WorldWideScience

Sample records for industrial membrane filtration

  1. Tangential filtration technologies membrane and applications for the industry agribusiness

    International Nuclear Information System (INIS)

    Leone, Gian Paolo; Russo, Claudio

    2015-01-01

    The membrane tangential filtration technologies are separation techniques based on the use of semipermeable filters through which, under a pushing force, it is possible to achieve separation of components or suspended in solution as a function of their dimensional characteristics and / or chemical-physical. At the laboratories of the ENEA Research Center Casaccia, as part of the program activities of the Biotechnology and agro-industry division, were studied and developed various filtration processes to membrane in the food industry. The problems have been studied by following a vision sustainable overall, always trying to pair the purification treatment to that of recovery and reuse of water and high value-added components. Ultimate goal of the research conducted is to close the production circuit, ensuring a discharge cycle zero and turning in fact a so-called spread in first, from which to obtain new products. [it

  2. Use of nano filtration membrane technology for ceramic industry wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Moliner-Salvador, R.; Deratani, A.; Palmeri, J.; Sanchez, E.

    2012-07-01

    A study has been undertaken of an advanced wastewater treatment approach using polymer nano filtration membranes, in an attempt to obtain water of sufficient quality to allow it to be reused in the same production process or, alternatively, to be discharged without any problems. The study has initially focused on the removal of organic matter (reduction of COD) and the most representative ions present in the wastewater, such as Na{sup +}, Mg{sup 2}+, Cl{sup -}, and SO{sub 4}{sup 2}. In a first part of the study, with a view to optimising the experimental phase, a simulation has been performed of the nano filtration process using the Nano Flux software. Among other things, the simulation allows the most suitable membranes to be selected as a function of the permeate flow rate and desired level of retention in the substances to be removed. The subsequent experimentation was carried out in a laboratory tangential filtration system that works with flat membranes. It was found that retention values of about 90% were obtained for the studied substances, with a good permeate flow rate, using low operating pressures. These results demonstrate the feasibility of the studied technology and its potential as a treatment for improving ceramic industry wastewater quality.

  3. Scaling and particulate fouling in membrane filtration systems

    NARCIS (Netherlands)

    Boerlage, S.F.E.

    2001-01-01

    Membrane filtration technologies have emerged as cost competitive and viable techniques in drinking and industrial water production. Despite advancements in membrane manufacturing and technology, membrane scaling and fouling remain major problems and may limit future growth in the industry. Scaling

  4. Vibrating membrane filtration as improved technology for microalgae dewatering

    OpenAIRE

    Nurra, C.; Clavero, E.; Salvadó, J.; Torras, C.

    2014-01-01

    10.1016/j.biortech.2014.01.115 The effect of shear-enhanced filtration by vibratory process in microalgae dewatering is presented in this paper. The aim of this research was to investigate the technical performance and improvement of vibrating membrane filtration compared with conventional tangential cross-flow filtration in microalgae concentration. An industrial-scale available commercial set-up was used. Several membrane materials as polyethersulfone, polyacrylonitrile, etc., and mean ...

  5. Vibrating membrane filtration as improved technology for microalgae dewatering.

    Science.gov (United States)

    Nurra, Claudia; Clavero, Ester; Salvadó, Joan; Torras, Carles

    2014-04-01

    The effect of shear-enhanced filtration by vibratory process in microalgae dewatering is presented in this paper. The aim of this research was to investigate the technical performance and improvement of vibrating membrane filtration compared with conventional tangential cross-flow filtration in microalgae concentration. An industrial-scale available commercial set-up was used. Several membrane materials as polyethersulfone, polyacrylonitrile, etc., and mean pore sizes (from 7000Da to 0.2μm) were tested and compared in both filtration set-ups. Experiments were carried-out with Nannochloropsis gaditana and Phaeodactylum tricornutum microalgae. It has been demonstrated that, even if the choice of the membrane depends on its cut-off, its material and the type of microalgae filtrated, dynamic filtration is always the best technology over a conventional one. If with conventional filtration permeability values were in the vicinity of 10L/h/m(2)/bar in steady state phase, with dynamic filtration these values increased to 30L/h/m(2)/bar or more. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Silica incorporated membrane for wastewater based filtration

    Science.gov (United States)

    Fernandes, C. S.; Bilad, M. R.; Nordin, N. A. H. M.

    2017-10-01

    Membrane technology has long been applied for waste water treatment industries due to its numerous advantages compared to other conventional processes. However, the biggest challenge in pressure driven membrane process is membrane fouling. Fouling decreases the productivity and efficiency of the filtration, reduces the lifespan of the membrane and reduces the overall efficiency of water treatment processes. In this study, a novel membrane material is developed for water filtration. The developed membrane incorporates silica nanoparticles mainly to improve its structural properties. Membranes with different loadings of silica nanoparticles were applied in this study. The result shows an increase in clean water permeability and filterability of the membrane for treating activated sludge, microalgae solution, secondary effluent and raw sewage as feed. Adding silica into the membrane matrix does not significantly alter contact angle and membrane pore size. We believe that silica acts as an effective pore forming agent that increases the number of pores without significantly altering the pore sizes. A higher number of small pores on the surface of the membrane could reduce membrane fouling because of a low specific loading imposed to individual pores.

  7. Removal of heavy metals from aluminum anodic oxidation wastewaters by membrane filtration.

    Science.gov (United States)

    Ates, Nuray; Uzal, Nigmet

    2018-05-27

    Aluminum manufacturing has been reported as one of the largest industries and wastewater produced from the aluminum industry may cause significant environmental problems due to variable pH, high heavy metal concentration, conductivity, and organic load. The management of this wastewater with a high pollution load is of great importance for practitioners in the aluminum sector. There are hardly any studies available on membrane treatment of wastewater originated from anodic oxidation. The aim of this study is to evaluate the best treatment and reuse alternative for aluminum industry wastewater using membrane filtration. Additionally, the performance of chemical precipitation, which is the existing treatment used in the aluminum facility, was also compared with membrane filtration. Wastewater originated from anodic oxidation coating process of an aluminum profile manufacturing facility in Kayseri (Turkey) was used in the experiments. The characterization of raw wastewater was in very low pH (e.g., 3) with high aluminum concentration and conductivity values. Membrane experiments were carried out with ultrafiltration (PTUF), nanofiltration (NF270), and reverse osmosis (SW30) membranes with MWCO 5000, 200-400, and 100 Da, respectively. For the chemical precipitation experiments, FeCl 3 and FeSO 4 chemicals presented lower removal performances for aluminum and chromium, which were below 35% at ambient wastewater pH ~ 3. The membrane filtration experimental results show that, both NF and RO membranes tested could effectively remove aluminum, total chromium and nickel (>90%) from the aluminum production wastewater. The RO (SW30) membrane showed a slightly higher performance at 20 bar operating pressure in terms of conductivity removal values (90%) than the NF 270 membrane (87%). Although similar removal performances were observed for heavy metals and conductivity by NF270 and SW30, significantly higher fluxes were obtained in NF270 membrane filtration at any pressure

  8. Prediction of the filtrate particle size distribution from the pore size distribution in membrane filtration: Numerical correlations from computer simulations

    Science.gov (United States)

    Marrufo-Hernández, Norma Alejandra; Hernández-Guerrero, Maribel; Nápoles-Duarte, José Manuel; Palomares-Báez, Juan Pedro; Chávez-Rojo, Marco Antonio

    2018-03-01

    We present a computational model that describes the diffusion of a hard spheres colloidal fluid through a membrane. The membrane matrix is modeled as a series of flat parallel planes with circular pores of different sizes and random spatial distribution. This model was employed to determine how the size distribution of the colloidal filtrate depends on the size distributions of both, the particles in the feed and the pores of the membrane, as well as to describe the filtration kinetics. A Brownian dynamics simulation study considering normal distributions was developed in order to determine empirical correlations between the parameters that characterize these distributions. The model can also be extended to other distributions such as log-normal. This study could, therefore, facilitate the selection of membranes for industrial or scientific filtration processes once the size distribution of the feed is known and the expected characteristics in the filtrate have been defined.

  9. EM Task 9 - Centrifugal membrane filtration

    International Nuclear Information System (INIS)

    Stepan, Daniel J.; Stevens, Bradley G.; Hetland, Melanie D.

    1999-01-01

    The overall project consists of several integrated research phases related to the applicability, continued development, demonstration, and commercialization of the SpinTek centrifugal membrane filtration process. Work performed during this reporting period consisted of Phase 2 evaluation of the SpinTek centrifugal membrane filtration technology and Phase 3, Technology Partnering. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface. The solids cake was observed where linear membrane velocities were less than 17.5 ft/s and reduced the unobstructed membrane surface area up to 25%, reducing overall filtration performance. The primary goal of the Phase 2 research effort was to enhance filtration performance through the development and testing of alternative turbulence promoter designs. The turbulence promoters were designed to generate a shear force across the entire membrane surface sufficient to maintain a self-cleaning membrane capability and improve filtration efficiency and long-term performance. Specific Phase 2 research activities included the following: System modifications to accommodate an 11-in.-diameter, two-disk rotating membrane assembly; Development and fabrication of alternative turbulence promoter designs; Testing and evaluation of the existing and alternative turbulence promoters under selected operating conditions using a statistically designed test matrix; and Data reduction and analysis; The objective of Phase 3 research was to demonstrate the effectiveness of SpinTek's centrifugal membrane filtration as a pretreatment to remove suspended solids from a liquid waste upstream of 3M's WWL cartridge technology for the selective removal of technetium (Tc)

  10. 21 CFR 177.2910 - Ultra-filtration membranes.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ultra-filtration membranes. 177.2910 Section 177... Components of Articles Intended for Repeated Use § 177.2910 Ultra-filtration membranes. Ultra-filtration membranes identified in paragraphs (a)(1), (a)(2), (a)(3), and (a)(4) of this section may be safely used in...

  11. Filtration characteristics in membrane bioreactors

    NARCIS (Netherlands)

    Evenblij, H.

    2006-01-01

    Causes of and remedies for membrane fouling in Membrane Bioreactors for wastewater treatment are only poorly understood and described in scientific literature. A Filtration Characterisation Installation and a measurement protocol were developed with the aim of a) unequivocally determination and

  12. Are vacuum-filtrated reduced graphene oxide membranes symmetric?

    KAUST Repository

    Tang, Bo; Zhang, Lianbin; Li, Renyuan; Wu, Jinbo; Hedhili, Mohamed Neijib; Wang, Peng

    2015-01-01

    Graphene or reduced graphene oxide (rGO) membrane-based materials are promising for many advanced applications due to their exceptional properties. One of the most widely used synthesis methods for rGO membranes is vacuum filtration of graphene oxide (GO) on a filter membrane, followed by reduction, which shows great advantages such as operational convenience and good controllability. Despite vacuum-filtrated rGO membranes being widely used in many applications, a fundamental question is overlooked: are the top and bottom surfaces of the membranes formed at the interfaces with air and with the filter membrane respectively symmetric or asymmetric? This work, for the first time, reports the asymmetry of the vacuum-filtrated rGO membranes and discloses the filter membranes’ physical imprint on the bottom surface of the rGO membrane, which takes place when the filter membrane surface pores have similar dimension to GO sheets. This result points out that the asymmetric surface properties should be cautiously taken into consideration while designing the surface-related applications for GO and rGO membranes.

  13. Are vacuum-filtrated reduced graphene oxide membranes symmetric?

    KAUST Repository

    Tang, Bo

    2015-12-02

    Graphene or reduced graphene oxide (rGO) membrane-based materials are promising for many advanced applications due to their exceptional properties. One of the most widely used synthesis methods for rGO membranes is vacuum filtration of graphene oxide (GO) on a filter membrane, followed by reduction, which shows great advantages such as operational convenience and good controllability. Despite vacuum-filtrated rGO membranes being widely used in many applications, a fundamental question is overlooked: are the top and bottom surfaces of the membranes formed at the interfaces with air and with the filter membrane respectively symmetric or asymmetric? This work, for the first time, reports the asymmetry of the vacuum-filtrated rGO membranes and discloses the filter membranes’ physical imprint on the bottom surface of the rGO membrane, which takes place when the filter membrane surface pores have similar dimension to GO sheets. This result points out that the asymmetric surface properties should be cautiously taken into consideration while designing the surface-related applications for GO and rGO membranes.

  14. Recent Trends in Nanofibrous Membranes and Their Suitability for Air and Water Filtrations

    Directory of Open Access Journals (Sweden)

    Seeram Ramakrishna

    2011-08-01

    Full Text Available In recent decades, engineered membranes have become a viable separation technology for a wide range of applications in environmental, food and biomedical fields. Membranes are now competitive compared to conventional techniques such as adsorption, ion exchangers and sand filters. The main advantage of membrane technology is the fact that it works without the addition of any chemicals, with relatively high efficiency and low energy consumption with well arranged process conductions. Hence they are widely utilized in biotechnology, food and drink manufacturing, air filtration and medical uses such as dialysis for kidney failure patients. Membranes from nanofibrous materials possess high surface area to volume ratio, fine tunable pore sizes and their ease of preparation prompted both industry and academic researchers to study their use in many applications. In this paper, modern concepts and current research progress on various nanofibrous membranes, such as water and air filtration media, are presented.

  15. The development of electro-membrane filtration for the isolation of bioactive peptides: the effect of membrane selection and operating parameters on the transport rate

    NARCIS (Netherlands)

    Bargeman, Gerrald; Koops, G.H.; Houwing, J.; Breebaart, I.; van der Horst, H.C.; Wessling, Matthias

    2002-01-01

    The ability to produce functional food ingredients from natural sources becomes increasingly attractive to the food industry. Antimicrobial (bioactive) ingredients, like peptides and proteins, can be isolated from hydrolysates with membrane filtration and/or chromatography. Electro-membrane

  16. Selective isolation of cationic amino acids and peptides by electro-membrane filtration

    NARCIS (Netherlands)

    Bargeman, Gerrald; Dohmen-Speelmans, Monique; Recio, Isidra; Timmer, Martin; van der Horst, Caroline

    2000-01-01

    In the food industry there is a clear trend towards the production of speciality products with a high added value. Electro-membrane filtration (EMF) can be used to separate and concentrate these products from complex solutions. With EMF, lysine was separated from a model solution and a protein

  17. Dynamic optimization of dead-end membrane filtration

    NARCIS (Netherlands)

    Blankert, B.; Betlem, Bernardus H.L.; Roffel, B.; Marquardt, Wolfgang; Pantelides, Costas

    2006-01-01

    An operating strategy aimed at minimizing the energy consumption during the filtration phase of dead-end membrane filtration has been formulated. A method allowing fast calculation of trajectories is used to allow incorporation in a hierarchical optimization scheme. The optimal trajectory can be

  18. Dynamic membrane filtration in tangential flow

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Oil-containing waste water is produced in many cleaning processes and also on production of compressed air. Dynamic membrane filtration in the tangential flow mode has proved effective in the treatment of these stable emulsions. The possible applications of ceramic membrane filters are illustrated for a variety of examples. (orig.) [de

  19. Characterization of membrane foulants at ambient temperature anaerobic membrane bioreactor treating low-strength industrial wastewater

    DEFF Research Database (Denmark)

    Zarebska, Agata; Kjerstadius, Hamse; Petrinic, Irena

    2016-01-01

    The large volume of industrial low-strength wastewaters has a potential for biogas production through conventional anaerobic digestion (AD), limited though by the need of heating and concentrating of the wastewaters. The use of anaerobic membrane bioreactor (AnMBR) combining membrane filtration...... with anaerobic biological treatment at low temperature could not only reduce the operational cost of AD, but also alleviate environmental problems. However, at low temperature the AnMBR may suffer more fouling due to the increased extracellular polymeric substances production excreted by bacteria hampering...... the application of the process for the industrial wastewater treatment. In order to solve or reduce the fouling problem it is necessary to have a good insight into the processes that take place both on and in the membrane pores during filtration. Therefore, the objective of this study is to contribute to a better...

  20. Microalgae fractionation using steam explosion, dynamic and tangential cross-flow membrane filtration.

    Science.gov (United States)

    Lorente, E; Hapońska, M; Clavero, E; Torras, C; Salvadó, J

    2017-08-01

    In this study, the microalga Nannochloropsis gaditana was subjected to acid catalysed steam explosion treatment and the resulting exploded material was subsequently fractionated to separate the different fractions (lipids, sugars and solids). Conventional and vibrational membrane setups were used with several polymeric commercial membranes. Two different routes were followed: 1) filtration+lipid solvent extraction and 2) lipid solvent extraction+filtration. Route 1 revealed to be much better since the used membrane for filtration was able to permeate the sugar aqueous phase and retained the fraction containing lipids; after this, an extraction required a much lower amount of solvent and a better recovering yield. Filtration allowed complete lipid rejection. Dynamic filtration improved permeability compared to the tangential cross-flow filtration. Best membrane performance was achieved using a 5000Da membrane with the dynamic system, obtaining a permeability of 6L/h/m 2 /bar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Membrane filtration device for studying compression of fouling layers in membrane bioreactors.

    Directory of Open Access Journals (Sweden)

    Mads Koustrup Jørgensen

    Full Text Available A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology's ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation.

  2. Scaling and particulate fouling in membrane filtration systems

    NARCIS (Netherlands)

    Boerlage, S.F.E.

    2001-01-01

    In the last decade, pressure driven membrane filtration processes; reverse osmosis, nano, ultra and micro-filtration have undergone steady growth. Drivers for this growth include desalination to combat water scarcity and the removal of various material from water to comply with increasingly

  3. YSZ-Reinforced Alumina Multi-Channel Capillary Membranes for Micro-Filtration

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2015-12-01

    Full Text Available The combined phase-inversion and sintering method not only produces ceramic hollow fibre membranes with much lower fabrication costs than conventional methods, but these membranes can also be designed to have greatly reduced transport resistances for filtration processes. The bottleneck of this technique is the weak mechanical property of the fibres, due to the small dimensions and the brittle nature of the ceramic materials. In this study, yttrium stabilised zirconia (YSZ reinforced alumina seven-channel capillary microfiltration membranes were prepared with a pore size of ~230 nm and their mechanical property and permeation characteristics were studied. It is found that the addition of YSZ can effectively enhance the mechanical property of the membrane and also increase pure water permeation flux. The Al2O3-YSZ seven-channel capillary membranes could reach a fracture load of 23.4 N and a bending extension of 0.54 mm when being tested with a 6 cm span, to meet the requirements for most industrial microfiltration applications.

  4. YSZ-Reinforced Alumina Multi-Channel Capillary Membranes for Micro-Filtration.

    Science.gov (United States)

    Wang, Bo; Lee, Melanie; Li, Kang

    2015-12-30

    The combined phase-inversion and sintering method not only produces ceramic hollow fibre membranes with much lower fabrication costs than conventional methods, but these membranes can also be designed to have greatly reduced transport resistances for filtration processes. The bottleneck of this technique is the weak mechanical property of the fibres, due to the small dimensions and the brittle nature of the ceramic materials. In this study, yttrium stabilised zirconia (YSZ) reinforced alumina seven-channel capillary microfiltration membranes were prepared with a pore size of ~230 nm and their mechanical property and permeation characteristics were studied. It is found that the addition of YSZ can effectively enhance the mechanical property of the membrane and also increase pure water permeation flux. The Al₂O₃-YSZ seven-channel capillary membranes could reach a fracture load of 23.4 N and a bending extension of 0.54 mm when being tested with a 6 cm span, to meet the requirements for most industrial microfiltration applications.

  5. Challenges of Membrane Filtration for Produced Water Treatment in Offshore Oil & Gas Production

    DEFF Research Database (Denmark)

    Jepsen, Kasper Lund; Hansen, Leif; Mai, Christian

    2016-01-01

    struggling to their fundamental limit, therefore the membrane filtration technology turns to be a potential candidate for zero pollutant discharge. Membrane filtration technology suffers from the notorious fouling problem, where many methods for fouling prevention and removal are explored, the general idea...... is to guarantee that a relatively high permeability can be kept during filtration. Another crucial issue using membrane filtration technology is its huge energy consumption, for which there is little research has been done so far to systematically investigate and optimize the filtration system’s energy efficiency...

  6. EM Task 9 - Centrifugal Membrane Filtration

    International Nuclear Information System (INIS)

    Stevens, B.G.; Stepan, D.J.; Hetland, M.D.

    1998-01-01

    This project is designed to establish the utility of a novel centrifugal membrane filtration technology for the remediation of liquid mixed waste streams at US Department of Energy (DOE) facilities in support of the DOE Environmental Management (EM) program. The Energy and Environmental Research Center (EERC) has teamed with SpinTek Membrane Systems, Inc., a small business and owner of the novel centrifugal membrane filtration technology, to establish the applicability of the technology to DOE site remediation and the commercial viability of the technology for liquid mixed waste stream remediation. The technology is a uniquely configured process that makes use of ultrafiltration and centrifugal force to separate suspended and dissolved solids from liquid waste streams, producing a filtered water stream and a low-volume contaminated concentrate stream. This technology has the potential for effective and efficient waste volume minimization, the treatment of liquid tank wastes, the remediation of contaminated groundwater plumes, and the treatment of secondary liquid waste streams from other remediation processes, as well as the liquid waste stream generated during decontamination and decommissioning activities

  7. Research Regarding Membrane Filtration Capacity of Water Collected from Siret River

    Science.gov (United States)

    Mihalache, I.; Pintilie, Ş. C.; Bîrsan, I. G.; Dănăila, E.; Baltă, Ş.

    2018-06-01

    In the past decade, the high demand and strict legislations regarding pure and potable water production and quality require finding new treatment technologies with higher effectiveness. When compared with conventional treatment technologies, membrane technology is a viable option in water and wastewater treatment due to high performance, ease in implementation, cost-efficiency among other advantages, also, leading to a rapid expansion in use in almost all areas of industry. Polymeric ultrafiltration membranes have been successfully used in various industries since 1969, and in later years they were studied in the water purification sector, mainly as a pre-treatment step to reduce severe fouling that could occur in reverse osmosis filtration stage. Polysulfone (PSf) was the polymer of choice in this study with two concentrations, 25 wt.% and 30 wt.%. Surface SEM morphology, roughness and water affinity were analyzed for the studied membranes. Water from Siret river was used in the permeation tests in order to analyze the retention capacity and anti-fouling ability. The present study revealed higher retention for the 30 wt.% PSf membranes, from the physico-chemical and microbiological point-of-view and lower fouling, also.

  8. Optimization of gravity-driven membrane (GDM) filtration process for seawater pretreatment.

    Science.gov (United States)

    Wu, Bing; Hochstrasser, Florian; Akhondi, Ebrahim; Ambauen, Noëmi; Tschirren, Lukas; Burkhardt, Michael; Fane, Anthony G; Pronk, Wouter

    2016-04-15

    Seawater pretreatment by gravity-driven membrane (GDM) filtration at 40 mbar has been investigated. In this system, a beneficial biofilm develops on the membrane that helps to stabilize flux. The effects of membrane type, prefiltration and system configuration on stable flux, biofilm layer properties and dissolved carbon removal were studied. The results show that the use of flat sheet PVDF membranes with pore sizes of 0.22 and 0.45 μm in GDM filtration achieved higher stabilized permeate fluxes (7.3-8.4 L/m(2)h) than that of flat sheet PES 100 kD membranes and hollow fibre PVDF 0.1 μm membranes. Pore constriction and cake filtration were identified as major membrane fouling mechanisms, but their relative contributions varied with filtration time for the various membranes. Compared to raw seawater, prefiltering of seawater with meshes at sizes of 10, 100 and 1000 μm decreased the permeate flux, which was attributed to removal of beneficial eukaryotic populations. Optical coherence tomography (OCT) showed that the porosity of the biofouling layer was more significantly related with permeate flux development rather than its thickness and roughness. To increase the contact time between the biofilm and the dissolved organics, a hybrid biofilm-submerged GDM reactor was evaluated, which displayed significantly higher permeate fluxes than the submerged GDM reactor. Although integrating the biofilm reactor with the membrane system displayed better permeate quality than the GDM filtration cells, it could not effectively reduce dissolved organic substances in the seawater. This may be attributed to the decomposition/degradation of solid organic substances in the feed and carbon fixation by the biofilm. Further studies of the dynamic carbon balance are required. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Improvement of municipal wastewater pretreatment by direct membrane filtration.

    Science.gov (United States)

    Nascimento, Thiago A; Mejía, Fanny R; Fdz-Polanco, Fernando; Peña Miranda, Mar

    2017-10-01

    The high content of particulate matter in municipal wastewater hinders the conventional anaerobic treatments at psychrophilic temperatures. The hydrolysis of the particulate chemical oxygen demand (pCOD) could be the limiting step under these conditions. Therefore, new pretreatments or improved conventional pretreatments are needed in order to separate pCOD. In this work, direct membrane filtration of municipal wastewater, using an ultrafiltration membrane, was investigated. This intensive pretreatment, which aims to separate soluble chemical oxygen demand (sCOD) and to concentrate pCOD, together with anaerobic treatments of both streams at psychrophilic and mesophilic conditions respectively, could be an alternative to the conventional activated sludge process. The obtained results show a removal yield of 24.9% of the total solids (TS) and 45% of total chemical oxygen demand (tCOD), obtaining a permeate free of suspended solids. This physical removal implies the accumulation of solids inside the membrane tank, reaching the values of 45.4 and 4.4 g/L of TS in the sedimentation and filtration sections, respectively. The membrane operated with filtration, backwashing cycles and continuous gas sparging, with a permeate flux predominantly around 10 L/(m 2  h). The results show the viability of the technology to concentrate pCOD and so to improve energy recovery from municipal wastewater.

  10. Filtration track membranes and their biomedical applications; Trekowe membrany filtracyjne oraz ich zastosowania biomedyczne

    Energy Technology Data Exchange (ETDEWEB)

    Buczkowski, M; Wawszczak, D; Starosta, W [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1997-10-01

    The characteristics of track filtration membranes has been performed. The investigation of radiation resistance has been carried out for different types of polymer foil used as a membrane material. Biomedical applications of track filtration membranes have been presented and discussed. 10 refs, 10 figs.

  11. Filtration of Oil-furnace Carbon Black Dust Particles from the Tail Gases by Filter Bags With PTFE Membrane

    Directory of Open Access Journals (Sweden)

    Čuzela, D.

    2010-01-01

    Full Text Available During the industrial production of oil furnace carbon black, tail gases containing oil-furnace carbon black dust particles are emitted to the atmosphere. In the carbon black plant, Petrokemija d. d., there are six exhaust stacks for tail gases. Each of them has installed process equipment for cleaning tail gases. Efficiency of cleaning mainly depends on equipment construction and cleaning technology. The vicinity of the town, quality of the air in the region of Kutina, regarding floating particles PM10, and corporate responsibility for further enviromental improvement, imposes development of new methods that will decrease the emmision of oil-furnace carbon black dust particles in the air. Combining centrifugal percipitator and filter, special construction of cyclofilter for filtration of oil-furnace carbon black dust particles from tail gases by using PTFE (polytetrafluoroethylene membrane filter bags, was designed. Developed filtration technique provides η = 99.9 % efficiency of filtration. Construction part of the filter contains the newest generation of PTFE membrane filter bags with the ability of jet pulse cleaning. Using the PTFE membrane filter bags technology, filtration efficiency for oil-furnace carbon black dust particles in tail gases of maximum γ=5mgm-3can be achieved. The filtration efficiency was monitored continuously measuring the concentration of the oil-furnace carbon black dust particles in the tail gases with the help of in situ electronic probe. The accomplished filtration technology is the base for the installation of the PTFE membrane filter bags in the main operation filters which will provide better protection of the air in the town of Kutina against floating particles PM10.

  12. Functionalization of a Membrane Sublayer Using Reverse Filtration of Enzymes and Dopamine Coating

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Mateiu, Ramona Valentina

    2014-01-01

    High permeability, high enzyme loading, and strong antifouling ability are the desired features for a biocatalytic membrane to be used in an enzymatic membrane reactor (EMR). To achieve these goals, the membrane sublayer was enriched with laccase by reverse filtration in this case, and the result......High permeability, high enzyme loading, and strong antifouling ability are the desired features for a biocatalytic membrane to be used in an enzymatic membrane reactor (EMR). To achieve these goals, the membrane sublayer was enriched with laccase by reverse filtration in this case...

  13. Carbon Nanotube Membranes: Synthesis, Properties, and Future Filtration Applications

    Directory of Open Access Journals (Sweden)

    Md. Harun-Or Rashid

    2017-05-01

    Full Text Available Over the course of the past decade, there has been growing interest in the development of different types of membranes composed of carbon nanotubes (CNTs, including buckypapers and composite materials, for an ever-widening range of filtration applications. This article provides an overview of how different types of CNT membranes are prepared and the results obtained from investigations into their suitability for different applications. The latter involve the removal of small particles from air samples, the filtration of aqueous solutions containing organic compounds and/or bacteria, and the separation of individual liquids present in mixtures. A growing number of reports have demonstrated that the incorporation of CNTs into composite membranes confers an improved resistance to fouling caused by biomacromolecules and bacteria. These results are discussed, along with evidence that demonstrates it is possible to further reduce fouling by taking advantage of the inherent conductivity of composite membranes containing CNTs, as well as by using different types of electrochemical stimuli.

  14. Ozone and membrane filtration based strategies for the treatment of cork processing wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, F. Javier [Departamento de Ingenieria Quimica, Universidad de Extremadura, 06071 Badajoz (Spain)], E-mail: javben@unex.es; Acero, Juan L.; Leal, Ana I.; Real, Francisco J. [Departamento de Ingenieria Quimica, Universidad de Extremadura, 06071 Badajoz (Spain)

    2008-03-21

    The degradation of the pollutant organic matter present in the cork processing wastewater was studied by combining chemical treatments, which used ozone and some Advanced Oxidation Processes, and membrane filtration procedures. Two schemes were conducted: firstly, a single ozonation stage followed by an UF stage; and secondly, a membrane filtration stage, using different MF and UF membranes, followed by a chemical oxidation stage, where ozone, UV radiation, and the AOPs constituted by ozone plus UV radiation and ozone plus hydrogen peroxide, were used. The membrane filtration stages were carried out in tangential filtration laboratory equipment, and the membranes used were two MF membranes with pores sizes of 0.65 and 0.1 {mu}m, and three UF membranes with molecular weights cut-off of 300, 10, and 5 kDa. The effectiveness of the different stages (conversions in the chemical procedures and rejection coefficients in the membrane processes) were evaluated in terms of several parameters which measure the global pollutant content of the wastewater: COD, absorbance at 254 nm, tannins content, color, and ellagic acid. In the ozonation/UF combined process the following removals were achieved: 100% for ellagic acid and color, 90% for absorbance at 254 nm, more than 80% for tannins, and 42-57% for COD reduction. In the filtration/chemical oxidation combined process, 100% elimination of ellagic acid, more than 90% elimination in color, absorbance at 254 nm and tannins, and removal higher than 80% in COD were reached, which indicates a greater purification power of this combination.

  15. Crosslinked polytriazole membranes for organophilic filtration

    KAUST Repository

    Chisca, Stefan

    2016-12-30

    We report the preparation of crosslinked membranes for organophilic filtration, by reacting a new polytriazole with free OH groups, using non-toxic poly (ethylene glycol) diglycidyl ether (PEGDE). The OH-functionalized polymer was obtained by converting the oxadiazole to triazole rings with high yield (98%). The maximum degree of crosslinking is achieved after 6 h of reaction. The crosslinked polytriazole membranes are stable in a wide range of organic solvents and show high creep recovery, indicating the robustness of crosslinked membranes. The influence of different casting solutions and different crosslinking time on the membrane morphology and membrane performance was investigated. The membranes performance was studied in dimethylformamide (DMF) and (tetrahydrofuran) THF. We achieved a permeance for THF of 49 L m−2 h−1 bar−1 for membranes with molecular weight cut off (MWCO) of 7 kg mol−1 and a permeance for THF of 17.5 L m−2 h−1 bar−1 for membranes with MWCO of 3 kg mol−1. Our data indicate that by using the new polytriazole is possible to adjust the pore dimensions of the membranes to have a MWCO, which covers ultra- and nanofiltration range.

  16. Crosslinked polytriazole membranes for organophilic filtration

    KAUST Repository

    Chisca, Stefan; Falca, Gheorghe; Musteata, Valentina-Elena; Boi, Cristiana; Nunes, Suzana Pereira

    2016-01-01

    We report the preparation of crosslinked membranes for organophilic filtration, by reacting a new polytriazole with free OH groups, using non-toxic poly (ethylene glycol) diglycidyl ether (PEGDE). The OH-functionalized polymer was obtained by converting the oxadiazole to triazole rings with high yield (98%). The maximum degree of crosslinking is achieved after 6 h of reaction. The crosslinked polytriazole membranes are stable in a wide range of organic solvents and show high creep recovery, indicating the robustness of crosslinked membranes. The influence of different casting solutions and different crosslinking time on the membrane morphology and membrane performance was investigated. The membranes performance was studied in dimethylformamide (DMF) and (tetrahydrofuran) THF. We achieved a permeance for THF of 49 L m−2 h−1 bar−1 for membranes with molecular weight cut off (MWCO) of 7 kg mol−1 and a permeance for THF of 17.5 L m−2 h−1 bar−1 for membranes with MWCO of 3 kg mol−1. Our data indicate that by using the new polytriazole is possible to adjust the pore dimensions of the membranes to have a MWCO, which covers ultra- and nanofiltration range.

  17. Integration of membrane filtration and photoelectrocatalysis using a TiO{sub 2}/carbon/Al{sub 2}O{sub 3} membrane for enhanced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guanlong; Chen, Shuo, E-mail: shuochen@dlut.edu.cn; Yu, Hongtao; Quan, Xie

    2015-12-15

    Highlights: • Membrane filtration was integrated with photoelectrocatalysis for water treatment. • This integrated process (PECM) displays good antifouling capacity in NOMs removal. • PECM process enables efficient removal of chemical contaminants (e.g., RhB). • Enhanced charge separation of PECM process leads to its improved performance. - Abstract: Coupling membrane filtration with photocatalysis provides multifunction involving filtration and photocatalytic degradation for removing pollutants from water, but the performance of photocatalytic membrane is limited due to the quick recombination of photogenerated electron-holes in photocatalytic layer. Herein, a TiO{sub 2}/carbon/Al{sub 2}O{sub 3} membrane was designed and constructed through sequentially depositing graphitic carbon layer with good electro-conductivity and TiO{sub 2} nanoparticles layer with photocatalytic activity on Al{sub 2}O{sub 3} membrane support. When light irradiated on the membrane with a voltage supply, the photogenerated electrons could be drained from photocatalytic layer and separated with holes efficiently, thus endowing the membrane with photoelectrocatalytic function. Membrane performance tests indicated that the photoelectrocatalytic membrane filtration (PECM) showed improved removal of natural organic matters (NOMs) and permeate flux with increasing voltage supply. For PECM process at 1.0 V, its NOMs removal was 1.2 or 1.7 times higher than that of filtration with UV irradiation or filtration alone, and its stable permeate flux was 1.3 or 3 times higher than that of filtration with UV irradiation or filtration alone. Moreover, the PECM process exhibited special advantage in removing organic chemicals (e.g., Rhodamine B), which displayed 1.3 or 3 times higher removal than that of filtration with UV irradiation or filtration alone.

  18. Aluminium - Cobalt-Pillared Clay for Dye Filtration Membrane

    Science.gov (United States)

    Darmawan, A.; Widiarsih

    2018-04-01

    The manufacture of membrane support from cobalt aluminium pillared clay has been conducted. This research was conducted by mixing a clay suspension with pillared solution prepared from the mixture of Co(NO3)2.6H2O and AlCl3.6H2O. The molar ratio between Al and Co was 75:25 and the ratio of [OH-]/[metal] was 2. The clay suspension was stirred for 24 hours at room temperature, filtered and dried. The dried clay was then calcined at 200°C, 300°C and 400°C with a ramp rate of 2°C/min. Aluminium-cobalt-pillared clay was then characterized by XRD and GSA and moulded become a membrane support for subsequent tests on dye filtration. The XRD analysis showed that basal spacing (d 001) value of aluminium cobalt was 19.49 Å, which was higher than the natural clay of 15.08Å however, the basal spacing decreased with increasing calcination temperature. The result of the GSA analysis showed that the pore diameter of the aluminium cobalt pillared clay membrane was almost the same as that of natural clay that were 34.5Å and 34.2Å, respectively. Nevertheless, the pillared clay has a more uniform pore size distribution. The results of methylene blue filtration measurements demonstrated that the membrane filter support could well which shown by a clear filtrate at all concentrations tested. The value of rejection and flux decreased with the increasing concentration of methylene blue. The values of dye rejection and water flux reached 99.89% and 5. 80 x 10-6 kg min-1, respectively but they decreased with increasing concentration of methylene blue. The results of this study indicates that the aluminium-pillared clay cobalt could be used as membrane materials especially for ultrafiltration.

  19. Biofouling investigation in membrane filtration systems using Optical Coherence Tomography (OCT)

    KAUST Repository

    Fortunato, Luca

    2017-10-01

    Biofouling represents the main problem in membrane filtration systems. Biofouling arises when the biomass growth negatively impacts the membrane performance parameters (i.e. flux decrease and feed channel pressure drop). Most of the available techniques for characterization of biofouling involve membrane autopsies, providing information ex-situ destructively at the end of the process. OCT, is non-invasive imaging technique, able to acquire scans in-situ and non-destructively. The objective of this study was to evaluate the suitability of OCT as in-situ and non-destructive tool to gain a better understanding of biofouling behavior in membrane filtration systems. The OCT was employed to study the fouling behavior in two different membrane configurations: (i) submerged flat sheet membrane and (ii) spacer filled channel. Through the on-line acquisition of OCT scans and the study of the biomass morphology, it was possible to relate the impact of the fouling on the membrane performance. The on-line monitoring of biofilm formation on a flat sheet membrane was conducted in a gravity-driven submerged membrane bioreactor (SMBR) for 43 d. Four different phases were observed linking the variations in permeate flux with changes in biofilm morphology. Furthermore, the biofilm morphology was used in computational fluid dynamics (CFD) simulation to better understand the role of biofilm structure on the filtration mechanisms. The time-resolved OCT analysis was employed to study the biofouling development at the early stage. Membrane coverage and average biofouling layer thickness were found to be linearly correlated with the permeate flux pattern. An integrated characterization methodology was employed to characterize the fouling on a flat sheet membrane, involving the use of OCT as first step followed by membrane autopsies, revealing the presence of a homogeneous layer on the surface. In a spacer filled channel a 3D OCT time series analysis of biomass development under

  20. Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials

    International Nuclear Information System (INIS)

    Fang, Qun; Zhu, Ming; Yu, Siruo; Sui, Gang; Yang, Xiaoping

    2016-01-01

    Highlights: • Biodegradable filtration membranes were prepared. • Polar groups in the membrane surface helped capture fine particles. • Loading filtration efficiency can reach 99.99% in the case of small pressure drop. • Filtration membrane showed antimicrobial activity to Escherichia coli. - Abstract: A biodegradable and multifunctional air filtration membrane was prepared by electrospinning of soy protein isolate (SPI)/polyvinyl alcohol (PVA) system in this paper. The optimized SPI/PVA proportion in the spinning solution was determined according to the analyses of microstructure, surface chemical characteristic and mechanical property of the hybrid nanofiber membranes. Under the preferred preparation condition, two kinds of polymer materials displayed a good compatibility in the hybrid nanofibers, and a large number of polar groups existed in the membrane surface. The loading filtration efficiency of the nanofiber membrane with optimal material ratio and areal density can reach 99.99% after test of 30 min for fine particles smaller than 2.5 μm in the case of small pressure drop. Besides, this kind of filtration membrane showed an antimicrobial activity to Escherichia coli in the study. The SPI/PVA hybrid nanofiber membrane with proper material composition and microstructure can be used as a new type of high performance eco-friendly filtration materials.

  1. Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Qun; Zhu, Ming; Yu, Siruo; Sui, Gang, E-mail: suigang@mail.buct.edu.cn; Yang, Xiaoping

    2016-12-15

    Highlights: • Biodegradable filtration membranes were prepared. • Polar groups in the membrane surface helped capture fine particles. • Loading filtration efficiency can reach 99.99% in the case of small pressure drop. • Filtration membrane showed antimicrobial activity to Escherichia coli. - Abstract: A biodegradable and multifunctional air filtration membrane was prepared by electrospinning of soy protein isolate (SPI)/polyvinyl alcohol (PVA) system in this paper. The optimized SPI/PVA proportion in the spinning solution was determined according to the analyses of microstructure, surface chemical characteristic and mechanical property of the hybrid nanofiber membranes. Under the preferred preparation condition, two kinds of polymer materials displayed a good compatibility in the hybrid nanofibers, and a large number of polar groups existed in the membrane surface. The loading filtration efficiency of the nanofiber membrane with optimal material ratio and areal density can reach 99.99% after test of 30 min for fine particles smaller than 2.5 μm in the case of small pressure drop. Besides, this kind of filtration membrane showed an antimicrobial activity to Escherichia coli in the study. The SPI/PVA hybrid nanofiber membrane with proper material composition and microstructure can be used as a new type of high performance eco-friendly filtration materials.

  2. Membrane morphology and topology for fouling control in Reverse Osmosis filtration systems

    Science.gov (United States)

    Ling, Bowen; Battiato, Ilenia

    2017-11-01

    Reverse Osmosis Membrane (ROM) filtration systems are widely utilized in waste-water recovery, seawater desalination, landfill water treatment, etc. During filtration, the system performance is dramatically affected by membrane fouling which causes a significant decrease in permeate flux as well as an increase in the energy input required to operate the system. Design and optimization of ROM filtration systems aim at reducing membrane fouling by studying the coupling between membrane structure, local flow field and foulant adsorption patterns. Yet, current studies focus exclusively on oversimplified steady-state models that ignore any dynamic coupling between fluid flow and transport through the membrane. In this work, we develop a customized solver (SUMembraneFoam) under OpenFOAM to solve the transient equations. The simulation results not only predict macroscopic quantities (e.g. permeate flux, pressure drop, etc.) but also show an excellent agreement with the fouling patterns observed in experiments. It is observed that foulant deposition is strongly controlled by the local shear stress on the membrane, and channel morphology or membrane topology can be modified to control the shear stress distribution and reduce fouling. Finally, we identify optimal regimes for design.

  3. Influence of the surface structure on the filtration performance of UV-modified PES membranes

    DEFF Research Database (Denmark)

    Kæselev, Bozena Alicja; Kingshott, P.; Jonsson, Gunnar Eigil

    2002-01-01

    chemically characterised using X-ray photoelectron spectroscopy (XPS) and time of flight-static secondary ion mass spectrometry (TOF-static SIMS). The filtration performance of irradiated/non-modified and irradiated/modified membranes was examined in a crossflow cell, using a dextran solution. The filtration...... in relation to dextran when compared to membranes modified by AAG and AAP. This work suggests that the structure of the presence of grafted chains seems to be responsible for the observed changes to filtration performance of the modified membrane. Surface analysis supports the claim that the specific surface...

  4. Air filtration media from electrospun waste high-impact polystyrene fiber membrane

    Science.gov (United States)

    Zulfi, Akmal; Miftahul Munir, Muhammad; Hapidin, Dian Ahmad; Rajak, Abdul; Edikresnha, Dhewa; Iskandar, Ferry; Khairurrijal, Khairurrijal

    2018-03-01

    Nanofiber membranes were synthesized from waste high-impact polystyrene (HIPS) using electrospinning method and then applied as air filtration media. The waste HIPS precursor solution with the concentration of 20 wt.% was prepared by dissolving waste HIPS into the mixture of d-limonene and DMF solvents. Beaded or fine nanofibers could be achieved by adjusting the ratio of solvents mixture (d-limonene and DMF). Using the ratios of solvents (d-limonene: DMF) of 3:1, 1:1, and 1:3, it was obtained beaded HIPS nanofibers with the average diameter of 272 nm, beaded HIPS nanofibers with the average diameter of 937, and fine HIPS nanofibers with the average diameter of 621 nm, respectively. From the FTIR spectral analysis, it was found that the FTIR peaks of the HIPS nanofiber membranes are the same as those of the cleaned waste HIPS and there are no FTIR peaks of DMF and d-limonene solvents. These findings implied that the electrospinning process allows the recycling of waste HIPS into HIPS nanofibers without any trapped solvent phases or apparent degradation of the original material. From the contact angle measurement, it was confirmed that the HIPS nanofiber membranes are hydrophobic and the presence of the beads in the HIPS nanofiber membranes varies their contact angles. From the air-filtration test, it was shown that the fiber morphology (beaded or fine nanofibers) considerably affects the filtration performance of the membranes. The presence of beads increased the distance between the fibers so that the pressure drop decreased. Moreover, the basis weight of the membrane greatly affected the filtration efficiency. The HIPS nanofiber membrane with the basis weight of 12.22 g m‑2 had the efficiency greater than 99.999%, which was equivalent to that of the HEPA filter.

  5. Biofouling investigation in membrane filtration systems using Optical Coherence Tomography (OCT)

    KAUST Repository

    Fortunato, Luca

    2017-01-01

    Biofouling represents the main problem in membrane filtration systems. Biofouling arises when the biomass growth negatively impacts the membrane performance parameters (i.e. flux decrease and feed channel pressure drop). Most of the available

  6. Task 9 - centrifugal membrane filtration. Semi-annual report April 1--September 30, 1996

    International Nuclear Information System (INIS)

    Stepan, D.J.; Moe, T.A.; Collings, M.E.

    1997-01-01

    This report assesses a centrifugal membrane filtration technology developed by SpinTek Membrane Systems, Inc. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. The Tank Waste Focus Area was chosen for study. Membrane-screening tests were performed with the STC-X4 static test cell filtration unit, using five ceramic membranes with different pore size and composition. Based on permeate flux, a 0.25-μm TiO 2 /Al 2 O 3 membrane was selected for detailed performance evaluation using the centrifugal membrane filtration unit with a surrogate tank waste solution. The performance of the unit was evaluated with a statistical test design that determined the effect of temperature, pressure, membrane rotational speed, and solids loading on permeate flux. All four variables were found to be statistically significant, with the magnitude of the effect in the order of temperature, solids loading, rotor speed, and pressure. Temperature, rotor speed, and pressure had an increasing effect on flux with increasing value, while increases in solids loading showed a decrease in permeate flux. Significant interactions between rotor speed and solids loading and pressure and solids loading were also observed. The regression equation derived from test data had a correlation coefficient of 0.934, which represents a useful predictive capability for integrating the technology into DOE cleanup efforts. An extended test run performed on surrogate waste showed some deterioration in filtration performance, based on flux, apparently due to the buildup of solids near the inner portion of the membrane where relative membrane velocities were low. Continued testing of the system will focus on modifications to the shear pattern across the entire membrane surface to affect improved long-term performance

  7. Measure of pore size in micro filtration polymeric membrane using ultrasonic technique and artificial neural networks

    International Nuclear Information System (INIS)

    Lucas, Carla de Souza

    2009-01-01

    This work presents a study of the pore size in micro filtration polymeric membranes, used in the nuclear area for the filtration of radioactive liquid effluent, in the residual water treatment of the petrochemical industry, in the electronic industry for the ultrapure water production for the manufacture of conductors and laundering of microcircuits and in many other processes of separation. Diverse processes for measures of pores sizes in membranes exist, amongst these, electronic microscopy, of bubble point and mercury intrusion porosimetry, however the majority of these uses destructive techniques, of high cost or great time of analysis. The proposal of this work is to measure so great of pore being used ultrasonic technique in the time domain of the frequency and artificial neural networks. A receiving/generator of ultrasonic pulses, a immersion transducer of 25 MHz was used, a tank of immersion and microporous membranes of pores sizes of 0,2 μm, 0,4 μm, 0,6 μm, 8 μm, 10 μm and 12 μm. The ultrasonic signals after to cover the membrane, come back to the transducer (emitting/receiving) bringing information of the interaction of the signal with the membranes. These signals had been used for the training of neural networks, and these had supplied the necessary precision the distinction of the same ones. Soon after, technique with the one of electronic microscopy of sweepings was made the comparison of this. The experiment showed very resulted next to the results gotten with the MEV, what it indicated that the studied technique is ideal for measure of pore size in membranes for being not destructive and of this form to be able to be used also on-line of production. (author)

  8. A new insight into membrane fouling mechanism in submerged membrane bioreactor: osmotic pressure during cake layer filtration.

    Science.gov (United States)

    Zhang, Meijia; Peng, Wei; Chen, Jianrong; He, Yiming; Ding, Linxian; Wang, Aijun; Lin, Hongjun; Hong, Huachang; Zhang, Ye; Yu, Haiying

    2013-05-15

    Big gap between experimental filtration resistance of cake layer formed on membrane surface and the hydraulic resistance calculated through the Carman-Kozeny equation, suggested the existence of a new membrane fouling mechanism: osmotic pressure during cake layer filtration in SMBR system. An osmotic pressure model based on chemical potential difference was then proposed. Simulation of the model showed that osmotic pressure accounted for the major fraction of total operation pressure, and pH, applied pressure and ionic strength were the key determining factors for osmosis effect. It was found that, variations of osmotic pressure with pH, applied pressure and added ionic strength were well coincident with perditions of model's simulation, providing the first direct evidences of the real occurrence of osmosis mechanism and the feasibility of the proposed model. These findings illustrate the essential role of osmotic pressure in filtration resistance, and improve fundamental understanding on membrane fouling in SMBR systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Towards supported bolaamphiphile membranes for water filtration: Roles of lipid and substrate

    NARCIS (Netherlands)

    Kaufman, Y.; Grinberg, S.; Linder, C..; Heldman, E.; Gilron, J.; Shen, Yue-xiao; Kumar, M.; Lammertink, Rob G.H.; Freger, V.

    2014-01-01

    Supported biomimetic membranes hold potential for applications such as biosensors and water purification by filtration. The current paper reports on the preparation of a supported bolaamphiphile membrane on two polymeric nanofiltration membranes: NF-270 made of polyamide with carboxylic surface

  10. FLUX ENHANCEMENT IN CROSSFLOW MEMBRANE FILTRATION: FOULING AND IT'S MINIMIZATION BY FLOW REVERSAL

    International Nuclear Information System (INIS)

    Shamsuddin Ilias

    2005-01-01

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In this report, we report our application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Based on our ultrafiltration experiments with apple juice, we conclude that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. Thus, flow reversal

  11. Flux Enhancement in Crossflow Membrane Filtration: Fouling and It's Minimization by Flow Reversal. Final Report

    International Nuclear Information System (INIS)

    Shamsuddin Ilias

    2005-01-01

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Three feed solutions (Bovine serum albumin (BSA), apple juice and citrus fruit pectin) were studied in crossflow membrane filtration. These solutes are well-known in membrane filtration for their fouling and concentration polarization potentials. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using each of the feed solutes show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and

  12. Integration of sand and membrane filtration systems for iron and pesticide removal without chemical addition

    DEFF Research Database (Denmark)

    Kowalski, Krysztof; Madsen, Henrik Tækker; Søgaard, Erik Gydesen

    2013-01-01

    the content of key foulants, the techniques can be used as a pre-treatment for nanofiltration and low pressure reverse osmosis that has proved to be capable of removing pesticides. It was found that a lower fouling potential could be obtained by using the membranes, but that sand filter was better at removing......Pilot plant investigations of sand and membrane filtration (MF/UF/NF/LPRO) have been performed to treat groundwater polluted with pesticides. The results show that simple treatment, with use of aeration and sand filtration or MF/UF membranes, does not remove pesticides. However, by reducing...... manganese and dissolved organic matter. The results indicate that combining aeration; sand filtration and membrane techniques might be a good option for pesticide removal without any addition of chemicals and minimized membrane maintenance....

  13. Industrial Membrane Filtration and Short-bed Fractal Separation Systems for Separating Monomers from Heterogeneous Plant Material

    Energy Technology Data Exchange (ETDEWEB)

    Kearney, M; Kochergin, V; Hess, R; Foust, T; Herbst, R; Mann, N

    2005-03-31

    Large-scale displacement of petroleum will come from low-cost cellulosic feedstocks such as straw and corn stover crop residues. This project has taken a step toward making this projection a reality by reducing capital and energy costs, the two largest cost factors associated with converting cellulosic biomass to chemicals and fuels. The technology exists for using acid or enzyme hydrolysis processes to convert biomass feedstock (i.e., waste cellulose such as straw, corn stover, and wood) into their base monomeric sugar building blocks, which can, in turn, be processed into chemicals and fuels using a number of innovative fermentation technologies. However, while these processes are technically possible, practical and economic barriers make these processes only marginally feasible or not feasible at all. These barriers are due in part to the complexity and large fixed and recurring capital costs of unit operations including filtration, chromatographic separation, and ion exchange. This project was designed to help remove these barriers by developing and implementing new purification and separation technologies that will reduce the capital costs of the purification and chromatographic separation units by 50% to 70%. The technologies fundamental to these improvements are: (a) highly efficient clarification and purification systems that use screening and membrane filtration to eliminate suspended solids and colloidal material from feed streams and (b) fractal technology based chromatographic separation and ion exchange systems that can substitute for conventional systems but at much smaller size and cost. A non-hazardous ''raw sugar beet juice'' stream (75 to 100 gal/min) was used for prototype testing of these technologies. This raw beet juice stream from the Amalgamated Sugar LLC plant in Twin Falls, Idaho contained abrasive materials and membrane foulants. Its characteristics were representative of an industrial-scale heterogeneous plant extract

  14. Surface patterning of polymeric separation membranes and its influence on the filtration performance

    Science.gov (United States)

    Maruf, Sajjad

    Polymeric membrane based separation technologies are crucial for addressing the global issues such as water purification. However, continuous operations of these processes are often hindered by fouling which increases mass transport resistance of the membrane to permeation and thus the energy cost, and eventually replacement of the membrane in the system. In comparison to other anti-fouling strategies, the use of controlled surface topography to mitigate fouling has not been realized mainly due to the lack of methods to create targeted topography on the porous membrane surface. This thesis aims to develop a new methodology to create surface-patterned polymeric separation membrane to improve their anti-fouling characteristics during filtration. First, successful fabrication of sub-micron surface patterns directly on a commercial ultrafiltration (UF) membrane surface using nanoimprint lithographic (NIL) technique was demonstrated. Comprehensive filtration studies revealed that the presence of these sub-micron surface patterns mitigates not only the onset of colloidal particle deposition, but also lowers the rate of growth of cake layer after initial deposition, in comparison with un-patterned membranes. The anti-fouling effects were also observed for model protein solutions. Staged filtration experiments, with backwash cleaning, revealed that the permeate flux of the patterned membrane after protein fouling was considerably higher than that of the pristine or un-patterned membrane. In addition to the surface-patterning of UF membranes, successful fabrication of a surface-patterned thin film composite (TFC) membrane was shown for the first time. A two-step fabrication process was carried out by (1) nanoimprinting a polyethersulfone (PES) support using NIL, and (2) forming a thin dense film atop the PES support via interfacial polymerization (IP). Fouling experiments suggest that the surface patterns alter the hydrodynamics at the membrane-feed interface, which is

  15. Hydrophilicity improvement in polyphenylsulfone nanofibrous filtration membranes through addition of polyethylene glycol

    Science.gov (United States)

    Kiani, Shirin; Mousavi, Seyed Mahmoud; Shahtahmassebi, Nasser; Saljoughi, Ehsan

    2015-12-01

    Novel hydrophilic polyphenylsulfone (PPSU) nanofibrous membrane was prepared by electrospinning of the PPSU solution blended with polyethylene glycol 400 (PEG 400). The influence of the PEG concentration on the membrane characteristics was studied using scanning electron microscopy (SEM), water contact angle measurement, and tensile test. Filtration performance of the membranes was investigated by measurement of pure water flux (PWF) and determination of the rejection values of the pollution indices during treatment of canned beans production wastewater. According to the results, blending the PPSU solution with 10 wt.% PEG 400 resulted in formation of a nanofibrous membrane with high porosity and increased mechanical strength which exhibited a low water contact angle of 8.9° and high water flux of 7920 L/m2h. Flux recovery of the mentioned membrane which was assessed by filtration of a solution containing bovine serum albumin (BSA) was 83% indicating a noticeable antifouling property.

  16. Industrial Application of Open Pore Ceramic Foam for Molten Metal Filtration

    Science.gov (United States)

    Gauckler, L. J.; Waeber, M. M.; Conti, C.; Jacob-Dulière, M.

    Ceramic foam filters were used for industrial filtration of aluminum. Results are compared with laboratory experiments which are in good agreement with trajectory analyses of deep bed filtration for the early stage of filtration.

  17. Organic-inorganic membranes for filtration of corn distillery

    Directory of Open Access Journals (Sweden)

    Myronchuk Valeriy G.

    2016-01-01

    Full Text Available Organic-inorganic membranes were obtained by modification of polymer microfiltration membrane with inorganic ion-exchangers, which form secondary porosity inside macroporous substrate (zirconium hydrophosphate or simultaneously in the macroporous substrate and active layer, depending of the particle size (from ≈50 nm up to several microns. Precipitation of the inorganic constituent is considered from the point of view of Ostwald-Freundlich equation. Such processes as pressing test in deionized water and filtration of corn distillery at 1-6 bar were investigated. Theoretical model allowing to establish fouling mechanism, was applied. It was found that the particles both in the substrate and active layer prevent fouling of the membrane with organics and provide rejection of colloidal particles.

  18. Flexographic newspaper deinking : treatment of wash filtrate effluent by membrane technology

    Science.gov (United States)

    B. Chabot; G.A. Krishnagopalan; S. Abubakr

    1999-01-01

    Ultrafiltration was investigated as a means to remove flexographic ink pigments from wash filtrate effluent generated from various mixtures of flexographic and offset old newspapers from deinking operations. Membrane separation efficiency was assessed from permeate flux, fouling rate, and ease of membrane regeneration (cleaning). Ultrafiltration was capable of...

  19. Treatment of exhausted tannin liquors of the leather industry by nano filtration; Tratamiento por nanofiltracion de los licores agotados de taninos en la industria del curtido

    Energy Technology Data Exchange (ETDEWEB)

    Adzet, J.; Buonomenna, M. G.; Cassano, A.; Drioli, E.; Molineri, R.

    2002-07-01

    The use of a nano filtration process is described in order to rationalize the vegetable tonnage step in leather industry through the recovery of tannins from the exhausted baths and their reuse as tanning agents. The results obtained on pilot scale using a membrane module, identified after a screening of various nano filtration membranes, the operating and fluid-dynamic conditions and the mass balance of the nano filtration process are reported and discussed. Skins treated with the recovered solutions revealed chemical and physical parameters very similar to those measured on control skins tanned with standard solutions. According to the obtained results, it is possible to suggest a process scheme that, starting from the exhausted tanning baths, through a nano filtration membrane purification/concentration, permits to increase the tannin/non tannin ratio of the retentate solution. Advantages are in terms of: reduction of environmental impact, simplification of cleaning-up processes of wastewaters, decrease of disposal costs, saving of chemicals and water. (Author)

  20. Advanced Monitoring and Characterization of Biofouling in Gravity-driven Membrane Filtration

    KAUST Repository

    Wang, Yiran

    2016-05-01

    Gravity-driven membrane (GDM) filtration is one of the promising membrane bioreactor (MBR) technologies. It operates at a low pressure by gravity, requiring a minimal energy. Thus, it exhibits a great potential for a decentralized system, conducting household in developing and transition countries. Biofouling is a universal problem in almost all membrane filtration applications, leading to the decrease in flux or the increase in transmembrane pressure depending on different operation mode. Air scoring or regular membrane cleaning has been utilized for fouling mitigation, which requires increased energy consumption as well as complicated operations. Besides, repeating cleaning will trigger the deterioration of membranes and shorten their lifetime, elevating cost expenditures accordingly. In this way, GDM filtration stands out from conventional MBR technologies in a long-term operation with relative stable flux, which has been observed in many studies. The objective of this study was to monitor the biofilm development on a flat sheet membrane submerged in a GDM reactor with constant gravitational pressure. Morphology of biofilm layer in a fixed position was acquired by an in-situ and on-line OCT (optical coherence tomography) scanning at regular intervals for both visual investigation and structure analysis. The calculated thickness and roughness were compared to the variation of flux, fouling resistance and permeate quality, showing expected consistency. At the end of experiment, the morphology of entire membrane surface was scanned and recorded by OCT. Membrane autopsy was carried out for biofilm composition analysis by total organic carbon (TOC) and liquid chromatography with organic carbon detection (LC-OCD). In addition, biomass concentration was obtained by flow cytometer and adenosine tri-phosphate (ATP) method. The data of biofilm components indicated a homogeneous biofilm structure formed after a long-term running of the GDM system, based on the morphology

  1. Industrial applications of membrane processes in chemistry and energy generation; Applications industrielles des procedes membranaires en chimie et production d'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The French membranes club (CFM), with the sustain of the French institute of petroleum (IFP) has organized this meeting which aims to present the most recent industrial realizations in the domain of membrane processes in the chemistry and energy generation sectors. This document gathers the abstracts of the presentations: 1 - hydrogen purification and CO{sub 2} extraction: development of polymer matrix and metal nano-particulate hybrid membranes for selective membrane applications; study of silicone-based mixed matrix membranes for hydrogen purification via inverse selectivity principle; CO{sub 2} capture from gaseous effluents for its sequestration: role and limitations of membrane processes; membranes and processes for the abatement of the acid gas content of smokes; new structural model for Nafion{sup R} membranes, the benchmark polymer for low temperature fuel cells; 2 - molecular screen-based membranes: MFI-alumina nano-composite ceramic membranes: preparation and characterization, gaseous transport and separation; characterization and permeation properties of supported MFI membranes; in-situ measurement of butane isomers diffusion in MFI zeolite membranes through transient permeation tests; 3 - vapors separation: stability of silver particulates in PA12-PTMO/AgBF{sub 4} composite membranes and its effect on the easier ethylene transport inside these membranes; 4 - separation of liquid organic mixtures: isomers separation using cyclo-dextrins bearing membranes: application to the extraction and separation of xylene isomers; electrodialysis in organic environment: application to the electro-synthesis; study of polymer materials permeability; 5 - treatment of industrial waters: use of NanoFlux software in the modeling of nano-filtration membrane processes in the chemical industry: elimination of sulfate impurities from 'Chloralkali' brines; ultra-filtration of a wastewater containing partially emulsified oil; efficiency of a hybrid membrane separation

  2. [Pollution prevention and control of aqueous extract of astragali radix processed with ZrO2 inorganic ceramic membrane micro-filtration].

    Science.gov (United States)

    Pan, Lin-Men; Huang, Min-Yan; Guo, Li-Wei

    2012-11-01

    To study the measures for preventing and controlling the pollution of aqueous extract of Astragali Radix proceeded with inorganic ceramic membrane micro-filtration, in order to find effective measures for preventing and controlling the membrane pollution. The resistance distribution, polymer removal and changes in physical and chemical parameters of the zirconium oxide film of different pore diameters were determined to analyze the state or location of pollutants as well as the regularity of formation. Meanwhile, recoil and ultrasonic physical measures were adopted to strengthen the membrane process, in order to explore the methods for preventing and controlling the membrane pollution. When 0.2 microm of ZrO2 micro-filtrated aqueous extract of Astragali Radix, the rate of pollution was as high as 44.9%. The hole blocking resistance and the concentration polarization resistance were the main filtration resistances, while the surface deposit resistance decreased with the increase in the membrane's hold diameter; after micro-filtration, the liquid turbidity significantly reduced, with slight changes in both pH and viscosity. The 0.2 microm ZrO2 micro-filtration membrane performed better than the 0.05 microm pore size membrane in terms of conductivity. The 0. 2 microm and 0.05 microm pore diameter membranes showed better performance in the removal of pectin. The ultrasonic measure to strengthen membranes is more suitable to this system, with a flux rate up by 41.7%. The membrane optimization process adopts appropriate measures for preventing and controlling the membrane pollution, in order to reduce the membrane pollution, recover membrane performance and increase filtration efficiency.

  3. An Investigation on bilayer structures of electrospun polyacrylonitrile nanofibrous membrane and cellulose membrane used as filtration media for apple juice clarification

    Science.gov (United States)

    Sawitri, Asti; Miftahul Munir, Muhammad; Edikresnha, Dhewa; Sandi, Ahzab; Fauzi, Ahmad; Rajak, Abdul; Natalia, Dessy; Khairurrijal, Khairurrijal

    2018-05-01

    Nanofibrous membrane has a potential to use in filtration technology with electrospinning as one of the techniques used in synthesizing nanofibers. Polyacrylonitrile (PAN) nanofibrous membranes with various fibers diameters were electrospun by varying its precursor solution concentration. The average fibers diameters of the PAN nanofibrous membranes obtained from the precursor solution concentrations of 6, 9, 12, and 14 wt% were 341, 534, 1274, and 2107 nm, respectively. Filtration media for apple juice clarification were bilayer-structured membranes made of PAN nanofibrous membranes on commercial cellulose microfibrous membranes. It has been shown that the reduction of apple juice color or turbidity performed by the cellulose microfibrous membrane was well enhanced by the presence of the PAN nanofibrous membrane in the bilayer-structured membrane. In addition, the apple-juice color and turbidity reductions increased with decreasing the average fibers diameter of the PAN nanofibrous membrane. Furthermore, the PAN nanofibrous membrane also helped the cellulose microfibrous membrane in the bilayer-structured membrane enhance the reductions of total phenols, protein, and glucose of the apple juice.

  4. Novel antimony doped tin oxide/carbon aerogel as efficient electrocatalytic filtration membrane

    Directory of Open Access Journals (Sweden)

    Zhimeng Liu

    2016-05-01

    Full Text Available A facile method was developed to prepare antimony doped tin oxide (Sb-SnO2/carbon aerogel (CA for use as an electrocatalytic filtration membrane. The preparation process included synthesis of a precursor sol, impregnation, and thermal decomposition. The Sb-SnO2, which was tetragonal in phase with an average crystallite size of 10.8 nm, was uniformly distributed on the CA surface and firmly attached via carbon-oxygen-tin chemical bonds. Preliminary filtration tests indicated that the Sb-SnO2/CA membrane had a high rate of total organic carbon removal for aqueous tetracycline owing to its high current efficiency and electrode stability.

  5. Fouling and Cleaning of Membrane Filtration Systems in the Dairy Industry

    DEFF Research Database (Denmark)

    Berg, Thilo Heinz Alexander

    not necessarily be perfect hydraulic cleanliness in order to restore processing performance. Consequences of reduced cleaning could however be observed in subsequent CIPs; hydraulic cleanliness reached a lower level. Further research is required to assess the practical significance of these consequences......membranes that were industrially used for a longer period of time (“aged membranes”) to study fouling and cleaning phenomena. During this study, reduced cleaning (a onestep CIP instead of a three-step CIP) was investigated, leading to the suggestion that the aim of a cleaning procedure should...

