WorldWideScience

Sample records for industrial problem simulations

  1. SIMULATION AS PART OF INDUSTRIAL PRACTICE

    Directory of Open Access Journals (Sweden)

    Miriam Pekarčíková

    2015-06-01

    Full Text Available Article discusses the simulation as an efficient scientific method of problem solving in industrial practice. It creates an overview of the simulation program means used in industrial practice and creates an overview of tools for discrete, continuous, and combined.

  2. Applied simulation and optimization in logistics, industrial and aeronautical practice

    CERN Document Server

    Mota, Idalia; Serrano, Daniel

    2015-01-01

    Presenting techniques, case-studies and methodologies that combine the use of simulation approaches with optimization techniques for facing problems in manufacturing, logistics, or aeronautical problems, this book provides solutions to common industrial problems in several fields, which range from manufacturing to aviation problems, where the common denominator is the combination of simulation’s flexibility with optimization techniques’ robustness. Providing readers with a comprehensive guide to tackle similar issues in industrial environments, this text explores novel ways to face industrial problems through hybrid approaches (simulation-optimization) that benefit from the advantages of both paradigms, in order to give solutions to important problems in service industry, production processes, or supply chains, such as scheduling, routing problems and resource allocations, among others.

  3. The need for simulation in complex industrial systems

    Directory of Open Access Journals (Sweden)

    Aboura Khalid

    2012-10-01

    Full Text Available We discuss the concept of simulation and its application in the resolution of problems in complex industrial systems. Most problems of serious scale, be it an inventory problem, a production and distribution problem, a management of resources or process improvement, all real world problems require a mix of generic, data algorithmic and Ad-hoc solutions making the best of available information. We describe two projects in which analytical solutions were applied or contemplated. The first case study uses linear programming in the optimal allocation of advertising resources by a major internet service provider. The second study, in a series of projects, analyses options for the expansion of the production and distribution network of mining products, as part of a sensitive strategic business review. Using the examples, we make the case for the need of simulation in complex industrial problems where analytical solutions may be attempted but where the size and complexity of the problem forces a Monte Carlo approach.

  4. Applied simulation and optimization 2 new applications in logistics, industrial and aeronautical practice

    CERN Document Server

    Mota, Idalia

    2017-01-01

    Building on the author’s earlier Applied Simulation and Optimization, this book presents novel methods for solving problems in industry, based on hybrid simulation-optimization approaches that combine the advantages of both paradigms. The book serves as a comprehensive guide to tackling scheduling, routing problems, resource allocations and other issues in industrial environments, the service industry, production processes, or supply chains and aviation. Logistics, manufacturing and operational problems can either be modelled using optimization techniques or approaches based on simulation methodologies. Optimization techniques have the advantage of performing efficiently when the problems are properly defined, but they are often developed through rigid representations that do not include or accurately represent the stochasticity inherent in real systems. Furthermore, important information is lost during the abstraction process to fit each problem into the optimization technique. On the other hand, simulatio...

  5. Applied simulation and optimization : in logistics, industrial and aeronautical practice

    NARCIS (Netherlands)

    Mujica Mota, Miguel; De la Mota, Idalia Flores; Guimarans Serrano, Daniel

    2015-01-01

    Presenting techniques, case-studies and methodologies that combine the use of simulation approaches with optimization techniques for facing problems in manufacturing, logistics, or aeronautical problems, this book provides solutions to common industrial problems in several fields, which range from

  6. Stock Control in Automotive Industry with Simulation Utilization

    Directory of Open Access Journals (Sweden)

    Petra Vegnerová

    2008-12-01

    Full Text Available At this time in economic environment there is the big trend of coming logistical chain, supply chain and supply chain management (SCM. SCM deals with material and information flows control, inventory management, demand forecast, production plan optimalization, distribution management etc. Nowadays for effective purchase, production and distribution plan and control in companies are utilized the simulation and simulation programmes. This paper deals with the simulation programme Witness and its utilization for finding of results real problemssimulation utilization for stocks solution in automotive industry. The model can be used for the determination of new delivery system of materials and for stocks reduction.

  7. Economical solution for the industrial waste problem of Karachi industrial area

    International Nuclear Information System (INIS)

    Mubin, S.

    2005-01-01

    The increased rate of industrialization coupled with rapid urbanization in Pakistan has given rise to serious water pollution and environmental problems. A vast range of industries has been established in the country during the last twenty five years, including tanneries, fertilizers, textiles, refineries, chemicals, vegetable oils, paper am pulp, sugar and food. Little attention was paid towards a large scale release of wastewater from these industries. Presently wastewater produced from these industries has been considered a serious problem and research in being conducted to solve its associated problems. Recently, it has been realized that there is a significant threat of water borne diseases, degradation of fresh water quality, environmental depletion and soil deterioration from the effluent and toxic emission of industries. Being a developing country and having limited resources, it is hard to install treatment plants on the industrial effluent with every industry before discharging them into streams which are also creating disturbance in natural ecosystem. An effort has been made to solve wastewater problem by implementing statistical tools on data of Karachi industrial state, obtained from EPA JICA and PCRWR, Islamabad. (author)

  8. DEM GPU studies of industrial scale particle simulations for granular flow civil engineering applications

    Science.gov (United States)

    Pizette, Patrick; Govender, Nicolin; Wilke, Daniel N.; Abriak, Nor-Edine

    2017-06-01

    The use of the Discrete Element Method (DEM) for industrial civil engineering industrial applications is currently limited due to the computational demands when large numbers of particles are considered. The graphics processing unit (GPU) with its highly parallelized hardware architecture shows potential to enable solution of civil engineering problems using discrete granular approaches. We demonstrate in this study the pratical utility of a validated GPU-enabled DEM modeling environment to simulate industrial scale granular problems. As illustration, the flow discharge of storage silos using 8 and 17 million particles is considered. DEM simulations have been performed to investigate the influence of particle size (equivalent size for the 20/40-mesh gravel) and induced shear stress for two hopper shapes. The preliminary results indicate that the shape of the hopper significantly influences the discharge rates for the same material. Specifically, this work shows that GPU-enabled DEM modeling environments can model industrial scale problems on a single portable computer within a day for 30 seconds of process time.

  9. Research on Monte Carlo simulation method of industry CT system

    International Nuclear Information System (INIS)

    Li Junli; Zeng Zhi; Qui Rui; Wu Zhen; Li Chunyan

    2010-01-01

    There are a series of radiation physical problems in the design and production of industry CT system (ICTS), including limit quality index analysis; the effect of scattering, efficiency of detectors and crosstalk to the system. Usually the Monte Carlo (MC) Method is applied to resolve these problems. Most of them are of little probability, so direct simulation is very difficult, and existing MC methods and programs can't meet the needs. To resolve these difficulties, particle flux point auto-important sampling (PFPAIS) is given on the basis of auto-important sampling. Then, on the basis of PFPAIS, a particular ICTS simulation method: MCCT is realized. Compared with existing MC methods, MCCT is proved to be able to simulate the ICTS more exactly and effectively. Furthermore, the effects of all kinds of disturbances of ICTS are simulated and analyzed by MCCT. To some extent, MCCT can guide the research of the radiation physical problems in ICTS. (author)

  10. Numerical simulations of coupled problems in engineering

    CERN Document Server

    2014-01-01

    This book presents and discusses mathematical models, numerical methods and computational techniques used for solving coupled problems in science and engineering. It takes a step forward in the formulation and solution of real-life problems with a multidisciplinary vision, accounting for all of the complex couplings involved in the physical description. Simulation of multifaceted physics problems is a common task in applied research and industry. Often a suitable solver is built by connecting together several single-aspect solvers into a network. In this book, research in various fields was selected for consideration: adaptive methodology for multi-physics solvers, multi-physics phenomena and coupled-field solutions, leading to computationally intensive structural analysis. The strategies which are used to keep these problems computationally affordable are of special interest, and make this an essential book.

  11. Today's Business Simulation Industry

    Science.gov (United States)

    Summers, Gary J.

    2004-01-01

    New technologies are transforming the business simulation industry. The technologies come from research in computational fields of science, and they endow simulations with new capabilities and qualities. These capabilities and qualities include computerized behavioral simulations, online feedback and coaching, advanced interfaces, learning on…

  12. Heat transfer simulation for industrial applications. Needs, limitations, expectations

    International Nuclear Information System (INIS)

    Peniguel, C.

    1997-01-01

    The goal of this paper is to present a few problems and difficulties to which heat transfer engineers are confronted. Then, possible ways used to tackle these problems are exposed. The paper shows that in many occasions the approaches used are not completely satisfactory and that some aspects should be improved. It is also the opportunity to underline that even if turbulent heat transfer modelling is very important, from the industrial point of view, it represents often only one part of the problems which need to be addressed to perform a complete numerical simulation. (K.A.)

  13. Management of Industrial Performance Indicators: Regression Analysis and Simulation

    Directory of Open Access Journals (Sweden)

    Walter Roberto Hernandez Vergara

    2017-11-01

    Full Text Available Stochastic methods can be used in problem solving and explanation of natural phenomena through the application of statistical procedures. The article aims to associate the regression analysis and systems simulation, in order to facilitate the practical understanding of data analysis. The algorithms were developed in Microsoft Office Excel software, using statistical techniques such as regression theory, ANOVA and Cholesky Factorization, which made it possible to create models of single and multiple systems with up to five independent variables. For the analysis of these models, the Monte Carlo simulation and analysis of industrial performance indicators were used, resulting in numerical indices that aim to improve the goals’ management for compliance indicators, by identifying systems’ instability, correlation and anomalies. The analytical models presented in the survey indicated satisfactory results with numerous possibilities for industrial and academic applications, as well as the potential for deployment in new analytical techniques.

  14. Towards Simulation of Custom Industrial Robots

    OpenAIRE

    Marcu, Cosmin; Robotin, Radu

    2008-01-01

    In order to create a simulator for custom industrial robots, it is very important to know the forward and inverse kinematics equations of the robot structure, the controller output data and the limitations of the robot mechanical components. In this paper we presented the steps for building a simulation program for a custom industrial robot. The first step was the robot modeling where we obtained the forward and inverse kinematics equations used as motion laws both for the simulated and for t...

  15. The problem of industrial wastes

    International Nuclear Information System (INIS)

    Hamdan, Fouad

    1998-01-01

    The paper is the result of a feasibility study conducted for the Green peace Office in Lebanon. The overall goal of the study was to work towards implementing a national waste management plan and to combat the import of hazardous wastes from developing countries.The author focuses on the illegal trade of industrial wastes from developed to under developed countries. The trade of toxic wastes causes on environmental pollution. As for Lebanese industries, the main problem is toxic industrial wastes. About 4000 tones/day of domestic wastes are produced in Lebanon. 326000 tones of industrial wastes contain toxic substances are annually produced and wastes growth rate is expected to increase to one million tone/year in 2010. A disaster is threatening Lebanon especially that no policy were taken to deal with the huge growth of wastes. This problem affect on population health especially in the region of Bourj Hammoud. Analysis of ground water in the region of Chekka, confirm the existence of water pollution caused by toxic materials In addition, analysis of Petro coke used in the National Lebanese Cement Industry, contain a high rate of Polycyclic Aromatic Hydrocarbons. Green peace is aware of the danger of wastes in air, water and land pollution and preventing environment of any source of pollution this will certainly lead to a sustainable development of the country

  16. Industrial Application of Topology Optimization for Combined Conductive and Convective Heat Transfer Problems

    DEFF Research Database (Denmark)

    Zhou, Mingdong; Alexandersen, Joe; Sigmund, Ole

    2016-01-01

    This paper presents an industrial application of topology optimization for combined conductive and convective heat transfer problems. The solution is based on a synergy of computer aided design and engineering software tools from Dassault Systemes. The considered physical problem of steady......-state heat transfer under convection is simulated using SIMULIA-Abaqus. A corresponding topology optimization feature is provided by SIMULIA-Tosca. By following a standard workflow of design optimization, the proposed solution is able to accommodate practical design scenarios and results in efficient...

  17. Environmental problems facing the electricity industry

    International Nuclear Information System (INIS)

    Johnson, S.

    1988-01-01

    The paper on the environmental problems facing the electricity industry was first presented at the World Electricity Conference, Nov. 1987. According to the author, the biggest immediate environmental challenge the electricity industry faces is the need for the role and importance of nuclear power to be reasserted clearly and unambiguously. The main environmental problems from electricity generation are air pollution and the carbon dioxide/greenhouse issue, and the author thinks that both could be reduced by an increased use of nuclear power as an energy source. (U.K.)

  18. Environmental problems in Russian coal industry

    International Nuclear Information System (INIS)

    Kharchenko, V.; Oumnov, V.

    1996-01-01

    The state of the Russian coal industry is complicated both economically and environmentally. Most mines are unprofitable. Several coal mines are intended to be closed. So, under existing conditions, coal mines are unable to give much attention to environmental protection problems. At the same time, coal mining is one of the most polluting industries. The main trends in this industry's negative influence upon the environment are: land spoilage and immobilization to lay out open-pit mines and mineral waste dump areas and tailing piles as well as with industrial waste water runoff; atmospheric pollution with the air coming from underground and substances blown off from dumps, hydrogeological regime intervention in coal mining areas, etc. One way to solve environmental problems in coal mining is a more rational utilization of the accompanying natural coal resources. Such measures make it possible to obtain complementary profits not only at the expense of reducing environmental destruction but producing new kinds of goods or services as well. Examples of similar solutions are solid mineral wastes utilization, underground space utilization, coal gas utilization and other issues

  19. Problem continuity in discontinuity of development of Serbian industry

    Directory of Open Access Journals (Sweden)

    Šljukić Marica

    2017-01-01

    Full Text Available In this paper the author uses a comparative analysis in order to show the discontinuity in the process of the industrial development of the Serbian society, as well as to point out the fact that the almost same problems have not been mastered throughout the whole process of industrialization. Besides the historical data, the data of the empirical research are used. The goal of the empirical research was to determine the real and the possible degree and intensity of the influence of the structural social changes to the organizing of industrial work. The research had been done from 2011 to 2013 using the multiple case study method, and it included six organizations from different sectors of industry. By comparison of different phases of the industrial development in Serbia the author concludes the continuity of the following problems: accumulation of capital, technical and technological underdevelopment and dependence, raw materials dependence, and the deficit of the competent work force (especially managers. The biggest and the basic problem, which encompasses all four problems mentioned above, has been the absence of the strategy of the industrial development throughout the whole process of this development.

  20. Assembly Line Productivity Assessment by Comparing Optimization-Simulation Algorithms of Trajectory Planning for Industrial Robots

    Directory of Open Access Journals (Sweden)

    Francisco Rubio

    2015-01-01

    Full Text Available In this paper an analysis of productivity will be carried out from the resolution of the problem of trajectory planning of industrial robots. The analysis entails economic considerations, thus overcoming some limitations of the existing literature. Two methodologies based on optimization-simulation procedures are compared to calculate the time needed to perform an industrial robot task. The simulation methodology relies on the use of robotics and automation software called GRASP. The optimization methodology developed in this work is based on the kinematics and the dynamics of industrial robots. It allows us to pose a multiobjective optimization problem to assess the trade-offs between the economic variables by means of the Pareto fronts. The comparison is carried out for different examples and from a multidisciplinary point of view, thus, to determine the impact of using each method. Results have shown the opportunity costs of non using the methodology with optimized time trajectories. Furthermore, it allows companies to stay competitive because of the quick adaptation to rapidly changing markets.

  1. An inverse problem approach to pattern recognition in industry

    Directory of Open Access Journals (Sweden)

    Ali Sever

    2015-01-01

    Full Text Available Many works have shown strong connections between learning and regularization techniques for ill-posed inverse problems. A careful analysis shows that a rigorous connection between learning and regularization for inverse problem is not straightforward. In this study, pattern recognition will be viewed as an ill-posed inverse problem and applications of methods from the theory of inverse problems to pattern recognition are studied. A new learning algorithm derived from a well-known regularization model is generated and applied to the task of reconstruction of an inhomogeneous object as pattern recognition. Particularly, it is demonstrated that pattern recognition can be reformulated in terms of inverse problems defined by a Riesz-type kernel. This reformulation can be employed to design a learning algorithm based on a numerical solution of a system of linear equations. Finally, numerical experiments have been carried out with synthetic experimental data considering a reasonable level of noise. Good recoveries have been achieved with this methodology, and the results of these simulations are compatible with the existing methods. The comparison results show that the Regularization-based learning algorithm (RBA obtains a promising performance on the majority of the test problems. In prospects, this method can be used for the creation of automated systems for diagnostics, testing, and control in various fields of scientific and applied research, as well as in industry.

  2. Optimization and Simulation in the Danish Fishing Industry

    DEFF Research Database (Denmark)

    Jensen, Toke Koldborg; Clausen, Jens

    and simulation can be applied in a holistic modeling framework. Using the insights into supply chain theory and the Danish fishing industry, we investigate how the fishing industry as a whole may benefit from the formulation and use of mathematical optimization and simulation models. Finally, an appendix......We consider the Danish fishing industry from a holistic viewpoint, and give a review of the main aspects, and the important actors. We also consider supply chain theory, and identify both theoretically, and based on other application areas, e.g. other fresh food industries, how optimization...

  3. Parallel Simulation of Three-Dimensional Free Surface Fluid Flow Problems

    International Nuclear Information System (INIS)

    BAER, THOMAS A.; SACKINGER, PHILIP A.; SUBIA, SAMUEL R.

    1999-01-01

    Simulation of viscous three-dimensional fluid flow typically involves a large number of unknowns. When free surfaces are included, the number of unknowns increases dramatically. Consequently, this class of problem is an obvious application of parallel high performance computing. We describe parallel computation of viscous, incompressible, free surface, Newtonian fluid flow problems that include dynamic contact fines. The Galerkin finite element method was used to discretize the fully-coupled governing conservation equations and a ''pseudo-solid'' mesh mapping approach was used to determine the shape of the free surface. In this approach, the finite element mesh is allowed to deform to satisfy quasi-static solid mechanics equations subject to geometric or kinematic constraints on the boundaries. As a result, nodal displacements must be included in the set of unknowns. Other issues discussed are the proper constraints appearing along the dynamic contact line in three dimensions. Issues affecting efficient parallel simulations include problem decomposition to equally distribute computational work among a SPMD computer and determination of robust, scalable preconditioners for the distributed matrix systems that must be solved. Solution continuation strategies important for serial simulations have an enhanced relevance in a parallel coquting environment due to the difficulty of solving large scale systems. Parallel computations will be demonstrated on an example taken from the coating flow industry: flow in the vicinity of a slot coater edge. This is a three dimensional free surface problem possessing a contact line that advances at the web speed in one region but transitions to static behavior in another region. As such, a significant fraction of the computational time is devoted to processing boundary data. Discussion focuses on parallel speed ups for fixed problem size, a class of problems of immediate practical importance

  4. Coal industry - problems and prospects. [United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Siddall, N

    1984-01-01

    Presidential Address by Sir Norman Siddall is presented which considers the problems and prospects facing the UK coal industry. The range of changes which business management is subject to are outlined together with the coal industry's response to these changes. Fluctuations in the energy market and the economy have resulted in a customer orientated approach to marketing, and improved efficiency throughout the industry. New technology has increased the efficiency of some aspects of operations but at the some time developments in the areas of industrial relations and public accountability have limited management's ability to respond to changes in the commercial environment.

  5. Topical problems of the German electric power industry

    Energy Technology Data Exchange (ETDEWEB)

    Boeck, H [Stadtwerke Hannover A.G. (Germany, F.R.); Worm, N [Hannover-Braunschweigische Stromversorgungs-A.G., Hannover (Germany, F.R.); Brohmeyer, M [Schleswig-Holsteinische Stromversorgungs A.G., Rendsburg (Germany, F.R.). Abt. Anwendungstechnik und Beratung; Deuster, G [Energieversorgung Oberhausen A.G. (Germany, F.R.); Heitzer, H; Holzer, J [Bayernwerk A.G., Muenchen (Germany, F.R.); Deparade, K [Verband der Energie-Abnehmer e.V., Hannover (Germany, F.R.); Marnet, C [Stadtwerke Duesseldorf A.G. (Germany, F.R.); Oberlack, H W [Hamburgische Electricitaets-Werke A.G. (Germany, F.R.); Segatz, U [Preussische Elektrizitaets-A.G. (Preussenelektra), Hannover (Germany, F.R.)

    1978-06-01

    On the occasion of the general meeting of the VDE high-ranking personalities of the German Power Supply Industry were interviewed on current affairs. The following subjects were discussed: (1) problems involved in energy policy; (2) energy problems due to newly formed regions; (3) utilization of electric power in agriculture; (4) development prospects of district heating; (5) problems of power generation far from coal districts; (6) rationalization in the commercial sector; (7) opportunities and limits of industrial combined heat and power generation; (8) environmental protection and electric power supply; (9) possible utilization of imported coal; and (10). assuring the primary energy basis for electric power supply.

  6. Industrial waste recycling strategies optimization problem: mixed integer programming model and heuristics

    Science.gov (United States)

    Tang, Jiafu; Liu, Yang; Fung, Richard; Luo, Xinggang

    2008-12-01

    Manufacturers have a legal accountability to deal with industrial waste generated from their production processes in order to avoid pollution. Along with advances in waste recovery techniques, manufacturers may adopt various recycling strategies in dealing with industrial waste. With reuse strategies and technologies, byproducts or wastes will be returned to production processes in the iron and steel industry, and some waste can be recycled back to base material for reuse in other industries. This article focuses on a recovery strategies optimization problem for a typical class of industrial waste recycling process in order to maximize profit. There are multiple strategies for waste recycling available to generate multiple byproducts; these byproducts are then further transformed into several types of chemical products via different production patterns. A mixed integer programming model is developed to determine which recycling strategy and which production pattern should be selected with what quantity of chemical products corresponding to this strategy and pattern in order to yield maximum marginal profits. The sales profits of chemical products and the set-up costs of these strategies, patterns and operation costs of production are considered. A simulated annealing (SA) based heuristic algorithm is developed to solve the problem. Finally, an experiment is designed to verify the effectiveness and feasibility of the proposed method. By comparing a single strategy to multiple strategies in an example, it is shown that the total sales profit of chemical products can be increased by around 25% through the simultaneous use of multiple strategies. This illustrates the superiority of combinatorial multiple strategies. Furthermore, the effects of the model parameters on profit are discussed to help manufacturers organize their waste recycling network.

  7. Problem Based Learning - Linking Students and Industry

    DEFF Research Database (Denmark)

    Fink, Flemming K.

    2006-01-01

    WG2_G4 Problem based learning – linking students and industry: a case study from Aalborg, Denmark Flemming K. Flink ELITE Aalborg University In Aalborg University, Denmark, all study programmes are organised around inter-disciplinary project work in groups. Up to 50% of the study work is problem-...... is essentially problem solving. The presentation looks into on campus POPBL and the Facilitated Work Based Learning (FBL) for continuing education. It also presents case examples of POPBL work....

  8. Integrating Industry in Project Organized Problem Based Learning for Engineering Educations

    DEFF Research Database (Denmark)

    Nielsen, Kirsten M.

    2006-01-01

    This abstract deals with the challenge of establishing engineering student projects in collaboration with industry. Based on empirical results a set of advices for industrial collaboration in project oriented problem based learning are formulated......This abstract deals with the challenge of establishing engineering student projects in collaboration with industry. Based on empirical results a set of advices for industrial collaboration in project oriented problem based learning are formulated...

  9. Institutionalization of Organized Industrial Estates in Turkey, Problems Encountered and Proposed Solutions

    Directory of Open Access Journals (Sweden)

    Hasan DAĞLAR

    2015-12-01

    Full Text Available In the aim of the study is to determine the institutionalization degree of organized industrial estates and to identify the faced problems and to develop solutions for these problems. By using survey method, information about problems and institutionalization status of organized industrial estates were obtained from managers of the active organized industrial estates. The problems of organized industrial estates are related to the management structure, qualified staff, energy, transportation, regulation and public improvements. Formalization, professionalism, accountability, transparency and social responsibility have been identified as the factors about the institutionalization of organized industrial estates in Turkey according to factor analysis. It could be argued that organized industrial estates in Turkey have an institutional structure and they have institutionalized. However, it could be said that organized industrial estates which operate in 80 cities of Turkey and more than one are in some cities are not at the same level of institutionalization.

  10. Some Problems of Industrial Scale-Up.

    Science.gov (United States)

    Jackson, A. T.

    1985-01-01

    Scientific ideas of the biological laboratory are turned into economic realities in industry only after several problems are solved. Economics of scale, agitation, heat transfer, sterilization of medium and air, product recovery, waste disposal, and future developments are discussed using aerobic respiration as the example in the scale-up…

  11. Assessing problem-solving skills in construction education with the virtual construction simulator

    Science.gov (United States)

    Castronovo, Fadi

    The ability to solve complex problems is an essential skill that a construction and project manager must possess when entering the architectural, engineering, and construction industry. Such ability requires a mixture of problem-solving skills, ranging from lower to higher order thinking skills, composed of cognitive and metacognitive processes. These skills include the ability to develop and evaluate construction plans and manage the execution of such plans. However, in a typical construction program, introducing students to such complex problems can be a challenge, and most commonly the learner is presented with only part of a complex problem. To support this challenge, the traditional methodology of delivering design, engineering, and construction instruction has been going through a technological revolution, due to the rise of computer-based technology. For example, in construction classrooms, and other disciplines, simulations and educational games are being utilized to support the development of problem-solving skills. Previous engineering education research has illustrated the high potential that simulations and educational games have in engaging in lower and higher order thinking skills. Such research illustrated their capacity to support the development of problem-solving skills. This research presents evidence supporting the theory that educational simulation games can help with the learning and retention of transferable problem-solving skills, which are necessary to solve complex construction problems. The educational simulation game employed in this study is the Virtual Construction Simulator (VCS). The VCS is a game developed to provide students in an engaging learning activity that simulates the planning and managing phases of a construction project. Assessment of the third iteration of the VCS(3) game has shown pedagogical value in promoting students' motivation and a basic understanding of construction concepts. To further evaluate the benefits on

  12. Modelling, simulation and validation of the industrial robot

    Directory of Open Access Journals (Sweden)

    Aleksandrov Slobodan Č.

    2014-01-01

    Full Text Available In this paper, a DH model of industrial robot, with anthropomorphic configuration and five degrees of freedom - Mitsubishi RV2AJ, is developed. The model is verified on the example robot Mitsubishi RV2AJ. In paper detailed represented the complete mathematical model of the robot and the parameters of the programming. On the basis of this model, simulation of robot motion from point to point is performed, as well as the continuous movement of the pre-defined path. Also, programming of industrial robots identical to simulation programs is made, and comparative analysis of real and simulated experiment is shown. In the final section, a detailed analysis of robot motion is described.

  13. [Work days lost due to health problems in industry].

    Science.gov (United States)

    Yano, Sylvia Regina Trindade; Santana, Vilma Sousa

    2012-05-01

    This cross-sectional study estimated the prevalence of work days lost due to health problems and associated factors among industrial workers. The study population was a simple random cluster sample of 3,403 workers from 16 to 65 years of age in the city of Salvador, Bahia State, Brazil. Data were collected with individual home interviews. Among industrial workers, one-year prevalence of work days lost to health problems was 12.5%, of which 5.5% were directly work-related and 4.1% aggravated by work. There were no statistically significant differences when compared to other worker categories. Self-perceived workplace hazards, history of work-related injury, and poor self-rated health were associated with work days lost due to work-related injuries/diseases. The findings showed that work days lost are common among both industrial and non-industrial workers, thereby affecting productivity and requiring prevention programs.

  14. A Military and Industry Partnership Program: The Transfer of Military Simulation Technology Into Commercial Industry

    National Research Council Canada - National Science Library

    McGuire, William

    1997-01-01

    This research thesis is a study through a military commercial industry partnership to seek whether investments in military modeling and simulation can be easily transferred to benefit commercial industry...

  15. Steel heat treating: mathematical modelling and numerical simulation of a problem arising in the automotive industry

    Directory of Open Access Journals (Sweden)

    Jose Manuel Diaz Moreno

    2017-12-01

    Full Text Available We describe a mathematical model for the industrial heating and cooling processes of a steel workpiece representing the steering rack of an automobile. The goal of steel heat treating is to provide a hardened surface on critical parts of the workpiece while keeping the rest soft and ductile in order to reduce fatigue. The high hardness is due to the phase transformation of steel accompanying the rapid cooling. This work takes into account both heating-cooling stage and viscoplastic model. Once the general mathematical formulation is derived, we can perform some numerical simulations.

  16. Causes of Payment Problems in the New Zealand Construction Industry

    Directory of Open Access Journals (Sweden)

    Thanuja Ramachandra

    2015-03-01

    Full Text Available Payment delays and losses persist in the construction industry and continue to be a key concern to industry practitioners. Therefore an exploration of the key causes of payment delays and losses is undertaken in this study with the ultimate objective of seeking mitigating solutions. The study adopted a survey approach using an online questionnaire, administered to practitioners from the New Zealand construction industry, comprising consultants, head contractors and subcontractors. The data obtained was analysed using inferential statistical techniques, including comparing means and factor analysis. Factor analysis enabled clustering of the inter-related causes of payment delays and losses in order to find reduced number of causes. Accordingly, the study found that payment problems mainly relate to contractual issues, financial strength of industry players, disputes, short-comings of payment processes and ‘domino effects’. Among them, the financial strength of critical industry players was considered central to payment problems. The study concludes that any solution to these problems must address these primary causes, as a rational starting point. Thus procuring a feasible form of financial security at the outset of a project, and the pre-qualification of the financial status of critical project participants, were found to be significant in the mitigation of construction payment risks. Paper Type: Research article

  17. The development of an industrial-scale fed-batch fermentation simulation.

    Science.gov (United States)

    Goldrick, Stephen; Ştefan, Andrei; Lovett, David; Montague, Gary; Lennox, Barry

    2015-01-10

    This paper describes a simulation of an industrial-scale fed-batch fermentation that can be used as a benchmark in process systems analysis and control studies. The simulation was developed using a mechanistic model and validated using historical data collected from an industrial-scale penicillin fermentation process. Each batch was carried out in a 100,000 L bioreactor that used an industrial strain of Penicillium chrysogenum. The manipulated variables recorded during each batch were used as inputs to the simulator and the predicted outputs were then compared with the on-line and off-line measurements recorded in the real process. The simulator adapted a previously published structured model to describe the penicillin fermentation and extended it to include the main environmental effects of dissolved oxygen, viscosity, temperature, pH and dissolved carbon dioxide. In addition the effects of nitrogen and phenylacetic acid concentrations on the biomass and penicillin production rates were also included. The simulated model predictions of all the on-line and off-line process measurements, including the off-gas analysis, were in good agreement with the batch records. The simulator and industrial process data are available to download at www.industrialpenicillinsimulation.com and can be used to evaluate, study and improve on the current control strategy implemented on this facility. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  18. Simulation of sustainability aspects within the industrial environment and their implication on the simulation technique

    OpenAIRE

    Rabe, M.; Jäkel, F.-W.; Weinaug, H.

    2010-01-01

    Simulation is a broadly excepted analytic instrument and planning tool. Today, industrial simulation is mainly applied for engineering and physical purposes and covers a short time horizon compared to intergenerational justice. In parallel, sustainability is gaining more importance for the industrial planning because themes like global warming, child labour, and compliance with social and environmental standards have to be taken into account. Sustainability is characterized by comprehensively...

  19. Big problems for Swedish nuclear industry

    International Nuclear Information System (INIS)

    Holmstroem, Anton; Runesson, Linda

    2006-01-01

    A report of the problems for Swedish nuclear industry the summer of 2006. A detailed description of the 25th of July incident at Forsmark 1 is provided. The incident was classified as level two on the INIS scale. The other Swedish nuclear plants were subject to security evaluations in the aftermath, and at Forsmark 2 similar weaknesses were found in the security system (ml)

  20. An innovative approach for modeling and simulation of an automated industrial robotic arm operated electro-pneumatically

    Science.gov (United States)

    Popa, L.; Popa, V.

    2017-08-01

    The article is focused on modeling an automated industrial robotic arm operated electro-pneumatically and to simulate the robotic arm operation. It is used the graphic language FBD (Function Block Diagram) to program the robotic arm on Zelio Logic automation. The innovative modeling and simulation procedures are considered specific problems regarding the development of a new type of technical products in the field of robotics. Thus, were identified new applications of a Programmable Logic Controller (PLC) as a specialized computer performing control functions with a variety of high levels of complexit.

  1. A Benchmark Environment Motivated by Industrial Control Problems

    OpenAIRE

    Hein, Daniel; Depeweg, Stefan; Tokic, Michel; Udluft, Steffen; Hentschel, Alexander; Runkler, Thomas A.; Sterzing, Volkmar

    2017-01-01

    In the research area of reinforcement learning (RL), frequently novel and promising methods are developed and introduced to the RL community. However, although many researchers are keen to apply their methods on real-world problems, implementing such methods in real industry environments often is a frustrating and tedious process. Generally, academic research groups have only limited access to real industrial data and applications. For this reason, new methods are usually developed, evaluated...

  2. Simulation and the emergency department overcrowding problem

    OpenAIRE

    Nahhas, A.; Awaldi, A.; Reggelin, T.

    2017-01-01

    In this paper, a brief review on the emergency department overcrowding problem and its associated solution methodologies is presented. In addition, a case study of an urgent care center is investigated that demonstrates different simulation-based solution strategies to deal with the Emergency Department overcrowding problem. More precisely, a simulation study is conducted to identify critical aspects and propose possible scenarios to configure an urgent care center. Based on statistical data ...

  3. On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools

    Energy Technology Data Exchange (ETDEWEB)

    Vermeire, B.C., E-mail: brian.vermeire@concordia.ca; Witherden, F.D.; Vincent, P.E.

    2017-04-01

    First- and second-order accurate numerical methods, implemented for CPUs, underpin the majority of industrial CFD solvers. Whilst this technology has proven very successful at solving steady-state problems via a Reynolds Averaged Navier–Stokes approach, its utility for undertaking scale-resolving simulations of unsteady flows is less clear. High-order methods for unstructured grids and GPU accelerators have been proposed as an enabling technology for unsteady scale-resolving simulations of flow over complex geometries. In this study we systematically compare accuracy and cost of the high-order Flux Reconstruction solver PyFR running on GPUs and the industry-standard solver STAR-CCM+ running on CPUs when applied to a range of unsteady flow problems. Specifically, we perform comparisons of accuracy and cost for isentropic vortex advection (EV), decay of the Taylor–Green vortex (TGV), turbulent flow over a circular cylinder, and turbulent flow over an SD7003 aerofoil. We consider two configurations of STAR-CCM+: a second-order configuration, and a third-order configuration, where the latter was recommended by CD-adapco for more effective computation of unsteady flow problems. Results from both PyFR and STAR-CCM+ demonstrate that third-order schemes can be more accurate than second-order schemes for a given cost e.g. going from second- to third-order, the PyFR simulations of the EV and TGV achieve 75× and 3× error reduction respectively for the same or reduced cost, and STAR-CCM+ simulations of the cylinder recovered wake statistics significantly more accurately for only twice the cost. Moreover, advancing to higher-order schemes on GPUs with PyFR was found to offer even further accuracy vs. cost benefits relative to industry-standard tools.

  4. On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools

    Science.gov (United States)

    Vermeire, B. C.; Witherden, F. D.; Vincent, P. E.

    2017-04-01

    First- and second-order accurate numerical methods, implemented for CPUs, underpin the majority of industrial CFD solvers. Whilst this technology has proven very successful at solving steady-state problems via a Reynolds Averaged Navier-Stokes approach, its utility for undertaking scale-resolving simulations of unsteady flows is less clear. High-order methods for unstructured grids and GPU accelerators have been proposed as an enabling technology for unsteady scale-resolving simulations of flow over complex geometries. In this study we systematically compare accuracy and cost of the high-order Flux Reconstruction solver PyFR running on GPUs and the industry-standard solver STAR-CCM+ running on CPUs when applied to a range of unsteady flow problems. Specifically, we perform comparisons of accuracy and cost for isentropic vortex advection (EV), decay of the Taylor-Green vortex (TGV), turbulent flow over a circular cylinder, and turbulent flow over an SD7003 aerofoil. We consider two configurations of STAR-CCM+: a second-order configuration, and a third-order configuration, where the latter was recommended by CD-adapco for more effective computation of unsteady flow problems. Results from both PyFR and STAR-CCM+ demonstrate that third-order schemes can be more accurate than second-order schemes for a given cost e.g. going from second- to third-order, the PyFR simulations of the EV and TGV achieve 75× and 3× error reduction respectively for the same or reduced cost, and STAR-CCM+ simulations of the cylinder recovered wake statistics significantly more accurately for only twice the cost. Moreover, advancing to higher-order schemes on GPUs with PyFR was found to offer even further accuracy vs. cost benefits relative to industry-standard tools.

  5. On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools

    International Nuclear Information System (INIS)

    Vermeire, B.C.; Witherden, F.D.; Vincent, P.E.

    2017-01-01

    First- and second-order accurate numerical methods, implemented for CPUs, underpin the majority of industrial CFD solvers. Whilst this technology has proven very successful at solving steady-state problems via a Reynolds Averaged Navier–Stokes approach, its utility for undertaking scale-resolving simulations of unsteady flows is less clear. High-order methods for unstructured grids and GPU accelerators have been proposed as an enabling technology for unsteady scale-resolving simulations of flow over complex geometries. In this study we systematically compare accuracy and cost of the high-order Flux Reconstruction solver PyFR running on GPUs and the industry-standard solver STAR-CCM+ running on CPUs when applied to a range of unsteady flow problems. Specifically, we perform comparisons of accuracy and cost for isentropic vortex advection (EV), decay of the Taylor–Green vortex (TGV), turbulent flow over a circular cylinder, and turbulent flow over an SD7003 aerofoil. We consider two configurations of STAR-CCM+: a second-order configuration, and a third-order configuration, where the latter was recommended by CD-adapco for more effective computation of unsteady flow problems. Results from both PyFR and STAR-CCM+ demonstrate that third-order schemes can be more accurate than second-order schemes for a given cost e.g. going from second- to third-order, the PyFR simulations of the EV and TGV achieve 75× and 3× error reduction respectively for the same or reduced cost, and STAR-CCM+ simulations of the cylinder recovered wake statistics significantly more accurately for only twice the cost. Moreover, advancing to higher-order schemes on GPUs with PyFR was found to offer even further accuracy vs. cost benefits relative to industry-standard tools.

  6. Development, Problems and Countermeasures of Chinese Racing Car Industry

    Science.gov (United States)

    Yang, J. J.

    2018-05-01

    In recent years, motor car racing has developed rapidly in China. However, under the background of maximum vehicle production and car ownership in China, the racing car industry has a long way compared with that of the developed countries. The paper analyzes the current situation and summarizes the problems of Chinese racing car industry with supporting documentation and review of the literature. The future trend of the development of car industry in China is discussed. On the basis of the analysis and prediction, the strategies to respond to the future racing car industry in China are presented.

  7. Modeling and simulating industrial land-use evolution in Shanghai, China

    Science.gov (United States)

    Qiu, Rongxu; Xu, Wei; Zhang, John; Staenz, Karl

    2018-01-01

    This study proposes a cellular automata-based Industrial and Residential Land Use Competition Model to simulate the dynamic spatial transformation of industrial land use in Shanghai, China. In the proposed model, land development activities in a city are delineated as competitions among different land-use types. The Hedonic Land Pricing Model is adopted to implement the competition framework. To improve simulation results, the Land Price Agglomeration Model was devised to simulate and adjust classic land price theory. A new evolutionary algorithm-based parameter estimation method was devised in place of traditional methods. Simulation results show that the proposed model closely resembles actual land transformation patterns and the model can not only simulate land development, but also redevelopment processes in metropolitan areas.

  8. [Pollution-ecological problems of old industrial and mining areas and future research prospects].

    Science.gov (United States)

    Zhou, Qixing

    2005-06-01

    Environmental pollution and its solicitation in ecological problems of old industrial and mining areas have become a worldwide technological puzzle restricting sustainable economic and social development. But, the definition and category of old industrial and mining areas is still disputed as an important concept. In this paper, the concept of old industrial and mining area was discussed in theory, and, proceeded with analyzing the complexity of current situation and environmental pollution problems of old industrial and mining areas in China, more keystone attention was paid to the secondary pollution problems from old industrial and mining areas as an important frontier of science. On the basis of expounding the complexity and characters of environmental pollution in old industrial and mining areas, it was suggested that as two key scientific problems in environmental sciences and ecology, the formation mechanisms and control technology of secondary pollution in old industrial and mining areas and the responses of new-type diseases to environmental pollution based on molecular ecotoxicology should be systematically studied on the national scale, and be an important component of environmental protection strategy in China in the future.

  9. Proposal of a micromagnetic standard problem for ferromagnetic resonance simulations

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Alexander [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, 3PU, OX1 (United Kingdom); Beg, Marijan; Ashton, Gregory; Albert, Maximilian; Chernyshenko, Dmitri [Faculty of Engineering and the Environment, University of Southampton, SO17 1BJ, Southampton (United Kingdom); Wang, Weiwei [Department of Physics, Ningbo University, Ningbo, 315211 China (China); Zhang, Shilei [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, 3PU, OX1 (United Kingdom); Bisotti, Marc-Antonio; Franchin, Matteo [Faculty of Engineering and the Environment, University of Southampton, SO17 1BJ, Southampton (United Kingdom); Hu, Chun Lian; Stamps, Robert [SUPA School of Physics and Astronomy, University of Glasgow, G12, Glasgow, 8QQ United Kingdom (United Kingdom); Hesjedal, Thorsten, E-mail: t.hesjedal1@physics.ox.ac.uk [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, 3PU, OX1 (United Kingdom); Fangohr, Hans [Faculty of Engineering and the Environment, University of Southampton, SO17 1BJ, Southampton (United Kingdom)

    2017-01-01

    Nowadays, micromagnetic simulations are a common tool for studying a wide range of different magnetic phenomena, including the ferromagnetic resonance. A technique for evaluating reliability and validity of different micromagnetic simulation tools is the simulation of proposed standard problems. We propose a new standard problem by providing a detailed specification and analysis of a sufficiently simple problem. By analyzing the magnetization dynamics in a thin permalloy square sample, triggered by a well defined excitation, we obtain the ferromagnetic resonance spectrum and identify the resonance modes via Fourier transform. Simulations are performed using both finite difference and finite element numerical methods, with OOMMF and Nmag simulators, respectively. We report the effects of initial conditions and simulation parameters on the character of the observed resonance modes for this standard problem. We provide detailed instructions and code to assist in using the results for evaluation of new simulator tools, and to help with numerical calculation of ferromagnetic resonance spectra and modes in general. - Highlights: ●Micromagnetic standard problem for FerroMagnetic Resonance (FMR). ●Overview of FMR simulation techniques. ●Define reproducible test problem with ring down method. ●Example configuration files, scripts and post processing for OOMMF and NMag. ●Code and data available in Ref. [23].

  10. Long-term problem for the nuclear industry

    International Nuclear Information System (INIS)

    Norman, C.

    1982-01-01

    Dismantling of the 24-year-old Shippingport atomic power station over the next two years will test whether the nuclear industry can safely dispose of high-level radioactive facilities. Recent findings that some components will remain radioactive longer than anticipated may require dismantling instead of the permanent entombment the industry was planning. The five-year dismantlement will cost $40 million and generate 11,700 cubic meters of radioactive waste. Larger reactors will be even more costly. Current regulations require utilities to choose between dismantlement, safe storage, or entombment of contaminated materials. Each has its problems, but the industry objects to an evolving policy for dismantling and an accompanying requirement for a segregated decommissioning fund that would be set aside before a reactor begins operating or during plant lifetime. The latter would require an adequate insurance mechanism to cover premature shutdown

  11. Present day problems concerning the energy industry

    International Nuclear Information System (INIS)

    Hecker, G.

    1978-01-01

    Problems of the regional energy supply industry touching directly the energy supply utilities (e.g. territorial reform, power prices) are discussed. In a survey on the overall energy situation in the FRG as seen by energy supply utilities, the following conclusions are drawn: 1) The electricity supply industry is in the favourite position to make the required structural changes by utilizing primary energy for generating electric power. It offers - via electric energy - an effective opportunity for substituting oil. 2) The electricity supply industry alone will be in a position to use nuclear energy during the next few decades. A decision in favour of nuclear energy must not be at disposal to make oneself momentarily politically popular. This indispensable decision results exclusively from our responsibility for the future of our national economy and thus our society. (orig./HP) [de

  12. Automatic Algorithm Selection for Complex Simulation Problems

    CERN Document Server

    Ewald, Roland

    2012-01-01

    To select the most suitable simulation algorithm for a given task is often difficult. This is due to intricate interactions between model features, implementation details, and runtime environment, which may strongly affect the overall performance. An automated selection of simulation algorithms supports users in setting up simulation experiments without demanding expert knowledge on simulation. Roland Ewald analyzes and discusses existing approaches to solve the algorithm selection problem in the context of simulation. He introduces a framework for automatic simulation algorithm selection and

  13. The gaming industry's role in the prevention and treatment of problem gambling

    OpenAIRE

    Griffiths, MD

    2010-01-01

    There are many factors that could be incorporated within a gaming company’s framework of social responsibility and that while the industry should be proactive in the prevention of problem gambling, the treatment of problem gambling should be done by those outside of the gaming industry and that one of the ways forward may be online rather than offline help. This is reinforced by the gaming industry having formal relationships with numerous organisations that address training, compliance, accr...

  14. Monte Carlo simulation for the design of industrial gamma-ray transmission tomography

    International Nuclear Information System (INIS)

    Kim, Jongbum; Jung, Sunghee; Moon, Jinho; Kwon, Taekyong; Cho, Gyuseong

    2011-01-01

    The Monte Carlo simulation and experiment were carried out for a large-scale industrial gamma ray tomographic scanning geometry. The geometry of the tomographic system has a moving source with 16 stationary detectors. This geometry is advantageous for the diagnosis of a large-scale industrial plant. The simulation data was carried out for the phantom with 32 views, 16 detectors, and a different energy bin. The simulation data was processed to be used for image reconstruction. Image reconstruction was performed by a Diagonally-Scaled Gradient-Ascent algorithm for simulation data. Experiments were conducted in a 78 cm diameter column filled with polypropylene grains. Sixteen 0.5-inch-thick and 1 inch long NaI(Tl) cylindrical detectors, and 20 mCi of 137 Cs radioactive source were used. The experimental results were compared to the simulation data. The experimental results were similar to Monte Carlo simulation results. This result showed that the Monte Carlo simulation is useful for predicting the result of the industrial gamma tomographic scan method And it can also give a solution for designing the industrial gamma tomography system and preparing the field experiment. (author)

  15. Identification and simulation of the power quality problems using computer models

    International Nuclear Information System (INIS)

    Abro, M.R.; Memon, A.P.; Memon, Z.A.

    2005-01-01

    The Power Quality has become the main factor in our life. If this quality of power is being polluted over the Electrical Power Network, serious problems could arise within the modem social structure and its conveniences. The Nonlinear Characteristics of various office and Industrial equipment connected to the power grid could cause electrical disturbances to poor power quality. In many cases the electric power consumed is first converted to different form and such conversion process introduces harmonic pollution in the grid. These electrical disturbances could destroy certain sensitive equipment connected to the grid or in some cases could cause them to malfunction. In the huge power network identifying the source of such disturbance without causing interruption to the supply is a big problem. This paper attempts to study the power quality problem caused by typical loads using computer models paving the way to identify the source of the problem. PSB (Power System Blockset) Toolbox of MATLAB is used for this paper, which is designed to provide modem tool that rapidly and easily builds models and simulates the power system. The blockset uses the Simulink environment, allowing a model to be built using simple click and drag procedures. (author)

  16. FY 1999 report on the results of the research and development project for new industry creating type industrial science and technology. Innovated casting simulation technology (Development project for commercialization of technologies related to rational use of energy); 1999 nendo kakushinteki chuzo simulation gijutsu seika hokokusho. Energy shiyo gorika kankei gijutsu jitsuyoka kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Described herein are the results of the FY1999 research and development project, implemented for development of the casting process simulation technologies, with the objectives to improve efficiency and energy-saving for the various industrial areas, e.g., industrial machines, aircraft, automobiles and vehicles, and power generation plants. For development of the mold filling and solidification process simulation programs, the efforts are directed to development of the fundamental algorithms for simulation of unidirectional solidification casting used for, e.g., turbine blades, and also to the basic works for validation of the programs. For development of the solidification structures and defect formation simulation programs, the fundamental works are done for simulation of solidification structures and channel-type segregation, which are the main problems for columnar blades, to predict the defects formed in, e.g., turbines. For development of the related measurement techniques, investigations are made for evaluation of the levitation characteristics of nickel alloys by the electromagnetically levitated droplet method and problems involved therein, prior to the tests in the the underground microgravity test center. (NEDO)

  17. Industrial fouling: problem characterization, economic assessment, and review of prevention, mitigation, and accommodation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Garrett-Price, B.A.; Smith, S.A.; Watts, R.L.

    1984-02-01

    A comprehensive overview of heat exchanger fouling in the manufacturing industries is provided. Specifically, this overview addresses: the characteristics of industrial fouling problems; the mitigation and accommodation techniques currently used by industry; and the types and magnitude of costs associated with industrial fouling. A detailed review of the fouling problems, costs and mitigation techniques is provided for the food, textile, pulp and paper, chemical, petroleum, cement, glass and primary metals industries.

  18. The problem of social opposition to industrial plants

    International Nuclear Information System (INIS)

    Malocchi, Andrea

    1996-01-01

    The problem of social opposition to the localization, construction and operation of industrial plants is a major social issue in many industrialized countries where environmental consciousness has rooted deeply in society. This paper proposes a general model for the analysis of the social conflict against the localization and operation of industrial plants. The paper investigates the difference between the 'risk analysis' approach and the 'social acceptability' approach in order to demonstrate the major influence of information and communication between industry and society on social consensus (rather than ordinary technological and environmental factors). In a second part the paper analyses a limit of social acceptability approach highlighting the role of environmental NGO's in the promotion and diffusion of the social protest. As a result of the analysis, a general model for the management of social consensus by companies and public authorities is provided

  19. Employee problems and their consequences in the technology industry: evidence from surveys and counseling records.

    Science.gov (United States)

    Wang, Ching-Wen; Lin, Po-Chang; Sha, Chyuan

    2014-06-01

    To support employees' work and health, organizations should help employees cope with common problems. Previous studies have focused primarily on work-related problems across multiple industries rather than on evaluating industry-specific issues. Here, two approaches identified common work and non-work employee problems in the technology industry with the strongest correlations with psychosomatic health and life satisfaction. Study 1 used questionnaires to identify the problems that were perceived as the most frequent by lower-level employees (N = 355) working in the technology industry. Study 2 evaluated employees' coping behaviors by analyzing (with permission) counseling records collected from an employee assistance service company (N = 276). Employees reported a variety of problems; work problems were the only problems (of the top 5 problems) reported in both studies. Several problems emerged in the counseling records (e.g., legal issues, career development, family and marriage problems, and emotional problems) but not in the surveys. Future research should apply these observations to develop scales for measuring employee stressors.

  20. Simulating the evolution of industries using a dynamic behavioural model

    OpenAIRE

    Kunc, Martin

    2004-01-01

    Investment decisions determine that not only the evolution of industries is hard to forecast with certainty but also industries may have different dynamic behaviour and evolutionary paths. In this paper we present a behavioural framework to simulate the evolution of industries. Two factors determine the dynamic behaviour of an industry: managerial decision-making and the interconnected set of resources. Managerial decision-making significantly affects the dynamic behaviour of firms. Bounded r...

  1. Ionizing Radiation as an Industrial Health Problem

    Science.gov (United States)

    Trewin, R. B.

    1964-01-01

    Ionizing radiation, first as x-rays, later in natural form, was discovered in Europe in the late 1890's. Immediate practical uses were found for these discoveries, particularly in medicine. Unfortunately, because of the crude early equipment and ignorance of the harmful effects of radiation, many people were injured, some fatally. Because of these experiences, committees and regulatory bodies were set up to study the problem. These have built up an impressive fund of knowledge useful in radiation protection. With the recent development of the peaceful uses of atomic energy, sources of radioactivity have appeared cheaply and in abundance. A rapidly growing number are finding industrial application. Because of their potential risk to humans, the industrial physician must acquire new knowledge and skills so that he may give proper guidance in this new realm of preventive medicine. The Radiation Protection Program of one such industry, the Hydro-Electric Power Commission of Ontario, is summarized. PMID:14105012

  2. IONIZING RADIATION AS AN INDUSTRIAL HEALTH PROBLEM.

    Science.gov (United States)

    TREWIN, R B

    1964-01-04

    Ionizing radiation, first as x-rays, later in natural form, was discovered in Europe in the late 1890's. Immediate practical uses were found for these discoveries, particularly in medicine. Unfortunately, because of the crude early equipment and ignorance of the harmful effects of radiation, many people were injured, some fatally. Because of these experiences, committees and regulatory bodies were set up to study the problem. These have built up an impressive fund of knowledge useful in radiation protection.With the recent development of the peaceful uses of atomic energy, sources of radioactivity have appeared cheaply and in abundance. A rapidly growing number are finding industrial application. Because of their potential risk to humans, the industrial physician must acquire new knowledge and skills so that he may give proper guidance in this new realm of preventive medicine.The Radiation Protection Program of one such industry, the Hydro-Electric Power Commission of Ontario, is summarized.

  3. The development of Bio-pharmaceutical industry in China: problems and solutions.

    Science.gov (United States)

    Yan, Gujun

    2014-07-01

    Known as the "sunrise industry" of the 21st century, bio-pharmaceutical industry has been a fast-growing global industry, and many countries have been developing this industry as the focus of their national economies. In China, there exists a huge market demand for the development of bio-pharmaceutical industry, but at the present stage the industry is faced with some problems, such as low level of R & D for innovative drugs, and inappropriate capital investment in the industrialization. In order to accelerate the development of China's bio-pharmaceutical industry, it is necessary to take strategic initiatives of improving the technology transfer system, developing the bio-pharmaceutical outsourcing, and building a diversified industrial financing system.

  4. Industrial thermoforming simulation of automotive fuel tanks

    International Nuclear Information System (INIS)

    Wiesche, Stefan aus der

    2004-01-01

    An industrial thermoforming simulation with regard to automotive plastic fuel tanks is presented including all relevant process stages. The radiative and conductive heat transfer during the reheat stage, the deformation and stress behaviour during the forming stage, and the final cooling stage are simulated. The modelling of the thermal and rheological behaviour of the involved material is investigated in greater detail. By means of experimental data it is found that modelling of the phase transition during the process is highly important for predicting correct wall thickness distributions

  5. MULTI-CRITERIA PROGRAMMING METHODS AND PRODUCTION PLAN OPTIMIZATION PROBLEM SOLVING IN METAL INDUSTRY

    OpenAIRE

    Tunjo Perić; Željko Mandić

    2017-01-01

    This paper presents the production plan optimization in the metal industry considered as a multi-criteria programming problem. We first provided the definition of the multi-criteria programming problem and classification of the multicriteria programming methods. Then we applied two multi-criteria programming methods (the STEM method and the PROMETHEE method) in solving a problem of multi-criteria optimization production plan in a company from the metal industry. The obtained resul...

