has been...... chosen to focus on the remaining 90% of the algorithm which still require manual modifications to cope with a changed process. Although this issue has gained limited attention from academia so far it is well recognized by the industry. In the process of maintaining an algorithm it has turned out...

  20. Novel strategies for control of fermentation processes

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart; Sin, Gürkan

    Bioprocesses are inherently sensitive to fluctuations in processing conditions and must be tightly regulated to maintain cellular productivity. Industrial fermentations are often difficult to replicate across production sites or between facilities as the small operating differences in the equipment...... of a fermentation. Industrial fermentation processes are typically operated in fed batch mode, which also poses specific challenges for process monitoring and control. This is due to many reasons including non-linear behaviour, and a relatively poor understanding of the system dynamics. It is therefore challenging...

  1. Derivative Process Model of Development Power in Industry: Empirical Research and Forecast for Chinese Software Industry and US Economy

    OpenAIRE

    Feng Dai; Bao- hua Sun; Jie Sun

    2004-01-01

    Based on concept and theory of Development Power [1], this paper analyzes the transferability and the diffusibility of industrial development power, points out that the chaos is the extreme of DP releasing and order is the highest degree of DP accumulating, puts forward A-C strength, the index of adjusting and controlling strength, and sets up the derivative process model for industrial development power on the Partial Distribution [2]-[4]. By the derivative process model, a kind of time seri...

  2. Improving production control within the automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Simon, R L

    1982-01-01

    The problems of controlling and minimising design and manufacturing information within the automotive industry are both costly and do not make maximum use of previous experience. With the advent of CAD/CAM, many new techniques have evolved for the speedy construction of design and manufacturing data bases. A means of binding together these data bases and controlling the design and process planning information is now presented in the form of Computervision's Migraphics and Miplan software. This gives a data retrieval capability from all area's of the production cycle including design and detail, numerical control and robotics, process planning, manufacture and procurement. Together with its numerous analytical capabilities this sorftware provides an excellent tool for the optimisation of manufacturing techniques, thus providing a complete CAD/CAM system from a single data base.

  3. The Experimental Physics and Industrial Control System architecture: Past, present, and future

    International Nuclear Information System (INIS)

    Dalesio, L.R.; Hill, J.O.; Kraimer, M.; Lewis, S.; Murray, D.; Hunt, S.; Claussen, M.; Watson, W.

    1993-01-01

    The Experimental Physics and Industrial Control System (EPICS), has been used at a number of sites for performing data acquisition, supervisory control, closed-loop control, sequential control, and operational optimization. The EPICS architecture was originally developed by a group with diverse backgrounds in physics and industrial control. The current architecture represents one instance of the ''standard model.'' It provides distributed processing and communication from any LAN device to the front end controllers. This paper will present the genealogy, current architecture, performance envelope, current installations, and planned extensions for requirements not met by the current architecture

  4. Lyophilization: The process and industrial use

    Directory of Open Access Journals (Sweden)

    Pržić Dejan S.

    2004-01-01

    Full Text Available This article presents a general overview of lyophilization and discusses the underlying principles of the process through the basics of: formulation, freezing, primary drying and secondary drying. In this article lyophilization is defined as a stabilizing process in which the substance is first frozen and then the quantity of the solvent is reduced first by sublimation (primary drying and then by desorption (secondary drying to values that will no longer support biological growth or chemical reactions. Special mention was made of the industrial use of the process and emphasis was placed on the lyophilization of pharmaceutical products and food industry products. Lyophilization equipment, as well as the formulation of materials that can be lyophilized, are described in sufficient detail to give information on the restrictions and advantages of lyophlization. Processing economics and comparison with conventional drying methods are presented. A historical overview of the process and future developments presented from the industrial viewpoint give an insight on the previous application of lyophilization and the prospects of its broad industrial use.

  5. Mechatronics in monitoring, simulation, and diagnostics of industrial and biological processes

    Science.gov (United States)

    Golnik, Natalia; Dobosz, Marek; Jakubowska, Małgorzata; Kościelny, Jan M.; Kujawińska, Małgorzata; Pałko, Tadeusz; Putz, Barbara; Sitnik, Robert; Wnuk, Paweł; Woźniak, Adam

    2013-10-01

    The paper describes a number of research projects of the Faculty of Mechatronics of Warsaw University of Technology in order to illustrate the use of common mechatronics and optomechatronics approach in solving multidisciplinary technical problems. Projects on sensors development, measurement and industrial control systems, multimodal data capture and advance systems for monitoring and diagnostics of industrial processes are presented and discussed.

  6. Energy analysis of 108 industrial processes. Phase 1, industrial applications study

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, B. B.; Brown, H. L.

    1979-06-01

    Extensive data are compiled for energy balances in 108 industrial processes. Specific information on unit operation, material, temperature, unrecoverable losses, along with the process flow diagram is given for each of the industries. The following industries are included: meak packing; milk; canned fruits and vegetables; baked goods; sugar refining; soybean; textiles; wood products; building materials; alkalies and chlorine; inorganic gases; pigments, chemicals; plastic materials and resins; synthetic rubbers; organic fibers; pharmaceutical preparations; organic chemicals; petroleum products; fertilizers; rubber products; glass; blast furnaces and steel mills; metals; farm machinery; motor vehicles; and photographic materials. The SIC's for each industry are identified.

  7. Electron beam processing of materials-R and D and industrial utilization

    International Nuclear Information System (INIS)

    Sarma, K.S.S.

    2005-01-01

    The early sixties witnessed the beginning of Electron Beam (EB) processing of materials using high-energy electrons and has emerged as a well established technology, presently being adapted by the industry. The process and the processed materials showed definite and distinct advantages/characteristics over the available conventional methods. Even though the commercial exploitation started initially in polymer modifications for better (and suitable) performance through polymerization, cross-linking, degradation and grafting, the processing fields are now diverged to sterilization of health care, food irradiation, controlled defects in semiconductor devices and semi and/or precious stones, waste water/flue gas treatment etc. The availability of electron accelerators that operate as per the requirement of the industrial needs, easy maintenance, expertise availability etc brought the EB processing industry into a multi dollar business world wide. In USA and Japan there are more than 1200 accelerators currently operative in automobile tire, wire and cable and heat shrinkable industry. Output beam powers exceeding 400 kW with electron energy ranging from few hundred keV up to 10 MeV are made available to the industry. In BARC EB processing started with the 2MeV/20 kW electron accelerator and suitable processing techniques have been developed for applications like polymer cross linking (heat resistant LDPE O-rings, wire and cable insulation), color enhancement in precious stones (diamonds) on industrial scale and polymer curing, grafting, degradation on R and D/pilot scale. The commercial success of the process enabled the private cable industry to set up accelerators at their factories. On research and development front, the accelerator is being utilized to develop new polymer blends for high temperature applications, for solid and liquid waste treatment, polypropylene grafting experiments for uranium extraction from sea water, surface curing etc. This paper gives

  8. Multivariate statistical analysis of a multi-step industrial processes

    DEFF Research Database (Denmark)

    Reinikainen, S.P.; Høskuldsson, Agnar

    2007-01-01

    Monitoring and quality control of industrial processes often produce information on how the data have been obtained. In batch processes, for instance, the process is carried out in stages; some process or control parameters are set at each stage. However, the obtained data might not be utilized...... efficiently, even if this information may reveal significant knowledge about process dynamics or ongoing phenomena. When studying the process data, it may be important to analyse the data in the light of the physical or time-wise development of each process step. In this paper, a unified approach to analyse...... multivariate multi-step processes, where results from each step are used to evaluate future results, is presented. The methods presented are based on Priority PLS Regression. The basic idea is to compute the weights in the regression analysis for given steps, but adjust all data by the resulting score vectors...

  9. Environmental technology applications: fact file on toxic contaminants in industrial waste process streams

    Energy Technology Data Exchange (ETDEWEB)

    Newkirk, H.W.

    1977-05-11

    This report is a compendium of facts related to chemical materials present in industrial waste process streams which have already been declared or are being evaluated as hazardous under the Toxic Substances Control Act. Since some 400 chemicals are presently covered by consensus standards, the substances reviewed are only those considered to be a major threat to public health and welfare by Federal and State regulatory agencies. For each hazardous material cited, the facts relate, where possible, to an identification of the stationary industrial sources, the kind of waste stream impacted, proposed regulations and established effluent standards, the volume of emissions produced each year, the volume of emissions per unit of industrial product produced, present clean-up capabilities, limitations, and costs. These data should be helpful in providing information for the assessment of potential problems, should be of use to the manufacturers of pollution control equipment or of chemicals for pollution control, should be of use to the operators or potential operators of processes which produce pollutants, and should help to define industry-wide emission practices and magnitudes.

  10. Opportunities in the United States' gas processing industry

    International Nuclear Information System (INIS)

    Meyer, H.S.; Leppin, D.

    1997-01-01

    To keep up with the increasing amount of natural gas that will be required by the market and with the decreasing quality of the gas at the well-head, the gas processing industry must look to new technologies to stay competitive. The Gas Research Institute (GR); is managing a research, development, design and deployment program that is projected to save the industry US dollar 230 million/year in operating and capital costs from gas processing related activities in NGL extraction and recovery, dehydration, acid gas removal/sulfur recovery, and nitrogen rejection. Three technologies are addressed here. Multivariable Control (MVC) technology for predictive process control and optimization is installed or in design at fourteen facilities treating a combined total of over 30x10 9 normal cubic meter per year (BN m 3 /y) [1.1x10 12 standard cubic feet per year (Tcf/y)]. Simple pay backs are typically under 6 months. A new acid gas removal process based on n-formyl morpholine (NFM) is being field tested that offers 40-50% savings in operating costs and 15-30% savings in capital costs relative to a commercially available physical solvent. The GRI-MemCalc TM Computer Program for Membrane Separations and the GRI-Scavenger CalcBase TM Computer Program for Scavenging Technologies are screening tools that engineers can use to determine the best practice for treating their gas. (au) 19 refs

  11. Greening Food Processing Industry in Vietnam: Putting Industrial Ecology to Work

    OpenAIRE

    Tran Thi My Dieu

    2003-01-01

    The significant contribution to Vietnam's gross domestic product over the years give evidence of the important role of food processing industry in the economic and industrial development of the country. This is even more relevant from now onwards, as it is Vietnam's development strategy to become one of the top agricultural countries in the world by the year 2010. However, it is not difficult to recognize that the rapid growth of food processing industry in Vietnam goes together with environm...

  12. Rheological Properties of Extreme Pressure Greases Measured Using a Process Control Rheometer

    DEFF Research Database (Denmark)

    Glasscock, Julie; Smith, Robin S.

    2012-01-01

    A new process control rheometer (PCR) designed for use in industrial process flows has been used to measure the rheological properties of three extreme-pressure greases. The rheometer is a robust yet sensitive instrument designed to operate in an industrial processing environment in either in......-line or on-line configurations. The PCR was able to measure the rheological properties including the elastic modulus, viscous modulus, and complex viscosity of the greases which in an industrial flow application could be used as variables in a feedback system to control the process and the quality...

  13. Novel strategies for control of fermentation processes

    DEFF Research Database (Denmark)

    Mears, Lisa

    to highly optimised industrial host strains. The focus of this project is instead on en-gineering of the process. The question to be answered in this thesis is, given a highly optimised industrial host strain, how can we operate the fermentation process in order to maximise the productivity of the system...... (2012). This model describes the fungal processes operated in the fermentation pilot plant at Novozymes A/S. This model is investigated using uncertainty analysis methods in order to as-sess the applicability to control applications. A mechanistic model approach is desirable, as it is a predictive....... This provides a prediction of the future trajectory of the process, so that it is possible to guide the system to the desired target mass. The control strategy is applied on-line at 550L scale in the Novozymes A/S fermentation pilot plant, and the method is challenged with four different sets of process...

  14. Opportunities for Automated Demand Response in California’s Dairy Processing Industry

    Energy Technology Data Exchange (ETDEWEB)

    Homan, Gregory K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Aghajanzadeh, Arian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-30

    During periods of peak electrical demand on the energy grid or when there is a shortage of supply, the stability of the grid may be compromised or the cost of supplying electricity may rise dramatically, respectively. Demand response programs are designed to mitigate the severity of these problems and improve reliability by reducing the demand on the grid during such critical times. In 2010, the Demand Response Research Center convened a group of industry experts to suggest potential industries that would be good demand response program candidates for further review. The dairy industry was suggested due to the perception that the industry had suitable flexibility and automatic controls in place. The purpose of this report is to provide an initial description of the industry with regard to demand response potential, specifically automated demand response. This report qualitatively describes the potential for participation in demand response and automated demand response by dairy processing facilities in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use. Typical process equipment and controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Two case studies of demand response at dairy facilities in California and across the country are reviewed. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.

  15. Network Traffic Features for Anomaly Detection in Specific Industrial Control System Network

    Directory of Open Access Journals (Sweden)

    Matti Mantere

    2013-09-01

    Full Text Available The deterministic and restricted nature of industrial control system networks sets them apart from more open networks, such as local area networks in office environments. This improves the usability of network security, monitoring approaches that would be less feasible in more open environments. One of such approaches is machine learning based anomaly detection. Without proper customization for the special requirements of the industrial control system network environment, many existing anomaly or misuse detection systems will perform sub-optimally. A machine learning based approach could reduce the amount of manual customization required for different industrial control system networks. In this paper we analyze a possible set of features to be used in a machine learning based anomaly detection system in the real world industrial control system network environment under investigation. The network under investigation is represented by architectural drawing and results derived from network trace analysis. The network trace is captured from a live running industrial process control network and includes both control data and the data flowing between the control network and the office network. We limit the investigation to the IP traffic in the traces.

  16. Applying Trusted Network Technology To Process Control Systems

    Science.gov (United States)

    Okhravi, Hamed; Nicol, David

    Interconnections between process control networks and enterprise networks expose instrumentation and control systems and the critical infrastructure components they operate to a variety of cyber attacks. Several architectural standards and security best practices have been proposed for industrial control systems. However, they are based on older architectures and do not leverage the latest hardware and software technologies. This paper describes new technologies that can be applied to the design of next generation security architectures for industrial control systems. The technologies are discussed along with their security benefits and design trade-offs.

  17. Practical use of ergonomics in industrial processes

    International Nuclear Information System (INIS)

    1976-01-01

    Six lectures deal with new developments in the application of ergonomic knowledge, in particular to nuclear technology. All contributions have in common the aspects of analysis and structure of man-machine-systems in which human operators have to process information and have to make decisions. Quoting a lot of examples from a variety of industrial sectors, the article discusses complexes of problems and ways of solving them concerning questions requiring the answer 'yes' or 'no', concerning the dialogue man-computer, the organization of central control mechanisms, the avoidance of human errors, influence of man on system safety, and the rational incorporation of ergonomics in system planning. This publication is meant to be a contribution to extend the knowledge on the organization of work from an ergonomic and engineer/psychological point of view. It is to show how the knowledge of the nature of man can be applied as a systems component in order to make industrial processes safer and more economical, and to entrust man with purposeful and satisfying tasks. (orig./LN) [de

  18. ECONOMIC ESSENCE OF MODERN INVESTMENT PROCESSES IN THE GRAIN PROCESSING INDUSTRY

    Directory of Open Access Journals (Sweden)

    Inna Kanashkina

    2015-11-01

    Full Text Available The subject of the research is theoretical and methodological bases of formation of effective investment in priorities feed processing industry in Ukraine. The object of research is the investment process in feed processing Ukrainian industry, the main direction and the way to increase the efficiency of the investment process in the industry. The aim is to develop an integrated approach to the study of the economic substance of investments to improve the methods to determine their effectiveness, the study of factors of investment environment, study methodology for determining business risk, development of proposals of the priority areas of investing in feed processing industry, the formation of effective investment strategies for its development in the conditions of market transformation. Methods. We used the following methods: dialectical, abstract logic, Economics and Statistics and the systemic-functional methods of knowledge of economic processes. The dialectical method has allowed the author to analyze the development of research in the last five years, identified reserves and propose ways for its further development. Abstract-logical method of waste classification of the factors influencing the efficiency of the investment process in the industry, the methodological approaches to the formation of the components of the conceptual apparatus studied category. Economic-statistical method used in the study and synthesis of trends and patterns of the dynamics of the industry at the present stage. Systemic-functional method allowed to generalize the theoretical and methodological foundations of development effectiveness feed processing industry. The study also used methods: a comparative analysis – for comparing actual data reporting and previous years; model approach – to determine the entrepreneurial risk in the enterprises of the industry; expert assessments and cost approaches to identify key trends and ways to improve the country

  19. A water pumping control system with a programmable logic controller (PLC) and industrial wireless modules for industrial plants--an experimental setup.

    Science.gov (United States)

    Bayindir, Ramazan; Cetinceviz, Yucel

    2011-04-01

    This paper describes a water pumping control system that is designed for production plants and implemented in an experimental setup in a laboratory. These plants contain harsh environments in which chemicals, vibrations or moving parts exist that could potentially damage the cabling or wires that are part of the control system. Furthermore, the data has to be transferred over paths that are accessible to the public. The control systems that it uses are a programmable logic controller (PLC) and industrial wireless local area network (IWLAN) technologies. It is implemented by a PLC, an communication processor (CP), two IWLAN modules, and a distributed input/output (I/O) module, as well as the water pump and sensors. Our system communication is based on an Industrial Ethernet and uses the standard Transport Control Protocol/Internet Protocol for parameterisation, configuration and diagnostics. The main function of the PLC is to send a digital signal to the water pump to turn it on or off, based on the tank level, using a pressure transmitter and inputs from limit switches that indicate the level of the water in the tank. This paper aims to provide a convenient solution in process plants where cabling is not possible. It also has lower installation and maintenance cost, provides reliable operation, and robust and flexible construction, suitable for industrial applications. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  20. A fuzzy model based adaptive PID controller design for nonlinear and uncertain processes.

    Science.gov (United States)

    Savran, Aydogan; Kahraman, Gokalp

    2014-03-01

    We develop a novel adaptive tuning method for classical proportional-integral-derivative (PID) controller to control nonlinear processes to adjust PID gains, a problem which is very difficult to overcome in the classical PID controllers. By incorporating classical PID control, which is well-known in industry, to the control of nonlinear processes, we introduce a method which can readily be used by the industry. In this method, controller design does not require a first principal model of the process which is usually very difficult to obtain. Instead, it depends on a fuzzy process model which is constructed from the measured input-output data of the process. A soft limiter is used to impose industrial limits on the control input. The performance of the system is successfully tested on the bioreactor, a highly nonlinear process involving instabilities. Several tests showed the method's success in tracking, robustness to noise, and adaptation properties. We as well compared our system's performance to those of a plant with altered parameters with measurement noise, and obtained less ringing and better tracking. To conclude, we present a novel adaptive control method that is built upon the well-known PID architecture that successfully controls highly nonlinear industrial processes, even under conditions such as strong parameter variations, noise, and instabilities. © 2013 Published by ISA on behalf of ISA.

  1. Heavy Water - Industrial Separation Processes

    International Nuclear Information System (INIS)

    Peculea, M.

    1984-01-01

    This monograph devoted to the heavy water production mainly presents the Romanian experience in the field which started in early sixties from the laboratory scale production and reached now the level of large scale industrial production at ROMAG-Drobeta, Romania. The book is structured in eleven chapters entitled: Overview, The main physical properties, Sources, Uses, Separation factor and equilibrium constant, Mathematical modelling of the separation process, Thermodynamical considerations on the isotope separation, Selection criteria for heavy water separation processes, Industrial installations for heavy water production, Prospects, Acknowledgements. 200 Figs., 90 Tabs., 135 Refs

  2. Automated full matrix capture for industrial processes

    Science.gov (United States)

    Brown, Roy H.; Pierce, S. Gareth; Collison, Ian; Dutton, Ben; Dziewierz, Jerzy; Jackson, Joseph; Lardner, Timothy; MacLeod, Charles; Morozov, Maxim

    2015-03-01

    Full matrix capture (FMC) ultrasound can be used to generate a permanent re-focusable record of data describing the geometry of a part; a valuable asset for an inspection process. FMC is a desirable acquisition mode for automated scanning of complex geometries, as it allows compensation for surface shape in post processing and application of the total focusing method. However, automating the delivery of such FMC inspection remains a significant challenge for real industrial processes due to the high data overhead associated with the ultrasonic acquisition. The benefits of NDE delivery using six-axis industrial robots are well versed when considering complex inspection geometries, but such an approach brings additional challenges to scanning speed and positional accuracy when combined with FMC inspection. This study outlines steps taken to optimize the scanning speed and data management of a process to scan the diffusion bonded membrane of a titanium test plate. A system combining a KUKA robotic arm and a reconfigurable FMC phased array controller is presented. The speed and data implications of different scanning methods are compared, and the impacts on data visualization quality are discussed with reference to this study. For the 0.5 m2 sample considered, typical acquisitions of 18 TB/m2 were measured for a triple back wall FMC acquisition, illustrating the challenge of combining high data throughput with acceptable scanning speeds.

  3. Data-based control of a multi-step forming process

    Science.gov (United States)

    Schulte, R.; Frey, P.; Hildenbrand, P.; Vogel, M.; Betz, C.; Lechner, M.; Merklein, M.

    2017-09-01

    The fourth industrial revolution represents a new stage in the organization and management of the entire value chain. However, concerning the field of forming technology, the fourth industrial revolution has only arrived gradually until now. In order to make a valuable contribution to the digital factory the controlling of a multistage forming process was investigated. Within the framework of the investigation, an abstracted and transferable model is used to outline which data have to be collected, how an interface between the different forming machines can be designed tangible and which control tasks must be fulfilled. The goal of this investigation was to control the subsequent process step based on the data recorded in the first step. The investigated process chain links various metal forming processes, which are typical elements of a multi-step forming process. Data recorded in the first step of the process chain is analyzed and processed for an improved process control of the subsequent process. On the basis of the gained scientific knowledge, it is possible to make forming operations more robust and at the same time more flexible, and thus create the fundament for linking various production processes in an efficient way.

  4. Export Controls and Industry Outreach Mutual Benefits of Business - Government Partnerships (OPCW)

    International Nuclear Information System (INIS)

    Johnston, D. R.

    2007-01-01

    This presentation is intended to acquaint one and all with the strategy and benefits for developing a mutually contributory relationship between government and industry as a means to support and strengthen an effective nonproliferation export control regime. The study will provide background into the basis for development of multilateral regimes for export controls along with an overview covering the historical involvement of industry and their responsibility in dual-use research and development. The paper will then offer an examination of the unique composition and status of the dual-use industry which makes them vulnerable to the illicit diversion of their products and identify and discuss the recognized indicators of that process. The focus will then move toward explaining justification for establishing a close working relationship or partnership between industry and government and how the process of that partnership can deter access and opportunity for the illicit diversion of dual-use goods. Finally, in summation the presentation will highlight the mutual benefits that result from that relationship.(author)

  5. Monitoring and evaluation of production processes an analysis of the automotive industry

    CERN Document Server

    Panda, Anton; Pandová, Iveta

    2016-01-01

    This book presents topics on monitoring and evaluation of production processes in the automotive industry. Regulation of production processes is also described in details. The text deals with the implementation and evaluation of these processes during the mass production of components useful in the automotive industry. It evaluates the effects and results achieved after implementation in practice. The book takes into account the different methodologies of the world's automakers and applicable standards, such as standard EN ISO 9001 and the requirements of VDA and ISO/TS 16949. The content is used to those working with the development, production and quality control of new products in the demanding automotive industry. The information provided may also be useful to engineers and technical staff in organizations working with series production and production of spare parts for the automotive and other demanding industries. The content presented was written based on discussions with various companies and organiza...

  6. Design of scanning motion control system for high-energy X-ray industrial CT

    International Nuclear Information System (INIS)

    Duan Liming

    2008-01-01

    A scanning motion control system was developed for the high-energy X-ray industrial computerized tomography (CT). The system consists of an industrial control computer, a counter card, a control card, servo drivers, servo motors, working platforms, gratings and control software. Based on windows driver model(WDM) mode, the composition of the driver pro- gram for the system was studied. Took the motor control card as an example, the method to develop the driver program was researched, and the intercourse process between the device driver program and the user-program was analyzed. The real-time control of the system was implemented using the WDM driver. The real-time performance and reliability of the system can satisfy the requirement of high-energy X-ray industrial CT. (authors)

  7. Collaboration between industry and academia--prospects for male fertility control.

    Science.gov (United States)

    Stock, G; Habenicht, U F

    1999-12-01

    Drug development within the pharmaceutical industry is probably the field with the highest level of regulations. Due to the complexity of the different components of drug development and drug surveillance the need for a sophisticated organization and infrastructure is obvious. In addition, there is a necessity for sufficient resources and long-term commitment as well as logistic and long-term knowledge management. In order to secure high professional standards at all levels of this highly complex value creating chain, the number of cooperative arrangements in the pharmaceutical industry are increasing. The identification of new targets in the drug finding process calls in particular for outside partners. At the same time the preparedness of non-industrial researchers to cooperate with industry has also increased significantly. The area of fertility control, especially male fertility control, provides an excellent example for this kind of cooperation between industrial and non-industrial partners. Here a cooperative network is described which probably meets practically all relevant criteria for both the non-industrial but also the industrial partner. Some principles for the management of such a cooperative network are discussed. We believe that this kind of network can serve as a model for similar networks in other fields.

  8. A front-end system for industrial type controls at the SSC

    International Nuclear Information System (INIS)

    Haenni, D.R.

    1992-01-01

    The SSC control system is tasked with coordinating the operation of many different accelerator subsystems, a number of which use industrial type process controls. The design of a high-performance control system front end is presented which serves both as a data concentrator and a distributed process controller. In addition it provides strong support for a centralized control system architecture, allows for regional control systems, and simplifies the construction of inter-subsystem controls. An implementation of this design will be discussed which uses STD-Bus for accelerator hardware interfacing, a time domain multiplexing (TDM) communications transport system, and a modified reflective memory interface to the rest of the control system. (author)

  9. An industrial radiation source for food processing

    International Nuclear Information System (INIS)

    Sadat, R.

    1986-01-01

    The scientific linacs realized by CGR MeV in France have been installed in several research centers, the medical accelerators of CGR MeV have been installed in radiotherapy centers all over the world, and the industrial linacs have been used for radiography in heavy industries. Based on the experience for 30 years, CGR MeV has realized a new industrial radiation source for food processing. CARIC is going to install a new machine of CGR MeV, CASSITRON, as the demand for radiation increased. This machine has been devised specially for industrial irradiation purpose. Its main features are security, simplicity and reliability, and it is easy to incorporate it into a production line. The use of CASSITRON for food industry, the ionizing effect on mechanically separated poultry meat, the capital and processing cost and others are explained. Only 10 % of medical disposable supplies is treated by ionizing energy in France. The irradiation for food decontamination, and that for industrial treatment are demanded. Therefore, CARIC is going to increase the capacity by installing a CASSITRON for sterilization. The capital and processing cost are shown. The start of operation is expected in March, 1986. At present, a CASSITRON is being installed in the SPI food processing factory, and starts operation in a few weeks. (Kako, I.)

  10. Industrial-Scale Processes For Stabilizing Radioactively Contaminated Mercury Wastes

    International Nuclear Information System (INIS)

    Broderick, T. E.; Grondin, R.

    2003-01-01

    This paper describes two industrial-scaled processes now being used to treat two problematic mercury waste categories: elemental mercury contaminated with radionuclides and radioactive solid wastes containing greater than 260-ppm mercury. The stabilization processes were developed by ADA Technologies, Inc., an environmental control and process development company in Littleton, Colorado. Perma-Fix Environmental Services has licensed the liquid elemental mercury stabilization process to treat radioactive mercury from Los Alamos National Laboratory and other DOE sites. ADA and Perma-Fix also cooperated to apply the >260-ppm mercury treatment technology to a storm sewer sediment waste collected from the Y-12 complex in Oak Ridge, TN

  11. AN OVERVIEW OF PHARMACEUTICAL PROCESS VALIDATION AND PROCESS CONTROL VARIABLES OF TABLETS MANUFACTURING PROCESSES IN INDUSTRY

    OpenAIRE

    Mahesh B. Wazade*, Sheelpriya R. Walde and Abhay M. Ittadwar

    2012-01-01

    Validation is an integral part of quality assurance; the product quality is derived from careful attention to a number of factors including selection of quality parts and materials, adequate product and manufacturing process design, control of the process variables, in-process and end-product testing. Recently validation has become one of the pharmaceutical industry’s most recognized and discussed subjects. It is a critical success factor in product approval and ongoing commercialization, fac...

  12. System for monitoring an industrial or biological process

    Science.gov (United States)

    Gross, Kenneth C.; Wegerich, Stephan W.; Vilim, Rick B.; White, Andrew M.

    1998-01-01

    A method and apparatus for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT.

  13. Multivariate Statistical Process Control

    DEFF Research Database (Denmark)

    Kulahci, Murat

    2013-01-01

    As sensor and computer technology continues to improve, it becomes a normal occurrence that we confront with high dimensional data sets. As in many areas of industrial statistics, this brings forth various challenges in statistical process control (SPC) and monitoring for which the aim...... is to identify “out-of-control” state of a process using control charts in order to reduce the excessive variation caused by so-called assignable causes. In practice, the most common method of monitoring multivariate data is through a statistic akin to the Hotelling’s T2. For high dimensional data with excessive...... amount of cross correlation, practitioners are often recommended to use latent structures methods such as Principal Component Analysis to summarize the data in only a few linear combinations of the original variables that capture most of the variation in the data. Applications of these control charts...

  14. Curbing variations in packaging process through Six Sigma way in a large-scale food-processing industry

    Science.gov (United States)

    Desai, Darshak A.; Kotadiya, Parth; Makwana, Nikheel; Patel, Sonalinkumar

    2015-03-01

    Indian industries need overall operational excellence for sustainable profitability and growth in the present age of global competitiveness. Among different quality and productivity improvement techniques, Six Sigma has emerged as one of the most effective breakthrough improvement strategies. Though Indian industries are exploring this improvement methodology to their advantage and reaping the benefits, not much has been presented and published regarding experience of Six Sigma in the food-processing industries. This paper is an effort to exemplify the application of Six Sigma quality improvement drive to one of the large-scale food-processing sectors in India. The paper discusses the phase wiz implementation of define, measure, analyze, improve, and control (DMAIC) on one of the chronic problems, variations in the weight of milk powder pouch. The paper wraps up with the improvements achieved and projected bottom-line gain to the unit by application of Six Sigma methodology.

  15. First Dutch Process Control Security Event

    NARCIS (Netherlands)

    Luiijf, H.A.M.

    2008-01-01

    On May 21st , 2008, the Dutch National Infrastructure against Cyber Crime (NICC) organised their first Process Control Security Event. Mrs. Annemarie Zielstra, the NICC programme manager, opened the event. She welcomed the over 100 representatives of key industry sectors. “Earlier studies in the

  16. IT Systems in Aid of Welding Processes Quality Management in the Automotive Industry

    Directory of Open Access Journals (Sweden)

    Restecka M.

    2016-12-01

    Full Text Available The most important issue for the producers nowadays is to meet the requirements of customers, satisfying their perceived but also the unperceived needs. In order to control the quality of welding processes correctly one must have knowledge of welding drawings, symbols, designs of welded joints, welding procedures, requirements set in codes and standards, also have knowledge of the techniques of inspection and testing connected with the automotive industry. The article shows ways to increase quality in the industry through the use of robotization and computerization. Presented examples and application of IT systems in aid of welding processes quality management in the automotive industry.

  17. Development, validation and routine control of a radiation process

    International Nuclear Information System (INIS)

    Kishor Mehta

    2010-01-01

    Today, radiation is used in industrial processing for variety of applications; from low doses for blood irradiation to very high doses for materials modification and even higher for gemstone colour enhancement. At present, radiation is mainly provided by either radionuclides or machine sources; cobalt-60 is the most predominant radionuclide in use. Currently, there are several hundred irradiation facilities worldwide. Similar to other industries, quality management systems can assist radiation processing facilities in enhancing customer satisfaction and maintaining and improving product quality. To help fulfill quality management requirements, several national and international organizations have developed various standards related to radiation processing. They all have requirements and guidelines for development, validation and routine control of the radiation process. For radiation processing, these three phases involve the following activities. Development phase includes selecting the type of radiation source, irradiation facility and the dose required for the process. Validation phase includes conducting activities that give assurance that the process will be successful. Routine control then involves activities that provide evidence that the process has been successfully realized. These standards require documentary evidence that process validation and process control have been followed. Dosimetry information gathered during these processes provides this evidence. (authors)

  18. Internal control in the management system of meat processing enterprises

    Directory of Open Access Journals (Sweden)

    Volodymyr Kushnir

    2018-03-01

    Full Text Available The article is described the theoretical basis of internal control and its practical aspects in the work of meat processing enterprises (a case in the meat processing industry in Ukraine. The purpose of the research is to establish the theoretical foundations of the internal control and its improvement in the activity of meat processing plants of various forms of management. It is proposed to use precisely internal control among other names of domestic control. Definition of internal control, its subject and purpose are improved. The subjects and objects of internal control are determined; the principles of its implementation are supplemented. Specific control tasks in meat processing plants according to the needs of this industry are outlined. Specific examples of control subjects are presented and the role of the revision commission is emphasized. The state of internal control in meat processing plants in Ukraine is investigated and it is established that it has a bad condition and unfounded approach to its implementation by managers of meat processing enterprises. To improve the situation we recommend that each meat processing enterprise have in its staff a revision commission or an apposer (auditor. It is established that internal control is more effective in joint-stock companies than in limited liability companies. The necessity of internal control as an important element in the enterprise management system is accented.

  19. Fault Detection and Diagnosis System in Process industry Based on Big Data and WeChat

    Directory of Open Access Journals (Sweden)

    Sun Zengqiang

    2017-01-01

    Full Text Available The fault detection and diagnosis information in process industry can be received, anytime and anywhere, based on bigdata and WeChat with mobile phone, which got rid of constraints that can only check Distributed Control System (DCS in the central control room or look over in office. Then, fault detection, diagnosis information sharing can be provided, and what’s more, fault detection alarm range, code and inform time can be personalized. The pressure of managers who worked on process industry can be release with the mobile information system.

  20. Simulation of process identification and controller tuning for flow control system

    Science.gov (United States)

    Chew, I. M.; Wong, F.; Bono, A.; Wong, K. I.

    2017-06-01

    PID controller is undeniably the most popular method used in controlling various industrial processes. The feature to tune the three elements in PID has allowed the controller to deal with specific needs of the industrial processes. This paper discusses the three elements of control actions and improving robustness of controllers through combination of these control actions in various forms. A plant model is simulated using the Process Control Simulator in order to evaluate the controller performance. At first, the open loop response of the plant is studied by applying a step input to the plant and collecting the output data from the plant. Then, FOPDT of physical model is formed by using both Matlab-Simulink and PRC method. Then, calculation of controller’s setting is performed to find the values of Kc and τi that will give satisfactory control in closed loop system. Then, the performance analysis of closed loop system is obtained by set point tracking analysis and disturbance rejection performance. To optimize the overall physical system performance, a refined tuning of PID or detuning is further conducted to ensure a consistent resultant output of closed loop system reaction to the set point changes and disturbances to the physical model. As a result, the PB = 100 (%) and τi = 2.0 (s) is preferably chosen for setpoint tracking while PB = 100 (%) and τi = 2.5 (s) is selected for rejecting the imposed disturbance to the model. In a nutshell, selecting correlation tuning values is likewise depended on the required control’s objective for the stability performance of overall physical model.

  1. Online sensing and control of oil in process wastewater

    Science.gov (United States)

    Khomchenko, Irina B.; Soukhomlinoff, Alexander D.; Mitchell, T. F.; Selenow, Alexander E.

    2002-02-01

    Industrial processes, which eliminate high concentration of oil in their waste stream, find it extremely difficult to measure and control the water purification process. Most oil separation processes involve chemical separation using highly corrosive caustics, acids, surfactants, and emulsifiers. Included in the output of this chemical treatment process are highly adhesive tar-like globules, emulsified and surface oils, and other emulsified chemicals, in addition to suspended solids. The level of oil/hydrocarbons concentration in the wastewater process may fluctuate from 1 ppm to 10,000 ppm, depending upon the specifications of the industry and level of water quality control. The authors have developed a sensing technology, which provides the accuracy of scatter/absorption sensing in a contactless environment by combining these methodologies with reflective measurement. The sensitivity of the sensor may be modified by changing the fluid level control in the flow cell, allowing for a broad range of accurate measurement from 1 ppm to 10,000 ppm. Because this sensing system has been designed to work in a highly invasive environment, it can be placed close to the process source to allow for accurate real time measurement and control.

  2. Agents Modeling Experience Applied To Control Of Semi-Continuous Production Process

    Directory of Open Access Journals (Sweden)

    Gabriel Rojek

    2014-01-01

    Full Text Available The lack of proper analytical models of some production processes prevents us from obtaining proper values of process parameters by simply computing optimal values. Possible solutions of control problems in such areas of industrial processes can be found using certain methods from the domain of artificial intelligence: neural networks, fuzzy logic, expert systems, or evolutionary algorithms. Presented in this work, a solution to such a control problem is an alternative approach that combines control of the industrial process with learning based on production results. By formulating the main assumptions of the proposed methodology, decision processes of a human operator using his experience are taken into consideration. The researched model of using and gathering experience of human beings is designed with the contribution of agent technology. The presented solution of the control problem coincides with case-based reasoning (CBR methodology.

  3. DE based economic control chart design and application for a typical petrochemical process

    Institute of Scientific and Technical Information of China (English)

    Zhi LI; Feng QIAN; Wenli DU; Weimin ZHONG

    2017-01-01

    Petrochemical industry plays an important role in the development of the national economy.Purified terephthalic acid (PTA) is one of the most important intermediate raw materials in the petrochemical and chemical fiber industries.PTA production has two parts:p-xylene (PX) oxidation process and crude terephthalic acid (CTA) hydropurification process.The CTA hydropurification process is used to reduce impurities,such as 4-carboxybenzaldehyde,which is produced by a side reaction in the PX oxidation process and is harmful to the polyester industry.From the safety and economic viewpoints,monitoring this process is necessary.Four main faults of this process are analyzed in this study.The common process monitoring methods always use T2 and SPE statistic as control limits.However,the traditional methods do not fully consider the economic viewpoint.In this study,a new economic control chart design method based on the differential evolution (DE) algorithm is developed.The DE algorithm transforms the economic control chart design problem to an optimization problem and is an excellent solution to such problem.Case studies of the main faults of the hydropurification process indicate that the proposed method can achieve minimum profit loss.This method is useful in economic control chart design and can provide guidance for the petrochemical industry.

  4. Radiation processing: a versatile technology for industry

    International Nuclear Information System (INIS)

    Cabalfin, E.G.

    1996-01-01

    Soon after the discovery of x-ray in 1895 and radioactivity in 1896, it was recognized that ionizing radiation can modify the chemical, physical and/or biological properties of materials. However, it was only in the late 50's, when large radiation sources become available, has this unique property of radiation found industrial applications in radiation processing. Today, radiation processing has been used by industry in such diverse applications, such as radiation sterilization/decontamination of medical products, pharmaceuticals, cosmetics and their raw materials; radiation cross-linking of wire and cable insulation; production of heat shrinkable materials and polymer foam; and radiation curing of coatings, adhesives and inks on a wide variety of substrates. In addition to being a clean environment-friendly technology, radiation processing can also be used for the conservation of the environment by such processes as radiation treatment of flue gases to remove SO 2 and NO x and disinfection of sewage sludge. Because of the many advantages offered by radiation processing, industry is showing strong interest in the technology as evidenced by the growing number of industrial radiation facilities in many countries. (author)

  5. Process control monitoring systems, industrial plants, and process control monitoring methods

    Science.gov (United States)

    Skorpik, James R [Kennewick, WA; Gosselin, Stephen R [Richland, WA; Harris, Joe C [Kennewick, WA

    2010-09-07

    A system comprises a valve; a plurality of RFID sensor assemblies coupled to the valve to monitor a plurality of parameters associated with the valve; a control tag configured to wirelessly communicate with the respective tags that are coupled to the valve, the control tag being further configured to communicate with an RF reader; and an RF reader configured to selectively communicate with the control tag, the reader including an RF receiver. Other systems and methods are also provided.

  6. Multi-Model Adaptive Fuzzy Controller for a CSTR Process

    Directory of Open Access Journals (Sweden)

    Shubham Gogoria

    2015-09-01

    Full Text Available Continuous Stirred Tank Reactors are intensively used to control exothermic reactions in chemical industries. It is a very complex multi-variable system with non-linear characteristics. This paper deals with linearization of the mathematical model of a CSTR Process. Multi model adaptive fuzzy controller has been designed to control the reactor concentration and temperature of CSTR process. This method combines the output of multiple Fuzzy controllers, which are operated at various operating points. The proposed solution is a straightforward implementation of Fuzzy controller with gain scheduler to control the linearly inseparable parameters of a highly non-linear process.

  7. Design of a HACCP plan for the industrial process of vacuum-packed frozen surimi

    Directory of Open Access Journals (Sweden)

    Catarina Fernandes

    2014-05-01

    Full Text Available The Hazard Analysis and Critical Control Point (HACCP is a system that enables identification, assessment and control of hazards related with production, processing, distribution in order to get safe food. The aim of this study was to design a HACCP plan for implementing in a processing line of vacuum-packed frozen surimi. Surimi is made from fisheries byproducts that may have initial unattractive characteristics and whose industrial processing adds commercial value. Heterogeneous quality of raw products and the high complexity of the industrial flowchart may induce problems in the final sanitary profile of surimi. The methodology was based in the evaluation of the pre-requisite programs, risk evaluation of considered hazards, the application of principles of HACCP and the compliance with European regulations. A HACCP plan is proposed with the scope, the selection of HACCP team, product description and its intended use, the flow diagram of the process, hazard analysis and identification of Critical Control Points (CCP, monitoring system, correction actions and records. The potential hazards identified were: excess of chloride (chemical, remains of fishbone (physical and growth of human-related pathogens after defrosting (biological. The control measures of CCP are referred as control of time-temperature and pH in pre-wash and defrosting stages and visual inspection during depulping process.