  6. Hydrophilicity improvement in polyphenylsulfone nanofibrous filtration membranes through addition of polyethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, Shirin [Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Membrane Processes and Membrane Research Center, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Mousavi, Seyed Mahmoud, E-mail: mmousavi@um.ac.ir [Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Shahtahmassebi, Nasser [Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Nanoresearch Center, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Saljoughi, Ehsan [Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2015-12-30

    Highlights: • Novel hydrophilic polyphenylsulfone electrospun nanofibrous membrane was prepared. • Blending the PPSU solution with 10 wt.% PEG 400 led to the optimum results. • Water contact angle of the optimum membrane was determined as 8.9°. • Remarkable increase in pure water flux and flux recovery was achieved. • Rejection values of the wastewater pollution indices remained almost unchanged. - Abstract: Novel hydrophilic polyphenylsulfone (PPSU) nanofibrous membrane was prepared by electrospinning of the PPSU solution blended with polyethylene glycol 400 (PEG 400). The influence of the PEG concentration on the membrane characteristics was studied using scanning electron microscopy (SEM), water contact angle measurement, and tensile test. Filtration performance of the membranes was investigated by measurement of pure water flux (PWF) and determination of the rejection values of the pollution indices during treatment of canned beans production wastewater. According to the results, blending the PPSU solution with 10 wt.% PEG 400 resulted in formation of a nanofibrous membrane with high porosity and increased mechanical strength which exhibited a low water contact angle of 8.9° and high water flux of 7920 L/m{sup 2}h. Flux recovery of the mentioned membrane which was assessed by filtration of a solution containing bovine serum albumin (BSA) was 83% indicating a noticeable antifouling property.

  7. Chemical and microstructural analyses for heavy metals removal from water media by ceramic membrane filtration.

    Science.gov (United States)

    Ali, Asmaa; Ahmed, Abdelkader; Gad, Ali

    2017-01-01

    This study aims to investigate the ability of low cost ceramic membrane filtration in removing three common heavy metals namely; Pb 2+ , Cu 2+ , and Cd 2+ from water media. The work includes manufacturing ceramic membranes with dimensions of 15 by 15 cm and 2 cm thickness. The membranes were made from low cost materials of local clay mixed with different sawdust percentages of 0.5%, 2.0%, and 5.0%. The used clay was characterized by X-ray diffraction (XRD) and X-ray fluorescence analysis. Aqueous solutions of heavy metals were prepared in the laboratory and filtered through the ceramic membranes. The influence of the main parameters such as pH, initial driving pressure head, and concentration of heavy metals on their removal efficiency by ceramic membranes was investigated. Water samples were collected before and after the filtration process and their heavy metal concentrations were determined by chemical analysis. Moreover, a microstructural analysis using scanning electronic microscope (SEM) was performed on ceramic membranes before and after the filtration process. The chemical analysis results showed high removal efficiency up to 99% for the concerned heavy metals. SEM images approved these results by showing adsorbed metal ions on sides of the internal pores of the ceramic membranes.

  8. Flux studies on ion microporous membrane for the use of medical filtration

    International Nuclear Information System (INIS)

    Guo Hongying; Huang Zhengde

    2002-01-01

    The influences of the irradiating condition (divergent and perpendicular irradiation) and hole shapes (cylinder and cone holes) on the flux are studied for ion microporous membrane. The results show that divergent irradiation and cone hole both can improve the flux of ion microporous membrane for the use of medical filtration

  9. Derivation of the formula for the filtration coefficient by application of Poiseuille's law in membrane transport

    Directory of Open Access Journals (Sweden)

    Maria Jarzyńska

    2011-01-01

    Full Text Available On the basis of Kedem-Katchalsky equations a mathematical analysis of volume flow (Jv of a binary solution through a membrane (M is presented. Two cases of transport generators have been considered: hydrostatic (Δp as well as osmotic (Δπ pressure difference. Based on the Poiseuille's law we derive the formula for the membrane filtration coefficient (Lp which takes into account the membrane properties, kinetic viscosity and density of a solution flowing across the membrane. With use of this formula we have made model calculations of the filtration coefficient Lp and volume flow Jv for a polymer membrane in the case when the solutions on both sides of the membrane are mixed.

  10. Ultrasonic filtration of industrial chemical solutions

    Science.gov (United States)

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  11. Performances of nano filtration (NF) and reverse osmosis (RO) in textile industry waste water treatment

    International Nuclear Information System (INIS)

    Ellouze, E.; Souissi, S.; Ben Amar, R.; Ben Salah, A.; Jrad, A.

    2009-01-01

    Textile industry process (dyeing, bleaching, printing and finishing) require a high-water consumption generating high amounts of water. Reactive dyeing of 1Kg of cotton requires about 150 Litres of water and 40g reactive dye resulting in a large volume of strongly coloured effluents. This fact in combination with the current water scarcity makes necessary textile waste water reuse. In this paper experimental results obtained from the treatment by different membranes Micro filtration (MF), Nano filtration (NF) and Reverse Osmosis (RO) of Sitex industry waste water pretreated by biological activated sludge are presented and compared. The results obtained from direct Nano filtration performed at different transmembrane pressures (8 - 1 m - 2 for a Volumetric Concentration Factor (VCF) of 4 and that the osmotic pressure π= 4Bars. A high quality of treated effluent in term of colour removal and desalination was obtained for a VCF of 2: salinity retention rate (RR) 57 pour cent and discoloration almost 100 pour cent at pressure of 12 bar. While, the permeate flux obtained using the combination MF/RO at a different pressures 25 - 1 m- 2 for a VCF of 6 indicating an important fouling. In this case, the osmotic pressure varied from 6 to 28 bars. The optimum salinity and colour retention rate (RR) were 86 pour cent and 100 pour cent respectively obtained at a VCF of 2.

  12. Cross-flow filtration of yeast extract with multi-tubular membrane module and rotating-disk membrane module; Makukaitengata heibanmaku module to tankanjomaku module ni yoru kobo hasaieki no cross flow roka

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, K.; Shimizu, Y.; Watanabe, a. [Toto Ltd., Kitakyushu (Japan)

    1994-09-15

    A membrane separation experiment was made with multi-tubular membrane module and rotating-disk membrane module to study the cross-flow filtration of yeast extract. The membrane was an alumina precision filtration membrane with 0.15 micron m diameter pores. A multi-tubular membrane which was 19 in number of channels and 0.113{sup 2} in effective membrane area was fitted to the multi-tubular membrane module. A rotating-disk membrane which was 0.071m{sup 2} in effective membrane area was fitted to the rotating-disk membrane module. Judging from the concentration speed and factor, the rotating-disk type is more advantageous in concentrating the suspension than the multi-tubular type. The soluble high-molecular component was more easily filtrated through the rotating-disk type, which is judged attributable to its possible operation at a high flow rate on the membrane surface without necessitating a high-flow rate circulation pump. As compared with the conventional cross-filtration type, the rotating-disk type gives a high permeate flux even at a high concentration factor. 11 refs., 5 figs.

  13. Continuous improvements of defectivity rates in immersion photolithography via functionalized membranes in point-of-use photochemical filtration

    Science.gov (United States)

    D'Urzo, Lucia; Bayana, Hareen; Vandereyken, Jelle; Foubert, Philippe; Wu, Aiwen; Jaber, Jad; Hamzik, James

    2017-03-01

    Specific "killer-defects", such as micro-line-bridges are one of the key challenges in photolithography's advanced applications, such as multi-pattern. These defects generate from several sources and are very difficult to eliminate. Pointof-use filtration (POU) plays a crucial role on the mitigation, or elimination, of such defects. Previous studies have demonstrated how the contribution of POU filtration could not be studied independently from photoresists design and track hardware settings. Specifically, we investigated how an effective combination of optimized photoresist, filtration rate, filtration pressure, membrane and device cleaning, and single and multilayer filter membranes at optimized pore size could modulate the occurrence of such defects [1, 2, 3 and 4]. However, the ultimate desired behavior for POU filtration is the selective retention of defect precursor molecules contained in commercially available photoresist. This optimal behavior can be achieved via customized membrane functionalization. Membrane functionalization provides additional non-sieving interactions which combined with efficient size exclusion can selectively capture certain defect precursors. The goal of this study is to provide a comprehensive assessment of membrane functionalization applied on an asymmetric ultra-high molecular weight polyethylene (UPE) membrane at different pore size. Defectivity transferred in a 45 nm line 55 nm space (45L/55S) pattern, created through 193 nm immersion (193i) lithography with a positive tone chemically amplified resist (PT-CAR), has been evaluated on organic under-layer coated wafers. Lithography performance, such as critical dimensions (CD), line width roughness (LWR) and focus energy matrix (FEM) is also assessed.

  14. Industrial investigations of the liquid steel filtration

    Directory of Open Access Journals (Sweden)

    K. Janiszewski

    2014-07-01

    Full Text Available Hitherto existing investigations concerning the ceramic filter use in the steel making processes have given good results. The obtained results of filtration have proved that this method may be used as an effective and cheap way of steel filtration from non-metallic inclusions. Placing filters in the tundish is the best location considering the limitation of the possibility of secondary pollution of steel. Yet, the results presented in this paper, of an experiment prepared and carried out in the industrial environment, are the only positive results obtained, which are connected with so much quantities of liquid steel processed with use of the multi-hole ceramic filters.

  15. Removal of Brettanomyces bruxellensis from red wine using membrane filtration

    Science.gov (United States)

    While sulfites help limit growth of the spoilage yeast, Brettanomyces, SO2 has been reported to decrease cell size, thereby potentially decreasing the porosities of filtration membranes required for removal. B. bruxellensis strains B1b and F3 were inoculated into red wines and after 12 days, half th...

  16. Radio elements / bottom salts separation by nano-filtration aided by complexation in a highly saline environment

    International Nuclear Information System (INIS)

    Gaubert, Eric

    1997-01-01

    This research thesis addresses the use of a membrane-based technique, nano-filtration, aided or not by complexation, for the processing of highly saline liquid effluents produced by radio-chemical decontamination. The objective is to separate non-radioactive elements (sodium nitrate) from radio-elements (caesium, strontium and actinides) in order to reduce the volume of wastes. Within the perspective of an industrial application, a system to concentrate the effluent is firstly defined. Different nano-filtration membranes are tested and reveal to be insufficient in highly saline environment. A stage of selective complexation of radio-elements is therefore considered before nano-filtration. The main factors affecting performance of nano-filtration-complexation (for a given membrane system) are identified: ionic force, pH, ligand content, trans-membrane pressure. Finally, a nano-filtration pilot is implemented to perform nano-filtration-complexation operations by remote handling on radioactive substances [fr

  17. Risks of using membrane filtration for trace metal analysis and assessing the dissolved metal fraction of aqueous media - A study on zinc, copper and nickel

    International Nuclear Information System (INIS)

    Hedberg, Yolanda; Herting, Gunilla; Wallinder, Inger Odnevall

    2011-01-01

    Membrane filtration is commonly performed for solid-liquid separation of aqueous solutions prior to trace metal analysis and when assessing 'dissolved' metal fractions. Potential artifacts induced by filtration such as contamination and/or adsorption of metals within the membrane have been investigated for different membrane materials, metals, applied pressures and pre-cleaning steps. Measurements have been conducted on aqueous solutions including well-defined metal standards, ultrapure water, and on runoff water from corroded samples. Filtration using both non-cleaned and pre-cleaned filters revealed contamination and adsorption effects, in particular pronounced for zinc, evident for copper but non-significant for nickel. The results clearly show these artifacts to be non-systematic both for non-cleaned and pre-cleaned membranes. The applied pressure was of minor importance. Measurements of the labile fraction by means of stripping voltammetry clearly elucidate that membrane filtration followed by total metal analysis cannot accurately assess the labile or the dissolved metal fraction. - Highlights: → Membrane filtration for trace metal analysis can introduce significant artifacts. → The dissolved metal fraction cannot be assessed by membrane filtration. → Non-specified filtration procedures are inadequate for scientific studies. → Artifacts caused by membrane filtration need to be addressed by regulators. - Membrane filtration cannot be used to assess the dissolved metal fraction of aqueous media and needs to be defined in detail in standard tests.

  18. "Chemistry in a spinneret" to fabricate hollow fibers for organic solvent filtration

    NARCIS (Netherlands)

    Dutczak, S.M.; Tanardi, Cheryl; Kopec, K.K.; Wessling, Matthias; Stamatialis, Dimitrios

    2012-01-01

    Organic solvent filtration (OSF) is a very efficient separation technique with high potential in many branches of industry. Currently the choice of the commercial membranes is limited only to a few flat sheet membranes and spiral wound modules. It is generally known that a membrane in hollow fiber

  19. Steam Explosion and Vibrating Membrane Filtration to Improve the Processing Cost of Microalgae Cell Disruption and Fractionation

    Directory of Open Access Journals (Sweden)

    Esther Lorente

    2018-03-01

    Full Text Available The aim of this study is to explore an innovative downstream route for microalgae processing to reduce cost production. Experiments have been carried out on cell disruption and fractionation stages to recover lipids, sugars, and proteins. Steam explosion and dynamic membrane filtration were used as unit operations. The species tested were Nannochloropsis gaditana, Chlorella sorokiniana, and Dunaliella tertiolecta with different cell wall characteristics. Acid-catalysed steam explosion permitted cell disruption, as well as the hydrolysis of carbohydrates and partial hydrolysis of proteins. This permitted a better access to non-polar solvents for lipid extraction. Dynamic filtration was used to moderate the impact of fouling. Filtration enabled two streams: A permeate containing water and monosaccharides and a low-volume retentate containing the lipids and proteins. The necessary volume of solvent to extract the lipids is thus much lower. An estimation of operational costs of both steam explosion and membrane filtration was performed. The results show that the steam explosion operation cost varies between 0.005 $/kg and 0.014 $/kg of microalgae dry sample, depending on the cost of fuel. Membrane filtration cost in fractionation was estimated at 0.12 $/kg of microalgae dry sample.

  20. Global sensitivity analysis of a filtration model for submerged anaerobic membrane bioreactors (AnMBR).

    Science.gov (United States)

    Robles, A; Ruano, M V; Ribes, J; Seco, A; Ferrer, J

    2014-04-01

    The results of a global sensitivity analysis of a filtration model for submerged anaerobic MBRs (AnMBRs) are assessed in this paper. This study aimed to (1) identify the less- (or non-) influential factors of the model in order to facilitate model calibration and (2) validate the modelling approach (i.e. to determine the need for each of the proposed factors to be included in the model). The sensitivity analysis was conducted using a revised version of the Morris screening method. The dynamic simulations were conducted using long-term data obtained from an AnMBR plant fitted with industrial-scale hollow-fibre membranes. Of the 14 factors in the model, six were identified as influential, i.e. those calibrated using off-line protocols. A dynamic calibration (based on optimisation algorithms) of these influential factors was conducted. The resulting estimated model factors accurately predicted membrane performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effect of polymer type on characterization and filtration performances of multi-walled carbon nanotubes (MWCNT)-COOH-based polymeric mixed matrix membranes.

    Science.gov (United States)

    Sengur-Tasdemir, Reyhan; Mokkapati, Venkata R S S; Koseoglu-Imer, Derya Y; Koyuncu, Ismail

    2018-05-01

    Multi-walled carbon nanotubes (MWCNTs) can be used for the fabrication of mixed matrix polymeric membranes that can enhance filtration perfomances of the membranes by modifying membrane surface properties. In this study, detailed characterization and filtration performances of MWCNTs functionalized with COOH group, blended into polymeric flat-sheet membranes were investigated using different polymer types. Morphological characterization was carried out using atomic force microscopy, scanning electron microscopy and contact angle measurements. For filtration performance tests, protein, dextran, E. coli suspension, Xanthan Gum and real activated sludge solutions were used. Experimental data and analyses revealed that Polyethersulfone (PES) + MWCNT-COOH mixed matrix membranes have superior performance abilities compared to other tested membranes.

  2. Rapid Production of a Porous Cellulose Acetate Membrane for Water Filtration Using Readily Available Chemicals

    Science.gov (United States)

    Kaiser, Adrian; Stark, Wendelin J.; Grass, Robert N.

    2017-01-01

    A chemistry laboratory experiment using everyday items and readily available chemicals is described to introduce advanced high school students and undergraduate college students to porous polymer membranes. In a three-step manufacturing process, a membrane is produced at room temperature. The filtration principle of the membrane is then…

  3. Research on Hydrophilic Nature of Polyvinylpyrrolidone on Polysulfone Membrane Filtration

    Science.gov (United States)

    Tiron, L. G.; Vlad, M.; Baltă, Ş.

    2018-06-01

    The membranes used in wastewater filtration are obtained from polymers, this technique is widely applied because of the small installations and low costs as against conventional systems. The polymeric membranes have high mechanical strength and flexibility, but is a challenge to improve in the same time the permeability and retention capacity of the membranes. A process that can improve the membrane properties is the addition of additives to the polymer solution, resulting in noticeable changes in the resulting membrane structure. Polyvinylpyrrolidone (PVP) is a highly hydrophilic polymer, used as a food additive that acts as stabilizer and thickening agent, which brings improvements in membrane properties. This study analyses the effect of polyvinylpyrrolidone (PVP) on the casting solution of the prepared membranes. The polymer solution was prepared from polysulfone (PSf) and N-methyl-2-pyrrolidone (NMP) at different concentrations. The membranes were obtained by phase inversion method. The PSf/PVP/NMP membranes with different concentrations were characterized by contact angle measurements, surface roughness, morphological structure and permeation tests. The results show that the hydrophilic nature of PVP improve the pure water flux, the contact angle and exhibit a higher anti-fouling property.

  4. Zebra mussel filtration and its potential uses in industrial water treatment.

    Science.gov (United States)

    Elliott, Paul; Aldridge, David C; Moggridge, Geoff D

    2008-03-01

    The zebra mussel (Dreissena polymorpha) is a notorious freshwater biofouling pest, and populations of the species can alter aquatic environments through their substantial filtration capabilities. Despite the ecological importance of zebra mussel filtration, many predictions of their large-scale effects on ecosystems rely on extrapolations from filtration rates obtained in static laboratory experiments, not accounting for natural mussel densities, boundary layer effects, flow rates or elevated algal concentrations. This study used large-scale industrial flume trials to investigate the influence of these factors on zebra mussel filtration and proposes some novel industrial applications of these findings. The flume trials revealed some of the highest zebra mussel clearance rates found to date, up to 574+/-20mlh(-1)g(-1) of wet tissue mass. Under low algal concentrations, chlorophyll a removal by zebra mussels was not proportional to mussel density, indicating that field rates of zebra mussel grazing may be much lower than previous studies have predicted. Increasing ambient velocities up to 100mls(-1) ( approximately 4cms(-1)) led to increased clearance rates by zebra mussels, possibly due to the replenishment of locally depleted resources, but higher velocities of 300mls(-1) (12cms(-1)) did not lead to further significant increases in clearance rate. When additional algal cultures were dosed into the flumes, chlorophyll a removal increased approximately logarithmically with zebra mussel density and there were no differences in the clearance of three different species of alga: Ankyra judayi, Pandorina morum and Cyclotella meneghinia. Some novel industrial uses of these zebra mussel filtration studies are proposed, such as: (1) helping to inform models that predict the large-scale grazing effects of the mussels, (2) allowing estimates of zebra mussel densities in industrial pipelines, and (3) constructing large-scale biofilters for use in water clarification.

  5. Purification and differentiation of human adipose-derived stem cells by membrane filtration and membrane migration methods

    Science.gov (United States)

    Lin, Hong Reng; Heish, Chao-Wen; Liu, Cheng-Hui; Muduli, Saradaprasan; Li, Hsing-Fen; Higuchi, Akon; Kumar, S. Suresh; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Hsu, Shih-Tien; Chen, Da-Chung; Benelli, Giovanni; Murugan, Kadarkarai; Cheng, Nai-Chen; Wang, Han-Chow; Wu, Gwo-Jang

    2017-01-01

    Human adipose-derived stem cells (hADSCs) are easily isolated from fat tissue without ethical concerns, but differ in purity, pluripotency, differentiation ability, and stem cell marker expression, depending on the isolation method. We isolated hADSCs from a primary fat tissue solution using: (1) conventional culture, (2) a membrane filtration method, (3) a membrane migration method where the primary cell solution was permeated through membranes, adhered hADSCs were cultured, and hADSCs migrated out from the membranes. Expression of mesenchymal stem cell markers and pluripotency genes, and osteogenic differentiation were compared for hADSCs isolated by different methods using nylon mesh filter membranes with pore sizes ranging from 11 to 80 μm. hADSCs isolated by the membrane migration method had the highest MSC surface marker expression and efficient differentiation into osteoblasts. Osteogenic differentiation ability of hADSCs and MSC surface marker expression were correlated, but osteogenic differentiation ability and pluripotent gene expression were not. PMID:28071738

  6. Mathematical models of membrane fouling in cross-flow micro-filtration

    Directory of Open Access Journals (Sweden)

    Mónica Jimena Ortíz Jerez

    2008-01-01

    Full Text Available The greatest difficulty arising during cross-flow micro-filtration is the formation of a cake layer on the membrane sur-face (also called fouling, thereby affecting system performance. Fouling has been related to permeate flux decay re-sulting from changes in operating variables. Many articles have been published in an attempt to explain this phe-nomenon but it has not yet been fully understood because it depends on specific solution/membrane interactions and differing parameters. This work was aimed at presenting an analytical review of recently published mathematical models to explain fouling. Although the reviewed models can be adjusted to any type of application, a simple “con-centration polarisation” model is advisable in the particular case of tropical fruit juices for describing the insoluble solids being deposited on membrane surface.

  7. Controlling the rejection of protein during membrane filtration by adding selected polyelectrolytes

    DEFF Research Database (Denmark)

    Pinelo, Manuel; Ferrer Roca, Carme; Meyer, Anne S.

    2012-01-01

    Electrostatic interactions among the charged groups on proteins and/or between proteins and other solutes significantly affect the aggregation/deposition phenomena that induce fouling and decrease permeate flux during membrane purification of proteins. Such interactions can be turned...... help enhance the performance of membrane filtration for fractionation/purification of a target protein by significantly reducing fouling and modifying rejection/selectivity.......) changing the pH, on the permeate flux and membrane transmission of bovin serum albumina (BSA) through a PVDF membrane. The addition of PS-co-AA to the feed solution resulted in significant increases of the BSA transmission at pH 7.4 as compared to the transmission of a pure BSA solution (1g...

  8. Nanofiltration and Tight Ultrafiltration Membranes for Natural Organic Matter Removal-Contribution of Fouling and Concentration Polarization to Filtration Resistance.

    Science.gov (United States)

    Winter, Joerg; Barbeau, Benoit; Bérubé, Pierre

    2017-07-02

    Nanofiltration (NF) and tight ultrafiltration (tight UF) membranes are a viable treatment option for high quality drinking water production from sources with high concentrations of contaminants. To date, there is limited knowledge regarding the contribution of concentration polarization (CP) and fouling to the increase in resistance during filtration of natural organic matter (NOM) with NF and tight UF. Filtration tests were conducted with NF and tight UF membranes with molecular weight cut offs (MWCOs) of 300, 2000 and 8000 Da, and model raw waters containing different constituents of NOM. When filtering model raw waters containing high concentrations of polysaccharides (i.e., higher molecular weight NOM), the increase in resistance was dominated by fouling. When filtering model raw waters containing humic substances (i.e., lower molecular weight NOM), the increase in filtration resistance was dominated by CP. The results indicate that low MWCO membranes are better suited for NOM removal, because most of the NOM in surface waters consist mainly of humic substances, which were only effectively rejected by the lower MWCO membranes. However, when humic substances are effectively rejected, CP can become extensive, leading to a significant increase in filtration resistance by the formation of a cake/gel layer at the membrane surface. For this reason, cross-flow operation, which reduces CP, is recommended.

  9. Impact of polymeric membrane filtration of oil sands process water on organic compounds quantification.

    Science.gov (United States)

    Moustafa, Ahmed M A; Kim, Eun-Sik; Alpatova, Alla; Sun, Nian; Smith, Scott; Kang, Seoktae; Gamal El-Din, Mohamed

    2014-01-01

    The interaction between organic fractions in oil sands process-affected water (OSPW) and three polymeric membranes with varying hydrophilicity (nylon, polyvinylidene fluoride and polytetrafluoroethylene) at different pHs was studied to evaluate the impact of filtration on the quantification of acid-extractable fraction (AEF) and naphthenic acids (NAs). Four functional groups predominated in OSPW (amine, phosphoryl, carboxyl and hydroxyl) as indicated by the linear programming method. The nylon membranes were the most hydrophilic and exhibited the lowest AEF removal at pH of 8.7. However, the adsorption of AEF on the membranes increased as the pH of OSPW decreased due to hydrophobic interactions between the membrane surfaces and the protonated molecules. The use of ultra pressure liquid chromatography-high resolution mass spectrometry (UPLC/HRMS) showed insignificant adsorption of NAs on the tested membranes at pH 8.7. However, 26±2.4% adsorption of NAs was observed at pH 5.3 following the protonation of NAs species. For the nylon membrane, excessive carboxylic acids in the commercial NAs caused the formation of negatively charged assisted hydrogen bonds, resulting in increased adsorption at pH 8.2 (25%) as compared to OSPW (0%). The use of membranes for filtration of soluble compounds from complex oily wastewaters before quantification analysis of AEF and NAs should be examined prior to application.

  10. Effects of coconut granular activated carbon pretreatment on membrane filtration in a gravitational driven process to improve drinking water quality.

    Science.gov (United States)

    da Silva, Flávia Vieira; Yamaguchi, Natália Ueda; Lovato, Gilselaine Afonso; da Silva, Fernando Alves; Reis, Miria Hespanhol Miranda; de Amorim, Maria Teresa Pessoa Sousa; Tavares, Célia Regina Granhen; Bergamasco, Rosângela

    2012-01-01

    This study evaluates the performance of a polymeric microfiltration membrane, as well as its combination with a coconut granular activated carbon (GAC) pretreatment, in a gravitational filtration module, to improve the quality of water destined to human consumption. The proposed membrane and adsorbent were thoroughly characterized using instrumental techniques, such as contact angle, Brunauer-Emmett-Teller) and Fourier transform infrared spectroscopy analyses. The applied processes (membrane and GAC + membrane) were evaluated regarding permeate flux, fouling percentage, pH and removal of Escherichia coli, colour, turbidity and free chlorine. The obtained results for filtrations with and without GAC pretreatment were similar in terms of water quality. GAC pretreatment ensured higher chlorine removals, as well as higher initial permeate fluxes. This system, applying GAC as a pretreatment and a gravitational driven membrane filtration, could be considered as an alternative point-of-use treatment for water destined for human consumption.

  11. Task 9 - Centrifugal membrane filtration. Semi-annual report, April 1 - September 30, 1997

    International Nuclear Information System (INIS)

    Stepan, D.J.; Grafsgaard, M.E.

    1997-01-01

    This project is designed to establish the utility of a novel centrifugal membrane filtration technology for the remediation of liquid mixed waste streams at US Department of Energy (DOE) facilities in support of the DOE Environmental Management (EM) program. The Energy and Environmental Research Center (EERC) has teamed with SpinTek Membrane Systems, Inc., a small business and owner of the novel centrifugal membrane filtration technology, to establish the applicability of the technology to DOE site remediation and the commercial viability of the technology for liquid mixed waste stream remediation. The technology is a uniquely configured process that makes use of ultrafiltration and centrifugal force to separate suspended and dissolved solids from liquid waste streams, producing a filtered water stream and a low-volume contaminated concentrate stream. This technology has the potential for effective and efficient waste volume minimization, the treatment of liquid tank wastes, the remediation of contaminated groundwater plumes, and the treatment of secondary liquid waste streams from other remediation processes, as well as the liquid waste stream generated during decontamination and decommissioning activities

  12. Application of Combined Cake Filtration-Complete Blocking Model to Ultrafiltration of Skim Milk

    Directory of Open Access Journals (Sweden)

    Mansoor Kazemimoghadam

    2017-10-01

    Full Text Available Membrane ultrafiltration (UF is widely used in dairy industries like milk concentration and dehydration processes. The limiting factor of UF systems is fouling which is defined as the precipitation of solutes in the form of a cake layer on the surface of the membrane. In this study, the combined cake filtration-complete blocking model was compared to cake filtration mechanism for flux data through ultrafiltration of skim milk at constant flow rate. The resistance data also was modeled using cake filtration model and standard blocking model. The effect of different trans-membrane pressures and temperatures on flux decline was then investigated. Based on the results obtained here, the combined complete blocking-cake formation model was in excellent agreement with experimental data. The cake filtration model also provided good data fits and can be applied to solutions whose solutes tend to accumulate on the surface of the membrane in the form of a cake layer. With increasing pressure, the differences between the model and experimental data increased.

  13. Gravity-driven membrane system for secondary wastewater effluent treatment: Filtration performance and fouling characterization

    KAUST Repository

    Wang, Yiran; Fortunato, Luca; Jeong, Sanghyun; Leiknes, TorOve

    2017-01-01

    Gravity-driven membrane (GDM) filtration is one of the promising membrane bioreactor (MBR) configurations. It operates at an ultra-low pressure by gravity, requiring a minimal energy. The objective of this study was to understand the performance of GDM filtration system and characterize the biofouling formation on a flat sheet membrane. This submerged GDM reactor was operated at constant gravitational pressure in treating of two different concentrations of secondary wastewater effluent. Morphology of biofilm layer was acquired by an in-situ and on-line optical coherence tomography (OCT) scanning in a fixed position at regular intervals. The thickness and roughness calculated from OCT images were related to the variation of flux, fouling resistance and permeate quality. At the end of experiment, fouling was quantified by total organic carbon (TOC) and adenosine tri-phosphate (ATP) method. Confocal laser scanning microscopy (CLSM) was also applied for biofouling morphology observation. The biofouling formed on membrane surface was mostly removed by physical cleaning confirmed by contact angle measurement before and after cleaning. This demonstrated that fouling on the membrane under ultra-low pressure operation was highly reversible. The superiority and sustainability of GDM in both flux maintaining and long-term operation with production of high quality effluent was demonstrated.

  14. Gravity-driven membrane system for secondary wastewater effluent treatment: Filtration performance and fouling characterization

    KAUST Repository

    Wang, Yiran

    2017-04-21

    Gravity-driven membrane (GDM) filtration is one of the promising membrane bioreactor (MBR) configurations. It operates at an ultra-low pressure by gravity, requiring a minimal energy. The objective of this study was to understand the performance of GDM filtration system and characterize the biofouling formation on a flat sheet membrane. This submerged GDM reactor was operated at constant gravitational pressure in treating of two different concentrations of secondary wastewater effluent. Morphology of biofilm layer was acquired by an in-situ and on-line optical coherence tomography (OCT) scanning in a fixed position at regular intervals. The thickness and roughness calculated from OCT images were related to the variation of flux, fouling resistance and permeate quality. At the end of experiment, fouling was quantified by total organic carbon (TOC) and adenosine tri-phosphate (ATP) method. Confocal laser scanning microscopy (CLSM) was also applied for biofouling morphology observation. The biofouling formed on membrane surface was mostly removed by physical cleaning confirmed by contact angle measurement before and after cleaning. This demonstrated that fouling on the membrane under ultra-low pressure operation was highly reversible. The superiority and sustainability of GDM in both flux maintaining and long-term operation with production of high quality effluent was demonstrated.

  15. Nanofiltration and Tight Ultrafiltration Membranes for Natural Organic Matter Removal—Contribution of Fouling and Concentration Polarization to Filtration Resistance

    Directory of Open Access Journals (Sweden)

    Joerg Winter

    2017-07-01

    Full Text Available Nanofiltration (NF and tight ultrafiltration (tight UF membranes are a viable treatment option for high quality drinking water production from sources with high concentrations of contaminants. To date, there is limited knowledge regarding the contribution of concentration polarization (CP and fouling to the increase in resistance during filtration of natural organic matter (NOM with NF and tight UF. Filtration tests were conducted with NF and tight UF membranes with molecular weight cut offs (MWCOs of 300, 2000 and 8000 Da, and model raw waters containing different constituents of NOM. When filtering model raw waters containing high concentrations of polysaccharides (i.e., higher molecular weight NOM, the increase in resistance was dominated by fouling. When filtering model raw waters containing humic substances (i.e., lower molecular weight NOM, the increase in filtration resistance was dominated by CP. The results indicate that low MWCO membranes are better suited for NOM removal, because most of the NOM in surface waters consist mainly of humic substances, which were only effectively rejected by the lower MWCO membranes. However, when humic substances are effectively rejected, CP can become extensive, leading to a significant increase in filtration resistance by the formation of a cake/gel layer at the membrane surface. For this reason, cross-flow operation, which reduces CP, is recommended.

  16. Utilization of Shrimp Skin Waste (Sea Lobster) As Raw Material for the Membrane Filtration

    International Nuclear Information System (INIS)

    Rupiasih, Ni Nyoman; Windari, Putri; Sumadiyasa, Made; Suyanto, Hery

    2017-01-01

    In view of the increasing littering of the sea banks by shells of crustaceans, a study was carried out to investigate the extraction and characterization of chitosan from skin waste of sea lobster i.e. ‘Bamboo Lobster’ ( Panulirus versicolor ). Chitosan was extracted using conventional methods such as pretreatment, demineralization, deprotienization, and deacetylation. The result showed that the degree of deacetylation of chitosan obtained is 70.02%. The FTIR spectra of the chitosan gave a characteristic of –NH 2 band at 3447 cm –1 and carbonyl group band at 1655 cm −1 . This chitosan has been used to prepare membrane. The chitosan membrane 2% has been prepared using phase inversion method with precipitation by solvent evaporation. The membranes were characterized by FTIR spectrophotometer, Nova 1200e using BJH method, and filtration method. The results show that thickness of the membrane is about 134 μm. The FTIR spectra show that functional groups present in the membrane are -NH, -CH, C=O, and -OH. Using BJH method obtained that the pore diameter is 3.382 nm with pore density is 8.95 x 10 5 pores/m 3 . By filtration method obtained that pure water flux (PWF) of the membrane are 386.662 and 489.627 1/m 2 .h at pressure 80-85 kPa and 90-100 kPa, respectively. These results show that skin waste of sea lobster was discovered as a raw material to prepare chitosan membrane. The membrane obtained is belonged to mesoporous group which may use in microfiltration process. (paper)

  17. Microspectroscopic investigation of the membrane clogging during the sterile filtration of the growth media for mammalian cell culture.

    Science.gov (United States)

    Cao, Xiaolin; Loussaert, James A; Wen, Zai-qing

    2016-02-05

    Growth media for mammalian cell culture are very complex mixtures of several dozens of ingredients, and thus the preparation of qualified media is critical to viable cell density and final product titers. For liquid media prepared from powdered ingredients, sterile filtration is required prior to use to safeguard the cell culture process. Recently one batch of our prepared media failed to pass through the sterile filtration due to the membrane clogging. In this study, we report the root cause analysis of the failed sterile filtration based on the investigations of both the fouling media and the clogged membranes with multiple microspectroscopic techniques. Cellular particles or fragments were identified in the fouling media and on the surfaces of the clogged membranes, which were presumably introduced to the media from the bacterial contamination. This study demonstrated that microspectroscopic techniques may be used to rapidly identify both microbial particles and inorganic precipitates in the cell culture media. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Quantitative measurement and visualization of biofilm O 2 consumption rates in membrane filtration systems

    KAUST Repository

    Prest, Emmanuelle I E C; Staal, Marc J.; Kü hl, Michael; van Loosdrecht, Mark C.M.; Vrouwenvelder, Johannes S.

    2012-01-01

    There is a strong need for techniques enabling direct assessment of biological activity of biofouling in membrane filtration systems. Here we present a new quantitative and non-destructive method for mapping O 2 dynamics in biofilms during

  19. Bromate formation in a hybrid ozonation-ceramic membrane filtration system.

    Science.gov (United States)

    Moslemi, Mohammadreza; Davies, Simon H; Masten, Susan J

    2011-11-01

    The effect of pH, ozone mass injection rate, initial bromide concentration, and membrane molecular weight cut off (MWCO) on bromate formation in a hybrid membrane filtration-ozonation reactor was studied. Decreasing the pH, significantly reduced bromate formation. Bromate formation increased with increasing gaseous ozone mass injection rate, due to increase in dissolved ozone concentrations. Greater initial bromide concentrations resulted in higher bromate concentrations. An increase in the bromate concentration was observed by reducing MWCO, which resulted in a concomitant increase in the retention time in the system. A model to estimate the rate of bromate formation was developed. Good correlation between the model simulation and the experimental data was achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Influence of Surface Properties of Filtration-Layer Metal Oxide on Ceramic Membrane Fouling during Ultrafiltration of Oil/Water Emulsion.

    Science.gov (United States)

    Lu, Dongwei; Zhang, Tao; Gutierrez, Leo; Ma, Jun; Croué, Jean-Philippe

    2016-05-03

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. A distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e., surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). Consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides is quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides toward oil droplets, consistent with the irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with the lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  1. Influence of surface properties of filtration-layer metal oxide on ceramic membrane fouling during ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei; Zhang, Tao; Gutierrez, Leo; Ma, Jun; Croue, Jean-Philippe

    2016-01-01

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. Distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e. surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). In consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides are quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides towards oil droplets which consists very well with irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  2. Influence of surface properties of filtration-layer metal oxide on ceramic membrane fouling during ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei

    2016-04-01

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. Distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e. surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). In consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides are quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides towards oil droplets which consists very well with irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  3. Reduction in energy consumption of electrochemical pesticide degradation through combination with membrane filtration

    DEFF Research Database (Denmark)

    Madsen, Henrik Tækker; Søgaard, Erik Gydesen; Muff, Jens

    2015-01-01

    A significant challenge for large-scale use of electrochemical oxidation (EO) is high energy consumption, and for EO to become accepted as a standard technique, the amount of energy consumed in the process must be reduced. In this study, it was investigated how the energy consumption of EO could...... be lowered by combining the process with membrane filtration, in a setup where EO was applied to the membrane retentate stream. Use of two types of membranes, a nanofiltration (NF) and a reverse osmosis (RO) membrane, was investigated, and to provide realistic estimates on the energy consumption...... of the treatment, natural groundwater spiked with the pesticide residue 2,6-dichlorobenzamide (BAM) was used as matrix in the experiments. To understand the effect of the membranes on the energy consumption, their effect on the EO degradation efficiency was also determined. The results showed that membranes...

  4. Filtration Behaviour and Fouling Mechanisms of Polysaccharides

    Directory of Open Access Journals (Sweden)

    Sondus Jamal

    2014-07-01

    Full Text Available This study investigated filtration behaviors of polysaccharides solutions, both alone and in mixture with proteins, in the short-time constant flux filtration with the focus on factors affecting the transmembrane pressure (TMP increase rate, the irreversible filtration resistance, and the membrane rejection behavior. The results showed that the TMP increase rates in the short-time constant flux filtration of alginate solutions were significantly affected by the calcium addition, alginate concentration, and flux. Although the addition of calcium resulted in a decrease in the TMP increase rate, it was found that the irreversible fouling developed during the filtration increased with the calcium addition, implying that the double-sided effect of calcium on membrane filtration and that the TMP increase rate observed in the filtration does not always reflect the irreversible membrane fouling development. It was also found that for the filtration of solutions containing mixed alginate and BSA, alginate exerted a dominant effect on the TMP increase rate and the membrane exhibited a reduced rejection to both alginate and BSA molecules compared to that in the filtration of the pure alginate or BSA.

  5. Recovery of real dye bath wastewater using integrated membrane process: considering water recovery, membrane fouling and reuse potential of membranes.

    Science.gov (United States)

    Balcik-Canbolat, Cigdem; Sengezer, Cisel; Sakar, Hacer; Karagunduz, Ahmet; Keskinler, Bulent

    2017-11-01

    It has been recognized by the whole world that textile industry which produce large amounts of wastewater with strong color and toxic organic compounds is a major problematical industry requiring effective treatment solutions. In this study, reverse osmosis (RO) membranes were tested on biologically treated real dye bath wastewater with and without pretreatment by nanofiltration (NF) membrane to recovery. Also membrane fouling and reuse potential of membranes were investigated by multiple filtrations. Obtained results showed that only NF is not suitable to produce enough quality to reuse the wastewater in a textile industry as process water while RO provide successfully enough permeate quality. The results recommend that integrated NF/RO membrane process is able to reduce membrane fouling and allow long-term operation for real dye bath wastewater.

  6. Small Water System Alternatives: Media and Membrane Filtration Alternatives for Small Communities and Households

    Science.gov (United States)

    This webinar presentation will highlight research case studies on innovative drinking water treatment alternatives for small community water systems. Emphasis will be placed on media and membrane filtration technologies capable of meeting the requirements of the Long-Term 2 Enha...

  7. Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive.

    Science.gov (United States)

    Zhao, Yi-Fan; Zhang, Pei-Bin; Sun, Jian; Liu, Cui-Jing; Yi, Zhuan; Zhu, Li-Ping; Xu, You-Yi

    2015-06-15

    Here we describe the development of versatile antifouling polyethersulfone (PES) filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive. Amphiphilic polyethersulfone-block-poly(2-hydroxyethyl methacrylate) (PES-b-PHEMA) was beforehand designed and used as the blending additive of PES membranes prepared by phase inversion technique. The surface enriched PHEMA blocks on membrane surface acted as an anchor to immobilize the initiating site. Poly(sulfobetaine methacrylate) (PSBMA) were subsequently grafted onto the PES blend membranes by surface-initiated atom transfer radical polymerization (SI-ATRP). The analysis of surface chemistry confirmed the successful grafting of zwitterionic PSBMA brushes on PES membrane surface. The resulted PES-g-PSBMA membranes were capable of separating proteins from protein solution and oil from oil/water emulsion efficiently. Furthermore, the modified membranes showed high hydrophilicity and strongly antifouling properties due to the incorporation of well-defined PSBMA layer. In addition, the PES-g-PSBMA membranes exhibited excellent blood compatibility and durability during the washing process. The developed antifouling PES membranes are versatile and can find their applications in protein filtration, blood purification and oil/water separation, etc. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Study of Separation and Fouling of Reverse Osmosis Membranes during Model Hydrolysate Solution Filtration.

    Science.gov (United States)

    Ajao, Olumoye; Rahni, Mohamed; Marinova, Mariya; Chadjaa, Hassan; Savadogo, Oumarou

    2017-12-15

    Prehydrolysate, a dilute solution consisting mainly of pentoses, hexoses, and lesser quantities of organic acids, furfural and phenolics, is generated in the Kraft dissolving pulp process. An obstacle facing the valorization of the solution in hemicellulose biorefineries, by conversion of the sugars into bioproducts such as furfural, is the low sugar concentration. Membrane filtration is typically proposed in several hemicellulose based biorefineries for concentrating the solution, although they are usually generated using different wood species, pretreatment methods, and operating conditions. However, the chemical composition of the solutions is generally not considered. Also, the combined effect of composition and operating conditions is rarely investigated for biorefinery applications. The purpose of this work was to determine the impact of the prehydrolysate composition and operating parameters on the component separation and permeate flux during membrane filtration. Using model prehydrolysate solutions, two commercial reverse osmosis (RO) membranes were screened, and one was selected for use, based on its higher sugar and acetic acid retention. A Taguchi L18 experimental design array was then applied to determine the dominant parameters and limiting factors. Results showed that the feed pressure and temperature have the highest impact on permeate flux, but the least effect on sugar retention. Further experiments to quantify flux decline, due to fouling and osmotic pressure, showed that furfural has the highest membrane fouling tendency, and can limit the lifetime of the membrane. Regeneration of the membrane by cleaning with a sodium hydroxide solution is also effective for reversing fouling. It has been demonstrated that RO can efficiently and sustainably concentrate wood prehydrolysate.

  9. Study of Separation and Fouling of Reverse Osmosis Membranes during Model Hydrolysate Solution Filtration

    Directory of Open Access Journals (Sweden)

    Olumoye Ajao

    2017-12-01

    Full Text Available Prehydrolysate, a dilute solution consisting mainly of pentoses, hexoses, and lesser quantities of organic acids, furfural and phenolics, is generated in the Kraft dissolving pulp process. An obstacle facing the valorization of the solution in hemicellulose biorefineries, by conversion of the sugars into bioproducts such as furfural, is the low sugar concentration. Membrane filtration is typically proposed in several hemicellulose based biorefineries for concentrating the solution, although they are usually generated using different wood species, pretreatment methods, and operating conditions. However, the chemical composition of the solutions is generally not considered. Also, the combined effect of composition and operating conditions is rarely investigated for biorefinery applications. The purpose of this work was to determine the impact of the prehydrolysate composition and operating parameters on the component separation and permeate flux during membrane filtration. Using model prehydrolysate solutions, two commercial reverse osmosis (RO membranes were screened, and one was selected for use, based on its higher sugar and acetic acid retention. A Taguchi L18 experimental design array was then applied to determine the dominant parameters and limiting factors. Results showed that the feed pressure and temperature have the highest impact on permeate flux, but the least effect on sugar retention. Further experiments to quantify flux decline, due to fouling and osmotic pressure, showed that furfural has the highest membrane fouling tendency, and can limit the lifetime of the membrane. Regeneration of the membrane by cleaning with a sodium hydroxide solution is also effective for reversing fouling. It has been demonstrated that RO can efficiently and sustainably concentrate wood prehydrolysate.

  10. Preparation and Characterization of Polypropylene Non-woven Fabrics Prepared by Melt-blown Spinning for Filtration Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Konghee; Park, Mira; Kim, Hakyong [Chonbuk National Univ., Jeonju (Korea, Republic of); Jin, Fanlong; Park, Soojin [Inha Univ., Incheon (Korea, Republic of)

    2014-06-15

    PP non-woven fabrics were prepared by melt-blown spinning, followed by heat and plasma treatments. After heat treatment, the PP non-woven fabrics displayed decreased water flux, increased tensile strength, decreased elongation, and an average pore size of 0.7 μm. The hydrophilicity of the PP non-woven fabrics was improved by plasma treatment. The water flux of the PP non-woven fabrics increased about two fold after the plasma treatment. The particle removal efficiency was determined to be 97.2-99.4% for 1-3 μm sized particles, demonstrating a high particle removal efficiency. Polypropylene (PP) non-woven fabrics have been widely used as filtration membranes in wastewater purification with industrial applications due to their low cost, good mechanical strength, and high thermal and chemical stability. The membrane fouling behavior depends strongly on the physical and mechanical properties of the membrane, including pore size, porosity, morphology, and hydrophilicity. In general, PP non-woven fabrics have poor hydrophilicity; this has limited their application in the biomedical field. It is therefore necessary to develop PP non-woven fabrics with improved surface hydrophilicity to increase the scope of their use. Plasma treatment, an environmentally friendly alternative to traditional chemical activation, only changes the uppermost atomic layers of a membrane surface without affecting the bulk properties of the polymer.

  11. Dewatering of Chlorella pyrenoidosa using diatomite dynamic membrane: filtration performance, membrane fouling and cake behavior.

    Science.gov (United States)

    Zhang, Yalei; Zhao, Yangying; Chu, Huaqiang; Zhou, Xuefei; Dong, Bingzhi

    2014-01-01

    The diatomite dynamic membrane (DDM) was utilized to dewater Chlorella pyrenoidosa of 2 g dry weight/L under continuous-flow mode, whose ultimate algae concentration ranged from 43 g to 22 g dry weight/L of different culture time. The stable flux of DDM could reach 30 L/m(2) h over a 24 h operation time without backwash. Influences of extracellular organic matters (EOM) on filtration behavior and membrane fouling were studied. The DDM was divided into three sub-layers, the slime layer, the algae layer and the diatomite layer from the outside to the inside of the cake layer based on components and morphologies. It was found that EOM caused membrane fouling by accumulating in the slime and algae layers. The DDM intercepted polysaccharides, protein-like substances, humic-like substances and some low-MW organics. Proteins were indicated the major membrane foulants with increased protein/polysaccharide ratio from the slime layer to the diatomite layer as culture time increased. This method could be applied to subsequent treatment of microalgae coupling technology of wastewater treatment or microalgae harvesting for producing biofuel. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Feasibility study of micro-filtration for algae separation in an innovative nuclear effluents decontamination process

    International Nuclear Information System (INIS)

    Gouvion Saint Cyr, D. de; Wisniewski, C.; Schrive, L.; Farhi, E.; Rivasseau, C.

    2014-01-01

    Bio-remediation technologies often offer efficiency, cost and environmental impact benefits against physico-chemical technologies. Concerning the remediation of radionuclide-containing water, a few bio-based technologies have been proposed but none is currently operational in highly radioactive environments. A new radio-tolerant micro-alga, isolated from a nuclear facility, possesses properties that offer new decontamination prospects for the nuclear industry or for the clean-up of environmental water. A pilot-scale treatment unit based on this alga is currently under development for the decontamination of radioactive water. It includes separation and/or concentration steps relying on membrane filtration. This work aims at verifying the feasibility of micro-filtration as separation step for the targeted algae separation. Recommendations about the choice of operating conditions limiting and/or controlling the membrane fouling are provided with the objective to enhance the separation efficiency. Lab-scale dead-end filtration tests were implemented and the key factors involved in the separation performances were investigated. Membrane characteristics, biomass composition, and hydrodynamic conditions were considered. Organic membranes provided adequate filtration performance. Membrane fouling was essentially induced by a rapid reversible algae deposit and to a lesser extent by irreversible pore blockage caused by smaller particles and dissolved organic matter. To cancel the reversible fouling, hydrodynamic actions such as stirring and back-flush efficiently prevented algae deposit, allowing higher filtration productivity. This study demonstrates the feasibility of membrane separation for micro-algae harvesting at laboratory-scale and specifies the suitable working conditions. (authors)

  13. Reduction of DOM fractions and their trihalomethane formation potential in surface river water by in-line coagulation with ceramic membrane filtration.

    Science.gov (United States)

    Rakruam, Pharkphum; Wattanachira, Suraphong

    2014-03-01

    This research was aimed at investigating the reduction of DOM fractions and their trihalomethane formation potential (THMFP) by in-line coagulation with 0.1 μm ceramic membrane filtration. The combination of ceramic membrane filtration with a coagulation process is an alternative technology which can be applied to enhance conventional coagulation processes in the field of water treatment and drinking water production. The Ping River water (high turbidity water) was selected as the raw surface water because it is currently the main raw water source for water supply production in the urban and rural areas of Chiang Mai Province. From the investigation, the results showed that the highest percent reductions of DOC, UV-254, and THMFP (47.6%, 71.0%, and 67.4%, respectively) were achieved from in-line coagulation with ceramic membrane filtration at polyaluminum chloride dosage 40 mg/L. Resin adsorption techniques were employed to characterize the DOM in raw surface water and filtered water. The results showed that the use of a ceramic membrane with in-line coagulation was able to most efficiently reduce the hydrophobic fraction (HPOA) (68.5%), which was then followed by the hydrophilic fraction (HPIA) (49.3%). The greater mass DOC reduction of these two fractions provided the highest THMFP reductions (55.1% and 37.2%, respectively). Furthermore, the in-line coagulation with ceramic membrane filtration was able to reduce the hydrophobic (HPOB) fraction which is characterized by high reactivity toward THM formation. The percent reduction of mass DOC and THMFP of HPOB by in-line coagulation with ceramic membrane filtration was 45.9% and 48.0%, respectively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  14. Inline UV-Vis spectroscopy to monitor and optimize cleaning-in-place (CIP) of whey filtration plants

    DEFF Research Database (Denmark)

    Berg, Thilo Heinz Alexander; Ottosen, Niels; van der Berg, Franciscus Winfried J.

    2017-01-01

    used for every day. We investigated the capability of inline UV-Vis spectroscopy to elucidate the dynamics of CIP of membrane filtration plants as a gateway to control and optimize the process. For this investigation aged membranes that had been used for industrial ultrafiltration of whey were...

  15. Development of a dynamic model for cleaning ultra filtration membranes fouled by surface water

    NARCIS (Netherlands)

    Zondervan, Edwin; Betlem, Ben H.L.; Roffel, Brian

    2007-01-01

    In this paper, a dynamic model for cleaning ultra filtration membranes fouled by surface water is proposed. A model that captures the dynamics well is valuable for the optimization of the cleaning process. The proposed model is based on component balances and contains three parameters that can be

  16. Optimization of protein fractionation by skim milk microfiltration: Choice of ceramic membrane pore size and filtration temperature.

    Science.gov (United States)

    Jørgensen, Camilla Elise; Abrahamsen, Roger K; Rukke, Elling-Olav; Johansen, Anne-Grethe; Schüller, Reidar B; Skeie, Siv B

    2016-08-01

    The objective of this study was to investigate how ceramic membrane pore size and filtration temperature influence the protein fractionation of skim milk by cross flow microfiltration (MF). Microfiltration was performed at a uniform transmembrane pressure with constant permeate flux to a volume concentration factor of 2.5. Three different membrane pore sizes, 0.05, 0.10, and 0.20µm, were used at a filtration temperature of 50°C. Furthermore, at pore size 0.10µm, 2 different filtration temperatures were investigated: 50 and 60°C. The transmission of proteins increased with increasing pore size, giving the permeate from MF with the 0.20-µm membrane a significantly higher concentration of native whey proteins compared with the permeates from the 0.05- and 0.10-µm membranes (0.50, 0.24, and 0.39%, respectively). Significant amounts of caseins permeated the 0.20-µm membrane (1.4%), giving a permeate with a whitish appearance and a casein distribution (αS2-CN: αS1-CN: κ-CN: β-CN) similar to that of skim milk. The 0.05- and 0.10-µm membranes were able to retain all caseins (only negligible amounts were detected). A permeate free from casein is beneficial in the production of native whey protein concentrates and in applications where transparency is an important functional characteristic. Microfiltration of skim milk at 50°C with the 0.10-µm membrane resulted in a permeate containing significantly more native whey proteins than the permeate from MF at 60°C. The more rapid increase in transmembrane pressure and the significantly lower concentration of caseins in the retentate at 60°C indicated that a higher concentration of caseins deposited on the membrane, and consequently reduced the native whey protein transmission. Optimal protein fractionation of skim milk into a casein-rich retentate and a permeate with native whey proteins were obtained by 0.10-µm MF at 50°C. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All

  17. Fabrication of an Anti-Biofouling Plasma-Filtration Membrane by an Electrospinning Process Using Photo-Cross-linkable Zwitterionic Phospholipid Polymers.

    Science.gov (United States)

    Seo, Jiae; Seo, Ji-Hun

    2017-06-14

    The goal of this study is to fabricate a stable plasma filtration membrane with antibiofouling properties via an electrospinning process. To this end, a random-type copolymer consisting of zwitterionic phosphorylcholine (PC) groups and ultraviolet (UV)-cross-linkable phenyl azide groups was synthesized. The zwitterionic PC group provides antibiofouling properties, and the phenyl azide group enables the stable maintenance of the fibrous nanostructure of hydrophilic zwitterion polymers in aqueous medium via a simple UV curing process. To demonstrate the antibiofouling nature of the PC group, a polymer without antibiofouling PC groups was also prepared for comparison. The successful synthesis of the random-type copolymers containing phenyl azide groups was proven by 1 H nuclear magnetic resonance and Fourier transform infrared spectroscopy, and the fibrous structure of the prepared membranes was observed by field emission scanning electron microscopy. The antibiofouling properties were analyzed by fluorescein isothiocyanate-labeled bovine serum albumin adsorption and platelet adhesion tests. The experimental results show that membranes containing zwitterionic PC groups exhibited obvious decreases in platelet adhesion and protein adsorption. Platelet-rich plasma solution was filtered using the prepared membranes to test their filtration properties. The sequential filtration process removed 80% and almost 98% of the platelets. This finding confirmed that the membrane retained its blood-inert biomaterial surface in a complex medium that included blood plasma and platelets.

  18. Ozonation and/or Coagulation - Ceramic Membrane Hybrid for Filtration of Impaired-Quality Source Waters

    KAUST Repository

    Ha, Changwon

    2013-09-01

    When microfiltration (MF) and ultrafiltration (UF) membranes are applied for drinking water treatment/wastewater reuse, membrane fouling is an evitable problem, causing the loss of productivity over time. Polymeric membranes have been often reported to experience rapid and/or problematical fouling, restraining sustainable operation. Ceramic membranes can be effectively employed to treat impaired-quality source waters due to their inherent robustness in terms of physical and chemical stability. This research aimed to identify the effects of coagulation and/or ozonation on ceramic membrane filtration for seawater and wastewater (WW) effluent. Two different types of MF and UF ceramic membranes obtained by sintering (i.e., TAMI made of TiO2+ZrO2) and anodic oxidation process (i.e., AAO made of Al2O3) were employed for bench-scale tests. Precoagulation was shown to play an important role in both enhancing membrane filterability and natural organic matter (NOM) removal efficacy for treating a highorganic surface water. The most critical factors were found to be pH and coagulant dosage with the highest efficiency resulting under low pH and high coagulant dose. Due to the ozone-resistance nature of the ceramic membranes, preozonation allowed the ceramic membranes to be operated at higher flux, especially leading to significant flux improvement when treating seawater in the presence of calcium and magnesium. 4 Dissolved ozone in contact with the TAMI ceramic membrane surface accelerated the formation of hydroxyl (˙OH) radicals in WW effluent treatment. Flux restoration of both ceramic membranes, fouled with seawater and WW effluent, was efficiently achieved by high backwash (BW) pressure and ozone in chemically enhanced backwashing (CEB). Ceramic membranes exhibited a pH-dependent permeate flux while filtering WW effluent, showing reduced fouling with increased pH. On the other hand, for filtering seawater, differences in permeate flux between the two membranes was

  19. Filtration behavior of casein glycomacropeptide (CGMP) in an enzymatic membrane reactor: fouling control by membrane selection and threshold flux operation

    DEFF Research Database (Denmark)

    Luo, Jianquan; Morthensen, Sofie Thage; Meyer, Anne S.

    2014-01-01

    . In this study, the filtration performance and fouling behavior during ultrafiltration (UF) of CGMP for the enzymatic production of 3′-sialyllactose were investigated. A 5kDa regenerated cellulose membrane with high anti-fouling performance, could retain CGMP well, permeate 3′-sialyllactose, and was found...... to be the most suitable membrane for this application. Low pH increased CGMP retention but produced more fouling. Higher agitation and lower CGMP concentration induced larger permeate flux and higher CGMP retention. Adsorption fouling and pore blocking by CGMP in/on membranes could be controlled by selecting...... a highly hydrophilic membrane with appropriate pore size. Operating under threshold flux could minimize the concentration polarization and cake/gel/scaling layers, but might not avoid irreversible fouling caused by adsorption and pore blocking. The effects of membrane properties, pH, agitation and CGMP...

  20. Behavior of micro-particles in monolith ceramic membrane filtration with pre-coagulation.

    Science.gov (United States)

    Yonekawa, H; Tomita, Y; Watanabe, Y

    2004-01-01

    This paper is intended to clarify the characteristics unique to monolith ceramic membranes with pre-coagulation by referring to the behavior of micro-particles. Flow analysis and experiments have proved that monolith ceramic membranes show a unique flow pattern in the channels within the element, causing extremely rapid flocculation in the channel during dead-end filtration. It was assumed that charge-neutralized micro-particles concentrated near the membrane surface grow in size due to flocculation, and as a result, coarse micro-particles were taken up by the shearing force to flow out. As the dead end points of flow in all the channels are located near the end of the channels with higher filterability, most of the flocculated coarse particles are formed to a columnar cake intensively at the dead end point. Therefore cake layer forming on the membrane other than around the dead end point is alleviated. This behavior of particle flocculation and cake formation at the dead end point within the channels are unique characteristics of monolith ceramic membranes. This is why all monolith ceramic membrane water purification systems operating in Japan do not have pretreatment equipment for flocculation and sedimentation.

  1. Gravity filtration performances of the bio-diatomite dynamic membrane reactor for slightly polluted surface water purification.

    Science.gov (United States)

    Chu, Huaqiang; Dong, Bingzhi; Zhang, Yalei; Zhou, Xuefei

    2012-01-01

    A bio-diatomite dynamic membrane (BDDM) reactor for surface water treatment under a water head of 30, 40, 50, 60 and 70 cm, respectively, was investigated, which was very effective for pollutants removal. The water head exerted strong influences on filtration flux of BDDM during the precoating process, as well as on the formation of BDDM and turbidity variations. A high filtration flux (approximately 200-300 L/m2 h) could be achieved in the long filtration times of BDDM with a stable effluent turbidity of approximately 0.11-0.25 NTU. The BDDM could remove particles larger than 25 μm completely. The adopted sintered diatomite mainly consisted of macro pores, which were beneficial for improving the filtration flux of BDDM. During the backwash stage, the BDDM could be removed completely by the air backwash.

  2. Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution

    Science.gov (United States)

    Nikooe, Naeme; Saljoughi, Ehsan

    2017-08-01

    In the present research, for the first time PVDF/Brij-58 blend nanofiltration membranes with remarkable performance in filtration of dye aqueous solution were prepared via immersion precipitation. A noticeable improvement in water permeation and fouling resistance of the PVDF membranes was achieved by using Brij-58 surfactant as a hydrophilic additive. Scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR) and water contact angle were applied for the investigation of membrane morphology, detection of the surface chemical composition and relative hydrophilicity/hydrophobicity, respectively. The membrane performance was studied and compared by determination of pure water flux (PWF) and filtration of synthetic reactive dye aqueous solutions as well as bovine serum albumin (BSA) as foulant model. It was found out that addition of 4 wt.% Brij-58 to the casting solution results in formation of membrane with remarkable hydrophilicity and fouling resistance (contact angle of 46° and flux recovery ratio (FRR) = 90%), higher porosity and consequently noticeable PWF (31.2 L/m2 h) and recognized dye rejection value (90%) in comparison with the pristine PVDF nanofiltration membrane. Addition of Brij-58 surfactant to the casting solution resulted in formation of NF membrane with higher hydrophilicity and permeability as well as higher dye rejection value in comparison with the addition of PEG 400 additive.

  3. Development of High-Antifouling PPSU Ultrafiltration Membrane by Using Compound Additives: Preparation, Morphologies, and Filtration Resistant Properties.

    Science.gov (United States)

    Liu, Jie; Zhong, Zhencheng; Ma, Rui; Zhang, Weichen; Li, Jiding

    2016-06-21

    In this study, flat sheet asymmetric polyphenylsulfone (PPSU) ultrafiltration membranes with enhanced antifouling properties were prepared with a non-solvent induced phase separation (NIPS) method through compound additives containing a polymeric pore-forming agent, a small molecular non-solvent and a surfactant. The formation processes of the porous asymmetric membranes with different kinds of additives were studied in detail, and the microstructure controllable preparation of membrane was achieved by establishing a bridge between the membrane preparation parameters and separation performances. All prepared membranes were characterized by using a scanning electron microscope (SEM), contact angle analysis, porosity, maximum pore size, water and BSA solution permeability studies. The performance efficiency of the membrane was evaluated by using BSA as a model foulant in terms of permeability, solute rejection (R), Rm (membrane inherent resistance), Rc (cake layer resistance), and Rp (pore plugging resistance). The results showed that when the compound additives were used, the inter-connected pores were observed, maximum pore size, contact angle and membrane filtration resistance decreased, while the porosity increased. When PVP compound additives were added, the water flux increased from 80.4 to 148.1 L/(m²·h), the BSA rejection increased from 53.2% to 81.5%. A similar trend was observed for membranes with added PEG compound additives; the water flux and BSA rejection simultaneously increased. The filtration resistance decreased as a result of compound additives. The uniformity of membrane and the number of effective pores could be enhanced by adding compound additives through the cooperation of different additives.

  4. Development of High-Antifouling PPSU Ultrafiltration Membrane by Using Compound Additives: Preparation, Morphologies, and Filtration Resistant Properties

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2016-06-01

    Full Text Available In this study, flat sheet asymmetric polyphenylsulfone (PPSU ultrafiltration membranes with enhanced antifouling properties were prepared with a non-solvent induced phase separation (NIPS method through compound additives containing a polymeric pore-forming agent, a small molecular non-solvent and a surfactant. The formation processes of the porous asymmetric membranes with different kinds of additives were studied in detail, and the microstructure controllable preparation of membrane was achieved by establishing a bridge between the membrane preparation parameters and separation performances. All prepared membranes were characterized by using a scanning electron microscope (SEM, contact angle analysis, porosity, maximum pore size, water and BSA solution permeability studies. The performance efficiency of the membrane was evaluated by using BSA as a model foulant in terms of permeability, solute rejection (R, Rm (membrane inherent resistance, Rc (cake layer resistance, and Rp (pore plugging resistance. The results showed that when the compound additives were used, the inter-connected pores were observed, maximum pore size, contact angle and membrane filtration resistance decreased, while the porosity increased. When PVP compound additives were added, the water flux increased from 80.4 to 148.1 L/(m2·h, the BSA rejection increased from 53.2% to 81.5%. A similar trend was observed for membranes with added PEG compound additives; the water flux and BSA rejection simultaneously increased. The filtration resistance decreased as a result of compound additives. The uniformity of membrane and the number of effective pores could be enhanced by adding compound additives through the cooperation of different additives.

  5. Development of supported biomimetic membranes for insertion of aquaporin protein water channels for novel water filtration applications

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard

    ). This constitutes a new methodology to correctly and functionally reconstitute membrane proteins in controllable amounts into giant vesicles. The method for formation of giant protein vesicles subsequently led to the first functional prototype of an aquaporin-membrane water filtration device.......Aquaporins represent a class of membrane protein channels found in all living organisms that selectively transport water molecules across biological membranes. The work presented in this thesis was motivated by the conceptual idea of incorporating aquaporin water channels into biomimetic membranes...... to develop novel water separation technologies. To accomplish this, it is necessary to construct an efficient platform to handle biomimetic membranes. Moreover, general methods are required to reliable and controllable reconstitute membrane proteins into artificially made model membranes...