  6. MULTI-CRITERIA PROGRAMMING METHODS AND PRODUCTION PLAN OPTIMIZATION PROBLEM SOLVING IN METAL INDUSTRY

    Directory of Open Access Journals (Sweden)

    Tunjo Perić

    2017-09-01

    Full Text Available This paper presents the production plan optimization in the metal industry considered as a multi-criteria programming problem. We first provided the definition of the multi-criteria programming problem and classification of the multicriteria programming methods. Then we applied two multi-criteria programming methods (the STEM method and the PROMETHEE method in solving a problem of multi-criteria optimization production plan in a company from the metal industry. The obtained results indicate a high efficiency of the applied methods in solving the problem.

  7. The Nature of Payment Problems in the New Zealand Construction Industry

    Directory of Open Access Journals (Sweden)

    Thanuja Ramachandra

    2011-06-01

    Full Text Available Delay and loss of payment is a serious problem in the construction industry of many countries. These affect the cash flow of contractors which is critical to meeting their financial obligations. Payment defaults by the principal leads to insolvency of contractors and in turn other parts of the project chain. In recognition of some of these problems, most countries have established payment-specific construction industry legislation and other contractual measures to mitigate the problems, but nevertheless the problem persists. In this context, the paper examines the nature of payment problems in the construction industry in New Zealand. It is part of a larger study, that seeks solutions to payment losses in the construction industry.The study uses two approaches; an analysis of liquidators’ reports, and an analysis of court cases involving payment disputes to determine the magnitude of payment problems on construction parties. The findings are presented using simple descriptive and interpretive analyses. The study finds that trade creditors are impacted negatively (payment delays and losses by the liquidation of property developers, general construction and construction trade companies. 75% of trade creditors are unable to be paid fully by these categories of construction companies after liquidation proceedings. Liquidation proceedings take an average 18 months before they are finalised. The analysis of court cases found that 80% of payment disputes are between principals and contractors; with considerably significant percentage of disputes resulting in outright loss of payments. Only 40% of the cases are successful, in which case claimants are able to fully recover the amount in dispute. Payment losses are more prevalent in liquidation than delays and unlike in legal disputes, there is no security for those losses. The study finds that construction parties use remedies contained in the security of payment provisions within standard conditions

  8. The Nature of Payment Problems in the New Zealand Construction Industry

    Directory of Open Access Journals (Sweden)

    Thanuja Ramachandra

    2011-06-01

    Full Text Available Delay and loss of payment is a serious problem in the construction industry of many countries. These affect the cash flow of contractors which is critical to meeting their financial obligations. Payment defaults by the principal leads to insolvency of contractors and in turn other parts of the project chain. In recognition of some of these problems, most countries have established payment-specific construction industry legislation and other contractual measures to mitigate the problems, but nevertheless the problem persists. In this context, the paper examines the nature of payment problems in the construction industry in New Zealand. It is part of a larger study, that seeks solutions to payment losses in the construction industry.The study uses two approaches; an analysis of liquidators’ reports, and an analysis of court cases involving payment disputes to determine the magnitude of payment problems on construction parties. The findings are presented using simple descriptive and interpretive analyses. The study finds that trade creditors are impacted negatively (payment delays and losses by the liquidation of property developers, general construction and construction trade companies. 75% of trade creditors are unable to be paid fully by these categories of construction companies after liquidation proceedings. Liquidation proceedings take an average 18 months before they could be finalised. The analysis of court cases found that 80% of payment disputes are between principals and contractors; with considerably significant percentage of disputes resulting in outright loss of payments. Only 40% of the cases are successful, in which case claimants are able to fully recover the amount in dispute. Payment losses are more prevalent in liquidation than delays and unlike in legal disputes, there is no security for those losses. The study finds that construction parties use remedies contained in the security of payment provisions within standard

  9. Corrosion problems and solutions in oil refining and petrochemical industry

    CERN Document Server

    Groysman, Alec

    2017-01-01

    This book addresses corrosion problems and their solutions at facilities in the oil refining and petrochemical industry, including cooling water and boiler feed water units. Further, it describes and analyzes corrosion control actions, corrosion monitoring, and corrosion management. Corrosion problems are a perennial issue in the oil refining and petrochemical industry, as they lead to a deterioration of the functional properties of metallic equipment and harm the environment – both of which need to be protected for the sake of current and future generations. Accordingly, this book examines and analyzes typical and atypical corrosion failure cases and their prevention at refineries and petrochemical facilities, including problems with: pipelines, tanks, furnaces, distillation columns, absorbers, heat exchangers, and pumps. In addition, it describes naphthenic acid corrosion, stress corrosion cracking, hydrogen damages, sulfidic corrosion, microbiologically induced corrosion, erosion-corrosion, and corrosion...

  10. Improvement of productivity in low volume production industry layout by using witness simulation software

    Science.gov (United States)

    Jaffrey, V.; Mohamed, N. M. Z. N.; Rose, A. N. M.

    2017-10-01

    In almost all manufacturing industry, increased productivity and better efficiency of the production line are the most important goals. Most factories especially small scale factory has less awareness of manufacturing system optimization and lack of knowledge about it and uses the traditional way of management. Problems that are commonly identified in the factory are a high idle time of labour and also small production. This study is done in a Small and Medium Enterprises (SME) low volume production company. Data collection and problems affecting productivity and efficiency are identified. In this study, Witness simulation software is being used to simulate the layout and the output is focusing on the improvement of layout in terms of productivity and efficiency. In this study, the layout is rearranged by reducing the travel time from a workstation to another workstation. Then, the improved layout is modelled and the machine and labour statistic of both, original and improved layout is taken. Productivity and efficiency are calculated for both layout and then being compared.

  11. Industry 4.0 and the New Simulation Modelling Paradigm

    Directory of Open Access Journals (Sweden)

    Rodič Blaž

    2017-08-01

    Full Text Available Background and Purpose: The aim of this paper is to present the influence of Industry 4.0 on the development of the new simulation modelling paradigm, embodied by the Digital Twin concept, and examine the adoption of the new paradigm via a multiple case study involving real-life R&D cases involving academia and industry.

  12. An Efficient Heuristic Approach for Irregular Cutting Stock Problem in Ship Building Industry

    Directory of Open Access Journals (Sweden)

    Yan-xin Xu

    2016-01-01

    Full Text Available This paper presents an efficient approach for solving a real two-dimensional irregular cutting stock problem in ship building industry. Cutting stock problem is a common cutting and packing problem that arises in a variety of industrial applications. A modification of selection heuristic Exact Fit is applied in our research. In the case referring to irregular shapes, a placement heuristics is more important to construct a complete solution. A placement heuristic relating to bottom-left-fill is presented. We evaluate the proposed approach using generated instance only with convex shapes in literatures and some instances with nonconvex shapes based on real problem from ship building industry. The results demonstrate that the effectiveness and efficiency of the proposed approach are significantly better than some conventional heuristics.

  13. Legislative Committee Simulation: Regulation in the Automobile Industry.

    Science.gov (United States)

    Hoffman, Alan J.; And Others

    1983-01-01

    Examined are ways to overcome obstacles which often prevent creative teaching of legislative decision-making processes to high school students. A simulation dealing with regulation in the automobile industry is used for illustrative purposes. (RM)

  14. Simulation and analysis of hot forging process for industrial locking gear elevators

    Science.gov (United States)

    Maarefdoust, M.; Kadkhodayan, M.

    2010-06-01

    In this paper hot forging process for industrial locking gear elevators is simulated and analyzed. An increase in demand of industrial locking gear elevators with better quality and lower price caused the machining process to be replaced by hot forging process. Production of industrial locking gear elevators by means of hot forging process is affected by many parameters such as billet temperature, geometry of die and geometry of pre-formatted billet. In this study the influences of billet temperature on effective plastic strain, radius of die corners on internal stress of billet and thickness of flash on required force of press are investigated by means of computer simulation. Three-dimensional modeling of initial material and die are performed by Solid Edge, while simulation and analysis of forging are performed by Super Forge. Based on the computer simulation the required dies are designed and the workpieces are formed. Comparison of simulation results with experimental data demonstrates great compatibility.

  15. Modeling and simulation of different and representative engineering problems using Network Simulation Method.

    Science.gov (United States)

    Sánchez-Pérez, J F; Marín, F; Morales, J L; Cánovas, M; Alhama, F

    2018-01-01

    Mathematical models simulating different and representative engineering problem, atomic dry friction, the moving front problems and elastic and solid mechanics are presented in the form of a set of non-linear, coupled or not coupled differential equations. For different parameters values that influence the solution, the problem is numerically solved by the network method, which provides all the variables of the problems. Although the model is extremely sensitive to the above parameters, no assumptions are considered as regards the linearization of the variables. The design of the models, which are run on standard electrical circuit simulation software, is explained in detail. The network model results are compared with common numerical methods or experimental data, published in the scientific literature, to show the reliability of the model.

  16. Solving a multi-objective manufacturing cell scheduling problem with the consideration of warehouses using a simulated annealing based procedure

    Directory of Open Access Journals (Sweden)

    Adrián A. Toncovich

    2019-01-01

    Full Text Available The competition manufacturing companies face has driven the development of novel and efficient methods that enhance the decision making process. In this work, a specific flow shop scheduling problem of practical interest in the industry is presented and formalized using a mathematical programming model. The problem considers a manufacturing system arranged as a work cell that takes into account the transport operations of raw material and final products between the manufacturing cell and warehouses. For solving this problem, we present a multiobjective metaheuristic strategy based on simulated annealing, the Pareto Archived Simulated Annealing (PASA. We tested this strategy on two kinds of benchmark problem sets proposed by the authors. The first group is composed by small-sized problems. On these tests, PASA was able to obtain optimal or near-optimal solutions in significantly short computing times. In order to complete the analysis, we compared these results to the exact Pareto front of the instances obtained with augmented ε-constraint method. Then, we also tested the algorithm in a set of larger problems to evaluate its performance in more extensive search spaces. We performed this assessment through an analysis of the hypervolume metric. Both sets of tests showed the competitiveness of the Pareto Archived Simulated Annealing to efficiently solve this problem and obtain good quality solutions while using reasonable computational resources.

  17. Problems in steel industry for power engineering

    International Nuclear Information System (INIS)

    Dolbenko, E.T.; Kryanin, I.R.

    1979-01-01

    The main problems of steel industry in power engineering are considered. The effect of charge materials upon steel quality is analyzed. Radical dicision of the problem is the ensurance of power engineering plants with high quality original charge materials, which are quite pure according to impurities such as: iron melted from metallized charge or prereduced pellets. The usage of such materials considerably improves the complex of technological and service properties and structure of large responsible products: vessels of the reactor core, especially large shafts and others. For the most responsible power engineering dies it is necessary to smelt steel of 150-200 tons and above. The main direction of steel melting industry is quality steel melting in large 150-200 tons arc furnaces which are equipped with magnetic stirrer installations. It is marked that the branch of power engineering is equipped with unique installations of out-of-furnace steel refining. It is shown that further increase in the metal quality is possible when vacuum and electroslag technique of melting is used. It permits to reduce considerably the amount of sulphur, gases, nonmetallic inclusions, to increase the metal density, to remove zonal segregation in large steel ingots. The main problem in the field of usage of material, produced by new melting methods is the expansion of the product nomenclature and the development of technical conditions, reflecting the increase in material properties as a result of new technique application. Importance of development and introduction of new automation and testing methods in metallurgical processes is marked

  18. Using Computer Simulations in Chemistry Problem Solving

    Science.gov (United States)

    Avramiotis, Spyridon; Tsaparlis, Georgios

    2013-01-01

    This study is concerned with the effects of computer simulations of two novel chemistry problems on the problem solving ability of students. A control-experimental group, equalized by pair groups (n[subscript Exp] = n[subscript Ctrl] = 78), research design was used. The students had no previous experience of chemical practical work. Student…

  19. Mechatronics ideas for industrial application

    CERN Document Server

    Szewczyk, Roman; Trojnacki, Maciej; Kaliczyńska, Małgorzata

    2015-01-01

    This book presents recent advances and developments in control, automation, robotics, and measuring techniques. It presents contributions of top experts in the fields, focused on both theory and industrial practice. The particular chapters present a deep analysis of a specific technical problem which is in general followed by a numerical analysis and simulation, and results of an implementation for the solution of a real world problem. The presented theoretical results, practical solutions and guidelines will be useful for both researchers working in the area of engineering sciences and for practitioners solving industrial problems.  

  20. PROBLEMS AND POTENTIAL OF DEVELOPMENT OF THE INDUSTRIAL ENTERPRISES OF THE KNOWLEDGE-INTENSIVE BRANCHES

    Directory of Open Access Journals (Sweden)

    Mikhail Yakovlevich Veselovsky

    2016-01-01

    Full Text Available In the article the problems of enterprise development high-tech industries, analyzes the factors that complicate the processes of knowledge-intensive production management. It provided a number of problems that make it difficult to increase the economic efficiency of high-tech industry. To solve the above problems need to increase the investment program and the economic attractiveness of high-tech industries that is to be developed, modern management system, carried out the reform of the knowledge-based industry to provide high levels of efficiency of new organizational structures in the current economic conditions compared to the existing, outdated forms. The purpose / goal. The aim of this study is to analyze the causes that affect the development potential of knowledge-based industries and enterprises identify problems that impede improving the economic efficiency of the Russian high-tech industry. Purpose: To identify the problems that are most difficult to improve the economic efficiency of the Russian high-tech industry; consider the high-tech industry; examine the reasons for the reform of the knowledge-based industry; explore the level of innovation activity of organizations of high-tech industries. Methodology. The methodological and theoretical basis of the study are the works, monographs, research papers, studies of Soviet authors on the development of knowledge-intensive industries, materials of State Statistics. We used scientific methods of research, such as the comparative method of analysis, synthesis, analysis and synthesis. Results. Given the concept of the domestic high-tech complex (NEC, defined the environment in which businesses operate NEC. The features of these companies, where there is the presence of a strong innovation potential. The requirements for knowledge-intensive production as the backbone of a new stage of the development lifecycle. A number of problems hampering the development and transformation of enterprise

  1. Industrial and simulation analysis of the nitrogen trichloride decomposition process in electrolytic chlorine production

    International Nuclear Information System (INIS)

    Tavares Neto, J.I.H.; Brito, K.D.; Vasconcelos, L.G.S.; Alves, J.J.N.; Fossy, M.F.; Brito, R.P.

    2007-01-01

    This work presents the dynamic simulation of the thermal decomposition of nitrogen trichloride (NCl 3 ) during electrolytic chlorine (Cl 2 ) production, using an industrial plant as a case study. NCl 3 is an extremely unstable and explosive compound and the decomposition process has the following main problems: changeability of the reactor temperature and loss of solvent. The results of this work will be used to establish a more efficient and safe control strategy and to analyze the loss of solvent during the dynamic period. The implemented model will also be used to study the use of a new solvent, considering that currently used solvent will be prohibited from commercial use in 2010. The process was simulated by using the commercial simulator Aspen TM and the simulations were validated with plant data. From the results of the simulation it can be concluded that the rate of decomposition depends strongly on the temperature of the reactor, which has a stronger relationship to the liquid Cl 2 (reflux) and gaseous Cl 2 flow rates which feed the system. The results also showed that the loss of solvent changes strongly during the dynamic period

  2. Modeling and simulation of different and representative engineering problems using Network Simulation Method

    Science.gov (United States)

    2018-01-01

    Mathematical models simulating different and representative engineering problem, atomic dry friction, the moving front problems and elastic and solid mechanics are presented in the form of a set of non-linear, coupled or not coupled differential equations. For different parameters values that influence the solution, the problem is numerically solved by the network method, which provides all the variables of the problems. Although the model is extremely sensitive to the above parameters, no assumptions are considered as regards the linearization of the variables. The design of the models, which are run on standard electrical circuit simulation software, is explained in detail. The network model results are compared with common numerical methods or experimental data, published in the scientific literature, to show the reliability of the model. PMID:29518121

  3. Problems of engineering education and their decision involving industry

    Directory of Open Access Journals (Sweden)

    R. P. Simonyants

    2014-01-01

    Full Text Available In Russia, the problems of engineering education are connected with political and economic upheavals of the late last century. At the same time, some leading engineering universities in Russia, such as the Bauman Moscow State Technical University (BMSTU were resistant to the damaging effects of the crisis. But the methodology and experience of their effective work are insufficiently known.The problems of international engineering school development are also known. The first UNESCO World Report on Engineering (2010 assesses the state of engineering education as follows: worldwide shortage of engineers is a threat to the development of society.Based on the analysis of the current state of engineering education in the world and tendencies of development an urgency of its modernization with the focus on the enhancement of practical component has been shown.Topical problems associated with innovations and modernization in engineering education in the field of aerospace technology were discussed at the first international forum, which was held in Beijing Beyhanskom University (BUAA on 8 - 9 September 2012. The author attended this forum and presented his impressions of its work. It was noted that the role of Russia in the global process to form and develop engineering education is ignored. This opinion sounded, generally, in all speakers' reports, apart from ours.The President BUAA, a Professor Jinpeng Huai, and a Professor Qiushi Li. talked about the problems of building the engineering education system in China. It was emphasized that in China a study of engineering education techniques was motivated by the fact that quality assurance of engineering education at U.S. universities does not meet requirements.Attention is drawn to Dr. David Wisler's report who is a representative of the U.S. aerospace industry (General Electric Aviation corporation, actively promoting networking technology "initiative CDIO».The assessment of the engineering education

  4. Optimization-based decision support systems for planning problems in processing industries

    NARCIS (Netherlands)

    Claassen, G.D.H.

    2014-01-01

    Summary

    Optimization-based decision support systems for planning problems in processing industries

    Nowadays, efficient planning of material flows within and between supply chains is of vital importance and has become one of the most challenging problems for decision support in

  5. Hybrid environment for software sensors design applied to the petrochemical industry problems; Ambiente hibrido para a concepcao de sensores de software aplicados aos problemas da industria petroquimica

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Bruno X.; Ramalho, Leonardo S.G.; Rodrigues, Igor O.; Martins, Daniel L.; Doria Neto, Adriao D.; Melo, Jorge D.; Oliveira, Luiz A.H.G.G. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    This article will show a hybrid environment for the conception of software sensors in Foundation Fieldbus (FF) industrial network. These sensors are focused on the measurement and control problems in the petroleum industry, more specifically in oil and gas refining, contributing for the efficiency increase and operation costs decrease of a refining process. The software sensors are based on intelligent algorithms, as neural networks, fuzzy logic and genetic algorithms. These algorithms need input data, in this case the historical variables data associated to industrial petrochemical plant. One option allowed by the environment is the data acquisition from a simulated process by the FF network. Then, the environment presents a hybrid feature, since it is composed by a real (the industrial network) and a simulated (the process) part, with the use of real control and measurements signals. The environment is flexible, allowing typical dynamics of industrial process reproduction without necessity of the physical network amendment and enabling the creation of several situations from a real industrial environment. (author)

  6. Applications of neutrons for laboratory and industrial activation analysis problems

    International Nuclear Information System (INIS)

    Szabo, Elek; Bakos, Laszlo

    1986-01-01

    This chapter presents some particular applications and case studies of neutrons in activation analysis for research and industrial development purposes. The reactor neutrons have been applied in Hungarian laboratories for semiconductor research, for analysis of geological (lunar) samples, and for a special comparator measurement of samples. Some industrial applications of neutron generator and sealed sources for analytical problems are presented. Finally, prompt neutron activation analysis is outlined briefly. (R.P.)

  7. Simulation of unilateral contact problems departing from the classical boundary problems

    International Nuclear Information System (INIS)

    Frey, S.L.; Sampaio, R.; Gama, R.M.S. da.

    1989-08-01

    A numerical algorithm is proposed for simulating unilateral contact problems under the classical elasticity point of view. This simple algorithm may be employed by engineers with a minimum knowledge on classical elasticity. (A.C.A.S.) [pt

  8. Hotel industry in Azerbaijan: problems perspectives of entrepreneurship development

    Directory of Open Access Journals (Sweden)

    Gasanov Arzu Nadzhaf

    2014-04-01

    Full Text Available The article considers the essence of the entrepreneurship activity and the characteristic features of a businessman. The definition of the entrepreneurship according to the Azerbaijan legislation is given. Then, the tourism, peculiarities and legislation base of business in tourism industry and hotel economy characterized, the main data of the activities of replacement enterprises in the country, the level of quality of hotel service and analyzed, the main problems are listed and the conclusion about the state of the business in the sphere of hotel industry is made.

  9. Radiotracer experiments and CFD simulation for industrial hydrocyclone performance

    International Nuclear Information System (INIS)

    Stegowski, Z.; Nowak, E.

    2007-01-01

    Hydrocyclone is a device for solid concentration or selection of solid particles from a liquid-solid mixture. It is widely used in the mineral industry for selection of solid particles from a few to a few hundred micrometers. This paper presents a radiotracer experiment and computational simulation of selection of solid particles in a hydrocyclone of Φ-500 μm, which is used in the industrial copper ore concentration process. The simulation, based on computational fluid dynamics (CFD) techniques, allowed obtaining the velocity and concentration distribution for a real mixture flowing in the hydrocyclone. The mixture was composed of water and nine solid phases of different grain sizes. Finally, the selection curve of solid grains was obtained and compared with the experimental radiotracer results. (author)

  10. A new modular procedure for industrial plant simulations and its reliable implementation

    International Nuclear Information System (INIS)

    Carcasci, C.; Marini, L.; Morini, B.; Porcelli, M.

    2016-01-01

    Modeling of industrial plants, and especially energy systems, has become increasingly important in industrial engineering and the need for accurate information on their behavior has grown along with the complexity of the industrial processes. Consequently, accurate and flexible simulation tools became essential yielding the development of modular codes. The aim of this work is to propose a new modular mathematical modeling for industrial plant simulation and its reliable numerical implementation. Regardless of their layout, a large class of plant's configurations is modeled by a library of elementary parts; then the physical properties, compositions of the working fluid, and plant's performance are estimated. Each plant component is represented by equations modeling fundamental mechanical and thermodynamic laws and giving rise to a system of algebraic nonlinear equations; remarkably, suitable restrictions on the variables of such nonlinear equations are imposed to guarantee solutions of physical meaning. The proposed numerical procedure combines an outer iterative process which refines plants characteristic parameters and an inner one which solves the arising nonlinear systems and consists of a trust-region solver for bound-constrained nonlinear equalities. The new procedure has been validated performing simulations against an existing modular tool on two compression train arrangements with both series and parallel-mounted compressors. - Highlights: • A numerical modular tool for industrial plants simulation is presented. • Mathematical modeling is thoroughly described. • Solution of the nonlinear system is performed by a trust-region Gauss–Newton solver. • A detailed explanation of the optimization solver named TRESNEI is provided. • Code flexibility and robustness are investigated through numerical simulations.

  11. Supply chain management problems in the food processing industry: Implications for business performance

    Directory of Open Access Journals (Sweden)

    Catherine A. Nguegan Nguegan

    2017-11-01

    Contribution or value-add: Practically, the study enables supply chain professionals in the food processing industry to understand the sources of problems and use this information to develop solutions for the improvement of business performance. Theoretically, the study endorses the view that part of the key to resolving business performance complications in the food processing industry involves streamlining supply chain management by resolving its identifiable problems.

  12. Simulation Modeling of Resilience Assessment in Indonesian Fertiliser Industry Supply Networks

    Science.gov (United States)

    Utami, I. D.; Holt, R. J.; McKay, A.

    2018-01-01

    Supply network resilience is a significant aspect in the performance of the Indonesian fertiliser industry. Decision makers use risk assessment and port management reports to evaluate the availability of infrastructure. An opportunity was identified to incorporate both types of data into an approach for the measurement of resilience. A framework, based on a synthesis of literature and interviews with industry practitioners, covering both social and technical factors is introduced. A simulation model was then built to allow managers to explore implications for resilience and predict levels of risk in different scenarios. Result of interview with respondens from Indonesian fertiliser industry indicated that the simulation model could be valuable in the assessment. This paper provides details of the simulation model for decision makers to explore levels of risk in supply networks. For practitioners, the model could be used by government to assess the current condition of supply networks in Indonesian industries. On the other hand, for academia, the approach provides a new application of agent-based models in research on supply network resilience and presents a real example of how agent-based modeling could be used as to support the assessment approach.

  13. Innovative Activity in the Industry of Ukraine: Problems, Risks, Activization Directions

    Directory of Open Access Journals (Sweden)

    Pidorycheva, I.

    2014-09-01

    Full Text Available The general characteristic of a condition of innovative activity of the industrial enterprises in Ukraine and positive tendencies of the last years in this plane are shined. The key problems and demotivating factors of increase of interest of the industry in innovations are analyzed. Risks of preservation of available tendencies in the sphere of innovative and technological development of the industry, which can lead to preservation of outdated structure of national production are defined. Priorities and medium-term measures for overcoming of available restrictions in realization of new model of economic development, at the heart of which — investments into the innovative activity, new industrialization and industrial updating of the country are offered.

  14. Quantum resonance for simulating combinatorial problems

    International Nuclear Information System (INIS)

    Zak, Michail; Fijany, Amir

    2005-01-01

    Quantum computing by simulations is based upon similarity between mathematical formalism of a quantum phenomenon and phenomena to be analyzed. In this Letter, the mathematical formalism of quantum resonance combined with tensor product decomposability of unitary evolutions is mapped onto a class of NP-complete combinatorial problems. It has been demonstrated that nature has polynomial resources for solving NP-complete problems and that will help to develop a new strategy for artificial intelligence, as well as to re-evaluate the role of natural selection in biological evolution

  15. Acoustic performance of industrial mufflers with CAE modeling and simulation

    Directory of Open Access Journals (Sweden)

    Jeon Soohong

    2014-12-01

    Full Text Available This paper investigates the noise transmission performance of industrial mufflers widely used in ships based on the CAE modeling and simulation. Since the industrial mufflers have very complicated internal structures, the conventional Transfer Matrix Method (TMM is of limited use. The CAE modeling and simulation is therefore required to incorporate commercial softwares: CATIA for geometry modeling, MSC/PATRAN for FE meshing and LMS/ SYSNOISE for analysis. Main sources of difficulties in this study are led by complicated arrangement of reactive elements, perforated walls and absorption materials. The reactive elements and absorbent materials are modeled by applying boundary conditions given by impedance. The perforated walls are modeled by applying the transfer impedance on the duplicated node mesh. The CAE approach presented in this paper is verified by comparing with the theoretical solution of a concentric-tube resonator and is applied for industrial mufflers.

  16. Acoustic performance of industrial mufflers with CAE modeling and simulation

    Directory of Open Access Journals (Sweden)

    Soohong Jeon

    2014-12-01

    Full Text Available This paper investigates the noise transmission performance of industrial mufflers widely used in ships based on the CAE modeling and simulation. Since the industrial mufflers have very complicated internal structures, the conventional Transfer Matrix Method (TMM is of limited use. The CAE modeling and simulation is therefore required to incorporate commercial softwares: CATIA for geometry modeling, MSC/PATRAN for FE meshing and LMS/SYSNOISE for analysis. Main sources of difficulties in this study are led by complicated arrangement of reactive ele- ments, perforated walls and absorption materials. The reactive elements and absorbent materials are modeled by applying boundary conditions given by impedance. The perforated walls are modeled by applying the transfer impedance on the duplicated node mesh. The CAE approach presented in this paper is verified by comparing with the theoretical solution of a concentric-tube resonator and is applied for industrial mufflers.

  17. Simulation and Analysis of Converging Shock Wave Test Problems

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, Scott D. [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory

    2012-06-21

    Results and analysis pertaining to the simulation of the Guderley converging shock wave test problem (and associated code verification hydrodynamics test problems involving converging shock waves) in the LANL ASC radiation-hydrodynamics code xRAGE are presented. One-dimensional (1D) spherical and two-dimensional (2D) axi-symmetric geometric setups are utilized and evaluated in this study, as is an instantiation of the xRAGE adaptive mesh refinement capability. For the 2D simulations, a 'Surrogate Guderley' test problem is developed and used to obviate subtleties inherent to the true Guderley solution's initialization on a square grid, while still maintaining a high degree of fidelity to the original problem, and minimally straining the general credibility of associated analysis and conclusions.

  18. Simulated pre-industrial climate in Bergen Climate Model (version 2: model description and large-scale circulation features

    Directory of Open Access Journals (Sweden)

    O. H. Otterå

    2009-11-01

    Full Text Available The Bergen Climate Model (BCM is a fully-coupled atmosphere-ocean-sea-ice model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate. Here, a pre-industrial multi-century simulation with an updated version of BCM is described and compared to observational data. The model is run without any form of flux adjustments and is stable for several centuries. The simulated climate reproduces the general large-scale circulation in the atmosphere reasonably well, except for a positive bias in the high latitude sea level pressure distribution. Also, by introducing an updated turbulence scheme in the atmosphere model a persistent cold bias has been eliminated. For the ocean part, the model drifts in sea surface temperatures and salinities are considerably reduced compared to earlier versions of BCM. Improved conservation properties in the ocean model have contributed to this. Furthermore, by choosing a reference pressure at 2000 m and including thermobaric effects in the ocean model, a more realistic meridional overturning circulation is simulated in the Atlantic Ocean. The simulated sea-ice extent in the Northern Hemisphere is in general agreement with observational data except for summer where the extent is somewhat underestimated. In the Southern Hemisphere, large negative biases are found in the simulated sea-ice extent. This is partly related to problems with the mixed layer parametrization, causing the mixed layer in the Southern Ocean to be too deep, which in turn makes it hard to maintain a realistic sea-ice cover here. However, despite some problematic issues, the pre-industrial control simulation presented here should still be appropriate for climate change studies requiring multi-century simulations.

  19. Simulated annealing algorithm for solving chambering student-case assignment problem

    Science.gov (United States)

    Ghazali, Saadiah; Abdul-Rahman, Syariza

    2015-12-01

    The problem related to project assignment problem is one of popular practical problem that appear nowadays. The challenge of solving the problem raise whenever the complexity related to preferences, the existence of real-world constraints and problem size increased. This study focuses on solving a chambering student-case assignment problem by using a simulated annealing algorithm where this problem is classified under project assignment problem. The project assignment problem is considered as hard combinatorial optimization problem and solving it using a metaheuristic approach is an advantage because it could return a good solution in a reasonable time. The problem of assigning chambering students to cases has never been addressed in the literature before. For the proposed problem, it is essential for law graduates to peruse in chambers before they are qualified to become legal counselor. Thus, assigning the chambering students to cases is a critically needed especially when involving many preferences. Hence, this study presents a preliminary study of the proposed project assignment problem. The objective of the study is to minimize the total completion time for all students in solving the given cases. This study employed a minimum cost greedy heuristic in order to construct a feasible initial solution. The search then is preceded with a simulated annealing algorithm for further improvement of solution quality. The analysis of the obtained result has shown that the proposed simulated annealing algorithm has greatly improved the solution constructed by the minimum cost greedy heuristic. Hence, this research has demonstrated the advantages of solving project assignment problem by using metaheuristic techniques.

  20. Numerical Simulation to Air Pollution Emission Control near an Industrial Zone

    OpenAIRE

    Oyjinda, Pravitra; Pochai, Nopparat

    2017-01-01

    A rapid industrial development causes several environment pollution problems. One of the main problems is air pollution, which affects human health and the environment. The consideration of an air pollutant has to focus on a polluted source. An industrial factory is an important reason that releases the air pollutant into the atmosphere. Thus a mathematical model, an atmospheric diffusion model, is used to estimate air quality that can be used to describe the sulfur dioxide dispersion. In thi...

  1. Grid-based Simulation of Industrial Thin Film Production

    NARCIS (Netherlands)

    Krzhizhanovskaya, V.V.; Sloot, P.M.A.; Gorbachev, Y.E.

    2005-01-01

    In this article, the authors introduce a Grid-based virtual reactor, a High Level Architecture (HLA)-supported problem-solving environment that allows for detailed numerical study of industrial thin-film production in plasma-enhanced chemical vapor deposition (PECVD) reactors. They briefly describe

  2. The Fermi-Pasta-Ulam problem: Simulation and modern dynamics

    International Nuclear Information System (INIS)

    Weissert, T.P.

    1992-01-01

    In 1952, Enrico Fermi, John Pasta and Stanislaw Ulam (FPU) simulated the loaded string model, perturbed with small, nonlinear interaction terms. Because Poincare's theorem guarantees the non-existence of a complete set of integrals for three-body problem, they expected to see the diffusion of energy from its single-mode initial condition to all other modes of the string. But for every combination of initial conditions, the energy remained bounded within the lowest few modes. No theoretical explanation existed for this failure of the underlying hypothesis that erogidicity follows from the lack of a complete set of integrals of the motion in a Hamiltonian model. The author traces the history of this problem from the FPU simulation to the point that a consensus was reached concerning its solution twenty years later. During this period, the simulation of nonlinearly-perturbed integral models became the methodology for a new era in dynamics. Through the use of simulation, dynamicists discovered deterministic chaos, in which the exponential separation of pair orbits generate randomness in deterministic macroscopic systems, and a new kind of structure-related to the KAM theorem-that provides limited order in the absence of analytic integrals of the motions. The author maps the set of conceptually-related journal articles into a chronological inference topology that tracks the understanding of this problem of dynamics. Simulating non-integrable models on a digital computer requires the discretization of time and space. These approximations affect what the simulation can reveal about the model, and the model about reality. Simulations play the role of experiments on mathematical models. A discussion is presented of the issues that emerge with the use of simulation as a heuristic device and the groundwork is laid for an epistemology of simulation

  3. eLearning techniques supporting problem based learning in clinical simulation.

    Science.gov (United States)

    Docherty, Charles; Hoy, Derek; Topp, Helena; Trinder, Kathryn

    2005-08-01

    This paper details the results of the first phase of a project using eLearning to support students' learning within a simulated environment. The locus was a purpose built clinical simulation laboratory (CSL) where the School's philosophy of problem based learning (PBL) was challenged through lecturers using traditional teaching methods. a student-centred, problem based approach to the acquisition of clinical skills that used high quality learning objects embedded within web pages, substituting for lecturers providing instruction and demonstration. This encouraged student nurses to explore, analyse and make decisions within the safety of a clinical simulation. Learning was facilitated through network communications and reflection on video performances of self and others. Evaluations were positive, students demonstrating increased satisfaction with PBL, improved performance in exams, and increased self-efficacy in the performance of nursing activities. These results indicate that eLearning techniques can help students acquire clinical skills in the safety of a simulated environment within the context of a problem based learning curriculum.

  4. Application of Fuzzy TOPSIS MADM approach in ranking & underlining the problems of plywood industry in India

    Directory of Open Access Journals (Sweden)

    Kapil Mittal

    2016-12-01

    Full Text Available The manufacturing of plywood consists of simple procedural steps, but the range of problems associated with the plywood manufacturing industries, especially in the case of small-scale industries (SSI, is large. This paper describes the major problems faced by the plywood SSIs along with their cause and the ultimate effect, i.e. pruning the profits. Many cogent tools and techniques are present for the task, but an attempt has been made to apply multiple attribute decision-making (MADM approach in ranking the problems in order of their extent on the basis of various parameters. Some suggestions for the improvement purposes have also been made to overcome the top-ranked problem. The study is the first of its type in a plywood industry, although same can be applied to other similar small-scale cluster industries like steel, textile, pharmaceutical, and automobile.

  5. On lumped models for thermodynamic properties of simulated annealing problems

    International Nuclear Information System (INIS)

    Andresen, B.; Pedersen, J.M.; Salamon, P.; Hoffmann, K.H.; Mosegaard, K.; Nulton, J.

    1987-01-01

    The paper describes a new method for the estimation of thermodynamic properties for simulated annealing problems using data obtained during a simulated annealing run. The method works by estimating energy-to-energy transition probabilities and is well adapted to simulations such as simulated annealing, in which the system is never in equilibrium. (orig.)

  6. Analysis of an Air Conditioning Coolant Solution for Metal Contamination Using Atomic Absorption Spectroscopy: An Undergraduate Instrumental Analysis Exercise Simulating an Industrial Assignment

    Science.gov (United States)

    Baird, Michael J.

    2004-01-01

    A real-life analytical assignment is presented to students, who had to examine an air conditioning coolant solution for metal contamination using an atomic absorption spectroscopy (AAS). This hands-on access to a real problem exposed the undergraduate students to the mechanism of AAS, and promoted participation in a simulated industrial activity.

  7. Simulating variable source problems via post processing of individual particle tallies

    International Nuclear Information System (INIS)

    Bleuel, D.L.; Donahue, R.J.; Ludewigt, B.A.; Vujic, J.

    2000-01-01

    Monte Carlo is an extremely powerful method of simulating complex, three dimensional environments without excessive problem simplification. However, it is often time consuming to simulate models in which the source can be highly varied. Similarly difficult are optimization studies involving sources in which many input parameters are variable, such as particle energy, angle, and spatial distribution. Such studies are often approached using brute force methods or intelligent guesswork. One field in which these problems are often encountered is accelerator-driven Boron Neutron Capture Therapy (BNCT) for the treatment of cancers. Solving the reverse problem of determining the best neutron source for optimal BNCT treatment can be accomplished by separating the time-consuming particle-tracking process of a full Monte Carlo simulation from the calculation of the source weighting factors which is typically performed at the beginning of a Monte Carlo simulation. By post-processing these weighting factors on a recorded file of individual particle tally information, the effect of changing source variables can be realized in a matter of seconds, instead of requiring hours or days for additional complete simulations. By intelligent source biasing, any number of different source distributions can be calculated quickly from a single Monte Carlo simulation. The source description can be treated as variable and the effect of changing multiple interdependent source variables on the problem's solution can be determined. Though the focus of this study is on BNCT applications, this procedure may be applicable to any problem that involves a variable source

  8. Industrial tomography applied to reactor safety

    International Nuclear Information System (INIS)

    Kruger, R.P.

    1977-01-01

    Work has begun which explores the use of Computed Axial Tomography (CAT), boundary detection, and internal surface reconstruction techniques in industrial nondestructive testing applications. This initial work is intended to inform the reader of the existence and interrelated nature of these techniques through the use of a realistic simulation of an industrial inspection problem

  9. Analysis of an industrial process simulator column using third-generation computed tomography

    International Nuclear Information System (INIS)

    Kirita, Rodrigo; Carvalho, Diego Vergacas de Sousa; Mesquita, Carlos Henrique de; Vasquez, Pablo Antonio S.; Hamada, Margarida Mizue

    2011-01-01

    The CT methodology must be tested using a simulator column in the laboratory before applying it in the industrial plants. In this work, using the third-generation industrial computed tomography developed at the IPEN, a gas absorption column, used as a simulator column for industrial process was evaluated. It is a glass cylindrical tube of 90 mm diameter and 1400 mm height constituted the following parts: random packed column, liquid circuit (water), gas circuit and analysis was used as a simulator column. Gamma ray tomography experiments were carried out, using this simulator column empty and filled with water. In this work the scanner was setting for 90 views and 19 projections for each detector totalizing 11970 projections. The resulting images describe the presence of liquid or gas phases and are possible to evaluate the linear attenuation coefficients inside the column. In this case, linear attenuation coefficient for water was 0.0813 cm-1. It was established that the newly developed third-generation fan-beam arrangement gamma scanner unit has a good spatial resolution acceptable given the size of the column used in this study. (author)

  10. Modelling and Simulation of Coking in the Riser of an Industrial ...

    African Journals Online (AJOL)

    Modelling and Simulation of Coking in the Riser of an Industrial Fluid Catalytic Cracking (FCC) Unit. ... Log in or Register to get access to full text downloads. ... The yields of LCO, gasoline, gas and coke that were predicted by the model for industrial risers were ... Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  11. The problem of slurries of industrial wastes water treatments; Problematica de los lodos procedentes del tratamiento de las aguas residuales de la actividad industrial

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Frutos, J.L. [Tecnologias del Medio Ambiente, Universidad del Pais Vasco (Spain)

    1995-07-01

    The water treatment is not a problem today. The major problem are the slurries and fungi produced by the industrial waste water treatment. This article explains the different utilizations and the main applications of the water in the industrial process. The different treatments (thermal inertization sanitary landfills, etc) are presented.

  12. Problems the chemical industry of Japan faces and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Shin' ichi

    1989-01-01

    Industry proceeds for the fiscal 1988 are expected to increase remarkably as they did in the previous year with 4.9% increase in revenue and 18.8% increase in profit (ordinary profit) from the previous year. The conditions of material industry are especially favorable and chemical industry is also expected to prosper as it did in the previous year. Problems this prospering chemical industry is facing are introduced in this report. Firstly, it is necessary to improve productivity by adopting more information and promoting factory automation in order to strengthen competition. The future of chemical industry depends on the introduction of information. Secondly, as demands of users are becoming more diversified, and cycles of products shorter, shortening of development terms is essential. It is necessary, therefore, to predict the demands of users in advance and seek after custom products. Thirdly, selection of product bases is required; it might be necessary to consider producing some product items abroad. Moreover, it is desirable to increase investments in investigation and pursue creativity putting much stress on basic investigations. 2 figs., 11 tabs.

  13. Computerization in industry causes problems for people with reading and writing difficulties (dyslexia).

    Science.gov (United States)

    Knutsson, A

    1986-01-01

    For 10 years computerization in industry has advanced at a rapid pace. A problem which has not received attention is that of people with reading and writing difficulties who experience severe problems when they have to communicate with a computer monitor screen. These individuals are often embarrassed by their difficulties and conceal them from their fellow workers. A number of case studies are described which show the form the problems can take. In one case, an employee was compelled to move from department to department as each was computerized in turn. Computers transform a large number of manual tasks in industry into jobs which call for reading and writing skills. Better education at elementary school and at the workplace in connection with computerization are the most important means of overcoming this problem. Moreover, computer programs could be written in a more human way.

  14. Clothing industry: development problems, regional dislocation and modern management technologies for small enterprises

    Directory of Open Access Journals (Sweden)

    I. Hristoforova

    2015-01-01

    Full Text Available This article discusses issues related to the problems of development of light industry in the territory of the former Soviet Union, systematize industry regions and analyzes modern management technologies used by small businesses garment industry. The aim of the article is the analysis of the organizational and economic aspects of light industry on the example of clothing companies. The objectives of the article: to sistematize the major regions of the dislocation of light industry: textile, footwear, clothing; to characterize the current state of the apparel industry enterprises; to show the value of small clothing companies; to study the need for the introduction of flexible manufacturing systems (FMS on small sewing factories; to analyze the range of the scientific development of national universities in the study of flexible manufacturing systems and give them a brief description.Methodology. The methodological basis of the paper is the following scientific methods: deduction, comparative and group analysis, desk research. The Results. The result of the study is to identify the main issues and trends in the development of light industry, ordering the placement of the industry in the territory of the former Soviet Union, the definition of the most popular management techniques used in small businesses garment industry.Conclusions / significance. The above article analyzes the development of light industry has allowed to identify the main trends and formulate problems for the enterprises. New conditions require the development of small enterprises and the introduction of modern technologies in production processes and management.

  15. Integrating Problem-Based Learning and Simulation: Effects on Student Motivation and Life Skills.

    Science.gov (United States)

    Roh, Young Sook; Kim, Sang Suk

    2015-07-01

    Previous research has suggested that a teaching strategy integrating problem-based learning and simulation may be superior to traditional lecture. The purpose of this study was to assess learner motivation and life skills before and after taking a course involving problem-based learning and simulation. The design used repeated measures with a convenience sample of 83 second-year nursing students who completed the integrated course. Data from a self-administered questionnaire measuring learner motivation and life skills were collected at pretest, post-problem-based learning, and post-simulation time points. Repeated-measures analysis of variance determined that the mean scores for total learner motivation (F=6.62, P=.003), communication (F=8.27, Plearning (F=4.45, P=.016) differed significantly between time points. Post hoc tests using the Bonferroni correction revealed that total learner motivation and total life skills significantly increased both from pretest to postsimulation and from post-problem-based learning test to postsimulation test. Subscales of learner motivation and life skills, intrinsic goal orientation, self-efficacy for learning and performance, problem-solving skills, and self-directed learning skills significantly increased both from pretest to postsimulation test and from post-problem-based learning test to post-simulation test. The results demonstrate that an integrating problem-based learning and simulation course elicits significant improvement in learner motivation and life skills. Simulation plus problem-based learning is more effective than problem-based learning alone at increasing intrinsic goal orientation, task value, self-efficacy for learning and performance, problem solving, and self-directed learning.

  16. A simulation-based approach for solving assembly line balancing problem

    Science.gov (United States)

    Wu, Xiaoyu

    2017-09-01

    Assembly line balancing problem is directly related to the production efficiency, since the last century, the problem of assembly line balancing was discussed and still a lot of people are studying on this topic. In this paper, the problem of assembly line is studied by establishing the mathematical model and simulation. Firstly, the model of determing the smallest production beat under certain work station number is anysized. Based on this model, the exponential smoothing approach is applied to improve the the algorithm efficiency. After the above basic work, the gas stirling engine assembly line balancing problem is discussed as a case study. Both two algorithms are implemented using the Lingo programming environment and the simulation results demonstrate the validity of the new methods.

  17. Improving extreme-scale problem solving: assessing electronic brainstorming effectiveness in an industrial setting.

    Science.gov (United States)

    Dornburg, Courtney C; Stevens, Susan M; Hendrickson, Stacey M L; Davidson, George S

    2009-08-01

    An experiment was conducted to compare the effectiveness of individual versus group electronic brainstorming to address difficult, real-world challenges. Although industrial reliance on electronic communications has become ubiquitous, empirical and theoretical understanding of the bounds of its effectiveness have been limited. Previous research using short-term laboratory experiments have engaged small groups of students in answering questions irrelevant to an industrial setting. The present experiment extends current findings beyond the laboratory to larger groups of real-world employees addressing organization-relevant challenges during the course of 4 days. Employees and contractors at a national laboratory participated, either in a group setting or individually, in an electronic brainstorm to pose solutions to a real-world problem. The data demonstrate that (for this design) individuals perform at least as well as groups in producing quantity of electronic ideas, regardless of brainstorming duration. However, when judged with respect to quality along three dimensions (originality, feasibility, and effectiveness), the individuals significantly (p industrial reliance on electronic problem-solving groups should be tempered, and large nominal groups may be more appropriate corporate problem-solving vehicles.

  18. 18th European Conference on Mathematics for Industry

    CERN Document Server

    Capasso, Vincenzo; Nicosia, Giuseppe; Romano, Vittorio

    2016-01-01

    This book presents a collection of papers emphasizing applications of mathematical models and methods to real-world problems of relevance for industry, life science, environment, finance, and so on. The biannual Conference of ECMI (the European Consortium of Mathematics in Industry) held in 2014 focused on various aspects of industrial and applied mathematics. The five main topics addressed at the conference were mathematical models in life science, material science and semiconductors, mathematical methods in the environment, design automation and industrial applications, and computational finance. Several other topics have been treated, such as, among others, optimization and inverse problems, education, numerical methods for stiff pdes, model reduction, imaging processing, multi physics simulation, mathematical models in textile industry. The conference, which brought together applied mathematicians and experts from industry, provided a unique opportunity to exchange ideas, problems and methodologies...

  19. The optimal parameter design for a welding unit of manufacturing industry by Taguchi method and computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zahraee, S.M.; Chegeni, A.; Toghtamish, A.

    2016-07-01

    Manufacturing systems include a complicated combination of resources, such as materials, labors, and machines. Hence, when the manufacturing systems are faced with a problem related to the availability of resources it is difficult to identify the root of the problem accurately and effectively. Managers and engineers in companies are trying to achieve a robust production line based on the maximum productivity. The main goal of this paper is to design a robust production line, taking productivity into account in the selected manufacturing industry. This paper presents the application of Taguchi method along with computer simulation for finding an optimum factor setting for three controllable factors, which are a number of welding machines, hydraulic machines, and cutting machines by analyzing the effect of noise factors in a selected manufacturing industry. Based on the final results, the optimal design parameter of welding unit of in the selected manufacturing industry will be obtained when factor A is located at level 2 and B and C are located at level 1. Therefore, maximum productive desirability is achieved when the number of welding machines, hydraulic machines, and cutting machines is equal to 17, 2, and 1, respectively. This paper has a significant role in designing a robust production line by considering the lowest cost and timely manner based on the Taguchi method. (Author)

  20. The optimal parameter design for a welding unit of manufacturing industry by Taguchi method and computer simulation

    Directory of Open Access Journals (Sweden)

    Seyed Mojib Zahraee

    2016-05-01

    Full Text Available Purpose: Manufacturing systems include a complicated combination of resources, such as materials, labors, and machines. Hence, when the manufacturing systems are faced with a problem related to the availability of resources it is difficult to identify the root of the problem accurately and effectively. Managers and engineers in companies are trying to achieve a robust production line based on the maximum productivity. The main goal of this paper is to design a robust production line, taking productivity into account in the selected manufacturing industry. Design/methodology/approach: This paper presents the application of Taguchi method along with computer simulation for finding an optimum factor setting for three controllable factors, which are a number of welding machines, hydraulic machines, and cutting machines by analyzing the effect of noise factors in a selected manufacturing industry. Findings and Originality/value: Based on the final results, the optimal design parameter of welding unit of in the selected manufacturing industry will be obtained when factor A is located at level 2 and B and C are located at level 1. Therefore, maximum productive desirability is achieved when the number of welding machines, hydraulic machines, and cutting machines is equal to 17, 2, and 1, respectively. This paper has a significant role in designing a robust production line by considering the lowest cost and timely manner based on the Taguchi method.

  1. Optimization-based decision support systems for planning problems in processing industries

    OpenAIRE

    Claassen, G.D.H.

    2014-01-01

    Summary Optimization-based decision support systems for planning problems in processing industries Nowadays, efficient planning of material flows within and between supply chains is of vital importance and has become one of the most challenging problems for decision support in practice. The tremendous progress in hard- and software of the past decades was an important gateway for developing computerized systems that are able to support decision making on different levels within enterprises. T...

  2. Problems of nuclear industry in Japan

    International Nuclear Information System (INIS)

    Yoshiyama, Hirokichi

    1976-01-01

    The past twenty years growth of Japanese reactor plant makers is historically reviewed in the first part of this report. The first ten years were devoted for the construction of research reactors and for the design studies of power plants. The next ten years were devoted for the construction of power stations. Total income and expenditures of Japanese makers for these two periods are presented. It is emphasized that expenditures always exceeded income. The second part previews the projected growth of nuclear power generation. Generating capacities of 49,000 MW at 1985 and 90,000 MW at 1990 is assumed. To meet this demand, Japanese makers must have the ability of supplying about 8000 MW per year and the number of personnel (at present, about 9,000) must be increased to 25,000 in next ten years. The third part discusses the roles of plant makers. Establishment of safe and reliable technology, promotion of standardization, improvement of economical bases, and the promotion of associated industries (such as nuclear fuel makers and operator training institutions) are the main subjects. The roles of government are also shortly discussed. The rest of this paper shortly discusses about the participation to the national project (ATR, FBR, and centrifuge enrichment) and about future problems in growing to an exporting industry. (Aoki, K.)

  3. FE-Simulation Of Hemming In The Automotive Industry

    International Nuclear Information System (INIS)

    Sigvant, Mats; Mattiasson, Kjell

    2005-01-01

    This paper summarizes and presents the most important results from a research project on FE simulation of hemming carried out at Volvo Cars Body Components and Chalmers University of Technology. In the automotive industry, hemming is used to join two sheet metal panels by bending the flange of the outer panel over the inner one. The final goal of the project was to simulate all of the hemming steps of production parts. In order to make three-dimensional simulations of hemming possible within reasonable simulation times, it is necessary to use shell elements and not solid elements. On the other hand, the radius of curvature of the outer part in the folded area is very small, normally of the same order of magnitude as the sheet thickness. This fact raises the question if shell elements are applicable in FE simulation of hemming. One part of the project was therefore a thorough investigation of the order of magnitude of the errors resulting from the use of shell elements in FE simulation of hemming. Another part of the project was devoted to three-dimensional simulations of the hemming of an automotive hood. The influence on the roll-in from several parameters, such as shell element formulation, adhesives, and anisotropy was studied. Finally, results from a forming simulation were also mapped to the flanging and hemming models in order to study the influence from the stamping of the outer panel on the roll-in

  4. Simulation modeling of quality assurance processes in an industrial plant

    Directory of Open Access Journals (Sweden)

    Gumerov Anwar Vazykhovich

    2013-11-01

    Full Text Available Quality management and the need for continuous improvement requires the development of methods of analysis and diagnostic parameters. The use of simulation techniques and statistical quality control methods will provide the basis for process control of industrial enterprises.

  5. The industrial problems raised by the building of the new nuclear power plant system

    International Nuclear Information System (INIS)

    Gangloff, P.; Hillairet, J.

    1975-01-01

    The decision made by France to build within 10 years a number of nuclear power plants of an importance unequalled in Europe and in the world has created for the industry involved in this gigantic enterprise problems of growth and adaptation of considerable magnitude. In a first part, the general analysis of needs reveals the breadth of the phenomenon the industry is facing with respect to its capacity of production. This original study, the first synthesis of this kind, could be the starting point of overall industrial planning at the national level. The second part, dealing more particularly with turbogenerator units, shows in its true perspective the magnitude of the material and how the equipment has developed. It recalls how the industrial problem has been approached in order to meet the need for expansion of one of the most important French electromechanical manufacturing plants [fr

  6. Simulations of MHD flows with moving interfaces

    CERN Document Server

    Gerbeau, J F; Le Bris, C

    2003-01-01

    We report on the numerical simulation of a two-fluid magnetohydrodynamics problem arising in the industrial production of aluminium. The motion of the two non-miscible fluids is modeled through the incompressible Navier-Stokes equations coupled with the Maxwell equations. Stabilized finite elements techniques and an arbitrary Lagrangian-Eulerian formulation (for the motion of the interface separating the two fluids) are used in the numerical simulation. With a view to justifying our strategy, details on the numerical analysis of the problem, with a special emphasis on conservation and stability properties and on the surface tension discretization, as well as results on tests cases are provided. Examples of numerical simulations of the industrial case are eventually presented.

  7. Exploring the Learning Problems and Resource Usage of Undergraduate Industrial Design Students in Design Studio Courses

    Science.gov (United States)

    Chen, Wenzhi

    2016-01-01

    Design is a powerful weapon for modern companies so it is important to have excellent designers in the industry. The purpose of this study is to explore the learning problems and the resources that students use to overcome problems in undergraduate industrial design studio courses. A survey with open-type questions was conducted to collect data.…

  8. Corrosion, inspection and other problems associated with Heat exchangers in the heavy water industry

    International Nuclear Information System (INIS)

    Twigg, R.J.