  8. Working group report: methane emissions from fuel combustion and industrial processes

    International Nuclear Information System (INIS)

    Berdowski, J.J.M.; Beck, L.; Piccot, S.; Olivier, J.G.J.; Veldt, C.

    1993-01-01

    This paper lists the source categories which are currently recognised as minor sources of methane. These fall into five broad groups: stationary fuel combustion (residential combustion of fuels, solid waste incineration at home sites, on-site agricultural waste burning, industrial and utility combustion of coal, wood, oil and gas, commercial and industrial waste incineration); mobile fuel combustion; non-combustion industrial processes (primary metals production, chemical manufacturing processes, petroleum refining, commercial charcoal manufacturing waste treatments); minor energy production sources (storage and distribution of automotive fuels, geothermal energy production; peat mining operations, oil shale mining operations); and miscellaneous sources. The paper also presents a preliminary estimate of global methane emissions from these minor sources and the results of the working group's discussion on recommendations for the IPCC/OECD methodology and specific research needs. A list of control options for emissions from minor sources is provided. 2 tabs

  9. Potential for reuse of effluent from fish-processing industries

    Directory of Open Access Journals (Sweden)

    Luana Morena Rodrigues Vitor Dias Ferraciolli

    2017-09-01

    Full Text Available The most common problems in the fish processing industry relate to high water consumption and the generation of effluents with concentrated organic loads. Given that reuse can represent an alternative for sustainable development, this study sought to assess the potential for recycling effluents produced in a fish-processing plant. In order to do so, the final industrial effluent was analyzed using the American Public Health Association (APHA standard effluent-analysis method (2005. In addition, the study assessed treatments which produce effluents meeting the requirements prescribed by different countries' regulations for reuse and recycling. The results found that effluents with smaller organic loads, such as those from health barriers and monoblock washing, can be treated in order to remove nutrients and solids so that they can be subsequently reused. For effluents produced by the washing and gutting cylinders, it is recommended that large fragments of solid waste be removed beforehand. Effluents can in this way attain a quality compatible with industrial reuse. This study further highlights the possibility of treating effluents so as comply with drinking water standards. This would potentially allow them to be used within the actual fish-processing procedure; in such a case, a revision of standards and measures for controlling use should be considered to prevent microbiological damage to products and risks to handlers and final consumers.

  10. Enhancing probiotic stability in industrial processes

    Directory of Open Access Journals (Sweden)

    Miguel Gueimonde

    2012-06-01

    Full Text Available Background: Manufacture of probiotic products involves industrial processes that reduce the viability of the strains. This lost of viability constitutes an economic burden for manufacturers, compromising the efficacy of the product and preventing the inclusion of probiotics in many product categories. Different strategies have been used to improve probiotic stability during industrial processes. These include technological approaches, such as the modification of production parameters or the reformulation of products, as well as microbiological approaches focused on the strain intrinsic resistance. Among the later, both selection of natural strains with the desired properties and stress-adaptation of strains have been widely used. Conclusion: During recent years, the knowledge acquired on the molecular basis of stress-tolerance of probiotics has increased our understanding on their responses to industrial stresses. This knowledge on stress-response may nowadays be used for the selection of the best strains and industrial conditions in terms of probiotic stability in the final product.

  11. Industrial image processing visual quality control in manufacturing

    CERN Document Server

    Demant, Christian; Garnica, Carsten

    2013-01-01

    This practical introduction focuses on how to build integrated solutions to industrial vision problems from individual algorithms. It gives a hands-on guide for setting up automated visual inspection systems using the NeuroCheck software package.

  12. How to design electrical systems with central control capability for industrial plants

    Energy Technology Data Exchange (ETDEWEB)

    Cigolini, S.; Galati, G.; Lionetto, P.F.; Stiz, M. (Siemens, Milan (Italy) Centro Elettrotecnico Sperimentale Italiano, Milan (Italy))

    1991-12-01

    The modern centralized control system, incorporating microprocessors, constitutes an extremely efficacious instrument for the management of an industrial plant's electrical system and provides the performance, reliability, flexibility and safety features required by today's technologically advanced plant processes. The use of intelligent centralized control systems, capable of autonomous operation and dialoguing with industrial plant electrical systems, simplifies the design of the overall plant. This paper reviews the main design criteria for the automated systems and gives examples of some suitable commercially available intelligent systems.

  13. Greening Food Processing Industry in Vietnam: Putting Industrial Ecology to Work

    NARCIS (Netherlands)

    Tran Thi My Dieu,

    2003-01-01

    The significant contribution to Vietnam's gross domestic product over the years give evidence of the important role of food processing industry in the economic and industrial development of the country. This is even more relevant from now onwards, as it is Vietnam's development strategy to become

  14. Energy saving processes for nitrogen removal in organic wastewater from food processing industries in Thailand.

    Science.gov (United States)

    Johansen, N H; Suksawad, N; Balslev, P

    2004-01-01

    Nitrogen removal from organic wastewater is becoming a demand in developed communities. The use of nitrite as intermediate in the treatment of wastewater has been largely ignored, but is actually a relevant energy saving process compared to conventional nitrification/denitrification using nitrate as intermediate. Full-scale results and pilot-scale results using this process are presented. The process needs some additional process considerations and process control to be utilized. Especially under tropical conditions the nitritation process will round easily, and it must be expected that many AS treatment plants in the food industry already produce NO2-N. This uncontrolled nitrogen conversion can be the main cause for sludge bulking problems. It is expected that sludge bulking problems in many cases can be solved just by changing the process control in order to run a more consequent nitritation. Theoretically this process will decrease the oxygen consumption for oxidation by 25% and the use of carbon source for the reduction will be decreased by 40% compared to the conventional process.

  15. PREFACE: International Symposium on Ultrasound in the Control of Industrial Processes (UCIP 2012)

    Science.gov (United States)

    Segura, Luis Elvira; Resa López, Pablo; Salazar, Jordi; Benedito Fort, José Javier; Martínez Graullera, Óscar

    2012-12-01

    The following describes most of the presentations (both oral and poster) given at the International Symposium of Ultrasound in the Control of Industrial Processes (UCIP 2012) celebrated in Madrid between 18 and 20 April 2012. This event was intended to be a meeting point for scientists, engineers and professionals from all over the world in the field of ultrasonics applied to the characterization and control of materials and processes in the industry. More precisely, the topics included were: 1. Novel applications of ultrasound in the industry (including high-power ultrasound) Food science Biotechnology and microbiology Pharmaceutics and cosmetics Petrochemistry and civil engineering 2. New insights in the ultrasonic characterization of media: Fluids and emulsions Nano- and micro-particle dispersions Soft materials Porous bodies and inhomogeneous materials 3. New developments in ultrasonic measuring techniques: Acoustic microscopy Piezoelectric sensors Ultrasonic imaging Signal processing The symposium was organized by the Centro de Acústica Aplicada y Evaluación No Destructiva (CAEND, UPM-CSIC) in collaboration with the Universidad Politécnica de Cataluña, the Universidad Politécnica de Valencia and the University of Leeds. During the conference, 32 posters and 33 oral communications were presented. In addition, 4 invited lectures were imparted: 'Acoustic microscopy, spectroscopy and nanoparticle detection' by Dr Malcolm Povey; 'Acoustic and electroacoustic spectroscopy' by Dr Andrei Dukhin; 'High-Resolution Ultrasonic Spectroscopy and its application for material analysis by Dr Vitaly Buckin; 'Ultrasonic sensors for process applications - state of the art' by Dr Bern Henning; and three tutorials were given: 'PZFlex - Finite Element Analysis for Virtual Prototyping' by Weidlinger Associates; 'SITAU - A flexible architecture controlled by MATLAB for the development of ultrasonic applications' by DASEL; 'Ultra-SCATTERERTM (Acoustics Suite) - The R&D Tool for

  16. Controlling the Instructional Development Process. Training Development and Research Center Project Number Fifteen.

    Science.gov (United States)

    Sleezer, Catherine M.; Swanson, Richard A.

    Process control is a way of training managers in business and industry to plan, monitor, and communicate the instructional development process of training projects. Two simple and useful tools that managers use in controlling the process of instructional development are the Process Control Planning Sheet and the Process Control Record. The Process…

  17. A methodology to describe process control requirements

    International Nuclear Information System (INIS)

    Carcagno, R.; Ganni, V.

    1994-01-01

    This paper presents a methodology to describe process control requirements for helium refrigeration plants. The SSC requires a greater level of automation for its refrigeration plants than is common in the cryogenics industry, and traditional methods (e.g., written descriptions) used to describe process control requirements are not sufficient. The methodology presented in this paper employs tabular and graphic representations in addition to written descriptions. The resulting document constitutes a tool for efficient communication among the different people involved in the design, development, operation, and maintenance of the control system. The methodology is not limited to helium refrigeration plants, and can be applied to any process with similar requirements. The paper includes examples

  18. Logistic paradigm for industrial solid waste treatment processes

    Directory of Open Access Journals (Sweden)

    Janusz Grabara

    2014-12-01

    Full Text Available Due to the fact that industrial waste are a growing problem, both economic and environmental as their number is increasing every year, it is important to take measures to correctly dealing wi th industrial waste. This article presents the descriptive model of logistics processes concerning the management of industrial waste. In this model the flow of waste begins in the place of production and ends at their disposal. The article presents the concept of logistics model in graphical form together with an analysis of individual processes and their linkages, and opportunities to improve flow of industrial waste streams. Furthermore, the model allows for justification of the relevance of use logistics and its processes for waste management

  19. Early Phase Process Evaluation: Industrial Practices

    Directory of Open Access Journals (Sweden)

    Zulfan Adi Putra

    2016-09-01

    Full Text Available Process route evaluation is a part of research and development (R&D works in an industrial chemical project life cycle. In this early phase, good process evaluation, including process synthesis and designs, provide guidance’s on the R&D project. The paper aimed to collect practical methods used in this early phase process route evaluation from author’s 10 years of industrial experiences.  The collected methods range from forward-backward process synthesis, functional process design, use of cost estimation, and applications of Monte Carlo simulation. Led by a good project management (e.g. via a stage-gate approach use of these methods have shown beneficial results. Some important results are strong arguments on whether or not the project will continue, as well as relevant technical and economic issues identified during this early phase process synthesis and design. Later on, these issues become guidance’s to the follow-up project, if it is continued.

  20. Hazardous air pollutant emissions from process units in the synthetic organic chemical manufacturing industry: Background information for proposed standards. Volume 1B. Control technologies. Draft report

    International Nuclear Information System (INIS)

    1992-11-01

    A draft rule for the regulation of emissions of organic hazardous air pollutants (HAP's) from chemical processes of the synthetic organic chemical manufacturing industry (SOCMI) is being proposed under the authority of Sections 112, 114, 116, and 301 of the Clean Air Act, as amended in 1990. The volume of the Background Information Document presents discussions of control technologies used in the industry and the costs of those technologies

  1. Engineering models and methods for industrial cell control

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo

    1997-01-01

    This paper is concerned with the engineering, i.e. the designing and making, of industrial cell control systems. The focus is on automated robot welding cells in the shipbuilding industry. The industrial research project defines models and methods for design and implemen-tation of computer based...... SHIPYARD.It is concluded that cell control technology provides for increased performance in production systems, and that the Cell Control Engineering concept reduces the effort for providing and operating high quality and high functionality cell control solutions for the industry....... control and monitor-ing systems for production cells. The project participants are The Danish Academy of Technical Sciences, the Institute of Manufacturing Engineering at the Technical University of Denmark and ODENSE STEEL SHIPYARD Ltd.The manufacturing environment and the current practice...

  2. Management and employee control in current industrial work

    DEFF Research Database (Denmark)

    Holt, Helle; Hvid, Helge

    2014-01-01

    This article examines how employee control is affected by the ongoing erosion of boundaries in work organization and established boundaries in the relationship between employees and management. One assumption is that the erosion of boundaries offers potential for increased employee control, meaning...... increased autonomy or self-determination at work (employee control how and when to do what). This assumption is supported by theories on the psychosocial working environment. Another assumption is that the erosion of boundaries threatens the frontiers from where employees can defend their interests......, and consequently reduces employees’ control of their work (what and how much to do). This assumption is supported by “labor process theory.” This article studies control and the erosion of boundaries in two case factories in the food industry. Two perspectives are applied: the psychosocial working environment...

  3. Management and employee control in current industrial work

    DEFF Research Database (Denmark)

    Holt, Helle; Hvid, Helge

    2014-01-01

    , and consequently reduces employees’ control of their work (what and how much to do). This assumption is supported by “labor process theory.” This article studies control and the erosion of boundaries in two case factories in the food industry. Two perspectives are applied: the psychosocial working environment......This article examines how employee control is affected by the ongoing erosion of boundaries in work organization and established boundaries in the relationship between employees and management. One assumption is that the erosion of boundaries offers potential for increased employee control, meaning...... increased autonomy or self-determination at work (employee control how and when to do what). This assumption is supported by theories on the psychosocial working environment. Another assumption is that the erosion of boundaries threatens the frontiers from where employees can defend their interests...

  4. Industrial high pressure applications. Processes, equipment and safety

    Energy Technology Data Exchange (ETDEWEB)

    Eggers, Rudolf (ed.) [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Inst. fuer Thermische Verfahrenstechnik

    2012-07-01

    Industrial high pressure processes open the door to many reactions that are not possible under 'normal' conditions. These are to be found in such different areas as polymerization, catalytic reactions, separations, oil and gas recovery, food processing, biocatalysis and more. The most famous high pressure process is the so-called Haber-Bosch process used for fertilizers and which was awarded a Nobel prize. Following an introduction on historical development, the current state, and future trends, this timely and comprehensive publication goes on to describe different industrial processes, including methanol and other catalytic syntheses, polymerization and renewable energy processes, before covering safety and equipment issues. With its excellent choice of industrial contributions, this handbook offers high quality information not found elsewhere, making it invaluable reading for a broad and interdisciplinary audience.

  5. HYBRID SYSTEM BASED FUZZY-PID CONTROL SCHEMES FOR UNPREDICTABLE PROCESS

    Directory of Open Access Journals (Sweden)

    M.K. Tan

    2011-07-01

    Full Text Available In general, the primary aim of polymerization industry is to enhance the process operation in order to obtain high quality and purity product. However, a sudden and large amount of heat will be released rapidly during the mixing process of two reactants, i.e. phenol and formalin due to its exothermic behavior. The unpredictable heat will cause deviation of process temperature and hence affect the quality of the product. Therefore, it is vital to control the process temperature during the polymerization. In the modern industry, fuzzy logic is commonly used to auto-tune PID controller to control the process temperature. However, this method needs an experienced operator to fine tune the fuzzy membership function and universe of discourse via trial and error approach. Hence, the setting of fuzzy inference system might not be accurate due to the human errors. Besides that, control of the process can be challenging due to the rapid changes in the plant parameters which will increase the process complexity. This paper proposes an optimization scheme using hybrid of Q-learning (QL and genetic algorithm (GA to optimize the fuzzy membership function in order to allow the conventional fuzzy-PID controller to control the process temperature more effectively. The performances of the proposed optimization scheme are compared with the existing fuzzy-PID scheme. The results show that the proposed optimization scheme is able to control the process temperature more effectively even if disturbance is introduced.

  6. Technology transfer of nuclear techniques and nucleonic control systems in the mineral industry

    International Nuclear Information System (INIS)

    1990-11-01

    Among the many beneficial applications of radiation and radioisotopes in industry which are now well established in advanced countries, the applications of nuclear techniques and nucleonic control systems in the mineral industry have great potential for developing Member States. The use of nucleonic on-stream analyzers in the coal industry has resulted in enormous technical and economic benefits in addition to minimization of environmental pollution. Large savings have also resulted from the use of such analyzers in the processing of other minerals. Nuclear borehole logging techniques have demonstrated great potential in oil and gas evaluation. Radiotracer investigations have led to process optimisation and trouble shooting in various stages in ore processing and metallurgy. Though the technical and economic benefits of applications of nuclear techniques in the mineral industry are well recognised, technology transfer in these areas has been hampered by a variety of factors. In order to review the status and trends in nuclear techniques and nucleonic control systems in the mineral industry and the problems and considerations in their technology transfer to developing Member States, the IAEA convened an Advisory Group Meeting in Bombay, India, 15-19 January 1990. The present publication is based on the 7 contributions presented at this meeting. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  7. A strategy for man-machine system development in process industries

    International Nuclear Information System (INIS)

    Wirstad, J.

    1986-12-01

    A framework for Man-Machine System design in process industry projects is reported. It is based in the Guidelines for the Design of Man-Machine interfaces which have been generated in cooperation within the European Workshop for Industrial Computer Systems (EWICS). The application of EWICS Guidelines in industrial projects is demonstrated by six User Scenarios, which represent typical projects from different industries, e.g. electrical power generation and distribution, water control, pulp and paper production, oil and gas production. In all these projects Man-Machine System design has been conducted. It is recommended in the report that each Company develops its set of Man-Machine Systems Standard techniques/procedures. At present there are several techniques/procedures available which, for moderate costs, can be adapted to specific Company conditions. A menu of such Man-Machine System techniques/procedures is presented. Means of estimating the costs and benefits of Man-Machine System design are also described. (author)

  8. Fault tolerant control of multivariable processes using auto-tuning PID controller.

    Science.gov (United States)

    Yu, Ding-Li; Chang, T K; Yu, Ding-Wen

    2005-02-01

    Fault tolerant control of dynamic processes is investigated in this paper using an auto-tuning PID controller. A fault tolerant control scheme is proposed composing an auto-tuning PID controller based on an adaptive neural network model. The model is trained online using the extended Kalman filter (EKF) algorithm to learn system post-fault dynamics. Based on this model, the PID controller adjusts its parameters to compensate the effects of the faults, so that the control performance is recovered from degradation. The auto-tuning algorithm for the PID controller is derived with the Lyapunov method and therefore, the model predicted tracking error is guaranteed to converge asymptotically. The method is applied to a simulated two-input two-output continuous stirred tank reactor (CSTR) with various faults, which demonstrate the applicability of the developed scheme to industrial processes.

  9. The Role of Hybrid Make-to-Stock (MTS) - Make-to-Order (MTO) and Economic Order Quantity (EOQ) Inventory Control Models in Food and Beverage Processing Industry

    Science.gov (United States)

    Najhan Mohd Nagib, Ahmad; Naufal Adnan, Ahmad; Ismail, Azianti; Halim, Nurul Hayati Abdul; Syuhadah Khusaini, Nurul

    2016-11-01

    The inventory model had been utilized since the early 1900s. The implementation of the inventory management model is generally to ensure that an organisation is able to fulfil customer's demand at the lowest possible cost to improve profitability. This paper focuses on reviewing previous published papers regarding inventory control model mainly in the food and beverage processing industry. The author discusses four inventory models, which are the make-to-stock (MTS), make-to-order (MTO), economic order quantity (EOQ), and hybrid of MTS-MTO models. The issues raised by the researchers on the above techniques as well as the elements need to be considered upon selection have been discussed in this paper. The main objective of the study is to highlight the important role played by these inventory control models in the food and beverage processing industry.

  10. Automation and control trends in the upstream sector of the oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Plucenio, Agustinho; Pagano, Daniel J. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Programa de Recursos Humanos da ANP em Automacao, Controle e Instrumentacao para a Industria do Petroleo e Gas, PRH-34

    2004-07-01

    The need to continuously improve the aspects of Health, Safety and Environment to operators, installation's security, optimization of oil reservoir recovery in wells operating with different artificial lift methods, subject to different secondary recovery techniques, has motivated the development of technologies in the automation and control for the upstream sector of the oil industry. While the application of control and automation techniques is well established in the downstream sector of the oil industry that is not the case in the downstream sector. One tendency in this sector is the utilization of control via Field bus Networks. This technology uses equipment that communicate with each other in a two wire digital network and can be programmed to execute function blocks algorithms designed to perform a designed control strategy. The most noticeable benefits are the improvements in the process performance and the equipment reusability and interoperability. Proprietary solutions can be replaced by systems composed of equipment supplied by different manufacturers connected in the same network. These equipment operate according to a strategy designed by automation and control engineers under the supervision of professionals working in computer terminals located in different company departments. Other gains are a better understanding about the industry processes, application of optimization techniques, fault detection, equipment maintenance follow-up, and improved operators working conditions and workers qualification. Other tendencies are: permanent well monitoring. Either with installation of down hole sensors based on fiber grating sensors or surface sensors using embedded electronic processors. Developments of instrumentation technology for low cost multiphase flow measurements. Application of control techniques for flow regime control and optimization of reservoir recovery through better identification, optimization and Model Based Predictive Control

  11. Chemical sensors and gas sensors for process control in biotechnology

    International Nuclear Information System (INIS)

    Williams, D.E.

    1988-04-01

    This paper is concerned with the possibilities for chemical measurement of the progress of biotechnological processes which are offered by devices already developed for other demanding applications. It considers the potential use of ultrasonic instrumentation originally developed for the nuclear industry, gas measurement methods from the fields of environmental monitoring and combustion control, nuclear instruments developed for the oil, mining and chemical industries, robotic systems and advanced control techniques. (author)

  12. Radiation in industrial processes

    International Nuclear Information System (INIS)

    1959-01-01

    The uses of ionizing radiation can be divided into two broad categories. First, it can be used as a tool of investigation, measurement and testing, and secondly, it can be a direct agent in inducing chemical processes. For example, radiation can help in the detecting and locating of malignant tumours, and it can be employed also for the destruction of those tumours. Again, it can reveal intricate processes of plant growth and, at the same time, can initiate certain processes which result in the growth of new varieties of plants. Similarly in industry, radiation is both a tool of detection, testing and measurement and an active agent for the initiation of useful chemical reactions. The initiation of chemical reactions usually requires larger and more powerful sources of radiation. Such radiation can be provided by substances like cobalt 60 and caesium 137 or by machines which accelerate nuclear particles to very high energies. Of the particle-accelerating machines, the most useful in this field are those which accelerate electrons to energies considerably higher than those possessed by the electrons (beta particles) emitted by radioactive substances. These high-energy radiations produce interesting reactions both in organic life and in materials for industry. Several of the papers presented at the Warsaw conference were devoted to the application of ionizing radiation to polymerization and other useful reactions in the manufacture and treatment of plastics. The polymerization of the ethylene series of hydro-carbons was discussed from various angles and the technical characteristics and requirements were described. It was pointed out by some experts that the cross-linking effect of radiation resulted in a superior product, opening the way to new applications of polyethylene. Irradiated polyethylene film has been sold for several years, and electrical wire has been made with irradiated polyethylene as the insulating jacket. Other reactions discussed included the cross

  13. Influence of Controlling in the Generation of information for the process of Management of Costs Of forniture industries of Francisco Beltrão – PR Region

    Directory of Open Access Journals (Sweden)

    Osmarina Pedro Garcia Garcia

    2016-06-01

    Full Text Available The emergence of the Controller is connected to the need to improve company management. One way that the controller finds to ensure the continuity of the company is reducing costs and expenses, in order to make the product more competitive to their competitors. To do this, managers now have the controller as an important tool to aid in decision making. This study demonstrates some benefits of controlling; in order to reach this objective a descriptive, qualitative and quantitative survey was made in ten small and medium-sized furniture industries. The main goal of the research is to show the influence of controlling in generating information for the process of cost management of furniture industry in Francisco Beltrão, a city in the state of Paraná, Brazil. The study showed that the controlling influences in reducing costs through reliable information, generated by agile tools, compiled by the controllers and forwarded to managers, assists decision making.

  14. Application of the geothermal energy in the industrial processes

    International Nuclear Information System (INIS)

    Popovska-Vasilevska, Sanja

    2001-01-01

    In the worldwide practice, the geothermal energy application, as an alternative energy resource, can be of great importance. This is especially case in the countries where exceptional natural geothermal potential exists. Despite using geothermal energy for both greenhouses heating and balneology, the one can be successfully implemented in the heat requiring industrial processes. This kind of use always provides greater annual heat loading factor, since the industrial processes are not seasonal (or not the greater part of them). The quality of the geothermal resources that are available in Europe, dictates the use within the low-temperature range technological processes. However, these processes are significantly engaged in different groups of processing industries. But, beside this fact the industrial application of geothermal energy is at the beginning in the Europe. (Original)

  15. Efficiency analysis of wood processing industry in China during 2006-2015

    Science.gov (United States)

    Zhang, Kun; Yuan, Baolong; Li, Yanxuan

    2018-03-01

    The wood processing industry is an important industry which affects the national economy and social development. The data envelopment analysis model (DEA) is a quantitative evaluation method for studying industrial efficiency. In this paper, the wood processing industry of 8 provinces in southern China is taken as the study object, and the efficiency of each province in 2006 to 2015 was measured and calculated with the DEA method, and the efficiency changes, technological changes and Malmquist index were analyzed dynamically. The empirical results show that there is a widening gap in the efficiency of wood processing industry of the 8 provinces, and the technological progress has shown a lag in the promotion of wood processing industry. According to the research conclusion, along with the situation of domestic and foreign wood processing industry development, the government must introduce relevant policies to strengthen the construction of the wood processing industry technology innovation policy system and the industrial coordinated development system.

  16. Alternatives to Organic Solvents in Industrial Cleaning Processes

    DEFF Research Database (Denmark)

    Jacobsen, Thomas

    1998-01-01

    To control chemical hazards in work places, substitution of harmful substances with less harmful or non-toxic products is now a method used in many countries and in many companies. It has previously been demonstrated that it is desirable and possible to use non-volatile, low-toxic vegetable...... cleaning agents in offset printing companies instead of volatile, toxic organic solvents. The present study is based on a project with the aim of defining other industrial processes, where organic solvents used for cleaning or degreasing can be replaced by non-volatile, low-toxic products, which are based...... on esters from fatty acids of vegetable origin (vegetable esters - VE).The study indicates that industrial cleaning/degreasing with organic solvents may be substituted with VEs on metal surfaces and on some coated surfaces, in manufacture of paints and inks, use of paints, use of inks (printing), metal...

  17. Application of Special Cause Control Charts to Green Sand Process

    Directory of Open Access Journals (Sweden)

    Perzyk M.

    2015-12-01

    Full Text Available Statistical Process Control (SPC based on the well known Shewhart control charts, is widely used in contemporary manufacturing industry, including many foundries. However, the classic SPC methods require that the measured quantities, e.g. process or product parameters, are not auto-correlated, i.e. their current values do not depend on the preceding ones. For the processes which do not obey this assumption the Special Cause Control (SCC charts were proposed, utilizing the residual data obtained from the time-series analysis. In the present paper the results of application of SCC charts to a green sand processing system are presented. The tests, made on real industrial data collected in a big iron foundry, were aimed at the comparison of occurrences of out-of-control signals detected in the original data with those appeared in the residual data. It was found that application of the SCC charts reduces numbers of the signals in almost all cases It is concluded that it can be helpful in avoiding false signals, i.e. resulting from predictable factors.

  18. Concepts for `superior process control` in the energy industry; Konzepte fuer die uebergeordnete Prozessfuehrung in der Energiewirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Doellen, U.C. von

    1996-12-01

    The work concerns the task of control described as dispatching of extensive energy supply and distribution networks. Due to the special contractual situation, there are special long-term targets in firms, which must be achieved in addition to the extensive operational tasks of control and monitoring of the networks. The concepts introduced in the work offer a framework for a target-orientated design of computer-aided menus for this superior process control in the energy industry. (orig./GL) [Deutsch] Die Arbeit betrachtet die als Dispatching bezeichnete Aufgabe der Fuehrung ausgedehnter Energieversorgungs- und verteilungsnetze. Aus den speziellen Vertragssituationen ergeben sich in den Unternehmen besondere, langfristige Zielvorgaben an die mit der Betriebsfuehrung beauftragen Operateure, die zusaetzlich zu den umfangreichen operativen Aufgaben der Fuehrung und Ueberwachung der Netze zu erreichen sind. Die in der Arbeit vorgestellten Konzepte bieten den Rahmen fuer einen zielgerichteten Entwurf rechnergestuetzter Hilfsmittel fuer diese uebergeordnete Prozessfuehrung in der Energiewirtschaft. Das erstellte Gesamtsystem wird abschliessend zur Loesung einer konkreten, energiewirtschaftlichen Problemstellung eingesetzt. Die entwickelte Anwendungsloesung wird als Hilfsmittel fuer die technische und vertragliche Optimierung im Dispatching eingesetzt. Wesentliche Zielsetzung ist ein technisch und wirtschaftlich optimaler Einsatz von Energiespeichern zur Deckung von Spitzenlasten. (orig./GL)

  19. The Cassava Processing Industry in Brazil: Traditional Techniques ...

    African Journals Online (AJOL)

    The paper considers the evolution of cassava-based industrial production, processing and marketing in Brazil, in light of the great technological diversification to be found in Brazil. It discusses the private role of the small- and medium-scale food and related processing enterprises in the food industry, as they employ ...

  20. Anti-tobacco control industry strategies in Turkey.

    Science.gov (United States)

    Keklik, Seda; Gultekin-Karakas, Derya

    2018-02-26

    Transnational tobacco companies (TTCs) penetrated the Turkish cigarette market due to trade and investment liberalization in the post-1980 period and eventually secured full control. Despite tobacco control policies put in place in reaction to accelerating consumption, TTCs reinforced their market power through a variety of strategies. This paper explores industry strategies that counteract tobacco control policies in Turkey. The study employs both qualitative and quantitative analyses to explore industry strategies in Turkey. Besides the content analyses of industry and market reports, descriptive analyses were conducted for the sub-periods of 1999-2015. The analyses focus on the market strategies of product innovation, advertisement-promotion, cost management and pricing. Rising sales of low tar, ultra-low tar, slim, super-slim and flavoured cigarettes indicate that product innovation served to sustain consumption. Besides, the tobacco industry, using its strong distribution channels, the Internet, and CSR projects, were found to have promoted smoking indirectly. The industry also rationalized manufacturing facilities and reduced the cost of tobacco, making Turkey a cigarette-manufacturing base. Tobacco manufacturers, moreover, offered cigarettes in different price segments and adjusted net prices both up and down according to price categories and market conditions. In response to the successful effect of shifts in price margins, the market share of mid-priced cigarettes expanded while those within the economy category maintained the highest market share. As a result of pricing strategies, net sales revenues increased. Aside from official cigarette sales, the upward trends in the registered and unregistered sales of cigarette substitutes indicate that the demand-side tobacco control efforts remain inadequate. The Turkish case reveals that the resilience of the tobacco industry vis-à-vis mainstream tobacco control efforts necessitates a new policy perspective

  1. Wireless Industrial Monitoring and Control Networks: The Journey So Far and the Road Ahead

    Directory of Open Access Journals (Sweden)

    Paul Havinga

    2012-08-01

    Full Text Available While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks.

  2. Analyzing scheduling in the food-processing industry

    DEFF Research Database (Denmark)

    Akkerman, Renzo; van Donk, Dirk Pieter

    2009-01-01

    Production scheduling has been widely studied in several research areas, resulting in a large number of methods, prescriptions, and approaches. However, the impact on scheduling practice seems relatively low. This is also the case in the food-processing industry, where industry......-specific characteristics induce specific and complex scheduling problems. Based on ideas about decomposition of the scheduling task and the production process, we develop an analysis methodology for scheduling problems in food processing. This combines an analysis of structural (technological) elements of the production...... process with an analysis of the tasks of the scheduler. This helps to understand, describe, and structure scheduling problems in food processing, and forms a basis for improving scheduling and applying methods developed in literature. It also helps in evaluating the organisational structures...

  3. Water Pollution Control Industry

    Science.gov (United States)

    Environmental Science and Technology, 1974

    1974-01-01

    A special report on the state of the water pollution control industry reveals that due to forthcoming federal requirements, sales and the backlogs should increase; problems may ensue because of shortages of materials and inflation. Included are reports from various individual companies. (MLB)

  4. Radiation Processing of Natural Polymers for Industrial Applications

    International Nuclear Information System (INIS)

    Hegazy, E.A.

    2008-01-01

    Radiation induced degradation technology is a new and promising application of ionizing radiation to develop viscose, pulp, paper, food preservation, pharmaceutical production, and natural bioactive agents industries. Controlling the degree of degradation, uniform molecular weight distribution, saving achieved in the chemicals (used in conventional methods) on a cost basis, and environmentally friendly process are the beneficial effects of using radiation technology in these industries. However, for some development countries such technology is not economic. Therefore, a great effort should be done to reduce the cost required for such technologies. One of the principle factors for reducing the cost is achieving the degradation at low irradiation doses. The addition of some additives such as potassium per-sulfate (KPS), ammonium per-sulfate (APS), or H 2 O 2 to natural polymers (carboxy-methylcellulose (CMC), chitosan, carrageenan and Na-alginate) during irradiation process accelerates their degradation. The highest degradation rate of polysaccharides obtained when APS was used. The end product of irradiated CMC, chitosan, carrageenan and Na-alginate may be used as food additive or benefited in agricultural purposes. On the other hand, radiation crosslinking of PAAm or PNIPAAm is affected by the presence of natural polymer like CMC-Na and carrageenan due to their degradability which could be controlled according to its concentration in the bulk medium and irradiation dose. Accordingly, the gel content, thermo-sensitivity (LCST) and swelling properties of PNIPAAm based natural polymers could be controlled. The swelling of the prepared copolymer hydrogels was investigated for its possible use in personal care articles particularly diapers or as carriers for drug delivery systems. The prepared crosslinked copolymers possessed high and fast swelling properties in simulated urine media and the swelling ratios of CMC-Na /PAAm gels in urine are acceptable for diaper

  5. Production process stability - core assumption of INDUSTRY 4.0 concept

    Science.gov (United States)

    Chromjakova, F.; Bobak, R.; Hrusecka, D.

    2017-06-01

    Today’s industrial enterprises are confronted by implementation of INDUSTRY 4.0 concept with basic problem - stabilised manufacturing and supporting processes. Through this phenomenon of stabilisation, they will achieve positive digital management of both processes and continuously throughput. There is required structural stability of horizontal (business) and vertical (digitized) manufacturing processes, supported through digitalised technologies of INDUSTRY 4.0 concept. Results presented in this paper based on the research results and survey realised in more industrial companies. Following will described basic model for structural process stabilisation in manufacturing environment.

  6. Control system for technological processes in tritium processing plants with process analysis

    International Nuclear Information System (INIS)

    Retevoi, Carmen Maria; Stefan, Iuliana; Balteanu, Ovidiu; Stefan, Liviu; Bucur, Ciprian

    2005-01-01

    Integration of a large variety of installations and equipment into a unitary system for controlling the technological process in tritium processing nuclear facilities appears to be a rather complex approach particularly when experimental or new technologies are developed. Ensuring a high degree of versatility allowing easy modifications in configurations and process parameters is a major requirement imposed on experimental installations. The large amount of data which must be processed, stored and easily accessed for subsequent analyses imposes development of a large information network based on a highly integrated system containing the acquisition, control and technological process analysis data as well as data base system. On such a basis integrated systems of computation and control able to conduct the technological process could be developed as well protection systems for cases of failures or break down. The integrated system responds to the control and security requirements in case of emergency and of the technological processes specific to the industry that processes radioactive or toxic substances with severe consequences in case of technological failure as in the case of tritium processing nuclear plant. In order to lower the risk technological failure of these processes an integrated software, data base and process analysis system are developed, which, based on identification algorithm of the important parameters for protection and security systems, will display the process evolution trend. The system was checked on a existing plant that includes a removal tritium unit, finally used in a nuclear power plant, by simulating the failure events as well as the process. The system will also include a complete data base monitoring all the parameters and a process analysis software for the main modules of the tritium processing plant, namely, isotope separation, catalytic purification and cryogenic distillation

  7. The Ideal Criteria of Supplier Selection for SMEs Food Processing Industry

    OpenAIRE

    Ramlan Rohaizan; Engku Abu Bakar Engku Muhammad Nazri; Mahmud Fatimah; Ng Hooi Keng

    2016-01-01

    Selection of good supplier is important to determine the performance and profitability of SMEs food processing industry. The lack of managerial capability on supplier selection in SMEs food processing industry affects the competitiveness of SMEs food processing industry. This research aims to determine the ideal criteria of supplier for food processing industry using Analytical Hierarchy Process (AHP). The research was carried out in a quantitative method by distributing questionnaires to 50 ...

  8. Non-destructive controls in the mechanical industry

    Energy Technology Data Exchange (ETDEWEB)

    Jarlan, L

    1978-12-01

    The sequence of operations implicating the mechanical industries from the suppliers to their customers is briefly recalled; a description of the field of application of non-destructive control methods in these industries is given. Follows a description of some recent typical applications of the principal methods: radiography, ultrasonic waves, magnetism, acoustic emission, sonic control, tracer techniques.

  9. Development of Industrial Process Diagnosis and Measurement Technology

    International Nuclear Information System (INIS)

    Jung, Sung Hee; Kim, Jong Bum; Moon, Jin Ho

    2010-04-01

    Section 1. Industrial Gamma CT Technology for Process Diagnosis: The project is aimed to develop industrial process gamma tomography system for investigation on structural and physical malfunctioning and process media distribution by means of sealed gamma source and radioactive materials. Section 2. Development of RI Hydraulic Detection Technology for Industrial Application: The objectives in this study are to develop the evaluation technology of the hydrological characteristics and the hydraulic detection technology using radioisotope, and to analyze the hydrodynamics and pollutant transport in water environment like surface and subsurface. Section 3. Development of RT-PAT System for Powder Process Diagnosis: The objective of this project is the development of a new radiation technology to improve the accuracy of the determination of moisture content in a powder sample by using radiation source through the so-called RT-PAT (Radiation Technology-Process Analytical Technology), which is a new concept of converging technology between the radiation technology and the process analytical technology

  10. Development of industrial process diagnosis and measurement technology

    International Nuclear Information System (INIS)

    Jung, Sunghee; Kim, Jongbum; Moon, Jinho; Suh, Kyungsuk; Kim, Jongyun

    2012-04-01

    Section1. Industrial Gamma CT Technology for Process Diagnosis The project is aimed to develop industrial process gamma tomography system for investigation on structural and physical malfunctioning and process media distribution by means of sealed gamma source and radioactive materials. Section2. Development of RI Hydraulic Detection Technology for Industrial Application The objectives in this study are to develop the evaluation technology of the hydrological characteristics and the hydraulic detection technology using radioisotope, and to analyze the hydrodynamics and pollutant transport in water environment like surface and subsurface. Section3. Development of RT-PAT System for Powder Process Diagnosis The objective of this project is the development of a new radiation technology to improve the accuracy of the determination of moisture content in a powder sample by using radiation source through the so-called RT-PAT (Radiation Technology-Process Analytical Technology), which is a new concept of converging technology between the radiation technology and the process analytical technology

  11. Development of indigenous USB based ICT-controller for industrial computed tomography scanner

    International Nuclear Information System (INIS)

    Walinjkar, Parag; Umesh Kumar

    2014-01-01

    In Industrial Computed Tomography (ICT) the quality of tomographic image depends on the accuracy of data/measurement. Isotope Production and Applications Division (IP and AD) is pioneer in this field and equipped with advance facility of ICT using gamma rays as well as X-rays. ICT-controller has been developed indigenously, for parallel beam scanning technique, to control scanning and data acquisition process automatically as per user requirements. The process of scanning and data collection has been automated using commercially available USB module. The acquired raw data is then processed and tomographic image of the specimen reconstructed to test operational performance of the ICT-controller. The paper is about the development of ICT-controller. It also describes the tests carried out to confirm successful development of the ICT-controller. (author)

  12. Advanced autonomous model-based operation of industrial process systems (Autoprofit) : technological developments and future perspectives

    NARCIS (Netherlands)

    Ozkan, L.; Bombois, X.J.A.; Ludlage, J.H.A.; Rojas, C.R.; Hjalmarsson, H.; Moden, P.E.; Lundh, M.; Backx, A.C.P.M.; Van den Hof, P.M.J.

    2016-01-01

    Model-based operation support technology such as Model Predictive Control (MPC) is a proven and accepted technology for multivariable and constrained large scale control problems in process industry. Despite the growing number of successful implementations, the low level of operational efficiency of

  13. Design controls for the medical device industry

    CERN Document Server

    Teixeira, Marie B

    2013-01-01

    The second edition of a bestseller, Design Controls for the Medical Device Industry provides a comprehensive review of the latest design control requirements, as well as proven tools and techniques to ensure your company's design control program evolves in accordance with current industry practice. The text assists in the development of an effective design control program that not only satisfies the US FDA Quality System Regulation (QSR) and ISO 9001 and 13485 standards, but also meets today's third-party auditor/investigator expectations and saves you valuable time and money.The author's cont

  14. Thermal control system. [removing waste heat from industrial process spacecraft

    Science.gov (United States)

    Hewitt, D. R. (Inventor)

    1983-01-01

    The temperature of an exothermic process plant carried aboard an Earth orbiting spacecraft is regulated using a number of curved radiator panels accurately positioned in a circular arrangement to form an open receptacle. A module containing the process is insertable into the receptacle. Heat exchangers having broad exterior surfaces extending axially above the circumference of the module fit within arcuate spacings between adjacent radiator panels. Banks of variable conductance heat pipes partially embedded within and thermally coupled to the radiator panels extend across the spacings and are thermally coupled to broad exterior surfaces of the heat exchangers by flanges. Temperature sensors monitor the temperature of process fluid flowing from the module through the heat exchanges. Thermal conduction between the heat exchangers and the radiator panels is regulated by heating a control fluid within the heat pipes to vary the effective thermal length of the heat pipes in inverse proportion to changes in the temperature of the process fluid.

  15. Industry characteristics management of innovative processes at the enterprises of light industry

    OpenAIRE

    Yusupov, Ulugbek

    2015-01-01

    This article considers the issues of innovative development and management of innovative processes in the knitting industry of Uzbekistan. Analyzed the main directions of innovative processes and provides recommendations for their management.