  6. High flux MWCNTs-interlinked GO hybrid membranes survived in cross-flow filtration for the treatment of strontium-containing wastewater

    International Nuclear Information System (INIS)

    Zhang, Lin; Lu, Ying; Liu, Ying-Ling; Li, Ming; Zhao, Hai-Yang; Hou, Li-An

    2016-01-01

    Graphene oxide (GO)-based membranes provide an encouraging opportunity to support high separation efficiency for wastewater treatment. However, due to the relatively weak interaction between GO nanosheets, it is difficult for bare GO-based membranes to survive in cross-flow filtration. In addition, the permeation flux of the bare GO membrane is not high sufficiently due to its narrow interlayer spacing. In this study, GO membranes interlinked with multi-walled carbon nanotubes (MWCNTs) via covalent bonds were fabricated on modified polyacrylonitrile (PAN) supports by vacuum filtration. Due to the strong bonds between GO, MWCNTs and the PAN membrane, the membranes could be used for the treatment of simulated nuclear wastewater containing strontium via a cross-flow process. The result showed a high flux of 210.7 L/(m"2 h) at 0.4 MPa, which was approximately 4 times higher than that of commercial nanofiltration membranes. The improved water permeation was attributed to the nanochannels created by the interlinked MWCNTs in the GO layers. In addition, the hybrid membrane exhibited a high rejection of 93.4% for EDTA-chelated Sr"2"+ in an alkaline solution, and could also be used to separate Na"+/Sr"2"+ mixtures. These results indicate that the MWCNTs-interlinked GO membrane has promising prospects for application in radioactive waste treatment.

  7. Separation of metallic cations by means of coupled filtration on a ceramic membrane. Use of a complexing heteropolyanion

    International Nuclear Information System (INIS)

    Brun, Stephane

    1999-01-01

    In the field of the high level nuclear waste reprocessing, the Nuclear French Agency is currently carrying out studies on several processes (including the SESAME process) which aim at separating radioactive elements in order to dispose them specifically or to transmute them. One of these processes concerns the selective extraction of americium at an upper oxidation state than Ill. This work deals with the separation of Am(IV) from Ln(Ill) by means of complexation-coupled tangential filtration on alumina-titanium ceramic membranes. The chosen selective complexing agent is a lacunar heteropolyanion from the tungstophosphate family α_2P_2W_1_7O_6_1"1"0"-, which synthesis and various properties in solution have been studied. The polyanion stability in 0.5 M nitric solution strongly depends on the quality of the synthesised product. Two analytical techniques were developed to check the quality of the synthesised sets: "3"1P NMR and arsenazo-lanthanum complexometric titration. The separation studies on the cerium (IV)-neodymium (Ill) system were carried out to simulate americium(IV)/lanthanides(Ill) system. For the two alumina-titanium membranes studied (ultrafiltration and nano-filtration), the solvent flow can be described through a capillary mechanism which is characteristic of porous membranes. The ion transfer through the membranes, mainly governed by electrostatic interactions, strongly depends on the ionic strength at the membrane-solution interface. The best separation results, using nano-filtration, still remain below the expected performances, with a Ce(IV)/Nd(Ill) separation factor of 35 on a single stage in 0,5 M nitric medium. (author) [fr

  8. The Formation of Porous Membranes by Filtration of Aerosol Nanoparticles

    International Nuclear Information System (INIS)

    Andersen, Sune K.; Johannessen, Tue; Mosleh, Majid; Wedel, Stig; Tranto, Janne; Livbjerg, Hans

    2002-01-01

    Flame-generated aerosol particles of Al 2 O 3 were deposited by gas filtration on two types of porous and ceramic tubes of α-Al 2 O 3 with mean pore diameters of 450 and 2700 nm, respectively. The particles were aggregates with average mobility diameters in the range of 30-100 nm and primary particle diameters of 4-8 nm. The particles are characterized by differential mobility analysis, transmission electron microscopy, and by their specific surface area. The deposited membranes are characterized by gas permeability measurements, scanning electron microscopy, and by their pore size distribution from nitrogen capillary condensation. The particles form a distinct, homogeneous membrane layer with a porosity of ∼90% on top of the substrate surface and only penetrate slightly into the substrate structure. The mean pore sizes of the deposited membranes determined by nitrogen condensation agree approximately with those determined by gas permeation and the specific surface area. The mean pore diameter varies in the range of 30-70 nm. The gas permeability of the deposited membranes is related to the specific surface area but influenced by the high porosity. The mean pore size and the permeability of the membranes are almost independent of the substrate structure.The development of a membrane with uniform properties is preceded by a short initial period in which the deposited particles, with an equivalent membrane thickness of roughly 2 μm, have a significantly lower permeability than the ultimately developed uniform membrane layer. This effect is particularly significant for the aerosol particles with the lowest mean size, probably due to particles deposited in the pore mouths of the substrate.The particles and the deposited membranes are X-ray amorphous but retain their specific surface area on heating to even high temperatures. When the membranes are heated to 1473 K for 10 h, X-ray diffraction shows a mixture of θ- and α-alumina, accompanied by a partial

  9. Microfiltration of distillery stillage: Influence of membrane pore size

    Directory of Open Access Journals (Sweden)

    Vasić Vesna M.

    2012-01-01

    Full Text Available Stillage is one of the most polluted waste products of the food industry. Beside large volume, the stillage contains high amount of suspended solids, high values of chemical oxygen demand and biological oxygen demand, so it should not be discharged in the nature before previous purification. In this work, three ceramic membranes for microfiltration with different pore sizes were tested for stillage purification in order to find the most suitable membrane for the filtration process. Ceramic membranes with a nominal pore size of 200 nm, 450 nm and 800 nm were used for filtration. The influence of pore size on permeate flux and removal efficiency was investigated. A membrane with the pore size of 200 nm showed the best filtration performance so it was chosen for the microfiltration process.

  10. Effect of solvent concentration on performance of polysulfone membrane for filtration and separation

    Science.gov (United States)

    Syafiq Mohamad Sofian, Muhamad; Zaini Yunos, Muhamad; Ahmad, Azlinnorazia; Harun, Zawati; Akhair, Siti Hajar Mohd; Adibah Raja Ahmad, Raja; Hafeez Azhar, Faiz; Rashid, Abdul Qaiyyum Abd; Ismail, Al Emran

    2017-08-01

    This study was conducted to investigate the effect of solvent concentration on the performance of polysulfone membrane via airbrush spray method. The solvent concentration was varied from 73% to 80% in dope solution. The study also investigated airbrush processing parameter such as spray time and distance at different solvent concentration. The prepared membrane was characterized in respect to its morphology and the performance of the membrane were evaluated via gas permeability performance. This study found that the membrane fiber size was reduced as solvent concentration increases. When time increased the diameter of fiber also increased. The distance also affected the fiber size, when the distance increased the diameter of fiber became smaller. 80% of solvent concentration has better filtration and separation ability compared to other solvent due to its porosity and morphology. From the gas permeability cell testing it shows that the permeability is increasing as the solvent concentration decrease.

  11. Optimising and Predicting Performance of Industrial Filtrations using Process Data

    DEFF Research Database (Denmark)

    David Bähner, Franz; Santacoloma, Paloma A.; Abildskov, Jens

    2017-01-01

    Industrial cake filtration is non-trivial from an operational point of view. Discrete events such as the removal of filter cake occur on a frequent but irregular basis. These events tend to upset the steady state of the incorporating line, which may constrain plantwide optimisation. A case study...... has been carried out with an industrial partner where changes in the biological feedstock act as strong disturbances on a series of manually reinitialised dead-end pressure leaf filters. This renders production planning a challenging task which,so far, is carried out by experienced operators. We look...

  12. Free-standing hierarchical α-MnO2@CuO membrane for catalytic filtration degradation of organic pollutants.

    Science.gov (United States)

    Luo, Xinsheng; Liang, Heng; Qu, Fangshu; Ding, An; Cheng, Xiaoxiang; Tang, Chuyang Y; Li, Guibai

    2018-06-01

    Catalytic membrane, due to its compact reactor assembling, high catalytic performance as well as low energy consumption, has proved to be more attractive for wastewater treatment. In this work, a free-standing α-MnO 2 @CuO membrane with hierarchical nanostructures was prepared and evaluated as the catalytic membrane to generate radicals from peroxymonosulfate (PMS) for the oxidative degradation of organic dyes in aqueous solution. Benefiting from the high mass transport efficiency and the hierarchical nanostructures, a superior catalytic activity of the membrane was observed for organic dyes degradation. As a typical organic dye, more than 99% of methylene blue (MB) was degraded within 0.23 s using dead-end filtration cell. The effects of flow rate, PMS concentration and buffer solution on MB degradation were further investigated. Besides MB, the catalytic membrane also showed excellent performance for the removal of other dyes, such as congo red, methyl orange, rhodamine B, acid chrome blue K and malachite green. Moreover, the mechanism study indicated that OH and SO 4 - generated from the interaction between PMS and Mn/Cu species with different oxidation states mainly accounted for the dyes degradation. The catalytic filtration process using α-MnO 2 @CuO catalytic membrane could provide a novel method for wastewater purification with high efficiency and low energy consumption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Reverse osmosis membrane allows in situ regeneration

    International Nuclear Information System (INIS)

    Bonhomme, N.; Menjeaud, C.; Poyet, C.

    1989-01-01

    The use of mineral membranes on metallic supports has provided a novel solution to the problem of filtration by the reverse osmosis process. A new reverse osmosis membrane is described which is capable of resisting high operational temperatures (120 0 C), fluctuations in pH(3 to 12) and high pressure (100 bar), as well as significant chlorine concentrations. In addition, the membrane can be regenerated in-situ on the same porous metal support. Numerous membranes can thus be used over the multi-year life of the porous support. Moreover, accidental damage to the membrane is of no great consequence as the membrane itself can be easily replaced. The life of the installation can thus be extended and the overall cost of filtration reduced. The membrane's various applications include water and effluent treatment in the nuclear power industry. (author)

  14. Space and Industrial Brine Drying Technologies

    Science.gov (United States)

    Jones, Harry W.; Wisniewski, Richard S.; Flynn, Michael; Shaw, Hali

    2014-01-01

    This survey describes brine drying technologies that have been developed for use in space and industry. NASA has long considered developing a brine drying system for the International Space Station (ISS). Possible processes include conduction drying in many forms, spray drying, distillation, freezing and freeze drying, membrane filtration, and electrical processes. Commercial processes use similar technologies. Some proposed space systems combine several approaches. The current most promising candidates for use on the ISS use either conduction drying with membrane filtration or spray drying.

  15. Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Nikooe, Naeme, E-mail: naeme.nikooe@stu.um.ac.ir; Saljoughi, Ehsan, E-mail: saljoughi@um.ac.ir

    2017-08-15

    Highlights: • Preparation of novel PVDF nanofiltration membranes with noticeable hydrophilicity. • Simultaneous achievement of hydrophilicity and dye removal via addition of Brij-58. • In situ modification and stability of hydrophilic property via addition of Brij-58. - Abstract: In the present research, for the first time PVDF/Brij-58 blend nanofiltration membranes with remarkable performance in filtration of dye aqueous solution were prepared via immersion precipitation. A noticeable improvement in water permeation and fouling resistance of the PVDF membranes was achieved by using Brij-58 surfactant as a hydrophilic additive. Scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR) and water contact angle were applied for the investigation of membrane morphology, detection of the surface chemical composition and relative hydrophilicity/hydrophobicity, respectively. The membrane performance was studied and compared by determination of pure water flux (PWF) and filtration of synthetic reactive dye aqueous solutions as well as bovine serum albumin (BSA) as foulant model. It was found out that addition of 4 wt.% Brij-58 to the casting solution results in formation of membrane with remarkable hydrophilicity and fouling resistance (contact angle of 46° and flux recovery ratio (FRR) = 90%), higher porosity and consequently noticeable PWF (31.2 L/m{sup 2} h) and recognized dye rejection value (90%) in comparison with the pristine PVDF nanofiltration membrane. Addition of Brij-58 surfactant to the casting solution resulted in formation of NF membrane with higher hydrophilicity and permeability as well as higher dye rejection value in comparison with the addition of PEG 400 additive.

  16. High flux MWCNTs-interlinked GO hybrid membranes survived in cross-flow filtration for the treatment of strontium-containing wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lin; Lu, Ying [Key Laboratory of Biomass Chemical Engineering, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027 (China); Liu, Ying-Ling [Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Li, Ming [Xi' an High-Tech Institute, Xi' an 710025 (China); Zhao, Hai-Yang [Key Laboratory of Biomass Chemical Engineering, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027 (China); Hou, Li-An, E-mail: houla@cae.cn [Key Laboratory of Biomass Chemical Engineering, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027 (China); Xi' an High-Tech Institute, Xi' an 710025 (China)

    2016-12-15

    Graphene oxide (GO)-based membranes provide an encouraging opportunity to support high separation efficiency for wastewater treatment. However, due to the relatively weak interaction between GO nanosheets, it is difficult for bare GO-based membranes to survive in cross-flow filtration. In addition, the permeation flux of the bare GO membrane is not high sufficiently due to its narrow interlayer spacing. In this study, GO membranes interlinked with multi-walled carbon nanotubes (MWCNTs) via covalent bonds were fabricated on modified polyacrylonitrile (PAN) supports by vacuum filtration. Due to the strong bonds between GO, MWCNTs and the PAN membrane, the membranes could be used for the treatment of simulated nuclear wastewater containing strontium via a cross-flow process. The result showed a high flux of 210.7 L/(m{sup 2} h) at 0.4 MPa, which was approximately 4 times higher than that of commercial nanofiltration membranes. The improved water permeation was attributed to the nanochannels created by the interlinked MWCNTs in the GO layers. In addition, the hybrid membrane exhibited a high rejection of 93.4% for EDTA-chelated Sr{sup 2+} in an alkaline solution, and could also be used to separate Na{sup +}/Sr{sup 2+} mixtures. These results indicate that the MWCNTs-interlinked GO membrane has promising prospects for application in radioactive waste treatment.

  17. Membrane-Based Technologies in the Pharmaceutical Industry and Continuous Production of Polymer-Coated Crystals/Particles.

    Science.gov (United States)

    Chen, Dengyue; Sirkar, Kamalesh K; Jin, Chi; Singh, Dhananjay; Pfeffer, Robert

    2017-01-01

    Membrane technologies are of increasing importance in a variety of separation and purification applications involving liquid phases and gaseous mixtures. Although the most widely used applications at this time are in water treatment including desalination, there are many applications in chemical, food, healthcare, paper and petrochemical industries. This brief review is concerned with existing and emerging applications of various membrane technologies in the pharmaceutical and biopharmaceutical industry. The goal of this review article is to identify important membrane processes and techniques which are being used or proposed to be used in the pharmaceutical and biopharmaceutical operations. How novel membrane processes can be useful for delivery of crystalline/particulate drugs is also of interest. Membrane separation technologies are extensively used in downstream processes for bio-pharmaceutical separation and purification operations via microfiltration, ultrafiltration and diafiltration. Also the new technique of membrane chromatography allows efficient purification of monoclonal antibodies. Membrane filtration techniques of reverse osmosis and nanofiltration are being combined with bioreactors and advanced oxidation processes to treat wastewaters from pharmaceutical plants. Nanofiltration with organic solvent-stable membranes can implement solvent exchange and catalyst recovery during organic solvent-based drug synthesis of pharmaceutical compounds/intermediates. Membranes in the form of hollow fibers can be conveniently used to implement crystallization of pharmaceutical compounds. The novel crystallization methods of solid hollow fiber cooling crystallizer (SHFCC) and porous hollow fiber anti-solvent crystallization (PHFAC) are being developed to provide efficient methods for continuous production of polymer-coated drug crystals in the area of drug delivery. This brief review provides a general introduction to various applications of membrane technologies in

  18. Development of membrane technology in BARC

    International Nuclear Information System (INIS)

    Misra, B.M.

    2003-01-01

    BARC has been engaged in research and development work on pressure-driven membrane technology from laboratory to pilot plant scale and its commercial scale deployment, for sea and brackish water desalination into potable water, effluent water treatment and water reuse and in various industrial separations including decontamination of radioactive liquid effluents for their safe disposal into the environment. This paper gives a brief description of pressure-driven membrane processes, reverse osmosis, nano filtration, ultrafiltration and micro filtration. Selection of polymeric candidate materials, preparation of semi-permeable membranes and their characterization has been discussed. Various applications of these processes conducted on pilot plant scale have been presented. Large scale deployment of membrane processes for sea water desalination has been indicated. Research and development at BARC has thus resulted in the indigenous development of membrane processes for commercial scale operation. (author)

  19. Spontaneous water filtration of bio-inspired membrane

    Science.gov (United States)

    Kim, Kiwoong; Kim, Hyejeong; Lee, Sang Joon

    2016-11-01

    Water is one of the most important elements for plants, because it is essential for various metabolic activities. Thus, water management systems of vascular plants, such as water collection and water filtration have been optimized through a long history. In this view point, bio-inspired technologies can be developed by mimicking the nature's strategies for the survival of the fittest. However, most of the underlying biophysical features of the optimized water management systems remain unsolved In this study, the biophysical characteristics of water filtration phenomena in the roots of mangrove are experimentally investigated. To understand water-filtration features of the mangrove, the morphological structures of its roots are analyzed. The electrokinetic properties of the root surface are also examined. Based on the quantitatively analyzed information, filtration of sodium ions in the roots are visualized. Motivated by this mechanism, spontaneous desalination mechanism in the root of mangrove is proposed by combining the electrokinetics and hydrodynamic transportation of ions. This study would be helpful for understanding the water-filtration mechanism of the roots of mangrove and developing a new bio-inspired desalination technology. This research was financially supported by the National Research Foundation (NRF) of Korea (Contract Grant Number: 2008-0061991).

  20. Presence of Fe-Al binary oxide adsorbent cake layer in ceramic membrane filtration and their impact for removal of HA and BSA.

    Science.gov (United States)

    Kim, Kyung-Jo; Jang, Am

    2018-04-01

    To enhance the removal of natural organic matter (NOM) in ceramic (Ce) membrane filtration, an iron-aluminum binary oxide (FAO) was applied to the ceramic membrane surface as the adsorbent cake layer, and it was compared with heated aluminum oxide (HAO) for the evaluation of the control of NOM. Both the HAO and FAO adsorbent cake layers efficiently removed the NOM regardless of NOM's hydrophobic/hydrophilic characteristics, and the dissolved organic carbon (DOC) removal in NOM for FAO was 1-1.12 times greater than that for HAO, which means FAO was more efficient in the removal of DOC in NOM. FAO (0.03 μm), which is smaller in size than HAO (0.4 μm), had greater flux reduction than HAO. The flux reduction increased as the filtration proceeded because most of the organic foulants (colloid/particles and soluble NOM) were captured by the adsorbent cake layer, which caused fouling between the membrane surface and the adsorbent cake layer. However, no chemically irreversible fouling was observed on the Ce membrane at the end of the FAO adsorbent cake layer filtration. This means that a stable adsorbent cake layer by FAO formed on the Ce membrane, and that the reduced pure water flux of the Ce membrane, resulting from the NOM fouling, can easily be recovered through physicochemical cleaning. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Cross-flow filtration and axial filtration

    International Nuclear Information System (INIS)

    Kraus, K.A.

    1974-01-01

    Two relatively novel alternative solid-liquid-separation techniques of filtration are discussed. In cross-flow filtration, the feed is pumped past the filtering surface. While in axial filtration the filter, mounted on a rotor, is moved with respect to the feed. While large-scale application of the axial filter is still in doubt, it permits with little expenditure of time and money, duplication of many hydrodynamic aspects of cross-flow filtration for fine-particle handling problems. The technique has been applied to municipal wastes, low-level radioactive waste treatment plant, lead removal from industrial wastes, removal of pulp-mill contaminants, textile-mill wastes, and pretreatment of saline waters by lime-soda process in preparation for hyperfiltration. Economics and energy requirements are also discussed

  2. Palm Oil Mill Effluent Treatment Through Combined Process Adsorption and Membrane Filtration

    Directory of Open Access Journals (Sweden)

    Muhammad Said

    2016-08-01

    Full Text Available The growth in palm oil production also leads to an Increase in the production of palm oil mill effluent (POME. Nowadays, POME was treated using an open lagoon but this method is ineffectiveness in complying with the standards for water disposal. Therefore, efficient and cohesive treatment system is highly desired to ensure the final discharge of the treated water meets the effluent discharge standards. Initially, the POME was treated through adsorption, followed by UF membranes roomates were intended to reduce COD, TSS and turbidity up to 88%, 99%, and 98%, while the final treatment of RO membranes can reduce BOD, COD and color up to 92%, 98% and 99%. To determine the optimum condition of the RO membrane, response surface methodology (RSM was used. The results showed there was correlation between all key variables. POME concentration, trans-membrane pressure, pH and time would give significant effects in reducing the parameters in POME treatment with the optimum condition of 15.77% for POME concentration, 3.73 for pH, 0.5 bar trans-membrane pressure and 5 hours for filtration time. To predict COD removal, the results were analyzed by applying the artificial neural network (ANN to derive a mathematical model.

  3. Evaluation of dissolved air flotation and membrane filtration for drinking water treatment

    International Nuclear Information System (INIS)

    Van Benschoten, J.; Martin, C.; Schaefer, J.; Xu, L.; Franceschini, S.

    2002-01-01

    Laboratory and pilot-scale testing was conducted to evaluate the use of dissolved air flotation (DAF) followed by membrane filtration (MF) for drinking water treatment. At the laboratory scale, four water samples of varying water quality were tested. Pilot- scale DAF and MF plants located at the City of Buffalo Water Treatment facility utilized Lake Erie as a raw water source to evaluate this combination of treatment processes. A polyaluminum coagulant was used throughout the study. Study results demonstrated beneficial effects of coagulant addition in extending MF run time. Pilot testing showed additional benefits to using DAF as a pretreatment step to MF. In all testing, MF produced excellent water quality. Particulate matter appeared more important than concentration or type of dissolved organic matter in membrane fouling. (author)

  4. Effectiveness of Membrane Filtration to Improve Drinking Water: A Quasi-Experimental Study from Rural Southern India.

    Science.gov (United States)

    Francis, Mark Rohit; Sarkar, Rajiv; Roy, Sheela; Jaffar, Shabbar; Mohan, Venkata Raghava; Kang, Gagandeep; Balraj, Vinohar

    2016-11-02

    Since point-of-use methods of water filtration have shown limited acceptance in Vellore, southern India, this study evaluated the effectiveness of decentralized membrane filtration 1) with safe storage, 2) without safe storage, versus 3) no intervention, consisting of central chlorination as per government guidelines, in improving the microbiological quality of drinking water and preventing childhood diarrhea. Periodic testing of water sources, pre-/postfiltration samples, and household water, and a biweekly follow up of children less than 2 years of age was done for 1 year. The membrane filters achieved a log reduction of 0.86 (0.69-1.06), 1.14 (0.99-1.30), and 0.79 (0.67-0.94) for total coliforms, fecal coliforms, and Escherichia coli, respectively, in field conditions. A 24% (incidence rate ratio, IRR [95% confidence interval, CI] = 0.76 [0.51-1.13]; P = 0.178) reduction in diarrheal incidence in the intervention village with safe storage and a 14% (IRR [95% CI] = 1.14 [0.75-1.77]; P = 0.530) increase in incidence for the intervention village without safe storage versus no intervention village was observed, although not statistically significant. Microbiologically, the membrane filters decreased fecal contamination; however, provision of decentralized membrane-filtered water with or without safe storage was not protective against childhood diarrhea. © The American Society of Tropical Medicine and Hygiene.

  5. Micron-pore-sized metallic filter tube membranes for filtration of particulates and water purification.

    Science.gov (United States)

    Phelps, T J; Palumbo, A V; Bischoff, B L; Miller, C J; Fagan, L A; McNeilly, M S; Judkins, R R

    2008-07-01

    Robust filtering techniques capable of efficiently removing particulates and biological agents from water or air suffer from plugging, poor rejuvenation, low permeance, and high backpressure. Operational characteristics of pressure-driven separations are in part controlled by the membrane pore size, charge of particulates, transmembrane pressure and the requirement for sufficient water flux to overcome fouling. With long term use filters decline in permeance due to filter-cake plugging of pores, fouling, or filter deterioration. Though metallic filter tube development at ORNL has focused almost exclusively on gas separations, a small study examined the applicability of these membranes for tangential filtering of aqueous suspensions of bacterial-sized particles. A mixture of fluorescent polystyrene microspheres ranging in size from 0.5 to 6 microm in diameter simulated microorganisms in filtration studies. Compared to a commercial filter, the ORNL 0.6 microm filter averaged approximately 10-fold greater filtration efficiency of the small particles, several-fold greater permeance after considerable use and it returned to approximately 85% of the initial flow upon backflushing versus 30% for the commercial filter. After filtering several liters of the particle-containing suspension, the ORNL composite filter still exhibited greater than 50% of its initial permeance while the commercial filter had decreased to less than 20%. When considering a greater filtration efficiency, greater permeance per unit mass, greater percentage of rejuvenation upon backflushing (up to 3-fold), and likely greater performance with extended use, the ORNL 0.6 microm filters can potentially outperform the commercial filter by factors of 100-1,000 fold.

  6. Polyethersulfone-based ultrafiltration hollow fibre membrane for drinking water treatment systems

    Science.gov (United States)

    Chew, Chun Ming; Ng, K. M. David; Ooi, H. H. Richard

    2017-12-01

    Conventional media/sand filtration has been the mainstream water treatment process for most municipal water treatment plants in Malaysia. Filtrate qualities of conventional media/sand filtration are very much dependent on the coagulation-flocculation process prior to filtration and might be as high as 5 NTU. However, the demands for better quality of drinking water through public piped-water supply systems are growing. Polymeric ultrafiltration (UF) hollow fibre membrane made from modified polyethersulfone (PES) material is highly hydrophilic with high tensile strength and produces excellent quality filtrate of below 0.3 NTU in turbidity. This advanced membrane filtration material is also chemical resistance which allows a typical lifespan of 5 years. Comparisons between the conventional media/sand filtration and PES-based UF systems are carried out in this paper. UF has been considered as the emerging technology in municipal drinking water treatment plants due to its consistency in producing high quality filtrates even without the coagulation-flocculation process. The decreasing cost of PES-based membrane due to mass production and competitive pricing by manufacturers has made the UF technology affordable for industrial-scale water treatment plants.

  7. Filtration behaviors of rod-shaped bacterial broths in unsteady-state phase of cross-flow filtration

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Usui, K.; Koda, K.; Nakanishi, K. [Okayama University, Okayama (Japan). Faculty of Engineering

    1996-12-20

    Filtration behaviors in the unsteady-state phase of crossflow filtration of broths of Bacillus subtilis, Escherichia coli, and Lactobacillus delbrueckii, which are rod-shaped, were studied from the viewpoint of the changes in the specific resistance and in the structure of the microbial cake formed on the membrane surface. The permeation flux followed the cake filtration law at the initial stage of the crossflow filtration of the broths of B. subtilis and E. coli, where the cells deposited randomly on the membrane. In the case of the crossflow filtration of a L. delbrueckii broth, the period of random deposition was shorter. The specific resistance for the cake formed at the initial stage agreed with that measured in dead-end filtration. Then, the specific resistance started to increase in comparison with that measured in dead-end filtration due to shear-induced arrangement of the cells. The extent of the increase in specific resistance became higher and the time taken to start the cell arrangement became shorter with increasing circulation flow rate. The increase in specific resistance due to the shear-induced arrangement was more appreciable in the crossflow filtration of the broth of L. delbrueckii than that of B. subtilis and E. coli. The average permeation flux was increased considerably by applying periodical backwashing with appropriate time intervals. The permeation flux was well predicted by the cake filtration law, since the cells deposited in a way similar to that for dead-end filtration during a sufficiently short period of crossflow filtration in a backwashing mode. 21 refs., 11 figs.

  8. Separation of Hydridocarbonyltris(triphenylphosphine) Rhodium (I) Catalyst Using Solvent Resistant Nano filtration Membrane

    International Nuclear Information System (INIS)

    Razak, N.S.A.; Hilmi Mukhtar; Maizatul, S. Shaharun; Mohd, F. Taha

    2013-01-01

    An investigation was conducted into the nano filtration of rhodium tris(triphenyl-phosphine) [HRh(CO)(PPh3)3] catalyst used in the hydroformylation of olefins. The large size of the catalyst (>400 Da) - relative to other components of the reaction provides the opportunity for a membrane separation based on retention of the catalyst species while permeating the solvent. The compatibility of the solvent-polyimide membrane (STARMEMTM 122 and STARMEMTM 240) combinations was assessed in terms of the membrane stability in solvent plus non-zero solvent flux at 2.0 MPa. The morphology of the membrane was studied by field emission scanning electron microscopy (FESEM). The solvent flux and membrane rejection of HRh(CO)(PPh3)3 was then determined for the catalyst-solvent-membrane combination in a dead-end pressure cell. Good HRh(CO)(PPh3)3 rejection (>0.93) coupled with good solvent fluxes (>72 L/ m 2 h 1 at 2.0 MPa) were obtained in one of the systems tested. The effect of pressure and catalyst concentration on the solvent flux and catalyst rejection was conducted. Increasing pressure substantially improved both solvent flux and catalyst rejection, while increasing catalyst concentration was found to be beneficial in terms of substantial increases in catalyst rejection without significantly affecting the solvent flux. (author)

  9. Flow and fouling in membrane filters: Effects of membrane morphology

    Science.gov (United States)

    Sanaei, Pejman; Cummings, Linda J.

    2015-11-01

    Membrane filters are widely-used in microfiltration applications. Many types of filter membranes are produced commercially, for different filtration applications, but broadly speaking the requirements are to achieve fine control of separation, with low power consumption. The answer to this problem might seem obvious: select the membrane with the largest pore size and void fraction consistent with the separation requirements. However, membrane fouling (an inevitable consequence of successful filtration) is a complicated process, which depends on many parameters other than membrane pore size and void fraction; and which itself greatly affects the filtration process and membrane functionality. In this work we formulate mathematical models that can (i) account for the membrane internal morphology (internal structure, pore size & shape, etc.); (ii) fouling of membranes with specific morphology; and (iii) make some predictions as to what type of membrane morphology might offer optimum filtration performance.

  10. Forward osmosis biomimetic membranes in industrial and environmental applications

    DEFF Research Database (Denmark)

    Madsen, Henrik Tækker; Søgaard, Erik Gydesen; Bajraktari, Niada

    Membrane processes have in recent years found increasing uses in several sectors where separation of one or more components from a solvent, typically water, is required. The most widespread types of membranes are polymeric and pressure driven, but the high pressures that are required results...... consumption and lead to much more stable operations, but is currently limited by the availability of suitable membranes. However, by introducing aquaporin protein channels into a polymeric membrane to make a biomimetic membrane, the vision of both high flux and separation efficiency may be achieved......) a single use filtration module containing a sample reservoir and a biomimetic aquaporin based forward osmosis membrane. 2) a multi-use desktop forward osmosis system containing draw solution mixing, and monitoring devices. The sample is placed in the single use module and the module is then mounted...

  11. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration

    OpenAIRE

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-01-01

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluen...

  12. Impact of granular filtration on ultrafiltration membrane performance as pre-treatment to seawater desalination in presence of algal blooms

    Directory of Open Access Journals (Sweden)

    Nour-Eddine Sabiri

    2018-04-01

    Full Text Available To mitigate fouling of the ultrafiltration (UF membrane and improve permeate quality, we coupled granular filters (GF with UF membrane as a pre-treatment for reconstituted seawater in the presence of algal bloom. Mono and bilayer granular filtrations were led at a mean velocity of 10 m h−1 over a 7-hour period. Both GF gave the same algal cell retention rate (∼63% after 7 hours of filtration. Turbidity reduction rate was 50% for the monolayer filter and 75% for the bilayer filter. Resulting organic matter removal rate was 10% for the monolayer filter and 35% for the bilayer filter. Dissolved organic carbon removal was low (20% with the bilayer filter and non-existent with the monolayer filter. GF-coupled UF reduced humic acids in the permeate (20% compared with UF alone. Peak pressure of 3 bars was reached at the end of 30 minutes of UF in both direct UF or UF after monolayer GF. The filtrate from the bilayer GF enables UF over a longer period (7 hours.

  13. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water.

    Science.gov (United States)

    Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2016-03-01

    This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO₂ concentration on permeate fluxes, total organic carbon (TOC), and UV absorbance removal, were investigated. The interaction between the humic acids and TiO₂ photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO₂ particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst.

  14. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water

    Directory of Open Access Journals (Sweden)

    Lili Song

    2016-03-01

    Full Text Available This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO2 concentration on permeate fluxes, total organic carbon (TOC, and UV absorbance removal, were investigated. The interaction between the humic acids and TiO2 photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO2 particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst.

  15. Nacre-Templated Synthesis of Highly Dispersible Carbon Nanomeshes for Layered Membranes with High-Flux Filtration and Sensing Properties.

    Science.gov (United States)

    Kong, Meng; Li, Mingjie; Shang, Ruoxu; Wu, Jingyu; Yan, Peisong; Xu, Dongmei; Li, Chaoxu

    2018-01-24

    Marine shells not only represent a rapidly accumulating type of fishery wastes but also offer a unique sort of hybrid nanomaterials produced greenly and massively in nature. The elaborate "brick and mortar" structures of nacre enabled the synthesis of carbon nanomeshes with <1 nm thickness, hierarchical porosity, and high specific surface area through pyrolysis, in which two-dimensional (2D) organic layers served as the carbonaceous precursor and aragonite platelets as the hard template. Mineral bridges within 2D organic layers templated the formation of mesh pores of 20-70 nm. In contrast to other hydrophobic carbon nanomaterials, these carbon nanomeshes showed super dispersibility in diverse solvents and thus processability for membranes through filtration, patterning, spray-coating, and ink-writing. The carbon membranes with layered structures were capable of serving not only for high-flux filtration and continuous flow absorption but also for electrochemical and strain sensing with high sensitivity. Thus, utilization of marine shells, on one hand, relieves the environmental concern of shellfish waste, on the other hand, offers a facile, green, low-cost, and massive approach to synthesize unique carbon nanomeshes alternative to graphene nanomeshes and applicable in environmental adsorption, filtration, wearable sensors, and flexible microelectronics.

  16. Treatment of secondary effluent by sequential combination of photocatalytic oxidation with ceramic membrane filtration.

    Science.gov (United States)

    Song, Lili; Zhu, Bo; Jegatheesan, Veeriah; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2018-02-01

    The aim of the present work was to experimentally evaluate an alternative advanced wastewater treatment system, which combines the action of photocatalytic oxidation with ceramic membrane filtration. Experiments were carried out using laboratory scale TiO 2 /UV photocatalytic reactor and tubular ceramic microfiltration (CMF) system to treat the secondary effluent (SE). A 100-nm pore size CMF membrane was investigated in cross flow mode under constant transmembrane pressure of 20 kPa. The results show that specific flux decline of CMF membrane with and without TiO 2 /UV photocatalytic treatment was 30 and 50%, respectively, after 60 min of filtration. Data evaluation revealed that the adsorption of organic compounds onto the TiO 2 particles was dependent on the pH of the suspension and was considerably higher at low pH. The liquid chromatography-organic carbon detector (LC-OCD) technique was used to characterise the dissolved organic matter (DOM) present in the SE and was monitored following photocatalysis and CMF. The results showed that there was no removal of biopolymers and slight removal of humics, building blocks and the other oxidation by-products after TiO 2 /UV photocatalytic treatment. This result suggested that the various ions present in the SE act as scavengers, which considerably decrease the efficiency of the photocatalytic oxidation reactions. On the other hand, the CMF was effective for removing 50% of biopolymers with no further removal of other organic components after photocatalytic treatment. Thus, the quantity of biopolymers in SE has an apparent correlation with the filterability of water samples in CMF.

  17. Membrane Technologies in Wine Industry: An Overview.

    Science.gov (United States)

    El Rayess, Youssef; Mietton-Peuchot, Martine

    2016-09-09

    Membrane processes are increasingly reported for various applications in wine industry such as microfiltration, electrodialysis, and reverse osmosis, but also emerging processes as bipolar electrodialysis and membrane contactor. Membrane-based processes are playing a critical role in the field of separation/purification, clarification, stabilization, concentration, and de-alcoholization of wine products. They begin to be an integral part of the winemaking process. This review will provide an overview of recent developments, applications, and published literature in membrane technologies applied in wine industry.

  18. Characterisation of transparent exopolymer particles (TEP) produced during algal bloom: A membrane treatment perspective

    KAUST Repository

    Villacorte, Loreen O.; Ekowati, Yuli; Winters, Harvey; Amy, Gary L.; Schippers, Jan Cornelis; Kennedy, D.

    2013-01-01

    Algal blooms are currently a major concern of the membrane industry as it generates massive concentrations of organic matter (e.g. transparent exopolymer particles [TEP]), which can adversely affect the operation of membrane filtration systems

  19. Membranes as separators of dispersed emulsion phases

    OpenAIRE

    Lefferts, A.G.

    1997-01-01

    The reuse or discharge of industrial waste waters, containing small fractions of dispersed oil, requires a purification treatment for which membranes can be used. If only little oil is present, removal of the dispersed phase might be preferable to the more commonly applied removal of the continuous phase. For this purpose dispersed phase separators can be applied, which combine the features of conventional coalescers and membrane filtration. The membrane surface promotes coalescence ...

  20. Comparison of filtration and treatment performance between polymeric and ceramic membranes in anaerobic membrane bioreactor treatment of domestic wastewater

    KAUST Repository

    Jeong, Yeongmi

    2018-02-28

    The feasibility of an anaerobic ceramic membrane bioreactor (AnCMBR) was investigated by comparison with a conventional anaerobic membrane bioreactor (AnMBR). With regard to treatment performance, the AnCMBR achieved higher organic removal rates than the AnMBR because the ceramic membranes retained a high concentration of biomass in the reactor. Despite a high mixed liquor suspended solid (MLSS) concentration, the AnCMBR exhibited lower membrane fouling. To elucidate effects of sludge properties on membrane fouling in the AnCMBR and AnMBR, soluble microbial products (SMPs) and extracellular polymeric substances (EPSs) were analyzed. The SMP and EPS concentrations in the AnCMBR were higher than in the AnMBR. This may be because some suspended solids bio-degraded and likely released protein-like SMPs in the AnCMBR. Hydrophobicity and surface charges were analyzed; the sludge in the AnCMBR was found to be more hydrophobic and less negative than in the AnMBR because protein was abundant in the AnCMBR. Despite the adverse properties of the sludge in the AnCMBR, it showed more stable filtration performance than the AnMBR. This is because the alumina-based ceramic membrane had a superhydrophilic surface and could thus mitigate membrane fouling by hydrophilic-hydrophobic repulsion. The findings from this study have significant implications for extending the application of AnCMBRs to, for example, treatment of high-strength organic waste such as food waste or livestock manure.

  1. Comparison of filtration and treatment performance between polymeric and ceramic membranes in anaerobic membrane bioreactor treatment of domestic wastewater

    KAUST Repository

    Jeong, Yeongmi; Kim, Youngjin; Jin, Yongxun; Hong, Seungkwan; Park, Chanhyuk

    2018-01-01

    The feasibility of an anaerobic ceramic membrane bioreactor (AnCMBR) was investigated by comparison with a conventional anaerobic membrane bioreactor (AnMBR). With regard to treatment performance, the AnCMBR achieved higher organic removal rates than the AnMBR because the ceramic membranes retained a high concentration of biomass in the reactor. Despite a high mixed liquor suspended solid (MLSS) concentration, the AnCMBR exhibited lower membrane fouling. To elucidate effects of sludge properties on membrane fouling in the AnCMBR and AnMBR, soluble microbial products (SMPs) and extracellular polymeric substances (EPSs) were analyzed. The SMP and EPS concentrations in the AnCMBR were higher than in the AnMBR. This may be because some suspended solids bio-degraded and likely released protein-like SMPs in the AnCMBR. Hydrophobicity and surface charges were analyzed; the sludge in the AnCMBR was found to be more hydrophobic and less negative than in the AnMBR because protein was abundant in the AnCMBR. Despite the adverse properties of the sludge in the AnCMBR, it showed more stable filtration performance than the AnMBR. This is because the alumina-based ceramic membrane had a superhydrophilic surface and could thus mitigate membrane fouling by hydrophilic-hydrophobic repulsion. The findings from this study have significant implications for extending the application of AnCMBRs to, for example, treatment of high-strength organic waste such as food waste or livestock manure.

  2. Numerical Simulation of Particle Distribution in Capillary Membrane during Backwash

    Directory of Open Access Journals (Sweden)

    Anik Keller

    2013-09-01

    Full Text Available The membrane filtration with inside-out dead-end driven UF-/MF- capillary membranes is an effective process for particle removal in water treatment. Its industrial application increased in the last decade exponentially. To date, the research activities in this field were aimed first of all at the analysis of filtration phenomena disregarding the influence of backwash on the operation parameters of filtration plants. However, following the main hypothesis of this paper, backwash has great potential to increase the efficiency of filtration. In this paper, a numerical approach for a detailed study of fluid dynamic processes in capillary membranes during backwash is presented. The effect of particle size and inlet flux on the backwash process are investigated. The evaluation of these data concentrates on the analysis of particle behavior in the cross sectional plane and the appearance of eventually formed particle plugs inside the membrane capillary. Simulations are conducted in dead-end filtration mode and with two configurations. The first configuration includes a particle concentration of 10% homogeneously distributed within the capillary and the second configuration demonstrates a cake layer on the membrane surface with a packing density of 0:6. Analyzing the hydrodynamic forces acting on the particles shows that the lift force plays the main role in defining the particle enrichment areas. The operation parameters contribute in enhancing the lift force and the heterogeneity to anticipate the clogging of the membrane.

  3. Computational fluid dynamics simulations of membrane filtration process adapted for water treatment of aerated sewage lagoons.

    Science.gov (United States)

    Cano, Grégory; Mouahid, Adil; Carretier, Emilie; Guasp, Pascal; Dhaler, Didier; Castelas, Bernard; Moulin, Philippe

    2015-01-01

    The aim of this study is to apply the membrane bioreactor technology in an oxidation ditch in submerged conditions. This new wastewater filtration process will benefit rural areas (membranes developed without support are immersed in an aeration well and work in suction mode. The development of the membrane without support and more precisely the performance of spacers are approached by computational fluid dynamics in order to provide the best compromise between pressure drop/flow velocity and permeate flux. The numerical results on the layout and the membrane modules' geometry in the aeration well indicate that the optimal configuration is to install the membranes horizontally on three levels. Membranes should be connected to each other to a manifold providing a total membrane area of 18 m². Loss rate compared to the theoretical throughput is relatively low (less than 3%). Preliminary data obtained by modeling the lagoon provide access to its hydrodynamics, revealing that recirculation zones can be optimized by making changes in the operating conditions. The experimental validation of these results and taking into account the aeration in the numerical models are underway.

  4. Adapting technology from other industries

    International Nuclear Information System (INIS)

    Bryan, G.H.

    1989-01-01

    In the light of tougher requirements on water chemistry and liquid discharged to the environment, and with an awareness that more efficient filtration can reduce plant radiation levels, vendors are starting to adapt proven filtration technology from other industries for use in nuclear plants. Two materials have been found that work quite well in nuclear service. The first, a glass-fibre paper pleated together with a supported membrane, offers excellent dirt holding capacity and very predictable efficiency levels. The second, a meltblown, calendered polypropylene, has an asymmetric pore structure that allows it to act to some degree as a depth filter and has the same efficiency as a supported membrane. (author)

  5. Cross-flow micro-filtration using ceramic membranes

    International Nuclear Information System (INIS)

    Thern, Gerardo G.; Marajofsky, Adolfo; Rossi, Federico; La Gamma, Ana M.; Chocron, Mauricio

    2004-01-01

    Pressurized Heavy Water Reactors have a system devoted to the purification and upgrading of the collected heavy water leaks. The purification train is fed with different degradation ratios (D 2 O/H 2 O), activities and impurities. The water is distilled in a packed bed column filled with a mesh type packing. With the purpose of minimizing the column stack corrosion, the water is pre-treated in a train consisting on an activated charcoal bed-strong cationic-anionic resin and a final polishing anionic bed resin. Traces of oils are retained by the charcoal bed but some of them pass through and could be responsible for the resins fouling. The process of micro filtration using ceramic materials is particularly applied to the treatment of waters with oil micro droplets. We describe the development stages of single and double layer filtration ceramic tubes, their characterization and the adaptation to test equipment. The efficiency was evaluated by means of tangential ('cross-flow') filtration of aqueous solutions containing dodecane at the micrograms per ml concentration level. This compound simulates the properties of a typical oil contaminant. A 100-fold reduction in the amount of dodecane in water was observed after the filtration treatment. (author)

  6. Effect of operation parameters on the flux stabilization of gravity-driven membrane (GDM) filtration system for decentralized water supply.

    Science.gov (United States)

    Tang, Xiaobin; Ding, An; Qu, Fangshu; Jia, Ruibao; Chang, Haiqing; Cheng, Xiaoxiang; Liu, Bin; Li, Guibai; Liang, Heng

    2016-08-01

    A pilot-scale gravity-driven membrane (GDM) filtration system under low gravitational pressure without any pre-treatment, backwash, flushing, or chemical cleaning was carried out to investigate the effect of operation parameters (including operation pressure, aeration mode, and intermittent filtration) on the effluent quality and permeability development. The results revealed that GDM system exhibited an efficient performance for the removal of suspended substances and organic compounds. The stabilization of flux occurred and the average values of stable flux were 6.6, 8.1, and 8.6 Lm(-2) h(-1) for pressures of 65, 120, and 200 mbar, respectively. In contrast, flux stabilization was not observed under continuous and intermittent aeration conditions. However, aeration (especially continuous aeration) was effective to improve flux and alleviate membrane fouling during 1-month operation. Moreover, intermittent filtration would influence the stabilization of permeate flux, resulting in a higher stable flux (ranging from 6 to 13 Lm(-2) h(-1)). The stable flux significantly improved with the increase of intermittent period. Additionally, GDM systems exhibited an efficient recovery of flux after simple physical cleaning and the analyses of resistance reversibility demonstrated that most of the total resistance was hydraulic reversible resistance (50-75 %). Therefore, it is expected that the results of this study can develop strategies to increase membrane permeability and reduce energy consumption in GDM systems for decentralized water supply.

  7. A New Insight into Morphology of Solvent Resistant Nano filtration Membranes: Image Processing Assisted Review

    International Nuclear Information System (INIS)

    Pouresmaeel-Selakjani, P.; Jahanshahi, M.; Peyravi, M.; Fauzi Ismail, A.; Nabipoor, M. R.

    2016-01-01

    The aim of this review is to investigate the morphological properties of polyimide based Solvent Resistant Nano filtration membranes by mean of image processing. Effect of phase inversion parameters like polymer concentration, volatile co-solvent, pre-evaporation time, additives in coagulation bath, polymers weight ratio in composite membranes, addition of nano particles and cross-linking agents have been reviewed. The voids of membrane were targeted to survey in the aspect of void area concentration in the scanning electron microscopy micrograph, mean of voids area, voids orientation and circle equivalent diameters of voids. This method by mean of the developed software could make the morphological studies of membranes easy. The population of different measured parameters of the voids could also measure. In conclusion for polyimide based membranes there are specific trends for change in voids properties by changing of phase inversion parameters. It was predictable, but investigated qualitatively up to now and this review can confirm the qualitative observations and also open new discussions about, for example void orientations that are not investigated in any study up to now

  8. Forward osmosis biomimetic membranes in industrial and environmental applications

    DEFF Research Database (Denmark)

    Bajraktari, Niada; Madsen, Henrik Tækker; Nielsen, K. H.

    consumption and lead to much more stable operations, but is currently limited by the availability of suitable membranes. However, by introducing aquaporin protein channels into a polymeric membrane to make a biomimetic membrane, the vision of both high flux and separation efficiency may be achieved......) a single use filtration module containing a sample reservoir and a biomimetic aquaporin based forward osmosis membrane. 2) a multi-use desktop forward osmosis system containing draw solution mixing, and monitoring devices. The sample is placed in the single use module and the module is then mounted...... a simple unit operation based on osmotic extraction of water from dilute peptide samples with no – or very little loss of sample material. A big challenge in modern water treatment is the handling of micropollutants. One example of these is the pollution of ground-/drinking water with pesticides, which...

  9. Industrial application of liquid steel filtration out of dispersed nonmetallic phase in the continuous casting machine

    Directory of Open Access Journals (Sweden)

    K. Janiszewski

    2013-01-01

    Full Text Available Hitherto existing investigations concerning the ceramic filter use in the steel making processes (both of laboratory and industrial scale have given good results. The obtained results of filtration (in the laboratory have proved that this method may be used as an effective and cheap way of steel filtration from non-metallic inclusions. Placing filters in the tundish is the best location in consideration of limiting the possibility of secondary pollution of steel. Yet, the results presented in this paper, of an experiment prepared and carried out in the industrial environment, are the only positive results obtained, which are connected with so much quantities of liquid steel processed with use of the multi-hole ceramic filters.

  10. Micro filtration membrane sieve with silicon micro machining for industrial and biomedical applications

    NARCIS (Netherlands)

    van Rijn, C.J.M.; Elwenspoek, Michael Curt

    1995-01-01

    With the use of silicon micromachining an inorganic membrane sieve for microfiltration is constructed, having a siliconnitride membrane layer with thickness typically 1 pm and perforations typically between 0.5 pm and 10 pm in diameter. As a support a -silicon wafer with openings of loo0 pm in

  11. Electro-ultrafiltration of industrial enzyme solutions

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Erik Børresen; Jonsson, Gunnar Eigil

    2007-01-01

    To reduce the problems with fouling and concentration polarization during crossflow ultrafiltration of industrial enzyme solutions an electric field is applied across the membrane. The filtration performance during electro-ultrafiltration (EUF) has been tested with several enzymes. Results show...

  12. Dynamic filtration and static adsorption of lead ions in aqueous solution by use of blended polysulfone membranes with nano size MCM-41 particles coated by polyaniline.

    Science.gov (United States)

    Toosi, Mohammad Reza; Emami, Mohammad Reza Sarmasti; Hajian, Sudeh

    2018-05-11

    MCM-41 mesopore was prepared by hydrothermal method and used for synthesis of polyaniline/MCM-41 nanocomposite via in situ polymerization. The nanocomposite was blended with polysulfone to prepare mixed matrix membrane in different content of nanocomposite by phase inversion method. Structural and surface properties of the samples were characterized by SEM, XRD, FTIR, AFM, TGA, BET, and zeta potential measurements. Effect of the nanocomposite content on the hydrophilicity, porosity, and permeability of the membrane was determined. Membrane performance was evaluated for removal of lead ions in dynamic filtration and static adsorption. The membranes were found as effective adsorptive filters for removal of lead ions via interactions between active sites of nanocomposite in membrane structure and lead ions during filtration. Results of batch experiments proved adsorptive mechanism of membranes for removal of lead ions with the maximum adsorption capacity of 19.6 mg/g.

  13. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration

    Directory of Open Access Journals (Sweden)

    Mehrdad Ebrahimi

    2015-12-01

    Full Text Available Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.

  14. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration.

    Science.gov (United States)

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-12-31

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.

  15. Spray drying of a phenolic-rich membrane filtration fraction of olive mill wastewater: Optimization and dried product quality

    Science.gov (United States)

    Olive mill wastewater (OMWW) from two California mills (3-phase and 2-phase) was subjected to a two-step membrane filtration process using a novel vibratory system. The obtained reverse osmosis retentate (RO-R) is a phenolic-rich co-product stream, and the reverse osmosis permeate is a near-pure wat...

  16. Measurement of filtration efficiency of Nuclepore filters challenged with polystyrene latex nanoparticles: experiments and modeling

    International Nuclear Information System (INIS)

    Ling, Tsz Yan; Wang Jing; Pui, David Y. H.

    2011-01-01

    Membrane filtration has been demonstrated to be effective for the removal of liquid-borne nanoparticles (NPs). Such technique can be applied to purify and disinfect drinking water as well as remove NPs in highly pure chemicals used in the industries. This study aims to study the filtration process of a model membrane filter, the Nuclepore filter. Experiments were carried out using standard filtration tools and the nanoparticle tracking analysis (NTA) technique was used to measure particle (50–500 nm) concentration upstream and downstream of the filter to determine the filtration efficiency. The NTA technique has been calibrated using 150-nm polystyrene latex particles to determine its accuracy of particle concentration measurement. Measurements were found reliable within a certain concentration limit (about 10 8 –10 10 particles/cm 3 ), which is dependent on the camera settings during the measurement. Experimental results are comparable with previously published data obtained using the aerosolization method, validating the capability of the NTA technique. The capillary tube model modified from that developed for aerosol filtration was found to be useful to represent the experimental results, when a sticking coefficient of 0.15 is incorporated. This suggests that only 15% of the particle collisions with the filter results in successful attachment. The small sticking coefficient found can be explained by the unfavorable surface interactions between the particles and the filter medium.

  17. Influence of gas-liquid two-phase flow on angiotensin-I converting enzyme inhibitory peptides separation by ultra-filtration.

    Science.gov (United States)

    Charoenphun, Narin; Youravong, Wirote

    2017-01-01

    Membrane fouling is a major problem in ultra-filtration systems and two-phase flow is a promising technique for permeate flux enhancement. The objective of this research was to study the use of an ultra-filtration (UF) system to enrich angiotensin-I converting enzyme (ACE) inhibitory peptides from tilapia protein hydrolysate. To select the most appropriate membrane and operating condition, the effects of membrane molecular weight cut-off (MWCO), transmembrane pressure (TMP) and cross-flow velocity (CFV) on permeate flux and ACE inhibitory peptide separation were studied. Additionally, the gas-liquid two-phase flow technique was applied to investigate its effect on the process capability. The results showed that the highest ACE inhibitory activity was obtained from permeate of the 1 kDa membrane. In terms of TMP and CFV, the permeate flux tended to increase with TMP and CFV. The use of gas-liquid two-phase flow as indicated by shear stress number could reduce membrane fouling and increase the permeate flux up to 42%, depending on shear stress number. Moreover, the use of a shear stress number of 0.039 led to an augmentation in ACE inhibitory activity of permeates. Operating conditions using a shear stress number of 0.039 were recommended for enrichment of ACE inhibitory peptides. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Influence of nitrogen ion implantation on filtration of fluoride and cadmium using polysulfone/chitosan blend membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wanichapichart, P., E-mail: pikul.v@psu.ac.th [Membrane Science and Technology Research Center, Department of Physics, Faculty of Science, Prince of Songkla University, Songkhla 90110 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Bootluck, W. [Membrane Science and Technology Research Center, Department of Physics, Faculty of Science, Prince of Songkla University, Songkhla 90110 (Thailand); Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-05-01

    Composite membranes between polysulfone and biopolymer chitosan were produced with variations of the chitosan content and temperature during the phase inversion process. The lower chitosan content led to lower water permeability and smaller membrane cut off. When the temperature of the phase inversion process was reduced from 25 °C to 5 °C, membrane pores were further decreased from somewhat greater than 10 kDa to a value smaller than 2 kDa. After being implanted with N-ions of 50 keV to a fluence of 1 × 10{sup 15} ions/cm{sup 2}, the composite membranes showed an improvement in the rejection by about 15% for fluoride and 10% for cadmium. In addition, a slight increase in permeation flux was observed in the ion implanted membranes. Filtration tests using the N-ion implanted membranes showed that fluoride was rejected from 100 ppm NaF solution by 47% and the rejection was increased to 60% when 2.20 ppm underground water was filtered. In the case of cadmium, the rejection was increased from 80% to 90% as an effect of the N-ion implantation.

  19. Fouling Characteristics of Dissolved Organic Matter in Papermaking Process Water on Polyethersulfone Ultrafiltration Membranes

    Directory of Open Access Journals (Sweden)

    Wenpeng Su

    2015-07-01

    Full Text Available In the papermaking industry, closure of process water (whitewater circuits has been used to reduce fresh water consumption. Membrane separation technology has potential for use in treating process water for recirculation. The purpose of this study was to reveal the fouling characteristics of a polyethersulfone (PES ultrafiltration membrane caused by dissolved organic matter (DOM in process water. Ultrafiltration membranes (UF and DAX ion exchange resins were applied to characterize the molecular weight (MW and hydrophilicity distribution of DOM. The interactions between various fractions of DOM and a PES ultrafiltration membrane were investigated. The membrane fouling characteristics were elucidated by examining the filtration resistances and linearized Herman’s blocking models. The results demonstrated that the membrane was fouled significantly by much of the MW distribution. The membrane was fouled more significantly by the low MW fraction rather than the high MW fraction. The filtration resistances and the fitted equation of Hermia’s laws indicated that hydrophilic organics were the main foulants. The hydrophilic organics partially block the membrane pores and form intermediate blocking, reducing the effective filtration area, while the hydrophobic organics form a gel layer or cake on the surface of the membrane.

  20. Large-scale night soil treatment by membrane filtration. Shipped to Shida administrative associate; Daikibo makubunri shinyoshori shisetsu. Shida koiki jimu kumiai nonyu

    Energy Technology Data Exchange (ETDEWEB)

    Seki, H [Ebara Corp., Tokyo (Japan)

    1995-10-20

    Ebara`a UF (Ultra Filtration) Deni-pack Process, featuring night soil treatment by membrane filtration and high load denitrification, was installed at Fujieda Environment Management Center, Shizuoka Prefecture. This UF process is the largest of its kind in Japan-treatment capacity: 58 kl/d of night soil and 102 kl/d of septic tank sludge, total of 160 kl/d. The disposability standards are below 10 mg/l of COD, below 10 mg/l of total nitrogen, and below 20 degrees of Color Unit. Nitrification and denitrification are done in a 10-meter deep vertical reactor. As for membranes for the liquid-solid separation, polyolefine, tubular type array-flow UF membranes, fractional molecular weight of 10,000, are used. Three belt press dehydrators and a fluidized-bed incinerator are used for sludge treatment. Installation of this process was completed in December 1995, and stable operation is being continued after a successful commissioning test. 8 figs., 3 tabs.

  1. Bench scale model studies on sanitary landfill leachate treatment with M. oleifera seed extract and hollow fibre micro-filtration membrane

    Directory of Open Access Journals (Sweden)

    S. A. Muyibi

    2002-10-01

    Full Text Available A laboratory-based study using a Bench Scale model of four unit operations made up of coagulation (using Moringa oleifera seed extract as a coagulant, flocculation, sedimentation and micro-filtration, have been adopted to treat the leachate from Air Hitman Sanitary Landfill at Puchong in Malaysia. M. oleifera dosages of 150 and 175 mg/L had achieved 43.8% Cadmium removal, 21.2% Total Chromium removal, 66.8% Lead removal and 16% Iron removal. It also removed 55.4% of Total Suspended Solids, 10% of Total Dissolved Solids and 24.2% of Volatile Suspended Solids. Micro-filtration hollow fibre membrane decreased the turbidity, total suspended solids, total dissolved solids, volatile suspended solids, and organic matter in the leachate by 98.3%, 96.7%, 20.8%, 36.6% and 21.9% respectively. Overall heavy metals removal after micro-filtration using hollow fibre membrane was 94% for Cadmium, 29.8% for Total Chromium, 73.2% for Lead, and 18.3% for Iron. The results have shown that M. oleifera is a promising natural polymer for removing heavy metals from leachates and may be used as a pre-treatment to eliminate a portion of the toxic heavy metals, which limits the activity of micro organisms in the leachates.

  2. Dynamic optimization of a dead-end filtration trajectory: Blocking filtration laws

    NARCIS (Netherlands)

    Blankert, B.; Betlem, Bernardus H.L.; Roffel, B.

    2006-01-01

    An operating model for dead-end membrane filtration is proposed based on the well-known blocking laws. The resulting model contains three parameters representing, the operating strategy, the fouling mechanism and the fouling potential of the feed. The optimal control strategy is determined by

  3. Ceramic membrane development in NGK

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Kiyoshi; Sakai, Hitoshi, E-mail: kinsakai@ngk.co.jp [Corporate R and D, NGK Insulators, Ltd., Nagoya 467-8530 (Japan)

    2011-05-15

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R and D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  4. Ceramic membrane development in NGK

    Science.gov (United States)

    Araki, Kiyoshi; Sakai, Hitoshi

    2011-05-01

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  5. Sensitive enumeration of Listeria monocytogenes and other Listeria species in various naturally contaminated matrices using a membrane filtration method.

    Science.gov (United States)

    Barre, Léna; Brasseur, Emilie; Doux, Camille; Lombard, Bertrand; Besse, Nathalie Gnanou

    2015-06-01

    For the enumeration of Listeria monocytogenes (L. monocytogenes) in food, a sensitive enumeration method has been recently developed. This method is based on a membrane filtration of the food suspension followed by transfer of the filter on a selective medium to enumerate L. monocytogenes. An evaluation of this method was performed with several categories of foods naturally contaminated with L. monocytogenes. The results obtained with this technique were compared with those obtained from the modified reference EN ISO 11290-2 method for the enumeration of L. monocytogenes in food, and are found to provide more precise results. In most cases, the filtration method enabled to examine a greater quantity of food thus greatly improving the sensitivity of the enumeration. However, it was hardly applicable to some food categories because of filtration problems and background microbiota interference. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Development of an Electrochemical Ceramic Membrane Filtration System for Efficient Contaminant Removal from Waters.

    Science.gov (United States)

    Zheng, Junjian; Wang, Zhiwei; Ma, Jinxing; Xu, Shaoping; Wu, Zhichao

    2018-04-03

    Inability to remove low-molecular-weight anthropogenic contaminants is a critical issue in low-pressure membrane filtration processes for water treatment. In this work, a novel electrochemical ceramic membrane filtration (ECMF) system using TiO 2 @SnO 2 -Sb anode was developed for removing persistent p-chloroaniline (PCA). Results showed that the ECMF system achieved efficient removal of PCA from contaminated waters. At a charging voltage of 3 V, the PCA removal rate of TiO 2 @SnO 2 -Sb ECMF system under flow-through mode was 2.4 times that of flow-by mode. The energy consumption for 50% of PCA removal for TiO 2 @SnO 2 -Sb ECMF at 3 V under flow-through mode was 0.38 Wh/L, much lower than that of flow-by operation (1.5 Wh/L), which was attributed to the improved utilization of the surface adsorbed HO· and dissociated HO· driven by the enhanced mass transfer of PCA toward the anode surface. Benefiting from the increased production of reactive oxygen species such as O 2 •- , H 2 O 2 , and HO· arising from excitation of anatase TiO 2 , TiO 2 @SnO 2 -Sb ECMF exhibited a superior electrocatalytic activity to the SnO 2 -Sb ECMF system. The degradation pathways of PCA initiated by OH· attack were further proposed, with the biodegradable short-chain carboxylic acids (mainly formic, acetic, and oxalic acids) identified as the dominant oxidized products. These results highlight the potential of the ECMF system for cost-effective water purification.

  7. Critical review of membrane bioreactor models--part 1: biokinetic and filtration models.

    Science.gov (United States)

    Naessens, W; Maere, T; Nopens, I

    2012-10-01

    Membrane bioreactor technology exists for a couple of decades, but has not yet overwhelmed the market due to some serious drawbacks of which operational cost due to fouling is the major contributor. Knowledge buildup and optimisation for such complex systems can significantly benefit from mathematical modelling. In this paper, the vast literature on modelling MBR biokinetics and filtration is critically reviewed. It was found that models cover the wide range of empirical to detailed mechanistic descriptions and have mainly been used for knowledge development and to a lesser extent for system optimisation/control. Moreover, studies are still predominantly performed at lab or pilot scale. Trends are discussed, knowledge gaps identified and interesting routes for further research suggested. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  9. Erosion critical stress of a matter surface deposit on a micro filtration membrane; Contrainte critique d`erosion d`un depot superficiel de matiere sur membrane de microfiltration

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, M C

    1995-05-11

    During the tangential micro filtration and ultrafiltration processes a membranes fouling in surface and inside the pores often appears. This fouling has the effect of a permeation flow decrease in terms of the filtration time. In order to keep this flow constant (to improve the rentability) the transfer pressure gradient is frequently increased and leads to solid matter surface deposit on the porous wall. The fouling can then be irreversible and requires the stopping of the facilities. The fouling and more particularly the fouling by solid deposit seems to be an abatement to the micro filtration technology development. It is then necessary to search the carrying away conditions of these solid deposits and thus to control the fouling process. An ultrafiltration or micro filtration appliance has been realized and allows to calculate experimentally the erosion critical stress on a porous wall : this is the minimum stress to apply in order to lead in the principal flow a solid particles deposit and the parietal stress to be imposed to lead by an erosion process a solid particles deposit. (O.L.). 122 refs., 73 figs., 25 tabs.

  10. Dynamic optimization of a dead-end filtration trajectory: non-ideal cake filtration

    NARCIS (Netherlands)

    Blankert, B.; Kattenbelt, C.; Betlem, Bernardus H.L.; Roffel, B.

    2007-01-01

    A control strategy aimed at minimizing energy consumption is formulated for non-ideal dead-end cake filtration with an inside-out hollow fiber ultrafiltration membrane system. The non-ideal behavior was assumed to originate from cake compression, non-linear cake resistance and a variable pump

  11. Successive membrane separation processes simplify concentration of lipases produced by Aspergillus niger by solid-state fermentation.

    Science.gov (United States)

    Reinehr, Christian Oliveira; Treichel, Helen; Tres, Marcus Vinicius; Steffens, Juliana; Brião, Vandré Barbosa; Colla, Luciane Maria

    2017-06-01

    In this study, we developed a simplified method for producing, separating, and concentrating lipases derived from solid-state fermentation of agro-industrial residues by filamentous fungi. First, we used Aspergillus niger to produce lipases with hydrolytic activity. We analyzed the separation and concentration of enzymes using membrane separation processes. The sequential use of microfiltration and ultrafiltration processes made it possible to obtain concentrates with enzymatic activities much higher than those in the initial extract. The permeate flux was higher than 60 L/m 2 h during microfiltration using 20- and 0.45-µm membranes and during ultrafiltration using 100- and 50-kDa membranes, where fouling was reversible during the filtration steps, thereby indicating that the fouling may be removed by cleaning processes. These results demonstrate the feasibility of lipase production using A. niger by solid-state fermentation of agro-industrial residues, followed by successive tangential filtration with membranes, which simplify the separation and concentration steps that are typically required in downstream processes.

  12. Quantitative measurement and visualization of biofilm O 2 consumption rates in membrane filtration systems

    KAUST Repository

    Prest, Emmanuelle I E C

    2012-03-01

    There is a strong need for techniques enabling direct assessment of biological activity of biofouling in membrane filtration systems. Here we present a new quantitative and non-destructive method for mapping O 2 dynamics in biofilms during biofouling studies in membrane fouling simulators (MFS). Transparent planar O 2 optodes in combination with a luminescence lifetime imaging system were used to map the two-dimensional distribution of O 2 concentrations and consumption rates inside the MFS. The O 2 distribution was indicative for biofilm development. Biofilm activity was characterized by imaging of O 2 consumption rates, where low and high activity areas could be clearly distinguished. The spatial development of O 2 consumption rates, flow channels and stagnant areas could be determined. This can be used for studies on concentration polarization, i.e. salt accumulation at the membrane surface resulting in increased salt passage and reduced water flux. The new optode-based O 2 imaging technique applied to MFS allows non-destructive and spatially resolved quantitative biological activity measurements (BAM) for on-site biofouling diagnosis and laboratory studies. The following set of complementary tools is now available to study development and control of biofouling in membrane systems: (i) MFS, (ii) sensitive pressure drop measurement, (iii) magnetic resonance imaging, (iv) numerical modelling, and (v) biological activity measurement based on O 2 imaging methodology. © 2011 Elsevier B.V.