    1980-01-01

    Corrosion, fabrication and inspection problems encountered in the heavy water industry Heat exchangers are discussed. Among the problems examined are erosion/corrosion of two pass exchangers, rolling of tubes, pitting, fretting and protection for long term storage. (auth)

  9. Benchmark Problems of the Geothermal Technologies Office Code Comparison Study

    Energy Technology Data Exchange (ETDEWEB)

    White, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Podgorney, Robert [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kelkar, Sharad M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McClure, Mark W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Danko, George [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ghassemi, Ahmad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fu, Pengcheng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bahrami, Davood [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Barbier, Charlotte [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cheng, Qinglu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chiu, Kit-Kwan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Detournay, Christine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elsworth, Derek [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fang, Yi [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Furtney, Jason K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gan, Quan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gao, Qian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Guo, Bin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hao, Yue [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horne, Roland N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Kai [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Im, Kyungjae [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Norbeck, Jack [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rutqvist, Jonny [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Safari, M. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sesetty, Varahanaresh [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sonnenthal, Eric [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tao, Qingfeng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); White, Signe K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wong, Yang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xia, Yidong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-12-02

    A diverse suite of numerical simulators is currently being applied to predict or understand the performance of enhanced geothermal systems (EGS). To build confidence and identify critical development needs for these analytical tools, the United States Department of Energy, Geothermal Technologies Office has sponsored a Code Comparison Study (GTO-CCS), with participants from universities, industry, and national laboratories. A principal objective for the study was to create a community forum for improvement and verification of numerical simulators for EGS modeling. Teams participating in the study were those representing U.S. national laboratories, universities, and industries, and each team brought unique numerical simulation capabilities to bear on the problems. Two classes of problems were developed during the study, benchmark problems and challenge problems. The benchmark problems were structured to test the ability of the collection of numerical simulators to solve various combinations of coupled thermal, hydrologic, geomechanical, and geochemical processes. This class of problems was strictly defined in terms of properties, driving forces, initial conditions, and boundary conditions. Study participants submitted solutions to problems for which their simulation tools were deemed capable or nearly capable. Some participating codes were originally developed for EGS applications whereas some others were designed for different applications but can simulate processes similar to those in EGS. Solution submissions from both were encouraged. In some cases, participants made small incremental changes to their numerical simulation codes to address specific elements of the problem, and in other cases participants submitted solutions with existing simulation tools, acknowledging the limitations of the code. The challenge problems were based on the enhanced geothermal systems research conducted at Fenton Hill, near Los Alamos, New Mexico, between 1974 and 1995. The problems

  10. The Review of Simulation for Business Organizations’ Problems and Applications

    OpenAIRE

    Waled Khaled, Yuan Yongsheng, Sajjad Nazir

    2015-01-01

    This paper is to show the general explanations about simulation and its importance in the modern world. This paper also shows us how the process of simulation is working step by step so it gives us the clear algorithm to apply simulation methods of any problem. It also defines the most important keywords which related to simulation methods. Moreover, in this paper, we explore the history of simulation and its developing and how it becomes one of the most widely using in the world in many fiel...

  11. Introducing renewable energy and industrial restructuring to reduce GHG emission: Application of a dynamic simulation model

    International Nuclear Information System (INIS)

    Song, Junnian; Yang, Wei; Higano, Yoshiro; Wang, Xian’en

    2015-01-01

    Highlights: • Renewable energy development is expanded and introduced into socioeconomic activities. • A dynamic optimization simulation model is developed based on input–output approach. • Regional economic, energy and environmental impacts are assessed dynamically. • Industrial and energy structure is adjusted optimally for GHG emission reduction. - Abstract: Specifying the renewable energy development as new energy industries to be newly introduced into current socioeconomic activities, this study develops a dynamic simulation model with input–output approach to make comprehensive assessment of the impacts on economic development, energy consumption and GHG emission under distinct levels of GHG emission constraints involving targeted GHG emission reduction policies (ERPs) and industrial restructuring. The model is applied to Jilin City to conduct 16 terms of dynamic simulation work with GRP as objective function subject to mass, value and energy balances aided by the extended input–output table with renewable energy industries introduced. Simulation results indicate that achievement of GHG emission reduction target is contributed by renewable energy industries, ERPs and industrial restructuring collectively, which reshape the terminal energy consumption structure with a larger proportion of renewable energy. Wind power, hydropower and biomass combustion power industries account for more in the power generation structure implying better industrial prospects. Mining, chemical, petroleum processing, non-metal, metal and thermal power industries are major targets for industrial restructuring. This method is crucial for understanding the role of renewable energy development in GHG mitigation efforts and other energy-related planning settings, allowing to explore the optimal level for relationships among all socioeconomic activities and facilitate to simultaneous pursuit of economic development, energy utilization and environmental preservation

  12. Mechatronics in monitoring, simulation, and diagnostics of industrial and biological processes

    Science.gov (United States)

    Golnik, Natalia; Dobosz, Marek; Jakubowska, Małgorzata; Kościelny, Jan M.; Kujawińska, Małgorzata; Pałko, Tadeusz; Putz, Barbara; Sitnik, Robert; Wnuk, Paweł; Woźniak, Adam

    2013-10-01

    The paper describes a number of research projects of the Faculty of Mechatronics of Warsaw University of Technology in order to illustrate the use of common mechatronics and optomechatronics approach in solving multidisciplinary technical problems. Projects on sensors development, measurement and industrial control systems, multimodal data capture and advance systems for monitoring and diagnostics of industrial processes are presented and discussed.

  13. Hotel industry in Azerbaijan: problems perspectives of entrepreneurship development

    OpenAIRE

    Gasanov Arzu Nadzhaf

    2014-01-01

    The article considers the essence of the entrepreneurship activity and the characteristic features of a businessman. The definition of the entrepreneurship according to the Azerbaijan legislation is given. Then, the tourism, peculiarities and legislation base of business in tourism industry and hotel economy characterized, the main data of the activities of replacement enterprises in the country, the level of quality of hotel service and analyzed, the main problems are listed and the conclusi...

  14. A Simulation-Based LED Design Project in Photonics Instruction Based on Industry-University Collaboration

    Science.gov (United States)

    Chang, S. -H.; Chen, M. -L.; Kuo, Y. -K.; Shen, Y. -C.

    2011-01-01

    In response to the growing industrial demand for light-emitting diode (LED) design professionals, based on industry-university collaboration in Taiwan, this paper develops a novel instructional approach: a simulation-based learning course with peer assessment to develop students' professional skills in LED design as required by industry as well as…

  15. Simulation of product distribution at PT Anugrah Citra Boga by using capacitated vehicle routing problem method

    Science.gov (United States)

    Lamdjaya, T.; Jobiliong, E.

    2017-01-01

    PT Anugrah Citra Boga is a food processing industry that produces meatballs as their main product. The distribution system of the products must be considered, because it needs to be more efficient in order to reduce the shipment cost. The purpose of this research is to optimize the distribution time by simulating the distribution channels with capacitated vehicle routing problem method. Firstly, the distribution route is observed in order to calculate the average speed, time capacity and shipping costs. Then build the model using AIMMS software. A few things that are required to simulate the model are customer locations, distances, and the process time. Finally, compare the total distribution cost obtained by the simulation and the historical data. It concludes that the company can reduce the shipping cost around 4.1% or Rp 529,800 per month. By using this model, the utilization rate can be more optimal. The current value for the first vehicle is 104.6% and after the simulation it becomes 88.6%. Meanwhile, the utilization rate of the second vehicle is increase from 59.8% to 74.1%. The simulation model is able to produce the optimal shipping route with time restriction, vehicle capacity, and amount of vehicle.

  16. Training of Engineering Personnel for the Innovative Coal Industry: Problems and Ways of Solution

    Science.gov (United States)

    Zaruba, Natalya; Fraltsova, Tamara; Snegireva, Tatyana

    2017-11-01

    The article is written based on some results of the long-term scientific research of the problem related to the urgent need to find the ways of training personnel for the innovative coal industry in the higher education system. This is due to the fundamental changes in the Russian social and economic conditions: the change in the social system and the owner of the coal industry, the emergence of new technologies in the field of coal mining and processing, and in the management of these processes. At the same time, the system of training specialists for the coal industry in the higher education institutions has largely remained unchanged: technologies and principles of training, scientific approaches and concepts take little account of the changed situation, traditional views of specialists work-ing in the university continue to dominate innovative ideas. Many innovations, especially related to technology and the principles of education, struggle to make their way into the higher education system. The article substantiates the urgency of the problem of training personnel for the innovative coal industry in the higher education system, as well as the importance of scientific analysis of the problem in order to find the ways to solve it.

  17. Simulation-Based Planning of Optimal Conditions for Industrial Computed Tomography

    DEFF Research Database (Denmark)

    Reisinger, S.; Kasperl, S.; Franz, M.

    2011-01-01

    We present a method to optimise conditions for industrial computed tomography (CT). This optimisation is based on a deterministic simulation. Our algorithm finds task-specific CT equipment settings to achieve optimal exposure parameters by means of an STL-model of the specimen and a raytracing...

  18. SIMULATION OF STRATEGY DEVELOPMENT PRODUCTION IN DEFENSE-INDUSTRIAL COMPLEX1

    Directory of Open Access Journals (Sweden)

    Alexandr M. Batkovsky

    2014-01-01

    Full Text Available The article describes the methodological frameworkand tools for manag-ing the strategic development ofproduction created by the defense-industrial complexof Russia. A model of the development strategy ofproducing the products is worked out, the backgroundand stability of the simulation results are analyzed.

  19. A suite of benchmark and challenge problems for enhanced geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    White, Mark; Fu, Pengcheng; McClure, Mark; Danko, George; Elsworth, Derek; Sonnenthal, Eric; Kelkar, Sharad; Podgorney, Robert

    2017-11-06

    A diverse suite of numerical simulators is currently being applied to predict or understand the performance of enhanced geothermal systems (EGS). To build confidence and identify critical development needs for these analytical tools, the United States Department of Energy, Geothermal Technologies Office sponsored a Code Comparison Study (GTO-CCS), with participants from universities, industry, and national laboratories. A principal objective for the study was to create a community forum for improvement and verification of numerical simulators for EGS modeling. Teams participating in the study were those representing U.S. national laboratories, universities, and industries, and each team brought unique numerical simulation capabilities to bear on the problems. Two classes of problems were developed during the study, benchmark problems and challenge problems. The benchmark problems were structured to test the ability of the collection of numerical simulators to solve various combinations of coupled thermal, hydrologic, geomechanical, and geochemical processes. This class of problems was strictly defined in terms of properties, driving forces, initial conditions, and boundary conditions. The challenge problems were based on the enhanced geothermal systems research conducted at Fenton Hill, near Los Alamos, New Mexico, between 1974 and 1995. The problems involved two phases of research, stimulation, development, and circulation in two separate reservoirs. The challenge problems had specific questions to be answered via numerical simulation in three topical areas: 1) reservoir creation/stimulation, 2) reactive and passive transport, and 3) thermal recovery. Whereas the benchmark class of problems were designed to test capabilities for modeling coupled processes under strictly specified conditions, the stated objective for the challenge class of problems was to demonstrate what new understanding of the Fenton Hill experiments could be realized via the application of

  20. University of Central Florida / Deep Space Industries Asteroid Regolith Simulants

    Science.gov (United States)

    Britt, Daniel; Covey, Steven D.; Schultz, Cody

    2017-10-01

    Introduction: The University of Central Florida (UCF), in partnership with Deep Space Industries (DSI) are working under a NASA Phase 2 SBIR contract to develop and produce a family of asteroid regolith simulants for use in research, engineering, and mission operations testing. We base simulant formulas on the mineralogy, particle size, and physical characteristics of CI, CR, CM, C2, CV, and L-Chondrite meteorites. The advantage in simulating meteorites is that the vast majority of meteoritic materials are common rock forming minerals that are available in commercial quantities. While formulas are guided by the meteorites our approach is one of constrained maximization under the limitations of safety, cost, source materials, and ease of handling. In all cases our goal is to deliver a safe, high fidelity analog at moderate cost.Source Materials, Safety, and Biohazards: A critical factor in any useful simulant is to minimize handling risks for biohazards or toxicity. All the terrestrial materials proposed for these simulants were reviewed for potential toxicity. Of particular interest is the organic component of volatile rich carbonaceous chondrites which contain polycyclic aromatic hydrocarbons (PAHs), some of which are known carcinogens and mutagens. Our research suggests that we can maintain rough chemical fidelity by substituting much safer sub-bituminous coal as our organic analog. A second safety consideration is the choice of serpentine group materials. While most serpentine polymorphs are quite safe we avoid fibrous chrysotile because of its asbestos content. Terrestrial materials identified as inputs for our simulants are common rock forming minerals that are available in commercial quantities. These include olivine, pyroxene, plagioclase feldspar, smectite, serpentine, saponite, pyrite, and magnetite in amounts that are appropriate for each type. For CI's and CR’s, their olivines tend to be Fo100 which is rare on Earth. We have substituted Fo90 olivine

  1. List-Based Simulated Annealing Algorithm for Traveling Salesman Problem

    Directory of Open Access Journals (Sweden)

    Shi-hua Zhan

    2016-01-01

    Full Text Available Simulated annealing (SA algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters’ setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA algorithm to solve traveling salesman problem (TSP. LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms.

  2. Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Merzari, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Shemon, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Yu, Y. Q. [Argonne National Lab. (ANL), Argonne, IL (United States); Thomas, J. W. [Argonne National Lab. (ANL), Argonne, IL (United States); Obabko, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Jain, Rajeev [Argonne National Lab. (ANL), Argonne, IL (United States); Mahadevan, Vijay [Argonne National Lab. (ANL), Argonne, IL (United States); Tautges, Timothy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Solberg, Jerome [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ferencz, Robert Mark [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Whitesides, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-12-21

    This report describes to employ SHARP to perform a first-of-a-kind analysis of the core radial expansion phenomenon in an SFR. This effort required significant advances in the framework Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit used to drive the coupled simulations, manipulate the mesh in response to the deformation of the geometry, and generate the necessary modified mesh files. Furthermore, the model geometry is fairly complex, and consistent mesh generation for the three physics modules required significant effort. Fully-integrated simulations of a 7-assembly mini-core test problem have been performed, and the results are presented here. Physics models of a full-core model of the Advanced Burner Test Reactor have also been developed for each of the three physics modules. Standalone results of each of the three physics modules for the ABTR are presented here, which provides a demonstration of the feasibility of the fully-integrated simulation.

  3. ''A Parallel Adaptive Simulation Tool for Two Phase Steady State Reacting Flows in Industrial Boilers and Furnaces''; FINAL

    International Nuclear Information System (INIS)

    Michael J. Bockelie

    2002-01-01

    This DOE SBIR Phase II final report summarizes research that has been performed to develop a parallel adaptive tool for modeling steady, two phase turbulent reacting flow. The target applications for the new tool are full scale, fossil-fuel fired boilers and furnaces such as those used in the electric utility industry, chemical process industry and mineral/metal process industry. The type of analyses to be performed on these systems are engineering calculations to evaluate the impact on overall furnace performance due to operational, process or equipment changes. To develop a Computational Fluid Dynamics (CFD) model of an industrial scale furnace requires a carefully designed grid that will capture all of the large and small scale features of the flowfield. Industrial systems are quite large, usually measured in tens of feet, but contain numerous burners, air injection ports, flames and localized behavior with dimensions that are measured in inches or fractions of inches. To create an accurate computational model of such systems requires capturing length scales within the flow field that span several orders of magnitude. In addition, to create an industrially useful model, the grid can not contain too many grid points - the model must be able to execute on an inexpensive desktop PC in a matter of days. An adaptive mesh provides a convenient means to create a grid that can capture both fine flow field detail within a very large domain with a ''reasonable'' number of grid points. However, the use of an adaptive mesh requires the development of a new flow solver. To create the new simulation tool, we have combined existing reacting CFD modeling software with new software based on emerging block structured Adaptive Mesh Refinement (AMR) technologies developed at Lawrence Berkeley National Laboratory (LBNL). Specifically, we combined: -physical models, modeling expertise, and software from existing combustion simulation codes used by Reaction Engineering International

  4. System Dynamics Model and Simulation of Employee Work-Family Conflict in the Construction Industry

    Science.gov (United States)

    Wu, Guangdong; Duan, Kaifeng; Zuo, Jian; Yang, Jianlin; Wen, Shiping

    2016-01-01

    The construction industry is a demanding work environment where employees’ work-family conflict is particularly prominent. This conflict has a significant impact on job and family satisfaction and performance of employees. In order to analyze the dynamic evolution of construction industry employee’s work-family conflict between work and family domains, this paper constructs a bi-directional dynamic model framework of work-family conflict by referring to the relevant literature. Consequently, a system dynamics model of employee’s work-family conflict in the construction industry is established, and a simulation is conducted. The simulation results indicate that construction industry employees experience work interference with family conflict (WIFC) levels which are significantly greater than the family interference with work conflict (FIWC) levels. This study also revealed that improving work flexibility and organizational support can have a positive impact on the satisfaction and performance of construction industry employees from a work and family perspective. Furthermore, improving family support can only significantly improve employee job satisfaction. PMID:27801857

  5. System Dynamics Model and Simulation of Employee Work-Family Conflict in the Construction Industry.

    Science.gov (United States)

    Wu, Guangdong; Duan, Kaifeng; Zuo, Jian; Yang, Jianlin; Wen, Shiping

    2016-10-28

    The construction industry is a demanding work environment where employees' work-family conflict is particularly prominent. This conflict has a significant impact on job and family satisfaction and performance of employees. In order to analyze the dynamic evolution of construction industry employee's work-family conflict between work and family domains, this paper constructs a bi-directional dynamic model framework of work-family conflict by referring to the relevant literature. Consequently, a system dynamics model of employee's work-family conflict in the construction industry is established, and a simulation is conducted. The simulation results indicate that construction industry employees experience work interference with family conflict (WIFC) levels which are significantly greater than the family interference with work conflict (FIWC) levels. This study also revealed that improving work flexibility and organizational support can have a positive impact on the satisfaction and performance of construction industry employees from a work and family perspective. Furthermore, improving family support can only significantly improve employee job satisfaction.

  6. System Dynamics Model and Simulation of Employee Work-Family Conflict in the Construction Industry

    Directory of Open Access Journals (Sweden)

    Guangdong Wu

    2016-10-01

    Full Text Available The construction industry is a demanding work environment where employees’ work-family conflict is particularly prominent. This conflict has a significant impact on job and family satisfaction and performance of employees. In order to analyze the dynamic evolution of construction industry employee’s work-family conflict between work and family domains, this paper constructs a bi-directional dynamic model framework of work-family conflict by referring to the relevant literature. Consequently, a system dynamics model of employee’s work-family conflict in the construction industry is established, and a simulation is conducted. The simulation results indicate that construction industry employees experience work interference with family conflict (WIFC levels which are significantly greater than the family interference with work conflict (FIWC levels. This study also revealed that improving work flexibility and organizational support can have a positive impact on the satisfaction and performance of construction industry employees from a work and family perspective. Furthermore, improving family support can only significantly improve employee job satisfaction.

  7. Selection of bioprocess simulation software for industrial applications.

    Science.gov (United States)

    Shanklin, T; Roper, K; Yegneswaran, P K; Marten, M R

    2001-02-20

    Two commercially available, process-simulation software packages (Aspen Batch Plus v1.2, Aspen Technology, Inc., Cambridge, Massachusetts, and Intelligen SuperPro v3.0, INTELLIGEN, INC., Scotch Plains, Ner Jersey) are evaluated for use in modeling industrial, biotechnology processes. Software is quantitatively evaluated by Kepner-Tregoe Decision Analysis (Kepner and Tregoe, 1981). This evaluation shows that Aspen Batch Plus v1.2 (ABP) and Intelligen SuperPro v3.0 (ISP) can successfully perform specific simulation tasks but do not provide a complete model of all phenomena occurring within a biotechnology process. Software is best suited to provide a format for process management, using material and energy balances to answer scheduling questions, explore equipment change-outs, and calculate cost data. The ability of simulation software to accurately predict unit operation scale-up and optimize bioprocesses is limited. To realistically evaluate the software, a vaccine manufacturing process under development at Merck & Company is simulated. Case studies from the vaccine process are presented as examples of how ABP and ISP can be used to shed light on real-world processing issues. Copyright 2001 John Wiley & Sons, Inc.

  8. Simulation of coupled electromagnetic and heat dissipation problems

    NARCIS (Netherlands)

    Janssen, H.H.J.M.; Maten, ter E.J.W.; Houwelingen, van D.

    1994-01-01

    A description is given of an integrated simulation environment for the solution of coupled electromagnetic and heat dissipation problems in two dimensions, in particular for the field of induction heating, dielectric heating, and hysteresis heating. The equations are coupled because the most

  9. OECD/NEZ Main Steam Line Break Benchmark Problem Exercise I Simulation Using the SPACE Code with the Point Kinetics Model

    International Nuclear Information System (INIS)

    Kim, Yohan; Kim, Seyun; Ha, Sangjun

    2014-01-01

    The Safety and Performance Analysis Code for Nuclear Power Plants (SPACE) has been developed in recent years by the Korea Nuclear Hydro and Nuclear Power Co. (KHNP) through collaborative works with other Korean nuclear industries. The SPACE is a best-estimated two-phase three-field thermal-hydraulic analysis code to analyze the safety and performance of pressurized water reactors (PWRs). The SPACE code has sufficient features to replace outdated vendor supplied codes and to be used for the safety analysis of operating PWRs and the design of advanced reactors. As a result of the second phase of the development, the 2.14 version of the code was released through the successive various V and V works. The topical reports on the code and related safety analysis methodologies have been prepared for license works. In this study, the OECD/NEA Main Steam Line Break (MSLB) Benchmark Problem Exercise I was simulated as a V and V work. The results were compared with those of the participants in the benchmark project. The OECD/NEA MSLB Benchmark Problem Exercise I was simulated using the SPACE code. The results were compared with those of the participants in the benchmark project. Through the simulation, it was concluded that the SPACE code can effectively simulate PWR MSLB accidents

  10. Network Modeling and Simulation A Practical Perspective

    CERN Document Server

    Guizani, Mohsen; Khan, Bilal

    2010-01-01

    Network Modeling and Simulation is a practical guide to using modeling and simulation to solve real-life problems. The authors give a comprehensive exposition of the core concepts in modeling and simulation, and then systematically address the many practical considerations faced by developers in modeling complex large-scale systems. The authors provide examples from computer and telecommunication networks and use these to illustrate the process of mapping generic simulation concepts to domain-specific problems in different industries and disciplines. Key features: Provides the tools and strate

  11. The afforestation problem: a heuristic method based on simulated annealing

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    1992-01-01

    This paper presents the afforestation problem, that is the location and design of new forest compartments to be planted in a given area. This optimization problem is solved by a two-step heuristic method based on simulated annealing. Tests and experiences with this method are also presented....

  12. Risk in Nuclear Industry. Liability for Nuclear Damage. Status of the Problem in the Russian Federation

    International Nuclear Information System (INIS)

    Kovalevich, Oleg M.; Gavrilov, Sergey D.; Voronov, Dmitry B.

    2001-01-01

    Russia is one of a few nuclear power states obtaining the whole number of nuclear fuel cycle (NFC) components - from mining of uranium and on-site electricity production, from NPP spent nuclear fuel processing and extracted fissile materials and radionuclides, which are available in industry, in medicine and in other relevant areas, to radioactive waste processing and disposal. For this reason it is very important to solve the problem of nuclear fuel cycle safety as it is a single system task with an adequate approach for all cycle components. The problem is that NFC facilities are technologically various and refer to different industries (mining, machinery engineering, power engineering, chemistry, etc.). Besides, the above facilities need the development of various scientific bases. The most NFC facilities is directly connected with peaceful use of nuclear energy and with military nuclear industry, as the defense orders stimulated the development of NFC. The specific attention to safety problems at the beginning of nuclear complex foundation adversely affected the state attitude towards the risk in nuclear industry, it has left the traces at present. In our paper we touch upon the problems of risk and the liability for nuclear damage for the third persons. The problems of nuclear damage compensation for nuclear facilities personnel and for the owners (operating organizations) are beyond our subject

  13. Problems and prospects of nuclear power industry

    International Nuclear Information System (INIS)

    Karelin, A.I.

    2001-01-01

    A consideration is given to problems associated with operating nuclear power plants in many countries and building new NPPs. A special attention is given to safety operation of nuclear plants, to reprocessing and transportation of spent nuclear fuel as well as to radioactive waste disposal. In connection with difficulties in solving the above-mentioned problems a proposition is made to resume work on designing NPPs with the use of nuclear liquid salt reactors based on molten fuel fluoride salts. Advantages and disadvantages of fuel compositions of LiF-BeF 2 -UF 4 -(ThF 4 ) are listed. It is recommended that fundamental studies be carried out into such compositions as KF + CsF; BaF 2 + KF + NaF; AlF 3 + Na 3 AlF 6 , eutectics on the basis of tin and zinc fluorides and their complex salts of M x Sn(Zn)F y . An international program is suggested to be developed to find some way out of crisis of nuclear power industry using research efforts in homogeneous liquid salt nuclear underground reactors with a U(233)-Th fuel cycle [ru

  14. Diversified types and functions and present state of the industry of nuclear power plant simulators

    International Nuclear Information System (INIS)

    Zanobetti, D.

    1989-01-01

    Nuclear plant operators must add to their class-room theoretical education a long in-plant practical training, and since the latter should include all sorts of manipulations, including those leading to accidents, it became obvious since the start of the application of nuclear energy to power production that most of the practical training should be carried out on simulators. The previous experience in flight simulation has greatly influenced the industry of nuclear simulators so that the manufacturers of large nuclear simulators have all had previous experience in the manufacture of flight trainers and simulators. Nuclear simulations come from two distinct periods: one preceding the Three Mile Island incident and one following that event which, as it has turned out to be a landmark in the development of so many aspects of the nuclear industry, has greatly influenced that of simulators. The way in which simulators are classified is first examined, and their use worldwide is discussed. (author)

  15. A Mathematical Model for the Industrial Hazardous Waste Location-Routing Problem

    Directory of Open Access Journals (Sweden)

    Omid Boyer

    2013-01-01

    Full Text Available Technology progress is a cause of industrial hazardous wastes increasing in the whole world . Management of hazardous waste is a significant issue due to the imposed risk on environment and human life. This risk can be a result of location of undesirable facilities and also routing hazardous waste. In this paper a biobjective mixed integer programing model for location-routing industrial hazardous waste with two objectives is developed. First objective is total cost minimization including transportation cost, operation cost, initial investment cost, and cost saving from selling recycled waste. Second objective is minimization of transportation risk. Risk of population exposure within bandwidth along route is used to measure transportation risk. This model can help decision makers to locate treatment, recycling, and disposal centers simultaneously and also to route waste between these facilities considering risk and cost criteria. The results of the solved problem prove conflict between two objectives. Hence, it is possible to decrease the cost value by marginally increasing the transportation risk value and vice versa. A weighted sum method is utilized to combine two objectives function into one objective function. To solve the problem GAMS software with CPLEX solver is used. The problem is applied in Markazi province in Iran.

  16. Particle physics and polyedra proximity calculation for hazard simulations in large-scale industrial plants

    Science.gov (United States)

    Plebe, Alice; Grasso, Giorgio

    2016-12-01

    This paper describes a system developed for the simulation of flames inside an open-source 3D computer graphic software, Blender, with the aim of analyzing in virtual reality scenarios of hazards in large-scale industrial plants. The advantages of Blender are of rendering at high resolution the very complex structure of large industrial plants, and of embedding a physical engine based on smoothed particle hydrodynamics. This particle system is used to evolve a simulated fire. The interaction of this fire with the components of the plant is computed using polyhedron separation distance, adopting a Voronoi-based strategy that optimizes the number of feature distance computations. Results on a real oil and gas refining industry are presented.

  17. Advances in industrial biopharmaceutical batch process monitoring: Machine-learning methods for small data problems.

    Science.gov (United States)

    Tulsyan, Aditya; Garvin, Christopher; Ündey, Cenk

    2018-04-06

    Biopharmaceutical manufacturing comprises of multiple distinct processing steps that require effective and efficient monitoring of many variables simultaneously in real-time. The state-of-the-art real-time multivariate statistical batch process monitoring (BPM) platforms have been in use in recent years to ensure comprehensive monitoring is in place as a complementary tool for continued process verification to detect weak signals. This article addresses a longstanding, industry-wide problem in BPM, referred to as the "Low-N" problem, wherein a product has a limited production history. The current best industrial practice to address the Low-N problem is to switch from a multivariate to a univariate BPM, until sufficient product history is available to build and deploy a multivariate BPM platform. Every batch run without a robust multivariate BPM platform poses risk of not detecting potential weak signals developing in the process that might have an impact on process and product performance. In this article, we propose an approach to solve the Low-N problem by generating an arbitrarily large number of in silico batches through a combination of hardware exploitation and machine-learning methods. To the best of authors' knowledge, this is the first article to provide a solution to the Low-N problem in biopharmaceutical manufacturing using machine-learning methods. Several industrial case studies from bulk drug substance manufacturing are presented to demonstrate the efficacy of the proposed approach for BPM under various Low-N scenarios. © 2018 Wiley Periodicals, Inc.

  18. Light Water Reactor Sustainability Program Industry Application External Hazard Analyses Problem Statement

    Energy Technology Data Exchange (ETDEWEB)

    Szilard, Ronaldo Henriques [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kammerer, Annie [Annie Kammerer Consulting, Rye, NH (United States); Youngblood, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pope, Chad [Idaho State Univ., Pocatello, ID (United States)

    2015-07-01

    Risk-Informed Margin Management Industry Application on External Events. More specifically, combined events, seismically induced external flooding analyses for a generic nuclear power plant with a generic site soil, and generic power plant system and structure. The focus of this report is to define the problem above, set up the analysis, describe the methods to be used, tools to be applied to each problem, and data analysis and validation associated with the above.

  19. Optimization of Multiple Traveling Salesman Problem Based on Simulated Annealing Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xu Mingji

    2017-01-01

    Full Text Available It is very effective to solve the multi variable optimization problem by using hierarchical genetic algorithm. This thesis analyzes both advantages and disadvantages of hierarchical genetic algorithm and puts forward an improved simulated annealing genetic algorithm. The new algorithm is applied to solve the multiple traveling salesman problem, which can improve the performance of the solution. First, it improves the design of chromosomes hierarchical structure in terms of redundant hierarchical algorithm, and it suggests a suffix design of chromosomes; Second, concerning to some premature problems of genetic algorithm, it proposes a self-identify crossover operator and mutation; Third, when it comes to the problem of weak ability of local search of genetic algorithm, it stretches the fitness by mixing genetic algorithm with simulated annealing algorithm. Forth, it emulates the problems of N traveling salesmen and M cities so as to verify its feasibility. The simulation and calculation shows that this improved algorithm can be quickly converged to a best global solution, which means the algorithm is encouraging in practical uses.

  20. Numerical simulation of a nonlinear coupled fluid-structure problem. Application to the design of naval nuclear propulsion structures; Modelisation et simulation numerique d'un probleme couple fluide/structure non lineaire: application au dimensionnement de structures nucleaires de propulsion navale

    Energy Technology Data Exchange (ETDEWEB)

    Sigrist, J.F

    2004-11-15

    The present work deals with the numerical simulation of a coupled fluid/structure problem with fluid free surface. A generic coupled fluid/structure system is defined, on which a linear problem (modal analysis) and a non-linear problem (temporal analysis) are stated. In the linear case, a strong coupled method is used. It is based on a finite element approach of the structure problem and a finite or a boundary element approach of the fluid problem. The coupled problem is formulated in terms of pressure and displacement, leading to a non-symmetric problem which is solved with an appropriate algorithm. In the non-linear case, the structure problem is described with non-linear equations of motion, whereas the fluid problem is modeled with the Stokes equations. The numerical resolution of the coupled problem is based on a weak coupling procedure. The fluid problem is solved with a finite volume technique, using a moving mesh technique to adjust the structure motion, a VOF method for the description of the free surface and the PISO algorithm for the time integration. The structure problem is solved with a finite element technique, using an explicit/implicit time integration algorithm. A procedure is developed in order to handle the coupling in space (fluid forces and structure displacement exchanges between fluid and structure mesh, fluid re-meshing) and in time (staggered explicit algorithm, dynamic filtering of numerical oscillations). The non linear coupled problem is solved using a CFD code, whose use for FSI problem is validated with a benchmark presented in this work. A comparison is proposed between numerical results and analytical solution for two elementary fluid problems. The validation process can be applied for any CFD numerical code. A numerical study is then proposed on the generic coupled case in order to describe the fluid/structure interaction phenomenon (added mass, displaced mass, mode coupling, influence of structural non-linearity). An industrial

  1. A memory structure adapted simulated annealing algorithm for a green vehicle routing problem.

    Science.gov (United States)

    Küçükoğlu, İlker; Ene, Seval; Aksoy, Aslı; Öztürk, Nursel

    2015-03-01

    Currently, reduction of carbon dioxide (CO2) emissions and fuel consumption has become a critical environmental problem and has attracted the attention of both academia and the industrial sector. Government regulations and customer demands are making environmental responsibility an increasingly important factor in overall supply chain operations. Within these operations, transportation has the most hazardous effects on the environment, i.e., CO2 emissions, fuel consumption, noise and toxic effects on the ecosystem. This study aims to construct vehicle routes with time windows that minimize the total fuel consumption and CO2 emissions. The green vehicle routing problem with time windows (G-VRPTW) is formulated using a mixed integer linear programming model. A memory structure adapted simulated annealing (MSA-SA) meta-heuristic algorithm is constructed due to the high complexity of the proposed problem and long solution times for practical applications. The proposed models are integrated with a fuel consumption and CO2 emissions calculation algorithm that considers the vehicle technical specifications, vehicle load, and transportation distance in a green supply chain environment. The proposed models are validated using well-known instances with different numbers of customers. The computational results indicate that the MSA-SA heuristic is capable of obtaining good G-VRPTW solutions within a reasonable amount of time by providing reductions in fuel consumption and CO2 emissions.

  2. How Does Environmental Regulation Affect Industrial Transformation? A Study Based on the Methodology of Policy Simulation

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2016-01-01

    Full Text Available The difference of factor input structure determines different response to environmental regulation. This paper constructs a theoretical model including environmental regulation, factor input structure, and industrial transformation and conducts a policy simulation based on the difference of influencing mechanism of environmental regulation considering industrial heterogeneity. The findings show that the impact of environmental regulation on industrial transformation presents comparison of distortion effect of resource allocation and technology effect. Environmental regulation will promote industrial transformation when technology effect of environmental regulation is stronger than distortion effect of resource allocation. Particularly, command-control environmental regulation has a significant incentive effect and spillover effect of technological innovation on cleaning industries, but these effects do not exist in pollution-intensive industries. Command-control environmental regulation promotes industrial transformation. The result of simulation showed that environmental regulation of market incentives is similar to that of command-control.

  3. Analytical vs. Simulation Solution Techniques for Pulse Problems in Non-linear Stochastic Dynamics

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R. K.

    Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically-numerical tec......Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically...

  4. From capture to simulation: connecting forward and inverse problems in fluids

    KAUST Repository

    Gregson, James; Ihrke, Ivo; Thuerey, Nils; Heidrich, Wolfgang

    2014-01-01

    We explore the connection between fluid capture, simulation and proximal methods, a class of algorithms commonly used for inverse problems in image processing and computer vision. Our key finding is that the proximal operator constraining fluid velocities to be divergence-free is directly equivalent to the pressure-projection methods commonly used in incompressible flow solvers. This observation lets us treat the inverse problem of fluid tracking as a constrained flow problem all while working in an efficient, modular framework. In addition it lets us tightly couple fluid simulation into flow tracking, providing a global prior that significantly increases tracking accuracy and temporal coherence as compared to previous techniques. We demonstrate how we can use these improved results for a variety of applications, such as re-simulation, detail enhancement, and domain modification. We furthermore give an outlook of the applications beyond fluid tracking that our proximal operator framework could enable by exploring the connection of deblurring and fluid guiding.

  5. From capture to simulation: connecting forward and inverse problems in fluids

    KAUST Repository

    Gregson, James

    2014-07-27

    We explore the connection between fluid capture, simulation and proximal methods, a class of algorithms commonly used for inverse problems in image processing and computer vision. Our key finding is that the proximal operator constraining fluid velocities to be divergence-free is directly equivalent to the pressure-projection methods commonly used in incompressible flow solvers. This observation lets us treat the inverse problem of fluid tracking as a constrained flow problem all while working in an efficient, modular framework. In addition it lets us tightly couple fluid simulation into flow tracking, providing a global prior that significantly increases tracking accuracy and temporal coherence as compared to previous techniques. We demonstrate how we can use these improved results for a variety of applications, such as re-simulation, detail enhancement, and domain modification. We furthermore give an outlook of the applications beyond fluid tracking that our proximal operator framework could enable by exploring the connection of deblurring and fluid guiding.

  6. Use of simulation to solve outpatient clinic problems: A review of the literature

    Directory of Open Access Journals (Sweden)

    Tang Sai Hong

    2013-11-01

    Full Text Available The increasing demand for outpatient services has led to overcrowded clinics, long waiting times for patients, and extended staff working hours in outpatient clinics. Simulation tools have been used to ameliorate deficiencies in the appointment system, resource allocation, and patient flow management that are the root causes of these problems. Integrated studies that considered these three factors together produced better results than attempts to resolve individual causes. While simulation has proved to be an effective problem-solving tool for outpatient clinic management, there is still room for improvement. This paper reviews studies over the past 50 years that have applied management simulation to resolve outpatient clinic problems.

  7. Hopper Flow: Experiments and Simulation

    Science.gov (United States)

    Li, Zhusong; Shattuck, Mark

    2013-03-01

    Jamming and intermittent granular flow are important problems in industry, and the vertical hopper is a canonical example. Clogging of granular hoppers account for significant losses across many industries. We use realistic DEM simulations of gravity driven flow in a hopper to examine flow and jamming of 2D disks and compare with identical companion experiments. We use experimental data to validate simulation parameters and the form of the inter particle force law. We measure and compare flow rate, emptying times, jamming statistics, and flow fields as a function of opening angle and opening size in both experiment and simulations. Suppored by: NSF-CBET-0968013

  8. 17th European Conference on Mathematics for Industry

    CERN Document Server

    Günther, Michael; Marheineke, Nicole

    2014-01-01

    This book contains the proceedings of the 17th European Conference on Mathematics for Industry, ECMI2012, held in Lund, Sweden, July 2012, at which ECMI celebrated its 25th anniversary. It covers mathematics in a wide range of applications and methods, from circuit and electromagnetic devices, environment, fibers, flow, medicine, robotics and automotive industry, further applications to methods and education. The book includes contributions from leading figures in business, science and academia who promote the application of mathematics to industry and emphasize industrial sectors that offer the most exciting opportunities. The contributions reinforce the role of mathematics as being a catalyst for innovation as well as an overarching resource for industry and business. The book features an accessible presentation of real-world problems in industry and finance, provides insight and tools for engineers and scientists which will help them to solve similar problems, and offers modeling and simulation techniques ...

  9. Health problems of industrial applications of radioisotopes

    International Nuclear Information System (INIS)

    Kudrna, J.

    1976-01-01

    Radiation hygiene problems of industrial radioisotope applications are discussed. The observance of regulations is emphasised. Radiation protection is based on the principle of preventing early radiation damage and limiting late radiation damage to an acceptable level. The basic requirement is that the cumulated dose should be as low as possible, i.e., as low as is practically feasible in considering economic and social aspects. Notices 59/72 and 65/72, Collection of Laws, rule that if the limit of 3/10 of the maximum permissible dose is likely to be reached, control zones should be defined and marked at places of work where radioisotopes are handled. The characteristics of such a control zone are listed and the measures to be taken in case of accident are outlined. (B.S.)

  10. Using manufacturing simulators to evaluate important processing decisions in the furniture and cabinet industries

    Science.gov (United States)

    Janice K. Wiedenbeck; Philip A. Araman

    1995-01-01

    We've been telling the wood industry about our process simulation modeling research and development work for several years. We've demonstrated our crosscut-first and rip-first rough mill simulation and animation models. Weâve advised companies on how they could use simulation modeling to help make critically important, pending decisions related to mill layout...

  11. Modeling and simulation of discrete event systems

    CERN Document Server

    Choi, Byoung Kyu

    2013-01-01

    Computer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems. Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on

  12. Problem reporting management system performance simulation

    Science.gov (United States)

    Vannatta, David S.

    1993-01-01

    This paper proposes the Problem Reporting Management System (PRMS) model as an effective discrete simulation tool that determines the risks involved during the development phase of a Trouble Tracking Reporting Data Base replacement system. The model considers the type of equipment and networks which will be used in the replacement system as well as varying user loads, size of the database, and expected operational availability. The paper discusses the dynamics, stability, and application of the PRMS and addresses suggested concepts to enhance the service performance and enrich them.

  13. Nodal deterministic simulation for problems of neutron shielding in multigroup formulation

    International Nuclear Information System (INIS)

    Baptista, Josue Costa; Heringer, Juan Diego dos Santos; Santos, Luiz Fernando Trindade; Alves Filho, Hermes

    2013-01-01

    In this paper, we propose the use of some computational tools, with the implementation of numerical methods SGF (Spectral Green's Function), making use of a deterministic model of transport of neutral particles in the study and analysis of a known and simplified problem of nuclear engineering, known in the literature as a problem of neutron shielding, considering the model with two energy groups. These simulations are performed in MatLab platform, version 7.0, and are presented and developed with the help of a Computer Simulator providing a friendly computer application for their utilities

  14. Hazard visibility and occupational health problem solving the case of the uranium industry

    International Nuclear Information System (INIS)

    Pearson, J.

    1980-01-01

    Recent evidence from European research challenges the adequacy of current US exposure guidelines for underground mine radiation. This study traces the history of government regulatory agency and industry response to the hazard of excessive mine radiation in the uranium industry in Colorado some 30 years ago. Problem-solving activity by government agencies and companies is shown to coincide with how visible the health hazard to uranium miners becomes. Hazard visibility and key problem-solving variables are defined and measured. The article also discusses a number of social factors that affect societal response to evidence of an occupational health hazard. Those factors include the elusiveness of the disease and its symptoms, the social class of the victim, the level of medical and scientific interest in its cause and cure, and the economic costs of the disease

  15. Design and Application of Interactive Simulations in Problem-Solving in University-Level Physics Education

    Science.gov (United States)

    Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel

    2016-08-01

    In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving teaching materials and assess their effectiveness in improving students' ability to solve problems in university-level physics. Firstly, we analyze the effect of using simulation-based materials in the development of students' skills in employing procedures that are typically used in the scientific method of problem-solving. We found that a significant percentage of the experimental students used expert-type scientific procedures such as qualitative analysis of the problem, making hypotheses, and analysis of results. At the end of the course, only a minority of the students persisted with habits based solely on mathematical equations. Secondly, we compare the effectiveness in terms of problem-solving of the experimental group students with the students who are taught conventionally. We found that the implementation of the problem-solving strategy improved experimental students' results regarding obtaining a correct solution from the academic point of view, in standard textbook problems. Thirdly, we explore students' satisfaction with simulation-based problem-solving teaching materials and we found that the majority appear to be satisfied with the methodology proposed and took on a favorable attitude to learning problem-solving. The research was carried out among first-year Engineering Degree students.

  16. Simulation of neutron transport equation using parallel Monte Carlo for deep penetration problems

    International Nuclear Information System (INIS)

    Bekar, K. K.; Tombakoglu, M.; Soekmen, C. N.

    2001-01-01

    Neutron transport equation is simulated using parallel Monte Carlo method for deep penetration neutron transport problem. Monte Carlo simulation is parallelized by using three different techniques; direct parallelization, domain decomposition and domain decomposition with load balancing, which are used with PVM (Parallel Virtual Machine) software on LAN (Local Area Network). The results of parallel simulation are given for various model problems. The performances of the parallelization techniques are compared with each other. Moreover, the effects of variance reduction techniques on parallelization are discussed

  17. Motor operated valves problems tests and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pinier, D.; Haas, J.L.

    1996-12-01

    An analysis of the two refusals of operation of the EAS recirculation shutoff valves enabled two distinct problems to be identified on the motorized valves: the calculation methods for the operating torques of valves in use in the power plants are not conservative enough, which results in the misadjustement of the torque limiters installed on their motorizations, the second problem concerns the pressure locking phenomenon: a number of valves may entrap a pressure exceeding the in-line pressure between the disks, which may cause a jamming of the valve. EDF has made the following approach to settle the first problem: determination of the friction coefficients and the efficiency of the valve and its actuator through general and specific tests and models, definition of a new calculation method. In order to solve the second problem, EDF has made the following operations: identification of the valves whose technology enables the pressure to be entrapped: the tests and numerical simulations carried out in the Research and Development Division confirm the possibility of a {open_quotes}boiler{close_quotes} effect: determination of the necessary modifications: development and testing of anti-boiler effect systems.

  18. Motor operated valves problems tests and simulations

    International Nuclear Information System (INIS)

    Pinier, D.; Haas, J.L.

    1996-01-01

    An analysis of the two refusals of operation of the EAS recirculation shutoff valves enabled two distinct problems to be identified on the motorized valves: the calculation methods for the operating torques of valves in use in the power plants are not conservative enough, which results in the misadjustement of the torque limiters installed on their motorizations, the second problem concerns the pressure locking phenomenon: a number of valves may entrap a pressure exceeding the in-line pressure between the disks, which may cause a jamming of the valve. EDF has made the following approach to settle the first problem: determination of the friction coefficients and the efficiency of the valve and its actuator through general and specific tests and models, definition of a new calculation method. In order to solve the second problem, EDF has made the following operations: identification of the valves whose technology enables the pressure to be entrapped: the tests and numerical simulations carried out in the Research and Development Division confirm the possibility of a open-quotes boilerclose quotes effect: determination of the necessary modifications: development and testing of anti-boiler effect systems

  19. Simulation and optimization of an industrial PSA unit

    Directory of Open Access Journals (Sweden)

    Barg C.

    2000-01-01

    Full Text Available The Pressure Swing Adsorption (PSA units have been used as a low cost alternative to the usual gas separation processes. Its largest commercial application is for hydrogen purification systems. Several studies have been made about the simulation of pressure swing adsorption units, but there are only few reports on the optimization of such processes. The objective of this study is to simulate and optimize an industrial PSA unit for hydrogen purification. This unit consists of six beds, each of them have three layers of different kinds of adsorbents. The main impurities are methane, carbon monoxide and sulfidric gas. The product stream has 99.99% purity in hydrogen, and the recovery is around 90%. A mathematical model for a commercial PSA unit is developed. The cycle time and the pressure swing steps are optimized. All the features concerning with complex commercial processes are considered.

  20. Improving Energy Efficiency for the Vehicle Assembly Industry: A Discrete Event Simulation Approach

    Science.gov (United States)

    Oumer, Abduaziz; Mekbib Atnaw, Samson; Kie Cheng, Jack; Singh, Lakveer

    2016-11-01

    This paper presented a Discrete Event Simulation (DES) model for investigating and improving energy efficiency in vehicle assembly line. The car manufacturing industry is one of the highest energy consuming industries. Using Rockwell Arena DES package; a detailed model was constructed for an actual vehicle assembly plant. The sources of energy considered in this research are electricity and fuel; which are the two main types of energy sources used in a typical vehicle assembly plant. The model depicts the performance measurement for process- specific energy measures of painting, welding, and assembling processes. Sound energy efficiency model within this industry has two-fold advantage: reducing CO2 emission and cost reduction associated with fuel and electricity consumption. The paper starts with an overview of challenges in energy consumption within the facilities of automotive assembly line and highlights the parameters for energy efficiency. The results of the simulation model indicated improvements for energy saving objectives and reduced costs.

  1. Inter-Industry Wage Differentials and the Gender Wage Gap: An Identification Problem.

    Science.gov (United States)

    Horrace, William C.; Oaxaca, Ronald L.

    2001-01-01

    States that a method for estimating gender wage gaps by industry yields estimates that vary according to arbitrary choice of omitted reference groups. Suggests alternative methods not susceptible to this problem that can be applied to other contexts, such as racial, union/nonunion, and immigrant/native wage differences. (SK)

  2. Single string planning problem arising in liner shipping industries: A heuristic approach

    DEFF Research Database (Denmark)

    Gelareh, Shahin; Neamatian Monemi, Rahimeh; Mahey, Philippe

    2013-01-01

    We propose an efficient heuristic approach for solving instances of the Single String Planning Problem (SSPP) arising in the liner shipping industry. In the SSPP a Liner Service Provider (LSP) only revises one of its many operational strings, and it is assumed that the other strings are unchangea...

  3. Wireless Sensor Networks - Node Localization for Various Industry Problems

    International Nuclear Information System (INIS)

    Derr, Kurt; Manic, Milos

    2015-01-01

    Fast, effective monitoring following airborne releases of toxic substances is critical to mitigate risks to threatened population areas. Wireless sensor nodes at fixed predetermined locations may monitor such airborne releases and provide early warnings to the public. A challenging algorithmic problem is determining the locations to place these sensor nodes while meeting several criteria: 1) provide complete coverage of the domain, and 2) create a topology with problem dependent node densities, while 3) minimizing the number of sensor nodes. This manuscript presents a novel approach to determining optimal sensor placement, Advancing Front mEsh generation with Constrained dElaunay Triangulation and Smoothing (AFECETS) that addresses these criteria. A unique aspect of AFECETS is the ability to determine wireless sensor node locations for areas of high interest (hospitals, schools, high population density areas) that require higher density of nodes for monitoring environmental conditions, a feature that is difficult to find in other research work. The AFECETS algorithm was tested on several arbitrary shaped domains. AFECETS simulation results show that the algorithm 1) provides significant reduction in the number of nodes, in some cases over 40%, compared to an advancing front mesh generation algorithm, 2) maintains and improves optimal spacing between nodes, and 3) produces simulation run times suitable for real-time applications

  4. Use cases of discrete event simulation. Appliance and research

    Energy Technology Data Exchange (ETDEWEB)

    Bangsow, Steffen (ed.)

    2012-11-01

    Use Cases of Discrete Event Simulation. Includes case studies from various important industries such as automotive, aerospace, robotics, production industry. Written by leading experts in the field. Over the last decades Discrete Event Simulation has conquered many different application areas. This trend is, on the one hand, driven by an ever wider use of this technology in different fields of science and on the other hand by an incredibly creative use of available software programs through dedicated experts. This book contains articles from scientists and experts from 10 countries. They illuminate the width of application of this technology and the quality of problems solved using Discrete Event Simulation. Practical applications of simulation dominate in the present book. The book is aimed to researchers and students who deal in their work with Discrete Event Simulation and which want to inform them about current applications. By focusing on discrete event simulation, this book can also serve as an inspiration source for practitioners for solving specific problems during their work. Decision makers who deal with the question of the introduction of discrete event simulation for planning support and optimization this book provides a contribution to the orientation, what specific problems could be solved with the help of Discrete Event Simulation within the organization.

  5. Simulation optimization based ant colony algorithm for the uncertain quay crane scheduling problem

    Directory of Open Access Journals (Sweden)

    Naoufal Rouky

    2019-01-01

    Full Text Available This work is devoted to the study of the Uncertain Quay Crane Scheduling Problem (QCSP, where the loading /unloading times of containers and travel time of quay cranes are considered uncertain. The problem is solved with a Simulation Optimization approach which takes advantage of the great possibilities offered by the simulation to model the real details of the problem and the capacity of the optimization to find solutions with good quality. An Ant Colony Optimization (ACO meta-heuristic hybridized with a Variable Neighborhood Descent (VND local search is proposed to determine the assignments of tasks to quay cranes and the sequences of executions of tasks on each crane. Simulation is used inside the optimization algorithm to generate scenarios in agreement with the probabilities of the distributions of the uncertain parameters, thus, we carry out stochastic evaluations of the solutions found by each ant. The proposed optimization algorithm is tested first for the deterministic case on several well-known benchmark instances. Then, in the stochastic case, since no other work studied exactly the same problem with the same assumptions, the Simulation Optimization approach is compared with the deterministic version. The experimental results show that the optimization algorithm is competitive as compared to the existing methods and that the solutions found by the Simulation Optimization approach are more robust than those found by the optimization algorithm.

  6. Fourth youth scientifically-practical conference Nuclear-industrial complex of Ural: problems and prospects. Theses of reports

    International Nuclear Information System (INIS)

    2007-01-01

    Theses of reports of the Fourth youth scientifically-practical conference Nuclear-industrial complex of Ural: problems and prospects (18-20 April 2007, Ozersk) are presented. The book contains theses of reports of the seventh subject sections: NFC: science and industry; Ecological problems in NFC development: radiation safety, radioecology and radiobiology; Nuclear power engineering: economics, safety, field experience; Atomic branch: history, today and future; New technologies in education. Education and training for NFC plants, public opinion; Information technologies and telecommunications; Long-term science intensive technologies and new materials [ru

  7. Problem of long-range forces in the computer simulation of condensed media

    International Nuclear Information System (INIS)

    Ceperely, D.

    1980-07-01

    Simulation (both Monte Carlo and molecular dynamical) has become a powerful tool in the study of classical systems of particles interacting with short-range pair potentials. For systems involving long-range forces (e.g., Coulombic, dipolar, hydrodynamic) it is a different story. Relating infinite-system properties to the results of computer simulation involving relatively small numbers of particles, periodically replicated, raises difficult and challenging problems. The purpose of the workshop was to bring together a group of scientists, all of whom share a strong direct interest in clearly formulating and resolving these problems. There were 46 participants, most of whom have been actively engaged in simulations of Hamiltonian models of condensed media. A few participants were scientists who are not primarily concerned, themselves, with simulation, but who are deeply involved in the theory of such models

  8. Simulating quantum correlations as a distributed sampling problem

    International Nuclear Information System (INIS)

    Degorre, Julien; Laplante, Sophie; Roland, Jeremie

    2005-01-01

    It is known that quantum correlations exhibited by a maximally entangled qubit pair can be simulated with the help of shared randomness, supplemented with additional resources, such as communication, postselection or nonlocal boxes. For instance, in the case of projective measurements, it is possible to solve this problem with protocols using one bit of communication or making one use of a nonlocal box. We show that this problem reduces to a distributed sampling problem. We give a new method to obtain samples from a biased distribution, starting with shared random variables following a uniform distribution, and use it to build distributed sampling protocols. This approach allows us to derive, in a simpler and unified way, many existing protocols for projective measurements, and extend them to positive operator value measurements. Moreover, this approach naturally leads to a local hidden variable model for Werner states

  9. Design and Application of Interactive Simulations in Problem-Solving in University-Level Physics Education

    Science.gov (United States)

    Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel

    2016-01-01

    In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving…

  10. Proceedings of EPRI/DOE workshop on nuclear industry valve problems

    International Nuclear Information System (INIS)

    Sprung, J.L.

    1981-01-01

    Representatives from 29 nuclear industry organizations (11 valve manufacturers, 4 nuclear steam supply system vendors, 5 utilities, 3 national laboratories, 2 architect/engineering firms, the Department of Energy (DOE), EPRI, and 2 others) attended the workshop. Working sessions on key valves and on valve stem and seat leakage developed the following recommendations: (1) establish a small permanent expert staff to collect, analyze, and disseminate information about nuclear valve problems; (2) perform generic key valve programs for pressurized water reactors and for boiling water reactors, and several plant specific key valve programs, the latter to demonstrate the cost-effectiveness of such studies; (3) confirm the identity of, define, and initiate needed longer term research and development programs dealing with seat and stem leakage; and (4) establish an industry working group to review and advise on these efforts. Separate abstracts were prepared for three papers which are included in the appendix

  11. Simulation of Industrial Wastewater Treatment from the Suspended Impurities into the Flooded Waste Mining Workings

    Science.gov (United States)

    Bondareva, L.; Zakharov, Yu; Goudov, A.

    2017-04-01

    The paper is dedicated to the mathematical model of slurry wastewater treatment and disposal in a flooded mine working. The goal of the research is to develop and analyze the mathematical model of suspended impurities flow and distribution. Impurity sedimentation model is under consideration. Due to the sediment compaction problem solution domain can be modified. The model allows making a forecast whether volley emission is possible. Numerical simulation results for “Kolchuginskaya” coal mine presented. Impurity concentration diagrams in outflow corresponding to the real full-scale data obtained. Safely operation time mine workings like a wastewater treatment facility are estimated. The carried out calculations demonstrate that the method of industrial wastewater treatment in flooded waste mine workings can be put into practice but it is very important to observe all the processes going on to avoid volley emission of accumulated impurities.