  16. Linearizing control of continuous anaerobic fermentation processes

    Energy Technology Data Exchange (ETDEWEB)

    Babary, J.P. [Centre National d`Etudes Spatiales (CNES), 31 - Toulouse (France). Laboratoire d`Analyse et d`Architecture des Systemes; Simeonov, I. [Institute of Microbiology, Bulgarian Academy of Sciences (Bulgaria); Ljubenova, V. [Institute of Control and System Research, BAS (Country unknown/Code not available); Dochain, D. [Universite Catholique de Louvain (UCL), Louvain-la-Neuve (Belgium)

    1997-09-01

    Biotechnological processes (BTP) involve living organisms. In the anaerobic fermentation (biogas production process) the organic matter is mineralized by microorganisms into biogas (methane and carbon dioxide) in the absence of oxygen. The biogas is an additional energy source. Generally this process is carried out as a continuous BTP. It has been widely used in life process and has been confirmed as a promising method of solving some energy and ecological problems in the agriculture and industry. Because of the very restrictive on-line information the control of this process in continuous mode is often reduced to control of the biogas production rate or the concentration of the polluting organic matter (de-pollution control) at a desired value in the presence of some perturbations. Investigations show that classical linear controllers have good performances only in the linear zone of the strongly non-linear input-output characteristics. More sophisticated robust and with variable structure (VSC) controllers are studied. Due to the strongly non-linear dynamics of the process the performances of the closed loop system may be degrading in this case. The aim of this paper is to investigate different linearizing algorithms for control of a continuous non-linear methane fermentation process using the dilution rate as a control action and taking into account some practical implementation aspects. (authors) 8 refs.

  17. A Noble Approach of Process Automation in Galvanized Nut, Bolt Manufacturing Industry

    Directory of Open Access Journals (Sweden)

    Akash Samanta

    2012-05-01

    Full Text Available Corrosion costs money”, The Columbus battle institute estimates that corrosion costs Americans more than $ 220 billion annually, about 4.3% of the gross natural product [1].Now a days due to increase of pollution, the rate of corrosion is also increasing day-by-day mainly in India, so, to save the steel structures, galvanizing is the best and the simplest solution. Due to this reason galvanizing industries are increasing day-by-day since mid of 1700s.Galvanizing is a controlled metallurgical combination of zinc and steel that can provide a corrosion resistance in a wide variety of environment. In fact, the galvanized metal corrosion resistance factor can be some 70 to 80 times greater that the base metal material. Keeping in mind the importance of this industry, a noble approach of process automation in galvanized nut-bolt  manufacturing plant is presented here as nuts and bolts are the prime ingredient of any structure. In this paper the main objectives of any industry like survival, profit maximization, profit satisfying and sales growth are fulfilled. Furthermore the environmental aspects i.e. pollution control and energy saving are also considered in this paper. The whole automation process is done using programmable logic controller (PLC which has number of unique advantages like being faster, reliable, requires less maintenance and reprogrammable. The whole system has been designed and tested using GE, FANUC PLC.

  18. Refractories for Industrial Processing. Opportunities for Improved Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hayden, H. Wayne [Metals Manufacture Process and Controls Technology, Inc., Oak Ridge, TN (United States); Angelini, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Robert E. [R.E. Moore Associates, Maricopa, AZ (United States); Headrick, William L. [R.E. Moore Associates, Maricopa, AZ (United States)

    2005-01-01

    Refractories are a class of materials of critical importance to manufacturing industries with high-temperature unit processes. This study describes industrial refractory applications and identifies refractory performance barriers to energy efficiency for processing. The report provides recommendations for R&D pathways leading to improved refractories for energy-efficient manufacturing and processing.

  19. Integrated pollution prevention and control scares industrial companies

    International Nuclear Information System (INIS)

    Zackova, K.; Sobinkovic, B.

    2003-01-01

    It will not be easy to obtain a permit to open a new industrial plant. And not only the new ones but all important operating industrial productions will require a so called integrated permit. Both authorities and company managers consider the validation process to be more demanding compared to the current procedure for obtaining a building or user permit. As of August 1, 2003 - the day a new Act on Integrated Pollution Prevention and Control (IPPC) is expected to enter into force - only integrated permits will be given. The related bill has been passed to the parliament for the second reading. As of end of April next year the future of 31 industrial plants will depend on whether they will be granted a integrated permit or not. IPPC is a terror for companies due to its seriousness, complexity and the relatively short time given, should they not manage to obtain a permit the plant may be closed down. The European Commission (EC) Directive 96/61/EC Integrated Pollution Prevention and Control raises the same concerns among companies in European Union (EU) member states. It is one of the most strict environmental standards and one of the sensitive conditions of EU entry. That is one of the reasons transition periods for this Directive were negotiated for ten Slovak companies. (Authors)

  20. Hygienic Design in the Food Processing Industry

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Hjelm, M.

    2001-01-01

    Bacterial adhesion and biofilm formation are of major concern in food production and processing industry. In 1998 a Danish co-operation programme under the title Centre for Hygienic Design was funded to combine the skills of universities, research institutes and industry to focus on the following...

  1. A fast PID controller Design for Modern PLC for Process Control Application

    International Nuclear Information System (INIS)

    Mirza, A.; Nafis, A.; Anees, R.M.; Idris, S.

    2004-01-01

    PID is the most widely used control scheme in the process industry. Pill controllers are utilized for the control of such varied parameters as pressure, flow, temperature, etc. One characteristic of these parameters is that they posses slow dynamics. Most of the available digital controllers can manipulate only a single parameter- multiple controllers are required for control of more than one parameter. The Fast PID Controller for Modem PLC (Programmable Logic Controller) developed by the authors, provides control of several parameters at a time (through a single Pill control element), enhanced programmability including variable sampling period, parameter monitoring and data storage, which may be easily implemented in a PLC. (author)

  2. ADVANCED OXIDATION PROCESSES FOR FOOD INDUSTRIAL WASTEWATER DECONTAMINATION

    Directory of Open Access Journals (Sweden)

    Dorota Krzemińska

    2015-02-01

    Full Text Available High organic matter content is a basic problem in food industry wastewaters. Typically, the amount and composition of the effluent varies considerably. In the article four groups of advanced processes and their combination of food industry wastewater treatment have been reviewed: electrochemical oxidation (EC, Fenton’s process, ozonation of water and photocatalytic processes. All advanced oxidation processes (AOP`s are characterized by a common chemical feature: the capability of exploiting high reactivity of HO• radicals in driving oxidation processes which are suitable for achieving decolonization and odour reduction, and the complete mineralization or increase of bioavailability of recalcitrant organic pollutants.

  3. Electron beam processing in food industry - technology and costs

    International Nuclear Information System (INIS)

    Gallien, Cl.L.; Ferradini, C.; Paquin, J.; Sadat, T.

    1985-01-01

    After nearly 40 years of research and thousands of positive experimentations, the fact that ionising radiations could be used for food preservation has been taken into account by the joint Expert Committee of the UN agencies, FAO, WHO and IAEA, who recommended this type of treatment in 1981 allowing doses up to 10 kGy. The market for irradiated food is actually small, but it could develop rapidly. National authorities who establish the regulations are becoming very active: so, in 1984, the US FDA has issued a proposed rule to regulate the commercial applications of food irradiation. It is timely to propose a MODEL that should really convince administration, food industry executives and consumers organizations that food irradiation is more than academic speculation: an industrial processing and an economical imperative. To this aim, we have defined an integrated model assembling (a) a sample product; (b) the optimal treatment conditions for this product, including a reliable dosimetry control system; and (c) a most efficient and competitive treatment unit that can suit a wide range of industrial needs. (author)

  4. Industrial Raman gas sensing for real-time system control

    Science.gov (United States)

    Buric, M.; Mullen, J.; Chorpening, B.; Woodruff, S.

    2014-06-01

    Opportunities exist to improve on-line process control in energy applications with a fast, non-destructive measurement of gas composition. Here, we demonstrate a Raman sensing system which is capable of reporting the concentrations of numerous species simultaneously with sub-percent accuracy and sampling times below one-second for process control applications in energy or chemical production. The sensor is based upon a hollow-core capillary waveguide with a 300 micron bore with reflective thin-film metal and dielectric linings. The effect of using such a waveguide in a Raman process is to integrate Raman photons along the length of the sample-filled waveguide, thus permitting the acquisition of very large Raman signals for low-density gases in a short time. The resultant integrated Raman signals can then be used for quick and accurate analysis of a gaseous mixture. The sensor is currently being tested for energy applications such as coal gasification, turbine control, well-head monitoring for exploration or production, and non-conventional gas utilization. In conjunction with an ongoing commercialization effort, the researchers have recently completed two prototype instruments suitable for hazardous area operation and testing. Here, we report pre-commercialization testing of those field prototypes for control applications in gasification or similar processes. Results will be discussed with respect to accuracy, calibration requirements, gas sampling techniques, and possible control strategies of industrial significance.

  5. The Ideal Criteria of Supplier Selection for SMEs Food Processing Industry

    Directory of Open Access Journals (Sweden)

    Ramlan Rohaizan

    2016-01-01

    Full Text Available Selection of good supplier is important to determine the performance and profitability of SMEs food processing industry. The lack of managerial capability on supplier selection in SMEs food processing industry affects the competitiveness of SMEs food processing industry. This research aims to determine the ideal criteria of supplier for food processing industry using Analytical Hierarchy Process (AHP. The research was carried out in a quantitative method by distributing questionnaires to 50 SMEs food processing industries. The collected data analysed using Expert Choice software to rank the supplier selection criteria. The result shows that criteria for supplier selection are ranked by cost, quality, service, delivery and management and organisation while purchase cost, audit result, defect analysis, transportation cost and fast responsiveness are the first five sub-criteria. The result of this research intends to improve managerial capabilities of SMEs food processing industry in supplier selection.

  6. Decision Support in Supervisory Control of High-Risk Industrial Systems

    DEFF Research Database (Denmark)

    Rasmussen, Jens; Goodstein, L. P.

    1987-01-01

    available to the operators their conceptual models and their processing resources so as to allow the operators to function as their extended arm in coping with the plant. Such as interactive decision-making activity would thus benefit from this simultaneous availability of the design basis, up......It is argued that the supervisory control of complex industrial processes having a potential for serious consequences in case of accidents requires careful consideration of the allocation of decision making between the three main agents of control; namely the designer, the operator...... and the automatic control system. In particular, it is advocated that, instead of continuing their efforts to make their preplanning of responses and countermeasures more and more complete and thus restrict the operators' own initiative, designers should take advantage of modern information technology to make...

  7. Stepless control system for reciprocating compressors: energy savings + process control improvement

    Energy Technology Data Exchange (ETDEWEB)

    Grande, Alvaro; Wenisch, Markus [Hoerbiger Ventilwerke GmbH and Co KG, Wien (Austria); Jacobs, Denis [HOERBIGER do Brasil Industria de Equipamentos, Cajamar, SP (Brazil)

    2012-07-01

    In the past, the capacity of reciprocating compressors was typically controlled by on/off unloaders (step-control) and recycle valves. But due to the fact that the power ratings of new reciprocating compressors for the oil and gas industry increase significantly, advanced control systems are required to reduce power costs and save energy. On top of that, multi-stage compressors are frequently integrated into complex process plants that demand precise control and operational flexibility. There are several solutions for this equation, but maybe the most successful is the use of the reverse flow principle applied to an electronically controlled and hydraulically actuated suction valve unloaders system. (author)

  8. Process Analytical Technology (PAT): batch-to-batch reproducibility of fermentation processes by robust process operational design and control.

    Science.gov (United States)

    Gnoth, S; Jenzsch, M; Simutis, R; Lübbert, A

    2007-10-31

    The Process Analytical Technology (PAT) initiative of the FDA is a reaction on the increasing discrepancy between current possibilities in process supervision and control of pharmaceutical production processes and its current application in industrial manufacturing processes. With rigid approval practices based on standard operational procedures, adaptations of production reactors towards the state of the art were more or less inhibited for long years. Now PAT paves the way for continuous process and product improvements through improved process supervision based on knowledge-based data analysis, "Quality-by-Design"-concepts, and, finally, through feedback control. Examples of up-to-date implementations of this concept are presented. They are taken from one key group of processes in recombinant pharmaceutical protein manufacturing, the cultivations of genetically modified Escherichia coli bacteria.

  9. Treatment of Municipal and Industrial Waste by Radiation Processing

    International Nuclear Information System (INIS)

    Abdelaziz, M.E.

    1999-01-01

    In recent years the effort in science and technology is shifting from conventional technologies preventing the pollution of air, water and soil, towards processing by gamma or by electron beam (EB) irradiation in order to prevent pollution, rather than curing the problems caused by production processes, which are not optimized with regard to pollution control. Radiation processing may help to improve the environmental situation in two aspects : It provides alternatives to conventional technologies for the cleaning of air, flue gases and water,...etc, and it also helps to realize clean processes for preventing pollution in the first place. This paper will outline the basic principles of radiation processing for waste streams of environmental relevance, will summarize the state-of -the-art in environmental applications of radiation processing to show both the advantages and the limitations of the radiation processing of waste streams, and to highlight the environmental and economic benefits of clean processes made possible by radiation processing applied to municipal and industrial waste. Reference is made to gamma and EB radiation sources, and description of new technologies is presented

  10. Process Integration Analysis of an Industrial Hydrogen Production Process

    OpenAIRE

    Stolten, Detlef; Grube, Thomas; Tock, Laurence; Maréchal, François; Metzger, Christian; Arpentinier, Philippe

    2010-01-01

    The energy efficiency of an industrial hydrogen production process using steam methane reforming (SMR) combined with the water gas shift reaction (WGS) is analyzed using process integration techniques based on heat cascade calculation and pinch analysis with the aim of identifying potential measures to enhance the process performance. The challenge is to satisfy the high temperature heat demand of the SMR reaction by minimizing the consumption of natural gas to feed the combustion and to expl...

  11. Universal CNC platform motion control technology for industrial CT

    International Nuclear Information System (INIS)

    Cheng Senlin; Wang Yang

    2011-01-01

    According to the more scanning methods and the higher speed of industrial CT, the higher precision of the motion location and the data collection sync-control is required at present, a new motion control technology was proposed, which was established based on the universal CNC system with high precision of multi-axis control. Aiming at the second and the third generation of CT scanning motion, a control method was researched, and achieved the demands of the changeable parameters and network control, Through the simulation of the second and the third generation of CT scanning motion process, the control precision of the rotation axis reached 0.001° and the linear axis reached 0.002 mm, Practical tests showed this system can meet the requirements of the multi-axis motion integration and the sync signal control, it also have advantages in the control precision and the performance. (authors)

  12. Industrial process heat market assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bresnick, S.

    1981-12-01

    This report is designed to be a reference resource, giving a broad perspective of the potential HTGR market for industrial process heat. It is intended to serve as a briefing document for those wishing to obtain background information and also to serve as a starting point from which more detailed and refined studies may be undertaken. In doing so, the report presents a qualitative and quantitative description of the industrial process heat market in the US, provides a summary discussion of cogeneration experience to date, and outlines the existing institutional and financial framework for cogeneration. The intent is to give the reader an understanding of the current situation and experience in this area. The cogeneration area in particular is an evolving one because of regulations and tax laws, which are still in the process of being developed and interpreted. The report presents the latest developments in regulatory and legislative activities which are associated with that technology. Finally, the report presents a brief description of the three HTGR systems under study during the current fiscal year and describes the specific market characteristics which each application is designed to serve.

  13. Industrial process heat market assessment

    International Nuclear Information System (INIS)

    Bresnick, S.

    1981-12-01

    This report is designed to be a reference resource, giving a broad perspective of the potential HTGR market for industrial process heat. It is intended to serve as a briefing document for those wishing to obtain background information and also to serve as a starting point from which more detailed and refined studies may be undertaken. In doing so, the report presents a qualitative and quantitative description of the industrial process heat market in the US, provides a summary discussion of cogeneration experience to date, and outlines the existing institutional and financial framework for cogeneration. The intent is to give the reader an understanding of the current situation and experience in this area. The cogeneration area in particular is an evolving one because of regulations and tax laws, which are still in the process of being developed and interpreted. The report presents the latest developments in regulatory and legislative activities which are associated with that technology. Finally, the report presents a brief description of the three HTGR systems under study during the current fiscal year and describes the specific market characteristics which each application is designed to serve

  14. Optimizing the availability of a buffered industrial process

    Science.gov (United States)

    Martz, Jr., Harry F.; Hamada, Michael S.; Koehler, Arthur J.; Berg, Eric C.

    2004-08-24

    A computer-implemented process determines optimum configuration parameters for a buffered industrial process. A population size is initialized by randomly selecting a first set of design and operation values associated with subsystems and buffers of the buffered industrial process to form a set of operating parameters for each member of the population. An availability discrete event simulation (ADES) is performed on each member of the population to determine the product-based availability of each member. A new population is formed having members with a second set of design and operation values related to the first set of design and operation values through a genetic algorithm and the product-based availability determined by the ADES. Subsequent population members are then determined by iterating the genetic algorithm with product-based availability determined by ADES to form improved design and operation values from which the configuration parameters are selected for the buffered industrial process.

  15. Implementation of Haccp in the Mexican Poultry Processing Industry

    Science.gov (United States)

    Maldonado-Siman, Ema; Martínez-Hernández, Pedro Arturo; Ruíz-Flores, Agustín; García-Muñiz, José G.; Cadena-Meneses, José A.

    Hazard Analysis and Critical Control Point (HACCP) is a safety and quality management tool used as major issue in international and domestic trade in food industry. However, detailed information on costs and benefits of HACCP implementation is needed to provide appropriate advice to food processing plants. This paper reports on the perceptions of costs and benefits by the Mexican poultry processing plants and sale destinations. The results suggest that the major costs of implementing and operating HACCP within poultry processing plants are record keeping and external technical advice. The main benefit indicated by the majority of processing plants is a reduction in microbial counts. Over 39% of poultry production is sent to nation-wide chains of supermarkets, and less than 13% is sent to international markets. It was concluded that the adoption of HACCP by the Mexican poultry processing sector is based on the concern to increase and keep the domestic market, rather than to compete in the international market.

  16. Tackling optimization challenges in industrial load control and full-duplex radios

    Science.gov (United States)

    Gholian, Armen

    In price-based demand response programs in smart grid, utilities set the price in accordance with the grid operating conditions and consumers respond to price signals by conducting optimal load control to minimize their energy expenditure while satisfying their energy needs. Industrial sector consumes a large portion of world electricity and addressing optimal load control of energy-intensive industrial complexes, such as steel industry and oil-refinery, is of practical importance. Formulating a general industrial complex and addressing issues in optimal industrial load control in smart grid is the focus of the second part of this dissertation. Several industrial load details are considered in the proposed formulation, including those that do not appear in residential or commercial load control problems. Operation under different smart pricing scenarios, namely, day-ahead pricing, time-of-use pricing, peak pricing, inclining block rates, and critical peak pricing are considered. The use of behind-the-meter renewable generation and energy storage is also considered. The formulated optimization problem is originally nonlinear and nonconvex and thus hard to solve. However, it is then reformulated into a tractable linear mixed-integer program. The performance of the design is assessed through various simulations for an oil refinery and a steel mini-mill. In the third part of this dissertation, a novel all-analog RF interference canceler is proposed. Radio self-interference cancellation (SIC) is the fundamental enabler for full-duplex radios. While SIC methods based on baseband digital signal processing and/or beamforming are inadequate, an all-analog method is useful to drastically reduce the self-interference as the first stage of SIC. It is shown that a uniform architecture with uniformly distributed RF attenuators has a performance highly dependent on the carrier frequency. It is also shown that a new architecture with the attenuators distributed in a clustered

  17. Metallurgical engineering and inspection practices in the chemical process industries

    International Nuclear Information System (INIS)

    Moller, G.E.

    1987-01-01

    The process industries, in particular the petroleum refining industry, adopted materials engineering and inspection (ME and I) practices years ago and regularly updated them because they were faced with the handling and refining of flammable, toxic, and corrosive feed stocks. These industries have a number of nonproprietary techniques and procedures, some of which may be applicable in the nuclear power generation field. Some specific inspection and engineering techniques used by the process industries within the framework of the guidelines for inspections and worthy of detailed description include the following: (1) sentry drilling or safety drilling of piping subject to relatively uniform corrosion, such as feedwater heater piping, steam piping, and extraction steam piping; (2) on-stream radiography for thickness measurement and detection of unusual conditions - damaged equipment such as valve blockage; (3) critical analysis of the chemical and refining processes for the relative probability of corrosion; (4) communication of valuable experience within the industry; (5) on-stream ultrasonic thickness testing; and (6) on-stream and off-stream crack and flaw detection. The author, trained in the petroleum refining industry but versed in electric utilities, pulp and paper, chemical process, marine, mining, water handling, waste treatment, and geothermal processes, discusses individual practices of these various industries in the paper

  18. 27 CFR 19.67 - Spirits produced in industrial processes.

    Science.gov (United States)

    2010-04-01

    ... industrial processes. 19.67 Section 19.67 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Administrative and Miscellaneous Provisions Activities Not Subject to This Part § 19.67 Spirits produced in industrial processes...

  19. Industrialization drive of radiation processing for economic growth in China

    International Nuclear Information System (INIS)

    Lu Yanxiao

    1996-12-01

    The transfer of research and development achievements of radiation processing to routine industrial applications in China is reviewed. While making a brief survey of historical background, the paper indicates the different roles that various domestic organizations played in the industrialization drive of radiation processing. Among them the Government's role is the most important one. In accordance with recent growth of the number of industrial radiation facilities (e.g. cobalt-60 irradiators and electron beam accelerators) and current application of radiation processing in main fields in different parts of the country, it can be said that a new radiation processing industry is shaping up in its developing stage to satisfy the growing requirements for economic booming in China. (16 refs.)

  20. Management of Uncertainty by Statistical Process Control and a Genetic Tuned Fuzzy System

    OpenAIRE

    Birle, Stephan;Hussein, Mohamed Ahmed;Becker, Thomas

    2017-01-01

    In food industry, bioprocesses like fermentation often are a crucial part of the manufacturing process and decisive for the final product quality. In general, they are characterized by highly nonlinear dynamics and uncertainties that make it difficult to control these processes by the use of traditional control techniques. In this context, fuzzy logic controllers offer quite a straightforward way to control processes that are affected by nonlinear behavior and uncertain process knowledge. How...

  1. Industrial-scale process control by means of electrostatics probes

    Czech Academy of Sciences Publication Activity Database

    Špatenka, P.; Brunnhofer, Václav; Krumeich, J.; Blažek, J.; Šerý, M.; Endres, H. J.; Cook, R.

    2001-01-01

    Roč. 5, - (2001), s. 255-263 ISSN 1084-0184 R&D Projects: GA ČR GA202/00/1592; GA MŠk OC 527.60 Institutional research plan: CEZ:AV0Z5007907 Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  2. Industrial applications of refrigeration. Utilizing industries; Applications industrielles du froid. Industries utilisatrices

    Energy Technology Data Exchange (ETDEWEB)

    Marvillet, Ch. [Ecole Centrale de Lyon, 69 - Ecully (France); Groupement pour la Recherche sur les Echangeurs Thermiques, GRETh (France)

    2001-10-01

    Refrigeration is used in most of the industrial domains: food industry (conservation of the organoleptic properties and sanitary quality of products, control of fermentation, of juice concentration and of the dehydration of products), transformation industries (plastic industry, rubber industry, mechanical industry (fretting, hardening and surface treatment of materials, dehumidification of compressed air), liquefaction and purification of industrial gases and hydrocarbons, processing of wastes (removal of VOCs, purification of liquid effluents etc..), civil engineering (consolidation of soils, cooling of big concrete structures), leisure (skating rink, artificial snow). (J.S.)

  3. From research to industry - the establishment of a radiation processing industry in South Africa

    International Nuclear Information System (INIS)

    Du Plessis, T.A.; Stevens, R.C.B.

    1983-01-01

    In the late sixties the South African Atomic Energy Board in pursuing its objectives to promote the peaceful application of nuclear energy in general, established a research group with the specific purpose of investigating and developing radiation processing as a new technique. During the early years it was realised that the economic and technological facets of establishing a new industry were equally important and, in addition to fundamental research, strong emphasis was placed on the necessity of marketing this new technology. Although the initial emphasis was put on gamma sterilization, and today still forms the backbone of the radiation processing industry, the promising fields of polymer modification and food irradiation hold a lot of promise in the radiation processing industry. Following ten years of successfully introducing and providing a radiation service, the South African Atomic Energy Board in 1980 decided to transfer its service to the private sector. These developments in South Africa are a good sample of how a small country, through initial government involvement, can acquire a sophisticated new private industry. (author)

  4. Emerging new applications of nucleonic control systems in industry. Report of an advisory group meeting

    International Nuclear Information System (INIS)

    2000-03-01

    This TECDOC presents a comprehensive review of the current status and future prospects of nucleonic gauge methodology and technology applied as nucleonic control systems (NCS) to a broad spectrum of industrial engineering processes. It presents the results of the IAEA's Advisory Group Meeting on Emerging New Applications of Nucleonic Control Systems in Industry, which was convened to discuss and evaluate the present 'state-of-the-art' of this field. The TECDOC provides fundamental information on the principles of nucleonic gauges, their design, safe operation and applications. This covers both the more traditional and well established applications and methods as well as trends on emerging applications of new nucleonic gauges in modem industry. A specific review is presented of nucleonic gauge methodology and technology as applied in international priority industrial sectors such as the petroleum industry, mining and mineral ore processing, material construction and environment. This information on nucleonic gauges, including the most relevant recent achievements and developments, effectively enhances and often replaces the existing related publications, many of which have lost their relevance. Separate abstracts have been prepared for the thirteen individual country reports included in this TECDOC

  5. Emerging new applications of nucleonic control systems in industry. Report of an advisory group meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This TECDOC presents a comprehensive review of the current status and future prospects of nucleonic gauge methodology and technology applied as nucleonic control systems (NCS) to a broad spectrum of industrial engineering processes. It presents the results of the IAEA's Advisory Group Meeting on Emerging New Applications of Nucleonic Control Systems in Industry, which was convened to discuss and evaluate the present 'state-of-the-art' of this field. The TECDOC provides fundamental information on the principles of nucleonic gauges, their design, safe operation and applications. This covers both the more traditional and well established applications and methods as well as trends on emerging applications of new nucleonic gauges in modem industry. A specific review is presented of nucleonic gauge methodology and technology as applied in international priority industrial sectors such as the petroleum industry, mining and mineral ore processing, material construction and environment. This information on nucleonic gauges, including the most relevant recent achievements and developments, effectively enhances and often replaces the existing related publications, many of which have lost their relevance. Separate abstracts have been prepared for the thirteen individual country reports included in this TECDOC.

  6. Expert system and process optimization techniques for real-time monitoring and control of plasma processes

    Science.gov (United States)

    Cheng, Jie; Qian, Zhaogang; Irani, Keki B.; Etemad, Hossein; Elta, Michael E.

    1991-03-01

    To meet the ever-increasing demand of the rapidly-growing semiconductor manufacturing industry it is critical to have a comprehensive methodology integrating techniques for process optimization real-time monitoring and adaptive process control. To this end we have accomplished an integrated knowledge-based approach combining latest expert system technology machine learning method and traditional statistical process control (SPC) techniques. This knowledge-based approach is advantageous in that it makes it possible for the task of process optimization and adaptive control to be performed consistently and predictably. Furthermore this approach can be used to construct high-level and qualitative description of processes and thus make the process behavior easy to monitor predict and control. Two software packages RIST (Rule Induction and Statistical Testing) and KARSM (Knowledge Acquisition from Response Surface Methodology) have been developed and incorporated with two commercially available packages G2 (real-time expert system) and ULTRAMAX (a tool for sequential process optimization).

  7. Software factory techniques applied to process control at CERN

    CERN Document Server

    Dutour, Mathias D

    2008-01-01

    The CERN Large Hadron Collider (LHC) requires constant monitoring and control of quantities of parameters to guarantee operational conditions. For this purpose, a methodology called UNICOS (UNIfied Industrial COntrols Systems) has been implemented to standardize the design of process control applications. To further accelerate the development of these applications, we migrated our existing UNICOS tooling suite toward a software factory in charge of assembling project, domain and technical information seamlessly into deployable PLC (Programmable logic Controller) - SCADA (Supervisory Control And Data Acquisition) systems. This software factory delivers consistently high quality by reducing human error and repetitive tasks, and adapts to user specifications in a cost-efficient way. Hence, this production tool is designed to encapsulate and hide the PLC and SCADA target platforms, enabling the experts to focus on the business model rather than specific syntaxes and grammars. Based on industry standard software, ...

  8. Impacts of cement industries on environment and control measure

    International Nuclear Information System (INIS)

    Hashmi, H.N.; Malik, H.N.; Naushad, Z.

    2005-01-01

    Utilization of cement as building material is gaining more importance. Cement industries around the world are contributing in global and as well as local pollution. In Pakistan most of the cement industries are constructed in remote areas without any proper environmental impact assessment. Unawareness of peoples toward sustainable environment and due to lack of job opportunities, dwellers are demanding employment rather than clean environment from title-holder of the industry. Air pollution caused by cement industries is harmful to the human's health, spoils and erodes building surface, corrodes metals, weakens textiles, deteriorates atmospheric visibility, affects plant life and leads to ecological imbalances. To investigate environmental impact of cement industries in Pakistan, environmental conditions around and inside the five cement industries in the vicinity of Taxila city are studied. To inspect the whole scenario, air pollution control devices in these industries were also examined in detail. These industries are using Electrostatic Precipitators and Baghouses to control air pollution (dust particulates). Proper caring of these equipment is necessary for better results. Detailed study shows that emissions from their stacks and dust particulates are causing problems. Health consultants in study area are much worry about the health of workers and environmental degradation in the vicinity of these industries. The comparison of air pollution control devices shows that Baghouses are environmental friendly. Considering the field conditions it is also concluded that involvement of government and environmental pollution control agencies is much more necessary. (author)

  9. Gemstone Grinding Process Improvement by using Impedance Force Control

    Directory of Open Access Journals (Sweden)

    Hamprommarat Chumpol

    2015-01-01

    Full Text Available Chula Automatic Faceting Machine has been developed by The Advance Manufacturing Research Lab, Chulalongkorn University to support Thailand Gems-Industry. The machine has high precision motion control by using position and force control. A contact stiffness model is used to estimate grinding force. Although polished gems from the Faceting Machine have uniform size and acceptable shape, the force of the grinding and polishing process cannot be maintain constant and has some fluctuation due to indirect force control. Therefor this research work propose a new controller for this process based on an impedance direct force control to improve the gemstone grinding performance during polishing process. The grinding force can be measured through motor current. The results show that the polished gems by using impedance direct force control can maintain uniform size as well as good shape and high quality surface.

  10. Software factory techniques applied to process control at CERN

    OpenAIRE

    Dutour, Mathias D

    2007-01-01

    The CERN Large Hadron Collider (LHC) requires constant monitoring and control of quantities of parameters to guarantee operational conditions. For this purpose, a methodology called UNICOS (UNIfied Industrial COntrols Systems) has been implemented to standardize the design of process control applications. To further accelerate the development of these applications, we migrated our existing UNICOS tooling suite toward a software factory in charge of assembling project, domain and technical inf...

  11. Optimization and control methods in industrial engineering and construction

    CERN Document Server

    Wang, Xiangyu

    2014-01-01

    This book presents recent advances in optimization and control methods with applications to industrial engineering and construction management. It consists of 15 chapters authored by recognized experts in a variety of fields including control and operation research, industrial engineering, and project management. Topics include numerical methods in unconstrained optimization, robust optimal control problems, set splitting problems, optimum confidence interval analysis, a monitoring networks optimization survey, distributed fault detection, nonferrous industrial optimization approaches, neural networks in traffic flows, economic scheduling of CCHP systems, a project scheduling optimization survey, lean and agile construction project management, practical construction projects in Hong Kong, dynamic project management, production control in PC4P, and target contracts optimization.   The book offers a valuable reference work for scientists, engineers, researchers and practitioners in industrial engineering and c...

  12. Industrial water and effluent management in the milk processing industry

    CSIR Research Space (South Africa)

    Funke, JW

    1970-01-01

    Full Text Available One of the most important commodities used in any food-processing industry is water which must be of the right quality. Water which comes into direct contact with milk or milk products must meet standards which are even stricter than those for a...

  13. Ventilation equations for improved exothermic process control.

    Science.gov (United States)

    McKernan, John L; Ellenbecker, Michael J

    2007-04-01

    Exothermic or heated processes create potentially unsafe work environments for an estimated 5-10 million American workers each year. Excessive heat and process contaminants have the potential to cause acute health effects such as heat stroke, and chronic effects such as manganism in welders. Although millions of workers are exposed to exothermic processes, insufficient attention has been given to continuously improving engineering technologies for these processes to provide effective and efficient control. Currently there is no specific occupational standard established by OSHA regarding exposure to heat from exothermic processes, therefore it is important to investigate techniques that can mitigate known and potential adverse occupational health effects. The current understanding of engineering controls for exothermic processes is primarily based on a book chapter written by W. C. L. Hemeon in 1955. Improvements in heat transfer and meteorological theory necessary to design improved process controls have occurred since this time. The research presented involved a review of the physical properties, heat transfer and meteorological theories governing buoyant air flow created by exothermic processes. These properties and theories were used to identify parameters and develop equations required for the determination of buoyant volumetric flow to assist in improving ventilation controls. Goals of this research were to develop and describe a new (i.e. proposed) flow equation, and compare it to currently accepted ones by Hemeon and the American Conference of Governmental Industrial Hygienists (ACGIH). Numerical assessments were conducted to compare solutions from the proposed equations for plume area, mean velocity and flow to those from the ACGIH and Hemeon. Parameters were varied for the dependent variables and solutions from the proposed, ACGIH, and Hemeon equations for plume area, mean velocity and flow were analyzed using a randomized complete block statistical

  14. Fuzzy process control and knowledge engineering in petrochemical and robotic manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, R. (Azerbaijan Industrial Univ., Dept. of Automatic Control Systems, Baku (Russia)); Aliev, F. (Azerbaijan Polytechnique Institute, Dept. of Automation and Computer Science, Baku (Russia)); Babaev, M. (Azerbaijan Industrial Univ., Laboratory of Intelligent Control Systems, Baku (Russia))

    1991-01-01

    This book presents the methodology, the functionality and the pragmatics of implementing and applying AI (Artificial Intelligence) techniques enhanced by the new mathematical discipline of fuzzy sets. Emphasis is put on the design and modelling of fuzzy controllers and intelligent control equipment for the oil processing and chemical industries, as well as on robotics and CAM (Computer-Aided Manufacturing), including the development of appropriate algorithms and computer programs. The content is strongly application-oriented in order to explain the main features of the theory of fuzzy systems using different real examples from concrete engineering projects. It excels over the present literature available on this subject by its descriptions new classes of industrial systems to be controlled with fuzzy logic, as well as by its descriptive introduction to intelligent control systems and fuzzy controllers developed and successfully implemented by the authors in working industrial plants. (orig.).

  15. A modularized framework for sales and operations planning with focus on process industries

    Directory of Open Access Journals (Sweden)

    Sayeh Noroozi

    2016-01-01

    Full Text Available This paper suggests a modularized sales and operations planning (S&OP framework, consisting of content and process. The framework’s content is based on a typology of decoupling points in which the effect of decoupling points on the decision variables in S&OP is studied. The framework’s process takes a step back and addresses the need for a more elaborate design to precede the operational use of S&OP content for different production contexts. The framework supports both process industries (PIs and discrete manufacturing industries (DIs, and recognizes their specific requirements and reflects them in their S&OP. The differentiating characteristics of PIs and DIs are emphasized through three different decoupling points, namely: discretization decoupling point, control mode decoupling point, and customer order decoupling point. The suggested framework aims to fill the gap in the literature regarding the lack of aggregate planning processes that match the PIs’ specific requirements by reflecting the differentiating characteristics of PIs in S&OP.

  16. Proceedings of the solar industrial process heat symposium

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The purpose of the symposium was to review the progress of various solar energy systems currently under design for supplying industrial process heat. Formal presentations consisted of a review of solar energy applications in industrial process heat as well as several on-going project reviews. An Open Forum was held to solicit the comments of the participants. The recommendations of this Open Forum are included in these proceedings. Eighteen papers were included. Separate abstracts were prepared for each paper.

  17. Guidelines for the Development, Validation and Routine Control of Industrial Radiation Processes

    DEFF Research Database (Denmark)

    Safrany, A.; Miller, Arne; Kovacs, A.

    Radiation processing has become a well accepted technology on the global market, with uses ranging from the sterilization of medical devices to polymer cross-linking and curing to the irradiation of selected food items. Besides these well established uses, new radiation technology applications...... are emerging for environmental remediation and the synthesis of advanced materials and products. Quality assurance is vital for the success of these technologies and requires the development of standardized procedures as well as the harmonization of process validation and process control. It is recognized...

  18. Chemicals Industry New Process Chemistry Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2000-08-01

    The Materials Technology I workshop was held in November 1998 to address future research needs for materials technology that will support the chemical industry. Areas covered included disassembly, recovery, reuse and renewable technology; new materials; and materials measurement and characterization. The Materials Technology II workshop was held in September 1999 and covered additives, modeling and prediction and an additional segment on new materials. Materials Technology Institute (MTI) for the Chemical Process Industries, Inc. and Air Products & Chemicals lead the workshops. The Materials Technology Roadmap presents the results from both workshops.

  19. Cross-industry innovation processes strategic implications for telecommunication companies

    CERN Document Server

    Hahn, Tobias

    2015-01-01

    Based on multiple case study analysis, focusing on scalable service innovation, the present study provides a practical process model that shall serve telecommunication companies as a guideline while conducting strategic cross-industry innovation projects. The findings also pay attention to characteristics in cross-industry collaboration, organizational preconditions and strategic deliberations and postulate propositions for present theoretical innovation process models.

  20. Software factory techniques applied to Process Control at CERN

    CERN Multimedia

    Dutour, MD

    2007-01-01

    The CERN Large Hadron Collider (LHC) requires constant monitoring and control of quantities of parameters to guarantee operational conditions. For this purpose, a methodology called UNICOS (UNIfied Industrial COntrols Systems) has been implemented to standardize the design of process control applications. To further accelerate the development of these applications, we migrated our existing UNICOS tooling suite toward a software factory in charge of assembling project, domain and technical information seamlessly into deployable PLC (Programmable logic Controller) – SCADA (Supervisory Control And Data Acquisition) systems. This software factory delivers consistently high quality by reducing human error and repetitive tasks, and adapts to user specifications in a cost-efficient way. Hence, this production tool is designed to encapsulate and hide the PLC and SCADA target platforms, enabling the experts to focus on the business model rather than specific syntaxes and grammars. Based on industry standard software...

  1. Kinematics Control and Analysis of Industrial Robot

    Science.gov (United States)

    Zhu, Tongbo; Cai, Fan; Li, Yongmei; Liu, Wei

    2018-03-01

    The robot’s development present situation, basic principle and control system are introduced briefly. Research is mainly focused on the study of the robot’s kinematics and motion control. The structural analysis of a planar articulated robot (SCARA) robot is presented,the coordinate system is established to obtain the position and orientation matrix of the end effector,a method of robot kinematics analysis based on homogeneous transformation method is proposed, and the kinematics solution of the robot is obtained.Establishment of industrial robot’s kinematics equation and formula for positive kinematics by example. Finally,the kinematic analysis of this robot was verified by examples.It provides a basis for structural design and motion control.It has active significance to promote the motion control of industrial robot.

  2. High-temperature industrial process heat: technology assessment and introduction rationale

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-03

    Three specific topics of interest to DOE are addressed: to establish the significance and identify the role of high-temperature process heat in the nation's energy economy; to identify the role of solar thermal power in these high-temperature industrial applications in terms of possible markets and economic potential; and to recommend programmatic approaches for these solar thermal high-temperature process heat activities, including proposed content for initial Request for Proposals (RFPs) to accomplish such activities. The scope of the work required to accomplish these three purposes included the following: review of US industrial energy requirements, survey of current DOE low-temperature Agricultural and Industrial Process Heat Program, examination of high-temperature solar thermal electric systems already developed or under development by DOE and industry, and coordination with the high-energy user segments of industry (i.e., cement, chemical and petroleum) to find additional markets for some or all of the systems or components being developed in the DOE solar thermal electric program. Statistical data are presented identifying energy allocations to process heat and defining DOE's involvement. Three current fossil fuel process heat system examples are provided and the corresponding solar potential is identified.

  3. [Discussion on research thinking of traditional Chinese medicine standardization system based on whole process quality control].

    Science.gov (United States)

    Dong, Ling; Sun, Yu; Pei, Wen-Xuan; Dai, Jun-Dong; Wang, Zi-Yu; Pan, Meng; Chen, Jiang-Peng; Wang, Yun

    2017-12-01

    The concept of "Quality by design" indicates that good design for the whole life cycle of pharmaceutical production enables the drug to meet the expected quality requirements. Aiming at the existing problems of the traditional Chinese medicine (TCM) industry, the TCM standardization system was put forward in this paper from the national strategic level, under the guidance by the idea of quality control in international manufacturing industry and with considerations of TCM industry's own characteristics and development status. The connotation of this strategy was to establish five interrelated systems: multi-indicators system based on tri-indicators system, quality standard and specification system of TCM herbal materials and decoction pieces, quality traceability system, data monitoring system based on whole-process quality control, and whole-process quality management system of TCM, and achieve the whole process systematic and scientific study in TCM industry through "top-level design-implement in steps-system integration" workflow. This article analyzed the correlation between the quality standards of all links, established standard operating procedures of each link and whole process, and constructed a high standard overall quality management system for TCM industry chains, in order to provide a demonstration for the establishment of TCM whole-process quality control system and provide systematic reference and basis for standardization strategy in TCM industry. Copyright© by the Chinese Pharmaceutical Association.

  4. On-line measurement and control in sustainable mineral processing and energy production

    International Nuclear Information System (INIS)

    Sowerby, B.D.