  13. Novel compaction resistant and ductile nanocomposite nanofibrous microfiltration membranes.

    Science.gov (United States)

    Homaeigohar, Seyed Shahin; Elbahri, Mady

    2012-04-15

    Despite promising filtration abilities, low mechanical properties of extraordinary porous electrospun nanofibrous membranes could be a major challenge in their industrial development. In addition, such kind of membranes are usually hydrophobic and non-wettable. To reinforce an electrospun nanofibrous membrane made of polyethersulfone (PES) mechanically and chemically (to improve wettability), zirconia nanoparticles as a novel nanofiller in membrane technology were added to the nanofibers. The compressive and tensile results obtained through nanoindentation and tensile tests, respectively, implied an optimum mechanical properties after incorporation of zirconia nanoparticles. Especially compaction resistance of the electrospun nanofibrous membranes improved significantly as long as no agglomeration of the nanoparticles occurred and the electrospun nanocomposite membranes showed a higher tensile properties without any brittleness i.e. a high ductility. Noteworthy, for the first time the compaction level was quantified through a nanoindentation test. In addition to obtaining a desired mechanical performance, the hydrophobicity declined. Combination of promising properties of optimum mechanical and surface chemical properties led to a considerably high water permeability also retention efficiency of the nanocomposite PES nanofibrous membranes. Such finding implies a longer life span and lower energy consumption for a water filtration process. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Processing radioactive wastes using membrane (UF/HF/RO) systems

    International Nuclear Information System (INIS)

    Doyle, R.D.

    1988-01-01

    Over the years many technologies have been utilized to process low level radioactive waste streams generated by the nuclear industry, including: demineralization, evaporation, reverse osmosis and filtration. In the early 1980's interest was generated in membrane technologies and their application to radioactive wastes. This interest was generated based on the capabilities shown by membrane systems in non-radioactive environments and the promise that reverse osmosis systems showed in early testing with radioactive wastes. Membrane technologies have developed from the early development of reverse osmosis system to also include specifically designed membranes for ultrafiltration and hyperfiltration applications

  15. Development of nanoporous TiO2 and SiC membranes for membrane filtration

    DEFF Research Database (Denmark)

    König, Katja; Vigna, Erika; Farsi, Ali

    Reverse osmosis membranes are increasingly used for the production of drinking water (desalination of sea water or brackish water), for demineralisation of water in industrial processes (boiled feed water, microelectronics production) as well as in food processing and pharmaceutical production......-ceramic polymer allyl-hydridopolycarbosilane dissolved in hexane with addition of submicron SiC particles. In all the cases, after coating step, the layers were dried and heat treated under different conditions. Results show that particle size distribution and thickness of the coatings play an important role...

  16. Investigation of Microgranular Adsorptive Filtration System

    Science.gov (United States)

    Cai, Zhenxiao

    Over the past few decades, enormous advances have been made in the application of low-pressure membrane filtration to both drinking water and wastewater treatment. Nevertheless, the full potential of this technology has not been reached, due primarily to limitations imposed by membrane fouling. In drinking water treatment, much of the fouling is caused by soluble and particulate natural organic matter (NOM). Efforts to overcome the problem have focused on removal of NOM from the feed solution, usually by addition of conventional coagulants like alum and ferric chloride (FeCl3) or adsorbents like powdered activated carbon (PAC). While coagulants and adsorbents can remove a portion of the NOM, their performance with respect to fouling control has been inconsistent, often reducing fouling but sometimes having no effect or even exacerbating fouling. This research investigated microgranular adsorptive filtration (muGAF), a process that combines three existing technologies---granular media filtration, packed bed adsorption, and membrane filtration---in a novel way to reduce membrane fouling while simultaneously removing NOM from water. In this technology, a thin layer of micron-sized adsorbent particles is deposited on the membrane prior to delivering the feed to the system. The research reported here represents the first systematic study of muGAF, and the results demonstrate the promising potential of this process. A new, aluminum-oxide-based adsorbent---heated aluminum oxide particles (HAOPs)---was synthesized and shown to be very effective for NOM removal as well as fouling reduction in muGAF systems. muGAF has also been demonstrated to work well with powdered activated carbon (PAC) as the adsorbent, but not as well as when HAOPs are used; the process has also been successful when used with several different membrane types and configurations. Experiments using a wide range of operational parameters and several analytical tools lead to the conclusion that the fouling

  17. In Situ Spectroscopic Ellipsometry in the Field of Industrial Membranes

    KAUST Repository

    Ogieglo, Wojciech

    2018-01-01

    Industrial membranes are playing an ever increasing role in the ongoing and necessary transition of our society towards more sustainable growth and development. Already today membranes offer more energy efficient alternatives to the traditional often very energy intensive industrial separation processes such as (cryogenic) distillation or crystallization. For many years reverse osmosis membranes have offered a viable method for the production of potable water via desalination processes and their significance continuously increases. Recently, membrane technology has been demonstrated to play a significant role in potential methods to generate or store energy on an industrial scale. For molecular separations often the key for an efficient membrane operation often lies in the application of an (ultra-) thin organic polymer, inorganic or hybrid selective layer whose interaction with the separated mixture defines the membrane performance. Ellipsometry has started gaining increasing attention in this area due to its large potential to conduct in-situ, non-destructive and very precise analysis of the film-fluid interactions. In this chapter, we aim to review the important recent developments in the application of ellipsometry in industrial membrane-related studies. We briefly introduce the basics of membrane science and discuss the used experimental setups and optical models. Further we focus on fundamental studies of sorption, transport and penetrant-induced phenomena in thin films exposed to organic solvents or high pressure gases. The application of in-situ ellipsometry is discussed for studies of new, promising membrane materials and the use of the technique for emerging direct studies of operating membranes is highlighted.

  18. In Situ Spectroscopic Ellipsometry in the Field of Industrial Membranes

    KAUST Repository

    Ogieglo, Wojciech

    2018-05-06

    Industrial membranes are playing an ever increasing role in the ongoing and necessary transition of our society towards more sustainable growth and development. Already today membranes offer more energy efficient alternatives to the traditional often very energy intensive industrial separation processes such as (cryogenic) distillation or crystallization. For many years reverse osmosis membranes have offered a viable method for the production of potable water via desalination processes and their significance continuously increases. Recently, membrane technology has been demonstrated to play a significant role in potential methods to generate or store energy on an industrial scale. For molecular separations often the key for an efficient membrane operation often lies in the application of an (ultra-) thin organic polymer, inorganic or hybrid selective layer whose interaction with the separated mixture defines the membrane performance. Ellipsometry has started gaining increasing attention in this area due to its large potential to conduct in-situ, non-destructive and very precise analysis of the film-fluid interactions. In this chapter, we aim to review the important recent developments in the application of ellipsometry in industrial membrane-related studies. We briefly introduce the basics of membrane science and discuss the used experimental setups and optical models. Further we focus on fundamental studies of sorption, transport and penetrant-induced phenomena in thin films exposed to organic solvents or high pressure gases. The application of in-situ ellipsometry is discussed for studies of new, promising membrane materials and the use of the technique for emerging direct studies of operating membranes is highlighted.

  19. Impact of ozonation and biological activated carbon filtration on ceramic membrane fouling.

    Science.gov (United States)

    Ibn Abdul Hamid, Khaled; Sanciolo, Peter; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2017-12-01

    Ozone pre-treatment (ozonation, ozonisation) and biological activated carbon (BAC) filtration pre-treatment for the ceramic microfiltration (CMF) treatment of secondary effluent (SE) were studied. Ozone pre-treatment was found to result in higher overall removal of UV absorbance (UVA 254 ) and colour, and higher permeability than BAC pre-treatment or the combined use of ozone and BAC (O3+BAC) pre-treatment. The overall removal of colour and UVA 254 by ceramic filtration of the ozone pre-treated water was 97% and 63% respectively, compared to 86% and 48% respectively for BAC pre-treatment and 29% and 6% respectively for the untreated water. Ozone pre-treatment, however, was not effective in removal of dissolved organic carbon (DOC). The permeability of the ozone pre-treated water through the ceramic membrane was found to decrease to 50% of the original value after 200 min of operation, compared to approximately 10% of the original value for the BAC pre-treated, O3+BAC pre-treated water and the untreated water. The higher permeability of the ozone pre-treated water was attributed to the excellent removal of biopolymer particles (100%) and high removal of humic substances (84%). The inclusion of a BAC stage between ozone pre-treatment and ceramic filtration was detrimental. The O3+BAC+CMF process was found to yield higher biopolymer removal (96%), lower humic substance (HS) component removal (66%) and lower normalized permeability (0.1) after 200 min of operation than the O3+CMF process (86%, 84% and 0.5 respectively). This was tentatively attributed to the chemical oxidation effect of ozone on the BAC biofilm and adsorbed components, leading to the generation of foulants that are not generated in the O3+CMF process. This study demonstrated the potential of ozone pre-treatment for reducing organic fouling and thus improving flux for the CMF of SE compared to O3+BAC pre-treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Filtration of engineered nanoparticles using porous membranes

    NARCIS (Netherlands)

    Trzaskus, Krzystof

    2016-01-01

    The research presented in this thesis aims at providing a better understanding of the fundamental aspects responsible for nanoparticle removal and fouling development during filtration of engineered nanoparticles. The emphasis is put on the role of interparticle interactions in the feed solution,

  1. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.

    2000-01-01

    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  2. APPLICATION OF MEMBRANE SORPTION REACTOR TECHNOLOGY FOR LRW MANAGEMENT

    International Nuclear Information System (INIS)

    Glagolenko, Yuri; Dzekun, Evgeny; Myasoedovg, Boris; Gelis, Vladimir; Kozlitin, Evgeny; Milyutin, Vitaly; Trusov, Lev; Rengel, Mike; Mackay, Stewart M.; Johnson, Michael E.

    2003-01-01

    A new membrane-sorption technology has been recently developed and industrially implemented in Russia for the treatment of the Liquid (Low-Level) Radioactive Waste (LRW). The first step of the technology is a precipitation of the radionuclides and/or their adsorption onto sorbents of small particle size. The second step is filtration of the precipitate/sorbent through the metal-ceramic membrane, Trumem.. The unique feature of the technology is a Membrane-Sorption Reactor (MSR), in which the precipitation / sorption and the filtration of the radionuclides occur simultaneously, in one stage. This results in high efficiency, high productivity and compactness of the equipment, which are the obvious advantages of the developed technology. Two types of MSR based on Flat Membranes device and Centrifugal Membrane device were developed. The advantages and disadvantages of application of each type of the reactors are discussed. The MSR technology has been extensively tested and efficiently implemented at ''Mayak '' nuclear facility near Chelyabinsk, Russia as well as at other Russian sites. The results of this and other applications of the MSR technology at the different Russian nuclear facilities are discussed. The results of the first industrial applications of the MSR technology for radioactive waste treatment in Russia and analysis of the available information about LRW accumulated in other countries imply that this technology can be successfully used for the Low Level Radioactive Waste treatment in the USA and in other nuclear countries

  3. Purification of contaminated water by filtration through porous glass

    Science.gov (United States)

    Wydeven, T.; Leban, M. I.

    1972-01-01

    Method for purifying water that is contaminated with mineral salts and soluble organic compounds is described. Method consists of high pressure filtration of contaminated water through stabilized porous glass membranes. Procedure for conducting filtration is described. Types of materials by percentage amounts removed from the water are identified.

  4. Membrane technology for treating of waste nanofluids coolant: A review

    Science.gov (United States)

    Mohruni, Amrifan Saladin; Yuliwati, Erna; Sharif, Safian; Ismail, Ahmad Fauzi

    2017-09-01

    The treatment of cutting fluids wastes concerns a big number of industries, especially from the machining operations to foster environmental sustainability. Discharging cutting fluids, waste through separation technique could protect the environment and also human health in general. Several methods for the separation emulsified oils or oily wastewater have been proposed as three common methods, namely chemical, physicochemical and mechanical and membrane technology application. Membranes are used into separate and concentrate the pollutants in oily wastewater through its perm-selectivity. Meanwhile, the desire to compensate for the shortcomings of the cutting fluid media in a metal cutting operation led to introduce the using of nanofluids (NFs) in the minimum quantity lubricant (MQL) technique. NFs are prepared based on nanofluids technology by dispersing nanoparticles (NPs) in liquids. These fluids have potentially played to enhance the performance of traditional heat transfer fluids. Few researchers have studied investigation of the physical-chemical, thermo-physical and heat transfer characteristics of NFs for heat transfer applications. The use of minimum quantity lubrication (MQL) technique by NFs application is developed in many metal cutting operations. MQL did not only serve as a better alternative to flood cooling during machining operation and also increases better-finished surface, reduces impact loads on the environment and fosters environmental sustainability. Waste coolant filtration from cutting tools using membrane was treated by the pretreated process, coagulation technique and membrane filtration. Nanomaterials are also applied to modify the membrane structure and morphology. Polyvinylidene fluoride (PVDF) is the better choice in coolant wastewater treatment due to its hydrophobicity. Using of polyamide nanofiltration membranes BM-20D and UF-PS-100-100, 000, it resulted in the increase of permeability of waste coolant filtration. Titanium dioxide

  5. Inorganic membranes for separative techniques: from uranium isotope separation to non-nuclear fields

    International Nuclear Information System (INIS)

    Charpin, J.; Rigny, P.

    1989-01-01

    Uranium enrichment leads to the development of inorganic porous barriers - either ceramic or metallic. A wide range of these products had considerable potential for the improvement of filtration techniques in liquid media (ultrafiltration and microfiltration). This is how a new generation of inorganic membranes was created reputed for their performance and especially for their lifetime and their behaviour (mechanical and temperature stability, corrosion resistance). These membranes now have a respectable position in applications in the agro-food biotechnology industries, to give only two examples. Before the non-nuclear applications of inorganic membranes are presented, their success in the nuclear power industry are pointed out

  6. Filtration Characterization Method as Tool to Assess Membrane Bioreactor Sludge Filterability—The Delft Experience

    Directory of Open Access Journals (Sweden)

    Maria Lousada-Ferreira

    2014-04-01

    Full Text Available Prevention and removal of fouling is often the most energy intensive process in Membrane Bioreactors (MBRs, responsible for 40% to 50% of the total specific energy consumed in submerged MBRs. In the past decade, methods were developed to quantify and qualify fouling, aiming to support optimization in MBR operation. Therefore, there is a need for an evaluation of the lessons learned and how to proceed. In this article, five different methods for measuring MBR activated sludge filterability and critical flux are described, commented and evaluated. Both parameters characterize the fouling potential in full-scale MBRs. The article focuses on the Delft Filtration Characterization method (DFCm as a convenient tool to characterize sludge properties, namely on data processing, accuracy, reproducibility, reliability, and applicability, defining the boundaries of the DFCm. Significant progress was made concerning fouling measurements in particular by using straight forward approaches focusing on the applicability of the obtained results. Nevertheless, a fouling measurement method is still to be defined which is capable of being unequivocal, concerning the fouling parameters definitions; practical and simple, in terms of set-up and operation; broad and useful, in terms of obtained results. A step forward would be the standardization of the aforementioned method to assess the sludge filtration quality.

  7. Treatment of tuna cooking juices by nano filtration

    International Nuclear Information System (INIS)

    Walha, K. a.; Ben Amar, R.; Bourseau, P.; Jaouen, P.

    2009-01-01

    Canned tuna is among the largest commercial canned fishery product in Tunisia. This industry rejects many aqueous effluents (washing, thawing, rinsing and cooking waters). Cooking juice represents 50 pour cent of the total effluent volume. It has a high organic load and a very high salt content. For consequence, discarding directly the effluent in the environment is not possible and need further treatment. However, the juice seems to contain interesting flavour compounds. In this work, a membrane process system consisting in nano filtration was used to reduce the pollution load and to concentrate flavour compounds of tuna cooking juice. The NF membrane tested in this work concentrate the organic matter since the retentions are high, starting at 74 pour cent for total circulation and increasing up to 85 pour cent for volume reduction factor (VRF) of 5. The membrane undergoes severe fouling, it can be effectively cleaned through a complete basic-acid washing cycle. The effect of three chemical reagents was studied for the regeneration of the fouled membrane. In the future, we will focus on the concentrates obtained by NF: sensory analysis with a panel of trained tasters and analysis of aromatic molecules should allow to value the quality of the flavouring concentrates.

  8. Process to remove turbidity-causing components from a fluid by micro-filtration - passes the fluid across an asymmetric membrane with inlet pores larger than those of nominal size, and cleans the membrane by backwashing

    DEFF Research Database (Denmark)

    1995-01-01

    turbidity-causing components from beer, wine, fruit juice, milk and blood, and from bacterial and enzyme suspensions. ADVANTAGE-The process greatly reduces the lost production time associated with earlier filtration methods, and beneficial components can pass through the membrane, thereby improving...

  9. Application of Ultrafiltration in a Paper Mill: Process Water Reuse and Membrane Fouling Analysis

    Directory of Open Access Journals (Sweden)

    Chen Chen

    2015-02-01

    Full Text Available High water consumption is a major environmental problem that the pulp and paper industry is facing. Ultrafiltration (UF can be used to remove the dissolved and colloidal substances (DCS concentrated during the recycling of white water (the process water to facilitate the reuse of white water and reduce fresh water consumption. However, membrane fouling limits the application of UF in this industry. In this study, super-clear filtrate obtained from a fine paper mill was purified with a polyethersulfone (PES ultrafiltration membrane to evaluate the reuse performance of the ultrafiltrate. The membrane foulants were characterized by scanning electron microscopy, energy-dispersive spectrophotometry, attenuated total reflection-fourier transform infrared spectroscopy, and gas chromatography-mass spectrometry. The results indicate that the retention rate of stock and the strength properties of paper increased when the ultrafiltrate was reused in the papermaking process compared to when super-clear filtrate was used. The reversible membrane foulants during ultrafiltration accounted for 85.52% of the total foulants and primarily originated from retention aids, drainage aids, and wet strength resins, while the irreversible adsorptive foulants accounted for 14.48% and mostly came from sizing agents, coating chemicals, and others. Moreover, the presence of dissolved multivalent metal ions, especially Ca2+, accelerated membrane fouling.

  10. Application of membrane technologies for the treatment of textile wastewater and synthetic textile dyes

    International Nuclear Information System (INIS)

    Aouni, A.; Bes-Pia, A.; Fersi, C.; Dhahbi, M.; Cuartas-Uribe, B.; Alcaina-Miranda, M. I.

    2009-01-01

    Textile industry is characterized by using a great variety of chemicals and by large water consumption. In this way, textile effluents contains many types of dyes, detergents, solvents and salts depending on the particular textile mill processes (dyeing, printing, finishing...) and on the raw matter. For those reasons, textile industry is one of the main sources of industrial pollution, producing effluents discharges characterized by high conductivities and chemical oxygen demand (COD) values and strong colour. Process selection and operating conditions are important issues to optimize technically and economically the textile effluent treatment. This work presents the results of the laboratory-scale membrane experiments of textile industry effluents and synthetic textile dyes. Different types of Ultrafiltration (UF) and Nano filtration (NF) membranes were evaluated for permeate flux and their suitability in separating COD, colour, conductivity. Experiments demonstrated that membrane treatment is a very promising advanced treatment option for pollution control for textile industry effluents. The results of this work show that the direct ultrafiltration seems to be a realistic method in the pretreatment of the textile wastewater. In fact, NF process was successfully used to improve permeate quality of synthetic dyeing textile wastewater, but this process presented some limitations in the treatment of textile industry effluents because of membrane fouling problems. So, this process requires an efficient and appropriate technique such as ultrafiltration as a pre-treatment step for textile wastewater reuse. For direct nano filtration of synthetic textile dyes aqueous solutions, with a weak salt concentration (500 ppm), good results were obtained. More than 95 pour cent of color was removed from the treated water accompanied with a reduction of 92 pour cent of conductivity and COD. Based on the experiments; NF membranes are suitable for producing permeate of reusable

  11. Polymer nanocomposite membranes with hierarchically structured catalysts for high throughput dehalogenation

    Science.gov (United States)

    Crock, Christopher A.

    Halogenated organics are categorized as primary pollutants by the Environmental Protection Agency. Trichloroethylene (TCE), which had broad industrial use in the past, shows persistence in the environment because of its chemical stability. The large scale use and poor control of TCE resulted in its prolonged release into the environment before the carcinogenic risk associated with TCE was fully understood. TCE pollution stemmed from industrial effluents and improper disposal of solvent waste. Membrane reactors are promising technology for treating TCE polluted groundwater because of the high throughput, relatively low cost of membrane fabrication and facile retrofitting of existing membrane based water treatment facilities with catalytic membrane reactors. Compared to catalytic fluidized or fixed bed reactors, catalytic membrane reactors feature minimal diffusional limitation. Additionally, embedding catalyst within the membrane avoids the need for catalyst recovery and can prevent aggregation of catalytic nanoparticles. In this work, Pd/xGnP, Pd-Au/xGnP, and commercial Pd/Al2O3 nanoparticles were employed in batch and flow-through membrane reactors to catalyze the dehalogenation of TCE in the presence of dissolved H2. Bimetallic Pd-Au/xGnP catalysts were shown to be more active than monometallic Pd/xGnP or commercial Pd/Al 2O3 catalysts. In addition to synthesizing nanocomposite membranes for high-throughput TCE dehalogenation, the membrane based dehalogenation process was designed to minimize the detrimental impact of common catalyst poisons (S2-, HS-, and H2S -) by concurrent oxidation of sulfide species to gypsum in the presence of Ca2+ and removal of gypsum through membrane filtration. The engineered membrane dehalogenation process demonstrated that bimetallic Pd-Au/xGnP catalysts resisted deactivation by residual sulfide species after oxidation, and showed complete removal of gypsum during membrane filtration.

  12. Wind Turbine Gearbox Oil Filtration and Condition Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Shuangwen

    2015-10-25

    This is an invited presentation for a pre-conference workshop, titled advances and opportunities in lubrication: wind turbine, at the 2015 Society of Tribologists and Lubrication Engineers (STLE) Tribology Frontiers Conference held in Denver, CO. It gives a brief overview of wind turbine gearbox oil filtration and condition monitoring by highlighting typical industry practices and challenges. The presentation starts with an introduction by covering recent growth of global wind industry, reliability challenges, benefits of oil filtration and condition monitoring, and financial incentives to conduct wind operation and maintenance research, which includes gearbox oil filtration and condition monitoring work presented herein. Then, the presentation moves on to oil filtration by stressing the benefits of filtration, discussing typical main- and offline-loop practices, highlighting important factors considered when specifying a filtration system, and illustrating real-world application challenges through a cold-start example. In the next section on oil condition monitoring, a discussion on oil sample analysis, oil debris monitoring, oil cleanliness measurements and filter analysis is given based on testing results mostly obtained by and at NREL, and by pointing out a few challenges with oil sample analysis. The presentation concludes with a brief touch on future research and development (R and D) opportunities. It is hoping that the information presented can inform the STLE community to start or redirect their R and D work to help the wind industry advance.

  13. Infrasonic backpulsed membrane cleaning of micro- and ...

    African Journals Online (AJOL)

    Membrane fouling is universally considered to be one of the most critical problems in the wider application of membrane filtration. In this research microfiltration and ultrafiltration membranes were fouled during a cross-flow filtration process, using yeast and alumina suspensions in a flat cell. Infrasonic backpulsing directly ...

  14. Application of design for six sigma methodology on portable water filter that uses membrane filtration system: A preliminary study

    Science.gov (United States)

    Fahrul Hassan, Mohd; Jusoh, Suhada; Zaini Yunos, Muhamad; Arifin, A. M. T.; Ismail, A. E.; Rasidi Ibrahim, M.; Zulafif Rahim, M.

    2017-09-01

    Portable water filter has grown significantly in recent years. The use of water bottles as a water drink stuff using hand pump water filtration unit has been suggested to replace water bottled during outdoor recreational activities and for emergency supplies. However, quality of water still the issue related to contaminated water due to the residual waste plants, bacteria, and so on. Based on these issues, the study was carried out to design a portable water filter that uses membrane filtration system by applying Design for Six Sigma. Design for Six Sigma methodology consists of five stages which is Define, Measure, Analyze, Design and Verify. There were several tools have been used in each stage in order to come out with a specific objective. In the Define stage, questionnaire approach was used to identify the needs of portable water filter in the future from potential users. Next, Quality Function Deployment (QFD) tool was used in the Measure stage to measure the users’ needs into engineering characteristics. Based on the information in the Measure stage, morphological chart and weighted decision matrix tools were used in the Analyze stage. This stage performed several activities including concept generation and selection. Once the selection of the final concept completed, detail drawing was made in the Design stage. Then, prototype was developed in the Verify stage to conduct proof-of-concept testing. The results that obtained from each stage have been reported in this paper. From this study, it can be concluded that the application of Design for Six Sigma in designing a future portable water filter that uses membrane filtration system is a good start in looking for a new alternative concept with a completed supporting document.

  15. Recovery of iron after Fenton-like secondary treatment of olive mill wastewater by nano-filtration and low-pressure reverse osmosis membranes

    International Nuclear Information System (INIS)

    Ochando-Pulido, J.M.; Victor-Ortega, M.D.; Martinez-Ferez, A.

    2016-01-01

    In this work, the performances of novel nano-filtration (NF) and low-pressure reverse osmosis (RO) polymeric membranes were examined with the aim of recovering the iron used as catalyst in former secondary treatment based on the Fenton-like advanced oxidation of olive mill wastewater (OMW). Results highlight that both membranes exhibit a good performance towards the rejection of iron (99.1% for the NF membrane vs. 100% for the low-pressure RO membrane) in the secondary-treated OMW effluent, thus permitting the recovery of iron in the concentrate stream in order to recycle it back into the oxidation reactor to reduce catalyst consumption. Finally, the permeate streams could be re-used for irrigation. Major productivity was observed by the selected NF membrane, about 47.4 L/hm2 upon 9 bar, whereas 30.9 L/hm2 could be yielded with the RO membrane under an operating pressure of 8 bar. Moreover, a sensibly lower fouling index was measured on the NF membrane (0.0072 in contrast with 0.065), which ensures major steady-state performance on this membrane and a longer service lifetime. This also results in lower required membrane area and membrane plant over dimension (4 modules in case of RO operation whereas only 2 modules for NF). [es

  16. A new approach for determination of fouling potential by colloidal nanoparticles during reverse osmosis (RO) membrane filtration of seawater

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Lim, Sungil; Park, Kihong

    2013-01-01

    A direct measurement of number concentration of colloidal nanoparticles (15–450 nm) in water was made with the membrane filtration-differential mobility analyzer technique, and its corresponding flux decline rate (FDR) was determined by laboratory-scale RO fouling test unit using varying number concentrations of silica nanoparticles in artificial seawaters. This relationship was used to predict fouling potential of colloidal nanoparticles in reverse osmosis (RO) membrane process of seawaters in RO plant. It was found that the FDR linearly increased with the increasing number of colloidal nanoparticles for the given concentration range and that the relationship between the number concentration and the FDR also depended on RO membrane surface properties. Data for estimated FDR values for natural seawaters after pretreatment showed a clear difference among samples, which is contrary to the pre-existing index such as silt density index and modified fouling index. Our data suggest that measurement of colloidal nanoparticles is useful for selection of proper pretreatment and successful operation of RO membrane process along with other particle fouling predictors accounting for large particles (>450 nm).

  17. A new approach for determination of fouling potential by colloidal nanoparticles during reverse osmosis (RO) membrane filtration of seawater

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Yeon; Lim, Sungil; Park, Kihong, E-mail: kpark@gist.ac.kr [Gwangju Institute of Science and Technology (GIST), School of Environmental Science and Engineering (Korea, Republic of)

    2013-04-15

    A direct measurement of number concentration of colloidal nanoparticles (15-450 nm) in water was made with the membrane filtration-differential mobility analyzer technique, and its corresponding flux decline rate (FDR) was determined by laboratory-scale RO fouling test unit using varying number concentrations of silica nanoparticles in artificial seawaters. This relationship was used to predict fouling potential of colloidal nanoparticles in reverse osmosis (RO) membrane process of seawaters in RO plant. It was found that the FDR linearly increased with the increasing number of colloidal nanoparticles for the given concentration range and that the relationship between the number concentration and the FDR also depended on RO membrane surface properties. Data for estimated FDR values for natural seawaters after pretreatment showed a clear difference among samples, which is contrary to the pre-existing index such as silt density index and modified fouling index. Our data suggest that measurement of colloidal nanoparticles is useful for selection of proper pretreatment and successful operation of RO membrane process along with other particle fouling predictors accounting for large particles (>450 nm).

  18. Separation Properties of Wastewater Containing O/W Emulsion Using Ceramic Microfiltration/Ultrafiltration (MF/UF Membranes

    Directory of Open Access Journals (Sweden)

    Kanji Matsumoto

    2013-06-01

    Full Text Available Washing systems using water soluble detergent are used in electrical and mechanical industries and the wastewater containing O/W emulsion are discharged from these systems. Membrane filtration has large potential for the efficient separation of O/W emulsion for reuses of treated water and detergent. The separation properties of O/W emulsions by cross-flow microfiltration and ultrafiltration were studied with ceramic MF and UF membranes. The effects of pore size; applied pressure; cross-flow velocity; and detergent concentration on rejection of O/W emulsion and flux were systematically studied. At the condition achieving complete separation of O/W emulsion the pressure-independent flux was observed and this flux behavior was explained by gel-polarization model. The O/W emulsion tended to permeate through the membrane at the conditions of larger pore size; higher emulsion concentration; and higher pressure. The O/W emulsion could permeate the membrane pore structure by destruction or deformation. These results imply the stability of O/W emulsion in the gel-layer formed on membrane surface play an important role in the separation properties. The O/W emulsion was concentrated by batch cross-flow concentration filtration and the flux decline during the concentration filtration was explained by the gel- polarization model.

  19. Separation Properties of Wastewater Containing O/W Emulsion Using Ceramic Microfiltration/Ultrafiltration (MF/UF) Membranes

    Science.gov (United States)

    Nakamura, Kazuho; Matsumoto, Kanji

    2013-01-01

    Washing systems using water soluble detergent are used in electrical and mechanical industries and the wastewater containing O/W emulsion are discharged from these systems. Membrane filtration has large potential for the efficient separation of O/W emulsion for reuses of treated water and detergent. The separation properties of O/W emulsions by cross-flow microfiltration and ultrafiltration were studied with ceramic MF and UF membranes. The effects of pore size; applied pressure; cross-flow velocity; and detergent concentration on rejection of O/W emulsion and flux were systematically studied. At the condition achieving complete separation of O/W emulsion the pressure-independent flux was observed and this flux behavior was explained by gel-polarization model. The O/W emulsion tended to permeate through the membrane at the conditions of larger pore size; higher emulsion concentration; and higher pressure. The O/W emulsion could permeate the membrane pore structure by destruction or deformation. These results imply the stability of O/W emulsion in the gel-layer formed on membrane surface play an important role in the separation properties. The O/W emulsion was concentrated by batch cross-flow concentration filtration and the flux decline during the concentration filtration was explained by the gel- polarization model. PMID:24958621

  20. Investigation of Filtration Membranes from the Dairy Protein Industry for Residual Fouling Using Infrared Spectroscopy and Chemometrics

    DEFF Research Database (Denmark)

    Jensen, Jannie Krog

    the reversible fouling can be removed/cleaned. The aim of this thesis is to investigate the residual fouling that is deposited on ultrafiltration and microfiltration membranes after usage. The membrane surfaces are investigated using infrared spectroscopy with an attenuated reflectance sampling unit...... and this is thesis work highlights the strengths and weaknesses of using infrared spectroscopy to investigate residual fouling on membranes and in particular the challenges with the infrared penetration depth when layering in the samples occurs. Real size production membrane cartridges at different stages of use...... microfiltration membrane cartridges were investigated with Attenuated- Total-Reflection Fourier-Transform-Infrared (ATR FT-IR) to map the residual fouling on both types of cartridges. The height of the characteristic amide peaks from proteins were used to determine the relative concentrations. The first...

  1. Crosslinked cellulose thin film composite nanofiltration membranes with zero salt rejection

    KAUST Repository

    Puspasari, Tiara

    2015-05-14

    We report a new synthetic route of fabricating regenerated cellulose nanofiltration membranes. The membranes are composite membranes with a thin selective layer of cellulose, which was prepared by regeneration of trimethylsilyl cellulose (a hydrophobic cellulose derivative) film followed by crosslinking. Filtration experiments using mixtures of sugar and sodium chloride showed that solutes above 300 Da were highly rejected whereas practically no rejection was observed for NaCl. This is a big advantage for a complete desalination as the existing commercial nanofiltration membranes typically exhibit NaCl rejection in the range of 30–60%. Membranes with zero NaCl rejection are required for recovery and purification applications in food, chemical and pharmaceutical industry.

  2. Initial testing of electrospun nanofibre filters in water filtration ...

    African Journals Online (AJOL)

    The aim of this study was to evaluate the use of nanofibre microfiltration membranes, spun by an innovative electrospinning technique, in water filtration applications. As such, this study bridges the gap between developments in electrospinning techniques for the production of flat-sheet membranes and the application of ...

  3. Experience in therapeutic plasma exchange by membrane filtration at an academic center in Colombia: Registry of the first 500 sessions.

    Science.gov (United States)

    Córdoba, Juan Pablo; Larrarte, Carolina; Medina, María Camila

    2015-12-01

    Therapeutic plasma exchange (TPE) is an extracorporeal blood purification therapy that is part of the treatment of various diseases. Plasma and blood cells can be separated by centrifugation or using membrane separators. A descriptive analysis, in which the first 500 TPE sessions using membrane filtration without anticoagulation of the extracorporeal circuit are described. Five hundred (500) TPE sessions were performed on 68 patients over a period of 5 years. Therapeutic indications were 17 different diseases. 5% albumin was the most frequent replacement solution used in 62% of sessions. The mean number of plasma volume replacements was 1.33. Complications occurred in 7.6% of the sessions. Arterial hypotension was the most common event and clotting of the extracorporeal circuit was documented in just one TPE session. Electrolyte tests performed in patients during the procedure showed: 11% hypocalcemia, with a similar distribution of hypokalemia. Twenty-two percent (22%) and 37% of phosphorus and magnesium records, respectively, were higher than normal. No symptoms associated with electrolyte abnormalities were documented. TPE by membrane filtration is one of the techniques by which it is possible to perform such therapy. In this registry, a low rate of complications was documented. While the need for anticoagulation may be related not only to clotting of the circuit but also to the efficiency of the therapy, clinical response in this series of patients was as expected for each disease. Continuous monitoring and an individualized analysis of electrolytes should be performed in TPE patients. © 2015 Wiley Periodicals, Inc.

  4. Study on the Fouling Behavior of Polyethylene and Silica Nanoparticles Mixed Matrix Membranes in Filtration of Humic Acid Solution

    Directory of Open Access Journals (Sweden)

    Ali Akbari

    2016-09-01

    Full Text Available Because most contaminants in water create strong interactions with hydrophobic surfaces, there are usually problems such as flux decline and pore blocking in polyethylene (PE membranes due to irreversible adsorption of foulants on their intrinsic hydrophobic surface. Therefore, in this work, attempts were made to improve the properties of PE membranes in terms of water flux and membrane fouling resistance by dispersion of silica nanoparticles (NPs. First, NPs were synthesized by sol-gel method at two concentrations of ammonia (0.5 and 1 mol/L. The synthesized NPs with smaller size were used to fabricate the mixed matrix PE membranes containing 0, 0.5, 1 and 2 wt% NPs. FE-SEM and EDX analyses were employed to evaluate the morphology and structure of the fabricated membranes and confirmed the presence of NPs in the membranes matrix. The results of pure water flux test revealed that the membrane containing 1 wt% NPs displayed the maximum flux of 30 L/m2.h. Furthermore, the performance and fouling behaviors of membranes during filtration of humic acid solution, one of the most important contaminants of water resources, were studied using a classical fouling model. Fouling mechanism analysis showed that for neat and NPs-embedded membranes containing 0.5 and 2 wt% NPs, the best fit of the data was obtained by cake layer formation as well as the intermediate blocking mechanisms. However, the best fit of the experimental data of NPs-embedded membrane containing 1 wt% occurred with only cake layer formation mechanism. The investigation on membrane fouling resistance showed that 1 wt% NPs-embedded membrane displayed 58% maximum flux recovery and 52% reversibility to total fouling ratio, respectively.

  5. Influence of membrane properties on fouling in submerged membrane bioreactors

    NARCIS (Netherlands)

    van der Marel, P.; Zwijnenburg, A.; Kemperman, Antonius J.B.; Wessling, Matthias; Temmink, Hardy; van der Meer, Walterus Gijsbertus Joseph

    2010-01-01

    Polymeric flat-sheet membranes with different properties were used in filtration experiments with activated sludge from a pilot-scale MBR to investigate the influence of membrane pore size, surface porosity, pore morphology, and hydrophobicity on membrane fouling. An improved flux-step method was

  6. One Step Membrane Filtration : A fundamental study

    NARCIS (Netherlands)

    Haidari, A.H.

    2017-01-01

    This study focuses on spiral-wound membrane (SWM) modules, which are the most common commercially available membrane modules for reverse osmosis (RO) and nanofiltration (NF). While RO membranes can remove almost all kinds of substances from the feed water, they are usually equipped with pretreatment

  7. The effect of pretreatment on the performance of membrane separation processes in the circulation water systems of paper production; Esikaesittelyiden vaikutus kalvoerotusprosessien toimintaan paperinvalmistuksen vesikierroissa - EKT 01

    Energy Technology Data Exchange (ETDEWEB)

    Nuortila-Jokinen, J.; Nystroem, M. [Lappeenranta Univ. of Technology (Finland). Dept. of Chemical Technology

    1998-12-31

    The aim of this project is to establish an optimized membrane filtration process for internal water treatment in the pulp and paper industry. In membrane filtration fouling reduces the capacity of a plant, and frequent or ineffective membrane washing reduces the membrane lifetime. These factors affect directly the feasibility of the process. Moreover, the retentates have to be economically destroyed. In this project effective pretreatment systems for membrane filtration processes will be developed. The pretreatments studied will be chemical, biological (thermophilic aerobic or anaerobic processes), oxidative (ozonation or other AOP methods) or enzymatic methods or their combinations. The target is to increase capacity and/or reduce fouling in the membrane process. In addition, the effect of the different pretreatment methods on the washability of the membranes will be studied and an optimized washing routine will be developed. The composition of the forming retentates are also affected by the pretreatment used and additionally the same methods can be used for developing a sensible and economically feasible retentate posttreatment method, which will also be developed in the project. (orig.)

  8. The effect of pretreatment on the performance of membrane separation processes in the circulation water systems of paper production; Esikaesittelyiden vaikutus kalvoerotusprosessien toimintaan paperinvalmistuksen vesikierroissa - EKT 01

    Energy Technology Data Exchange (ETDEWEB)

    Nuortila-Jokinen, J; Nystroem, M [Lappeenranta Univ. of Technology (Finland). Dept. of Chemical Technology

    1999-12-31

    The aim of this project is to establish an optimized membrane filtration process for internal water treatment in the pulp and paper industry. In membrane filtration fouling reduces the capacity of a plant, and frequent or ineffective membrane washing reduces the membrane lifetime. These factors affect directly the feasibility of the process. Moreover, the retentates have to be economically destroyed. In this project effective pretreatment systems for membrane filtration processes will be developed. The pretreatments studied will be chemical, biological (thermophilic aerobic or anaerobic processes), oxidative (ozonation or other AOP methods) or enzymatic methods or their combinations. The target is to increase capacity and/or reduce fouling in the membrane process. In addition, the effect of the different pretreatment methods on the washability of the membranes will be studied and an optimized washing routine will be developed. The composition of the forming retentates are also affected by the pretreatment used and additionally the same methods can be used for developing a sensible and economically feasible retentate posttreatment method, which will also be developed in the project. (orig.)

  9. Suitability assessment of grey water quality treated with an upflow-downflow siliceous sand/marble waste filtration system for agricultural and industrial purposes.

    Science.gov (United States)

    Chaabane, Safa; Riahi, Khalifa; Hamrouni, Hédi; Thayer, Béchir Ben

    2017-04-01

    The present study examines the suitability assessment of an upflow-downflow siliceous sand/marble waste filtration system for treatment and reuse of grey water collected from bathrooms of the student residential complex at the Higher Institute of Engineering Medjez El Bab (Tunisia). Once the optimization of grey water pre-treatment system has been determined, the filtration system was operated at different hydraulic loading rate and media filter proportions in order to assess the suitability of treated grey water for irrigational purpose according to salinity hazard, sodium hazard, magnesium hazard, permeability index, water infiltration rate, and widely used graphical methods. Suitability of the treated grey water for industrial purpose was evaluated in terms of foaming, corrosion, and scaling. Under optimal operational conditions, results reveals that treated grey water samples with an upflow-downflow siliceous sand/marble waste filtration system may be considered as a good and an excellent water quality suitable for irrigation purpose. However, treated grey water was found not appropriate for industrial purpose due to high concentrations of calcium and sodium that can generate foaming and scaling harm to boilers. These results suggest that treated grey water with an upflow-downflow siliceous sand/marble waste filtration system would support production when used as irrigation water.

  10. Hybrid Membrane System for Industrial Water Reuse

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-08-01

    This factsheet describes a project that developed and demonstrated a new hybrid system for industrial wastewater treatment that synergistically combines a forward osmosis system with a membrane distillation technology and is powered by waste heat.

  11. Diatomite releases silica during spirit filtration.

    Science.gov (United States)

    Gómez, J; Gil, M L A; de la Rosa-Fox, N; Alguacil, M

    2014-09-15

    The purpose of this study was to ascertain whether diatomite is an inert filter aid during spirit filtration. Surely, any compound with a negative effect on the spirit composition or the consumer's health could be dissolved. In this study different diatomites were treated with 36% vol. ethanol/water mixtures and the amounts and structures of the extracted compounds were determined. Furthermore, Brandy de Jerez was diatomite- and membrane-filtered at different temperatures and the silicon content was analysed. It was found that up to 0.36% by weight of diatomite dissolved in the aqueous ethanol and amorphous silica, in the form of hollow spherical microparticles, was the most abundant component. Silicon concentrations in Brandy de Jerez increased by up to 163.0% after contact with diatomite and these changes were more marked for calcined diatomite. In contrast, reductions of more than 30% in silicon concentrations were achieved after membrane filtration at low temperatures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse

    Energy Technology Data Exchange (ETDEWEB)

    Toy, Lora [RTI International, Research Triangle Park, NC (United States); Choi, Young Chul [RTI International, Research Triangle Park, NC (United States); Hendren, Zachary [RTI International, Research Triangle Park, NC (United States); Kim, Gyu Dong [RTI International, Research Triangle Park, NC (United States)

    2017-03-31

    In the U.S. manufacturing sector, current industrial water use practices are energy-intensive and utilize and discharge high volumes of waters, rendering them not sustainable especially in light of the growing scarcity of suitable water supplies. To help address this problem, the goal of this project was to develop an advanced, cost-effective, hybrid membrane-based water treatment system that can improve the energy efficiency of industrial wastewater treatment while allowing at least 50% water reuse efficiency. This hybrid process would combine emerging Forward Osmosis (FO) and Membrane Distillation (MD) technology components into an integrated FO-MD system that can beneficially utilize low-grade waste heat (i.e., T < 450 °F) in industrial facilities to produce distilled-quality product water for reuse. In this project, laboratory-, bench-, and pilot-scale experiments on the hybrid FO-MD system were conducted for industrial wastewater treatment. It was demonstrated at laboratory, bench, and pilot scales that FO-MD membrane technology can concentrate brine to very high total dissolved solids (TDS) levels (>200,000 ppm) that are at least 2.5 times higher than the TDS level to which RO can achieve. In laboratory testing, currently available FO and MD membranes were tested to select for high-performing membranes with high salt rejection and high water flux. Multiple FO membrane/draw-salt solution combinations that gave high water flux with higher than 98% salt rejection were also identified. Reverse draw-salt fluxes were observed to be much lower for divalent salts than for monovalent salts. MD membranes were identified that had 99.9+% salt rejection and water flux as high as 50-90 L/(m2·h) for flat-sheet membranes and >20 L/(m2·h) for hollow fibers. In bench-scale testing, a single unit of commercially available FO and MD membrane modules were evaluated for continuous, integrated operation. Using the laboratory- and bench-scale test data

  13. Influence of sintering temperature on the characteristics of a-alumina filtration tubes

    International Nuclear Information System (INIS)

    Zarina Abdul Wahid; Rafindde Ramli; Andanastuti Muchtar; Abd Wahab Mohammad

    2005-01-01

    The emerging technology of ceramic membrane filters has created a lot of impact on the materials development and separation industries. Ceramic membrane filters have been used in many separation industry applications particularly in food, dairy, beverages, biotechnology, pharmaceutical and waste treatment industries. This is due to the fact that ceramics are inert and durable and can withstand high temperatures as well as extreme chemical conditions. They also have favourable mechanical properties and lower fouling rates. In this study, ceramic filtration tubes having dimensions of 10 mm outer diameter, 6 mm inner diameter and 880 mm long were prepared from a-alumina using the extrusion technique. The effects of sintering temperature on the pore size, microstructure and porosity of the alumina tube were investigated. The optimum sintering temperature was determined based on the performance of the tubes with regards to porosity, pore size and microstructure. The alumina tubes were sintered at six different temperatures i.e. 1250 degree C, 1300 degree C, 1350 degree C, 1400 degree C, 1450 degree C and 1500 degree C. The porous structures of the alumina tubes were studied using Scanning Electron Microscope (SEM) whereas a Mercury Porosimeter was used to determine the porosity and pore size distribution. (Author)

  14. Corrosion resistance characterization of porous alumina membrane supports

    Energy Technology Data Exchange (ETDEWEB)

    Dong Yingchao, E-mail: dongyc9@mail.ustc.edu.cn [Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland); USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Key Lab of Jiangxi Universities for Inorganic Membranes, National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic University (JCU) (China); Lin Bin [USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Zhou Jianer [Key Lab of Jiangxi Universities for Inorganic Membranes, National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic University (JCU) (China); Zhang Xiaozhen [USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Key Lab of Jiangxi Universities for Inorganic Membranes, National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic University (JCU) (China); Ling Yihan; Liu Xingqin; Meng Guangyao [USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Hampshire, Stuart [Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland)

    2011-04-15

    Tubular porous alumina ceramic membrane supports were fabricated by an extrusion-drying-sintering process and then characterized in detail in terms of corrosion resistance in both H{sub 2}SO{sub 4} and NaOH aqueous solutions. Variations in the properties of the alumina supports such as mass loss percent, mechanical strength, open porosity and pore size distribution were studied before and after corrosion under different conditions. In addition, the microstructures were analyzed using scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction before and after corrosion. The fabricated porous alumina supports offer possibilities for some potential applications as micro-filtration or ultra-filtration membrane supports, as well as in the pre-treatment of strongly acidic industrial waste-liquids. - Research highlights: {yields} Porous alumina membrane supports fabricated by extrusion-drying-sintering process. {yields} Corrosion resistance in 20 wt.% H{sub 2}SO{sub 4} and 1, 5, 10 wt.% NaOH aqueous solutions. {yields} Rapid mass loss and loss of flexural strength occurred in hot NaOH solution. {yields} Resistant to strong acid corrosion with low mass loss, low flexural strength loss. {yields} Porous alumina supports have potential for treatment of strong acid waste liquids.

  15. Evaluation of standard and modified M-FC, MacConkey, and Teepol media for membrane filtration counting of fecal coliforms in water.

    Science.gov (United States)

    Grabow, W O; Hilner, C A; Coubrough, P

    1981-08-01

    MacConkey agar, standard M-FC agar, M-FC agar without rosolic acid, M-FC agar with a resuscitation top layer, Teepol agar, and pads saturated with Teepol broth, were evaluated as growth media for membrane filtration counting of fecal coliform bacteria in water. In comparative tests on 312 samples of water from a wide variety of sources, including chlorinated effluents, M-FC agar without rosolic acid proved the medium of choice because it generally yielded the highest counts, was readily obtainable, easy to prepare and handle, and yielded clearly recognizable fecal coliform colonies. Identification of 1,139 fecal coliform isolates showed that fecal coliform tests cannot be used to enumerate Escherichia coli because the incidence of E. coli among fecal coliforms varied from an average of 51% for river water to 93% for an activated sludge effluent after chlorination. The incidence of Klebsiella pneumoniae among fecal coliforms varied from an average of 4% for the activated sludge effluent after chlorination to 32% for the river water. The advantages of a standard membrane filtration procedure for routine counting of fecal coliforms in water using M-FC agar without rosolic acid as growth medium, in the absence of preincubation or resuscitation steps, are outlined.

  16. Sol-gel applications for ceramic membrane preparation

    Science.gov (United States)

    Erdem, I.

    2017-02-01

    Ceramic membranes possessing superior properties compared to polymeric membranes are more durable under severe working conditions and therefore their service life is longer. The ceramic membranes are composed of some layers. The support is the layer composed of coarser ceramic structure and responsible for mechanical durability under filtration pressure and it is prepared by consolidation of ceramic powders. The top layer is composed of a finer ceramic micro-structure mainly responsible for the separation of components present in the fluid to be filtered and sol-gel method is a versatile tool to prepare such a tailor-made ceramic filtration structure with finer pores. Depending on the type of filtration (e.g. micro-filtration, ultra-filtration, nano-filtration) aiming separation of components with different sizes, sols with different particulate sizes should be prepared and consolidated with varying precursors and preparation conditions. The coating of sol on the support layer and heat treatment application to have a stable ceramic micro-structure are also important steps determining the final properties of the top layer. Sol-gel method with various controllable parameters (e.g. precursor type, sol formation kinetics, heat treatment conditions) is a practical tool for the preparation of top layers of ceramic composite membranes with desired physicochemical properties.

  17. Edible Oil Industry Wastewater Treatment by Microfiltration with Ceramic Membrane

    OpenAIRE

    Zita Šereš; Dragana Šoronja Simović; Ljubica Dokić; Lidietta Giorno; Biljana Pajin; Cecilia Hodur; Nikola Maravić

    2016-01-01

    Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present. The idea is that the waste stream from edible oil industry, after the separation of oil by using skimmers is subjected to microfiltration and the obtained permeate can be used again in the production process. The wastewater from edible oil industry was used for the microfiltration. For the microfiltration of this effluent a tubular membrane was used with a pore ...

  18. Membrane fouling mechanism transition in relation to feed water composition

    KAUST Repository

    Myat, Darli Theint

    2014-12-01

    The impact of secondary effluent wastewater from the Eastern Treatment Plant (ETP), Melbourne, Australia, before and after ion exchange (IX) treatment and polyaluminium chlorohydrate (PACl) coagulation, on hydrophobic polypropylene (PP) and hydrophilic polyvinylidene fluoride (PVDF) membrane fouling was studied. Laboratory fouling tests were operated over 3-5 days with regular, intermittent backwash. During the filtration with PP membranes, organic rejection data indicated that humic adsorption on hydrophobic PP membrane occurred during the first 24h of filtration and contributed to fouling for both raw wastewater and pre-treated wastewaters. However, after the first 24h of filtration the contribution of humic substances to fouling diminished and biopolymers that contribute to cake layer development became more prominent in their contribution to the fouling rate. For PVDF membranes, the per cent removal of humic substances from both raw wastewater and pre-treated wastewaters was very small as indicated by no change in UV254 from the feed to the permeate over the filtration period, even during the early stages of filtration. This suggested that the hydrophobic PP membrane adsorbed humic substances while the hydrophilic PVDF membrane did not. The highest mass of biopolymer removal by each PVDF membrane was from ETP water followed by PACl and IX treated water respectively. This was possibly due to differences in the backwashing efficiency linked to the filter cake contributed by biopolymers. Hydraulic backwashing was more effective during the later stages of filtration for the ETP water compared to IX and PACl treated waters, indicating that the filter cake contributed by ETP biopolymers was more extensively removed by hydraulic backwashing. It was proposed that humic substances may act to stabilise biopolymers in solution and that removing humics substances by coagulation or IX results in greater adhesive forces between the biopolymers and membrane/filter cake

  19. removal of hazardous pollutants from industrial waste solutions using membrane techniques

    International Nuclear Information System (INIS)

    Selim, Y.T.M.

    2001-01-01

    the removal of hazardous pollutants from industrial waste solutions is of essential demand field for both scientific and industrial work. the present work includes detailed studies on the possible use of membrane technology especially liquid emulsion membrane for the removal of hazardous pollutants such as; cadmium , cobalt , lead, copper and uranium from different industrial waste solution . this research can be applied for mixed waste problems. the work carried out in this thesis is presented in three main chapters, namely introduction, experimental and results and discussion

  20. An Underwater Superoleophobic Sepiolite Fibrous Membrane (SFM) for Oil­‐in­‐water Emulsion Separation

    KAUST Repository

    Yao, Pinjiang

    2014-12-01

    Separating oil/water emulsions is significant for the ecosystem and the petroleum and processing industry. To this end, we prepared an underwater superoleophobic membrane inspired by unique wettability of the fish scales. This membrane was fabricated by a facile vacuum filtration process of sepiolite nanofibers and chitosan, and after the cross-linking via glutaraldehyde, a self-standing membrane was obtained. The as-prepared membrane exhibited excellent capability of separating both the surfactant-free and surfactant-stabilized oil-in-water emulsions with high efficiency. This sepiolite fibrous membrane offers a convenient, reliable and efficient way for the large-scale de-emulsification process.

  1. Membrane processes in production of functional whey components

    Directory of Open Access Journals (Sweden)

    Lutfiye Yilmaz-Ersan

    2009-12-01

    Full Text Available In recent years, whey has been recognised as a major source of nutritional and functional ingredients for the food industry. Commercial whey products include various powders, whey protein concentrates and isolates, and fractionated proteins, such as a-lactalbumin and b-lactoglobulin. The increased interest in separation and fractionation of whey proteins arises from the differences in their functional, biological and nutritional properties. In response to concerns about environmental aspects, research has been focused on membrane filtration technology, which provides exciting new opportunities for large-scale protein and lactose fractionation. Membrane separation is such technique in which particles are separated according to their molecular size. The types of membrane processing techniques are ultrafiltration, microfiltration, reverse osmosis, pervaporation, electrodialysis and nanofiltration. A higher purification of whey proteins is possible by combining membrane separation with ion-exchange. This paper provides an overview of types and applications of membrane separation techniques

  2. MATHEMATIC MODEL OF ELECTROMAGNETIC FILTRATION PROCESS OF TECHNOLOGICAL LIQUID AND GAS

    OpenAIRE

    R. A. Мouradova

    2005-01-01

    Electromagnetic filtration as a perspective method of filtration and purification of liquid and gas finds its wide application in oil and chemical industry. However absence of highly-reliable model of calculation that permits unambiguously main operational parameters of electromagnetic filtration and limits its wide application. 

  3. Hanford underground storage tank waste filtration process evaluation

    International Nuclear Information System (INIS)

    Walker, B.W.; McCabe, D.J.

    1997-01-01

    The purpose of this filter study was to evaluate cross-flow filtration as effective solid-liquid separation technology for treating Hanford wastes, outline operating conditions for equipment, examine the expected filter flow rates, and determine proper cleaning. Two Hanford waste processing applications have been identified as candidates for the use of cross-flow filtration. The first of the Hanford applications involves filtration of the decanted supernate from sludge leaching and washing operations. This process involves the concentration and removal of dilute (0.05 wt percent) fines from the bulk of the supernate. The second application involves filtration to wash and concentrate the sludge during out-of-tank processing. This process employs a relatively concentrated (8 wt percent) solids feed stream. Filter studies were conducted with simulants to evaluate whether 0.5 micron cross-flow sintered metal Mott filters and 0.1 micron cross-flow Graver filters can perform solid-liquid separation of the solid/liquid waste streams effectively. In cross-flow filtration the fluid to be filtered flows in parallel to the membrane surface and generates shearing forces and/or turbulence across the filter medium. This shearing influences formation of filter cake stabilizing the filtrate flow rate

  4. Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling.

    Science.gov (United States)

    Iorhemen, Oliver Terna; Hamza, Rania Ahmed; Tay, Joo Hwa

    2016-06-15

    The membrane bioreactor (MBR) has emerged as an efficient compact technology for municipal and industrial wastewater treatment. The major drawback impeding wider application of MBRs is membrane fouling, which significantly reduces membrane performance and lifespan, resulting in a significant increase in maintenance and operating costs. Finding sustainable membrane fouling mitigation strategies in MBRs has been one of the main concerns over the last two decades. This paper provides an overview of membrane fouling and studies conducted to identify mitigating strategies for fouling in MBRs. Classes of foulants, including biofoulants, organic foulants and inorganic foulants, as well as factors influencing membrane fouling are outlined. Recent research attempts on fouling control, including addition of coagulants and adsorbents, combination of aerobic granulation with MBRs, introduction of granular materials with air scouring in the MBR tank, and quorum quenching are presented. The addition of coagulants and adsorbents shows a significant membrane fouling reduction, but further research is needed to establish optimum dosages of the various coagulants/adsorbents. Similarly, the integration of aerobic granulation with MBRs, which targets biofoulants and organic foulants, shows outstanding filtration performance and a significant reduction in fouling rate, as well as excellent nutrients removal. However, further research is needed on the enhancement of long-term granule integrity. Quorum quenching also offers a strong potential for fouling control, but pilot-scale testing is required to explore the feasibility of full-scale application.

  5. Evaluation of innovative operation concept for flat sheet MBR filtration system.

    Science.gov (United States)

    Weinrich, L; Grélot, A

    2008-01-01

    One of the most limiting factors for the extension and acceptance of MBR filtration systems for municipal and industrial wastewater is the impact of membrane fouling on maintenance, operation and cleaning efforts. One field of action in the European Research Project "AMEDEUS" is the development and testing of MBR module concepts with innovative fouling-prevention technology from three European module manufacturers. This article deals with the performances of the flat-sheet modules by A3 Water Solutions GmbH in double-deck configuration evaluated over 10 months in Anjou Recherche under typical biological operation conditions for MBR systems (MLSS = 10 g/l; SRT = 25 days). By using a double-deck configuration, it is possible to operate with a net flux of 25.5 l/m2.h at 20 degrees C, a membrane air flow rate of 0.21 Nm3/h.m2 of membrane to achieve a stable permeability of around 500-600 l/m2.h.bar. Additionally, it was observed that it is possible to recover the membrane performance after biofouling during operation without intensive cleaning and to maintain stable permeability during peak flows. The evaluated concepts for equipping and operating MBR systems will be applied to several full-scale plants constructed by A3 Water Solutions GmbH.

  6. Resolution of the three dimensional structure of components of the glomerular filtration barrier

    DEFF Research Database (Denmark)

    Arkill, Kenton P; Qvortrup, Klaus; Starborg, Tobias

    2014-01-01

    The human glomerulus is the primary filtration unit of the kidney, and contains the Glomerular Filtration Barrier (GFB). The GFB had been thought to comprise 3 layers - the endothelium, the basement membrane and the podocyte foot processes. However, recent studies have suggested that at least two...

  7. Ultrafiltration-based degumming of crude rice bran oil using a polymer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Sehn, G.A.R.; GonCalves, L.A.G.; Ming, C.C.

    2016-07-01

    Membrane technology has been gaining momentum in industrial processes, especially in food technology. It is believed to simplify processes, reduce energy consumption, and eliminate pollutants. The objective was to study the performance of polyvinylidene fluoride (PVDF) and polyethersulfone (PES) polymeric membranes in the degumming of the miscella of crude rice bran oil by using a bench-scale tangential filtration module. In addition, oil miscella filtration techniques using hexane and anhydrous ethyl alcohol solvents were compared. All membranes showed the retention of phospholipids and high flow rates. However, the best performance was observed using the 50-kDa PVDF membrane in miscella hexane solvent, with a 95.5% retention of the phosphorus concentration (by a factor of 1.4), resulting in a permeate with 29 mg·kg−1 of phosphorus and an average flow rate of 48.1 L·m−2·h−1. This technology can be used as a low-pollution, economical alternative for the de-gumming of crude rice bran oil, being effective in the removal of hydratable and non-hydratable phospholipids, resulting in oils with a low phosphorus content. (Author)

  8. High speed municipal sewage treatment in microbial fuel cell integrated with anaerobic membrane filtration system.

    Science.gov (United States)

    Lee, Y; Oa, S W

    2014-01-01

    A cylindrical two chambered microbial fuel cell (MFC) integrated with an anaerobic membrane filter was designed and constructed to evaluate bioelectricity generation and removal efficiency of organic substrate (glucose or domestic wastewater) depending on organic loading rates (OLRs). The MFC was continuously operated with OLRs 3.75, 5.0, 6.25, and 9.38 kg chemical oxygen demand (COD)/(m(3)·d) using glucose as a substrate, and the cathode chamber was maintained at 5-7 mg/L of dissolved oxygen. The optimal OLR was found to be 6.25 kgCOD/(m(3)·d) (hydraulic retention time (HRT) 1.9 h), and the corresponding voltage and power density averaged during the operation were 0.15 V and 13.6 mW/m(3). With OLR 6.25 kgCOD/(m(3)·d) using domestic wastewater as a substrate, the voltage and power reached to 0.13 V and 91 mW/m(3) in the air cathode system. Even though a relatively short HRT of 1.9 h was applied, stable effluent could be obtained by the membrane filtration system and the following air purging. In addition, the short HRT would provide economic benefit in terms of reduction of construction and operating costs compared with a conventional aerobic treatment process.

  9. Synthesis of inorganic materials in a supercritical carbon dioxide medium. Application to ceramic cross-flow filtration membranes preparation

    International Nuclear Information System (INIS)

    Papet, Sebastien

    2000-01-01

    Membrane separations, using cross-flow mineral ceramic membranes, allows fractionation of aqueous solutions due to the molecular sieve effect and electrostatic charges. To obtain a high selectivity, preparation of new selective ceramic membranes is necessary. We propose in this document two different routes to prepare such cross-flow tubular mineral membranes. In the first exposed method, a ceramic material is used, titanium dioxide, synthesized in supercritical carbon dioxide by the hydrolysis of an organometallic precursor of the oxide. The influence of operating parameters is similar to what is observed during a liquid-phase synthesis (sol-gel process), and leads us to control the size and texture of the prepared particles. This material is then used to prepare mineral membrane with a compressed layer process. The particles are mixed with organic components to form a liquid suspension. A layer is then deposited on the internal surface of a tubular porous support by slip-casting. The layer is then dried and compressed on the support before sintering. The obtained membranes arc in the ultrafiltration range. A second process has been developed in this work. It consists on the hydrolysis, in a supercritical CO 2 medium, of a precursor of titanium dioxide infiltrated into the support. The obtained material is then both deposited on the support but also infiltrated into the porosity. This new method leads to obtain ultrafiltration membranes that retain molecules which molecular weight is round 4000 g.mol -1 . Furthermore, we studied mass transfer mechanisms in cross-flow filtration of aqueous solutions. An electrostatic model, based on generalized Nernst-Planck equation that takes into account electrostatic interactions between solutes and the ceramic material, lead us to obtain a good correlation between experimental results and the numerical simulation. (author) [fr

  10. Evaluation of Standard and Modified M-FC, MacConkey, and Teepol Media for Membrane Filtration Counting of Fecal Coliforms in Water

    OpenAIRE

    Grabow, W. O. K.; Hilner, C. A.; Coubrough, P.

    1981-01-01

    MacConkey agar, standard M-FC agar, M-FC agar without rosolic acid, M-FC agar with a resuscitation top layer, Teepol agar, and pads saturated with Teepol broth, were evaluated as growth media for membrane filtration counting of fecal coliform bacteria in water. In comparative tests on 312 samples of water from a wide variety of sources, including chlorinated effluents, M-FC agar without rosolic acid proved the medium of choice because it generally yielded the highest counts, was readily obtai...

  11. Removal of Sr from radioactive waste solutions by polymer enhanced ultra filtration: study of selectivity and mechanism of the process

    International Nuclear Information System (INIS)

    Kedari, C.S.; Yadav, J.S.; Gandhi, P.M.; Banerjee, K.

    2016-01-01

    The removal of 90 Sr in liquid radioactive wastes is an important issue for waste disposal. Because of the physical and biological half-life of 90 Sr, it is one of the most hazardous radionuclides for internal exposure. Accumulation in bones tissues and high-energy beta particles from its daughter nuclide, 90 Y (half-life: 64.1 h), cause the damage to bone marrow. These characteristics are forcing the implementation of monitoring 90 Sr activities and its elimination from the industrial waste solutions. Filtration through semi permeable membrane with the potential of selective retention is a well-established commercial technique, which also has great applicability in nuclear waste processing. The UF based separation is a solute fractionation using appropriate pore size membrane as a sieve. The advantage of working with UF is: high throughput can be achieved as compared to RO while using low driving pressure and temperature. The objective of this research was to determine the effectiveness of separation of divalent strontium by complexing with water soluble cation exchange polymer and its removal by ultra filtration

  12. Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, J. R.; Wang, D. [Gas Technology Institute; Bischoff, B.; Ciora, [Media and Process Technology; Radhakrishnan, B.; Gorti, S. B.

    2013-01-14

    Recovery of energy from relatively low-temperature waste streams is a goal that has not been achieved on any large scale. Heat exchangers do not operate efficiently with low-temperature streams and thus require such large heat exchanger surface areas that they are not practical. Condensing economizers offer one option for heat recovery from such streams, but they have not been widely implemented by industry. A promising alternative to these heat exchangers and economizers is a prototype ceramic membrane system using transport membrane technology for separation of water vapor and recovery of heat. This system was successfully tested by the Gas Technology Institute (GTI) on a natural gas fired boiler where the flue gas is relatively clean and free of contaminants. However, since the tubes of the prototype system were constructed of aluminum oxide, the brittle nature of the tubes limited the robustness of the system and even limited the length of tubes that could be used. In order to improve the robustness of the membrane tubes and make the system more suitable for industrial applications, this project was initiated with the objective of developing a system with materials that would permit the system to function successfully on a larger scale and in contaminated and potentially corrosive industrial environments. This required identifying likely industrial environments and the hazards associated with those environments. Based on the hazardous components in these environments, candidate metallic materials were identified that are expected to have sufficient strength, thermal conductivity and corrosion resistance to permit production of longer tubes that could function in the industrial environments identified. Tests were conducted to determine the corrosion resistance of these candidate alloys, and the feasibility of forming these materials into porous substrates was assessed. Once the most promising metallic materials were identified, the ability to form an alumina

  13. Rapid analysis of effluents generated by the dairy industry for fat determination by preconcentration in nylon membranes and attenuated total reflectance infrared spectroscopy measurement.