  12. Reliability theory for repair service organization simulation and increase of innovative attraction of industrial enterprises

    Science.gov (United States)

    Dolzhenkova, E. V.; Iurieva, L. V.

    2018-05-01

    The study presents the author's algorithm for the industrial enterprise repair service organization simulation based on the reliability theory, as well as the results of its application. The monitoring of the industrial enterprise repair service organization is proposed to perform on the basis of the enterprise's state indexes for the main resources (equipment, labour, finances, repair areas), which allows quantitative evaluation of the reliability level as a resulting summary rating of the said parameters and the ensuring of an appropriate level of the operation reliability of the serviced technical objects. Under the conditions of the tough competition, the following approach is advisable: the higher efficiency of production and a repair service itself, the higher the innovative attractiveness of an industrial enterprise. The results of the calculations show that in order to prevent inefficient losses of production and to reduce the repair costs, it is advisable to apply the reliability theory. The overall reliability rating calculated on the basis of the author's algorithm has low values. The processing of the statistical data forms the reliability characteristics for the different workshops and services of an industrial enterprise, which allows one to define the failure rates of the various units of equipment and to establish the reliability indexes necessary for the subsequent mathematical simulation. The proposed simulating algorithm contributes to an increase of the efficiency of the repair service organization and improvement of the innovative attraction of an industrial enterprise.

  13. Computational problems in Arctic Research

    International Nuclear Information System (INIS)

    Petrov, I

    2016-01-01

    This article is to inform about main problems in the area of Arctic shelf seismic prospecting and exploitation of the Northern Sea Route: simulation of the interaction of different ice formations (icebergs, hummocks, and drifting ice floes) with fixed ice-resistant platforms; simulation of the interaction of icebreakers and ice- class vessels with ice formations; modeling of the impact of the ice formations on the underground pipelines; neutralization of damage for fixed and mobile offshore industrial structures from ice formations; calculation of the strength of the ground pipelines; transportation of hydrocarbons by pipeline; the problem of migration of large ice formations; modeling of the formation of ice hummocks on ice-resistant stationary platform; calculation the stability of fixed platforms; calculation dynamic processes in the water and air of the Arctic with the processing of data and its use to predict the dynamics of ice conditions; simulation of the formation of large icebergs, hummocks, large ice platforms; calculation of ridging in the dynamics of sea ice; direct and inverse problems of seismic prospecting in the Arctic; direct and inverse problems of electromagnetic prospecting of the Arctic. All these problems could be solved by up-to-date numerical methods, for example, using grid-characteristic method. (paper)

  14. Present status and problems of remote systems technology in nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This reports the activities of Special Committee on Remote Systems Technology, Atomic Energy Society of Japan, during the period from Oct. 1984 to Sep. 1988. The Committee studied and reviewed the present status and problems of remote operation and maintenance in various fields of nuclear industry. Reported items are; reactor operation, reprocessing, nuclear fusion and decommissioning. It also reviews robotics and remote systems tehcnology applied to space and marine development.

  15. Present status and problems of remote systems technology in nuclear industry

    International Nuclear Information System (INIS)

    1989-01-01

    This reports the activities of Special Committee on Remote Systems Technology, Atomic Energy Society of Japan, during the period from Oct. 1984 to Sep. 1988. The Committee studied and reviewed the present status and problems of remote operation and maintenance in various fields of nuclear industry. Reported items are; reactor operation, reprocessing, nuclear fusion and decommissioning. It also reviews robotics and remote systems tehcnology applied to space and marine development. (author)

  16. Simulating a singularity-free universe outside the problem boundary in poisson

    International Nuclear Information System (INIS)

    Halbach, K.; Schlueter, R.

    1992-01-01

    An exact analytical solution developed from the Dirichlet problem exterior to a circle is employed in the magnetostatics code POISSON to provide a boundary condition option which simulates a singularity-free universe external to the problem domain. Problems with domains of large unequal extents in perpendicular directions are treated by first conformally mapping the exterior of an ellipse onto the exterior of the unit circle. Problems exhibiting symmetry in one or two planes are modeled using a semi or quarter, respectively, in conjunction with the singularity-free rest-of-universe boundary condition

  17. Risk factors in equine transport-related health problems: A survey of the Australian equine industry.

    Science.gov (United States)

    Padalino, B; Raidal, S L; Hall, E; Knight, P; Celi, P; Jeffcott, L; Muscatello, G

    2017-07-01

    Transportation can affect equine health and is a potential source of economic loss to the industry. To identify journey (duration, vehicle, commercial or noncommercial) and horse (sex, age, breed, use, amateur or professional status) characteristics associated with the development of transport-related health problems in horses. Cross-sectional online survey. An online survey was conducted targeting amateur and professional participants in the Australian equine industry; eligible respondents were required to organise horse movements at least monthly. Respondents provided details of the last case of a transport-related health problem that had affected their horse(s). Associations between type of health problem, journey and horse characteristics were examined with multivariable multinomial regression analysis. Based on 214 responses, health problems were classified as injuries, muscular problems, heat stroke, gastrointestinal and respiratory problems, and death or euthanasia. Respiratory problems were reported most frequently (33.7%), followed by gastrointestinal problems (23.8%) and traumatic injuries (16.3%). The type of health problem was associated with journey duration (Pproblems, and death or euthanasia) were more likely to occur on long journeys. Using Standardbreds as the reference group, Thoroughbreds, Arabians and Warmbloods were more likely to experience a severe illness than an injury. Self-selected participation in the study and the self-reported nature of transport-related problems. Horses undertaking journeys of longer than 24 h are at greater risk for the development of severe disease or death. Further studies on long-haul transportation effects are required to safeguard the welfare of horses moved over long distances. © 2016 EVJ Ltd.

  18. Evaluating operator performance on full-scope simulators: A pragmatic approach to an intractable measurement problem

    International Nuclear Information System (INIS)

    Fuld, R.

    1989-01-01

    Industry trends toward full-scope, plant-referenced control room simulators have accelerated. The cost of such training is high, but the cost of training ineffectiveness is even higher if it permits serious errors or operator disqualification to occur. Effective measures of operator performance are needed, but the complexity of the task environment and the many aspects of and requirements for operator performance conspire to make such measurement a challenging problem. Combustion Engineering (C-E) Owners' Group task No. 572 was undertaken to develop a tractable and effective methodology for evaluating team performance in a requalification context on full-scope simulator scenarios. The following concepts were pursued as design goals for the method: 1. validity; 2. sensitivity; 3. reliability; 4. usability. In addition, the resulting approach was to meet the requirements of ES-601, Implementation Guidance of the NRC for Administration of Requalifying Exams. A survey of existing evaluation tools and techniques was made to determine the strengths and weaknesses of each. Based on those findings, a multimethod approach was developed drawing on the combined strengths of several general methods. The paper discusses procedural milestones, comments as subjective ratings, failure criteria, and tracked plant parameters

  19. Review of concentrating solar thermal power industry in China: Status quo, problems, trend and countermeasures

    Science.gov (United States)

    Zou, Jiajun

    2018-01-01

    Concentrating solar thermal power (CSP) industry is a strategic emerging industry in China. Its further development is of great significance for promoting the energy revolution, achieving energy saving and emission reduction. In this paper, China’s CSP industry is systematically analysed. First of all, the status quo is elaborated from the perspectives of relevant policies and regulations, market and generation technology development. Secondly, the problems and the underlying reasons of China’s CSP industry are deeply studied. On this basis, the future trends of CSP are expounded on the three levels of policy, market and power generation technology. Finally, a series of feasible countermeasures are put forward, designed to promote the development of CSP industry and the transformation of energy structure.

  20. Experiences with linear solvers for oil reservoir simulation problems

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, W.; Janardhan, R. [Los Alamos National Lab., NM (United States); Biswas, D.; Carey, G.

    1996-12-31

    This talk will focus on practical experiences with iterative linear solver algorithms used in conjunction with Amoco Production Company`s Falcon oil reservoir simulation code. The goal of this study is to determine the best linear solver algorithms for these types of problems. The results of numerical experiments will be presented.

  1. Applications of the Monte Carlo simulation in dosimetry and medical physics problems

    International Nuclear Information System (INIS)

    Rojas C, E. L.

    2010-01-01

    At the present time the computers use to solve important problems extends to all the areas. These areas can be of social, economic, of engineering, of basic and applied science, etc. With and appropriate handling of computation programs and information can be carried out calculations and simulations of real models, to study them and to solve theoretical or application problems. The processes that contain random variables are susceptible of being approached with the Monte Carlo method. This is a numeric method that, thanks to the improvements in the processors of the computers, it can apply in many tasks more than what was made in the principles of their practical application (at the beginning of the decade of 1950). In this work the application of the Monte Carlo method will be approached in the simulation of the radiation interaction with the matter, to investigate dosimetric aspects of some problems that exist in the medical physics area. Also, contain an introduction about some historical data and some general concepts related with the Monte Carlo simulation are revised. (Author)

  2. Silk and Sakoku : a simulation analysis of industrial location in Edo period Japan

    OpenAIRE

    ATSUMI, Toshihiro

    2012-01-01

    Japan closed itself to international trade from the 17^ century to the mid-19^ century during the Edo period, known as the Sakoku. After the closure, industries dispersed from western coastal cities to inland areas in western and eastern Japan. This paper investigates how the Sakoku may have aff ected industrial locations within Japan by applying a footloose entrepreneur type geography model to an economy with agricultural raw materials in a continuous space setting. The simulations based on ...

  3. SIAM symposium on control problems in industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This symposium focused on industrial control applications that have benefited from recent mathematical and technological developments. The themes featured included: applications of control techniques in aerospace industry, automotive industry, environmental sciences, manufacturing processes, and petroleum industry; optimal shape design in aerospace applications; optimal design of micro-optics; robust control and H-infinity methods.

  4. The responsibility of industrialized nations in the energy problem

    International Nuclear Information System (INIS)

    Mandel, H.

    1979-01-01

    In view of the fact that some 15% of the world's population today claim some 50% of the world primary energy consumption, while 52% of the world population must be satisfied with 13% of the primary energy consumption, and in view also of an increase in world population of, at present, approx. 2% per annum, the question arises how to meet the increasing energy demand in the world without incurring international crises and grave economic setbacks. This attempt to find a problem solution is made in the light of the studies of the Conservation Commission of the World Energy Conference. The late author of this contribution, Professor Heinrich Mandel, who was an energy expert of international renown, always tried to examine the energy problem from a global point of view. In his last survey paper on the subject he once more dealt with the narrow margin available in the sector of energy policy and with the great responsibility of the industrialized nations towards the developing countries. (orig.) [de

  5. Development of Mortar Simulator with Shell-In-Shell System – Problem of External Ballistics

    Directory of Open Access Journals (Sweden)

    A. Fedaravicius

    2007-01-01

    Full Text Available The shell-in-shell system used in the mortar simulator raises a number of non-standard technical and computational problems starting from the requirement to distribute the propelling blast energy between the warhead and the ballistic barrel, finishing with the requirement that the length of warhead's flight path must be scaled to combat shell firing tables. The design problem of the simulator is split into two parts – the problem of external ballistics where the initial velocities of the warhead must be determined, and the problem of internal ballistics – where the design of the cartridge and the ballistic barrel must be performed.

  6. The Effect of Simulation Games on the Learning of Computational Problem Solving

    Science.gov (United States)

    Liu, Chen-Chung; Cheng, Yuan-Bang; Huang, Chia-Wen

    2011-01-01

    Simulation games are now increasingly applied to many subject domains as they allow students to engage in discovery processes, and may facilitate a flow learning experience. However, the relationship between learning experiences and problem solving strategies in simulation games still remains unclear in the literature. This study, thus, analyzed…

  7. DEVELOPING INDUSTRIAL ROBOT SIMULATION MODEL TUR10-K USING “UNIVERSAL MECHANISM” SOFTWARE COMPLEX

    Directory of Open Access Journals (Sweden)

    Vadim Vladimirovich Chirkov

    2018-02-01

    Full Text Available Manipulation robots are complex spatial mechanical systems having five or six degrees of freedom, and sometimes more. For this reason, modeling manipulative robots movement, even in the kinematic formulation, is a complex mathematical task. If one moves from kinematic modeling of motion to dynamic modeling then there must be taken into account the inertial properties of the modeling object. In this case, analytical constructing of such a complex object mathematical model as a manipulation robot becomes practically impossible. Therefore, special computer-aided design systems, called CAE-systems, are used for modeling complex mechanical systems. The purpose of the paper is simulation model construction of a complex mechanical system, such as the industrial robot TUR10-K, to obtain its dynamic characteristics. Developing such models makes it possible to reduce the complexity of designing complex systems process and to obtain the necessary characteristics. Purpose. Developing the simulation model of the industrial robot TUR10-K and obtaining dynamic characteristics of the mechanism. Methodology: the article is used a computer simulation method. Results: There is obtained the simulation model of the robot and its dynamic characteristics. Practical implications: the results can be used in the mechanical systems design and various simulation models.

  8. INTRODUCCIÓN DE ELEMENTOS DE MEMORIA EN EL MÉTODO SIMULATED ANNEALING PARA RESOLVER PROBLEMAS DE PROGRAMACIÓN MULTIOBJETIVO DE MÁQUINAS PARALELAS INTRODUCTION OF MEMORY ELEMENTS IN SIMULATED ANNEALING METHOD TO SOLVE MULTIOBJECTIVE PARALLEL MACHINE SCHEDULING PROBLEMS

    Directory of Open Access Journals (Sweden)

    Felipe Baesler

    2008-12-01

    Full Text Available El presente artículo introduce una variante de la metaheurística simulated annealing, para la resolución de problemas de optimización multiobjetivo. Este enfoque se demonina MultiObjective Simulated Annealing with Random Trajectory Search, MOSARTS. Esta técnica agrega al algoritmo Simulated Annealing elementos de memoria de corto y largo plazo para realizar una búsqueda que permita balancear el esfuerzo entre todos los objetivos involucrados en el problema. Los resultados obtenidos se compararon con otras tres metodologías en un problema real de programación de máquinas paralelas, compuesto por 24 trabajos y 2 máquinas idénticas. Este problema corresponde a un caso de estudio real de la industria regional del aserrío. En los experimentos realizados, MOSARTS se comportó de mejor manera que el resto de la herramientas de comparación, encontrando mejores soluciones en términos de dominancia y dispersión.This paper introduces a variant of the metaheuristic simulated annealing, oriented to solve multiobjective optimization problems. This technique is called MultiObjective Simulated Annealing with Random Trajectory Search (MOSARTS. This technique incorporates short an long term memory concepts to Simulated Annealing in order to balance the search effort among all the objectives involved in the problem. The algorithm was tested against three different techniques on a real life parallel machine scheduling problem, composed of 24 jobs and two identical machines. This problem represents a real life case study of the local sawmill industry. The results showed that MOSARTS behaved much better than the other methods utilized, because found better solutions in terms of dominance and frontier dispersion.

  9. Numerical simulation of an elementary Vortex-Induced-Vibration problem by using fully-coupled fluid solid system computation

    Directory of Open Access Journals (Sweden)

    M Pomarède

    2016-09-01

    Full Text Available Numerical simulation of Vortex-Induced-Vibrations (VIV of a rigid circular elastically-mounted cylinder submitted to a fluid cross-flow has been extensively studied over the past decades, both experimentally and numerically, because of its theoretical and practical interest for understanding Flow-Induced-Vibrations (FIV problems. In this context, the present article aims to expose a numerical study based on fully-coupled fluid-solid computations compared to previously published work [34], [36]. The computational procedure relies on a partitioned method ensuring the coupling between fluid and structure solvers. The fluid solver involves a moving mesh formulation for simulation of the fluid structure interface motion. Energy exchanges between fluid and solid models are ensured through convenient numerical schemes. The present study is devoted to a low Reynolds number configuration. Cylinder motion magnitude, hydrodynamic forces, oscillation frequency and fluid vortex shedding modes are investigated and the “lock-in” phenomenon is reproduced numerically. These numerical results are proposed for code validation purposes before investigating larger industrial applications such as configurations involving tube arrays under cross-flows [4].

  10. Success Skills for the Textile Industry: Problem Solving (SS3). Workforce 2000 Partnership.

    Science.gov (United States)

    Enterprise State Junior Coll., AL.

    This curriculum package on problem solving is a product of the Workforce 2000 Partnership, which combined the resources of four educational partners and four industrial partners in Alabama, Georgia, and South Carolina to provide education and training in communication, computation, and critical thinking to employees in the apparel, carpet, and…

  11. Utility application of simulation software

    International Nuclear Information System (INIS)

    Sudduth, A.L.

    1986-01-01

    The purpose of this paper is to discuss dynamic system simulation from the perspective of a successful utility user. In it, four aspects of the issue of utility use of simulation will be addressed: (1) What simulation software is available to utilities which can be of practical assistance with a modest investment in staff and training. (2) To what specific problems can utilities apply the technique of simulation and achieve reasonably cost effective results. (3) What the advantages are of in-house dynamic simulation capability, as opposed to depending on NSSS vendors or consultants. (4) What the prospects are for wider use of dynamic simulation in the utility industry

  12. Optimal Results and Numerical Simulations for Flow Shop Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Tao Ren

    2012-01-01

    Full Text Available This paper considers the m-machine flow shop problem with two objectives: makespan with release dates and total quadratic completion time, respectively. For Fm|rj|Cmax, we prove the asymptotic optimality for any dense scheduling when the problem scale is large enough. For Fm‖ΣCj2, improvement strategy with local search is presented to promote the performance of the classical SPT heuristic. At the end of the paper, simulations show the effectiveness of the improvement strategy.

  13. Finding Solutions to Different Problems Simultaneously in a Multi-molecule Simulated Reactor

    Directory of Open Access Journals (Sweden)

    Jaderick P. Pabico

    2014-12-01

    Full Text Available – In recent years, the chemical metaphor has emerged as a computational paradigm based on the observation of different researchers that the chemical systems of living organisms possess inherent computational properties. In this metaphor, artificial molecules are considered as data or solutions, while the interactions among molecules are defined by an algorithm. In recent studies, the chemical metaphor was used as a distributed stochastic algorithm that simulates an abstract reactor to solve the traveling salesperson problem (TSP. Here, the artificial molecules represent Hamiltonian cycles, while the reactor is governed by reactions that can re-order Hamiltonian cycles. In this paper, a multi-molecule reactor (MMR-n that simulates chemical catalysis is introduced. The MMR-n solves in parallel three NP-hard computational problems namely, the optimization of the genetic parameters of a plant growth simulation model, the solution to large instances of symmetric and asymmetric TSP, and the static aircraft landing scheduling problems (ALSP. The MMR-n was shown as a computational metaphor capable of optimizing the cultivar coefficients of CERES-Rice model, and at the same time, able to find solutions to TSP and ALSP. The MMR-n as a computational paradigm has a better computational wall clock time compared to when these three problems are solved individually by a single-molecule reactor (MMR-1.

  14. Development Of Entrepreneur Learning Model Based On Problem Based Learning To Increase Competency Independence And Creativity Students Of Industrial Engineering

    Directory of Open Access Journals (Sweden)

    Leola Dewiyani

    2017-10-01

    Full Text Available Currently it is undeniable that the competition to get a job is very tight and of course universities have an important role in printing human resources that can compete globally not least with the Department of Industrial Engineering Faculty of Engineering Muhammadiyah University of Jakarta FT UMJ. Problems that occur is based on the analysis obtained from the track record of graduates researchers found that 60 percent of students of Industrial Engineering FT UMJ work not in accordance with the level of education owned so financially their income is still below the standard. This study aims to improve the competence of students of Industrial Engineering Department FT UMJ in entrepreneurship courses especially through the development of Problem Based Learning based learning model. Specific targets of this research were conducted with the aim to identify and analyze the need to implement learning model based on Problem Based Learning Entrepreneurship and to design and develop the model of entrepreneurship based on Problem Based Learning to improve the competence independence and creativity of Industrial Engineering students of FT UMJ in Entrepreneurship course. To achieve the above objectives this research uses research and development R amp D method. The product produced in this research is the detail of learning model of entrepreneurial model based on Problem Based Learning entrepreneurship model based on Problem Based Learning and international journals

  15. Simulation Modeling by Classification of Problems: A Case of Cellular Manufacturing

    International Nuclear Information System (INIS)

    Afiqah, K N; Mahayuddin, Z R

    2016-01-01

    Cellular manufacturing provides good solution approach to manufacturing area by applying Group Technology concept. The evolution of cellular manufacturing can enhance performance of the cell and to increase the quality of the product manufactured but it triggers other problem. Generally, this paper highlights factors and problems which emerge commonly in cellular manufacturing. The aim of the research is to develop a thorough understanding of common problems in cellular manufacturing. A part from that, in order to find a solution to the problems exist using simulation technique, this classification framework is very useful to be adapted during model building. Biology evolution tool was used in the research in order to classify the problems emerge. The result reveals 22 problems and 25 factors using cladistic technique. In this research, the expected result is the cladogram established based on the problems in cellular manufacturing gathered. (paper)

  16. Parallel Simulation of Loosely Timed SystemC/TLM Programs: Challenges Raised by an Industrial Case Study

    Directory of Open Access Journals (Sweden)

    Denis Becker

    2016-05-01

    Full Text Available Transaction level models of systems-on-chip in SystemC are commonly used in the industry to provide an early simulation environment. The SystemC standard imposes coroutine semantics for the scheduling of simulated processes, to ensure determinism and reproducibility of simulations. However, because of this, sequential implementations have, for a long time, been the only option available, and still now the reference implementation is sequential. With the increasing size and complexity of models, and the multiplication of computation cores on recent machines, the parallelization of SystemC simulations is a major research concern. There have been several proposals for SystemC parallelization, but most of them are limited to cycle-accurate models. In this paper we focus on loosely timed models, which are commonly used in the industry. We present an industrial context and show that, unfortunately, most of the existing approaches for SystemC parallelization can fundamentally not apply in this context. We support this claim with a set of measurements performed on a platform used in production at STMicroelectronics. This paper surveys existing techniques, presents a visualization and profiling tool and identifies unsolved challenges in the parallelization of SystemC models at transaction level.

  17. Teaching problem-solving skills to nuclear engineering students

    Science.gov (United States)

    Waller, E.; Kaye, M. H.

    2012-08-01

    Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and accurate analysis of the problems, design of solutions (focusing on public safety, environmental stewardship and ethics), solution execution and monitoring results. A three-month course in problem solving, modelling and simulation was designed and a collaborative approach was undertaken with instructors from both industry and academia. Training was optimised for the laptop-based pedagogy, which provided unique advantages for a course that includes modelling and simulation components. The concepts and tools learned as part of the training were observed to be utilised throughout the duration of student university studies and interviews with students who have entered the workforce indicate that the approaches learned and practised are retained long term.

  18. Solving iTOUGH2 simulation and optimization problems using the PEST protocol

    Energy Technology Data Exchange (ETDEWEB)

    Finsterle, S.A.; Zhang, Y.

    2011-02-01

    The PEST protocol has been implemented into the iTOUGH2 code, allowing the user to link any simulation program (with ASCII-based inputs and outputs) to iTOUGH2's sensitivity analysis, inverse modeling, and uncertainty quantification capabilities. These application models can be pre- or post-processors of the TOUGH2 non-isothermal multiphase flow and transport simulator, or programs that are unrelated to the TOUGH suite of codes. PEST-style template and instruction files are used, respectively, to pass input parameters updated by the iTOUGH2 optimization routines to the model, and to retrieve the model-calculated values that correspond to observable variables. We summarize the iTOUGH2 capabilities and demonstrate the flexibility added by the PEST protocol for the solution of a variety of simulation-optimization problems. In particular, the combination of loosely coupled and tightly integrated simulation and optimization routines provides both the flexibility and control needed to solve challenging inversion problems for the analysis of multiphase subsurface flow and transport systems.

  19. Industrialization of western region of ukraine: problems of environmental consequences management

    Directory of Open Access Journals (Sweden)

    O. M. Malyarchuk

    2015-12-01

    Full Text Available The article focuses on the consequences of industrialization of the western region of the Ukrainian SSR – large-scale construction industry provided jobs for the active population of the region, led to the expansion of infrastructure of settlements and towns, strengthened social sphere and became a positive factor for the development of the western regions of Ukraine. However, due to the increased production capacity natural resources got depleted. The ability of ecosystems to self-healing and self-cleaning was not taken into account, which caused devastating impact on nature and human health. Uncontrolled industrial pollution of air, water and land resources became a common phenomenon for the urbanized western region. Promoting environmental knowledge and declaration of achievement of significant progress in official documents gave no mechanisms to solve environmental problems. Overcoming the difficulties of the past is connected with the Ukraine had been being a part of the USSR. The leading place took environmental issues. Poor environmental condition of the whole country was not only caused by the world’s largest man-made disaster on the Chernobyl nuclear plant in April 1986, but also intensive industrialization and collectivization. Full conversion of the economy and agriculture in the middle of the last century led to the growth of anthropogenic impact on the environment. A radical break steady of socio-political and socio-economic life took place in western Ukraine in the second half of the twentieth century. Party-Soviet government in a short time made a «socialist transformation» and social progress was considered only as a means to achieve this goal. A number of issues concerning environmental protection, safety of life, were ignored. Environmental protection, regulation of environmental and economic activities, guaranteeing rights of Ukrainian citizens to environmental safety is currently among the national priorities of the

  20. Utilisation of simulation in industrial design and resulting business opportunities (SISU) - MASIT18

    Energy Technology Data Exchange (ETDEWEB)

    Olin, M.; Leppaevuori, J.; Manninen, J. (VTT Technical Research Centre of Finland, Espoo (Finland)); Valli, A.; Hasari, H.; Koistinen, A.; Leppaenen, S. (Helsinki Polytechnic Stadia, City of Helsinki, Helsinki (Finland)); Lahti, S. (EVTEK University of Applied Sciences, Vantaa (Finland))

    2008-07-01

    In the SISU project, over 10 case studies are carried out in many different fields and applications. Results and experience of developing simulation applications have started to accumulate. One of the most important results this far is that there are many common features, both good and bad, between our test cases. Simulation is a fast, reliable, and often low risk method of studying different systems and processes. On the other hand, many applications need very expensive licences, plenty of parametric data and highly specialised knowledge in order to produce really valuable results. Industrial partners are acting like real customers in the case studies. We hope that this methodology will help us to answer our main question: how do we create a value chain from model development via model application for end users? The best thing to happen will be if partners learn to apply simulation productively. Other scientists and companies will follow, and new value chains will mushroom. In the case study of Mamec and EVTEK - Mixing model - the aim is to develop a fluid mechanical model for a mixing chamber. This study is similar to the preceding case of Watrec. In this study, the main problems have been in material properties area, because of non-Newtonian fluids and multiphase flows. Material property parameters of the non-Newtonian power law have been defined and flow field simulations have started. In the case study of Fortum and EVTEK - MDR - Measurement data reconciliation - the aim is to apply MDR in a power plant environment and study the possibility of developing a commercial additional tool for power plant simulation through the well-proven MDR technique based on linear filtering theory. The MDR method has been applied, for example, to energy and chemical processes. MDR is closely connected with system maintenance, simulation pre-processing and process diagnostics. Experimental work has proceeded from simple unit processes to large and complicated process systems. One

  1. Methodology for digital radiography simulation using the Monte Carlo code MCNPX for industrial applications

    International Nuclear Information System (INIS)

    Souza, E.M.; Correa, S.C.A.; Silva, A.X.; Lopes, R.T.; Oliveira, D.F.

    2008-01-01

    This work presents a methodology for digital radiography simulation for industrial applications using the MCNPX radiography tally. In order to perform the simulation, the energy-dependent response of a BaFBr imaging plate detector was modeled and introduced in the MCNPX radiography tally input. In addition, a post-processing program was used to convert the MCNPX radiography tally output into 16-bit digital images. Simulated and experimental images of a steel pipe containing corrosion alveoli and stress corrosion cracking were compared, and the results showed good agreement between both images

  2. Anaerobic Digestion and Biogas Potential: Simulation of Lab and Industrial-Scale Processes

    Directory of Open Access Journals (Sweden)

    Ihsan Hamawand

    2015-01-01

    Full Text Available In this study, a simulation was carried out using BioWin 3.1 to test the capability of the software to predict the biogas potential for two different anaerobic systems. The two scenarios included: (1 a laboratory-scale batch reactor; and (2 an industrial-scale anaerobic continuous lagoon digester. The measured data related to the operating conditions, the reactor design parameters and the chemical properties of influent wastewater were entered into BioWin. A sensitivity analysis was carried out to identify the sensitivity of the most important default parameters in the software’s models. BioWin was then calibrated by matching the predicted data with measured data and used to simulate other parameters that were unmeasured or deemed uncertain. In addition, statistical analyses were carried out using evaluation indices, such as the coefficient of determination (R-squared, the correlation coefficient (r and its significance (p-value, the general standard deviation (SD and the Willmott index of agreement, to evaluate the agreement between the software prediction and the measured data. The results have shown that after calibration, BioWin can be used reliably to simulate both small-scale batch reactors and industrial-scale digesters with a mean absolute percentage error (MAPE of less than 10% and very good values of the indexes. Furthermore, by changing the default parameters in BioWin, which is a way of calibrating the models in the software, as well, this may provide information about the performance of the digester. Furthermore, the results of this study showed there may be an over estimation for biogas generated from industrial-scale digesters. More sophisticated analytical devices may be required for reliable measurements of biogas quality and quantity.

  3. HPC Co-operation between industry and university

    International Nuclear Information System (INIS)

    Ruhle, R.

    2003-01-01

    The full text of publication follows. Some years ago industry and university were using the same kind of high performance computers. Therefore it seemed appropriate to run the systems in common. Achieved synergies are larger systems to have better capabilities, to share skills in operating and using the system and to have less operating cost because of larger scale of operations. An example for a business model which allows that kind of co-operation would be demonstrated. Recently more and more simulations especially in the automotive industry are using PC clusters. A small number of PC's are used for one simulation, but the cluster is used for a large number of simulations as a throughput device. These devices are easily installed on the department level and it is difficult to achieve better cost on a central site, mainly because of the cost of the network. This is in contrast to the scientific need which still needs capability computing. In the presentation, strategies will be discussed for which cooperation potential in HPC (high performance computing) still exists. These are: to install heterogeneous computer farms, which allow to use the best computer for each application, to improve the quality of large scale simulation models to be used in design calculations or to form expert teams from industry and university to solve difficult problems in industry applications. Some examples of this co-operation are shown

  4. Removal of cadmium, copper, lead and zinc from simulated industrial effluents using silica powder

    International Nuclear Information System (INIS)

    Javed, T.; Awan, A.; Arshad, M.; Khan, S.N.

    2013-01-01

    Rapid industrial development have led to the recognition and increasing understanding of interrelationship between pollution, public health and environment. Industrial development results in the generation of industrial effluents, and if untreated results in water, sediment and soil pollution. In Pakistan most of the industrial effluents are discharged into surrounding ecosystems without any treatment. Industrial wastes and emission contain toxic and hazardous substances, most of which are detrimental to human health. Extensive efforts are being made around the world for the removal of heavy metal from industrial effluents. A laboratory scale study was designed for removal of Cd, Cu, Pb and Zn from simulated solutions at various weight of silica (0.5gm, 1gm, 2 gm, 3gm and 4 gm), Voltammeter was used to quantify the metals. Maximum removal of all metals was achieved with 4 gm of silica. Absorption of lead onto silic a was higher than other metals. (author)

  5. A causal reasoning for the simulation of continuous industrial processes

    International Nuclear Information System (INIS)

    Leyval, L.

    1991-01-01

    This report describes an on-line simulation tool to be integrated in a supervision support system for industrial continuous processes. The aim is to provide operators with the future behaviour of the process after significant modifications have been detected on some inputs or on measurable disturbances. A nuclear waste processing plant is used to illustrate the method: the process is modeled by a causal graph, whose nodes are the variables relevant for the operators, and the arcs the cause-effect relationships between them. Each of the arcs support a qualitative transfer function (QTF), parameterized by a delay, a static gain and a settling time. This model is the knowledge base used by the simulator. The evolution of a variable is represented by a piecewise linear function. The simulation algorithm aims to propagate the evolutions from a variable into another one in the graph thanks to the QTFs. It leads to the concept of event, a basic function constituted with a step and a ramp. 38 fig., 6 ref

  6. Organizational Communication Competence: The Development of an Industrial Simulation to Teach Adaptive Skills.

    Science.gov (United States)

    Goodall, H. Lloyd, Jr.

    1982-01-01

    Examines the idea of organizational communication competence and describes how behavioral, cognitive, and performance objectives can be developed for a simulation course. Explains how the course works using small groups, organizational problems, and problem-solving discussions. Includes a sample syllabus with evaluation forms, a discussion of…

  7. FLAG Simulations of the Elasticity Test Problem of Gavrilyuk et al.

    Energy Technology Data Exchange (ETDEWEB)

    Kamm, James R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Runnels, Scott R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Canfield, Thomas R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carney, Theodore C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-04-23

    This report contains a description of the impact problem used to compare hypoelastic and hyperelastic material models, as described by Gavrilyuk, Favrie & Saurel. That description is used to set up hypoelastic simulations in the FLAG hydrocode.

  8. Simulation and gaming as a support tool for lean manufacturing systems - a case example from industry

    NARCIS (Netherlands)

    van der Zee, DJ; Slomp, J; Kuhl, M.E.; Steiger, N.M.; Armstrong, F.B.; Joines, J.

    2005-01-01

    In this article we illustrate how simulation and gaming can be used to support lean manufacturing systems. More in particular we study a case example from industry - a manual assembly line for mail-inserting systems - for which we have developed a simulation game. This paper focuses on the

  9. Fifth Anniversary youth scientifically-practical conference Nuclear-industrial complex of Ural: problems and prospects. Theses of reports

    International Nuclear Information System (INIS)

    2009-01-01

    Theses of reports of the Fifth Anniversary youth scientifically-practical conference Nuclear-industrial complex of Ural: problems and prospects (21-23 April 2009, Ozersk) are presented. The book contains abstracts of papers of fourth thematic sections: SNF reprocessing: science and industry; Radioecology and radiobiology; Advanced science-intensive technologies and materials; Education and training for NFC plants

  10. 3D Modeling and Simulation for Electromagnetic Non-Destructive Testing- Problems and Limitations

    International Nuclear Information System (INIS)

    Ilham Mukriz Zainal Abidin; Nurul Ain Ahmad Latif

    2011-01-01

    Non-Destructive Testing (NDT) plays a critical role in nuclear power plants (NPPs) for life cycle management; such testing requires specialists with various NDT related expertise with specific equipment. This paper will discuss the importance of 3D modeling and simulation for electromagnetic NDT for critical and complex components in terms of engineering reasoning and physical trials. Results from simulation are presented which show the link established between the measurements and information relating to defects, such as 3D shape, size and location, which facilitates not only forward problem but also inverse modeling involving experimental system specification and configuration; and pattern recognition for 3D defect information. Subsequently, the problems and limitations pertinent to 3D modeling and simulation are then highlighted and areas of improvement are discussed. (author)

  11. An Analysis of Collaborative Problem-Solving Activities Mediated by Individual-Based and Collaborative Computer Simulations

    Science.gov (United States)

    Chang, C.-J.; Chang, M.-H.; Liu, C.-C.; Chiu, B.-C.; Fan Chiang, S.-H.; Wen, C.-T.; Hwang, F.-K.; Chao, P.-Y.; Chen, Y.-L.; Chai, C.-S.

    2017-01-01

    Researchers have indicated that the collaborative problem-solving space afforded by the collaborative systems significantly impact the problem-solving process. However, recent investigations into collaborative simulations, which allow a group of students to jointly manipulate a problem in a shared problem space, have yielded divergent results…

  12. Discrete event simulation and virtual reality use in industry: new opportunities and future trends

    OpenAIRE

    Turner, Christopher; Hutabarat, Windo; Oyekan, John; Tiwari, Ashutosh

    2016-01-01

    This paper reviews the area of combined discrete event simulation (DES) and virtual reality (VR) use within industry. While establishing a state of the art for progress in this area, this paper makes the case for VR DES as the vehicle of choice for complex data analysis through interactive simulation models, highlighting both its advantages and current limitations. This paper reviews active research topics such as VR and DES real-time integration, communication protocols,...

  13. Computer Simulation Western

    International Nuclear Information System (INIS)

    Rasmussen, H.

    1992-01-01

    Computer Simulation Western is a unit within the Department of Applied Mathematics at the University of Western Ontario. Its purpose is the development of computational and mathematical methods for practical problems in industry and engineering and the application and marketing of such methods. We describe the unit and our efforts at obtaining research and development grants. Some representative projects will be presented and future plans discussed. (author)

  14. Interpretation of Word Problems and The Effect of Web Based Educational Simulations on Their Solutions

    Directory of Open Access Journals (Sweden)

    Hasan KARAL

    2010-06-01

    Full Text Available The purpose of this study is to make the students involve with the simulation environment with the developed practice and to develop their problem solving abilities by making easy their understanding of word problems. For this goal, a web based simulation environment which could be manipulated related to the defined movement and pool problems was designed in the light of the defined questions in the curriculum. The research was designed according to semi-experimental pattern which has equalized control group. It was applied in two different 8th grade classes on 44 students in total in the city center of Trabzon in 2008-2009 spring semester. In the research it was benefited from both quantitative and qualitative data collection methods, in the study as the data collection instrument to measure students’ cognitive achievements, it was benefited from word problems achievement test which had 20 items and its KR-20 coefficient was 0,86, observations and from the interviews which were made with the students. The study involved 19 students in experiment group and 25 students in the controlled group. It was used web based education in the experiment group, however, in controlled group, traditional education was used. For the analysis of the data collected in the research, t-test as used for the independent groups. At the end of the research, it was seen that in understanding and solving the word problems, the students in the experiment group who used web based education environment which included simulation environment was more successful than the controlled group who used the traditional method. After the interviews it was concluded that the students in the experiment group had positive thoughts about the web based simulations environment. It is defined that students are more motivated to the lesson and they have an increasing self-confident in problem solving in simulation environment

  15. ANALYSIS AND SIMULATION OF INDUSTRIAL manipulators K 180 by a software MATLAB

    Directory of Open Access Journals (Sweden)

    Slobodan Stefanović

    2014-07-01

    Full Text Available Robotics is a multidisciplinary branch of science that integrates knowledge from many areas of mechanics, electronics, computer science and automation. Due to the large application in practice often goes in some parts of medicine, art, economics. Further in the presentation we will experimentally demonstrate the application of MATLAB 2010 to create industrial robot KR 80 and movement simulations.

  16. A framework for simulation-based optimization demonstrated on reconfigurable robot workcells

    DEFF Research Database (Denmark)

    Atorf, Linus; Schorn, Christoph; Roßmann, Jürgen

    2017-01-01

    Today's trends towards automation and robotics, fueled by the emerging Industry 4.0 paradigm shift, open up many new kinds of control and optimization problems. At the same time, advances in 3D simulation technology lead to ever-improving simulation models and algorithms in various domains...

  17. A Single-Machine Two-Agent Scheduling Problem by a Branch-and-Bound and Three Simulated Annealing Algorithms

    Directory of Open Access Journals (Sweden)

    Shangchia Liu

    2015-01-01

    Full Text Available In the field of distributed decision making, different agents share a common processing resource, and each agent wants to minimize a cost function depending on its jobs only. These issues arise in different application contexts, including real-time systems, integrated service networks, industrial districts, and telecommunication systems. Motivated by its importance on practical applications, we consider two-agent scheduling on a single machine where the objective is to minimize the total completion time of the jobs of the first agent with the restriction that an upper bound is allowed the total completion time of the jobs for the second agent. For solving the proposed problem, a branch-and-bound and three simulated annealing algorithms are developed for the optimal solution, respectively. In addition, the extensive computational experiments are also conducted to test the performance of the algorithms.

  18. Simulation-Based Optimization of Camera Placement in the Context of Industrial Pose Estimation

    DEFF Research Database (Denmark)

    Jørgensen, Troels Bo; Iversen, Thorbjørn Mosekjær; Lindvig, Anders Prier

    2018-01-01

    In this paper, we optimize the placement of a camera in simulation in order to achieve a high success rate for a pose estimation problem. This is achieved by simulating 2D images from a stereo camera in a virtual scene. The stereo images are then used to generate 3D point clouds based on two diff...

  19. Simulation of erosion in drilling tools for oil and gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Arefi, B.; Settari, A. [Calgary Univ., AB (Canada); Angman, P. [Tesco Corp., Calgary, AB (Canada)

    2004-07-01

    Erosion in oil well drilling tools is a form of wear which occurs when fluid containing solid particles impacts a solid surface. The intensity of erosion is generally measured as the rate of material removal from the surface, and is expressed as E{sub r}, the weight of material removed by unit weight of impacting particles. Erosion can also be reduced by tool improvement and modification, thereby extending the life of drilling tools. To date, no attempt has been made to model the erosion phenomenon in drilling tools. This paper presents a newly developed erosion simulator which is the first design tool for the drilling industry. This work demonstrates that erosion can be simulated. A model was developed to calibrate the erosion coefficients for drilling tool conditions. The mechanism of erosion can be controlled by the impact velocity and angle. Algorithms were developed for transient simulation of the erosion of any surface in 2-dimensional geometry. The Erosion Simulator has been validated and calibrated against data provided by TESCO Corporation's casing drilling tools. The model has been shown to successfully predict and minimize erosion by modifying the tool geometry and metallurgy. 21 refs., 1 tab., 15 figs.

  20. Hybrid Building Performance Simulation Models for Industrial Energy Efficiency Applications

    Directory of Open Access Journals (Sweden)

    Peter Smolek

    2018-06-01

    Full Text Available In the challenge of achieving environmental sustainability, industrial production plants, as large contributors to the overall energy demand of a country, are prime candidates for applying energy efficiency measures. A modelling approach using cubes is used to decompose a production facility into manageable modules. All aspects of the facility are considered, classified into the building, energy system, production and logistics. This approach leads to specific challenges for building performance simulations since all parts of the facility are highly interconnected. To meet this challenge, models for the building, thermal zones, energy converters and energy grids are presented and the interfaces to the production and logistics equipment are illustrated. The advantages and limitations of the chosen approach are discussed. In an example implementation, the feasibility of the approach and models is shown. Different scenarios are simulated to highlight the models and the results are compared.

  1. Multi-period multi-objective electricity generation expansion planning problem with Monte-Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tekiner, Hatice [Industrial Engineering, College of Engineering and Natural Sciences, Istanbul Sehir University, 2 Ahmet Bayman Rd, Istanbul (Turkey); Coit, David W. [Department of Industrial and Systems Engineering, Rutgers University, 96 Frelinghuysen Rd., Piscataway, NJ (United States); Felder, Frank A. [Edward J. Bloustein School of Planning and Public Policy, Rutgers University, Piscataway, NJ (United States)

    2010-12-15

    A new approach to the electricity generation expansion problem is proposed to minimize simultaneously multiple objectives, such as cost and air emissions, including CO{sub 2} and NO{sub x}, over a long term planning horizon. In this problem, system expansion decisions are made to select the type of power generation, such as coal, nuclear, wind, etc., where the new generation asset should be located, and at which time period expansion should take place. We are able to find a Pareto front for the multi-objective generation expansion planning problem that explicitly considers availability of the system components over the planning horizon and operational dispatching decisions. Monte-Carlo simulation is used to generate numerous scenarios based on the component availabilities and anticipated demand for energy. The problem is then formulated as a mixed integer linear program, and optimal solutions are found based on the simulated scenarios with a combined objective function considering the multiple problem objectives. The different objectives are combined using dimensionless weights and a Pareto front can be determined by varying these weights. The mathematical model is demonstrated on an example problem with interesting results indicating how expansion decisions vary depending on whether minimizing cost or minimizing greenhouse gas emissions or pollutants is given higher priority. (author)

  2. Phase-Field Simulation of Microstructure Evolution in Industrial A2214 Alloy During Solidification

    Science.gov (United States)

    Wei, Ming; Tang, Ying; Zhang, Lijun; Sun, Weihua; Du, Yong

    2015-07-01

    By linking to the thermodynamic and atomic mobility databases in Al alloys well established in our research group, the microstructure evolution in industrial A2214 alloy (Al-4.5Cu-0.5Mg-1.0Si, in wt pct) during solidification process was studied by means of two-dimensional phase-field simulation via MICRostructure Evolution Simulation Software in the framework of the multi-phase-field formalism. The thermophysical parameters including interfacial energies and interfacial mobilities were carefully chosen for reproducing the experimental features. The solidification sequence due to the present phase-field simulation conforms to both equilibrium calculation and Scheil simulation. The predicted microstructure reproduces the experimental data very well. These facts indicate that a quantitative phase-field simulation was achieved in the present work. Moreover, the mechanisms of characteristic patterns and microstructure formation were revealed with the aid of the phase-field simulation. In addition, the effect of cooling rate on the secondary dendrite arm spacing and microsegregation was also investigated through comprehensive comparison with the experimental data.

  3. Simulation Gaming as a Social Development Instrument : Dealing with Complex Problems

    NARCIS (Netherlands)

    Klievink, B.; Janssen, M.

    Improving public service delivery is a very complex domain and the complexity is difficult to grasp by stakeholders having various degree of knowledge and involvement. An emergent and promising method for dealing with complex problems is simulation gaming, which can be used to capitalize the

  4. CHANNEL CATFISH INDUSTRY IN THE USA AND THE OFF-FLAVOR PROBLEM

    Directory of Open Access Journals (Sweden)

    Nikola Fijan

    2000-03-01

    Full Text Available The history, the production technology in channel catfish pond farming industry as well as the statistical data on production, processing and product value during past 15 years are presented. The trend of increasing consumption by the population and the presently low prices of grain and soybeans are conductive to further expansion of production. The steady growth of the industry is stimulated by several factors: innovative efforts by farmers, research at the universities and at government institutions some of which have numerous experimental ponds, cooperative extension service for farmers, modern marketing, activities of catfish farming associations, high quality of products from processing plants and vertical integration. The off-flavor in catfish caused by algal metabolites is a major problem in the industry. Genera of algae producing such metabolites, their accumulation in other fish and occurrence in drinking water reservoirs as well as the current emphasis on preventing the entrance of off-flavor contaminated catfish onto the market were reviewed. The main undesirable algal metyabolites are volatile alcohols geosmin and 2-methylisoborneol (MIB. The need for less expensive and quick methods of identifying major off-flavor compounds was pointed out. Research at the University of Arkansas at Pine Bluff, USA, on control of off-flavor algae in experimental ponds by filter-feeding silver carp (Hypophthalmichthys molitrix Val. and tilapias confined in cages showed this approach to be rather promising.

  5. Problems of Modernization of the Industry of the Kabardino-Balkarian Republic (1960–1980

    Directory of Open Access Journals (Sweden)

    Osman A. Zhansitov

    2014-09-01

    Full Text Available The article studies the problems of the development of the industry of the Kabardino-Balkarian Republic in the course of ‘Kosygin’ reform of 1965 realization. The difficulties of the transformation of command-and-control system into more democratic forms of economic administration, which is one of the reasons of reformist initiatives ‘bulk’ are considered.

  6. Modelling of an industrial environment, part 1.: Monte Carlo simulations of photon transport

    International Nuclear Information System (INIS)

    Kis, Z.; Eged, K.; Meckbach, R.; Voigt, G.

    2002-01-01

    After a nuclear accident releasing radioactive material into the environment the external exposures may contribute significantly to the radiation exposure of the population (UNSCEAR 1988, 2000). For urban populations the external gamma exposure from radionuclides deposited on the surfaces of the urban-industrial environments yields the dominant contributions to the total dose to the public (Kelly 1987; Jacob and Meckbach 1990). The radiation field is naturally influenced by the environment around the sources. For calculations of the shielding effect of the structures in complex and realistic urban environments Monte Carlo methods turned out to be useful tools (Jacob and Meckbach 1987; Meckbach et al. 1988). Using these methods a complex environment can be set up in which the photon transport can be solved on a reliable way. The accuracy of the methods is in principle limited only by the knowledge of the atomic cross sections and the computational time. Several papers using Monte Carlo results for calculating doses from the external gamma exposures were published (Jacob and Meckbach 1987, 1990; Meckbach et al. 1988; Rochedo et al. 1996). In these papers the Monte Carlo simulations were run in urban environments and for different photon energies. The industrial environment can be defined as such an area where productive and/or commercial activity is carried out. A good example can be a factory or a supermarket. An industrial environment can rather be different from the urban ones as for the types and structures of the buildings and their dimensions. These variations will affect the radiation field of this environment. Hence there is a need to run new Monte Carlo simulations designed specially for the industrial environments

  7. Large eddy simulations of isothermal confined swirling flow in an industrial gas-turbine

    International Nuclear Information System (INIS)

    Bulat, G.; Jones, W.P.; Navarro-Martinez, S.

    2015-01-01

    Highlights: • We conduct a large eddy simulation of an industrial gas turbine. • The results are compared with measurements obtained under isothermal conditions. • The method reproduces the observed precessing vortex and central vortex cores. • The profiles of mean and rms velocities are found to be captured to a good accuracy. - Abstract: The paper describes the results of a computational study of the strongly swirling isothermal flow in the combustion chamber of an industrial gas turbine. The flow field characteristics are computed using large eddy simulation in conjunction with a dynamic version of the Smagorinsky model for the sub-grid-scale stresses. Grid refinement studies demonstrate that the results are essentially grid independent. The LES results are compared with an extensive set of measurements and the agreement with these is overall good. The method is shown to be capable of reproducing the observed precessing vortex and central vortex cores and the profiles of mean and rms velocities are found to be captured to a good accuracy. The overall flow structure is shown to be virtually independent of Reynolds number

  8. A proposed simulation optimization model framework for emergency department problems in public hospital

    Science.gov (United States)

    Ibrahim, Ireen Munira; Liong, Choong-Yeun; Bakar, Sakhinah Abu; Ahmad, Norazura; Najmuddin, Ahmad Farid

    2015-12-01

    The Emergency Department (ED) is a very complex system with limited resources to support increase in demand. ED services are considered as good quality if they can meet the patient's expectation. Long waiting times and length of stay is always the main problem faced by the management. The management of ED should give greater emphasis on their capacity of resources in order to increase the quality of services, which conforms to patient satisfaction. This paper is a review of work in progress of a study being conducted in a government hospital in Selangor, Malaysia. This paper proposed a simulation optimization model framework which is used to study ED operations and problems as well as to find an optimal solution to the problems. The integration of simulation and optimization is hoped can assist management in decision making process regarding their resource capacity planning in order to improve current and future ED operations.

  9. Cost efficiency of the non-associative flow rule simulation of an industrial component

    Science.gov (United States)

    Galdos, Lander; de Argandoña, Eneko Saenz; Mendiguren, Joseba

    2017-10-01

    In the last decade, metal forming industry is becoming more and more competitive. In this context, the FEM modeling has become a primary tool of information for the component and process design. Numerous researchers have been focused on improving the accuracy of the material models implemented on the FEM in order to improve the efficiency of the simulations. Aimed at increasing the efficiency of the anisotropic behavior modelling, in the last years the use of non-associative flow rule models (NAFR) has been presented as an alternative to the classic associative flow rule models (AFR). In this work, the cost efficiency of the used flow rule model has been numerically analyzed by simulating an industrial drawing operation with two different models of the same degree of flexibility: one AFR model and one NAFR model. From the present study, it has been concluded that the flow rule has a negligible influence on the final drawing prediction; this is mainly driven by the model parameter identification procedure. Even though the NAFR formulation is complex when compared to the AFR, the present study shows that the total simulation time while using explicit FE solvers has been reduced without loss of accuracy. Furthermore, NAFR formulations have an advantage over AFR formulations in parameter identification because the formulation decouples the yield stress and the Lankford coefficients.

  10. High performance discrete event simulations to evaluate complex industrial systems, the case of automatic

    NARCIS (Netherlands)

    Hoekstra, A.G.; Dorst, L.; Bergman, M.; Lagerberg, J.; Visser, A.; Yakali, H.; Groen, F.; Hertzberger, L.O.

    1997-01-01

    We have developed a Modelling and Simulation platform for technical evaluation of Electronic Toll Collection on Motor Highways. This platform is used in a project of the Dutch government to assess the technical feasibility of Toll Collection systems proposed by industry. Motivated by this work we

  11. Corrosion problems and its prevention in nuclear industries

    International Nuclear Information System (INIS)

    Sakae, Yukio; Susukida, Hiroshi; Kowaka, Masamichi; Fujikawa, Hisao.

    1979-01-01

    29 nuclear power plants with 2.56 million kW output are expected to be in operation by 1985 in Japan. The main problems of corrosion in the nuclear reactors in operation at present and promising for the future are as follows: corrosion, denting and stress corrosion cracking in the steam generator tubes for PWRs, stress corrosion cracking in SUS pipings for BWRs, sodium corrosion and mass transfer in FBRs, high temperature gas corrosion in HTGRs, and interaction between coolant, blanket material and structural material in nuclear fusion reactors. In LWRs, the countermeasures based on the experiences in actual plants and the results of simulation tests have attained the good results. Various monitoring systems and the techniques for in-service inspection and preservice inspection have accomplished astonishing progress. These contributed largely to establish the reliability of nuclear power plants. The cases of troubles in primary and secondary systems, the experiences of the corrosion of steam generator tubes and the countermeasures, and the denting troubles occurred in USA and the trend of countermeasures in PWRs, the cases of stress corrosion cracking in SUS 304 and 316 pipings for BWRs, and the problems of various future reactors are described. Unexpected troubles often occur in practical plants of large capacity, therefore the method of predicting tests must be established, and the monitoring of safety must be thorough. (Kako, I.)

  12. Fitting Irregular Shape Figures into Irregular Shape Areas for the Nesting Problem in the Leather Industry

    Directory of Open Access Journals (Sweden)

    Guevara-Palma Luis

    2015-01-01

    Full Text Available The nesting problem of irregular shapes within irregular areas has been studied from several approaches due to their application in different industries. The particular case of cutting leather involves several restrictions that add complexity to this problem, it is necessary to generate products that comply with the quality required by customers This paper presents a methodology for the accommodation of irregular shapes in an irregular area (leather considering the constraints set by the footwear industry, and the results of this methodology when applied by a computer system. The scope of the system is to develop a working prototype that operates under the guidelines of a commercial production line of a sponsor company. Preliminary results got a reduction of 70% of processing time and improvement of 5% to 7% of the area usage when compared with manual accommodation.

  13. Low vision rehabilitation and ocular problems among industrial workers in a developing country.

    Science.gov (United States)

    Omar, R; Knight, V F; Aziz Mohammed, M A

    2014-01-01

    Work-related ocular injuries and illnesses were among the major causes of job absenteeism. This study was conducted to determine if low vision rehabilitation was provided following work-related ocular problems among industrial workers in a developing country. This was a retrospective analysis of case records. Randomly selected records of all employees from the Social Security Organization (SOCSO) Medical Board for 2004 who suffered from ocular injuries and illnesses were selected. Rates of ocular injuries and illnesses according to age, gender, races, types of injuries, types of industries, visual rehabilitation and types of medical interventions were tabulated and analysed. A total of 26 cases of ocular injuries and illnesses were identified where 46.2% suffered from ocular injuries. The remaining 53.8% had ocular and/or systemic diseases. The 40-49-yearold age group suffered the greatest number of injuries (26.92%). Ocular perforating injuries (66.67%) and ocular contusions (33.33%) were the most common types of ocular injury among industrial workers in Kuala Lumpur. Most injuries occurred among workers in the service industry (50%). Almost 60% of these injured workers did not receive any low vision rehabilitation after medical intervention while 25% were given contact lenses or spectacles as rehabilitation and remaining had surgery. The low vision rehabilitation is still unexplored in the management of ocular injuries and illnesses among industrial workers. Introducing low vision rehabilitation can benefit both workers and employers as it provides care beyond spectacles or contact lens prescriptions.