    2002-01-01

    Sustainable development can be defined as development that 'meets the needs of the present without compromising the ability of future generations to meet their own needs' (WCED, 1987). A sustainable minerals and energy industry will need to achieve a number of related objectives including greater energy efficiency, improved utilisation of ore deposits, improved utilisation of existing plant, improved product quality, reduction of waste material, reduction of pollution levels and improved safety margins. These objectives all relate in varying degrees to the triple bottom line of economic, social and environmental benefits. One critical component in achieving these objectives is to develop and apply improved control systems across the full range of industry applications from mining to processing and utilisation. However process control relies heavily on the availability of suitable on-line process instrumentation to provide the data and feedback necessary for its implementation. There is a lot of truth in the saying 'if you can't measure it you can't control it'. In the past measurement was achieved by manual sampling followed by sample preparation (such as drying, mixing, crushing and dividing) and off-line laboratory analysis. However this procedure is often subject to significant sampling errors and, most importantly, the measurements are too slow for control purposes. By contrast, on-line analysis can provide rapid and accurate measurement in real time thus opening up new possibilities for improved process control. As a result, there has been a rapid increase in the industrial application of on-line analysis instrumentation over the past few decades. The main purpose of this paper is to briefly review some past Australian developments of on-line analysis systems in the mineral and coal industries and to discuss present developments and future trends

  5. The IRIS process and its industrial application at the CEA's Valduc Center

    International Nuclear Information System (INIS)

    Lemort, F.; Longuet, T.; Charvillat, J.P.; Chateauvieux, H.; Guiberteau, P.; Lorich, M.

    2000-01-01

    Following several years of laboratory research initiated in 1983 on a nonradioactive prototype unit at the CEA's (Atomic Energy Commission) Valrho/Marcoule Research Center, an innovative process, IRIS, has been developed to meet the need for processing nuclear glove box waste. It is to our knowledge the only high-capacity process in the world capable of dealing with highly chlorinated (25 wt% chlorine) alpha-contaminated waste. IRIS is based on a two-step incineration process combining pyrolysis and calcination with a specific off-gas treatment. The nonradioactive prototype at Marcoule has operated for over 5000 hours, demonstrating the following advantages: - Highly effective process control through regular, continuous feed of the rotating tubular kiln. - Very effective control of corrosion by pyrolytic decomposition of organo-chlorine compounds at 550 deg. C under inert atmosphere. - High ash quality (< 1% carbon, < 1% chlorine) compatible with online radionuclide recovery or vitrification processes. - High waste/ash weight and volume reduction factors (30 in both cases). - Very low gas flow rates limiting waste entrainment compared with direct incineration. - Very high efficiency off-gas treatment complying with gaseous emission standards. - Protection of system piping by substitution of stable phosphates for metal chlorides generated in the off-gas lines. - Flexible process capacity from a few kg/h for nuclear waste to 500 kg/h for conventional waste. In December 1991, the CEA's Valduc Center decided to build the first industrial facility based on the IRIS process. Construction work, equipment design and assembly, nonradioactive testing and preparation of the safety report lasted six years. The facility successfully began operating with radioactive waste on March 10, 1999, substantiating the R and D effort. Three other nuclear industrial operators around the world have adopted the IRIS process for future implementation. (authors)

  6. A method of automatic data processing in radiometric control

    International Nuclear Information System (INIS)

    Adonin, V.M.; Gulyukina, N.A.; Nemirov, Yu.V.; Mogil'nitskij, M.I.

    1980-01-01

    Described is the algorithm for automatic data processing in gamma radiography of products. Rapidity due to application of recurrent evaluation is a specific feature of the processing. Experimental data of by-line control are presented. The results obtained have shown the applicability of automatic signal processing to the testing under industrial conditions, which would permit to increase the testing efficiency to eliminate the subjectivism in assessment of testing results and to improve working conditions

  7. Toward industrialization: Supporting the manufacturing processes of superconducting cavities at DESY

    International Nuclear Information System (INIS)

    Buerger, J.; Dammann, J.A.; Hagge, L.; Iversen, J.; Matheisen, A.; Singer, W.

    2006-01-01

    Manufacturing high-gradient superconducting cavities for future accelerators requires detailed knowledge of the entire production process. This knowledge has to be transferred from the laboratories, which are developing the process, to industry in order to achieve reproducible results in the industrial production of large numbers of cavities. The paper introduces DESY's approach to process industrialization based on the use of an engineering data management system (EDMS)

  8. VerifEYE: a real-time meat inspection system for the beef processing industry

    Science.gov (United States)

    Kocak, Donna M.; Caimi, Frank M.; Flick, Rick L.; Elharti, Abdelmoula

    2003-02-01

    Described is a real-time meat inspection system developed for the beef processing industry by eMerge Interactive. Designed to detect and localize trace amounts of contamination on cattle carcasses in the packing process, the system affords the beef industry an accurate, high speed, passive optical method of inspection. Using a method patented by United States Department of Agriculture and Iowa State University, the system takes advantage of fluorescing chlorophyll found in the animal's diet and therefore the digestive track to allow detection and imaging of contaminated areas that may harbor potentially dangerous microbial pathogens. Featuring real-time image processing and documentation of performance, the system can be easily integrated into a processing facility's Hazard Analysis and Critical Control Point quality assurance program. This paper describes the VerifEYE carcass inspection and removal verification system. Results indicating the feasibility of the method, as well as field data collected using a prototype system during four university trials conducted in 2001 are presented. Two successful demonstrations using the prototype system were held at a major U.S. meat processing facility in early 2002.

  9. Vision Systems Illuminate Industrial Processes

    Science.gov (United States)

    2013-01-01

    When NASA designs a spacecraft to undertake a new mission, innovation does not stop after the design phase. In many cases, these spacecraft are firsts of their kind, requiring not only remarkable imagination and expertise in their conception but new technologies and methods for their manufacture. In the realm of manufacturing, NASA has from necessity worked on the cutting-edge, seeking new techniques and materials for creating unprecedented structures, as well as capabilities for reducing the cost and increasing the efficiency of existing manufacturing technologies. From friction stir welding enhancements (Spinoff 2009) to thermoset composites (Spinoff 2011), NASA s innovations in manufacturing have often transferred to the public in ways that enable the expansion of the Nation s industrial productivity. NASA has long pursued ways of improving upon and ensuring quality results from manufacturing processes ranging from arc welding to thermal coating applications. But many of these processes generate blinding light (hence the need for special eyewear during welding) that obscures the process while it is happening, making it difficult to monitor and evaluate. In the 1980s, NASA partnered with a company to develop technology to address this issue. Today, that collaboration has spawned multiple commercial products that not only support effective manufacturing for private industry but also may support NASA in the use of an exciting, rapidly growing field of manufacturing ideal for long-duration space missions.

  10. Ionization detector for aerosol air pollution detection and ventilation control in the metal processing industry

    International Nuclear Information System (INIS)

    Kovacs, Istvan

    1989-01-01

    An indicator and measuring instrument was developed for the continuous monitoring, recording and indicating aerosol mass concentrations in mechanical workshops, like in metal cutting, welding or forming industries, for air pollution control and ventilation of the atmosphere in the workshops. An ionization chamber containing alpha radiation source was modified for this purpose, and a suitable electronic circuit was built for the measurement of ionization current. The calibration of the ionization aerosol detectors was performed for welding smoke and oil mist. They were suitable for continuous monitoring of workshop atmospheres and controlling ventilation equipment, or as portable instruments, for the rapid inspection of air pollution. (R.P.) 4 refs.; 3 figs

  11. Recent developments in nucleonic control systems and on-stream analysers for the mineral and coal industries

    International Nuclear Information System (INIS)

    Mathew, P.J.

    1994-01-01

    Some recent developments in industrial nuclear gauging in Australia are briefly reviewed. Quality control, process control and automation in the mineral and coal industries are based on measurements of the composition and flows of critical process stream. Australia's vast mineral wealth and its importance to the national economy has resulted in CSIRO (Commonwealth Scientific and Industrial Research Organisation) successfully developing and commercializing a variety of nucleonic gauges to meet the needs of the mineral and coal industries. These include gauges for on-line determination of the ash content of coal on conveyor belts, the ash content of solids of weight fraction of coal in slurries, on-stream determination of iron, alumina and manganese in iron ore, bulk analysis of raw feed limestone in the cement industry, and gauges for the measurement of level, moisture, and interfaces. A variety of gauges based on natural radioactivity have also been developed. Instruments based on natural gamma radiation are relatively inexpensive, and free of artificial radiation sources. An on-stream analyser based on natural gamma ray activity has been developed for monitoring the soil content of sugar cane. Significant benefits accrued to industry in using nucleonic gauges are briefly discussed. (author). 18 refs., 8 figs

  12. Improving industrial designers work process by involving user research

    DEFF Research Database (Denmark)

    Dai, Zheng; Ómarsson, Ólafur

    2011-01-01

    With changing times, new technologies and more opinionated consumers, the modern industrial designer has found himself in need of fresher and more up to date approaches in his daily work. In a fast moving industry, the designer needs to keep a thinking process of dynamic and subjective attitude...... will give the grounding for believing that the industrial designer needs to adopt user research methods to a level where he can still continue to work under the very nature of industrial design that has made it a successful practice for the last century. The combing of the approaches and attitude will help....... User research is part of user centered design (UCD). UCD has a reputation for subjective and reflective practice. In this paper there are two example cases. One is conducted by a classical industrial design process, and another is costing half of energy and time in user research. These examples...

  13. Diode laser absorption spectroscopy for process control: Sensor system design methodology

    International Nuclear Information System (INIS)

    Berzins, L.V.; Anklam, T.M.; Chambers, F.; Galanti, S.; Haynam, C.A.; Worden, E.F.

    1995-03-01

    A laser absorption spectroscopy (LAS) system has been developed at Lawrence Livermore National Laboratory (LLNL) for process control. LAS has proven itself to be an accurate and reliable method to monitor both density and composition. In this paper the important features and components of an industrial LAS diagnostic are described. Application of this approach to vaporization processes requires careful selection of the species and transitions to be monitored The relative vapor pressure, hyperfine structure, isotopic frequency shifts, and electronic temperature all effect the selection of a particular transition. In this paper we describe the methodology for choosing the optimal transition or transitions. Coevaporation of a titanium-niobium alloy is used to illustrate the methodology. In a related paper, T.M. Anklam et al describe the application of this diagnostic to monitoring and controlling composition in a physical vapor deposition process of industrial interest

  14. Developing and Managing University-Industry Research Collaborations through a Process Methodology/Industrial Sector Approach

    Science.gov (United States)

    Philbin, Simon P.

    2010-01-01

    A management framework has been successfully utilized at Imperial College London in the United Kingdom to improve the process for developing and managing university-industry research collaborations. The framework has been part of a systematic approach to increase the level of research contracts from industrial sources, to strengthen the…

  15. Industrial applications of computer tomography

    International Nuclear Information System (INIS)

    Sheng Kanglong; Qiang Yujun; Yang Fujia

    1992-01-01

    Industrial computer tomography (CT) and its application is a rapidly developing field of high technology. CT systems have been playing important roles in nondestructive testing (NDT) of products and equipment for a number of industries. Recently, the technique has advanced into the area of industrial process control, bringing even greater benefit to mankind. The basic principles and typical structure of an industrial CT system Descriptions are given of some successful CT systems for either NDT application or process control purposes

  16. Capturing connectivity and causality in complex industrial processes

    CERN Document Server

    Yang, Fan; Shah, Sirish L; Chen, Tongwen

    2014-01-01

    This brief reviews concepts of inter-relationship in modern industrial processes, biological and social systems. Specifically ideas of connectivity and causality within and between elements of a complex system are treated; these ideas are of great importance in analysing and influencing mechanisms, structural properties and their dynamic behaviour, especially for fault diagnosis and hazard analysis. Fault detection and isolation for industrial processes being concerned with root causes and fault propagation, the brief shows that, process connectivity and causality information can be captured in two ways: ·      from process knowledge: structural modeling based on first-principles structural models can be merged with adjacency/reachability matrices or topology models obtained from process flow-sheets described in standard formats; and ·      from process data: cross-correlation analysis, Granger causality and its extensions, frequency domain methods, information-theoretical methods, and Bayesian ne...

  17. Logistic paradigm for industrial solid waste treatment processes

    OpenAIRE

    Janusz Grabara; Ioan Constantin Dima

    2014-01-01

    Due to the fact that industrial waste are a growing problem, both economic and environmental as their number is increasing every year, it is important to take measures to correctly dealing wi th industrial waste. This article presents the descriptive model of logistics processes concerning the management of industrial waste. In this model the flow of waste begins in the place of production and ends at their disposal. The article presents the concept of logistics model in graphical form...

  18. EPA proposes options for control of industrial radioactivity

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The US Environmental Protection Agency on February 28 proposed four alternative approaches for controlling radionuclides from a dozen industrial sources. The proposal outlines four alternatives for regulating toxic air pollutant. The proposal is designed to elicit comment on such regulatory issues as: What are acceptable health risks? What are appropriate criteria for establishing a margin of safety? What are the technological feasibility and the costs of regulatory controls? How should uncertainty by considered? EPA intends to use the approach finally selected as the framework for future hazardous-air pollutant-control decisions. Industry uses hundreds of distinct radionuclides in solid, liquid and gaseous forms. Industrial radionuclide emissions occur either as a result of an inability to contain the radioactive materials or as an unintended consequence of other activity, such as radionuclide emissions from mining or milling

  19. Fault Diagnosis of Complex Industrial Process Using KICA and Sparse SVM

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2013-01-01

    Full Text Available New approaches are proposed for complex industrial process monitoring and fault diagnosis based on kernel independent component analysis (KICA and sparse support vector machine (SVM. The KICA method is a two-phase algorithm: whitened kernel principal component analysis (KPCA. The data are firstly mapped into high-dimensional feature subspace. Then, the ICA algorithm seeks the projection directions in the KPCA whitened space. Performance monitoring is implemented through constructing the statistical index and control limit in the feature space. If the statistical indexes exceed the predefined control limit, a fault may have occurred. Then, the nonlinear score vectors are calculated and fed into the sparse SVM to identify the faults. The proposed method is applied to the simulation of Tennessee Eastman (TE chemical process. The simulation results show that the proposed method can identify various types of faults accurately and rapidly.

  20. The application of nuclear equipment to measurement and control in the steel industry

    International Nuclear Information System (INIS)

    Van Schalkwyk, J.

    1976-01-01

    In this paper, some of the reasons for utilising equipment which makes use of nuclear radiation for the control of processes in the steel industry will be discussed. Two applications will be analysed to demonstrate the reasoning and to highlight some of the factors and principles [af

  1. Energy efficiency technologies in cement and steel industry

    Science.gov (United States)

    Zanoli, Silvia Maria; Cocchioni, Francesco; Pepe, Crescenzo

    2018-02-01

    In this paper, Advanced Process Control strategies aimed at energy efficiency achievement and improvement in cement and steel industry are proposed. A flexible and smart control structure constituted by several functional modules and blocks has been developed. The designed control strategy is based on Model Predictive Control techniques, formulated on linear models. Two industrial control solutions have been developed, oriented to energy efficiency and process control improvement in cement industry clinker rotary kilns (clinker production phase) and in steel industry billets reheating furnaces. Tailored customization procedures for the design of ad hoc control systems have been executed, based on the specific needs and specifications of the analysed processes. The installation of the developed controllers on cement and steel plants produced significant benefits in terms of process control which resulted in working closer to the imposed operating limits. With respect to the previous control systems, based on local controllers and/or operators manual conduction, more profitable configurations of the crucial process variables have been provided.

  2. RISKS OF LOSING CONTROLLABILITY WHILE LIBERALIZING THE ELECTRIC POWER INDUSTRY

    Directory of Open Access Journals (Sweden)

    Yu. S. Petrusha

    2015-01-01

    Full Text Available The paper analyses controllability qua a reliability characteristic of the electric-power grid controlling system. The following notions are used: the object (environment susceptibility towards the control stimuli, the controlling system adequacy, environment of the secure functioning. The author points to the necessity of accounting for the limitations of technological and organizational character. While liberalizing the electric-power industry, the backbone control-principle “the industry functioning reliability” is being replaced with the principle of “profit-making” that requires complete restatement of the control philosophy.The conflict between commercial benefit gaining and the reliability assurance expenses leads to losing controllability in all the managerial links and to probable catastrophic consequences. The recapitulation of the Russian Federation power industry privatization substantiates concerns of the liberal ideas poor survivability in the ex-Soviet territories. The results of degradation of the secure-functioning environment demonstrate affinity of the mechanisms that triggered the Chernobyl NPP, Fukusima NPP, and Sayan-Shushenskya HPP disasters. Securing reliability of the strategic objects leaves the competence boundaries of the electricpower industry.The topical issue of Belorussian electric-power industry functioning and developing is the combination of technical re-equipment (developing the operational dispatch management and the control-system organizational modernizing in general with gradual and controllable transition to the market mechanisms of functioning. Herewith, preserving the state monopoly on regime provision for the operation of the electric-power system should not leave out the industry appeal for outside investment and is regulated by the optimal degree and intensity of the state participation in governing the electric-power supply industry. The distinction of privatization models and the stages

  3. Considerations about the licensing process of special nuclear industrial facilities

    Energy Technology Data Exchange (ETDEWEB)

    Talarico, M.A., E-mail: talaricomarco@hotmail.com [Marinha do Brasil, Rio de Janeiro, RJ (Brazil). Coordenacao do Porgrama de Submarino com Propulsao Nuclear; Melo, P.F. Frutuoso e [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  4. Considerations about the licensing process of special nuclear industrial facilities

    International Nuclear Information System (INIS)

    Talarico, M.A.; Melo, P.F. Frutuoso e

    2015-01-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  5. Nuclear technology in the measurement and control of industrial processes: Pt. 1

    International Nuclear Information System (INIS)

    De Jesus, A.S.M.

    1987-01-01

    The industrial sector was amongst the first to exploit the use of radioisotopes as production and research tools when they became available in significant quantities for industrial use during the early fifties. The following three decades have seen, throughout the world and in South Africa as well, a large and continuing growth in the application of radioisotopes and related technology. In parallel with their nuclear energy research program, the Atomic Energy Corporation of South Africa (AEC), have laid heavy emphasis on developing a considerable pool of expertise specifically oriented to satisfying South African industrial needs. In this article some of the investigations conducted for industry are briefly described: assessment of gold purity, boron distribution in steel, casting-powder inclusions in steel, behaviour of potassium in a blast furnace and fast determination of fluorspar in tailings

  6. Local learning processes in Malaysian industry

    DEFF Research Database (Denmark)

    Wangel, Arne

    1999-01-01

    Local learning processes are a vital part of any dynamic assimilation of transferred technology. The paper raises the question about the interaction between the training paradigms, which transnational corporations introduce in their subsidiaries in Malaysia and the specific basis for learning...... of Malaysian labour. Experiences from Malaysian industry indicate that local learning processes are shaped, among other things, by the concept of knowledge in a particular training programme, labour market structures, and learning cultures....

  7. Statistical Process Control. Impact and Opportunities for Ohio.

    Science.gov (United States)

    Brown, Harold H.

    The first purpose of this study is to help the reader become aware of the evolution of Statistical Process Control (SPC) as it is being implemented and used in industry today. This is approached through the presentation of a brief historical account of SPC, from its inception through the technological miracle that has occurred in Japan. The…

  8. Principles of development of the industry of technogenic waste processing

    Directory of Open Access Journals (Sweden)

    Maria A. Bayeva

    2014-01-01

    Full Text Available Objective to identify and substantiate the principles of development of the industry of technogenic waste processing. Methods systemic analysis and synthesis method of analogy. Results basing on the analysis of the Russian and foreign experience in the field of waste management and environmental protection the basic principles of development activities on technogenic waste processing are formulated the principle of legal regulation the principle of efficiency technologies the principle of ecological safety the principle of economic support. The importance of each principle is substantiated by the description of the situation in this area identifying the main problems and ways of their solution. Scientific novelty the fundamental principles of development of the industry of the industrial wastes processing are revealed the measures of state support are proposed. Practical value the presented theoretical conclusions and proposals are aimed primarily on theoretical and methodological substantiation and practical solutions to modern problems in the sphere of development of the industry of technogenic waste processing.

  9. Marketing Strategy Implementation Process in the Creative Industry of Video Games

    Directory of Open Access Journals (Sweden)

    Maryangela Drumond de Abreu Negrão

    2013-06-01

    Full Text Available This article contributes to the understanding of marketing strategy process when it presents the organizational and human factors that support the processes of implementation, identified in a qualitative study conducted in the creative industry of video game development. The research, a case study applied to four video and computer game companies was based on the Sashittal and Jassawalla (2001 marketing strategic model, and on the concepts of the creative behavior and innovation in organizations proposed by Amabile (1997. The analysis suggests that the marketing strategy implementation is anchored in innovative administrative process, creative skills and the adoption of modern control technologies. It was observed that a vision that associates production, process, the market orientation and the delivery of value-adding is essential for the implementation of strategies in creative and innovative organizational structures. The research contributes to the marketing strategy implementation studies in creative and innovative environments under the approach of smaller organizations. It also contributes with the marketing strategy theory when it suggests that the analysis of the process, the control and the management skills be included as categories into the theoretical model in future investigations.

  10. On-line near infrared spectroscopy as a Process Analytical Technology (PAT) tool to control an industrial seeded API crystallization.

    Science.gov (United States)

    Schaefer, C; Lecomte, C; Clicq, D; Merschaert, A; Norrant, E; Fotiadu, F

    2013-09-01

    The final step of an active pharmaceutical ingredient (API) manufacturing synthesis process consists of a crystallization during which the API and residual solvent contents have to be quantified precisely in order to reach a predefined seeding point. A feasibility study was conducted to demonstrate the suitability of on-line NIR spectroscopy to control this step in line with new version of the European Medicines Agency (EMA) guideline [1]. A quantitative method was developed at laboratory scale using statistical design of experiments (DOE) and multivariate data analysis such as principal component analysis (PCA) and partial least squares (PLS) regression. NIR models were built to quantify the API in the range of 9-12% (w/w) and to quantify the residual methanol in the range of 0-3% (w/w). To improve the predictive ability of the models, the development procedure encompassed: outliers elimination, optimum model rank definition, spectral range and spectral pre-treatment selection. Conventional criteria such as, number of PLS factors, R(2), root mean square errors of calibration, cross-validation and prediction (RMSEC, RMSECV, RMSEP) enabled the selection of three model candidates. These models were tested in the industrial pilot plant during three technical campaigns. Results of the most suitable models were evaluated against to the chromatographic reference methods. Maximum relative bias of 2.88% was obtained about API target content. Absolute bias of 0.01 and 0.02% (w/w) respectively were achieved at methanol content levels of 0.10 and 0.13% (w/w). The repeatability was assessed as sufficient for the on-line monitoring of the 2 analytes. The present feasibility study confirmed the possibility to use on-line NIR spectroscopy as a PAT tool to monitor in real-time both the API and the residual methanol contents, in order to control the seeding of an API crystallization at industrial scale. Furthermore, the successful scale-up of the method proved its capability to be

  11. Contribution of expert systems to data processing in non-destructive control

    International Nuclear Information System (INIS)

    Augendre, H.; Perron, M.C.

    1990-01-01

    The increase of non-destructive control in industrial applications requires the development of new data processing methods. The expert system approach is able to provide signal modelling means which are closer to the human behaviour. Such methods used in more traditional programs lead to substantial improvements. These investigations come within our design to apply sophisticated methods to industrial non-destructive control. For defect characterization purposes in ultrasonic control, various supervised learning methods have been investigated in an experimental study. The traditional approach is concerned with statistics based methods, whereas the second one lies in learning logical decision rules valid within a numerical description space [fr

  12. Potential industrial market for process heat from nuclear reactors

    International Nuclear Information System (INIS)

    Barnes, R.W.

    1976-07-01

    A specific segment of industrial process heat use has been examined in detail to identify individual plant locations throughout the United states where nuclear generated steam may be a viable alternative. Five major industries have been studied: paper, chemicals, petroleum, rubber, and primary metals. For these industries, representing 75 percent of the total industrial steam consumption, the individual plant locations within the U.S. using steam in large quantities have been located and characterized as to fuel requirements

  13. Mathematical Modelling to Predict Oxidative Behaviour of Conjugated Linoleic Acid in the Food Processing Industry

    Directory of Open Access Journals (Sweden)

    Aitziber Ojanguren

    2013-06-01

    Full Text Available Industrial processes that apply high temperatures in the presence of oxygen may compromise the stability of conjugated linoleic acid (CLA bioactive isomers. Statistical techniques are used in this study to model and predict, on a laboratory scale, the oxidative behaviour of oil with high CLA content, controlling the limiting factors of food processing. This modelling aims to estimate the impact of an industrial frying process (140 °C, 7 L/h air on the oxidation of CLA oil for use as frying oil instead of sunflower oil. A factorial design was constructed within a temperature (80–200 °C and air flow (7–20 L/h range. Oil stability index (Rancimat method was used as a measure of oxidation. Three-level full factorial design was used to obtain a quadratic model for CLA oil, enabling the oxidative behaviour to be predicted under predetermined process conditions (temperature and air flow. It is deduced that temperatures applied in food processes affect the oxidation of CLA to a greater extent than air flow. As a result, it is estimated that the oxidative stability of CLA oil is less resistant to industrial frying than sunflower oil. In conclusion, thanks to the mathematical model, a good choice of the appropriate industrial food process can be selected to avoid the oxidation of the bioactive isomers of CLA, ensuring its functionality in novel applications.

  14. Specification process reengineering: concepts and experiences from Danish industry

    DEFF Research Database (Denmark)

    Hansen, Benjamin Loer; Riis, Jesper; Hvam, Lars

    2003-01-01

    This paper presents terminologies and concepts related to the IT automation of specification processes in companies manufacturing custom made products. Based on 11 cases from the Danish industry the most significant development trends are discussed.......This paper presents terminologies and concepts related to the IT automation of specification processes in companies manufacturing custom made products. Based on 11 cases from the Danish industry the most significant development trends are discussed....

  15. Global process industry initiatives to reduce major accident hazards

    Energy Technology Data Exchange (ETDEWEB)

    Pitblado, Robin [DNV Energy Houston, TX (United States). SHE Risk Management; Pontes, Jose [DNV Energy Rio de Janeiro, RJ (Brazil). Americas Region; Oliveira, Luiz [DNV Energy Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Since 2000, disasters at Texas City, Toulouse, Antwerp, Buncefield, P-36 and several near total loss events offshore in Norway have highlighted that major accident process safety is still a serious issue. Hopes that Process Safety Management or Safety Case regulations would solve these issues have not proven true. The Baker Panel recommended to BP several actions mainly around leadership, incentives, metrics, safety culture and more effective implementation of PSM systems. In Europe, an approach built around mechanical integrity and safety barriers, especially relating to technical safety systems, is being widely adopted. DNV has carried out a global survey of process industry initiatives, by interview and by literature review, for both upstream and downstream activities, to identify what the industry itself is planning to implement to enhance process safety in the next 5 - 10 years. This shows that an approach combining Baker Panel and EU barrier approaches and some nuclear industry real-time risk management approaches might be the best means to achieve a factor of 3-4 improvement in process safety. (author)

  16. Processes controlling PAH leaching from two industrial sites

    Energy Technology Data Exchange (ETDEWEB)

    Jouannin, F. [Lab. d' Analyse Environmental des Procedes et des Systemes Industrielles, INSA de Lyon, Villeurbanne (France); Barna, R. [Lab. d' Analyse Environmental des Procedes et des Systemes Industrielles, INSA de Lyon, Villeurbanne (France)]|[Centre Energetique Environnement, Ecole des Mines d' Albi, Albi (France); Vernus, E. [POLDEN, INSA de Lyon, Villeurbanne (France)

    2002-07-01

    The persistence of hydrophobic organic pollutants like PAHs in weathered contaminated soils is a major impediment to their successful remediation. This persistence is caused by slow desorption and/or dissolution processes, resulting in small release rates of contaminants and therefore low concentrations in groundwater (Grathwohl, 1998). Laboratory experiments to assess the PAHs release are realised in stirred batch or with traditional percolation column. These two kind of tests show their limits in different cases like particulate disagregation by stirring or in the difficulty to control the soil/solution contact time in column experiments. Consequently a new experimental procedure is proposed, in which the compacted immobile soil is in contact with the eluate recycled in an inner loop. Two different soils containing HAPs (high and low polluted) were tested according to the new procedure. Different extracting solutions have been used: demineralised water, NaN{sub 3} and CaCl{sub 2} solutions. A water/methanol mixture has also been used to increase pollutants release by increasing their solubility. This is a first step in the elaboration of an assessment methodology of the PAHs mobility in soils. (orig.)

  17. Simulation and Development of Internal Model Control Applications in the Bayer Process

    Science.gov (United States)

    Colombé, Ph.; Dablainville, R.; Vacarisas, J.

    Traditional PID feedback control system is limited in its use in the Bayer cycle due to the important and omnipresent time delays which can lead to stability problems and sluggish response. Advanced modern control techniques are available, but suffer in an industrial environment from a lack of simplicity and robustness. In this respect the Internal Model Control (IMC) method may be considered as an exception. After a brief review of the basic theoretical principles behind IMC, an IMC scheme is developed to work with single-input, single-output, discrete-time, nonlinear systems. Two applications of IMC in the Bayer process, both in simulations and on industrial plants, are then described: control of the caustic soda concentration of the aluminate liquor and control of the A12O3/Na20 caust. ratio of the digested slurry, Finally, the results obtained make this technique quite attractive for the alumina industry.

  18. Industrial processes control with He-Ne laser devices for aligning and guiding

    International Nuclear Information System (INIS)

    Ursu, I.; Ivascu, M.; Vasiliu, V.; Ristici, M.; Gradisteanu, I.; Vilcu, G.; Pelle, V.; Botezatu, I.; Vasnea, V.; Orac, N.; Fernea, V.

    1988-03-01

    A brief presentation of the He-Ne laser devices main application fields in the national economy is given. The utilization of the devices we did in: industrial constructions, metalurgy, hydroelectric arrangements, wood industry, ship's construction, and other is presented. (authors)

  19. Modified Smith-predictor multirate control utilizing secondary process measurements

    Directory of Open Access Journals (Sweden)

    Rolf Ergon

    2007-01-01

    Full Text Available The Smith-predictor is a well-known control structure for industrial time delay systems, where the basic idea is to estimate the non-delayed process output by use of a process model, and to use this estimate in an inner feedback control loop combined with an outer feedback loop based on the delayed estimation error. The model used may be either mechanistic or identified from input-output data. The paper discusses improvements of the Smith-predictor for systems where also secondary process measurements without time delay are available as a basis for the primary output estimation. The estimator may then be identified also in the common case with primary outputs sampled at a lower rate than the secondary outputs. A simulation example demonstrates the feasibility and advantages of the suggested control structure.

  20. Simplification of Process Integration Studies in Intermediate Size Industries

    DEFF Research Database (Denmark)

    Dalsgård, Henrik; Petersen, P. M.; Qvale, Einar Bjørn

    2002-01-01

    associated with a given process integration study in an intermediate size industry. This is based on the observation that the systems that eventually result from a process integration project and that are economically and operationally most interesting are also quite simple. Four steps that may be used......It can be argued that the largest potential for energy savings based on process integration is in the intermediate size industry. But this is also the industrial scale in which it is most difficult to make the introduction of energy saving measures economically interesting. The reasons......' and therefore lead to non-optimal economic solutions, which may be right. But the objective of the optimisation is not to reach the best economic solution, but to relatively quickly develop the design of a simple and operationally friendly network without losing too much energy saving potential. (C) 2002...

  1. Impact of Autocorrelation on Principal Components and Their Use in Statistical Process Control

    DEFF Research Database (Denmark)

    Vanhatalo, Erik; Kulahci, Murat

    2015-01-01

    A basic assumption when using principal component analysis (PCA) for inferential purposes, such as in statistical process control (SPC), is that the data are independent in time. In many industrial processes, frequent sampling and process dynamics make this assumption unrealistic rendering sampled...

  2. Regulatory inspection: a powerful tool to control industrial radioactive sources

    International Nuclear Information System (INIS)

    Silva, F.C.A. da; Leocadio, J.C.; Ramalho, A.T.

    2008-01-01

    An important contribution for Brazilian development, especially for the quality control of products, is the use of radiation sources by conventional industries. There are in Brazil roughly 3,000 radioactive sources spread out among 950 industries. The main industrial practices involved are: industrial radiography, industrial irradiators, industrial accelerators, well logging petroleum and nuclear gauges. More than 1,800 Radiation Protection Officers (RPOs) were qualified to work in these practices. The present work presents a brief description of the safety control over industrial radioactive installations performed by the Brazilian Regulatory Authority, i.e. the National Commission of Nuclear Energy (CNEN). This paper also describes the national system for radiation safety inspections, the regulation infrastructure and the national inventory of industrial installations. The inspections are based on specific indicators, and their periodicity depends on the risk and type of installation. The present work discusses some relevant aspects that must be considered during the inspections, in order to make the inspections more efficient in controlling the sources. One of these aspects regards the evaluation of the storage place for the sources, a very important parameter for preventing future risky situations. (author)

  3. QUANTIFICATION OF THE DECISIONS OF CONTROL AND AUDIT IN INVENTORY MANAGEMENT IN CEMENT INDUSTRY ENTERPRISES

    OpenAIRE

    Sylwia £êgowik-Œwi¹cik

    2011-01-01

    Inventory management in enterprises of cement industry necessitates the assessment of the level of risk which is generated by production inventory. The processes of control and auditing allow for planning, monitoring and organization of inventory management in the analysed business entities. This paper is aimed at presentation of the phase of preparation of audit activities in the area of inventory and verification of model solutions for the processes of control and audit in terms of inventor...

  4. Switching and optimizing control for coal flotation process based on a hybrid model

    Science.gov (United States)

    Dong, Zhiyong; Wang, Ranfeng; Fan, Minqiang; Fu, Xiang

    2017-01-01

    Flotation is an important part of coal preparation, and the flotation column is widely applied as efficient flotation equipment. This process is complex and affected by many factors, with the froth depth and reagent dosage being two of the most important and frequently manipulated variables. This paper proposes a new method of switching and optimizing control for the coal flotation process. A hybrid model is built and evaluated using industrial data. First, wavelet analysis and principal component analysis (PCA) are applied for signal pre-processing. Second, a control model for optimizing the set point of the froth depth is constructed based on fuzzy control, and a control model is designed to optimize the reagent dosages based on expert system. Finally, the least squares-support vector machine (LS-SVM) is used to identify the operating conditions of the flotation process and to select one of the two models (froth depth or reagent dosage) for subsequent operation according to the condition parameters. The hybrid model is developed and evaluated on an industrial coal flotation column and exhibits satisfactory performance. PMID:29040305

  5. Radiation processing of natural polymers for industrial and agricultural applications

    International Nuclear Information System (INIS)

    Hegazy, El-Sayed A.; AbdEl-Rehim, H.; Diaa, D.A.; El-Barbary, A.

    2008-01-01

    Radiation induced degradation technology is a new and promising application of ionizing radiation to develop viscose, pulp, paper, food preservation, pharmaceutical production, and natural bioactive agents industries. Controlling the degree of degradation, uniform molecular weight distribution, saving achieved in the chemicals (used in conventional methods) on a cost basis, and environmentally friendly process are the beneficial effects of using radiation technology in these industries. However, for some development countries such technology is not economic. Therefore, a great efforts should be done to reduce the cost required for such technologies. One of the principle factors for reducing the cost is achieving the degradation at low irradiation doses. The addition of some additives such as potassium per-sulfate (KPS), ammonium per-sulfate (APS), or H 2 O 2 to natural polymers (carboxymethylcellulose (CMC), chitosan, carrageenan and Na-alginate) during irradiation process accelerates their degradation. The highest degradation rate of polysaccharides obtained when APS was used. The end product of irradiated CMC, chitosan, carrageenan and Na-alginate may be used as food additive or benefited in agricultural purposes. On the other hand, radiation crosslinking of PAAm or PNIPAAm is affected by the presence of natural polymer like CMC-Na and carrageenan due to their degradability which could be controlled according to its concentration in the bulk medium and irradiation dose. Accordingly, the gel content, thermo-sensitivity (LCST) and swelling properties of PNIPAAm based natural polymers could be controlled. The swelling of the prepared copolymer hydrogels was investigated for its possible use in personal care articles particularly diapers or as carriers for drug delivery systems. The prepared crosslinked copolymers possessed high and fast swelling properties in simulated urine media and the swelling ratios of CMC-Na/PAAm gels in urine are acceptable for diaper

  6. Industrial process heat from CANDU reactors

    International Nuclear Information System (INIS)

    Hilborn, J.S.; Seddon, W.A.; Barnstaple, A.G.

    1980-08-01

    It has been demonstrated on a large scale that CANDU reactors can produce industrial process steam as well as electricity, reliably and economically. The advantages of cogeneration have led to the concept of an Industrial Energy Park adjacent to the Bruce Nuclear Power Development in the province of Ontario. For steam demands between 300,000 and 500,00 lb/h (38-63 kg/s) and an annual load factor of 80%, the estimated cost of nuclear steam at the Bruce site boundary is $3.21/MBtu ($3.04GJ), which is at least 30% cheaper than oil-fired steam at the same site. The most promising near term application of nuclear heat is likely to be found within the energy-intensive chemical industry. Nuclear energy can substitute for imported oil and coal in the eastern provinces if the price remains competitive, but low cost coal and gas in the western provinces may induce energy-intensive industries to locate near those sources of energy. In the long term it may be feasible to use nuclear heat for the mining and extraction of oil from the Alberta tar sands. (auth)

  7. Industrial Maturity of FR Fuel Cycle Processes and Technologies

    International Nuclear Information System (INIS)

    Bruezière, Jérôme

    2013-01-01

    FR fuel cycle processes and technologies have already been proven industrially for Oxide Fuel, and to a lesser extent for metal fuel. In addition, both used oxide fuel reprocessing and fresh oxide fuel manufacturing benefit from similar industrial experience currently deployed for LWR. Alternative fuel type will have to generate very significant benefit in reactor ( safety, cost, … ) to justify corresponding development and industrialization costs

  8. Decolorization of Industrial Waste Using Fenton Process and Photo Fenton

    OpenAIRE

    Wardiyati, Siti; Dewi, Sari Hasnah; Fisli, Adel

    2013-01-01

    Industrial waste water decolorization has been done using the method of Fenton and Photo Fenton. The experiment was conducted in order to obtain the optimum process conditions for industrial waste treatment method with Fenton and Photo Fenton. Industrial waste used in this experiment waste of blue batik making process derived from Rara Djograng Batik Yogyakarta. Factors were studied in this research are the effect of the amount of catalyst FeSO4.7H2O, the amount of oxidant H2O2, and the time ...

  9. Exergy analysis in industrial food processing

    NARCIS (Netherlands)

    Zisopoulos, F.K.

    2016-01-01

    The sustainable provision of food on a global scale in the near future is a very serious challenge. This thesis focuses on the assessment and design of sustainable industrial food production chains and processes by using the concept of exergy which is an objective metric based on the first and

  10. Determinants of job stress in chemical process industry: A factor analysis approach.

    Science.gov (United States)

    Menon, Balagopal G; Praveensal, C J; Madhu, G

    2015-01-01

    Job stress is one of the active research domains in industrial safety research. The job stress can result in accidents and health related issues in workers in chemical process industries. Hence it is important to measure the level of job stress in workers so as to mitigate the same to avoid the worker's safety related problems in the industries. The objective of this study is to determine the job stress factors in the chemical process industry in Kerala state, India. This study also aims to propose a comprehensive model and an instrument framework for measuring job stress levels in the chemical process industries in Kerala, India. The data is collected through a questionnaire survey conducted in chemical process industries in Kerala. The collected data out of 1197 surveys is subjected to principal component and confirmatory factor analysis to develop the job stress factor structure. The factor analysis revealed 8 factors that influence the job stress in process industries. It is also found that the job stress in employees is most influenced by role ambiguity and the least by work environment. The study has developed an instrument framework towards measuring job stress utilizing exploratory factor analysis and structural equation modeling.

  11. Control of a nonlinear ice cream crystallization process

    OpenAIRE

    Casenave, Céline; Dochain, Denis; Alvarez, Graciela; Arellano, Marcela; Benkhelifa, Hayat; Leducq, Denis

    2013-01-01

    International audience; In the ice cream industry, the type of final desired product (large cartons (sqrounds) or ice creams on a stick) determine the viscosity at which the ice cream has to be produced. One of the objectives of the ice cream crystallization processes is therefore to produce an ice cream of specified viscosity. In this paper, a nonlinear control strategy is proposed for the control of the viscosity of the ice cream in a continuous crystallizer. It has been designed on the bas...

  12. Status and prospect of solar heat for industrial processes in China

    DEFF Research Database (Denmark)

    jia, Teng; Huang, Junpeng; Li, Rui

    2018-01-01

    In the past decades, solar heat for industrial processes (SHIP) have been rapidly developed and applied, and also getting more attention in the world. China is still the largest energy consumer with industry accounting for almost 70% of total energy consumption. Low- and medium-temperature heat...... takes up 45% of process heat, holding 50%-70% of industrial energy consumption, which provides a favorable condition for solar application. China has built some demonstration projects to make industrial processes well integrated with solar heating systems. This paper briefly presents the status of China......'s energy consumption, integration of SHIP, as well as available solar technologies. 10 typical industrial sectors are selected to specifically describe their potential of SHIP. Moreover, 26 SHIP cases covering the 10 sectors in China are presented by field researches, with their capacity of energy saving...

  13. Status and prospect of solar heat for industrial processes in China

    DEFF Research Database (Denmark)

    jia, Teng; Huang, Junpeng; Li, Rui

    2017-01-01

    In the past decades, solar heat for industrial processes (SHIP) have been rapidly developed and applied, and also getting more attention in the world. China is still the largest energy consumer with industry accounting for almost 70% of total energy consumption. Low- and medium-temperature heat...... takes up 45% of process heat, holding 50%-70% of industrial energy consumption, which provides a favorable condition for solar application. China has built some demonstration projects to make industrial processes well integrated with solar heating systems. This paper briefly presents the status of China......'s energy consumption, integration of SHIP, as well as available solar technologies. 10 typical industrial sectors are selected to specifically describe their potential of SHIP. Moreover, 26 SHIP cases covering the 10 sectors in China are presented by field researches, with their capacity of energy saving...