    Science.gov (United States)

    Moliner Martínez, Y; Muñoz-Ortuño, M; Herráez-Hernández, R; Campíns-Falcó, P

    2014-02-01

    This paper describes a new approach for the determination of fat in the effluents generated by the dairy industry which is based on the retention of fat in nylon membranes and measurement of the absorbances on the membrane surface by ATR-IR spectroscopy. Different options have been evaluated for retaining fat in the membranes using milk samples of different origin and fat content. Based on the results obtained, a method is proposed for the determination of fat in effluents which involves the filtration of 1 mL of the samples through 0.45 µm nylon membranes of 13 mm diameter. The fat content is then determined by measuring the absorbance of band at 1745 cm(-1). The proposed method can be used for the direct estimation of fat at concentrations in the 2-12 mg/L interval with adequate reproducibility. The intraday precision, expressed as coefficients of variation CVs, were ≤ 11%, whereas the interday CVs were ≤ 20%. The method shows a good tolerance towards conditions typically found in the effluents generated by the dairy industry. The most relevant features of the proposed method are simplicity and speed as the samples can be characterized in a few minutes. Sample preparation does not involve either additional instrumentation (such as pumps or vacuum equipment) or organic solvents or other chemicals. Therefore, the proposed method can be considered a rapid, simple and cost-effective alternative to gravimetric methods for controlling fat content in these effluents during production or cleaning processes. © 2013 Published by Elsevier B.V.

  14. Initial testing of electrospun nanofibre filters in water filtration ...

    African Journals Online (AJOL)

    2009-11-17

    Nov 17, 2009 ... for water filtration applications, but that further improvements are necessary before these membranes can be ... power supply, and a grounded collector. .... nanofibres so that the pore size increases and bacteria leak through ...

  15. Sieve plugs in fenestrae of glomerular capillaries--site of the filtration barrier?

    DEFF Research Database (Denmark)

    Rostgaard, Jørgen; Qvortrup, Klaus

    2002-01-01

    The exact location of the filtration barrier of the glomerular capillary wall, which consists of an endothelium, a basement membrane and a visceral epithelium, has not yet been determined. Apparent discrepancies between different investigators in the past could be explained if postmortem...... and a filamentous surface coat about 60 nm thick covered the interfenestral domains of the endothelial cell. Based on these purely morphological data, we dare to suggest that the fenestral plugs are the primary site of the glomerular filtration barrier - albeit highly speculative, nevertheless a logical location...... - and consequently that the glomerular filtration process is a 'tangential-flow' as opposed to a 'dead-end' filtration process. A tangential-flow filtration would minimize 'clogging' and 'concentration polarization' in the 'filter'....

  16. Innovative bio filtration for treatment of wastewater from communities and industry; Biofiltracion innovadora para el tratamiento de aguas residuales producidas por poblaciones e industrias

    Energy Technology Data Exchange (ETDEWEB)

    Sekoulov, I.; Rudiger, A.; Barz, M.

    2009-07-01

    Nowadays biological treatments are more and more required to clean municipal and industrial wastewater. More than 500 wastewater treatment plant use bio filtration. Bio filtration is a compact aerated reactor which does not imply expensive investments anymore. The real advantage of using bio filters is the aptitude to adapts the treatment to a wide range of entering polluting load, and also to low temperatures of wastewater. However, this technology needs a frequent cleaning that involves to stop the installation. Aquabiotec has solved this issue by enhancing a sequential cleaning. This new generation of bio filtration is able to treat wastewater steadily, with the same efficiency (>90%) and for lower costs compared to a classical bio filter. (Author) 6 refs.

  17. Filtration Isolation of Nucleic Acids: A Simple and Rapid DNA Extraction Method.

    Science.gov (United States)

    McFall, Sally M; Neto, Mário F; Reed, Jennifer L; Wagner, Robin L

    2016-08-06

    FINA, filtration isolation of nucleic acids, is a novel extraction method which utilizes vertical filtration via a separation membrane and absorbent pad to extract cellular DNA from whole blood in less than 2 min. The blood specimen is treated with detergent, mixed briefly and applied by pipet to the separation membrane. The lysate wicks into the blotting pad due to capillary action, capturing the genomic DNA on the surface of the separation membrane. The extracted DNA is retained on the membrane during a simple wash step wherein PCR inhibitors are wicked into the absorbent blotting pad. The membrane containing the entrapped DNA is then added to the PCR reaction without further purification. This simple method does not require laboratory equipment and can be easily implemented with inexpensive laboratory supplies. Here we describe a protocol for highly sensitive detection and quantitation of HIV-1 proviral DNA from 100 µl whole blood as a model for early infant diagnosis of HIV that could readily be adapted to other genetic targets.

  18. Digital Marketing concept and strategy for a Finnish Start-up, Case: Sofi Filtration

    OpenAIRE

    Buda, Constantin

    2014-01-01

    The case company is a Finnish start-up company that operates in the industrial water filtration business and who aims to increase its brand awareness and generate more sales leads. The aim of this study is to provide effective and inexpensive tools for Sofi Filtration to engage its target audience and grow its business by being acknowledged as an expert in industrial water filtration. The thesis is part of the International Business Management program offered by HAAGA-HELIA University of ...

  19. Reduced Graphene Oxide Membranes: Applications in Fog Collection and Water Purification

    KAUST Repository

    Tang, Bo

    2017-05-01

    Reduced graphene oxide (rGO) has attracted considerable interest recently as the low cost and chemical stable derivative of pristine graphene with application in many applications such as energy storage, water purification and electronic devices. This dissertation thoroughly investigated stacked rGO membrane fabrication process by vacuum-driven filtration, discovered asymmetry of the two surfaces of the rGO membrane, explored application perspectives of the asymmetric rGO membrane in fog collection and microstructure patterning, and disclosed membrane compaction issue during water filtration and species rejection. In more details, this dissertation revealed that, with suitable pore size, the filtration membrane substrate would leave its physical imprint on the bottom surface of the rGO membrane in the form of surface microstructures, which result in asymmetric dynamic water wettability properties of the two surfaces of the rGO membrane. The asymmetric wettability of the rGO membrane would lead to contrasting fog harvesting behavior of its two surfaces. The physical imprint mechanism was further extended to engineering pre-designed patterns selectively on the bottom surface of the rGO membrane. This dissertation, for the first time, reported the water flux and rejection kinetics, which was related to the compaction of the rGO membrane under pressure in the process of water filtration.

  20. Membrane Bioreactor (MBR Technology for Wastewater Treatment and Reclamation: Membrane Fouling

    Directory of Open Access Journals (Sweden)

    Oliver Terna Iorhemen

    2016-06-01

    Full Text Available The membrane bioreactor (MBR has emerged as an efficient compact technology for municipal and industrial wastewater treatment. The major drawback impeding wider application of MBRs is membrane fouling, which significantly reduces membrane performance and lifespan, resulting in a significant increase in maintenance and operating costs. Finding sustainable membrane fouling mitigation strategies in MBRs has been one of the main concerns over the last two decades. This paper provides an overview of membrane fouling and studies conducted to identify mitigating strategies for fouling in MBRs. Classes of foulants, including biofoulants, organic foulants and inorganic foulants, as well as factors influencing membrane fouling are outlined. Recent research attempts on fouling control, including addition of coagulants and adsorbents, combination of aerobic granulation with MBRs, introduction of granular materials with air scouring in the MBR tank, and quorum quenching are presented. The addition of coagulants and adsorbents shows a significant membrane fouling reduction, but further research is needed to establish optimum dosages of the various coagulants/adsorbents. Similarly, the integration of aerobic granulation with MBRs, which targets biofoulants and organic foulants, shows outstanding filtration performance and a significant reduction in fouling rate, as well as excellent nutrients removal. However, further research is needed on the enhancement of long-term granule integrity. Quorum quenching also offers a strong potential for fouling control, but pilot-scale testing is required to explore the feasibility of full-scale application.

  1. Ultrafiltration of biologically treated domestic wastewater: How membrane properties influence performance

    KAUST Repository

    Filloux, Emmanuelle; Teychene, Benoî t; Tazi-Pain, Annie; Croue, Jean-Philippe

    2014-01-01

    In this study, the impact of membrane properties on membrane fouling and permeate water quality was investigated. Short- and long-term laboratory scale experiments using four commercially available hollow fiber UF membranes were performed to study the impact of membrane properties on reversible and irreversible fouling. No significant differences in terms of permeate quality (i.e. biopolymer rejection) were observed over the four tested membranes. It was found that membrane characteristics including pore size, pore distribution and especially materials had a strong impact on the filtration performances in terms of both reversible and irreversible fouling. The short-term filtration tests showed that due to its specific hydrodynamic condition only the inside-out mode UF membrane was subjected to irreversible fouling. These data demonstrate the importance of membrane selection with appropriate operating conditions for optimum performances. The added value of membrane characterization to lab-scale filtration tests for membrane performance was discussed. © 2014 Elsevier B.V. All rights reserved.

  2. Ultrafiltration of biologically treated domestic wastewater: How membrane properties influence performance

    KAUST Repository

    Filloux, Emmanuelle

    2014-09-01

    In this study, the impact of membrane properties on membrane fouling and permeate water quality was investigated. Short- and long-term laboratory scale experiments using four commercially available hollow fiber UF membranes were performed to study the impact of membrane properties on reversible and irreversible fouling. No significant differences in terms of permeate quality (i.e. biopolymer rejection) were observed over the four tested membranes. It was found that membrane characteristics including pore size, pore distribution and especially materials had a strong impact on the filtration performances in terms of both reversible and irreversible fouling. The short-term filtration tests showed that due to its specific hydrodynamic condition only the inside-out mode UF membrane was subjected to irreversible fouling. These data demonstrate the importance of membrane selection with appropriate operating conditions for optimum performances. The added value of membrane characterization to lab-scale filtration tests for membrane performance was discussed. © 2014 Elsevier B.V. All rights reserved.

  3. Innovative hybrid biological reactors using membranes

    International Nuclear Information System (INIS)

    Diez, R.; Esteban-Garcia, A. L.; Florio, L. de; Rodriguez-Hernandez, L.; Tejero, I.

    2011-01-01

    In this paper we present two lines of research on hybrid reactors including the use of membranes, although with different functions: RBPM, biofilm reactors and membranes filtration RBSOM, supported biofilm reactors and oxygen membranes. (Author) 14 refs.

  4. Synthesis and characterization of ceramic membranes for micro filtration

    International Nuclear Information System (INIS)

    Mohammad Idrees; Lim Yan Ne; Hamdani Saidi

    1996-01-01

    This paper presents the results of a preliminary research work in the development of ceramic membranes by moulding process. The two major objectives were to determine the effect of operating parameters ori- the membrane sheet and membrane characterization. The starting material for the membrane was powdered aluminum oxide and alumina granules. Alumina granules were obtained by spray drying of mixture of alumina with additives and binders under specific conditions. The membrane sheet was produced by mould pressing at various pressures and then sintering at different temperatures. Membrane characterization was done based on microstructure using SEM, pore size distribution, density, and porosity. Strong and porous membranes were produced at pressing force of 120 -140 kN and sintering temperature of 1400 -1500 'C. Pore size and porosity obtained was in the range of 2 -10 μ m, and 13 - 48% respectively. These membranes can be used for, microfiltration at elevated temperature and under extreme environmental condition. They can also be used as porous support for the production qf composite asymmetric UF/hyperfiltration, and gas separation membranes. Further work in the refinement of' pore-size and permeation studies is envisaged

  5. Pretreatment of Real Wastewater from the Chocolate Manufacturing Industry through an Integrated Process of Electrocoagulation and Sand Filtration

    OpenAIRE

    García-Morales, Marco A.; Juárez, Julio César González; Martínez-Gallegos, Sonia; Roa-Morales, Gabriela; Peralta, Ever; del Campo López, Eduardo Martin; Barrera-Díaz, Carlos; Miranda, Verónica Martínez; Blancas, Teresa Torres

    2018-01-01

    The purpose of this study was to evaluate the efficiency of removal of suspended solids in terms of turbidity, color, and chemical oxygen demand (COD) when integrating the electrocoagulation process using aluminum sacrificial anodes and the sand filtration process as a pretreatment of wastewater from the chocolate manufacturing plant in Toluca, México. Wastewater from the chocolate manufacturing industry used in this study is classified as nontoxic, but is characterized as having a high conte...

  6. Membrane separation in dairy industry; Separazioni su membrana nell'industria lattiero-casearia

    Energy Technology Data Exchange (ETDEWEB)

    Salvadori, C. [Parmalat SpA, Direzione Scientifica, Parma (Italy)

    2001-04-01

    Many different techniques of membrane separation are widely used in the dairy industry. They allow substantial cost savings and the achievement of significant quality improvements. They allow substantial cost savings and the achievement of significant quality improvements. Also 'Parmalat' has introduced in its productions of yoghurt, UHT and pasteurized milk some of these techniques, obtaining new-concept products such as Plus milk, very rich in calcium, and a very high quality pasteurized milk, in the Canadian market, under the brand name Lactantia Pure Filtre, characterized by a double life compared to traditional products. As for yoghurt, in some plants, milk pre-concentration through ultra-filtration permits a considerable increase in the product's creaminess. [Italian] Le diverse tecniche di separazione su membrana consentono di operare forti risparmi e sensibili miglioramenti qualitativi. Anche la Parmalat ha inserito nelle produzioni di yogurt, latte UHT e latte pastorizzato, alcune di queste tecniche, ottenendo prodotti di nuova concezione come il latte Plus, particolarmente ricco in Calcio e, sul mercato Canadese, un latte pastorizzato di alta qualita' dal marchio Lactantia Pure Filtre caratterizzato da conservabilita' doppia rispetto al prodotto tradizionale. Nel caso dello yogurt, in alcuni stabilimenti, la preconcezione del latte per ultrafiltrazione aumenta considerevolmente la cremosita' del prodotto.

  7. Deposition of toxic metal particles on rough nanofiltration membranes

    International Nuclear Information System (INIS)

    Agboola, Oluranti; Maree, Jannie; Mbaya, Richard; Zvinowanda, Caliphs Musa; Molelekwa, Gomotsegang Fred; Jullok, Nora; Bruggen, Bart Van der; Volodine, Alexander; Haesendonck, Chris Van

    2014-01-01

    Two nanofiltration (NF90 and Nano-Pro-3012) membranes were investigated for their capacity to remove metal ions. This study presents the effect of membrane roughness on the removal of toxic metal ions during dead end membrane filtration. Atomic force microscopy, scanning electron microscopy, WSXM software and ImageJ were used to characterize the roughness of the membranes. Gradual decrease in filtration permeate flux was observed as foulants accumulated at the interface of the membranes; filtration permeate flux varied from 20 L/m 2 /h to 14 L/m 2 /h and 11 L/ m 2 /h to 6 L/m 2 /h for NF90 and Nano-Pro-3012, respectively. NF90 membrane was more prone to fouling than the Nano-Pro-3012 membrane: the percentage flux reduction was higher for NF90 (3.6%) than Nano-Pro-3012 (0.98%). The bearing ratio of the fouled NF90 exhibited a high peak of 7.09 nm than the fouled Nano-Pro-3012 with the peak of 6.8 nm

  8. Deposition of toxic metal particles on rough nanofiltration membranes

    Energy Technology Data Exchange (ETDEWEB)

    Agboola, Oluranti; Maree, Jannie; Mbaya, Richard; Zvinowanda, Caliphs Musa [Tshwane University of Technology, Pretoria (South Africa); Molelekwa, Gomotsegang Fred; Jullok, Nora; Bruggen, Bart Van der; Volodine, Alexander; Haesendonck, Chris Van [KU Leuven, Heverlee (Belgium)

    2014-08-15

    Two nanofiltration (NF90 and Nano-Pro-3012) membranes were investigated for their capacity to remove metal ions. This study presents the effect of membrane roughness on the removal of toxic metal ions during dead end membrane filtration. Atomic force microscopy, scanning electron microscopy, WSXM software and ImageJ were used to characterize the roughness of the membranes. Gradual decrease in filtration permeate flux was observed as foulants accumulated at the interface of the membranes; filtration permeate flux varied from 20 L/m{sup 2}/h to 14 L/m{sup 2}/h and 11 L/ m{sup 2}/h to 6 L/m{sup 2}/h for NF90 and Nano-Pro-3012, respectively. NF90 membrane was more prone to fouling than the Nano-Pro-3012 membrane: the percentage flux reduction was higher for NF90 (3.6%) than Nano-Pro-3012 (0.98%). The bearing ratio of the fouled NF90 exhibited a high peak of 7.09 nm than the fouled Nano-Pro-3012 with the peak of 6.8 nm.

  9. Engineering a self-driven PVDF/PDA hybrid membranes based on membrane micro-reactor effect to achieve super-hydrophilicity, excellent antifouling properties and hemocompatibility

    Science.gov (United States)

    Li, Jian-Hua; Ni, Xing-Xing; Zhang, De-Bin; Zheng, Hui; Wang, Jia-Bin; Zhang, Qi-Qing

    2018-06-01

    A facile and versatile approach for the preparation of super-hydrophilic, excellent antifouling and hemocompatibility membranes had been developed through the generation in situ of bio-inspired polydopamine (PDA) microspheres on PVDF membranes. SEM images showed that the PDA microspheres were uniformly dispersed on the upper surface and the lower surface of the modified membranes. And there were a great number of PDA microspheres immobilized on the cross-section, but the interconnected pores structure was not destroyed. These facts indicated the existence of membrane micro-reactor effect for the whole membrane structure. Considering the remarkable improvement of hydrophilicity, antifouling properties, and permeation fluxes, we also proposed the cluster phenolic hydroxyl effect for the PVDF/PDA hybrid membranes. And the cluster phenolic hydroxyl effect can be ascribed to the all directions distributed phenolic hydroxyl groups on the whole membrane structure. Besides, the self-driven filtration experiments showed the great wetting ability and permeability of the PVDF/PDA hybrid membranes in filtration process without any external pressure. This implied the existence of accelerating self-driven force after the water flow flowed into the internal of membranes, which contributed to the increase of water flow velocity. All the three aspects were in favor of the enhancement of hydrophilicity, antifouling properties and permeability of the modified membranes. Moreover, the conventional filtration tests, oil/water emulsion filtration tests and protein adsorption tests were also carried out to discuss the practical applications of PVDF/PDA hybrid membranes. And the hemocompatibility of the modified membranes was also proved to enhance greatly through the hemolysis tests and platelet adhesion tests, indicating that the membranes were greatly promising in biomedical applications. The strategy of material modification reported here is substrate-independent and can be extended

  10. Filtration of lager beer with microsieves: Flux, permeate haze and in-line microscope observations

    NARCIS (Netherlands)

    Kuiper, S.; van Rijn, C.J.M.; Nijdam, W.; Raspe, Onno; van Wolferen, Hendricus A.G.M.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2002-01-01

    Membrane fouling during filtration of lager beer with microsieves was studied through in-line microscope observations. It was observed that the main fouling was caused by micrometre-sized particles, presumably aggregated proteins. These particles formed flocks covering parts of the membrane surface.

  11. Technology of ceramic and polymeric membranes for oil/water separation; Tecnologia de membranas ceramicas e polimericas para separacao oleo/agua

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.A; Souto, K.M; Silva, Adriano A.; Lira, H.L.; Carvalho, L.H.; Costa, A.C.F.M. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2004-07-01

    In last years, separation techniques by membranes and membranes grew of a laboratory simple tool for an industrial process with a considerable technical and commercial impact. Today, membranes have been being widely used in the treatment of the oily/water, because they offer chemical, thermal resistance and resistance the pressure for a wide variety of alimentation terms. Membrane can be defined as a barrier that separates two phases and that restricts, total or partially, the transportation of one or several present chemical species in the phases. The morphology of the membrane and nature of the material that constitutes are some characteristics that are going to define application kind. The ideal structure for these filters is the asymmetric, formed by one or more layers of different pores size, with gradual reduction of the pores size, when approaches the side filtrate. Having in mind that the environmental legislations more process with membranes offers a new option to face these challenges. The membranes typically used in the oil and water separation act as a barrier for the emulsified oil and solubilization. In the petroleum production and refined oil water mixed with oil is prosecuted in great volumes in lots of processes, this mixture should be treated to separate the oil of water before it can return to the environment or even to be reused in the process. This review aims relate studies done with ceramic and polymeric membranes using a separation oil/water system mounted in laboratory scale in UFCG/CCT/ANP/PHH25. The results show that filtration membranes, micro filtration and ultrafiltration were very effective in oil/water separation. (author)

  12. STUDI MEMBRAN KITOSAN DARI KULIT LOBSTER BAMBU SEBAGAI MEMBRAN FILTRASI

    Directory of Open Access Journals (Sweden)

    Ni Nyoman Putri Windari

    2016-02-01

    Full Text Available The study of the extraction and characterization of chitosan from skin waste of Bamboo Lobster (Panulirus versicolor has been done. Chitosan is extracted using conventional method, namely the initial process: cleaning and drying (pretreatment, demineralization, deproteination, and deacetylation. The chitosan obtained has been used to prepare chitosan membrane 2% with acetic acid 1% as solvent. The membrane prepared by phase inversion method withprecipitation through solvent evaporation. The prepared membranes were characterized by FTIR spectrophotometer, Nova 1200e by BJH method and filtration method. The results obtained that degree of deacetylation (DD of chitosan is 70.016%. The thickness of the membrane is 0.361 mm. The FTIR spectra show that functional groups obtained are -NH, -CH, C=O, C-O and -CN. From BJH method obtained that the pore radius is 1.69 nm and pore density is 8.95 x 105pores/m3. From the filtration method obtained that at each pressure, 80-85 kPa and 90-100 kPa, the PWF values are 381.232 and 454.545 L/m2.h, respectively.

  13. Fouling kinetics in microfiltration of protein solutions using different membrane configurations

    DEFF Research Database (Denmark)

    Jakobsen, Sune; Jonsson, Gunnar Eigil

    1997-01-01

    Protein fouling in microfiltration has a large impact on the permeate flux and observed retention of the proteins despite the fact that the protein molecule is several times smaller than the average pore size in microfiltration membranes. This is due to adsorption and deposition of protein...... molecules and aggregates. The effect of membrane configuration upon protein fouling was investigated in crossflow filtration with asymmetric membranes either in a normal mode or in a reverse mode. It was observed by Jonsson et al. [1] that beer filtration in a reverse mode results in a smaller decrease...... in the flux compared to beer filtration in a normal mode. Similar results for protein filtration were observed by Bowen et al. [2]. One possible way to avoid fouling is the novel backshock technique (see Jonsson et al. [1]). The effect of backshock on protein filtration was investigated using a hollow fiber...

  14. Biofouling of spiral wound membrane systems

    NARCIS (Netherlands)

    Vrouwenvelder, J.S.

    2009-01-01

    Biofouling of spiral wound membrane systems High quality drinking water can be produced with membrane filtration processes like reverse osmosis (RO) and nanofiltration (NF). Because the global demand for fresh clean water is increasing, these membrane technologies will increase in importance in the

  15. Novel Particulate Air-Filtration Media: Market Survey

    Science.gov (United States)

    2013-02-01

    larger and more efficient filter designs similar to those being considered for future integrated respirator/helmet systems. To avoid eliminating ...including nonwoven, woven, and electret and combinations of media. Some of the manufacturers identified themselves as specializing in biofiltration or...Three Millipore products were identified. The 0.2 µm hydrophobic Aervent PTFE membrane62 is used for the sterile filtration of gases . Aerex

  16. A hierarchically assembled mesoporous ZnO hemisphere array and hollow microspheres for photocatalytic membrane water filtration.

    Science.gov (United States)

    Pan, Jia Hong; Zhang, Xiwang; Du, Alan J; Bai, Hongwei; Ng, Jiawei; Sun, Darren

    2012-05-28

    A mesoporous ZnO hemisphere array has been prepared via a topotactic transition of Zn(4)(OH)(6)CO(3)·H(2)O (ZCHH) by chemical bath deposition. Each hemisphere is comprised of a radially oriented nanoflake shell grown on the hemispherical interior. Reaction time-dependent SEM analysis shows that the morphological formation of ZCHH involves a deposition-growth-secondary growth-redeposition procedure. Upon calcination, ZCHH readily decomposes to nanocrystalline wurtzite-phase ZnO without significant change in morphology, and the release of CO(2) and H(2)O from ZCHH creates an additional mesoporous structure in both hemispherical interior and nanoflake shell. A similar process but without using a substrate has been developed for synthesis of mesoporous ZnO hollow microspheres in powder form. Both the elaborated superstructured photocatalysts consisting of mesoporous nanoflakes have been demonstrated to exhibit excellent performances in the photocatalytic membrane filtration.

  17. An Investigation of Low Biofouling Copper-charged Membranes

    Science.gov (United States)

    Asapu, Sunitha

    Water is essential for the survival of life on Earth, but pollutants in water can cause dangerous diseases and fatalities. The need for purified water has been increasing with increasing world population; however, natural sources of water such as rivers, lakes and streams, are progressively falling shorter and shorter of meeting water needs. The provision of clean, drinkable water to people is a key factor for the development of novel and alternative water purification technologies, such as membrane separations. Nanofiltration (NF) is a membrane separations technology that purifies water from lower quality sources, such as brackish water, seawater and wastewater. During the filtration of such sources, materials that are rejected by the membrane may accumulate on the surface of the membrane to foul it. Such materials include organic and inorganic matter, colloids, salts and microorganisms. The former four can often be controlled via pretreatment; however, the accumulation of microorganisms is more problematic to membranes. Biofouling is the accumulation and growth of microorganisms on the surface of membranes and on feed spacers. After attachment, microorganisms excrete extracellular polymeric substances (EPS), which form a matrix around the organism's outer surface as biofilm. These biofilms are detrimental and result in irreversible membrane fouling. Copper and silver ions inactivate the bacterial cells and prevent the DNA replication in microbial cells. Previous studies using copper-charged feed spacers have shown the ability of copper to control biofouling without a significant amount of copper leaching from copper-charged polypropylene (PP) feed spacers during crossflow filtration. Also, filtration using unmodified speed facers experienced almost 70% flux decline, while filtration using copper-charged feed spacers displayed only 25% flux decline. These intriguing results led to the hypothesis that the polymer chemistry could be extrapolated to produce membranes

  18. Fundamental Characteristics of the Newly Developed ATA™ Membrane Dialyzer.

    Science.gov (United States)

    Sunohara, Takashi; Masuda, Toshiaki

    2017-01-01

    Dialysis membranes are often made from synthetic polymers, such as polysulfone. However, membranes made from cellulose triacetate have superior biocompatibility and have been used since the 1980s. On-line hemodiafiltration treatment accompanied by massive fluid replacement is increasingly being used in Europe and Japan, but cellulose triacetate is not suitable for this treatment. Our newly developed asymmetric triacetate membrane, the ATA™ membrane, substantially improved the filtration properties and blood compatibility because of the asymmetric structure and smooth surface of this cellulose acetate membrane. Key Message: The ATA membrane maintains its high permeability even after massive filtration and shows less temporal variation in its permeation performance, lower protein adsorption, and superior biocompatibility compared with conventional membranes. © 2017 S. Karger AG, Basel.

  19. Pore-scale modeling and simulation of flow, transport, and adsorptive or osmotic effects in membranes: the influence of membrane microstructure

    KAUST Repository

    Calo, Victor M.

    2015-07-17

    The selection of an appropriate membrane for a particular application is a complex and expensive process. Computational modeling can significantly aid membrane researchers and manufacturers in this process. The membrane morphology is highly influential on its efficiency within several applications, but is often overlooked in simulation. Two such applications which are very important in the provision of clean water are forward osmosis and filtration using functionalized micro/ultra/nano-filtration membranes. Herein, we investigate the effect of the membrane morphology in these two applications. First we present results of the separation process using resolved finger- and sponge-like support layers. Second, we represent the functionalization of a typical microfiltration membrane using absorptive pore walls, and illustrate the effect of different microstructures on the reactive process. Such numerical modeling will aid manufacturers in optimizing operating conditions and designing efficient membranes.

  20. Realization of asymmetrical microporous membranes by double irradiation and membranes obtained

    International Nuclear Information System (INIS)

    Balanzat, E.; Bieth, C.

    1988-01-01

    The membrane is irradiated twice, especially with heavy ions, once with an energy to low to pass through, then with enough energy. Molecular defects created by irradiation are preferentially attached by chemicals. Two pore networks are obtained: blind large diameter pores and fine pores through the membrane which can be used in filtration [fr

  1. Self Cleaning HEPA Filtration without Interrupting Process Flow

    International Nuclear Information System (INIS)

    Wylde, M.

    2009-01-01

    The strategy of protecting the traditional glass fibre HEPA filtration train from it's blinding contamination and the recovery of dust by the means of self cleaning, pre-filtration is a proven means in the reduction of ultimate disposal volumes and has been used within the Fuel Production Industry. However, there is an increasing demand in nuclear applications requiring elevated operating temperatures, fire resistance, moisture resistance and chemical composition that the existing glass fibre HEPA filtration cannot accommodate, which can be remedied by the use of a metallic HEPA filter media. Previous research (Bergman et al 1997, Moore et al 1992) suggests that the then costs to the DOE, based on a five year life cycle, was $29.5 million for the installation, testing, removal and disposal of glass fibre HEPA filtration trains. Within these costs, $300 was the value given to the filter and $4,450 was given to the peripheral activity. Development of a low cost, cleanable, metallic, direct replacement of the traditional filter train will the clear solution. The Bergman et al work has suggested that a 1000 ft 3 /min, cleanable, stainless HEPA could be commercially available for $5,000 each, whereas the industry has determined that the truer cost of such an item in isolation would be closer to $15,000. This results in a conflict within the requirement between 'low cost' and 'stainless HEPA'. By proposing a system that combines metallic HEPA filtration with the ability to self clean without interrupting the process flow, the need for a tradition HEPA filtration train will be eliminated and this dramatically reduces the resources required for cleaning or disposal, thus presenting a route to reducing ultimate costs. The paper will examine the performance characteristics, filtration efficiency, flow verses differential pressure and cleanability of a self cleaning HEPA grade sintered metal filter element, together with data to prove the contention. (authors)

  2. A comparative study of the safety and efficacy effect of 5-fluorouracil or mitomycin C mounted biological delivery membranes in a rabbit model of glaucoma filtration surgery.

    Science.gov (United States)

    Wu, Zhihong; Li, Shuning; Wang, Ningli; Liu, Wanshun; Liu, Wen

    2013-01-01

    To investigate the potential usage of biological delivery membranes containing mitomycin C (MMC) or 5-fluorouracil (5-FU) in the construction of glaucoma-filtering blebs, and to evaluate their safety and efficacy. Chitosan was selected as the biological membrane carrier to prepare sustained-released membranes. Twelve micrograms of 5-FU or MMC was covalently conjugated onto the membranes by solvent volatilization. Rabbits underwent glaucoma filtration surgery and were randomly allocated into one of the four treatment regimens: glaucoma filtration operation with no implantation of chitosan membrane group (as control), drug-free chitosan membrane implantation group (blank/placebo group), membrane containing 5-FU treatment group (5-FU group), and membrane containing MMC treatment group (MMC group). Each group consisted of 12 rabbits. Intraocular pressure (IOP) was measured and evaluated over a 28-day period follow-up preoperatively, then after surgery on days 1, 3, 5, 7, 14, 21, and 28 by Tono-Pen. The aqueous humor was analyzed in each experimental and control groups at days 4, 6, 8, 10, 12, 14, 16, and 20 after operation. Bleb survival and anterior segment were examined with a slit lamp microscope and photographed simultaneously. Two rabbits from each group were killed on day 28 and eight eye samples obtained for histopathological study. Corneas and lenses were examined by transmission and scanning electron microscopy. Both 5-FU and MMC significantly prolonged bleb survival compared with control groups. The filtering bleb's survival period was significantly more prolonged in the MMC and 5-FU groups (maintained 14 days) than the other two groups (maintained 7 days). Significantly lower IOP was observed within the control, blank, and 5-FU groups after surgery on day 14 compared with that before operation, with F-values of 6.567, 11.426, and 13.467, respectively (P < 0.01). The most significant lower IOP was recorded in the MMC group on day 28 postoperation (F-value 26

  3. Vibratory shear enhanced membrane process and its application in starch wastewater recycle

    Directory of Open Access Journals (Sweden)

    Kazi Sarwar Hasan

    2002-11-01

    Full Text Available Membrane application in wastewater is gaining significant popularity. Selecting the right membrane and filtration technique is an important consideration to ensure a successful system development and long term performance. A new type of membrane filtration technology known as ‘Vibratory Shear Enhanced Process’ (VSEP is introduced in this paper with some test results that has been conducted with VSEP pilot unit to recycle starch wastewater. Conventional cross flow membrane process used in wastewater application always led to rapid fouling. This loss in throughput capacity is primarily due to the formation of a layer that builds up naturally on the membranes surface during the filtration process. In addition to cutting down on the flux performance of the membrane, this boundary or gel layer acts as a secondary membrane reducing the native design selectivity of the membrane in use. This inability to handle the buildup of solids has also limited the use of membranes to low-solids feed streams. In a VSEP system, an additional shear wave produced by the membrane’s vibration cause solids and foulants to be lifted off the membrane surface and remixed with the bulk material flowing through the membrane stack. This high shear processing exposes the membrane pores for maximum throughput that is typically between 3 to10 times the throughput of conventional cross-flow systems. The short term results with raw starch wastewater shows very stable flux rate of 110 lmh using the VSEP system and selecting the PVDF ultrafiltration membrane with no pre-filtration.

  4. Water regeneration and water reuse pilot experience in paper industry; Experiencia piloto de regeneracion y reulitizacion de agua en el sector papelero

    Energy Technology Data Exchange (ETDEWEB)

    Estiles Olive, J.; Vidal Parellada, P.

    2008-07-01

    Water scarcity in some geographical areas has promoted water consumption optimization and wastewater regeneration and reuse studies. This paper explains pilot study is a paper mill industry using membrane bioreactor (MBR) and nano filtration (NF), as second pass treatment, to regenerate wastewater in order to be reused in the paper mill process. due to excellent pilot results industrial application is now under study. (Author)

  5. Nano-structured silica coated mesoporous carbon micro-granules for potential application in water filtration

    Science.gov (United States)

    Das, Avik; Sen, D.; Mazumder, S.; Ghosh, A. K.

    2017-05-01

    A novel nano-composite spherical micro-granule has been synthesized using a facile technique of solvent evaporation induced assembly of nanoparticles for potential application in water filtration. The spherical micro-granule is comprised of nano-structured shell of hydrophilic silica encapsulating a hydrophobic mesoporous carbon at the core. Hierarchical structure of such core-shell micro-granules has been rigorously characterized using small-angle neutron and X-ray scattering techniques and complemented with scanning electron microscopy. The hydrophilic silica envelope around the carbon core helps in incorporation of such granules into the hydrophilic polymeric ultra-filtration membrane. The interstitial micro-pores present in the silica shell can serve as water transport channels and the mesoporus carbon core enhances the separation performance due its well adsorption characteristics. It has been found that the incorporation of such granules inside the ultra-filtration membrane indeed enhances the water permeability as well as the separation performance in a significant way.

  6. Diatomite releases silica during spirit filtration

    OpenAIRE

    Gómez Benítez, Juan; Gil Montero, María Luisa Almoraima; De la Rosa Fox, Nicolas; Alguacil, Marcos

    2014-01-01

    The purpose of this study was to ascertain whether diatomite is an inert filter aid during spirit filtration. Surely, any compound with a negative effect on the spirit composition or the consumer’s health could be dissolved. In this study different diatomites were treated with 36% vol. ethanol/water mixtures and the amounts and structures of the extracted compounds were determined. Furthermore, Brandy de Jerez was diatomite- and membrane-filtered at different temperatures and the silicon cont...

  7. Separation Process by Porous Membranes: A Numerical Investigation

    Directory of Open Access Journals (Sweden)

    Acto de Lima Cunha

    2014-07-01

    Full Text Available A major problem associated with the membrane separation processes is the permeate flux drop, limiting the widespread of industrial application of this process. This occurs due to the accumulation of solute concentration near the membrane surface. An exact quantification of the concentration polarization as a function of process conditions is essential to estimate the system performance satisfactorily. In this sense, this work aims to predict the behavior of the concentration polarization boundary layer along the length of a permeable tubular membrane, over various operation conditions. The numerical solution of the Navier-Stokes equation, coupled to Darcy's and mass transfer equations, is obtained by the commercial software ANSYS CFX 12, considering a two-dimensional computational domain. The study evaluates the effects of axial Reynolds and Schmidt numbers on the concentration polarization boundary layer thickness during the cross-flow filtration process. Numerical results have shown that the mathematical model is able to predict the formation and growth of the concentration polarization boundary layer along the length of the tubular membrane.

  8. Mesoporous Silica Thin Membranes with Large Vertical Mesochannels for Nanosize-Based Separation.

    Science.gov (United States)

    Liu, Yupu; Shen, Dengke; Chen, Gang; Elzatahry, Ahmed A; Pal, Manas; Zhu, Hongwei; Wu, Longlong; Lin, Jianjian; Al-Dahyan, Daifallah; Li, Wei; Zhao, Dongyuan

    2017-09-01

    Membrane separation technologies are of great interest in industrial processes such as water purification, gas separation, and materials synthesis. However, commercial filtration membranes have broad pore size distributions, leading to poor size cutoff properties. In this work, mesoporous silica thin membranes with uniform and large vertical mesochannels are synthesized via a simple biphase stratification growth method, which possess an intact structure over centimeter size, ultrathin thickness (≤50 nm), high surface areas (up to 1420 m 2 g -1 ), and tunable pore sizes from ≈2.8 to 11.8 nm by adjusting the micelle parameters. The nanofilter devices based on the free-standing mesoporous silica thin membranes show excellent performances in separating differently sized gold nanoparticles (>91.8%) and proteins (>93.1%) due to the uniform pore channels. This work paves a promising way to develop new membranes with well-defined pore diameters for highly efficient nanosize-based separation at the macroscale. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Deashing of coal liquids with ceramic membrane microfiltration and diafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, B.; Goldsmith, R. [CeraMem Corp., Waltham, MA (United States)

    1995-12-31

    Removal of mineral matter from liquid hydrocarbons derived from the direct liquefaction of coal is required for product acceptability. Current methods include critical solvent deashing (Rose{sup {reg_sign}} process from Kerr-McGee) and filtration (U.S. Filter leaf filter as used by British Coal). These methods produce ash reject streams containing up to 15% of the liquid hydrocarbon product. Consequently, CeraMem proposed the use of low cost, ceramic crossflow membranes for the filtration of coal liquids bottoms to remove mineral matter and subsequent diafiltration (analogous to cake washing in dead-ended filtration) for the removal of coal liquid from the solids stream. The use of these ceramic crossflow membranes overcomes the limitations of traditional polymeric crossflow membranes by having the ability to operate at elevated temperature and to withstand prolonged exposure to hydrocarbon and solvent media. In addition, CeraMem`s membrane filters are significantly less expensive than competitive ceramic membranes due to their unique construction. With these ceramic membrane filters, it may be possible to reduce the product losses associated with traditional deashing processes at an economically attractive cost. The performance of these ceramic membrane microfilters is discussed.

  10. Pretreatment of agriculture field water for improving membrane flux during pesticide removal

    Science.gov (United States)

    Mehta, Romil; Saha, N. K.; Bhattacharya, A.

    2017-10-01

    Pretreatment of feed water to improve membrane flux during filtration of agriculture field water containing substituted phenyl urea pesticide diuron has been reported. Laboratory-made reverse osmosis membrane was used for filtration. Preliminary experiments were conducted with model solution containing natural organic matter extracted from commercial humic acids, divalent ions Ca2+, Mg2+. Membrane fouling was characterized by pure water flux decline, change in membrane hydrophilicity and infrared spectroscopy. Natural organic matter present in field water causes severe membrane fouling. The presence of divalent cations further aggravated fouling. Use of ethylenediaminetetraacetic acid (EDTA) and polyacrylic acids (PAA) in feed resulted in the decrease in membrane fouling. Pretreatment of field water is a must if it is contaminated with micro-organism having membrane fouling potential. Feed water pretreatment and use of PAA restricted membrane fouling to 16 % after 60 h of filtration. Membrane permeate flux decline was maximum at the first 12 h and thereafter remained steady at around 45-46 lm-2h-1 till the end of 60 h. Diuron rejection remained consistently greater than 93 % throughout the experiment. Diuron rejection was found to be unaffected by membrane fouling.

  11. Harvesting of Dunaliella salina by membrane filtration at pilot scale

    KAUST Repository

    Monte, Joana

    2017-09-02

    The microalgae Dunaliella salina is industrially produced due to its high content in carotenoids induced by low nitrogen and high salinity conditions. D. salina with low carotenoids content also produces other added value compounds, however its recovery have hardly been studied. This work aims to examine the potential of pre-concentrating D. salina by membrane processing prior to a final harvesting step by low-shear centrifugation. The aim is to minimize the overall energy expenditure and reduce capital costs, while assuring a minimal loss of cell integrity. This task is challenging, considering the sensitivity of D. salina to shear. Harvesting of D. salina by ultrafiltration allowed reaching a final concentration factor of 5.9, with an average permeate flux of 31 L/(m2 h). The Total Cost of Ownership and energy consumption for harvesting are respectively 52% and 45% lower when applying a two-step approach with pre-concentration (ultrafiltration) compared to only harvesting by centrifugation.

  12. Harvesting of Dunaliella salina by membrane filtration at pilot scale

    KAUST Repository

    Monte, Joana; Sá , Marta; Galinha, Clá udia F.; Costa, Luí s; Hoekstra, Herre; Brazinha, Carla; Crespo, Joã o G.

    2017-01-01

    The microalgae Dunaliella salina is industrially produced due to its high content in carotenoids induced by low nitrogen and high salinity conditions. D. salina with low carotenoids content also produces other added value compounds, however its recovery have hardly been studied. This work aims to examine the potential of pre-concentrating D. salina by membrane processing prior to a final harvesting step by low-shear centrifugation. The aim is to minimize the overall energy expenditure and reduce capital costs, while assuring a minimal loss of cell integrity. This task is challenging, considering the sensitivity of D. salina to shear. Harvesting of D. salina by ultrafiltration allowed reaching a final concentration factor of 5.9, with an average permeate flux of 31 L/(m2 h). The Total Cost of Ownership and energy consumption for harvesting are respectively 52% and 45% lower when applying a two-step approach with pre-concentration (ultrafiltration) compared to only harvesting by centrifugation.

  13. A membrane stirrer for product recovery and substrate feeding.

    Science.gov (United States)

    Femmer, T; Carstensen, F; Wessling, M

    2015-02-01

    During fermentation processes, in situ product recovery (ISPR) using submerged membranes allows a continuous operation mode with effective product removal. Continuous recovery reduces product inhibition and organisms in the reactor are not exposed to changing reaction conditions. For an effective in situ product removal, submerged membrane systems should have a sufficient large membrane area and an anti-fouling concept integrated in a compact device for the limited space in a lab-scale bioreactor. We present a new membrane stirrer with integrated filtration membranes on the impeller blades as well as an integrated gassing concept in an all-in-one device. The stirrer is fabricated by rapid prototyping and is equipped with a commercial micromesh membrane. Filtration performance is tested using a yeast cell suspension with different stirring speeds and aeration fluxes. We reduce membrane fouling by backflushing through the membrane with the product stream. © 2014 Wiley Periodicals, Inc.

  14. Nanostructured Membranes Functionalized with Gold Nanoparticles for Separation and Recovery of Monoclonal Antibodies

    KAUST Repository

    Soldan, Giada

    2017-11-01

    The need of purified biomolecules, such as proteins or antibodies, has required the biopharmaceutical industries to look for new recovering solutions to reduce time and costs of bioseparations. In the last decade, the emergent field of membrane chromatography has gained attention as possible substituent of the common used protein A affinity chromatography for bioseparations. In this scenario, gold nanoparticles can be used as means for offering affinity, mainly because of their biocompatible and reversible binding behavior, together with their high surface area-to-volume ratio, which offers a large number of binding sites. This work introduces a new procedure for purification of monoclonal antibodies based on polymeric membranes functionalized with gold nanoparticles. This novel approach shortens the process of purification by promoting selective binding of antibodies, while separating a mixture of biomolecules during a filtration process. The effects of gold nanoparticles and the surrounding ligand on the proteins adsorption and filtration are investigated. The results confirm that the functionalization helps in inducing a selective binding, preventing the non-selective one, and it also improves the selectivity of the separation process.

  15. Fluoride removal from water by nano filtration

    International Nuclear Information System (INIS)

    Bejaoui, Imen; Mnif, Amine; Hamrouni, Bechir

    2009-01-01

    As any oligo element, fluoride is necessary and beneficial for human health to low concentrations, but an excess amount of fluoride ions in drinking water has been known to cause undesirable effects, especially tooth and bones fluoro sis. The maximum acceptable concentration of fluoride in drinking water was fixed by the World Health Organization according to the climate in the range of 1 mg.L -1 to 1,2 mg.L -1 . Many methods have been used to remove fluoride from water such as precipitation, adsorption, electrocoagulation and membrane processes. Technologies using membrane processes are being used in many applications, particularly for brackish water desalination. Nano filtration seems to be the best process for a good selective defluorination of fluorinated waters. The main objective of this work was to investigate the retention of fluoride anions by nano filtration. The first part of this study deals with the characterisation of the NF HL2514TF membrane. The influence of various experimental parameters such as initial fluoride content, feed pressure, permeate flux, ionic strength, type of cation associated to fluoride and pH were studied in the second part. Results show that the retention order for the salts tested was TR(Na 2 SO 4 ) > TR(CaCl 2 ) > TR(NaCl), showing a retention sequence inversely proportional to the salt diffusion coefficients in water. It was also shown that charge effects could not be neglected, and a titration experiments confirmed that the NF membrane carry a surplus of negatively charged groups. Fluoride retention exceeds 60 pour cent, and increases with increasing concentration, where the rejection mechanism is related to the dielectric effects. Speigler-Kedem model was applied to experimental results in the aim to determine phenomenological parametersσand P s respectively, the reflexion coefficient of the membrane and the solute permeability of ions. The convective and diffusive parts of the mass transfer were quantified with

  16. Thermo-resistant filtration fabrics for hot gas extraction

    International Nuclear Information System (INIS)

    Wierzbowska, T.

    1992-01-01

    Types and technical and utilizing data of heat resistant filtrating fabrics initiated to production by 'Moratex' and provided for dust extraction of technical gas from various industrial processes have been discussed. (author). 8 refs, 2 tabs

  17. Performance evaluation of carbon nanotube enhanced membranes for SWRO pretreatment application

    KAUST Repository

    Lee, Jieun

    2016-04-25

    Multi-wall carbon nanotube (MWCNT) membrane was tested for SWRO pretreatment. The MWCNT membrane itself showed a superior permeate flux (321.3 LMH/bar), which was 4-times as polyethersulfone ultrafiltration (PES-UF) membrane. Reduction of dissolved organic matter improved to 66% with fewer amounts of powder activated carbon (PAC) (0.5 g/L) in MWCNT membrane filtration maintaining a high permeate flux of 600 LMH/bar. It was due to the increased porosity (84.5%) and hydrophilicity (52.9°) by incorporating MWCNT/polyaniline into PES membrane. Ionic strength affected organic removal in seawater filtration by altering electrostatic interaction between organic matter and surface charge of the positively charged MWCNT membrane.

  18. Severe Hemolysis in a Patient With Erythrocytosis During Coupled Plasma Filtration Adsorption Therapy Was Prevented by Changing From Membrane-Based Technique to a Centrifuge-Based One.

    Science.gov (United States)

    Fan, Rong; Wu, Buyun; Kong, Ling; Gong, Dehua

    2016-01-01

    Coupled plasma filtration adsorption (CPFA) usually adopts membrane to separate plasma from blood. Here, we reported a case with erythrocytosis experienced severe hemolysis and membrane rupture during CPFA, which was avoided by changing from membrane-based technique to a centrifuge-based one. A 66-year-old man was to receive CPFA for severe hyperbilirubinemia (total bilirubin 922 μmol/L, direct bilirubin 638 μmol/L) caused by obstruction of biliary tract. He had erythrocytosis (hemoglobin 230 g/L, hematocrit 0.634) for years because of untreated tetralogy of Fallot. Severe hemolysis and membrane rupture occurred immediately after blood entering into the plasma separator even at a low flow rate (50 mL/min) and persisted after changing a new separator. Finally, centrifugal plasma separation technique was used for CPFA in this patient, and no hemolysis occurred. After 3 sessions of CPFA, total bilirubin level decreased to 199 μmol/L with an average decline by 35% per session. Thereafter, the patient received endoscopic biliary stent implantation, and total bilirubin level returned to nearly normal. Therefore, centrifugal-based plasma separation can also be used in CPFA and may be superior to a membrane-based one in patients with hyperviscosity.

  19. Analysis of the membrane fouling on cross-flow ultrafiltration and microfiltration of soy sauce lees; Shoyuhiireden no kurosuforo roka ni okeru fauringu no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Furukakwa, T. [Kikkoman Corporation, Chiba (Japan); Kobayashi, H.; Kokubo, K.; Watanabe, A. [Niigata University, Niigata (Japan). Graduate School of Science and Technology

    2000-05-10

    Although since the 1980's Japanese soy sauce manufactures have developed cross-flow membrane filtration systems to recover soy sauce from its lees, the mechanisms by which the membrane fouls during filtration have not been theoretically discussed. Calculated flux declines using a theoretical equation developed for cross-flow cake filtration were compared against experimental results involving the filtration of soy sauce lees using polysulfone ultrafiltration and micro filtration membranes. Membrane fouling due to the deposition and intrusion of soy sauce lees was evaluated from the hydraulic resistances of the membrane and the cake layer. Calculated flux declines with time agree with the experimental results. Specific resistance of the cake layer which is an adjustable parameter of the equation, decreases with increasing cross-flow velocity. Hydraulic resistance exhibited by the membranes is independent of feed flow velocity. However, the resistance of the cake layers decreases with increasing cross-flow velocity. This corresponds to the steady-state flux increase. In conclusion, the main cause of fouling in the filtration of soy sauce lees is cake layer formation. By using the cake filtration model for cross-flow, the flux decline with time during the filtration is capable of being predicted. (author)

  20. Selective separation of oil and water with mesh membranes by capillarity

    KAUST Repository

    Yu, Yuanlie; Chen, Hua; Liu, Yun; Craig, Vincent S.J.; Lai, Zhiping

    2016-01-01

    The separation of oil and water from wastewater generated in the oil-production industries, as well as in frequent oil spillage events, is important in mitigating severe environmental and ecological damage. Additionally, a wide arrange of industrial processes require oils or fats to be removed from aqueous systems. The immiscibility of oil and water allows for the wettability of solid surfaces to be engineered to achieve the separation of oil and water through capillarity. Mesh membranes with extreme, selective wettability can efficiently remove oil or water from oil/water mixtures through a simple filtration process using gravity. A wide range of different types of mesh membranes have been successfully rendered with extreme wettability and applied to oil/water separation in the laboratory. These mesh materials have typically shown good durability, stability as well as reusability, which makes them promising candidates for an ever widening range of practical applications. © 2016 Elsevier B.V.

  1. Selective separation of oil and water with mesh membranes by capillarity

    KAUST Repository

    Yu, Yuanlie

    2016-05-29

    The separation of oil and water from wastewater generated in the oil-production industries, as well as in frequent oil spillage events, is important in mitigating severe environmental and ecological damage. Additionally, a wide arrange of industrial processes require oils or fats to be removed from aqueous systems. The immiscibility of oil and water allows for the wettability of solid surfaces to be engineered to achieve the separation of oil and water through capillarity. Mesh membranes with extreme, selective wettability can efficiently remove oil or water from oil/water mixtures through a simple filtration process using gravity. A wide range of different types of mesh membranes have been successfully rendered with extreme wettability and applied to oil/water separation in the laboratory. These mesh materials have typically shown good durability, stability as well as reusability, which makes them promising candidates for an ever widening range of practical applications. © 2016 Elsevier B.V.

  2. Industrial garnet

    Science.gov (United States)

    Olson, D.W.

    2000-01-01

    The state of the global industrial garnet industry in 1999 is discussed. Industrial garnet mined in the U.S., which accounts for approximately one-third of the world's total, is usually a solid-solution of almandine and pyrope. The U.S. is the largest consumer of industrial garnet, using an estimated 47,800 st in 1999 as an abrasive and as a filtration medium in the petroleum industry, filtration plants, aircraft and motor vehicle manufacture, shipbuilding, wood furniture finishing operations, electronic component manufacture, ceramics manufacture, and glass production. Prices for crude concentrates ranged from approximately $50 to $110/st and refined garnet from $50 to $215/st in 1999, depending on type, source, quantity purchased, quality, and application.

  3. Hybrid Filter Membrane

    Science.gov (United States)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  4. Ceramic membrane in production of recycled water; Keraamikalvo uusioveden valmistuksessa - EKT 05

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, N.; Luonsi, A.; Levaenen, E.; Maentylae, T.; Vilen, J. [Haemeen ympaeristoekeskus, Tampere (Finland)

    1998-12-31

    Applicability of ceramic ultrafiltration membrane modifications were studied with laboratory units to purify clear filtrate and biologically treated combined wastewater from high quality board manufacturing process for reuse. Also performance of polymeric membrane and ceramic membrane was compared. The performance of the membrane filtration cell, developed according to requirements of the fixed dimensions of ceramic membrane was compared with the performance of the cross-rotational commercial test unit (CR-filter) of polymeric membranes. The quality of ultrafiltration permeate, namely suspended solids, turbidity and colour, was better than the quality of lake water used in the mill. The permeate fluxes were in the range of 60-75 l/m{sup 2}h. The fouling layer primarily controlled the flux and the retention, leaving the effects of surface modifications as the secondary function. The flux was slightly higher with the biologically treated wastewater. Differences in membrane material and pore size had an effect on the cleaning ability of the membranes. The polymeric membrane and the membrane with smaller pore size were easier to clean. Tests with the CR-filter showed that the rotor increases shear forces, reduces the filtration resistance and thus increases the flux compared to the cell for ceramic membranes where the increase of shear forces can be done by increasing the flow velocities. (orig.)

  5. Ceramic membrane in production of recycled water; Keraamikalvo uusioveden valmistuksessa - EKT 05

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, N; Luonsi, A; Levaenen, E; Maentylae, T; Vilen, J [Haemeen ympaeristoekeskus, Tampere (Finland)

    1999-12-31

    Applicability of ceramic ultrafiltration membrane modifications were studied with laboratory units to purify clear filtrate and biologically treated combined wastewater from high quality board manufacturing process for reuse. Also performance of polymeric membrane and ceramic membrane was compared. The performance of the membrane filtration cell, developed according to requirements of the fixed dimensions of ceramic membrane was compared with the performance of the cross-rotational commercial test unit (CR-filter) of polymeric membranes. The quality of ultrafiltration permeate, namely suspended solids, turbidity and colour, was better than the quality of lake water used in the mill. The permeate fluxes were in the range of 60-75 l/m{sup 2}h. The fouling layer primarily controlled the flux and the retention, leaving the effects of surface modifications as the secondary function. The flux was slightly higher with the biologically treated wastewater. Differences in membrane material and pore size had an effect on the cleaning ability of the membranes. The polymeric membrane and the membrane with smaller pore size were easier to clean. Tests with the CR-filter showed that the rotor increases shear forces, reduces the filtration resistance and thus increases the flux compared to the cell for ceramic membranes where the increase of shear forces can be done by increasing the flow velocities. (orig.)

  6. Polymer filtration: A new technology for selective metals recovery

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.F.; Robison, T.W.; Cournoyer, M.E.; Wilson, K.V.; Sauer, N.N.; Mullen, K.I.; Lu, M.T.; Jarvinen, J.J.

    1995-04-01

    Polymer Filtration (PF) was evaluated for the recovery of electroplating metal ions (zinc and nickel) from rinse waters. Polymer Filtration combines the use of water-soluble metal-binding polymers and ultrafiltration to concentrate metal ions from dilute rinse water solutions. The metal ions are retained by the polymers; the smaller, unbound species freely pass through the ultrafiltration membrane. By using this process the ultrafiltered permeate more than meets EPA discharge limits. The metal ions are recovered from the concentrated polymer solution by pH adjustment using diafiltration and can be recycled to the original electroplating baths with no deleterious effects on the test panels. Metal-ion recovery is accomplished without producing sludge.

  7. Biofilm Filtrates of Pseudomonas aeruginosa Strains Isolated from Cystic Fibrosis Patients Inhibit Preformed Aspergillus fumigatus Biofilms via Apoptosis.

    Science.gov (United States)

    Shirazi, Fazal; Ferreira, Jose A G; Stevens, David A; Clemons, Karl V; Kontoyiannis, Dimitrios P

    2016-01-01

    Pseudomonas aeruginosa (Pa) and Aspergillus fumigatus (Af) colonize cystic fibrosis (CF) patient airways. Pa culture filtrates inhibit Af biofilms, and Pa non-CF, mucoid (Muc-CF) and nonmucoid CF (NMuc-CF) isolates form an ascending inhibitory hierarchy. We hypothesized this activity is mediated through apoptosis induction. One Af and three Pa (non-CF, Muc-CF, NMuc-CF) reference isolates were studied. Af biofilm was formed in 96 well plates for 16 h ± Pa biofilm filtrates. After 24 h, apoptosis was characterized by viability dye DiBAc, reactive oxygen species (ROS) generation, mitochondrial membrane depolarization, DNA fragmentation and metacaspase activity. Muc-CF and NMuc-CF filtrates inhibited and damaged Af biofilm (pbiofilms (3.7- fold) compared to treatment with filtrates from Muc-CF- (2.5- fold) or non-CF Pa (1.7- fold). Depolarization of mitochondrial potential was greater upon exposure to NMuc-CF (2.4-fold) compared to Muc-CF (1.8-fold) or non-CF (1.25-fold) (pbiofilm, compared to control, mediated by metacaspase activation. In conclusion, filtrates from CF-Pa isolates were more inhibitory against Af biofilms than from non-CF. The apoptotic effect involves mitochondrial membrane damage associated with metacaspase activation.

  8. Using the developed cross-flow filtration chip for collecting blood plasma under high flow rate condition and applying the immunoglobulin E detection

    Science.gov (United States)

    Yeh, Chia-Hsien; Hung, Chia-Wei; Wu, Chun-Han; Lin, Yu-Cheng

    2014-09-01

    This paper presents a cross-flow filtration chip for separating blood cells (white blood cells, red blood cells, and platelets) and obtaining blood plasma from human blood. Our strategy is to flow the sample solution in parallel to the membrane, which can generate a parallel shear stress to remove the clogging microparticles on the membrane, so the pure sample solution is obtained in the reservoir. The cross-flow filtration chip includes a cross-flow layer, a Ni-Pd alloy micro-porous membrane, and a reservoir layer. The three layers are packaged in a polymethylmethacrylate (PMMA) frame to create the cross-flow filtration chip. Various dilutions of the blood sample (original, 2 × , 3 × , 5 × , and 10×), pore sizes with different diameters (1 µm, 2 µm, 4 µm, 7 µm, and 10 µm), and different flow rates (1 mL/min, 3 mL/min, 5 mL/min, 7 mL/min, and 10 mL/min) are tested to determine their effects on filtration percentage. The best filtration percentage is 96.2% when the dilution of the blood sample is 10 × , the diameter of pore size of a Ni-Pd alloy micro-porous membrane is 2 µm, and the flow rate is 10 mL/min. Finally, for the clinical tests of the immunoglobulin E (IgE) concentration, the cross-flow filtration chip is used to filter the blood of the allergy patients to obtain the blood plasma. This filtered blood plasma is compared with that obtained using the conventional centrifugation based on the enzyme-linked immunosorbent assay. The results reveal that these two blood separation methods have similar detection trends. The proposed filtration chip has the advantages of low cost, short filtration time, and easy operation and thus can be applied to the separation of microparticles, cells, bacteria, and blood.

  9. Using the developed cross-flow filtration chip for collecting blood plasma under high flow rate condition and applying the immunoglobulin E detection

    International Nuclear Information System (INIS)

    Yeh, Chia-Hsien; Hung, Chia-Wei; Lin, Yu-Cheng; Wu, Chun-Han

    2014-01-01

    This paper presents a cross-flow filtration chip for separating blood cells (white blood cells, red blood cells, and platelets) and obtaining blood plasma from human blood. Our strategy is to flow the sample solution in parallel to the membrane, which can generate a parallel shear stress to remove the clogging microparticles on the membrane, so the pure sample solution is obtained in the reservoir. The cross-flow filtration chip includes a cross-flow layer, a Ni-Pd alloy micro-porous membrane, and a reservoir layer. The three layers are packaged in a polymethylmethacrylate (PMMA) frame to create the cross-flow filtration chip. Various dilutions of the blood sample (original, 2 × , 3 × , 5 × , and 10×), pore sizes with different diameters (1 µm, 2 µm, 4 µm, 7 µm, and 10 µm), and different flow rates (1 mL/min, 3 mL/min, 5 mL/min, 7 mL/min, and 10 mL/min) are tested to determine their effects on filtration percentage. The best filtration percentage is 96.2% when the dilution of the blood sample is 10 × , the diameter of pore size of a Ni-Pd alloy micro-porous membrane is 2 µm, and the flow rate is 10 mL/min. Finally, for the clinical tests of the immunoglobulin E (IgE) concentration, the cross-flow filtration chip is used to filter the blood of the allergy patients to obtain the blood plasma. This filtered blood plasma is compared with that obtained using the conventional centrifugation based on the enzyme-linked immunosorbent assay. The results reveal that these two blood separation methods have similar detection trends. The proposed filtration chip has the advantages of low cost, short filtration time, and easy operation and thus can be applied to the separation of microparticles, cells, bacteria, and blood. (paper)

  10. Antioxidants, mechanisms, and recovery by membrane processes.

    Science.gov (United States)

    Bazinet, Laurent; Doyen, Alain

    2017-03-04

    Antioxidants molecules have a great interest for bio-food and nutraceutical industries since they play a vital role for their capacity to reduce oxidative processes. Consequently, these molecules, generally present in complex matrices, have to be fractionated and purified to characterize them and to test their antioxidant activity. However, as natural or synthetics antioxidant molecules differ in terms of structural composition and physico-chemical properties, appropriate separation technologies must be selected. Different fractionation technologies are available but the most commonly used are filtration processes. Indeed, these technologies allow fractionation according to molecular size (pressure-driven processes), charge, or both size and charge (electrically driven processes). In this context, and after summarizing the reaction mechanisms of the different classes and nature of antioxidants as well as membrane fractionation technologies, this manuscript presents the specific applications of these membranes processes for the recovery of antioxidant molecules.

  11. Impact of sludge flocs on membrane fouling in membrane bioreactors

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Niessen, Wolfgang; Jørgensen, Mads Koustrup

    Membrane bioreactors (MBR) are widely used for wastewater treatment, but membrane fouling reduces membrane performance and thereby increases the cost for membranes and fouling control. Large variation in filtration properties measured as flux decline was observed for the different types of sludges....... Further, the flux could partly be reestablished after the relaxation period depending on the sludge composition. The results underline that sludge properties are important for membrane fouling and that control of floc properties, as determined by the composition of the microbial communities...... and the physico-chemical properties, is an efficient method to reduce membrane fouling in the MBR. High concentration of suspended extracellular substances (EPS) and small particles (up to 10 µm) resulted in pronounced fouling propensity. The membrane fouling resistance was reduced at high concentration...

  12. Construction of a dead-end type micro- to R.O. membrane test cell and performance test with the laboratory- made and commercial membranes

    Directory of Open Access Journals (Sweden)

    Darunee Bhongsuwan

    2002-11-01

    Full Text Available A dead-end type membrane stirred cell for an RO filtration test has been designed and constructed. Magnetic stirring system is applied to overcome a pressure-induced concentration polarization occurred over a membrane surface in the test cell. A high pressure N2 tank is used as a pressure source.Feed container is designed for 2.5 l feed solution and a stirred cell volume is 0.5 l . The test cell holds a magnetic stirrer freely moved over the membrane surface. All units are made of stainless steel. A porous SS316L disc is used as a membrane support. The dead-end stirred cell is tested to work properly in an operating pressure ranged 0 - 400 psi. It means that the dead-end cell can be used to test a membrane of different filtration modes, from micro- to Reverse Osmosis filtration. Tests performed at 400 psi for 3 hours are safe but tests at a 500 psi increase leakage possibility. The cell is used to test the performance of both commercial and laboratory-made membranes. It shows that the salt rejection efficiency of the nano- and RO membranes, NTR759HR and LES90, determined by using the new test cell, is closely similar to those reported from the manufacture. Result of the tests for our own laboratory-made membrane shows a similar performance to the nanofiltration membrane LES90.

  13. Pretreatment of Real Wastewater from the Chocolate Manufacturing Industry through an Integrated Process of Electrocoagulation and Sand Filtration

    Directory of Open Access Journals (Sweden)

    Marco A. García-Morales

    2018-01-01

    Full Text Available The purpose of this study was to evaluate the efficiency of removal of suspended solids in terms of turbidity, color, and chemical oxygen demand (COD when integrating the electrocoagulation process using aluminum sacrificial anodes and the sand filtration process as a pretreatment of wastewater from the chocolate manufacturing plant in Toluca, México. Wastewater from the chocolate manufacturing industry used in this study is classified as nontoxic, but is characterized as having a high content of color (5952 ± 76 Pt-Co, turbidity (1648 ± 49 FAU, and COD (3608 ± 250 mg/L. Therefore, enhanced performance could be achieved by combining pretreatment techniques to increase the efficiencies of the physical, chemical, and biological treatments. In the integrated process, there was a turbidity reduction of 96.1 ± 0.2% and an increase in dissolved oxygen from 3.8 ± 0.05 mg/L (inlet sand filtration to 6.05 ± 0.03 mg/L (outlet sand filtration after 120 min of treatment. These results indicate good water quality necessary for all forms of elemental life. Color and COD removals were 98.2 ± 0.2% and 39.02 ± 2.2%, respectively, during the electrocoagulation process (0.2915 mA/cm2 current density and 120 min of treatment. The proposed integrated process could be an attractive alternative of pretreatment of real wastewater to increase water quality of conventional treatments.