  14. Component simulation in problems of calculated model formation of automatic machine mechanisms

    OpenAIRE

    Telegin Igor; Kozlov Alexander; Zhirkov Alexander

    2017-01-01

    The paper deals with the problems of the component simulation method application in the problems of the automation of the mechanical system model formation with the further possibility of their CAD-realization. The purpose of the investigations mentioned consists in the automation of the CAD-model formation of high-speed mechanisms in automatic machines and in the analysis of dynamic processes occurred in their units taking into account their elasto-inertial properties, power dissipation, gap...

  15. Composing problem solvers for simulation experimentation: a case study on steady state estimation.

    Science.gov (United States)

    Leye, Stefan; Ewald, Roland; Uhrmacher, Adelinde M

    2014-01-01

    Simulation experiments involve various sub-tasks, e.g., parameter optimization, simulation execution, or output data analysis. Many algorithms can be applied to such tasks, but their performance depends on the given problem. Steady state estimation in systems biology is a typical example for this: several estimators have been proposed, each with its own (dis-)advantages. Experimenters, therefore, must choose from the available options, even though they may not be aware of the consequences. To support those users, we propose a general scheme to aggregate such algorithms to so-called synthetic problem solvers, which exploit algorithm differences to improve overall performance. Our approach subsumes various aggregation mechanisms, supports automatic configuration from training data (e.g., via ensemble learning or portfolio selection), and extends the plugin system of the open source modeling and simulation framework James II. We show the benefits of our approach by applying it to steady state estimation for cell-biological models.

  16. Using Elearning techniques to support problem based learning within a clinical simulation laboratory.

    Science.gov (United States)

    Docherty, Charles; Hoy, Derek; Topp, Helena; Trinder, Kathryn

    2004-01-01

    This paper details the results of the first phase of a project that used eLearning to support students' learning within a simulated environment. The locus was a purpose built Clinical Simulation Laboratory (CSL) where the School's newly adopted philosophy of Problem Based Learning (PBL) was challenged through lecturers reverting to traditional teaching methods. The solution, a student-centred, problem-based approach to the acquisition of clinical skills was developed using learning objects embedded within web pages that substituted for lecturers providing instruction and demonstration. This allowed lecturers to retain their facilitator role, and encouraged students to explore, analyse and make decisions within the safety of a clinical simulation. Learning was enhanced through network communications and reflection on video performances of self and others. Evaluations were positive, students demonstrating increased satisfaction with PBL, improved performance in exams, and increased self-efficacy in the performance of nursing activities. These results indicate that an elearning approach can support PBL in delivering a student centred learning experience.

  17. [Health problems and illness of female workers in textile industries].

    Science.gov (United States)

    Soonthorndhada, K

    1989-07-01

    This paper examines 3 major health-related issues: 1) existing health problems and illnesses resulting from physical environmental conditions at workplaces; 2) female workers' perception on illness and health protection; and 3) the relationship between illness and risk factors. The study area is textile factories in Bangkok and its peripheries. Data are drawn from the 1987 Survey of Occupational Health and Textile Industrial Development in Thailand: Effect on Health and Socioeconomics of Female Migrant Workers. This study shows that about 20% of female workers have ill-health problems and illness after a period of working mainly due to high levels of dust and noise, and inadequate light. These conditions are hazardous to the respiratory system (resulting in cough and chest tightness), the hearing system (pains as well as impaired and hearing loss), eye systems (irritation, reduced visual capacity) and skin allergy. Such illnesses are intensified in the long- run. The analysis of variances reveals that education, section of work, perception (particularly mask and ear plug) significantly affect these illnesses. This study concludes that health education and occupational health should be provided in factories with emphasis on health prevention and promotion.

  18. Adaptation Problems of the Post Industrial Heritage on the Example of Selected Objects of Bydgoszcz

    Science.gov (United States)

    Pszczółkowski, Michał

    2016-09-01

    Post-industrial architecture was until recently regarded as devoid of value and importance due to obsolescence, but this awareness has been a clear change in recent years. The old factories become full-fledged cultural heritage, as evidenced by the inclusion of buildings and complexes of this type in the register of monuments and protected by their conservator. More and more often, therefore, one undertakes revitalization of degraded brownfield sites, and within these treatments - conversion works. Specific issues and problems related to the adaptation of industrial facilities are discussed in the article on the basis of selected examples, completed in recent years in Bydgoszcz.

  19. Impact of the year 2000 problem on the nuclear industry

    International Nuclear Information System (INIS)

    Rae, A.C.

    1999-01-01

    The paper presents the activities that are taking place in the UK to regulate the nuclear industry through the Y2K critical dates. It identifies the basic steps which a licensee might be expected to take in addressing the Y2K problem. It also sets out the actions needed by the regulator, firstly to secure an acceptable justification of continued operation from the licensee for each critical date, and secondly to ensure that the regulatory body is itself prepared. A review of the activities towards these goals is provided for 1997 and 1998, some lessons learned from regulating through the first critical date are noted and a look-ahead made to the activities anticipated during 1999 and 2000. (author)

  20. EXPORT-MARKETING PROBLEMS OF SMES: THE CASE OF LUDHIANA APPARELS AND TEXTILE INDUSTRY

    OpenAIRE

    Vohra, Karan

    2008-01-01

    Although, the benefits derived from exporting in an increasingly globalizes marketplace are enormous, but for many small-sized manufacturing firms, the internationalization path is beset by numerous challenges. This research seeks to investigate the perceived level of importance of export-marketing problems and its importance depending on the exporting experience of the firm. In light of certain gaps involving the dearth of major research in the context of Indian Apparel and Textile Industry,...

  1. Efficient Deployment of Key Nodes for Optimal Coverage of Industrial Mobile Wireless Networks.

    Science.gov (United States)

    Li, Xiaomin; Li, Di; Dong, Zhijie; Hu, Yage; Liu, Chengliang

    2018-02-10

    In recent years, industrial wireless networks (IWNs) have been transformed by the introduction of mobile nodes, and they now offer increased extensibility, mobility, and flexibility. Nevertheless, mobile nodes pose efficiency and reliability challenges. Efficient node deployment and management of channel interference directly affect network system performance, particularly for key node placement in clustered wireless networks. This study analyzes this system model, considering both industrial properties of wireless networks and their mobility. Then, static and mobile node coverage problems are unified and simplified to target coverage problems. We propose a novel strategy for the deployment of clustered heads in grouped industrial mobile wireless networks (IMWNs) based on the improved maximal clique model and the iterative computation of new candidate cluster head positions. The maximal cliques are obtained via a double-layer Tabu search. Each cluster head updates its new position via an improved virtual force while moving with full coverage to find the minimal inter-cluster interference. Finally, we develop a simulation environment. The simulation results, based on a performance comparison, show the efficacy of the proposed strategies and their superiority over current approaches.

  2. Developing Clinical Competency in Crisis Event Management: An Integrated Simulation Problem-Based Learning Activity

    Science.gov (United States)

    Liaw, S. Y.; Chen, F. G.; Klainin, P.; Brammer, J.; O'Brien, A.; Samarasekera, D. D.

    2010-01-01

    This study aimed to evaluate the integration of a simulation based learning activity on nursing students' clinical crisis management performance in a problem-based learning (PBL) curriculum. It was hypothesized that the clinical performance of first year nursing students who participated in a simulated learning activity during the PBL session…

  3. Dynamic simulation of industrial Fluidized-bed Catalytic Cracking - FCC unit

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, Argimiro R.; Neumann, Gustavo A.; Trierweiler, Jorge O. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Engenharia Quimica]. E-mail: arge@enq.ufrgs.br; gneumann@enq.ufrgs.br; jorge@enq.ufrgs.br; Santos, Marlova G. [PETROBRAS S.A., Canoas, RS (Brazil). Refinaria Alberto Pasqualini]. E-mail: marlova@petrobras.com.br

    2000-07-01

    In this work a mathematical model for the dynamic simulation of the Fluidized-bed Catalytic Cracking (FCC) Reactor, to be used in the analysis, control, and optimization of this system is developed. Based on the full range of published data in FCC performance and kinetic rates, and adapted to the industrial unit of the PETROBRAS' Alberto Pasqualini Refinery (REFAP), an integrated dynamic model is build up. The model is sufficiently complex to capture the major dynamics effects that occur in this system. The regenerator is modeled as emulsion and bubble phases that exchange mass and heat. The riser is modeled as an adiabatic plug flow reactor. The fluid dynamic is taking into account for the catalyst circulation, and the dynamics of the gas phase and the riser are also considered into the model. The model, represented by a non-linear system of differential-algebraic equations, was written in language C and implemented in MATLAB/SIMULINK. The results are compared with the data obtained from the industrial plant of REFAP. (author)

  4. A Companion Model Approach to Modelling and Simulation of Industrial Processes

    International Nuclear Information System (INIS)

    Juslin, K.

    2005-09-01

    Modelling and simulation provides for huge possibilities if broadly taken up by engineers as a working method. However, when considering the launching of modelling and simulation tools in an engineering design project, they shall be easy to learn and use. Then, there is no time to write equations, to consult suppliers' experts, or to manually transfer data from one tool to another. The answer seems to be in the integration of easy to use and dependable simulation software with engineering tools. Accordingly, the modelling and simulation software shall accept as input such structured design information on industrial unit processes and their connections, as provided for by e.g. CAD software and product databases. The software technology, including required specification and communication standards, is already available. Internet based service repositories make it possible for equipment manufacturers to supply 'extended products', including such design data as needed by engineers engaged in process and automation integration. There is a market niche evolving for simulation service centres, operating in co-operation with project consultants, equipment manufacturers, process integrators, automation designers, plant operating personnel, and maintenance centres. The companion model approach for specification and solution of process simulation models, as presented herein, is developed from the above premises. The focus is on how to tackle real world processes, which from the modelling point of view are heterogeneous, dynamic, very stiff, very nonlinear and only piece vice continuous, without extensive manual interventions of human experts. An additional challenge, to solve the arising equations fast and reliable, is dealt with, as well. (orig.)

  5. Remedies to the problem of child labor: the situation in the apparel industry.

    Science.gov (United States)

    Mazur, J

    1993-09-01

    When you realize how long the problem of child labor has been around, anyone who ventures into the terrain of remedies obviously needs a long memory and not a little optimism. What have we tried? What has worked? And what has not worked? To answer these questions, we must first look at how we have diagnosed the problem. Some say that the return of child labor is due to the present recession. Hard-pressed businesses are looking for cheap and cheaper labor. Sweatshops proliferate. When the recession recedes, so will child labor. If it were that simple, we could all congratulate ourselves on having conducted this enlightened symposium and go home without worrying much more about the problem. The magic hand of the market, in due course, will straighten it all out. Let me tell you something about the apparel industry in New York where new laws and strict enforcement make the only difference. Over 80% of OSHA inspections were triggered by the state's Apparel Task Force.

  6. Pyrite: A blender plugin for visualizing molecular dynamics simulations using industry-standard rendering techniques.

    Science.gov (United States)

    Rajendiran, Nivedita; Durrant, Jacob D

    2018-05-05

    Molecular dynamics (MD) simulations provide critical insights into many biological mechanisms. Programs such as VMD, Chimera, and PyMOL can produce impressive simulation visualizations, but they lack many advanced rendering algorithms common in the film and video-game industries. In contrast, the modeling program Blender includes such algorithms but cannot import MD-simulation data. MD trajectories often require many gigabytes of memory/disk space, complicating Blender import. We present Pyrite, a Blender plugin that overcomes these limitations. Pyrite allows researchers to visualize MD simulations within Blender, with full access to Blender's cutting-edge rendering techniques. We expect Pyrite-generated images to appeal to students and non-specialists alike. A copy of the plugin is available at http://durrantlab.com/pyrite/, released under the terms of the GNU General Public License Version 3. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Model reduction for circuit simulation

    CERN Document Server

    Hinze, Michael; Maten, E Jan W Ter

    2011-01-01

    Simulation based on mathematical models plays a major role in computer aided design of integrated circuits (ICs). Decreasing structure sizes, increasing packing densities and driving frequencies require the use of refined mathematical models, and to take into account secondary, parasitic effects. This leads to very high dimensional problems which nowadays require simulation times too large for the short time-to-market demands in industry. Modern Model Order Reduction (MOR) techniques present a way out of this dilemma in providing surrogate models which keep the main characteristics of the devi

  8. Fundamental Problems in the Operation of the Automotive Parts Industry Small and Medium Businesses in Bangkok and Surrounding Provinces

    OpenAIRE

    P. Thepnarintra

    2015-01-01

    The purposes of this study were to: 1) investigate operation conditions of SME automotive part industry in Bangkok and vicinity and 2) to compare operation problem levels of SME automotive part industry in Bangkok and vicinity according to the sizes of the enterprises. Samples in this study included 196 entrepreneurs of SME automotive part industry in Bangkok and vicinity derived from simple random sampling and calculation from R. V. Krejcie and D. W. Morgan's tables. Res...

  9. A system dynamic simulation model for managing the human error in power tools industries

    Science.gov (United States)

    Jamil, Jastini Mohd; Shaharanee, Izwan Nizal Mohd

    2017-10-01

    In the era of modern and competitive life of today, every organization will face the situations in which the work does not proceed as planned when there is problems occur in which it had to be delay. However, human error is often cited as the culprit. The error that made by the employees would cause them have to spend additional time to identify and check for the error which in turn could affect the normal operations of the company as well as the company's reputation. Employee is a key element of the organization in running all of the activities of organization. Hence, work performance of the employees is a crucial factor in organizational success. The purpose of this study is to identify the factors that cause the increasing errors make by employees in the organization by using system dynamics approach. The broadly defined targets in this study are employees in the Regional Material Field team from purchasing department in power tools industries. Questionnaires were distributed to the respondents to obtain their perceptions on the root cause of errors make by employees in the company. The system dynamics model was developed to simulate the factor of the increasing errors make by employees and its impact. The findings of this study showed that the increasing of error make by employees was generally caused by the factors of workload, work capacity, job stress, motivation and performance of employees. However, this problem could be solve by increased the number of employees in the organization.

  10. Industrial Water Waste, Problems and the Solution

    Directory of Open Access Journals (Sweden)

    Alif Noor Anna

    2004-01-01

    Full Text Available Recently, the long term development in Indonesia has changed agricultural sector to the industrial sector. This development can apparently harm our own people. This is due to the waste that is produced from factories. The waste from various factories seems to have different characteristics. This defference encourages us to be able to find out different of methods of managing waste so that cost can be reduced, especially in water treatment. In order that industrial development and environmental preservation can run together in balance, many institutions involved should be consider, especially in the industrial chain, the environment, and human resource, these three elements can be examined in terms of their tolerance to waste.

  11. Recent simulation results of the magnetic induction tomography forward problem

    Directory of Open Access Journals (Sweden)

    Stawicki Krzysztof

    2016-06-01

    Full Text Available In this paper we present the results of simulations of the Magnetic Induction Tomography (MIT forward problem. Two complementary calculation techniques have been implemented and coupled, namely: the finite element method (applied in commercial software Comsol Multiphysics and the second, algebraic manipulations on basic relationships of electromagnetism in Matlab. The developed combination saves a lot of time and makes a better use of the available computer resources.

  12. Modeling and simulation challenges pursued by the Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Energy Technology Data Exchange (ETDEWEB)

    Turinsky, Paul J., E-mail: turinsky@ncsu.edu [North Carolina State University, PO Box 7926, Raleigh, NC 27695-7926 (United States); Kothe, Douglas B., E-mail: kothe@ornl.gov [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6164 (United States)

    2016-05-15

    The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear power industry that M&S can assist in addressing. To date CASL has developed a multi-physics “core simulator” based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL

  13. Simulation of the Mineração Serra Grande Industrial Grinding Circuit

    Directory of Open Access Journals (Sweden)

    Thiago Oliveira Nunan

    Full Text Available Abstract Increasing throughput during the mining cycle operation frequently generates significant capital gains for a company. However, it is necessary to evaluate plant capacity and expand it for obtaining the required throughput increase. Therefore, studies including different scenarios, installation of new equipment and/or optimization of existing ones are required. This study describes the sampling methodology, sample characterization, modeling and simulation of Mineração Serra Grande industrial grinding circuit, an AngloGold Ashanti company, located in Crixás, State of Goiás, Brazil. The studied scenarios were: (1 adding a third ball mill in series with existing two ball mills, (2 adding a third ball mill in parallel with existing mills, (3 adding a vertical mill in series with existing mills and (4 adding high pressure grinding rolls to existing mills. The four simulations were carried out for designing the respective circuit, assessing the interference with existing equipment and installations, as well as comparing the energy consumption among the selected expansion alternatives. Apart from the HPGR alternative, all other three simulations resulted in the required P80 and capacity. Among the three selected simulations, the Vertimill alternative showed the smallest installed power.

  14. The problems of plant control on modern stage of development of the nuclear industry

    Directory of Open Access Journals (Sweden)

    Gusev S. S.

    2017-04-01

    Full Text Available the article describes the successful development of nuclear industry at the present stage of its development, the problems of control of nuclear power plants, their classes and the choices of modern science in the field of design of fast neutron reactors as one of the promising directions of development of atomic energy.

  15. The boundary element method : errors and gridding for problems with hot spots

    NARCIS (Netherlands)

    Kakuba, G.

    2011-01-01

    Adaptive gridding methods are of fundamental importance both for industry and academia. As one of the computing methods, the Boundary Element Method (BEM) is used to simulate problems whose fundamental solutions are available. The method is usually characterised as constant elements BEM or linear

  16. Navigating the Problem Space: The Medium of Simulation Games in the Teaching of History

    Science.gov (United States)

    McCall, Jeremiah

    2012-01-01

    Simulation games can play a critical role in enabling students to navigate the problem spaces of the past while simultaneously critiquing the models designers offer to represent those problem spaces. There is much to be gained through their use. This includes rich opportunities for students to engage the past as independent historians; to consider…

  17. Industrial application trends and market perspectives for virtual reality and visual simulation

    Directory of Open Access Journals (Sweden)

    Antonio Valerio Netto

    2004-06-01

    Full Text Available This paper attempts to provide an overview of current market trends in industrial applications of VR (Virtual Reality and VisSim (visual simulation for the next few years. Several market studies recently undertaken are presented and commented. A profile of some companies that are starting to work with these technologies is provided, in an attempt to motivate Brazilian companies into the use of these new technologies by describing successful example applications undertaken by foreign companies.

  18. Anaerobic Digestion and Biogas Potential: Simulation of Lab and Industrial-Scale Processes

    OpenAIRE

    Ihsan Hamawand; Craig Baillie

    2015-01-01

    In this study, a simulation was carried out using BioWin 3.1 to test the capability of the software to predict the biogas potential for two different anaerobic systems. The two scenarios included: (1) a laboratory-scale batch reactor; and (2) an industrial-scale anaerobic continuous lagoon digester. The measured data related to the operating conditions, the reactor design parameters and the chemical properties of influent wastewater were entered into BioWin. A sensitivity analysis was carried...

  19. The Assessment of 21st Century Skills in Industrial and Organizational Psychology: Complex and Collaborative Problem Solving

    OpenAIRE

    Neubert, Jonas; Mainert, Jakob; Kretzschmar, André; Greiff, Samuel

    2015-01-01

    In the current paper, we highlight why and how industrial and organizational psychology can take advantage of research on 21st century skills and their assessment. We present vital theoretical perspectives, a suitable framework for assessment, and exemplary instruments with a focus on advances in the assessment of Human Capital. Specifically, Complex Problem Solving (CPS) and Collaborative Problem Solving (ColPS) are two transversal skills (i.e., skills that span multiple domains) that are...

  20. Defect assessment in nuclear components: R and D related to industrial problems - synthesis of the research, training and teaching activities

    International Nuclear Information System (INIS)

    Marie, St.

    2007-06-01

    Nuclear industry pays a particular attention to structures integrity problems: well-aware of the possible catastrophic consequence of a major accident, everything is carried out to minimise the risk of such a situation. From the design, and during all the operating life of the plant, a high level of safety is required and checks by the safety authorities, on the basis of reports made by the operator. These two entities ask for R and D activities to support the improvement of the knowledge of the phenomena already identified (as in the case of the vessel of the PWR) or to bring some element of understanding to situation not considered yet, up to the first incident (as in 1998 with the fatigue problems in the thermal mixing zone, at the origin of the Civaux arrest). Among the CEA teams concerned with these problems, the Laboratory of the Structures Integrity and of Normalisation aims to study the integrity problems in metallic nuclear structures leaning on exceptional experimental means: the RESEDA platform allows the realisation of large-scaled tests on analytical tests (representative of analysed phenomena) to reproduce the industrial situation, linked to various and accurate equipment for the measures and the analyses. Three industrial thematics represent to main part of my research activities at CEA in the fracture mechanics field: - the industrial case of the PWR vessel is related to brittle fracture of the ferritic steels, - the piping components, related to ductile tearing and fracture in the brittle-to-ductile domain, - the high temperature fracture mechanics for the components submitted to very complex loadings. (author)

  1. Identification and quantification of principal–agent problems affecting energy efficiency investments and use decisions in the trucking industry

    International Nuclear Information System (INIS)

    Vernon, David; Meier, Alan

    2012-01-01

    Energy related Principal–Agent (PA) problems cause inefficient combinations of investment, operating costs, and usage behavior. The complex market structure of the trucking industry contributes to split incentives because entities responsible for investments in energy efficiency do not always pay fuel costs and drivers are often not rewarded for fuel-efficient operation. Some contractual relationships exist in the trucking industry that hinder responses to fuel price signals. Up to 91% of total trucking fuel consumption in the U.S. is affected by “usage” PA problems, where the driver does not pay fuel costs and lacks incentive for fuel saving operation. Approximately 23% of trailers are exposed to an “efficiency problem” when owners of rented trailers do not pay fuel costs and therefore have little incentive to invest in efficiency upgrades such as improved trailer aerodynamics and reduced tire rolling resistance. This study shows that PA problems have the potential to significantly increase fuel consumption through avoided investments, insufficient maintenance, and fuel-wasting practices. Further research into the causes and effects of PA problems can shape policies to promote better alignment of costs and benefits, leading to reduced fuel use and carbon emissions. - Highlights: ► We identify and quantify principal agent market failures in the trucking industry. ► Up to 91% of truck fuel consumption is exposed to a usage principal–agent market failure. ► Twenty-three percent of trailers are exposed to an efficiency principal–agent market failure. ► These market failures at least partially insulate key decision makers from fuel price signals.

  2. Transferring Nuclear Knowledge by NPP Simulators Developers

    International Nuclear Information System (INIS)

    Levchenko, A.; Duginov, O.; Levchenko, V.

    2016-01-01

    Full text: In relation to nuclear power, safety is closely linked with the human factor. Knowledge and skills of staff should more closely match the needs of the industry and employers. This can be achieved through more efficient training using simulators. Such simulators must be available at all stages of study and cover the needs of trainees with different levels of knowledge. Simulator developers can solve this problem by implement knowledge management in the using of simulators for practical training. Due to the nature of their activities, they have everything needed for this. This paper describes the solutions of Simulation Systems Ltd Company for nuclear power plants, universities and other parties. (author

  3. ND/FE magnets: Industrial and economical problems in the short and long term

    International Nuclear Information System (INIS)

    Falconnet, P.

    1985-01-01

    The Rare Earths (RE) world is a small and closed world that needs better communication with the outside and specially with new potential users. The availability of neodymium today is very linked to the existing applications like glass and capacitors. Though no short or long term scarcity can be foreseen, the Rare Earths Industry has to produce increasing amounts of various neodymium compounds and may have to invest in some finishing capacity before knowing which Nd compounds will be used by metal or magnet makers in some years. Despite the high energy product of Nd/Fe magnets some properties like Curie temperature need to be improved to find a large use. Similarly the production cost of these magnets is today rather high, and it will take some years to take advantage of large production scale. The industrial and economical problems of Nd/Fe magnets are discussed in this paper

  4. TOUGH Simulations of the Updegraff's Set of Fluid and Heat Flow Problems

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, G.J.; Pruess (editor), K.

    1992-11-01

    The TOUGH code [Pruess, 1987] for two-phase flow of water, air, and heat in penneable media has been exercised on a suite of test problems originally selected and simulated by C. D. Updegraff [1989]. These include five 'verification' problems for which analytical or numerical solutions are available, and three 'validation' problems that model laboratory fluid and heat flow experiments. All problems could be run without any code modifications (*). Good and efficient numerical performance, as well as accurate results were obtained throughout. Additional code verification and validation problems from the literature are briefly summarized, and suggestions are given for proper applications of TOUGH and related codes.

  5. Free surface flows in industry

    OpenAIRE

    Murphy, Ellen

    2014-01-01

    peer-reviewed Applied mathematicians have long sourced problems from industrial processes. The relationship between mathematics and industry is mutually beneficial. Mathematical models provide industry with invaluable insights into the fundamental physical processes at play in a system and give mathematicians the opportunity to apply known techniques to new problems. In this thesis, two independent problems originating in industrial processes are studied, with a common featu...

  6. A capacitated vehicle routing problem with order available time in e-commerce industry

    Science.gov (United States)

    Liu, Ling; Li, Kunpeng; Liu, Zhixue

    2017-03-01

    In this article, a variant of the well-known capacitated vehicle routing problem (CVRP) called the capacitated vehicle routing problem with order available time (CVRPOAT) is considered, which is observed in the operations of the current e-commerce industry. In this problem, the orders are not available for delivery at the beginning of the planning period. CVRPOAT takes all the assumptions of CVRP, except the order available time, which is determined by the precedent order picking and packing stage in the warehouse of the online grocer. The objective is to minimize the sum of vehicle completion times. An efficient tabu search algorithm is presented to tackle the problem. Moreover, a Lagrangian relaxation algorithm is developed to obtain the lower bounds of reasonably sized problems. Based on the test instances derived from benchmark data, the proposed tabu search algorithm is compared with a published related genetic algorithm, as well as the derived lower bounds. Also, the tabu search algorithm is compared with the current operation strategy of the online grocer. Computational results indicate that the gap between the lower bounds and the results of the tabu search algorithm is small and the tabu search algorithm is superior to the genetic algorithm. Moreover, the CVRPOAT formulation together with the tabu search algorithm performs much better than the current operation strategy of the online grocer.

  7. Simulated annealing with restart strategy for the blood pickup routing problem

    Science.gov (United States)

    Yu, V. F.; Iswari, T.; Normasari, N. M. E.; Asih, A. M. S.; Ting, H.

    2018-04-01

    This study develops a simulated annealing heuristic with restart strategy (SA_RS) for solving the blood pickup routing problem (BPRP). BPRP minimizes the total length of the routes for blood bag collection between a blood bank and a set of donation sites, each associated with a time window constraint that must be observed. The proposed SA_RS is implemented in C++ and tested on benchmark instances of the vehicle routing problem with time windows to verify its performance. The algorithm is then tested on some newly generated BPRP instances and the results are compared with those obtained by CPLEX. Experimental results show that the proposed SA_RS heuristic effectively solves BPRP.

  8. Simulation of obstacles’ effect on industrial robots’ working space using genetic algorithm

    Directory of Open Access Journals (Sweden)

    M.F. Aly

    2014-07-01

    Full Text Available The study of robot workspace is an interesting problem since its applications are directly related to industry. However, it involves several mathematical complications; Thus, many of the arising questions are left without a definite answer. With the motivation of industrial demand, the need for finding better answers than the existing ones lasts. The workspace (WS determination of a robot with general structural parameters is a complex problem, which cannot be solved in an explicit way. Closed form solutions are only available in some particular cases. Otherwise, computational algorithms and numerical techniques are used. The task becomes even much more complicated by the presence of obstacles in the robot accessible region. Obstacle presence does not only exclude points from the original WS but it affects the whole robot workspace’s shape and size to the extent that it sometimes divides the working space in two or more separate regions that cannot be linked by the same robot. Much research work in the literature is directed toward path planning in the presence of obstacles without having to determine the robot WS. However, a real situation in industry occurs when the knowledge of the WS is of importance in facility layout. This paper presents an approach for the estimation of a generic open-chain robot in the presence of obstacles with any desired number of prismatic and/or revolute joints of any order. Joints’ axes may have any orientation relative to each other. The robot can be placed in free space or in a work cell consisting of a set of Computer Numerically Controlled (CNC machines and some obstacles.

  9. Materials of All-Polish Symposium Nuclear Techniques in Industry, Medicine, Agriculture and Environment Protection

    International Nuclear Information System (INIS)

    2005-01-01

    The All-Polish Symposium Nuclear Techniques in Industry, Medicine, Agriculture and Environment Protection is cyclic (in 3 year period) conference being a broad review of state of art and development of all nuclear branches cooperated with industry and other branches of national economy and public life in Poland. The conference has been divided in one plenary session and 6 problem sessions as follow: Environmental protection, earth sciences, protection of cultural objects; Industrial applications; applications in medicine, medical apparatus; measurement methods, simulations, experiment planning; radiation techniques; laboratories, metrology

  10. Application of Laplace transform to industrial problems

    International Nuclear Information System (INIS)

    Dubois, D.J.M.; Vagner, J.

    1989-01-01

    This paper presents two industrial applications of a new methodology based on Laplace transform properties which has been implemented in an industrial finite element program. In structures endowed with thermal and mechanical properties constant with the temperature, the stresses are computed for unit thermal shocks applied on the areas which are actually affected by the temperature variations. The analytical formulation and the general feature of this implementation are presented

  11. Present situation, problems and solutions of China's biomass power generation industry

    International Nuclear Information System (INIS)

    Liu, Jicheng; Wang, Sijia; Wei, Qiushuang; Yan, Suli

    2014-01-01

    With the reduction of global oil reserves, developing renewable energy has become an important issue for each country. Biomass power is an important kind of clean energy, as it has abundant resource and is environmental friendly. In the past few years, China biomass power industry has developed rapidly accompanied with some problems. This paper analyzes the current situation of China biomass power generation from several aspects such as power structure, resource distribution, investment strength, and policy environment, etc. We focus on the problems existed in practical operation and analyze the outstanding problems. At last, this paper offers several suggestions for future development on the relevant fields, such as cost, strategic planning and policy. - Highlights: • Review and analyze the internal and external environment of biomass power in China. • Summarize and classify policies of China biomass power according to time sequence. • Describe the distribution of biomass resources in China accurately on the map. • Use data to draw a picture for grasping current situation. • Provide valuable suggestions for practitioners to improve their business strategies

  12. Modified Backtracking Search Optimization Algorithm Inspired by Simulated Annealing for Constrained Engineering Optimization Problems

    Directory of Open Access Journals (Sweden)

    Hailong Wang

    2018-01-01

    Full Text Available The backtracking search optimization algorithm (BSA is a population-based evolutionary algorithm for numerical optimization problems. BSA has a powerful global exploration capacity while its local exploitation capability is relatively poor. This affects the convergence speed of the algorithm. In this paper, we propose a modified BSA inspired by simulated annealing (BSAISA to overcome the deficiency of BSA. In the BSAISA, the amplitude control factor (F is modified based on the Metropolis criterion in simulated annealing. The redesigned F could be adaptively decreased as the number of iterations increases and it does not introduce extra parameters. A self-adaptive ε-constrained method is used to handle the strict constraints. We compared the performance of the proposed BSAISA with BSA and other well-known algorithms when solving thirteen constrained benchmarks and five engineering design problems. The simulation results demonstrated that BSAISA is more effective than BSA and more competitive with other well-known algorithms in terms of convergence speed.

  13. Problems of power-heat-coupling in industry

    Energy Technology Data Exchange (ETDEWEB)

    1977-03-01

    The coupled heat and electric power supply from counter-pressure and partly also from extraction-condensing plants theoretically offers the best possibilities for saving energy in comparison to other measures which reduce the primary energy employed at equal useful energy. A basic requirement for the use of this principle of power-heat coupling is a somewhat simultaneous need of heat and electrical energy as well as a relatively short distance between production point and consumption point, since the transfer ability of the heat is limited due to the considerable cost of the transportation system. Numerous industrial enterprises offer favorable conditions for the use of power-heat coupling. Because of the existing legal and contract rights restraints, the incentive for a free development of industrial power-heat coupling with the aim of saving energy is strongly weakened. Therefore a new order to road rights is nececessary, which would make possible the construction and operation of common plants for several industrial operations and which would insure the right to lay industrial energy lines in public roads where reasonably possible. It has been proven necessary to make it the duty of the cartel authorities to orient their examinations of price regulations for auxiliary and reserve electric power supply solely on the objective electricity economy facts, but not on so-called advantageous points of view. Ultimately the regulation for common use of the utilities own piping system for the purpose of saving and piping free energy and free power from its own plants can be reasonably necessary in the utilities realm, if free agreements between the utility and the industry are not enough in this question.

  14. Simulated annealing (SA to vehicle routing problems with soft time windows

    Directory of Open Access Journals (Sweden)

    Suphan Sodsoon

    2014-12-01

    Full Text Available The researcher has applied and develops the meta-heuristics method to solve Vehicle Routing Problems with Soft Time Windows (VRPSTW. For this case there was only one depot, multi customers which each generally sparse either or demand was different though perceived number of demand and specific period of time to receive them. The Operation Research was representative combinatorial optimization problems and is known to be NP-hard. In this research algorithm, use Simulated Annealing (SA to determine the optimum solutions which rapidly time solving. After developed the algorithms, apply them to examine the factors and the optimum extended time windows and test these factors with vehicle problem routing under specific time windows by Solomon in OR-Library in case of maximum 25 customers. Meanwhile, 6 problems are including of C101, C102, R101, R102, RC101 and RC102 respectively. The result shows the optimum extended time windows at level of 50%. At last, after comparison these answers with the case of vehicle problem routing under specific time windows and flexible time windows, found that percentage errors on number of vehicles approximately by -28.57% and percentage errors on distances approximately by -28.57% which this algorithm spent average processing time on 45.5 sec/problems.

  15. Numerical simulation of urea based selective non-catalytic reduction deNOx process for industrial applications

    International Nuclear Information System (INIS)

    Baleta, Jakov; Mikulčić, Hrvoje; Vujanović, Milan; Petranović, Zvonimir; Duić, Neven

    2016-01-01

    Highlights: • SNCR is a simple method for the NOx reduction from large industrial facilities. • Capabilities of the developed mathematical framework for SNCR simulation were shown. • Model was used on the geometry of experimental reactor and municipal incinerator. • Results indicate suitability of the developed model for real industrial cases. - Abstract: Industrial processes emit large amounts of diverse pollutants into the atmosphere, among which NOx takes a significant portion. Selective non-catalytic reduction (SNCR) is a relatively simple method for the NOx reduction in large industrial facilities such as power plants, cement plants and waste incinerator plants. It consists of injecting the urea-water solution in the hot flue gas stream and its reaction with the NOx. During this process flue gas enthalpy is used for the urea-water droplet heating and for the evaporation of water content. After water evaporates, thermolysis of urea occurs, during which ammonia, a known NO_x reductant, and isocyanic acid are generated. In order to cope with the ever stringent environmental norms, equipment manufacturers need to develop energy efficient products that are at the same time benign to environment. This is becoming increasingly complicated and costly, and one way to reduce production costs together with the maintaining the same competitiveness level is to employ computational fluid dynamics (CFD) as a tool, in a process today commonly known under the term “virtual prototyping”. The aim of this paper is to show capabilities of the developed mathematical framework implemented in the commercial CFD code AVL FIRE®, to simulate physical processes of all relevant phenomena occurring during the SNCR process. First, mathematical models for description of SNCR process are presented and afterwards, models are used on the 3D geometry of an industrial reactor and a real industrial case to predict SNCR efficiency, temperature and velocity field. Influence of the main

  16. NUMERICAL SIMULATION OF ELECTRICAL IMPEDANCE TOMOGRAPHY PROBLEM AND STUDY OF APPROACH BASED ON FINITE VOLUME METHOD

    Directory of Open Access Journals (Sweden)

    Ye. S. Sherina

    2014-01-01

    Full Text Available This research has been aimed to carry out a study of peculiarities that arise in a numerical simulation of the electrical impedance tomography (EIT problem. Static EIT image reconstruction is sensitive to a measurement noise and approximation error. A special consideration has been given to reducing of the approximation error, which originates from numerical implementation drawbacks. This paper presents in detail two numerical approaches for solving EIT forward problem. The finite volume method (FVM on unstructured triangular mesh is introduced. In order to compare this approach, the finite element (FEM based forward solver was implemented, which has gained the most popularity among researchers. The calculated potential distribution with the assumed initial conductivity distribution has been compared to the analytical solution of a test Neumann boundary problem and to the results of problem simulation by means of ANSYS FLUENT commercial software. Two approaches to linearized EIT image reconstruction are discussed. Reconstruction of the conductivity distribution is an ill-posed problem, typically requiring a large amount of computation and resolved by minimization techniques. The objective function to be minimized is constructed of measured voltage and calculated boundary voltage on the electrodes. A classical modified Newton type iterative method and the stochastic differential evolution method are employed. A software package has been developed for the problem under investigation. Numerical tests were conducted on simulated data. The obtained results could be helpful to researches tackling the hardware and software issues for medical applications of EIT.

  17. Large eddy simulation of flows in industrial compressors: a path from 2015 to 2035

    Science.gov (United States)

    Gourdain, N.; Sicot, F.; Duchaine, F.; Gicquel, L.

    2014-01-01

    A better understanding of turbulent unsteady flows is a necessary step towards a breakthrough in the design of modern compressors. Owing to high Reynolds numbers and very complex geometry, the flow that develops in such industrial machines is extremely hard to predict. At this time, the most popular method to simulate these flows is still based on a Reynolds-averaged Navier–Stokes approach. However, there is some evidence that this formalism is not accurate for these components, especially when a description of time-dependent turbulent flows is desired. With the increase in computing power, large eddy simulation (LES) emerges as a promising technique to improve both knowledge of complex physics and reliability of flow solver predictions. The objective of the paper is thus to give an overview of the current status of LES for industrial compressor flows as well as to propose future research axes regarding the use of LES for compressor design. While the use of wall-resolved LES for industrial multistage compressors at realistic Reynolds number should not be ready before 2035, some possibilities exist to reduce the cost of LES, such as wall modelling and the adaptation of the phase-lag condition. This paper also points out the necessity to combine LES to techniques able to tackle complex geometries. Indeed LES alone, i.e. without prior knowledge of such flows for grid construction or the prohibitive yet ideal use of fully homogeneous meshes to predict compressor flows, is quite limited today. PMID:25024422

  18. Efficient Deployment of Key Nodes for Optimal Coverage of Industrial Mobile Wireless Networks

    Science.gov (United States)

    Li, Xiaomin; Li, Di; Dong, Zhijie; Hu, Yage; Liu, Chengliang

    2018-01-01

    In recent years, industrial wireless networks (IWNs) have been transformed by the introduction of mobile nodes, and they now offer increased extensibility, mobility, and flexibility. Nevertheless, mobile nodes pose efficiency and reliability challenges. Efficient node deployment and management of channel interference directly affect network system performance, particularly for key node placement in clustered wireless networks. This study analyzes this system model, considering both industrial properties of wireless networks and their mobility. Then, static and mobile node coverage problems are unified and simplified to target coverage problems. We propose a novel strategy for the deployment of clustered heads in grouped industrial mobile wireless networks (IMWNs) based on the improved maximal clique model and the iterative computation of new candidate cluster head positions. The maximal cliques are obtained via a double-layer Tabu search. Each cluster head updates its new position via an improved virtual force while moving with full coverage to find the minimal inter-cluster interference. Finally, we develop a simulation environment. The simulation results, based on a performance comparison, show the efficacy of the proposed strategies and their superiority over current approaches. PMID:29439439

  19. Antitrust Enforcement in the Electricity and Gas Industries: Problems and Solutions for the EU

    International Nuclear Information System (INIS)

    Leveque, Francois

    2006-01-01

    Antitrust enforcement in the electricity and gas industries raises specific problems that call for specific solutions. Among the issues: How can the anticompetitive effects of mergers be assessed in a changing regulatory environment? Should long-term agreements in energy purchasing be prohibited? What are the benefits of preventive action such as competition advocacy and market surveillance committees? Should Article 82 (a) of the EC Treaty be used to curb excessive pricing?. (author)

  20. 9th Annual Conference of the North East Polytechnics Mathematical Modelling & Computer Simulation Group

    CERN Document Server

    Bradley, R

    1987-01-01

    In recent years, mathematical modelling allied to computer simulation has emerged as en effective and invaluable design tool for industry and a discipline in its own right. This has been reflected in the popularity of the growing number of courses and conferences devoted to the area. The North East Polytechnics Mathematical Modelling and Computer Simulation Group has a balanced representation of academics and industrialists and, as a Group, has the objective of promoting a continuing partnership between the Polytechnics in the North East and local industry. Prior to the present conference the Group has organised eight conferences with a variety of themes related to mathematical modelling and computer simulation. The theme chosen for the Polymodel 9 Conference held in Newcastle upon Tyne in May 1986 was Industrial Vibration Modelling, which is particularly approp riate for 'Industry Year' and is an area which continues to present industry and academics with new and challenging problems. The aim of the Conferen...

  1. SVM-Based Dynamic Reconfiguration CPS for Manufacturing System in Industry 4.0

    Directory of Open Access Journals (Sweden)

    Hyun-Jun Shin

    2018-01-01

    Full Text Available CPS is potential application in various fields, such as medical, healthcare, energy, transportation, and defense, as well as Industry 4.0 in Germany. Although studies on the equipment aging and prediction of problem have been done by combining CPS with Industry 4.0, such studies were based on small numbers and majority of the papers focused primarily on CPS methodology. Therefore, it is necessary to study active self-protection to enable self-management functions, such as self-healing by applying CPS in shop-floor. In this paper, we have proposed modeling of shop-floor and a dynamic reconfigurable CPS scheme that can predict the occurrence of anomalies and self-protection in the model. For this purpose, SVM was used as a machine learning technology and it was possible to restrain overloading in manufacturing process. In addition, we design CPS framework based on machine learning for Industry 4.0, simulate it, and perform. Simulation results show the simulation model autonomously detects the abnormal situation and it is dynamically reconfigured through self-healing.

  2. Artificial Immune Algorithm for Subtask Industrial Robot Scheduling in Cloud Manufacturing

    Science.gov (United States)

    Suma, T.; Murugesan, R.

    2018-04-01

    The current generation of manufacturing industry requires an intelligent scheduling model to achieve an effective utilization of distributed manufacturing resources, which motivated us to work on an Artificial Immune Algorithm for subtask robot scheduling in cloud manufacturing. This scheduling model enables a collaborative work between the industrial robots in different manufacturing centers. This paper discussed two optimizing objectives which includes minimizing the cost and load balance of industrial robots through scheduling. To solve these scheduling problems, we used the algorithm based on Artificial Immune system. The parameters are simulated with MATLAB and the results compared with the existing algorithms. The result shows better performance than existing.

  3. The Effectiveness of Problem-based Learning Approach on Students’ Skills in Technical Vocational Education and Training (TVET) Specifically on Programming Course Using a Computerized Numerical Control (CNC) Simulator

    DEFF Research Database (Denmark)

    Mohamad, Hasim Bin; de Graaff, Erik

    2013-01-01

    Industry has a great need for highly skilled technicians that graduate from Technical Vocational Education and Training (TVET). In a study started at Aalborg University (AAU) the purpose is to evaluate the effectiveness of the (PBL) approach on students’ skills, in particular on programming course...... using a Computerized Numerical Control (CNC) simulator. The study will use data from the German-Malaysian Institute in Malaysia. The findings of this study will provide a general guideline for educators in Technical and Vocational Education and Training (TVET) institutions in implementing Problem...

  4. The Influence of Problems Faced during Internships on Interns' Views of Their Profession and Their Intention to Work in the Tourism Industry

    Science.gov (United States)

    Kasli, Mehmet; Ilban, Mehmet Oguzhan

    2013-01-01

    Problem Statement: The problem of this research is identifying the difficulties that undergraduate students experience during their internships and assessing their future intention to work in the tourism industry. Purpose of Study: This research aims to identify the problems undergraduate students encounter as interns in tourism programs and to…

  5. Strategic Marketing Problems in the Uganda Maize Seed Industry

    OpenAIRE

    Larson, Donald W.; Mbowa, Swaibu

    2004-01-01

    Strategic marketing issues and challenges face maize seed marketing firms as farmers increasingly adopt hybrid varieties in a modernizing third world country such as Uganda. The maize seed industry of Uganda has changed dramatically from a government owned, controlled, and operated industry to a competitive market oriented industry with substantial private firm investment and participation. The new maize seed industry is young, dynamic, growing and very competitive. The small maize seed marke...

  6. Simulation and optimisation of the data acquisition system for tritium removal pilot plant

    International Nuclear Information System (INIS)

    Retevoi, Carmen Maria; Stefan, Iuliana; Balteanu, Ovidiu; Stefan, Liviu

    2004-01-01

    Optimization and simulation of systems especially in science and engineering can help to reduce risk and cost of design and testing processes. A huge number of codes has been developed to support modeling and simulation efforts. All of these software tools support the use of one or more mathematical model classes. Despite all of these efforts, it is hard to find simulation software, which is capable of combining several model classes in a real industry standard environment. The paper presents a simulation software product for controlling and data acquisition system of cryogenic installation process in the tritium removal pilot plant, using an industry standard programming environment widely applied to data acquisition, process control and data visualization, namely LabView. One of the problems in a tritium separation installation is controlling the temperature. To solve this problem it is necessary to develop a simulation system which includes the mathematical model for cryogenic distillation. Also with this simulation system we can approach the safety system which ensures the monitoring of radiations and toxic gases from installation. All elements used in controlling, modeling and simulation of the process, as well as, in the datalogging and supervisory control module from tritium removal installation are new. (authors)

  7. Off-line programming and simulation in handling nuclear components

    International Nuclear Information System (INIS)

    Baker, C.P.

    1993-10-01

    IGRIP was used to create a simulation of the robotic workcell design for handling components at the PANTEX nuclear arms facility. This initial simulation identified problems with the customer's proposed worker layout, and allowed a correction to be proposed. Refinement of the IGRIP simulation allowed the design and construction of a workcell mock-up and accurate off-line programming of the system. IGRIP's off-line programming capabilities are being used to develop the motion control code for the workcell. PNLs success in this area suggests that simulation and off-line programming may be valuable tools for developing robotics in some automation resistant industries

  8. MHSS: a material handling system simulator

    Energy Technology Data Exchange (ETDEWEB)

    Pomernacki, L.; Hollstien, R.B.

    1976-04-07

    A Material Handling System Simulator (MHSS) program is described that provides specialized functional blocks for modeling and simulation of nuclear material handling systems. Models of nuclear fuel fabrication plants may be built using functional blocks that simulate material receiving, storage, transport, inventory, processing, and shipping operations as well as the control and reporting tasks of operators or on-line computers. Blocks are also provided that allow the user to observe and gather statistical information on the dynamic behavior of simulated plants over single or replicated runs. Although it is currently being developed for the nuclear materials handling application, MHSS can be adapted to other industries in which material accountability is important. In this paper, emphasis is on the simulation methodology of the MHSS program with application to the nuclear material safeguards problem. (auth)

  9. The emerging role of large eddy simulation in industrial practice: challenges and opportunities.

    Science.gov (United States)

    Hutton, A G

    2009-07-28

    That class of methods for treating turbulence gathered under the banner of large eddy simulation is poised to enter mainstream engineering practice. There is a growing body of evidence that such methods offer a significant stretch in industrial capability over solely Reynolds-averaged Navier-Stokes (RANS)-based modelling. A key enabling development will be the adaptation of innovative processor architectures, resulting from the huge investment in the gaming industry, to engineering analysis. This promises to reduce the computational burden to practicable levels. However, there are many lessons to be learned from the history of the past three decades. These lessons should be analysed in order to inform, if not modulate, the unfolding of this next cycle in the development of industrial modelling capability. This provides the theme for this paper, which is written very much from the standpoint of the informed practitioner rather than the innovator; someone with a strong motivation to improve significantly the competence with which industrial turbulent flows are treated. It is asserted that the reliable deployment of the methodology in the industrial context will prove to be a knowledge-based discipline, as was the case with RANS-based modelling, if not more so. The community at large should collectively make great efforts to put in place that knowledge base from which best practice advice can be derived at the very start of this cycle of advancement and continue to enrich it as the cycle progresses.

  10. Complex saddle points and the sign problem in complex Langevin simulation

    International Nuclear Information System (INIS)

    Hayata, Tomoya; Hidaka, Yoshimasa; Tanizaki, Yuya

    2016-01-01

    We show that complex Langevin simulation converges to a wrong result within the semiclassical analysis, by relating it to the Lefschetz-thimble path integral, when the path-integral weight has different phases among dominant complex saddle points. Equilibrium solution of the complex Langevin equation forms local distributions around complex saddle points. Its ensemble average approximately becomes a direct sum of the average in each local distribution, where relative phases among them are dropped. We propose that by taking these phases into account through reweighting, we can solve the wrong convergence problem. However, this prescription may lead to a recurrence of the sign problem in the complex Langevin method for quantum many-body systems.

  11. A Simulated Annealing method to solve a generalized maximal covering location problem

    Directory of Open Access Journals (Sweden)

    M. Saeed Jabalameli

    2011-04-01

    Full Text Available The maximal covering location problem (MCLP seeks to locate a predefined number of facilities in order to maximize the number of covered demand points. In a classical sense, MCLP has three main implicit assumptions: all or nothing coverage, individual coverage, and fixed coverage radius. By relaxing these assumptions, three classes of modelling formulations are extended: the gradual cover models, the cooperative cover models, and the variable radius models. In this paper, we develop a special form of MCLP which combines the characteristics of gradual cover models, cooperative cover models, and variable radius models. The proposed problem has many applications such as locating cell phone towers. The model is formulated as a mixed integer non-linear programming (MINLP. In addition, a simulated annealing algorithm is used to solve the resulted problem and the performance of the proposed method is evaluated with a set of randomly generated problems.

  12. Problems of variance reduction in the simulation of random variables

    International Nuclear Information System (INIS)

    Lessi, O.

    1987-01-01

    The definition of the uniform linear generator is given and some of the mostly used tests to evaluate the uniformity and the independence of the obtained determinations are listed. The problem of calculating, through simulation, some moment W of a random variable function is taken into account. The Monte Carlo method enables the moment W to be estimated and the estimator variance to be obtained. Some techniques for the construction of other estimators of W with a reduced variance are introduced

  13. Discrete and continuous simulation theory and practice

    CERN Document Server

    Bandyopadhyay, Susmita

    2014-01-01

    When it comes to discovering glitches inherent in complex systems-be it a railway or banking, chemical production, medical, manufacturing, or inventory control system-developing a simulation of a system can identify problems with less time, effort, and disruption than it would take to employ the original. Advantageous to both academic and industrial practitioners, Discrete and Continuous Simulation: Theory and Practice offers a detailed view of simulation that is useful in several fields of study.This text concentrates on the simulation of complex systems, covering the basics in detail and exploring the diverse aspects, including continuous event simulation and optimization with simulation. It explores the connections between discrete and continuous simulation, and applies a specific focus to simulation in the supply chain and manufacturing field. It discusses the Monte Carlo simulation, which is the basic and traditional form of simulation. It addresses future trends and technologies for simulation, with par...

  14. Quantum simulation of the integer factorization problem: Bell states in a Penning trap

    Science.gov (United States)

    Rosales, Jose Luis; Martin, Vicente

    2018-03-01

    The arithmetic problem of factoring an integer N can be translated into the physics of a quantum device, a result that supports Pólya's and Hilbert's conjecture to demonstrate Riemann's hypothesis. The energies of this system, being univocally related to the factors of N , are the eigenvalues of a bounded Hamiltonian. Here we solve the quantum conditions and show that the histogram of the discrete energies, provided by the spectrum of the system, should be interpreted in number theory as the relative probability for a prime to be a factor candidate of N . This is equivalent to a quantum sieve that is shown to require only o (ln√{N}) 3 energy measurements to solve the problem, recovering Shor's complexity result. Hence the outcome can be seen as a probability map that a pair of primes solve the given factorization problem. Furthermore, we show that a possible embodiment of this quantum simulator corresponds to two entangled particles in a Penning trap. The possibility to build the simulator experimentally is studied in detail. The results show that factoring numbers, many orders of magnitude larger than those computed with experimentally available quantum computers, is achievable using typical parameters in Penning traps.

  15. Benefits to US industry from involvement in fusion

    International Nuclear Information System (INIS)

    Waganer, L.M.; Davis, J.W.; Schultz, K.R.

    2002-01-01

    Over the past decades, fusion has created a cooperative relationship between the DOE national laboratories, leading universities, and high technology industries. This relationship in the fusion community has helped to solve difficult technical problems, which will hopefully lead toward the commercialization of fusion. The US industry, with high technology skills, provides relevant cutting-edge designs, tools, and processes to help solve unique and technically challenging problems associated with fusion energy development. Together, these relationships have developed new and improved technologies and processes to achieve and demonstrate solutions to help advance fusion toward its ultimate goal. The benefits to industry, in terms of commercial applications to their product lines, are subjective. The involvement of US industry has been limited to a few high technology firms, with Boeing and General Atomics being the longest lasting and most involved. Widespread industrial involvement has been constrained with limited funding for the fusion budgets. Even with the funding constraints, industry has contributed to all aspects and systems for MFE and IFE experiments, demonstration reactors, and commercial power plant designs. While several technology and product spin-offs are identified and examined, the more prevalent transfer of information arises from subtle two-way transition of technologies between the fusion related efforts and those of the parent industrial firms. Examples of this transfer include CAD/CAM, independent product team structures, computer simulation/modeling/assessment, extended material property databases, tailored material processing, improved and lower cost fabrication processes, and component designs/applications. Specific examples of transitioned components or technologies involve superconducting magnets, neutral beam components, laser machining, and microwave/RF technologies

  16. Mathematical simulation of oil reservoir properties

    International Nuclear Information System (INIS)

    Ramirez, A.; Romero, A.; Chavez, F.; Carrillo, F.; Lopez, S.