  14. Ergonomic Redesign of an Industrial Control Panel

    Directory of Open Access Journals (Sweden)

    S Raeisi

    2016-07-01

    Full Text Available Operator's role in industrial control centers takes place in time, which is one of the most important determinants of whether an expected action is going to be successful or not. In certain situations, due to the complex nature of the work, the existing interfaces and already prepared procedures do not meet the dynamic requirements of operator's cognitive demands, making the control tasks unnecessarily difficult. This study was conducted to identify ergonomic issues with a specific industrial control panel, and redesign its layout and elements to enhance its usability. Task and link analysis methodologies were implemented. All essential functions and supporting operations were identified at the required trivial levels. Next, the weight of any possible link between the elements of the panel was computed as a composite index of frequency and importance. Finally, all components were rearranged within a new layout, and a computerized mockup was generated. A total of 8 primary tasks was identified, including 4 system failure handling tasks, switching between manual and automated modes, and 3 types of routine vigilance and control tasks. These tasks were broken down into 28 functions and 145 supporting operations, accordingly. Higher link values were observed between hand rest position and 2 elements. Also, 6 other components showed robust linkages. In conclusion, computer modeling can reduce the likelihood of accidents and near misses in industrial control rooms by considering the operators' misperception or mental burden and correcting poor design of the panels and inappropriate task allocation.

  15. Architectural setup for online monitoring and control of process parameters in robot-based ISF

    Science.gov (United States)

    Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd

    2017-10-01

    This article describes new developments in an incremental, robot-based sheet metal forming process (Roboforming) for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet forming (ISF) machines, this system offers high geometrical design flexibility without the need of any part-dependent tools. However, the industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors introduce a new architectural setup extending the current one by a superordinate process control. This sophisticated control consists of two modules, i.e. the compensation of the two industrial robots' low structural stiffness as well as a combined force/torque control. It is assumed that this contribution will lead to future research and development projects in which the authors will thoroughly investigate ISF process parameters influencing the geometric accuracy of the forming results.

  16. Direct adaptive control of a PUMA 560 industrial robot

    Science.gov (United States)

    Seraji, Homayoun; Lee, Thomas; Delpech, Michel

    1989-01-01

    The implementation and experimental validation of a new direct adaptive control scheme on a PUMA 560 industrial robot is described. The testbed facility consists of a Unimation PUMA 560 six-jointed robot and controller, and a DEC MicroVAX II computer which hosts the Robot Control C Library software. The control algorithm is implemented on the MicroVAX which acts as a digital controller for the PUMA robot, and the Unimation controller is effectively bypassed and used merely as an I/O device to interface the MicroVAX to the joint motors. The control algorithm for each robot joint consists of an auxiliary signal generated by a constant-gain Proportional plus Integral plus Derivative (PID) controller, and an adaptive position-velocity (PD) feedback controller with adjustable gains. The adaptive independent joint controllers compensate for the inter-joint couplings and achieve accurate trajectory tracking without the need for the complex dynamic model and parameter values of the robot. Extensive experimental results on PUMA joint control are presented to confirm the feasibility of the proposed scheme, in spite of strong interactions between joint motions. Experimental results validate the capabilities of the proposed control scheme. The control scheme is extremely simple and computationally very fast for concurrent processing with high sampling rates.

  17. Characterization of industrial process waste heat and input heat streams

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  18. How Data Will Transform Industrial Processes: Crowdsensing, Crowdsourcing and Big Data as Pillars of Industry 4.0

    Directory of Open Access Journals (Sweden)

    Virginia Pilloni

    2018-03-01

    Full Text Available We are living in the era of the fourth industrial revolution, namely Industry 4.0. This paper presents the main aspects related to Industry 4.0, the technologies that will enable this revolution, and the main application domains that will be affected by it. The effects that the introduction of Internet of Things (IoT, Cyber-Physical Systems (CPS, crowdsensing, crowdsourcing, cloud computing and big data will have on industrial processes will be discussed. The main objectives will be represented by improvements in: production efficiency, quality and cost-effectiveness; workplace health and safety, as well as quality of working conditions; products’ quality and availability, according to mass customisation requirements. The paper will further discuss the common denominator of these enhancements, i.e., data collection and analysis. As data and information will be crucial for Industry 4.0, crowdsensing and crowdsourcing will introduce new advantages and challenges, which will make most of the industrial processes easier with respect to traditional technologies.

  19. [Food processing industry--the salt shock to the consumers].

    Science.gov (United States)

    Doko Jelinić, Jagoda; Nola, Iskra Alexandra; Andabaka, Damir

    2010-05-01

    Industrial food production and processing is necessarily connected with the use of salt. Salt or sodium chloride is used as a preservative, spice, agent for color maintenance, texture, and to regulate fermentation by stopping the growth of bacteria, yeast and mold. Besides kitchen salt, other types of salt that also contain sodium are used in various technological processes in food preparing industry. Most of the "hidden" salt, 70%-75%, can be brought to the body by using industrial food, which, unfortunately, has been increasingly used due to the modern way of life. Bread and bakery products, meat products, various sauces, dried fish, various types of cheese, fast food, conserved vegetables, ready-made soups and food additives are the most common industrial foods rich in sodium. Many actions have been taken all over the world to restrict salt consumption. The World Health Organization recommends the upper limit of salt input of 5 g per day. These actions appeal to food industry to reduce the proportion of salt in their products. Besides lower salt addition during manufacture, food industry can use salt substitutes, in particular potassium chloride (KCl), in combination with additives that can mask the absence of salt, and flavor intensifiers that also enhance the product salinity. However, food industry is still quite resistant to reducing salt in their products for fear from losing profits.

  20. The automatic control in industry

    OpenAIRE

    Milla Lostaunau, Luis

    2014-01-01

    The advancement of technology has made essential use of the computer industry as a herrameinta control. {on your application is becoming more intensive, and for that reason this article points out the historical development of its application, and the potential to be had in the future. el avance de la tecnología ha hecho imprescindible el uso de la computadora en la industria como una herrameinta de control. su aplicaci{on es cada vez más intensiva, y por tal motivo este artículo señala ...

  1. Cause and control: education and training of professional industrial hygienists for 2020.

    Science.gov (United States)

    Sherwood, R J

    1992-06-01

    By the year 2020, the environmental movement will have established a recognized profession, expert at studying deleterious effects in the working and public domains. Environmental science practitioners will be better able to identify and relate ill effects to the presence of adverse agents in the environment; they will not, however, necessarily be skilled at developing systems for control. Industrial hygienists should provide the unique and special skills required to establish economically optimum control systems. Industrial hygiene should by then have been redefined to emphasize this critical role of its professional members. A new orientation for education is therefore proposed to provide a sound basis for the professional needs of industrial hygienists who should be at the peak of their careers in 2020. Members of the profession should then be the leaders in research on, and practice of, the science and engineering of design, installation, and monitoring of control systems for occupational and environmental hazards. The preferred educational background for entry to the profession should be some branch of engineering, which by then must have recovered its lost status and be divided into fewer specialized compartments than it is today. Engineering should provide a broader base for students entering professional education in this field, who will be more concerned with prevention and engineering control of both occupational and environmental hazards, rather than with measurement and epidemiology of the biological and toxicologic sciences. Preparation for professional work in industrial hygiene will call for the specialized education of engineers required to design and maintain processes that minimize the use, production, or generation of hazardous substances.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. B827 Chemical Synthhesis Project - Industrial Control System Integration - Statement of Work & Specification with Attachments 1-14

    Energy Technology Data Exchange (ETDEWEB)

    Wade, F. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-21

    The Chemical Synthesis Pilot Process at the Lawrence Livermore National Laboratory (LLNL) Site 300 827 Complex will be used to synthesize small quantities of material to support research and development. The project will modernize and increase current capabilities for chemical synthesis at LLNL. The primary objective of this project is the conversion of a non-automated hands-on process to a remoteoperation process, while providing enhanced batch process step control, stored recipe-specific parameter sets, process variable visibility, monitoring, alarm and warning handling, and comprehensive batch record data logging. This Statement of Work and Specification provides the industrial-grade process control requirements for the chemical synthesis batching control system, hereafter referred to as the “Control System” to be delivered by the System Integrator.

  3. The uranium enrichment industry and the SILEX process

    International Nuclear Information System (INIS)

    Goldsworthy, M.

    1999-01-01

    Silex Systems Limited has been developing a new laser isotope separation process since 1992. The principle application of the SILEX Technology is Uranium Enrichment, the key step in the production of fuel for nuclear power plants. The Uranium Enrichment industry, today worth ∼ US$3.5 Billion p.a., is dominated by four major players, the largest being USEC with almost 40% of the market. In 1996, an agreement was signed between Silex and USEC to develop SILEX Technology for potential application to Uranium Enrichment. The SILEX process is a low cost, energy efficient scheme which may provide significant commercial advantage over current technology and competing laser processes. Silex is also investigating possible application to the enrichment of Silicon, Carbon and other materials. Significant markets may develop for such materials, particularly in the semiconductor industry

  4. Means-End based Functional Modeling for Intelligent Control: Modeling and Experiments with an Industrial Heat Pump System

    DEFF Research Database (Denmark)

    Saleem, Arshad

    2007-01-01

    The purpose of this paper is to present a Multilevel Flow Model (MFM) of an industrial heat pump system and its use for diagnostic reasoning. MFM is functional modeling language supporting an explicit means-ends intelligent control strategy for large industrial process plants. The model is used...... in several diagnostic experiments analyzing different fault scenarios. The model and results of the experiments are explained and it is shown how MFM based intelligent modeling and automated reasoning can improve the fault diagnosis process significantly....

  5. Cooking, industrial processing and caloric density of foods

    NARCIS (Netherlands)

    Pellegrini, Nicoletta; Fogliano, Vincenzo

    2017-01-01

    During human evolution, the development of a wide range of cooking processing techniques enabled humans to provide their social group with maximum benefits from limited food resources. Industrial processing and mass market distribution made available high food calorie density foods to the world

  6. Toward industrial scale synthesis of ultrapure singlet nanoparticles with controllable sizes in a continuous gas-phase process

    Science.gov (United States)

    Feng, Jicheng; Biskos, George; Schmidt-Ott, Andreas

    2015-10-01

    Continuous gas-phase synthesis of nanoparticles is associated with rapid agglomeration, which can be a limiting factor for numerous applications. In this report, we challenge this paradigm by providing experimental evidence to support that gas-phase methods can be used to produce ultrapure non-agglomerated “singlet” nanoparticles having tunable sizes at room temperature. By controlling the temperature in the particle growth zone to guarantee complete coalescence of colliding entities, the size of singlets in principle can be regulated from that of single atoms to any desired value. We assess our results in the context of a simple analytical model to explore the dependence of singlet size on the operating conditions. Agreement of the model with experimental measurements shows that these methods can be effectively used for producing singlets that can be processed further by many alternative approaches. Combined with the capabilities of up-scaling and unlimited mixing that spark ablation enables, this study provides an easy-to-use concept for producing the key building blocks for low-cost industrial-scale nanofabrication of advanced materials.

  7. Water pollution control. Sewage sludges processing; Lutte contre la pollution des eaux. Traitements des boues d'epuration

    Energy Technology Data Exchange (ETDEWEB)

    Guibelin, E.

    1999-04-01

    The today environmental policy leads the industrial to better control their wastes. In this context, the author deals with the industrial liquid wastes and especially with sewage sludges after residual industrial water processing. The first part presents the sludges physical, chemical and rheological characteristics according to the different industries. The second part deals with the volume and olfactive nuisances reduction processes. (A.L.B.)

  8. Production process and quality control for the HTTR fuel

    International Nuclear Information System (INIS)

    Yoshimuta, S.; Suzuki, N.; Kaneko, M.; Fukuda, K.

    1991-01-01

    Development of the production and inspection technology for High Temperature Engineering Test Reactor (HTTR) fuel has been carried out by cooperative work between Japan Atomic Energy Research Institute (JAERI) and Nuclear Fuel Industries, Ltd (NFI). The performance and the quality level of the developed fuel are well established to meet the design requirements of the HTTR. For the commercial scale production of the fuel, statistical quality control and quality assurance must be carefully considered in order to assure the safety of the HTTR. It is also important to produce the fuel under well controlled process condition. To meet these requirements in the production of the HTTR fuel, a new production process and quality control system is to be introduced in the new facilities. The main feature of the system is a computer integrated control system. Process control data at each production stage of products and semi-products are all gathered by terminal computers and processed by a host computer. The processed information is effectively used for the production, quality and accountancy control. With the aid of this system, all the products will be easily traceable from starting materials to final stages and the statistical evaluation of the quality of products becomes more reliable. (author). 8 figs

  9. Electron-processing technology: A promising application for the viscose industry

    Science.gov (United States)

    Stepanik, T. M.; Rajagopal, S.; Ewing, D.; Whitehouse, R.

    1998-06-01

    In marketing its IMPELA ® line of high power, high-throughput industrial accelerators, Atomic Energy of Canada Limited (AECL) is working with viscose (rayon) companies world-wide to integrate electron-processing technology as part of the viscose manufacturing process. The viscose industry converts cellulose wood pulp into products such as staple fiber, filament, cord, film, packaging, and non-edible sausage casings. This multibillion dollar industry is currently suffering from high production costs, and is facing increasingly stringent environmental regulations. The use of electron-treated pulp can significantly lower production costs and can provide equally significant environmental benefits. This paper describes our current understanding of the benefits of using electron-treated pulp in this process, and AECL's efforts in developing this technology.

  10. Improving control of the coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Valkovyy, V I; Ignatyev, B N

    1982-01-01

    Questions of organizing control of the coal industry based on the use of ACS are examined. Improvement of control of the sector is done in the following main trends: pinpointing the distribution of rights; duties and responsibilities within the associations; more complete calculation of the positions; standard structures of the mines, open pits and other production units of the specific operating conditions; improvement in the forms and methods of controlling specialized production units; formation of style and methods of leadership corresponding to the modern conditions of production.

  11. Evaluation of Respiratory Protection Program in Petrochemical Industries: Application of Analytic Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Hadi Kolahi

    2018-03-01

    Full Text Available Background: Respiratory protection equipment (RPE is the last resort to control exposure to workplace air pollutants. A comprehensive respiratory protection program (RPP ensures that RPE is selected, used, and cared properly. Therefore, RPP must be well integrated into the occupational health and safety requirements. In this study, we evaluated the implementation of RPP in Iranian petrochemical industries to identify the required solutions to improve the current status of respiratory protection. Methods: This cross-sectional study was conducted among 24 petrochemical industries in Iran. The survey instrument was a checklist extracted from the Occupational Safety and Health Administration respiratory protection standard. An index, Respiratory Protection Program Index (RPPI, was developed and weighted by analytic hierarchy process to determine the compliance rate (CR of provided respiratory protection measures with the RPP standard. Data analysis was performed using Excel 2010. Results: The most important element of RPP, according to experts, was respiratory hazard evaluation. The average value of RPPI in the petrochemical plants was 49 ± 15%. The highest and lowest of CR among RPP elements were RPE selection and medical evaluation, respectively. Conclusion: None of studied petrochemical industries implemented RPP completely. This can lead to employees' overexposure to hazardous workplace air contaminants. Increasing awareness of employees and employers through training is suggested by this study to improve such conditions. Keywords: analytic hierarchy process, petrochemical industries, respiratory protection program

  12. Multivariate Process Control with Autocorrelated Data

    DEFF Research Database (Denmark)

    Kulahci, Murat

    2011-01-01

    As sensor and computer technology continues to improve, it becomes a normal occurrence that we confront with high dimensional data sets. As in many areas of industrial statistics, this brings forth various challenges in statistical process control and monitoring. This new high dimensional data...... often exhibit not only cross-­‐correlation among the quality characteristics of interest but also serial dependence as a consequence of high sampling frequency and system dynamics. In practice, the most common method of monitoring multivariate data is through what is called the Hotelling’s T2 statistic....... In this paper, we discuss the effect of autocorrelation (when it is ignored) on multivariate control charts based on these methods and provide some practical suggestions and remedies to overcome this problem....

  13. Cadmium isotope fractionation of materials derived from various industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Martinková, Eva, E-mail: eva.cadkova@geology.cz [Czech Geological Survey, Geologická 6, 152 00 Prague 5 (Czech Republic); Chrastný, Vladislav, E-mail: chrastny@fzp.czu.cz [Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6 (Czech Republic); Francová, Michaela, E-mail: michaela.francova@fzp.czu.cz [Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6 (Czech Republic); Šípková, Adéla, E-mail: adela.sipkova@geology.cz [Czech Geological Survey, Geologická 6, 152 00 Prague 5 (Czech Republic); Čuřík, Jan, E-mail: jan.curik@geology.cz [Czech Geological Survey, Geologická 6, 152 00 Prague 5 (Czech Republic); Myška, Oldřich, E-mail: oldrich.myska@geology.cz [Czech Geological Survey, Geologická 6, 152 00 Prague 5 (Czech Republic); Mižič, Lukáš, E-mail: lukas.mizic@geology.cz [Czech Geological Survey, Geologická 6, 152 00 Prague 5 (Czech Republic)

    2016-01-25

    Highlights: • All studied industrial processes were accompanied by Cd isotope fractionation. • ϵ{sup 114/110} Cd values of the waste materials were discernible from primary sources. • Technology in use plays an important role in Cd isotope fractionation. - Abstract: Our study represents ϵ{sup 114/110} Cd {sub NIST3108} values of materials resulting from anthropogenic activities such as coal burning, smelting, refining, metal coating, and the glass industry. Additionally, primary sources (ore samples, pigment, coal) processed in the industrial premises were studied. Two sphalerites, galena, coal and pigment samples exhibited ϵ{sup 114/110} Cd{sub NIST3108} values of 1.0 ± 0.2, 0.2 ± 0.2, 1.3 ± 0.1, −2.3 ± 0.2 and −0.1 ± 0.3, respectively. In general, all studied industrial processes were accompanied by Cd isotope fractionation. Most of the industrial materials studied were clearly distinguishable from the samples used as a primary source based on ϵ{sup 114/110} Cd {sub NIST3108} values. The heaviest ϵ{sup 114/110} Cd{sub NIST3108} value of 58.6 ± 0.9 was found for slag resulting from coal combustion, and the lightest ϵ{sup 114/110} Cd{sub NIST3108} value of −23 ± 2.5 was observed for waste material after Pb refinement. It is evident that ϵ{sup 114/110} Cd {sub NIST3108} values depend on technological processes, and in case of incomplete Cd transfer from source to final waste material, every industrial activity creates differences in Cd isotope composition. Our results show that Cd isotope analysis is a promising tool to track the origins of industrial waste products.

  14. Industrial processing versus home processing of tomato sauce: Effects on phenolics, flavonoids and in vitro bioaccessibility of antioxidants.

    Science.gov (United States)

    Tomas, Merve; Beekwilder, Jules; Hall, Robert D; Sagdic, Osman; Boyacioglu, Dilek; Capanoglu, Esra

    2017-04-01

    The effect of industrial and home processing, in vitro gastrointestinal digestion, individual phenolic content, and antioxidant capacity of tomato into tomato sauce were investigated. Industrial processing of tomato fruit into sauce had an overall positive effect on the total antioxidant capacity (∼1.2-fold higher) compared to tomato fruit whereas home processing of tomato fruit into sauce led to a decrease in these values. Untargeted LC-QTOF-MS analysis revealed 31 compounds in tomato that changed upon processing, of which 18 could be putatively identified. Naringenin chalcone is only detectable in the fruit, while naringenin is strongly increased in the sauces. Rutin content increased by 36% in the industrial processed sauce whereas decreased by 26% in the home processed sauce when compared to fruit. According to the results of an in vitro gastrointestinal digestion model, industrial processing may lead to enhanced bioaccessibility of antioxidants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Tuning of PID controller using optimization techniques for a MIMO process

    Science.gov (United States)

    Thulasi dharan, S.; Kavyarasan, K.; Bagyaveereswaran, V.

    2017-11-01

    In this paper, two processes were considered one is Quadruple tank process and the other is CSTR (Continuous Stirred Tank Reactor) process. These are majorly used in many industrial applications for various domains, especially, CSTR in chemical plants.At first mathematical model of both the process is to be done followed by linearization of the system due to MIMO process and controllers are the major part to control the whole process to our desired point as per the applications so the tuning of the controller plays a major role among the whole process. For tuning of parameters we use two optimizations techniques like Particle Swarm Optimization, Genetic Algorithm. The above techniques are majorly used in different applications to obtain which gives the best among all, we use these techniques to obtain the best tuned values among many. Finally, we will compare the performance of the each process with both the techniques.

  16. Developing Learning Tool of Control System Engineering Using Matrix Laboratory Software Oriented on Industrial Needs

    Science.gov (United States)

    Isnur Haryudo, Subuh; Imam Agung, Achmad; Firmansyah, Rifqi

    2018-04-01

    The purpose of this research is to develop learning media of control technique using Matrix Laboratory software with industry requirement approach. Learning media serves as a tool for creating a better and effective teaching and learning situation because it can accelerate the learning process in order to enhance the quality of learning. Control Techniques using Matrix Laboratory software can enlarge the interest and attention of students, with real experience and can grow independent attitude. This research design refers to the use of research and development (R & D) methods that have been modified by multi-disciplinary team-based researchers. This research used Computer based learning method consisting of computer and Matrix Laboratory software which was integrated with props. Matrix Laboratory has the ability to visualize the theory and analysis of the Control System which is an integration of computing, visualization and programming which is easy to use. The result of this instructional media development is to use mathematical equations using Matrix Laboratory software on control system application with DC motor plant and PID (Proportional-Integral-Derivative). Considering that manufacturing in the field of Distributed Control systems (DCSs), Programmable Controllers (PLCs), and Microcontrollers (MCUs) use PID systems in production processes are widely used in industry.

  17. Computerized effluent control and evaluation of environmental impact for an industrial plant

    International Nuclear Information System (INIS)

    Martinez de Angulo, L.F.; Garcia Gutierrez, M.S.

    1993-01-01

    Growing public interest and concern for the environment is translated at official level into regulatory standards to limit, control and evaluate the environmental impact produced by polluting facilities. This paper seeks to demonstrate the convenience of automatizing all these computerized systems. This philosophy has been put into practice to computerize processes in the industry with the most complex standards: the nuclear industry. The application used has the capacity to store and manage data on all the discharges, evaluate the effect produced by them and generate information to be sent periodically to the competent authority. The conceptual definition of the application can be adapted to any industrial or public utility facility releasing polluting effluents which must undergo control, monitoring and analysis of the environmental impact by the relevant regulatory body, bearing in mind the environmental standard applicable to the category of the facility and the type of polluting substance released. The application can be run interactively in a personal computer on the basis of menus and screens, under a relational Data Base Management System (DBMS). Its implementation is independent of the DBMS used and the hardware with supports it. (author)

  18. Statistical Process Control. A Summary. FEU/PICKUP Project Report.

    Science.gov (United States)

    Owen, M.; Clark, I.

    A project was conducted to develop a curriculum and training materials to be used in training industrial operatives in statistical process control (SPC) techniques. During the first phase of the project, questionnaires were sent to 685 companies (215 of which responded) to determine where SPC was being used, what type of SPC firms needed, and how…

  19. Industrial irradiation processing of polymers. Status and prospects. Report

    International Nuclear Information System (INIS)

    2005-08-01

    At the close of the 20th century and now in the beginning of the 21st, several changes have taken place in the businesses marketing radiation source technologies used in industrial radiation processing. Such changes involved more than just transitions in ownership and product line extensions for proven equipment, but also the market successes of new accelerator technologies, the evolution of high intensity X ray processing and the ability of providers and users of isotope sources to cope with heightened security issues involving radioactive materials. Concurrent with this evolution in source technologies, there has been a modest increase in the acceptance of radiation processing for polymeric materials. At the same time, there has been a broadening of polymer options available to formulators and producers of irradiated products. Unfortunately, however, there have been no major market breakthroughs; no adoption of radiation processing on a large scale in some new industrial application. For example, the much proven and long hoped for use of radiation processing by the food industry remains at a very small scale. This is despite the fact that this technology has cleared most regulatory hurdles that call for efficacy and the maintenance of food quality. This brief paper describes some of these changes and outlines some current issues that remain to be addressed

  20. [Statistical process control applied to intensity modulated radiotherapy pretreatment controls with portal dosimetry].

    Science.gov (United States)

    Villani, N; Gérard, K; Marchesi, V; Huger, S; François, P; Noël, A

    2010-06-01

    The first purpose of this study was to illustrate the contribution of statistical process control for a better security in intensity modulated radiotherapy (IMRT) treatments. This improvement is possible by controlling the dose delivery process, characterized by pretreatment quality control results. So, it is necessary to put under control portal dosimetry measurements (currently, the ionisation chamber measurements were already monitored by statistical process control thanks to statistical process control tools). The second objective was to state whether it is possible to substitute ionisation chamber with portal dosimetry in order to optimize time devoted to pretreatment quality control. At Alexis-Vautrin center, pretreatment quality controls in IMRT for prostate and head and neck treatments were performed for each beam of each patient. These controls were made with an ionisation chamber, which is the reference detector for the absolute dose measurement, and with portal dosimetry for the verification of dose distribution. Statistical process control is a statistical analysis method, coming from industry, used to control and improve the studied process quality. It uses graphic tools as control maps to follow-up process, warning the operator in case of failure, and quantitative tools to evaluate the process toward its ability to respect guidelines: this is the capability study. The study was performed on 450 head and neck beams and on 100 prostate beams. Control charts, showing drifts, both slow and weak, and also both strong and fast, of mean and standard deviation have been established and have shown special cause introduced (manual shift of the leaf gap of the multileaf collimator). Correlation between dose measured at one point, given with the EPID and the ionisation chamber has been evaluated at more than 97% and disagreement cases between the two measurements were identified. The study allowed to demonstrate the feasibility to reduce the time devoted to

  1. Statistical process control applied to intensity modulated radiotherapy pretreatment controls with portal dosimetry

    International Nuclear Information System (INIS)

    Villani, N.; Noel, A.; Villani, N.; Gerard, K.; Marchesi, V.; Huger, S.; Noel, A.; Francois, P.

    2010-01-01

    Purpose The first purpose of this study was to illustrate the contribution of statistical process control for a better security in intensity modulated radiotherapy (I.M.R.T.) treatments. This improvement is possible by controlling the dose delivery process, characterized by pretreatment quality control results. So, it is necessary to put under control portal dosimetry measurements (currently, the ionisation chamber measurements were already monitored by statistical process control thanks to statistical process control tools). The second objective was to state whether it is possible to substitute ionisation chamber with portal dosimetry in order to optimize time devoted to pretreatment quality control. Patients and methods At Alexis-Vautrin center, pretreatment quality controls in I.M.R.T. for prostate and head and neck treatments were performed for each beam of each patient. These controls were made with an ionisation chamber, which is the reference detector for the absolute dose measurement, and with portal dosimetry for the verification of dose distribution. Statistical process control is a statistical analysis method, coming from industry, used to control and improve the studied process quality. It uses graphic tools as control maps to follow-up process, warning the operator in case of failure, and quantitative tools to evaluate the process toward its ability to respect guidelines: this is the capability study. The study was performed on 450 head and neck beams and on 100 prostate beams. Results Control charts, showing drifts, both slow and weak, and also both strong and fast, of mean and standard deviation have been established and have shown special cause introduced (manual shift of the leaf gap of the multi-leaf collimator). Correlation between dose measured at one point, given with the E.P.I.D. and the ionisation chamber has been evaluated at more than 97% and disagreement cases between the two measurements were identified. Conclusion The study allowed to

  2. Industrial applications for remote operation in a processing plant

    International Nuclear Information System (INIS)

    Hermier, J.; Le Guennec, R.

    1984-01-01

    In the first part of this article, J. Hermier covers the use of remote handling equipment in the UP2-400 plant at La Hague near Cherbourg, in which for the most part master/slave mechanism remote handling units are used with a number of these employed in daily processing operations. As regards this subject, it is useful to remember that, at the time of the designing of this plant (UP2-400), this was the only equipment available on the market with remote-controlled remote handling equipment. In the second part, before speaking about the development of remote operation equipment in the plants now under construction and attempting to project what might be the remote operation role in future plants, R. Le Guennec reviews the problems faced by engineering in designing industrial-sized processing plants and, consequently, the motivations of engineering when faced with a choice between several possible solutions [fr

  3. Designing an Iterative Learning Control Algorithm Based on Process History using limited post process geometrical information

    DEFF Research Database (Denmark)

    Endelt, Benny Ørtoft; Volk, Wolfram

    2013-01-01

    , there is a number of obstacles which need to be addressed before an industrial implementation is possible, e.g. the proposed control algorithms are often limited by the ability to sample process data with both sufficient accuracy and robustness - this lack of robust sampling technologies is one of the main barriers...

  4. CONTROL SYSTEM EVALUATION AND IMPLEMENTATION FOR THE ABRASIVE MACHINING PROCESS ON WOOD

    OpenAIRE

    Stephen Jackson; Richard Lemaster; Daniel E. Saloni

    2011-01-01

    Continuous process improvement and automation have proven to be powerful tools for the wood processing industries in order to obtain better final product quality and thus increase profits. Abrasive machining represents an important and relevant process in the manufacturing and processing of wood products, which also implies high cost of materials and labor; therefore, special attention to this process is necessary. The objective of this work was to evaluate and demonstrate a process control s...

  5. End-use matching for solar industrial process heat. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.C.; Hooker, D.W.; Rabl, A.; Stadjuhar, S.A.; West, R.E.

    1980-01-01

    Because of the large energy demand of industry (37% of US demand) and the wide spectrum of temperatures at which heat is required, the industrial sector appears to be very suitable for the matching of solar thermal technology with industrial process heat (IPH) requirements. A methodology for end-use matching has been devised, complete with required data bases and an evaluation program PROSYS/ECONMAT. Six cities in the United States were selected for an analysis of solar applications to IPH. Typical process heat requirements for 70% of the industrial plants in each city were identified and evaluated in conjunction with meteorological and economic data for each site to determine lowest-cost solar systems for each application. The flexibility and scope of PROSYS/ECONMAT is shown in a variety of sensitivity studies that expand the results of the six-city analysis. Case studies of two industrial plants were performed to evaluate the end-use matching procedure; these results are reported.

  6. Force-controlled robotic assembly processes of rigid and flexible objects methodologies and applications

    CERN Document Server

    Ghalyan, Ibrahim Fahad Jasim

    2016-01-01

    This book provides comprehensive and integrated approaches for rigid and flexible object assembly. It presents comparison studies with the available force-guided robotic processes and covers contact-state modeling, scheme control strategies, and position searching algorithms. Further, it includes experimental validations for different assembly situations, including those for the assembly of industrial parts taken from the automotive industry. .

  7. Radioisotope applications for troubleshooting and optimizing industrial processes

    International Nuclear Information System (INIS)

    2002-03-01

    This brochure is intended to present the state-of -the-art in techniques for gamma scanning and neutron backscattering for troubleshooting inspection of columns, vessels, pipes, and tanks in many industrial processing sectors. It aims to provide not only an extensive description of what can be achieved by the application of radioisotope sealed sources but also sound experience-based guidance on all aspects of designing, carrying out and interpreting the results of industrial applications. Though it is written primarily for radioisotope practitioners, the brochure is also intended to function as an ambassador for the technology by promoting its benefits to governments, to the general public and to industrial end-users

  8. Safety Considerations in the Chemical Process Industries

    Science.gov (United States)

    Englund, Stanley M.

    There is an increased emphasis on chemical process safety as a result of highly publicized accidents. Public awareness of these accidents has provided a driving force for industry to improve its safety record. There has been an increasing amount of government regulation.

  9. Effect of material flows on energy intensity in process industries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Liru; Aye, Lu [International Technologies Center (IDTC), Department of Civil and Environmental Engineering, The University of Melbourne, Victoria 3010 (Australia); Lu, Zhongwu [Institute of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zhang, Peihong [Department of Municipal and Environmental Engineering, Shenyang Architecture University, Shenyang 110168 (China)

    2006-09-15

    Many energy-intensive process industries have complex material flows, which have a strong effect on the overall energy intensity of the final product (OEIF). This problem, however, has only been recognised qualitatively due to the lack of quantitative analysis methods. This paper presents an in-depth quantitative analysis of the effect of material flows on energy intensity in process industries. Based on the concept of a standard material flow diagram (SMFD), as used in steel manufacturing, the SMFD for a generic process industry was first developed. Then material flow scenarios were addressed in a practical material flow diagram (PMFD) using the characteristics of practical process industries. The effect of each material flow deviating from a SMFD on the OEIF was analysed. The steps involved in analysing the effect of material flows in a PMFD on its energy intensity are also discussed in detail. Finally, using 1999 statistical data from the Chinese Zhenzhou alumina refinery plant, the PMFD and SMFD for this plant were constructed as a case study. The effect of material flows on the overall energy intensity of alumina (OEIA) was thus analysed quantitatively. To decrease OEIA, the process variations which decrease the product ratios could be employed in all except in multi-supplied fraction cases. In these cases, the fractions from the stream with lower energy intensities should be increased. (author)

  10. Modeling of an industrial process of pleuromutilin fermentation using feed-forward neural networks

    Directory of Open Access Journals (Sweden)

    L. Khaouane

    2013-03-01

    Full Text Available This work investigates the use of artificial neural networks in modeling an industrial fermentation process of Pleuromutilin produced by Pleurotus mutilus in a fed-batch mode. Three feed-forward neural network models characterized by a similar structure (five neurons in the input layer, one hidden layer and one neuron in the output layer are constructed and optimized with the aim to predict the evolution of three main bioprocess variables: biomass, substrate and product. Results show a good fit between the predicted and experimental values for each model (the root mean squared errors were 0.4624% - 0.1234 g/L and 0.0016 mg/g respectively. Furthermore, the comparison between the optimized models and the unstructured kinetic models in terms of simulation results shows that neural network models gave more significant results. These results encourage further studies to integrate the mathematical formulae extracted from these models into an industrial control loop of the process.

  11. Science, technology, and the industrialization of laser-driven processes

    International Nuclear Information System (INIS)

    Davis, J.I.; Paisner, J.A.

    1985-05-01

    Members of the laser program at Lawrence Livermore National Laboratory (LLNL) reviewed potential applications of lasers in industry, some of which are: isotope separation; cleanup of radioactive waste; trace impurity removal; selective chemical reactions; photochemical activation or dissociation of gases; control of combustion particulates; crystal and powder chemistry; and laser induced biochemistry. Many of these areas are currently under active study in the community. The investigation at LLNL focused on laser isotope separation of atomic uranium because of the large demand (> 1000 tonnes/year) and high product enrichment price (> $600/kg of product) for material used as fuel in commercial light-water nuclear power reactors. They also believed that once the technology was fully developed and deployed, it could be applied directly to separating many elements economically on an industrial scale. The Atomic Vapor Laser Isotope Separation (AVLIS) program at LLNL has an extensive uranium and plutonium program of >$100 M in FY85 and a minor research program for other elements. This report describes the AVLIS program conducted covering the following topics; candidate elements; separative work units; spectroscopic selectivety; major systems; facilities; integrated process model;multivariable sensitivety studies; world market; and US enrichment enterprise. 23 figs. (AT)

  12. Effects of industrial processing on folate content in green vegetables.

    Science.gov (United States)

    Delchier, Nicolas; Ringling, Christiane; Le Grandois, Julie; Aoudé-Werner, Dalal; Galland, Rachel; Georgé, Stéphane; Rychlik, Michael; Renard, Catherine M G C

    2013-08-15

    Folates are described to be sensitive to different physical parameters such as heat, light, pH and leaching. Most studies on folates degradation during processing or cooking treatments were carried out on model solutions or vegetables only with thermal treatments. Our aim was to identify which steps were involved in folates loss in industrial processing chains, and which mechanisms were underlying these losses. For this, the folates contents were monitored along an industrial canning chain of green beans and along an industrial freezing chain of spinach. Folates contents decreased significantly by 25% during the washing step for spinach in the freezing process, and by 30% in the green beans canning process after sterilisation, with 20% of the initial amount being transferred into the covering liquid. The main mechanism involved in folate loss during both canning green beans and freezing spinach was leaching. Limiting the contact between vegetables and water or using steaming seems to be an adequate measure to limit folates losses during processing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Application of poultry processing industry waste: a strategy for vegetation growth in degraded soil.

    Science.gov (United States)

    do Nascimento, Carla Danielle Vasconcelos; Pontes Filho, Roberto Albuquerque; Artur, Adriana Guirado; Costa, Mirian Cristina Gomes

    2015-02-01

    The disposal of poultry processing industry waste into the environment without proper care, can cause contamination. Agricultural monitored application is an alternative for disposal, considering its high amount of organic matter and its potential as a soil fertilizer. This study aimed to evaluate the potential of poultry processing industry waste to improve the conditions of a degraded soil from a desertification hotspot, contributing to leguminous tree seedlings growth. The study was carried out under greenhouse conditions in a randomized blocks design and a 4 × 2 factorial scheme with five replicates. The treatments featured four amounts of poultry processing industry waste (D1 = control 0 kg ha(-1); D2 = 1020.41 kg ha(-1); D3 = 2040.82 kg ha(-1); D4 = 4081.63 kg ha(-1)) and two leguminous tree species (Mimosa caesalpiniaefolia Benth and Leucaena leucocephala (Lam.) de Wit). The poultry processing industry waste was composed of poultry blood, grease, excrements and substances from the digestive system. Plant height, biomass production, plant nutrient accumulation and soil organic carbon were measured forty days after waste application. Leguminous tree seedlings growth was increased by waste amounts, especially M. caesalpiniaefolia Benth, with height increment of 29.5 cm for the waste amount of 1625 kg ha(-1), and L. leucocephala (Lam.) de Wit, with maximum height increment of 20 cm for the waste amount of 3814.3 kg ha(-1). M. caesalpiniaefolia Benth had greater initial growth, as well as greater biomass and nutrient accumulation compared with L. leucocephala (Lam.) de Wit. However, belowground biomass was similar between the evaluated species, resulting in higher root/shoot ratio for L. leucocephala (Lam.) de Wit. Soil organic carbon did not show significant response to waste amounts, but it did to leguminous tree seedlings growth, especially L. leucocephala (Lam.) de Wit. Poultry processing industry waste contributes to leguminous tree seedlings growth

  14. On the feasibility of device fingerprinting in industrial control systems

    NARCIS (Netherlands)

    Caselli, M.; Hadziosmanovic, D.; Zambon, Emmanuele; Kargl, Frank; Luiijf, Eric; Hartel, Pieter H.

    2013-01-01

    As Industrial Control Systems (ICS) and standard IT networks are becoming one heterogeneous entity, there has been an increasing effort in adjusting common security tools and methodologies to fit the industrial environment. Fingerprinting of industrial devices is still an unexplored research field.

  15. Expect systems and optimisation in process control

    Energy Technology Data Exchange (ETDEWEB)

    Mamdani, A.; Efstathiou, J. (eds.)

    1986-01-01

    This report brings together recent developments both in expert systems and in optimisation, and deals with current applications in industry. Part One is concerned with Artificial Intellegence in planning and scheduling and with rule-based control implementation. The tasks of control maintenance, rescheduling and planning are each discussed in relation to new theoretical developments, techniques available, and sample applications. Part Two covers model based control techniques in which the control decisions are used in a computer model of the process. Fault diagnosis, maintenance and trouble-shooting are just some of the activities covered. Part Three contains case studies of projects currently in progress, giving details of the software available and the likely future trends. One of these, on qualitative plant modelling as a basis for knowledge-based operator aids in nuclear power stations is indexed separately.

  16. Expert systems and optimisation in process control

    International Nuclear Information System (INIS)

    Mamdani, A.; Efstathiou, J.

    1986-01-01

    This report brings together recent developments both in expert systems and in optimisation, and deals with current applications in industry. Part One is concerned with Artificial Intellegence in planning and scheduling and with rule-based control implementation. The tasks of control maintenance, rescheduling and planning are each discussed in relation to new theoretical developments, techniques available, and sample applications. Part Two covers model based control techniques in which the control decisions are used in a computer model of the process. Fault diagnosis, maintenance and trouble-shooting are just some of the activities covered. Part Three contains case studies of projects currently in progress, giving details of the software available and the likely future trends. One of these, on qualitative plant modelling as a basis for knowledge-based operator aids in nuclear power stations is indexed separately. (author)

  17. Design approaches for solar industrial process-heat systems: nontracking and line-focus collector technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.; Davenport, R.L.; Dougherty, D.A.; Gee, R.C.; Masterson, P.M.; May, E.K.

    1982-08-01

    The design methodology for solar industrial process heat systems is described, and an overview is given of the use of solar energy in industry. A way to determine whether solar energy makes sense for a particular application is described. The basic system configurations used to supply hot water or steam are discussed, and computer-generated graphs are supplied that allow the user to select a collector type. Detailed energy calculations are provided, including the effects of thermal losses and storage. The selection of subsystem components is described, and control systems, installation and start-up details, economics, and safety and environmental issues are explained. (LEW)

  18. Optimizing the product-based availability of a buffered industrial process

    International Nuclear Information System (INIS)

    Hamada, Michael; Martz, Harry F.; Berg, Eric C.; Koehler, Arthur J.

    2006-01-01

    Many industrial processes for discrete consumable products consist of a series (or set) of sequential process operations (or subsystems) which are de-coupled by means of in-process storage buffers. Each subsystem of such a process contains one or more parallel coupled or uncoupled operating lanes. We describe the use of a discrete-event simulation model for determining the availability of such a process. We likewise define and use a genetic algorithm to determine process designs and operating rules that have high availability. A 65-variable example, consisting of four operating subsystems with at most four lanes per subsystem, is used to illustrate the method. The results for this and similar real-world applications indicate that, by applying this methodology, it is possible to design buffered industrial processes having high availability

  19. Regional innovative and investment processes analysis and their impact on food-industry wine-producing enterprises development in Odessa region

    Directory of Open Access Journals (Sweden)

    Bondarenko Svitlana Аnatoliyivna

    2016-02-01

    Full Text Available The article deals with the study of state of winemaking sector, trends of innovative development of industrial enterprises of Ukraine and Odessa region are analyzed and based on this the characteristic patterns and main shortcomings are identified. The regional innovation and investment processes are anylyzed, the nature of its influence on development of wineries in food industry of Odessa region is identified. It is proved that the regulatory impact on development of viticulture and wine-making should focus on conditions and behavior of industry enterprises and directly or indirectly affect the efficiency of its business processes. One of management tools of socio-economic development of regions is regulation of innovation and investment processes, strict control over the use of targeted funds for program solving of region develoment priorities.