  14. Evaluating the effects of granular and membrane filtrations on chlorine demand in drinking water.

    Science.gov (United States)

    Jegatheesan, Veeriah; Kim, Seung Hyun; Joo, C K; Gao, Baoyu

    2009-01-01

    In this study, chlorine decay experiments were conducted for the raw water from Nakdong River that is treated by Chilseo Water Treatment Plant (CWTP) situated in Haman, Korea as well as the effluents from sand and granular activated carbon (GAC) filters of CWTP and fitted using a chlorine decay model. The model estimated the fast and slow reacting nitrogenous as well as organic/inorganic compounds that were present in the water. It was found that the chlorine demand due to fast and slow reacting (FRA and SRA) organic/inorganic substances was not reduced significantly by sand as well as GAC filters. However, the treated effluents from those filters contained FRA and SRA that are less reactive and had small reaction rate constants. For the effluents from microfiltration, ultrafiltration, and nanofiltration the chlorine demand because FRA and SRA were further reduced but the reaction rate constants were larger compared to those of sand and GAC filter effluents. This has implications in the formation of disinfection by products (DBPs). If DBPs are assumed to form due to the interactions between chlorine and SRA, then it is possible that the DBP formation potential in the effluents from membrane filtrations could be higher than that in the effluents from granular media filters.

  15. Fouling Resilient Perforated Feed Spacers for Membrane Filtration

    KAUST Repository

    Kerdi, Sarah

    2018-04-24

    The improvement of feed spacers with optimal geometry remains a key challenge for spiral-wound membrane systems in water treatment due to their impact on the hydrodynamic performance and fouling development. In this work, novel spacer designs are proposed by intrinsically modifying cylindrical filaments through perforations. Three symmetric perforated spacers (1-Hole, 2-Hole, and 3-Hole) were in-house 3D-printed and experimentally evaluated in terms of permeate flux, feed channel pressure drop and membrane fouling. Spacer performance is characterized and compared with standard no perforated (0-Hole) design under constant feed pressure and constant feed flow rate. Perforations in the spacer filaments resulted in significantly lowering the net pressure drop across the spacer filled channel. The 3-Hole spacer was found to have the lowest pressure drop (50% - 61%) compared to 0-Hole spacer for various average flow velocities. Regarding permeate flux production, the 0-Hole spacer produced 5.7 L.m-2.h-1 and 6.6 L.m-2.h-1 steady state flux for constant pressure and constant feed flow rate, respectively. The 1-Hole spacer was found to be the most efficient among the perforated spacers with 75% and 23% increase in permeate production at constant pressure and constant feed flow, respectively. Furthermore, membrane surface of 1-Hole spacer was found to be cleanest in terms of fouling, contributing to maintain higher permeate flux production. Hydrodynamic understanding of these perforated spacers is also quantified by performing Direct Numerical Simulation (DNS). The performance enhancement of these perforated spacers is attributed to the formation of micro-jets in the spacer cell that aided in producing enough unsteadiness/turbulence to clean the membrane surface and mitigate fouling phenomena. In the case of 1-Hole spacer, the unsteadiness intensity at the outlet of micro-jets and the shear stress fluctuations created inside the cells are higher than those observed with

  16. Fouling resilient perforated feed spacers for membrane filtration.

    Science.gov (United States)

    Kerdi, Sarah; Qamar, Adnan; Vrouwenvelder, Johannes S; Ghaffour, Noreddine

    2018-04-24

    The improvement of feed spacers with optimal geometry remains a key challenge for spiral-wound membrane systems in water treatment due to their impact on the hydrodynamic performance and fouling development. In this work, novel spacer designs are proposed by intrinsically modifying cylindrical filaments through perforations. Three symmetric perforated spacers (1-Hole, 2-Hole, and 3-Hole) were in-house 3D-printed and experimentally evaluated in terms of permeate flux, feed channel pressure drop and membrane fouling. Spacer performance is characterized and compared with standard no perforated (0-Hole) design under constant feed pressure and constant feed flow rate. Perforations in the spacer filaments resulted in significantly lowering the net pressure drop across the spacer filled channel. The 3-Hole spacer was found to have the lowest pressure drop (50%-61%) compared to 0-Hole spacer for various average flow velocities. Regarding permeate flux production, the 0-Hole spacer produced 5.7 L m -2 .h -1 and 6.6 L m -2 .h -1 steady state flux for constant pressure and constant feed flow rate, respectively. The 1-Hole spacer was found to be the most efficient among the perforated spacers with 75% and 23% increase in permeate production at constant pressure and constant feed flow, respectively. Furthermore, membrane surface of 1-Hole spacer was found to be cleanest in terms of fouling, contributing to maintain higher permeate flux production. Hydrodynamic understanding of these perforated spacers is also quantified by performing Direct Numerical Simulation (DNS). The performance enhancement of these perforated spacers is attributed to the formation of micro-jets in the spacer cell that aided in producing enough unsteadiness/turbulence to clean the membrane surface and mitigate fouling phenomena. In the case of 1-Hole spacer, the unsteadiness intensity at the outlet of micro-jets and the shear stress fluctuations created inside the cells are higher than those

  17. Cleaning efficiency enhancement by ultrasounds for membranes used in dairy industries.

    Science.gov (United States)

    Luján-Facundo, M J; Mendoza-Roca, J A; Cuartas-Uribe, B; Álvarez-Blanco, S

    2016-11-01

    Membrane cleaning is a key point for the implementation of membrane technologies in the dairy industry for proteins concentration. In this study, four ultrafiltration (UF) membranes with different molecular weight cut-offs (MWCOs) (5, 15, 30 and 50kDa) and materials (polyethersulfone and ceramics) were fouled with three different whey model solutions: bovine serum albumin (BSA), BSA plus CaCl2 and whey protein concentrate solution (Renylat 45). The purpose of the study was to evaluate the effect of ultrasounds (US) on the membrane cleaning efficiency. The influence of ultrasonic frequency and the US application modes (submerging the membrane module inside the US bath or applying US to the cleaning solution) were also evaluated. The experiments were performed in a laboratory plant which included the US equipment and the possibility of using two membrane modules (flat sheet and tubular). The fouling solution that caused the highest fouling degree for all the membranes was Renylat 45. Results demonstrated that membrane cleaning with US was effective and this effectiveness increased at lower frequencies. Although no significant differences were observed between the two different US applications modes tested, slightly higher cleaning efficiencies values placing the membrane module at the bottom of the tank were achieved. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. KARAKTERISTIK INTERAKSI MEMBRAN-FOULANT DAN FOULANT-FOULANT SEBAGAI DASAR PENGENDALIAN FOULING

    Directory of Open Access Journals (Sweden)

    Heru Susanto

    2012-05-01

    Full Text Available THE CHARACTERISTICS OF MEMBRANE-FOULANT AND FOULANT-FOULANT INTERACTIONS AS THE BASIS FOR CONTROL OF FOULING. Industrial membrane applications for solid liquid and liquid-liquid filtration are limited by fouling and concentration polarization. Because fouling significantly reduces the membrane performance and often changes the membrane selectivity, efforts to overcome the fouling problem are very important from practical applications point of view. This paper presents the basic knowledge required to control fouling and recent development in fouling control including the method developed by the author. Control of fouling can be done by (i commercial membrane modification (post modification by photo-graft polymerization, (ii modification by polymer blending during membrane manufacturing and (iii integration of a pretreatment into membrane processes. The results showed that all the developed methods can significantly reduce the resulting fouling; however, none of the method could totally remove the occurring fouling. The understanding of the membrane-foulant and foulant-foulant interactions is the key to success in control of fouling.Aplikasi teknologi membran untuk pemisahan padat cair di  berbagai industri dibatasi oleh peristiwa fouling yang menyebabkan penurunan laju produk dan perubahan selektifitas membran. Oleh karena itu, pengendalian fouling merupakan upaya yang mutlak harus dilakukan. Makalah ini mempresentasikan pengetahuan dasar yang diperlukan untuk pengendalian fouling dan perkembangan terkini dalam pengendalian fouling termasuk hasil-hasil yang telah dikembangkan oleh penulis. Pengendalian fouling dilakukan dengan (i modifikasi membran komersial (post modification menggunakan metode photo-grafting, (ii modifikasi dengan pencampuran polimer selama proses pembuatan (polymer blend dan (iii integrasi unit perlakuan awal (pre-treatment dengan proses membran. Hasil penelitian menunjukkan bahwa kesemua metode yang dikembangkan dapat

  19. Removal of actinides from dilute waste waters using polymer filtration

    International Nuclear Information System (INIS)

    Smith, B.F.; Robison, T.W.; Gibson, R.R.

    1995-01-01

    More stringent US Department of Energy discharge regulations for waste waters containing radionuclides (30 pCi/L total alpha) require the development of new processes to meet the new discharge limits for actinide metal ions, particularly americium and plutonium, while minimizing waste. We have been investigating a new technology, polymer filtration, that has the potential for effectively meeting these new limits. Traditional technology uses basic iron precipitation which produces large amounts of waste sludge. The new technology is based on using water-soluble chelating polymers with ultrafiltration for physical separation. The actinide metal ions are selectively bound to the polymer and can not pass through the membrane. Small molecules and nonbinding metals pass through the membrane. Advantages of polymer filtration technology compared to ion, exchange include rapid kinetics because the binding is occurring in a homogenous solution and no mechanical strength requirement on the polymer. We will present our results on the systematic development of a new class of water-soluble chelating polymers and their binding ability from dilute acid to near neutral waters

  20. Ultrasonic control of ceramic membrane fouling by particles: effect of ultrasonic factors.

    Science.gov (United States)

    Chen, Dong; Weavers, Linda K; Walker, Harold W

    2006-07-01

    Ultrasound at 20 kHz was applied to a cross-flow ultrafiltration system with gamma-alumina membranes in the presence of colloidal silica particles to systematically investigate how ultrasonic factors affect membrane cleaning. Based on imaging of the ultrasonic cavitation region, optimal cleaning occurred when the membrane was outside but close to the cavitation region. Increasing the filtration pressure increased the compressive forces driving cavitation collapse and resulted in fewer cavitation bubbles absorbing and scattering sound waves and increasing sound wave penetration. However, an increased filtration pressure also resulted in greater permeation drag, and subsequently less improvement in permeate flux compared to low filtration pressure. Finally, pulsed ultrasound with short pulse intervals resulted in permeate flux improvement close to that of continuous sonication.

  1. Mesoporous silica nanotubes hybrid membranes for functional nanofiltration

    International Nuclear Information System (INIS)

    El-Safty, Sherif A; Shahat, Ahmed; Mekawy, Moataz; Nguyen, Hoa; Warkocki, Wojciech; Ohnuma, Masato

    2010-01-01

    The development of nanofiltration systems would greatly assist in the production of well-defined particles and biomolecules with unique properties. We report a direct, simple synthesis of hexagonal silica nanotubes (NTs), which vertically aligned inside anodic alumina membranes (AAM) by means of a direct templating method of microemulsion phases with cationic surfactants. The direct approach was used as soft templates for predicting ordered assemblies of surfactant/silica composites through strong interactions within AAM pockets. Thus, densely packed NTs were successfully formed in the entirety of the AAM channels. These silica NTs were coated with layers of organic moieties to create a powerful technique for the ultrafine filtration. The resulting modified-silica NTs were chemically robust and showed affinity toward the transport of small molecular particles. The rigid silica NTs inside AAM channels had a pore diameter of ≤ 4 nm and were used as ultrafine filtration systems for noble metal nanoparticles (NM NPs) and semiconductor nanocrystals (SC NCs) fabricated with a wide range of sizes (1.0-50 nm) and spherical/pyramidal morphologies. Moreover, the silica NTs hybrid membranes were also found to be suitable for separation of biomolecules such as cytochrome c (CytC). Importantly, this nanofilter design retains high nanofiltration efficiency of NM NPs, SC NCs and biomolecules after a number of reuse cycles. Such retention is crucial in industrial applications.

  2. Ceramic membrane defouling (cleaning) by air Nano Bubbles.

    Science.gov (United States)

    Ghadimkhani, Aliasghar; Zhang, Wen; Marhaba, Taha

    2016-03-01

    Ceramic membranes are among the most promising technologies for membrane applications, owing to their excellent resistance to mechanical, chemical, and thermal stresses. However, membrane fouling is still an issue that hampers the applications at large scales. Air Nano Bubbles (NBs), due to high mass transfer efficiency, could potentially prevent fouling of ceramic membrane filtration processes. In this study, bench and pilot scale ceramic membrane filtration was performed with air NBs to resist fouling. To simulate fouling, humic acid, as an organic foulant, was applied to the membrane flat sheet surface. Complete membrane clogging was achieved in less than 6 h. Membrane defouling (cleaning) was performed by directly feeding of air NBs to the membrane cells. The surface of the ceramic membrane was superbly cleaned by air NBs, as revealed by atomic force microscope (AFM) images before and after the treatment. The permeate flux recovered to its initial level (e.g., 26.7 × 10(-9) m(3)/m(2)/s at applied pressure of 275.8 kPa), which indicated that NBs successfully unclogged the pores of the membrane. The integrated ceramic membrane and air NBs system holds potential as an innovative sustainable technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Polydopamine/Cysteine surface modified isoporous membranes with self-cleaning properties

    KAUST Repository

    Shevate, Rahul; Kumar, Mahendra; Karunakaran, Madhavan; Hedhili, Mohamed N.; Peinemann, Klaus-Viktor

    2017-01-01

    The major challenge in membrane filtration is fouling which reduces the membrane performance. Fouling is mainly due to the adhesion of foulants on the membrane surfaces. In this work, we studied the fouling behaviour of polystyrene-b-poly(4

  4. Membrane bioreactors and their uses in wastewater treatments

    Energy Technology Data Exchange (ETDEWEB)

    Le-Clech, Pierre [New South Wales Univ., Sydney (Australia). UNESCO Centre for Membrane Science and Technology

    2010-12-15

    With the current need for more efficient and reliable processes for municipal and industrial wastewaters treatment, membrane bioreactor (MBR) technology has received considerable attention. After just a couple of decades of existence, MBR can now be considered as an established wastewater treatment system, competing directly with conventional processes like activated sludge treatment plant. However, MBR processes still suffer from major drawbacks, including high operational costs due to the use of anti-fouling strategies applied to the system to maintain sustainable filtration conditions. Moreover, this specific use of membranes has not reached full maturity yet, as MBR suppliers and users still lack experience regarding the long-term performances of the system. Still, major improvements of the MBR design and operation have been witnessed over the recent years, making MBR an option of choice for wastewater treatment and reuse. This mini-review reports recent developments and current research trends in the field. (orig.)

  5. Food industrial wastewater reuse by membrane bio-reactor

    Directory of Open Access Journals (Sweden)

    Patthanant Natpinit

    2007-11-01

    Full Text Available The objective of this investigation was to study the possibility and performance of treating food industrial wastewater by Membrane BioReactor (MBR. In addition, the effluent of MBR was treated by Reverse Osmosis system (RO to reuse in boiler or cooling tower. The membranes of hollow fiber type were filled in the aerobic tank with aerobe bacteria. The total area of membrane 6 units was 630 m2 so the flux of the operation was 0.25 m/d or 150 m3/d. The spiral wound RO was operated at 100 m3/d of influent and received 72 m3/d of permeate. The sludge volume (MLSS of MBR was maintained at 8,000-10,000 mg/l. The average COD and SS of MBR influent were 600 mg/l and 300 mg/l respectively. After treating by MBR, COD and SS of effluent were maintained at less than 100 mg/l and less than 10 mg/l respectively. In the same way, COD and SS of RO permeate were less than 10 mg/l and less than 5 mg/l respectively.

  6. Risks associated with volcanic ash fallout from Mt.Etna with reference to industrial filtration systems

    International Nuclear Information System (INIS)

    Milazzo, Maria Francesca; Ancione, Giuseppa; Salzano, Ernesto; Maschio, Giuseppe

    2013-01-01

    The recent eruption of the Icelandic volcano has focused the worldwide attention on volcanic ash effects for the population, road, rail and air traffic and production activities. This paper aims to study of technological (industrial) accidental scenarios triggered by ash fallout and, more specifically, to define and quantify the potential damage on filtration systems. Malfunctions due to the filter clogging and service interruptions caused by the rupture of the filtering surface have been analysed in order to define the vulnerability of the equipment to such damages. Results are given in terms of threshold values of deposit on the filtering surface and exceedance probability curves of ash concentrations and the duration of the ash emission. This data can be easily implemented in the standard risk assessment with the aim to include the estimation of Natural-Technological (Na-Tech) hazards

  7. A comparative study of the safety and efficacy effect of 5-fluorouracil or mitomycin C mounted biological delivery membranes in a rabbit model of glaucoma filtration surgery

    Directory of Open Access Journals (Sweden)

    Wu ZH

    2013-03-01

    Full Text Available Zhihong Wu,1 Shuning Li,2 Ningli Wang,2 Wanshun Liu,3 Wen Liu3 1General Hospital of Armed Police Forces, Beijing, People’s Republic of China; 2Beijing Tongren Eye Center, Capital Medical University, Beijing, People’s Republic of China 3Ocean University of China, Qingdao, People’s Republic of China Purpose: To investigate the potential usage of biological delivery membranes containing mitomycin C (MMC or 5-fluorouracil (5-FU in the construction of glaucoma-filtering blebs, and to evaluate their safety and efficacy. Methods: Chitosan was selected as the biological membrane carrier to prepare sustained-released membranes. Twelve micrograms of 5-FU or MMC was covalently conjugated onto the membranes by solvent volatilization. Rabbits underwent glaucoma filtration surgery and were randomly allocated into one of the four treatment regimens: glaucoma filtration operation with no implantation of chitosan membrane group (as control, drug-free chitosan membrane implantation group (blank/placebo group, membrane containing 5-FU treatment group (5-FU group, and membrane containing MMC treatment group (MMC group. Each group consisted of 12 rabbits. Intraocular pressure (IOP was measured and evaluated over a 28-day period follow-up preoperatively, then after surgery on days 1, 3, 5, 7, 14, 21, and 28 by Tono-Pen. The aqueous humor was analyzed in each experimental and control groups at days 4, 6, 8, 10, 12, 14, 16, and 20 after operation. Bleb survival and anterior segment were examined with a slit lamp microscope and photographed simultaneously. Two rabbits from each group were killed on day 28 and eight eye samples obtained for histopathological study. Corneas and lenses were examined by transmission and scanning electron microscopy. Results: Both 5-FU and MMC significantly prolonged bleb survival compared with control groups. The filtering bleb’s survival period was significantly more prolonged in the MMC and 5-FU groups (maintained 14 days than the

  8. Cake layers and long filtration times protect ceramic micro-filtration membranes for fouling

    NARCIS (Netherlands)

    Lu, J.

    2013-01-01

    The objective of this research was to decrease membrane fouling of a ceramic microfiltration system and at the same time increase the recovery. A conventional operation in micro- and ultrafiltration is an in-line coagulation and a frequent hydraulic backwash. The idea about these frequent backwashes

  9. Characterization, Washing, Leaching, and Filtration of C-104 Sludge

    Energy Technology Data Exchange (ETDEWEB)

    KP Brooks; PR Bredt; GR Golcar; SA Hartley; LK Jagoda; KG Rappe; MW Urie

    2000-06-09

    Approximately 1,400 g of wet Hanford Tank C-104 Sludge was evaluated by Battelle for the high-level waste (HLW) pretreatment processes of ultrafiltration, dilute caustic washing, and elevated-temperature caustic leaching. The filterability of diluted C-104 sludge was measured with a 0.1-{micro}m sintered metal Mott filter using a 24-inch-long, single-element, crossflow filtration system (cells unit filter [CUF]). While the filtrate was being recirculated prior to washing and leaching, a 6.9 wt% solids slurry was evaluated with a matrix of seven 1-hour conditions of varying trans-membrane pressure (30 to 70 psid) and axial velocity (9 to 15 ft/s). The filtrate flux and backpulse efficiency were determined for each condition. The slurry was concentrated to 23 wt% solids, a second matrix of six 1-hour conditions was performed, and data analogous to that recorded in the first matrix were obtained. The low-solids-concentration matrix produced filtrate flux rates that ranged from 0.038 to 0.083 gpm/ft{sup 2}. The high-solids-concentration matrix produced filtrate flux rates that ranged from 0.0095 to 0.0172 gpm/ft{sup 2}. In both cases, the optimum filtrate flux was at the highest axial velocity (15 ft/s) and transmembrane pressure had little effect. Nearly all of the measured filtrate fluxes were more than an order of magnitude greater than the required plant flux for C-104 of 0.00126 gpm/ft{sup 2}. In both matrices, the filtrate flux appeared to be proportional to axial velocity, and the permeability appeared to be inversely proportional to the trans-membrane pressure. The first test condition was repeated as the last test condition for each matrix. In both cases, there was a significant decrease in filtrate flux, indicating some filter fouling during the test matrix that could not be removed by backpulsing alone, although the backpulse number and duration were not optimized. Following testing of these two matrices, the material was washed within the CUF by

  10. Membrane fouling mechanism transition in relation to feed water composition

    KAUST Repository

    Myat, Darli Theint; Mergen, Max R D; Zhao, Oliver; Stewart, Matthew B.; Orbell, John D.; Merle, Tony; Croue, Jean-Philippe; Gray, Stephen R.

    2014-01-01

    on hydrophobic PP membrane occurred during the first 24h of filtration and contributed to fouling for both raw wastewater and pre-treated wastewaters. However, after the first 24h of filtration the contribution of humic substances to fouling diminished

  11. Positively charged microporous ceramic membrane for the removal of Titan Yellow through electrostatic adsorption.

    Science.gov (United States)

    Cheng, Xiuting; Li, Na; Zhu, Mengfu; Zhang, Lili; Deng, Yu; Deng, Cheng

    2016-06-01

    To develop a depth filter based on the electrostatic adsorption principle, positively charged microporous ceramic membrane was prepared from a diatomaceous earth ceramic membrane. The internal surface of the highly porous ceramic membrane was coated with uniformly distributed electropositive nano-Y2O3 coating. The dye removal performance was evaluated through pressurized filtration tests using Titan Yellow aqueous solution. It showed that positively charged microporous ceramic membrane exhibited a flow rate of 421L/(m(2)·hr) under the trans-membrane pressure of 0.03bar. Moreover it could effectively remove Titan Yellow with feed concentration of 10mg/L between pH3 to 8. The removal rate increased with the enhancement of the surface charge properties with a maximum rejection of 99.6%. This study provides a new and feasible method of removing organic dyes in wastewater. It is convinced that there will be a broad market for the application of charged ceramic membrane in the field of dye removal or recovery from industry wastewater. Copyright © 2016. Published by Elsevier B.V.

  12. Enhanced permeability, selectivity, and antifouling ability of CNTs/Al2O3 membrane under electrochemical assistance.

    Science.gov (United States)

    Fan, Xinfei; Zhao, Huimin; Liu, Yanming; Quan, Xie; Yu, Hongtao; Chen, Shuo

    2015-02-17

    Membrane filtration provides effective solutions for removing contaminants, but achieving high permeability, good selectivity, and antifouling ability remains a great challenge for existing membrane filtration technologies. In this work, membrane filtration coupled with electrochemistry has been developed to enhance the filtration performance of a CNTs/Al2O3 membrane. The as-prepared CNTs/Al2O3 membrane, obtained by coating interconnected CNTs on an Al2O3 substrate, presented good pore-size tunability, mechanical stability, and electroconductivity. For the removal of a target (silica spheres as a probe) with a size comparable to the membrane pore size, the removal efficiency and flux at +1.5 V were 1.1 and 1.5 times higher, respectively, than those without electrochemical assistance. Moreover, the membrane also exhibited a greatly enhanced removal efficiency for contaminants smaller than the membrane pores, providing enhancements of 4 orders of magnitude and a factor of 5.7 for latex particles and phenol, respectively. These results indicated that both the permeability and the selectivity of CNTs/Al2O3 membranes can be significantly improved by electrochemical assistance, which was further confirmed by the removal of natural organic matter (NOM). The permeate flux and NOM removal efficiency at +1.5 V were about 1.6 and 3.0 times higher, respectively, than those without electrochemical assistance. In addition, the lost flux of the fouled membrane was almost completely recovered by an electrochemically assisted backwashing process.

  13. Membrane processes for the reuse of car washing wastewater

    Directory of Open Access Journals (Sweden)

    Deniz Uçar

    2018-04-01

    Full Text Available This study investigates alternative treatments of car wash effluents. The car wash wastewater was treated by settling, filtration, and membrane filtration processes. During settling, total solid concentration decreased rapidly within the first 2 hours and then remained constant. Chemical oxygen demand (COD and conductivity were decreased by 10% and 4%, respectively. After settling, wastewater was filtered throughout a 100 μm filter. It was found that filtration had a negligible effect on COD removal. Finally, wastewater was filtered by four ultrafiltration membranes of varying molecular weight cutoff (MWCO (1, 5, 10 and 50 kDa and one nanofiltration membrane (NF270, MWCO = 200–400 Da. The permeate COD concentrations varied between 64.5 ± 3.2 and 85.5 ± 4.3 mg L−1 depending on UF pore size. When the NF270 nanofiltration membrane was used, the permeate COD concentration was 8.1 ± 0.4 mg L−1 corresponding to 97% removal. FeCl3 precipitation and activated carbon adsorption techniques were also applied to the retentate and 60–76% COD removals were obtained for activated carbon adsorption and FeCl3 precipitation, respectively.

  14. Magnetic-seeding filtration

    International Nuclear Information System (INIS)

    Ying, T.Y.; Chin, C.J.; Lu, S.C.; Yiacoumi, S.

    1997-10-01

    Magnetic-seeding filtration consists of two steps: heterogeneous particle flocculation of magnetic and nonmagnetic particles in a stirred tank and high-gradient magnetic filtration (HGMF). The effects of various parameters affecting magnetic-seeding filtration (HGMF). The effects of various parameters affecting magnetic seeding filtration are theoretically and experimentally investigated. A trajectory model that includes hydrodynamic resistance, van der Waals, and electrostatic forces is developed to calculate the flocculation frequency in a turbulent-shear regime. Fractal dimension is introduced to simulate the open structure of aggregates. A magnetic-filtration model that consists of trajectory analysis, a particle build-up model, a breakthrough model, and a bivariate population-balance model is developed to predict the breakthrough curve of magnetic-seeding filtration. A good agreement between modeling results and experimental data is obtained. The results show that the model developed in this study can be used to predict the performance of magnetic-seeding filtration without using empirical coefficients or fitting parameters. 35 refs., 7 figs., 1 tab

  15. Application of Cross-Flow Filtration Technique in Purification and Concentration of Juice from Vietnamese Fruits

    Directory of Open Access Journals (Sweden)

    Huynh Cang Mai

    2017-09-01

    Full Text Available This study is to offer a 1st insight in the use of membrane process for the purification and concentration of Vietnamese fruit juices: cashew apple (Anacardium occidentale Line., dragon fruit (Cactus hémiépiphytes, pineapple (Ananas comosus, pomelo (Citrus grandis L., and gac aril oil (Momordica cochinchinensis Spreng.. On a laboratory scale, the effect of different operating parameters such as trans-membrane pressures (TMP, temperature and membrane pore sizes on permeate flux was determined in order to optimize process conditions that would ensure acceptable flux with adequate juice quality. The quality of the samples coming from the ultrafiltration (UF process was evaluated in terms of: total soluble solids (TSS, suspended solids (SS, and vitamin C. For example, the purification process of cashew apple juice by cross-flow filtration was optimized at 0.5 μm membrane pore size, 2.5 bars TMP, and 60 min filtration time. Besides, this technique was applied to enhance carotenoids concentration from gac oil. Optimum conditions for a high permeate flux and a good carotenoids retention are 5 nm, 2 bars, and 40 °C of membrane pore size, TMP, and temperature, respectively. Carotenoids were concentrated higher than that in feeding oil.

  16. Membrane technologies for water treatment and reuse in the textile industry

    DEFF Research Database (Denmark)

    Petrinić, I.; Bajraktari, Niada; Hélix-Nielsen, Claus

    2015-01-01

    technology for textile wastewater remediation. However, for all of these approaches the general issue of (bio)fouling represents a major obstacle for full-scale industrial implementation. Forward osmosis (FO) membranes have recently attracted considerable interest because the low fouling propensity of FO...

  17. Mass transfer in corrugated-plate membrane modules. I. Hyperfiltration experiments

    NARCIS (Netherlands)

    van der Waal, M.J.; Racz, I.G.

    1989-01-01

    The application of corrugations as turbulence promoters in membrane filtration was studied. This study showed that it is possible to deform an originally flat membrane to a corrugated shape without damaging it. In hyperfiltration experiments using corrugated cellulose acetate membranes it was found

  18. Mass transfer in corrugated-plate membrane modules. II. Ultrafiltration experiments

    NARCIS (Netherlands)

    van der Waal, M.J.; Stevanovic, S.; Racz, I.G.

    1989-01-01

    The application of corrugations as turbulence promoters in membrane filtration was studied. In ultrafiltration experiments with polysulfone membranes using Dextran T70 as solute, it was found that the corrugations result in reduced energy consumption or pressure drop compared with flat membranes at

  19. Biological black water treatment combined with membrane separation

    NARCIS (Netherlands)

    van Voorthuizen, E.M.; Zwijnenburg, A.; van der Meer, Walterus Gijsbertus Joseph; Temmink, Hardy

    2008-01-01

    Separate treatment of black (toilet) water offers the possibility to recover energy and nutrients. In this study three combinations of biological treatment and membrane filtration were compared for their biological and membrane performance and nutrient conservation: a UASB followed by effluent

  20. Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis: linking biofouling layer morphology with flux stabilization.

    Science.gov (United States)

    Akhondi, Ebrahim; Wu, Bing; Sun, Shuyang; Marxer, Brigit; Lim, Weikang; Gu, Jun; Liu, Linbo; Burkhardt, Michael; McDougald, Diane; Pronk, Wouter; Fane, Anthony G

    2015-03-01

    In this study gravity-driven membrane (GDM) ultrafiltration is investigated for the pretreatment of seawater before reverse osmosis (RO). The impacts of temperature (21 ± 1 and 29 ± 1 °C) and hydrostatic pressure (40 and 100 mbar) on dynamic flux development and biofouling layer structure were studied. The data suggested pore constriction fouling was predominant at the early stage of filtration, during which the hydrostatic pressure and temperature had negligible effects on permeate flux. With extended filtration time, cake layer fouling played a major role, during which higher hydrostatic pressure and temperature improved permeate flux. The permeate flux stabilized in a range of 3.6 L/m(2) h (21 ± 1 °C, 40 mbar) to 7.3 L/m(2) h (29 ± 1 °C, 100 mbar) after slight fluctuations and remained constant for the duration of the experiments (almost 3 months). An increase in biofouling layer thickness and a variable biofouling layer structure were observed over time by optical coherence tomography and confocal laser scanning microscopy. The presence of eukaryotic organisms in the biofouling layer was observed by light microscopy and the microbial community structure of the biofouling layer was analyzed by sequences of 16S rRNA genes. The magnitude of permeate flux was associated with the combined effect of the biofouling layer thickness and structure. Changes in the biofouling layer structure were attributed to (1) the movement and predation behaviour of the eukaryotic organisms which increased the heterogeneous nature of the biofouling layer; (2) the bacterial debris generated by eukaryotic predation activity which reduced porosity; (3) significant shifts of the dominant bacterial species over time that may have influenced the biofouling layer structure. As expected, most of the particles and colloids in the feed seawater were removed by the GDM process, which led to a lower RO fouling potential. However, the dissolved organic carbon in the

  1. Study of skin and mucous membrane disorders among workers engaged in the sodium dichromate manufacturing industry and chrome plating industry.

    Science.gov (United States)

    Singhal, Vijay Kumar; Deswal, Balbir Singh; Singh, Bachu Narayan

    2015-01-01

    Inhalation of dusts and fumes arising during the manufacture of sodium dichromate from chrome ore, chromic acid mist emitted during electroplating, and skin contact with chromate produce hazards to workers. (1) To elucidate the prevalence of skin and mucous membrane disorders among the workers engaged in the sodium dichromate manufacturing industry and chrome plating industry. (2) To know the relationship of prevalence with the duration of exposure to chrome mist, dust, and fumes. A cross-sectional study was conducted among all the workers engaged in sodium dichromate manufacturing and chrome plating from several industries situated near the Delhi-Haryana border in the districts of Faridabad and Sonepat of Haryana, India from January 01, 2014 to December 31, 2014. All the workers available from the concerned industries for the study were interviewed and medically examined after obtaining their informed consent. A total of 130 workers comprising 66 workers from the sodium dichromate manufacturing industry and 64 workers from the chrome plating industry were examined on a pretested schedule. Descriptive statistical methods (proportions, relative risk, and Chi-square test of significance with P value analyzed using Epi Info version 7). All the workers were found to be males and of the adult age group. Out of the total examined, 69.69% and 56.22% of the workers had disorders of the nasal mucous membrane in the sodium dichromate manufacturing industry and the chrome plating industry, respectively. 42.42% and 28.22% of the workers had perforation of the nasal septum in the sodium dichromate manufacturing industry and chrome plating industry, respectively. 6.06% and 3.12% workers had skin ulcers in the sodium dichromate manufacturing industry and chrome plating industry, respectively. Nasal irritation and rhinorrhea were the most commonly found symptoms in both the processes. 48.48% and 90.52% of the workers were using hand gloves in the sodium dichromate manufacturing

  2. Membrane separation systems---A research and development needs assessment

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W. (Membrane Technology and Research, Inc., Menlo Park, CA (USA)); Cussler, E.L. (Minnesota Univ., Minneapolis, MN (USA). Dept. of Chemical Engineering and Materials Science); Eykamp, W. (California Univ., Berkeley, CA (USA)); Koros, W.J. (Texas Univ., Austin, TX (USA)); Riley, R.L. (Separation Systems Technology, San Diego, CA (USA)); Strathmann, H. (Fraunhofer-Institut fuer Grenzflaech

    1990-03-01

    Membrane based separation technology, a relative newcomer on the separations scene, has demonstrated the potential of saving enormous amounts of energy in the processing industries if substituted for conventional separation systems. Over 1 quad annually, out of 2.6, can possibly be saved in liquid-to-gas separations, alone, if membrane separation systems gain wider acceptance, according to a recent DOE/OIP (DOE/NBM-80027730 (1986)) study. In recent years great strides have been made in the field and offer even greater energy savings in the future when substituted for other conventional separation techniques such as distillation, evaporation, filtration, sedimentation, and absorption. An assessment was conducted by a group of six internationally known membrane separations experts who examined the worldwide status of research in the seven major membrane areas. This encompassed four mature technology areas: reverse osmosis, micorfiltration, ultrafiltration, and electrodialysis; two developing areas: gas separation and and pervaporation; and one emerging technology: facilitated transport. Particular attention was paid to identifying the innovative processes currently emerging, and even further improvements which could gain wider acceptance for the more mature membrane technology. The topics that were pointed out as having the greatest research emphasis are pervaporation for organic-organic separations; gas separation; micorfiltration; an oxidant-resistant reverse osmosis membrane; and a fouling-resistant ultrafiltration membrane. 35 refs., 6 figs., 22 tabs.

  3. Correlations of filtration flux enhanced by electric fields in crossflow microfiltration

    Energy Technology Data Exchange (ETDEWEB)

    Okada, K.; Nagase, Y. [Kurashiki University of Science and the Arts, Okayama (Japan). Department of Chemical Technology; Ohnishi, Y.; Nishihan, A.; Akagi, Y. [Okayama University of Science, Okayama (Japan). Department of Applied Chemistry

    1997-12-01

    The steady state filtration flux in electrically-enhanced crossflow microfiltration is estimated using a correlation equation proposed for several kinds of suspensions. Baker`s yeast and Rhodotorula glutinis were used as model samples of microbial cells, and PMMA particles were used as samples of non-living solids. Application of the electric field in crossflow microfiltration is a useful method for improving the filtration flux of these samples. High flux levels for the cells were achieved when an electric field above 3000 V/m was applied. The effect of the electric field in increasing the filtration flux of the steady state was analyzed theoretically using a force balance model where the viscous drag force, F{sub J}, the electrophoretic force, F{sub E}, and the re-entraining force, F{sub B}, were considered to act on a particle on the membrane surface under a steady state of filtration, respectively. From force balance analysis, it is found that on application of an electric field, the electro-osmotic effect can be neglected in the present study, so that the filtration flux of the steady state, J{sub ES}, can be presented by, J{sub ES}=U{sub EP}E+J{sub OS} where U{sub EP} is the electrophoretic mobility of particles and E is the electric field applied. J{sub OS} is the filtration flux in the absence of an electric field, which is correlated with the operating parameters for suspensions tested. 22 refs., 7 figs., 1 tab.

  4. Comparative Study on Performance and Organic Fouling of ZrO2 Ceramic Membranes in Ultrafiltration of Synthetic Water and Wastewater Treatment Plant Effluent

    KAUST Repository

    Li, Cen

    2011-07-01

    Adsorption of organic matter on ceramic membrane can lead to hydraulic-irreversible fouling, which decreases the permeate flux and the cost-efficiency of membrane devices. In order to optimize the filtration process, detailed information is necessary about the organic fouling mechanisms on ceramic membranes. In this study, dead-end filtration experiments of both synthetic water and secondary effluent from a wastewater treatment plant (WWTP) were conducted on a ZrO2 ceramic membrane. The experiment results of synthetic water showed that humic acid (HA) was able to be adsorbed by the ZrO2 membrane and cause permeate flux decline; and that HA-tryptophan mixture, at the same DOC level, promoted the filtration flux decline; DOC removal in the case of HA-tryptophan was lower than that of HA alone. It seems that hydrophilic organic matter with low molecular weight have some specific contribution to the organic fouling of the ZrO2 membrane. The results also suggest that tryptophan molecules were preferentially adsorbed on the membrane at the beginning, exposing their hydrophobic sides which might further adsorb HA from the feed water. During the filtration of WWTP effluent, protein-like substances (mainly tryptophan-like) were also preferentially adsorbed on the membrane compared with humic-like ones in the initial few cycles of filtration. More humic-like substances were adsorbed in the following filtration cycles due to the increase of membrane hydrophobicity. A significant rise in hydraulic-irreversible flux decline was obtained by decreasing pH from near pHpzc to below pHpzc of the membrane. It suggests that a positively charged surface is preferred for HA adsorption. Ionic strength increase did not affect the filtration of HA, but it lessened the hydraulic-irreversible flux decline of HA-tryptophan filtration. The adsorption of HA-tryptophan can be attributed to outersphere interaction while HA adsorption is mainly caused by inner-sphere interaction. The results of

  5. Pilot-scale testing membrane bioreactor for wastewater reclamation in industrial laundry

    DEFF Research Database (Denmark)

    Andersen, Martin; Kristensen, Gert Holm; Brynjolf, M.

    2002-01-01

    A pilot-scale study of membrane bioreactor treatment for reclamation of wastewater from Berendsen Textile Service industrial laundry in Søborg, Denmark was carried out over a 4 month period. A satisfactory COD degradation was performed resulting in a low COD in the permeate (

  6. Titania and Zinc Oxide Nanoparticles: Coating with Polydopamine and Encapsulation within Lecithin Liposomes—Water Treatment Analysis by Gel Filtration Chromatography with Fluorescence Detection

    Directory of Open Access Journals (Sweden)

    Xuhao Zhao

    2018-02-01

    Full Text Available The interplay of metal oxide nanoparticles, environmental pollution, and health risks is key to all industrial and drinking water treatment processes. In this work we present a study using gel filtration chromatography for the analytical investigation of metal oxide nanoparticles in water, their coating with polydopamine, and their encapsulation within lecithin liposomes. Polydopamine prevents TiO2 and ZnO nanoparticles from aggregation during chromatographic separation. Lecithin forms liposomes that encapsulate the nanoparticles and carry them through the gel filtration column, producing an increase of peak area for quantitative analysis without any change in retention time to affect qualitative identification. To the best of our knowledge, this is the first report that demonstrates the potential application of lecithin liposomes for cleaning up metal oxide nanoparticles in water treatment. Encapsulation of graphene quantum dots by liposomes would allow for monitoring of nanoparticle-loaded liposomes to ensure their complete removal by membrane ultrafiltration from treated water.

  7. Vapor compression distiller and membrane technology for water revitalization

    Science.gov (United States)

    Ashida, A.; Mitani, K.; Ebara, K.; Kurokawa, H.; Sawada, I.; Kashiwagi, H.; Tsuji, T.; Hayashi, S.; Otsubo, K.; Nitta, K.

    1987-01-01

    Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied: one is absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation, able to easily produce condensed water under zero gravity, was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water.

  8. Use of ultra-filtration in organic-rich groundwater for the physical separation of thorium

    International Nuclear Information System (INIS)

    Singhal, R.K.; Basu, H.; Pimple, M.V.; Manisha, V.; Bassan, M.K.T.; Reddy, A.V.R.

    2014-01-01

    During this work, size fractionation technique 'ultra filtration' is used in physical speciation of thorium in organic rich groundwater. Laboratory simulated experiments were carried out to study the physical speciation of thorium in aquatic environment having elevated level of dissolved humus material classified as dissolved organic carbon (DOC). Samples were collected from organic rich environment having DOC in the range of 50-60 μg mL -1 . Th(IV) ions are extremely particle reactive having K d value of the order of 105-6, hence to avoid adsorption on suspended particulate matter, spiking of the solution with Th(NO 3 )4 was carried out in ground water samples after filtering through 450 nm pore size using suction filtration. Particles in dissolved state (colloids) ranging between 220 nm were separated using suction filtration assembly having a membrane with a pore diameter of 220 nm. Thereafter, solution was sequentially passed through the ultra-filtration membranes having pore diameters of 14 nm [300 k NMWL (nominal molecular weight limit)], 3.1 nm (50 k NMWL), 2.2 nm (30 k NMWL), 1.6 nm (10 k NMWL) and 1.1 nm (0.5 k NMWL) by using 'Stirred Ultra-filtration Cells', operating in concentration mode. Thorium has only one stable oxidation state i.e. IV, under all redox conditions in natural waters and therefore, its speciation is dominated by its interaction with various fractions of DOC. Experimental results show 50-60 % of the spiked Th is in association with fraction enriched with particles of 10 k NMWL (1.6 nm) followed by fraction enriched with particle of 0.5 k NMWL and <220 nm. (author)

  9. Study on the Matching Relationship between Polymer Hydrodynamic Characteristic Size and Pore Throat Radius of Target Block S Based on the Microporous Membrane Filtration Method

    Directory of Open Access Journals (Sweden)

    Li Yiqiang

    2014-01-01

    Full Text Available The concept of the hydrodynamic characteristic size of polymer was proposed in this study, to characterize the size of aggregates of many polymer molecules in the polymer percolation process. The hydrodynamic characteristic sizes of polymers used in the target block S were examined by employing microporous membrane filtration method, and the factors were studied. Natural core flow experiments were conducted in order to set up the flow matching relationship plate. According to the flow matching plate, the relationship between the hydrodynamic characteristic size of polymer and pore throat radius obtained from core mercury injection data was found. And several suitable polymers for different reservoirs permeability were given. The experimental results of microporous membrane filtration indicated that the hydrodynamic characteristic size of polymer maintained a good nonlinear relationship with polymer viscosity; the value increased as the molecular weight and concentration of the polymer increased and increased as the salinity of dilution water decreased. Additionally, the hydrodynamic characteristic size decreased as the pressure increased, so the hydrodynamic characteristic size ought to be determined based on the pressure of the target block. In the core flow studies, good matching of polymer and formation was identified as polymer flow pressure gradient lower than the fracture pressure gradient of formation. In this case, good matching that was the pore throat radius should be larger than 10 times the hydrodynamic characteristic size of polymer in this study. Using relationship, more matching relationship between the hydrodynamic characteristic sizes of polymer solutions and the pore throat radius of target block was determined.

  10. Ceramic membranes applied in separation of hot gases; Membranas Ceramicas para Separacion de Gases en Caliente

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The aim of this project is to develop and evaluate inorganic membranes of a ceramic type, with nanometric pore size, applied in separation of contaminants and fuel enrichment, gas mixture in coal gasification . etc. Using ceramic materials have the advantage of being highly physical and chemical resistance, which makes these membranes more adequate then metal equivalent for these applications. A support manufacture and the development of natricum membranes technology to estimate the potential fields of applications and industrial viability of ceramic membranes are the intermediate goals so that the project could be considered successful one. The project has been carried out jointly by the following entities: TGI, S. A. (Tecnologia y Gestion de la Innovacion, Spain). CIEMAT (Centro de Investigaciones energeticas, Medioambientales y Tecnologicas, Spain) and CSIC-UAM (Centro mixto Consejo Superior de Investigaciones Cientificas-Universidad Autonoma de Madrid. Instituto de Ciencias de Materiales, Spain). The range of activities proposed in this project is to get the sufficient knowledge of preparation and behaviour of separation membranes to be able to procede to the desing and manufacture of an industrial filter. The project phases include; the ameiloration of ceramic support processing methods, the fluid dynamic evaluation, technology for membrane desing and manufacturing, the mounting (setting up) of an experimental installation for testing and evaluation. As a previous step a state of the art review about the following topics was made: high temperature inorganic membranes, technology separation mechanisms, gasifications process and its previous experience applications of membranes and determination of membranes specifications and characteristics of testing conditions. At the end a new inorganic ceramic membrane, with nanometric pore size and useful in several industrial processes (filtration, separation of contaminants, fuel enrichment, purification of gas mixtures

  11. Membrane processes for the reuse of car washing wastewater

    OpenAIRE

    Deniz Uçar

    2018-01-01

    This study investigates alternative treatments of car wash effluents. The car wash wastewater was treated by settling, filtration, and membrane filtration processes. During settling, total solid concentration decreased rapidly within the first 2 hours and then remained constant. Chemical oxygen demand (COD) and conductivity were decreased by 10% and 4%, respectively. After settling, wastewater was filtered throughout a 100 μm filter. It was found that filtration had a negligible effect on COD...

  12. New membranes made of sintered clay application to crossflow ...

    African Journals Online (AJOL)

    The new mineral membranes made of sintered clay are performed and characterized in terms of porosity, hydraulic resistance, pore diameter and mechanical resistance. It is shown that these membranes can be used as microfiltration membrane. The variations of the filtrate flux as a function of time are measured during the ...

  13. Protein fouling in carbon nanotubes enhanced ultrafiltration membrane: Fouling mechanism as a function of pH and ionic strength

    KAUST Repository

    Lee, Jieun; Jeong, Sanghyun; Ye, Yun; Chen, Vicki; Vigneswaran, Saravanamuthu; Leiknes, TorOve; Liu, Zongwen

    2016-01-01

    The protein fouling behavior was investigated in the filtration of the multiwall carbon nanotube (MWCNT) composite membrane and commercial polyethersulfone ultrafiltration (PES-UF) membrane. The effect of solution chemistry such as pH and ionic strength on the protein fouling mechanism was systematically examined using filtration model such as complete pore blocking, intermediate pore blocking and cake layer formation. The results showed that the initial permeate flux pattern and fouling behavior of the MWCNT composite membrane were significantly influenced by pH and ionic strength while the effect of PES-UF membrane on flux was minimal. In a lysozyme (Lys) filtration, the severe pore blocking in the MWCNT membrane was made by the combined effect of intra-foulant interaction (Lys-Lys) and electrostatic repulsion between the membrane surface and the foulant at pH 4.7 and 10.4, and increasing ionic strength where the foulant-foulant interaction and membrane-fouling interaction were weak. In a bovine serum albumin (BSA) filtration, severe pore blocking was reduced by less deposition via the electrostatic interaction between the membrane and foulant at pH 4.7 and 10.4 and increasing ionic strength, at which the interaction between the membrane and BSA became weak. For binary mixture filtration, the protein fouling mechanism was more dominantly affected by foulant-foulant interaction (Lys-BSA, Lys-Lys, and BSA-BSA) at pH 7.0 and increase in ionic strength. This research demonstrates that MWCNT membrane fouling can be alleviated by changing pH condition and ionic strength based on the foulant-foulant interaction and the electrostatic interaction between the membrane and foulant.

  14. Protein fouling in carbon nanotubes enhanced ultrafiltration membrane: Fouling mechanism as a function of pH and ionic strength

    KAUST Repository

    Lee, Jieun

    2016-11-04

    The protein fouling behavior was investigated in the filtration of the multiwall carbon nanotube (MWCNT) composite membrane and commercial polyethersulfone ultrafiltration (PES-UF) membrane. The effect of solution chemistry such as pH and ionic strength on the protein fouling mechanism was systematically examined using filtration model such as complete pore blocking, intermediate pore blocking and cake layer formation. The results showed that the initial permeate flux pattern and fouling behavior of the MWCNT composite membrane were significantly influenced by pH and ionic strength while the effect of PES-UF membrane on flux was minimal. In a lysozyme (Lys) filtration, the severe pore blocking in the MWCNT membrane was made by the combined effect of intra-foulant interaction (Lys-Lys) and electrostatic repulsion between the membrane surface and the foulant at pH 4.7 and 10.4, and increasing ionic strength where the foulant-foulant interaction and membrane-fouling interaction were weak. In a bovine serum albumin (BSA) filtration, severe pore blocking was reduced by less deposition via the electrostatic interaction between the membrane and foulant at pH 4.7 and 10.4 and increasing ionic strength, at which the interaction between the membrane and BSA became weak. For binary mixture filtration, the protein fouling mechanism was more dominantly affected by foulant-foulant interaction (Lys-BSA, Lys-Lys, and BSA-BSA) at pH 7.0 and increase in ionic strength. This research demonstrates that MWCNT membrane fouling can be alleviated by changing pH condition and ionic strength based on the foulant-foulant interaction and the electrostatic interaction between the membrane and foulant.

  15. Modeling and optimization of membrane lifetime in dead-end ultra filtration

    NARCIS (Netherlands)

    Zondervan, E.; Roffel, B.

    2008-01-01

    In this paper, a membrane lifetime model is developed and experimentally validated. The lifetime model is based on the Weibull probability density function. The lifetime model can be used to determine an unambiguous characteristic membrane lifetime. Experimental results showed that membrane lifetime

  16. Non-filtration method of processing uranium ores

    International Nuclear Information System (INIS)

    Laskorin, B.N.; Vodolazov, L.I.; Tokarev, N.N.; Vyalkov, V.I.; Goldobina, V.A.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow)

    1977-01-01

    The development of the non-filtration sorption method has lead to procedures of the sorption leaching and the extraction desorption, which have made it possible to intensify the processing of uranium ores and to improve greatly the technical and economic indexes by eliminating the complex method of multiple filtration and re-pulping of cakes. This method makes it possible to involve more poor uranium raw materials, at the same time extracting valuable components such as molybdenum, vanadium, copper, etc. Considerable industrial experience has been acquired in the sorption of dense pulp with a solid-to-liquid phase ratio of 1:1. This has led to a plant production increase of 1.5-3.0 times, an increase of uranium extraction by 5-10%, a two- to- three-fold increase of labour capacity of the main workers, and to a several-fold decrease of reagents, auxiliary materials, electric energy and vapour. This non-filtration method is a continuous process in all its phases thanks to the use of high-yield and high-power equipment for high-density pulps. (author)

  17. Preparation of conductive membranes using poly pyrrole

    International Nuclear Information System (INIS)

    Madaeni, S.; Khavaran, B.

    2003-01-01

    Conductive membranes show many benefits including fouling reduction for feeds containing ionic species. These membranes may be prepared either by conductive polymers or coating of the surfaces of non-conductive membranes with conductive polymer. In this research, the commercial micro filtration GVHP membrane manufactured from PVDF was coated with poly pyrrole using two different techniques. The conductivity of the prepared membranes was measured. In this paper, effects of various factors including concentration of the solutions, oxidizing agents, time for leaving the support in the solutions, support type and temperature on membrane conductivity were investigated

  18. Fate and removal of pharmaceuticals and illicit drugs in conventional and membrane bioreactor wastewater treatment plants and by riverbank filtration.

    Science.gov (United States)

    Petrovic, Mira; de Alda, Maria Jose Lopez; Diaz-Cruz, Silvia; Postigo, Cristina; Radjenovic, Jelena; Gros, Meritxell; Barcelo, Damià

    2009-10-13

    Pharmaceutically active compounds (PhACs) and drugs of abuse (DAs) are two important groups of emerging environmental contaminants that have raised an increasing interest in the scientific community. A number of studies revealed their presence in the environment. This is mainly due to the fact that some compounds are not efficiently removed during wastewater treatment processes, being able to reach surface and groundwater and subsequently, drinking waters. This paper reviews the data regarding the levels of pharmaceuticals and illicit drugs detected in wastewaters and gives an overview of their removal by conventional treatment technologies (applying activated sludge) as well as advanced treatments such as membrane bioreactor. The paper also gives an overview of bank filtration practices at managed aquifer recharge sites and discusses the potential of this approach to mitigate the contamination by PhACs and DAs.

  19. Study on the Impact of Coagulation Bath Temperature on the Surface Morphology and Performance of Polyethylene Membrane Prepared by TIPS Method in Purification of Collagen Protein

    Directory of Open Access Journals (Sweden)

    Ali Akbari

    2015-11-01

    Full Text Available Fabrication of an efficient microfiltration polymeric membrane with low fouling characteristic and high permeation flux is an essential task for developing membrane-related researches and membrane industries. Surface skin layer which decreases the membrane permeation and accelerates the membrane fouling in purification and separation of protein solution is usually observed for all membranes fabricated via thermally induced phase separation (TIPS method. In this work, the impact of coagulation bath temperature on the skin layer thickness and performance of fabricated membranes was investigated. Collagen protein purification tests were carried out to investigate the impact of skin layer on the performance and determine the fouling mechanisms of the membranes. Obtained results showed that when coagulation bath temperature increases, the thickness of skin layer decreases. In membranes with lower surface porosity, decline in protein permeation is mainly due to the standard blocking fouling mechanism which is a kind of the irreversible fouling phenomenon. In membranes with higher surface porosity, however, decline in protein permeation is mainly due to the intermediate blocking fouling mechanism which is a kind of reversible fouling phenomenon. Obtained results from permeation flux and spectrophotometric analyses of inlet feed and retentate streams within 800 min showed that the collagen recovery ratio for modified and unmodified membranes were 5.6 and less than 1%, respectively. It is worth to mention that for membrane with lower surface porosity the collagen filtration process was stopped within 400 min due to the membrane fouling. For membrane with higher surface porosity, however there was no halting in filtration process within 800 min.

  20. design of ceramic membrane supports: permeability, tensile strength and stress

    NARCIS (Netherlands)

    Biesheuvel, Pieter Maarten; Biesheuvel, P.M.; Verweij, H.

    1999-01-01

    A membrane support provides mechanical strength to a membrane top layer to withstand the stress induced by the pressure difference applied over the entire membrane and must simultaneously have a low resistance to the filtrate flow. In this paper an experimental and a theoretical approach toward the

  1. CFD Simulation of an Anaerobic Membrane BioReactor (AnMBR to Treat Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Laura C. Zuluaga

    2015-06-01

    Full Text Available A Computational Fluid Dynamics (CFD simulation has been developed for an Anaerobic Membrane BioReactor (AnMBR to treat industrial wastewater. As the process consists of a side-stream MBR, two separate simulations were created: (i reactor and (ii membrane. Different cases were conducted for each one, so the surrounding temperature and the total suspended solids (TSS concentration were checked. For the reactor, the most important aspects to consider were the dead zones and the mixing, whereas for the ceramic membrane, it was the shear stress over the membrane surface. Results show that the reactor's mixing process was adequate and that the membrane presented higher shear stress in the 'triangular' channel.

  2. Innovative hybrid biological reactors using membranes; Reactores biologico hibrido innovadores utilizando membranas

    Energy Technology Data Exchange (ETDEWEB)

    Diez, R.; Esteban-Garcia, A. L.; Florio, L. de; Rodriguez-Hernandez, L.; Tejero, I.

    2011-07-01

    In this paper we present two lines of research on hybrid reactors including the use of membranes, although with different functions: RBPM, biofilm reactors and membranes filtration RBSOM, supported biofilm reactors and oxygen membranes. (Author) 14 refs.

  3. Thermophillic Sidestream Anaerobic Membrane Bioreactors: The Shear Rate Dilemma

    NARCIS (Netherlands)

    Jeison, D.A.; Telkamp, P.; Lier, van J.B.

    2009-01-01

    Anaerobic biomass retention under thermophilic conditions has proven difficult. Membrane filtration can be used as alternative way to achieve high sludge concentrations. This research studied the feasibility of anaerobic membrane bioreactors (AnMBRs) under thermophilic conditions. A sidestream MBR

  4. Fabrication of high flux and antifouling mixed matrix fumarate-alumoxane/PAN membranes via electrospinning for application in membrane bioreactors

    Science.gov (United States)

    Moradi, Golshan; Zinadini, Sirus; Rajabi, Laleh; Dadari, Soheil

    2018-01-01

    The nanofibrous Polyacrylonitrile (PAN) membranes embedded with fumarate-alumoxane (Fum-A) nanoparticles were prepared via electrospinning technique as high flux and antifouling membranes for membrane bioreactor (MBR) applications. The effect of Fum-A nanoparticles on membrane morphology, surface hydrophilicity, pure water flux, effluent turbidity and the antifouling property was investigated. Fum-A is a carboxylate-alumoxane nanoparticle covered by extra hydroxyl and carboxylate groups on its surface. By embedding Fum-A nanoparticles into the spinning solution, the surface hydrophilicity and pure water flux of the resulted membranes were improved. The smooth surface of fibers at the low amount of nanoparticles and the agglomeration of nanoparticles at their high concentration were shown in SEM images of the membranes surface. The energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) analysis of the prepared Fum-A/PAN membrane confirmed the presence of carboxylate and hydroxyl functional groups of Fum-A nanoparticles on the surface of the Fum-A nanoparticles containing membrane. The results obtained from the filtration of activated sludge suspension revealed that by addition of a low amount of Fum-A nanoparticles, the irreversible fouling was significantly decreased due to the higher hydrophilicity. The Fum-A/PAN membranes showed superior permeate flux and antifouling properties compared to bare electrospun PAN membrane. Finally, 2 wt.% Fum-A/PAN membrane exhibited the highest FRR of 96% and the lowest irreversible fouling of 4% with excellent durability of antifouling property during twenty repeated activated sludge filtrations.

  5. Electrochemical filtration for turbidity removal in industrial cooling/process water systems

    International Nuclear Information System (INIS)

    Kumbhar, A.G.; Venkateswaran, G.

    2008-01-01

    Water samples of large cooling water reservoirs may look visibly clear and transparent, but still may contain sub-micron size particles at sub-parts-per-million levels. Deposition of these particles on heat exchanger surfaces, reduces the heat transfer efficiency in power industry. In nuclear power plants, additionally it creates radiation exposure problems due to activation of fine metallic turbidity in the reactor core and its subsequent transfer to out-of-core surfaces. Sub-micron filtration creates back high-pressure problem. Zeta filters available commercially are prescribed for separating either positively or negatively charged particles. They are of once-use and throw-type. Precipitation surface modified ion exchangers impart chemical impurities to the system. Thus, sub-micron size and dilute turbidity removal from large volumes of waters such as heat exchanger cooling water in nuclear and power industry poses a problem. Electro deposition of the turbidity causing particles, on porous carbon/graphite felt electrodes, is one of the best suited methods for turbidity removal from large volumes of water due to the filter's high permeability, inertness to the system and regenerability resulting in low waste generation. Initially, active indium turbidity removal from RAPS-1 heavy water moderator system, and microbes removal from heat exchanger cooling lake water of RAPS 1 and 2 were demonstrated with in-house designed and fabricated prototype electrochemical filter (ECF). Subsequently, a larger size, high flow filter was fabricated and deployed for iron turbidity removal from active process waters system of Kaiga Generation Station unit 1 and silica and iron turbidity removal from cooling water pond used for heat exchanger of a high temperature high pressure (HTHP) loop at WSCD, Kalpakkam. The ECF proved its exclusive utility for sub-micron size turbidity removal and microbes removal. ECF maneuverability with potential and current for both positively and

  6. Influence of membrane fouling reducers (MFRs) on filterability of disperse mixed liquor of jet loop bioreactors.

    Science.gov (United States)

    Koseoglu-Imer, Derya Yuksel; Dizge, Nadir; Karagunduz, Ahmet; Keskinler, Bulent

    2011-07-01

    The effects of membrane fouling reducers (MFRs) (the cationic polyelectrolyte (CPE) and FeCI(3)) on membrane fouling were studied in a lab-scale jet loop submerged membrane bioreactor (JL-SMBR) system. The optimum dosages of MFRs (CPE dosage=20 mg g(-1)MLSS, FeCI(3) dosage=14 mg g(-1)MLSS) were continuously fed to JL-SMBR system. The soluble and bound EPS concentrations as well as MLSS concentration in the mixed liquor of JL-SMBR were not changed substantially by the addition of MFRs. However, significant differences were observed in particle size and relative hydrophobicity. Filtration tests were performed by using different membrane types (polycarbonate (PC) and nitrocellulose mixed ester (ME)) and various pore sizes (0.45-0.22-0.1 μm). The steady state fluxes (J(ss)) of membranes increased at all membranes after MFRs addition to JL-SMBR. The filtration results showed that MFRs addition was an effective approach in terms of improvement in filtration performance for both membrane types. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Scalable bonding of nanofibrous polytetrafluoroethylene (PTFE) membranes on microstructures

    Science.gov (United States)

    Mortazavi, Mehdi; Fazeli, Abdolreza; Moghaddam, Saeed

    2018-01-01

    Expanded polytetrafluoroethylene (ePTFE) nanofibrous membranes exhibit high porosity (80%-90%), high gas permeability, chemical inertness, and superhydrophobicity, which makes them a suitable choice in many demanding fields including industrial filtration, medical implants, bio-/nano- sensors/actuators and microanalysis (i.e. lab-on-a-chip). However, one of the major challenges that inhibit implementation of such membranes is their inability to bond to other materials due to their intrinsic low surface energy and chemical inertness. Prior attempts to improve adhesion of ePTFE membranes to other surfaces involved surface chemical treatments which have not been successful due to degradation of the mechanical integrity and the breakthrough pressure of the membrane. Here, we report a simple and scalable method of bonding ePTFE membranes to different surfaces via the introduction of an intermediate adhesive layer. While a variety of adhesives can be used with this technique, the highest bonding performance is obtained for adhesives that have moderate contact angles with the substrate and low contact angles with the membrane. A thin layer of an adhesive can be uniformly applied onto micro-patterned substrates with feature sizes down to 5 µm using a roll-coating process. Membrane-based microchannel and micropillar devices with burst pressures of up to 200 kPa have been successfully fabricated and tested. A thin layer of the membrane remains attached to the substrate after debonding, suggesting that mechanical interlocking through nanofiber engagement is the main mechanism of adhesion.

  8. A study on ion microporous membrane and its application

    International Nuclear Information System (INIS)

    Guo Hongying; Huang Zhengde

    2002-01-01

    The author depicted the physical, chemical character and the applied fields of ion microporous membrane. The technological procedure of making ion microporous membrane, applications in microporous counter-feinting trademark by heavy ion imaging and medical filtrater in authors' institute were stated

  9. Composite membrane with integral rim

    Science.gov (United States)

    Routkevitch, Dmitri; Polyakov, Oleg G

    2015-01-27

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  10. Performance modeling of industrial gas turbines with inlet air filtration system

    Directory of Open Access Journals (Sweden)

    Samuel O. Effiom

    2015-03-01

    Full Text Available The effect of inlet air filtration on the performance of two industrial gas turbines (GT is presented. Two GTs were modeled similar to GE LM2500+ and Alstom GT13 E2-2012, using TURBOMATCH and chosen to operate at environmental conditions of Usan offshore oilfield and Maiduguri dessert in Nigeria. The inlet pressure recovered (Precov from the selected filters used in Usan offshore, and Maiduguri ranged between 98.36≤Precov≤99.51% and 98.67≤Precov≤99.56% respectively. At reduced inlet Precov by 98.36% (1.66 kPa and, at a temperature above 15 °C (ISA, a reduction of 16.9%, and 7.3% of power output and efficiency was obtained using GT13 E2-2012, while a decrease of 14.8% and 4.7% exist for power output and efficiency with GE LM2500+. In addition, a reduction in mass flow rate of air and fuel under the same condition was between 4.3≤mair≤10.6% and 10.4≤mfuel≤11.5% for GT13 E2-2012 and GE LM2500+, correspondingly. However, the GE LM2500+ was more predisposed to intake pressure drops since it functioned at a higher overall pressure ratio. The results obtained were found worthwhile and could be the basis for filter selection and efficient compressor housing design in the locations concerned.