    2008-01-01

    The study and computational representation of porous media properties are very important for many industries where problems of fluid flow, percolation phenomena and liquid movement and stagnation are involved, for example, in building constructions, ore processing, chemical industries, mining, corrosion sciences, etc. Nevertheless, these kinds of processes present a noneasy behavior to be predicted and mathematical models must include statistical analysis, fractal and/or stochastic procedures to do it. This work shows the characterization of sandstone berea core samples which can be found as a porous media (PM) in natural oil reservoirs, rock formations, etc. and the development of a mathematical algorithm for simulating the anisotropic characteristics of a PM based on a stochastic distribution of some of their most important properties like porosity, permeability, pressure and saturation. Finally a stochastic process is used again to simulated the topography of an oil reservoir

  17. Problems of placement of industrial wastes in landfills in the industrial city

    Directory of Open Access Journals (Sweden)

    STEPANOV Evgeniy Georgievich,

    2017-04-01

    Full Text Available The article shows that the anthropogenic transformation of the environment increases when production wastes and consumption are placed in landfills. Hygienic condition of the areas with high population density and developed industry is determined by the increased amount of household and industrial waste, mainly deposited in the numerous landfills. This situation is studied on the example of landfills used for industrial wastes produced by the enterprises JSC «Gazprom Neftekhim Salavat», JSC «Salavatsteklo», located in the city of Salavat of the Republic of Bashkortostan. The sources of industrial pollution in Salavat have been analyzed. One should note that the city-forming enterprise is the JSC «Gazprom Neftekhim Salavat» which share of the total amount of wastes generated in the city per year is 80%. Another company which contributes significantly to this process is the JSC «Salavatsteklo». To study the possible migration of contaminants to the aquifer an observation well has been made at the landfill site. The research of the water obtained from the observation well at the polygon identified maximum allowable concentrations for chemical oxygen demand (COD, phenol and oil products. The groundwater occurrence modes have been studied. The migration of the chemicals contained in the body of the landfill, to groundwater, has been revealed. That leads to contamination of surface water. Laboratory studies of water objects in the zone of influence of industrial waste landfill in Romodanovskomu career have been performed. It was determined that excess of maximum permissible concentration of benzene, and the presence of toluene, lead, phenol indicates the pollution of groundwater by substances stored in landfills Romanovskogo career, both by infiltration and subsequent migration to groundwater of adjacent aquifers and through surface runoff and infiltration from snowmelt and rainwater.

  18. THE ROLE OF RADIATION ACCIDENTS AND INDUSTRIAL APPLICATIONS OF IONIZING RADIATION SOURCES IN THE PROBLEM OF RADIATION DAMAGE

    OpenAIRE

    Кіхтенко, Ігор Миколайович

    2016-01-01

    Subject of research – the relevance of radiation damage at modern development of industry and medicine. In the world of radiation sources used in different fields of practice and their application in the future will increase, which greatly increases the likelihood of injury in a significant contingent of people.Research topic – the definition of the role of nuclear energy and the industrial use of ionizing radiation sources in the problem of radiation damage. The purpose of research – identif...

  19. Global environmental problems in the electric industry. Denki jigyo ni okeru chikyu kankyo mondai ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Sugi, T [Tokyo Electric Power Co., Inc. (Japan)

    1992-09-30

    Since the electric industry has grappled with a prevention of the environmental pollution such as the air pollution and water contamination as a forerunner in case of construction and operation of the power facilities, and at the same time has conducted actively the environmental conservation countermeasures, it has consequently achieved the environmental conservation level as a top level in the world. On the other hand, as for the emission quantity of CO2 relating to the earth warming, the power field occupies about one fourth of total Japan. Therefore the electric industry should aim at the electric energy supply considering the influence on the environment, such as the power supply structure to restrain CO2 emission as less as possible, higher efficiency of equipments, higher efficiency of energy utilization by using the unused energy and so forth. In addition to it, the consumer side should aim at the social structure with a recycle type such as saving resources and saving energy, and aim at changeover of life style. It is hoped to conduct the overall measure including the items mentioned above. In this report, the recent trend of earth enviromental problems, grappling with the environmental problems as a forerunner such as the prevention measure of air pollution in the thermal power plant, etc., and the correspondence to the earth warming problems are outlined. 11 refs., 9 figs., 3 tabs.

  20. A Simulation-Based Blended Curriculum for Short Peripheral Intravenous Catheter Insertion: An Industry-Practice Collaboration.

    Science.gov (United States)

    Glover, Kevin R; Stahl, Brian R; Murray, Connie; LeClair, Matthew; Gallucci, Susan; King, Mary Anne; Labrozzi, Laura J; Schuster, Catherine; Keleekai, Nowai L

    2017-09-01

    Despite peripheral intravenous catheter (PIVC) insertion being a commonly performed skill, practicing nurses may receive little substantive education, training, or opportunities to practice this skill at a competent level. This article describes a collaboration between private industry and a hospital to modify, implement, and evaluate a simulation-based blended PIVC insertion continuing education program for staff nurses. Included is an overview of the practical and theoretical rationale for the initial development of the curriculum to address an identified PIVC insertion education gap, the collaborative modification and implementation of the program, and an evaluation of the program. The curriculum combined self-paced e-learning and classroom-based deliberate practice with simulation tools of varying fidelity in a peer-to-peer learning environment. Given the mutual challenges of resource allocation in industry training and clinical nursing education departments, interprofessional partnerships may be an effective option for sharing instructional knowledge and resources to promote innovation and improve patient care. J Contin Educ Nurs. 2017;48(9):397-406. Copyright 2017, SLACK Incorporated.

  1. On the formulation and numerical simulation of distributed-order fractional optimal control problems

    Science.gov (United States)

    Zaky, M. A.; Machado, J. A. Tenreiro

    2017-11-01

    In a fractional optimal control problem, the integer order derivative is replaced by a fractional order derivative. The fractional derivative embeds implicitly the time delays in an optimal control process. The order of the fractional derivative can be distributed over the unit interval, to capture delays of distinct sources. The purpose of this paper is twofold. Firstly, we derive the generalized necessary conditions for optimal control problems with dynamics described by ordinary distributed-order fractional differential equations (DFDEs). Secondly, we propose an efficient numerical scheme for solving an unconstrained convex distributed optimal control problem governed by the DFDE. We convert the problem under consideration into an optimal control problem governed by a system of DFDEs, using the pseudo-spectral method and the Jacobi-Gauss-Lobatto (J-G-L) integration formula. Next, we present the numerical solutions for a class of optimal control problems of systems governed by DFDEs. The convergence of the proposed method is graphically analyzed showing that the proposed scheme is a good tool for the simulation of distributed control problems governed by DFDEs.

  2. The Solution of Two-Phase Inverse Stefan Problem Based on a Hybrid Method with Optimization

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2015-01-01

    Full Text Available The two-phase Stefan problem is widely used in industrial field. This paper focuses on solving the two-phase inverse Stefan problem when the interface moving is unknown, which is more realistic from the practical point of view. With the help of optimization method, the paper presents a hybrid method which combines the homotopy perturbation method with the improved Adomian decomposition method to solve this problem. Simulation experiment demonstrates the validity of this method. Optimization method plays a very important role in this paper, so we propose a modified spectral DY conjugate gradient method. And the convergence of this method is given. Simulation experiment illustrates the effectiveness of this modified spectral DY conjugate gradient method.

  3. Application of a Perturbation Method for Realistic Dynamic Simulation of Industrial Robots

    International Nuclear Information System (INIS)

    Waiboer, R. R.; Aarts, R. G. K. M.; Jonker, J. B.

    2005-01-01

    This paper presents the application of a perturbation method for the closed-loop dynamic simulation of a rigid-link manipulator with joint friction. In this method the perturbed motion of the manipulator is modelled as a first-order perturbation of the nominal manipulator motion. A non-linear finite element method is used to formulate the dynamic equations of the manipulator mechanism. In a closed-loop simulation the driving torques are generated by the control system. Friction torques at the actuator joints are introduced at the stage of perturbed dynamics. For a mathematical model of the friction torques we implemented the LuGre friction model that accounts both for the sliding and pre-sliding regime. To illustrate the method, the motion of a six-axes industrial Staeubli robot is simulated. The manipulation task implies transferring a laser spot along a straight line with a trapezoidal velocity profile. The computed trajectory tracking errors are compared with measured values, where in both cases the tip position is computed from the joint angles using a nominal kinematic robot model. It is found that a closed-loop simulation using a non-linear finite element model of this robot is very time-consuming due to the small time step of the discrete controller. Using the perturbation method with the linearised model a substantial reduction of the computer time is achieved without loss of accuracy

  4. Monitoring and troubleshooting of non-filamentous settling and dewatering problems in an industrial activated sludge treatment plant

    DEFF Research Database (Denmark)

    Kjellerup, B. V.; Keiding, Kristian; Nielsen, Per Halkjær

    2001-01-01

    dewaterability. The monitoring program revealed that a deterioration of the floc strength and the settling properties in the process tanks was closely connected to downstream dewatering problems and poor effluent quality. Particularly severe problems were observed a few weeks after the production at the factory......A large industrial activated sludge wastewater treatment plant had temporary problems with settling and dewatering of the sludge. Microscopical investigations revealed that the poor settling properties were not due to presence of filamentous bacteria, but poor floc properties. In order...... to characterise the changes in floc properties that led to settling and dewatering problems and to find reasons for this taking place, a comprehensive monitoring program was conducted during more than one year. The monitoring program included various measurements of floc settleability, floc strength and sludge...

  5. Scientific computing and algorithms in industrial simulations projects and products of Fraunhofer SCAI

    CERN Document Server

    Schüller, Anton; Schweitzer, Marc

    2017-01-01

    The contributions gathered here provide an overview of current research projects and selected software products of the Fraunhofer Institute for Algorithms and Scientific Computing SCAI. They show the wide range of challenges that scientific computing currently faces, the solutions it offers, and its important role in developing applications for industry. Given the exciting field of applied collaborative research and development it discusses, the book will appeal to scientists, practitioners, and students alike. The Fraunhofer Institute for Algorithms and Scientific Computing SCAI combines excellent research and application-oriented development to provide added value for our partners. SCAI develops numerical techniques, parallel algorithms and specialized software tools to support and optimize industrial simulations. Moreover, it implements custom software solutions for production and logistics, and offers calculations on high-performance computers. Its services and products are based on state-of-the-art metho...

  6. Hybrid simulation models of production networks

    CERN Document Server

    Kouikoglou, Vassilis S

    2001-01-01

    This book is concerned with a most important area of industrial production, that of analysis and optimization of production lines and networks using discrete-event models and simulation. The book introduces a novel approach that combines analytic models and discrete-event simulation. Unlike conventional piece-by-piece simulation, this method observes a reduced number of events between which the evolution of the system is tracked analytically. Using this hybrid approach, several models are developed for the analysis of production lines and networks. The hybrid approach combines speed and accuracy for exceptional analysis of most practical situations. A number of optimization problems, involving buffer design, workforce planning, and production control, are solved through the use of hybrid models.

  7. Industrial numerical analysis

    International Nuclear Information System (INIS)

    McKee, S.; Elliott, C.M.

    1986-01-01

    The applications of mathematics to industrial problems involves the formulation of problems which are amenable to mathematical investigation, mathematical modelling, the solution of the mathematical problem and the inter-pretation of the results. There are 12 chapters describing industrial problems where mathematics and numerical analysis can be applied. These range from the numerical assessment of the flatness of engineering surfaces and plates, the design of chain links, control problems in tidal power generation and low thrust satellite trajectory optimization to mathematical models in welding. One chapter, on the ageing of stainless steels, is indexed separately. (UK)

  8. CFD Simulation of an Anaerobic Membrane BioReactor (AnMBR to Treat Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Laura C. Zuluaga

    2015-06-01

    Full Text Available A Computational Fluid Dynamics (CFD simulation has been developed for an Anaerobic Membrane BioReactor (AnMBR to treat industrial wastewater. As the process consists of a side-stream MBR, two separate simulations were created: (i reactor and (ii membrane. Different cases were conducted for each one, so the surrounding temperature and the total suspended solids (TSS concentration were checked. For the reactor, the most important aspects to consider were the dead zones and the mixing, whereas for the ceramic membrane, it was the shear stress over the membrane surface. Results show that the reactor's mixing process was adequate and that the membrane presented higher shear stress in the 'triangular' channel.

  9. The use of a numerical simulation for the evaluation and optimization of a industrial equipment operation using a natural gas combustion; O uso da simulacao numerica para avaliar e otimizar a operacao de equipamentos industriais envolvendo a combustao de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Marcos Sebastiao de P.; Nieckele, Angela O.; Naccache, Monica F. [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. de Engenharia Mecanica; Nascimento Filho, Lenart Palmeira do [PETROBRAS, Rio de Janeiro, RJ (Brazil). Gerencia de Tecnologia do Gas Natural

    2004-07-01

    Numerical modeling may be used with great efficiency for predicting the behavior of systems operating in new situations. By using adequate models, it is possible to predict the performance of a system in a great number of different situations, in a fast manner and saving resources. The objective of the work was to develop a methodology, by using numerical modeling, with the purpose of predicting the behavior of combustion equipment operating with natural gas. The simulations included the modeling of the turbulent flow, the heat transfer and mass transfer problems, and also for considering the chemical reactions mechanisms. The investigation focused on the industrial segment. Two typical geometries were studied, represented by Industrial furnace for melting and re-melting metals, and Industrial furnace for ceramics ('tunnel' type). The simulations produced results, for the two geometries which were considered, on the velocity and temperature fields and species concentrations, within both furnaces. The developed methodology may be employed in other applications of practical interest. (author)

  10. Simulating the Cost of Cooperation: A Recipe for Collaborative Problem-Solving

    Directory of Open Access Journals (Sweden)

    Andrea Guazzini

    2018-06-01

    Full Text Available Collective problem-solving and decision-making, along with other forms of collaboration online, are central phenomena within ICT. There had been several attempts to create a system able to go beyond the passive accumulation of data. However, those systems often neglect important variables such as group size, the difficulty of the tasks, the tendency to cooperate, and the presence of selfish individuals (free riders. Given the complex relations among those variables, numerical simulations could be the ideal tool to explore such relationships. We take into account the cost of cooperation in collaborative problem solving by employing several simulated scenarios. The role of two parameters was explored: the capacity, the group’s capability to solve increasingly challenging tasks coupled with the collective knowledge of a group, and the payoff, an individual’s own benefit in terms of new knowledge acquired. The final cooperation rate is only affected by the cost of cooperation in the case of simple tasks and small communities. In contrast, the fitness of the community, the difficulty of the task, and the groups sizes interact in a non-trivial way, hence shedding some light on how to improve crowdsourcing when the cost of cooperation is high.

  11. International Co-operation: Industrialized and Industrializing Countries

    International Nuclear Information System (INIS)

    Khatib, H.

    1996-01-01

    Industrializing Countries are becoming increasingly important in the fossil fuels market. In their endeavour for development these countries need to be assisted by the industrialized countries in various problems of provision of capital, capacity building, technology transfer and protection to the environment. (author)

  12. Why finding costs are now a major problem [in the US petroleum industry

    International Nuclear Information System (INIS)

    Gaddis, D.; Brock, H.; Boynton, C.

    1993-01-01

    A major problem facing the US petroleum industry is the higher average finding costs that now exist within the US compared to the average finding costs outside the US. It has been argued that federal lands and offshore areas need to be open for drilling in order to reduce average finding costs in the US. Certainly, the development of a national energy policy must acknowledge the importance of finding costs. Financial analysts for some time have acknowledged the importance of finding costs in evaluating individual energy firms. Analysts expect mergers when it is cheaper for companies to purchase reserves than to find them. Just as industry-average finding costs are a key determinant of long-term market prices for oil and gas, relative finding costs are a key determinant of a company's stock market value. Division managers are now judged regularly by top management on the basis of relative finding costs. The heavy use of finding costs data is causing its own problems, however, because there is as yet no standard for calculating and reporting those costs. This article analyzes the strengths and weaknesses of conventional techniques for determining finding costs. Our goal is a finding costs measure that is a reliable indicator of future profitability. Conceptually, a finding cost figure is a measurement of how much it costs a company to find a barrel of oil or an mcf of gas. The figure is arrived at by dividing the figure for costs incurred during a specified period by the volume (barrels or mcfs) of reserve added during the same period. (author)

  13. Depression and Behavioral Problems Among Adolescent Girls and Young Women Employees of the Textile Industry in India.

    Science.gov (United States)

    Gnanaselvam, Nancy Angeline; Joseph, Bobby

    2018-01-01

    Stress and depression are common in textile industry employees due to inadequate working conditions and challenging socioeconomic conditions. The objective of the study was to assess depression and mental health among adolescent and young females currently employed in a textile factory located in Tamil Nadu compared with past employees and women who have never been employed. This cross-sectional study included a total of 107 participants in each study group who were interviewed. The Patient Health Questionnaire-9 and Strengths and Difficulties Questionnaire were administered to screen participants for depression and mental health. More current employees (16.82%) and past employees (15.88%) suffered from depression severe enough to require treatment compared with never employed girls and young women (2.8%). Of the study participants, 59.8% of current employees, 63.6% of past employees, and 32.7% of never employed women had mental health or behavior problems. In the regression model, history of abuse was significantly associated with depression. Participants who were current employees and reported family debt and a history of abuse were significantly more likely to have mental health or behavior problems. Mental health issues such as depression and behavior problems were more likely among adolescent girls currently employed in textile industries. Further studies into the causes of this phenomenon are needed.

  14. Musculoskeletal problems among workers in a garment industry, at Tirupur, Tamil Nadu

    Directory of Open Access Journals (Sweden)

    Sreesupria Purushothaman Ravichandran

    2016-09-01

    Full Text Available Background: Every occupation has its own ill effects on health. Garment workers are denied of their basic rights and less importance is given to their health. Their health status also depends on their access to treatment and availability of healthcare facilities. Aims & Objectives: To estimate the prevalence, health seeking pattern and associated factors for musculoskeletal problems among garment workers and to assess the level of exposure of individual workers to upper limb musculoskeletal loads. Materials and methods: A cross sectional study was conducted among 380 workers in a garment industry, at Tirupur over a period of two months. Interview was conducted using a structured pretested questionnaire including Nordic Musculoskeletal Questionnaire and Numerical Pain Rating Scale. Level of exposure to musculoskeletal load was assessed using RULA tool. Statistical analysis was done using SPSS 19 version. Results: 77.6% of the workers had musculoskeletal problems. The most common sites affected were neck (32.1%, knee (28.7% and low back (26.6%. More than half of the workers experienced moderate pain in all body parts. 54.2% sought health care and 40% among them preferred government hospital. Only 8.7% workers had acceptable posture. Conclusion: Health problems among garment workers are one of the areas of public health concern in our country. Reducing the work strain and providing a supportive workplace environment will have a favorable impact on work productivity

  15. Radiation interaction with substance and simulation of the nuclear geophysical problems

    International Nuclear Information System (INIS)

    Pshenichnyj, G.A.

    1982-01-01

    Main processes of interaction of various types of nuclear radiation (NR) with substance, NR transport theory and physical- mathematical simulation of basic problems of nuclear geophysics (NG) are considered. General classification of NG methods according to the type of the detected radiation with a more detailed division according to the physical essence of the interaction process employed is given. Direct NG problems are related to the study of space- energy radiation distribution in substance under certain cross sections of elementary interaction processes, substance properties and specified geometric conditions. The theoretical solution of the direct problems is based on using mathematical models of radiation transport in specified media. The NG inverse problems consist in determining element composition and other medium properties by data of integral or spectral characteristics of NR fields measurements. The NR in the course of its transport in substance can experience dozens of elementary interaction processes, the predominance of this or that process depending on NR energy, medium properties and geometric measurement conditions. This explains a wide NG method diversity. The Monte Carlo method application in the NR transport theory and various methods of decreasing calculations labour input are considered [ru

  16. Business Management Simulations – a detailed industry analysis as well as recommendations for the future

    Directory of Open Access Journals (Sweden)

    Michael Batko

    2016-06-01

    Full Text Available Being exposed to serious games showed that some simulations widely vary in quality and learning outcome. In order to get to the bottom of best practices a detailed review of business management simulation literature was conducted. Additionally, an industry analysis was performed, by interviewing 17 simulation companies, testing a range of full and demo games, and conducting secondary research. The findings from both research efforts were then collated and cross-referenced against each other in order to determine three things: firstly, the practices and features used by simulation companies that have not yet been the subject of academic research; secondly, the most effective features, elements and inclusions within simulations that best assist in the achievement of learning outcomes and enhancement the user experience; and finally, ‘best practices’ in teaching a business management course in a university or company with the assistance of a simulation. Identified gaps in the current research were found to include the effectiveness of avatars, transparent pricing and the benefits of competing the simulation against other teams as opposed to the computer. In relation to the second and third objectives of the research, the findings were used to compile a business plan, with detailed recommendations for companies looking to develop a new simulation, and for instructors implementing and coordinating the use of a simulation in a business management context.

  17. INTEGRATION OF UKRAINIAN INDUSTRY SCIENTIFIC PERIODACLS INTO WORLD SCIENTIFIC INFORMATION SPACE: PROBLEMS AND SOLUTIONS

    Directory of Open Access Journals (Sweden)

    T. O. Kolesnykova

    2013-11-01

    Full Text Available Purpose. Problem of representation lack of scientists’ publications, including transport scientists, in the international scientometric databases is the urgent one for Ukrainian science. To solve the problem one should study the structure and quality of the information flow of scientific periodicals of railway universities in Ukraine and to determine the integration algorithm of scientific publications of Ukrainian scientists into the world scientific information space. Methodology. Applying the methods of scientific analysis, synthesis, analogy, comparison and prediction the author has investigated the problem of scientific knowledge distribution using formal communications. The readiness of Ukrainian railway periodicals to registration procedure in the international scientometric systems was analyzed. The level of representation of articles and authors of Ukrainian railway universities in scientometric database Scopus was studied. Findings. Monitoring of the portals of railway industry universities of Ukraine and the sites of their scientific periodicals and analysis of obtained data prove insufficient readiness of most scientific publications for submission to scientometric database. The ways providing sufficient "visibility" of industry periodicals of Ukrainian universities in the global scientific information space were proposed. Originality. The structure and quality of documentary flow of scientific periodicals in railway transport universities of Ukraine and its reflection in scientometric DB Scopus were first investigated. The basic directions of university activities to integrate the results of transport scientists research into the global scientific digital environment were outlined. It was determined the leading role of university libraries in the integration processes of scientific documentary resources of universities into the global scientific and information communicative space. Practical value. Implementation of the proposed

  18. [Method for environmental management in paper industry based on pollution control technology simulation].

    Science.gov (United States)

    Zhang, Xue-Ying; Wen, Zong-Guo

    2014-11-01

    To evaluate the reduction potential of industrial water pollutant emissions and to study the application of technology simulation in pollutant control and environment management, an Industrial Reduction Potential Analysis and Environment Management (IRPAEM) model was developed based on coupling of "material-process-technology-product". The model integrated bottom-up modeling and scenario analysis method, and was applied to China's paper industry. Results showed that under CM scenario, the reduction potentials of waster water, COD and ammonia nitrogen would reach 7 x 10(8) t, 39 x 10(4) t and 0.3 x 10(4) t, respectively in 2015, 13.8 x 10(8) t, 56 x 10(4) t and 0.5 x 10(4) t, respectively in 2020. Strengthening the end-treatment would still be the key method to reduce emissions during 2010-2020, while the reduction effect of structure adjustment would be more obvious during 2015-2020. Pollution production could basically reach the domestic or international advanced level of clean production in 2015 and 2020; the index of wastewater and ammonia nitrogen would basically meet the emission standards in 2015 and 2020 while COD would not.

  19. The Russian oil industry and foreign investments: legal aspects and the problem of business risk

    International Nuclear Information System (INIS)

    Konoplyanik, A.A.

    1994-01-01

    Despite the considerable potential oil resources in Russia, oil production is currently falling to the extent where, if present trends continue, imports will be necessary in the next few years in order to meet domestic demand. Foreign investment could make an effective contribution to stabilizing the Russian oil industry. The large resource base, favourable production costs, highly skilled workers and the conversion potential of the former defence industries to oil and gas equipment, are considerable attractions for foreign investors. However, for the time being there are many obstacles and uncertainties for oil and gas investment. Among these are political instability, high taxation, export tariffs, the legal environment, bureaucratic difficulties over new project negotiation, and problems related to oil and gas transportation. Current legislative activities which may lead to a better investment environment are described. (UK)

  20. Study on Photon Transport Problem Based on the Platform of Molecular Optical Simulation Environment

    Directory of Open Access Journals (Sweden)

    Kuan Peng

    2010-01-01

    Full Text Available As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (SPn, and physical measurement to verify the performance of our study method on both accuracy and efficiency.

  1. Study on photon transport problem based on the platform of molecular optical simulation environment.

    Science.gov (United States)

    Peng, Kuan; Gao, Xinbo; Liang, Jimin; Qu, Xiaochao; Ren, Nunu; Chen, Xueli; Ma, Bin; Tian, Jie

    2010-01-01

    As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE) to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC) method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (SP(n)), and physical measurement to verify the performance of our study method on both accuracy and efficiency.

  2. Grid dependency of wall heat transfer for simulation of natural convection flow problems

    NARCIS (Netherlands)

    Loomans, M.G.L.C.; Seppänen, O.; Säteri, J.

    2007-01-01

    In the indoor environment natural convection is a well known air flow phenomenon. In numerical simulations applying the CFD technique it is also known as a flow problem that is difficult to solve. Alternatives are available to overcome the limitations of the default approach (standard k-e model with

  3. Materials damaging and rupture - Volumes 1-2. General remarks, metallic materials. Non-metallic materials and biomaterials, assemblies and industrial problems

    International Nuclear Information System (INIS)

    Clavel, M.; Bompard, P.

    2009-01-01

    The rupture and damaging of materials and structures is almost always and unwanted events which may have catastrophic consequences. Even if the mechanical failure causes can often be analyzed using a thorough knowledge of materials behaviour, the forecasting and prevention of failures remain difficult. While the macroscopic mechanical behaviour is often the result of average effects at the structure or microstructure scale, the damage is very often the result of the combination of load peaks, of localization effects and of microstructure defects. This book, presented in two volumes, takes stock of the state-of-the-art of the knowledge gained in the understanding and modelling of rupture and damaging phenomena of materials and structure, mostly of metallic type. It gives an outline of the available knowledge for other classes of materials (ceramics, biomaterials, geo-materials..) and for different types of applications (aeronautics, nuclear industry). Finally, it examines the delicate problem, but very important in practice, of the behaviour of assemblies. Content: Vol.1 - physical mechanisms of materials damaging and rupture; rupture mechanics; cyclic plasticity and fatigue crack growth; fatigue crack propagation; environment-induced cracking; contacts and surfaces. Vol.2 - glasses and ceramics; natural environments: soils and rocks; mechanical behaviour of biological solid materials: the human bone; contribution of simulation to the understanding of rupture mechanisms; assemblies damaging and rupture; industrial cases (behaviour of PWR pressure vessel steels, and thermal and mechanical stresses in turbojet engines). (J.S.)

  4. Real time EM waves monitoring system for oil industry three phase flow measurement

    International Nuclear Information System (INIS)

    Al-Hajeri, S; Wylie, S R; Shaw, A; Al-Shamma'a, A I

    2009-01-01

    Monitoring fluid flow in a dynamic pipeline is a significant problem in the oil industry. In order to manage oil field wells efficiently, the oil industry requires accurate on line sensors to monitor the oil, gas, and water flow in the production pipelines. This paper describes a non-intrusive sensor that is based on an EM Waves cavity resonator. It determines and monitors the percentage volumes of each phase of three phase (oil, gas, and water) in the pipeline, using the resonant frequencies shifts that occur within an electromagnetic cavity resonator. A laboratory prototype version of the sensor system was constructed, and the experimental results were compared to the simulation results which were obtained by the use of High Frequency Structure Simulation (HFSS) software package.

  5. Fast engineering optimization: A novel highly effective control parameterization approach for industrial dynamic processes.

    Science.gov (United States)

    Liu, Ping; Li, Guodong; Liu, Xinggao

    2015-09-01

    Control vector parameterization (CVP) is an important approach of the engineering optimization for the industrial dynamic processes. However, its major defect, the low optimization efficiency caused by calculating the relevant differential equations in the generated nonlinear programming (NLP) problem repeatedly, limits its wide application in the engineering optimization for the industrial dynamic processes. A novel highly effective control parameterization approach, fast-CVP, is first proposed to improve the optimization efficiency for industrial dynamic processes, where the costate gradient formulae is employed and a fast approximate scheme is presented to solve the differential equations in dynamic process simulation. Three well-known engineering optimization benchmark problems of the industrial dynamic processes are demonstrated as illustration. The research results show that the proposed fast approach achieves a fine performance that at least 90% of the computation time can be saved in contrast to the traditional CVP method, which reveals the effectiveness of the proposed fast engineering optimization approach for the industrial dynamic processes. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Occupational exposure and health problems in small-scale industry workers in Dar es Salaam, Tanzania: a situation analysis.

    NARCIS (Netherlands)

    Rongo, L.M.B.; Barten, F.J.M.H.; Msamanga, G.I.; Heederik, D.; Dolmans, W.M.V.

    2004-01-01

    BACKGROUND: Workers in informal small-scale industries (SSI) in developing countries involved in welding, spray painting, woodwork and metalwork are exposed to various hazards with consequent risk to health. Aim To assess occupational exposure and health problems in SSI in Dar es Salaam, Tanzania.

  7. Modelling the oil producers: Capturing oil industry knowledge in a behavioural simulation model

    International Nuclear Information System (INIS)

    Morecroft, J.D.W.; Van der Heijden, K.A.J.M.

    1992-01-01

    A group of senior managers and planners from a major oil company met to discuss the changing structure of the oil industry with the purpose of improving group understanding of oil market behaviour for use in global scenarios. This broad ranging discussion led to a system dynamics simulation model of the oil producers. The model produced new insights into the power and stability of OPEC (the major oil producers' organization), the dynamic of oil prices, and the investment opportunities of non-OPEC producers. The paper traces the model development process, starting from group discussions and leading to working simulation models. Particular attention is paid to the methods used to capture team knowledge and to ensure that the computer models reflected opinions and ideas from the meetings. The paper describes how flip-chart diagrams were used to collect ideas about the logic of the principal producers' production decisions. A sub-group of the project team developed and tested an algebraic model. The paper shows partial model simulations used to build confidence and a sense of ownership in the algebraic formulations. Further simulations show how the full model can stimulate thinking about producers' behaviour and oil prices. The paper concludes with comments on the model building process. 11 figs., 37 refs

  8. The Computer Industry. High Technology Industries: Profiles and Outlooks.

    Science.gov (United States)

    International Trade Administration (DOC), Washington, DC.

    A series of meetings was held to assess future problems in United States high technology, particularly in the fields of robotics, computers, semiconductors, and telecommunications. This report, which focuses on the computer industry, includes a profile of this industry and the papers presented by industry speakers during the meetings. The profile…

  9. Teaching effective problem solving skills to radiation protection students

    International Nuclear Information System (INIS)

    Waller, Edward

    2008-01-01

    Full text: Problem solving skills are essential for all radiation protection personnel. Although some students have more natural problem solving skills than others, all students require practice to become comfortable using these skills. At the University of Ontario Institute of Technology (UOIT), a unique one-semester course was developed as part of the core curriculum to teach students problem solving skills and elements of modelling and simulation. The underlying emphasis of the course was to allow students to develop their own problem solving strategies, both individually and in groups. Direction was provided on how to examine problems from different perspectives, and how to determine the proper root problem statement. A five-point problem solving strategy was presented as: 1) Problem definition; 2) Solution generation; 3) Decision; 4) Implementation; 5) Evaluation. Within the strategy, problem solving techniques were integrated from diverse areas such as: De Bono 's six thinking hats, Kepner-Tregoe decision analysis, Covey's seven habits of highly effective people, Reason's swiss cheese theory of complex failure, and Howlett's common failure modes. As part of the evaluation step, students critically explore areas such as ethics and environmental responsibility. In addition to exploring problem solving methods, students learn the usefulness of simulation methods, and how to model and simulate complex phenomena of relevance to radiation protection. Computational aspects of problem solving are explored using the commercially available MATLAB computer code. A number of case studies are presented as both examples and problems to the students. Emphasis was placed on solutions to problems of interest to radiation protection, health physics and nuclear engineering. A group project, pertaining to an accident or event related to the nuclear industry is a course requirement. Students learn to utilize common time and project management tools such as flowcharting, Pareto

  10. Sample problem manual for benchmarking of cask analysis codes

    International Nuclear Information System (INIS)

    Glass, R.E.

    1988-02-01

    A series of problems have been defined to evaluate structural and thermal codes. These problems were designed to simulate the hypothetical accident conditions given in Title 10 of the Code of Federal Regulation, Part 71 (10CFR71) while retaining simple geometries. This produced a problem set that exercises the ability of the codes to model pertinent physical phenomena without requiring extensive use of computer resources. The solutions that are presented are consensus solutions based on computer analyses done by both national laboratories and industry in the United States, United Kingdom, France, Italy, Sweden, and Japan. The intent of this manual is to provide code users with a set of standard structural and thermal problems and solutions which can be used to evaluate individual codes. 19 refs., 19 figs., 14 tabs

  11. Simulation Study of Single Photon Emission Computed Tomography for Industrial Applications

    International Nuclear Information System (INIS)

    Roy, Tushar; Sarkar, P. S.; Sinha, Amar

    2008-01-01

    SPECT (Single Photon Emission Computed Tomography) provides for an invaluable non-invasive technique for the characterization and activity distribution of the gamma-emitting source. For many applications of radioisotopes for medical and industrial application, not only the positional information of the distribution of radioisotopes is needed but also its strength. The well-established X-ray radiography or transmission tomography techniques do not yield sufficient quantitative information about these objects. Emission tomography is one of the important methods for such characterization. Application of parallel beam, fan beam and 3D cone beam emission tomography methods have been discussed in this paper. Simulation studies to test these algorithms have been carried out to validate the technique.

  12. Analytical methods for heat transfer and fluid flow problems

    CERN Document Server

    Weigand, Bernhard

    2015-01-01

    This book describes useful analytical methods by applying them to real-world problems rather than solving the usual over-simplified classroom problems. The book demonstrates the applicability of analytical methods even for complex problems and guides the reader to a more intuitive understanding of approaches and solutions. Although the solution of Partial Differential Equations by numerical methods is the standard practice in industries, analytical methods are still important for the critical assessment of results derived from advanced computer simulations and the improvement of the underlying numerical techniques. Literature devoted to analytical methods, however, often focuses on theoretical and mathematical aspects and is therefore useless to most engineers. Analytical Methods for Heat Transfer and Fluid Flow Problems addresses engineers and engineering students. The second edition has been updated, the chapters on non-linear problems and on axial heat conduction problems were extended. And worked out exam...

  13. Solving the dial-a-ride problem using agent-based simulation

    Directory of Open Access Journals (Sweden)

    Campbell, Ian

    2016-11-01

    Full Text Available The ‘dial-a-ride problem’ (DARP requires a set of customers to be transported by a limited fleet of vehicles between unique origins and destinations under several service constraints, including within defined time windows. The problem is considered NP-hard, and has typically been solved using metaheuristic methods. An agent-based simulation (ABS model was developed, where each vehicle bids to service customers based on a weighted objective function that considers the cost to service the customer and the time quality of the service that would be achieved. The approach applied a pre- processing technique to reduce the search space, given the service time window constraints. Tests of the model showed significantly better customer transit and waiting times than the benchmark datasets. The ABS was able to obtain solutions for much larger problem sizes than the benchmark solutions, with this work being the first known application of ABS to the DARP.

  14. Metallic materials for the hydrogen energy industry and main gas pipelines: complex physical problems of aging, embrittlement, and failure

    International Nuclear Information System (INIS)

    Nechaev, Yu S

    2008-01-01

    The possibilities of effective solutions of relevant technological problems are considered based on the analysis of fundamental physical aspects, elucidation of the micromechanisms and interrelations of aging and hydrogen embrittlement of materials in the hydrogen industry and gas-main industries. The adverse effects these mechanisms and processes have on the service properties and technological lifetime of materials are analyzed. The concomitant fundamental process of formation of carbohydride-like and other nanosegregation structures at dislocations (with the segregation capacity 1 to 1.5 orders of magnitude greater than in the widely used Cottrell 'atmosphere' model) and grain boundaries is discussed, as is the way in which these structures affect technological processes (aging, hydrogen embrittlement, stress corrosion damage, and failure) and the physicomechanical properties of the metallic materials (including the technological lifetimes of pipeline steels). (reviews of topical problems)

  15. Online and face-to-face role-play simulations in promoting social work students’ argumentative problem solving

    Directory of Open Access Journals (Sweden)

    Kati Vapalahti

    2015-03-01

    Full Text Available This paper reports on a teaching experiment in which social work students (n=38 practiced problem solving through argumentative tasks. A teaching experiment was carried out at a Mikkeli University of Applied Sciences in Finland in connection with a course concerning preventative work against alcohol- and drug abuse. This quasi- experimental study investigated whether role-play simulation conducted either online (15 students or face-to-face (14 students improved students’ problem solving on social issues. As a pre-test, the students wrote an essay after having watched a dramatization of problematic cases on elderly people’s use of alcohol. The students also attended lectures (30 x 45 min on the effect of substance abuse and preventive work, and after the role-play simulation they wrote another essay (post-test. Nine controls wrote an essay without participating in the role-play simulation. Lastly, the students filled out feedback questionnaires.

  16. Robust modelling and simulation integration of SIMIO with coloured petri nets

    CERN Document Server

    De La Mota, Idalia Flores; Mujica Mota, Miguel; Angel Piera, Miquel

    2017-01-01

    This book presents for the first time a methodology that combines the power of a modelling formalism such as colored petri nets with the flexibility of a discrete event program such as SIMIO. Industrial practitioners have seen the growth of simulation as a methodology for tacking problems in which variability is the common denominator. Practically all industrial systems, from manufacturing to aviation are considered stochastic systems. Different modelling techniques have been developed as well as mathematical techniques for formalizing the cause-effect relationships in industrial and complex systems. The methodology in this book illustrates how complexity in modelling can be tackled by the use of coloured petri nets, while at the same time the variability present in systems is integrated in a robust fashion. The book can be used as a concise guide for developing robust models, which are able to efficiently simulate the cause-effect relationships present in complex industrial systems without losing the simulat...

  17. Opinions of UK rescue shelter and rehoming center workers on the problems facing their industry

    OpenAIRE

    Stavisky, Jenny; Brennan, Marnie L.; Downes, Martin J.; Dean, Rachel S.

    2017-01-01

    Animal shelters exist worldwide to care for and rehome unwanted or straying pets. Previous studies have examined why owners breed unwanted animals, or relinquish their pets to shelters. However, the views of shelter workers, who receive and care for these animals, have previously been largely unexplored. The aim of this study was to investigate the perceptions of animal shelter workers on the problems facing their industry. A sampling frame was constructed, consisting of every identified shel...

  18. A case study on Simulation and Design optimization to improve Productivity in cooling tower manufacturing industry

    Science.gov (United States)

    Pranav Nithin, R.; Gopikrishnan, S.; Sumesh, A.

    2018-02-01

    Cooling towers are the heat transfer devices commonly found in industries which are used to extract the high temperature from the coolants and make it reusable in various plants. Basically, the cooling towers has Fills made of PVC sheets stacked together to increase the surface area exposure of the cooling liquid flowing through it. This paper focuses on the study in such a manufacturing plant where fills are being manufactured. The productivity using the current manufacturing method was only 6 to 8 fills per day, where the ideal capacity was of 14 fills per day. In this plant manual labor was employed in the manufacturing process. A change in the process modification designed and implemented will help the industry to increase the productivity to 14. In this paper, initially the simulation study was done using ARENA the simulation package and later the new design was done using CAD Package and validated using Ansys Mechanical APDL. It’s found that, by the implementation of the safe design the productivity can be increased to 196 Units.

  19. Direct numerical simulations of gas-liquid multiphase flows

    CERN Document Server

    Tryggvason, Grétar; Zaleski, Stéphane

    2011-01-01

    Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and

  20. Empirical analysis of industrial operations in Montenegro

    Directory of Open Access Journals (Sweden)

    Galić Jelena

    2012-12-01

    Full Text Available Since the starting process of transition, industrial production in Montenegro has been faced with serious problems and its share in GDP is constantly decreasing. Global financial crises had in large extent negatively influenced industry. Analysis of financial indicators showed that industry had significant losses, problem of undercapitalisation and liquidity problems. If we look by industry sectors, than situation is more favourable in the production of electricity, gas and water compared to extracting industry and mining. In paper is proposed measures of economic policy in order to improve situation in industry.

  1. Combined Simulated Annealing Algorithm for the Discrete Facility Location Problem

    Directory of Open Access Journals (Sweden)

    Jin Qin

    2012-01-01

    Full Text Available The combined simulated annealing (CSA algorithm was developed for the discrete facility location problem (DFLP in the paper. The method is a two-layer algorithm, in which the external subalgorithm optimizes the decision of the facility location decision while the internal subalgorithm optimizes the decision of the allocation of customer's demand under the determined location decision. The performance of the CSA is tested by 30 instances with different sizes. The computational results show that CSA works much better than the previous algorithm on DFLP and offers a new reasonable alternative solution method to it.

  2. Hybrid simulation of scatter intensity in industrial cone-beam computed tomography

    International Nuclear Information System (INIS)

    Thierry, R.; Miceli, A.; Hofmann, J.; Flisch, A.; Sennhauser, U.

    2009-01-01

    A cone-beam computed tomography (CT) system using a 450 kV X-ray tube has been developed to challenge the three-dimensional imaging of parts of the automotive industry in short acquisition time. Because the probability of detecting scattered photons is high regarding the energy range and the area of detection, a scattering correction becomes mandatory for generating reliable images with enhanced contrast detectability. In this paper, we present a hybrid simulator for the fast and accurate calculation of the scattering intensity distribution. The full acquisition chain, from the generation of a polyenergetic photon beam, its interaction with the scanned object and the energy deposit in the detector is simulated. Object phantoms can be spatially described in form of voxels, mathematical primitives or CAD models. Uncollided radiation is treated with a ray-tracing method and scattered radiation is split into single and multiple scattering. The single scattering is calculated with a deterministic approach accelerated with a forced detection method. The residual noisy signal is subsequently deconvoluted with the iterative Richardson-Lucy method. Finally the multiple scattering is addressed with a coarse Monte Carlo (MC) simulation. The proposed hybrid method has been validated on aluminium phantoms with varying size and object-to-detector distance, and found in good agreement with the MC code Geant4. The acceleration achieved by the hybrid method over the standard MC on a single projection is approximately of three orders of magnitude.

  3. Modeling and simulation challenges pursued by the Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Science.gov (United States)

    Turinsky, Paul J.; Kothe, Douglas B.

    2016-05-01

    The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear power industry that M&S can assist in addressing. To date CASL has developed a multi-physics ;core simulator; based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL's evolving M

  4. Generalizable open source urban water portfolio simulation framework demonstrated using a multi-objective risk-based planning benchmark problem.

    Science.gov (United States)

    Trindade, B. C.; Reed, P. M.

    2017-12-01

    The growing access and reduced cost for computing power in recent years has promoted rapid development and application of multi-objective water supply portfolio planning. As this trend continues there is a pressing need for flexible risk-based simulation frameworks and improved algorithm benchmarking for emerging classes of water supply planning and management problems. This work contributes the Water Utilities Management and Planning (WUMP) model: a generalizable and open source simulation framework designed to capture how water utilities can minimize operational and financial risks by regionally coordinating planning and management choices, i.e. making more efficient and coordinated use of restrictions, water transfers and financial hedging combined with possible construction of new infrastructure. We introduce the WUMP simulation framework as part of a new multi-objective benchmark problem for planning and management of regionally integrated water utility companies. In this problem, a group of fictitious water utilities seek to balance the use of the mentioned reliability driven actions (e.g., restrictions, water transfers and infrastructure pathways) and their inherent financial risks. Several traits of this problem make it ideal for a benchmark problem, namely the presence of (1) strong non-linearities and discontinuities in the Pareto front caused by the step-wise nature of the decision making formulation and by the abrupt addition of storage through infrastructure construction, (2) noise due to the stochastic nature of the streamflows and water demands, and (3) non-separability resulting from the cooperative formulation of the problem, in which decisions made by stakeholder may substantially impact others. Both the open source WUMP simulation framework and its demonstration in a challenging benchmarking example hold value for promoting broader advances in urban water supply portfolio planning for regions confronting change.

  5. Importance and topical problems of the industry of the nuclear fuel cycle in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Warrikoff, A.

    1987-01-01

    32 companies belong to the industrial association 'Kernbrennstoffkreislauf e.V.'. They do business in the nuclear fuel cycle in the Federal Republic of Germany. This field comprises the different forms of dealing with nuclear fuels and the materials from which they are made, including the radioactive wastes resulting from the use of nuclear fuels, with the exception of the handling of such materials in nuclear power plants. Some 5000 persons - subcontractors not counted - are employed in this branch of industry. Turnover amounts to about 2 billion Deutsch Marks yearly. But it is a branch of industry that is important beyond the figures mentioned. Its existence constitutes the precondition for building, operating, and exporting nuclear power plants. This paper is concerned particularly with some topical political problems. (orig./UA) [de

  6. Simulator Investigations of the Problems of Flying a Swept-Wing Transport Aircraft in Heavy Turbulence

    Science.gov (United States)

    Bray, Richard S.; Larsen, William E.

    1965-01-01

    An investigation of several factors which may contribute to the problem of piloting jet transport aircraft in heavy turbulence was conducted by using a piloted simulator that included the most significant airplane response and cockpit vibrations induced by rough air. Results indicated that the primary fuselage structural frequency contributed significantly to a distracting cockpit environment, and there was obtained evidence of severely reduced instrument flight proficiency during simulated maneuvering flight in heavy turbulence. It is concluded that the addition of similar rough-air response capabilities to training simulators would be of value in pilot indoctrination in turbulent-flight procedures.

  7. Study on Photon Transport Problem Based on the Platform of Molecular Optical Simulation Environment

    Science.gov (United States)

    Peng, Kuan; Gao, Xinbo; Liang, Jimin; Qu, Xiaochao; Ren, Nunu; Chen, Xueli; Ma, Bin; Tian, Jie

    2010-01-01

    As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE) to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC) method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (S P n), and physical measurement to verify the performance of our study method on both accuracy and efficiency. PMID:20445737

  8. Development of porous structure simulator for multi-scale simulation of irregular porous catalysts

    International Nuclear Information System (INIS)

    Koyama, Michihisa; Suzuki, Ai; Sahnoun, Riadh; Tsuboi, Hideyuki; Hatakeyama, Nozomu; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Del Carpio, Carlos A.; Miyamoto, Akira

    2008-01-01

    Efficient development of highly functional porous materials, used as catalysts in the automobile industry, demands a meticulous knowledge of the nano-scale interface at the electronic and atomistic scale. However, it is often difficult to correlate the microscopic interfacial interactions with macroscopic characteristics of the materials; for instance, the interaction between a precious metal and its support oxide with long-term sintering properties of the catalyst. Multi-scale computational chemistry approaches can contribute to bridge the gap between micro- and macroscopic characteristics of these materials; however this type of multi-scale simulations has been difficult to apply especially to porous materials. To overcome this problem, we have developed a novel mesoscopic approach based on a porous structure simulator. This simulator can construct automatically irregular porous structures on a computer, enabling simulations with complex meso-scale structures. Moreover, in this work we have developed a new method to simulate long-term sintering properties of metal particles on porous catalysts. Finally, we have applied the method to the simulation of sintering properties of Pt on alumina support. This newly developed method has enabled us to propose a multi-scale simulation approach for porous catalysts

  9. Establishing a `Centre for Engineering Experimentation and Design Simulation': a step towards restructuring engineering education in India

    Science.gov (United States)

    Venkateswarlu, P.

    2017-07-01

    Reforms in undergraduate engineering curriculum to produce engineers with entrepreneurial skills should address real-world problems relevant to industry and society with active industry support. Technology-assisted, hands-on projects involving experimentation, design simulation and prototyping will transform graduates into professionals with necessary skills to create and advance knowledge that meets global standards. To achieve this goal, this paper proposes establishing a central facility, 'Centre for Engineering Experimentation and Design Simulation' (CEEDS) in autonomous engineering colleges in India. The centre will be equipped with the most recent technology resources and computational facilities where students execute novel interdisciplinary product-oriented projects benefiting both industry and society. Students undertake two projects: a short-term project aimed at an engineering solution to a problem in energy, health and environment and the other a major industry-supported project devoted to a product that enhances innovation and creativity. The paper presents the current status, the theoretical and pedagogical foundation for the centre's relevance, an activity plan and its implementation in the centre for product-based learning with illustrative examples.

  10. Numerical Simulation of Two Dimensional Flows in Yazidang Reservoir

    Science.gov (United States)

    Huang, Lingxiao; Liu, Libo; Sun, Xuehong; Zheng, Lanxiang; Jing, Hefang; Zhang, Xuande; Li, Chunguang

    2018-01-01

    This paper studied the problem of water flow in the Yazid Ang reservoir. It built 2-D RNG turbulent model, rated the boundary conditions, used the finite volume method to discrete equations and divided the grid by the advancing-front method. It simulated the two conditions of reservoir flow field, compared the average vertical velocity of the simulated value and the measured value nearby the water inlet and the water intake. The results showed that the mathematical model could be applied to the similar industrial water reservoir.

  11. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, J.

    2010-06-01

    This paper presents recent advancement in and applications of TOUGH-FLAC, a simulator for multiphase fluid flow and geomechanics. The TOUGH-FLAC simulator links the TOUGH family multiphase fluid and heat transport codes with the commercial FLAC{sup 3D} geomechanical simulator. The most significant new TOUGH-FLAC development in the past few years is a revised architecture, enabling a more rigorous and tight coupling procedure with improved computational efficiency. The applications presented in this paper are related to modeling of crustal deformations caused by deep underground fluid movements and pressure changes as a result of both industrial activities (the In Salah CO{sub 2} Storage Project and the Geysers Geothermal Field) and natural events (the 1960s Matsushiro Earthquake Swarm). Finally, the paper provides some perspectives on the future of TOUGH-FLAC in light of its applicability to practical problems and the need for high-performance computing capabilities for field-scale problems, such as industrial-scale CO{sub 2} storage and enhanced geothermal systems. It is concluded that despite some limitations to fully adapting a commercial code such as FLAC{sup 3D} for some specialized research and computational needs, TOUGH-FLAC is likely to remain a pragmatic simulation approach, with an increasing number of users in both academia and industry.

  12. Voice problems of group fitness instructors: diagnosis, treatment, perceived and experienced attitudes and expectations of the industry.

    Science.gov (United States)

    Rumbach, Anna F

    2013-11-01

    To determine the anatomical and physiological nature of voice problems and their treatment in those group fitness instructors (GFIs) who have sought a medical diagnosis; the impact of voice disorders on quality of life and their contribution to activity limitations and participation restrictions; and the perceived attitudes and level of support from the industry at large in response to instructor's voice disorders and need for treatment. Prospective self-completion questionnaire design. Thirty-eight individuals (3 males and 35 females) currently active in the Australian fitness industry who had been diagnosed with a voice disorder completed an online self-completion questionnaire administered via SurveyMonkey. Laryngeal pathology included vocal fold nodules (N = 24), vocal fold cysts (N = 2), vocal fold hemorrhage (N = 1), and recurrent chronic laryngitis (N = 3). Eight individuals reported vocal strain and muscle tension dysphonia without concurrent vocal fold pathology. Treatment methods were variable, with 73.68% (N = 28) receiving voice therapy alone, 7.89% (N = 3) having voice therapy in combination with surgery, and 10.53% (N = 4) having voice therapy in conjunction with medication. Three individuals (7.89%) received no treatment for their voice disorder. During treatment, 82% of the cohort altered their teaching practices. Half of the cohort reported that their voice problems led to social withdrawal, decreased job satisfaction, and emotional distress. Greater than 65% also reported being dissatisfied with the level of industry and coworker support during the period of voice recovery. This study identifies that GFIs are susceptible to a number of voice disorders that impact their social and professional lives, and there is a need for more proactive training and advice on voice care for instructors, as well as those in management positions within the industry to address mixed approaches and opinions regarding the importance of voice care. Copyright © 2013

  13. Numerical simulations of the industrial circulating fluidized bed boiler under air- and oxy-fuel combustion

    International Nuclear Information System (INIS)

    Adamczyk, Wojciech P.; Kozołub, Paweł; Klimanek, Adam; Białecki, Ryszard A.; Andrzejczyk, Marek; Klajny, Marcin

    2015-01-01

    Measured and numerical results of air-fuel combustion process within large scale industrial circulating fluidized bed (CFB) boiler is presented in this paper. For numerical simulations the industrial compact CFB boiler was selected. Numerical simulations were carried out using three-dimensional model where the dense particulate transport phenomenon was simultaneously modelled with combustion process. The fluidization process was modelled using the hybrid Euler-Lagrange approach. The impact of the geometrical model simplification on predicted mass distribution and temperature profiles over CFB boiler combustion chamber two kinds of geometrical models were used, namely the complete model which consist of combustion chamber, solid separators, external solid super-heaters and simplified boiler geometry which was reduced to the combustion chamber. The evaluated temperature and pressure profiles during numerical simulations were compared against measured data collected during boiler air-fuel operation. Collected data was also used for validating numerical model of the oxy-fuel combustion model. Stability of the model and its sensitivity on changes of several input parameters were studied. The comparison of the pressure and temperature profiles for all considered cases gave comparable trends in contrary to measured data. Moreover, some additional test was carried out the check the influence of radiative heat transfer on predicted temperature profile within the CFB boiler. - Highlights: • Hybrid Euler-Lagrange approach was used for modelling particle transport, air- and oxy-fuel combustion process. • Numerical results were validated against measured data. • The influence of different boiler operating conditions on calculated temperature profile was investigated. • New strategy for resolving particle transport in circulating fluidized bed was shown

  14. Simulation-Based Optimization for Storage Allocation Problem of Outbound Containers in Automated Container Terminals

    Directory of Open Access Journals (Sweden)

    Ning Zhao

    2015-01-01

    Full Text Available Storage allocation of outbound containers is a key factor of the performance of container handling system in automated container terminals. Improper storage plans of outbound containers make QC waiting inevitable; hence, the vessel handling time will be lengthened. A simulation-based optimization method is proposed in this paper for the storage allocation problem of outbound containers in automated container terminals (SAPOBA. A simulation model is built up by Timed-Colored-Petri-Net (TCPN, used to evaluate the QC waiting time of storage plans. Two optimization approaches, based on Particle Swarm Optimization (PSO and Genetic Algorithm (GA, are proposed to form the complete simulation-based optimization method. Effectiveness of this method is verified by experiment, as the comparison of the two optimization approaches.

  15. Efficient numerical methods for the large-scale, parallel solution of elastoplastic contact problems

    KAUST Repository

    Frohne, Jö rg; Heister, Timo; Bangerth, Wolfgang

    2015-01-01

    © 2016 John Wiley & Sons, Ltd. Quasi-static elastoplastic contact problems are ubiquitous in many industrial processes and other contexts, and their numerical simulation is consequently of great interest in accurately describing and optimizing production processes. The key component in these simulations is the solution of a single load step of a time iteration. From a mathematical perspective, the problems to be solved in each time step are characterized by the difficulties of variational inequalities for both the plastic behavior and the contact problem. Computationally, they also often lead to very large problems. In this paper, we present and evaluate a complete set of methods that are (1) designed to work well together and (2) allow for the efficient solution of such problems. In particular, we use adaptive finite element meshes with linear and quadratic elements, a Newton linearization of the plasticity, active set methods for the contact problem, and multigrid-preconditioned linear solvers. Through a sequence of numerical experiments, we show the performance of these methods. This includes highly accurate solutions of a three-dimensional benchmark problem and scaling our methods in parallel to 1024 cores and more than a billion unknowns.