  20. Fractional control of an industrial furnace - doi: 10.4025/actascitechnol.v32i3.6552

    Directory of Open Access Journals (Sweden)

    Luis Antonio Duarte Isfer

    2010-11-01

    Full Text Available The requirements of high production allied with product quality, process safety and environmental regulation, lead control systems to play a key role in the operation of chemical and biochemical plants. In petrochemical plants, furnaces are essential equipments for process operation and due to energy costs, adequate operation and control are of extreme importance for process economics. The search for new and more efficient control laws led to the development of fractional PID control algorithm, which is based on the use of fractional differential equations. In this work, a previously identified mathematical model of an actual industrial furnace is used for fractional PID control studies. Feedback loop in servo control was analyzed, focusing on the study of the influence of the controller parameters over control loop performance. Particularly, P, fractional PI and fractional PD controller were considered in this study. Simulations were carried out showing that the fractional controllers were able to perform set-point transitions. The control loop performance was evaluated by ITAE and ISE criteria, showing that, in this study, fractional PI is the best algorithm.

  1. A case study: application of statistical process control tool for determining process capability and sigma level.

    Science.gov (United States)

    Chopra, Vikram; Bairagi, Mukesh; Trivedi, P; Nagar, Mona

    2012-01-01

    Statistical process control is the application of statistical methods to the measurement and analysis of variation process. Various regulatory authorities such as Validation Guidance for Industry (2011), International Conference on Harmonisation ICH Q10 (2009), the Health Canada guidelines (2009), Health Science Authority, Singapore: Guidance for Product Quality Review (2008), and International Organization for Standardization ISO-9000:2005 provide regulatory support for the application of statistical process control for better process control and understanding. In this study risk assessments, normal probability distributions, control charts, and capability charts are employed for selection of critical quality attributes, determination of normal probability distribution, statistical stability, and capability of production processes, respectively. The objective of this study is to determine tablet production process quality in the form of sigma process capability. By interpreting data and graph trends, forecasting of critical quality attributes, sigma process capability, and stability of process were studied. The overall study contributes to an assessment of process at the sigma level with respect to out-of-specification attributes produced. Finally, the study will point to an area where the application of quality improvement and quality risk assessment principles for achievement of six sigma-capable processes is possible. Statistical process control is the most advantageous tool for determination of the quality of any production process. This tool is new for the pharmaceutical tablet production process. In the case of pharmaceutical tablet production processes, the quality control parameters act as quality assessment parameters. Application of risk assessment provides selection of critical quality attributes among quality control parameters. Sequential application of normality distributions, control charts, and capability analyses provides a valid statistical

  2. Emerging Food Processing Technologies and Factors Impacting their Industrial Adoption.

    Science.gov (United States)

    Priyadarshini, Anushree; Rajauria, Gaurav; O'Donnell, Colm P; Tiwari, Brijesh K

    2018-06-04

    Innovative food processing technologies have been widely investigated in food processing research in recent years. These technologies offer key advantages for advancing the preservation and quality of conventional foods, for combatting the growing challenges posed by globalization, increased competitive pressures and diverse consumer demands. However, there is a need to increase the level of adoption of novel technologies to ensure the potential benefits of these technologies are exploited more by the food industry. This review outlines emerging thermal and non-thermal food processing technologies with regard to their mechanisms, applications and commercial aspects. The level of adoption of novel food processing technologies by the food industry is outlined and the factors that impact their industrial adoption are discussed. At an industry level, the technological capabilities of individual companies, their size, market share as well as their absorptive capacity impact adoption of a novel technology. Characteristics of the technology itself such as costs involved in its development and commercialization, associated risks and relative advantage, its level of complexity and compatibility influence the technology's adoption. The review concludes that a deep understanding of the development and application of a technology along with the factors influencing its acceptance are critical for its commercial adoption.

  3. Industrial process heat case studies. [PROSYS/ECONMAT code

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, D.W.; May, E.K.; West, R.E.

    1980-05-01

    Commercially available solar collectors have the potential to provide a large fraction of the energy consumed for industrial process heat (IPH). Detailed case studies of individual industrial plants are required in order to make an accurate assessment of the technical and economic feasibility of applications. This report documents the results of seven such case studies. The objectives of the case study program are to determine the near-term feasibility of solar IPH in selected industries, identify energy conservation measures, identify conditions of IPH systems that affect solar applications, test SERI's IPH analysis software (PROSYS/ECONOMAT), disseminate information to the industrial community, and provide inputs to the SERI research program. The detailed results from the case studies are presented. Although few near-term, economical solar applications were found, the conditions that would enhance the opportunities for solar IPH applications are identified.

  4. Conceptual Design of Industrial Process Displays

    DEFF Research Database (Denmark)

    Pedersen, C.R.; Lind, Morten

    1999-01-01

    discusses aspects of process display design taking into account both the designer's and the operator's points of view. Three aspects are emphasized: the operator tasks, the display content and the display form. The distinction between these three aspects is the basis for proposing an outline for a display......Today, process displays used in industry are often designed on the basis of piping and instrumentation diagrams without any method of ensuring that the needs of the operators are fulfilled. Therefore, a method for a systematic approach to the design of process displays is needed. This paper...... by a simple example from a plant with batch processes. Later the method is applied to develop a supervisory display for a condenser system in a nuclear power plant. The differences between the continuous plant domain of power production and the batch processes from the example are analysed and broad...

  5. Process control upgrades yield huge operational improvements

    International Nuclear Information System (INIS)

    Fitzgerald, W.V.

    2001-01-01

    Most nuclear plants in North America were designed and built in the late 60 and 70. The regulatory nature of this industry over the years has made design changes at the plant level difficult, if not impossible, to implement. As a result, many plants in this world region have been getting by on technology that is over 40 years behind the times. What this translates into is that the plants have not been able to take advantage of the huge technology gains that have been made in process control during this period. As a result, most of these plants are much less efficient and productive than they could be. One particular area of the plant that is receiving a lot of attention is the feedwater heaters. These systems were put in place to improve efficiency, but most are not operating correctly. This paper will present a case study where one progressive mid-western utility decided that enough was enough and implemented a process control audit of their heater systems. The audit clearly pointed out the existing problems with the current process control system. It resulted in a proposal for the implementation of a state of the art, digital distributed process control system for the heaters along with a complete upgrade of the level controls and field devices that will stabilize heater levels, resulting in significant efficiency gains and lower maintenance bills. Overall the payback period for this investment should be less than 6 months and the plant is now looking for more opportunities that can provide even bigger gains. (author)

  6. A practicable signal processing algorithm for industrial nuclear instrument

    International Nuclear Information System (INIS)

    Tang Yaogeng; Gao Song; Yang Wujiao

    2006-01-01

    In order to reduce the statistical error and to improve dynamic performances of the industrial nuclear instrument, a practicable method of nuclear measurement signal processing is developed according to industrial nuclear measurement features. The algorithm designed is implemented with a single-chip microcomputer. The results of application in (radiation level gauge has proved the effectiveness of this method). (authors)

  7. Controlling Kuka Industrial Robots : Flexible Communication Interface JOpenShowVar.

    OpenAIRE

    Sanfilippo, Filippo; Hatledal, Lars Ivar; Zhang, Houxiang; Fago, Massimiliano; Pettersen, Kristin Ytterstad

    2015-01-01

    JOpenShowVar is a Java open-source cross-platform communication interface to Kuka industrial robots. This novel interface allows for read-write use of the controlled manipulator variables and data structures. JOpenShowVar, which is compatible with all the Kuka industrial robots that use KUKA Robot Controller version 4 (KR C4) and KUKA Robot Controller version 2 (KR C2), runs as a client on a remote computer connected with the Kuka controller via TCP/IP. Even though only soft real-time applica...

  8. Wastewater quality control at Sarnia (Ontario, Canada) petrochemical industries

    Energy Technology Data Exchange (ETDEWEB)

    Vianna, Arlinda C [Servico Nacional de Aprendizagem Industrial (SENAI), Salvador, BA (Brazil); Souza, Eliane S; Himmelman, William [Lambton College, Sarnia, ON (Canada)

    1994-12-31

    Ontario industries are required by law to meet strict regulations under the provinces under MISA initiative (Municipal-Industrial Strategy for Abatement). The petroleum-petrochemical area was selected as a leader in the development of new environmental objectives, and monitoring and training programs. Sarnia has become a world leader in industrial environmental control systems and the approach toward zero emissions. 4 refs., 6 figs., 2 tabs.

  9. Wastewater quality control at Sarnia (Ontario, Canada) petrochemical industries

    Energy Technology Data Exchange (ETDEWEB)

    Vianna, Arlinda C. [Servico Nacional de Aprendizagem Industrial (SENAI), Salvador, BA (Brazil); Souza, Eliane S.; Himmelman, William [Lambton College, Sarnia, ON (Canada)

    1993-12-31

    Ontario industries are required by law to meet strict regulations under the provinces under MISA initiative (Municipal-Industrial Strategy for Abatement). The petroleum-petrochemical area was selected as a leader in the development of new environmental objectives, and monitoring and training programs. Sarnia has become a world leader in industrial environmental control systems and the approach toward zero emissions. 4 refs., 6 figs., 2 tabs.

  10. Training Center for Industrial Control Systems

    Directory of Open Access Journals (Sweden)

    V. D. Yezhov

    2013-01-01

    Full Text Available We consider the application of embedded microcontrollers and industrial controllers with built-in operating systems.With the development of embedded operating systems and technology of open standard IEC 61131-3 product developer can write their own program management and support staff – to modernize management program.

  11. A comprehensive analysis of the IMRT dose delivery process using statistical process control (SPC)

    Energy Technology Data Exchange (ETDEWEB)

    Gerard, Karine; Grandhaye, Jean-Pierre; Marchesi, Vincent; Kafrouni, Hanna; Husson, Francois; Aletti, Pierre [Research Center for Automatic Control (CRAN), Nancy University, CNRS, 54516 Vandoeuvre-les-Nancy (France); Department of Medical Physics, Alexis Vautrin Cancer Center, 54511 Vandoeuvre-les-Nancy Cedex (France) and DOSIsoft SA, 94230 Cachan (France); Research Laboratory for Innovative Processes (ERPI), Nancy University, EA 3767, 5400 Nancy Cedex (France); Department of Medical Physics, Alexis Vautrin Cancer Center, 54511 Vandoeuvre-les-Nancy Cedex (France); DOSIsoft SA, 94230 Cachan (France); Research Center for Automatic Control (CRAN), Nancy University, CNRS, 54516 Vandoeuvre-les-Nancy, France and Department of Medical Physics, Alexis Vautrin Cancer Center, 54511 Vandoeuvre-les-Nancy Cedex (France)

    2009-04-15

    The aim of this study is to introduce tools to improve the security of each IMRT patient treatment by determining action levels for the dose delivery process. To achieve this, the patient-specific quality control results performed with an ionization chamber--and which characterize the dose delivery process--have been retrospectively analyzed using a method borrowed from industry: Statistical process control (SPC). The latter consisted in fulfilling four principal well-structured steps. The authors first quantified the short term variability of ionization chamber measurements regarding the clinical tolerances used in the cancer center ({+-}4% of deviation between the calculated and measured doses) by calculating a control process capability (C{sub pc}) index. The C{sub pc} index was found superior to 4, which implies that the observed variability of the dose delivery process is not biased by the short term variability of the measurement. Then, the authors demonstrated using a normality test that the quality control results could be approximated by a normal distribution with two parameters (mean and standard deviation). Finally, the authors used two complementary tools--control charts and performance indices--to thoroughly analyze the IMRT dose delivery process. Control charts aim at monitoring the process over time using statistical control limits to distinguish random (natural) variations from significant changes in the process, whereas performance indices aim at quantifying the ability of the process to produce data that are within the clinical tolerances, at a precise moment. The authors retrospectively showed that the analysis of three selected control charts (individual value, moving-range, and EWMA control charts) allowed efficient drift detection of the dose delivery process for prostate and head-and-neck treatments before the quality controls were outside the clinical tolerances. Therefore, when analyzed in real time, during quality controls, they should

  12. A comprehensive analysis of the IMRT dose delivery process using statistical process control (SPC).

    Science.gov (United States)

    Gérard, Karine; Grandhaye, Jean-Pierre; Marchesi, Vincent; Kafrouni, Hanna; Husson, François; Aletti, Pierre

    2009-04-01

    The aim of this study is to introduce tools to improve the security of each IMRT patient treatment by determining action levels for the dose delivery process. To achieve this, the patient-specific quality control results performed with an ionization chamber--and which characterize the dose delivery process--have been retrospectively analyzed using a method borrowed from industry: Statistical process control (SPC). The latter consisted in fulfilling four principal well-structured steps. The authors first quantified the short-term variability of ionization chamber measurements regarding the clinical tolerances used in the cancer center (+/- 4% of deviation between the calculated and measured doses) by calculating a control process capability (C(pc)) index. The C(pc) index was found superior to 4, which implies that the observed variability of the dose delivery process is not biased by the short-term variability of the measurement. Then, the authors demonstrated using a normality test that the quality control results could be approximated by a normal distribution with two parameters (mean and standard deviation). Finally, the authors used two complementary tools--control charts and performance indices--to thoroughly analyze the IMRT dose delivery process. Control charts aim at monitoring the process over time using statistical control limits to distinguish random (natural) variations from significant changes in the process, whereas performance indices aim at quantifying the ability of the process to produce data that are within the clinical tolerances, at a precise moment. The authors retrospectively showed that the analysis of three selected control charts (individual value, moving-range, and EWMA control charts) allowed efficient drift detection of the dose delivery process for prostate and head-and-neck treatments before the quality controls were outside the clinical tolerances. Therefore, when analyzed in real time, during quality controls, they should improve the

  13. Heat transfer in condensation and evaporation. Application to industrial and environmental processes

    Energy Technology Data Exchange (ETDEWEB)

    Marvillet, C [CEA/Grenoble, Dept. de Thermohydraulique et de Physique (DRN-GRETh), 38 (France); Vidil, R [CEA/Saclay, Direction des Technologies Avancees (DTA), 38 - Grenoble (France)

    1999-07-01

    Eurotherm Seminar number 62 objective is to provide a European forum for the presentation and the discussion of recent researches on heat transfer in condensation and evaporation and recent developments relevant to evaporators, condensers technology for: industrial processes; air conditioning and refrigeration processes; environmental processes; food industry processes; cooling processes of electronic or mechanical devices. The following topics are to be addressed: fundamentals of phase with pure fluids and mixtures; enhanced surfaces for improved tubular or plate heat exchangers; advanced methods and software for condenser and evaporator simulation and design; innovative design and concept of heat exchangers. This 2-days Seminar will be interest to a large group of researches and engineers from universities, research centres and industry. (authors)

  14. Deployment and Integration of Industrial Controls The Case of LHC Cryogenics Controls

    CERN Document Server

    Gayet, P

    2003-01-01

    The new cryogenics controls for LHC (UNICOS) are implemented in an open architecture based on SCADA and PLC industrial components, with Ethernet as Fieldnetwork. Its development was outsourced to industry and since mid-2001 several applications have been produced and delivered for refrigerators in the accelerator and experiment domains. This has allowed to validatedetailed performance requirements in terms of communication and distributed architecture. The second phase of this project will involve its integration with the LHC accelerator controls, both at the information exchange level (alarms, data logging) and at the device configuration level. This phase takes advantage of the integrated design at PLC and SCADA level, leading to the use of configuration tools which can be easily connected to the generic device configuration model of the accelerator controls.

  15. Process and petroleum industry

    International Nuclear Information System (INIS)

    1998-01-01

    In comparison with many industries, the oil and gas industry is somewhat unique in that it has been operating in a global environment for many decades. The North Sea exploration and production industry is now entering a challenging era for business growth which is a mature region with smaller and smaller fields, more difficult to find and which require innovative development schemes. This presentation relates to information technology offering the exploration and production industry a unique set of business tools to improve performance and enable growth while reducing risk

  16. Process and petroleum industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    In comparison with many industries, the oil and gas industry is somewhat unique in that it has been operating in a global environment for many decades. The North Sea exploration and production industry is now entering a challenging era for business growth which is a mature region with smaller and smaller fields, more difficult to find and which require innovative development schemes. This presentation relates to information technology offering the exploration and production industry a unique set of business tools to improve performance and enable growth while reducing risk

  17. Results prediction in industrial processes. A control tool based on the Knowledge; La prediccion de resultados en procesos industriales

    Energy Technology Data Exchange (ETDEWEB)

    Zabala-Uriarte, A.; Suarez-Creo, R.; Izaga-Gmaguregi, J.

    2009-07-01

    The difficulties involved in most metallurgical processes are well known, specially when the number of factors that act in then is very high. The problems are even more important if we want to forecast the process behaviour, because it is not easy to build a framework of links between the critical variables using the available information. This work takes into account the availability of several computer generic tools which, with a suitable adaptation and endowed with the specific knowledge, are able of learning the process, of connecting a lot of facts and of forecasting the product quality, sustaining at the same time the process under control. These tools manage the plant information, help to reach a robust process, increase its knowledge and improve its performance, related with the reject level in ppm. the development of this type of tools, were considered some years ago as utopian. The analytical method used is based in an initial selection of the defect that we want to study an the, factor or characteristics managing the process. Afterwards we will describe the most likely potential causes, source of the studied defect, and we will arrange then and give priority with probabilistic criteria, searching the root causes to all of them. During the running of industrial processes we will connect, through the computer program, the experimental measurements of the selected factors with the actual results, so that the system learns, and the same time we can reject the less significant variables, improving that way the reliability of the prediction. The conclusions are based in real applications, put in practice in different lines of production, for the validation of the system and the testing of its efficiency using the corresponding success index. (Author)

  18. European sites contaminated by residues from the ore extracting and processing industries

    International Nuclear Information System (INIS)

    Vandenhove, H.

    2000-01-01

    Activities linked with the ore extraction and processing industries may lead to enhanced levels of naturally occurring radionuclides (NORs) in products, by-products and waste and at the installations and in the surroundings of the facility. In the framework of the EC-DGXI CARE project (Common Approach for REstoration of contaminated sites) nine important categories of industries were identified and discussions were summarized on the industrial processes and the levels of NORs in parent material, waste and by-products. The most contaminating industries are uranium mining and milling, metal mining and smelting and the phosphate industry. Radionuclide levels in products and/or waste products from the oil and gas extraction industry and of the rare earth, zirconium and ceramics industries may be particularly elevated, but waste streams are limited. The impact on the public from coal mining and power production from coal is commonly considered low. No typical values are available for contaminant levels in materials, buildings and surroundings of radium extraction and luminizing plants, nor for thorium extraction and processing plants. An attempt to give an overview of sites in Europe contaminated with NORs, with emphasis on past practices, was only partly successful since information was often limited or unavailable. The most prominent case of environmental contamination due to mining and processing activities (uranium, metal and coal mining) is in eastern Germany. (author)

  19. The Importance of Systems for Controlling Logistics Costs in the Supply Chain: A Case Study from the Slovenian Automotive Industry

    Directory of Open Access Journals (Sweden)

    Sebastjan Škerlič

    2016-06-01

    Full Text Available Participating in the automotive industry brings new responsibilities for suppliers who, in order to meet customer demands, must strive towards improving business processes, while at the same time reducing costs. These demands can disrupt the operations of companies that do not have a system for controlling logistics costs. On the other hand, customer demands can be the cause of other types of disruptions in companies that have such a system in place, stemming from an excessive focus on cost reduction. To tackle this problem, a survey was conducted on a sample of 30 Slovenian companies that operate as suppliers in the automotive industry. Its objective was to determine how different customer demands along the supply chain can affect the business processes of suppliers and the level of logistics costs. The survey revealed that companies that use a system for controlling logistics costs experience fewer disruptions in their business processes in their efforts to satisfy customer demands. These companies also display a higher level of integration of business processes and use a different approach when dealing with the various participants of the supply chain. The survey also sets clear participation guidelines for suppliers in the supply chain of the automotive industry and points out how companies can benefit from using a system for controlling logistics costs in other ways, aside from the cost controlling aspect.

  20. Session summaries for workshop meeting on virtual reality applications in process industry maintenance training, outage planning, control room retrofits and design, 17th - 18th September 1998

    International Nuclear Information System (INIS)

    Louka, Michael N.

    1998-09-01

    A well-attended workshop was held in Halden 17th - 18th September 1998 to discuss VR applications in the process industry. In particular, maintenance training, outage planning, decommissioning, control room retrofits, and design were discussed. It is clear that there is a great deal of interest in both current and potential use of VR technology. The workshop participants represented a diverse range of research disciplines, as well as utilities, vendors and regulators (author) (ml)

  1. Process engineering challenges of uranium extraction from phosphoric acid on industrial scale

    International Nuclear Information System (INIS)

    Mouriya, Govind; Singh, Dhirendra; Nath, A.K.; Majumdar, D.

    2014-01-01

    Heavy Water Board (HWB) is a constituent unit of the Department of Atomic Energy. One of the diversified activities undertaken by HWB is pursuing exploitation of non-conventional resources for recovery of uranium from wet phosphoric acid being the most prominent one. Amongst the feasible processes for recovery of uranium from phosphoric acid is solvent extraction. Use of in-house solvent produced by HWB, is another key driver. To garner necessary information for developing the industrial scale facilities, the process has been studied in the laboratory scale, mini scale, bench scale at Heavy Water Plant, Talcher. The process was subsequently scaled up to an industrial prototype scale unit and was set up as a Technology Demonstration Plant coupled with a commercial phosphoric acid plant. The plant has successfully processed more than 2 lakh m 3 of wet phosphoric acid and all the parameters including the product, Yellow Cake have been qualified. No adverse effect has been observed in the fertilizer produced. The main characteristics of the process and subsequent process innovations are discussed in this paper. These innovations have been carried out to overcome hurdles faced during commissioning and subsequent operations of the Plant. The innovations include improved pretreatment of the wet phosphoric acid for feeding to the extraction cycle, improved control of the first cycle chemical environment, reducing the strength of the phosphoric acid used for stripping, reducing the number of equipment and machineries, alteration in solvent composition used in the first and second cycle in the solvent extraction units of the plant. (author)

  2. Big Data Analytics for Industrial Process Control

    DEFF Research Database (Denmark)

    Khan, Abdul Rauf; Schioler, Henrik; Kulahci, Murat

    2017-01-01

    Today, in modern factories, each step in manufacturing produces a bulk of valuable as well as highly precise information. This provides a great opportunity for understanding the hidden statistical dependencies in the process. Systematic analysis and utilization of advanced analytical methods can...

  3. Study on the instrumentation and control of the fermentaion process

    Energy Technology Data Exchange (ETDEWEB)

    Nanba, Akira

    1988-03-25

    An attempt was made to create models representing various fermentation processes, and these models were applied to a computer-controlled bread yeast culture plant. First, batch ethanol fermentation processes using yeast were analyzed in the light of reaction rate theory, and various model equations were presented. Using these models, analysis was made at various fermentation temperatures. As a result, it was found that the model equations are applicable to ethanol production and that the reaction rate equation is useful for analyzing high-concentration ethanol fermentation processes. Next, heat involved in ethanol fermentation was measured with a calorimeter. In combination with the above models, automatic montitoring based on microcomputer control, data processing, and display on a screen was attempted, with good results. Using the above findings, the ethanol generation reaction in the bread yeast culture was analyzed qualitatively. Culture control was performed with ethanol growth patterns as signals. The above technique has proved to be applicable to industrial bread yeast production. (17 figs, 3 tabs, 29 refs)

  4. Development of industrial ion implantation and ion assisted coating processes: A perspective

    International Nuclear Information System (INIS)

    Legg, K.O.; Solnick-Legg, H.

    1989-01-01

    Ion beam processes have gone through a series of developmental stages, from being the mainstay of the semiconductor industry for production of integrated circuits, to new commercial processes for biomedical, aerospace and other industries. Although research is still continuing on surface modification using ion beam methods, ion implantation and ion assisted coatings for treatment of metals, ceramics, polymers and composites must now be considered viable industrial processes of benefit in a wide variety of applications. However, ion implantation methods face various barriers to acceptability, in terms not only of other surface treatment processes, but for implantation itself. This paper will discuss some of the challenges faced by a small company whose primary business is development and marketing of ion implantation and ion-assisted coating processes. (orig.)

  5. Integrated technology selection for energy conservation and PAHs control in iron and steel industry: Methodology and case study

    International Nuclear Information System (INIS)

    Li, Li; Lu, Yonglong; Shi, Yajuan; Wang, Tieyu; Luo, Wei; Gosens, Jorrit; Chen, Peng; Li, Haiqian

    2013-01-01

    Energy conservation and PAHs (polycyclic aromatic hydrocarbon) control are two challenges for the iron and steel industry, especially where the industry has developed at high speed. How to select appropriate technologies to improve energy efficiency and control pollution from PAHs simultaneously is encountered by both the researchers and the decision makers. This study sets up a framework on technology selection and combination which integrates technology assessment, multiple objective programming and scenario analysis. It can predict proper technology combination for different emission controls, energy conservation targets and desired levels of production. An iron and steel factory in Southwestern China is cited as a case. It is shown that stricter PAHs control will drive the transformation from process control technology to alternative smelting technology. In low PAHs limit, 25% energy reduction is a threshold. Before inclusion of a restraint on energy consumption at 25% reduction, PAHs emission is the key limiting factor for the technology selection; while after inclusion of this restraint, energy consumption becomes the key limiting factor. The desired level of production will also influence the technology selection. This study can help decision makers to select appropriate technologies to meet the PAHs control objectives and energy conservation strategies in energy-intensive industries. - Highlights: ► We predict technical strategy for energy and PAHs reduction in iron and steel mill. ► With low PAHs control objectives, process control technologies are preferable. ► With medium and high PAHs control goals, alternative smelting technology is dominate. ► In low PAHs control objective, 25% energy reduction is a threshold

  6. IMPROVING PERFORMANCES BY USING COST CONTROLLING IN THE MINING INDUSTRY ENTITIES

    Directory of Open Access Journals (Sweden)

    SORINEL CĂPUŞNEANU

    2016-06-01

    Full Text Available The aim of this article is to highlight the improving performances of entities from mining industry entities by using cost controlling as an important tool of management accounting, applying the target costing method. The survey is based on questions that led investigation made in the Romanian entities from mining industry and based on data a thorough analysis was done for fulfillment of authors’ purpose. The results obtained by applying the target costing method has allowed a very strict cost control, which ultimately led to increased performances of economic entities from mining industry in Romania. The secondary purpose of this article is to try adjusting the target costing method to the specific of entities in the mining industry. According to studies of specialists this method based on target costing calculation is rather unusual in this sector of mining industry and it relies heavily on the activity-based costing method. The article ends with the authors' conclusions on improving the performances of entities from mining industry based on cost controlling and use of mix information obtained through the applied methods

  7. Creative Industries: Development Processes Under Contemporary Conditions of Globalization

    Directory of Open Access Journals (Sweden)

    Valerija Kontrimienė

    2017-06-01

    Full Text Available The article deals with the processes of developing creative industries under conditions of a growth in the worldwide economy and globalization, discloses the role of the sector of creative industries and shows its place in the system of the modern global economy. The paper presents a comparative analysis of theories and theoretical approaches intended for the sector of creative industries and its development as well as defines regularities and specificities characteristic of the development of creative industries. Particular attention is shifted on the growth and development of creative industries considering the current challenges of globalization and on the most important specificities of the developing sector in the context of the challenges of economic globalization. The paper examines the trends reflecting the place of the sector of creative industries in the economy of the modern world, including the tendencies indicating changes in the export of the products created in this sector. The article considers the issues of developing creative industries and reveals priorities of future research.

  8. Lean planning in the semi-process industry, a case study

    NARCIS (Netherlands)

    Pool, Arnout; Wijngaard, Jacob; van der Zee, D.J.

    The lean approach is an idealizing improvement approach that has an enormous impact in the field of operations management. It started in the automotive industry and has since been widely applied in discrete manufacturing. However, extensions to the (semi-) process industry have been much slower.

  9. Industrial process system assessment: bridging process engineering and life cycle assessment through multiscale modeling.

    Science.gov (United States)

    The Industrial Process System Assessment (IPSA) methodology is a multiple step allocation approach for connecting information from the production line level up to the facility level and vice versa using a multiscale model of process systems. The allocation procedure assigns inpu...

  10. Substitution of Organic Solvents in Selected Industrial Cleaning Processes

    DEFF Research Database (Denmark)

    Jacobsen, Thomas; Rasmussen, Pia Brunn

    1997-01-01

    Volatile organic solvents (VOC)are becoming increasingly unwanted in industrial processes. Substitution of VOC with non-volatile, low-toxic compounds is a possibility to reduce VOC-use. It has been successfully demonstrated, that organic solvents used in cleaning processes in sheet offset printing...

  11. Information security of industrial control systems: possible attack vectors and protection methods

    Directory of Open Access Journals (Sweden)

    Ignatiy A. Grachkov

    2018-03-01

    obtaining unauthorized access to industrial control systems using the Shodan search engine is described and recommendations how to ensure information security of the industrial control system are given.

  12. Market development directory for solar industrial process heat systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-02-01

    The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Since industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).

  13. Industrial energy thrift scheme. Report No. 16. Energy use in the knitting industry

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The knitting industry includes organizations concerned with hosiery, other weft knitted goods and warp-knitting and in some cases also with subsequent dyeing and finishing of knitted goods. In 1976, the industry had 116,000 employees located at approximately 600 sites, mostly in the East Midlands. The total energy consumption of the industry in 1976 was estimated to be 12,180 TJ. Sites with dyeing and finishing interests could save 15% of their energy. The major sources of savings (6%) are by recovering process heat which is currently wasted and from better process control. Other significant savings (5%) are possible from better control, maintenance and insulation of boilers and pipes. Attention to better housekeeping, to controlling draughts and to space heating generally could account for a further 3.5% saving in energy. Sites without dyeing and finishing interests could save 13% of the total energy used by this group. The most important opportunities are better control of space heating (5.5%) and better control and insulation of boilers, pipes and services (5%). These sites have fewer opportunities to recover heat from processes (2%) than where dyeing and finishing takes place but opportunities do exist.

  14. Study of an automatic dosing of neptunium in the industrial process of separation neptunium 237-plutonium 238

    International Nuclear Information System (INIS)

    Ros, Pierre

    1973-01-01

    The objective is to study and to adapt a method of automatic dosing of neptunium to the industrial process of separation and purification of plutonium 238, while taking the information quality and economic aspects into account. After a recall of some generalities on the production of plutonium 238, and the process of separation plutonium-neptunium, the author addresses the dosing of neptunium. The adopted measurement technique is spectrophotometry (of neptunium, of neptunium peroxide) which is the most flexible and economic to adapt to automatic control. The author proposes a project of chemical automatic machine, and discusses the complex (stoichiometry, form) and some aspects of neptunium dosing (redox reactions, process control) [fr

  15. Controlling of degradation effects in radiation processing of polymers

    International Nuclear Information System (INIS)

    2009-05-01

    The interest of Member States of the IAEA in introducing radiation technology into the polymer and plastics industry is growing. This publication summarizes a number of studies conducted in the framework of a coordinated research project (CRP) on controlling of degradation effects on polymers by radiation processing technologies. It reviews a variety of applications and details the most important results and achievements of the participating centres and laboratories during the course of the CRP. The publication is intended to be of use to scientists implementing the technology and managers of radiation processing facilities

  16. Use of Industrial Components in SL/BT Equipment Controls

    CERN Document Server

    Carlier, E

    1999-01-01

    The control system of all SPS target stations, beam absorbers and other aperture limiting devices is presently being refurbished, using solely standard industrial hardware and software components. SIEMENS Simatic S7-300 programmable logic controllers serve as equipment controllers. They are connected through Profibus to a WinNT front-end running the SIEMENS WinCC SCADA package which acts as local controller and gateway for remote access. A variant configuration, where the PLCs are directly linked to Ethernet, has been used for controlling the SPS Q measurement kickers. These and some other SL/BT projects will be reviewed where fully off-the-shelf components have been successfully integrated into the SL accelerator controls infrastructure. The arguments leading to the various technical choices will be laid down including a report of the experience gained. Finally, the presentation will address the perspective and current ideas for using industrial components in controlling SL/BT equipment during the LHC era.

  17. Applications of sonochemistry in Russian food processing industry.

    Science.gov (United States)

    Krasulya, Olga; Shestakov, Sergey; Bogush, Vladimir; Potoroko, Irina; Cherepanov, Pavel; Krasulya, Boris

    2014-11-01

    In food industry, conventional methodologies such as grinding, mixing, and heat treatment are used for food processing and preservation. These processes have been well studied for many centuries and used in the conversion of raw food materials to consumable food products. This report is dedicated to the application of a cost-efficient method of energy transfer caused by acoustic cavitation effects in food processing, overall, having significant impacts on the development of relatively new area of food processing such as food sonochemistry. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Development of methodology for the fore cast of microbiological processes under transaction to industrial cultivation

    International Nuclear Information System (INIS)

    Lepeshkin, G.; Bugreev, V.

    1996-01-01

    Proposals for possible cooperation with Western partners : To obtain the scale transfers method in laboratory condition of microorganisms cultivation to industrial conditions based on the parameters of spatial cultivation to industrial conditions based on the parameters of spatial heterogeneous hydrodynamics situation in bioreactors. The problem is the impossibility to count constructive elements and regimes of ferments operation which provided optimum environment for microorganisms vital functions because the hydrodynamic, biological and mass change processes are complicated. To solve the problems it is required to : - Investigate the different sides of physiology of culture-producer of Biologically Active Substances (hereinafter BAS) - Investigate the interrelation between the stirring and biological transformation in microorganism cells - Analyze and search main tendencies required to control biosynthesis (BAS) processes and reproduction of biosynthesis results at the cultivation change scale - Analyze technical properties of the reactor and the revealing of the spatial heterogeneous hydrodynamics situation at the different scales of bioreactor parameters - Investigate cinematic energy mediums field in the different bioreactor scales - Obtain the criteria dependencies estimating the irregularity of the stirrings intensity - Prepare the methodological foundations of microbiological processes forecast required to introduce to the industrial biosynthesis environment Expected results : To detect the comparable regimes of bioreactor operation in order to achieve equal production range and realize the scale-up method

  19. MUMTI a Multi-User-Multi-Task-Interpreter for process-control applications with CAMAC

    International Nuclear Information System (INIS)

    Busse, E.; Degenhardt, K.H.; Eichner, H.U.; Tschammer, V.; Vidic, U.; Woletz, W.

    1977-02-01

    The interactive, interpretative programming-system MUMTI runs on PDP11-RSX11M/D-systems. Its main application fields are industrial and process-control applications. The MUMTI language is described in detail. (WB) [de

  20. Survey on alternative energy for industrial processes in Indonesia

    International Nuclear Information System (INIS)

    Masduki, B.; Sukarsono, R.; Wardaya; Suryawan, I.

    1997-01-01

    In consequence of the national industrial development, it is necessary to supply a lot of energy. This paper presented a discussion about the option of supplying nuclear processed heat as alternative energy sources for industry especially in Java island. The electrical energy requirement can be estimated rising. The stock and the requirement of energy in Indonesia is unbalance. If the oil production rate is constant, such as that of today, it can be estimated that the oil stock would be over in 20 years. The country is trying to difertify its source of energy and reduce its dependence on oil. High Temperature Reactor (HTR) produces electric and also heat at various temperature in the form of steam and gas. Heat processes from a high temperature reactor, could be used in industry for supplying heat for coal hidroforming, gasification of coal, metal annealing, petrochemical hydrogenation, distillation, purification of petrochemicals, evaporation, water heat, etc. (author). 8 refs, 1 fig., 5 tabs

  1. [Development and innovation of traditional Chinese medicine processing discipline and Chinese herbal pieces industry].

    Science.gov (United States)

    Xiao, Yong-Qing; Li, Li; Liu, Ying; Ma, Yin-Lian; Yu, Ding-Rong

    2016-01-01

    To elucidate the key issues in the development and innovation of traditional Chinese medicine processing discipline and Chinese herbal pieces industry Chinese herbal pieces industry. According to the author's accumulated experience over years and demand of the development of the Chinese herbal pieces industry, the key issues in the development and innovation on the Chinese herbal pieces industry were summarized. According to the author, the traditional Chinese medicine processing discipline shall focus on a application basis research. The development of this discipline should be closely related to the development of Chinese herbal pieces. The traditional Chinese medicine processing discipline can be improved and its results can be transformed only if this discipline were correlated with the Chinese herbal pieces industry, matched with the development of the Chinese herbal pieces industry, and solved the problems in the development on the Chinese herbal pieces industry. The development of traditional Chinese medicine processing discipline and the Chinese herbal pieces industry also requires scientific researchers to make constant innovations, realize the specialty of the researches, and innovate based on inheritance. Copyright© by the Chinese Pharmaceutical Association.

  2. Towards A Unified HFE Process For The Nuclear Industry

    Energy Technology Data Exchange (ETDEWEB)

    Jacques Hugo

    2012-07-01

    As nuclear power utilities embark on projects to upgrade and modernize power plants, they are likely to discover that traditional engineering methods do not typically make provision for the integration of human considerations. In addition, human factors professionals will find that traditional human performance methods such as function allocation, task analysis, human reliability analysis and human-machine interface design do not scale well to the complexity of a large-scale nuclear power upgrade project. Up-to-date human factors engineering processes, methods, techniques and tools are required to perform these kinds of analyses. This need is recognized widely in industry and an important part of the Department of Energy’s Light Water Reactor Sustainability Program deals with identifying potential impacts of emerging technologies on human performance and the technical bases needed to address them. However, so far no formal initiative has been launched to deal with the lack of integrated processes. Although human factors integration frameworks do exist in industries such as aviation or defense, no formal integrated human factors process exists in the nuclear industry. As a first step towards creating such a process, a “unified human factors engineering process” is proposed as a framework within which engineering organizations, human factors practitioners and regulatory bodies can ensure that human factors requirements are embedded in engineering activities throughout the upgrade project life cycle.

  3. International Outsourcing: a process approach to the apparel industry

    Directory of Open Access Journals (Sweden)

    Maria Rosario Alves Moreira

    2015-12-01

    Full Text Available Objective – The purpose of this paper is to build a framework for an international outsourcing process in the apparel industry that can serve to support managerial decisions and actions regarding outsourcing choices and implementation. Design/methodology/approach – We developed of a straightforward and flexible framework describing the main stages of the international outsourcing process and its main activities with application in the context of the apparel industry. A case study approach was adopted with primary data collected through in-depth interviews and secondary data aggregated from company reports and documents. Theoretical foundation – Some research gaps in the outsourcing literature and most specifically on the matter of international outsourcing were identified by Hatonen and Eriksson (2009 and Kakabadse and Kakabadse (2000, among others. Specifically, these authors claim that there is not enough research on developing and offering decision models, tools or guidelines to support managerial decisions with the appropriate empirical evidence. This study aims to address this gap. Findings – We found that the international outsourcing process can be described using the proposed framework. Apparel companies can use this framework to support and supervise international outsourcing processes. Practical implications – This study provides a simple model that can help companies in the apparel industry to enhance their outsourcing activities and operations, and also contributes to a broader academic understanding of the matter.

  4. UNICOS CPC6: Automated Code Generation for Process Control Applications

    CERN Document Server

    Fernandez Adiego, B; Prieto Barreiro, I

    2011-01-01

    The Continuous Process Control package (CPC) is one of the components of the CERN Unified Industrial Control System framework (UNICOS) [1]. As a part of this framework, UNICOS-CPC provides a well defined library of device types, amethodology and a set of tools to design and implement industrial control applications. The new CPC version uses the software factory UNICOS Application Builder (UAB) [2] to develop CPC applications. The CPC component is composed of several platform oriented plugins PLCs and SCADA) describing the structure and the format of the generated code. It uses a resource package where both, the library of device types and the generated file syntax, are defined. The UAB core is the generic part of this software, it discovers and calls dynamically the different plug-ins and provides the required common services. In this paper the UNICOS CPC6 package is introduced. It is composed of several plug-ins: the Instance generator and the Logic generator for both, Siemens and Schneider PLCs, the SCADA g...

  5. The influence of industrial applications on a control system toolbox

    International Nuclear Information System (INIS)

    Clout, P.

    1992-01-01

    Vsystem is as an open, advanced software application toolbox for rapidly creating fast, efficient and cost-effective control and data-acquisition systems. Vsystem's modular architecture is designed for single computers, networked computers and workstations running under VAX/VMS or VAX/ELN. At the heart of Vsystem lies Vaccess, a user extendible real-time database and library of access routines. The application database provides the link to the hardware of the application and can be organized as one database or separate database installed in different computers on the network. Vsystem has found application in charged-particle accelerator control, tokamak control, and industrial research, as well as its more recent industrial applications. This paper describes the broad feature of Vsystem and the influence that recent industrial applications have had on the software. (author)

  6. Strategy for control and integrated optimization of chemical processes; Estrategia para o controle e otimizacao integrada de processos quimicos

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Antonio Ignacio de [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Engenharia Quimica]. E-mail: ailac@vm.uff.br; Araujo, Ofelia de Queiroz Fernandes; Medeiros, Jose Luiz de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica]. E-mail: ofelia@eq.ufrj.br; jlm@eq.ufrj.br

    2004-12-01

    The increasingly market competitiveness, the frequent changes in costs of raw materials and imposition of environmental restrictions require quick responses from the industries and better control of their production. The growing increase of the computational systems processing capacity and advances in analysis and instrumentation systems favor the formulation of new strategies geared to the operational optimization of industrial processes. The optimization of a process, within a more rigid context, assumes that it is made through the optimal control theory. In this aspect, comparative studies are carried out between some formulations of the problem in terms of optimal control and a new methodology of economic optimization. The study process was a pyrolysis oven for which an economic function was developed. Such function considers the effects of the oven operation on the other subsequent parts of the Ethylene Plant, taking into account their energy consumptions and their operational restrictions. A rigorous thermal-dynamic analysis was made in the development thereof involving major parts of the product separation system upstream the oven. The results obtained met the expectations and the new optimization criterion tested can be implemented in a relatively simple computational system using personal computers currently available. Although the work is oriented towards the pyrolysis of hydrocarbons the proposed structure may be applied to other types of chemical and petrochemical processes with the same topology: a reaction system and a separation system. (author)

  7. Operational impact of product variety in the process industry

    DEFF Research Database (Denmark)

    Moseley, Alexandria Lee; Hvam, Lars; Herbert-Hansen, Zaza Nadja Lee

    2016-01-01

    The purpose of this research article is to examine the impact of product variety on production performance in the process industry. As the number of product variants sold by a process company typically impacts the run length, production data from a mineral wool insulation manufacturer is analyzed...