  11. Manufacture and study of osmotic metallic membranes

    International Nuclear Information System (INIS)

    Deschamps, Richard

    1970-01-01

    The manufacture of metallic membranes, which are semi-permeable to salt water, was investigated. The best results were obtained with nickel which had been deposited 'in situ' on sintered nickel, whose pore spectrum was sharp. The investigation showed that in the case of metallic membranes reverse osmosis is only a filtration. The large quantities of water produced and the low salt rejection rate compared to that with cellulose acetate membranes demonstrated that metallic membranes are better suited to depollution than desalination. (author) [fr

  12. Self Cleaning High Efficiency Particulate Air (HEPA) Filtration without Interrupting Process Flow - 59347

    International Nuclear Information System (INIS)

    Chadwick, Chris

    2012-01-01

    The strategy of protecting the traditional glass fibre HEPA filtration train from it's blinding contamination and the recovery of dust by the means of self cleaning, pre-filtration is a proven means in the reduction of ultimate disposal volumes and has been used within the Fuel Production Industry. However, there is an increasing demand in nuclear applications requiring elevated operating temperatures, fire resistance, moisture resistance and chemical composition that the existing glass fibre HEPA filtration cannot accommodate, which can be remedied by the use of a metallic HEPA filter media. Previous research suggests that the then costs to the Department of Energy (DOE), based on a five year life cycle, was $29.5 million for the installation, testing, removal and disposal of glass fibre HEPA filtration trains. Within these costs, $300 was the value given to the filter and $4, 450 was given to the peripheral activity. Development of a low cost, cleanable, metallic, direct replacement of the traditional filter train will the clear solution. The Bergman et al work has suggested that a 1000 ft 3 /min, cleanable, stainless HEPA could be commercially available for $5, 000 each, whereas the industry has determined that the truer cost of such an item in isolation would be closer to $15, 000. This results in a conflict within the requirement between 'low cost' and 'stainless HEPA'. By proposing a system that combines metallic HEPA filtration with the ability to self clean without interrupting the process flow, the need for a tradition HEPA filtration train will be eliminated and this dramatically reduces the resources required for cleaning or disposal, thus presenting a route to reducing ultimate costs. The paper will examine the performance characteristics, filtration efficiency, flow verses differential pressure and cleanability of a self cleaning HEPA grade sintered metal filter element, together with data to prove the contention. (authors)

  13. Understanding ozone mechanisms to alleviate ceramic membrane fouling

    Science.gov (United States)

    Chu, Irma Giovanna Llamosas

    Ceramic membranes are a strong prospect as an advanced treatment in the drinking water domain. But their high capital cost and the lack of specific research on their performance still discourage their application in this field. Thus, knowing that fouling is the main drawback experienced in filtration processes, this bench-scale study was aimed to assess the impact of an ozonation pre-treatment on the alleviation of the fouling of UF ceramic membranes. Preozonation and filtration steps were performed under two different pH and ozone doses. Chosen pH values were at the limits of natural surface waters range (6.5 and 8.5) to keep practicability. Raw water from the Thousand Isle's river at Quebec-Canada was used for the tests. The filtration setup involved an unstirred dead-end filtration cell operated at constant flux. Results showed that pre-oxidation by ozone indeed reduced the fouling degree of the membranes according to the dose applied (up to 60 and 85% for membranes 8 and 50 kDa, respectively). Direct NOM oxidation was found responsible for this effect as the presence of molecular ozone was not essential to achieve these results. In the context of this experiment, however, pH showed to be more effective than the ozonation pre-treatment to keep fouling at low levels: 70% lower at pH 6.5 than at pH 8.5 for un-ozonated waters, which was contrary to most of the literature found on the topic (Changwon, 2013; De Angelis & Fidalgo, 2013; Karnik et al., 2005; S. Lee & Kim, 2014). This behaviour results mainly from the operation mode used in the experiment, the electrical repulsions between MON molecules at basic pH that led to the accumulation of material on the feed side of the membranes (concentration polarisation) and ulterior cake formation. In addition, solution pH showed an influence in the definition of fouling mechanisms. At solution pH 6.5, which was precisely the isoelectric point of the membranes (+/-6.5), the blocking fouling mode was frequently detected

  14. Anaerobic dynamic membrane bioreactors for high strength wastewater treatment

    NARCIS (Netherlands)

    Ersahin, M.E.; Gimenez Garcia, J.B.; Ozgun, H.; Tao, Y.; Van Lier, J.B.

    2013-01-01

    A laboratory scale external anaerobic dynamic membrane bioreactor (AnDMBR) treating high strength wastewater was operated to assess the effect of gas sparging velocity and organic loading rate on removal efficiency and dynamic membrane (DM) filtration characteristics. An increase in gas sparging

  15. A forced-flow membrane reactor for transfructosylation using ceramic membrane.

    Science.gov (United States)

    Nishizawa, K; Nakajima, M; Nabetani, H

    2000-04-05

    A forced-flow membrane reactor system for transfructosylation was investigated using several ceramic membranes having different pore sizes. beta-Fructofuranosidase from Aspergillus niger ATCC 20611 was immobilized chemically to the inner surface of a ceramic membrane activated by a silane-coupling reagent. Sucrose solution was forced through the ceramic membrane by crossflow filtration while transfructosylation took place. The saccharide composition of the product, which was a mixture of fructooligosaccharides (FOS), was a function of the permeate flux, which was easily controlled by pressure. Using 0.2 micrometer pore size of symmetric ceramic membrane, the volumetric productivity obtained was 3.87 kg m(-3) s(-1), which was 560 times higher than that in a reported batch system, with a short residence time of 11 s. The half-life of the immobilized enzyme in the membrane was estimated to be 35 days by a long-term operation. Copyright 2000 John Wiley & Sons, Inc.

  16. Comparative Evaluation of Ultrafiltration/Microfiltration Membranes for Removal of Nitrocellulose (NC) Fines from Wastewater

    National Research Council Canada - National Science Library

    Kim, Byung

    1997-01-01

    .... In Phase II, a pilot-scale crossflow membrane filtration system was constructed to: (1) investigate the concentration polarization and fouling mechanism caused by NC fines during crossflow filtration of NC wastewater, (2...

  17. Cross flow microfiltration of oil-water emulsions using clay based ceramic membrane support and TiO2 composite membrane

    Directory of Open Access Journals (Sweden)

    Kanchapogu Suresh

    2017-09-01

    Full Text Available The main objective of this work is to study the effect of cross flow filtration conditions on the separation of oily wastewater using ceramic support and TiO2 membrane. Firstly, the low cost clay based ceramic membrane support was prepared by uniaxial compaction method using combination of pyrophyllite, quartz, feldspar, kaolin, ball clay and calcium carbonate along with PVA as a binder. Subsequently, TiO2 composite membrane was fabricated via hydrothermal route employing TiO2 sol derived from TiCl4 and NH4OH solution. Cross flow microfiltration investigations were carried out by utilizing oil-water emulsion concentration of 200 mg/L at three distinct applied pressures (69–207 kPa and three cross flow velocities (0.0885, 0.1327, and 0.1769 m/s. Compared to ceramic support, TiO2 composite membrane demonstrates better performance in terms of flux and removal efficiency of oil and also the rate of flux decline during filtration operation is lower due to highly hydrophilic surface of the TiO2 membrane. TiO2 membrane displays the oil removal efficiency of 99% in the entire range of applied pressures investigation, while ceramic support shows 93–96% of oil removal.

  18. Temporal Changes in Extracellular Polymeric Substances on Hydrophobic and Hydrophilic Membrane Surfaces in a Submerged Membrane Bioreactor

    KAUST Repository

    Matar, Gerald Kamil

    2016-03-02

    Membrane surface hydrophilic modification has always been considered to mitigating biofouling in membrane bioreactors (MBRs). Four hollow-fiber ultrafiltration membranes (pore sizes ∼0.1 μm) differing only in hydrophobic or hydrophilic surface characteristics were operated at a permeate flux of 10 L/m2.h in the same lab-scale MBR fed with synthetic wastewater. In addition, identical membrane modules without permeate production (0 L/m2.h) were operated in the same lab-scale MBR. Membrane modules were autopsied after 1, 10, 20 and 30 days of MBR operation, and total extracellular polymeric substances (EPS) accumulated on the membranes were extracted and characterized in detail using several analytical tools, including conventional colorimetric tests (Lowry and Dubois), liquid chromatography with organic carbon detection (LC-OCD), fluorescence excitation - emission matrices (FEEM), fourier transform infrared (FTIR) and confocal laser scanning microscope (CLSM). The transmembrane pressure (TMP) quickly stabilized with higher values for the hydrophobic membranes than hydrophilic ones. The sulfonated polysulfone (SPSU) membrane had the highest negatively charged membrane surface, accumulated the least amount of foulants and displayed the lowest TMP. The same type of organic foulants developed with time on the four membranes and the composition of biopolymers shifted from protein dominance at early stages of filtration (day 1) towards polysaccharides dominance during later stages of MBR filtration. Nonmetric multidimensional scaling of LC-OCD data showed that biofilm samples clustered according to the sampling event (time) regardless of the membrane surface chemistry (hydrophobic or hydrophilic) or operating mode (with or without permeate flux). These results suggest that EPS composition may not be the dominant parameter for evaluating membrane performance and possibly other parameters such as biofilm thickness, porosity, compactness and structure should be considered

  19. GSPEL - Air Filtration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Evaluation capabilities for air filtration devicesThe Air Filtration Lab provides testing of air filtration devices to demonstrate and validate new or legacy system...

  20. Ten years of industrial and municipal membrane bioreactor (MBR) systems - lessons from the field.

    Science.gov (United States)

    Larrea, Asun; Rambor, Andre; Fabiyi, Malcolm

    2014-01-01

    The use of membrane bioreactors (MBRs) in activated sludge wastewater treatment has grown significantly in the last decade. While there is growing awareness and knowledge about the application of MBR technology in municipal wastewater treatment, not much information is available on the application of MBRs in industrial wastewater treatment. A comparative study of design data, operating conditions and the major challenges associated with MBR operations in 24 MBR plants treating both municipal and industrial wastewater, built by and/or operated by Praxair, Inc., is presented. Of the 24 MBR systems described, 12 of the plants used high purity oxygen (HPO). By enabling a wide range of food/microorganism ratios and loading conditions in the same system, HPO MBR systems can extend the options available to industrial plant operators to meet the challenges of wide fluctuations in organic loading and footprint limitations. While fouling in industrial MBR systems can be an issue, adequate flux and permeability values can be reliably maintained by the use of good maintenance strategies and effective process controls (pretreatment, cleaning and membrane autopsies).

  1. Lanthanides(3)/ actinides (3) separation by nano-filtration-complexation in aqueous medium

    International Nuclear Information System (INIS)

    Chitry, F.; Pellet-Rostaing, S.; Gozzi, C.; Lemaire, M.; Guy, A.; Foos, J.

    2000-01-01

    Lanthanides(III)/actinides(III) separation is a major research subject in matter of treatment of high activity liquid effluents. Liquid-liquid extraction actually gives the best results for this separation. In order to demonstrate that nano-filtration (NF) is a valuable alternative to liquid-liquid extraction, we tried to separate different lanthanides(III) with a nano-filtration process combined with a selective complexation step. At first DTPA (diethylene-triamine-pentaacetic acid) combined with a Sepa MG-17 (Osmonics) gave a 95% retention of Gd 3+ and a 50% retention of La 3+ . Then new hydrosoluble and more selective ligands derived from DTPA were synthesized. One of them combined with a Sepa MG-17 membrane allowed a 87% retention of Gd 3+ and a 5% retention of La 3+ . The same nano-filtration-complexation system was experimented with an equimolar aqueous solution of Gd 3+ , Pr 3+ and La 3+ . Other experiments in the field of actinides(III)/lanthanides(III) separation were also performed. (authors)

  2. Biocatalytic Self-Cleaning Polymer Membranes

    Directory of Open Access Journals (Sweden)

    Agnes Schulze

    2015-09-01

    Full Text Available Polymer membrane surfaces have been equipped with the digestive enzyme trypsin. Enzyme immobilization was performed by electron beam irradiation in aqueous media within a one-step method. Using this method, trypsin was covalently and side-unspecific attached to the membrane surface. Thus, the use of preceding polymer functionalization and the use of toxic solvents or reagents can be avoided. The resulting membranes showed significantly improved antifouling properties as demonstrated by repeated filtration of protein solutions. Furthermore, the biocatalytic membrane can be simply “switched on” to actively degrade a fouling layer on the membrane surface and regain the initial permeability. The membrane pore structure (pore size and porosity was neither damaged by the electron beam treatment nor blocked by the enzyme loading, ensuring a stable membrane performance.

  3. 40 CFR 141.173 - Filtration.

    Science.gov (United States)

    2010-07-01

    ... PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that does... treatment, direct filtration, slow sand filtration, or diatomaceous earth filtration. A public water system...

  4. The Fundamentals of Waste Water Sludge Characterization and Filtration

    Energy Technology Data Exchange (ETDEWEB)

    Scales, Peter J.; Dixon, David R.; Harbour, Peter J.; Stickland, Anthony D.

    2003-07-01

    The move to greater emphasis on the disposal of waste water sludges through routes such as incineration and the added cost of landfill emplacement puts high demands on dewatering technology for these sludges. A dear problem in this area is that waste water sludges are slow and difficult to dewater and traditional methods of laboratory measurement for prediction of filtration performance are inadequate. This is highly problematic for the design and operational optimisation of centrifuges, filters and settling devices in the waste water industry. The behaviour is assessed as being due to non-linear behaviour of these sludges which negates the use of classical approaches. These approaches utilise the linear portion of a t versus V{sup 2} plot (where t is the time to filtration and V is the specific filtrate volume) to extract a simple Darcian permeability. Without this parameter, a predictive capacity for dewatering using current theory is negated. (author)

  5. Preliminary Study on Treatment of Palm Oil Mill Effluent (POME by Sand Filtration-DBD Plasma System

    Directory of Open Access Journals (Sweden)

    Ariadi Hazmi

    2016-02-01

    Full Text Available In the palm oil industry, open ponding, aerobic and anaerobic digestion, physicochemical treatment and membrane filtration are generally applied as conventional treatments of palm oil mill effluent (POME. In this study, a sand filtration-dielectric barrier discharge (DBD system was investigated as an alternative process for treating POME. This system can reduce land usage, processing time and costs compared to conventional systems. The removal efficiency of chemical oxygen demand (COD, biological oxygen demand (BOD5, and oil-grease in relation to the applied voltage were studied. Furthermore, the pH and temperature profiles were investigated. The obtained results indicate that the removal efficiency of COD, BOD5, and oil-grease increased with an increase of the applied voltage. The electrical energy consumption needed is about 10.56 kWh/L of POME.

  6. Advances in the effective application of membrane technology in the food industry

    DEFF Research Database (Denmark)

    Pinelo, Manuel; Jonsson, Gunnar Eigil; Meyer, Anne S.

    2011-01-01

    This chapter focuses on the recent advances in the use of membrane technology for efficient separation and concentration of solutes in the dairy and fruit juice industry, as well as in the purification of bioactive compounds to be used as food additives. The importance of fouling reduction...

  7. Asparaginase-associated concurrence of hyperlipidemia, hyperglobulinemia, and thrombocytosis was successfully treated by centrifuge/membrane hybrid double-filtration plasmapheresis.

    Science.gov (United States)

    Wang, Taina; Xu, Bin; Fan, Rong; Liu, Zhihong; Gong, Dehua

    2016-01-01

    Asparaginase-associated concurrence of hyperlipidemia, hyperglobulinemia, and thrombocytosis is a rare complication requiring aggressive lipoprotein apheresis, but no one of currently available lipoprotein apheresis methods can simultaneously resolve the 3 abnormalities. Herein, we reported a construction of double-filtration plasmapheresis (DFPP) using a combination of centrifugal/membranous plasma separation techniques to successfully treat a patient with hyperlipidemia, hyperglobulinemia, and thrombocytosis. A male presented with severe hyperlipidemia, hyperglobulinemia, and thrombocytosis during asparaginase treatment for NK/T-cell lymphoblastic lymphoma and was scheduled to receive lipoprotein apheresis. To simultaneously remove lipoproteins, immunoglobulin, and deplete platelets from blood, a centrifuge/membrane hybrid DFPP was constructed as following steps: plasma and part of platelets were separated first from whole blood by centrifugal technique and then divided by a fraction plasma separator into 2 parts: platelets and plasma components with large size, which were discarded; and those containing albumin, which were returned to blood with a supplement of extrinsic albumin solution. DFPP lasted 240 minutes uneventfully, processing 5450-mL plasma. The concentrations of plasma components before DFPP were as follows: triglycerides 38.22 mmol/L, total cholesterols 22.98 mmol/L, immunoglobulin A (IgA) 15.7 g/L, IgG 12.7 g/L, and IgM 14.3 g/L; whereas after treatment were 5.69 mmol/L, 2.38 mmol/L, 2.5 g/L, 7.7 g/L, and 0.4 g/L, respectively. The respective reduction ratio was 85.1%, 89.6%, 83.9%, 39.4%, and 96.9%. Platelet count decreased by 40.4% (from 612 × 10(9)/L to 365 × 10(9)/L). Centrifuge/membrane hybrid DFPP can simultaneously remove lipoproteins, immunoglobulin, and deplete platelets, with a success in treatment of asparaginase treatment-induced hyperlipidemia, hyperglobulinemia, and thrombocytosis, and may be useful for patients

  8. Effects of feed solution chemistry on low pressure reverse osmosis filtration of cesium and strontium

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shiyuan, E-mail: dingshiyuan@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875 (China); Yang, Yu, E-mail: yangyu@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875 (China); Huang, Haiou, E-mail: huanghaiou@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875 (China); Liu, Hengchen, E-mail: 799599501@qq.com [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875 (China); Hou, Li-an, E-mail: houlian678@hotmail.com [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875 (China); Xi’an High-Tech Institute, No. 2, Tongxin Street, Baqiao District, Xi’an 710025 (China)

    2015-08-30

    Highlights: • A low pressure spiral wound RO membrane can reject Cs and Sr efficiently. • The rejection of Cs and Sr is dependent on feed pH and co-existing ions. • Donnan exclusion and electrostatic interaction govern the rejection of Cs and Sr. • The differences of filtration mechanism were influenced by the size of ions. • Sr could strengthen the irreversible membrane fouling resistance with HA. - Abstract: The objective of this study was to identify the removal mechanisms of radionuclides by reverse osmosis (RO) membranes under conditions relevant to full-scale water treatment. For this purpose, the effects of feed solution chemistry on the removal of Cs and Sr by a low pressure RO system was investigated by systematically varying membrane surface charge, ionic composition, and organic matter concentrations. The results showed that the effects of solution chemistry on the filtration of Cs and Sr were related to their hydrated ionic radius, resulting in the predominance of the Donnan’s effect and electrostatic interactions, respectively. Consequently, the rejection of Cs increased more pronouncedly than Sr with the increases of feed concentration. Due to the Donnan’s effect, different anions decreased the rejection of Cs to different extents in accordance to the order of anions’ radii as SO{sub 4}{sup 2−} > Cl{sup −} > NO{sub 3}{sup −} > F{sup −}. The variations in Sr rejection were influenced by the electrostatic interactions between Sr{sup 2+} and the membrane. In addition, humic acid (HA) lowered the rejection of Cs and caused significant membrane flux decline, but did not change the rejection of Sr. Sr also aggravated HA fouling of the membrane.

  9. Evaluation of environmental filtration control of engineered nanoparticles using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES)

    Science.gov (United States)

    Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael

    2013-01-01

    Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20–46 % points compared to non-coated fabric and could provide collection efficiency above 95 %. PMID:23412707

  10. Evaluation of environmental filtration control of engineered nanoparticles using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES)

    International Nuclear Information System (INIS)

    Tsai, Candace S.-J.; Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael

    2012-01-01

    Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO 2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20–46 % points compared to non-coated fabric and could provide collection efficiency above 95%.

  11. Advanced Monitoring and Characterization of Biofouling in Gravity-driven Membrane Filtration

    KAUST Repository

    Wang, Yiran

    2016-01-01

    membrane surface was scanned and recorded by OCT. Membrane autopsy was carried out for biofilm composition analysis by total organic carbon (TOC) and liquid chromatography with organic carbon detection (LC-OCD). In addition, biomass concentration

  12. Membrane flux dynamics in the submerged ultrafiltration hybrid treatment process during particle and natural organic matter removal

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Xiaojian Zhang; Yonghong Li; Jun Wang; Chao Chen

    2011-01-01

    Particles and natural organic matter (NOM) are two major concerns in surface water,which greatly influence the membrane filtration process.The objective of this article is to investigate the effect of particles,NOM and their interaction on the submerged ultrafiltration (UF) membrane flux under conditions of solo UF and coagulation and PAC adsorption as the pretreatment of UF.Particles,NOM and their mixture were spiked in tap water to simulate raw water.Exponential relationship,(JP/JP0 =axexp{-k[t-(n- 1)T]}),was developed to quantify the normalized membrane flux dynamics during the filtration period and fitted the results well.In this equation,coefficient a was determined by the value of Jp/Jp0 at the beginning of a filtration cycle,reflecting the flux recovery after backwashing,that is,the irreversible fouling.The coefficient k reflected the trend of flux dynamics.Integrated total permeability (ΣJp) in one filtration period could be used as a quantified indicator for comparison of different hybrid membrane processes or under different scenarios.According to the results,there was an additive effect on membrane flux by NOM and particles during solo UF process.This additive fouling could be alleviated by coagulation pretreatment since particles helped the formation of flocs with coagulant,which further delayed the decrease of membrane flux and benefited flux recovery by backwashing.The addition of PAC also increased membrane flux by adsorbing NOM and improved flux recovery through backwashing.

  13. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  14. PERFORMANCE OF NEWLY CONFIGURED SUBMERGED MEMBRANE BIOREACTOR FOR AEROBIC INDUSTRIAL WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    I Gede Wenten

    2012-02-01

    Full Text Available The application of membrane to replace secondary clarifier of conventional activated sludge, known as membrane bioreactor, has led to a small footprint size of treatment with excellent effluent quality. The use of MBR eliminates almost all disadvantages encountered in conventional wastewater treatment plant such as low biomass concentration and washout of fine suspended solids. However, fouling remains as a main drawback. To minimize membrane fouling, a new configuration of submerged membrane bioreactor for aerobic industrial wastewater treatment has been developed. For the new configuration, a bed of porous particle is applied to cover the submerged ends-free mounted ultrafiltration membrane. Membrane performance was assessed based on flux productivity and selectivity. By using tapioca wastewater containing high organic matter as feed solution, reasonably high and stable fluxes around 11 l/m2.h were achieved with COD removal efficiency of more than 99%. The fouling analysis also shows that the newly configured ends-free membrane bioreactor exhibits lower irreversible resistance compared with the submerged one. In addition, the performance of pilot scale system, using a membrane module  with 10 m2 effective area and reactor tank with 120 L volume, was also assessed. The flux achieved from the pilot scale system around 8 l/m2.h with COD removal of more than 99%. Hence, this study has demonstrated the feasibility of the newly configured submerged ends-free MBR at larger scale.

  15. Bioinspired Multifunctional Membrane for Aquatic Micropollutants Removal

    DEFF Research Database (Denmark)

    Cao, Xiaotong; Luo, Jianquan; Woodley, John

    2016-01-01

    Micropollutants present in water have many detrimental effects on the ecosystem. Membrane technology plays an important role in the removal of micropollutants, but there remain significant challenges such as concentration polarization, membrane fouling, and variable permeate quality. The work...... reported here uses a multifunctional membrane with rejection, adsorption, and catalysis functions to solve these problems. On the basis of mussel-inspired chemistry and biological membrane properties, a multifunctional membrane was prepared by applying "reverse filtration" of a laccase solution...... and subsequent "dopamine coating" on a nanofiltration (NF) membrane support, which was tested on bisphenol A (BPA) removal. Three NF membranes were chosen for the preparation of the multifunctional membranes on the basis of the membrane properties and enzyme immobilization efficiency. Compared with the pristine...

  16. Engineered Asymmetric Composite Membranes with Rectifying Properties.

    Science.gov (United States)

    Wen, Liping; Xiao, Kai; Sainath, Annadanam V Sesha; Komura, Motonori; Kong, Xiang-Yu; Xie, Ganhua; Zhang, Zhen; Tian, Ye; Iyoda, Tomokazu; Jiang, Lei

    2016-01-27

    Asymmetric composite membranes with rectifying properties are developed by grafting pH-stimulus-responsive materials onto the top layer of the composite structure, which is prepared by two novel block copolymers using a phase-separation technique. This engineered asymmetric composite membrane shows potential applications in sensors, filtration, and nanofluidic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. SCREENING FOR TOXIC INDUSTRIAL CHEMICALS USING SEMIPERMEABLE MEMBRANE DEVICES WITH RAPID TOXICITY ASSAYS

    Science.gov (United States)

    A time-integrated sampling device interfaced with two toxicity-based assays is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethylsulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  18. Characterization of secondary treated effluents for tertiary membrane filtration and water recycling

    KAUST Repository

    Ayache, C.; Pidou, Marc; Gernjak, Wolfgang; Poussade, Yvan; Croue, Jean-Philippe; Tazi-Pain, Annie; Keller, Jurg R.

    2012-01-01

    This study evaluates the impacts of water quality from three different secondary effluents on low pressure membrane fouling. Effluent organic matter (EfOM) has been reported by previous studies as responsible for membrane fouling. However, the contribution of the different components of EfOM to membrane fouling is still not well understood. In order to improve and optimize treatment processes, characterization and quantification of the organic matter are important. The characterization methods used in this study are liquid chromatography coupled with an organic detector (LC-OCD) and excitation emission matrix fluorescence spectroscopy (EEM). A bench-scale hollow fibre membrane system was used to identify the type of fouling depending on the feed water quality. Results showed no measurable dissolved organic carbon removal by the membranes for the three secondary effluents. Biopolymers and humic-like substances found in different proportions in the three effluents were partially retained by the membranes and were identified to contribute significantly to the flux decline of the low pressure membranes. The observed fouling was determined to be reversible by hydraulic backwashing for two effluents and only by chemical cleaning for the third effluent. © IWA Publishing 2012.

  19. Characterization of secondary treated effluents for tertiary membrane filtration and water recycling

    KAUST Repository

    Ayache, C.

    2012-06-01

    This study evaluates the impacts of water quality from three different secondary effluents on low pressure membrane fouling. Effluent organic matter (EfOM) has been reported by previous studies as responsible for membrane fouling. However, the contribution of the different components of EfOM to membrane fouling is still not well understood. In order to improve and optimize treatment processes, characterization and quantification of the organic matter are important. The characterization methods used in this study are liquid chromatography coupled with an organic detector (LC-OCD) and excitation emission matrix fluorescence spectroscopy (EEM). A bench-scale hollow fibre membrane system was used to identify the type of fouling depending on the feed water quality. Results showed no measurable dissolved organic carbon removal by the membranes for the three secondary effluents. Biopolymers and humic-like substances found in different proportions in the three effluents were partially retained by the membranes and were identified to contribute significantly to the flux decline of the low pressure membranes. The observed fouling was determined to be reversible by hydraulic backwashing for two effluents and only by chemical cleaning for the third effluent. © IWA Publishing 2012.

  20. Fiscal 1998 research report. Survey on development and application of membranes with pores of micron to nano-meter sizes; 1998 nendo chosa kenkyu hokokusho. Makuro kara mikuro (nano mezo dai) size wo motsu, menburenmaku no kaihatsu narabi ni oyo ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Researches on preparation of membranes of various materials have been promoted by not systematic technique but separate techniques according to needs of concerned fields. To establish the efficient technique for membranes with pores of required uniform size according to needs of various industries, survey and study were made on process optimization and low-cost production method. Porous membrane is the leading candidate for new separation systems as separation medium in chemical industry, hot gas filtration for energy production and environmental purification engineering. The electrode, separator and gas storage medium of fuel cell vehicles and next-generation batteries require effective porous materials. The workshop on engineering porous materials held in May 1993 confirmed the time of following materials: High-efficiency gas separation membrane, chemical catalytic membrane, fuel cell electrode and absorbent for environmental purification. Development of inorganic membranes more excellent in high-temperature stability, strength, catalytic activity and corrosion resistance than previous polymer membranes is important. (NEDO)

  1. Challege and Opportunities of Membrane Bioelctrochemical Reactors for Wastewater Treatment

    OpenAIRE

    Li, Jian

    2016-01-01

    Microbial fuel cells (MFCs) are potentially advantageous as an energy-efficient approach for wastewater treatment. Integrating membrane filtration with MFCs could be a viable option for advanced wastewater treatment with a low energy input. Such an integration is termed as membrane bioelectrochemical reactors (MBERs). Comparing to the conventional membrane bioreactors or anaerobic membrane bioreactors, MBER could be a competitive technology, due to the its advantages on energy consumption and...

  2. Fish mouths as engineering structures for vortical cross-step filtration

    Science.gov (United States)

    Sanderson, S. Laurie; Roberts, Erin; Lineburg, Jillian; Brooks, Hannah

    2016-03-01

    Suspension-feeding fishes such as goldfish and whale sharks retain prey without clogging their oral filters, whereas clogging is a major expense in industrial crossflow filtration of beer, dairy foods and biotechnology products. Fishes' abilities to retain particles that are smaller than the pore size of the gill-raker filter, including extraction of particles despite large holes in the filter, also remain unexplained. Here we show that unexplored combinations of engineering structures (backward-facing steps forming d-type ribs on the porous surface of a cone) cause fluid dynamic phenomena distinct from current biological and industrial filter operations. This vortical cross-step filtration model prevents clogging and explains the transport of tiny concentrated particles to the oesophagus using a hydrodynamic tongue. Mass transfer caused by vortices along d-type ribs in crossflow is applicable to filter-feeding duck beak lamellae and whale baleen plates, as well as the fluid mechanics of ventilation at fish gill filaments.

  3. Enzyme immobilization by fouling in ultrafiltration membranes: Impact of membrane configuration and type on flux behavior and biocatalytic conversion efficacy

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Jonsson, Gunnar Eigil

    2014-01-01

    Enzyme-immobilization in membranes accomplished by fostering membrane fouling was evaluated. Four different membrane configurations and five membranes were compared for immobilization of alcohol dehydrogenase (ADH) in terms of enzyme loading, permeate flux and final biocatalytic conversion...... and PLGC regenerated cellulose membranes. With these two highly hydrophilic membranes, the ADH enzyme activity was fully retained even after 24h of storage of the membrane. Filtration blocking and resistance models were used to analyze the fouling/immobilization mechanisms and give explanations...... for the different results. The work confirms that fouling-induced enzyme immobilization is a promising option for enhancing biocatalytic productivity, and highlights the significance of the membrane type and configuration for optimal performance....

  4. Dynamic Heterogeneous Multiscale Filtration Model: Probing Micro- and Macroscopic Filtration Characteristics of Gasoline Particulate Filters.

    Science.gov (United States)

    Gong, Jian; Viswanathan, Sandeep; Rothamer, David A; Foster, David E; Rutland, Christopher J

    2017-10-03

    Motivated by high filtration efficiency (mass- and number-based) and low pressure drop requirements for gasoline particulate filters (GPFs), a previously developed heterogeneous multiscale filtration (HMF) model is extended to simulate dynamic filtration characteristics of GPFs. This dynamic HMF model is based on a probability density function (PDF) description of the pore size distribution and classical filtration theory. The microstructure of the porous substrate in a GPF is resolved and included in the model. Fundamental particulate filtration experiments were conducted using an exhaust filtration analysis (EFA) system for model validation. The particulate in the filtration experiments was sampled from a spark-ignition direct-injection (SIDI) gasoline engine. With the dynamic HMF model, evolution of the microscopic characteristics of the substrate (pore size distribution, porosity, permeability, and deposited particulate inside the porous substrate) during filtration can be probed. Also, predicted macroscopic filtration characteristics including particle number concentration and normalized pressure drop show good agreement with the experimental data. The resulting dynamic HMF model can be used to study the dynamic particulate filtration process in GPFs with distinct microstructures, serving as a powerful tool for GPF design and optimization.

  5. New selective ligands for caesium. Application to Cs+/Na+ separation by nano-filtration-complexation in aqueous phase

    International Nuclear Information System (INIS)

    Pellet-Rostaing, S.; Chitry, F.; Lemaire, M.; Guy, A.; Foos, J.

    2000-01-01

    Separating traces of caesium from aqueous medium containing high sodium concentration is a harsh problem because caesium and sodium have a similar behaviour in aqueous medium. The aim of our study was to select a highly caesium-selective ligand in a nano-filtration-complexation process in order to achieve Cs + /Na + separation. This process involve a nano-filtration step combined with a preliminary complexation step. Caesium complexes are retained by the nano-filtration membrane whereas free sodium cations pass through it. We tried to find a relation between the ligands structure and their activity towards caesium-complexation. Among the synthesized receptors, Tetra-hydroxylated bis-crown-6 calix[4]arene was found to be the more caesium-selective ligand (S=β(Cs + )/β(Na+)=6600). Combined with a nano-filtration process, this ligand helped reaching 90% caesium retention in a highly concentrated aqueous medium ([NaNO 3 ] = 3 mol/L). (authors)

  6. Dynamic Membrane Formation in Anaerobic Dynamic Membrane Bioreactors: Role of Extracellular Polymeric Substances.

    Directory of Open Access Journals (Sweden)

    Hongguang Yu

    Full Text Available Dynamic membrane (DM formation in dynamic membrane bioreactors plays an important role in achieving efficient solid-liquid separation. In order to study the contribution of extracellular polymeric substances (EPS to DM formation in anaerobic dynamic membrane bioreactor (AnDMBR processes, EPS extraction from and re-addition to bulk sludge were carried out in short-term filtration tests. DM formation behaviors could be well simulated by cake filtration model, and sludge with EPS re-addition showed the highest resistance coefficient, followed by sludge after EPS extraction. The DM layers exhibited a higher resistance and a lower porosity for the sludge sample after EPS extraction and for the sludge with EPS re-addition. Particle size of sludge flocs decreased after EPS extraction, and changed little with EPS re-addition, which was confirmed by interaction energy analysis. Further investigations by confocal laser scanning microscopy (CLSM analysis and batch tests suggested that the removal of in-situ EPS stimulated release of soluble EPS, and re-added EPS were present as soluble EPS rather than bound EPS, which thus improved the formation of DM. The present work revealed the role of EPS in anaerobic DM formation, and could facilitate the operation of AnDMBR processes.

  7. The Formation of Porous Membranes by Filtration of Aerosol Nano-particles

    DEFF Research Database (Denmark)

    Andersen, Sune Klint; Johannessen, Tue; Mosleh, Majid

    2002-01-01

    are almost independent of the substrate structure. The development of a membrane with uniform properties is preceded by a short initial period in which the deposited particles, with an equivalent membrane thickness of roughly 2 m, have a significantly lower permeability than the ultimately developed uniform...

  8. Cross flow microfiltration of oil-water emulsions using clay based ceramic membrane support and TiO2 composite membrane

    OpenAIRE

    Kanchapogu Suresh; G. Pugazhenthi

    2017-01-01

    The main objective of this work is to study the effect of cross flow filtration conditions on the separation of oily wastewater using ceramic support and TiO2 membrane. Firstly, the low cost clay based ceramic membrane support was prepared by uniaxial compaction method using combination of pyrophyllite, quartz, feldspar, kaolin, ball clay and calcium carbonate along with PVA as a binder. Subsequently, TiO2 composite membrane was fabricated via hydrothermal route employing TiO2 sol derived fro...

  9. Adsorption of Heavy Metals From Industrial Wastes Using Membranes Prepared by Radiation Grafting

    International Nuclear Information System (INIS)

    Hegazy, E. A.; Kamal, H.; Maziad, N.; Dessouki, A.M.; Aly, H.F.

    1999-01-01

    Preparation of synthetic membranes using simultaneous radiation grafting of acrylic acid (AAc) and styrene (Sty) individually and in a binary monomers mixture onto polypropylene (PP) has been carried out. The effect of preparation conditions such as irradiation dose, monomer and inhibitor concentration, comonomer composition on the grafting yield was investigated. The thermal stability and mechanical properties were also investigated as a function of degree of grafting. Accordingly the possibility of its practical use in industrial waste treatment is determined. The prepared cation-exchange membranes possess good mechanical properties, high thermal stability and good characteristics for separation processes. These membranes have also good affinity toward the adsorption or chelation with Fe 3+ , Pb 2+ , and Cd 2+ ions either in a mixture or exists alone in the solution

  10. Application of ceramic membranes for seawater reverse osmosis (SWRO) pre-treatment

    KAUST Repository

    Hamad, Juma

    2013-05-30

    Low-pressure (microfiltration/ultrafiltration (MF/UF)) membranes are being increasingly used as pre-treatment, prior to seawater reverse osmosis (SWRO). The objective of pre-treatment before reverse osmosis (RO) membranes is to remove undesirable and particulate fouling materials (algae, suspended and colloidal particles). Also, a pre-treatment barrier reduces organics and provides better feed water quality for RO membranes. MF and UF pre-treatment prior to SWRO provides Low Silt Density Index (SDI) values recommended for RO operation. Ceramic membranes are more attractive as they made of more chemically resistant materials, which allow for more stable operation and aggressive backwashing (BW) and cleaning. A pilot plant with a monolith ceramic MF membrane (0.1 μm pore size) from METAWATER was used to carry out the study. Red Sea water pumped from a distance of 700 m offshore from Thuwal (Kingdom of Saudi Arabia) was used as feed water. The pilot plant was operated automatically at constant flux of 150 LMH that involved BW, air flushing and forward flushing at the end of filtration cycle. Seawater permeates were used for hydraulic BW, while sodium hypochlorite, citric acid and sodium hydroxide were used for chemical cleaning (CIP) to restore the membrane permeability after use. Filtration cycles of 2.5 h were adopted for initial experiments. Aggressive BW flux of 1,800 LMH for 15 s, air flushing of 4 bars for 10 s and forward flushing of 300 LMH for 40 s were applied for regular membrane hydraulic cleaning. The increase of membrane resistances over time was monitored. Further studies were also performed by using Anopore ceramic membranes AAO100 (pore sizes of 0.1 μm) using a constant pressure bench-scale set-up. The feed water and permeate were analysed using an SDI unit, flow cytometre (FCM) and liquid chromatography with organic carbon detection (LC-OCD). The results showed that ceramic membrane filtration reduced the SDI15 of seawater from 6.1 to 2.1 which

  11. Directing filtration to optimize enzyme immobilization in reactive membranes

    DEFF Research Database (Denmark)

    Luo, Jianquan; Marpani, Fauziah; Brites, Rita

    2014-01-01

    enzymatic reaction efficiency were evaluated in terms of enzyme loading, conversion rate and biocatalytic stability. Alcohol dehydrogenase (ADH) was selected as a model enzyme. Lower pressure, higher enzyme concentration and lower pH resulted in higher irreversible fouling resistance and lower permeate flux....... High pH during immobilization produced increased permeate flux but declines in conversion rates, likely because of the weak immobilization resulting from strong electrostatic repulsion between enzymes and membrane. The results showed that pore blocking as a fouling mechanism permitted a higher enzyme...... loading but generated more permeability loss, while cake layer formation increased enzyme stability but resulted in low loading rate. Low pH (near isoelectric point) favored hydrophobic and electrostatic adsorption of enzymes on the membrane, which reduced the enzyme stability. Neutral pH, however...

  12. Modeling of Filtration Processes—Microfiltration and Depth Filtration for Harvest of a Therapeutic Protein Expressed in Pichia pastoris at Constant Pressure

    Directory of Open Access Journals (Sweden)

    Muthukumar Sampath

    2014-12-01

    Full Text Available Filtration steps are ubiquitous in biotech processes due to the simplicity of operation, ease of scalability and the myriad of operations that they can be used for. Microfiltration, depth filtration, ultrafiltration and diafiltration are some of the most commonly used biotech unit operations. For clean feed streams, when fouling is minimal, scaling of these unit operations is performed linearly based on the filter area per unit volume of feed stream. However, for cases when considerable fouling occurs, such as the case of harvesting a therapeutic product expressed in Pichia pastoris, linear scaling may not be possible and current industrial practices involve use of 20–30% excess filter area over and above the calculated filter area to account for the uncertainty in scaling. In view of the fact that filters used for harvest are likely to have a very limited lifetime, this oversizing of the filters can add considerable cost of goods for the manufacturer. Modeling offers a way out of this conundrum. In this paper, we examine feasibility of using the various proposed models for filtration of a therapeutic product expressed in Pichia pastoris at constant pressure. It is observed that none of the individual models yield a satisfactory fit of the data, thus indicating that more than one fouling mechanism is at work. Filters with smaller pores were found to undergo fouling via complete pore blocking followed by cake filtration. On the other hand, filters with larger pores were found to undergo fouling via intermediate pore blocking followed by cake filtration. The proposed approach can be used for more accurate sizing of microfilters and depth filters.

  13. Predicting membrane flux decline from complex mixtures using flow-field flow fractionation measurements and semi-empirical theory.

    Science.gov (United States)

    Pellegrino, J; Wright, S; Ranvill, J; Amy, G

    2005-01-01

    Flow-Field Flow Fractionation (FI-FFF) is an idealization of the cross flow membrane filtration process in that, (1) the filtration flux and crossflow velocity are constant from beginning to end of the device, (2) the process is a relatively well-defined laminar-flow hydrodynamic condition, and (3) the solutes are introduced as a pulse-input that spreads due to interactions with each other and the membrane in the dilute-solution limit. We have investigated the potential for relating FI-FFF measurements to membrane fouling. An advection-dispersion transport model was used to provide 'ideal' (defined as spherical, non-interacting solutes) solute residence time distributions (RTDs) for comparison with 'real' RTDs obtained experimentally at different cross-field velocities and solution ionic strength. An RTD moment analysis based on a particle diameter probability density function was used to extract "effective" characteristic properties, rather than uniquely defined characteristics, of the standard solute mixture. A semi-empirical unsteady-state, flux decline model was developed that uses solute property parameters. Three modes of flux decline are included: (1) concentration polarization, (2) cake buildup, and (3) adsorption on/in pores, We have used this model to test the hypothesis-that an analysis of a residence time distribution using FI-FFF can describe 'effective' solute properties or indices that can be related to membrane flux decline in crossflow membrane filtration. Constant flux filtration studies included the changes of transport hydrodynamics (solvent flux to solute back diffusion (J/k) ratios), solution ionic strength, and feed water composition for filtration using a regenerated cellulose ultrafiltration membrane. Tests of the modeling hypothesis were compared with experimental results from the filtration measurements using several correction parameters based on the mean and variance of the solute RTDs. The corrections used to modify the boundary layer

  14. A vibrating membrane bioreactor operated at supra- and sub-critical flux: Influence of extracellular polymeric substances from yeast cells

    DEFF Research Database (Denmark)

    Beier, Søren Prip; Jonsson, Gunnar Eigil

    2007-01-01

    A vibrating membrane bioreactor, in which the fouling problems are reduced by vibrating a hollow fiber membrane module, has been tested in constant flux microfiltration above (supra-critical) and below (sub-critical) an experimentally determined critical flux. Suspensions of bakers yeast cells were...... chosen as filtration medium (dry weight 4 g/l). The influence of extracellular polymeric substances (EPS) from the yeast cells is evaluated by UV absorbance measurements of the bulk supernatant during filtration. The critical flux seems to be an interval or a relative value rather than an absolute value....... Filtration just below the critical flux (sub-critical) seems to be a good compromise between acceptable flux level and acceptable increase of fouling resistance and trans-membrane pressure (TMP) in a given time period. EPS from the yeast cells causes the membrane module to foul and part of the fouling...

  15. Comparing Nutrient Removal from Membrane Filtered and Unfiltered Domestic Wastewater Using Chlorella vulgaris

    Science.gov (United States)

    Mayhead, Elyssia; Llewellyn, Carole A.; Fuentes-Grünewald, Claudio

    2018-01-01

    The nutrient removal efficiency of Chlorella vulgaris cultivated in domestic wastewater was investigated, along with the potential to use membrane filtration as a pre-treatment tool during the wastewater treatment process. Chlorella vulgaris was batch cultivated for 12 days in a bubble column system with two different wastewater treatments. Maximum uptake of 94.18% ammonium (NH4-N) and 97.69% ortho-phosphate (PO4-P) occurred in 0.2 μm membrane filtered primary wastewater. Membrane filtration enhanced the nutrient uptake performance of C. vulgaris by removing bacteria, protozoa, colloidal particles and suspended solids, thereby improving light availability for photosynthesis. The results of this study suggest that growing C. vulgaris in nutrient rich membrane filtered wastewater provides an option for domestic wastewater treatment to improve the quality of the final effluent. PMID:29351200

  16. Recovery of iron after Fenton-like secondary treatment of olive mill wastewater by nano-filtration and low-pressure reverse osmosis membranes

    Directory of Open Access Journals (Sweden)

    Ochando-Pulido, J. M.

    2016-09-01

    Full Text Available In this work, the performances of novel nano-filtration (NF and low-pressure reverse osmosis (RO polymeric membranes were examined with the aim of recovering the iron used as catalyst in former secondary treatment based on the Fenton-like advanced oxidation of olive mill wastewater (OMW. Results highlight that both membranes exhibit a good performance towards the rejection of iron (99.1% for the NF membrane vs. 100% for the low-pressure RO membrane in the secondary-treated OMW effluent, thus permitting the recovery of iron in the concentrate stream in order to recycle it back into the oxidation reactor to reduce catalyst consumption. Finally, the permeate streams could be re-used for irrigation. Major productivity was observed by the selected NF membrane, about 47.4 L/hm2 upon 9 bar, whereas 30.9 L/hm2 could be yielded with the RO membrane under an operating pressure of 8 bar. Moreover, a sensibly lower fouling index was measured on the NF membrane (0.0072 in contrast with 0.065, which ensures major steady-state performance on this membrane and a longer service lifetime. This also results in lower required membrane area and membrane plant over dimension (4 modules in case of RO operation whereas only 2 modules for NF.En este trabajo, se examinó el rendimiento de membranas modernas de nanofiltración (NF y ósmosis inversa (OI poliméricas con el objetivo de recuperar el hierro utilizado como catalizador en un tratamiento secundario previo de agua residual oleícola (OMW basado en oxidación avanzada tipo Fenton. Los resultados ponen de relieven que ambas membranas exhiben buen rendimiento en cuanto al rechazo de hierro (99.1 % para la membrana de NF vs. 100 % para la membrana de OI de bajas presiones en el efluente oleícola tras tratamiento secundario, permitiendo en consecuencia la recuperación de hierro en la corriente de concentrado para su recirculación de nuevo al reactor de oxidación para reducir el consumo de catalizador. Finalmente

  17. Review on strategies for biofouling mitigation in spiral wound membrane systems

    KAUST Repository

    Bucs, Szilard

    2018-02-01

    Because of the uneven distribution of fresh water in time and space, a large number of regions are experiencing water scarcity and stress. Membrane based desalination technologies have the potential to solve the fresh water crisis in coastal areas. However, in many cases membrane performance is restricted by biofouling. The objective of this review is to provide an overview on the state of the art strategies to control biofouling in spiral wound reverse osmosis membrane systems and point to possible future research directions. A critical review on biofouling control strategies such as feed water pre-treatment, membrane surface modification, feed spacer geometry optimization and hydrodynamics in spiral wound membrane systems is presented. In conclusion, biofouling cannot be avoided in the long run, and thus biofouling control strategies should focus on delaying the biofilm formation, reducing its impact on membrane performance and enhancing biofilm removal by advanced cleaning strategies. Therefore, future studies should aim on: (i) biofilm structural characterization; (ii) understanding to what extent biofilm properties affect membrane filtration performance, and (iii) developing methods to engineer biofilm properties such that biofouling would have only a low or delayed impact on the filtration process and accumulated biomass can be easily removed.

  18. Centrifugal Filtration System for Severe Accident Source Term Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shu Chang; Yim, Man Sung [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    The objective of this paper is to present the conceptual design of a filtration system that can be used to process airborne severe accident source term. Reactor containment may lose its structural integrity due to over-pressurization during a severe accident. This can lead to uncontrolled radioactive releases to the environment. For preventing the dispersion of these uncontrolled radioactive releases to the environment, several ways to capture or mitigate these radioactive source term releases are under investigation at KAIST. Such technologies are based on concepts like a vortex-like air curtain, a chemical spray, and a suction arm. Treatment of the radioactive material captured by these systems would be required, before releasing to environment. For current filtration systems in the nuclear industry, IAEA lists sand, multi-venturi scrubber, high efficiency particulate arresting (HEPA), charcoal and combinations of the above in NS-G-1-10, 4.143. Most if not all of the requirements of the scenario for applying this technology near the containment of an NPP site and the environmental constraints were analyzed for use in the design of the centrifuge filtration system.

  19. Composite membranes and methods for making same

    Science.gov (United States)

    Routkevitch, Dmitri; Polyakov, Oleg G

    2012-07-03

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  20. A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive hollow-fiber membrane for treatment of low-organic strength solutions

    KAUST Repository

    Katuri, Krishna; Werner, Craig M.; Jimenez Sandoval, Rodrigo J.; Chen, Wei; Jeon, Sungil; Logan, Bruce E.; Lai, Zhiping; Amy, Gary L.; Saikaly, Pascal

    2014-01-01

    A new anaerobic treatment system that combined a microbial electrolysis cell (MEC) with membrane filtration using electrically conductive, porous, nickel-based hollow-fiber membranes (Ni-HFMs) was developed to treat low organic strength solution and recover energy in the form of biogas. This new system is called an anaerobic electrochemical membrane bioreactor (AnEMBR). The Ni-HFM served the dual function as the cathode for hydrogen evolution reaction (HER) and the membrane for filtration of the effluent. The AnEMBR system was operated for 70 days with synthetic acetate solution having a chemical oxygen demand (COD) of 320 mg/L. Removal of COD was >95% at all applied voltages tested. Up to 71% of the substrate energy was recovered at an applied voltage of 0.7 V as methane rich biogas (83% CH4; < 1% H2) due to biological conversion of the hydrogen evolved at the cathode to methane. A combination of factors (hydrogen bubble formation, low cathode potential and localized high pH at the cathode surface) contributed to reduced membrane fouling in the AnEMBR compared to the control reactor (open circuit voltage). The net energy required to operate the AnEMBR system at an applied voltage of 0.7 V was significantly less (0.27 kWh/m3) than that typically needed for wastewater treatment using aerobic membrane bioreactors (1-2 kWh/m3).

  1. A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive hollow-fiber membrane for treatment of low-organic strength solutions

    KAUST Repository

    Katuri, Krishna

    2014-11-04

    A new anaerobic treatment system that combined a microbial electrolysis cell (MEC) with membrane filtration using electrically conductive, porous, nickel-based hollow-fiber membranes (Ni-HFMs) was developed to treat low organic strength solution and recover energy in the form of biogas. This new system is called an anaerobic electrochemical membrane bioreactor (AnEMBR). The Ni-HFM served the dual function as the cathode for hydrogen evolution reaction (HER) and the membrane for filtration of the effluent. The AnEMBR system was operated for 70 days with synthetic acetate solution having a chemical oxygen demand (COD) of 320 mg/L. Removal of COD was >95% at all applied voltages tested. Up to 71% of the substrate energy was recovered at an applied voltage of 0.7 V as methane rich biogas (83% CH4; < 1% H2) due to biological conversion of the hydrogen evolved at the cathode to methane. A combination of factors (hydrogen bubble formation, low cathode potential and localized high pH at the cathode surface) contributed to reduced membrane fouling in the AnEMBR compared to the control reactor (open circuit voltage). The net energy required to operate the AnEMBR system at an applied voltage of 0.7 V was significantly less (0.27 kWh/m3) than that typically needed for wastewater treatment using aerobic membrane bioreactors (1-2 kWh/m3).

  2. From cooperative to uncorrelated clogging in cross-flow microfluidic membranes

    NARCIS (Netherlands)

    Zwieten, van Ralph; Laar, van de T.; Sprakel, J.H.B.; Schroen, C.G.P.H.

    2018-01-01

    The operational lifetime of filtration membranes is reduced by the clogging of pores and subsequent build-up of a fouling or cake layer. Designing membrane operations in which clogging is delayed or even mitigated completely, requires in-depth insight into its origins. Due to the complexity of the

  3. Influence of nanoparticles on filterability of fruit-juice industry wastewater using submerged membrane bioreactor.

    Science.gov (United States)

    Demirkol, Guler Turkoglu; Dizge, Nadir; Acar, Turkan Ormanci; Salmanli, Oyku Mutlu; Tufekci, Nese

    2017-07-01

    In this study, polyethersulfone (PES) ultrafiltration membrane surface was modified with nano-sized zinc oxide (nZnO) and silver (nAg) to improve the membrane filterability of the mixed liquor and used to treat fruit-juice industry wastewater in a submerged membrane bioreactor (MBR). The nAg was synthesized using three different methods. In the first method, named as nAg-M1, PES membrane was placed on the membrane module and nAg solution was passed through the membrane for 24 h at 25 ± 1 °C. In the second method, named as nAg-M2, PES membrane was placed in a glass container and it was shaken for 24 h at 150 rpm at 25 ± 1 °C. In the third method, named as nAg-M3, Ag nanoparticles were loaded onto PES membrane in L-ascorbic acid solution (0.1 mol/L) at pH 2 for 24 h at 150 rpm at 25 ± 1 °C. For the preparation of nZnO coated membrane, nZnO nanoparticles solution was passed through the membrane for 24 h at 25 ± 1 °C. Anti-fouling performance of pristine and coated membranes was examined using the submerged MBR. The results showed that nZnO and nAg-M3 membranes showed lower flux decline compared with pristine membrane. Moreover, pristine and coated PES membranes were characterized using a permeation test, contact angle goniometer, and scanning electron microscopy.

  4. Application of quantitative real-time PCR compared to filtration methods for the enumeration of Escherichia coli in surface waters within Vietnam.

    Science.gov (United States)

    Vital, Pierangeli G; Van Ha, Nguyen Thi; Tuyet, Le Thi Hong; Widmer, Kenneth W

    2017-02-01

    Surface water samples in Vietnam were collected from the Saigon River, rural and suburban canals, and urban runoff canals in Ho Chi Minh City, Vietnam, and were processed to enumerate Escherichia coli. Quantification was done through membrane filtration and quantitative real-time polymerase chain reaction (PCR). Mean log colony-forming unit (CFU)/100 ml E. coli counts in the dry season for river/suburban canals and urban canals were log 2.8 and 3.7, respectively, using a membrane filtration method, while using Taqman quantitative real-time PCR they were log 2.4 and 2.8 for river/suburban canals and urban canals, respectively. For the wet season, data determined by the membrane filtration method in river/suburban canals and urban canals samples had mean counts of log 3.7 and 4.1, respectively. While mean log CFU/100 ml counts in the wet season using quantitative PCR were log 3 and 2, respectively. Additionally, the urban canal samples were significantly lower than those determined by conventional culture methods for the wet season. These results show that while quantitative real-time PCR can be used to determine levels of fecal indicator bacteria in surface waters, there are some limitations to its application and it may be impacted by sources of runoff based on surveyed samples.

  5. Omega-3 PUFA concentration by a novel PVDF nano-composite membrane filled with nano-porous silica particles.

    Science.gov (United States)

    Ghasemian, Samaneh; Sahari, Mohammad Ali; Barzegar, Mohsen; Ahmadi Gavlighi, Hasan

    2017-09-01

    In this study, polyvinylidene fluoride (PVDF) and nano-porous silica particle were used to fabricate an asymmetric nano-composite membrane. Silica particles enhanced the thermal stability of PVDF/SiO 2 membranes; increasing the decomposition temperature from 371°C to 408°C. Cross sectional morphology showed that silica particles were dispersed in polymer matrix uniformly. However, particle agglomeration was found at higher loading of silica (i.e., 20 by weight%). The separation performance of nano-composite membranes was also evaluated using the omega-3 polyunsaturated fatty acids (PUFA) concentration at a temperature and pressure of 30°C and 4bar, respectively. Silica particle increased the omega-3PUFA concentration from 34.8 by weight% in neat PVDF to 53.9 by weight% in PVDF with 15 by weight% of silica. Moreover, PVDF/SiO 2 nano-composite membranes exhibited enhanced anti-fouling property compared to neat PVDF membrane. Fouling mechanism analysis revealed that complete pore blocking was the predominant mechanism occurring in oil filtration. The concentration of omega-3 polyunsaturated fatty acids (PUFA) is important in the oil industries. While the current methods demand high energy consumptions in concentrating the omega-3, membrane separation technology offers noticeable advantages in producing pure omega-3 PUFA. Moreover, concentrating omega-3 via membrane separation produces products in the triacylglycerol form which possess better oxidative stability. In this work, the detailed mechanisms of fouling which limits the performance of membrane separation were investigated. Incorporating silica particles to polymeric membrane resulted in the formation of mixed matrix membrane with improved anti-fouling behaviour compared to the neat polymeric membrane. Hence, the industrial potential of membrane processing to concentrate omega-3 fatty acids is enhanced. Copyright © 2017. Published by Elsevier Ltd.

  6. The membrane fraction of homogenized rat kidney contains an enzyme that releases epidermal growth factor from the kidney membranes

    DEFF Research Database (Denmark)

    Nexø, Ebba; Poulsen, Steen Seier

    1991-01-01

    shows that the membrane fraction of homogenized rat kidney contains an enzyme that releases immuno and receptor reactive EGF from the kidney membranes when incubated at 37 degrees C. Gel filtration shows that the EGF reactivity released from the membranes is similar to the EGF reactivity in rat urine......High levels of epidermal growth factor (EGF) are excreted in the urine and high levels of mRNA for the EGF-precursor have been demonstrated in the kidney. The EGF-precursor is a membrane bound peptide in the kidney, but little is known about the renal processing of the precursor. The present study...

  7. Characterization of a non-fouling ultrafiltration membrane

    DEFF Research Database (Denmark)

    Wei, J.; Helm, G.S.; Corner-Walker, N.

    2006-01-01

    This report describes the properties of surface-modified poly(vinylidene fluoride) (PVDF) membranes. These membranes were created by coating hydrophilic polymers on the support PVDF membrane to reduce the tendency to protein fouling. The modified membranes with different molecular weight cut......-off (MWCO) were characterized by filtration studies using bovine serum albumin (BSA) and an enzyme solution as test media, and the membranes exhibited the non-fouling property. The surface chemistry of the unmodified and modified PVDF membranes was characterized by X-ray photoelectron spectroscopy (XPS......) and time-of-flight secondary ion mass spectroscopy (ToF-SIMS). These surface sensitive techniques were used to confirm the successful surface modification. ToF-SIMS imaging visualizes the distribution of the coating layer on the PVDF membrane. Furthermore, the amount of protein adsorption onto the membrane...

  8. Filtration and compression of organic materials

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Keiding, Kristian

    is to use more simple systems. Dextran-MnO2 particles and polystyrene particles with a water-swollen polyacrylic acid shell have therefore been synthesised. These particles have been filtered and used to study the non-linear filtration behaviour. The compressibility of the formed cake has been investigated......The conventional filtration theory has been based on filtrations of incompressible particles such as anatase, kaolin and clay. The filtration models have later been used for organic slurries but can often not explain the observed experimental data. At constant pressure, the filtrate volume does...... and the discrepancy between the filtration theory and the observed filtration behaviour explained as a time-dependent collapse of the formed cake (creep). Thus, the creep phenomenon has been adopted in the conventional filtration models and it will be shown that the model can be used to simulate filtration data...

  9. Optimization of the biological process using flat membrane bioreactors. Maximum treatment performance with minimum reactor volume; Optimizacion del proceso biologico con BRM de membrana plana. Maximo rendimiento de depuracion con minimo volumen de reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lluch Vallmithana, S.; Lopez Gavin, A.

    2006-07-01

    In a conventional activated sludge process, the membranes are inside the biological reactor where they drain the water through suction or a water column. This system can be operated with heavy loads and sludge of 12-14 g/l or more, and is not affected by problems of bulking or foaming. This makes it suitable for treating difficult industrial waste waters, providing treated water that is free of bacteria and viruses. Micro filtration membranes are flat without any rubbing between them. The membranes require infrequent chemical cleaning and do not need back washing. As no final sedimented is needed, the waste water treatment plant occupies less space. (Author)

  10. A Dual Filtration-Based Multiplex PCR Method for Simultaneous Detection of Viable Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus on Fresh-Cut Cantaloupe.

    Directory of Open Access Journals (Sweden)

    Ke Feng

    Full Text Available Fresh-cut cantaloupe is particularly susceptible to contamination with pathogenic bacteria, such as Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus. Therefore, development of rapid, yet accurate detection techniques is necessary to ensure food safety. In this study, a multiplex PCR system and propidium monoazide (PMA concentration were optimized to detect all viable pathogens in a single tube. A dual filtration system utilized a filtration membrane with different pore sizes to enrich pathogens found on fresh-cut cantaloupe. The results revealed that an optimized multiplex PCR system has the ability to effectively detect three pathogens in the same tube. The viable pathogens were simultaneously detected for PMA concentrations above 10 μg/ml. The combination of a nylon membrane (15 μm and a micro pore filtration membrane (0.22 μm formed the dual filtration system used to enrich pathogens. The achieved sensitivity of PMA-mPCR based on this dual filtration system was 2.6 × 103 cfu/g for L. monocytogenes, 4.3 × 10 cfu/g for E. coli O157:H7, and 3.1 × 102 cfu/g for S. aureus. Fresh-cut cantaloupe was inoculated with the three target pathogens using concentrations of 103, 102, 10, and 1 cfu/g. After 6-h of enrichment culture, assay sensitivity increased to 1 cfu/g for each of these pathogens. Thus, this technique represents an efficient and rapid detection tool for implementation on fresh-cut cantaloupe.

  11. The impact of metallic filter media on HEPA filtration

    International Nuclear Information System (INIS)

    Chadwick, Chris; Kaufman, Seth

    2006-01-01

    Traditional HEPA filter systems have limitations that often prevent them from solving many of the filtration problems in the nuclear industry; particularly in applications where long service or storage life, high levels of radioactivity, dangerous decomposition products, chemical aggression, organic solvents, elevated operating temperatures, fire resistance and resistance to moisture are issues. This paper addresses several of these matters of concern by considering the use of metallic filter media to solve HEPA filtration problems ranging from the long term storage of transuranic waste at the WIPP site, spent and damaged fuel assemblies, in glove box ventilation and tank venting to the venting of fumes at elevated temperatures from incinerators, vitrification processes and conversion and sintering furnaces as well as downstream of iodine absorbers in gas cooled reactors in the UK. The paper reviews the basic technology, development, performance characteristics and filtration efficiency, flow versus differential pressure, cleanability and costs of sintered metal fiber in comparison with traditional resin bonded glass fiber filter media and sintered metal powder filter media. Examples of typical filter element and system configurations and applications will be presented The paper will also address the economic case for installing self cleaning pre-filtration, using metallic media, to recover the small volumes of dust that would otherwise blind large volumes of final disposable HEPA filters, thus presenting a route to reduce ultimate disposal volumes and secondary waste streams. (authors)

  12. Achieving enhanced hydrophobicity of graphene membranes by covalent modification with polydimethylsiloxane

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Wei-Wei; Li, Hang [College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065 (China); Shi, Ling-Ying, E-mail: shilingying@scu.edu.cn [College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065 (China); Diao, Yong-Fu; Zhang, Yu-Lin; Ran, Rong [College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065 (China); Ni, Wei, E-mail: niwei@iccas.ac.cn [Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu 610200 (China)

    2017-05-15

    Highlights: • The graphene oxide (GO) was covalently modified by amino terminated polydimethylsiloxane (PDMS) through amidation reaction. • Through the vacuum filtration method, the GO, RGO and PDMS-modified graphene membranes were successfully prepared respectively. • The morphology of membranes had smooth surface and well-stacked structure indicated by SEM and EDS mapping results. • The contact angle of GO-g-PDMS membrane was high to be 129.5° indicating a great enhancement of hydrophobicity. - Abstract: In this study, the graphene oxide was covalently modified by amino terminated polydimethylsiloxane (PDMS) through amidation reaction. And the membranes of the graphene oxide (GO), reduced graphene oxide (RGO) and PDMS-covalently modified graphene were prepared respectively by a vacuum filtration method, and the wettability of these membranes were investigated. Infrared spectroscopy, Raman, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetry analysis combined with dispersion ability indicated that PDMS chains were successfully grafted on the surface of graphene oxide sheets. The morphology of the prepared membranes had smooth surface and well-stacked structure in the cross-section indicated by the scanning electron microscope and EDS-mapping. The contact angle measurements indicated that the PDMS-modified graphene membrane with water contact angle 129.5° showed increased hydrophobicity compared with GO and RGO membranes.

  13. Filtration in Porous Media

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    There is a considerable and ongoing effort aimed at understanding the transport and the deposition of suspended particles in porous media, especially non-Fickian transport and non-exponential deposition of particles. In this work, the influential parameters in filtration models are studied...... to understand their effects on the non-Fickian transport and the non-exponential deposition. The filtration models are validated by the comparisons between the modelling results and the experimental data.The elliptic equation with distributed filtration coefficients may be applied to model non-Fickian transport...... and hyperexponential deposition. The filtration model accounting for the migration of surface associated particles may be applied for non-monotonic deposition....

  14. Mathematical modelling of dextran filtration through hollow fibre membranes

    DEFF Research Database (Denmark)

    Vinther, Frank; Pinelo, Manuel; Brøns, Morten

    2014-01-01

    In this paper we present a mathematical model of an ultrafiltration process. The results of the model are produced using standard numerical techniques with Comsol Multiphysics. The model describes the fluid flow and separation in hollow fibre membranes. The flow of solute and solvent within the h...

  15. APPLICATION OF PAN/PANI COMPOSITE MEMBRANES IN PURIFICATION OF INDUSTRIAL WASTEWATER GENERATED DURING PROCESSING OF METALS

    Directory of Open Access Journals (Sweden)

    Beata Fryczkowska

    2017-04-01

    Full Text Available The paper presents results of research on the use of composite membranes of polyacrylonitrile (PAN doped polyaniline (PANI to remove contaminations of industrial wastewater generated during the processing of metals. Wastewater obtained from industry was pre-treated with the flocculant Magnafloc®336, and then the supernatant solution was introduced into the ultrafiltration cell, AMICON (Millipore equipped in the previously prepared polymer membrane. Using spectrophotometer UV-Vis (HACH and atomic absorption spectrometry (AAS pollution indicators was marked before and after the integrated purification proces, to determine the degree of removal of selected ions from wastewater. As a result of flocculation from wastewater there have been removed phosphates (79%, chlorides (11-14%, sulfates (2-10% and iron (36-92%, cobalt (~ 80%, cadmium (~ 31% and nickel (~ 25%. However, the pressure membrane process almost completely removed zinc, copper and cadmium (~ 100%, iron (by a further 43-69% and phosphate anions, which was a little.

  16. Characterisation of transparent exopolymer particles (TEP) produced during algal bloom: A membrane treatment perspective

    KAUST Repository

    Villacorte, Loreen O.

    2013-01-01

    Algal blooms are currently a major concern of the membrane industry as it generates massive concentrations of organic matter (e.g. transparent exopolymer particles [TEP]), which can adversely affect the operation of membrane filtration systems. The goal of this study is to understand the production, composition and membrane rejection of these organic materials using different characterisation techniques. Two common species of bloom-forming freshwater and marine algae were cultivated in batch cultures for 30days and the productions of TEP and other organic matter were monitored at different growth phases. TEP production of the marine diatom, Chaetoceros affinis, produced 6-9 times more TEP than the freshwater blue-green algae, Microcystis. The organic substances produced by both algal species were dominated by biopolymeric substances such as polysaccharides (45-64%) and proteins (2-17%) while the remaining fraction comprises of low molecular weight refractory (humic-like) and/ or biogenic organic substances. MF/UF membranes mainly rejected the biopolymers but not the low molecular weight organic materials. MF membranes (0.1-0.4 lm) rejected 42-56% of biopolymers, while UF membranes (10-100 kDa) rejected 65-95% of these materials. Further analysis of rejected organic materials on the surface of the membranes revealed that polysac-charides and proteins are likely responsible for the fouling of MF/UF systems during an algal bloom situation. © 2013 Desalination Publications.