  16. Efficient numerical methods for the large-scale, parallel solution of elastoplastic contact problems

    KAUST Repository

    Frohne, Jörg

    2015-08-06

    © 2016 John Wiley & Sons, Ltd. Quasi-static elastoplastic contact problems are ubiquitous in many industrial processes and other contexts, and their numerical simulation is consequently of great interest in accurately describing and optimizing production processes. The key component in these simulations is the solution of a single load step of a time iteration. From a mathematical perspective, the problems to be solved in each time step are characterized by the difficulties of variational inequalities for both the plastic behavior and the contact problem. Computationally, they also often lead to very large problems. In this paper, we present and evaluate a complete set of methods that are (1) designed to work well together and (2) allow for the efficient solution of such problems. In particular, we use adaptive finite element meshes with linear and quadratic elements, a Newton linearization of the plasticity, active set methods for the contact problem, and multigrid-preconditioned linear solvers. Through a sequence of numerical experiments, we show the performance of these methods. This includes highly accurate solutions of a three-dimensional benchmark problem and scaling our methods in parallel to 1024 cores and more than a billion unknowns.

  17. A hybrid multiple attribute decision making method for solving problems of industrial environment

    Directory of Open Access Journals (Sweden)

    Dinesh Singh

    2011-01-01

    Full Text Available The selection of appropriate alternative in the industrial environment is an important but, at the same time, a complex and difficult problem because of the availability of a wide range of alternatives and similarity among them. Therefore, there is a need for simple, systematic, and logical methods or mathematical tools to guide decision makers in considering a number of selection attributes and their interrelations. In this paper, a hybrid decision making method of graph theory and matrix approach (GTMA and analytical hierarchy process (AHP is proposed. Three examples are presented to illustrate the potential of the proposed GTMA-AHP method and the results are compared with the results obtained using other decision making methods.

  18. PFEM-based modeling of industrial granular flows

    Science.gov (United States)

    Cante, J.; Dávalos, C.; Hernández, J. A.; Oliver, J.; Jonsén, P.; Gustafsson, G.; Häggblad, H.-Å.

    2014-05-01

    The potential of numerical methods for the solution and optimization of industrial granular flows problems is widely accepted by the industries of this field, the challenge being to promote effectively their industrial practice. In this paper, we attempt to make an exploratory step in this regard by using a numerical model based on continuous mechanics and on the so-called Particle Finite Element Method (PFEM). This goal is achieved by focusing two specific industrial applications in mining industry and pellet manufacturing: silo discharge and calculation of power draw in tumbling mills. Both examples are representative of variations on the granular material mechanical response—varying from a stagnant configuration to a flow condition. The silo discharge is validated using the experimental data, collected on a full-scale flat bottomed cylindrical silo. The simulation is conducted with the aim of characterizing and understanding the correlation between flow patterns and pressures for concentric discharges. In the second example, the potential of PFEM as a numerical tool to track the positions of the particles inside the drum is analyzed. Pressures and wall pressures distribution are also studied. The power draw is also computed and validated against experiments in which the power is plotted in terms of the rotational speed of the drum.

  19. Education-industry partnership: the chemical industry experience

    International Nuclear Information System (INIS)

    Bricknell, D.J.

    1994-01-01

    The European Chemical Industry and the Nuclear Power Industry share similar problems and hopefully can share similar solutions to them. A recent survey of public opinion conducted on behalf of the chemical industry has shown that the general public knows little about the industry and does not trust it to behave responsibly. The industry is responding in two ways: firstly to demonstrate that it is a responsible member of the community by operating to the highest safety and environmental standards and by being open in its dealings with the public on such matters. Secondly the industry is working with the education system to ensure that the public has the opportunity to gain a good education in science, is able to make rational judgments about risks and benefits and is better able to understand and accept the role of the chemical industry in society

  20. Simulation of international standard problem no. 44 open tests using Melcor computer code

    International Nuclear Information System (INIS)

    Song, Y.M.; Cho, S.W.

    2001-01-01

    MELCOR 1.8.4 code has been employed to simulate the KAEVER test series of K123/K148/K186/K188 that were proposed as open experiments of International Standard Problem No.44 by OECD-CSNI. The main purpose of this study is to evaluate the accuracy of the MELCOR aerosol model which calculates the aerosol distribution and settlement in a containment. For this, thermal hydraulic conditions are simulated first for the whole test period and then the behavior of hygroscopic CsOH/CsI and unsoluble Ag aerosols, which are predominant activity carriers in a release into the containment, is compared between the experimental results and the code predictions. The calculation results of vessel atmospheric concentration show a good simulation for dry aerosol but show large difference for wet aerosol due to a data mismatch in vessel humidity and the hygroscopicity. (authors)

  1. Uranium in situ leaching: its advantages, practice, problems and computer simulation

    International Nuclear Information System (INIS)

    Hancock, B.A.

    1977-01-01

    In situ leaching for the recovery of uranium from low grade sandstone deposits is one of the newest technological advances in the mineral industry. It is rapidly developing into a commercially feasible mining system which has economic, environmental, and social advantages over conventional mining systems. Because of the current uranium shortage, development of in situ leaching into a sophisticated system has gained new impetus. In situ leaching will become an important mining technique in the future, which will greatly help to supply uranium for the United States' energy needs. In this paper, the author gives an overview of the merits of the system, as well as the technology problems, and research in solution mining of uranium. 17 references

  2. Industrial Requirements for Thermodynamics and Transport Properties

    DEFF Research Database (Denmark)

    Hendriks, Eric; Kontogeorgis, Georgios; Dohrn, Ralf

    2010-01-01

    the direction for future development. The use of new methods, such as SAFT, is increasing, but they are not yet in position to replace traditional methods such as cubic equations of state (especially in oil and gas industry) and the UNIFAC group contribution approach. A common problem with novel methods is lack...... addressed to or written by industrial colleagues, are discussed initially. This provides the context of the survey and material with which the results of the survey can be compared. The results of the survey have been divided into the themes: data, models, systems, properties, education, and collaboration...... of standardization, reference data, and correct and transparent implementations, especially in commercially available simulation programs. The survey indicates a great variety of systems where further work is required. For instance, for electrolyte systems better models are needed, capable of describing all types...

  3. Combining computational modelling with radioisotope technology for a more cost- effective and time-efficient method of solving industrial and medical diagnostic problems

    International Nuclear Information System (INIS)

    Tu, J.Y.; Easey, J.F.; Burch, W.M.

    1997-01-01

    In this paper, some work on computational modelling for industrial operations and processes will be presented, for example, the modelling of fly-ash flow and the associated prediction of erosion in power utility boilers. The introduction and use of new formulations of encapsulated radioisotopes, currently being research at ANSTO, will open up further possibilities for the utilisation of radiotracer applications for a wider range of validation work not only in industrial but also in medical investigations. Applications of developed models to solving industrial problems will also be discussed in the paper

  4. Deliverable 1.1 Spec. of industrial problems

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Ravn, Bjarne Gottlieb

    Technical report for the Growth roject: IMPRESS, Improvement of precision in formong by simultaneous modelling of deflections in workpiece-die-press system -IMPRESS Output from WP1: Numerical simulation of deflections in workpiece-die-press system......Technical report for the Growth roject: IMPRESS, Improvement of precision in formong by simultaneous modelling of deflections in workpiece-die-press system -IMPRESS Output from WP1: Numerical simulation of deflections in workpiece-die-press system...

  5. Some problems in mechanics of growing solids with applications to AM technologies

    Science.gov (United States)

    Manzhirov, A. V.

    2018-04-01

    Additive Manufacturing (AM) technologies are an exciting area of the modern industrial revolution and have applications in engineering, medicine, electronics, aerospace industry, etc. AM enables cost-effective production of customized geometry and parts by direct fabrication from 3D data and mathematical models. Despite much progress in AM technologies, problems of mechanical analysis for AM fabricated parts yet remain to be solved. This paper deals with three main mechanical problems: the onset of residual stresses, which occur in the AM process and can lead to failure of the parts, the distortion of the final shape of AM fabricated parts, and the development of technological solutions aimed at improving existing AM technologies and creating new ones. An approach proposed deals with the construction of adequate analytical model and effective methods for the simulation of AM processes for fabricated solid parts.

  6. Effects of Simulation With Problem-Based Learning Program on Metacognition, Team Efficacy, and Learning Attitude in Nursing Students: Nursing Care With Increased Intracranial Pressure Patient.

    Science.gov (United States)

    Lee, Myung-Nam; Nam, Kyung-Dong; Kim, Hyeon-Young

    2017-03-01

    Nursing care for patients with central nervous system problems requires advanced professional knowledge and care skills. Nursing students are more likely to have difficulty in dealing with adult patients who have severe neurological problems in clinical practice. This study investigated the effect on the metacognition, team efficacy, and learning attitude of nursing students after an integrated simulation and problem-based learning program. A real scenario of a patient with increased intracranial pressure was simulated for the students. The results showed that this method was effective in improving the metacognitive ability of the students. Furthermore, we used this comprehensive model of simulation with problem-based learning in order to assess the consequences of student satisfaction with the nursing major, interpersonal relationships, and importance of simulation-based education in relation to the effectiveness of the integrated simulation with problem-based learning. The results can be used to improve the design of clinical practicum and nursing education.

  7. Component simulation in problems of calculated model formation of automatic machine mechanisms

    Directory of Open Access Journals (Sweden)

    Telegin Igor

    2017-01-01

    Full Text Available The paper deals with the problems of the component simulation method application in the problems of the automation of the mechanical system model formation with the further possibility of their CAD-realization. The purpose of the investigations mentioned consists in the automation of the CAD-model formation of high-speed mechanisms in automatic machines and in the analysis of dynamic processes occurred in their units taking into account their elasto-inertial properties, power dissipation, gaps in kinematic pairs, friction forces, design and technological loads. As an example in the paper there are considered a formalization of stages in the computer model formation of the cutting mechanism in cold stamping automatic machine AV1818 and methods of for the computation of their parameters on the basis of its solid-state model.

  8. Transferring aviation human factors technology to the nuclear power industry

    International Nuclear Information System (INIS)

    Montemerlo, M.D.

    1981-01-01

    The purpose of this paper is to demonstrate the availability of aviation safety technology and research on problems which are sufficiently similar to those faced by the nuclear power industry that an agressive effort to adapt and transfer that technology and research is warranted. Because of time and space constraints, the scope of this paper is reduced from a discussion of all of aviation safety technology to the human factors of air carrier safety. This area was selected not only because of similarities in the human factors challenges shared by both industries (e.g. selection, training, evaluation, certification, etc.) but because experience in aviation has clearly demonstrated that human error contributes to a substantially greater proportion of accidents and incidents than does equipment failure. The Congress of the United States has placed a great deal of emphasis on investigating and solving human factors problems in aviation. A number of recent examples of this interest and of the resulting actions are described. The opinions of prominent aviation organizations as to the human factors problems most in need of research are presented, along with indications of where technology transfer to the nuclear power industry may be viable. The areas covered include: fatigue, crew size, information transfer, resource management, safety data-bases, the role of automation, voice and data recording systems, crew distractions, the management of safety regulatory agencies, equipment recertification, team training, crew work-load, behavioural factors, human factors of equipment design, medical problems, toxicological factors, the use of simulators for training and certification, determining the causes of human errors, the politics of systems improvement, and importance of both safety and public perception of safety if the industry is to be viable. (author)

  9. Kinematic simulation and analysis of robot based on MATLAB

    Science.gov (United States)

    Liao, Shuhua; Li, Jiong

    2018-03-01

    The history of industrial automation is characterized by quick update technology, however, without a doubt, the industrial robot is a kind of special equipment. With the help of MATLAB matrix and drawing capacity in the MATLAB environment each link coordinate system set up by using the d-h parameters method and equation of motion of the structure. Robotics, Toolbox programming Toolbox and GUIDE to the joint application is the analysis of inverse kinematics and path planning and simulation, preliminary solve the problem of college students the car mechanical arm positioning theory, so as to achieve the aim of reservation.

  10. A parallel additive Schwarz preconditioned Jacobi-Davidson algorithm for polynomial eigenvalue problems in quantum dot simulation

    International Nuclear Information System (INIS)

    Hwang, F-N; Wei, Z-H; Huang, T-M; Wang Weichung

    2010-01-01

    We develop a parallel Jacobi-Davidson approach for finding a partial set of eigenpairs of large sparse polynomial eigenvalue problems with application in quantum dot simulation. A Jacobi-Davidson eigenvalue solver is implemented based on the Portable, Extensible Toolkit for Scientific Computation (PETSc). The eigensolver thus inherits PETSc's efficient and various parallel operations, linear solvers, preconditioning schemes, and easy usages. The parallel eigenvalue solver is then used to solve higher degree polynomial eigenvalue problems arising in numerical simulations of three dimensional quantum dots governed by Schroedinger's equations. We find that the parallel restricted additive Schwarz preconditioner in conjunction with a parallel Krylov subspace method (e.g. GMRES) can solve the correction equations, the most costly step in the Jacobi-Davidson algorithm, very efficiently in parallel. Besides, the overall performance is quite satisfactory. We have observed near perfect superlinear speedup by using up to 320 processors. The parallel eigensolver can find all target interior eigenpairs of a quintic polynomial eigenvalue problem with more than 32 million variables within 12 minutes by using 272 Intel 3.0 GHz processors.

  11. Improved Genetic and Simulating Annealing Algorithms to Solve the Traveling Salesman Problem Using Constraint Programming

    Directory of Open Access Journals (Sweden)

    M. Abdul-Niby

    2016-04-01

    Full Text Available The Traveling Salesman Problem (TSP is an integer programming problem that falls into the category of NP-Hard problems. As the problem become larger, there is no guarantee that optimal tours will be found within reasonable computation time. Heuristics techniques, like genetic algorithm and simulating annealing, can solve TSP instances with different levels of accuracy. Choosing which algorithm to use in order to get a best solution is still considered as a hard choice. This paper suggests domain reduction as a tool to be combined with any meta-heuristic so that the obtained results will be almost the same. The hybrid approach of combining domain reduction with any meta-heuristic encountered the challenge of choosing an algorithm that matches the TSP instance in order to get the best results.

  12. Numerical simulation of industrial and accidental release formation and transport

    Energy Technology Data Exchange (ETDEWEB)

    Piskunov, V.N.; Aloyan, A.A.; Gerasimov, V.M.; Pinaev, V.S.; Golubev, A.I.; Yanilkin, Yu.V.; Ivanov, N.V.; Nikonov, S.N.; Kharchenko, A.I. [and others

    1995-05-01

    Statement of work for contract 006 {open_quotes}Mathematical simulation of industrial and accidental release formation and transport{close_quotes} implies that the final result of the activity within this task will be VNIIEF developed techniques which will provide for the prediction of the post-accidental environment. Report [1] presents the description of physical models and calculation techniques which were chosen by VNIIEF to accomplish this task. These techniques were analysed for their capabilities, the areas of their application were defined, modifications within contract 006 were described, the results of test and methodical calculations were presented. Moreover, the experimental data were analysed over the source parameters and contamination measurements which can be used in the comparison with the calculation results. Based an these data this report compares the calculation results obtained with VNIIEF calculation techniques with the LANL-presented experimental results. The calculations which statements and results are given in section 1, included the following processes: explosion cloud ascent dynamics and jet release origin; aerosols kinetics in the release source including composite particle origin in the explosion cloud caused by radioactive substance sorption an the soil particles; contaminant transport in atmosphere and their in-site fallout due to the accidental explosions and fires; atmospheric flow dynamics and industrial contamination transfer over the complicated terrain. The calculated results were compared with the experimental data. Section 2 presents the parameters for a typical source in the explosion accidents based an the experimental results and calculated data from Section 1, as well as contamination patterns were calculated with basic technique {open_quotes}Prognosis{close_quotes}.

  13. Energy-efficient technology in the iron and steel industry: Simulation of new technology adoption with items

    International Nuclear Information System (INIS)

    Roop, J.M.

    1997-01-01

    The Industrial Technology and Energy Modeling System (ITEMS)(referred to as ISTUM in Jaccard and Roop, 1990) is an end-use industrial modeling system that is technology based. Because it includes technologies in the process description of industry, it is possible to introduce new technologies to determine, based on economic and performance data, how rapidly these new technologies will penetrate the market (Hyman and Roop, 1996). As these new technologies penetrate the market, energy savings and, possibly, emissions reductions occur that can be tracked with the model as well. This report documents the use of ITEMS to investigate the impact of three new technologies under development with funding from the Department of Energy's Office of Industrial Technologies (OIT), that apply to the iron and steel industry. While the results of this application are interesting, this exercise points out how important it is to understand how the technologies work and how they make a difference. This report shows that ITEMS can be a useful tool in estimating market penetration of new technologies and the resulting energy savings, but these results are only as reliable as the data. If the model is to be used to compare technologies, the technical data concerning these technologies must be collected using the same set of assumptions and with the same vision of what characterizes a technology. While an effort has been made to understand how these technologies work, there is no assurance that the data used for this analysis were, indeed, collected using the same vision and the same set of assumptions. The report is organized into five additional sections. The next provides a brief overview of ITEMS and describes how the technical information about OIT projects is used in the model. The third section describes the three technologies that were introduced into ITEMS and reports the relevant data for those projects. The fourth section describes the iron and steel industry, as characterized

  14. A Synthetic Method for Atmospheric Diffusion Simulation and Environmental Impact Assessment of Accidental Pollution in the Chemical Industry in a WEBGIS Context

    Directory of Open Access Journals (Sweden)

    Haochen Ni

    2014-09-01

    Full Text Available The chemical industry poses a potential security risk to factory personnel and neighboring residents. In order to mitigate prospective damage, a synthetic method must be developed for an emergency response. With the development of environmental numeric simulation models, model integration methods, and modern information technology, many Decision Support Systems (DSSs have been established. However, existing systems still have limitations, in terms of synthetic simulation and network interoperation. In order to resolve these limitations, the matured simulation model for chemical accidents was integrated into the WEB Geographic Information System (WEBGIS platform. The complete workflow of the emergency response, including raw data (meteorology information, and accident information management, numeric simulation of different kinds of accidents, environmental impact assessments, and representation of the simulation results were achieved. This allowed comprehensive and real-time simulation of acute accidents in the chemical industry. The main contribution of this paper is that an organizational mechanism of the model set, based on the accident type and pollutant substance; a scheduling mechanism for the parallel processing of multi-accident-type, multi-accident-substance, and multi-simulation-model; and finally a presentation method for scalar and vector data on the web browser on the integration of a WEB Geographic Information System (WEBGIS platform. The outcomes demonstrated that this method could provide effective support for deciding emergency responses of acute chemical accidents.

  15. A Synthetic Method for Atmospheric Diffusion Simulation and Environmental Impact Assessment of Accidental Pollution in the Chemical Industry in a WEBGIS Context

    Science.gov (United States)

    Ni, Haochen; Rui, Yikang; Wang, Jiechen; Cheng, Liang

    2014-01-01

    The chemical industry poses a potential security risk to factory personnel and neighboring residents. In order to mitigate prospective damage, a synthetic method must be developed for an emergency response. With the development of environmental numeric simulation models, model integration methods, and modern information technology, many Decision Support Systems (DSSs) have been established. However, existing systems still have limitations, in terms of synthetic simulation and network interoperation. In order to resolve these limitations, the matured simulation model for chemical accidents was integrated into the WEB Geographic Information System (WEBGIS) platform. The complete workflow of the emergency response, including raw data (meteorology information, and accident information) management, numeric simulation of different kinds of accidents, environmental impact assessments, and representation of the simulation results were achieved. This allowed comprehensive and real-time simulation of acute accidents in the chemical industry. The main contribution of this paper is that an organizational mechanism of the model set, based on the accident type and pollutant substance; a scheduling mechanism for the parallel processing of multi-accident-type, multi-accident-substance, and multi-simulation-model; and finally a presentation method for scalar and vector data on the web browser on the integration of a WEB Geographic Information System (WEBGIS) platform. The outcomes demonstrated that this method could provide effective support for deciding emergency responses of acute chemical accidents. PMID:25198686

  16. A synthetic method for atmospheric diffusion simulation and environmental impact assessment of accidental pollution in the chemical industry in a WEBGIS context.

    Science.gov (United States)

    Ni, Haochen; Rui, Yikang; Wang, Jiechen; Cheng, Liang

    2014-09-05

    The chemical industry poses a potential security risk to factory personnel and neighboring residents. In order to mitigate prospective damage, a synthetic method must be developed for an emergency response. With the development of environmental numeric simulation models, model integration methods, and modern information technology, many Decision Support Systems (DSSs) have been established. However, existing systems still have limitations, in terms of synthetic simulation and network interoperation. In order to resolve these limitations, the matured simulation model for chemical accidents was integrated into the WEB Geographic Information System (WEBGIS) platform. The complete workflow of the emergency response, including raw data (meteorology information, and accident information) management, numeric simulation of different kinds of accidents, environmental impact assessments, and representation of the simulation results were achieved. This allowed comprehensive and real-time simulation of acute accidents in the chemical industry. The main contribution of this paper is that an organizational mechanism of the model set, based on the accident type and pollutant substance; a scheduling mechanism for the parallel processing of multi-accident-type, multi-accident-substance, and multi-simulation-model; and finally a presentation method for scalar and vector data on the web browser on the integration of a WEB Geographic Information System (WEBGIS) platform. The outcomes demonstrated that this method could provide effective support for deciding emergency responses of acute chemical accidents.

  17. Applications of supercomputing and the utility industry: Calculation of power transfer capabilities

    International Nuclear Information System (INIS)

    Jensen, D.D.; Behling, S.R.; Betancourt, R.

    1990-01-01

    Numerical models and iterative simulation using supercomputers can furnish cost-effective answers to utility industry problems that are all but intractable using conventional computing equipment. An example of the use of supercomputers by the utility industry is the determination of power transfer capability limits for power transmission systems. This work has the goal of markedly reducing the run time of transient stability codes used to determine power distributions following major system disturbances. To date, run times of several hours on a conventional computer have been reduced to several minutes on state-of-the-art supercomputers, with further improvements anticipated to reduce run times to less than a minute. In spite of the potential advantages of supercomputers, few utilities have sufficient need for a dedicated in-house supercomputing capability. This problem is resolved using a supercomputer center serving a geographically distributed user base coupled via high speed communication networks

  18. Industrial pollution of the Moselle River: the birth, development and management of an environmental problem, 1850-2000

    International Nuclear Information System (INIS)

    Garcier, J.R.

    2005-12-01

    In the 1850's, the water quality of surface waters in the Moselle river drainage basin began to suffer from the development of heavy industrial activities (coal and iron ore mining, steel and soda making). Industrial development also fuelled a demographic impetus that proved detrimental to the quality of surface waters. This study uses archival sources to analyse the ineffectiveness of the policies that were launched to regulate pollution. In a region traumatized by the Prussian annexation of a quarter of its surface (1870), industrial production enjoyed a symbolic protection that allowed water pollution to go unabated. The fuzzy status of pollution in law contributed to the immunity of industrialists. From the 1950's on, fear that the region might experience severe water shortages due to the growth of water consumption by industries and cities alike enabled more stringent policies to be devised. They still had to take into account the interests of the heavy industry and their effectiveness is questionable. Hydrological planning was based upon a functionalist vision of water resources that did not take environmental issues into account. The situation changed in the 1970's and 1980's, when European integration and the Sandoz catastrophe in the Rhine (November 1986) tipped the scale in favour of more vigorous environmental policies. This study develops the concepts of a 'regional system' and of the 'mode of construction' of an environmental problem. These prove to be valuable theoretical elements to ground environmental geography studies. (author)

  19. Analytic simulation of the Poincare surface of sections for the diamagnetic Kepler problem

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H; Harada, A; Okazaki, Y [Kyoto Univ. (Japan). Dept. of Physics

    1984-11-11

    The Poincare surface-of-section analysis which the authors previously reported on the diamagnetic Kepler problem (classical hydrogen atom in a uniform magnetic field) in a transition region from regular to chaotic motions is simulated by an analytic means, by taking intersections of the energy integral and the approximate integral ..lambda.. of Solovev to obtain sections of the two separate regions of the motion that exist in the limit of a weak magnetic field (B ..-->.. 0). The origin of the unique hyperbolic point and the separatrix around which the onset of chaos takes place are thus identified. The invariant tori arising near the full chaos are shown to be simulated by this method but with modified parameter values in the expression ..lambda...

  20. Analytic simulation of the Poincare surface of sections for the diamagnetic Kepler problem

    International Nuclear Information System (INIS)

    Hasegawa, H.; Harada, A.; Okazaki, Y.

    1984-01-01

    The Poincare surface-of-section analysis which the authors previously reported on the diamagnetic Kepler problem (classical hydrogen atom in a uniform magnetic field) in a transition region from regular to chaotic motions is simulated by an analytic means, by taking intersections of the energy integral and the approximate integral Λ of Solovev to obtain sections of the two separate regions of the motion that exist in the limit of a weak magnetic field (B → 0). The origin of the unique hyperbolic point and the separatrix around which the onset of chaos takes place are thus identified. The invariant tori arising near the full chaos are shown to be simulated by this method but with modified parameter values in the expression Λ. (author)

  1. Off-Policy Reinforcement Learning: Optimal Operational Control for Two-Time-Scale Industrial Processes.

    Science.gov (United States)

    Li, Jinna; Kiumarsi, Bahare; Chai, Tianyou; Lewis, Frank L; Fan, Jialu

    2017-12-01

    Industrial flow lines are composed of unit processes operating on a fast time scale and performance measurements known as operational indices measured at a slower time scale. This paper presents a model-free optimal solution to a class of two time-scale industrial processes using off-policy reinforcement learning (RL). First, the lower-layer unit process control loop with a fast sampling period and the upper-layer operational index dynamics at a slow time scale are modeled. Second, a general optimal operational control problem is formulated to optimally prescribe the set-points for the unit industrial process. Then, a zero-sum game off-policy RL algorithm is developed to find the optimal set-points by using data measured in real-time. Finally, a simulation experiment is employed for an industrial flotation process to show the effectiveness of the proposed method.

  2. Indian Carpet Industry after Trade Liberalization. Problems and Prospects

    Directory of Open Access Journals (Sweden)

    M. Rashid Malik, Rekha Prasad

    2015-09-01

    Full Text Available This paper aims to examine the constraints and opportunities emerged for the Micro, small and medium enterprises in carpet industry after trade liberalization. The survey method was selected for this study. A structured questionnaire, containing both close and open ended questions was used for data collection. 65 carpet firms of Bhadohi District of Uttar Pradesh registered with All India Carpet Manufacture Association (AICMA were surveyed. Liberalization has brought many opportunities for carpet industry apart from challenges. Findings of the present study show that liberalization gave access to new markets and increased demand of products. Increased cost of raw material, difficulty in ‘export facilitation’ and ‘legal-regulatory framework and difficulty in procuring funds from local financial institutions were identified as the major constraints for the carpet industry.

  3. Scheduling in the FMCG industry : an industrial case study

    NARCIS (Netherlands)

    Elzakker, van M.A.H.; Zondervan, E.; Raikar, N.B.; Grossmann, I.E.; Bongers, P.M.M.

    2012-01-01

    A problem-specific model is presented for the short-term scheduling problem in the Fast Moving Consumer Goods (FMCG) industry. To increase the computational efficiency, the limited intermediate inventory is modeled indirectly by relating mixing and packing intervals. In addition, the model size is

  4. Robot vs. tax inspector or how the fourth industrial revolution will change the tax system: a review of problems and solutions

    OpenAIRE

    Vishnevsky, Valentine P.; Chekina, Viktoriia D.

    2018-01-01

    The Fourth Industrial Revolution and the accelerated development of cyber-physical technologies lead to essential changes in national tax systems and international taxation. The main areas in which taxation meets cyber-physical technologies are digitalization, robotization, M2M and blockchain technologies. Each of these areas has its own opportunities and problems. Three main approaches towards possible solutions for these new problems are identified. The first is to try to apply taxation to ...

  5. Potential problems in introduction of personnel reliability certification systems into Japan's nuclear industry. Implications from the German and the U.S. laws

    International Nuclear Information System (INIS)

    Tanabe, Tomoyuki

    2009-01-01

    In Japan, while the interest in nuclear terrorism has increased which led law revision aiming for reinforcing physical protection in 2005, there is a growing concern in an insider threat in the nuclear industry. To cope with this threat, 'personnel reliability certification systems' are introduced in the United States and other nuclear industrized countries as an effective measure. The report examines current personnel reliability certification systems in Germany and the United States, and identifies common characteristics as well as key differences between two legal systems and regulations, and thereby attempts to identify the potential problems that the Japanese nuclear industry would face if such institutions as seen in Germany and the United States would be introduced in Japan, and suggests some measures to overcome these problems. The author suggests the following measures as practically useful essential in introducing similar systems in Japan: (1) introduction of comprehensive regulation (not industry specific) on personnel reliability certification systems, (2) clarification of conditions of prior consents by the employees, and (3) privacy protection procedures of the employees and information management. (author)

  6. Bringing Reality into Calculus Classrooms: Mathematizing a Real-life Problem Simulated in a Virtual Environment

    Directory of Open Access Journals (Sweden)

    Olga V. Shipulina

    2013-01-01

    Full Text Available The study explores how students, who had completed the AP calculus course, mathematized the optimal navigation real-life problem simulated in the Second Life Virtual Environment. The particular research interest was to investigate whether/how students’ empirical activity in VE influences the way of their mathematizing.

  7. Influence of radiation on predictive accuracy in numerical simulations of the thermal environment in industrial buildings with buoyancy-driven natural ventilation

    International Nuclear Information System (INIS)

    Meng, Xiaojing; Wang, Yi; Liu, Tiening; Xing, Xiao; Cao, Yingxue; Zhao, Jiangping

    2016-01-01

    Highlights: • The effects of radiation on predictive accuracy in numerical simulations were studied. • A scaled experimental model with a high-temperature heat source was set up. • Simulation results were discussed considering with and without radiation model. • The buoyancy force and the ventilation rate were investigated. - Abstract: This paper investigates the effects of radiation on predictive accuracy in the numerical simulations of industrial buildings. A scaled experimental model with a high-temperature heat source is set up and the buoyancy-driven natural ventilation performance is presented. Besides predicting ventilation performance in an industrial building, the scaled model in this paper is also used to generate data to validate the numerical simulations. The simulation results show good agreement with the experiment data. The effects of radiation on predictive accuracy in the numerical simulations are studied for both pure convection model and combined convection and radiation model. Detailed results are discussed regarding the temperature and velocity distribution, the buoyancy force and the ventilation rate. The temperature and velocity distributions through the middle plane are presented for the pure convection model and the combined convection and radiation model. It is observed that the overall temperature and velocity magnitude predicted by the simulations for pure convection were significantly greater than those for the combined convection and radiation model. In addition, the Grashof number and the ventilation rate are investigated. The results show that the Grashof number and the ventilation rate are greater for the pure convection model than for the combined convection and radiation model.

  8. 15. Mendeleev's meeting on general and applied chemistry. Obninsk symposium. Radiological problems in nuclear energetics and industry conversion. Abstracts. V. 2

    International Nuclear Information System (INIS)

    1993-01-01

    Ecological aspects of nuclear-fuel engineering cycle and radiochemical technologies, radioactive waste processing and water purification, accidents at NPP and their consequences, ecological problems of industry conversion were discussed at the 15th Mendeleev's meeting on general and applied chemistry

  9. Manufacturing processes in the textile industry. Expert Systems for fabrics production

    Directory of Open Access Journals (Sweden)

    Juan BULLON

    2017-03-01

    Full Text Available The textile industry is characterized by the economic activity whose objective is the production of fibres, yarns, fabrics, clothing and textile goods for home and decoration,as well as technical and industrial purposes. Within manufacturing, the Textile is one of the oldest and most complex sectors which includes a large number of sub-sectors covering the entire production cycle, from raw materials and intermediate products, to the production of final products. Textile industry activities present different subdivisions, each with its own traits. The length of the textile process and the variety of its technical processes lead to the coexistence of different sub-sectors in regards to their business structure and integration. The textile industry is developing expert systems applications to increase production, improve quality and reduce costs. The analysis of textile designs or structures includes the use of mathematical models to simulate the behavior of the textile structures (yarns, fabrics and knitting. The Finite Element Method (FEM has largely facilitated the prediction of the behavior of that textile structure under mechanical loads. For classification problems Artificial Neural Networks (ANNs haveproved to be a very effective tool as a quick and accurate solution. The Case-Based Reasoning (CBR method proposed in this study complements the results of the finite element simulation, mathematical modeling and neural networks methods.

  10. Trends in the development of industrially assimilated renewable energy: the problem of resource restrictions

    Science.gov (United States)

    Nizhegorodtsev, R. M.; Ratner, S. V.

    2016-03-01

    An analysis of the dynamics of the development of wind and solar energy and potential resource restrictions of the dissemination of these technologies of energy generation associated with intensive use of rare earth metals and some other mineral resources are presented. The technological prospects of various directions of decisions of the problem of resource restrictions, including escalating of volumes of extraction and production of necessary mineral components, creating substitutes of scarce materials and development of recycling are considered. The bottlenecks of each of the above-mentioned decisions were founded. Conclusions are drawn on the prospects of development of the Russian high-tech sectors of the economy in the context of the most probable decisions of the problem of resource restrictions of wind and solar energy. An increase in extraction and production of rare earth metals and some other materials, stimulation of domestic research and development (R&D) to create the permanent magnets of new types and new technologies of wind-powered generation, and reduction of the resource-demand and technology development of recycling the components of power equipment are the most prospective directions of progress. The innovations in these directions will be in demand on the European, Chinese, and North American markets in the near decades due to the end of the life cycle (approximately 30 years) of wind and solar energy projects started at the turn of the 20th-21st centuries (the beginning of exponential growth in plants). The private investors and relevant regional and federal government agencies can use the qualitative characteristics of the dynamics of industrially assimilated renewable energy to choose the most promising investment orientations in energy projects and selection of the most economically sound development methods of energy and related industries.

  11. The Research of Scrapped Automobiles Recycling and Disassembling Industry Development Based on Auto Industry Chain

    Directory of Open Access Journals (Sweden)

    linhua Pang

    2015-01-01

    Full Text Available The number of China’s scrapped car is on an explosively growing trend, and the development of scrapped car recycling industry has a golden prospect. The current scrapped car recycling system is not perfect in our country, because related industries driven by market develop slowly, and there are some outstanding problems such as potential safety risks, environmental pollution and resource waste. The paper analyzes and studies the existing problems and countermeasures to investigate the development strategy of scrapped car recycling industry according to the whole automobile industry chain construction, technology and equipment conditions, policy guidance, etc. and at last explore the new industrial development pattern of serving automobile reverse design.

  12. Solving the patient zero inverse problem by using generalized simulated annealing

    Science.gov (United States)

    Menin, Olavo H.; Bauch, Chris T.

    2018-01-01

    Identifying patient zero - the initially infected source of a given outbreak - is an important step in epidemiological investigations of both existing and emerging infectious diseases. Here, the use of the Generalized Simulated Annealing algorithm (GSA) to solve the inverse problem of finding the source of an outbreak is studied. The classical disease natural histories susceptible-infected (SI), susceptible-infected-susceptible (SIS), susceptible-infected-recovered (SIR) and susceptible-infected-recovered-susceptible (SIRS) in a regular lattice are addressed. Both the position of patient zero and its time of infection are considered unknown. The algorithm performance with respect to the generalization parameter q˜v and the fraction ρ of infected nodes for whom infection was ascertained is assessed. Numerical experiments show the algorithm is able to retrieve the epidemic source with good accuracy, even when ρ is small, but present no evidence to support that GSA performs better than its classical version. Our results suggest that simulated annealing could be a helpful tool for identifying patient zero in an outbreak where not all cases can be ascertained.

  13. Powerful Software to Simulate Soil Consolidation Problems with Prefabricated Vertical Drains

    Directory of Open Access Journals (Sweden)

    Gonzalo García-Ros

    2018-02-01

    Full Text Available The present work describes the program Simulation of Consolidation with Vertical Drains (SICOMED_2018, a tool for the solution of consolidation processes in heterogeneous soils, with totally or partially penetrating prefabricated vertical drains (PVD and considering both the effects of the smear zone, generated when introducing the drain into the ground, and the limitation in the discharge capacity of the drain. In order to provide a completely free program, the code Next-Generation Simulation Program with Integrated Circuit Emphasis (Ngspice has been used as a numerical tool while the Matrix Laboratory (MATLAB code was used to program and create an interface with the user through interactive screens. In this way, SICOMED_2018 is presented as an easy-to-use and intuitive program, with a simple graphical interface that allows the user to enter all the soil properties and geometry of the problem without having to resort to a complex software package that requires programming. Illustrative applications describe both the versatility of the program and the reliability of its numerical solutions.

  14. An efficient simulated annealing algorithm for the redundancy allocation problem with a choice of redundancy strategies

    International Nuclear Information System (INIS)

    Chambari, Amirhossain; Najafi, Amir Abbas; Rahmati, Seyed Habib A.; Karimi, Aida

    2013-01-01

    The redundancy allocation problem (RAP) is an important reliability optimization problem. This paper studies a specific RAP in which redundancy strategies are chosen. To do so, the choice of the redundancy strategies among active and cold standby is considered as decision variables. The goal is to select the redundancy strategy, component, and redundancy level for each subsystem such that the system reliability is maximized. Since RAP is a NP-hard problem, we propose an efficient simulated annealing algorithm (SA) to solve it. In addition, to evaluating the performance of the proposed algorithm, it is compared with well-known algorithms in the literature for different test problems. The results of the performance analysis show a relatively satisfactory efficiency of the proposed SA algorithm

  15. PROBLEMS OF UKRAINIAN ENERGY AND THEIR SOLUTIONS

    Directory of Open Access Journals (Sweden)

    G. Fyliuk

    2016-04-01

    Full Text Available The paper studies current situation at the Ukrainian electric power industry. The problems which prevent development of the industry under current conditions are analyzed. The problems of the cross-subsidization are exposed. The ways of the problems solutions are offered.

  16. Modeling and simulation of reactive flows

    CERN Document Server

    Bortoli, De AL; Pereira, Felipe

    2015-01-01

    Modelling and Simulation of Reactive Flows presents information on modeling and how to numerically solve reactive flows. The book offers a distinctive approach that combines diffusion flames and geochemical flow problems, providing users with a comprehensive resource that bridges the gap for scientists, engineers, and the industry. Specifically, the book looks at the basic concepts related to reaction rates, chemical kinetics, and the development of reduced kinetic mechanisms. It considers the most common methods used in practical situations, along with equations for reactive flows, and va

  17. Direct numerical simulation of stratified gas-liquid flow

    International Nuclear Information System (INIS)

    Lombardi, P.; De Angelis, V.; Banerjee, S.

    1996-01-01

    Interactions through an interface between two turbulent flows play an important role in many environmental and industrial problems, e.g. in determining the coupling fluxes of heat mass and momentum, between the ocean and atmosphere, and in the design of gas-liquid contractors for the chemical industry, as well as in determining interactions between phases in nuclear transients that are accompanied by system voiding e.g. LOCAs. Here, the Direct Numerical Simulation (DNS) of the interaction of two turbulent fluids through a flat interface has been simulated. The flow and the temperature fields are computed using a pseudospectral method. This study shows that shear stress at the interface correlates well with the heat flux. Extensive analysis of the near interface turbulence structure has been performed using quadrant analysis. From this it is clear that gas-side sweeps dominate over the high shear stress regions. This suggests that simple parameterizations based on sweep frequency may be adequate for predictions of scalar transport rates

  18. Progress on management business system of LLW generated from research and industrial nuclear facilities

    International Nuclear Information System (INIS)

    Izumida, Tatsuo

    2014-01-01

    RANDEC has been studying a management business system of LLW (Low Level Waste) generated from research and industrial facilities since 2008. To examine economical problems, the income and expenditure of LLW treatment business was simulated. As a result, raising method of the funds which is required in preparatory stage of LLW treatment business is an obvious issue to carry out as public utility works. (author)

  19. The Use of a Real Life Simulated Problem Based Learning Activity in a Corporate Environment

    Science.gov (United States)

    Laurent, Mark A.

    2013-01-01

    This narrative study examines using a real life simulated problem base learning activity during education of clinical staff, which is expected to design and develop clinically correct electronic charting systems. Expertise in healthcare does not readily transcend to the realm of manipulating software to collect patient data that is pertinent to…

  20. Simulating spin models on GPU

    Science.gov (United States)

    Weigel, Martin

    2011-09-01

    Over the last couple of years it has been realized that the vast computational power of graphics processing units (GPUs) could be harvested for purposes other than the video game industry. This power, which at least nominally exceeds that of current CPUs by large factors, results from the relative simplicity of the GPU architectures as compared to CPUs, combined with a large number of parallel processing units on a single chip. To benefit from this setup for general computing purposes, the problems at hand need to be prepared in a way to profit from the inherent parallelism and hierarchical structure of memory accesses. In this contribution I discuss the performance potential for simulating spin models, such as the Ising model, on GPU as compared to conventional simulations on CPU.

  1. Virtual morality: emotion and action in a simulated three-dimensional "trolley problem".

    Science.gov (United States)

    Navarrete, C David; McDonald, Melissa M; Mott, Michael L; Asher, Benjamin

    2012-04-01

    Experimentally investigating the relationship between moral judgment and action is difficult when the action of interest entails harming others. We adopt a new approach to this problem by placing subjects in an immersive, virtual reality environment that simulates the classic "trolley problem." In this moral dilemma, the majority of research participants behaved as "moral utilitarians," either (a) acting to cause the death of one individual in order to save the lives of five others, or (b) abstaining from action, when that action would have caused five deaths versus one. Confirming the emotional distinction between moral actions and omissions, autonomic arousal was greater when the utilitarian outcome required action, and increased arousal was associated with a decreased likelihood of utilitarian-biased behavior. This pattern of results held across individuals of different gender, age, and race. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  2. Problem of simulating the Earth's induction effects in modeling polar magnetic substorms

    International Nuclear Information System (INIS)

    Mareschal, M.

    1976-01-01

    A major problem encountered in trying to model the current system associated with a polar magnetic substorm from ground-based magnetic observations is the difficulty of adequately evaluating the earth's induction effects. Two methods for simulating these effects are reviewed here. Method 1 simply reduces the earth to a perfect conductor and leads to very simple field equations. Method 2 considers the earth as a ''horizontally'' layered body of finite conductivity but requires a large amount of computational time. The performances of both methods are compared when the substorm current system can be approximated by an infinitely long electrojet flowing over a flat earth. In this case it appears that for most substorm modeling problems it is sufficient to treat the earth as a perfect conductor. The depth of this perfect conductor below the earth's surface should be selected in function of the source frequency content

  3. Simulation-assisted technology assessment of an industrial X-ray source concept up to 1 MV

    International Nuclear Information System (INIS)

    Schultheis, Lothar

    2009-01-01

    A novel concept for a new generation of industrial X-ray sources up to 1MV is presented. A ceramic DC acceleration tube is directly connected to the high-voltage cascade within an SF6 pressure tank. Monte-Carlo simulations for specific applications reveal the relevant performance figures which are compared with measurements of a prototype. Design parameters and their mutual dependencies as well as technological performance limits can be investigated enabling efficient design optimizations. Thus, development projects can be advanced faster and much more focused. (orig.)

  4. The Eccentric Satellites Problem: Comparing Milky Way Satellite Orbital Properties to Simulation Results

    Science.gov (United States)

    Haji, Umran; Pryor, Carlton; Applebaum, Elaad; Brooks, Alyson

    2018-01-01

    We compare the orbital properties of the satellite galaxies of the Milky Way to those of satellites found in simulated Milky Way-like systems as a means of testing cosmological simulations of galaxy formation. The particular problem that we are investigating is a discrepancy in the distribution of orbital eccentricities. Previous studies of Milky Way-mass systems analyzed in a semi-analytic ΛCDM cosmological model have found that the satellites tend to have significantly larger fractions of their kinetic energy invested in radial motion with respect to their central galaxy than do the real-world Milky Way satellites. We analyze several high-resolution ("zoom-in") hydrodynamical simulations of Milky Way-mass galaxies and their associated satellite systems to investigate why previous works found Milky Way-like systems to be rare. We find a possible relationship between a quiescent galactic assembly history and a distribution of satellite kinematics resembling that of the Milky Way. This project has been supported by funding from National Science Foundation grant PHY-1560077.

  5. Effective programming of energy consuming industrial robot systems

    International Nuclear Information System (INIS)

    Trnka, K.; Pinter, T.; Knazik, M.; Bozek, P.

    2012-01-01

    This paper discusses the problem of effective motion planning for industrial robots. The first part dealt with current method for off-line motion planning. In the second part is presented the work done with one of the simulation system with automatic trajectory generation and off-line programming capability [4]. An spot welding process is involved. The practical application of this step strongly depends on the method for robot path optimization with high accuracy, thus, transform the path into a time and energy optimal robot program for the real world, which is discussed in the third step. (Authors)

  6. Neighbourhood generation mechanism applied in simulated annealing to job shop scheduling problems

    Science.gov (United States)

    Cruz-Chávez, Marco Antonio

    2015-11-01

    This paper presents a neighbourhood generation mechanism for the job shop scheduling problems (JSSPs). In order to obtain a feasible neighbour with the generation mechanism, it is only necessary to generate a permutation of an adjacent pair of operations in a scheduling of the JSSP. If there is no slack time between the adjacent pair of operations that is permuted, then it is proven, through theory and experimentation, that the new neighbour (schedule) generated is feasible. It is demonstrated that the neighbourhood generation mechanism is very efficient and effective in a simulated annealing.

  7. Solving process industry problems with specialty stainlesses

    International Nuclear Information System (INIS)

    Montrone, E.D.

    1977-01-01

    Substantial steel industry efforts have been devoted to improving the properties of stainless steels by changing the level of alloying elements. Rapid progress has produced materials to meet many of the diversified service conditions existing in process plants. The performance characteristics of seven stainless steels are compared. The emphasis is on steels which avoid the effects of corrosion. 4 figures, 3 tables

  8. Redundancy allocation problem of a system with increasing failure rates of components based on Weibull distribution: A simulation-based optimization approach

    International Nuclear Information System (INIS)

    Guilani, Pedram Pourkarim; Azimi, Parham; Niaki, S.T.A.; Niaki, Seyed Armin Akhavan

    2016-01-01

    The redundancy allocation problem (RAP) is a useful method to enhance system reliability. In most works involving RAP, failure rates of the system components are assumed to follow either exponential or k-Erlang distributions. In real world problems however, many systems have components with increasing failure rates. This indicates that as time passes by, the failure rates of the system components increase in comparison to their initial failure rates. In this paper, the redundancy allocation problem of a series–parallel system with components having an increasing failure rate based on Weibull distribution is investigated. An optimization method via simulation is proposed for modeling and a genetic algorithm is developed to solve the problem. - Highlights: • The redundancy allocation problem of a series–parallel system is aimed. • Components possess an increasing failure rate based on Weibull distribution. • An optimization method via simulation is proposed for modeling. • A genetic algorithm is developed to solve the problem.

  9. High aspect ratio problem in simulation of a fault current limiter based on superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Velichko, A V; Coombs, T A [Electrical Engineering Division, University of Cambridge (United Kingdom)

    2006-06-15

    We are offering a solution for the high-aspect-ratio problem relevant to the numerical simulation of AC loss in superconductors and metals with high aspect (width-to-thickness) ratio. This is particularly relevant to simulation of fault current limiters (FCLs) based on second generation YBCO tapes on RABiTS. By assuming a linear scaling of the electric and thermal properties with the size of the structure, we can replace the real sample with an effective sample of a reduced aspect ratio by introducing size multipliers into the equations that govern the physics of the system. The simulation is performed using both a proprietary equivalent circuit software and a commercial FEM software. The correctness of the procedure is verified by simulating temperature and current distributions for samples with all three dimensions varying within 10{sup -3}-10{sup 3} of the original size. Qualitatively the distributions for the original and scaled samples are indistinguishable, whereas quantitative differences in the worst case do not exceed 10%.

  10. High aspect ratio problem in simulation of a fault current limiter based on superconducting tapes

    International Nuclear Information System (INIS)

    Velichko, A V; Coombs, T A

    2006-01-01

    We are offering a solution for the high-aspect-ratio problem relevant to the numerical simulation of AC loss in superconductors and metals with high aspect (width-to-thickness) ratio. This is particularly relevant to simulation of fault current limiters (FCLs) based on second generation YBCO tapes on RABiTS. By assuming a linear scaling of the electric and thermal properties with the size of the structure, we can replace the real sample with an effective sample of a reduced aspect ratio by introducing size multipliers into the equations that govern the physics of the system. The simulation is performed using both a proprietary equivalent circuit software and a commercial FEM software. The correctness of the procedure is verified by simulating temperature and current distributions for samples with all three dimensions varying within 10 -3 -10 3 of the original size. Qualitatively the distributions for the original and scaled samples are indistinguishable, whereas quantitative differences in the worst case do not exceed 10%

  11. Simulation of 2D Granular Hopper Flow

    Science.gov (United States)

    Li, Zhusong; Shattuck, Mark

    2012-02-01

    Jamming and intermittent granular flow are big problems in industry, and the vertical hopper is a canonical example of these difficulties. We simulate gravity driven flow and jamming of 2D disks in a vertical hopper and compare with identical companion experiments presented in this session. We measure and compare the flow rate and probability for jamming as a function of particle properties and geometry. We evaluate the ability of standard Hertz-Mindlin contact mode to quantitatively predict the experimental flow.

  12. Transformation of industrial territories

    Science.gov (United States)

    Plotnikova, N. I.; Kolocova, I. I.

    2017-08-01

    The problem of removing industrial enterprises from the historical center of the city and the subsequent effective use of the territories has been relevant for Western countries. Nowadays, the problem is crucial for Russia, its megacities and regional centers. The paper analyzes successful projects of transforming industrial facilities into cultural, business and residential objects in the world and in Russia. The patterns of the project development have been determined and presented in the paper.

  13. Applied Parallel Computing Industrial Computation and Optimization

    DEFF Research Database (Denmark)

    Madsen, Kaj; NA NA NA Olesen, Dorte

    Proceedings and the Third International Workshop on Applied Parallel Computing in Industrial Problems and Optimization (PARA96)......Proceedings and the Third International Workshop on Applied Parallel Computing in Industrial Problems and Optimization (PARA96)...

  14. Radioisotope techniques for problem solving in the offshore oil and gas industry

    International Nuclear Information System (INIS)

    Charlton, J.S.; Hurst, J.A.

    1994-01-01

    Radioisotope technology has been used for almost half a century by the oil and gas industry to solve problems and to help optimize process operations. The use of radioactive isotopes to investigate the effectiveness of well stimulation procedures and to measure the sweep-out patterns of oil and gas in secondary recovery process is well known. The applications of radioisotopes to study features of plant and process operation has been less widely reported though the economic benefits deriving from such applications are very great. Nevertheless, there has been continuous development in the range of application and in the design of equipment to facilitate the use of the technology at remote environments such as an oil or gas platform. Some indication of the current usage of radioisotope techniques may be obtained from examination of Table I, which lists projects carried out in the UK's North Sea fields by ICI Tracerco, which is the world's largest radioisotope applications service group

  15. Multivariate Statistical Process Control Charts and the Problem of Interpretation: A Short Overview and Some Applications in Industry

    OpenAIRE

    Bersimis, Sotiris; Panaretos, John; Psarakis, Stelios

    2005-01-01

    Woodall and Montgomery [35] in a discussion paper, state that multivariate process control is one of the most rapidly developing sections of statistical process control. Nowadays, in industry, there are many situations in which the simultaneous monitoring or control, of two or more related quality - process characteristics is necessary. Process monitoring problems in which several related variables are of interest are collectively known as Multivariate Statistical Process Control (MSPC).This ...

  16. Multiphase Simulated Annealing Based on Boltzmann and Bose-Einstein Distribution Applied to Protein Folding Problem.

    Science.gov (United States)

    Frausto-Solis, Juan; Liñán-García, Ernesto; Sánchez-Hernández, Juan Paulo; González-Barbosa, J Javier; González-Flores, Carlos; Castilla-Valdez, Guadalupe

    2016-01-01

    A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE) is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP) instances. This new approach has four phases: (i) Multiquenching Phase (MQP), (ii) Boltzmann Annealing Phase (BAP), (iii) Bose-Einstein Annealing Phase (BEAP), and (iv) Dynamical Equilibrium Phase (DEP). BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA.

  17. Job shop scheduling problem with late work criterion

    Science.gov (United States)

    Piroozfard, Hamed; Wong, Kuan Yew

    2015-05-01

    Scheduling is considered as a key task in many industries, such as project based scheduling, crew scheduling, flight scheduling, machine scheduling, etc. In the machine scheduling area, the job shop scheduling problems are considered to be important and highly complex, in which they are characterized as NP-hard. The job shop scheduling problems with late work criterion and non-preemptive jobs are addressed in this paper. Late work criterion is a fairly new objective function. It is a qualitative measure and concerns with late parts of the jobs, unlike classical objective functions that are quantitative measures. In this work, simulated annealing was presented to solve the scheduling problem. In addition, operation based representation was used to encode the solution, and a neighbourhood search structure was employed to search for the new solutions. The case studies are Lawrence instances that were taken from the Operations Research Library. Computational results of this probabilistic meta-heuristic algorithm were compared with a conventional genetic algorithm, and a conclusion was made based on the algorithm and problem.

  18. Scale-up and optimization of biohydrogen production reactor from laboratory-scale to industrial-scale on the basis of computational fluid dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu; Ding, Jie; Guo, Wan-Qian; Ren, Nan-Qi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 202 Haihe Road, Nangang District, Harbin, Heilongjiang 150090 (China)

    2010-10-15

    The objective of conducting experiments in a laboratory is to gain data that helps in designing and operating large-scale biological processes. However, the scale-up and design of industrial-scale biohydrogen production reactors is still uncertain. In this paper, an established and proven Eulerian-Eulerian computational fluid dynamics (CFD) model was employed to perform hydrodynamics assessments of an industrial-scale continuous stirred-tank reactor (CSTR) for biohydrogen production. The merits of the laboratory-scale CSTR and industrial-scale CSTR were compared and analyzed on the basis of CFD simulation. The outcomes demonstrated that there are many parameters that need to be optimized in the industrial-scale reactor, such as the velocity field and stagnation zone. According to the results of hydrodynamics evaluation, the structure of industrial-scale CSTR was optimized and the results are positive in terms of advancing the industrialization of biohydrogen production. (author)

  19. A simulated annealing approach for redesigning a warehouse network problem

    Science.gov (United States)

    Khairuddin, Rozieana; Marlizawati Zainuddin, Zaitul; Jiun, Gan Jia

    2017-09-01

    Now a day, several companies consider downsizing their distribution networks in ways that involve consolidation or phase-out of some of their current warehousing facilities due to the increasing competition, mounting cost pressure and taking advantage on the economies of scale. Consequently, the changes on economic situation after a certain period of time require an adjustment on the network model in order to get the optimal cost under the current economic conditions. This paper aimed to develop a mixed-integer linear programming model for a two-echelon warehouse network redesign problem with capacitated plant and uncapacitated warehouses. The main contribution of this study is considering capacity constraint for existing warehouses. A Simulated Annealing algorithm is proposed to tackle with the proposed model. The numerical solution showed the model and method of solution proposed was practical.

  20. EDP supported control room simulation for training of fault cases

    International Nuclear Information System (INIS)

    Weber, P.