  8. Control in the Chemical Industry

    Science.gov (United States)

    Jones, R. G.

    1974-01-01

    Discusses various control techniques used in chemical processes, including measuring devices, controller functions, control valves, and feedforward and feedback actions. Applications of control to a real chemical plant are exemplified. (CC)

  9. Controlled decomposition and oxidation: A treatment method for gaseous process effluents

    Science.gov (United States)

    Mckinley, Roger J. B., Sr.

    1990-01-01

    The safe disposal of effluent gases produced by the electronics industry deserves special attention. Due to the hazardous nature of many of the materials used, it is essential to control and treat the reactants and reactant by-products as they are exhausted from the process tool and prior to their release into the manufacturing facility's exhaust system and the atmosphere. Controlled decomposition and oxidation (CDO) is one method of treating effluent gases from thin film deposition processes. CDO equipment applications, field experience, and results of the use of CDO equipment and technological advances gained from the field experiences are discussed.

  10. On the potential and economic feasibility of solar industrial process-heat applications in selected Turkish industries

    International Nuclear Information System (INIS)

    Ozdogan, S.; Arikol, M.

    1992-01-01

    We discuss the potential and economic feasibility of solar, industrial process-heat applications in the Turkish food, textile and chemical industries. The study covers 18 sites and end-use temperatures up to 120 and 150 o C. A solar system composed of parabolic troughs without thermal storage is chosen. The system size investigated is 500 to 20,000m 2 . (author)

  11. Essentials of water systems design in the oil, gas, and chemical processing industries

    CERN Document Server

    Bahadori, Alireza; Boyd, Bill

    2013-01-01

    Essentials of Water Systems Design in the Oil, Gas and Chemical Processing Industries provides valuable insight for decision makers by outlining key technical considerations and requirements of four critical systems in industrial processing plants—water treatment systems, raw water and plant water systems, cooling water distribution and return systems, and fire water distribution and storage facilities. The authors identify the key technical issues and minimum requirements related to the process design and selection of various water supply systems used in the oil, gas, and chemical processing industries. This book is an ideal, multidisciplinary work for mechanical engineers, environmental scientists, and oil and gas process engineers.

  12. Radiological protection in the use of radiotracers in industrial process

    International Nuclear Information System (INIS)

    Costa, M.L L.; Gomes, R.S.; Gomes, J.D.R.L.; Costa, E.L.C.; Thomé, Z.D.

    2017-01-01

    The use of radiotracers plays an important role to provide methods to optimize industrial process and improve product quality. An increase in the use of radiotracers investigations has been observed in Brazil, however, as there is no specific standard for the licensing of these facilities, generic radiation protection regulations have been used, but these are not comprehensive or technically suitable for this purpose. Regulatory inspections in radiotracer facilities have reported failures in disagreement with best practices for radiological safety, mainly in radioactive waste management and in the control of workplaces during radiotracer injections. In this work, an assessment of radiological protection aspects of radioactive tracers is performed, based on the licensing process of radiotracers facilities, as well as the experience of regulatory inspections and a review of international standards, pointing out relevant radiation safety aspects for working practices, procedures and protective measures before, during and after injections of radioactive tracers, in order to contribute to the future development of specific safety regulations on radiotracers in Brazil. (author)

  13. Radiological protection in the use of radiotracers in industrial process

    Energy Technology Data Exchange (ETDEWEB)

    Costa, M.L L.; Gomes, R.S.; Gomes, J.D.R.L.; Costa, E.L.C., E-mail: mara@cnen.gov.br, E-mail: rogeriog@cnen.gov.br, E-mail: jlopes@cnen.gov.br, E-mail: evaldo@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Diretoria de Radioproteção e Segurança Nuclear; Thomé, Z.D., E-mail: zielithome@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Seção de Engenharia Nuclear

    2017-07-01

    The use of radiotracers plays an important role to provide methods to optimize industrial process and improve product quality. An increase in the use of radiotracers investigations has been observed in Brazil, however, as there is no specific standard for the licensing of these facilities, generic radiation protection regulations have been used, but these are not comprehensive or technically suitable for this purpose. Regulatory inspections in radiotracer facilities have reported failures in disagreement with best practices for radiological safety, mainly in radioactive waste management and in the control of workplaces during radiotracer injections. In this work, an assessment of radiological protection aspects of radioactive tracers is performed, based on the licensing process of radiotracers facilities, as well as the experience of regulatory inspections and a review of international standards, pointing out relevant radiation safety aspects for working practices, procedures and protective measures before, during and after injections of radioactive tracers, in order to contribute to the future development of specific safety regulations on radiotracers in Brazil. (author)

  14. Industrial process gamma tomography. Final report of a coordinated research project 2003-2007

    International Nuclear Information System (INIS)

    2008-05-01

    Gamma computed tomography (CT) is complementary to radiotracer and gamma sealed source techniques largely used for analyzing industrial process units. Relevant target areas for gamma CT applications are generally known. Although the methodology is generic and applicable across broad industrial specimen and facilities, a number of specific items have been identified as the most appropriate target beneficiaries of these applications: distillation columns; packed beds; risers; fluidized beds and other multiphase processing units. These industrial process units present significant technical challenges to CT investigations in terms of the complexity of the multiphase flows that occur in them. In order to address these needs, the IAEA implemented a Coordinated Research Project (CRP) on Industrial Process Gamma Tomography with the overall objective of testing and validating CT techniques for diagnosing industrial multiphase processes. CT laboratories from Argentina, Brazil, Czech Republic, France, Republic of Korea, Malaysia, Norway, Poland, United Kingdom and the United States of America have participated. The specific objectives of the CRP were assessment of the tomographic methods, evaluation of them for investigation of multiphase engineering processes, and design of prototypes of simple CT systems for industrial processing, which can be transferred to other developing countries. The CRP has generated an active network, which also included other groups engaged in the CT field. The round robin test has played an important role in validation of techniques and software. This TECDOC is prepared based on the findings and achievements of the CRP. It is a comprehensive technical report containing valuable information, not readily available in any single publication elsewhere. The participants' reports and software developed by them are compiled in a CD-ROM and attached to the back cover. The guidelines and software packages described in this report can be used as an

  15. Predictive maintenance of critical equipment in industrial processes

    Science.gov (United States)

    Hashemian, Hashem M.

    This dissertation is an account of present and past research and development (R&D) efforts conducted by the author to develop and implement new technology for predictive maintenance and equipment condition monitoring in industrial processes. In particular, this dissertation presents the design of an integrated condition-monitoring system that incorporates the results of three current R&D projects with a combined funding of $2.8 million awarded to the author by the U.S. Department of Energy (DOE). This system will improve the state of the art in equipment condition monitoring and has applications in numerous industries including chemical and petrochemical plants, aviation and aerospace, electric power production and distribution, and a variety of manufacturing processes. The work that is presented in this dissertation is unique in that it introduces a new class of condition-monitoring methods that depend predominantly on the normal output of existing process sensors. It also describes current R&D efforts to develop data acquisition systems and data analysis algorithms and software packages that use the output of these sensors to determine the condition and health of industrial processes and their equipment. For example, the output of a pressure sensor in an operating plant can be used not only to indicate the pressure, but also to verify the calibration and response time of the sensor itself and identify anomalies in the process such as blockages, voids, and leaks that can interfere with accurate measurement of process parameters or disturb the plant's operation, safety, or reliability. Today, process data are typically collected at a rate of one sample per second (1 Hz) or slower. If this sampling rate is increased to 100 samples per second or higher, much more information can be extracted from the normal output of a process sensor and then used for condition monitoring, equipment performance measurements, and predictive maintenance. A fast analog-to-digital (A

  16. The Efficiency of Halal Processed Food Industry in Malaysia

    Directory of Open Access Journals (Sweden)

    Mohd Ali Mohd Noor

    2016-06-01

    Full Text Available Efficiency is indispensable for an industry to ensure cost reduction and profit maximization. It also helps the industry to be competitive and remain in the market. In 2010, Malaysia aims to be the world halal hub. The hub should capture at least five percent of the world halal market with at least 10,000 exporting firms. However the hub failed due to the small number of firms efficiency that finally contribute to less number of firms export. Thus, this study aimed to measure the efficiency of halal processed food industry in Malaysia using Data Envelopment Analysis (DEA. Input variables used were local raw inputs, labour, and monetary assets of halal food industry in Malaysia. Meanwhile the output used was the total sales revenue of the halal industry in Malaysia. The study shows that very few indusries are efficient in each category led by meat, dairy, cordials and juices, marine products, food crops, and grains industry. Therefore, the government needs to emphasize on industry’s efficiency to be competitive and be the world halal hub in the future.

  17. DEVELOPMENT OF PERFORMANCE MODEL FOR QUALITY AND PROCESS IMPROVEMENT IN BUSINESS PROCESS SERVICE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Samson Oludapo

    2017-06-01

    Full Text Available When it comes to performance improvement process, literature abounds with lean, agile and lean-agile. Over the years, the implementation of the improvement processes of lean and agile had met with resounding success in the manufacturing, production, and construction industry. For this reason, there is an interest to develop a performance process for business process service industry incorporating the key aspect of lean and agile theory extracted from the extant literature. The researcher reviewed a total of 750 scholarly articles, grouped them according to the relationship to central theme - lean or agile, and thereafter uses factor analysis under principal component method to explain the relationship of the items. The result of this study showed that firms focusing on cost will minimize the investment of resources in business operations this, in turn, will lead to difficulties in responding to changing customer's requirements in terms of volume, delivery, and new product. The implication is that on the long run cost focus strategy negatively influence flexibility.

  18. Controle químico da mancha-bacteriana do tomate para processamento industrial em campo Field chemical control of bacterial spot on tomato for industrial processing

    Directory of Open Access Journals (Sweden)

    Abadia dos R Nascimento

    2013-03-01

    cloretos de benzalcônio. ASM e famoxadona + mancozebe foram os que promoveram uma relação benefício/custo superior a 1.In order to evaluate chemical control of bacterial spot on tomato for industrial processing, two field trials were carried out at the Unilever Bestfoods experimental station, in Goiânia, Goias state, Brazil. The first trial was in a randomized complete block design, with 15 treatments and three replications, using the hybrid Heinz 9992 inoculated with Xanthomonas perforans. The second trial was in a split-plot randomized complete block design with chemical foliar applications (10 treatments and hybrids (Hypeel 108 and U2006 as factors. Plants were inoculated with X. perforans and X. gardneri. In both trials the chemicals, in different number of applications and combinations, were: acibenzolar-S-methyl (ASM; famoxadone + mancozeb; metiram + pyraclostrobin; phosphite PK; benzalkonium chlorides; cuprous oxide, and copper hydroxide (SC, WP and WG. For both trials, disease severity on leaves, number of fruits with symptoms and yield were evaluated. In the second one, sunscald was also evaluated. For the first trial, significant severity differences (p>0.05 among treatments were observed only in the first two evaluations, but none of them differed from the water check control. In the second trial, significant differences were detected only in foliar severity in first evaluation for hybrids. For number of fruits with symptoms and sunscald, besides hybrids, interaction among factors was also significant. 'U2006' was more resistant than 'Hypeel 108', which also had highest sunscald values, but concerning fruits with symptoms, the opposite was observed. The two factors were significant for yield data, 'U2006' yielded better than 'Hypeel 108'. Despite none of the treatments have differed in yield from the water control, famoxadone + mancozeb, which resulted in the highest yield, differed from copper hydroxide, ASM - famoxadone + mancozeb, and benzalkonium

  19. One unhealthy commodities industry? Understanding links across tobacco, alcohol and ultra-processed food manufacturers and their implications for tobacco control and the SDGS

    Directory of Open Access Journals (Sweden)

    Jeff Collin

    2018-03-01

    Full Text Available Background FCTC Article 5.3 requires protection against tobacco industry interference in policy-making. By contrast, manufacturers of alcohol and ultra-processed food and drink products are often identified as potential partners in multi-sectoral health initiatives, including via the Sustainable Development Goals (SDGs. This divergence has been questioned given evidence of strategic similarities across sectors, to which this presentation adds an examination of structural links and their implications for health policy. This focuses on an analysis of 'interlocking directorates', via which directors of one organisation also occupy positions on different boards, widely as the principal indicator of network ties across corporations. Methods Using data from corporate websites, annual reports and business databases, we employ UCINET social network analysis software to examine interlocks in the top six transnational companies of each sector within and across tobacco, alcohol and food companies, with political elites, and with health and development agencies. Results We present findings via (i profiles of individual tobacco industry directors, highlighting strategically valuable links to other actors; (ii a quantitative comparison of interlocks across the three sectors, with no direct links between tobacco and food companies but with alcohol companies providing several bridges between them, and with food companies more extensively linked to political elites and health agencies; (iii a case study of the board of brewing giant SAB Miller at the time of its mega-merger with AB InBev to highlight the significance to tobacco control of wider interactions enabled by interlocks. Conclusions This account of linkages across tobacco, alcohol and ultra-processed food companies calls into question regulatory approaches that treat the tobacco industry as an exceptional case. Neglecting conflicts of interest with other unhealthy commodity producers is potentially

  20. Business process of reputation management of food industry enterprises

    Directory of Open Access Journals (Sweden)

    Derevianko Olena. H.

    2014-01-01

    Full Text Available The goal of the article is development of the methodical base of reputation management directed at formalisation of theoretical provisions and explanation how to organise reputation management at food industry enterprises. The article shows prospectiveness of use of the Business Process Management concept in reputation management. Using the diagram of the Reputation Management business process environment the article shows its key participants (suppliers and clients of the business process and identifies their place in formation of the enterprise reputation. It also shows that the reputation management should be considered a business process of the highest level of management. Construction of the flow structure of the Reputation Management business process allows uncovering the logic of interrelation of inlets and outlets within the framework of the specified main stages of the business process: assessment of the current state of reputation, collection of information about stakeholders, identification of PR strategy goals, planning of necessary resources, realisation of the PR strategy, assessment of efficiency and process monitoring. The article offers the flow, functional and organisational structures of the Reputation Management business process for food industry enterprises. Moreover, justification of functional and organisational structures of the Reputation Management business process gives a possibility to distribute functions of reputation management between specific executors and establish responsibility for each stage of the business process.

  1. Pressurized Recuperator For Heat Recovery In Industrial High Temperature Processes

    Directory of Open Access Journals (Sweden)

    Gil S.

    2015-09-01

    Full Text Available Recuperators and regenerators are important devices for heat recovery systems in technological lines of industrial processes and should have high air preheating temperature, low flow resistance and a long service life. The use of heat recovery systems is particularly important in high-temperature industrial processes (especially in metallurgy where large amounts of thermal energy are lost to the environment. The article presents the process design for a high efficiency recuperator intended to work at high operating parameters: air pressure up to 1.2 MPa and temperature of heating up to 900°C. The results of thermal and gas-dynamic calculations were based on an algorithm developed for determination of the recuperation process parameters. The proposed technical solution of the recuperator and determined recuperation parameters ensure its operation under maximum temperature conditions.

  2. Model Predictive Control of Mineral Column Flotation Process

    Directory of Open Access Journals (Sweden)

    Yahui Tian

    2018-06-01

    Full Text Available Column flotation is an efficient method commonly used in the mineral industry to separate useful minerals from ores of low grade and complex mineral composition. Its main purpose is to achieve maximum recovery while ensuring desired product grade. This work addresses a model predictive control design for a mineral column flotation process modeled by a set of nonlinear coupled heterodirectional hyperbolic partial differential equations (PDEs and ordinary differential equations (ODEs, which accounts for the interconnection of well-stirred regions represented by continuous stirred tank reactors (CSTRs and transport systems given by heterodirectional hyperbolic PDEs, with these two regions combined through the PDEs’ boundaries. The model predictive control considers both optimality of the process operations and naturally present input and state/output constraints. For the discrete controller design, spatially varying steady-state profiles are obtained by linearizing the coupled ODE–PDE model, and then the discrete system is obtained by using the Cayley–Tustin time discretization transformation without any spatial discretization and/or without model reduction. The model predictive controller is designed by solving an optimization problem with input and state/output constraints as well as input disturbance to minimize the objective function, which leads to an online-solvable finite constrained quadratic regulator problem. Finally, the controller performance to keep the output at the steady state within the constraint range is demonstrated by simulation studies, and it is concluded that the optimal control scheme presented in this work makes this flotation process more efficient.

  3. Regulatory issues associated with exclusion, exemption, and clearance related to the mining and minerals processing industries

    International Nuclear Information System (INIS)

    Metcalf, P.; Woude, S. van der; Keenan, N.; Guy, S.

    1997-01-01

    The concepts of exclusion, exemption and clearance have been established in international recommendations and, standards for radiation protection and the management of radioactive waste in recent years. The consistent application of these concepts has given rise to various problems in different spheres of use. This is particularly the case in the mining and minerals processing industries dealing with materials exhibiting elevated concentrations of naturally occurring radionuclides. This paper takes the South African mining industry as an example and highlights some of the issues that have arisen in applying these concepts within a regulatory control regime. (author)

  4. Utilização do protocolo de comunicação OLE for Process Control em processos industriais

    Directory of Open Access Journals (Sweden)

    Ivan Carlos Franco

    2010-01-01

    Full Text Available In this work it is proposed the use of a mathematical software and OPC (OLE for Process Control protocol for development of control systems in industrial processes. The mathematical software was converted into a supervisory system capable of monitoring the process, and also implementing intelligent control algorithms. A study was then conducted on the reliability of OPC communication between the mathematical software, the Programmable Logic Controller (PLC and the experimental system under study (industrial cooling system. This study showed that the OPC communication is suitable for this application because the mathematical software used in communication between the PLC and the cooling system showed good reliability on the communication signal quality, besides achieving real-time communication. As conclusion, this communication strategy showed to be a powerful tool for monitoring, developing and implementing advanced controllers.

  5. Automatic diagnosis of oscillating control loops in complex industrial plants; Automatische Diagnose oszillierender Regelkreise in komplexen industriellen Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Jelali, Mohieddine [VDEh-Betriebsforschungsinstitut GmbH, Duesseldorf (Germany). Abt. Prozess- und Anlagenautomatisierung; Karra, Srinivas [Applied Manufacturing Technologies, Houston, TX (United States)

    2010-07-15

    Oscillations in control loops are one of the widespread problems in the process industry. Oscillations lead to increased variability in product quality, higher energy consumption, productivity losses and increased wear of plant components. This paper presents a new approach for the automatic and comprehensive diagnosis of oscillating valve-controlled processes, based on the identification of a Hammerstein model. The proposed method not only detects and quantifies valve stiction, but is also able to find out and distinguish between faults, such as aggressive controller tuning or external oscillatory disturbances, which may occur simultaneously to stiction. (orig.)

  6. Inventory of the possibilities to process biomass using the existing industrial infrastructure

    International Nuclear Information System (INIS)

    Van Aart, F.J.J.M.; Barkhuysen, K.

    1999-07-01

    In the Netherlands, the government has formulated objectives for stimulating the use of sustainable energy and reducing CO 2 emissions. The replacement of fossil fuels by biomass is a major cornerstone of this policy. This has already resulted in a number of study projects, experiments and, in some cases, implementation projects in the co-fuelling of biomass in pulverised coal- or gas-fired power stations. Since the total energy use in the Netherlands depends only in part on power stations, it is still the question whether the total potential for the application of biomass in the Netherlands is being utilised. In order to study this question, Novem commissioned KEMA to make an inventory of the possibilities of processing biomass in industry via the existing infrastructure. The most important umbrella organisations, interest groups, sector organisations and leading companies have been approached in order to obtain insight into the potential of using biomass, and the willingness to do so. The following sectors of industry were selected: foodstuffs and luxury foods, chemicals, building materials, basic metals, metal products, glass and the fodder drying industry. In the cement industry and in the fodder drying industry, there is interest and there exist possibilities for using biomass as an alternative to fossil fuels in the existing industrial processes. The recommendation is to study in greater detail the feasibility of using biomass in the fodder drying industry. In the other sectors of industry which were investigated, there appeared to be little opportunity to use biomass in industrial processes. 4 refs

  7. Industrial ceramics

    International Nuclear Information System (INIS)

    Mengelle, Ch.

    1999-04-01

    After having given the definition of the term 'ceramics', the author describes the different manufacturing processes of these compounds. These materials are particularly used in the fields of 1)petroleum industry (in primary and secondary reforming units, in carbon black reactors and ethylene furnaces). 2)nuclear industry (for instance UO 2 and PuO 2 as fuels; SiC for encapsulation; boron carbides for control systems..)

  8. ADAPTIVE CONTROL SYSTEM OF INDUSTRIAL REACTORS

    Directory of Open Access Journals (Sweden)

    Vyacheslav K. Mayevski

    2014-01-01

    Full Text Available This paper describes a mathematical model of an industrial chemical reactor for production of synthetic rubber. During reactor operation the model parameters vary considerably. To create a control algorithm performed transformation of mathematical model of the reactor in order to obtain a dependency that can be used to determine the model parameters are changing during reactor operation.

  9. Electron beam application in industrial polymer processing - Review and outlook

    International Nuclear Information System (INIS)

    Gielenz, G.

    2001-01-01

    Full text: The various established industrial electron beam (EB) applications as related to polymers, their corresponding material and process fundamentals are discussed in this paper. The basics of nowadays most common irradiation processes, which are for continuous stranded products: Single Beam, Rotary Technique; Single Beam, Multiple Pass Technique; Dual Beam, Multiple Pass Technique; and Single Beam, Single (Multiple) Pass Technique by means of a conveyor belt or cart system for discontinuous goods are briefly addressed together with some typical examples for illustration. Some comments on the (dis)advantages and the future economic optimization potential which EB processing technologies could provide to the respective polymer processing industries are presented with respect to material, accelerator equipment and related product handling hardware. The future competitiveness of irradiation crosslinking technologies, which offer numerous advantages in comparison to conventional CV curing and silane crosslinking technologies, only can be maintained by increasing their economic attractiveness, which is: high processing speeds, high material throughput at low production costs and comparatively low capital investment of the hardware involved. Other, more sophisticated irradiation process proposals found in the literature and respective patent publications will be briefly presented, although all of which lack more or less practical evidence for industrial economic and reliable application. Finally, the authors vision of a more efficient, economical EB-process design, by combining quasi state of the art EB-equipment components with a novel beam deflection system to practically achieve a 'Dual Beam, Four Side Crossfiring Process' for continuous strand-products, will be presented. (author)

  10. Aerogel-Based Insulation for High-Temperature Industrial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Owen Evans

    2011-10-13

    Under this program, Aspen Aerogels has developed an industrial insulation called Pyrogel HT, which is 4-5 times more thermally efficient than current non-aerogel technology. Derived from nanoporous silica aerogels, Pyrogel HT was specifically developed to address a high temperature capability gap not currently met with Aspen Aerogels{trademark} flagship product, Pyrogel XT. Pyrogel XT, which was originally developed on a separate DOE contract (DE-FG36-06GO16056), was primarily optimized for use in industrial steam processing systems, where application temperatures typically do not exceed 400 C. At the time, further improvements in thermal performance above 400 C could not be reasonably achieved for Pyrogel XT without significantly affecting other key material properties using the current technology. Cumulative sales of Pyrogel HT into domestic power plants should reach $125MM through 2030, eventually reaching about 10% of the total insulation market share in that space. Global energy savings would be expected to scale similarly. Over the same period, these sales would reduce domestic energy consumption by more than 65 TBtu. Upon branching out into all industrial processes in the 400 C-650 C regime, Pyrogel HT would reach annual sales levels of $150MM, with two-thirds of that being exported.

  11. Power and control in interactions between journalists and health-related industries: the view from industry.

    Science.gov (United States)

    Morrell, Bronwen; Lipworth, Wendy L; Forsyth, Rowena; Jordens, Christopher F C; Kerridge, Ian

    2014-06-01

    The mass media is a major source of health information for the public, and as such the quality and independence of health news reporting is an important concern. Concerns have been expressed that journalists reporting on health are increasingly dependent on their sources--including representatives of industries responsible for manufacturing health-related products--for story ideas and content. Many critics perceive an imbalance of power between journalists and industry sources, with industry being in a position of relative power, however the empirical evidence to support this view is limited. The analysis presented here--which is part of a larger study of industry-journalist relationships--draws on in-depth, semi-structured interviews with representatives of health-related industries in Australia to inductively examine their perceptions of power relations between industry and journalists. Participants painted a picture in which journalists, rather than themselves, were in a position to control the nature, extent, and outcome of their interactions with industry sources. Our results resonate with the concept of "mediatisation" as it has been applied in the domain of political reporting. It appears that, from the perspective of industry representatives, the imposition of media logic on health-related industries may inappropriately influence the information that the public receives about health-related products.

  12. Big Data Analytics for Industrial Process Control

    DEFF Research Database (Denmark)

    Khan, Abdul Rauf; Schioler, Henrik; Kulahci, Murat

    2017-01-01

    Today, in modern factories, each step in manufacturing produces a bulk of valuable as well as highly precise information. This provides a great opportunity for understanding the hidden statistical dependencies in the process. Systematic analysis and utilization of advanced analytical methods can ...... lead towards more informed decisions. In this article we discuss some of the challenges related to big data analysis in manufacturing and relevant solutions to some of these challenges....

  13. PIPELINE CORROSION CONTROL IN OIL AND GAS INDUSTRY: A ...

    African Journals Online (AJOL)

    Corrosion in pipelines is one of the major challenges faced by oil and gas industries all over the world. This has made corrosion control or management a major factor to consider before setting up any industry that will transport products via pipelines. In this study the types of corrosion found on system 2A pipeline were; ...

  14. FEATURES THE USE OF TOOLS OF CONTROLLING SYSTEM IN THE FOOD INDUSTRY

    Directory of Open Access Journals (Sweden)

    E. A. Titova

    2013-01-01

    Full Text Available The article considers the peculiarities of using the instruments of controlling system in the enterprises of food industry. The article reveals the essence and economic mainte-nance of instruments controlling. Presents the analysis of break-even point, defines the maximum number of products to achieve the break-even enterprises of food industry. Describes controlling tool budgeting as an objective basis for assessing the results of the food industry in general and its separate structural subdivisions. The essence of the fiscal budget and its use for forecasting future financial results is revealed.

  15. Water in the Mendoza, Argentina, food processing industry: water requirements and reuse potential of industrial effluents in agriculture

    Directory of Open Access Journals (Sweden)

    Alicia Elena Duek

    2016-04-01

    Full Text Available This paper estimates the volume of water used by the Mendoza food processing industry considering different water efficiency scenarios. The potential for using food processing industry effluents for irrigation is also assessed. The methodology relies upon information collected from interviews with qualified informants from different organizations and food-processing plants in Mendoza selected from a targeted sample. Scenarios were developed using local and international secondary information sources. The results show that food processing plants in Mendoza use 19.65 hm3 of water per year; efficient water management practices would make it possible to reduce water use by 64%, i.e., to 7.11 hm3. At present, 70% of the water is used by the fruit and vegetable processing industry, 16% by wineries, 8% by mineral water bottling plants, and the remaining 6% by olive oil, beer and soft drink plants. The volume of effluents from the food processing plants in Mendoza has been estimated at 16.27 hm3 per year. Despite the seasonal variations of these effluents, and the high sodium concentration and electrical conductivity of some of them, it is possible to use them for irrigation purposes. However, because of these variables and their environmental impact, land treatment is required.

  16. A Benchmark Environment Motivated by Industrial Control Problems

    OpenAIRE

    Hein, Daniel; Depeweg, Stefan; Tokic, Michel; Udluft, Steffen; Hentschel, Alexander; Runkler, Thomas A.; Sterzing, Volkmar

    2017-01-01

    In the research area of reinforcement learning (RL), frequently novel and promising methods are developed and introduced to the RL community. However, although many researchers are keen to apply their methods on real-world problems, implementing such methods in real industry environments often is a frustrating and tedious process. Generally, academic research groups have only limited access to real industrial data and applications. For this reason, new methods are usually developed, evaluated...

  17. Market orientation of the Hungarian SMEs working in the meat processing and dairy industries

    Directory of Open Access Journals (Sweden)

    Polereczki Zs.

    2016-12-01

    Full Text Available We are looking for the answer as to what tendencies were indicative of the future development of required marketing activity of the SMEs in the article dealing with the marketing activity of the SMEs working in the food industry. The article is based on a nationwide survey among 200 SMEs working in the food processing industry. In this article, we focus on the SMEs working in the dairy and meat processing industries. The results of the nationwide research and some domestic references refer to that there is a latent demand of effective marketing activity among small and medium-sized enterprises. It manifests itself in specifying marketing-related fields to be improved in the future. The marketing itself is believed not to be an important field at the same time. This apparent opposition is the small enterprise marketing paradox in the background of which is the lack of knowledge about the marketing instruments. It can be stated that these small businesses collect mainly general market information and have no information about particular products. Therefore, the presence of marketing planning is really rare and where there is some kind of planning it is not connected to available funds and follow-up control. The marketing strategy can be characterized by products processed mainly at low or medium level. Therefore, market position is deffned by “lower price-good quality”. They mainly use the traditional distribution channels and their communication is accidental and has a low level.

  18. Industrial and agricultural process heat information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    The results of a series of telephone interviews with groups of users of information on solar industrial and agricultural process heat (IAPH) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. In the current study only high-priority groups were examined. Results from 10 IAPH groups of respondents are analyzed in this report: IPH Researchers; APH Researchers; Representatives of Manufacturers of Concentrating and Nonconcentrating Collectors; Plant, Industrial, and Agricultural Engineers; Educators; Representatives of State Agricultural Offices; and County Extension Agents.

  19. Indian refining industry

    International Nuclear Information System (INIS)

    Singh, I.J.

    2002-01-01

    The author discusses the history of the Indian refining industry and ongoing developments under the headings: the present state; refinery configuration; Indian capabilities for refinery projects; and reforms in the refining industry. Tables lists India's petroleum refineries giving location and capacity; new refinery projects together with location and capacity; and expansion projects of Indian petroleum refineries. The Indian refinery industry has undergone substantial expansion as well as technological changes over the past years. There has been progressive technology upgrading, energy efficiency, better environmental control and improved capacity utilisation. Major reform processes have been set in motion by the government of India: converting the refining industry from a centrally controlled public sector dominated industry to a delicensed regime in a competitive market economy with the introduction of a liberal exploration policy; dismantling the administered price mechanism; and a 25 year hydrocarbon vision. (UK)

  20. Solving process industry problems with specialty stainlesses

    International Nuclear Information System (INIS)

    Montrone, E.D.

    1977-01-01

    Substantial steel industry efforts have been devoted to improving the properties of stainless steels by changing the level of alloying elements. Rapid progress has produced materials to meet many of the diversified service conditions existing in process plants. The performance characteristics of seven stainless steels are compared. The emphasis is on steels which avoid the effects of corrosion. 4 figures, 3 tables

  1. IMPROVING QUALITY OF STATISTICAL PROCESS CONTROL BY DEALING WITH NON‐NORMAL DATA IN AUTOMOTIVE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Zuzana ANDRÁSSYOVÁ

    2012-07-01

    Full Text Available Study deals with an analysis of data to the effect that it improves the quality of statistical tools in processes of assembly of automobile seats. Normal distribution of variables is one of inevitable conditions for the analysis, examination, and improvement of the manufacturing processes (f. e.: manufacturing process capability although, there are constantly more approaches to non‐normal data handling. An appropriate probability distribution of measured data is firstly tested by the goodness of fit of empirical distribution with theoretical normal distribution on the basis of hypothesis testing using programme StatGraphics Centurion XV.II. Data are collected from the assembly process of 1st row automobile seats for each characteristic of quality (Safety Regulation ‐S/R individually. Study closely processes the measured data of an airbag´s assembly and it aims to accomplish the normal distributed data and apply it the statistical process control. Results of the contribution conclude in a statement of rejection of the null hypothesis (measured variables do not follow the normal distribution therefore it is necessary to begin to work on data transformation supported by Minitab15. Even this approach does not reach a normal distributed data and so should be proposed a procedure that leads to the quality output of whole statistical control of manufacturing processes.

  2. Design and implementation of an industrial vector-controlled ...

    Indian Academy of Sciences (India)

    Jose Titus

    1 Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai ... Vector-controlled induction motor drives are quite popular in the industry in applications that ... monitored machine parameters and fault information.

  3. Developing industries in cooperative interaction: equilibrium and stability in processes with lag

    Directory of Open Access Journals (Sweden)

    Aleksandr Kirjanen

    2017-11-01

    Full Text Available A mathematical model of dynamic interaction between mining and processing industries is formalized and studied in the paper. The process of interaction is described by a system of two delay dierential equations. The criterion for asymptotic stability of nontrivial equilibrium point is obtained when both industries co-work steadily. The problem is reduced to nding stability criterion for quasi-polynomial of second order. Time intervals between deliveries of raw materials which make it possible to preserve stable interaction between the two industries are found.

  4. A strategic analysis of future growth options for an established process control company

    OpenAIRE

    Levesque, Sheila Lynne

    2007-01-01

    This project speaks to the prevailing business environment presently encountered at WESTCOAST Controls Ltd (WESTCOAST), a leading process control company in British Columbia, Canada. The scope of the project covers topics such as company overview, external industry analysis, and internal company analysis including strategic tools such as Porter's 5 Forces. The project concludes with a recommendation for the restructuring of the control systems & solutions division for improved performan...

  5. Process control device

    International Nuclear Information System (INIS)

    Hayashi, Toshifumi; Kobayashi, Hiroshi.

    1994-01-01

    A process control device comprises a memory device for memorizing a plant operation target, a plant state or a state of equipments related with each other as control data, a read-only memory device for storing programs, a plant instrumentation control device or other process control devices, an input/output device for performing input/output with an operator, and a processing device which conducts processing in accordance with the program and sends a control demand or a display demand to the input/output device. The program reads out control data relative to a predetermined operation target, compares and verify them with actual values to read out control data to be a practice premise condition which is further to be a practice premise condition if necessary, thereby automatically controlling the plant or requiring or displaying input. Practice presuming conditions for the operation target can be examined succesively in accordance with the program without constituting complicated logical figures and AND/OR graphs. (N.H.)

  6. Business process of reputation management of food industry enterprises

    OpenAIRE

    Derevianko Olena. H.

    2014-01-01

    The goal of the article is development of the methodical base of reputation management directed at formalisation of theoretical provisions and explanation how to organise reputation management at food industry enterprises. The article shows prospectiveness of use of the Business Process Management concept in reputation management. Using the diagram of the Reputation Management business process environment the article shows its key participants (suppliers and clients of the business process) a...

  7. Analytical control in metallurgical processes

    International Nuclear Information System (INIS)

    Coedo, A.G.; Dorado, M.T.; Padilla, I.

    1998-01-01

    This paper illustrates the role of analysis in enabling metallurgical industry to meet quality demands. For example, for the steel industry the demands by the automotive, aerospace, power generation, tinplate packaging industries and issue of environment near steel plants. Although chemical analysis technology continues to advance, achieving improved speed, precision and accuracy at lower levels of detection, the competitiveness of manufacturing industry continues to drive property demands at least at the same rate. Narrower specification ranges, lower levels of residual elements and economic pressures prescribe faster process routes, all of which lead to increased demands on the analytical function. These damands are illustrated by examples from several market sectors in which customer issues are considered together with ther analytical implications. (Author) 5 refs

  8. [Comparison Analysis of Economic and Engineering Control of Industrial VOCs].

    Science.gov (United States)

    Wang, Yu-fei; Liu, Chang-xin; Cheng, Jie; Hao, Zheng-ping; Wang, Zheng

    2015-04-01

    Volatile organic compounds (VOCs) pollutant has become China's major air pollutant in key urban areas like sulfur dioxide, nitrogen oxides and particulate matter. It is mainly produced from industry sectors, and engineering control is one of the most important reduction measures. During the 12th Five-Year Plan, China decides to invest 40 billion RMB to build pollution control projects in key industry sectors with annual emission reduction of 605 000 t x a(-1). It shows that China attaches a great importance to emission reduction by engineering projects and highlights the awareness of engineering reduction technologies. In this paper, a macroeconomic model, namely computable general equilibrium model, (CGE model) was employed to simulate engineering control and economic control (imposing environmental tax). We aim to compare the pros and cons of the two reduction policies. Considering the economic loss of the whole country, the environmental tax has more impacts on the economy system than engineering reduction measures. We suggest that the central government provides 7 500 RMB x t(-1) as subsidy for enterprises in industry sectors to encourage engineering reduction.

  9. Ergonomic evaluation of cheese production process in dairy industries

    Directory of Open Access Journals (Sweden)

    Luciano Brito Rodrigues

    2008-07-01

    Full Text Available The present work consisted of an analysis of work conditions aspects in small dairy industries from southwest region of Bahia state. The study considered the analysis of environmental variables and the organization of the work in the production process of cheeses. The analysis was performed by means of observations in loco and measurement of the environmental variables related to noise, illumination and temperature. The main problems are related to posture and inadequate illumination. The parameters were evaluated according to the norms and legislation available in order to propose suggestions for the identified problems, objectifying the comfort and safety of workers and the consequent improvement of activities developed in these industries. Keywords: Ergonomics, Dairy industries, Environmental comfort.

  10. Industrial powder metallurgy processing for production of high field Nb3Sn

    International Nuclear Information System (INIS)

    Hecker, A.; Gregory, E.; Wong, J.; Thieme, C.L.H.; Foner, S.

    1988-01-01

    Technology transfer is discussed for fabricating Nb 3 Sn(Ti) via powder metallurgy methods from laboratory scale production at MIT to industrial production at Supercon Inc. Industrial production techniques such as hydrostatic extrusion and drawing have produced superconducting wires with promising critical current densities in preliminary field measurements. Initial steps toward process modification and optimization to improve the commercial feasibility of the powder metallurgy process are evaluated. These modifications are aimed at reducing production time and increasing process flexibility

  11. Classification of working processes to facilitate occupational hazard coding on industrial trawlers

    DEFF Research Database (Denmark)

    Jensen, Olaf C; Stage, Søren; Noer, Preben

    2003-01-01

    BACKGROUND: Commercial fishing is an extremely dangerous economic activity. In order to more accurately describe the risks involved, a specific injury coding based on the working process was developed. METHOD: Observation on six different types of vessels was conducted and allowed a description...... and a classification of the principal working processes on all kinds of vessels and a detailed classification for industrial trawlers. In industrial trawling, fish are landed for processing purposes, for example, for the production of fish oil and fish meal. The classification was subsequently used to code...... the injuries reported to the Danish Maritime Authority over a 5-year period. RESULTS: On industrial trawlers, 374 of 394 (95%) injuries were captured by the classification. Setting out and hauling in the gear and nets were the processes with the most injuries and accounted for 58.9% of all injuries...

  12. Control of Industrial Safety Based on Dynamic Characteristics of a Safety Budget-Industrial Accident Rate Model in Republic of Korea.

    Science.gov (United States)

    Choi, Gi Heung; Loh, Byoung Gook

    2017-06-01

    Despite the recent efforts to prevent industrial accidents in the Republic of Korea, the industrial accident rate has not improved much. Industrial safety policies and safety management are also known to be inefficient. This study focused on dynamic characteristics of industrial safety systems and their effects on safety performance in the Republic of Korea. Such dynamic characteristics are particularly important for restructuring of the industrial safety system. The effects of damping and elastic characteristics of the industrial safety system model on safety performance were examined and feedback control performance was explained in view of cost and benefit. The implications on safety policies of restructuring the industrial safety system were also explored. A strong correlation between the safety budget and the industrial accident rate enabled modeling of an industrial safety system with these variables as the input and the output, respectively. A more effective and efficient industrial safety system could be realized by having weaker elastic characteristics and stronger damping characteristics in it. A substantial decrease in total social cost is expected as the industrial safety system is restructured accordingly. A simple feedback control with proportional-integral action is effective in prevention of industrial accidents. Securing a lower level of elastic industrial accident-driving energy appears to have dominant effects on the control performance compared with the damping effort to dissipate such energy. More attention needs to be directed towards physical and social feedbacks that have prolonged cumulative effects. Suggestions for further improvement of the safety system including physical and social feedbacks are also made.

  13. Hygienic-sanitary working practices and implementation of a Hazard Analysis and Critical Control Point (HACCP plan in lobster processing industries Condições higiênico-sanitárias e implementação do plano de Análise de Perigos e Pontos Críticos de Controle (APPCC em indústrias processadoras de lagosta

    Directory of Open Access Journals (Sweden)

    Cristina Farias da Fonseca

    2013-03-01

    Full Text Available This study aimed to verify the hygienic-sanitary working practices and to create and implement a Hazard Analysis Critical Control Point (HACCP) in two lobster processing industries in Pernambuco State, Brazil. The industries studied process frozen whole lobsters, frozen whole cooked lobsters, and frozen lobster tails for exportation. The application of the hygienic-sanitary checklist in the industries analyzed achieved conformity rates over 96% to the aspects evaluated. The use of the Hazard Analysis Critical Control Point (HACCP) plan resulted in the detection of two critical control points (CCPs) including the receiving and classification steps in the processing of frozen lobster and frozen lobster tails, and an additional critical control point (CCP) was detected during the cooking step of processing of the whole frozen cooked lobster. The proper implementation of the Hazard Analysis Critical Control Point (HACCP) plan in the lobster processing industries studied proved to be the safest and most cost-effective method to monitor each critical control point (CCP) hazards.Objetivou-se com este estudo verificar as condições higiênico-sanitárias e criar um plano de Análise de Perigos e Pontos Críticos de Controle (APPCC) para implantação em duas indústrias de processamento de lagosta no Estado de Pernambuco, Brasil. As indústrias estudadas processam lagosta inteira congelada, lagostas inteiras cozidas congeladas e caudas de lagosta congelada para exportação. A aplicação de um checklist de controle higiênico-sanitário nas indústrias visitadas resultou em uma classificação global de conformidades maior que 96% dos aspectos analisados. O desenvolvimento do plano APPCC resultou na detecção de dois pontos críticos de controle (PCC), incluindo o recebimento e etapas de classificação, no processamento de lagosta congelada e caudas de lagosta congelada, e um PCC adicional foi detectado no processamento de lagosta inteira cozida

  14. Pollution minimisation practices in the Australian mining and mineral processing industries

    Energy Technology Data Exchange (ETDEWEB)

    Catherine Driussi; Janis Jansz [Edith Cowan University, Joondalup, WA (Australia)

    2006-07-01

    Research was conducted to identify some of the current pollution minimisation practices adopted in Australia's mining and mineral processing industries. Initially, 84 mining and mineral processing companies were approached for inclusion in the study, with request only made for information that was available to the company stakeholders and the wider general community. Among the responses received, BHP Billiton, BlueScope Steel, Newmont Australia Limited and AngloGold Australia provided the information requested and/or a substantial quantity of information through reports on their company website. Analysis of the data collected for these companies indicated that improvements were made, and that policies had been implemented over the previous few years. The pollution minimisation and policy practices adopted at the operations of these companies include environmental management systems, advanced pollution control technologies, environmental awareness training for employees, and requirement - from company stakeholders - for increased accountability of environmental impacts.