  17. A time-dependent multi-layered mathematical model of filtration and solute exchange, the revised Starling principle and the Landis experiments

    Directory of Open Access Journals (Sweden)

    Laura Facchini

    2017-10-01

    Full Text Available Cell oxygenation and nutrition is vitally important for human and animal life. Oxygen and nutrients are transported by the blood stream and cross microvessel walls to penetrate the cell’s membrane. Pathological alterations in the transport of oxygen, and other nutrition elements, across microvessel walls may have serious consequences to cell life, possibly leading to localized cell necrosis. We present a transient model of plasma filtration and solute transport across microvessel walls by coupling flow and transport equations, the latter being non-linear in solute concentration. The microvessel wall is modeled through the superimposition of two or more membranes with different physical properties, representing key structural elements. With this model, the combined effect of the endothelial cells, the glycocalyx and other coating membranes specific of certain microvessels, can be analyzed. We investigate the role of transient external pressures in the study of trans-vascular filtration and solute exchange during the drop of blood capillary pressure due to the pathological decrease of blood volume called hypovolaemia, as well as hemorrhage. We discuss the advantage of using a multi-layered model, rather than a model considering the microvessel wall as a single and homogeneous membrane.

  18. Evaluation of oxalate decarboxylase and oxalate oxidase for industrial applications.

    Science.gov (United States)

    Cassland, Pierre; Sjöde, Anders; Winestrand, Sandra; Jönsson, Leif J; Nilvebrant, Nils-Olof

    2010-05-01

    Increased recirculation of process water has given rise to problems with formation of calcium oxalate incrusts (scaling) in the pulp and paper industry and in forest biorefineries. The potential in using oxalate decarboxylase from Aspergillus niger for oxalic acid removal in industrial bleaching plant filtrates containing oxalic acid was examined and compared with barley oxalate oxidase. Ten different filtrates from chemical pulping were selected for the evaluation. Oxalate decarboxylase degraded oxalic acid faster than oxalate oxidase in eight of the filtrates, while oxalate oxidase performed better in one filtrate. One of the filtrates inhibited both enzymes. The potential inhibitory effect of selected compounds on the enzymatic activity was tested. Oxalate decarboxylase was more sensitive than oxalate oxidase to hydrogen peroxide. Oxalate decarboxylase was not as sensitive to chlorate and chlorite as oxalate oxidase. Up to 4 mM chlorate ions, the highest concentration tested, had no inhibitory effect on oxalate decarboxylase. Analysis of the filtrates suggests that high concentrations of chlorate present in some of the filtrates were responsible for the higher sensitivity of oxalate oxidase in these filtrates. Oxalate decarboxylase was thus a better choice than oxalate oxidase for treatment of filtrates from chlorine dioxide bleaching.

  19. Fouling resistant membrane spacers

    KAUST Repository

    Ghaffour, Noreddine

    2017-10-12

    Disclosed herein are spacers having baffle designs and perforations for efficiently and effectively separating one or more membrane layers a membrane filtration system. The spacer (504) includes a body (524) formed at least in part by baffles (520) that are interconnected, and the baffles define boundaries of openings or apertures (525) through a thickness direction of the body of the spacer. Alternatively or additionally, passages or perforations (526A, 526B) may be present in the spacer layer or baffles for fluid flow there through, with the passages and baffles having a numerous different shapes and sizes.

  20. Dependence of Shear and Concentration on Fouling in a Membrane Bioreactor with Rotating Membrane Discs

    DEFF Research Database (Denmark)

    Jørgensen, Mads Koustrup; Pedersen, Malene Thostrup; Christensen, Morten Lykkegaard

    2014-01-01

    Rotating ceramic membrane discs were fouled with lab-scale membrane bioreactors (MBR) sludge. Sludge filtrations were performed at varying rotation speeds and in different concentric rings of the membranes on different sludge concentrations. Data showed that the back transport expressed by limiting...... flux increased with rotation speed and distance from membrane center as an effect of shear. Further, the limiting flux decreased with increasing sludge concentration. A model was developed to link the sludge concentration and shear stress to the limiting flux. The model was able to simulate the effect...... of shear stress and sludge concentration on the limiting flux. The model was developed by calculating the shear rate at laminar flow regime at different rotation speeds and radii on the membrane. Furthermore, through the shear rate and shear stress, the non-Newtonian behavior of MBR sludge was addressed...

  1. Process for recycling components of a PEM fuel cell membrane electrode assembly

    Science.gov (United States)

    Shore, Lawrence [Edison, NJ

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  2. Filtration Efficiency of Functionalized Ceramic Foam Filters for Aluminum Melt Filtration

    Science.gov (United States)

    Voigt, Claudia; Jäckel, Eva; Taina, Fabio; Zienert, Tilo; Salomon, Anton; Wolf, Gotthard; Aneziris, Christos G.; Le Brun, Pierre

    2017-02-01

    The influence of filter surface chemistry on the filtration efficiency of cast aluminum alloys was evaluated for four different filter coating compositions (Al2O3—alumina, MgAl2O4—spinel, 3Al2O3·2SiO2—mullite, and TiO2—rutile). The tests were conducted on a laboratory scale with a filtration pilot plant, which facilitates long-term filtration tests (40 to 76 minutes). This test set-up allows the simultaneous use of two LiMCAs (before and after the filter) for the determination of the efficiency of inclusion removal. The four tested filter surface chemistries exhibited good thermal stability and mechanical robustness after 750 kg of molten aluminum had been cast. All four filter types exhibited a mean filtration efficiency of at least 80 pct. However, differences were also observed. The highest filtration efficiencies were obtained with alumina- and spinel-coated filter surfaces (>90 pct), and the complete removal of the largest inclusions (>90 µm) was observed. The efficiency was slightly lower with mullite- and rutile-coated filter surfaces, in particular for large inclusions. These observations are discussed in relation to the properties of the filters, in particular in terms of, for example, the surface roughness.

  3. Airfoil-shaped micro-mixers for reducing fouling on membrane surfaces

    Science.gov (United States)

    Ho, Clifford K; Altman, Susan J; Clem, Paul G; Hibbs, Michael; Cook, Adam W

    2012-10-23

    An array of airfoil-shaped micro-mixers that enhances fluid mixing within permeable membrane channels, such as used in reverse-osmosis filtration units, while minimizing additional pressure drop. The enhanced mixing reduces fouling of the membrane surfaces. The airfoil-shaped micro-mixer can also be coated with or comprised of biofouling-resistant (biocidal/germicidal) ingredients.

  4. Investigation of a submerged membrane reactor for continuous biomass hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Malmali, Mohammadmahdi; Stickel, Jonathan; Wickramasinghe, S. Ranil

    2015-10-01

    Enzymatic hydrolysis of cellulose is one of the most costly steps in the bioconversion of lignocellulosic biomass. Use of a submerged membrane reactor has been investigated for continuous enzymatic hydrolysis of cellulose thus allowing for greater use of the enzyme compared to a batch process. Moreover, the submerged 0.65 μm polyethersulfone microfiltration membrane avoids the need to pump a cellulose slurry through an external loop. Permeate containing glucose is withdrawn at pressures slightly below atmospheric pressure. The membrane rejects cellulose particles and cellulase enzyme bound to cellulose. Our proof-of-concept experiments have been conducted using a modified, commercially available membrane filtration cell under low fluxes around 75 L/(m2 h). The operating flux is determined by the rate of glucose production. Maximizing the rate of glucose production involves optimizing mixing, reactor holding time, and the time the feed is held in the reactor prior to commencement of membrane filtration and continuous operation. When we maximize glucose production rates it will require that we operate it at low glucose concentration in order to minimize the adverse effects of product inhibition. Consequently practical submerged membrane systems will require a combined sugar concentration step in order to concentrate the product sugar stream prior to fermentation.

  5. utilization of adsorption and/or liquid membranes techniques in treatment of some hazardous substances

    International Nuclear Information System (INIS)

    Hussin, L.M.S.

    2011-01-01

    environmental pollution, as a consequence of the industrialization process, is one of the major problems that has to be solved and controlled. The most important treatment processes for metals and dyes contaminated waste streams include chemical precipitation, membrane, filtration, ion exchange, carbon adsorption and coprecipitation/adsorption. However, all these techniques have their inherent advantages and limitations in applications. These processes usually need expensive facility and high maintenance cost. Therefore, there is a need for more economical alternative technologies for the treatment of metals and dyes contaminated waste streams. The aim of present work is to study the treatment of some hazardous substances such as heavy metals e.g. ( lead, cobalt and strontium) and dyes e.g. ( acid red 73, and acid blue 74 ) using either adsorption or liquid emulsion membrane techniques. The experimental part deals with the application of adsorption and liquid emulsion membrane techniques for removal of some hazardous substances such as metal ions ( lead, cobalt and strontium) and dyes (acid red 73 and acid blue 74). All the apparatus and techniques employed were described.

  6. Microfiltration Process by Inorganic Membranes for Clarification of TongBi Liquor

    Directory of Open Access Journals (Sweden)

    Minyan Huang

    2012-02-01

    Full Text Available Membrane separation is an alternative separation technology to the conventional method of filtration. Hence, it has attracted use in the purification and concentration of Chinese Herbal Medicine Extracts (CHMEs. The purpose of this work was to study the process of microfiltration of Tongbi liquor (TBL, a popular Chinese herbal drink, using ceramic membranes. Zirconium oxide and aluminum oxide membranes with pore mean sizes of 0.2 μm and 0.05 μm, respectively, are used for comparisons in terms of flux, transmittance of the ingredients, physical-chemical parameters, removal of macromolecular materials and fouling resistance. The results show that 0.2 μm zirconium oxide membrane is more suitable. The stable permeate flux reaches 135 L·h−1·m−2, the cumulative transmittance of the indicator is 65.53%. Macromolecular materials, such as starch, protein, tannin, pectin and total solids were largely eliminated in retentate after filtration using 0.2 μm ZrO2 ceramic membrane, resulting in clearer TBL. Moreover, this work also reveals that continuous ultrasound could strengthen membrane process that the permeate flux increases significantly. This work demonstrates that the purification of CHME with ceramic membranes is possible and yielded excellent results.

  7. Studies on improved integrated membrane-based chromatographic process for bioseparation

    Science.gov (United States)

    Xu, Yanke

    To improve protein separation and purification directly from a fermentation broth, a novel membrane filtration-cum-chromatography device configuration having a relatively impermeable coated zone near the hollow fiber module outlet has been developed. The integrated membrane filtration-cum-chromatography unit packed with chromatographic beads on the shell side of the hollow fiber unit enjoys the advantages of both membrane filtration and chromatography; it allows one to load the chromatographic media directly from the fermentation broth or lysate and separate the adsorbed proteins through the subsequent elution step in a cyclic process. Interfacial polymerization was carried out to coat the bottom section of the hollow fiber membrane while leaving the rest of the hollow fiber membrane unaffected. Myoglobin (Mb), bovine serum albumin (BSA) and a-lactalbumin (a-LA) were used as model proteins in binary mixtures. Separation behaviors of binary protein mixtures were studied in devices using either an ultrafiltration (UF) membrane or a microfiltration (MF) membrane. Experimental results show that the breakthrough time and the protein loading capacities were dramatically improved after coating in both UF and MF modules. For a synthetic yeast fermentation broth feed, the Mb and a-LA elution profiles for the four consecutive cyclic runs were almost superimposable. Due to the lower transmembrane flux in this device plus the periodical washing-elution during the chromatographic separation, fouling was not a problem as it is in conventional microfiltration. A mathematical model describing the hydrodynamic and protein loading behaviors of the integrated device using UF membrane with a coated zone was developed. The simulation results for the breakthrough agree well with the experimental breakthrough curves. The optimal length of the coated zone was obtained from the simulation. A theoretical analysis of the protein mass transfer was performed using a diffusion-convection model

  8. Ultrafiltration by gyroid nanoporous polymer membranes

    DEFF Research Database (Denmark)

    Li, Li; Szewczykowski, Piotr Przemyslaw; Clausen, Lydia D.

    2011-01-01

    the effect of membrane fouling on the flux decline and rejection profiles. Significant fouling occurred in the case of hydrophobic membranes in contact with water solutions, while in the presence of high concentration of ethanol in the filtration solution and in the case of hydrophilized membranes...... the fouling was reduced. The observed rejection of PEG was compared with theoretic predictions, as described by the Bungay–Brenner model. The model satisfactorily described the rejection profile of PEG up to 12kg/mol through hydrophobic membranes in the presence of excess ethanol. A significantly reduced......Gyroid nanoporous cross-linked 1,2-polybutadiene membranes with uniform pores were developed for ultrafiltration applications. The gyroid porosity has the advantage of isotropic percolation with no need for structure pre-alignment. The effects of solvent and surface photo...

  9. Phosphate adsorption from wastewater using zirconium (IV) hydroxide: Kinetics, thermodynamics and membrane filtration adsorption hybrid system studies.

    Science.gov (United States)

    Johir, M A H; Pradhan, M; Loganathan, P; Kandasamy, J; Vigneswaran, S

    2016-02-01

    Excessive phosphate in wastewater should be removed to control eutrophication of water bodies. The potential of employing amorphous zirconium (Zr) hydroxide to remove phosphate from synthetic wastewater was studied in batch adsorption experiments and in a submerged membrane filtration adsorption hybrid (MFAH) reactor. The adsorption data satisfactorily fitted to Langmuir, pseudo-first order and pseudo-second order models. Langmuir adsorption maxima at 22 °C and pHs of 4.0, 7.1, and 10.0 were 30.40, 18.50, and 19.60 mg P/g, respectively. At pH 7.1 and temperatures of 40 °C and 60 °C, they were 43.80 and 54.60 mg P/g, respectively. The thermodynamic parameters, ΔG° and ΔS° were negative and ΔH° was positive. FTIR, zeta potential and competitive phosphate, sulphate and nitrate adsorption data showed that the mechanism of phosphate adsorption was inner-sphere complexation. In the submerged MFAH reactor experiment, when Zr hydroxide was added at doses of 1-5 g/L once only at the start of the experiment, the removal of phosphate from 3 L of wastewater containing 10 mg P/L declined after 5 h of operation. However, when Zr hydroxide was repeatedly added at 5 g/L dose every 24 h, satisfactory removal of phosphate was maintained for 3 days. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation

    Science.gov (United States)

    Yang, Q.; Su, Y.; Chi, C.; Cherian, C. T.; Huang, K.; Kravets, V. G.; Wang, F. C.; Zhang, J. C.; Pratt, A.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Nair, R. R.

    2017-12-01

    Graphene oxide (GO) membranes continue to attract intense interest due to their unique molecular sieving properties combined with fast permeation. However, their use is limited to aqueous solutions because GO membranes appear impermeable to organic solvents, a phenomenon not yet fully understood. Here, we report efficient and fast filtration of organic solutions through GO laminates containing smooth two-dimensional (2D) capillaries made from large (10-20 μm) flakes. Without modification of sieving characteristics, these membranes can be made exceptionally thin, down to ~10 nm, which translates into fast water and organic solvent permeation. We attribute organic solvent permeation and sieving properties to randomly distributed pinholes interconnected by short graphene channels with a width of 1 nm. With increasing membrane thickness, organic solvent permeation rates decay exponentially but water continues to permeate quickly, in agreement with previous reports. The potential of ultrathin GO laminates for organic solvent nanofiltration is demonstrated by showing >99.9% rejection of small molecular weight organic dyes dissolved in methanol. Our work significantly expands possibilities for the use of GO membranes in purification and filtration technologies.

  11. Grafting of molecularly imprinted polymer to porous polyethylene filtration membranes by plasma polymerization.

    Science.gov (United States)

    Cowieson, D; Piletska, E; Moczko, E; Piletsky, S

    2013-08-01

    An application of plasma-induced grafting of polyethylene membranes with a thin layer of molecularly imprinted polymer (MIP) was presented. High-density polyethylene (HDPE) membranes, "Vyon," were used as a substrate for plasma grafting modification. The herbicide atrazine, one of the most popular targets of the molecular imprinting, was chosen as a template. The parameters of the plasma treatment were optimized in order to achieve a good balance between polymerization and ablation processes. Modified HDPE membranes were characterized, and the presence of the grafted polymeric layer was confirmed based on the observed weight gain, pore size measurements, and infrared spectrometry. Since there was no significant change in the porosity of the modified membranes, it was assumed that only a thin layer of the polymer was introduced on the surface. The experiments on the re-binding of the template atrazine to the membranes modified with MIP and blank polymers were performed. HDPE membranes which were grafted with polymer using continuous plasma polymerization demonstrated the best result which was expressed in an imprinted factor equal to 3, suggesting that molecular imprinting was successfully achieved.

  12. Sensory quality of drinking water produced by reverse osmosis membrane filtration followed by remineralisation.

    Science.gov (United States)

    Vingerhoeds, Monique H; Nijenhuis-de Vries, Mariska A; Ruepert, Nienke; van der Laan, Harmen; Bredie, Wender L P; Kremer, Stefanie

    2016-05-01

    Membrane filtration of ground, surface, or sea water by reverse osmosis results in permeate, which is almost free from minerals. Minerals may be added afterwards, not only to comply with (legal) standards and to enhance chemical stability, but also to improve the taste of drinking water made from permeate. Both the nature and the concentrations of added minerals affect the taste of the water and in turn its acceptance by consumers. The aim of this study was to examine differences in taste between various remineralised drinking waters. Samples selected varied in mineral composition, i.e. tap water, permeate, and permeate with added minerals (40 or 120 mg Ca/L, added as CaCO3, and 4 or 24 mg Mg/L added as MgCl2), as well as commercially available bottled drinking waters, to span a relevant product space in which the remineralised samples could be compared. All samples were analysed with respect to their physical-chemical properties. Sensory profiling was done by descriptive analysis using a trained panel. Significant attributes included taste intensity, the tastes bitter, sweet, salt, metal, fresh and dry mouthfeel, bitter and metal aftertaste, and rough afterfeel. Total dissolved solids (TDS) was a major determinant of the taste perception of water. In general, lowering mineral content in drinking water in the range examined (from water from fresh towards bitter, dry, and rough sensations. In addition, perceived freshness of the waters correlated positively with calcium concentration. The greatest fresh taste was found for water with a TDS between 190 and 350 mg/L. Remineralisation of water after reverse osmosis can improve drinking quality significantly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. PROBLEMS OF NONSTATIONARY FILTRATION

    Directory of Open Access Journals (Sweden)

    Vsevolod A. Shabanov

    2018-03-01

    Full Text Available he article deals with the classical hydrodynamic theory of filtration. Discusses models of soil, fluid and nature of fluid flow that formed the basis for the creation of the classic filtration theory. Also discusses the assumptions made for the linearization of the equations. Evaluated the scope of the classical filtration theory. Proposed a new model of filtration through a porous medium, based on the application of the laws of theoretical mechanics. It is based on the classical model of soil: the soil is composed of capillaries with ..parallel axes, in which the liquid moves. For tasks of infiltration equations of motion. Considered special cases of unsteady motion of a finite volume of liquid. Numerical example a machine experiment.

  14. Polymeric molecular sieve membranes for gas separation

    Science.gov (United States)

    Dai, Sheng; Qiao, Zhenan; Chai, Songhai

    2017-08-15

    A porous polymer membrane useful in gas separation, the porous polymer membrane comprising a polymeric structure having crosslinked aromatic groups and a hierarchical porosity in which micropores having a pore size less than 2 nm are present at least in an outer layer of the porous polymer membrane, and macropores having a pore size of over 50 nm are present at least in an inner layer of the porous polymer membrane. Also described are methods for producing the porous polymer membrane in which a non-porous polymer membrane containing aromatic rings is subjected to a Friedel-Crafts crosslinking reaction in which a crosslinking molecule crosslinks the aromatic rings in the presence of a Friedel-Crafts catalyst and organic solvent under sufficiently elevated temperature, as well as methods for using the porous polymer membranes for gas or liquid separation, filtration, or purification.

  15. Evolution of Emergent Technologies for Producing Nonwoven Fabrics for Air Filtration

    Science.gov (United States)

    Ou, Yingjie

    2016-01-01

    Nonwovens is a fast growing industry driven by technological research and development (R&D), and one of the major application areas for nonwovens is air filtration. Research on nonwovens technologies has mainly focused on the science and technology areas, but there is very little published research on technology management issues within the…

  16. Combination of Electrochemical Processes with Membrane Bioreactors for Wastewater Treatment and Fouling Control: A Review

    OpenAIRE

    Ensano, Benny M. B.; Borea, Laura; Naddeo, Vincenzo; Belgiorno, Vincenzo; de Luna, Mark D. G.; Ballesteros, Florencio C.

    2016-01-01

    This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR) in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs) combine biodegradation, electrochemical and membrane filtration processes into one syst...

  17. Combination of electrochemical processes with membrane bioreactors for wastewater treatment and fouling control: A review

    OpenAIRE

    Benny Marie B. Ensano; Laura Borea; Vincenzo Naddeo; Vincenzo Belgiorno; Mark Daniel G. de Luna; Mark Daniel G. de Luna; Florencio C. Ballesteros, Jr.; Florencio C. Ballesteros, Jr.

    2016-01-01

    This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR) in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs) combine biodegradation, electrochemical and membrane filtration processes into one syst...

  18. The investigation of paper mill industry wastewater treatment and activated sludge properties in a submerged membrane bioreactor.

    Science.gov (United States)

    Erkan, Hanife Sari; Engin, Guleda Onkal

    2017-10-01

    The paper mill industry produces high amounts of wastewater and, for this reason, stringent discharge limits are applied for sustainable reclamation and reuse of paper mill industry wastewater in many countries. Submerged membrane bioreactor (sMBR) systems can create new opportunities to eliminate dissolved substances present in paper mill wastewater including. In this study, a sMBR was operated for the treatment of paper mill industry wastewater at 35 h of hydraulic retention time (HRT) and 40 d of sludge retention time (SRT). The chemical oxygen demand (COD), NH 3 -N and total phosphorus (TP) removal efficiencies were found to be 98%, 92.99% and 96.36%. The results demonstrated that sMBR was a suitable treatment for the removal of organic matter and nutrients for treating paper mill wastewater except for the problem of calcium accumulation. During the experimental studies, it was noted that the inorganic fraction of the sludge increased as a result of calcium accumulation in the reactor and increased membrane fouling was observed on the membrane surface due to the calcification problem encountered. The properties of the sludge, such as extracellular polymeric substances (EPS) and soluble microbial products (SMP), relative hydrophobicity, zeta potential and floc size distribution were also monitored. According to the obtained results, the total EPS was found to be 43.93 mg/gMLSS and the average total SMP rejection by the membrane was determined as 66.2%.

  19. Directing filtration to narrow molecular weight distribution of oligodextran in an enzymatic membrane reactor

    DEFF Research Database (Denmark)

    Su, Ziran; Luo, Jianquan; Pinelo, Manuel

    2018-01-01

    ) should be minimized to reduce accumulation of large oligodextran molecules on the membrane surface, which might diffuse through the membrane and thus broaden the Mw distribution of the products in the permeate. Both dextranase and dextran caused membrane irreversible fouling. The fouling caused...... product, hypersaline wastewater discharge and potential safety hazards. In this work, a novel enzymatic membrane reactor (EMR) system to produce oligodextran is proposed, whereby in-situ product recovery can be manipulated to control the Mw distribution of the resulting products. Results showed...... that the membrane material played an important role in the permeate flux and transmission of oligodextran. Among the tested membranes, a 20kDa polyethersulfone (PES) membrane was found to be optimal for building up the EMR, as it successfully controlled the oligodextran Mw within the desired range with a relatively...

  20. Nano-ZnO embedded mixed matrix polyethersulfone (PES) membrane: Influence of nanofiller shape on characterization and fouling resistance

    International Nuclear Information System (INIS)

    Rajabi, Hamid; Ghaemi, Negin; Madaeni, Sayed S.; Daraei, Parisa; Astinchap, Bandar; Zinadini, Sirus; Razavizadeh, Sayed Hossein

    2015-01-01

    Graphical abstract: - Highlights: • ZnO nanofillers with different shape (nanorod and nanoparticle) were synthesized. • Mixed matrix PES membranes were fabricated by different concentrations of nanofillers. • Embedding nanofillers affected on morphology and hydrophilicity of PES membranes. • Nanorod MM membranes revealed the highest water flux and antifouling characteristic. • ZnO nanorod-embedded membrane showed an acceptable reusability and durability. - Abstract: Two different kinds of nano-ZnO (nanoparticle and nanorod) were synthesized, characterized, and embedded in a PES membrane matrix to investigate the effects of a nanofiller shape on the mixed matrix membrane characteristics and the antifouling capability. The mixed matrix membranes were fabricated by mixing different amounts of nanofillers with dope solution followed by a phase inversion precipitation technique. The effect of the shape of the embedded nanofillers on the morphology and performance of the fabricated membranes was studied in terms of pure water flux, fouling resistance, hydrophilicity, surface, and bulk morphology by means of permeation tests, milk powder solution filtration, water contact angle and porosity measurements, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. Water flux of the mixed matrix membranes significantly improved after the addition of both types of ZnO nanofillers due to a higher hydrophilicity and porosity of the prepared membranes. The water contact angle measurements confirmed the increased hydrophilicity of the modified membranes, particularly in the ZnO nanorod mixed membranes. Fouling resistance of the membranes assessed by powder milk solution filtration revealed that 0.1 wt% ZnO nanorod membrane has the best antifouling property. The prepared mixed matrix membranes embedded with 0.1 wt% of both types of ZnO nanofillers showed a remarkable durability and reusability during the filtration tests; however, the best

  1. Nano-ZnO embedded mixed matrix polyethersulfone (PES) membrane: Influence of nanofiller shape on characterization and fouling resistance

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, Hamid [Membrane Research Centre, Department of Chemical Engineering, Razi University, Tagh Bostan, 67149 Kermanshah (Iran, Islamic Republic of); Department of Civil Engineering, Razi University, 67149 Kermanshah (Iran, Islamic Republic of); Ghaemi, Negin, E-mail: negin_ghaemi@kut.ac.ir [Department of Chemical Engineering, Kermanshah University of Technology, 67178 Kermanshah (Iran, Islamic Republic of); Madaeni, Sayed S. [Membrane Research Centre, Department of Chemical Engineering, Razi University, Tagh Bostan, 67149 Kermanshah (Iran, Islamic Republic of); Daraei, Parisa [Department of Chemical Engineering, Kermanshah University of Technology, 67178 Kermanshah (Iran, Islamic Republic of); Astinchap, Bandar [Physics Department, Faculty of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Zinadini, Sirus [Water and Wastewater Research Center (WWRC), Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Razavizadeh, Sayed Hossein [Department of Chemical Engineering, Kermanshah University of Technology, 67178 Kermanshah (Iran, Islamic Republic of)

    2015-09-15

    Graphical abstract: - Highlights: • ZnO nanofillers with different shape (nanorod and nanoparticle) were synthesized. • Mixed matrix PES membranes were fabricated by different concentrations of nanofillers. • Embedding nanofillers affected on morphology and hydrophilicity of PES membranes. • Nanorod MM membranes revealed the highest water flux and antifouling characteristic. • ZnO nanorod-embedded membrane showed an acceptable reusability and durability. - Abstract: Two different kinds of nano-ZnO (nanoparticle and nanorod) were synthesized, characterized, and embedded in a PES membrane matrix to investigate the effects of a nanofiller shape on the mixed matrix membrane characteristics and the antifouling capability. The mixed matrix membranes were fabricated by mixing different amounts of nanofillers with dope solution followed by a phase inversion precipitation technique. The effect of the shape of the embedded nanofillers on the morphology and performance of the fabricated membranes was studied in terms of pure water flux, fouling resistance, hydrophilicity, surface, and bulk morphology by means of permeation tests, milk powder solution filtration, water contact angle and porosity measurements, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. Water flux of the mixed matrix membranes significantly improved after the addition of both types of ZnO nanofillers due to a higher hydrophilicity and porosity of the prepared membranes. The water contact angle measurements confirmed the increased hydrophilicity of the modified membranes, particularly in the ZnO nanorod mixed membranes. Fouling resistance of the membranes assessed by powder milk solution filtration revealed that 0.1 wt% ZnO nanorod membrane has the best antifouling property. The prepared mixed matrix membranes embedded with 0.1 wt% of both types of ZnO nanofillers showed a remarkable durability and reusability during the filtration tests; however, the best

  2. Study of efficiency of particles removal by different filtration systems in a municipal wastewater tertiary treatment

    International Nuclear Information System (INIS)

    Andreu, P. S.; Lardin Mifsut, C.; Farinas Iglesias, M.; Sanchez-Arevalo Serrano, J.; Perez Sanchez, P.; Rancano Perez, A.

    2009-01-01

    The disinfection of municipal wastewater using ultraviolet radiation depends greatly on the presence within the water of particles in suspension. This work determines how the level of elimination of particles varies depending on the technique of filtration used (open, closed sand filters, with continuous washing of the sand, cloth, disk and ring filters). all systems are very effective in the removal of particles more than 25 microns and for removing helminth eggs. The membrane bio-reactors with ultrafiltration membranes were superior in terms of particle removal when compared to conventional filters. (Author) 11 refs.

  3. Fresh water production from municipal waste water with RO membrane technology and its application for agriculture and industry in arid area

    International Nuclear Information System (INIS)

    Yokoyama, F

    2015-01-01

    One of the biggest problems of the 21st century is the global water shortage. Therefore it is difficult to increase the quantity of conventional water resources such as surface water and groundwater for agriculture and industry in arid area. Technical advancement in water treatment membrane technology including RO membrane has been remarkable especially in recent years. As the pore size of RO membrane is less than one nanometer, it is possible to produce the fresh water, which satisfies the drinking water quality standards, with utilizing RO membrane. In this report a new fresh water resource from municipal waste water is studied to apply to the plant factory which is the water saving type agriculture and industry in arid area

  4. Membrane Distillation of Meat Industry Effluent with Hydrophilic Polyurethane Coated Polytetrafluoroethylene Membranes

    Directory of Open Access Journals (Sweden)

    M. G. Mostafa

    2017-09-01

    Full Text Available Meat rendering operations produce stick water waste which is rich in proteins, fats, and minerals. Membrane distillation (MD may further recover water and valuable solids, but hydrophobic membranes are contaminated by the fats. Here, commercial hydrophobic polytetrafluorethylene (PTFE membranes with a hydrophilic polyurethane surface layer (PU-PTFE are used for the first time for direct contact MD (DCMD on real poultry, fish, and bovine stick waters. Metal membrane microfiltration (MMF was also used to capture fats prior to MD. Although the standard hydrophobic PTFE membranes failed rapidly, PU-PTFE membranes effectively processed all stick water samples to colourless permeate with sodium rejections >99%. Initial clean solution fluxes 5–6 L/m2/h declined to less than half during short 40% water recovery tests for all stick water samples. Fish stick water uniquely showed reduced fouling and up to 78% water recovery. Lost flux was easily restored by rinsing the membrane with clean water. MMF prior to MD removed 92% of fats, facilitating superior MD performance. Differences in fouling between stick waters were attributed to temperature polarisation from higher melt temperature fats and relative proportions to proteins. Hydrophilic coated MD membranes are applicable to stick water processing but further studies should consider membrane cleaning and longer-term stability.

  5. Membrane Distillation of Meat Industry Effluent with Hydrophilic Polyurethane Coated Polytetrafluoroethylene Membranes.

    Science.gov (United States)

    Mostafa, M G; Zhu, Bo; Cran, Marlene; Dow, Noel; Milne, Nicholas; Desai, Dilip; Duke, Mikel

    2017-09-29

    Meat rendering operations produce stick water waste which is rich in proteins, fats, and minerals. Membrane distillation (MD) may further recover water and valuable solids, but hydrophobic membranes are contaminated by the fats. Here, commercial hydrophobic polytetrafluorethylene (PTFE) membranes with a hydrophilic polyurethane surface layer (PU-PTFE) are used for the first time for direct contact MD (DCMD) on real poultry, fish, and bovine stick waters. Metal membrane microfiltration (MMF) was also used to capture fats prior to MD. Although the standard hydrophobic PTFE membranes failed rapidly, PU-PTFE membranes effectively processed all stick water samples to colourless permeate with sodium rejections >99%. Initial clean solution fluxes 5-6 L/m²/h declined to less than half during short 40% water recovery tests for all stick water samples. Fish stick water uniquely showed reduced fouling and up to 78% water recovery. Lost flux was easily restored by rinsing the membrane with clean water. MMF prior to MD removed 92% of fats, facilitating superior MD performance. Differences in fouling between stick waters were attributed to temperature polarisation from higher melt temperature fats and relative proportions to proteins. Hydrophilic coated MD membranes are applicable to stick water processing but further studies should consider membrane cleaning and longer-term stability.

  6. Comparison of pressure-driven membrane processes and traditional ...

    African Journals Online (AJOL)

    In this article a comparison is made between drinking water production from surface water using pressure-driven membrane processes and using traditional surface water treatment systems. Three alternatives are considered: Traditional treatment using coagulation/flocculation, sand filtration, physicochemical softening, ...

  7. Pilot demonstration of energy-efficient membrane bioreactor (MBR) using reciprocating submerged membrane.

    Science.gov (United States)

    Ho, Jaeho; Smith, Shaleena; Patamasank, Jaren; Tontcheva, Petia; Kim, Gyu Dong; Roh, Hyung Keun

    2015-03-01

    Membrane bioreactor (MBR) is becoming popular for advanced wastewater treatment and water reuse. Air scouring to "shake" the membrane fibers is most suitable and applicable to maintain filtration without severe and rapidfouling. However, membrane fouling mitigating technologies are energy intensive. The goal of this research is to develop an alternative energy-saving MBR system to reduce energy consumption; a revolutionary system that will directly compete with air scouring technologies currently in the membrane water reuse market. The innovative MBR system, called reciprocation MBR (rMBR), prevents membrane fouling without the use of air scouring blowers. The mechanism featured is a mechanical reciprocating membrane frame that uses inertia to prevent fouling. Direct strong agitation of the fiber is also beneficial for the constant removal of solids built up on the membrane surface. The rMBR pilot consumes less energy than conventional coarse air scouring MBR systems. Specific energy consumption for membrane reciprocation for the pilot rMBR system was 0.072 kWh/m3 permeate produced at 40 LMH, which is 75% less than the conventional air scouring in an MBR system (0.29 kWh/m3). Reciprocation of the hollow-fiber membrane can overcome the hydrodynamic limitations of air scouring or cross-flow membrane systems with less energy consumption and/or higher energy efficiency.

  8. Membrane processing technology in the food industry: food processing, wastewater treatment, and effects on physical, microbiological, organoleptic, and nutritional properties of foods.

    Science.gov (United States)

    Kotsanopoulos, Konstantinos V; Arvanitoyannis, Ioannis S

    2015-01-01

    Membrane processing technology (MPT) is increasingly used nowadays in a wide range of applications (demineralization, desalination, stabilization, separation, deacidification, reduction of microbial load, purification, etc.) in food industries. The most frequently applied techniques are electrodialysis (ED), reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF), and microfiltration (MF). Several membrane characteristics, such as pore size, flow properties, and the applied hydraulic pressure mainly determine membranes' potential uses. In this review paper the basic membrane techniques, their potential applications in a large number of fields and products towards the food industry, the main advantages and disadvantages of these methods, fouling phenomena as well as their effects on the organoleptic, qualitative, and nutritional value of foods are synoptically described. Some representative examples of traditional and modern membrane applications both in tabular and figural form are also provided.

  9. Les réacteurs à membranes : possibilités d'application dans l'industrie pétrolière et pétrochimique Membrane Reactors: Possibilities of Application in the Petroleum and Petrochemical Industry

    Directory of Open Access Journals (Sweden)

    Guy C.

    2006-11-01

    Full Text Available Cet article fait le point sur l'état de la recherche dans le domaine des réacteurs chimiques avec séparation par membrane intégrée et de leur applications dans le domaine du raffinage et de la pétrochimie. Trois applications potentiellement intéressantes sont identifiées et, pour chacune, les avantages de l'utilisation d'un réacteur à membrane sont discutés. Ce sont : la déshydrogénation du propane en propylène, la déshydrogénation d'un naphtène cyclohexanique et le vaporéformage du gaz naturel. Pour ces réactions, les membranes à base de palladium apparaissent les plus performantes compte tenu de leur tenue en température, de leur sélectivité et de leur perméabilité à l'hydrogène. Quelques éléments relatifs à leur développement sont présentés en conclusion. Recently, the use of membrane in reaction engineering has been more and more advocated. The selective separation of the products from the reaction mixture allows to achieve higher conversion or better selectivity or to operate under less severe conditions or with smaller units. This paper presents an update on the recent advances in the field of chemical membrane reactors and on their applications in refining and petrochemistry. Previous work. Most of the possible applications of membrane reactors in petroleum and petrochemical industry concern gaseous catalytic reactions. For this reason, gas permeation membranes are the primary component of membrane reactors. Gas permeation membranes present different types of physical structure : dense, microporous or asymmetric which is a combination of the two. Separating properties of dense membranes are function of the solubility and diffusivity of each gaseous component in the membrane material. For microporous membranes, they follow four mechanisms : Knudsen diffusion, surface diffusion, capillary condensation or molecular sieving. Although organic polymers are the common constituent of gas permeation membrane, their

  10. Synthesis of polymer membranes of different porosity and their application for phenol removal from liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Hofman-Bieniek, Magdalena; Jasiewicz, Katarzyna; Pietrzak, Robert [Adam Mickiewicz University in Poznan, Poznan (Poland)

    2014-02-15

    Preparation of polymeric membranes based on polyethersulfone (PES) modified by adding different amounts of a pore-forming agent (PVP) is presented, and potential application of the membranes obtained for removal of phenol from the liquid phase is examined. The addition of various amounts of PVP has been shown to bring about changes in the content of the surface oxygen groups, but has no significant effect on the chemical character of the groups and acidic groups dominate. Filtration by phenol solution leads to significant changes in the total content of surface oxides; however, the acidic groups remain dominant. Membranes characterized by higher porosity exhibited more stable and higher rejection ratio for phenol removal. Although all the membranes were characterized by similar rejection ratios for phenol removal, the cake resistance (Rc) and pore resistance (Rp) values were found to depend significantly on the structure and porosity of the membrane applied for filtration.

  11. Synthesis of polymer membranes of different porosity and their application for phenol removal from liquid phase

    International Nuclear Information System (INIS)

    Hofman-Bieniek, Magdalena; Jasiewicz, Katarzyna; Pietrzak, Robert

    2014-01-01

    Preparation of polymeric membranes based on polyethersulfone (PES) modified by adding different amounts of a pore-forming agent (PVP) is presented, and potential application of the membranes obtained for removal of phenol from the liquid phase is examined. The addition of various amounts of PVP has been shown to bring about changes in the content of the surface oxygen groups, but has no significant effect on the chemical character of the groups and acidic groups dominate. Filtration by phenol solution leads to significant changes in the total content of surface oxides; however, the acidic groups remain dominant. Membranes characterized by higher porosity exhibited more stable and higher rejection ratio for phenol removal. Although all the membranes were characterized by similar rejection ratios for phenol removal, the cake resistance (Rc) and pore resistance (Rp) values were found to depend significantly on the structure and porosity of the membrane applied for filtration

  12. Crude biodiesel refining using membrane ultra-filtration process: An environmentally benign process

    Directory of Open Access Journals (Sweden)

    I.M. Atadashi

    2015-12-01

    Full Text Available Ceramic membrane separation system was developed to simultaneously remove free glycerol and soap from crude biodiesel. Crude biodiesel produced was ultra-filtered by multi-channel tubular membrane of the pore size of 0.05 μm. The effects of process parameters: transmembrane pressure (TMP, bar, temperature (°C and flow rate (L/min on the membrane system were evaluated. The process parameters were then optimized using Central Composite Design (CCD coupled with Response Surface Methodology (RSM. The best retention coefficients (%R for free glycerol and soap were 97.5% and 96.6% respectively. Further, the physical properties measured were comparable to those obtained in ASTMD6751-03 and EN14214 standards.

  13. Predicting flux decline of reverse osmosis membranes

    NARCIS (Netherlands)

    Schippers, J.C.; Hanemaayer, J.H.; Smolders, C.A.; Kostense, A.

    1981-01-01

    A mathematical model predicting flux decline of reverse osmosis membranes due to colloidal fouling has been verified. This mathema- tical model is based on the theory of cake or gel filtration and the Modified Fouling Index (MFI). Research was conducted using artificial colloidal solutions and a

  14. Tertiary wastewater treatment in membrane photobioreactor using microalgae: Comparison of forward osmosis & microfiltration.

    Science.gov (United States)

    Praveen, Prashant; Heng, Jonathan Yun Ping; Loh, Kai-Chee

    2016-12-01

    Discharge of wastewater with high nitrogen and phosphorus content is a major cause of eutrophication. In this study, a microfiltration-based membrane photobioreactor (MPBR) and forward osmosis-based osmotic membrane photobioreactor (OMPBR) have been operated with Chlorella vulgaris for continuous tertiary wastewater treatment. Both the bioreactors exhibited good biomass accumulation (over 2g/L), although the OMPBR achieved better nutrients removal due to high rejection properties of the membranes. At 2days HRT, the OMPBR achieved nitrogen and phosphorus removal efficiencies of 86-99% and 100%, respectively, whereas the corresponding values in the MPBR were 48-97% and 46%, respectively. Based on the energy input, the total operating costs for OMPBR were 32-45% higher than that of the MPBR, and filtration cost for OMPBR was 3.5-4.5 folds higher than that of the MPBR. These results indicate that the integration of membrane filtration with photobioreactors is promising in microalgae-based tertiary wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Evaluation of the oleophilicity of different alkoxysilane modified ceramic membranes through wetting dynamic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Nengwen, E-mail: nengwengao@cqut.edu.cn [State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China); College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400050 (China); Ke, Wei [State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China); Fan, Yiqun, E-mail: yiqunfan@njut.edu.cn [State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China); Xu, Nanping [State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2013-10-15

    Wettability has been recognized as one of the most important properties of porous materials for both fundamental and practical applications. In this study, the oleophilicity of Al{sub 2}O{sub 3} membranes modified by four alkoxysilanes with different length of alkyl group was investigated through oil wetting dynamic test. Fourier transform infrared spectroscopy (FTIR), thermogravimertric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were measured to confirm that ceramic membrane surfaces have been grafted with alkoxysilanes without changing the membrane morphology. A high speed video camera was used to record the spreading and imbibition process of oil on the modified membrane surface. The value of oil contact angle and its change during the wetting process were used to characterize the membrane oleophilicity. Characterization results showed that the oleophilicity of the modified membranes increased along with the increasing of the silane alkyl group. The influence of oleophilicity on the filtration performance of water-in-oil (W/O) emulsions was experimentally studied. A higher oil flux was obtained for membranes grafted with a longer alkyl group, indicating that increase oleophilicity can increase the membrane antifouling property. This work presents a valuable route to the surface oleophilicity control and testing of ceramic membranes in the filtration of non-polar organic solvents.

  16. Investigation on the conditions mitigating membrane fouling caused by TiO2 deposition in a membrane photocatalytic reactor (MPR) used for dye wastewater treatment

    International Nuclear Information System (INIS)

    Damodar, Rahul-Ashok; You, Sheng-Jie; Chiou, Guan-Wei

    2012-01-01

    Highlights: ► The charge differences between particle and membrane accelerate the intensity of fouling and binding of TiO 2 particles. ► Severe fouling at pH 5 and low fouling at pH ≥ 7 at all flux conditions. ► The presence of a very thin TiO 2 cake layer can alter the hydrophilicity of the membrane surface. ► The resistance offered by dense TiO 2 cake layer could dominate the hydrophilic effect of TiO 2 particles. - Abstract: In this study, the effects of MPR's operating conditions such as permeate flux, solution pH, and membrane hydrophobicity on separation characteristics and membrane fouling caused by TiO 2 deposition were investigated. The extent of fouling was measured in terms of TMP and tank turbidity variation. The results showed that, at mildly acidic conditions (pH ∼ 5), the turbidity within the tank decreased and the extent of turbidity drop increased with increasing flux for all the membranes. On the other hand, at pH ≥ 7, the turbidity remained constant at all flux and for all membranes tested. The fouling variation at different pH was closely linked with the surface charge (zeta potential) and hydrophilicity of both membrane and particles. It was observed that the charge differences between the particles and membranes accelerate the intensity of fouling and binding of TiO 2 particles on the membrane surface under different pH conditions. The presence of a very thin layer of TiO 2 can alter the hydrophilicity of the membranes and can slightly decrease the TMP (filtration resistance) of the fouled membranes. Besides, the resistance offered by the dense TiO 2 cake layer would dominate this hydrophilic effect of TiO 2 particles, and it may not alter the filtration resistance of the fouled membranes.

  17. Filtrations of free groups as intersections

    OpenAIRE

    Efrat, Ido

    2013-01-01

    For several natural filtrations of a free group S we express the n-th term of the filtration as the intersection of all kernels of homomorphisms from S to certain groups of upper-triangular unipotent matrices. This generalizes a classical result of Grun for the lower central filtration. In particular, we do this for the n-th term in the lower p-central filtration of S.

  18. Reforming and filtration Dual membrane for the production of hydrogen by cracking reaction

    International Nuclear Information System (INIS)

    Hafsaoui, J.

    2009-02-01

    In a context of rarefaction and increasing of prices of fossil energetic resources, it is necessary to diversify the energetic offer. Hydrogen seems to be one of the most promising vectors, although technological matters associated to its production slow down its development. In this context, the present work aims at elaborating a system able to produce pure hydrogen from hydrocarbon, and in particularly from methane. It is constituted of three membranes, which specific roles are reforming, separation and restitution of molecular hydrogen. The first membrane is porous and is made of a cermet BaCe 0.85 Y 0.15 O 3-α / nickel. The second one is dense and is elaborated either simply from BaCe 0.85 Y 0.15 O 3-α , or from the same cermet as the first membrane, depending whether the system operates in a galvanic or in a non-galvanic mode. The last one is of the same nature and morphology as the first one. The three membranes are fabricated and coupled one with the others by the process called co-tape-casting in organic solvent followed by a step of co-sintering. Hydrogen enters then in the porosity of the first membrane where it is oxidized when meeting with triple phases boundaries. In a non-galvanic system, protons and electrons can go through the second membrane, following the percolating proton and ion conducting paths, to reach the third membrane. In a galvanic system, electrons are transported toward the third membrane via an external circuit, which imposes a voltage. At the third membrane triple phase boundaries, electrons and protons recombine to form pure molecular hydrogen. These two systems galvanic and non galvanic have been designed and fabricated, and the motivation that has led to the choice of the materials used was given at each step of the process. Thanks to the comprehension of the different phenomena taking place during operating conditions, a rather optimized process leading to a system of production and purification of hydrogen was realized

  19. Combination of electrochemical processes with membrane bioreactors for wastewater treatment and fouling control: A review

    Directory of Open Access Journals (Sweden)

    Benny Marie B. Ensano

    2016-08-01

    Full Text Available This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs combine biodegradation, electrochemical and membrane filtration processes into one system providing higher effluent quality as compared to conventional MBRs and activated sludge plants. Furthermore, electrochemical processes, such as electrocoagulation, electrophoresis and electroosmosis, help to mitigate deposition of foulants into the membrane and enhance sludge dewaterability by controlling the morphological properties and mobility of the colloidal particles and bulk liquid. Intermittent application of minute electric field has proven to reduce energy consumption and operational cost as well as minimize the negative effect of direct current field on microbial activity which are some of the main concerns in eMBR technology. The present review discusses important design considerations of eMBR, its advantages as well as its applications to different types of wastewater. It also presents several challenges that need to be addressed for future development of this hybrid technology which include treatment of high strength industrial wastewater and removal of emerging contaminants, optimization study, cost benefit analysis and the possible combination with microbial electrolysis cell for biohydrogen production.

  20. A Study on Membrane Bioreactor for Water Reuse from the Effluent of Industrial Town Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Majid Hosseinzadeh

    2014-03-01

    Full Text Available Background: Considering the toxic effects of heavy metals and microbial pathogens in industrial wastewaters, it is necessary to treat metal and microbial contaminated wastewater prior to disposal in the environment. The purpose of this study is to assess the removal of heavy metals pollution and microbial contamination from a mixture of municipal and industrial wastewater using membrane bioreactor. Methods: A pilot study with a continuous stream was conducted using a 32-L-activated sludge with a flat sheet membrane. Actual wastewater from industrial wastewater treatment plant was used in this study. Membrane bioreactor was operated with a constant flow rate of 4 L/hr and chemical oxygen demand, suspended solids concentration, six heavy metals concentration, and total coliform amounts were recorded during the operation. Results: High COD, suspended solids, heavy metals, and microbial contamination removal was measured during the experiment. The average removal percentages obtained by the MBR system were 81% for Al, 53% for Fe, 94% for Pb, 91% for Cu, 59% for Ni, and 49% for Cr which indicated the presence of Cu, Ni, and Cr in both soluble and particle forms in mixed liquor while Al, Fe, and Pb were mainly in particulate form. Also, coliforms in the majority of the samples were <140 MPN/100mL that showed that more than 99.9% of total coliform was removed in MBR effluent. Conclusion: The Membrane Biological Reactor (MBR showed a good performance to remove heavy metals and microbial matters as well as COD and suspended solids. The effluent quality was suitable for reusing purposes.

  1. Direct separation of arsenic and antimony oxides by high-temperature filtration with porous FeAl intermetallic.

    Science.gov (United States)

    Zhang, Huibin; Liu, Xinli; Jiang, Yao; Gao, Lin; Yu, Linping; Lin, Nan; He, Yuehui; Liu, C T

    2017-09-15

    A temperature-controlled selective filtration technology for synchronous removal of arsenic and recovery of antimony from the fume produced from reduction smelting process of lead anode slimes was proposed. The chromium (Cr) alloyed FeAl intermetallic with an asymmetric pore structure was developed as the high-temperature filter material after evaluating its corrosive resistance, structural stability and mechanical properties. The results showed that porous FeAl alloyed with 20wt.% Cr had a long term stability in a high-temperature sulfide-bearing environment. The separation of arsenic and antimony trioxides was realized principally based on their disparate saturated vapor pressures at specific temperature ranges and the asymmetric membrane of FeAl filter elements with a mean pore size of 1.8μm. Pilot-scale filtration tests showed that the direct separation of arsenic and antimony can be achieved by a one-step or two-step filtration process. A higher removal percentage of arsenic can reach 92.24% at the expense of 6∼7% loss of antimony in the two-step filtration process at 500∼550°C and 300∼400°C. The FeAl filters had still good permeable and mechanical properties with 1041h of uninterrupted service, which indicates the feasibility of this high-temperature filtration technology. Copyright © 2017. Published by Elsevier B.V.

  2. Characterization of Membrane Foulants in Full-scale and Lab-scale Membrane Bioreactors for Wastewater Treatment and Reuse

    KAUST Repository

    Matar, Gerald

    2015-12-01

    Membrane bioreactors (MBRs) offer promising solution for wastewater treatment and reuse to address the problem of water scarcity. Nevertheless, this technology is still facing challenges associated with membrane biofouling. This phenomenon has been mainly investigated in lab-scale MBRs with little or no insight on biofouling in full-scale MBR plants. Furthermore, the temporal dynamics of biofouling microbial communities and their extracellular polymeric substances (EPS) are less studied. Herein, a multidisciplinary approach was adopted to address the above knowledge gaps in lab- and full-scale MBRs. In the full-scale MBR study, 16S rRNA gene pyrosequencing with multivariate statistical analysis revealed that the early and mature biofilm communities from five full-scale MBRs differed significantly from the source community (i.e. activated sludge), and random immigration of species from the source community was unlikely to shape the community structure of biofilms. Also, a core biofouling community was shared between the five MBR plants sampled despite differences in their operating conditions. In the lab-scale MBR studies, temporal dynamics of microbial communities and their EPS products were monitored on different hydrophobic and hydrophilic membranes during 30 days. At the early stages of filtration (1 d), the same early colonizers belonging to the class Betaproteobacteria were identified on all the membranes. However, their relative abundance decreased on day 20 and 30, and sequence reads belonging to the phylum Firmicutes and Chlorobi became dominant on all the membranes on day 20 and 30. In addition, the intrinsic membrane characteristic did not select any specific EPS fractions at the initial stages of filtration and the same EPS foulants developed with time on the hydrophobic and hydrophilic membranes. Our results indicated that the membrane surface characteristics did not select for specific biofouling communities or EPS foulants, and the same early

  3. Characterization of polytetrafluoroethylene membranes impregnated with calyx[n]arenes (n=4, 6 and 8) and acetatecalix[n]arenes for use in treatment of radioactive waste using the supported liquid membrane technique

    International Nuclear Information System (INIS)

    Santos, Jacinete L. dos; Felinto, Maria Claudia F.C.

    2009-01-01

    In the nuclear industry the separation processes have been to the long of those years of great importance in what refers to the production of nuclear materials used as fuels, having assumed fundamental paper in the strategy of decontamination of decommissioned nuclear installations and potentially in the disposition of liquid radioactive waste. Those wastes are produced continually, varying considerably in volume, radioactivity and chemical composition. In the treatment of these wastes different techniques have been used as the chemical treatment, the adsorption, the filtration, the ion exchange and the evaporation. Those techniques are limited to remove all the pollutants, and in the case of the evaporation they end up generating secondary solid wastes. In the last decades the technology of membranes has been a lot used mainly in the nuclear area to recover metal ions of radioactive liquid waste. This work presents the characterization of the PTFE membranes with pore size ranging between 0.45 and 5 μm for use in the recovery of metal ions in processes using the SLM technique. The membranes were characterized for: thickness and porosity, thermogravimetric analysis, infrared spectroscopy (IR), scanning electron microscopy (SEM) and luminescence spectroscopy with Eu(III) ions. (author)

  4. Optimization of suspensions filtration with compressible cake

    Directory of Open Access Journals (Sweden)

    Janacova Dagmar

    2016-01-01

    Full Text Available In this paper there is described filtering process for separating reaction mixture after enzymatic hydrolysis to process the chromium tanning waste. Filtration of this mixture is very complicated because it is case of mixture filtration with compressible cake. Successful process strongly depends on mathematical describing of filtration, calculating optimal values of pressure difference, specific resistant of filtration cake and temperature maintenance which is connected with viscosity change. The mathematic model of filtration with compressible cake we verified in laboratory conditions on special filtration device developed on our department.

  5. Fouling behavior of microstructured hollow fibers in cross-flow filtrations: Critical flux determination and direct visual observation of particle deposition

    NARCIS (Netherlands)

    Culfaz, P.Z.; Haddad, M.; Wessling, Matthias; Lammertink, Rob G.H.

    2011-01-01

    The fouling behavior of microstructured hollow fiber membranes was investigated in cross-flow filtrations of colloidal silica and yeast. In addition to the as-fabricated microstructured fibers, twisted fibers made by twisting the microstructured fibers around their own axes were tested and compared

  6. Effect of IX dosing on polypropylene and PVDF membrane fouling control

    KAUST Repository

    Myat, Darli Theint

    2013-07-01

    The performance of ion exchange (IX) resin for organics removal from wastewater was assessed using advanced characterisation techniques for varying doses of IX. Organic characterisation using liquid chromatography with a photodiode array (PDA) and fluorescence spectroscopy (Method A), and UV254, organic carbon and organic nitrogen detectors (Method B), was undertaken on wastewater before and after magnetic IX treatment. Results showed partial removal of the biopolymer fraction at high IX doses. With increasing concentration of IX, evidence for nitrogen-containing compounds such as proteins and amino acids disappeared from the LC-OND chromatogram, complementary to the fluorescence response. A greater fluorescence response of tryptophan-like proteins (278nm/343nm) for low IX concentrations was consistent with aggregation of tryptophan-like compounds into larger aggregates, either by self-aggregation or with polysaccharides. Recycling of IX resin through multiple adsorption steps without regeneration maintained the high level of humics removal but there was no continued removal of biopolymer. Subsequent membrane filtration of the IX treated waters resulted in complex fouling trends. Filtration tests with either polypropylene (PP) or polyvinylidene fluoride (PVDF) membranes showed higher rates of initial fouling following treatment with high IX doses (10mL/L) compared to filtration of untreated water, while treatment with lower IX doses resulted in decreased fouling rates relative to the untreated water. However, at longer filtration times the rate of fouling of IX treated waters was lower than untreated water and the relative fouling rates corresponded to the amount of biopolymer material in the feed. It was proposed that the mode of fouling changed from pore constriction during the initial filtration period to filter cake build up at longer filtration times. The organic composition strongly influenced the rate of fouling during the initial filtration period due to

  7. Water Filtration Products

    Science.gov (United States)

    1986-01-01

    American Water Corporation manufactures water filtration products which incorporate technology originally developed for manned space operations. The formula involves granular activated charcoal and other ingredients, and removes substances by catalytic reactions, mechanical filtration, and absorption. Details are proprietary. A NASA literature search contributed to development of the compound. The technology is being extended to a deodorizing compound called Biofresh which traps gas and moisture inside the unit. Further applications are anticipated.

  8. Removal of heavy metals and pollutants by membrane adsorption techniques

    Science.gov (United States)

    Khulbe, K. C.; Matsuura, T.

    2018-03-01

    Application of polymeric membranes for the adsorption of hazardous pollutants may lead to the development of next-generation reusable and portable water purification appliances. Membranes for membrane adsorption (MA) have the dual function of membrane filtration and adsorption to be very effective to remove trace amounts of pollutants such as cationic heavy metals, anionic phosphates and nitrates. In this review article, recent progresses in the development of MA membranes are surveyed. In addition, recent progresses in the development of advanced adsorbents such as nanoparticles are summarized, since they are potentially useful as fillers in the host membrane to enhance its performance. The future directions of R&D in this field are also shown in the conclusion section.

  9. Multifunctional nanocomposites of carbon nanotubes and nanoparticles formed via vacuum filtration

    Science.gov (United States)

    Hersam, Mark C; Ostojic, Gordana; Liang, Yu Teng

    2013-10-22

    In one aspect, the present invention provides a method of forming a film of nanocomposites of carbon nanotubes (CNTs) and platinum (Pt) nanoparticles. In one embodiment, the method includes the steps of (a) providing a first solution that contains a plurality of CNTs, (b) providing a second solution that contains a plurality of Pt nanoparticles, (c) combining the first solution and the second solution to form a third solution, and (d) filtering the third solution through a nanoporous membrane using vacuum filtration to obtain a film of nanocomposites of CNTs and Pt nanoparticles.

  10. An Underwater Superoleophobic Sepiolite Fibrous Membrane (SFM) for Oil­‐in­‐water Emulsion Separation

    KAUST Repository

    Yao, Pinjiang

    2014-01-01

    was fabricated by a facile vacuum filtration process of sepiolite nanofibers and chitosan, and after the cross-linking via glutaraldehyde, a self-standing membrane was obtained. The as-prepared membrane exhibited excellent capability of separating both

  11. Performance of diatomite/iron oxide modified nonwoven membrane used in membrane bioreactor process for wastewater reclamation.

    Science.gov (United States)

    He, Yueling; Zhang, Wenqi; Rao, Pinhua; Jin, Peng

    2014-01-01

    This study describes an approach for surface modification of a nonwoven membrane by diatomite/iron oxide to examine its filterability. Analysis results showed that nonwoven hydrophilicity is enhanced. Static contact angle decreases dramatically from 122.66° to 39.33°. Scanning electron micrograph images show that diatomite/iron oxide is attached on nonwoven fiber. X-ray diffraction analysis further proves that the compound is mostly magnetite. Fourier transformed infrared spectra results reveal that two new absorption peaks might be attributed to Si-O and Fe-O, respectively. Modified and original membranes were used in double nonwoven membrane bioreactors (MBRs) for synthetic wastewater treatment. High critical flux, long filtration time, slow trans-membrane pressure rise and stable sludge volume index confirmed the advantages of modified nonwoven. Comparing with original nonwoven, similar effluent qualities are achieved, meeting the requirements for wastewater reclamation.

  12. A novel In-situ Enzymatic Cleaning Method for Reducing Membrane Fouling in Membrane Bioreactors (MBRs

    Directory of Open Access Journals (Sweden)

    M. R. Bilad

    2016-05-01

    Full Text Available A novel in-situ enzymatic cleaning method was developed for fouling control in membrane bioreactors (MBRs. It is achieved by bringing the required enzymes near the membrane surface by pulling the enzymes to a magnetic membrane (MM surface by means of magnetic forces, exactly where the cleaning is required. To achieve this, the enzyme was coupled to a magnetic nanoparticle (MNP and the membrane it self was loaded with MNP. The magnetic activity was turned by means of an external permanent magnet. The effectiveness of concept was tested in a submerged membrane filtration using the model enzyme-substrate of Bacillus subitilis xylanase-arabinoxylan. The MM had almost similar properties compared to the unloaded ones, except for its well distributed MNPs. The enzyme was stable during coupling conditions and the presence of coupling could be detected using a high-performance anion-exchange chromatography (HPAEC analysis and Fourier transform infrared spectroscopy (FTIR. The system facilitated an in-situ enzymatic cleaning and could be effectively applied for control fouling in membrane bioreactors (MBRs.

  13. Comparison of the direct enzyme assay method with the membrane ...

    African Journals Online (AJOL)

    Comparison of the direct enzyme assay method with the membrane filtration technique in the quantification and monitoring of microbial indicator organisms – seasonal variations in the activities of coliforms and E. coli, temperature and pH.

  14. Controlled change of transport properties of poly(ethylene terephthalate) track membranes by plasma method

    International Nuclear Information System (INIS)

    Kravets, L I; Dmitriev, S N; Drachev, A I; Gilman, A B; Lazea, A; Dinescu, G

    2007-01-01

    A process of plasma polymerization of dimethylaniline and acrylic acid vapours on the surface of poly(ethylene terephthalate) track membranes has been investigated. The surface and hydrodynamic properties of the composite membranes produced in this case have been studied. It is shown that the water permeability of the obtained polymeric membranes can be controlled by changing the filtrate pH. Membranes with such properties can be used for controllable drug delivery and in sensor control

  15. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.

    Science.gov (United States)

    Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G

    2013-07-01

    Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively

  16. Performance of Submerged Membrane Bioreactor Combined with Powdered Activated Carbon Addition for the Treatment of an Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Tri Widjaja

    2010-02-01

    Full Text Available Membrane technology is one of the alternative solutions to overcome industrial wastewater treatment developed nowadays. The addition of PAC (Powdered Activated Carbon in the activated sludge using Submerged Membrane Adsorption Hybrid Bioreactor (SMAHBR is expected to increase the organic material removal. The purpose of this study was to determine the performance of submerged membrane bioreactor and activated carbon adsorption capacity of organic materials in wastewater. This study used SIER (Surabaya Industrial Estate Rungkut – Surabaya, Indonesia waste as activated sludge operated at Mixed Liquor Suspended Solid (MLSS concentrations of 8000 and 15000 mg/l, and Chemical Oxygen Demand (COD concentrations of 1500, 2500 mg/l, Sludge Retention Time (SRT of 10;20; and 30 days and activated carbon variables of 0%; 2.5%; 5%; 7.5%; 10%. The results showed that the fouling potential occurred at high MLSS where the COD removal occurred at PAC addition of 10% reaching 91.86%. High Soluble Microbial Product (SMP accumulation (± 10 mg/l occurred in short SRT and high MLSS concentration. PAC addition resulted in decreased microorganisms in the reactor and better effluent of SMAHBR, as a result, the performance of the submerged membrane bioreactor would be restored.

  17. Evaluating the Efficiency of Different Microfiltration and Ultrafiltration Membranes Used as Pre-treatment for Reverse Osmosis Desalination of Red Sea Water

    KAUST Repository

    AlMashharawi, Samer

    2011-07-01

    With the increase in population density throughout the world and the growing water demand, innovative methods of providing safe drinking water are of a very high priority. In 2002, the United Nations stated in their millennium declaration that one of their priority goals was “To reduce by half, by the year 2015, the proportion of people who are unable to reach or to afford safe drinking water” [1]. This goal was set with high standards and requires a great deal of water treatment related research in the coming years. Since 1990’s, drinking water treatment via membrane filtration has been widely accepted as a feasible alternative to conventional drinking water treatment. Nowadays, membrane processes are used for separation applications in many industrial applications. Over the past two decades, there has been a rapid growth in the use of low-pressure membrane for drinking water production. These membrane systems are increasingly being accepted as feasible and sustainable technologies for drinking water treatment. Like any innovative process, it has limitations; the primary limitation is membrane fouling, a phenomenon of particles accumulation on the membrane surface and inside its pores. It has the ability to reduce the permeate flux so that higher pumping intensity is required to maintain a consistent volume of product and increasing the cleaning frequency. This project has investigated the rate of reduction in the flux and the increase of pumping intensity using different membranes. Low pressure membranes with three different pore sizes (0.1μm MF, 100kDa UF, and 50kDa UF) have been tested. Eight different filtration configurations have been applied to the membranes including the variation of coagulant (FeCl3) addition aiming mitigation fouling impact in order to maintain consistent permeate flux, while monitoring several water quality parameters before and after treatment such as turbidity, SDI15, total organic carbon (TOC) and particle size distribution

  18. Performance of electrodialysis reversal and reverse osmosis for reclaiming wastewater from high-tech industrial parks in Taiwan: A pilot-scale study.

    Science.gov (United States)

    Yen, Feng-Chi; You, Sheng-Jie; Chang, Tien-Chin

    2017-02-01

    Wastewater reclamation is considered an absolute necessity in Taiwan, as numerous industrial parks experience water shortage. However, the water quality of secondary treated effluents from sewage treatment plants generally does not meet the requirements of industrial water use because of the high inorganic constituents. This paper reports experimental data from a pilot-plant study of two treatment processes-(i) fiber filtration (FF)-ultrafiltration (UF)-reverse osmosis (RO) and (ii) sand filtration (SF)-electrodialysis reversal (EDR)-for treating industrial high conductivity effluents from the Xianxi wastewater treatment plant in Taiwan. The results demonstrated that FF-UF was excellent for turbidity removal and it was a suitable pretreatment process for RO. The influence of two membrane materials on the operating characteristics and process stability of the UF process was determined. The treatment performance of FF-UF-RO was higher than that of SF-EDR with an average desalination rate of 97%, a permeate conductivity of 272.7 ± 32.0, turbidity of 0.183 ± 0.02 NTU and a chemical oxigen demand of <4.5 mg/L. The cost analysis for both processes in a water reclamation plant of 4000 m 3 /d capacity revealed that using FF-UF-RO had a lower treatment cost than using SF-EDR, which required activated carbon filtration as a post treatment process. On the basis of the results in this study, the FF-UF-RO system is recommended as a potential process for additional applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Health Benefits of Particle Filtration

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also, reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percent age improvement in health outcomes is typically modest, for example, 7percent to 25percent. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.

  20. Health Benefits of Particle Filtration

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percentage improvement in health outcomes is typically modest, e.g., 7percent to 25percent. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.