    1984-01-01

    The picture used for simulation was the model of a power station control room designed by KWU for the German Museum, the cooling water circuit of which is illustrated, in order to avoid long training times by a manageable problem setting. A process video system equipped with a light pen made by KRUPP ATLAS was available for the VDU representation of simulation, which is used in industry, for the control and supervision of technical system. This process video system was controlled by a Digital PDP 11/40, which has several great advantages over stand-alone operation. (orig./DG) [de

  1. Dynamism in a Semiconductor Industrial Machine Allocation Problem using a Hybrid of the Bio-inspired and Musical-Harmony Approach

    Science.gov (United States)

    Kalsom Yusof, Umi; Nor Akmal Khalid, Mohd

    2015-05-01

    Semiconductor industries need to constantly adjust to the rapid pace of change in the market. Most manufactured products usually have a very short life cycle. These scenarios imply the need to improve the efficiency of capacity planning, an important aspect of the machine allocation plan known for its complexity. Various studies have been performed to balance productivity and flexibility in the flexible manufacturing system (FMS). Many approaches have been developed by the researchers to determine the suitable balance between exploration (global improvement) and exploitation (local improvement). However, not much work has been focused on the domain of machine allocation problem that considers the effects of machine breakdowns. This paper develops a model to minimize the effect of machine breakdowns, thus increasing the productivity. The objectives are to minimize system unbalance and makespan as well as increase throughput while satisfying the technological constraints such as machine time availability. To examine the effectiveness of the proposed model, results for throughput, system unbalance and makespan on real industrial datasets were performed with applications of intelligence techniques, that is, a hybrid of genetic algorithm and harmony search. The result aims to obtain a feasible solution to the domain problem.

  2. Solving complex maintenance planning optimization problems using stochastic simulation and multi-criteria fuzzy decision making

    International Nuclear Information System (INIS)

    Tahvili, Sahar; Österberg, Jonas; Silvestrov, Sergei; Biteus, Jonas

    2014-01-01

    One of the most important factors in the operations of many cooperations today is to maximize profit and one important tool to that effect is the optimization of maintenance activities. Maintenance activities is at the largest level divided into two major areas, corrective maintenance (CM) and preventive maintenance (PM). When optimizing maintenance activities, by a maintenance plan or policy, we seek to find the best activities to perform at each point in time, be it PM or CM. We explore the use of stochastic simulation, genetic algorithms and other tools for solving complex maintenance planning optimization problems in terms of a suggested framework model based on discrete event simulation

  3. Solving complex maintenance planning optimization problems using stochastic simulation and multi-criteria fuzzy decision making

    Energy Technology Data Exchange (ETDEWEB)

    Tahvili, Sahar [Mälardalen University (Sweden); Österberg, Jonas; Silvestrov, Sergei [Division of Applied Mathematics, Mälardalen University (Sweden); Biteus, Jonas [Scania CV (Sweden)

    2014-12-10

    One of the most important factors in the operations of many cooperations today is to maximize profit and one important tool to that effect is the optimization of maintenance activities. Maintenance activities is at the largest level divided into two major areas, corrective maintenance (CM) and preventive maintenance (PM). When optimizing maintenance activities, by a maintenance plan or policy, we seek to find the best activities to perform at each point in time, be it PM or CM. We explore the use of stochastic simulation, genetic algorithms and other tools for solving complex maintenance planning optimization problems in terms of a suggested framework model based on discrete event simulation.

  4. Collaborative problem structuring using MARVEL

    NARCIS (Netherlands)

    Veldhuis, G.A.; Scheepstal, P.G.M. van; Rouwette, E.A.J.A.; Logtens, T.W.A.

    2015-01-01

    When faced with wicked and messy problems, practitioners can rely on a variety of problem structuring methods (PSMs). Although previous efforts have been made to combine such methods with simulation, currently, few exist that integrate a simulation capability within problem structuring. Our

  5. Pollution problems plague Poland

    International Nuclear Information System (INIS)

    Bajsarowicz, J.F.

    1989-01-01

    Poland's environmental problems are said to stem from investments in heavy industries that require enormous quantities of power and from the exploitation of two key natural resources: coal and sulfur. Air and water pollution problems and related public health problems are discussed

  6. The problem of natural funnel asymmetries: a simulation analysis of meta-analysis in macroeconomics.

    Science.gov (United States)

    Callot, Laurent; Paldam, Martin

    2011-06-01

    Effect sizes in macroeconomic are estimated by regressions on data published by statistical agencies. Funnel plots are a representation of the distribution of the resulting regression coefficients. They are normally much wider than predicted by the t-ratio of the coefficients and often asymmetric. The standard method of meta-analysts in economics assumes that the asymmetries are because of publication bias causing censoring and adjusts the average accordingly. The paper shows that some funnel asymmetries may be 'natural' so that they occur without censoring. We investigate such asymmetries by simulating funnels by pairs of data generating processes (DGPs) and estimating models (EMs), in which the EM has the problem that it disregards a property of the DGP. The problems are data dependency, structural breaks, non-normal residuals, non-linearity, and omitted variables. We show that some of these problems generate funnel asymmetries. When they do, the standard method often fails. Copyright © 2011 John Wiley & Sons, Ltd. Copyright © 2011 John Wiley & Sons, Ltd.

  7. A new astrophysical solution to the Too Big To Fail problem. Insights from the moria simulations

    NARCIS (Netherlands)

    Verbeke, R.; Papastergis, E.; Ponomareva, A. A.; Rathi, S.; De Rijcke, S.

    2017-01-01

    Aims: We test whether or not realistic analysis techniques of advanced hydrodynamical simulations can alleviate the Too Big To Fail problem (TBTF) for late-type galaxies. TBTF states that isolated dwarf galaxy kinematics imply that dwarfs live in halos with lower mass than is expected in a Λ cold

  8. Validation of X1 motorcycle model in industrial plant layout by using WITNESSTM simulation software

    Science.gov (United States)

    Hamzas, M. F. M. A.; Bareduan, S. A.; Zakaria, M. Z.; Tan, W. J.; Zairi, S.

    2017-09-01

    This paper demonstrates a case study on simulation, modelling and analysis for X1 Motorcycles Model. In this research, a motorcycle assembly plant has been selected as a main place of research study. Simulation techniques by using Witness software were applied to evaluate the performance of the existing manufacturing system. The main objective is to validate the data and find out the significant impact on the overall performance of the system for future improvement. The process of validation starts when the layout of the assembly line was identified. All components are evaluated to validate whether the data is significance for future improvement. Machine and labor statistics are among the parameters that were evaluated for process improvement. Average total cycle time for given workstations is used as criterion for comparison of possible variants. From the simulation process, the data used are appropriate and meet the criteria for two-sided assembly line problems.

  9. Problems in the implementation of energy conservation methods: the industrial view

    Energy Technology Data Exchange (ETDEWEB)

    Broad, C.W.

    1977-10-15

    It is pointed out that New Zealand industry has been identified as putting little effort into energy conservation. An energy conservation campaign in industry to increase efficiency and reduce wastage could have major benefits for New Zealand as a whole. Little progress in implementing energy conservation techniques in industry is apparent at present. Business decisions are in the main motivated by profits. Because of the low place of energy in industry's costs of production, seen as a single factor, it hardly rates greater priority over other established production costs. A need to integrate energy costs and material costs is apparent. The need for education is obvious, now, with cheap and limitless energy no longer existing.

  10. Problems in the implementation of energy conservation methods: the industrial view

    Energy Technology Data Exchange (ETDEWEB)

    Broad, C. W.

    1977-10-15

    It is pointed out that New Zealand industry has been identified as putting little effort into energy conservation. An energy conservation campaign in industry to increase efficiency and reduce wastage could have major benefits for New Zealand as a whole. Little progress in implementing energy conservation techniques in industry is apparent at present. Business decisions are in the main motivated by profits. Because of the low place of energy in industry's costs of production, seen as a single factor, it hardly rates greater priority over other established production costs. A need to integrate energy costs and material costs is apparent. The need for education is obvious, now, with cheap and limitless energy no longer existing.

  11. Fictitious domain methods for elliptic problems with general boundary conditions with an application to the numerical simulation of two phase flows; Methodes de domaine fictif pour des problemes elliptiques avec conditions aux limites generales en vue de la simulation numerique d'ecoulements diphasiques

    Energy Technology Data Exchange (ETDEWEB)

    Ramiere, I

    2006-09-15

    This work is dedicated to the introduction of two original fictitious domain methods for the resolution of elliptic problems (mainly convection-diffusion problems) with general and eventually mixed boundary conditions: Dirichlet, Robin or Neumann. The originality lies in the approximation of the immersed boundary by an approximate interface derived from the fictitious domain Cartesian mesh, which is generally not boundary-fitted to the physical domain. The same generic numerical scheme is used to impose the embedded boundary conditions. Hence, these methods require neither a surface mesh of the immersed boundary nor the local modification of the numerical scheme. We study two modelling of the immersed boundary. In the first one, called spread interface, the approximate immersed boundary is the union of the cells crossed by the physical immersed boundary. In the second one, called thin interface, the approximate immersed boundary lies on sides of mesh cells. Additional algebraic transmission conditions linking both flux and solution jumps through the thin approximate interface are introduced. The fictitious problem to solve as well as the treatment of the embedded boundary conditions are detailed for the two methods. A Q1 finite element scheme is implemented for the numerical validation of the spread interface approach while a new cell-centered finite volume scheme is derived for the thin interface approach with immersed jumps. Each method is then combined to multilevel local mesh refinement algorithms (with solution or flux residual) to increase the precision of the solution in the vicinity of the immersed interface. A convergence analysis of a Q1 finite element method with non-boundary fitted meshes is also presented. This study proves the convergence rates of the present methods. Among the various industrial applications, the simulation on a model of heat exchanger in french nuclear power plants enables us to appreciate the performances of the fictitious domain

  12. Reduction of community alcohol problems: computer simulation experiments in three counties.

    Science.gov (United States)

    Holder, H D; Blose, J O

    1987-03-01

    A series of alcohol abuse prevention strategies was evaluated using computer simulation for three counties in the United States: Wake County, North Carolina, Washington County, Vermont and Alameda County, California. A system dynamics model composed of a network of interacting variables was developed for the pattern of alcoholic beverage consumption in a community. The relationship of community drinking patterns to various stimulus factors was specified in the model based on available empirical research. Stimulus factors included disposable income, alcoholic beverage prices, advertising exposure, minimum drinking age and changes in cultural norms. After a generic model was developed and validated on the national level, a computer-based system dynamics model was developed for each county, and a series of experiments was conducted to project the potential impact of specific prevention strategies. The project concluded that prevention efforts can both lower current levels of alcohol abuse and reduce projected increases in alcohol-related problems. Without such efforts, already high levels of alcohol-related family disruptions in the three counties could be expected to rise an additional 6% and drinking-related work problems 1-5%, over the next 10 years after controlling for population growth. Of the strategies tested, indexing the price of alcoholic beverages to the consumer price index in conjunction with the implementation of a community educational program with well-defined target audiences has the best potential for significant problem reduction in all three counties.

  13. Conjugate Problems in Convective Heat Transfer: Review

    Directory of Open Access Journals (Sweden)

    Abram Dorfman

    2009-01-01

    Full Text Available A review of conjugate convective heat transfer problems solved during the early and current time of development of this modern approach is presented. The discussion is based on analytical solutions of selected typical relatively simple conjugate problems including steady-state and transient processes, thermal material treatment, and heat and mass transfer in drying. This brief survey is accompanied by the list of almost two hundred publications considering application of different more and less complex analytical and numerical conjugate models for simulating technology processes and industrial devices from aerospace systems to food production. The references are combined in the groups of works studying similar problems so that each of the groups corresponds to one of selected analytical solutions considered in detail. Such structure of review gives the reader the understanding of early and current situation in conjugate convective heat transfer modeling and makes possible to use the information presented as an introduction to this area on the one hand, and to find more complicated publications of interest on the other hand.

  14. Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

    CERN Multimedia

    2005-01-01

    Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

  15. Industrial Area Redevelopment In The Netherlands: Search For New Approaches

    NARCIS (Netherlands)

    Blokhuis, E.G.J.; Schaefer, W.F.; Albrechts, L.

    2007-01-01

    Industrial areas in the Netherlands are important for a sustainable economic growth. However, the market for industrial areas faces several problems. A main problem is the obsolescence of largely 30% of the current stock of industrial areas. The redevelopment of these obsolete industrial areas

  16. The solution of target assignment problem in command and control decision-making behaviour simulation

    Science.gov (United States)

    Li, Ni; Huai, Wenqing; Wang, Shaodan

    2017-08-01

    C2 (command and control) has been understood to be a critical military component to meet an increasing demand for rapid information gathering and real-time decision-making in a dynamically changing battlefield environment. In this article, to improve a C2 behaviour model's reusability and interoperability, a behaviour modelling framework was proposed to specify a C2 model's internal modules and a set of interoperability interfaces based on the C-BML (coalition battle management language). WTA (weapon target assignment) is a typical C2 autonomous decision-making behaviour modelling problem. Different from most WTA problem descriptions, here sensors were considered to be available resources of detection and the relationship constraints between weapons and sensors were also taken into account, which brought it much closer to actual application. A modified differential evolution (MDE) algorithm was developed to solve this high-dimension optimisation problem and obtained an optimal assignment plan with high efficiency. In case study, we built a simulation system to validate the proposed C2 modelling framework and interoperability interface specification. Also, a new optimisation solution was used to solve the WTA problem efficiently and successfully.

  17. The simulation of a two-dimensional (2D) transport problem in a rectangular region with Lattice Boltzmann method with two-relaxation-time

    Science.gov (United States)

    Sugiyanto, S.; Hardyanto, W.; Marwoto, P.

    2018-03-01

    Transport phenomena are found in many problems in many engineering and industrial sectors. We analyzed a Lattice Boltzmann method with Two-Relaxation Time (LTRT) collision operators for simulation of pollutant moving through the medium as a two-dimensional (2D) transport problem in a rectangular region model. This model consists of a 2D rectangular region with 54 length (x), 27 width (y), and it has isotropic homogeneous medium. Initially, the concentration is zero and is distributed evenly throughout the region of interest. A concentration of 1 is maintained at 9 < y < 18, whereas the concentration of zero is maintained at 0 < y < 9 and 18 < y < 27. A specific discharge (Darcy velocity) of 1.006 is assumed. A diffusion coefficient of 0.8333 is distributed uniformly with a uniform porosity of 0.35. A computer program is written in MATLAB to compute the concentration of pollutant at any specified place and time. The program shows that LTRT solution with quadratic equilibrium distribution functions (EDFs) and relaxation time τa=1.0 are in good agreement result with other numerical solutions methods such as 3DLEWASTE (Hybrid Three-dimensional Lagrangian-Eulerian Finite Element Model of Waste Transport Through Saturated-Unsaturated Media) obtained by Yeh and 3DFEMWATER-LHS (Three-dimensional Finite Element Model of Water Flow Through Saturated-Unsaturated Media with Latin Hypercube Sampling) obtained by Hardyanto.

  18. The Application of Simulation Method in Isothermal Elastic Natural Gas Pipeline

    Science.gov (United States)

    Xing, Chunlei; Guan, Shiming; Zhao, Yue; Cao, Jinggang; Chu, Yanji

    2018-02-01

    This Elastic pipeline mathematic model is of crucial importance in natural gas pipeline simulation because of its compliance with the practical industrial cases. The numerical model of elastic pipeline will bring non-linear complexity to the discretized equations. Hence the Newton-Raphson method cannot achieve fast convergence in this kind of problems. Therefore A new Newton Based method with Powell-Wolfe Condition to simulate the Isothermal elastic pipeline flow is presented. The results obtained by the new method aregiven based on the defined boundary conditions. It is shown that the method converges in all cases and reduces significant computational cost.

  19. Industrial implications of hydrogen

    International Nuclear Information System (INIS)

    Pressouyre, G.M.

    1982-01-01

    Two major industrial implications of hydrogen are examined: problems related to the effect of hydrogen on materials properties (hydrogen embrittlement), and problems related to the use and production of hydrogen as a future energy vector [fr

  20. Industrial Activity at CERN

    CERN Document Server

    Kowalik, G

    2000-01-01

    The decrease in the number of CERN staff creates the need for optimization of the non-core, infrastructure-related activities. An industrial, service-orientated approach has long been considered as an appropriate way to cope with the problem of diminishing resources. This paper presents industrial and service activity issues at CERN based on the experience of the exploitation of the power network. The most important problems linked to the application of the industrial approach to the exploitation of equipment in the CERN research environment are covered. These include the interface between accelerators and electrical exploitation services, external and internal regulations, sharing of responsibility between CERN staff and external contractors, continuous modification of clients' requirements, the balance between the cost of accelerator downtime versus the cost of infrastructure upgrade. A benchmarking through a comparison with a big industrial manufacturer is followed by recommendations for possible improveme...

  1. Corrosion in power industry

    International Nuclear Information System (INIS)

    Ventakeshwarlu, K.S.

    1979-01-01

    A brief account of the problem areas encountered as a result of corrosion in the electrical power industry including nuclear power industry is given and some of the measures contemplated and/or implemented to control corrosion are outlined. The corrosion problems in the steam generators and cladding tubes of the nuclear power plant have an added dimension of radioactivation which leads to contamination and radiation field. Importance of monitoring water quality and controlling water chemistry by addition of chemicals is emphasised. (M.G.B.)

  2. 3rd International Workshop on Advances in Simulation-Driven Optimization and Modeling

    CERN Document Server

    Leifsson, Leifur; Yang, Xin-She

    2016-01-01

    This edited volume is devoted to the now-ubiquitous use of computational models across most disciplines of engineering and science, led by a trio of world-renowned researchers in the field. Focused on recent advances of modeling and optimization techniques aimed at handling computationally-expensive engineering problems involving simulation models, this book will be an invaluable resource for specialists (engineers, researchers, graduate students) working in areas as diverse as electrical engineering, mechanical and structural engineering, civil engineering, industrial engineering, hydrodynamics, aerospace engineering, microwave and antenna engineering, ocean science and climate modeling, and the automotive industry, where design processes are heavily based on CPU-heavy computer simulations. Various techniques, such as knowledge-based optimization, adjoint sensitivity techniques, and fast replacement models (to name just a few) are explored in-depth along with an array of the latest techniques to optimize the...

  3. New progress of FEM simulation and AI application in rolling at RAL

    International Nuclear Information System (INIS)

    Liu Xianghua; Wang Guodong; Zhao Kun

    2000-01-01

    New progresses on FEM simulation and AI application in rolling have been achieved at RAL recently. The existence and uniqueness of the extreme point of total functional for rolling problem has been proved. Different rolling processes, such as H-beam rolling, ribbing strip rolling, slab sizing, have been solved by our in-house FEM software package. The simulation results have been put into production use to improve the precision of math models. The Artificial Neural Network has been used to predict rolling force, coiling temperature, microstructure and properties of the rolled products. An expert system for deviation diagnoses of strip thickness has been developed for industry use. Synergetic Artificial Intelligence has also been applied to rolling scheduling. We are making continuous efforts to develop AI applications for rolling line co-operating in China steel industry. (author)

  4. INTERACTIVE MOTION PLATFORMS AND VIRTUAL REALITY FOR VEHICLE SIMULATORS

    Directory of Open Access Journals (Sweden)

    Evžen Thöndel

    2017-12-01

    Full Text Available Interactive motion platforms are intended for vehicle simulators, where the direct interaction of the human body is used for controlling the simulated vehicle (e.g. bicycle, motorbike or other sports vehicles. The second use of interactive motion platforms is for entertainment purposes or fitness. The development of interactive motion platforms reacts to recent calls in the simulation industry to provide a device, which further enhances the virtual reality experience, especially with connection to the new and very fast growing business in virtual reality glasses. The paper looks at the design and control of an interactive motion platform with two degrees of freedom to be used in virtual reality applications. The paper provides the description of the control methods and new problems related to the virtual reality sickness are discussed here.

  5. Problems of Recreational Industry in European Russia: Changes in Infrastructure, Environment, and Climate

    Science.gov (United States)

    Yakovleva, M.; Lyaskovskiy, S. I.

    2011-12-01

    Forest and forest-steppe zones of European Russia have a great potential for recreation, including its active form, tourism. Soft peaceful landscapes and moderate summer climate provide pleasant conditions for family vacations. Numerous lakes and rivers provide places for swimming, boating, and fishing. These pleasant environmental conditions are complemented with abundant recreational choices such as historical places, old cities, towns, and monasteries filled with museums that deliver detailed information about the millennium-long Russian history. There are the vibrant cities, Moscow and St. Petersburg; cities along the Volga River; and the oldest cities in northwestern Russia, Novgorod and Pskov provide numerous options for cultural and entertaining programs for the most demanding travelers. The country has a broad range of private tour operators that cater to national and international travelers. Still there are problems which should be taken into account by travelers who chose to spend their precious vacation time in Russia. Infrastructure problems include a deficit of three-star hotels that are the mainstream of contemporary tourist business. Their number is growing exponentially in the past decade and at present remains insufficient, but the capacity building is progressing favorably. Climatic and environmental changes became a new and unexpected factor affecting the tourist industry in European Russia. Stable and strongly sustainable climate has been interrupted by extreme events that may cause additional discomfort for some people. Tour operators and hotel hosts both need to invest more to confront incremental weather (first of all investments in air conditioning are needed) and/or have substitute travel variants that are of equivalent quality. One of the unresolved issues remains the air quality problem in Moscow due to intense traffic and the possibility of peat fires in the neighboring Shatura region southeast of the city. This increases risks that must

  6. Annual Report: Carbon Capture Simulation Initiative (CCSI) (30 September 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C. [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Syamlal, Madhava [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Cottrell, Roger [URS Corporation. (URS), San Francisco, CA (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); Kress, Joel D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sun, Xin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sundaresan, S. [Princeton Univ., NJ (United States); Sahinidis, Nikolaos V. [Carnegie Mellon Univ., Pittsburgh, PA (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); Zitney, Stephen E. [NETL; Bhattacharyya, D. [West Virginia Univ., Morgantown, WV (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); Agarwal, Deb [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tong, Charles [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lin, Guang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dale, Crystal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Engel, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Calafiura, Paolo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Beattie, Keith [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shinn, John [SynPatEco. Pleasant Hill, CA (United States)

    2012-09-30

    industrial challenge problems, CCSI ensures that the simulation tools are developed for the carbon capture technologies of most relevance to industry. CCSI is led by the National Energy Technology Laboratory (NETL) and leverages the Department of Energy (DOE) national laboratories' core strengths in modeling and simulation, bringing together the best capabilities at NETL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL). The CCSI's industrial partners provide representation from the power generation industry, equipment manufacturers, technology providers and engineering and construction firms. The CCSI's academic participants (Carnegie Mellon University, Princeton University, West Virginia University, and Boston University) bring unparalleled expertise in multiphase flow reactors, combustion, process synthesis and optimization, planning and scheduling, and process control techniques for energy processes. During Fiscal Year (FY) 12, CCSI released its first set of computational tools and models. This pre-release, a year ahead of the originally planned first release, is the result of intense industry interest in getting early access to the tools and the phenomenal progress of the CCSI technical team. These initial components of the CCSI Toolset provide new models and computational capabilities that will accelerate the commercial development of carbon capture technologies as well as related technologies, such as those found in the power, refining, chemicals, and gas production industries. The release consists of new tools for process synthesis and optimization to help identify promising concepts more quickly, new physics-based models of potential capture equipment and processes that will reduce the time to design and troubleshoot new systems, a framework to quantify the uncertainty of model predictions, and various enabling tools that

  7. LABOUR PROTECTION AND INDUSTRIAL SAFETY IN UKRAINE: PROBLEMS OF TRANSITION PERIOD AND PERSPECTIVE WAYS OF DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    A. P. BOCHKOVSKY

    2016-12-01

    Full Text Available Based on comparative analysis of the industrial accident causes in Ukraine and EU countries this article establishes that the main accident reasons are organizational ones (50 to 70% of the total number of cases, however such indicators as the registered in Ukraine fatal cases frequency coefficient (per 1 thousand of employees and the fatal accidents-total accidents number ratio are greater than the similar indicators in Europe by about 2- and 100-fold, respectively. It is noted that the issues of improving the work safety in Ukraine towards the association with the European Union should be considered in the context of two main planes, which are associated with changes in the legislative and educational systems. Within this article, the authors analyse the main inter-sectoral and sectoral regulatory legal acts on labour protection, in particular in the field of providing for fire, explosion and electrical safety, and relevant documents relating to the creation and maintenance of a comfortable environment at work. Based on the conducted analysis, the problems of adapting the national legislation in the field of labour protection and industrial safety to the legal framework of EU, the problems concerning the unsystematic character and selective approach to the implementation of appropriate changes, and potential hazards that can occur at all stages of the life cycle of technical systems in the event of their introduction are determined. The main differences in the systematic approach to the professional training of students in higher educational institutions (HEI of Ukraine and EU countries (Poland, for example in the field of labour protection and industrial safety are singled out. It is noted that in the Republic of Poland numbering the population correlative with Ukraine the quantity of special educational institutions preparing specialists in the field of labour protection in relation to the total number of higher educational establishment is

  8. Industrial Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    generation rates and material composition as well as determining factors are discussed in this chapter. Characterizing industrial waste is faced with the problem that often only a part of the waste is handled in the municipal waste system, where information is easily accessible. In addition part...... of the industrial waste may in periods, depending on market opportunities and prices, be traded as secondary rawmaterials. Production-specificwaste from primary production, for example steel slag, is not included in the current presentation. In some countries industries must be approved or licensed and as part...... of the system industry has to inform at the planning stage and afterwards in yearly reports on their waste arising and how the waste is managed. If available such information is very helpful in obtaining information about that specific industry. However, in many countries there is very little information...

  9. Impact of industrialization on environment

    International Nuclear Information System (INIS)

    Anwar, S.M.; Saqi, S.K.

    2005-01-01

    The positive economic and social results of industrial growth have been accompanied by serious environmental degradation, however, as well growing threats to health from occupational hazards. To some extent, these problems are analogous to those of early industrial Europe. In the 19th century, the shift from a rural, agrarian society to an urban, industrial society initially involve widespread social and economic disruption, unemployment, homelessness, pollution, and increased exposure to health hazards both at work and at home. Many of these same problems characterize cities in the developing world today. As part of this growth, industrial wastes are going in quantity and becoming more varied, more toxic, and more difficult to dispose off or degrade. Densities in cities where much of the industrial production is located for surpass those in developed countries, so the number of people exposed to pollutants is potentially much greater. (author)

  10. Research and Application of Autodesk Fusion360 in Industrial Design

    Science.gov (United States)

    Song, P. P.; Qi, Y. M.; Cai, D. C.

    2018-05-01

    In 2016, Fusion 360, a productintroduced byAutodesk and integrating industrial design, structural design, mechanical simulation, and CAM, turns out a design platform supportingcollaboration and sharing both cross-platform and via the cloud. In previous products, design and manufacturing use to be isolated. In the course of design, research and development, the communication between designers and engineers used to go on through different software products, tool commands, and even industry terms. Moreover, difficulty also lies with the communication between design thoughts and machining strategies. Naturally, a difficult product design and R & D process would trigger a noticeable gap between the design model and the actual product. A complete product development process tends to cover several major areas, such as industrial design, mechanical design, rendering and animation, computer aided emulation (CAE), and computer aided manufacturing (CAM). Fusion 360, a perfect design solving the technical problems of cross-platform data exchange, realizes the effective control of cross-regional collaboration and presents an overview of collaboration and breaks the barriers between art and manufacturing, andblocks between design and processing. The “Eco-development of Fusion360 Industrial Chain” is both a significant means to and an inevitable trend forthe manufacturers and industrial designers to carry out innovation in China.

  11. U.S. nuclear industry

    International Nuclear Information System (INIS)

    Sherman, R.

    1979-01-01

    At present, 72 power reactors are in the condition of being able to operate in U.S., and the total installation capacity has reached 55 million kW, which is equivalent to about 9.5% of the total power generation capacity in U.S. The nuclear power stations produced 12.5% of the total electricity consumption in 1978. Especially in the north eastern part of the U.S., the nuclear power generation occupied 42% of the total power generation at the time of recent peak load, and 47 million barrels of crude oil and 517 million dollars of foreign currency were able to be saved. Moreover, 96 plants amounting to 105 million kW are under construction, and 30 plants of 35 million kW were ordered. Electric power companies, nuclear reactor makers, nuclear fuel and other related industries believe the merits of nuclear power generation and expect that it will flourish if a certain problem is solved. Especially serious problem to which the U.S. nuclear industry is facing now is the problem of uncertainty. Many orders of nuclear power plants have been canceled, and the constructions have been postponed. The capability of the U.S. nuclear industry to construct more than the required facilities, and its extent and the necessary conditions have been investigated by the Atomic Industrial Forum. The important national and international problems of atomic energy are discussed. (Kako, I.)

  12. Radiation protection, safety and associated problems in industrial radiography

    International Nuclear Information System (INIS)

    Le Roux, P.R.

    1990-01-01

    Industrial radiography is an indispensable tool for non-destructive testing. Its use entails potential radiation exposure to the operator as well as to the public. Since such radiation has the potential to be harmful, there is a need to limit radiation exposure to a level at which the risk is believed to be acceptable to the individual and to society. The Radiation Protection Society and the Department of National Health believe that the level of protection provided for radiation workers should be comparable with that in other 'safe' industries. The total risk for radiation workers includes the risk of non-radiation related accidents in the various occupations, as well as the special risks of radiation exposure. Industrial radiographers have one of the poorest safety records of all non-medical radiation workers. Operator errors and management errors seem to be the primary contributors to most accidental high exposures. It is necessary to remember that industrial radiography has to be carried out in a wide variety of work places under many different working conditions, both by day and by night. High energy end emissivity (X-ray output or source activity) is required for the radiation to be transmitted through specimens, because these are normally constructed of thick and dense materials such as steel. Additionally, most radiographic sources must be portable to permit use in field locations. On the negative side it must be mentioned that studies undertaken abroad conclude that the most important factors contributing to unsafe operations are human related. Careful planning of the method of work is essential if unnecessary risks are to be avoided. The most effective way of reducing accidents would seem to be to train employees to adhere to established and well documented procedures, to exercise common sense and sound judgement, and to use the protective equipment and devices provided in the manner specified. 2 tabs., 3 refs

  13. Discrete-event system simulation on small and medium enterprises productivity improvement

    Science.gov (United States)

    Sulistio, J.; Hidayah, N. A.

    2017-12-01

    Small and medium industries in Indonesia is currently developing. The problem faced by SMEs is the difficulty of meeting growing demand coming into the company. Therefore, SME need an analysis and evaluation on its production process in order to meet all orders. The purpose of this research is to increase the productivity of SMEs production floor by applying discrete-event system simulation. This method preferred because it can solve complex problems die to the dynamic and stochastic nature of the system. To increase the credibility of the simulation, model validated by cooperating the average of two trials, two trials of variance and chi square test. Afterwards, Benferroni method applied to development several alternatives. The article concludes that, the productivity of SMEs production floor increased up to 50% by adding the capacity of dyeing and drying machines.

  14. Electrical industry and the eighties - triumph or disaster

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-16

    A brief review of progress made in the electrical industry during the 1880s is presented. Then the trials and tribulations which are in store for the industry in 1980 are reviewed. How these problems should be tackled by a strong and unified industry is suggested. Areas covered include the anti-nuclear movement, the energy supply problems, rampant consumerism, and the consumer lobby.

  15. Industrial Performance of the Renewable Resources Industry in China

    OpenAIRE

    Dong Zhou; Xingang Zhao

    2015-01-01

    Promoting the development of renewable resources industry is an effective way to solve the problems of resources shortage and environmental pollution in China. In this paper, studies have found that “market structure” and “ownership structure”, namely “double structure”, is an important explanatory variable that affects industrial performance according to the “structure-conduct-performance” paradigm. Literature reviews have shown that large state-owned enterprises are playing an important rol...

  16. The Novel of Six axes Robotic Arm for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Rajendra R Aparnathi

    2014-05-01

    Full Text Available Automation technology is widely accepted and rapidly growing technology in the field of core and many other industries. Anyone can observe that due to these problems many industries are turning towards automaton. When searching for problem of labor manpower in middle-case industries, we came to know about many other things like production, speed of manufacturing and quality of the product are necessary in the current scenario. These parameters are not being well maintained in incorporate industries with manual manufacturing processes instead of using automatic system. Our objective is to solve these problems by efficient use of different technologies for making an industry fully or partially automated. By using technologies we can try to solve or reduce the effects of above problems.

  17. Simulation of Thermal Flow Problems via a Hybrid Immersed Boundary-Lattice Boltzmann Method

    Directory of Open Access Journals (Sweden)

    J. Wu

    2012-01-01

    Full Text Available A hybrid immersed boundary-lattice Boltzmann method (IB-LBM is presented in this work to simulate the thermal flow problems. In current approach, the flow field is resolved by using our recently developed boundary condition-enforced IB-LBM (Wu and Shu, (2009. The nonslip boundary condition on the solid boundary is enforced in simulation. At the same time, to capture the temperature development, the conventional energy equation is resolved. To model the effect of immersed boundary on temperature field, the heat source term is introduced. Different from previous studies, the heat source term is set as unknown rather than predetermined. Inspired by the idea in (Wu and Shu, (2009, the unknown is calculated in such a way that the temperature at the boundary interpolated from the corrected temperature field accurately satisfies the thermal boundary condition. In addition, based on the resolved temperature correction, an efficient way to compute the local and average Nusselt numbers is also proposed in this work. As compared with traditional implementation, no approximation for temperature gradients is required. To validate the present method, the numerical simulations of forced convection are carried out. The obtained results show good agreement with data in the literature.

  18. World, We Have Problems: Simulation for Large Complex, Risky Projects, and Events

    Science.gov (United States)

    Elfrey, Priscilla

    2010-01-01

    Prior to a spacewalk during the NASA STS/129 mission in November 2009, Columbia Broadcasting System (CBS) correspondent William Harwood reported astronauts, "were awakened again", as they had been the day previously. Fearing something not properly connected was causing a leak, the crew, both on the ground and in space, stopped and checked everything. The alarm proved false. The crew did complete its work ahead of schedule, but the incident reminds us that correctly connecting hundreds and thousands of entities, subsystems and systems, finding leaks, loosening stuck valves, and adding replacements to very large complex systems over time does not occur magically. Everywhere major projects present similar pressures. Lives are at - risk. Responsibility is heavy. Large natural and human-created disasters introduce parallel difficulties as people work across boundaries their countries, disciplines, languages, and cultures with known immediate dangers as well as the unexpected. NASA has long accepted that when humans have to go where humans cannot go that simulation is the sole solution. The Agency uses simulation to achieve consensus, reduce ambiguity and uncertainty, understand problems, make decisions, support design, do planning and troubleshooting, as well as for operations, training, testing, and evaluation. Simulation is at the heart of all such complex systems, products, projects, programs, and events. Difficult, hazardous short and, especially, long-term activities have a persistent need for simulation from the first insight into a possibly workable idea or answer until the final report perhaps beyond our lifetime is put in the archive. With simulation we create a common mental model, try-out breakdowns of machinery or teamwork, and find opportunity for improvement. Lifecycle simulation proves to be increasingly important as risks and consequences intensify. Across the world, disasters are increasing. We anticipate more of them, as the results of global warming

  19. Simulation Analysis of China’s Energy and Industrial Structure Adjustment Potential to Achieve a Low-carbon Economy by 2020

    Directory of Open Access Journals (Sweden)

    Nan Xiang

    2013-11-01

    Full Text Available To achieve a low-carbon economy, China has committed to reducing its carbon dioxide (CO2 emissions per unit of gross domestic product (GDP by 40%–45% by 2020 from 2005 levels and increasing the share of non-fossil fuels in primary energy consumption to approximately 15%. It is necessary to investigate whether this plan is suitable and how this target may be reached. This paper verifies the feasibility of achieving the CO2 emission targets by energy and industrial structure adjustments, and proposes applicable measures for further sustainable development by 2020 through comprehensive simulation. The simulation model comprises three sub-models: an energy flow balance model, a CO2 emission model, and a socio-economic model. The model is constructed based on input-output table and three balances (material, value, and energy flow balance, and it is written in LINGO, a linear dynamic programming language. The simulation results suggest that China’s carbon intensity reduction promise can be realized and even surpassed to 50% and that economic development (annual 10% GDP growth rate can be achieved if energy and industrial structure are adjusted properly by 2020. However, the total amount of CO2 emission will reach a relatively high level—13.68 billion tons—which calls for further sound approaches to realize a low carbon economy, such as energy utilization efficiency improvement, technology innovation, and non-fossil energy’s utilization.

  20. The sign problem in real-time path integral simulations: Using the cumulant action to implement multilevel blocking

    International Nuclear Information System (INIS)

    Mak, C. H.

    2009-01-01

    A practical method to tackle the sign problem in real-time path integral simulations is proposed based on the multilevel blocking idea. The formulation is made possible by using a cumulant expansion of the action, which in addition to addressing the sign problem, provides an unbiased estimator for the action from a statistically noisy sample of real-time paths. The cumulant formulation also allows the analytical gradients of the action to be computed with little extra computational effort, and it can easily be implemented in a massively parallel environment.

  1. A computer tool to support in design of industrial Ethernet.

    Science.gov (United States)

    Lugli, Alexandre Baratella; Santos, Max Mauro Dias; Franco, Lucia Regina Horta Rodrigues

    2009-04-01

    This paper presents a computer tool to support in the project and development of an industrial Ethernet network, verifying the physical layer (cables-resistance and capacitance, scan time, network power supply-POE's concept "Power Over Ethernet" and wireless), and occupation rate (amount of information transmitted to the network versus the controller network scan time). These functions are accomplished without a single physical element installed in the network, using only simulation. The computer tool has a software that presents a detailed vision of the network to the user, besides showing some possible problems in the network, and having an extremely friendly environment.

  2. Radon problem in uranium industry

    International Nuclear Information System (INIS)

    Khan, A.H.; Raghavayya, M.

    1991-01-01

    Radon emission is invariably associated with the mining and processing of uranium ores. Radon (sup(222)Rn) enters mine atmosphere through diffusion from exposed ore body, fractures and fissures in the rocks and is also brought in by ground water. Being the progenitor of a series of short lived radioisotopes it contributes over 70% of the radiation dose to mine workers and thus accounts for nearly 30% of the total radiation doses received by workers in the whole nuclear industry. This paper summarises the data on radon emanation from the ore body, backfilled sands and mine water. Radon and its progeny concentrations in different haulage levels and stopes of the Jaduguda uranium mine are presented to emphasise the need for a well planned ventilation system to control radiation exposure of miners. Results of radon monitoring from a few exploratory uranium mines are included to indicate the need for a good ventilation system from inception of the mining operations. Relative contribution of mine exhaust and tailings surfaces to the environmental radon are also given. Some instruments developed locally for monitoring of radon and its progeny in mines and in the environment are briefly described to indicate the progress made in this field. (author). 17 refs., 2 figs., 6 tabs

  3. An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems

    Directory of Open Access Journals (Sweden)

    Vivek Patel

    2012-08-01

    Full Text Available Nature inspired population based algorithms is a research field which simulates different natural phenomena to solve a wide range of problems. Researchers have proposed several algorithms considering different natural phenomena. Teaching-Learning-based optimization (TLBO is one of the recently proposed population based algorithm which simulates the teaching-learning process of the class room. This algorithm does not require any algorithm-specific control parameters. In this paper, elitism concept is introduced in the TLBO algorithm and its effect on the performance of the algorithm is investigated. The effects of common controlling parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 35 constrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. The proposed algorithm can be applied to various optimization problems of the industrial environment.

  4. Instructional Materials: The Changing Industry

    Science.gov (United States)

    Brodinsky, Ben

    1975-01-01

    The beleaguered educational publishing industry is making a valiant stand against a storm of challenges. From eradicating bias in textbooks to verifying textbook effectiveness, many problems must be faced. The industry responds by cooperating with educators. (Editor)

  5. PENGOLAHAN AIR LIMBAH INDUSTRI KECIL PELAPISAN LOGAM

    OpenAIRE

    Yudo, Satmoko; Said, Nusa Idaman

    2017-01-01

    Water pollution in Jakarta area, especially river and shallow groundwater, had become a very serious problem. Pollution problem caused by small industrial activities had not been got attetion. Some activities, which often cause water pollution problem, were wastewater from electroplating small industry. This wastewater was one of the most potential pollutant sources, because it contains high concentration of heavy metal pollutant such as Fe, Ni, Zn, Cr, ect. To anticipate its negative effect ...

  6. Simulating Results of Experiments on Gene Regulation of the Lactose Operon in Escherichia coli; a Problem-Solving Exercise.

    Science.gov (United States)

    Hitchen, Trevor; Metcalfe, Judith

    1987-01-01

    Describes a simulation of the results of real experiments which use different strains of Escherichia coli. Provides an inexpensive practical problem-solving exercise to aid the teaching and understanding of the Jacob and Monod model of gene regulation. (Author/CW)

  7. Heat recovery networks synthesis of large-scale industrial sites: Heat load distribution problem with virtual process subsystems

    International Nuclear Information System (INIS)

    Pouransari, Nasibeh; Maréchal, Francois

    2015-01-01

    Highlights: • Synthesizing industrial size heat recovery network with match reduction approach. • Targeting TSI with minimum exchange between process subsystems. • Generating a feasible close-to-optimum network. • Reducing tremendously the HLD computational time and complexity. • Generating realistic network with respect to the plant layout. - Abstract: This paper presents a targeting strategy to design a heat recovery network for an industrial plant by dividing the system into subsystems while considering the heat transfer opportunities between them. The methodology is based on a sequential approach. The heat recovery opportunity between process units and the optimal flow rates of utilities are first identified using a Mixed Integer Linear Programming (MILP) model. The site is then divided into a number of subsystems where the overall interaction is resumed by a pair of virtual hot and cold stream per subsystem which is reconstructed by solving the heat cascade inside each subsystem. The Heat Load Distribution (HLD) problem is then solved between those packed subsystems in a sequential procedure where each time one of the subsystems is unpacked by switching from the virtual stream pair back into the original ones. The main advantages are to minimize the number of connections between process subsystems, to alleviate the computational complexity of the HLD problem and to generate a feasible network which is compatible with the minimum energy consumption objective. The application of the proposed methodology is illustrated through a number of case studies, discussed and compared with the relevant results from the literature

  8. A Review of International Telecommunications Industry Issues, Structure, and Regulatory Problems.

    Science.gov (United States)

    Cole, Jack E.; And Others

    Industry structure studies prior to 1968 are briefly reviewed, and an overview of industrial and technological developments up to the present is provided through synopses of more recent studies. Areas covered include overseas telephone and record carriers; the creation of the Communications Satellite Corporation; the current regulatory and…

  9. Solving Constrained Consumption-Investment Problems by Simulation of Artificial Market Strategies

    DEFF Research Database (Denmark)

    Bick, Björn; Kraft, Holger; Munk, Claus

    2013-01-01

    Utility-maximizing consumption and investment strategies in closed form are unknown for realistic settings involving portfolio constraints, incomplete markets, and potentially a high number of state variables. Standard numerical methods are hard to implement in such cases. We propose a numerical...... procedure that combines the abstract idea of artificial, unconstrained complete markets, well-known closed-form solutions in affine or quadratic return models, straightforward Monte Carlo simulation, and a standard iterative optimization routine. Our method provides an upper bound on the wealth......-equivalent loss compared to the unknown optimal strategy, and it facilitates our understanding of the economic forces at play by building on closed-form expressions for the strategies considered. We illustrate and test our method on the life-cycle problem of an individual who receives unspanned labor income...

  10. Fictitious domain methods for elliptic problems with general boundary conditions with an application to the numerical simulation of two phase flows

    International Nuclear Information System (INIS)

    Ramiere, I.

    2006-09-01

    This work is dedicated to the introduction of two original fictitious domain methods for the resolution of elliptic problems (mainly convection-diffusion problems) with general and eventually mixed boundary conditions: Dirichlet, Robin or Neumann. The originality lies in the approximation of the immersed boundary by an approximate interface derived from the fictitious domain Cartesian mesh, which is generally not boundary-fitted to the physical domain. The same generic numerical scheme is used to impose the embedded boundary conditions. Hence, these methods require neither a surface mesh of the immersed boundary nor the local modification of the numerical scheme. We study two modelling of the immersed boundary. In the first one, called spread interface, the approximate immersed boundary is the union of the cells crossed by the physical immersed boundary. In the second one, called thin interface, the approximate immersed boundary lies on sides of mesh cells. Additional algebraic transmission conditions linking both flux and solution jumps through the thin approximate interface are introduced. The fictitious problem to solve as well as the treatment of the embedded boundary conditions are detailed for the two methods. A Q1 finite element scheme is implemented for the numerical validation of the spread interface approach while a new cell-centered finite volume scheme is derived for the thin interface approach with immersed jumps. Each method is then combined to multilevel local mesh refinement algorithms (with solution or flux residual) to increase the precision of the solution in the vicinity of the immersed interface. A convergence analysis of a Q1 finite element method with non-boundary fitted meshes is also presented. This study proves the convergence rates of the present methods. Among the various industrial applications, the simulation on a model of heat exchanger in french nuclear power plants enables us to appreciate the performances of the fictitious domain

  11. On simulated annealing phase transitions in phylogeny reconstruction.

    Science.gov (United States)

    Strobl, Maximilian A R; Barker, Daniel

    2016-08-01

    Phylogeny reconstruction with global criteria is NP-complete or NP-hard, hence in general requires a heuristic search. We investigate the powerful, physically inspired, general-purpose heuristic simulated annealing, applied to phylogeny reconstruction. Simulated annealing mimics the physical process of annealing, where a liquid is gently cooled to form a crystal. During the search, periods of elevated specific heat occur, analogous to physical phase transitions. These simulated annealing phase transitions play a crucial role in the outcome of the search. Nevertheless, they have received comparably little attention, for phylogeny or other optimisation problems. We analyse simulated annealing phase transitions during searches for the optimal phylogenetic tree for 34 real-world multiple alignments. In the same way in which melting temperatures differ between materials, we observe distinct specific heat profiles for each input file. We propose this reflects differences in the search landscape and can serve as a measure for problem difficulty and for suitability of the algorithm's parameters. We discuss application in algorithmic optimisation and as a diagnostic to assess parameterisation before computationally costly, large phylogeny reconstructions are launched. Whilst the focus here lies on phylogeny reconstruction under maximum parsimony, it is plausible that our results are more widely applicable to optimisation procedures in science and industry. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Statistical perspectives on inverse problems

    DEFF Research Database (Denmark)

    Andersen, Kim Emil

    of the interior of an object from electrical boundary measurements. One part of this thesis concerns statistical approaches for solving, possibly non-linear, inverse problems. Thus inverse problems are recasted in a form suitable for statistical inference. In particular, a Bayesian approach for regularisation...... problem is given in terms of probability distributions. Posterior inference is obtained by Markov chain Monte Carlo methods and new, powerful simulation techniques based on e.g. coupled Markov chains and simulated tempering is developed to improve the computational efficiency of the overall simulation......Inverse problems arise in many scientific disciplines and pertain to situations where inference is to be made about a particular phenomenon from indirect measurements. A typical example, arising in diffusion tomography, is the inverse boundary value problem for non-invasive reconstruction...

  13. Surrogate model approach for improving the performance of reactive transport simulations

    Science.gov (United States)

    Jatnieks, Janis; De Lucia, Marco; Sips, Mike; Dransch, Doris

    2016-04-01

    Reactive transport models can serve a large number of important geoscientific applications involving underground resources in industry and scientific research. It is common for simulation of reactive transport to consist of at least two coupled simulation models. First is a hydrodynamics simulator that is responsible for simulating the flow of groundwaters and transport of solutes. Hydrodynamics simulators are well established technology and can be very efficient. When hydrodynamics simulations are performed without coupled geochemistry, their spatial geometries can span millions of elements even when running on desktop workstations. Second is a geochemical simulation model that is coupled to the hydrodynamics simulator. Geochemical simulation models are much more computationally costly. This is a problem that makes reactive transport simulations spanning millions of spatial elements very difficult to achieve. To address this problem we propose to replace the coupled geochemical simulation model with a surrogate model. A surrogate is a statistical model created to include only the necessary subset of simulator complexity for a particular scenario. To demonstrate the viability of such an approach we tested it on a popular reactive transport benchmark problem that involves 1D Calcite transport. This is a published benchmark problem (Kolditz, 2012) for simulation models and for this reason we use it to test the surrogate model approach. To do this we tried a number of statistical models available through the caret and DiceEval packages for R, to be used as surrogate models. These were trained on randomly sampled subset of the input-output data from the geochemical simulation model used in the original reactive transport simulation. For validation we use the surrogate model to predict the simulator output using the part of sampled input data that was not used for training the statistical model. For this scenario we find that the multivariate adaptive regression splines

  14. LDRD final report for improving human effectiveness for extreme-scale problem solving : assessing the effectiveness of electronic brainstorming in an industrial setting.

    Energy Technology Data Exchange (ETDEWEB)

    Dornburg, Courtney C.; Stevens, Susan Marie; Davidson, George S.; Hendrickson, Stacey M. Langfitt

    2008-09-01

    An experiment was conducted comparing the effectiveness of individual versus group electronic brainstorming in order to address difficult, real world challenges. While industrial reliance on electronic communications has become ubiquitous, empirical and theoretical understanding of the bounds of its effectiveness have been limited. Previous research using short-term, laboratory experiments have engaged small groups of students in answering questions irrelevant to an industrial setting. The present experiment extends current findings beyond the laboratory to larger groups of real-world employees addressing organization-relevant challenges over the course of four days. Employees and contractors at a national security laboratory participated, either in a group setting or individually, in an electronic brainstorm to pose solutions to a 'wickedly' difficult problem. The data demonstrate that (for this design) individuals perform at least as well as groups in producing quantity of electronic ideas, regardless of brainstorming duration. However, when judged with respect to quality along three dimensions (originality, feasibility, and effectiveness), the individuals significantly (p<0.05) out-performed the group working together. When idea quality is used as the benchmark of success, these data indicate that work-relevant challenges are better solved by aggregating electronic individual responses, rather than electronically convening a group. This research suggests that industrial reliance upon electronic problem solving groups should be tempered, and large nominal groups might be the more appropriate vehicle for solving wicked corporate issues.

  15. Simulation Exploration Experience 2018 Overview

    Science.gov (United States)

    Paglialonga, Stephen; Elfrey, Priscilla; Crues, Edwin Z.

    2018-01-01

    The Simulation Exploration Experience (SEE) joins students, industry, professional associations, and faculty together for an annual modeling and simulation (M&S) challenge. SEE champions collaborative collegiate-level modeling and simulation by providing a venue for students to work in highly dispersed inter-university teams to design, develop, test, and execute simulated missions associated with space exploration. Participating teams gain valuable knowledge, skills, and increased employability by working closely with industry professionals, NASA, and faculty advisors. This presentation gives and overview of the SEE and the upcoming 2018 SEE event.

  16. CONTRIBUTION OF COMPUTATIONAL SIMULATION FOR LAYOUT ANALYSIS IN A WOODEN FURNITURE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Alexandre Navarro Silva

    Full Text Available ABSTRACT The objective of this study was to balance the production line and analyze the layout of the sewing sector in a furniture industry. Using the Arena software, a simulation model was constructed that represented the real system consisting of a cellular layout with 3 groups of 5 seamstresses, who produced 57 different types of products divided into three families, in a daily working day of 625 minutes in the months of February to August and 725 minutes in the months of September to January. The model was quantitatively validated among the managers of the studied industry. The obtained results allowed conclusions with an error of less than 1% in the daily quantity of pieces produced with 99% statistical confidence. Therefore, three scenarios related to the organization of the work environment and the balancing of the production line were constructed, and those include: i linear layout, and the balancing allowed the division of five seamstresses for families 1 and 2, and three seamstresses for family 3; ii study of the layout by processes, so that the best balance was constituted of two groups with seven seamstresses; iii similar to scenario 2 but with six seamstresses in group 1 and seven seamstresses in group 2. It was verified that the modified, alternative scenario 2 is more advantageous for the organization, since it presents greater productivity compared to all other scenarios and to the real system, so the company can increase its production capacity by simply modifying the layout and organizing the work environment.

  17. Teacher Resource Book for Population Pressure in Indonesia, Problems of Industrialization in Eurasia, Power Blocs in Eurasia. Man on the Earth Series.

    Science.gov (United States)

    Gunn, Angus

    This teacher's resource book is a guide to three intermediate texts about Eurasia entitled Population Pressure in Indonesia, Problems of Industrialization in Eurasia, and Power Blocs in Eurasia. The texts are part of the series, Man on the Earth, which probes broad-based issues confronting mankind. The resource book distinguishes 18 major concepts…

  18. Industrial Security – a Component of the Production Operational Management

    OpenAIRE

    Ilie GHEORGHE; Roxana STEFANESCU

    2005-01-01

    The problem of the industrial objectives security imposes as a fundamental condition of economic efficiency. This is why is necessary the elaboration of a new concept regarding industrial security. This concept must integrate quality problems, with technological and ecological characteristics of the industrial objective with the security problems of the business environment and to protect physical and informational objective against fires or natural calamities. Another role of the new industr...

  19. Challenge problem and milestones for : Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC).

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, Geoffrey A.; Wang, Yifeng; Howard, Robert; McNeish, Jerry A.; Schultz, Peter Andrew; Arguello, Jose Guadalupe, Jr.

    2010-09-01

    This report describes the specification of a challenge problem and associated challenge milestones for the Waste Integrated Performance and Safety Codes (IPSC) supporting the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The NEAMS challenge problems are designed to demonstrate proof of concept and progress towards IPSC goals. The goal of the Waste IPSC is to develop an integrated suite of modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. To demonstrate proof of concept and progress towards these goals and requirements, a Waste IPSC challenge problem is specified that includes coupled thermal-hydrologic-chemical-mechanical (THCM) processes that describe (1) the degradation of a borosilicate glass waste form and the corresponding mobilization of radionuclides (i.e., the processes that produce the radionuclide source term), (2) the associated near-field physical and chemical environment for waste emplacement within a salt formation, and (3) radionuclide transport in the near field (i.e., through the engineered components - waste form, waste package, and backfill - and the immediately adjacent salt). The initial details of a set of challenge milestones that collectively comprise the full challenge problem are also specified.

  20. Challenge problem and milestones for: Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC)

    International Nuclear Information System (INIS)

    Freeze, Geoffrey A.; Wang, Yifeng; Howard, Robert; McNeish, Jerry A.; Schultz, Peter Andrew; Arguello, Jose Guadalupe Jr.

    2010-01-01

    This report describes the specification of a challenge problem and associated challenge milestones for the Waste Integrated Performance and Safety Codes (IPSC) supporting the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The NEAMS challenge problems are designed to demonstrate proof of concept and progress towards IPSC goals. The goal of the Waste IPSC is to develop an integrated suite of modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. To demonstrate proof of concept and progress towards these goals and requirements, a Waste IPSC challenge problem is specified that includes coupled thermal-hydrologic-chemical-mechanical (THCM) processes that describe (1) the degradation of a borosilicate glass waste form and the corresponding mobilization of radionuclides (i.e., the processes that produce the radionuclide source term), (2) the associated near-field physical and chemical environment for waste emplacement within a salt formation, and (3) radionuclide transport in the near field (i.e., through the engineered components - waste form, waste package, and backfill - and the immediately adjacent salt). The initial details of a set of challenge milestones that collectively comprise the full challenge problem are also specified.