  15. Beryllium. Evaluation of beryllium hydroxide industrial processes. Pt. 3

    International Nuclear Information System (INIS)

    Lires, O.A.; Delfino, C.A.; Botbol, J.

    1991-01-01

    This work continues the 'Beryllium' series. It is a historical review of different industrial processes of beryllium hydroxide obtention from beryllium ores. Flowsheats and operative parameters of five plants are provided. These plants (Degussa, Brush Beryllium Co., Beryllium Corp., Murex Ltd., SAPPI) were selected as representative samples of diverse commercial processes in different countries. (Author) [es

  16. Mini-channel heat exchangers for industrial distillation processes

    NARCIS (Netherlands)

    Van de Bor, D.M.

    2014-01-01

    In this thesis the technical and economic performance of compression-resorption heat pumps has been investigated. The main objective of this thesis was to improve the performance and reduce the investment costs of compression-resorption heat pumps applied in process industry. A model that is able to

  17. Imulation of polymer forming processes - addressing industrial needs

    International Nuclear Information System (INIS)

    Thibault, F.; DiRaddo, R.

    2011-01-01

    The objective of this paper is to present the development of simulation and design optimization capabilities, for polymer forming processes, in the context of addressing industrial needs. Accomplishments generated from close to twenty years of research in this field, at the National Research Council (NRC), are presented. Polymer forming processes such as extrusion blow moulding, stretch blow moulding and thermoforming have been the focus of the work, yet the research is extendable to similar polymer forming operations such as micro-blow moulding, sheet blow moulding and composites stamping. The research considers material models, process sequence integration and design optimization, derivative processes and 3D finite elements with multi-body contact.

  18. Near-infrared spectroscopy monitoring and control of the fluidized bed granulation and coating processes-A review.

    Science.gov (United States)

    Liu, Ronghua; Li, Lian; Yin, Wenping; Xu, Dongbo; Zang, Hengchang

    2017-09-15

    The fluidized bed granulation and pellets coating technologies are widely used in pharmaceutical industry, because the particles made in a fluidized bed have good flowability, compressibility, and the coating thickness of pellets are homogeneous. With the popularization of process analytical technology (PAT), real-time analysis for critical quality attributes (CQA) was getting more attention. Near-infrared (NIR) spectroscopy, as a PAT tool, could realize the real-time monitoring and control during the granulating and coating processes, which could optimize the manufacturing processes. This article reviewed the application of NIR spectroscopy in CQA (moisture content, particle size and tablet/pellet thickness) monitoring during fluidized bed granulation and coating processes. Through this review, we would like to provide references for realizing automated control and intelligent production in fluidized bed granulation and pellets coating of pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Final Rule for Industrial Process Cooling Towers: Fact Sheet

    Science.gov (United States)

    Fact sheet concerning a final rule to reduce air toxics emissions from industrial process cooling towers. Air toxics are those pollutants known or suspected of causing cancer or other serious health effects.

  20. BRANDING PROCESS - FUNDAMENTAL PROCESS IN THE TEXTI LE INDUSTRY ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    PURCAREA Anca Alexandra

    2014-05-01

    Full Text Available More companies in textile industry organizations understand that in making a decision a key factor is the performance of organizational processes. Products are becoming more numerous and increasingly resemble each other.In this conditions the brand can make the difference in a highly competitive market. Both academic specialists and professionals believes that the brand has become an intangible capital of a company which ensures its long-term profitability. In a globalized economy brand break the barriers of space enabling the company to have a great vision, far beyond its reach. Methodology was based on a bibliographical research. The research has identified the major role that brands can play both for customers and manufacturers in the textile Industry organizations. In conclusion literature and experience has shown that large companies both brands operating in B2B markets and the B2C markets, have an increasingly higher for long-term competitive advantage.

  1. Cogeneration technology alternatives study. Volume 2: Industrial process characteristics

    Science.gov (United States)

    1980-01-01

    Information and data for 26 industrial processes are presented. The following information is given for each process: (1) a description of the process including the annual energy consumption and product production and plant capacity; (2) the energy requirements of the process for each unit of production and the detailed data concerning electrical energy requirements and also hot water, steam, and direct fired thermal requirements; (3) anticipated trends affecting energy requirements with new process or production technologies; and (4) representative plant data including capacity and projected requirements through the year 2000.

  2. Metal monitoring for process control of laser-based coating removal

    Science.gov (United States)

    Fraser, Mark E.; Hunter, Amy J.; Panagiotou, Thomai; Davis, Steven J.; Freiwald, David A.

    1999-12-01

    Cost-effective and environmentally-sound means of paint and coatings removal is a problem spanning many government, commercial, industrial and municipal applications. For example, the Department of Energy is currently engaged in removing paint and other coatings from concrete and structural steel as part of decommissioning former nuclear processing facilities. Laser-based coatings removal is an attractive new technology for these applications as it promises to reduce the waste volume by up to 75 percent. To function more efficiently, however, the laser-based systems require some form of process control.

  3. Control of radioactive sources in industry through regulatory inspections

    International Nuclear Information System (INIS)

    Leocadio, J.C.; Ramalho, A.T.; Pinho, A.S.; Lourenco, M.M.J.; Nicola, M.S.; D'Avila, R.L.; Melo, I.F.; Cucco, A.C.S.

    2005-01-01

    In Brazil, the applications of ionizing radiation in industry are accomplished about 900 radioactive facilities, which handle approximately 3.000 radiation sources. The control of radioactive sources used in industrial installations authorized by the Brazilian Nuclear Energy Commission (CNEN) is accomplished by Servico de Radioprotecao na Industria Radiativa (SERIR) of the Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ, Brazil. This service carries out regulatory inspections in the practices of industrial radiography, nuclear gauges, industrial irradiators and oil wells logging. The frequency of inspections depends on the type of practice, ranging from a year to 5 years, depending on the risk involved. This paper presents a brief description of the situation of radiation safety in the use of radioactive sources in the industries of the country. The results obtained with regulatory inspections at industrial installations demonstrate that the conditions of safety and radiation protection in these facilities are satisfactory when compared with the technical regulations, both national and international

  4. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes.

    Science.gov (United States)

    Shi, Jing; Wang, Yangdong; Yang, Weimin; Tang, Yi; Xie, Zaiku

    2015-12-21

    The kaleidoscopic applications of zeolite catalysts (zeo-catalysts) in petrochemical processes has been considered as one of the major accomplishments in recent decades. About twenty types of zeolite have been industrially applied so far, and their versatile porous architectures have contributed their most essential features to affect the catalytic efficiency. This review depicts the evolution of pore models in zeolite catalysts accompanied by the increase in industrial and environmental demands. The indispensable roles of modulating pore models are outlined for zeo-catalysts for the enhancement of their catalytic performances in various industrial processes. The zeolites and related industrial processes discussed range from the uni-modal micropore system of zeolite Y (12-ring micropore, 12-R) in fluid catalytic cracking (FCC), zeolite ZSM-5 (10-R) in xylene isomerization and SAPO-34 (8-R) in olefin production to the multi-modal micropore system of MCM-22 (10-R and 12-R pocket) in aromatic alkylation and the hierarchical pores in FCC and catalytic cracking of C4 olefins. The rational construction of pore models, especially hierarchical features, is highlighted with a careful classification from an industrial perspective accompanied by a detailed analysis of the theoretical mechanisms.

  5. Public Consultation Processes in Greenland Regarding the Mining Industry

    Directory of Open Access Journals (Sweden)

    Maria Ackrén

    2016-05-01

    Full Text Available Since the Greenland Self-Government Act came into force in 2009, economic development and the right to utilize natural resources in Greenland lies in the hands of the Self-Government. Earlier efforts to establish this authority were made back in the 1970s, when discussions on Home Rule were first on the agenda. Mining industries are not a new activity in Greenland. During the Second World War, Greenlandic cryolite was used to produce aluminum for the North American aircraft industry. Other essential natural resources, such as gold and gemstones, have also received international interest over the years. Greenland's new development aim is to build up a large-scale mining industry. This article elucidates the form of public consultation processes followed in Greenland in connection with two large-scale mining projects and the different views various actors have regarding these events. How did the deliberative democratic process unfold in Greenland regarding these projects? Was the process followed an effective way to manage these kinds of projects? The article shows that two projects that received a lot of media attention: the 2005 iron ore mine project in Isukasia, and the 2001 TANBREEZ-project to extract rare earth elements, used highly different approaches when it comes to deliberative democracy. In the former case, a limited degree of deliberative democracy was used, while in the latter case, the opposite applies.

  6. A modified indirect mathematical model for evaluation of ethanol production efficiency in industrial-scale continuous fermentation processes.

    Science.gov (United States)

    Canseco Grellet, M A; Castagnaro, A; Dantur, K I; De Boeck, G; Ahmed, P M; Cárdenas, G J; Welin, B; Ruiz, R M

    2016-10-01

    To calculate fermentation efficiency in a continuous ethanol production process, we aimed to develop a robust mathematical method based on the analysis of metabolic by-product formation. This method is in contrast to the traditional way of calculating ethanol fermentation efficiency, where the ratio between the ethanol produced and the sugar consumed is expressed as a percentage of the theoretical conversion yield. Comparison between the two methods, at industrial scale and in sensitivity studies, showed that the indirect method was more robust and gave slightly higher fermentation efficiency values, although fermentation efficiency of the industrial process was found to be low (~75%). The traditional calculation method is simpler than the indirect method as it only requires a few chemical determinations in samples collected. However, a minor error in any measured parameter will have an important impact on the calculated efficiency. In contrast, the indirect method of calculation requires a greater number of determinations but is much more robust since an error in any parameter will only have a minor effect on the fermentation efficiency value. The application of the indirect calculation methodology in order to evaluate the real situation of the process and to reach an optimum fermentation yield for an industrial-scale ethanol production is recommended. Once a high fermentation yield has been reached the traditional method should be used to maintain the control of the process. Upon detection of lower yields in an optimized process the indirect method should be employed as it permits a more accurate diagnosis of causes of yield losses in order to correct the problem rapidly. The low fermentation efficiency obtained in this study shows an urgent need for industrial process optimization where the indirect calculation methodology will be an important tool to determine process losses. © 2016 The Society for Applied Microbiology.

  7. Advances in chemical engineering in nuclear and process industries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately.

  8. Advances in chemical engineering in nuclear and process industries

    International Nuclear Information System (INIS)

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately

  9. The evolution of industrial power monitoring and control systems

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, K. E.

    1998-04-01

    The evolution of power monitoring and control systems in industrial situations are described. Computer-based PMC (power monitoring and control) systems are discussed in two sections. Section 1 covers the PC/DOS based systems in use up to the 1990s. These systems had multitasking capability, sufficient for scanning a serial line running a multi-drop protocol to field instruments, which in turn were running either proprietary or PLC subsets, maintaining a level of operator display, data logging and query support. Since the mid-1990s the second generation of industrial power monitoring and control systems based on the PC/NT system came into use, driven to market by three factors: (1) availability of low cost PCs, (2) widespread availability of computer networking technologies, and (3) the appearance of the robust, industrially viable NT operating system. Second generation systems are characterized by division into two tiers; a monitoring system focused on remote metering, and a second tier of a modular system capable of fully implementing both power monitoring and supervisory control. Looking toward the future, the requirements for systems is expected to become more unique, driven by the need for information for energy procurement decision making, automatic control for integrating power acquisition from multiple suppliers, power capacity and integrated power and production control planning needs, and power quality and reliability issues. A review of the functionality of PMC systems, and system architectures was also provided. Results of a survey of PMC systems applications were also discussed. 2 refs., 4 tabs., 8 figs.

  10. Environmental Control Plan for the Industrial Hygiene Field Services Facility

    International Nuclear Information System (INIS)

    Donnelly, J.W.

    2000-01-01

    This environmental control plan is for the Hanford Site's Industrial Hygiene Field Services Facility, located in the 100-N Area. This facility is used for the maintenance and storage of respirators, respiratory equipment and testing, calibration and testing of industrial hygiene equipment, and asbestos fiber counting

  11. Modelling and control of dynamic systems using gaussian process models

    CERN Document Server

    Kocijan, Juš

    2016-01-01

    This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior know...

  12. Control Systems Security Center Comparison Study of Industrial Control System Standards against the Control Systems Protection Framework Cyber-Security Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Robert P. Evans

    2005-09-01

    Cyber security standards, guidelines, and best practices for control systems are critical requirements that have been delineated and formally recognized by industry and government entities. Cyber security standards provide a common language within the industrial control system community, both national and international, to facilitate understanding of security awareness issues but, ultimately, they are intended to strengthen cyber security for control systems. This study and the preliminary findings outlined in this report are an initial attempt by the Control Systems Security Center (CSSC) Standard Awareness Team to better understand how existing and emerging industry standards, guidelines, and best practices address cyber security for industrial control systems. The Standard Awareness Team comprised subject matter experts in control systems and cyber security technologies and standards from several Department of Energy (DOE) National Laboratories, including Argonne National Laboratory, Idaho National Laboratory, Pacific Northwest National Laboratory, and Sandia National Laboratories. This study was conducted in two parts: a standard identification effort and a comparison analysis effort. During the standard identification effort, the Standard Awareness Team conducted a comprehensive open-source survey of existing control systems security standards, regulations, and guidelines in several of the critical infrastructure (CI) sectors, including the telecommunication, water, chemical, energy (electric power, petroleum and oil, natural gas), and transportation--rail sectors and sub-sectors. During the comparison analysis effort, the team compared the requirements contained in selected, identified, industry standards with the cyber security requirements in ''Cyber Security Protection Framework'', Version 0.9 (hereafter referred to as the ''Framework''). For each of the seven sector/sub-sectors listed above, one standard was

  13. Cyber Security Testing and Training Programs for Industrial Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Noyes

    2012-03-01

    Service providers rely on industrial control systems (ICS) to manage the flow of water at dams, open breakers on power grids, control ventilation and cooling in nuclear power plants, and more. In today's interconnected environment, this can present a serious cyber security challenge. To combat this growing challenge, government, private industry, and academia are working together to reduce cyber risks. The Idaho National Laboratory (INL) is a key contributor to the Department of Energy National SCADA Test Bed (NSTB) and the Department of Homeland Security (DHS) Control Systems Security Program (CSSP), both of which focus on improving the overall security posture of ICS in the national critical infrastructure. In support of the NSTB, INL hosts a dedicated SCADA testing facility which consists of multiple control systems supplied by leading national and international manufacturers. Within the test bed, INL researchers systematically examine control system components and work to identify vulnerabilities. In support of the CSSP, INL develops and conducts training courses which are designed to increase awareness and defensive capabilities for IT/Control System professionals. These trainings vary from web-based cyber security trainings for control systems engineers to more advanced hands-on training that culminates with a Red Team/ Blue Team exercise that is conducted within an actual control systems environment. INL also provides staffing and operational support to the DHS Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) Security Operations Center which responds to and analyzes control systems cyber incidents across the 18 US critical infrastructure sectors.

  14. Carboy Security Testing and Training Programs for Industrial Control Systems

    International Nuclear Information System (INIS)

    Noyes, Daniel

    2012-01-01

    Service providers rely on industrial control systems (ICS) to manage the flow of water at dams, open breakers on power grids, control ventilation and cooling in nuclear power plants, and more. In today's interconnected environment, this can present a serious cyber security challenge. To combat this growing challenge, government, private industry, and academia are working together to reduce cyber risks. The Idaho National Laboratory (INL) is a key contributor to the Department of Energy National SCADA Test Bed (NSTB) and the Department of Homeland Security (DHS) Control Systems Security Program (CSSP), both of which focus on improving the overall security posture of ICS in the national critical infrastructure. In support of the NSTB, INL hosts a dedicated SCADA testing facility which consists of multiple control systems supplied by leading national and international manufacturers. Within the test bed, INL researchers systematically examine control system components and work to identify vulnerabilities. In support of the CSSP, INL develops and conducts training courses which are designed to increase awareness and defensive capabilities for IT/Control System professionals. These training vary from web-based cyber security training for control systems engineers to more advanced hands-on training that culminates with a Red Team/Blue Team exercise that is conducted within an actual control systems environment. INL also provides staffing and operational support to the DHS Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) Security Operations Center which responds to and analyzes control systems cyber incidents across the 18 US critical infrastructure sectors

  15. Cyber Security Testing and Training Programs for Industrial Control Systems

    International Nuclear Information System (INIS)

    Noyes, Daniel

    2012-01-01

    Service providers rely on industrial control systems (ICS) to manage the flow of water at dams, open breakers on power grids, control ventilation and cooling in nuclear power plants, and more. In today's interconnected environment, this can present a serious cyber security challenge. To combat this growing challenge, government, private industry, and academia are working together to reduce cyber risks. The Idaho National Laboratory (INL) is a key contributor to the Department of Energy National SCADA Test Bed (NSTB) and the Department of Homeland Security (DHS) Control Systems Security Program (CSSP), both of which focus on improving the overall security posture of ICS in the national critical infrastructure. In support of the NSTB, INL hosts a dedicated SCADA testing facility which consists of multiple control systems supplied by leading national and international manufacturers. Within the test bed, INL researchers systematically examine control system components and work to identify vulnerabilities. In support of the CSSP, INL develops and conducts training courses which are designed to increase awareness and defensive capabilities for IT/Control System professionals. These trainings vary from web-based cyber security trainings for control systems engineers to more advanced hands-on training that culminates with a Red Team/ Blue Team exercise that is conducted within an actual control systems environment. INL also provides staffing and operational support to the DHS Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) Security Operations Center which responds to and analyzes control systems cyber incidents across the 18 US critical infrastructure sectors.

  16. Carboy Security Testing and Training Programs for Industrial Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, Daniel [Idaho National Laboratory, Idaho (United States)

    2012-03-15

    Service providers rely on industrial control systems (ICS) to manage the flow of water at dams, open breakers on power grids, control ventilation and cooling in nuclear power plants, and more. In today's interconnected environment, this can present a serious cyber security challenge. To combat this growing challenge, government, private industry, and academia are working together to reduce cyber risks. The Idaho National Laboratory (INL) is a key contributor to the Department of Energy National SCADA Test Bed (NSTB) and the Department of Homeland Security (DHS) Control Systems Security Program (CSSP), both of which focus on improving the overall security posture of ICS in the national critical infrastructure. In support of the NSTB, INL hosts a dedicated SCADA testing facility which consists of multiple control systems supplied by leading national and international manufacturers. Within the test bed, INL researchers systematically examine control system components and work to identify vulnerabilities. In support of the CSSP, INL develops and conducts training courses which are designed to increase awareness and defensive capabilities for IT/Control System professionals. These training vary from web-based cyber security training for control systems engineers to more advanced hands-on training that culminates with a Red Team/Blue Team exercise that is conducted within an actual control systems environment. INL also provides staffing and operational support to the DHS Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) Security Operations Center which responds to and analyzes control systems cyber incidents across the 18 US critical infrastructure sectors.

  17. The application of radiation technology in industrial processes: current and future perspectives

    International Nuclear Information System (INIS)

    Silverman, J.

    1975-01-01

    The development of nuclear power has been responsible for many by-products, among them radioactive fission products. In the late 1940's and early 1950's considerable efforts were made to develop industrial processes that could make use of the fission products in large quantities. Although some fission products are utilized today, the scale does not approach the quantities that will be produced in a nuclear economy. The efforts have not been a failure, however, and the research to develop industrial processes has created markets, not for the fission products as one had hoped, but for the radioisotope Cobalt-60 produced by neutron capture in a nuclear reactor, and for accelerators - machines that produce radiation in a controlled manner. Success in finding uses for the major fission products may yet come, as research continues in the radiation chemistry and radiation biology fields. Radiation processing is now a vigorously expanding area because of sharp increases in the reliability of electron beam generators, sharp drops in the unit cost of both electron beam power and electron beam energy, significant advances in radiation chemistry leading to lower dose requirements and increased engineering knowledge and practical experience. he principal reasons for its bright future promise arise from expectations of further sharp decreases in the unit cost of electron beam energy and from the recent successful adoption of radiation on a large scale for cross linking of telephone wire insulation in the United States. (author)

  18. Customer-driven manufacturing in the food processing industry

    NARCIS (Netherlands)

    Donk, D.P. van

    2000-01-01

    Food processing industry copes with high logistical demands from its customers. This paper studies a company changing to more customer (order) driven manufacturing. In order to help decide which products should be made to order and which made to stock, a frame is developed and applied to find and

  19. Working conditions in the European meat processing industry

    NARCIS (Netherlands)

    Nossent, S.; Groot, B. de; Verschuren, R.

    1995-01-01

    This report reflects the main results of one part of the study 'Monitoring the work environment at sectorial level'. This part regards the meat processing industry in Europe. In this study, which was a project of the European Foundation for Living and Working Conditions, ten member states of the

  20. Validation and implementation of model based control strategies at an industrial wastewater treatment plant.

    Science.gov (United States)

    Demey, D; Vanderhaegen, B; Vanhooren, H; Liessens, J; Van Eyck, L; Hopkins, L; Vanrolleghem, P A

    2001-01-01

    In this paper, the practical implementation and validation of advanced control strategies, designed using model based techniques, at an industrial wastewater treatment plant is demonstrated. The plant under study is treating the wastewater of a large pharmaceutical production facility. The process characteristics of the wastewater treatment were quantified by means of tracer tests, intensive measurement campaigns and the use of on-line sensors. In parallel, a dynamical model of the complete wastewater plant was developed according to the specific kinetic characteristics of the sludge and the highly varying composition of the industrial wastewater. Based on real-time data and dynamic models, control strategies for the equalisation system, the polymer dosing and phosphorus addition were established. The control strategies are being integrated in the existing SCADA system combining traditional PLC technology with robust PC based control calculations. The use of intelligent control in wastewater treatment offers a wide spectrum of possibilities to upgrade existing plants, to increase the capacity of the plant and to eliminate peaks. This can result in a more stable and secure overall performance and, finally, in cost savings. The use of on-line sensors has a potential not only for monitoring concentrations, but also for manipulating flows and concentrations. This way the performance of the plant can be secured.

  1. Methanization of industrial liquid effluents

    International Nuclear Information System (INIS)

    Frederic, S.; Lugardon, A.

    2007-01-01

    In a first part, this work deals with the theoretical aspects of the methanization of the industrial effluents; the associated reactional processes are detailed. The second part presents the technological criteria for choosing the methanization process in terms of the characteristics of the effluent to be treated. Some of the methanization processes are presented with their respective advantages and disadvantages. At last, is described the implementation of an industrial methanization unit. The size and the main choices are detailed: the anaerobic reactor, the control, the valorization aspects of the biogas produced. Some examples of industrial developments illustrate the different used options. (O.M.)

  2. Modern control of mineral wool production process

    Directory of Open Access Journals (Sweden)

    Stankov Stanko P.

    2013-01-01

    is provided. Some technical solutions (diesel engine and transformer station supervisory, compressor station supervisory, electric drive regulation, dedusting system control, HVAC (heating, ventilation, and air conditioning system control, transport and dosage system control applied at realization of supervisory and control system for mineral wool production process, can be also applied to regulation large number of industrial processes.

  3. Controlling Radiation Degradation of Natural Polymers for Industrial and Agricultural application

    International Nuclear Information System (INIS)

    Hegazy, E.A.; AbdEl-Rehim, H

    2008-01-01

    Radiation induced degradation technology is a new and promising application of ionizing radiation to develop viscose, pulp, paper, food preservation, pharmaceutical production, and natural bioactive agents industries. Controlling the degree of degradation, uniform molecular weight distribution, saving achieved in the chemicals (used in conventional methods) on a cost basis, and environmentally friendly process are the beneficial effects of using radiation technology in these industries. However, for some development countries such technology is not economic. Therefore, a great effort should be done to reduce the cost required for such technologies. One of the principle factors for reducing the cost is achieving the degradation at low irradiation doses. The addition of some additives such as potassium per-sulfate (KPS), ammonium per-sulfate (APS), or H 2O2 to natural polymers such as chitosan and Na-alginate during irradiation process accelerates their degradation. The highest degradation rate of polysaccharides obtained when APS was used. The end product of irradiated chitosan, and Na-alginate may be used as food additive or benefited in agricultural purposes. The prepared crosslinked copolymers possessed high and fast swelling properties in simulated urine media and the swelling ratios of CMC-Na /PAAm gels in urine are acceptable for diaper application. (author)

  4. Radiation processing in the plastics industry

    International Nuclear Information System (INIS)

    Saunders, C.B.

    1988-01-01

    The interaction of ionizing radiation with organic substrates to produce useful physical and chemical changes is the basis of the radiation processing industry for plastics. Electron beam (EB) accelerators dominate the industry; however, there are a few small applications that use gamma radiation. The five general product categories that account for over 95% of the worldwide EB capacity used for plastics production are the following: wire and cable insulation; heat-shrinkable film, tubes and pipes; radiation-curable coatings; rubber products; and polyolefin foam. A total of 6.1% of the yearly production of these products in the United States is EB treated. The United States accounts for 59% of the total worldwide EB capacity of 20.5 MW (1984), followed by Europe (16%) and Japan (15%). There are 469 to 479 individual EB units worldwide used for the production of plastics and rubber. The average annual rate of growth (AARG) for the EB processing of plastics in Japan, from 1977 to 1987, was 13.3%. The AARG for Japan has decreased from 20% for 1977 to 198, to 6.4% for 1984 to 1987. Radiation cross-linking, of power cable insulation (cable rating ≥75 kV), thick polyolefin and rubber sheet (≥15 mm), and thick-walled tubing is one fo the potential applications for a 5- to 10-MeV EB system. Other products such as coatings, films and wire insulation may be economically EB-treated using a 5 to 10 MeV accelerator, if several layers of the product could be irradiated simultaneously. Two general product categories that require more study to determine the potential of high-energy EB processing are moulded plastics and composite materials. 32 refs

  5. Elements for successful sensor-based process control {Integrated Metrology}

    International Nuclear Information System (INIS)

    Butler, Stephanie Watts

    1998-01-01

    Current productivity needs have stimulated development of alternative metrology, control, and equipment maintenance methods. Specifically, sensor applications provide the opportunity to increase productivity, tighten control, reduce scrap, and improve maintenance schedules and procedures. Past experience indicates a complete integrated solution must be provided for sensor-based control to be used successfully in production. In this paper, Integrated Metrology is proposed as the term for an integrated solution that will result in a successful application of sensors for process control. This paper defines and explores the perceived four elements of successful sensor applications: business needs, integration, components, and form. Based upon analysis of existing successful commercially available controllers, the necessary business factors have been determined to be strong, measurable industry-wide business needs whose solution is profitable and feasible. This paper examines why the key aspect of integration is the decision making process. A detailed discussion is provided of the components of most importance to sensor based control: decision-making methods, the 3R's of sensors, and connectivity. A metric for one of the R's (resolution) is proposed to allow focus on this important aspect of measurement. A form for these integrated components which synergistically partitions various aspects of control at the equipment and MES levels to efficiently achieve desired benefits is recommended

  6. Elements for successful sensor-based process control {Integrated Metrology}

    Science.gov (United States)

    Butler, Stephanie Watts

    1998-11-01

    Current productivity needs have stimulated development of alternative metrology, control, and equipment maintenance methods. Specifically, sensor applications provide the opportunity to increase productivity, tighten control, reduce scrap, and improve maintenance schedules and procedures. Past experience indicates a complete integrated solution must be provided for sensor-based control to be used successfully in production. In this paper, Integrated Metrology is proposed as the term for an integrated solution that will result in a successful application of sensors for process control. This paper defines and explores the perceived four elements of successful sensor applications: business needs, integration, components, and form. Based upon analysis of existing successful commercially available controllers, the necessary business factors have been determined to be strong, measurable industry-wide business needs whose solution is profitable and feasible. This paper examines why the key aspect of integration is the decision making process. A detailed discussion is provided of the components of most importance to sensor based control: decision-making methods, the 3R's of sensors, and connectivity. A metric for one of the R's (resolution) is proposed to allow focus on this important aspect of measurement. A form for these integrated components which synergistically partitions various aspects of control at the equipment and MES levels to efficiently achieve desired benefits is recommended.

  7. First-principles mechanistic studies of ammonia-related industrial processes

    OpenAIRE

    Gómez Díaz, Jaime

    2011-01-01

    In this dissertation, the mechanisms that govern four essential industrial processes have been studied by means of Density Functional Theory (DFT). The processes are the following: Ostwald (HNO3 production), Degussa and Andrussow (HCN production) and MacArthurForrest (gold recovery). In these processes, ammonia is the main raw material or a precursor of it.The KohnSham equations that describe the model systems have been solved by means of VASP and GPAW using the RPBE functional. These package...

  8. Analytical design of proportional-integral controllers for the optimal control of first-order processes with operational constraints

    Energy Technology Data Exchange (ETDEWEB)

    Thu, Hien Cao Thi; Lee, Moonyong [Yeungnam University, Gyeongsan (Korea, Republic of)

    2013-12-15

    A novel analytical design method of industrial proportional-integral (PI) controllers was developed for the optimal control of first-order processes with operational constraints. The control objective was to minimize a weighted sum of the controlled variable error and the rate of change in the manipulated variable under the maximum allowable limits in the controlled variable, manipulated variable and the rate of change in the manipulated variable. The constrained optimal servo control problem was converted to an unconstrained optimization to obtain an analytical tuning formula. A practical shortcut procedure for obtaining optimal PI parameters was provided based on graphical analysis of global optimality. The proposed PI controller was found to guarantee global optimum and deal explicitly with the three important operational constraints.

  9. Catalytic arylation methods from the academic lab to industrial processes

    CERN Document Server

    Burke, Anthony J

    2014-01-01

    This "hands-on" approach to the topic of arylation consolidates the body of key research over the last ten years (and up to around 2014) on various catalytic methods which involve an arylation process. Clearly structured, the chapters in this one-stop resource are arranged according to the reaction type, and focus on novel, efficient and sustainable processes, rather than the well-known and established cross-coupling methods. The entire contents are written by two authors with academic and industrial expertise to ensure consistent coverage of the latest developments in the field, as well as industrial applications, such as C-H activation, iron and gold-catalyzed coupling reactions, cycloadditions or novel methodologies using arylboron reagents. A cross-section of relevant tried-and-tested experimental protocols is included at the end of each chapter for putting into immediate practice, along with patent literature. Due to its emphasis on efficient, "green" methods and industrial applications of the products c...

  10. Designing scheduling concept and computer support in the food processing industries

    NARCIS (Netherlands)

    van Donk, DP; van Wezel, W; Gaalman, G; Bititci, US; Carrie, AS

    1998-01-01

    Food processing industries cope with a specific production process and a dynamic market. Scheduling the production process is thus important in being competitive. This paper proposes a hierarchical concept for structuring the scheduling and describes the (computer) support needed for this concept.

  11. Through tobacco industry eyes: civil society and the FCTC process from Philip Morris and British American Tobacco's perspectives.

    Science.gov (United States)

    Gonzalez, Mariaelena; Green, Lawrence W; Glantz, Stanton A

    2012-07-01

    To analyse the models Philip Morris (PM) and British American Tobacco (BAT) used internally to understand tobacco control non-governmental organizations (NGOs) and their relationship to the global tobacco control policy-making process that resulted in the Framework Convention for Tobacco Control (FCTC). Analysis of internal tobacco industry documents in the Legacy Tobacco Document Library. PM contracted with Mongoven, Biscoe, and Duchin, Inc. (MBD, a consulting firm specialising in NGO surveillance) as advisors. MBD argued that because NGOs are increasingly linked to epistemic communities, NGOs could insert themselves into the global policy-making process and influence the discourse surrounding the treaty-making process. MBD advised PM to insert itself into the policy-making process, mimicking NGO behaviour. BAT's Consumer and Regulatory Affairs (CORA) department argued that global regulation emerged from the perception (by NGOs and governments) that the industry could not regulate itself, leading to BAT advocating social alignment and self-regulation to minimise the impact of the FCTC. Most efforts to block or redirect the FCTC failed. PM and BAT articulated a global policy-making environment in which NGOs are key, non-state stakeholders, and as a result, internationalised some of their previous national-level strategies. After both companies failed to prevent the FCTC, their strategies began to align. Multinational corporations have continued to successfully employ some of the strategies outlined in this paper at the local and national level while being formally excluded from ongoing FCTC negotiations at the global level.

  12. An introduction to statistical process control in research proteomics.

    Science.gov (United States)

    Bramwell, David

    2013-12-16

    Statistical process control is a well-established and respected method which provides a general purpose, and consistent framework for monitoring and improving the quality of a process. It is routinely used in many industries where the quality of final products is critical and is often required in clinical diagnostic laboratories [1,2]. To date, the methodology has been little utilised in research proteomics. It has been shown to be capable of delivering quantitative QC procedures for qualitative clinical assays [3] making it an ideal methodology to apply to this area of biological research. To introduce statistical process control as an objective strategy for quality control and show how it could be used to benefit proteomics researchers and enhance the quality of the results they generate. We demonstrate that rules which provide basic quality control are easy to derive and implement and could have a major impact on data quality for many studies. Statistical process control is a powerful tool for investigating and improving proteomics research work-flows. The process of characterising measurement systems and defining control rules forces the exploration of key questions that can lead to significant improvements in performance. This work asserts that QC is essential to proteomics discovery experiments. Every experimenter must know the current capabilities of their measurement system and have an objective means for tracking and ensuring that performance. Proteomic analysis work-flows are complicated and multi-variate. QC is critical for clinical chemistry measurements and huge strides have been made in ensuring the quality and validity of results in clinical biochemistry labs. This work introduces some of these QC concepts and works to bridge their use from single analyte QC to applications in multi-analyte systems. This article is part of a Special Issue entitled: Standardization and Quality Control in Proteomics. Copyright © 2013 The Author. Published by Elsevier

  13. Design and construction of a batch oven for investigation of industrial continuous baking processes

    DEFF Research Database (Denmark)

    Stenby Andresen, Mette; Risum, Jørgen; Adler-Nissen, Jens

    2013-01-01

    A new batch oven has been constructed to mimic industrial convection tunnel ovens for research and development of continuous baking processes. The process parameters (air flow, air temperature, air humidity, height of baking area and the baking band velocity) are therefore highly controllable...... and adjustable over a wide range of settings. It is possible to monitor the product weight and temperature continuously during baking. The simultaneous measuring of mass and a window allowing for visual (e.g., by video recording) control is unique for this experimental batch oven. Two validation steps have been...... carried out. The uniformity of heating in the oven was assessed by measurements of local heat transfer coefficients and confirmed by baking tests. The methods showed that the oven is able to heat and bake uniformly across the baking area. Hereafter, the oven was validated against a commercial 10-m tunnel...

  14. Hydrothermal decomposition of industrial jarosite in alkaline media: The rate determining step of the process kinetics

    Directory of Open Access Journals (Sweden)

    González-Ibarra A.A.

    2016-01-01

    Full Text Available This work examines the role of NaOH and Ca(OH2 on the hydrothermal decomposition of industrial jarosite deposited by a Mexican company in a tailings dam. The industrial jarosite is mainly composed by natrojarosite and contains 150 g Ag/t, showing a narrow particle size distribution, as revealed by XRD, fire assay, SEM-EDS and laser-diffraction analysis. The effect of the pH, when using NaOH or Ca(OH2 as alkalinizing agent was studied by carrying out decomposition experiments at different pH values and 60°C in a homogeneous size particle system (pH = 8, 9, 10 and 11 and in a heterogeneous size particle system (pH = 11. Also, the kinetic study of the process and the controlling step of the decomposition reaction when NaOH and Ca(OH2 are used was determined by fitting the data obtained to the shrinking core model for spherical particles of constant size. These results, supported by chemical (EDS, morphological (SEM and mapping of elements (EDS analysis of a partially reacted jarosite particle allowed to conclude that when NaOH is used, the process kinetics is controlled by the chemical reaction and when Ca(OH2 is used, the rate determining step is changed to a diffusion control through a layer of solid products.

  15. Development of a Tailored Methodology and Forensic Toolkit for Industrial Control Systems Incident Response

    Science.gov (United States)

    2014-06-01

    for industrial control systems ,” in Proceedings of the VDE Kongress, 2004. [15] K. Stouffer et al., “Special publication 800-82: Guide to industrial...TAILORED METHODOLOGY AND FORENSIC TOOLKIT FOR INDUSTRIAL CONTROL SYSTEMS INCIDENT RESPONSE by Nicholas B. Carr June 2014 Thesis Co...CONTROL SYSTEMS INCIDENT RESPONSE 5. FUNDING NUMBERS 6. AUTHOR(S) Nicholas B. Carr 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval

  16. Energy conservation and cost benefits in the dairy processing industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    Guidance is given on measuring energy consumption in the plant and pinpointing areas where energy-conservation activities can return the most favorable economics. General energy-conservation techniques applicable to most or all segments of the dairy processing industry, including the fluid milk segment, are emphasized. These general techniques include waste heat recovery, improvements in electric motor efficiency, added insulation, refrigeration improvements, upgrading of evaporators, and increases in boiler efficiency. Specific examples are given in which these techniques are applied to dairy processing plants. The potential for energy savings by cogeneration of process steam and electricity in the dairy industry is also discussed. Process changes primarily applicable to specific milk products which have resulted in significant energy cost savings at some facilities or which promise significant contributions in the future are examined. A summary checklist of plant housekeeping measures for energy conservation and guidelines for economic evaluation of conservation alternatives are provided. (MHR)

  17. Gas industry standards board: Legal considerations in the standard setting process

    Energy Technology Data Exchange (ETDEWEB)

    Mishkin, M.T.; Adelman, D.I.

    1994-01-01

    On December 23, 1993, the Federal Energy Regulatory Commission (FERC) issued Order 563, a Final Rule adopting the agreements of informal industry-wide working groups to standardize information relating to pipeline capacity release programs mandated under Order 636. Order 563 is noteworthy for its reliance upon the industry to develop consensus standards for Commission adoption. The industry's success in reaching agreements on key communication standards issues spawned recommendations from the working groups to continue the development and maintenance of industry-wide standards through a permanent Gas Industry Standards Board (GISB). This article examines legal issues bearing on GISB's potential role in the regulatory process. Specifically, this article addresses constitutional and statutory considerations relating to the FERC's authority to delegate certain responsibilities to a voluntary, industry sponsored and supported private body such as that taking shape within the gas industry.

  18. D-FNN Based Modeling and BP Neural Network Decoupling Control of PVC Stripping Process

    Directory of Open Access Journals (Sweden)

    Shu-zhi Gao

    2014-01-01

    Full Text Available PVC stripping process is a kind of complicated industrial process with characteristics of highly nonlinear and time varying. Aiming at the problem of establishing the accurate mathematics model due to the multivariable coupling and big time delay, the dynamic fuzzy neural network (D-FNN is adopted to establish the PVC stripping process model based on the actual process operation datum. Then, the PVC stripping process is decoupled by the distributed neural network decoupling module to obtain two single-input-single-output (SISO subsystems (slurry flow to top tower temperature and steam flow to bottom tower temperature. Finally, the PID controller based on BP neural networks is used to control the decoupled PVC stripper system. Simulation results show the effectiveness of the proposed integrated intelligent control method.

  19. Solid waste management practices in wet coffee processing industries of Gidabo watershed, Ethiopia.

    Science.gov (United States)

    Ulsido, Mihret D; Li, Meng

    2016-07-01

    The financial and social contributions of coffee processing industries within most coffee export-based national economies like Ethiopia are generally high. The type and amount of waste produced and the waste management options adopted by these industries can have negative effects on the environment. This study investigated the solid waste management options adopted in wet coffee processing industries in the Gidabo watershed of Ethiopia. A field observation and assessment were made to identify whether the operational characteristics of the industries have any effect on the waste management options that were practiced. The investigation was conducted on 125 wet coffee processing industries about their solid waste handling techniques. Focus group discussion, structured questionnaires, key informant interview and transect walks are some of the tools employed during the investigation. Two major types of wastes, namely hull-bean-pulp blended solid waste and wastewater rich in dissolved and suspended solids were generated in the industries. Wet mills, on average, released 20.69% green coffee bean, 18.58% water and 60.74% pulp by weight. Even though these wastes are rich in organic matter and recyclables; the most favoured solid waste management options in the watershed were disposal (50.4%) and industrial or household composting (49.6%). Laxity and impulsive decision are the driving motives behind solid waste management in Gidabo watershed. Therefore, to reduce possible contamination of the environment, wastes generated during the processing of red coffee cherries, such as coffee wet mill solid wastes, should be handled properly and effectively through maximisation of their benefits with minimised losses. © The Author(s) 2016.

  20. Simulation and analysis of hot forging process for industrial locking gear elevators

    Science.gov (United States)

    Maarefdoust, M.; Kadkhodayan, M.

    2010-06-01

    In this paper hot forging process for industrial locking gear elevators is simulated and analyzed. An increase in demand of industrial locking gear elevators with better quality and lower price caused the machining process to be replaced by hot forging process. Production of industrial locking gear elevators by means of hot forging process is affected by many parameters such as billet temperature, geometry of die and geometry of pre-formatted billet. In this study the influences of billet temperature on effective plastic strain, radius of die corners on internal stress of billet and thickness of flash on required force of press are investigated by means of computer simulation. Three-dimensional modeling of initial material and die are performed by Solid Edge, while simulation and analysis of forging are performed by Super Forge. Based on the computer simulation the required dies are designed and the workpieces are formed. Comparison of simulation results with experimental data demonstrates great compatibility.